* expr.c (integer_constant): Match only 'B' as binary suffix if
[deliverable/binutils-gdb.git] / gas / expr.c
1 /* expr.c -operands, expressions-
2 Copyright 1987, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* This is really a branch office of as-read.c. I split it out to clearly
24 distinguish the world of expressions from the world of statements.
25 (It also gives smaller files to re-compile.)
26 Here, "operand"s are of expressions, not instructions. */
27
28 #include <string.h>
29 #define min(a, b) ((a) < (b) ? (a) : (b))
30
31 #include "as.h"
32 #include "safe-ctype.h"
33 #include "obstack.h"
34
35 static void floating_constant (expressionS * expressionP);
36 static valueT generic_bignum_to_int32 (void);
37 #ifdef BFD64
38 static valueT generic_bignum_to_int64 (void);
39 #endif
40 static void integer_constant (int radix, expressionS * expressionP);
41 static void mri_char_constant (expressionS *);
42 static void current_location (expressionS *);
43 static void clean_up_expression (expressionS * expressionP);
44 static segT operand (expressionS *, enum expr_mode);
45 static operatorT operator (int *);
46
47 extern const char EXP_CHARS[], FLT_CHARS[];
48
49 /* We keep a mapping of expression symbols to file positions, so that
50 we can provide better error messages. */
51
52 struct expr_symbol_line {
53 struct expr_symbol_line *next;
54 symbolS *sym;
55 char *file;
56 unsigned int line;
57 };
58
59 static struct expr_symbol_line *expr_symbol_lines;
60 \f
61 /* Build a dummy symbol to hold a complex expression. This is how we
62 build expressions up out of other expressions. The symbol is put
63 into the fake section expr_section. */
64
65 symbolS *
66 make_expr_symbol (expressionS *expressionP)
67 {
68 expressionS zero;
69 symbolS *symbolP;
70 struct expr_symbol_line *n;
71
72 if (expressionP->X_op == O_symbol
73 && expressionP->X_add_number == 0)
74 return expressionP->X_add_symbol;
75
76 if (expressionP->X_op == O_big)
77 {
78 /* This won't work, because the actual value is stored in
79 generic_floating_point_number or generic_bignum, and we are
80 going to lose it if we haven't already. */
81 if (expressionP->X_add_number > 0)
82 as_bad (_("bignum invalid"));
83 else
84 as_bad (_("floating point number invalid"));
85 zero.X_op = O_constant;
86 zero.X_add_number = 0;
87 zero.X_unsigned = 0;
88 clean_up_expression (&zero);
89 expressionP = &zero;
90 }
91
92 /* Putting constant symbols in absolute_section rather than
93 expr_section is convenient for the old a.out code, for which
94 S_GET_SEGMENT does not always retrieve the value put in by
95 S_SET_SEGMENT. */
96 symbolP = symbol_create (FAKE_LABEL_NAME,
97 (expressionP->X_op == O_constant
98 ? absolute_section
99 : expr_section),
100 0, &zero_address_frag);
101 symbol_set_value_expression (symbolP, expressionP);
102
103 if (expressionP->X_op == O_constant)
104 resolve_symbol_value (symbolP);
105
106 n = (struct expr_symbol_line *) xmalloc (sizeof *n);
107 n->sym = symbolP;
108 as_where (&n->file, &n->line);
109 n->next = expr_symbol_lines;
110 expr_symbol_lines = n;
111
112 return symbolP;
113 }
114
115 /* Return the file and line number for an expr symbol. Return
116 non-zero if something was found, 0 if no information is known for
117 the symbol. */
118
119 int
120 expr_symbol_where (symbolS *sym, char **pfile, unsigned int *pline)
121 {
122 register struct expr_symbol_line *l;
123
124 for (l = expr_symbol_lines; l != NULL; l = l->next)
125 {
126 if (l->sym == sym)
127 {
128 *pfile = l->file;
129 *pline = l->line;
130 return 1;
131 }
132 }
133
134 return 0;
135 }
136 \f
137 /* Utilities for building expressions.
138 Since complex expressions are recorded as symbols for use in other
139 expressions these return a symbolS * and not an expressionS *.
140 These explicitly do not take an "add_number" argument. */
141 /* ??? For completeness' sake one might want expr_build_symbol.
142 It would just return its argument. */
143
144 /* Build an expression for an unsigned constant.
145 The corresponding one for signed constants is missing because
146 there's currently no need for it. One could add an unsigned_p flag
147 but that seems more clumsy. */
148
149 symbolS *
150 expr_build_uconstant (offsetT value)
151 {
152 expressionS e;
153
154 e.X_op = O_constant;
155 e.X_add_number = value;
156 e.X_unsigned = 1;
157 return make_expr_symbol (&e);
158 }
159
160 /* Build an expression for the current location ('.'). */
161
162 symbolS *
163 expr_build_dot (void)
164 {
165 expressionS e;
166
167 current_location (&e);
168 return make_expr_symbol (&e);
169 }
170 \f
171 /* Build any floating-point literal here.
172 Also build any bignum literal here. */
173
174 /* Seems atof_machine can backscan through generic_bignum and hit whatever
175 happens to be loaded before it in memory. And its way too complicated
176 for me to fix right. Thus a hack. JF: Just make generic_bignum bigger,
177 and never write into the early words, thus they'll always be zero.
178 I hate Dean's floating-point code. Bleh. */
179 LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER + 6];
180
181 FLONUM_TYPE generic_floating_point_number = {
182 &generic_bignum[6], /* low. (JF: Was 0) */
183 &generic_bignum[SIZE_OF_LARGE_NUMBER + 6 - 1], /* high. JF: (added +6) */
184 0, /* leader. */
185 0, /* exponent. */
186 0 /* sign. */
187 };
188
189 \f
190 static void
191 floating_constant (expressionS *expressionP)
192 {
193 /* input_line_pointer -> floating-point constant. */
194 int error_code;
195
196 error_code = atof_generic (&input_line_pointer, ".", EXP_CHARS,
197 &generic_floating_point_number);
198
199 if (error_code)
200 {
201 if (error_code == ERROR_EXPONENT_OVERFLOW)
202 {
203 as_bad (_("bad floating-point constant: exponent overflow"));
204 }
205 else
206 {
207 as_bad (_("bad floating-point constant: unknown error code=%d"),
208 error_code);
209 }
210 }
211 expressionP->X_op = O_big;
212 /* input_line_pointer -> just after constant, which may point to
213 whitespace. */
214 expressionP->X_add_number = -1;
215 }
216
217 static valueT
218 generic_bignum_to_int32 (void)
219 {
220 valueT number =
221 ((generic_bignum[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
222 | (generic_bignum[0] & LITTLENUM_MASK);
223 number &= 0xffffffff;
224 return number;
225 }
226
227 #ifdef BFD64
228 static valueT
229 generic_bignum_to_int64 (void)
230 {
231 valueT number =
232 ((((((((valueT) generic_bignum[3] & LITTLENUM_MASK)
233 << LITTLENUM_NUMBER_OF_BITS)
234 | ((valueT) generic_bignum[2] & LITTLENUM_MASK))
235 << LITTLENUM_NUMBER_OF_BITS)
236 | ((valueT) generic_bignum[1] & LITTLENUM_MASK))
237 << LITTLENUM_NUMBER_OF_BITS)
238 | ((valueT) generic_bignum[0] & LITTLENUM_MASK));
239 return number;
240 }
241 #endif
242
243 static void
244 integer_constant (int radix, expressionS *expressionP)
245 {
246 char *start; /* Start of number. */
247 char *suffix = NULL;
248 char c;
249 valueT number; /* Offset or (absolute) value. */
250 short int digit; /* Value of next digit in current radix. */
251 short int maxdig = 0; /* Highest permitted digit value. */
252 int too_many_digits = 0; /* If we see >= this number of. */
253 char *name; /* Points to name of symbol. */
254 symbolS *symbolP; /* Points to symbol. */
255
256 int small; /* True if fits in 32 bits. */
257
258 /* May be bignum, or may fit in 32 bits. */
259 /* Most numbers fit into 32 bits, and we want this case to be fast.
