* sunos.c (sunos_add_one_symbol): Treat a common symbol from a
[deliverable/binutils-gdb.git] / gdb / a29k-tdep.c
1 /* Target-machine dependent code for the AMD 29000
2 Copyright 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3 Contributed by Cygnus Support. Written by Jim Kingdon.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include "gdbcore.h"
23 #include "frame.h"
24 #include "value.h"
25 #include "symtab.h"
26 #include "inferior.h"
27 #include "gdbcmd.h"
28
29 /* If all these bits in an instruction word are zero, it is a "tag word"
30 which precedes a function entry point and gives stack traceback info.
31 This used to be defined as 0xff000000, but that treated 0x00000deb as
32 a tag word, while it is really used as a breakpoint. */
33 #define TAGWORD_ZERO_MASK 0xff00f800
34
35 extern CORE_ADDR text_start; /* FIXME, kludge... */
36
37 /* The user-settable top of the register stack in virtual memory. We
38 won't attempt to access any stored registers above this address, if set
39 nonzero. */
40
41 static CORE_ADDR rstack_high_address = UINT_MAX;
42
43 /* Structure to hold cached info about function prologues. */
44 struct prologue_info
45 {
46 CORE_ADDR pc; /* First addr after fn prologue */
47 unsigned rsize, msize; /* register stack frame size, mem stack ditto */
48 unsigned mfp_used : 1; /* memory frame pointer used */
49 unsigned rsize_valid : 1; /* Validity bits for the above */
50 unsigned msize_valid : 1;
51 unsigned mfp_valid : 1;
52 };
53
54 /* Examine the prologue of a function which starts at PC. Return
55 the first addess past the prologue. If MSIZE is non-NULL, then
56 set *MSIZE to the memory stack frame size. If RSIZE is non-NULL,
57 then set *RSIZE to the register stack frame size (not including
58 incoming arguments and the return address & frame pointer stored
59 with them). If no prologue is found, *RSIZE is set to zero.
60 If no prologue is found, or a prologue which doesn't involve
61 allocating a memory stack frame, then set *MSIZE to zero.
62
63 Note that both msize and rsize are in bytes. This is not consistent
64 with the _User's Manual_ with respect to rsize, but it is much more
65 convenient.
66
67 If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory
68 frame pointer is being used. */
69 CORE_ADDR
70 examine_prologue (pc, rsize, msize, mfp_used)
71 CORE_ADDR pc;
72 unsigned *msize;
73 unsigned *rsize;
74 int *mfp_used;
75 {
76 long insn;
77 CORE_ADDR p = pc;
78 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
79 struct prologue_info *mi = 0;
80
81 if (msymbol != NULL)
82 mi = (struct prologue_info *) msymbol -> info;
83
84 if (mi != 0)
85 {
86 int valid = 1;
87 if (rsize != NULL)
88 {
89 *rsize = mi->rsize;
90 valid &= mi->rsize_valid;
91 }
92 if (msize != NULL)
93 {
94 *msize = mi->msize;
95 valid &= mi->msize_valid;
96 }
97 if (mfp_used != NULL)
98 {
99 *mfp_used = mi->mfp_used;
100 valid &= mi->mfp_valid;
101 }
102 if (valid)
103 return mi->pc;
104 }
105
106 if (rsize != NULL)
107 *rsize = 0;
108 if (msize != NULL)
109 *msize = 0;
110 if (mfp_used != NULL)
111 *mfp_used = 0;
112
113 /* Prologue must start with subtracting a constant from gr1.
114 Normally this is sub gr1,gr1,<rsize * 4>. */
115 insn = read_memory_integer (p, 4);
116 if ((insn & 0xffffff00) != 0x25010100)
117 {
118 /* If the frame is large, instead of a single instruction it
119 might be a pair of instructions:
120 const <reg>, <rsize * 4>
121 sub gr1,gr1,<reg>
122 */
123 int reg;
124 /* Possible value for rsize. */
125 unsigned int rsize0;
126
127 if ((insn & 0xff000000) != 0x03000000)
128 {
129 p = pc;
130 goto done;
131 }
132 reg = (insn >> 8) & 0xff;
133 rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff));
134 p += 4;
135 insn = read_memory_integer (p, 4);
136 if ((insn & 0xffffff00) != 0x24010100
137 || (insn & 0xff) != reg)
138 {
139 p = pc;
140 goto done;
141 }
142 if (rsize != NULL)
143 *rsize = rsize0;
144 }
145 else
146 {
147 if (rsize != NULL)
148 *rsize = (insn & 0xff);
149 }
150 p += 4;
151
152 /* Next instruction ought to be asgeu V_SPILL,gr1,rab.
