2001-06-13 Michael Snyder <msnyder@redhat.com>
[deliverable/binutils-gdb.git] / gdb / a29k-tdep.c
1 /* Target-machine dependent code for the AMD 29000
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
3 2001
4 Free Software Foundation, Inc.
5 Contributed by Cygnus Support. Written by Jim Kingdon.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "value.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32
33 /* If all these bits in an instruction word are zero, it is a "tag word"
34 which precedes a function entry point and gives stack traceback info.
35 This used to be defined as 0xff000000, but that treated 0x00000deb as
36 a tag word, while it is really used as a breakpoint. */
37 #define TAGWORD_ZERO_MASK 0xff00f800
38
39 extern CORE_ADDR text_start; /* FIXME, kludge... */
40
41 /* The user-settable top of the register stack in virtual memory. We
42 won't attempt to access any stored registers above this address, if set
43 nonzero. */
44
45 static CORE_ADDR rstack_high_address = UINT_MAX;
46
47
48 /* Should call_function allocate stack space for a struct return? */
49 /* On the a29k objects over 16 words require the caller to allocate space. */
50 int
51 a29k_use_struct_convention (int gcc_p, struct type *type)
52 {
53 return (TYPE_LENGTH (type) > 16 * 4);
54 }
55
56
57 /* Structure to hold cached info about function prologues. */
58
59 struct prologue_info
60 {
61 CORE_ADDR pc; /* First addr after fn prologue */
62 unsigned rsize, msize; /* register stack frame size, mem stack ditto */
63 unsigned mfp_used:1; /* memory frame pointer used */
64 unsigned rsize_valid:1; /* Validity bits for the above */
65 unsigned msize_valid:1;
66 unsigned mfp_valid:1;
67 };
68
69 /* Examine the prologue of a function which starts at PC. Return
70 the first addess past the prologue. If MSIZE is non-NULL, then
71 set *MSIZE to the memory stack frame size. If RSIZE is non-NULL,
72 then set *RSIZE to the register stack frame size (not including
73 incoming arguments and the return address & frame pointer stored
74 with them). If no prologue is found, *RSIZE is set to zero.
75 If no prologue is found, or a prologue which doesn't involve
76 allocating a memory stack frame, then set *MSIZE to zero.
77
78 Note that both msize and rsize are in bytes. This is not consistent
79 with the _User's Manual_ with respect to rsize, but it is much more
80 convenient.
81
82 If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory
83 frame pointer is being used. */
84
85 CORE_ADDR
86 examine_prologue (CORE_ADDR pc, unsigned *rsize, unsigned *msize, int *mfp_used)
87 {
88 long insn;
89 CORE_ADDR p = pc;
90 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
91 struct prologue_info *mi = 0;
92
93 if (msymbol != NULL)
94 mi = (struct prologue_info *) msymbol->info;
95
96 if (mi != 0)
97 {
98 int valid = 1;
99 if (rsize != NULL)
100 {
101 *rsize = mi->rsize;
102 valid &= mi->rsize_valid;
103 }
104 if (msize != NULL)
105 {
106 *msize = mi->msize;
107 valid &= mi->msize_valid;
108 }
109 if (mfp_used != NULL)
110 {
111 *mfp_used = mi->mfp_used;
112 valid &= mi->mfp_valid;
113 }
114 if (valid)
115 return mi->pc;
116 }
117
118 if (rsize != NULL)
119 *rsize = 0;
120 if (msize != NULL)
121 *msize = 0;
122 if (mfp_used != NULL)
123 *mfp_used = 0;
124
125 /* Prologue must start with subtracting a constant from gr1.
126 Normally this is sub gr1,gr1,<rsize * 4>. */
127 insn = read_memory_integer (p, 4);
128 if ((insn & 0xffffff00) != 0x25010100)
129 {
130 /* If the frame is large, instead of a single instruction it
131 might be a pair of instructions:
132 const <reg>, <rsize * 4>
133 sub gr1,gr1,<reg>
134 */
135 int reg;
136 /* Possible value for rsize. */
137 unsigned int rsize0;
138
139 if ((insn & 0xff000000) != 0x03000000)
140 {
141 p = pc;
142 goto done;
143 }
144 reg = (insn >> 8) & 0xff;
145 rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff));
146 p += 4;
147 insn = read_memory_integer (p, 4);
148 if ((insn & 0xffffff00) != 0x24010100
149 || (insn & 0xff) != reg)
150 {
151 p = pc;
152 goto done;
153 }
154 if (rsize != NULL)
155 *rsize = rsize0;
156 }
157 else
158 {
159 if (rsize != NULL)
160 *rsize = (insn & 0xff);
161 }
162 p += 4;
163
164 /* Next instruction ought to be asgeu V_SPILL,gr1,rab.
