9cfec2e655f2f4d400fe93a098c7ac4fa8eed7c4
[deliverable/binutils-gdb.git] / gas / expr.c
1 /* expr.c -operands, expressions-
2 Copyright (C) 1987, 90, 91, 92, 93, 94, 95, 96, 97, 98, 1999
3 Free Software Foundation, Inc.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /*
23 * This is really a branch office of as-read.c. I split it out to clearly
24 * distinguish the world of expressions from the world of statements.
25 * (It also gives smaller files to re-compile.)
26 * Here, "operand"s are of expressions, not instructions.
27 */
28
29 #include <ctype.h>
30 #include <string.h>
31 #define min(a, b) ((a) < (b) ? (a) : (b))
32
33 #include "as.h"
34 #include "obstack.h"
35
36 static void floating_constant PARAMS ((expressionS * expressionP));
37 static valueT generic_bignum_to_int32 PARAMS ((void));
38 #ifdef BFD64
39 static valueT generic_bignum_to_int64 PARAMS ((void));
40 #endif
41 static void integer_constant PARAMS ((int radix, expressionS * expressionP));
42 static void mri_char_constant PARAMS ((expressionS *));
43 static void current_location PARAMS ((expressionS *));
44 static void clean_up_expression PARAMS ((expressionS * expressionP));
45 static segT operand PARAMS ((expressionS *));
46 static operatorT operator PARAMS ((void));
47
48 extern const char EXP_CHARS[], FLT_CHARS[];
49
50 /* We keep a mapping of expression symbols to file positions, so that
51 we can provide better error messages. */
52
53 struct expr_symbol_line
54 {
55 struct expr_symbol_line *next;
56 symbolS *sym;
57 char *file;
58 unsigned int line;
59 };
60
61 static struct expr_symbol_line *expr_symbol_lines;
62 \f
63 /* Build a dummy symbol to hold a complex expression. This is how we
64 build expressions up out of other expressions. The symbol is put
65 into the fake section expr_section. */
66
67 symbolS *
68 make_expr_symbol (expressionP)
69 expressionS *expressionP;
70 {
71 expressionS zero;
72 const char *fake;
73 symbolS *symbolP;
74 struct expr_symbol_line *n;
75
76 if (expressionP->X_op == O_symbol
77 && expressionP->X_add_number == 0)
78 return expressionP->X_add_symbol;
79
80 if (expressionP->X_op == O_big)
81 {
82 /* This won't work, because the actual value is stored in
83 generic_floating_point_number or generic_bignum, and we are
84 going to lose it if we haven't already. */
85 if (expressionP->X_add_number > 0)
86 as_bad (_("bignum invalid; zero assumed"));
87 else
88 as_bad (_("floating point number invalid; zero assumed"));
89 zero.X_op = O_constant;
90 zero.X_add_number = 0;
91 zero.X_unsigned = 0;
92 clean_up_expression (&zero);
93 expressionP = &zero;
94 }
95
96 fake = FAKE_LABEL_NAME;
97
98 /* Putting constant symbols in absolute_section rather than
99 expr_section is convenient for the old a.out code, for which
100 S_GET_SEGMENT does not always retrieve the value put in by
101 S_SET_SEGMENT. */
102 symbolP = symbol_create (fake,
103 (expressionP->X_op == O_constant
104 ? absolute_section
105 : expr_section),
106 0, &zero_address_frag);
107 symbol_set_value_expression (symbolP, expressionP);
108
109 if (expressionP->X_op == O_constant)
110 resolve_symbol_value (symbolP, 1);
111
112 n = (struct expr_symbol_line *) xmalloc (sizeof *n);
113 n->sym = symbolP;
114 as_where (&n->file, &n->line);
115 n->next = expr_symbol_lines;
116 expr_symbol_lines = n;
117
118 return symbolP;
119 }
120
121 /* Return the file and line number for an expr symbol. Return
122 non-zero if something was found, 0 if no information is known for
123 the symbol. */
124
125 int
126 expr_symbol_where (sym, pfile, pline)
127 symbolS *sym;
128 char **pfile;
129 unsigned int *pline;
130 {
131 register struct expr_symbol_line *l;
132
133 for (l = expr_symbol_lines; l != NULL; l = l->next)
134 {
135 if (l->sym == sym)
136 {
137 *pfile = l->file;
138 *pline = l->line;
139 return 1;
140 }
141 }
142
143 return 0;
144 }
145 \f
146 /* Utilities for building expressions.
147 Since complex expressions are recorded as symbols for use in other
148 expressions these return a symbolS * and not an expressionS *.
149 These explicitly do not take an "add_number" argument. */
150 /* ??? For completeness' sake one might want expr_build_symbol.
151 It would just return its argument. */
152
153 /* Build an expression for an unsigned constant.
154 The corresponding one for signed constants is missing because
155 there's currently no need for it. One could add an unsigned_p flag
156 but that seems more clumsy. */
157
158 symbolS *
159 expr_build_uconstant (value)
160 offsetT value;
161 {
162 expressionS e;
163
164 e.X_op = O_constant;
165 e.X_add_number = value;
166 e.X_unsigned = 1;
167 return make_expr_symbol (&e);
168 }
169
170 /* Build an expression for OP s1. */
171
172 symbolS *
173 expr_build_unary (op, s1)
174 operatorT op;
175 symbolS *s1;
176 {
177 expressionS e;
178
179 e.X_op = op;
180 e.X_add_symbol = s1;
181 e.X_add_number = 0;
182 return make_expr_symbol (&e);
183 }
184
185 /* Build an expression for s1 OP s2. */
186
187 symbolS *
188 expr_build_binary (op, s1, s2)
189 operatorT op;
190 symbolS *s1;
191 symbolS *s2;
192 {
193 expressionS e;
194
195 e.X_op = op;
196 e.X_add_symbol = s1;
197 e.X_op_symbol = s2;
198 e.X_add_number = 0;
199 return make_expr_symbol (&e);
200 }
201
202 /* Build an expression for the current location ('.'). */
203
204 symbolS *
205 expr_build_dot ()
206 {
207 expressionS e;
208
209 current_location (&e);
210 return make_expr_symbol (&e);
211 }
212 \f
213 /*
214 * Build any floating-point literal here.
215 * Also build any bignum literal here.
216 */
217
218 /* Seems atof_machine can backscan through generic_bignum and hit whatever
219 happens to be loaded before it in memory. And its way too complicated
220 for me to fix right. Thus a hack. JF: Just make generic_bignum bigger,
221 and never write into the early words, thus they'll always be zero.