260 so we pretend it will fit into 32 bits. If, after making up a 32
261 bit number, we realise that we have scanned more digits than
262 comfortably fit into 32 bits, we re-scan the digits coding them
263 into a bignum. For decimal and octal numbers we are
264 conservative: Some numbers may be assumed bignums when in fact
265 they do fit into 32 bits. Numbers of any radix can have excess
266 leading zeros: We strive to recognise this and cast them back
267 into 32 bits. We must check that the bignum really is more than
268 32 bits, and change it back to a 32-bit number if it fits. The
269 number we are looking for is expected to be positive, but if it
270 fits into 32 bits as an unsigned number, we let it be a 32-bit
271 number. The cavalier approach is for speed in ordinary cases. */
272 /* This has been extended for 64 bits. We blindly assume that if
273 you're compiling in 64-bit mode, the target is a 64-bit machine.
274 This should be cleaned up. */
275
276 #ifdef BFD64
277 #define valuesize 64
278 #else /* includes non-bfd case, mostly */
279 #define valuesize 32
280 #endif
281
282 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri) && radix == 0)
283 {
284 int flt = 0;
285
286 /* In MRI mode, the number may have a suffix indicating the
287 radix. For that matter, it might actually be a floating
288 point constant. */
289 for (suffix = input_line_pointer; ISALNUM (*suffix); suffix++)
290 {
291 if (*suffix == 'e' || *suffix == 'E')
292 flt = 1;
293 }
294
295 if (suffix == input_line_pointer)
296 {
297 radix = 10;
298 suffix = NULL;
299 }
300 else
301 {
302 c = *--suffix;
303 c = TOUPPER (c);
304 /* If we have both NUMBERS_WITH_SUFFIX and LOCAL_LABELS_FB,
305 we distinguish between 'B' and 'b'. This is the case for
306 Z80. */
307 if ((NUMBERS_WITH_SUFFIX && LOCAL_LABELS_FB ? *suffix : c) == 'B')
308 radix = 2;
309 else if (c == 'D')
310 radix = 10;
311 else if (c == 'O' || c == 'Q')
312 radix = 8;
313 else if (c == 'H')
314 radix = 16;
315 else if (suffix[1] == '.' || c == 'E' || flt)
316 {
317 floating_constant (expressionP);
318 return;
319 }
320 else
321 {
322 radix = 10;
323 suffix = NULL;
324 }
325 }
326 }
327
328 switch (radix)
329 {
330 case 2:
331 maxdig = 2;
332 too_many_digits = valuesize + 1;
333 break;
334 case 8:
335 maxdig = radix = 8;
336 too_many_digits = (valuesize + 2) / 3 + 1;
337 break;
338 case 16:
339 maxdig = radix = 16;
340 too_many_digits = (valuesize + 3) / 4 + 1;
341 break;
342 case 10:
343 maxdig = radix = 10;
344 too_many_digits = (valuesize + 11) / 4; /* Very rough. */
345 }
346 #undef valuesize
347 start = input_line_pointer;
348 c = *input_line_pointer++;
349 for (number = 0;
350 (digit = hex_value (c)) < maxdig;
351 c = *input_line_pointer++)
352 {
353 number = number * radix + digit;
354 }
355 /* c contains character after number. */
356 /* input_line_pointer->char after c. */
357 small = (input_line_pointer - start - 1) < too_many_digits;
358
359 if (radix == 16 && c == '_')
360 {
361 /* This is literal of the form 0x333_0_12345678_1.
362 This example is equivalent to 0x00000333000000001234567800000001. */
363
364 int num_little_digits = 0;
365 int i;
366 input_line_pointer = start; /* -> 1st digit. */
367
368 know (LITTLENUM_NUMBER_OF_BITS == 16);
369
370 for (c = '_'; c == '_'; num_little_digits += 2)
371 {
372
373 /* Convert one 64-bit word. */
374 int ndigit = 0;
375 number = 0;
376 for (c = *input_line_pointer++;
377 (digit = hex_value (c)) < maxdig;
378 c = *(input_line_pointer++))
379 {
380 number = number * radix + digit;
381 ndigit++;
382 }
383
384 /* Check for 8 digit per word max. */
385 if (ndigit > 8)
386 as_bad (_("a bignum with underscores may not have more than 8 hex digits in any word"));
387
388 /* Add this chunk to the bignum.
389 Shift things down 2 little digits. */
390 know (LITTLENUM_NUMBER_OF_BITS == 16);
391 for (i = min (num_little_digits + 1, SIZE_OF_LARGE_NUMBER - 1);
392 i >= 2;
393 i--)
394 generic_bignum[i] = generic_bignum[i - 2];
395
396 /* Add the new digits as the least significant new ones. */
397 generic_bignum[0] = number & 0xffffffff;
398 generic_bignum[1] = number >> 16;
399 }
400
401 /* Again, c is char after number, input_line_pointer->after c. */
402
403 if (num_little_digits > SIZE_OF_LARGE_NUMBER - 1)
404 num_little_digits = SIZE_OF_LARGE_NUMBER - 1;
405
406 assert (num_little_digits >= 4);
407
408 if (num_little_digits != 8)
409 as_bad (_("a bignum with underscores must have exactly 4 words"));
410
411 /* We might have some leading zeros. These can be trimmed to give
412 us a change to fit this constant into a small number. */
413 while (generic_bignum[num_little_digits - 1] == 0
414 && num_little_digits > 1)
415 num_little_digits--;
416
417 if (num_little_digits <= 2)
418 {
419 /* will fit into 32 bits. */
420 number = generic_bignum_to_int32 ();
421 small = 1;
422 }
423 #ifdef BFD64
424 else if (num_little_digits <= 4)
425 {
426 /* Will fit into 64 bits. */
427 number = generic_bignum_to_int64 ();
428 small = 1;
429 }
430 #endif
431 else
432 {
433 small = 0;
434
435 /* Number of littlenums in the bignum. */
436 number = num_little_digits;
437 }
438 }
439 else if (!small)
440 {
441 /* We saw a lot of digits. manufacture a bignum the hard way. */
442 LITTLENUM_TYPE *leader; /* -> high order littlenum of the bignum. */
443 LITTLENUM_TYPE *pointer; /* -> littlenum we are frobbing now. */
444 long carry;
445
446 leader = generic_bignum;
447 generic_bignum[0] = 0;
448 generic_bignum[1] = 0;
449 generic_bignum[2] = 0;
450 generic_bignum[3] = 0;
451 input_line_pointer = start; /* -> 1st digit. */
452 c = *input_line_pointer++;
453 for (; (carry = hex_value (c)) < maxdig; c = *input_line_pointer++)
454 {
455 for (pointer = generic_bignum; pointer <= leader; pointer++)
456 {
457 long work;
458
459 work = carry + radix * *pointer;
460 *pointer = work & LITTLENUM_MASK;
461 carry = work >> LITTLENUM_NUMBER_OF_BITS;
462 }
463 if (carry)
464 {
465 if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
466 {
467 /* Room to grow a longer bignum. */
468 *++leader = carry;
469 }
470 }
471 }
472 /* Again, c is char after number. */
473 /* input_line_pointer -> after c. */
474 know (LITTLENUM_NUMBER_OF_BITS == 16);
475 if (leader < generic_bignum + 2)
476 {
477 /* Will fit into 32 bits. */
478 number = generic_bignum_to_int32 ();
479 small = 1;
480 }
481 #ifdef BFD64
482 else if (leader < generic_bignum + 4)
483 {
484 /* Will fit into 64 bits. */
485 number = generic_bignum_to_int64 ();
486 small = 1;
487 }
488 #endif
489 else
490 {
491 /* Number of littlenums in the bignum. */
492 number = leader - generic_bignum + 1;
493 }
494 }
495
496 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
497 && suffix != NULL
498 && input_line_pointer - 1 == suffix)
499 c = *input_line_pointer++;
500
501 if (small)
502 {
503 /* Here with number, in correct radix. c is the next char.
504 Note that unlike un*x, we allow "011f" "0x9f" to both mean
505 the same as the (conventional) "9f".
506 This is simply easier than checking for strict canonical
507 form. Syntax sux! */
508
509 if (LOCAL_LABELS_FB && c == 'b')
510 {
511 /* Backward ref to local label.