165 * We don't check the vector number to allow for kernel debugging. The
166 * kernel will use a different trap number.
167 * If this insn is missing, we just keep going; Metaware R2.3u compiler
168 * generates prologue that intermixes initializations and puts the asgeu
169 * way down.
170 */
171 insn = read_memory_integer (p, 4);
172 if ((insn & 0xff00ffff) == (0x5e000100 | RAB_HW_REGNUM))
173 {
174 p += 4;
175 }
176
177 /* Next instruction usually sets the frame pointer (lr1) by adding
178 <size * 4> from gr1. However, this can (and high C does) be
179 deferred until anytime before the first function call. So it is
180 OK if we don't see anything which sets lr1.
181 To allow for alternate register sets (gcc -mkernel-registers) the msp
182 register number is a compile time constant. */
183
184 /* Normally this is just add lr1,gr1,<size * 4>. */
185 insn = read_memory_integer (p, 4);
186 if ((insn & 0xffffff00) == 0x15810100)
187 p += 4;
188 else
189 {
190 /* However, for large frames it can be
191 const <reg>, <size *4>
192 add lr1,gr1,<reg>
193 */
194 int reg;
195 CORE_ADDR q;
196
197 if ((insn & 0xff000000) == 0x03000000)
198 {
199 reg = (insn >> 8) & 0xff;
200 q = p + 4;
201 insn = read_memory_integer (q, 4);
202 if ((insn & 0xffffff00) == 0x14810100
203 && (insn & 0xff) == reg)
204 p = q;
205 }
206 }
207
208 /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory
209 frame pointer is in use. We just check for add lr<anything>,msp,0;
210 we don't check this rsize against the first instruction, and
211 we don't check that the trace-back tag indicates a memory frame pointer
212 is in use.
213 To allow for alternate register sets (gcc -mkernel-registers) the msp
214 register number is a compile time constant.
215
216 The recommended instruction is actually "sll lr<whatever>,msp,0".
217 We check for that, too. Originally Jim Kingdon's code seemed
218 to be looking for a "sub" instruction here, but the mask was set
219 up to lose all the time. */
220 insn = read_memory_integer (p, 4);
221 if (((insn & 0xff80ffff) == (0x15800000 | (MSP_HW_REGNUM << 8))) /* add */
222 || ((insn & 0xff80ffff) == (0x81800000 | (MSP_HW_REGNUM << 8)))) /* sll */
223 {
224 p += 4;
225 if (mfp_used != NULL)
226 *mfp_used = 1;
227 }
228
229 /* Next comes a subtraction from msp to allocate a memory frame,
230 but only if a memory frame is
231 being used. We don't check msize against the trace-back tag.
232
233 To allow for alternate register sets (gcc -mkernel-registers) the msp
234 register number is a compile time constant.
235
236 Normally this is just
237 sub msp,msp,<msize>
238 */
239 insn = read_memory_integer (p, 4);
240 if ((insn & 0xffffff00) ==
241 (0x25000000 | (MSP_HW_REGNUM << 16) | (MSP_HW_REGNUM << 8)))
242 {
243 p += 4;
244 if (msize != NULL)
245 *msize = insn & 0xff;
246 }
247 else
248 {
249 /* For large frames, instead of a single instruction it might
250 be
251
252 const <reg>, <msize>
253 consth <reg>, <msize> ; optional
254 sub msp,msp,<reg>
255 */
256 int reg;
257 unsigned msize0;
258 CORE_ADDR q = p;
259
260 if ((insn & 0xff000000) == 0x03000000)
261 {
262 reg = (insn >> 8) & 0xff;
263 msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff);
264 q += 4;
265 insn = read_memory_integer (q, 4);
266 /* Check for consth. */
267 if ((insn & 0xff000000) == 0x02000000
268 && (insn & 0x0000ff00) == reg)
269 {
270 msize0 |= (insn << 8) & 0xff000000;
271 msize0 |= (insn << 16) & 0x00ff0000;
272 q += 4;
273 insn = read_memory_integer (q, 4);
274 }
275 /* Check for sub msp,msp,<reg>. */
276 if ((insn & 0xffffff00) ==
277 (0x24000000 | (MSP_HW_REGNUM << 16) | (MSP_HW_REGNUM << 8))
278 && (insn & 0xff) == reg)
279 {
280 p = q + 4;
281 if (msize != NULL)
282 *msize = msize0;
283 }
284 }
285 }
286
287 /* Next instruction might be asgeu V_SPILL,gr1,rab.