222 I hate Dean's floating-point code. Bleh. */
223 LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER + 6];
224 FLONUM_TYPE generic_floating_point_number =
225 {
226 &generic_bignum[6], /* low (JF: Was 0) */
227 &generic_bignum[SIZE_OF_LARGE_NUMBER + 6 - 1], /* high JF: (added +6) */
228 0, /* leader */
229 0, /* exponent */
230 0 /* sign */
231 };
232 /* If nonzero, we've been asked to assemble nan, +inf or -inf */
233 int generic_floating_point_magic;
234 \f
235 static void
236 floating_constant (expressionP)
237 expressionS *expressionP;
238 {
239 /* input_line_pointer->*/
240 /* floating-point constant. */
241 int error_code;
242
243 error_code = atof_generic (&input_line_pointer, ".", EXP_CHARS,
244 &generic_floating_point_number);
245
246 if (error_code)
247 {
248 if (error_code == ERROR_EXPONENT_OVERFLOW)
249 {
250 as_bad (_("bad floating-point constant: exponent overflow, probably assembling junk"));
251 }
252 else
253 {
254 as_bad (_("bad floating-point constant: unknown error code=%d."), error_code);
255 }
256 }
257 expressionP->X_op = O_big;
258 /* input_line_pointer->just after constant, */
259 /* which may point to whitespace. */
260 expressionP->X_add_number = -1;
261 }
262
263 static valueT
264 generic_bignum_to_int32 ()
265 {
266 valueT number =
267 ((generic_bignum[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
268 | (generic_bignum[0] & LITTLENUM_MASK);
269 number &= 0xffffffff;
270 return number;
271 }
272
273 #ifdef BFD64
274 static valueT
275 generic_bignum_to_int64 ()
276 {
277 valueT number =
278 ((((((((valueT) generic_bignum[3] & LITTLENUM_MASK)
279 << LITTLENUM_NUMBER_OF_BITS)
280 | ((valueT) generic_bignum[2] & LITTLENUM_MASK))
281 << LITTLENUM_NUMBER_OF_BITS)
282 | ((valueT) generic_bignum[1] & LITTLENUM_MASK))
283 << LITTLENUM_NUMBER_OF_BITS)
284 | ((valueT) generic_bignum[0] & LITTLENUM_MASK));
285 return number;
286 }
287 #endif
288
289 static void
290 integer_constant (radix, expressionP)
291 int radix;
292 expressionS *expressionP;
293 {
294 char *start; /* start of number. */
295 char *suffix = NULL;
296 char c;
297 valueT number; /* offset or (absolute) value */
298 short int digit; /* value of next digit in current radix */
299 short int maxdig = 0;/* highest permitted digit value. */
300 int too_many_digits = 0; /* if we see >= this number of */
301 char *name; /* points to name of symbol */
302 symbolS *symbolP; /* points to symbol */
303
304 int small; /* true if fits in 32 bits. */
305
306 /* May be bignum, or may fit in 32 bits. */
307 /* Most numbers fit into 32 bits, and we want this case to be fast.
308 so we pretend it will fit into 32 bits. If, after making up a 32
309 bit number, we realise that we have scanned more digits than
310 comfortably fit into 32 bits, we re-scan the digits coding them
311 into a bignum. For decimal and octal numbers we are
312 conservative: Some numbers may be assumed bignums when in fact
313 they do fit into 32 bits. Numbers of any radix can have excess
314 leading zeros: We strive to recognise this and cast them back
315 into 32 bits. We must check that the bignum really is more than
316 32 bits, and change it back to a 32-bit number if it fits. The
317 number we are looking for is expected to be positive, but if it
318 fits into 32 bits as an unsigned number, we let it be a 32-bit
319 number. The cavalier approach is for speed in ordinary cases. */
320 /* This has been extended for 64 bits. We blindly assume that if
321 you're compiling in 64-bit mode, the target is a 64-bit machine.
322 This should be cleaned up. */
323
324 #ifdef BFD64
325 #define valuesize 64
326 #else /* includes non-bfd case, mostly */
327 #define valuesize 32
328 #endif
329
330 if (flag_m68k_mri && radix == 0)
331 {
332 int flt = 0;
333
334 /* In MRI mode, the number may have a suffix indicating the
335 radix. For that matter, it might actually be a floating
336 point constant. */
337 for (suffix = input_line_pointer;
338 isalnum ((unsigned char) *suffix);
339 suffix++)
340 {
341 if (*suffix == 'e' || *suffix == 'E')
342 flt = 1;
343 }
344
345 if (suffix == input_line_pointer)
346 {
347 radix = 10;
348 suffix = NULL;
349 }
350 else
351 {
352 c = *--suffix;
353 if (islower ((unsigned char) c))
354 c = toupper (c);
355 if (c == 'B')
356 radix = 2;
357 else if (c == 'D')
358 radix = 10;
359 else if (c == 'O' || c == 'Q')
360 radix = 8;
361 else if (c == 'H')
362 radix = 16;
363 else if (suffix[1] == '.' || c == 'E' || flt)
364 {
365 floating_constant (expressionP);
366 return;
367 }
368 else
369 {
370 radix = 10;
371 suffix = NULL;
372 }
373 }
374 }
375
376 switch (radix)
377 {
378 case 2:
379 maxdig = 2;
380 too_many_digits = valuesize + 1;
381 break;
382 case 8:
383 maxdig = radix = 8;
384 too_many_digits = (valuesize + 2) / 3 + 1;
385 break;
386 case 16:
387 maxdig = radix = 16;
388 too_many_digits = (valuesize + 3) / 4 + 1;
389 break;
390 case 10:
391 maxdig = radix = 10;
392 too_many_digits = (valuesize + 12) / 4; /* very rough */
393 }
394 #undef valuesize
395 start = input_line_pointer;
396 c = *input_line_pointer++;
397 for (number = 0;
398 (digit = hex_value (c)) < maxdig;
399 c = *input_line_pointer++)
400 {
401 number = number * radix + digit;
402 }
403 /* c contains character after number. */
404 /* input_line_pointer->char after c. */
405 small = (input_line_pointer - start - 1) < too_many_digits;
406
407 if (radix == 16 && c == '_')
408 {
409 /* This is literal of the form 0x333_0_12345678_1.
410 This example is equivalent to 0x00000333000000001234567800000001. */
411
412 int num_little_digits = 0;
413 int i;
414 input_line_pointer = start; /*->1st digit. */
415
416 know (LITTLENUM_NUMBER_OF_BITS == 16);
417
418 for (c = '_'; c == '_'; num_little_digits+=2)
419 {
420
421 /* Convert one 64-bit word. */
422 int ndigit = 0;
423 number = 0;
424 for (c = *input_line_pointer++;
425 (digit = hex_value (c)) < maxdig;
426 c = *(input_line_pointer++))
427 {
428 number = number * radix + digit;
429 ndigit++;
430 }
431
432 /* Check for 8 digit per word max. */
433 if (ndigit > 8)
434 as_bad (_("A bignum with underscores may not have more than 8 hex digits in any word."));
435
436 /* Add this chunk to the bignum. Shift things down 2 little digits.*/
437 know (LITTLENUM_NUMBER_OF_BITS == 16);
438 for (i = min (num_little_digits + 1, SIZE_OF_LARGE_NUMBER - 1); i >= 2; i--)
439 generic_bignum[i] = generic_bignum[i-2];
440
441 /* Add the new digits as the least significant new ones. */
442 generic_bignum[0] = number & 0xffffffff;
443 generic_bignum[1] = number >> 16;
444 }
445
446 /* Again, c is char after number, input_line_pointer->after c. */
447
448 if (num_little_digits > SIZE_OF_LARGE_NUMBER - 1)
449 num_little_digits = SIZE_OF_LARGE_NUMBER - 1;
450
451 assert (num_little_digits >= 4);
452
453 if (num_little_digits != 8)
454 as_bad (_("A bignum with underscores must have exactly 4 words."));
455
456 /* We might have some leading zeros. These can be trimmed to give
457 * us a change to fit this constant into a small number.