512 Because it is backward, expect it to be defined. */
513 /* Construct a local label. */
514 name = fb_label_name ((int) number, 0);
515
516 /* Seen before, or symbol is defined: OK. */
517 symbolP = symbol_find (name);
518 if ((symbolP != NULL) && (S_IS_DEFINED (symbolP)))
519 {
520 /* Local labels are never absolute. Don't waste time
521 checking absoluteness. */
522 know (SEG_NORMAL (S_GET_SEGMENT (symbolP)));
523
524 expressionP->X_op = O_symbol;
525 expressionP->X_add_symbol = symbolP;
526 }
527 else
528 {
529 /* Either not seen or not defined. */
530 /* @@ Should print out the original string instead of
531 the parsed number. */
532 as_bad (_("backward ref to unknown label \"%d:\""),
533 (int) number);
534 expressionP->X_op = O_constant;
535 }
536
537 expressionP->X_add_number = 0;
538 } /* case 'b' */
539 else if (LOCAL_LABELS_FB && c == 'f')
540 {
541 /* Forward reference. Expect symbol to be undefined or
542 unknown. undefined: seen it before. unknown: never seen
543 it before.
544
545 Construct a local label name, then an undefined symbol.
546 Don't create a xseg frag for it: caller may do that.
547 Just return it as never seen before. */
548 name = fb_label_name ((int) number, 1);
549 symbolP = symbol_find_or_make (name);
550 /* We have no need to check symbol properties. */
551 #ifndef many_segments
552 /* Since "know" puts its arg into a "string", we
553 can't have newlines in the argument. */
554 know (S_GET_SEGMENT (symbolP) == undefined_section || S_GET_SEGMENT (symbolP) == text_section || S_GET_SEGMENT (symbolP) == data_section);
555 #endif
556 expressionP->X_op = O_symbol;
557 expressionP->X_add_symbol = symbolP;
558 expressionP->X_add_number = 0;
559 } /* case 'f' */
560 else if (LOCAL_LABELS_DOLLAR && c == '$')
561 {
562 /* If the dollar label is *currently* defined, then this is just
563 another reference to it. If it is not *currently* defined,
564 then this is a fresh instantiation of that number, so create
565 it. */
566
567 if (dollar_label_defined ((long) number))
568 {
569 name = dollar_label_name ((long) number, 0);
570 symbolP = symbol_find (name);
571 know (symbolP != NULL);
572 }
573 else
574 {
575 name = dollar_label_name ((long) number, 1);
576 symbolP = symbol_find_or_make (name);
577 }
578
579 expressionP->X_op = O_symbol;
580 expressionP->X_add_symbol = symbolP;
581 expressionP->X_add_number = 0;
582 } /* case '$' */
583 else
584 {
585 expressionP->X_op = O_constant;
586 expressionP->X_add_number = number;
587 input_line_pointer--; /* Restore following character. */
588 } /* Really just a number. */
589 }
590 else
591 {
592 /* Not a small number. */
593 expressionP->X_op = O_big;
594 expressionP->X_add_number = number; /* Number of littlenums. */
595 input_line_pointer--; /* -> char following number. */
596 }
597 }
598
599 /* Parse an MRI multi character constant. */
600
601 static void
602 mri_char_constant (expressionS *expressionP)
603 {
604 int i;
605
606 if (*input_line_pointer == '\''
607 && input_line_pointer[1] != '\'')
608 {
609 expressionP->X_op = O_constant;
610 expressionP->X_add_number = 0;
611 return;
612 }
613
614 /* In order to get the correct byte ordering, we must build the
615 number in reverse. */
616 for (i = SIZE_OF_LARGE_NUMBER - 1; i >= 0; i--)
617 {
618 int j;
619
620 generic_bignum[i] = 0;
621 for (j = 0; j < CHARS_PER_LITTLENUM; j++)
622 {
623 if (*input_line_pointer == '\'')
624 {
625 if (input_line_pointer[1] != '\'')
626 break;
627 ++input_line_pointer;
628 }
629 generic_bignum[i] <<= 8;
630 generic_bignum[i] += *input_line_pointer;
631 ++input_line_pointer;
632 }
633
634 if (i < SIZE_OF_LARGE_NUMBER - 1)
635 {
636 /* If there is more than one littlenum, left justify the
637 last one to make it match the earlier ones. If there is
638 only one, we can just use the value directly. */
639 for (; j < CHARS_PER_LITTLENUM; j++)
640 generic_bignum[i] <<= 8;
641 }
642
643 if (*input_line_pointer == '\''
644 && input_line_pointer[1] != '\'')
645 break;
646 }
647
648 if (i < 0)
649 {
650 as_bad (_("character constant too large"));
651 i = 0;
652 }
653
654 if (i > 0)
655 {
656 int c;
657 int j;
658
659 c = SIZE_OF_LARGE_NUMBER - i;
660 for (j = 0; j < c; j++)
661 generic_bignum[j] = generic_bignum[i + j];
662 i = c;
663 }
664
665 know (LITTLENUM_NUMBER_OF_BITS == 16);
666 if (i > 2)
667 {
668 expressionP->X_op = O_big;
669 expressionP->X_add_number = i;
670 }
671 else
672 {
673 expressionP->X_op = O_constant;
674 if (i < 2)
675 expressionP->X_add_number = generic_bignum[0] & LITTLENUM_MASK;
676 else
677 expressionP->X_add_number =
678 (((generic_bignum[1] & LITTLENUM_MASK)
679 << LITTLENUM_NUMBER_OF_BITS)
680 | (generic_bignum[0] & LITTLENUM_MASK));
681 }
682
683 /* Skip the final closing quote. */
684 ++input_line_pointer;
685 }
686
687 /* Return an expression representing the current location. This
688 handles the magic symbol `.'. */
689
690 static void
691 current_location (expressionS *expressionp)
692 {
693 if (now_seg == absolute_section)
694 {
695 expressionp->X_op = O_constant;
696 expressionp->X_add_number = abs_section_offset;
697 }
698 else
699 {
700 expressionp->X_op = O_symbol;
701 expressionp->X_add_symbol = symbol_temp_new_now ();
702 expressionp->X_add_number = 0;
703 }
704 }
705
706 /* In: Input_line_pointer points to 1st char of operand, which may
707 be a space.
708
709 Out: An expressionS.
710 The operand may have been empty: in this case X_op == O_absent.
711 Input_line_pointer->(next non-blank) char after operand. */
712
713 static segT
714 operand (expressionS *expressionP, enum expr_mode mode)
715 {
716 char c;
717 symbolS *symbolP; /* Points to symbol. */
718 char *name; /* Points to name of symbol. */
719 segT segment;
720
721 /* All integers are regarded as unsigned unless they are negated.
722 This is because the only thing which cares whether a number is
723 unsigned is the code in emit_expr which extends constants into
724 bignums. It should only sign extend negative numbers, so that
725 something like ``.quad 0x80000000'' is not sign extended even
726 though it appears negative if valueT is 32 bits. */
727 expressionP->X_unsigned = 1;
728
729 /* Digits, assume it is a bignum. */
730
731 SKIP_WHITESPACE (); /* Leading whitespace is part of operand. */
732 c = *input_line_pointer++; /* input_line_pointer -> past char in c. */
733
734 if (is_end_of_line[(unsigned char) c])
735 goto eol;
736
737 switch (c)
738 {
739 case '1':
740 case '2':
741 case '3':
742 case '4':
743 case '5':
744 case '6':
745 case '7':
746 case '8':
747 case '9':
748 input_line_pointer--;
749
750 integer_constant ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
751 ? 0 : 10,
752 expressionP);
753 break;
754
755 #ifdef LITERAL_PREFIXDOLLAR_HEX
756 case '$':
757 /* $L is the start of a local label, not a hex constant. */
758 if (* input_line_pointer == 'L')
759 goto isname;
760 integer_constant (16, expressionP);
761 break;
762 #endif
763
764 #ifdef LITERAL_PREFIXPERCENT_BIN
765 case '%':
766 integer_constant (2, expressionP);
767 break;
768 #endif
769
770 case '0':
771 /* Non-decimal radix. */
772
773 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
774 {
775 char *s;
776
777 /* Check for a hex or float constant. */
778 for (s = input_line_pointer; hex_p (*s); s++)
779 ;
780 if (*s == 'h' || *s == 'H' || *input_line_pointer == '.')