153 * We don't check the vector number to allow for kernel debugging. The
154 * kernel will use a different trap number.
155 * If this insn is missing, we just keep going; Metaware R2.3u compiler
156 * generates prologue that intermixes initializations and puts the asgeu
157 * way down.
158 */
159 insn = read_memory_integer (p, 4);
160 if ((insn & 0xff00ffff) == (0x5e000100|RAB_HW_REGNUM))
161 {
162 p += 4;
163 }
164
165 /* Next instruction usually sets the frame pointer (lr1) by adding
166 <size * 4> from gr1. However, this can (and high C does) be
167 deferred until anytime before the first function call. So it is
168 OK if we don't see anything which sets lr1.
169 To allow for alternate register sets (gcc -mkernel-registers) the msp
170 register number is a compile time constant. */
171
172 /* Normally this is just add lr1,gr1,<size * 4>. */
173 insn = read_memory_integer (p, 4);
174 if ((insn & 0xffffff00) == 0x15810100)
175 p += 4;
176 else
177 {
178 /* However, for large frames it can be
179 const <reg>, <size *4>
180 add lr1,gr1,<reg>
181 */
182 int reg;
183 CORE_ADDR q;
184
185 if ((insn & 0xff000000) == 0x03000000)
186 {
187 reg = (insn >> 8) & 0xff;
188 q = p + 4;
189 insn = read_memory_integer (q, 4);
190 if ((insn & 0xffffff00) == 0x14810100
191 && (insn & 0xff) == reg)
192 p = q;
193 }
194 }
195
196 /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory
197 frame pointer is in use. We just check for add lr<anything>,msp,0;
198 we don't check this rsize against the first instruction, and
199 we don't check that the trace-back tag indicates a memory frame pointer
200 is in use.
201 To allow for alternate register sets (gcc -mkernel-registers) the msp
202 register number is a compile time constant.
203
204 The recommended instruction is actually "sll lr<whatever>,msp,0".
205 We check for that, too. Originally Jim Kingdon's code seemed
206 to be looking for a "sub" instruction here, but the mask was set
207 up to lose all the time. */
208 insn = read_memory_integer (p, 4);
209 if (((insn & 0xff80ffff) == (0x15800000|(MSP_HW_REGNUM<<8))) /* add */
210 || ((insn & 0xff80ffff) == (0x81800000|(MSP_HW_REGNUM<<8)))) /* sll */
211 {
212 p += 4;
213 if (mfp_used != NULL)
214 *mfp_used = 1;
215 }
216
217 /* Next comes a subtraction from msp to allocate a memory frame,
218 but only if a memory frame is
219 being used. We don't check msize against the trace-back tag.
220
221 To allow for alternate register sets (gcc -mkernel-registers) the msp
222 register number is a compile time constant.
223
224 Normally this is just
225 sub msp,msp,<msize>
226 */
227 insn = read_memory_integer (p, 4);
228 if ((insn & 0xffffff00) ==
229 (0x25000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8)))
230 {
231 p += 4;
232 if (msize != NULL)
233 *msize = insn & 0xff;
234 }
235 else
236 {
237 /* For large frames, instead of a single instruction it might
238 be
239
240 const <reg>, <msize>
241 consth <reg>, <msize> ; optional
242 sub msp,msp,<reg>
243 */
244 int reg;
245 unsigned msize0;
246 CORE_ADDR q = p;
247
248 if ((insn & 0xff000000) == 0x03000000)
249 {
250 reg = (insn >> 8) & 0xff;
251 msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff);
252 q += 4;
253 insn = read_memory_integer (q, 4);
254 /* Check for consth. */
255 if ((insn & 0xff000000) == 0x02000000
256 && (insn & 0x0000ff00) == reg)
257 {
258 msize0 |= (insn << 8) & 0xff000000;
259 msize0 |= (insn << 16) & 0x00ff0000;
260 q += 4;
261 insn = read_memory_integer (q, 4);
262 }
263 /* Check for sub msp,msp,<reg>. */
264 if ((insn & 0xffffff00) ==
265 (0x24000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8))
266 && (insn & 0xff) == reg)
267 {
268 p = q + 4;
269 if (msize != NULL)
270 *msize = msize0;
271 }
272 }
273 }
274
275 /* Next instruction might be asgeu V_SPILL,gr1,rab.