458 */
459 while (generic_bignum[num_little_digits-1] == 0 && num_little_digits > 1)
460 num_little_digits--;
461
462 if (num_little_digits <= 2)
463 {
464 /* will fit into 32 bits. */
465 number = generic_bignum_to_int32 ();
466 small = 1;
467 }
468 #ifdef BFD64
469 else if (num_little_digits <= 4)
470 {
471 /* Will fit into 64 bits. */
472 number = generic_bignum_to_int64 ();
473 small = 1;
474 }
475 #endif
476 else
477 {
478 small = 0;
479 number = num_little_digits; /* number of littlenums in the bignum. */
480 }
481 }
482 else if (!small)
483 {
484 /*
485 * we saw a lot of digits. manufacture a bignum the hard way.
486 */
487 LITTLENUM_TYPE *leader; /*->high order littlenum of the bignum. */
488 LITTLENUM_TYPE *pointer; /*->littlenum we are frobbing now. */
489 long carry;
490
491 leader = generic_bignum;
492 generic_bignum[0] = 0;
493 generic_bignum[1] = 0;
494 generic_bignum[2] = 0;
495 generic_bignum[3] = 0;
496 input_line_pointer = start; /*->1st digit. */
497 c = *input_line_pointer++;
498 for (;
499 (carry = hex_value (c)) < maxdig;
500 c = *input_line_pointer++)
501 {
502 for (pointer = generic_bignum;
503 pointer <= leader;
504 pointer++)
505 {
506 long work;
507
508 work = carry + radix * *pointer;
509 *pointer = work & LITTLENUM_MASK;
510 carry = work >> LITTLENUM_NUMBER_OF_BITS;
511 }
512 if (carry)
513 {
514 if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
515 {
516 /* room to grow a longer bignum. */
517 *++leader = carry;
518 }
519 }
520 }
521 /* again, c is char after number, */
522 /* input_line_pointer->after c. */
523 know (LITTLENUM_NUMBER_OF_BITS == 16);
524 if (leader < generic_bignum + 2)
525 {
526 /* will fit into 32 bits. */
527 number = generic_bignum_to_int32 ();
528 small = 1;
529 }
530 #ifdef BFD64
531 else if (leader < generic_bignum + 4)
532 {
533 /* Will fit into 64 bits. */
534 number = generic_bignum_to_int64 ();
535 small = 1;
536 }
537 #endif
538 else
539 {
540 number = leader - generic_bignum + 1; /* number of littlenums in the bignum. */
541 }
542 }
543
544 if (flag_m68k_mri && suffix != NULL && input_line_pointer - 1 == suffix)
545 c = *input_line_pointer++;
546
547 if (small)
548 {
549 /*
550 * here with number, in correct radix. c is the next char.
551 * note that unlike un*x, we allow "011f" "0x9f" to
552 * both mean the same as the (conventional) "9f". this is simply easier
553 * than checking for strict canonical form. syntax sux!
554 */
555
556 if (LOCAL_LABELS_FB && c == 'b')
557 {
558 /*
559 * backward ref to local label.
560 * because it is backward, expect it to be defined.
561 */
562 /* Construct a local label. */
563 name = fb_label_name ((int) number, 0);
564
565 /* seen before, or symbol is defined: ok */
566 symbolP = symbol_find (name);
567 if ((symbolP != NULL) && (S_IS_DEFINED (symbolP)))
568 {
569 /* local labels are never absolute. don't waste time
570 checking absoluteness. */
571 know (SEG_NORMAL (S_GET_SEGMENT (symbolP)));
572
573 expressionP->X_op = O_symbol;
574 expressionP->X_add_symbol = symbolP;
575 }
576 else
577 {
578 /* either not seen or not defined. */
579 /* @@ Should print out the original string instead of
580 the parsed number. */
581 as_bad (_("backw. ref to unknown label \"%d:\", 0 assumed."),
582 (int) number);
583 expressionP->X_op = O_constant;
584 }
585
586 expressionP->X_add_number = 0;
587 } /* case 'b' */
588 else if (LOCAL_LABELS_FB && c == 'f')
589 {
590 /*
591 * forward reference. expect symbol to be undefined or
592 * unknown. undefined: seen it before. unknown: never seen
593 * it before.
594 * construct a local label name, then an undefined symbol.
595 * don't create a xseg frag for it: caller may do that.
596 * just return it as never seen before.
597 */
598 name = fb_label_name ((int) number, 1);
599 symbolP = symbol_find_or_make (name);
600 /* we have no need to check symbol properties. */
601 #ifndef many_segments
602 /* since "know" puts its arg into a "string", we
603 can't have newlines in the argument. */
604 know (S_GET_SEGMENT (symbolP) == undefined_section || S_GET_SEGMENT (symbolP) == text_section || S_GET_SEGMENT (symbolP) == data_section);
605 #endif
606 expressionP->X_op = O_symbol;
607 expressionP->X_add_symbol = symbolP;
608 expressionP->X_add_number = 0;
609 } /* case 'f' */
610 else if (LOCAL_LABELS_DOLLAR && c == '$')
611 {
612 /* If the dollar label is *currently* defined, then this is just
613 another reference to it. If it is not *currently* defined,
614 then this is a fresh instantiation of that number, so create
615 it. */
616
617 if (dollar_label_defined ((long) number))
618 {
619 name = dollar_label_name ((long) number, 0);
620 symbolP = symbol_find (name);
621 know (symbolP != NULL);
622 }
623 else
624 {
625 name = dollar_label_name ((long) number, 1);
626 symbolP = symbol_find_or_make (name);
627 }
628
629 expressionP->X_op = O_symbol;
630 expressionP->X_add_symbol = symbolP;
631 expressionP->X_add_number = 0;
632 } /* case '$' */
633 else
634 {
635 expressionP->X_op = O_constant;
636 #ifdef TARGET_WORD_SIZE
637 /* Sign extend NUMBER. */
638 number |= (-(number >> (TARGET_WORD_SIZE - 1))) << (TARGET_WORD_SIZE - 1);
639 #endif
640 expressionP->X_add_number = number;
641 input_line_pointer--; /* restore following character. */
642 } /* really just a number */
643 }
644 else
645 {
646 /* not a small number */
647 expressionP->X_op = O_big;
648 expressionP->X_add_number = number; /* number of littlenums */
649 input_line_pointer--; /*->char following number. */
650 }
651 }
652
653 /* Parse an MRI multi character constant. */
654
655 static void
656 mri_char_constant (expressionP)
657 expressionS *expressionP;
658 {
659 int i;
660
661 if (*input_line_pointer == '\''
662 && input_line_pointer[1] != '\'')
663 {
664 expressionP->X_op = O_constant;
665 expressionP->X_add_number = 0;
666 return;
667 }
668
669 /* In order to get the correct byte ordering, we must build the
670 number in reverse. */
671 for (i = SIZE_OF_LARGE_NUMBER - 1; i >= 0; i--)
672 {
673 int j;
674
675 generic_bignum[i] = 0;
676 for (j = 0; j < CHARS_PER_LITTLENUM; j++)
677 {
678 if (*input_line_pointer == '\'')
679 {
680 if (input_line_pointer[1] != '\'')
681 break;
682 ++input_line_pointer;
683 }
684 generic_bignum[i] <<= 8;
685 generic_bignum[i] += *input_line_pointer;
686 ++input_line_pointer;
687 }
688
689 if (i < SIZE_OF_LARGE_NUMBER - 1)
690 {
691 /* If there is more than one littlenum, left justify the
692 last one to make it match the earlier ones. If there is
693 only one, we can just use the value directly. */
694 for (; j < CHARS_PER_LITTLENUM; j++)
695 generic_bignum[i] <<= 8;
696 }
697
698 if (*input_line_pointer == '\''
699 && input_line_pointer[1] != '\'')
700 break;
701 }
702
703 if (i < 0)
704 {
705 as_bad (_("Character constant too large"));
706 i = 0;
707 }
708
709 if (i > 0)
710 {
711 int c;
712 int j;
713
714 c = SIZE_OF_LARGE_NUMBER - i;
715 for (j = 0; j < c; j++)
716 generic_bignum[j] = generic_bignum[i + j];
717 i = c;
718 }
719
720 know (LITTLENUM_NUMBER_OF_BITS == 16);
721 if (i > 2)
722 {
723 expressionP->X_op = O_big;
724 expressionP->X_add_number = i;
725 }
726 else
727 {
728 expressionP->X_op = O_constant;
729 if (i < 2)
730 expressionP->X_add_number = generic_bignum[0] & LITTLENUM_MASK;
731 else
732 expressionP->X_add_number =
733 (((generic_bignum[1] & LITTLENUM_MASK)
734 << LITTLENUM_NUMBER_OF_BITS)
735 | (generic_bignum[0] & LITTLENUM_MASK));
736 }
737
738 /* Skip the final closing quote. */
739 ++input_line_pointer;
740 }
741
742 /* Return an expression representing the current location. This
743 handles the magic symbol `.'. */
744
745 static void
746 current_location (expressionp)
747 expressionS *expressionp;
748 {
749 if (now_seg == absolute_section)
750 {
751 expressionp->X_op = O_constant;
752 expressionp->X_add_number = abs_section_offset;
753 }
754 else
755 {
756 symbolS *symbolp;
757
758 symbolp = symbol_new (FAKE_LABEL_NAME, now_seg,
759 (valueT) frag_now_fix (),
760 frag_now);
761 expressionp->X_op = O_symbol;
762 expressionp->X_add_symbol = symbolp;
763 expressionp->X_add_number = 0;
764 }
765 }
766
767 /*
768 * Summary of operand().