781 {
782 --input_line_pointer;
783 integer_constant (0, expressionP);
784 break;
785 }
786 }
787 c = *input_line_pointer;
788 switch (c)
789 {
790 case 'o':
791 case 'O':
792 case 'q':
793 case 'Q':
794 case '8':
795 case '9':
796 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
797 {
798 integer_constant (0, expressionP);
799 break;
800 }
801 /* Fall through. */
802 default:
803 default_case:
804 if (c && strchr (FLT_CHARS, c))
805 {
806 input_line_pointer++;
807 floating_constant (expressionP);
808 expressionP->X_add_number = - TOLOWER (c);
809 }
810 else
811 {
812 /* The string was only zero. */
813 expressionP->X_op = O_constant;
814 expressionP->X_add_number = 0;
815 }
816
817 break;
818
819 case 'x':
820 case 'X':
821 if (flag_m68k_mri)
822 goto default_case;
823 input_line_pointer++;
824 integer_constant (16, expressionP);
825 break;
826
827 case 'b':
828 if (LOCAL_LABELS_FB && ! (flag_m68k_mri || NUMBERS_WITH_SUFFIX))
829 {
830 /* This code used to check for '+' and '-' here, and, in
831 some conditions, fall through to call
832 integer_constant. However, that didn't make sense,
833 as integer_constant only accepts digits. */
834 /* Some of our code elsewhere does permit digits greater
835 than the expected base; for consistency, do the same
836 here. */
837 if (input_line_pointer[1] < '0'
838 || input_line_pointer[1] > '9')
839 {
840 /* Parse this as a back reference to label 0. */
841 input_line_pointer--;
842 integer_constant (10, expressionP);
843 break;
844 }
845 /* Otherwise, parse this as a binary number. */
846 }
847 /* Fall through. */
848 case 'B':
849 input_line_pointer++;
850 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
851 goto default_case;
852 integer_constant (2, expressionP);
853 break;
854
855 case '0':
856 case '1':
857 case '2':
858 case '3':
859 case '4':
860 case '5':
861 case '6':
862 case '7':
863 integer_constant ((flag_m68k_mri || NUMBERS_WITH_SUFFIX)
864 ? 0 : 8,
865 expressionP);
866 break;
867
868 case 'f':
869 if (LOCAL_LABELS_FB)
870 {
871 /* If it says "0f" and it could possibly be a floating point
872 number, make it one. Otherwise, make it a local label,
873 and try to deal with parsing the rest later. */
874 if (!input_line_pointer[1]
875 || (is_end_of_line[0xff & input_line_pointer[1]])
876 || strchr (FLT_CHARS, 'f') == NULL)
877 goto is_0f_label;
878 {
879 char *cp = input_line_pointer + 1;
880 int r = atof_generic (&cp, ".", EXP_CHARS,
881 &generic_floating_point_number);
882 switch (r)
883 {
884 case 0:
885 case ERROR_EXPONENT_OVERFLOW:
886 if (*cp == 'f' || *cp == 'b')
887 /* Looks like a difference expression. */
888 goto is_0f_label;
889 else if (cp == input_line_pointer + 1)
890 /* No characters has been accepted -- looks like
891 end of operand. */
892 goto is_0f_label;
893 else
894 goto is_0f_float;
895 default:
896 as_fatal (_("expr.c(operand): bad atof_generic return val %d"),
897 r);
898 }
899 }
900
901 /* Okay, now we've sorted it out. We resume at one of these
902 two labels, depending on what we've decided we're probably
903 looking at. */
904 is_0f_label:
905 input_line_pointer--;
906 integer_constant (10, expressionP);
907 break;
908
909 is_0f_float:
910 /* Fall through. */
911 ;
912 }
913
914 case 'd':
915 case 'D':
916 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
917 {
918 integer_constant (0, expressionP);
919 break;
920 }
921 /* Fall through. */
922 case 'F':
923 case 'r':
924 case 'e':
925 case 'E':
926 case 'g':
927 case 'G':
928 input_line_pointer++;
929 floating_constant (expressionP);
930 expressionP->X_add_number = - TOLOWER (c);
931 break;
932
933 case '$':
934 if (LOCAL_LABELS_DOLLAR)
935 {
936 integer_constant (10, expressionP);
937 break;
938 }
939 else
940 goto default_case;
941 }
942
943 break;
944
945 case '(':
946 #ifndef NEED_INDEX_OPERATOR
947 case '[':
948 #endif
949 /* Didn't begin with digit & not a name. */
950 if (mode != expr_defer)
951 segment = expression (expressionP);
952 else
953 segment = deferred_expression (expressionP);
954 /* expression () will pass trailing whitespace. */
955 if ((c == '(' && *input_line_pointer != ')')
956 || (c == '[' && *input_line_pointer != ']'))
957 as_bad (_("missing '%c'"), c == '(' ? ')' : ']');
958 else
959 input_line_pointer++;
960 SKIP_WHITESPACE ();
961 /* Here with input_line_pointer -> char after "(...)". */
962 return segment;
963
964 #ifdef TC_M68K
965 case 'E':
966 if (! flag_m68k_mri || *input_line_pointer != '\'')
967 goto de_fault;
968 as_bad (_("EBCDIC constants are not supported"));
969 /* Fall through. */
970 case 'A':
971 if (! flag_m68k_mri || *input_line_pointer != '\'')
972 goto de_fault;
973 ++input_line_pointer;
974 /* Fall through. */
975 #endif
976 case '\'':
977 if (! flag_m68k_mri)
978 {
979 /* Warning: to conform to other people's assemblers NO
980 ESCAPEMENT is permitted for a single quote. The next
981 character, parity errors and all, is taken as the value
982 of the operand. VERY KINKY. */
983 expressionP->X_op = O_constant;
984 expressionP->X_add_number = *input_line_pointer++;
985 break;
986 }
987
988 mri_char_constant (expressionP);
989 break;
990
991 #ifdef TC_M68K
992 case '"':
993 /* Double quote is the bitwise not operator in MRI mode. */
994 if (! flag_m68k_mri)
995 goto de_fault;
996 /* Fall through. */
997 #endif
998 case '~':
999 /* '~' is permitted to start a label on the Delta. */
1000 if (is_name_beginner (c))
1001 goto isname;
1002 case '!':
1003 case '-':
1004 case '+':
1005 {
1006 /* Do not accept ++e or --e as +(+e) or -(-e)
1007 Disabled, since the preprocessor removes whitespace. */
1008 if (0 && (c == '-' || c == '+') && *input_line_pointer == c)
1009 goto target_op;
1010
1011 operand (expressionP, mode);
1012 if (expressionP->X_op == O_constant)
1013 {
1014 /* input_line_pointer -> char after operand. */
1015 if (c == '-')
1016 {
1017 expressionP->X_add_number = - expressionP->X_add_number;
1018 /* Notice: '-' may overflow: no warning is given.
1019 This is compatible with other people's
1020 assemblers. Sigh. */
1021 expressionP->X_unsigned = 0;
1022 }
1023 else if (c == '~' || c == '"')
1024 expressionP->X_add_number = ~ expressionP->X_add_number;
1025 else if (c == '!')
1026 expressionP->X_add_number = ! expressionP->X_add_number;
1027 }
1028 else if (expressionP->X_op == O_big
1029 && expressionP->X_add_number <= 0
1030 && c == '-'
1031 && (generic_floating_point_number.sign == '+'
1032 || generic_floating_point_number.sign == 'P'))
1033 {
1034 /* Negative flonum (eg, -1.000e0). */
1035 if (generic_floating_point_number.sign == '+')
1036 generic_floating_point_number.sign = '-';
1037 else
1038 generic_floating_point_number.sign = 'N';
1039 }
1040 else if (expressionP->X_op == O_big
1041 && expressionP->X_add_number > 0)
1042 {
1043 int i;
1044
1045 if (c == '~' || c == '-')
1046 {
1047 for (i = 0; i < expressionP->X_add_number; ++i)
1048 generic_bignum[i] = ~generic_bignum[i];
1049 if (c == '-')
1050 for (i = 0; i < expressionP->X_add_number; ++i)
1051 {
1052 generic_bignum[i] += 1;
1053 if (generic_bignum[i])
1054 break;
1055 }
1056 }
1057 else if (c == '!')