276 * We don't check the vector number to allow for kernel debugging. The
277 * kernel will use a different trap number.
278 * Metaware R2.3u compiler
279 * generates prologue that intermixes initializations and puts the asgeu
280 * way down after everything else.
281 */
282 insn = read_memory_integer (p, 4);
283 if ((insn & 0xff00ffff) == (0x5e000100|RAB_HW_REGNUM))
284 {
285 p += 4;
286 }
287
288 done:
289 if (msymbol != NULL)
290 {
291 if (mi == 0)
292 {
293 /* Add a new cache entry. */
294 mi = (struct prologue_info *)xmalloc (sizeof (struct prologue_info));
295 msymbol -> info = (char *)mi;
296 mi->rsize_valid = 0;
297 mi->msize_valid = 0;
298 mi->mfp_valid = 0;
299 }
300 /* else, cache entry exists, but info is incomplete. */
301 mi->pc = p;
302 if (rsize != NULL)
303 {
304 mi->rsize = *rsize;
305 mi->rsize_valid = 1;
306 }
307 if (msize != NULL)
308 {
309 mi->msize = *msize;
310 mi->msize_valid = 1;
311 }
312 if (mfp_used != NULL)
313 {
314 mi->mfp_used = *mfp_used;
315 mi->mfp_valid = 1;
316 }
317 }
318 return p;
319 }
320
321 /* Advance PC across any function entry prologue instructions
322 to reach some "real" code. */
323
324 CORE_ADDR
325 skip_prologue (pc)
326 CORE_ADDR pc;
327 {
328 return examine_prologue (pc, (unsigned *)NULL, (unsigned *)NULL,
329 (int *)NULL);
330 }
331 /*
332 * Examine the one or two word tag at the beginning of a function.
333 * The tag word is expect to be at 'p', if it is not there, we fail
334 * by returning 0. The documentation for the tag word was taken from
335 * page 7-15 of the 29050 User's Manual. We are assuming that the
336 * m bit is in bit 22 of the tag word, which seems to be the agreed upon
337 * convention today (1/15/92).
338 * msize is return in bytes.
339 */
340 static int /* 0/1 - failure/success of finding the tag word */
341 examine_tag(p, is_trans, argcount, msize, mfp_used)
342 CORE_ADDR p;
343 int *is_trans;
344 int *argcount;
345 unsigned *msize;
346 int *mfp_used;
347 {
348 unsigned int tag1, tag2;
349
350 tag1 = read_memory_integer (p, 4);
351 if ((tag1 & TAGWORD_ZERO_MASK) != 0) /* Not a tag word */
352 return 0;
353 if (tag1 & (1<<23)) /* A two word tag */
354 {
355 tag2 = read_memory_integer (p+4, 4);
356 if (msize)
357 *msize = tag2;
358 }
359 else /* A one word tag */
360 {
361 if (msize)
362 *msize = tag1 & 0x7ff;
363 }
364 if (is_trans)
365 *is_trans = ((tag1 & (1<<21)) ? 1 : 0);
366 /* Note that this includes the frame pointer and the return address
367 register, so the actual number of registers of arguments is two less.