769 *
770 * in: Input_line_pointer points to 1st char of operand, which may
771 * be a space.
772 *
773 * out: A expressionS.
774 * The operand may have been empty: in this case X_op == O_absent.
775 * Input_line_pointer->(next non-blank) char after operand.
776 */
777
778 static segT
779 operand (expressionP)
780 expressionS *expressionP;
781 {
782 char c;
783 symbolS *symbolP; /* points to symbol */
784 char *name; /* points to name of symbol */
785 segT segment;
786
787 /* All integers are regarded as unsigned unless they are negated.
788 This is because the only thing which cares whether a number is
789 unsigned is the code in emit_expr which extends constants into
790 bignums. It should only sign extend negative numbers, so that
791 something like ``.quad 0x80000000'' is not sign extended even
792 though it appears negative if valueT is 32 bits. */
793 expressionP->X_unsigned = 1;
794
795 /* digits, assume it is a bignum. */
796
797 SKIP_WHITESPACE (); /* leading whitespace is part of operand. */
798 c = *input_line_pointer++; /* input_line_pointer->past char in c. */
799
800 switch (c)
801 {
802 case '1':
803 case '2':
804 case '3':
805 case '4':
806 case '5':
807 case '6':
808 case '7':
809 case '8':
810 case '9':
811 input_line_pointer--;
812
813 integer_constant (flag_m68k_mri ? 0 : 10, expressionP);
814 break;
815
816 case '0':
817 /* non-decimal radix */
818
819 if (flag_m68k_mri)
820 {
821 char *s;
822
823 /* Check for a hex constant. */
824 for (s = input_line_pointer; hex_p (*s); s++)
825 ;
826 if (*s == 'h' || *s == 'H')
827 {
828 --input_line_pointer;
829 integer_constant (0, expressionP);
830 break;
831 }
832 }
833
834 c = *input_line_pointer;
835 switch (c)
836 {
837 case 'o':
838 case 'O':
839 case 'q':
840 case 'Q':
841 case '8':
842 case '9':
843 if (flag_m68k_mri)
844 {
845 integer_constant (0, expressionP);
846 break;
847 }
848 /* Fall through. */
849 default:
850 default_case:
851 if (c && strchr (FLT_CHARS, c))
852 {
853 input_line_pointer++;
854 floating_constant (expressionP);
855 expressionP->X_add_number =
856 - (isupper ((unsigned char) c) ? tolower (c) : c);
857 }
858 else
859 {
860 /* The string was only zero */
861 expressionP->X_op = O_constant;
862 expressionP->X_add_number = 0;
863 }
864
865 break;
866
867 case 'x':
868 case 'X':
869 if (flag_m68k_mri)
870 goto default_case;
871 input_line_pointer++;
872 integer_constant (16, expressionP);
873 break;
874
875 case 'b':
876 if (LOCAL_LABELS_FB && ! flag_m68k_mri)
877 {
878 /* This code used to check for '+' and '-' here, and, in
879 some conditions, fall through to call
880 integer_constant. However, that didn't make sense,
881 as integer_constant only accepts digits. */
882 /* Some of our code elsewhere does permit digits greater
883 than the expected base; for consistency, do the same
884 here. */
885 if (input_line_pointer[1] < '0'
886 || input_line_pointer[1] > '9')
887 {
888 /* Parse this as a back reference to label 0. */
889 input_line_pointer--;
890 integer_constant (10, expressionP);
891 break;
892 }
893 /* Otherwise, parse this as a binary number. */
894 }
895 /* Fall through. */
896 case 'B':
897 input_line_pointer++;
898 if (flag_m68k_mri)
899 goto default_case;
900 integer_constant (2, expressionP);
901 break;
902
903 case '0':
904 case '1':
905 case '2':
906 case '3':
907 case '4':
908 case '5':
909 case '6':
910 case '7':
911 integer_constant (flag_m68k_mri ? 0 : 8, expressionP);
912 break;
913
914 case 'f':
915 if (LOCAL_LABELS_FB)
916 {
917 /* If it says "0f" and it could possibly be a floating point
918 number, make it one. Otherwise, make it a local label,
919 and try to deal with parsing the rest later. */
920 if (!input_line_pointer[1]
921 || (is_end_of_line[0xff & input_line_pointer[1]]))
922 goto is_0f_label;
923 {
924 char *cp = input_line_pointer + 1;
925 int r = atof_generic (&cp, ".", EXP_CHARS,
926 &generic_floating_point_number);
927 switch (r)
928 {
929 case 0:
930 case ERROR_EXPONENT_OVERFLOW:
931 if (*cp == 'f' || *cp == 'b')
932 /* looks like a difference expression */
933 goto is_0f_label;
934 else if (cp == input_line_pointer + 1)
935 /* No characters has been accepted -- looks like
936 end of operand. */
937 goto is_0f_label;
938 else
939 goto is_0f_float;
940 default:
941 as_fatal (_("expr.c(operand): bad atof_generic return val %d"),
942 r);
943 }
944 }
945
946 /* Okay, now we've sorted it out. We resume at one of these
947 two labels, depending on what we've decided we're probably
948 looking at. */
949 is_0f_label:
950 input_line_pointer--;
951 integer_constant (10, expressionP);
952 break;
953
954 is_0f_float:
955 /* fall through */
956 ;
957 }
958
959 case 'd':
960 case 'D':
961 if (flag_m68k_mri)
962 {
963 integer_constant (0, expressionP);
964 break;
965 }
966 /* Fall through. */
967 case 'F':
968 case 'r':
969 case 'e':
970 case 'E':
971 case 'g':
972 case 'G':
973 input_line_pointer++;
974 floating_constant (expressionP);
975 expressionP->X_add_number =
976 - (isupper ((unsigned char) c) ? tolower (c) : c);
977 break;
978
979 case '$':
980 if (LOCAL_LABELS_DOLLAR)
981 {
982 integer_constant (10, expressionP);
983 break;
984 }
985 else
986 goto default_case;
987 }
988
989 break;
990
991 case '(':
992 case '[':
993 /* didn't begin with digit & not a name */
994 segment = expression (expressionP);
995 /* Expression() will pass trailing whitespace */
996 if ((c == '(' && *input_line_pointer++ != ')')