1058 {
1059 int nonzero = 0;
1060 for (i = 0; i < expressionP->X_add_number; ++i)
1061 {
1062 if (generic_bignum[i])
1063 nonzero = 1;
1064 generic_bignum[i] = 0;
1065 }
1066 generic_bignum[0] = nonzero;
1067 }
1068 }
1069 else if (expressionP->X_op != O_illegal
1070 && expressionP->X_op != O_absent)
1071 {
1072 if (c != '+')
1073 {
1074 expressionP->X_add_symbol = make_expr_symbol (expressionP);
1075 if (c == '-')
1076 expressionP->X_op = O_uminus;
1077 else if (c == '~' || c == '"')
1078 expressionP->X_op = O_bit_not;
1079 else
1080 expressionP->X_op = O_logical_not;
1081 expressionP->X_add_number = 0;
1082 }
1083 }
1084 else
1085 as_warn (_("Unary operator %c ignored because bad operand follows"),
1086 c);
1087 }
1088 break;
1089
1090 #if defined (DOLLAR_DOT) || defined (TC_M68K)
1091 case '$':
1092 /* '$' is the program counter when in MRI mode, or when
1093 DOLLAR_DOT is defined. */
1094 #ifndef DOLLAR_DOT
1095 if (! flag_m68k_mri)
1096 goto de_fault;
1097 #endif
1098 if (flag_m68k_mri && hex_p (*input_line_pointer))
1099 {
1100 /* In MRI mode, '$' is also used as the prefix for a
1101 hexadecimal constant. */
1102 integer_constant (16, expressionP);
1103 break;
1104 }
1105
1106 if (is_part_of_name (*input_line_pointer))
1107 goto isname;
1108
1109 current_location (expressionP);
1110 break;
1111 #endif
1112
1113 case '.':
1114 if (!is_part_of_name (*input_line_pointer))
1115 {
1116 current_location (expressionP);
1117 break;
1118 }
1119 else if ((strncasecmp (input_line_pointer, "startof.", 8) == 0
1120 && ! is_part_of_name (input_line_pointer[8]))
1121 || (strncasecmp (input_line_pointer, "sizeof.", 7) == 0
1122 && ! is_part_of_name (input_line_pointer[7])))
1123 {
1124 int start;
1125
1126 start = (input_line_pointer[1] == 't'
1127 || input_line_pointer[1] == 'T');
1128 input_line_pointer += start ? 8 : 7;
1129 SKIP_WHITESPACE ();
1130 if (*input_line_pointer != '(')
1131 as_bad (_("syntax error in .startof. or .sizeof."));
1132 else
1133 {
1134 char *buf;
1135
1136 ++input_line_pointer;
1137 SKIP_WHITESPACE ();
1138 name = input_line_pointer;
1139 c = get_symbol_end ();
1140
1141 buf = (char *) xmalloc (strlen (name) + 10);
1142 if (start)
1143 sprintf (buf, ".startof.%s", name);
1144 else
1145 sprintf (buf, ".sizeof.%s", name);
1146 symbolP = symbol_make (buf);
1147 free (buf);
1148
1149 expressionP->X_op = O_symbol;
1150 expressionP->X_add_symbol = symbolP;
1151 expressionP->X_add_number = 0;
1152
1153 *input_line_pointer = c;
1154 SKIP_WHITESPACE ();
1155 if (*input_line_pointer != ')')
1156 as_bad (_("syntax error in .startof. or .sizeof."));
1157 else
1158 ++input_line_pointer;
1159 }
1160 break;
1161 }
1162 else
1163 {
1164 goto isname;
1165 }
1166
1167 case ',':
1168 eol:
1169 /* Can't imagine any other kind of operand. */
1170 expressionP->X_op = O_absent;
1171 input_line_pointer--;
1172 break;
1173
1174 #ifdef TC_M68K
1175 case '%':
1176 if (! flag_m68k_mri)
1177 goto de_fault;
1178 integer_constant (2, expressionP);
1179 break;
1180
1181 case '@':
1182 if (! flag_m68k_mri)
1183 goto de_fault;
1184 integer_constant (8, expressionP);
1185 break;
1186
1187 case ':':
1188 if (! flag_m68k_mri)
1189 goto de_fault;
1190
1191 /* In MRI mode, this is a floating point constant represented
1192 using hexadecimal digits. */
1193
1194 ++input_line_pointer;
1195 integer_constant (16, expressionP);
1196 break;
1197
1198 case '*':
1199 if (! flag_m68k_mri || is_part_of_name (*input_line_pointer))
1200 goto de_fault;
1201
1202 current_location (expressionP);
1203 break;
1204 #endif
1205
1206 default:
1207 #ifdef TC_M68K
1208 de_fault:
1209 #endif
1210 if (is_name_beginner (c)) /* Here if did not begin with a digit. */
1211 {
1212 /* Identifier begins here.
1213 This is kludged for speed, so code is repeated. */
1214 isname:
1215 name = --input_line_pointer;
1216 c = get_symbol_end ();
1217
1218 #ifdef md_parse_name
1219 /* This is a hook for the backend to parse certain names
1220 specially in certain contexts. If a name always has a
1221 specific value, it can often be handled by simply
1222 entering it in the symbol table. */
1223 if (md_parse_name (name, expressionP, mode, &c))
1224 {
1225 *input_line_pointer = c;
1226 break;
1227 }
1228 #endif
1229
1230 #ifdef TC_I960
1231 /* The MRI i960 assembler permits
1232 lda sizeof code,g13
1233 FIXME: This should use md_parse_name. */
1234 if (flag_mri
1235 && (strcasecmp (name, "sizeof") == 0
1236 || strcasecmp (name, "startof") == 0))
1237 {
1238 int start;
1239 char *buf;
1240
1241 start = (name[1] == 't'
1242 || name[1] == 'T');
1243
1244 *input_line_pointer = c;
1245 SKIP_WHITESPACE ();
1246
1247 name = input_line_pointer;
1248 c = get_symbol_end ();
1249
1250 buf = (char *) xmalloc (strlen (name) + 10);
1251 if (start)
1252 sprintf (buf, ".startof.%s", name);
1253 else
1254 sprintf (buf, ".sizeof.%s", name);
1255 symbolP = symbol_make (buf);
1256 free (buf);
1257
1258 expressionP->X_op = O_symbol;
1259 expressionP->X_add_symbol = symbolP;
1260 expressionP->X_add_number = 0;
1261
1262 *input_line_pointer = c;
1263 SKIP_WHITESPACE ();
1264
1265 break;
1266 }
1267 #endif
1268
1269 symbolP = symbol_find_or_make (name);
1270
1271 /* If we have an absolute symbol or a reg, then we know its
1272 value now. */
1273 segment = S_GET_SEGMENT (symbolP);
1274 if (mode != expr_defer && segment == absolute_section)
1275 {
1276 expressionP->X_op = O_constant;
1277 expressionP->X_add_number = S_GET_VALUE (symbolP);
1278 }
1279 else if (mode != expr_defer && segment == reg_section)
1280 {
1281 expressionP->X_op = O_register;
1282 expressionP->X_add_number = S_GET_VALUE (symbolP);
1283 }
1284 else
1285 {
1286 expressionP->X_op = O_symbol;
1287 expressionP->X_add_symbol = symbolP;
1288 expressionP->X_add_number = 0;
1289 }
1290 *input_line_pointer = c;
1291 }
1292 else
1293 {
1294 target_op:
1295 /* Let the target try to parse it. Success is indicated by changing
1296 the X_op field to something other than O_absent and pointing
1297 input_line_pointer past the expression. If it can't parse the
1298 expression, X_op and input_line_pointer should be unchanged. */
1299 expressionP->X_op = O_absent;
1300 --input_line_pointer;
1301 md_operand (expressionP);
1302 if (expressionP->X_op == O_absent)
1303 {
1304 ++input_line_pointer;
1305 as_bad (_("bad expression"));
1306 expressionP->X_op = O_constant;
1307 expressionP->X_add_number = 0;
1308 }
1309 }
1310 break;
1311 }
1312
1313 /* It is more 'efficient' to clean up the expressionS when they are
1314 created. Doing it here saves lines of code. */
1315 clean_up_expression (expressionP);
1316 SKIP_WHITESPACE (); /* -> 1st char after operand. */
1317 know (*input_line_pointer != ' ');
1318
1319 /* The PA port needs this information. */
1320 if (expressionP->X_add_symbol)
1321 symbol_mark_used (expressionP->X_add_symbol);
1322
1323 expressionP->X_add_symbol = symbol_clone_if_forward_ref (expressionP->X_add_symbol);
1324 expressionP->X_op_symbol = symbol_clone_if_forward_ref (expressionP->X_op_symbol);
1325
1326 switch (expressionP->X_op)
1327 {
1328 default:
1329 return absolute_section;
1330 case O_symbol:
1331 return S_GET_SEGMENT (expressionP->X_add_symbol);
1332 case O_register:
1333 return reg_section;
1334 }
1335 }
1336 \f
1337 /* Internal. Simplify a struct expression for use by expr (). */
1338
1339 /* In: address of an expressionS.