368 argcount can be zero, however, sometimes, for strange assembler
369 routines. */
370 if (argcount)
371 *argcount = (tag1 >> 16) & 0x1f;
372 if (mfp_used)
373 *mfp_used = ((tag1 & (1<<22)) ? 1 : 0);
374 return(1);
375 }
376
377 /* Initialize the frame. In addition to setting "extra" frame info,
378 we also set ->frame because we use it in a nonstandard way, and ->pc
379 because we need to know it to get the other stuff. See the diagram
380 of stacks and the frame cache in tm-a29k.h for more detail. */
381 static void
382 init_frame_info (innermost_frame, fci)
383 int innermost_frame;
384 struct frame_info *fci;
385 {
386 CORE_ADDR p;
387 long insn;
388 unsigned rsize;
389 unsigned msize;
390 int mfp_used, trans;
391 struct symbol *func;
392
393 p = fci->pc;
394
395 if (innermost_frame)
396 fci->frame = read_register (GR1_REGNUM);
397 else
398 fci->frame = fci->next->frame + fci->next->rsize;
399
400 #if CALL_DUMMY_LOCATION == ON_STACK
401 This wont work;
402 #else
403 if (PC_IN_CALL_DUMMY (p, 0, 0))
404 #endif
405 {
406 fci->rsize = DUMMY_FRAME_RSIZE;
407 /* This doesn't matter since we never try to get locals or args
408 from a dummy frame. */
409 fci->msize = 0;
410 /* Dummy frames always use a memory frame pointer. */
411 fci->saved_msp =
412 read_register_stack_integer (fci->frame + DUMMY_FRAME_RSIZE - 4, 4);
413 fci->flags |= (TRANSPARENT|MFP_USED);
414 return;
415 }
416
417 func = find_pc_function (p);
418 if (func != NULL)
419 p = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
420 else
421 {
422 /* Search backward to find the trace-back tag. However,
423 do not trace back beyond the start of the text segment
424 (just as a sanity check to avoid going into never-never land). */
425 #if 1
426 while (p >= text_start
427 && ((insn = read_memory_integer (p, 4)) & TAGWORD_ZERO_MASK) != 0)
428 p -= 4;
429 #else /* 0 */
430 char pat[4] = {0, 0, 0, 0};
431 char mask[4];
432 char insn_raw[4];
433 store_unsigned_integer (mask, 4, TAGWORD_ZERO_MASK);
434 /* Enable this once target_search is enabled and tested. */
435 target_search (4, pat, mask, p, -4, text_start, p+1, &p, &insn_raw);
436 insn = extract_unsigned_integer (insn_raw, 4);
437 #endif /* 0 */
438
439 if (p < text_start)
440 {
441 /* Couldn't find the trace-back tag.
442 Something strange is going on. */
443 fci->saved_msp = 0;
444 fci->rsize = 0;
445 fci->msize = 0;
446 fci->flags = TRANSPARENT;
447 return;
448 }
449 else
450 /* Advance to the first word of the function, i.e. the word
451 after the trace-back tag. */
452 p += 4;
453 }
454
455 /* We've found the start of the function.
456 Try looking for a tag word that indicates whether there is a
457 memory frame pointer and what the memory stack allocation is.
458 If one doesn't exist, try using a more exhaustive search of
459 the prologue. */
460
461 if (examine_tag(p-4,&trans,(int *)NULL,&msize,&mfp_used)) /* Found good tag */
462 examine_prologue (p, &rsize, 0, 0);
463 else /* No tag try prologue */
464 examine_prologue (p, &rsize, &msize, &mfp_used);
465
466 fci->rsize = rsize;
467 fci->msize = msize;
468 fci->flags = 0;
469 if (mfp_used)
470 fci->flags |= MFP_USED;
471 if (trans)
472 fci->flags |= TRANSPARENT;
473 if (innermost_frame)
474 {
475 fci->saved_msp = read_register (MSP_REGNUM) + msize;
476 }
477 else
478 {
479 if (mfp_used)
480 fci->saved_msp =
481 read_register_stack_integer (fci->frame + rsize - 4, 4);
482 else
483 fci->saved_msp = fci->next->saved_msp + msize;
484 }
485 }
486
487 void
488 init_extra_frame_info (fci)
489 struct frame_info *fci;
490 {
491 if (fci->next == 0)
492 /* Assume innermost frame. May produce strange results for "info frame"
493 but there isn't any way to tell the difference. */
494 init_frame_info (1, fci);
495 else {
496 /* We're in get_prev_frame_info.