997 || (c == '[' && *input_line_pointer++ != ']'))
998 {
999 as_bad (_("Missing ')' assumed"));
1000 input_line_pointer--;
1001 }
1002 SKIP_WHITESPACE ();
1003 /* here with input_line_pointer->char after "(...)" */
1004 return segment;
1005
1006 case 'E':
1007 if (! flag_m68k_mri || *input_line_pointer != '\'')
1008 goto de_fault;
1009 as_bad (_("EBCDIC constants are not supported"));
1010 /* Fall through. */
1011 case 'A':
1012 if (! flag_m68k_mri || *input_line_pointer != '\'')
1013 goto de_fault;
1014 ++input_line_pointer;
1015 /* Fall through. */
1016 case '\'':
1017 if (! flag_m68k_mri)
1018 {
1019 /* Warning: to conform to other people's assemblers NO
1020 ESCAPEMENT is permitted for a single quote. The next
1021 character, parity errors and all, is taken as the value
1022 of the operand. VERY KINKY. */
1023 expressionP->X_op = O_constant;
1024 expressionP->X_add_number = *input_line_pointer++;
1025 break;
1026 }
1027
1028 mri_char_constant (expressionP);
1029 break;
1030
1031 case '+':
1032 (void) operand (expressionP);
1033 break;
1034
1035 case '"':
1036 /* Double quote is the bitwise not operator in MRI mode. */
1037 if (! flag_m68k_mri)
1038 goto de_fault;
1039 /* Fall through. */
1040 case '~':
1041 /* ~ is permitted to start a label on the Delta. */
1042 if (is_name_beginner (c))
1043 goto isname;
1044 case '!':
1045 case '-':
1046 {
1047 operand (expressionP);
1048 if (expressionP->X_op == O_constant)
1049 {
1050 /* input_line_pointer -> char after operand */
1051 if (c == '-')
1052 {
1053 expressionP->X_add_number = - expressionP->X_add_number;
1054 /* Notice: '-' may overflow: no warning is given. This is
1055 compatible with other people's assemblers. Sigh. */
1056 expressionP->X_unsigned = 0;
1057 }
1058 else if (c == '~' || c == '"')
1059 expressionP->X_add_number = ~ expressionP->X_add_number;
1060 else
1061 expressionP->X_add_number = ! expressionP->X_add_number;
1062 }
1063 else if (expressionP->X_op != O_illegal
1064 && expressionP->X_op != O_absent)
1065 {
1066 expressionP->X_add_symbol = make_expr_symbol (expressionP);
1067 if (c == '-')
1068 expressionP->X_op = O_uminus;
1069 else if (c == '~' || c == '"')
1070 expressionP->X_op = O_bit_not;
1071 else
1072 expressionP->X_op = O_logical_not;
1073 expressionP->X_add_number = 0;
1074 }
1075 else
1076 as_warn (_("Unary operator %c ignored because bad operand follows"),
1077 c);
1078 }
1079 break;
1080
1081 case '$':
1082 /* $ is the program counter when in MRI mode, or when DOLLAR_DOT
1083 is defined. */
1084 #ifndef DOLLAR_DOT
1085 if (! flag_m68k_mri)
1086 goto de_fault;
1087 #endif
1088 if (flag_m68k_mri && hex_p (*input_line_pointer))
1089 {
1090 /* In MRI mode, $ is also used as the prefix for a
1091 hexadecimal constant. */
1092 integer_constant (16, expressionP);
1093 break;
1094 }
1095
1096 if (is_part_of_name (*input_line_pointer))
1097 goto isname;
1098
1099 current_location (expressionP);
1100 break;
1101
1102 case '.':
1103 if (!is_part_of_name (*input_line_pointer))
1104 {
1105 current_location (expressionP);
1106 break;
1107 }
1108 else if ((strncasecmp (input_line_pointer, "startof.", 8) == 0
1109 && ! is_part_of_name (input_line_pointer[8]))
1110 || (strncasecmp (input_line_pointer, "sizeof.", 7) == 0
1111 && ! is_part_of_name (input_line_pointer[7])))
1112 {
1113 int start;
1114
1115 start = (input_line_pointer[1] == 't'
1116 || input_line_pointer[1] == 'T');
1117 input_line_pointer += start ? 8 : 7;
1118 SKIP_WHITESPACE ();
1119 if (*input_line_pointer != '(')
1120 as_bad (_("syntax error in .startof. or .sizeof."));
1121 else
1122 {
1123 char *buf;
1124
1125 ++input_line_pointer;
1126 SKIP_WHITESPACE ();
1127 name = input_line_pointer;
1128 c = get_symbol_end ();
1129
1130 buf = (char *) xmalloc (strlen (name) + 10);
1131 if (start)
1132 sprintf (buf, ".startof.%s", name);
1133 else
1134 sprintf (buf, ".sizeof.%s", name);
1135 symbolP = symbol_make (buf);
1136 free (buf);
1137
1138 expressionP->X_op = O_symbol;
1139 expressionP->X_add_symbol = symbolP;
1140 expressionP->X_add_number = 0;
1141
1142 *input_line_pointer = c;
1143 SKIP_WHITESPACE ();
1144 if (*input_line_pointer != ')')
1145 as_bad (_("syntax error in .startof. or .sizeof."));
1146 else
1147 ++input_line_pointer;
1148 }
1149 break;
1150 }
1151 else
1152 {
1153 goto isname;
1154 }
1155 case ',':
1156 case '\n':
1157 case '\0':
1158 eol:
1159 /* can't imagine any other kind of operand */
1160 expressionP->X_op = O_absent;
1161 input_line_pointer--;
1162 break;
1163
1164 case '%':
1165 if (! flag_m68k_mri)
1166 goto de_fault;
1167 integer_constant (2, expressionP);
1168 break;
1169
1170 case '@':
1171 if (! flag_m68k_mri)
1172 goto de_fault;
1173 integer_constant (8, expressionP);
1174 break;
1175
1176 case ':':
1177 if (! flag_m68k_mri)
1178 goto de_fault;
1179
1180 /* In MRI mode, this is a floating point constant represented
1181 using hexadecimal digits. */
1182
1183 ++input_line_pointer;
1184 integer_constant (16, expressionP);
1185 break;
1186
1187 case '*':
1188 if (! flag_m68k_mri || is_part_of_name (*input_line_pointer))
1189 goto de_fault;
1190
1191 current_location (expressionP);
1192 break;
1193
1194 default:
1195 de_fault:
1196 if (is_end_of_line[(unsigned char) c])
1197 goto eol;
1198 if (is_name_beginner (c)) /* here if did not begin with a digit */
1199 {
1200 /*
1201 * Identifier begins here.
1202 * This is kludged for speed, so code is repeated.