288 * We don't check the vector number to allow for kernel debugging. The
289 * kernel will use a different trap number.
290 * Metaware R2.3u compiler
291 * generates prologue that intermixes initializations and puts the asgeu
292 * way down after everything else.
293 */
294 insn = read_memory_integer (p, 4);
295 if ((insn & 0xff00ffff) == (0x5e000100 | RAB_HW_REGNUM))
296 {
297 p += 4;
298 }
299
300 done:
301 if (msymbol != NULL)
302 {
303 if (mi == 0)
304 {
305 /* Add a new cache entry. */
306 mi = (struct prologue_info *) xmalloc (sizeof (struct prologue_info));
307 msymbol->info = (char *) mi;
308 mi->rsize_valid = 0;
309 mi->msize_valid = 0;
310 mi->mfp_valid = 0;
311 }
312 /* else, cache entry exists, but info is incomplete. */
313 mi->pc = p;
314 if (rsize != NULL)
315 {
316 mi->rsize = *rsize;
317 mi->rsize_valid = 1;
318 }
319 if (msize != NULL)
320 {
321 mi->msize = *msize;
322 mi->msize_valid = 1;
323 }
324 if (mfp_used != NULL)
325 {
326 mi->mfp_used = *mfp_used;
327 mi->mfp_valid = 1;
328 }
329 }
330 return p;
331 }
332
333 /* Advance PC across any function entry prologue instructions
334 to reach some "real" code. */
335
336 CORE_ADDR
337 a29k_skip_prologue (CORE_ADDR pc)
338 {
339 return examine_prologue (pc, NULL, NULL, NULL);
340 }
341
342 /*
343 * Examine the one or two word tag at the beginning of a function.
344 * The tag word is expect to be at 'p', if it is not there, we fail
345 * by returning 0. The documentation for the tag word was taken from
346 * page 7-15 of the 29050 User's Manual. We are assuming that the
347 * m bit is in bit 22 of the tag word, which seems to be the agreed upon
348 * convention today (1/15/92).
349 * msize is return in bytes.
350 */
351
352 static int /* 0/1 - failure/success of finding the tag word */
353 examine_tag (CORE_ADDR p, int *is_trans, int *argcount, unsigned *msize,
354 int *mfp_used)
355 {
356 unsigned int tag1, tag2;
357
358 tag1 = read_memory_integer (p, 4);
359 if ((tag1 & TAGWORD_ZERO_MASK) != 0) /* Not a tag word */
360 return 0;
361 if (tag1 & (1 << 23)) /* A two word tag */
362 {
363 tag2 = read_memory_integer (p - 4, 4);
364 if (msize)
365 *msize = tag2 * 2;
366 }
367 else
368 /* A one word tag */
369 {
370 if (msize)
371 *msize = tag1 & 0x7ff;
372 }
373 if (is_trans)
374 *is_trans = ((tag1 & (1 << 21)) ? 1 : 0);
375 /* Note that this includes the frame pointer and the return address
376 register, so the actual number of registers of arguments is two less.