497 Take care of everything in init_frame_pc. */
498 ;
499 }
500 }
501
502 void
503 init_frame_pc (fromleaf, fci)
504 int fromleaf;
505 struct frame_info *fci;
506 {
507 fci->pc = (fromleaf ? SAVED_PC_AFTER_CALL (fci->next) :
508 fci->next ? FRAME_SAVED_PC (fci->next) : read_pc ());
509 init_frame_info (fromleaf, fci);
510 }
511 \f
512 /* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their
513 offsets being relative to the memory stack pointer (high C) or
514 saved_msp (gcc). */
515
516 CORE_ADDR
517 frame_locals_address (fi)
518 struct frame_info *fi;
519 {
520 if (fi->flags & MFP_USED)
521 return fi->saved_msp;
522 else
523 return fi->saved_msp - fi->msize;
524 }
525 \f
526 /* Routines for reading the register stack. The caller gets to treat
527 the register stack as a uniform stack in memory, from address $gr1
528 straight through $rfb and beyond. */
529
530 /* Analogous to read_memory except the length is understood to be 4.
531 Also, myaddr can be NULL (meaning don't bother to read), and
532 if actual_mem_addr is non-NULL, store there the address that it
533 was fetched from (or if from a register the offset within
534 registers). Set *LVAL to lval_memory or lval_register, depending
535 on where it came from. The contents written into MYADDR are in
536 target format. */
537 void
538 read_register_stack (memaddr, myaddr, actual_mem_addr, lval)
539 CORE_ADDR memaddr;
540 char *myaddr;
541 CORE_ADDR *actual_mem_addr;
542 enum lval_type *lval;
543 {
544 long rfb = read_register (RFB_REGNUM);
545 long rsp = read_register (RSP_REGNUM);
546
547 /* If we don't do this 'info register' stops in the middle. */
548 if (memaddr >= rstack_high_address)
549 {
550 /* a bogus value */
551 static char val[] = {~0, ~0, ~0, ~0};
552 /* It's in a local register, but off the end of the stack. */
553 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
554 if (myaddr != NULL)
555 {
556 /* Provide bogusness */
557 memcpy (myaddr, val, 4);
558 }
559 supply_register(regnum, val); /* More bogusness */
560 if (lval != NULL)
561 *lval = lval_register;
562 if (actual_mem_addr != NULL)
563 *actual_mem_addr = REGISTER_BYTE (regnum);
564 }
565 /* If it's in the part of the register stack that's in real registers,
566 get the value from the registers. If it's anywhere else in memory
567 (e.g. in another thread's saved stack), skip this part and get
568 it from real live memory. */
569 else if (memaddr < rfb && memaddr >= rsp)
570 {
571 /* It's in a register. */
572 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
573 if (regnum > LR0_REGNUM + 127)
574 error ("Attempt to read register stack out of range.");
575 if (myaddr != NULL)
576 read_register_gen (regnum, myaddr);
577 if (lval != NULL)
578 *lval = lval_register;
579 if (actual_mem_addr != NULL)
580 *actual_mem_addr = REGISTER_BYTE (regnum);
581 }
582 else
583 {
584 /* It's in the memory portion of the register stack. */
585 if (myaddr != NULL)
586 read_memory (memaddr, myaddr, 4);
587 if (lval != NULL)
588 *lval = lval_memory;
589 if (actual_mem_addr != NULL)
590 *actual_mem_addr = memaddr;
591 }
592 }
593
594 /* Analogous to read_memory_integer
595 except the length is understood to be 4. */
596 long
597 read_register_stack_integer (memaddr, len)
598 CORE_ADDR memaddr;
599 int len;
600 {
601 char buf[4];
602 read_register_stack (memaddr, buf, NULL, NULL);
603 return extract_signed_integer (buf, 4);
604 }
605
606 /* Copy 4 bytes from GDB memory at MYADDR into inferior memory
607 at MEMADDR and put the actual address written into in
608 *ACTUAL_MEM_ADDR. */
609 static void
610 write_register_stack (memaddr, myaddr, actual_mem_addr)
611 CORE_ADDR memaddr;
612 char *myaddr;
613 CORE_ADDR *actual_mem_addr;
614 {
615 long rfb = read_register (RFB_REGNUM);