1203 */
1204 isname:
1205 name = --input_line_pointer;
1206 c = get_symbol_end ();
1207
1208 #ifdef md_parse_name
1209 /* This is a hook for the backend to parse certain names
1210 specially in certain contexts. If a name always has a
1211 specific value, it can often be handled by simply
1212 entering it in the symbol table. */
1213 if (md_parse_name (name, expressionP))
1214 {
1215 *input_line_pointer = c;
1216 break;
1217 }
1218 #endif
1219
1220 #ifdef TC_I960
1221 /* The MRI i960 assembler permits
1222 lda sizeof code,g13
1223 FIXME: This should use md_parse_name. */
1224 if (flag_mri
1225 && (strcasecmp (name, "sizeof") == 0
1226 || strcasecmp (name, "startof") == 0))
1227 {
1228 int start;
1229 char *buf;
1230
1231 start = (name[1] == 't'
1232 || name[1] == 'T');
1233
1234 *input_line_pointer = c;
1235 SKIP_WHITESPACE ();
1236
1237 name = input_line_pointer;
1238 c = get_symbol_end ();
1239
1240 buf = (char *) xmalloc (strlen (name) + 10);
1241 if (start)
1242 sprintf (buf, ".startof.%s", name);
1243 else
1244 sprintf (buf, ".sizeof.%s", name);
1245 symbolP = symbol_make (buf);
1246 free (buf);
1247
1248 expressionP->X_op = O_symbol;
1249 expressionP->X_add_symbol = symbolP;
1250 expressionP->X_add_number = 0;
1251
1252 *input_line_pointer = c;
1253 SKIP_WHITESPACE ();
1254
1255 break;
1256 }
1257 #endif
1258
1259 symbolP = symbol_find_or_make (name);
1260
1261 /* If we have an absolute symbol or a reg, then we know its
1262 value now. */
1263 segment = S_GET_SEGMENT (symbolP);
1264 if (segment == absolute_section)
1265 {
1266 expressionP->X_op = O_constant;
1267 expressionP->X_add_number = S_GET_VALUE (symbolP);
1268 }
1269 else if (segment == reg_section)
1270 {
1271 expressionP->X_op = O_register;
1272 expressionP->X_add_number = S_GET_VALUE (symbolP);
1273 }
1274 else
1275 {
1276 expressionP->X_op = O_symbol;
1277 expressionP->X_add_symbol = symbolP;
1278 expressionP->X_add_number = 0;
1279 }
1280 *input_line_pointer = c;
1281 }
1282 else
1283 {
1284 /* Let the target try to parse it. Success is indicated by changing
1285 the X_op field to something other than O_absent and pointing
1286 input_line_pointer passed the expression. If it can't parse the
1287 expression, X_op and input_line_pointer should be unchanged. */
1288 expressionP->X_op = O_absent;
1289 --input_line_pointer;
1290 md_operand (expressionP);
1291 if (expressionP->X_op == O_absent)
1292 {
1293 ++input_line_pointer;
1294 as_bad (_("Bad expression"));
1295 expressionP->X_op = O_constant;
1296 expressionP->X_add_number = 0;
1297 }
1298 }
1299 break;
1300 }
1301
1302 /*
1303 * It is more 'efficient' to clean up the expressionS when they are created.
1304 * Doing it here saves lines of code.
1305 */
1306 clean_up_expression (expressionP);
1307 SKIP_WHITESPACE (); /*->1st char after operand. */
1308 know (*input_line_pointer != ' ');
1309
1310 /* The PA port needs this information. */
1311 if (expressionP->X_add_symbol)
1312 symbol_mark_used (expressionP->X_add_symbol);
1313
1314 switch (expressionP->X_op)
1315 {
1316 default:
1317 return absolute_section;
1318 case O_symbol:
1319 return S_GET_SEGMENT (expressionP->X_add_symbol);
1320 case O_register:
1321 return reg_section;
1322 }
1323 } /* operand() */
1324 \f
1325 /* Internal. Simplify a struct expression for use by expr() */
1326
1327 /*
1328 * In: address of a expressionS.
1329 * The X_op field of the expressionS may only take certain values.
1330 * Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
1331 * Out: expressionS may have been modified:
1332 * 'foo-foo' symbol references cancelled to 0,
1333 * which changes X_op from O_subtract to O_constant.
1334 * Unused fields zeroed to help expr().
1335 */
1336
1337 static void
1338 clean_up_expression (expressionP)
1339 expressionS *expressionP;
1340 {
1341 switch (expressionP->X_op)
1342 {
1343 case O_illegal:
1344 case O_absent:
1345 expressionP->X_add_number = 0;
1346 /* Fall through. */
1347 case O_big:
1348 case O_constant:
1349 case O_register:
1350 expressionP->X_add_symbol = NULL;
1351 /* Fall through. */
1352 case O_symbol:
1353 case O_uminus:
1354 case O_bit_not:
1355 expressionP->X_op_symbol = NULL;
1356 break;
1357 case O_subtract:
1358 if (expressionP->X_op_symbol == expressionP->X_add_symbol
1359 || ((symbol_get_frag (expressionP->X_op_symbol)
1360 == symbol_get_frag (expressionP->X_add_symbol))
1361 && SEG_NORMAL (S_GET_SEGMENT (expressionP->X_add_symbol))
1362 && (S_GET_VALUE (expressionP->X_op_symbol)
1363 == S_GET_VALUE (expressionP->X_add_symbol))))
1364 {
1365 addressT diff = (S_GET_VALUE (expressionP->X_add_symbol)
1366 - S_GET_VALUE (expressionP->X_op_symbol));
1367
1368 expressionP->X_op = O_constant;
1369 expressionP->X_add_symbol = NULL;
1370 expressionP->X_op_symbol = NULL;
1371 expressionP->X_add_number += diff;
1372 }
1373 break;
1374 default:
1375 break;
1376 }
1377 }
1378 \f
1379 /* Expression parser. */
1380
1381 /*
1382 * We allow an empty expression, and just assume (absolute,0) silently.
1383 * Unary operators and parenthetical expressions are treated as operands.
1384 * As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
1385 *
1386 * We used to do a aho/ullman shift-reduce parser, but the logic got so
1387 * warped that I flushed it and wrote a recursive-descent parser instead.
1388 * Now things are stable, would anybody like to write a fast parser?
1389 * Most expressions are either register (which does not even reach here)
1390 * or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
1391 * So I guess it doesn't really matter how inefficient more complex expressions
1392 * are parsed.
1393 *
1394 * After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
1395 * Also, we have consumed any leading or trailing spaces (operand does that)
1396 * and done all intervening operators.
1397 *
1398 * This returns the segment of the result, which will be
1399 * absolute_section or the segment of a symbol.
