Based on patches from H.J. Lu <hjl@nynexst.com>:
[deliverable/binutils-gdb.git] / gdb / a29k-tdep.c
1 /* Target-machine dependent code for the AMD 29000
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4 Contributed by Cygnus Support. Written by Jim Kingdon.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 #include "defs.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "value.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "gdbcmd.h"
29
30 /* If all these bits in an instruction word are zero, it is a "tag word"
31 which precedes a function entry point and gives stack traceback info.
32 This used to be defined as 0xff000000, but that treated 0x00000deb as
33 a tag word, while it is really used as a breakpoint. */
34 #define TAGWORD_ZERO_MASK 0xff00f800
35
36 extern CORE_ADDR text_start; /* FIXME, kludge... */
37
38 /* The user-settable top of the register stack in virtual memory. We
39 won't attempt to access any stored registers above this address, if set
40 nonzero. */
41
42 static CORE_ADDR rstack_high_address = UINT_MAX;
43
44 /* Structure to hold cached info about function prologues. */
45
46 struct prologue_info
47 {
48 CORE_ADDR pc; /* First addr after fn prologue */
49 unsigned rsize, msize; /* register stack frame size, mem stack ditto */
50 unsigned mfp_used : 1; /* memory frame pointer used */
51 unsigned rsize_valid : 1; /* Validity bits for the above */
52 unsigned msize_valid : 1;
53 unsigned mfp_valid : 1;
54 };
55
56 /* Examine the prologue of a function which starts at PC. Return
57 the first addess past the prologue. If MSIZE is non-NULL, then
58 set *MSIZE to the memory stack frame size. If RSIZE is non-NULL,
59 then set *RSIZE to the register stack frame size (not including
60 incoming arguments and the return address & frame pointer stored
61 with them). If no prologue is found, *RSIZE is set to zero.
62 If no prologue is found, or a prologue which doesn't involve
63 allocating a memory stack frame, then set *MSIZE to zero.
64
65 Note that both msize and rsize are in bytes. This is not consistent
66 with the _User's Manual_ with respect to rsize, but it is much more
67 convenient.
68
69 If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory
70 frame pointer is being used. */
71
72 CORE_ADDR
73 examine_prologue (pc, rsize, msize, mfp_used)
74 CORE_ADDR pc;
75 unsigned *msize;
76 unsigned *rsize;
77 int *mfp_used;
78 {
79 long insn;
80 CORE_ADDR p = pc;
81 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
82 struct prologue_info *mi = 0;
83
84 if (msymbol != NULL)
85 mi = (struct prologue_info *) msymbol -> info;
86
87 if (mi != 0)
88 {
89 int valid = 1;
90 if (rsize != NULL)
91 {
92 *rsize = mi->rsize;
93 valid &= mi->rsize_valid;
94 }
95 if (msize != NULL)
96 {
97 *msize = mi->msize;
98 valid &= mi->msize_valid;
99 }
100 if (mfp_used != NULL)
101 {
102 *mfp_used = mi->mfp_used;
103 valid &= mi->mfp_valid;
104 }
105 if (valid)
106 return mi->pc;
107 }
108
109 if (rsize != NULL)
110 *rsize = 0;
111 if (msize != NULL)
112 *msize = 0;
113 if (mfp_used != NULL)
114 *mfp_used = 0;
115
116 /* Prologue must start with subtracting a constant from gr1.
117 Normally this is sub gr1,gr1,<rsize * 4>. */
118 insn = read_memory_integer (p, 4);
119 if ((insn & 0xffffff00) != 0x25010100)
120 {
121 /* If the frame is large, instead of a single instruction it
122 might be a pair of instructions:
123 const <reg>, <rsize * 4>
124 sub gr1,gr1,<reg>
125 */
126 int reg;
127 /* Possible value for rsize. */
128 unsigned int rsize0;
129
130 if ((insn & 0xff000000) != 0x03000000)
131 {
132 p = pc;
133 goto done;
134 }
135 reg = (insn >> 8) & 0xff;
136 rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff));
137 p += 4;
138 insn = read_memory_integer (p, 4);
139 if ((insn & 0xffffff00) != 0x24010100
140 || (insn & 0xff) != reg)
141 {
142 p = pc;
143 goto done;
144 }
145 if (rsize != NULL)
146 *rsize = rsize0;
147 }
148 else
149 {
150 if (rsize != NULL)
151 *rsize = (insn & 0xff);
152 }
153 p += 4;
154
155 /* Next instruction ought to be asgeu V_SPILL,gr1,rab.