377 argcount can be zero, however, sometimes, for strange assembler
378 routines. */
379 if (argcount)
380 *argcount = (tag1 >> 16) & 0x1f;
381 if (mfp_used)
382 *mfp_used = ((tag1 & (1 << 22)) ? 1 : 0);
383 return 1;
384 }
385
386 /* Initialize the frame. In addition to setting "extra" frame info,
387 we also set ->frame because we use it in a nonstandard way, and ->pc
388 because we need to know it to get the other stuff. See the diagram
389 of stacks and the frame cache in tm-a29k.h for more detail. */
390
391 static void
392 init_frame_info (int innermost_frame, struct frame_info *frame)
393 {
394 CORE_ADDR p;
395 long insn;
396 unsigned rsize;
397 unsigned msize;
398 int mfp_used, trans;
399 struct symbol *func;
400
401 p = frame->pc;
402
403 if (innermost_frame)
404 frame->frame = read_register (GR1_REGNUM);
405 else
406 frame->frame = frame->next->frame + frame->next->rsize;
407
408 #if 0 /* CALL_DUMMY_LOCATION == ON_STACK */
409 This wont work;
410 #else
411 if (PC_IN_CALL_DUMMY (p, 0, 0))
412 #endif
413 {
414 frame->rsize = DUMMY_FRAME_RSIZE;
415 /* This doesn't matter since we never try to get locals or args
416 from a dummy frame. */
417 frame->msize = 0;
418 /* Dummy frames always use a memory frame pointer. */
419 frame->saved_msp =
420 read_register_stack_integer (frame->frame + DUMMY_FRAME_RSIZE - 4, 4);
421 frame->flags |= (TRANSPARENT_FRAME | MFP_USED);
422 return;
423 }
424
425 func = find_pc_function (p);
426 if (func != NULL)
427 p = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
428 else
429 {
430 /* Search backward to find the trace-back tag. However,
431 do not trace back beyond the start of the text segment
432 (just as a sanity check to avoid going into never-never land). */
433 #if 1
434 while (p >= text_start
435 && ((insn = read_memory_integer (p, 4)) & TAGWORD_ZERO_MASK) != 0)
436 p -= 4;
437 #else /* 0 */
438 char pat[4] =
439 {0, 0, 0, 0};
440 char mask[4];
441 char insn_raw[4];
442 store_unsigned_integer (mask, 4, TAGWORD_ZERO_MASK);
443 /* Enable this once target_search is enabled and tested. */
444 target_search (4, pat, mask, p, -4, text_start, p + 1, &p, &insn_raw);
445 insn = extract_unsigned_integer (insn_raw, 4);
446 #endif /* 0 */
447
448 if (p < text_start)
449 {
450 /* Couldn't find the trace-back tag.
451 Something strange is going on. */
452 frame->saved_msp = 0;
453 frame->rsize = 0;
454 frame->msize = 0;
455 frame->flags = TRANSPARENT_FRAME;
456 return;
457 }
458 else
459 /* Advance to the first word of the function, i.e. the word
460 after the trace-back tag. */
461 p += 4;
462 }
463
464 /* We've found the start of the function.
465 Try looking for a tag word that indicates whether there is a
466 memory frame pointer and what the memory stack allocation is.
467 If one doesn't exist, try using a more exhaustive search of
468 the prologue. */
469
470 if (examine_tag (p - 4, &trans, (int *) NULL, &msize, &mfp_used)) /* Found good tag */
471 examine_prologue (p, &rsize, 0, 0);
472 else /* No tag try prologue */
473 examine_prologue (p, &rsize, &msize, &mfp_used);
474
475 frame->rsize = rsize;
476 frame->msize = msize;
477 frame->flags = 0;
478 if (mfp_used)
479 frame->flags |= MFP_USED;
480 if (trans)
481 frame->flags |= TRANSPARENT_FRAME;
482 if (innermost_frame)
483 {
484 frame->saved_msp = read_register (MSP_REGNUM) + msize;
485 }
486 else
487 {
488 if (mfp_used)
489 frame->saved_msp =
490 read_register_stack_integer (frame->frame + rsize - 4, 4);
491 else
492 frame->saved_msp = frame->next->saved_msp + msize;
493 }
494 }
495
496 void
497 init_extra_frame_info (struct frame_info *frame)
498 {
499 if (frame->next == 0)
500 /* Assume innermost frame. May produce strange results for "info frame"
501 but there isn't any way to tell the difference. */
502 init_frame_info (1, frame);
503 else
504 {
505 /* We're in get_prev_frame.