1400 */
1401
1402 #undef __
1403 #define __ O_illegal
1404
1405 static const operatorT op_encoding[256] =
1406 { /* maps ASCII->operators */
1407
1408 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1409 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1410
1411 __, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
1412 __, __, O_multiply, O_add, __, O_subtract, __, O_divide,
1413 __, __, __, __, __, __, __, __,
1414 __, __, __, __, O_lt, __, O_gt, __,
1415 __, __, __, __, __, __, __, __,
1416 __, __, __, __, __, __, __, __,
1417 __, __, __, __, __, __, __, __,
1418 __, __, __, __, __, __, O_bit_exclusive_or, __,
1419 __, __, __, __, __, __, __, __,
1420 __, __, __, __, __, __, __, __,
1421 __, __, __, __, __, __, __, __,
1422 __, __, __, __, O_bit_inclusive_or, __, __, __,
1423
1424 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1425 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1426 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1427 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1428 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1429 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1430 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1431 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
1432 };
1433
1434
1435 /*
1436 * Rank Examples
1437 * 0 operand, (expression)
1438 * 1 ||
1439 * 2 &&
1440 * 3 = <> < <= >= >
1441 * 4 + -
1442 * 5 used for * / % in MRI mode
1443 * 6 & ^ ! |
1444 * 7 * / % << >>
1445 * 8 unary - unary ~
1446 */
1447 static operator_rankT op_rank[] =
1448 {
1449 0, /* O_illegal */
1450 0, /* O_absent */
1451 0, /* O_constant */
1452 0, /* O_symbol */
1453 0, /* O_symbol_rva */
1454 0, /* O_register */
1455 0, /* O_bit */
1456 8, /* O_uminus */
1457 8, /* O_bit_not */
1458 8, /* O_logical_not */
1459 7, /* O_multiply */
1460 7, /* O_divide */
1461 7, /* O_modulus */
1462 7, /* O_left_shift */
1463 7, /* O_right_shift */
1464 6, /* O_bit_inclusive_or */
1465 6, /* O_bit_or_not */
1466 6, /* O_bit_exclusive_or */
1467 6, /* O_bit_and */
1468 4, /* O_add */
1469 4, /* O_subtract */
1470 3, /* O_eq */
1471 3, /* O_ne */
1472 3, /* O_lt */
1473 3, /* O_le */
1474 3, /* O_ge */
1475 3, /* O_gt */
1476 2, /* O_logical_and */
1477 1 /* O_logical_or */
1478 };
1479
1480 /* Unfortunately, in MRI mode for the m68k, multiplication and
1481 division have lower precedence than the bit wise operators. This
1482 function sets the operator precedences correctly for the current
1483 mode. Also, MRI uses a different bit_not operator, and this fixes
1484 that as well. */
1485
1486 #define STANDARD_MUL_PRECEDENCE (7)
1487 #define MRI_MUL_PRECEDENCE (5)
1488
1489 void
1490 expr_set_precedence ()
1491 {
1492 if (flag_m68k_mri)
1493 {
1494 op_rank[O_multiply] = MRI_MUL_PRECEDENCE;
1495 op_rank[O_divide] = MRI_MUL_PRECEDENCE;
1496 op_rank[O_modulus] = MRI_MUL_PRECEDENCE;
1497 }
1498 else
1499 {
1500 op_rank[O_multiply] = STANDARD_MUL_PRECEDENCE;
1501 op_rank[O_divide] = STANDARD_MUL_PRECEDENCE;
1502 op_rank[O_modulus] = STANDARD_MUL_PRECEDENCE;
1503 }
1504 }
1505
1506 /* Initialize the expression parser. */
1507
1508 void
1509 expr_begin ()
1510 {
1511 expr_set_precedence ();
1512
1513 /* Verify that X_op field is wide enough. */
1514 {
1515 expressionS e;
1516 e.X_op = O_max;
1517 assert (e.X_op == O_max);
1518 }
1519 }
1520 \f
1521 /* Return the encoding for the operator at INPUT_LINE_POINTER.
1522 Advance INPUT_LINE_POINTER to the last character in the operator
1523 (i.e., don't change it for a single character operator). */
1524
1525 static inline operatorT
1526 operator ()
1527 {
1528 int c;
1529 operatorT ret;
1530
1531 c = *input_line_pointer & 0xff;
1532
1533 switch (c)
1534 {
1535 default:
1536 return op_encoding[c];
1537
1538 case '<':
1539 switch (input_line_pointer[1])
1540 {
1541 default:
1542 return op_encoding[c];
1543 case '<':
1544 ret = O_left_shift;
1545 break;
1546 case '>':
1547 ret = O_ne;
1548 break;
1549 case '=':
1550 ret = O_le;
1551 break;
1552 }
1553 ++input_line_pointer;
1554 return ret;
1555
1556 case '=':
1557 if (input_line_pointer[1] != '=')
1558 return op_encoding[c];
1559
1560 ++input_line_pointer;
1561 return O_eq;
1562
1563 case '>':
1564 switch (input_line_pointer[1])
1565 {
1566 default:
1567 return op_encoding[c];
1568 case '>':
1569 ret = O_right_shift;
1570 break;
1571 case '=':
1572 ret = O_ge;
1573 break;
1574 }
1575 ++input_line_pointer;
1576 return ret;
1577
1578 case '!':
1579 /* We accept !! as equivalent to ^ for MRI compatibility. */
1580 if (input_line_pointer[1] != '!')
1581 {
1582 if (flag_m68k_mri)
1583 return O_bit_inclusive_or;
1584 return op_encoding[c];
1585 }
1586 ++input_line_pointer;
1587 return O_bit_exclusive_or;
1588
1589 case '|':
1590 if (input_line_pointer[1] != '|')
1591 return op_encoding[c];
1592
1593 ++input_line_pointer;
1594 return O_logical_or;
1595
1596 case '&':
1597 if (input_line_pointer[1] != '&')
1598 return op_encoding[c];
1599
1600 ++input_line_pointer;
1601 return O_logical_and;
1602 }
1603
1604 /*NOTREACHED*/
1605 }
1606
1607 /* Parse an expression. */
1608
1609 segT
1610 expr (rank, resultP)
1611 operator_rankT rank; /* Larger # is higher rank. */
1612 expressionS *resultP; /* Deliver result here. */
1613 {
1614 segT retval;
1615 expressionS right;
1616 operatorT op_left;
1617 operatorT op_right;
1618
1619 know (rank >= 0);
1620
1621 retval = operand (resultP);
1622
1623 know (*input_line_pointer != ' '); /* Operand() gobbles spaces. */
1624
1625 op_left = operator ();
1626 while (op_left != O_illegal && op_rank[(int) op_left] > rank)
1627 {
1628 segT rightseg;
1629
1630 input_line_pointer++; /*->after 1st character of operator. */
1631
1632 rightseg = expr (op_rank[(int) op_left], &right);
1633 if (right.X_op == O_absent)
1634 {
1635 as_warn (_("missing operand; zero assumed"));
1636 right.X_op = O_constant;
1637 right.X_add_number = 0;
1638 right.X_add_symbol = NULL;
1639 right.X_op_symbol = NULL;
1640 }
1641
1642 know (*input_line_pointer != ' ');
1643
1644 if (retval == undefined_section)
1645 {
1646 if (SEG_NORMAL (rightseg))
1647 retval = rightseg;
1648 }
1649 else if (! SEG_NORMAL (retval))
1650 retval = rightseg;
1651 else if (SEG_NORMAL (rightseg)
1652 && retval != rightseg
1653 #ifdef DIFF_EXPR_OK
1654 && op_left != O_subtract
1655 #endif
1656 )
1657 as_bad (_("operation combines symbols in different segments"));
1658
1659 op_right = operator ();
1660
1661 know (op_right == O_illegal || op_rank[(int) op_right] <= op_rank[(int) op_left]);