156 * We don't check the vector number to allow for kernel debugging. The
157 * kernel will use a different trap number.
158 * If this insn is missing, we just keep going; Metaware R2.3u compiler
159 * generates prologue that intermixes initializations and puts the asgeu
160 * way down.
161 */
162 insn = read_memory_integer (p, 4);
163 if ((insn & 0xff00ffff) == (0x5e000100|RAB_HW_REGNUM))
164 {
165 p += 4;
166 }
167
168 /* Next instruction usually sets the frame pointer (lr1) by adding
169 <size * 4> from gr1. However, this can (and high C does) be
170 deferred until anytime before the first function call. So it is
171 OK if we don't see anything which sets lr1.
172 To allow for alternate register sets (gcc -mkernel-registers) the msp
173 register number is a compile time constant. */
174
175 /* Normally this is just add lr1,gr1,<size * 4>. */
176 insn = read_memory_integer (p, 4);
177 if ((insn & 0xffffff00) == 0x15810100)
178 p += 4;
179 else
180 {
181 /* However, for large frames it can be
182 const <reg>, <size *4>
183 add lr1,gr1,<reg>
184 */
185 int reg;
186 CORE_ADDR q;
187
188 if ((insn & 0xff000000) == 0x03000000)
189 {
190 reg = (insn >> 8) & 0xff;
191 q = p + 4;
192 insn = read_memory_integer (q, 4);
193 if ((insn & 0xffffff00) == 0x14810100
194 && (insn & 0xff) == reg)
195 p = q;
196 }
197 }
198
199 /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory
200 frame pointer is in use. We just check for add lr<anything>,msp,0;
201 we don't check this rsize against the first instruction, and
202 we don't check that the trace-back tag indicates a memory frame pointer
203 is in use.
204 To allow for alternate register sets (gcc -mkernel-registers) the msp
205 register number is a compile time constant.
206
207 The recommended instruction is actually "sll lr<whatever>,msp,0".
208 We check for that, too. Originally Jim Kingdon's code seemed
209 to be looking for a "sub" instruction here, but the mask was set
210 up to lose all the time. */
211 insn = read_memory_integer (p, 4);
212 if (((insn & 0xff80ffff) == (0x15800000|(MSP_HW_REGNUM<<8))) /* add */
213 || ((insn & 0xff80ffff) == (0x81800000|(MSP_HW_REGNUM<<8)))) /* sll */
214 {
215 p += 4;
216 if (mfp_used != NULL)
217 *mfp_used = 1;
218 }
219
220 /* Next comes a subtraction from msp to allocate a memory frame,
221 but only if a memory frame is
222 being used. We don't check msize against the trace-back tag.
223
224 To allow for alternate register sets (gcc -mkernel-registers) the msp
225 register number is a compile time constant.
226
227 Normally this is just
228 sub msp,msp,<msize>
229 */
230 insn = read_memory_integer (p, 4);
231 if ((insn & 0xffffff00) ==
232 (0x25000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8)))
233 {
234 p += 4;
235 if (msize != NULL)
236 *msize = insn & 0xff;
237 }
238 else
239 {
240 /* For large frames, instead of a single instruction it might
241 be
242
243 const <reg>, <msize>
244 consth <reg>, <msize> ; optional
245 sub msp,msp,<reg>
246 */
247 int reg;
248 unsigned msize0;
249 CORE_ADDR q = p;
250
251 if ((insn & 0xff000000) == 0x03000000)
252 {
253 reg = (insn >> 8) & 0xff;
254 msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff);
255 q += 4;
256 insn = read_memory_integer (q, 4);
257 /* Check for consth. */
258 if ((insn & 0xff000000) == 0x02000000
259 && (insn & 0x0000ff00) == reg)
260 {
261 msize0 |= (insn << 8) & 0xff000000;
262 msize0 |= (insn << 16) & 0x00ff0000;
263 q += 4;
264 insn = read_memory_integer (q, 4);
265 }
266 /* Check for sub msp,msp,<reg>. */
267 if ((insn & 0xffffff00) ==
268 (0x24000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8))
269 && (insn & 0xff) == reg)
270 {
271 p = q + 4;
272 if (msize != NULL)
273 *msize = msize0;
274 }
275 }
276 }
277
278 /* Next instruction might be asgeu V_SPILL,gr1,rab.