1340 The X_op field of the expressionS may only take certain values.
1341 Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
1342
1343 Out: expressionS may have been modified:
1344 Unused fields zeroed to help expr (). */
1345
1346 static void
1347 clean_up_expression (expressionS *expressionP)
1348 {
1349 switch (expressionP->X_op)
1350 {
1351 case O_illegal:
1352 case O_absent:
1353 expressionP->X_add_number = 0;
1354 /* Fall through. */
1355 case O_big:
1356 case O_constant:
1357 case O_register:
1358 expressionP->X_add_symbol = NULL;
1359 /* Fall through. */
1360 case O_symbol:
1361 case O_uminus:
1362 case O_bit_not:
1363 expressionP->X_op_symbol = NULL;
1364 break;
1365 default:
1366 break;
1367 }
1368 }
1369 \f
1370 /* Expression parser. */
1371
1372 /* We allow an empty expression, and just assume (absolute,0) silently.
1373 Unary operators and parenthetical expressions are treated as operands.
1374 As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
1375
1376 We used to do an aho/ullman shift-reduce parser, but the logic got so
1377 warped that I flushed it and wrote a recursive-descent parser instead.
1378 Now things are stable, would anybody like to write a fast parser?
1379 Most expressions are either register (which does not even reach here)
1380 or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
1381 So I guess it doesn't really matter how inefficient more complex expressions
1382 are parsed.
1383
1384 After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
1385 Also, we have consumed any leading or trailing spaces (operand does that)
1386 and done all intervening operators.
1387
1388 This returns the segment of the result, which will be
1389 absolute_section or the segment of a symbol. */
1390
1391 #undef __
1392 #define __ O_illegal
1393
1394 /* Maps ASCII -> operators. */
1395 static const operatorT op_encoding[256] = {
1396 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1397 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1398
1399 __, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
1400 __, __, O_multiply, O_add, __, O_subtract, __, O_divide,
1401 __, __, __, __, __, __, __, __,
1402 __, __, __, __, O_lt, __, O_gt, __,
1403 __, __, __, __, __, __, __, __,
1404 __, __, __, __, __, __, __, __,
1405 __, __, __, __, __, __, __, __,
1406 __, __, __,
1407 #ifdef NEED_INDEX_OPERATOR
1408 O_index,
1409 #else
1410 __,
1411 #endif
1412 __, __, O_bit_exclusive_or, __,
1413 __, __, __, __, __, __, __, __,
1414 __, __, __, __, __, __, __, __,
1415 __, __, __, __, __, __, __, __,
1416 __, __, __, __, O_bit_inclusive_or, __, __, __,
1417
1418 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1419 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1420 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1421 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1422 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1423 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1424 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1425 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
1426 };
1427
1428 /* Rank Examples
1429 0 operand, (expression)
1430 1 ||
1431 2 &&
1432 3 == <> < <= >= >
1433 4 + -
1434 5 used for * / % in MRI mode
1435 6 & ^ ! |
1436 7 * / % << >>
1437 8 unary - unary ~
1438 */
1439 static operator_rankT op_rank[] = {
1440 0, /* O_illegal */
1441 0, /* O_absent */
1442 0, /* O_constant */
1443 0, /* O_symbol */
1444 0, /* O_symbol_rva */
1445 0, /* O_register */
1446 0, /* O_big */
1447 9, /* O_uminus */
1448 9, /* O_bit_not */
1449 9, /* O_logical_not */
1450 8, /* O_multiply */
1451 8, /* O_divide */
1452 8, /* O_modulus */
1453 8, /* O_left_shift */
1454 8, /* O_right_shift */
1455 7, /* O_bit_inclusive_or */
1456 7, /* O_bit_or_not */
1457 7, /* O_bit_exclusive_or */
1458 7, /* O_bit_and */
1459 5, /* O_add */
1460 5, /* O_subtract */
1461 4, /* O_eq */
1462 4, /* O_ne */
1463 4, /* O_lt */
1464 4, /* O_le */
1465 4, /* O_ge */
1466 4, /* O_gt */
1467 3, /* O_logical_and */
1468 2, /* O_logical_or */
1469 1, /* O_index */
1470 0, /* O_md1 */
1471 0, /* O_md2 */
1472 0, /* O_md3 */
1473 0, /* O_md4 */
1474 0, /* O_md5 */
1475 0, /* O_md6 */
1476 0, /* O_md7 */
1477 0, /* O_md8 */
1478 0, /* O_md9 */
1479 0, /* O_md10 */
1480 0, /* O_md11 */
1481 0, /* O_md12 */
1482 0, /* O_md13 */
1483 0, /* O_md14 */
1484 0, /* O_md15 */
1485 0, /* O_md16 */
1486 };
1487
1488 /* Unfortunately, in MRI mode for the m68k, multiplication and
1489 division have lower precedence than the bit wise operators. This
1490 function sets the operator precedences correctly for the current
1491 mode. Also, MRI uses a different bit_not operator, and this fixes
1492 that as well. */
1493
1494 #define STANDARD_MUL_PRECEDENCE 8
1495 #define MRI_MUL_PRECEDENCE 6
1496
1497 void
1498 expr_set_precedence (void)
1499 {
1500 if (flag_m68k_mri)
1501 {
1502 op_rank[O_multiply] = MRI_MUL_PRECEDENCE;
1503 op_rank[O_divide] = MRI_MUL_PRECEDENCE;
1504 op_rank[O_modulus] = MRI_MUL_PRECEDENCE;
1505 }
1506 else
1507 {
1508 op_rank[O_multiply] = STANDARD_MUL_PRECEDENCE;
1509 op_rank[O_divide] = STANDARD_MUL_PRECEDENCE;
1510 op_rank[O_modulus] = STANDARD_MUL_PRECEDENCE;
1511 }
1512 }
1513
1514 /* Initialize the expression parser. */
1515
1516 void
1517 expr_begin (void)
1518 {
1519 expr_set_precedence ();
1520
1521 /* Verify that X_op field is wide enough. */
1522 {
1523 expressionS e;
1524 e.X_op = O_max;
1525 assert (e.X_op == O_max);
1526 }
1527 }
1528 \f
1529 /* Return the encoding for the operator at INPUT_LINE_POINTER, and
1530 sets NUM_CHARS to the number of characters in the operator.