1662 know ((int) op_left >= (int) O_multiply
1663 && (int) op_left <= (int) O_logical_or);
1664
1665 /* input_line_pointer->after right-hand quantity. */
1666 /* left-hand quantity in resultP */
1667 /* right-hand quantity in right. */
1668 /* operator in op_left. */
1669
1670 if (resultP->X_op == O_big)
1671 {
1672 if (resultP->X_add_number > 0)
1673 as_warn (_("left operand is a bignum; integer 0 assumed"));
1674 else
1675 as_warn (_("left operand is a float; integer 0 assumed"));
1676 resultP->X_op = O_constant;
1677 resultP->X_add_number = 0;
1678 resultP->X_add_symbol = NULL;
1679 resultP->X_op_symbol = NULL;
1680 }
1681 if (right.X_op == O_big)
1682 {
1683 if (right.X_add_number > 0)
1684 as_warn (_("right operand is a bignum; integer 0 assumed"));
1685 else
1686 as_warn (_("right operand is a float; integer 0 assumed"));
1687 right.X_op = O_constant;
1688 right.X_add_number = 0;
1689 right.X_add_symbol = NULL;
1690 right.X_op_symbol = NULL;
1691 }
1692
1693 /* Optimize common cases. */
1694 if (op_left == O_add && right.X_op == O_constant)
1695 {
1696 /* X + constant. */
1697 resultP->X_add_number += right.X_add_number;
1698 }
1699 /* This case comes up in PIC code. */
1700 else if (op_left == O_subtract
1701 && right.X_op == O_symbol
1702 && resultP->X_op == O_symbol
1703 && (symbol_get_frag (right.X_add_symbol)
1704 == symbol_get_frag (resultP->X_add_symbol))
1705 && SEG_NORMAL (S_GET_SEGMENT (right.X_add_symbol)))
1706
1707 {
1708 resultP->X_add_number -= right.X_add_number;
1709 resultP->X_add_number += (S_GET_VALUE (resultP->X_add_symbol)
1710 - S_GET_VALUE (right.X_add_symbol));
1711 resultP->X_op = O_constant;
1712 resultP->X_add_symbol = 0;
1713 }
1714 else if (op_left == O_subtract && right.X_op == O_constant)
1715 {
1716 /* X - constant. */
1717 resultP->X_add_number -= right.X_add_number;
1718 }
1719 else if (op_left == O_add && resultP->X_op == O_constant)
1720 {
1721 /* Constant + X. */
1722 resultP->X_op = right.X_op;
1723 resultP->X_add_symbol = right.X_add_symbol;
1724 resultP->X_op_symbol = right.X_op_symbol;
1725 resultP->X_add_number += right.X_add_number;
1726 retval = rightseg;
1727 }
1728 else if (resultP->X_op == O_constant && right.X_op == O_constant)
1729 {
1730 /* Constant OP constant. */
1731 offsetT v = right.X_add_number;
1732 if (v == 0 && (op_left == O_divide || op_left == O_modulus))
1733 {
1734 as_warn (_("division by zero"));
1735 v = 1;
1736 }
1737 switch (op_left)
1738 {
1739 default: abort ();
1740 case O_multiply: resultP->X_add_number *= v; break;
1741 case O_divide: resultP->X_add_number /= v; break;
1742 case O_modulus: resultP->X_add_number %= v; break;
1743 case O_left_shift: resultP->X_add_number <<= v; break;
1744 case O_right_shift:
1745 /* We always use unsigned shifts, to avoid relying on
1746 characteristics of the compiler used to compile gas. */
1747 resultP->X_add_number =
1748 (offsetT) ((valueT) resultP->X_add_number >> (valueT) v);
1749 break;
1750 case O_bit_inclusive_or: resultP->X_add_number |= v; break;
1751 case O_bit_or_not: resultP->X_add_number |= ~v; break;
1752 case O_bit_exclusive_or: resultP->X_add_number ^= v; break;
1753 case O_bit_and: resultP->X_add_number &= v; break;
1754 case O_add: resultP->X_add_number += v; break;
1755 case O_subtract: resultP->X_add_number -= v; break;
1756 case O_eq:
1757 resultP->X_add_number =
1758 resultP->X_add_number == v ? ~ (offsetT) 0 : 0;
1759 break;
1760 case O_ne:
1761 resultP->X_add_number =
1762 resultP->X_add_number != v ? ~ (offsetT) 0 : 0;
1763 break;
1764 case O_lt:
1765 resultP->X_add_number =
1766 resultP->X_add_number < v ? ~ (offsetT) 0 : 0;
1767 break;
1768 case O_le:
1769 resultP->X_add_number =
1770 resultP->X_add_number <= v ? ~ (offsetT) 0 : 0;
1771 break;
1772 case O_ge:
1773 resultP->X_add_number =
1774 resultP->X_add_number >= v ? ~ (offsetT) 0 : 0;
1775 break;
1776 case O_gt:
1777 resultP->X_add_number =
1778 resultP->X_add_number > v ? ~ (offsetT) 0 : 0;
1779 break;
1780 case O_logical_and:
1781 resultP->X_add_number = resultP->X_add_number && v;
1782 break;
1783 case O_logical_or:
1784 resultP->X_add_number = resultP->X_add_number || v;
1785 break;
1786 }
1787 }
1788 else if (resultP->X_op == O_symbol
1789 && right.X_op == O_symbol
1790 && (op_left == O_add
1791 || op_left == O_subtract
1792 || (resultP->X_add_number == 0
1793 && right.X_add_number == 0)))
1794 {
1795 /* Symbol OP symbol. */
1796 resultP->X_op = op_left;
1797 resultP->X_op_symbol = right.X_add_symbol;
1798 if (op_left == O_add)
1799 resultP->X_add_number += right.X_add_number;
1800 else if (op_left == O_subtract)
1801 resultP->X_add_number -= right.X_add_number;
1802 }
1803 else
1804 {
1805 /* The general case. */
1806 resultP->X_add_symbol = make_expr_symbol (resultP);
1807 resultP->X_op_symbol = make_expr_symbol (&right);
1808 resultP->X_op = op_left;
1809 resultP->X_add_number = 0;
1810 resultP->X_unsigned = 1;
1811 }
1812
1813 op_left = op_right;
1814 } /* While next operator is >= this rank. */
1815
1816 /* The PA port needs this information. */
1817 if (resultP->X_add_symbol)
1818 symbol_mark_used (resultP->X_add_symbol);
1819
1820 return resultP->X_op == O_constant ? absolute_section : retval;
1821 }
1822 \f
1823 /*
1824 * get_symbol_end()
1825 *
1826 * This lives here because it belongs equally in expr.c & read.c.
1827 * Expr.c is just a branch office read.c anyway, and putting it
1828 * here lessens the crowd at read.c.
1829 *
1830 * Assume input_line_pointer is at start of symbol name.
1831 * Advance input_line_pointer past symbol name.
1832 * Turn that character into a '\0', returning its former value.
1833 * This allows a string compare (RMS wants symbol names to be strings)
1834 * of the symbol name.
1835 * There will always be a char following symbol name, because all good
1836 * lines end in end-of-line.
1837 */
1838 char
1839 get_symbol_end ()
1840 {
1841 char c;
1842
1843 /* We accept \001 in a name in case this is being called with a
1844 constructed string. */
1845 if (is_name_beginner (c = *input_line_pointer++) || c == '\001')
1846 while (is_part_of_name (c = *input_line_pointer++)
1847 || c == '\001')
1848 ;
1849 *--input_line_pointer = 0;
1850 return (c);
1851 }
1852
1853
1854 unsigned int
1855 get_single_number ()
1856 {
1857 expressionS exp;
1858 operand (&exp);
1859 return exp.X_add_number;
1860
1861 }
1862
1863 /* end of expr.c */
This page took 0.107675 seconds and 3 git commands to generate.