279 * We don't check the vector number to allow for kernel debugging. The
280 * kernel will use a different trap number.
281 * Metaware R2.3u compiler
282 * generates prologue that intermixes initializations and puts the asgeu
283 * way down after everything else.
284 */
285 insn = read_memory_integer (p, 4);
286 if ((insn & 0xff00ffff) == (0x5e000100|RAB_HW_REGNUM))
287 {
288 p += 4;
289 }
290
291 done:
292 if (msymbol != NULL)
293 {
294 if (mi == 0)
295 {
296 /* Add a new cache entry. */
297 mi = (struct prologue_info *)xmalloc (sizeof (struct prologue_info));
298 msymbol -> info = (char *)mi;
299 mi->rsize_valid = 0;
300 mi->msize_valid = 0;
301 mi->mfp_valid = 0;
302 }
303 /* else, cache entry exists, but info is incomplete. */
304 mi->pc = p;
305 if (rsize != NULL)
306 {
307 mi->rsize = *rsize;
308 mi->rsize_valid = 1;
309 }
310 if (msize != NULL)
311 {
312 mi->msize = *msize;
313 mi->msize_valid = 1;
314 }
315 if (mfp_used != NULL)
316 {
317 mi->mfp_used = *mfp_used;
318 mi->mfp_valid = 1;
319 }
320 }
321 return p;
322 }
323
324 /* Advance PC across any function entry prologue instructions
325 to reach some "real" code. */
326
327 CORE_ADDR
328 skip_prologue (pc)
329 CORE_ADDR pc;
330 {
331 return examine_prologue (pc, NULL, NULL, NULL);
332 }
333
334 /*
335 * Examine the one or two word tag at the beginning of a function.
336 * The tag word is expect to be at 'p', if it is not there, we fail
337 * by returning 0. The documentation for the tag word was taken from
338 * page 7-15 of the 29050 User's Manual. We are assuming that the
339 * m bit is in bit 22 of the tag word, which seems to be the agreed upon
340 * convention today (1/15/92).
341 * msize is return in bytes.
342 */
343
344 static int /* 0/1 - failure/success of finding the tag word */
345 examine_tag (p, is_trans, argcount, msize, mfp_used)
346 CORE_ADDR p;
347 int *is_trans;
348 int *argcount;
349 unsigned *msize;
350 int *mfp_used;
351 {
352 unsigned int tag1, tag2;
353
354 tag1 = read_memory_integer (p, 4);
355 if ((tag1 & TAGWORD_ZERO_MASK) != 0) /* Not a tag word */
356 return 0;
357 if (tag1 & (1<<23)) /* A two word tag */
358 {
359 tag2 = read_memory_integer (p-4, 4);
360 if (msize)
361 *msize = tag2 * 2;
362 }
363 else /* A one word tag */
364 {
365 if (msize)
366 *msize = tag1 & 0x7ff;
367 }
368 if (is_trans)
369 *is_trans = ((tag1 & (1<<21)) ? 1 : 0);
370 /* Note that this includes the frame pointer and the return address
371 register, so the actual number of registers of arguments is two less.