506 Take care of everything in init_frame_pc. */
507 ;
508 }
509 }
510
511 void
512 init_frame_pc (int fromleaf, struct frame_info *frame)
513 {
514 frame->pc = (fromleaf ? SAVED_PC_AFTER_CALL (frame->next) :
515 frame->next ? FRAME_SAVED_PC (frame->next) : read_pc ());
516 init_frame_info (fromleaf, frame);
517 }
518 \f
519 /* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their
520 offsets being relative to the memory stack pointer (high C) or
521 saved_msp (gcc). */
522
523 CORE_ADDR
524 frame_locals_address (struct frame_info *fi)
525 {
526 if (fi->flags & MFP_USED)
527 return fi->saved_msp;
528 else
529 return fi->saved_msp - fi->msize;
530 }
531 \f
532 /* Routines for reading the register stack. The caller gets to treat
533 the register stack as a uniform stack in memory, from address $gr1
534 straight through $rfb and beyond. */
535
536 /* Analogous to read_memory except the length is understood to be 4.
537 Also, myaddr can be NULL (meaning don't bother to read), and
538 if actual_mem_addr is non-NULL, store there the address that it
539 was fetched from (or if from a register the offset within
540 registers). Set *LVAL to lval_memory or lval_register, depending
541 on where it came from. The contents written into MYADDR are in
542 target format. */
543 void
544 read_register_stack (CORE_ADDR memaddr, char *myaddr,
545 CORE_ADDR *actual_mem_addr, enum lval_type *lval)
546 {
547 long rfb = read_register (RFB_REGNUM);
548 long rsp = read_register (RSP_REGNUM);
549
550 /* If we don't do this 'info register' stops in the middle. */
551 if (memaddr >= rstack_high_address)
552 {
553 /* a bogus value */
554 static char val[] =
555 {~0, ~0, ~0, ~0};
556 /* It's in a local register, but off the end of the stack. */
557 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
558 if (myaddr != NULL)
559 {
560 /* Provide bogusness */
561 memcpy (myaddr, val, 4);
562 }
563 supply_register (regnum, val); /* More bogusness */
564 if (lval != NULL)
565 *lval = lval_register;
566 if (actual_mem_addr != NULL)
567 *actual_mem_addr = REGISTER_BYTE (regnum);
568 }
569 /* If it's in the part of the register stack that's in real registers,
570 get the value from the registers. If it's anywhere else in memory
571 (e.g. in another thread's saved stack), skip this part and get
572 it from real live memory. */
573 else if (memaddr < rfb && memaddr >= rsp)
574 {
575 /* It's in a register. */
576 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
577 if (regnum > LR0_REGNUM + 127)
578 error ("Attempt to read register stack out of range.");
579 if (myaddr != NULL)
580 read_register_gen (regnum, myaddr);
581 if (lval != NULL)
582 *lval = lval_register;
583 if (actual_mem_addr != NULL)
584 *actual_mem_addr = REGISTER_BYTE (regnum);
585 }
586 else
587 {
588 /* It's in the memory portion of the register stack. */
589 if (myaddr != NULL)
590 read_memory (memaddr, myaddr, 4);
591 if (lval != NULL)
592 *lval = lval_memory;
593 if (actual_mem_addr != NULL)
594 *actual_mem_addr = memaddr;
595 }
596 }
597
598 /* Analogous to read_memory_integer
599 except the length is understood to be 4. */
600 long
601 read_register_stack_integer (CORE_ADDR memaddr, int len)
602 {
603 char buf[4];
604 read_register_stack (memaddr, buf, NULL, NULL);
605 return extract_signed_integer (buf, 4);
606 }
607
608 /* Copy 4 bytes from GDB memory at MYADDR into inferior memory
609 at MEMADDR and put the actual address written into in
610 *ACTUAL_MEM_ADDR. */
611 static void
612 write_register_stack (CORE_ADDR memaddr, char *myaddr,
613 CORE_ADDR *actual_mem_addr)
614 {
615 long rfb = read_register (RFB_REGNUM);
616 long rsp = read_register (RSP_REGNUM);
617 /* If we don't do this 'info register' stops in the middle. */
618 if (memaddr >= rstack_high_address)
619 {
620 /* It's in a register, but off the end of the stack. */
621 if (actual_mem_addr != NULL)
622 *actual_mem_addr = 0;
623 }
624 else if (memaddr < rfb)
625 {
626 /* It's in a register. */
627 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
628 if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
629 error ("Attempt to read register stack out of range.");
630 if (myaddr != NULL)
631 write_register (regnum, *(long *) myaddr);
632 if (actual_mem_addr != NULL)
633 *actual_mem_addr = 0;
634 }
635 else
636 {
637 /* It's in the memory portion of the register stack. */
638 if (myaddr != NULL)
639 write_memory (memaddr, myaddr, 4);
640 if (actual_mem_addr != NULL)
641 *actual_mem_addr = memaddr;
642 }
643 }
644 \f
645 /* Find register number REGNUM relative to FRAME and put its
646 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
647 was optimized out (and thus can't be fetched). If the variable
648 was fetched from memory, set *ADDRP to where it was fetched from,
649 otherwise it was fetched from a register.