616 long rsp = read_register (RSP_REGNUM);
617 /* If we don't do this 'info register' stops in the middle. */
618 if (memaddr >= rstack_high_address)
619 {
620 /* It's in a register, but off the end of the stack. */
621 if (actual_mem_addr != NULL)
622 *actual_mem_addr = 0;
623 }
624 else if (memaddr < rfb)
625 {
626 /* It's in a register. */
627 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
628 if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
629 error ("Attempt to read register stack out of range.");
630 if (myaddr != NULL)
631 write_register (regnum, *(long *)myaddr);
632 if (actual_mem_addr != NULL)
633 *actual_mem_addr = 0;
634 }
635 else
636 {
637 /* It's in the memory portion of the register stack. */
638 if (myaddr != NULL)
639 write_memory (memaddr, myaddr, 4);
640 if (actual_mem_addr != NULL)
641 *actual_mem_addr = memaddr;
642 }
643 }
644 \f
645 /* Find register number REGNUM relative to FRAME and put its
646 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
647 was optimized out (and thus can't be fetched). If the variable
648 was fetched from memory, set *ADDRP to where it was fetched from,
649 otherwise it was fetched from a register.
650
651 The argument RAW_BUFFER must point to aligned memory. */
652 void
653 get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lvalp)
654 char *raw_buffer;
655 int *optimized;
656 CORE_ADDR *addrp;
657 FRAME frame;
658 int regnum;
659 enum lval_type *lvalp;
660 {
661 struct frame_info *fi;
662 CORE_ADDR addr;
663 enum lval_type lval;
664
665 if (frame == 0)
666 return;
667
668 fi = get_frame_info (frame);
669
670 /* Once something has a register number, it doesn't get optimized out. */
671 if (optimized != NULL)
672 *optimized = 0;
673 if (regnum == RSP_REGNUM)
674 {
675 if (raw_buffer != NULL)
676 {
677 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), fi->frame);
678 }
679 if (lvalp != NULL)
680 *lvalp = not_lval;
681 return;
682 }
683 else if (regnum == PC_REGNUM)
684 {
685 if (raw_buffer != NULL)
686 {
687 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), fi->pc);
688 }
689
690 /* Not sure we have to do this. */
691 if (lvalp != NULL)
692 *lvalp = not_lval;
693
694 return;
695 }
696 else if (regnum == MSP_REGNUM)
697 {
698 if (raw_buffer != NULL)
699 {
700 if (fi->next != NULL)
701 {
702 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
703 fi->next->saved_msp);
704 }
705 else
706 read_register_gen (MSP_REGNUM, raw_buffer);
707 }
708 /* The value may have been computed, not fetched. */
709 if (lvalp != NULL)
710 *lvalp = not_lval;
711 return;
712 }
713 else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128)
714 {
715 /* These registers are not saved over procedure calls,
716 so just print out the current values. */
717 if (raw_buffer != NULL)
718 read_register_gen (regnum, raw_buffer);
719 if (lvalp != NULL)
720 *lvalp = lval_register;
721 if (addrp != NULL)
722 *addrp = REGISTER_BYTE (regnum);
723 return;
724 }
725
726 addr = fi->frame + (regnum - LR0_REGNUM) * 4;
727 if (raw_buffer != NULL)
728 read_register_stack (addr, raw_buffer, &addr, &lval);
729 if (lvalp != NULL)
730 *lvalp = lval;
731 if (addrp != NULL)
732 *addrp = addr;
733 }
734 \f
735
736 /* Discard from the stack the innermost frame,
737 restoring all saved registers. */
738
739 void
740 pop_frame ()
741 {
742 FRAME frame = get_current_frame ();
743 struct frame_info *fi = get_frame_info (frame);
744 CORE_ADDR rfb = read_register (RFB_REGNUM);
745 CORE_ADDR gr1 = fi->frame + fi->rsize;
746 CORE_ADDR lr1;
747 CORE_ADDR original_lr0;
748 int must_fix_lr0 = 0;
749 int i;
750
751 /* If popping a dummy frame, need to restore registers. */
752 if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM),