372 argcount can be zero, however, sometimes, for strange assembler
373 routines. */
374 if (argcount)
375 *argcount = (tag1 >> 16) & 0x1f;
376 if (mfp_used)
377 *mfp_used = ((tag1 & (1<<22)) ? 1 : 0);
378 return 1;
379 }
380
381 /* Initialize the frame. In addition to setting "extra" frame info,
382 we also set ->frame because we use it in a nonstandard way, and ->pc
383 because we need to know it to get the other stuff. See the diagram
384 of stacks and the frame cache in tm-a29k.h for more detail. */
385
386 static void
387 init_frame_info (innermost_frame, frame)
388 int innermost_frame;
389 struct frame_info *frame;
390 {
391 CORE_ADDR p;
392 long insn;
393 unsigned rsize;
394 unsigned msize;
395 int mfp_used, trans;
396 struct symbol *func;
397
398 p = frame->pc;
399
400 if (innermost_frame)
401 frame->frame = read_register (GR1_REGNUM);
402 else
403 frame->frame = frame->next->frame + frame->next->rsize;
404
405 #if 0 /* CALL_DUMMY_LOCATION == ON_STACK */
406 This wont work;
407 #else
408 if (PC_IN_CALL_DUMMY (p, 0, 0))
409 #endif
410 {
411 frame->rsize = DUMMY_FRAME_RSIZE;
412 /* This doesn't matter since we never try to get locals or args
413 from a dummy frame. */
414 frame->msize = 0;
415 /* Dummy frames always use a memory frame pointer. */
416 frame->saved_msp =
417 read_register_stack_integer (frame->frame + DUMMY_FRAME_RSIZE - 4, 4);
418 frame->flags |= (TRANSPARENT|MFP_USED);
419 return;
420 }
421
422 func = find_pc_function (p);
423 if (func != NULL)
424 p = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
425 else
426 {
427 /* Search backward to find the trace-back tag. However,
428 do not trace back beyond the start of the text segment
429 (just as a sanity check to avoid going into never-never land). */
430 #if 1
431 while (p >= text_start
432 && ((insn = read_memory_integer (p, 4)) & TAGWORD_ZERO_MASK) != 0)
433 p -= 4;
434 #else /* 0 */
435 char pat[4] = {0, 0, 0, 0};
436 char mask[4];
437 char insn_raw[4];
438 store_unsigned_integer (mask, 4, TAGWORD_ZERO_MASK);
439 /* Enable this once target_search is enabled and tested. */
440 target_search (4, pat, mask, p, -4, text_start, p+1, &p, &insn_raw);
441 insn = extract_unsigned_integer (insn_raw, 4);
442 #endif /* 0 */
443
444 if (p < text_start)
445 {
446 /* Couldn't find the trace-back tag.
447 Something strange is going on. */
448 frame->saved_msp = 0;
449 frame->rsize = 0;
450 frame->msize = 0;
451 frame->flags = TRANSPARENT;
452 return;
453 }
454 else
455 /* Advance to the first word of the function, i.e. the word
456 after the trace-back tag. */
457 p += 4;
458 }
459
460 /* We've found the start of the function.
461 Try looking for a tag word that indicates whether there is a
462 memory frame pointer and what the memory stack allocation is.
463 If one doesn't exist, try using a more exhaustive search of
464 the prologue. */
465
466 if (examine_tag(p-4,&trans,(int *)NULL,&msize,&mfp_used)) /* Found good tag */
467 examine_prologue (p, &rsize, 0, 0);
468 else /* No tag try prologue */
469 examine_prologue (p, &rsize, &msize, &mfp_used);
470
471 frame->rsize = rsize;
472 frame->msize = msize;
473 frame->flags = 0;
474 if (mfp_used)
475 frame->flags |= MFP_USED;
476 if (trans)
477 frame->flags |= TRANSPARENT;
478 if (innermost_frame)
479 {
480 frame->saved_msp = read_register (MSP_REGNUM) + msize;
481 }
482 else
483 {
484 if (mfp_used)
485 frame->saved_msp =
486 read_register_stack_integer (frame->frame + rsize - 4, 4);
487 else
488 frame->saved_msp = frame->next->saved_msp + msize;
489 }
490 }
491
492 void
493 init_extra_frame_info (frame)
494 struct frame_info *frame;
495 {
496 if (frame->next == 0)
497 /* Assume innermost frame. May produce strange results for "info frame"
498 but there isn't any way to tell the difference. */
499 init_frame_info (1, frame);
500 else {
501 /* We're in get_prev_frame_info.