650
651 The argument RAW_BUFFER must point to aligned memory. */
652
653 void
654 a29k_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
655 struct frame_info *frame, int regnum,
656 enum lval_type *lvalp)
657 {
658 struct frame_info *fi;
659 CORE_ADDR addr;
660 enum lval_type lval;
661
662 if (!target_has_registers)
663 error ("No registers.");
664
665 /* Probably now redundant with the target_has_registers check. */
666 if (frame == 0)
667 return;
668
669 /* Once something has a register number, it doesn't get optimized out. */
670 if (optimized != NULL)
671 *optimized = 0;
672 if (regnum == RSP_REGNUM)
673 {
674 if (raw_buffer != NULL)
675 {
676 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->frame);
677 }
678 if (lvalp != NULL)
679 *lvalp = not_lval;
680 return;
681 }
682 else if (regnum == PC_REGNUM && frame->next != NULL)
683 {
684 if (raw_buffer != NULL)
685 {
686 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc);
687 }
688
689 /* Not sure we have to do this. */
690 if (lvalp != NULL)
691 *lvalp = not_lval;
692
693 return;
694 }
695 else if (regnum == MSP_REGNUM)
696 {
697 if (raw_buffer != NULL)
698 {
699 if (frame->next != NULL)
700 {
701 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
702 frame->next->saved_msp);
703 }
704 else
705 read_register_gen (MSP_REGNUM, raw_buffer);
706 }
707 /* The value may have been computed, not fetched. */
708 if (lvalp != NULL)
709 *lvalp = not_lval;
710 return;
711 }
712 else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128)
713 {
714 /* These registers are not saved over procedure calls,
715 so just print out the current values. */
716 if (raw_buffer != NULL)
717 read_register_gen (regnum, raw_buffer);
718 if (lvalp != NULL)
719 *lvalp = lval_register;
720 if (addrp != NULL)
721 *addrp = REGISTER_BYTE (regnum);
722 return;
723 }
724
725 addr = frame->frame + (regnum - LR0_REGNUM) * 4;
726 if (raw_buffer != NULL)
727 read_register_stack (addr, raw_buffer, &addr, &lval);
728 if (lvalp != NULL)
729 *lvalp = lval;
730 if (addrp != NULL)
731 *addrp = addr;
732 }
733 \f
734
735 /* Discard from the stack the innermost frame,
736 restoring all saved registers. */
737
738 void
739 pop_frame (void)
740 {
741 struct frame_info *frame = get_current_frame ();
742 CORE_ADDR rfb = read_register (RFB_REGNUM);
743 CORE_ADDR gr1 = frame->frame + frame->rsize;
744 CORE_ADDR lr1;
745 CORE_ADDR original_lr0;
746 int must_fix_lr0 = 0;
747 int i;
748
749 /* If popping a dummy frame, need to restore registers. */
750 if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM),
751 read_register (SP_REGNUM),
752 FRAME_FP (frame)))
753 {
754 int lrnum = LR0_REGNUM + DUMMY_ARG / 4;
755 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
756 write_register (SR_REGNUM (i + 128), read_register (lrnum++));
757 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
758 write_register (SR_REGNUM (i + 160), read_register (lrnum++));
759 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
760 write_register (RETURN_REGNUM + i, read_register (lrnum++));
761 /* Restore the PCs and prepare to restore LR0. */
762 write_register (PC_REGNUM, read_register (lrnum++));
763 write_register (NPC_REGNUM, read_register (lrnum++));
764 write_register (PC2_REGNUM, read_register (lrnum++));
765 original_lr0 = read_register (lrnum++);
766 must_fix_lr0 = 1;
767 }
768
769 /* Restore the memory stack pointer. */
770 write_register (MSP_REGNUM, frame->saved_msp);
771 /* Restore the register stack pointer. */
772 write_register (GR1_REGNUM, gr1);
773
774 /* If we popped a dummy frame, restore lr0 now that gr1 has been restored. */
775 if (must_fix_lr0)
776 write_register (LR0_REGNUM, original_lr0);
777
778 /* Check whether we need to fill registers. */
779 lr1 = read_register (LR0_REGNUM + 1);
780 if (lr1 > rfb)
781 {
782 /* Fill. */
783 int num_bytes = lr1 - rfb;