753 read_register (SP_REGNUM),
754 FRAME_FP (fi)))
755 {
756 int lrnum = LR0_REGNUM + DUMMY_ARG/4;
757 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
758 write_register (SR_REGNUM (i + 128),read_register (lrnum++));
759 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
760 write_register (SR_REGNUM(i+160), read_register (lrnum++));
761 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
762 write_register (RETURN_REGNUM + i, read_register (lrnum++));
763 /* Restore the PCs and prepare to restore LR0. */
764 write_register(PC_REGNUM, read_register (lrnum++));
765 write_register(NPC_REGNUM, read_register (lrnum++));
766 write_register(PC2_REGNUM, read_register (lrnum++));
767 original_lr0 = read_register (lrnum++);
768 must_fix_lr0 = 1;
769 }
770
771 /* Restore the memory stack pointer. */
772 write_register (MSP_REGNUM, fi->saved_msp);
773 /* Restore the register stack pointer. */
774 write_register (GR1_REGNUM, gr1);
775
776 /* If we popped a dummy frame, restore lr0 now that gr1 has been restored. */
777 if (must_fix_lr0)
778 write_register (LR0_REGNUM, original_lr0);
779
780 /* Check whether we need to fill registers. */
781 lr1 = read_register (LR0_REGNUM + 1);
782 if (lr1 > rfb)
783 {
784 /* Fill. */
785 int num_bytes = lr1 - rfb;
786 int i;
787 long word;
788 write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes);
789 write_register (RFB_REGNUM, lr1);
790 for (i = 0; i < num_bytes; i += 4)
791 {
792 /* Note: word is in host byte order. */
793 word = read_memory_integer (rfb + i, 4);
794 write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word);
795 }
796 }
797 flush_cached_frames ();
798 set_current_frame (create_new_frame (0, read_pc()));
799 }
800
801 /* Push an empty stack frame, to record the current PC, etc. */
802
803 void
804 push_dummy_frame ()
805 {
806 long w;
807 CORE_ADDR rab, gr1;
808 CORE_ADDR msp = read_register (MSP_REGNUM);
809 int lrnum, i;
810 CORE_ADDR original_lr0;
811
812 /* Read original lr0 before changing gr1. This order isn't really needed
813 since GDB happens to have a snapshot of all the regs and doesn't toss
814 it when gr1 is changed. But it's The Right Thing To Do. */
815 original_lr0 = read_register (LR0_REGNUM);
816
817 /* Allocate the new frame. */
818 gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE;
819 write_register (GR1_REGNUM, gr1);
820
821 rab = read_register (RAB_REGNUM);
822 if (gr1 < rab)
823 {
824 /* We need to spill registers. */
825 int num_bytes = rab - gr1;
826 CORE_ADDR rfb = read_register (RFB_REGNUM);
827 int i;
828 long word;
829
830 write_register (RFB_REGNUM, rfb - num_bytes);
831 write_register (RAB_REGNUM, gr1);
832 for (i = 0; i < num_bytes; i += 4)
833 {
834 /* Note: word is in target byte order. */
835 read_register_gen (LR0_REGNUM + i / 4, (char *) &word);
836 write_memory (rfb - num_bytes + i, (char *) &word, 4);
837 }
838 }
839
840 /* There are no arguments in to the dummy frame, so we don't need
841 more than rsize plus the return address and lr1. */
842 write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4);
843
844 /* Set the memory frame pointer. */
845 write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp);
846
847 /* Allocate arg_slop. */
848 write_register (MSP_REGNUM, msp - 16 * 4);
849
850 /* Save registers. */
851 lrnum = LR0_REGNUM + DUMMY_ARG/4;
852 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
853 write_register (lrnum++, read_register (SR_REGNUM (i + 128)));
854 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
855 write_register (lrnum++, read_register (SR_REGNUM (i + 160)));
856 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
857 write_register (lrnum++, read_register (RETURN_REGNUM + i));
858 /* Save the PCs and LR0. */