502 Take care of everything in init_frame_pc. */
503 ;
504 }
505 }
506
507 void
508 init_frame_pc (fromleaf, frame)
509 int fromleaf;
510 struct frame_info *frame;
511 {
512 frame->pc = (fromleaf ? SAVED_PC_AFTER_CALL (frame->next) :
513 frame->next ? FRAME_SAVED_PC (frame->next) : read_pc ());
514 init_frame_info (fromleaf, frame);
515 }
516 \f
517 /* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their
518 offsets being relative to the memory stack pointer (high C) or
519 saved_msp (gcc). */
520
521 CORE_ADDR
522 frame_locals_address (fi)
523 struct frame_info *fi;
524 {
525 if (fi->flags & MFP_USED)
526 return fi->saved_msp;
527 else
528 return fi->saved_msp - fi->msize;
529 }
530 \f
531 /* Routines for reading the register stack. The caller gets to treat
532 the register stack as a uniform stack in memory, from address $gr1
533 straight through $rfb and beyond. */
534
535 /* Analogous to read_memory except the length is understood to be 4.
536 Also, myaddr can be NULL (meaning don't bother to read), and
537 if actual_mem_addr is non-NULL, store there the address that it
538 was fetched from (or if from a register the offset within
539 registers). Set *LVAL to lval_memory or lval_register, depending
540 on where it came from. The contents written into MYADDR are in
541 target format. */
542 void
543 read_register_stack (memaddr, myaddr, actual_mem_addr, lval)
544 CORE_ADDR memaddr;
545 char *myaddr;
546 CORE_ADDR *actual_mem_addr;
547 enum lval_type *lval;
548 {
549 long rfb = read_register (RFB_REGNUM);
550 long rsp = read_register (RSP_REGNUM);
551
552 /* If we don't do this 'info register' stops in the middle. */
553 if (memaddr >= rstack_high_address)
554 {
555 /* a bogus value */
556 static char val[] = {~0, ~0, ~0, ~0};
557 /* It's in a local register, but off the end of the stack. */
558 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
559 if (myaddr != NULL)
560 {
561 /* Provide bogusness */
562 memcpy (myaddr, val, 4);
563 }
564 supply_register(regnum, val); /* More bogusness */
565 if (lval != NULL)
566 *lval = lval_register;
567 if (actual_mem_addr != NULL)
568 *actual_mem_addr = REGISTER_BYTE (regnum);
569 }
570 /* If it's in the part of the register stack that's in real registers,
571 get the value from the registers. If it's anywhere else in memory
572 (e.g. in another thread's saved stack), skip this part and get
573 it from real live memory. */
574 else if (memaddr < rfb && memaddr >= rsp)
575 {
576 /* It's in a register. */
577 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
578 if (regnum > LR0_REGNUM + 127)
579 error ("Attempt to read register stack out of range.");
580 if (myaddr != NULL)
581 read_register_gen (regnum, myaddr);
582 if (lval != NULL)
583 *lval = lval_register;
584 if (actual_mem_addr != NULL)
585 *actual_mem_addr = REGISTER_BYTE (regnum);
586 }
587 else
588 {
589 /* It's in the memory portion of the register stack. */
590 if (myaddr != NULL)
591 read_memory (memaddr, myaddr, 4);
592 if (lval != NULL)
593 *lval = lval_memory;
594 if (actual_mem_addr != NULL)
595 *actual_mem_addr = memaddr;
596 }
597 }
598
599 /* Analogous to read_memory_integer
600 except the length is understood to be 4. */
601 long
602 read_register_stack_integer (memaddr, len)
603 CORE_ADDR memaddr;
604 int len;
605 {
606 char buf[4];
607 read_register_stack (memaddr, buf, NULL, NULL);
608 return extract_signed_integer (buf, 4);
609 }
610
611 /* Copy 4 bytes from GDB memory at MYADDR into inferior memory
612 at MEMADDR and put the actual address written into in
613 *ACTUAL_MEM_ADDR. */
614 static void
615 write_register_stack (memaddr, myaddr, actual_mem_addr)
616 CORE_ADDR memaddr;
617 char *myaddr;
618 CORE_ADDR *actual_mem_addr;
619 {
620 long rfb = read_register (RFB_REGNUM);
621 long rsp = read_register (RSP_REGNUM);
622 /* If we don't do this 'info register' stops in the middle. */
623 if (memaddr >= rstack_high_address)
624 {
625 /* It's in a register, but off the end of the stack. */
626 if (actual_mem_addr != NULL)
627 *actual_mem_addr = 0;
628 }
629 else if (memaddr < rfb)
630 {
631 /* It's in a register. */
632 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
633 if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
634 error ("Attempt to read register stack out of range.");
635 if (myaddr != NULL)
636 write_register (regnum, *(long *)myaddr);
637 if (actual_mem_addr != NULL)
638 *actual_mem_addr = 0;
639 }
640 else
641 {
642 /* It's in the memory portion of the register stack. */
643 if (myaddr != NULL)
644 write_memory (memaddr, myaddr, 4);
645 if (actual_mem_addr != NULL)
646 *actual_mem_addr = memaddr;
647 }
648 }
649 \f
650 /* Find register number REGNUM relative to FRAME and put its
651 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
652 was optimized out (and thus can't be fetched). If the variable
653 was fetched from memory, set *ADDRP to where it was fetched from,
654 otherwise it was fetched from a register.