784 int i;
785 long word;
786
787 write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes);
788 write_register (RFB_REGNUM, lr1);
789 for (i = 0; i < num_bytes; i += 4)
790 {
791 /* Note: word is in host byte order. */
792 word = read_memory_integer (rfb + i, 4);
793 write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word);
794 }
795 }
796 flush_cached_frames ();
797 }
798
799 /* Push an empty stack frame, to record the current PC, etc. */
800
801 void
802 push_dummy_frame (void)
803 {
804 long w;
805 CORE_ADDR rab, gr1;
806 CORE_ADDR msp = read_register (MSP_REGNUM);
807 int lrnum, i;
808 CORE_ADDR original_lr0;
809
810 /* Read original lr0 before changing gr1. This order isn't really needed
811 since GDB happens to have a snapshot of all the regs and doesn't toss
812 it when gr1 is changed. But it's The Right Thing To Do. */
813 original_lr0 = read_register (LR0_REGNUM);
814
815 /* Allocate the new frame. */
816 gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE;
817 write_register (GR1_REGNUM, gr1);
818
819 #ifdef VXWORKS_TARGET
820 /* We force re-reading all registers to get the new local registers set
821 after gr1 has been modified. This fix is due to the lack of single
822 register read/write operation in the RPC interface between VxGDB and
823 VxWorks. This really must be changed ! */
824
825 vx_read_register (-1);
826
827 #endif /* VXWORK_TARGET */
828
829 rab = read_register (RAB_REGNUM);
830 if (gr1 < rab)
831 {
832 /* We need to spill registers. */
833 int num_bytes = rab - gr1;
834 CORE_ADDR rfb = read_register (RFB_REGNUM);
835 int i;
836 long word;
837
838 write_register (RFB_REGNUM, rfb - num_bytes);
839 write_register (RAB_REGNUM, gr1);
840 for (i = 0; i < num_bytes; i += 4)
841 {
842 /* Note: word is in target byte order. */
843 read_register_gen (LR0_REGNUM + i / 4, (char *) &word);
844 write_memory (rfb - num_bytes + i, (char *) &word, 4);
845 }
846 }
847
848 /* There are no arguments in to the dummy frame, so we don't need
849 more than rsize plus the return address and lr1. */
850 write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4);
851
852 /* Set the memory frame pointer. */
853 write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp);
854
855 /* Allocate arg_slop. */
856 write_register (MSP_REGNUM, msp - 16 * 4);
857
858 /* Save registers. */
859 lrnum = LR0_REGNUM + DUMMY_ARG / 4;
860 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
861 write_register (lrnum++, read_register (SR_REGNUM (i + 128)));
862 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
863 write_register (lrnum++, read_register (SR_REGNUM (i + 160)));
864 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
865 write_register (lrnum++, read_register (RETURN_REGNUM + i));
866 /* Save the PCs and LR0. */
867 write_register (lrnum++, read_register (PC_REGNUM));
868 write_register (lrnum++, read_register (NPC_REGNUM));
869 write_register (lrnum++, read_register (PC2_REGNUM));
870
871 /* Why are we saving LR0? What would clobber it? (the dummy frame should
872 be below it on the register stack, no?). */
873 write_register (lrnum++, original_lr0);
874 }
875
876
877
878 /*
879 This routine takes three arguments and makes the cached frames look
880 as if these arguments defined a frame on the cache. This allows the
881 rest of `info frame' to extract the important arguments without much
882 difficulty. Since an individual frame on the 29K is determined by
883 three values (FP, PC, and MSP), we really need all three to do a
884 good job. */
885
886 struct frame_info *
887 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
888 {
889 struct frame_info *frame;
890
891 if (argc != 3)
892 error ("AMD 29k frame specifications require three arguments: rsp pc msp");
893
894 frame = create_new_frame (argv[0], argv[1]);
895
896 if (!frame)
897 internal_error (__FILE__, __LINE__,