859 write_register (lrnum++, read_register (PC_REGNUM));
860 write_register (lrnum++, read_register (NPC_REGNUM));
861 write_register (lrnum++, read_register (PC2_REGNUM));
862
863 /* Why are we saving LR0? What would clobber it? (the dummy frame should
864 be below it on the register stack, no?). */
865 write_register (lrnum++, original_lr0);
866 }
867
868
869
870 /*
871 This routine takes three arguments and makes the cached frames look
872 as if these arguments defined a frame on the cache. This allows the
873 rest of `info frame' to extract the important arguments without much
874 difficulty. Since an individual frame on the 29K is determined by
875 three values (FP, PC, and MSP), we really need all three to do a
876 good job. */
877
878 FRAME
879 setup_arbitrary_frame (argc, argv)
880 int argc;
881 FRAME_ADDR *argv;
882 {
883 FRAME fid;
884
885 if (argc != 3)
886 error ("AMD 29k frame specifications require three arguments: rsp pc msp");
887
888 fid = create_new_frame (argv[0], argv[1]);
889
890 if (!fid)
891 fatal ("internal: create_new_frame returned invalid frame id");
892
893 /* Creating a new frame munges the `frame' value from the current
894 GR1, so we restore it again here. FIXME, untangle all this
895 29K frame stuff... */
896 fid->frame = argv[0];
897
898 /* Our MSP is in argv[2]. It'd be intelligent if we could just
899 save this value in the FRAME. But the way it's set up (FIXME),
900 we must save our caller's MSP. We compute that by adding our
901 memory stack frame size to our MSP. */
902 fid->saved_msp = argv[2] + fid->msize;
903
904 return fid;
905 }
906
907
908
909 enum a29k_processor_types processor_type = a29k_unknown;
910
911 void
912 a29k_get_processor_type ()
913 {
914 unsigned int cfg_reg = (unsigned int) read_register (CFG_REGNUM);
915
916 /* Most of these don't have freeze mode. */
917 processor_type = a29k_no_freeze_mode;
918
919 switch ((cfg_reg >> 28) & 0xf)
920 {
921 case 0:
922 fprintf_filtered (gdb_stderr, "Remote debugging an Am29000");
923 break;
924 case 1:
925 fprintf_filtered (gdb_stderr, "Remote debugging an Am29005");
926 break;
927 case 2:
928 fprintf_filtered (gdb_stderr, "Remote debugging an Am29050");
929 processor_type = a29k_freeze_mode;
930 break;
931 case 3:
932 fprintf_filtered (gdb_stderr, "Remote debugging an Am29035");
933 break;
934 case 4:
935 fprintf_filtered (gdb_stderr, "Remote debugging an Am29030");
936 break;
937 case 5:
938 fprintf_filtered (gdb_stderr, "Remote debugging an Am2920*");
939 break;
940 case 6:
941 fprintf_filtered (gdb_stderr, "Remote debugging an Am2924*");
942 break;
943 case 7:
944 fprintf_filtered (gdb_stderr, "Remote debugging an Am29040");
945 break;
946 default:
947 fprintf_filtered (gdb_stderr, "Remote debugging an unknown Am29k\n");
948 /* Don't bother to print the revision. */
949 return;
950 }
951 fprintf_filtered (gdb_stderr, " revision %c\n", 'A' + ((cfg_reg >> 24) & 0x0f));
952 }
953
954 void
955 _initialize_29k()
956 {
957 extern CORE_ADDR text_end;
958
959 /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
960 add_show_from_set
961 (add_set_cmd ("rstack_high_address", class_support, var_uinteger,
962 (char *)&rstack_high_address,
963 "Set top address in memory of the register stack.\n\
964 Attempts to access registers saved above this address will be ignored\n\
965 or will produce the value -1.", &setlist),
966 &showlist);
967
968 /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
969 add_show_from_set
970 (add_set_cmd ("call_scratch_address", class_support, var_uinteger,
971 (char *)&text_end,
972 "Set address in memory where small amounts of RAM can be used\n\
973 when making function calls into the inferior.", &setlist),
974 &showlist);
975 }
This page took 0.07557 seconds and 4 git commands to generate.