655
656 The argument RAW_BUFFER must point to aligned memory. */
657
658 void
659 get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lvalp)
660 char *raw_buffer;
661 int *optimized;
662 CORE_ADDR *addrp;
663 struct frame_info *frame;
664 int regnum;
665 enum lval_type *lvalp;
666 {
667 struct frame_info *fi;
668 CORE_ADDR addr;
669 enum lval_type lval;
670
671 if (!target_has_registers)
672 error ("No registers.");
673
674 /* Probably now redundant with the target_has_registers check. */
675 if (frame == 0)
676 return;
677
678 /* Once something has a register number, it doesn't get optimized out. */
679 if (optimized != NULL)
680 *optimized = 0;
681 if (regnum == RSP_REGNUM)
682 {
683 if (raw_buffer != NULL)
684 {
685 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->frame);
686 }
687 if (lvalp != NULL)
688 *lvalp = not_lval;
689 return;
690 }
691 else if (regnum == PC_REGNUM)
692 {
693 if (raw_buffer != NULL)
694 {
695 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc);
696 }
697
698 /* Not sure we have to do this. */
699 if (lvalp != NULL)
700 *lvalp = not_lval;
701
702 return;
703 }
704 else if (regnum == MSP_REGNUM)
705 {
706 if (raw_buffer != NULL)
707 {
708 if (frame->next != NULL)
709 {
710 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
711 frame->next->saved_msp);
712 }
713 else
714 read_register_gen (MSP_REGNUM, raw_buffer);
715 }
716 /* The value may have been computed, not fetched. */
717 if (lvalp != NULL)
718 *lvalp = not_lval;
719 return;
720 }
721 else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128)
722 {
723 /* These registers are not saved over procedure calls,
724 so just print out the current values. */
725 if (raw_buffer != NULL)
726 read_register_gen (regnum, raw_buffer);
727 if (lvalp != NULL)
728 *lvalp = lval_register;
729 if (addrp != NULL)
730 *addrp = REGISTER_BYTE (regnum);
731 return;
732 }
733
734 addr = frame->frame + (regnum - LR0_REGNUM) * 4;
735 if (raw_buffer != NULL)
736 read_register_stack (addr, raw_buffer, &addr, &lval);
737 if (lvalp != NULL)
738 *lvalp = lval;
739 if (addrp != NULL)
740 *addrp = addr;
741 }
742 \f
743
744 /* Discard from the stack the innermost frame,
745 restoring all saved registers. */
746
747 void
748 pop_frame ()
749 {
750 struct frame_info *frame = get_current_frame ();
751 CORE_ADDR rfb = read_register (RFB_REGNUM);
752 CORE_ADDR gr1 = frame->frame + frame->rsize;
753 CORE_ADDR lr1;
754 CORE_ADDR original_lr0;
755 int must_fix_lr0 = 0;
756 int i;
757
758 /* If popping a dummy frame, need to restore registers. */
759 if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM),
760 read_register (SP_REGNUM),
761 FRAME_FP (frame)))
762 {
763 int lrnum = LR0_REGNUM + DUMMY_ARG/4;
764 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
765 write_register (SR_REGNUM (i + 128),read_register (lrnum++));
766 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
767 write_register (SR_REGNUM(i+160), read_register (lrnum++));
768 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
769 write_register (RETURN_REGNUM + i, read_register (lrnum++));
770 /* Restore the PCs and prepare to restore LR0. */
771 write_register(PC_REGNUM, read_register (lrnum++));
772 write_register(NPC_REGNUM, read_register (lrnum++));
773 write_register(PC2_REGNUM, read_register (lrnum++));
774 original_lr0 = read_register (lrnum++);
775 must_fix_lr0 = 1;
776 }
777
778 /* Restore the memory stack pointer. */