898 "create_new_frame returned invalid frame id");
899
900 /* Creating a new frame munges the `frame' value from the current
901 GR1, so we restore it again here. FIXME, untangle all this
902 29K frame stuff... */
903 frame->frame = argv[0];
904
905 /* Our MSP is in argv[2]. It'd be intelligent if we could just
906 save this value in the FRAME. But the way it's set up (FIXME),
907 we must save our caller's MSP. We compute that by adding our
908 memory stack frame size to our MSP. */
909 frame->saved_msp = argv[2] + frame->msize;
910
911 return frame;
912 }
913
914 int
915 gdb_print_insn_a29k (bfd_vma memaddr, disassemble_info *info)
916 {
917 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
918 return print_insn_big_a29k (memaddr, info);
919 else
920 return print_insn_little_a29k (memaddr, info);
921 }
922
923 enum a29k_processor_types processor_type = a29k_unknown;
924
925 void
926 a29k_get_processor_type (void)
927 {
928 unsigned int cfg_reg = (unsigned int) read_register (CFG_REGNUM);
929
930 /* Most of these don't have freeze mode. */
931 processor_type = a29k_no_freeze_mode;
932
933 switch ((cfg_reg >> 28) & 0xf)
934 {
935 case 0:
936 fprintf_filtered (gdb_stderr, "Remote debugging an Am29000");
937 break;
938 case 1:
939 fprintf_filtered (gdb_stderr, "Remote debugging an Am29005");
940 break;
941 case 2:
942 fprintf_filtered (gdb_stderr, "Remote debugging an Am29050");
943 processor_type = a29k_freeze_mode;
944 break;
945 case 3:
946 fprintf_filtered (gdb_stderr, "Remote debugging an Am29035");
947 break;
948 case 4:
949 fprintf_filtered (gdb_stderr, "Remote debugging an Am29030");
950 break;
951 case 5:
952 fprintf_filtered (gdb_stderr, "Remote debugging an Am2920*");
953 break;
954 case 6:
955 fprintf_filtered (gdb_stderr, "Remote debugging an Am2924*");
956 break;
957 case 7:
958 fprintf_filtered (gdb_stderr, "Remote debugging an Am29040");
959 break;
960 default:
961 fprintf_filtered (gdb_stderr, "Remote debugging an unknown Am29k\n");
962 /* Don't bother to print the revision. */
963 return;
964 }
965 fprintf_filtered (gdb_stderr, " revision %c\n", 'A' + ((cfg_reg >> 24) & 0x0f));
966 }
967
968 #ifdef GET_LONGJMP_TARGET
969 /* Figure out where the longjmp will land. We expect that we have just entered
970 longjmp and haven't yet setup the stack frame, so the args are still in the
971 output regs. lr2 (LR2_REGNUM) points at the jmp_buf structure from which we
972 extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
973 This routine returns true on success */
974
975 int
976 get_longjmp_target (CORE_ADDR *pc)
977 {
978 CORE_ADDR jb_addr;
979 char buf[sizeof (CORE_ADDR)];
980
981 jb_addr = read_register (LR2_REGNUM);
982
983 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, (char *) buf,
984 sizeof (CORE_ADDR)))
985 return 0;
986
987 *pc = extract_address ((PTR) buf, sizeof (CORE_ADDR));
988 return 1;
989 }
990 #endif /* GET_LONGJMP_TARGET */
991
992 void
993 _initialize_a29k_tdep (void)
994 {
995 extern CORE_ADDR text_end;
996
997 tm_print_insn = gdb_print_insn_a29k;
998
999 /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
1000 add_show_from_set
1001 (add_set_cmd ("rstack_high_address", class_support, var_uinteger,
1002 (char *) &rstack_high_address,
1003 "Set top address in memory of the register stack.\n\
1004 Attempts to access registers saved above this address will be ignored\n\
1005 or will produce the value -1.", &setlist),
1006 &showlist);
1007
1008 /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
1009 add_show_from_set
1010 (add_set_cmd ("call_scratch_address", class_support, var_uinteger,
1011 (char *) &text_end,
1012 "Set address in memory where small amounts of RAM can be used\n\
1013 when making function calls into the inferior.", &setlist),
1014 &showlist);
1015 }
This page took 0.060378 seconds and 4 git commands to generate.