1531 Does not advance INPUT_LINE_POINTER. */
1532
1533 static inline operatorT
1534 operator (int *num_chars)
1535 {
1536 int c;
1537 operatorT ret;
1538
1539 c = *input_line_pointer & 0xff;
1540 *num_chars = 1;
1541
1542 if (is_end_of_line[c])
1543 return O_illegal;
1544
1545 switch (c)
1546 {
1547 default:
1548 return op_encoding[c];
1549
1550 case '+':
1551 case '-':
1552 /* Do not allow a++b and a--b to be a + (+b) and a - (-b)
1553 Disabled, since the preprocessor removes whitespace. */
1554 if (1 || input_line_pointer[1] != c)
1555 return op_encoding[c];
1556 return O_illegal;
1557
1558 case '<':
1559 switch (input_line_pointer[1])
1560 {
1561 default:
1562 return op_encoding[c];
1563 case '<':
1564 ret = O_left_shift;
1565 break;
1566 case '>':
1567 ret = O_ne;
1568 break;
1569 case '=':
1570 ret = O_le;
1571 break;
1572 }
1573 *num_chars = 2;
1574 return ret;
1575
1576 case '=':
1577 if (input_line_pointer[1] != '=')
1578 return op_encoding[c];
1579
1580 *num_chars = 2;
1581 return O_eq;
1582
1583 case '>':
1584 switch (input_line_pointer[1])
1585 {
1586 default:
1587 return op_encoding[c];
1588 case '>':
1589 ret = O_right_shift;
1590 break;
1591 case '=':
1592 ret = O_ge;
1593 break;
1594 }
1595 *num_chars = 2;
1596 return ret;
1597
1598 case '!':
1599 switch (input_line_pointer[1])
1600 {
1601 case '!':
1602 /* We accept !! as equivalent to ^ for MRI compatibility. */
1603 *num_chars = 2;
1604 return O_bit_exclusive_or;
1605 case '=':
1606 /* We accept != as equivalent to <>. */
1607 *num_chars = 2;
1608 return O_ne;
1609 default:
1610 if (flag_m68k_mri)
1611 return O_bit_inclusive_or;
1612 return op_encoding[c];
1613 }
1614
1615 case '|':
1616 if (input_line_pointer[1] != '|')
1617 return op_encoding[c];
1618
1619 *num_chars = 2;
1620 return O_logical_or;
1621
1622 case '&':
1623 if (input_line_pointer[1] != '&')
1624 return op_encoding[c];
1625
1626 *num_chars = 2;
1627 return O_logical_and;
1628 }
1629
1630 /* NOTREACHED */
1631 }
1632
1633 /* Parse an expression. */
1634
1635 segT
1636 expr (int rankarg, /* Larger # is higher rank. */
1637 expressionS *resultP, /* Deliver result here. */
1638 enum expr_mode mode /* Controls behavior. */)
1639 {
1640 operator_rankT rank = (operator_rankT) rankarg;
1641 segT retval;
1642 expressionS right;
1643 operatorT op_left;
1644 operatorT op_right;
1645 int op_chars;
1646
1647 know (rank >= 0);
1648
1649 /* Save the value of dot for the fixup code. */
1650 if (rank == 0)
1651 dot_value = frag_now_fix ();
1652
1653 retval = operand (resultP, mode);
1654
1655 /* operand () gobbles spaces. */
1656 know (*input_line_pointer != ' ');
1657
1658 op_left = operator (&op_chars);
1659 while (op_left != O_illegal && op_rank[(int) op_left] > rank)
1660 {
1661 segT rightseg;
1662
1663 input_line_pointer += op_chars; /* -> after operator. */
1664
1665 rightseg = expr (op_rank[(int) op_left], &right, mode);
1666 if (right.X_op == O_absent)
1667 {
1668 as_warn (_("missing operand; zero assumed"));
1669 right.X_op = O_constant;
1670 right.X_add_number = 0;
1671 right.X_add_symbol = NULL;
1672 right.X_op_symbol = NULL;
1673 }
1674
1675 know (*input_line_pointer != ' ');
1676
1677 if (op_left == O_index)
1678 {
1679 if (*input_line_pointer != ']')
1680 as_bad ("missing right bracket");
1681 else
1682 {
1683 ++input_line_pointer;
1684 SKIP_WHITESPACE ();
1685 }
1686 }
1687
1688 op_right = operator (&op_chars);
1689
1690 know (op_right == O_illegal
1691 || op_rank[(int) op_right] <= op_rank[(int) op_left]);
1692 know ((int) op_left >= (int) O_multiply
1693 && (int) op_left <= (int) O_index);
1694
1695 /* input_line_pointer->after right-hand quantity. */
1696 /* left-hand quantity in resultP. */
1697 /* right-hand quantity in right. */
1698 /* operator in op_left. */
1699
1700 if (resultP->X_op == O_big)
1701 {
1702 if (resultP->X_add_number > 0)
1703 as_warn (_("left operand is a bignum; integer 0 assumed"));
1704 else
1705 as_warn (_("left operand is a float; integer 0 assumed"));
1706 resultP->X_op = O_constant;
1707 resultP->X_add_number = 0;
1708 resultP->X_add_symbol = NULL;
1709 resultP->X_op_symbol = NULL;
1710 }
1711 if (right.X_op == O_big)
1712 {
1713 if (right.X_add_number > 0)
1714 as_warn (_("right operand is a bignum; integer 0 assumed"));
1715 else
1716 as_warn (_("right operand is a float; integer 0 assumed"));
1717 right.X_op = O_constant;
1718 right.X_add_number = 0;
1719 right.X_add_symbol = NULL;
1720 right.X_op_symbol = NULL;
1721 }
1722
1723 /* Optimize common cases. */
1724 #ifdef md_optimize_expr
1725 if (md_optimize_expr (resultP, op_left, &right))
1726 {
1727 /* Skip. */
1728 ;
1729 }
1730 else
1731 #endif
1732 if (op_left == O_add && right.X_op == O_constant)
1733 {
1734 /* X + constant. */
1735 resultP->X_add_number += right.X_add_number;
1736 }
1737 /* This case comes up in PIC code. */
1738 else if (op_left == O_subtract
1739 && right.X_op == O_symbol
1740 && resultP->X_op == O_symbol
1741 && (symbol_get_frag (right.X_add_symbol)
1742 == symbol_get_frag (resultP->X_add_symbol))
1743 && (SEG_NORMAL (rightseg)
1744 || right.X_add_symbol == resultP->X_add_symbol))
1745 {
1746 resultP->X_add_number -= right.X_add_number;
1747 resultP->X_add_number += (S_GET_VALUE (resultP->X_add_symbol)
1748 - S_GET_VALUE (right.X_add_symbol));
1749 resultP->X_op = O_constant;
1750 resultP->X_add_symbol = 0;
1751 }
1752 else if (op_left == O_subtract && right.X_op == O_constant)
1753 {
1754 /* X - constant. */
1755 resultP->X_add_number -= right.X_add_number;
1756 }
1757 else if (op_left == O_add && resultP->X_op == O_constant)
1758 {
1759 /* Constant + X. */
1760 resultP->X_op = right.X_op;
1761 resultP->X_add_symbol = right.X_add_symbol;
1762 resultP->X_op_symbol = right.X_op_symbol;
1763 resultP->X_add_number += right.X_add_number;
1764 retval = rightseg;
1765 }
1766 else if (resultP->X_op == O_constant && right.X_op == O_constant)
1767 {
1768 /* Constant OP constant. */
1769 offsetT v = right.X_add_number;
1770 if (v == 0 && (op_left == O_divide || op_left == O_modulus))
1771 {
1772 as_warn (_("division by zero"));
1773 v = 1;
1774 }
1775 switch (op_left)
1776 {
1777 default: abort ();
1778 case O_multiply: resultP->X_add_number *= v; break;
1779 case O_divide: resultP->X_add_number /= v; break;
1780 case O_modulus: resultP->X_add_number %= v; break;
1781 case O_left_shift: resultP->X_add_number <<= v; break;
1782 case O_right_shift:
1783 /* We always use unsigned shifts, to avoid relying on
1784 characteristics of the compiler used to compile gas. */
1785 resultP->X_add_number =
1786 (offsetT) ((valueT) resultP->X_add_number >> (valueT) v);
1787 break;
1788 case O_bit_inclusive_or: resultP->X_add_number |= v; break;
1789 case O_bit_or_not: resultP->X_add_number |= ~v; break;
1790 case O_bit_exclusive_or: resultP->X_add_number ^= v; break;
1791 case O_bit_and: resultP->X_add_number &= v; break;
1792 case O_add: resultP->X_add_number += v; break;
1793 case O_subtract: resultP->X_add_number -= v; break;
1794 case O_eq:
1795 resultP->X_add_number =
1796 resultP->X_add_number == v ? ~ (offsetT) 0 : 0;
1797 break;
1798 case O_ne:
1799 resultP->X_add_number =
1800 resultP->X_add_number != v ? ~ (offsetT) 0 : 0;
1801 break;
1802 case O_lt:
1803 resultP->X_add_number =
1804 resultP->X_add_number < v ? ~ (offsetT) 0 : 0;
1805 break;
1806 case O_le:
1807 resultP->X_add_number =
1808 resultP->X_add_number <= v ? ~ (offsetT) 0 : 0;
1809 break;
1810 case O_ge:
1811 resultP->X_add_number =
1812 resultP->X_add_number >= v ? ~ (offsetT) 0 : 0;
1813 break;
1814 case O_gt:
1815 resultP->X_add_number =
1816 resultP->X_add_number > v ? ~ (offsetT) 0 : 0;
1817 break;
1818 case O_logical_and:
1819 resultP->X_add_number = resultP->X_add_number && v;
1820 break;
1821 case O_logical_or:
1822 resultP->X_add_number = resultP->X_add_number || v;
1823 break;
1824 }
1825 }
1826 else if (resultP->X_op == O_symbol
1827 && right.X_op == O_symbol
1828 && (op_left == O_add
1829 || op_left == O_subtract
1830 || (resultP->X_add_number == 0
1831 && right.X_add_number == 0)))
1832 {
1833 /* Symbol OP symbol. */
1834 resultP->X_op = op_left;
1835 resultP->X_op_symbol = right.X_add_symbol;
1836 if (op_left == O_add)
1837 resultP->X_add_number += right.X_add_number;
1838 else if (op_left == O_subtract)
1839 {
1840 resultP->X_add_number -= right.X_add_number;
1841 if (retval == rightseg && SEG_NORMAL (retval))
1842 {
1843 retval = absolute_section;
1844 rightseg = absolute_section;
1845 }
1846 }
1847 }
1848 else
1849 {
1850 /* The general case. */
1851 resultP->X_add_symbol = make_expr_symbol (resultP);
1852 resultP->X_op_symbol = make_expr_symbol (&right);
1853 resultP->X_op = op_left;
1854 resultP->X_add_number = 0;
1855 resultP->X_unsigned = 1;
1856 }
1857
1858 if (retval != rightseg)
1859 {
1860 if (! SEG_NORMAL (retval))
1861 {
1862 if (retval != undefined_section || SEG_NORMAL (rightseg))
1863 retval = rightseg;
1864 }
1865 else if (SEG_NORMAL (rightseg)
1866 #ifdef DIFF_EXPR_OK
1867 && op_left != O_subtract
1868 #endif
1869 )
1870 as_bad (_("operation combines symbols in different segments"));
1871 }
1872
1873 op_left = op_right;
1874 } /* While next operator is >= this rank. */
1875
1876 /* The PA port needs this information. */
1877 if (resultP->X_add_symbol)
1878 symbol_mark_used (resultP->X_add_symbol);
1879
1880 if (rank == 0 && mode == expr_evaluate)
1881 resolve_expression (resultP);
1882
1883 return resultP->X_op == O_constant ? absolute_section : retval;
1884 }
1885
1886 /* Resolve an expression without changing any symbols/sub-expressions
1887 used. */
1888
1889 int
1890 resolve_expression (expressionS *expressionP)
1891 {
1892 /* Help out with CSE. */
1893 valueT final_val = expressionP->X_add_number;
1894 symbolS *add_symbol = expressionP->X_add_symbol;
1895 symbolS *op_symbol = expressionP->X_op_symbol;
1896 operatorT op = expressionP->X_op;
1897 valueT left, right;
1898 segT seg_left, seg_right;
1899 fragS *frag_left, *frag_right;
1900
1901 switch (op)
1902 {
1903 default:
1904 return 0;
1905
1906 case O_constant:
1907 case O_register:
1908 left = 0;
1909 break;
1910
1911 case O_symbol:
1912 case O_symbol_rva:
1913 if (!snapshot_symbol (add_symbol, &left, &seg_left, &frag_left))
1914 return 0;
1915
1916 break;
1917
1918 case O_uminus:
1919 case O_bit_not:
1920 case O_logical_not:
1921 if (!snapshot_symbol (add_symbol, &left, &seg_left, &frag_left))
1922 return 0;
1923
1924 if (seg_left != absolute_section)
1925 return 0;
1926
1927 if (op == O_logical_not)
1928 left = !left;
1929 else if (op == O_uminus)
1930 left = -left;
1931 else
1932 left = ~left;
1933 op = O_constant;
1934 break;
1935
1936 case O_multiply:
1937 case O_divide:
1938 case O_modulus:
1939 case O_left_shift:
1940 case O_right_shift:
1941 case O_bit_inclusive_or:
1942 case O_bit_or_not:
1943 case O_bit_exclusive_or:
1944 case O_bit_and:
1945 case O_add:
1946 case O_subtract:
1947 case O_eq:
1948 case O_ne:
1949 case O_lt:
1950 case O_le:
1951 case O_ge:
1952 case O_gt:
1953 case O_logical_and:
1954 case O_logical_or:
1955 if (!snapshot_symbol (add_symbol, &left, &seg_left, &frag_left)
1956 || !snapshot_symbol (op_symbol, &right, &seg_right, &frag_right))
1957 return 0;
1958
1959 /* Simplify addition or subtraction of a constant by folding the
1960 constant into X_add_number. */
1961 if (op == O_add)
1962 {
1963 if (seg_right == absolute_section)
1964 {
1965 final_val += right;
1966 op = O_symbol;
1967 break;
1968 }
1969 else if (seg_left == absolute_section)
1970 {
1971 final_val += left;
1972 left = right;
1973 seg_left = seg_right;
1974 expressionP->X_add_symbol = expressionP->X_op_symbol;
1975 op = O_symbol;
1976 break;
1977 }
1978 }
1979 else if (op == O_subtract)
1980 {
1981 if (seg_right == absolute_section)
1982 {
1983 final_val -= right;
1984 op = O_symbol;
1985 break;
1986 }
1987 }
1988
1989 /* Equality and non-equality tests are permitted on anything.
1990 Subtraction, and other comparison operators are permitted if
1991 both operands are in the same section. Otherwise, both
1992 operands must be absolute. We already handled the case of
1993 addition or subtraction of a constant above. */
1994 if (!(seg_left == absolute_section
1995 && seg_right == absolute_section)
1996 && !(op == O_eq || op == O_ne)
1997 && !((op == O_subtract
1998 || op == O_lt || op == O_le || op == O_ge || op == O_gt)
1999 && seg_left == seg_right
2000 && (finalize_syms || frag_left == frag_right)
2001 && ((seg_left != undefined_section
2002 && seg_left != reg_section)
2003 || add_symbol == op_symbol)))
2004 return 0;
2005
2006 switch (op)
2007 {
2008 case O_add: left += right; break;
2009 case O_subtract: left -= right; break;
2010 case O_multiply: left *= right; break;
2011 case O_divide:
2012 if (right == 0)
2013 return 0;
2014 left = (offsetT) left / (offsetT) right;
2015 break;
2016 case O_modulus:
2017 if (right == 0)
2018 return 0;
2019 left = (offsetT) left % (offsetT) right;
2020 break;
2021 case O_left_shift: left <<= right; break;
2022 case O_right_shift: left >>= right; break;
2023 case O_bit_inclusive_or: left |= right; break;
2024 case O_bit_or_not: left |= ~right; break;
2025 case O_bit_exclusive_or: left ^= right; break;
2026 case O_bit_and: left &= right; break;
2027 case O_eq:
2028 case O_ne:
2029 left = (left == right
2030 && seg_left == seg_right
2031 && (finalize_syms || frag_left == frag_right)
2032 && ((seg_left != undefined_section
2033 && seg_left != reg_section)
2034 || add_symbol == op_symbol)
2035 ? ~ (valueT) 0 : 0);
2036 if (op == O_ne)
2037 left = ~left;
2038 break;
2039 case O_lt:
2040 left = (offsetT) left < (offsetT) right ? ~ (valueT) 0 : 0;
2041 break;
2042 case O_le:
2043 left = (offsetT) left <= (offsetT) right ? ~ (valueT) 0 : 0;
2044 break;
2045 case O_ge:
2046 left = (offsetT) left >= (offsetT) right ? ~ (valueT) 0 : 0;
2047 break;
2048 case O_gt:
2049 left = (offsetT) left > (offsetT) right ? ~ (valueT) 0 : 0;
2050 break;
2051 case O_logical_and: left = left && right; break;
2052 case O_logical_or: left = left || right; break;
2053 default: abort ();
2054 }
2055
2056 op = O_constant;
2057 break;
2058 }
2059
2060 if (op == O_symbol)
2061 {
2062 if (seg_left == absolute_section)
2063 op = O_constant;
2064 else if (seg_left == reg_section && final_val == 0)
2065 op = O_register;
2066 }
2067 expressionP->X_op = op;
2068
2069 if (op == O_constant || op == O_register)
2070 final_val += left;
2071 expressionP->X_add_number = final_val;
2072
2073 return 1;
2074 }
2075 \f
2076 /* This lives here because it belongs equally in expr.c & read.c.
2077 expr.c is just a branch office read.c anyway, and putting it
2078 here lessens the crowd at read.c.
2079
2080 Assume input_line_pointer is at start of symbol name.
2081 Advance input_line_pointer past symbol name.
2082 Turn that character into a '\0', returning its former value.
2083 This allows a string compare (RMS wants symbol names to be strings)
2084 of the symbol name.
2085 There will always be a char following symbol name, because all good
2086 lines end in end-of-line. */
2087
2088 char
2089 get_symbol_end (void)
2090 {
2091 char c;
2092
2093 /* We accept \001 in a name in case this is being called with a
2094 constructed string. */
2095 if (is_name_beginner (c = *input_line_pointer++) || c == '\001')
2096 {
2097 while (is_part_of_name (c = *input_line_pointer++)
2098 || c == '\001')
2099 ;
2100 if (is_name_ender (c))
2101 c = *input_line_pointer++;
2102 }
2103 *--input_line_pointer = 0;
2104 return (c);
2105 }
2106
2107 unsigned int
2108 get_single_number (void)
2109 {
2110 expressionS exp;
2111 operand (&exp, expr_normal);
2112 return exp.X_add_number;
2113 }
This page took 0.121765 seconds and 5 git commands to generate.