779 write_register (MSP_REGNUM, frame->saved_msp);
780 /* Restore the register stack pointer. */
781 write_register (GR1_REGNUM, gr1);
782
783 /* If we popped a dummy frame, restore lr0 now that gr1 has been restored. */
784 if (must_fix_lr0)
785 write_register (LR0_REGNUM, original_lr0);
786
787 /* Check whether we need to fill registers. */
788 lr1 = read_register (LR0_REGNUM + 1);
789 if (lr1 > rfb)
790 {
791 /* Fill. */
792 int num_bytes = lr1 - rfb;
793 int i;
794 long word;
795
796 write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes);
797 write_register (RFB_REGNUM, lr1);
798 for (i = 0; i < num_bytes; i += 4)
799 {
800 /* Note: word is in host byte order. */
801 word = read_memory_integer (rfb + i, 4);
802 write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word);
803 }
804 }
805 flush_cached_frames ();
806 }
807
808 /* Push an empty stack frame, to record the current PC, etc. */
809
810 void
811 push_dummy_frame ()
812 {
813 long w;
814 CORE_ADDR rab, gr1;
815 CORE_ADDR msp = read_register (MSP_REGNUM);
816 int lrnum, i;
817 CORE_ADDR original_lr0;
818
819 /* Read original lr0 before changing gr1. This order isn't really needed
820 since GDB happens to have a snapshot of all the regs and doesn't toss
821 it when gr1 is changed. But it's The Right Thing To Do. */
822 original_lr0 = read_register (LR0_REGNUM);
823
824 /* Allocate the new frame. */
825 gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE;
826 write_register (GR1_REGNUM, gr1);
827
828 #ifdef VXWORKS_TARGET
829 /* We force re-reading all registers to get the new local registers set
830 after gr1 has been modified. This fix is due to the lack of single
831 register read/write operation in the RPC interface between VxGDB and
832 VxWorks. This really must be changed ! */
833
834 vx_read_register (-1);
835
836 #endif /* VXWORK_TARGET */
837
838 rab = read_register (RAB_REGNUM);
839 if (gr1 < rab)
840 {
841 /* We need to spill registers. */
842 int num_bytes = rab - gr1;
843 CORE_ADDR rfb = read_register (RFB_REGNUM);
844 int i;
845 long word;
846
847 write_register (RFB_REGNUM, rfb - num_bytes);
848 write_register (RAB_REGNUM, gr1);
849 for (i = 0; i < num_bytes; i += 4)
850 {
851 /* Note: word is in target byte order. */
852 read_register_gen (LR0_REGNUM + i / 4, (char *) &word);
853 write_memory (rfb - num_bytes + i, (char *) &word, 4);
854 }
855 }
856
857 /* There are no arguments in to the dummy frame, so we don't need
858 more than rsize plus the return address and lr1. */
859 write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4);
860
861 /* Set the memory frame pointer. */
862 write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp);
863
864 /* Allocate arg_slop. */
865 write_register (MSP_REGNUM, msp - 16 * 4);
866
867 /* Save registers. */
868 lrnum = LR0_REGNUM + DUMMY_ARG/4;
869 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
870 write_register (lrnum++, read_register (SR_REGNUM (i + 128)));
871 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
872 write_register (lrnum++, read_register (SR_REGNUM (i + 160)));
873 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
874 write_register (lrnum++, read_register (RETURN_REGNUM + i));
875 /* Save the PCs and LR0. */
876 write_register (lrnum++, read_register (PC_REGNUM));
877 write_register (lrnum++, read_register (NPC_REGNUM));
878 write_register (lrnum++, read_register (PC2_REGNUM));
879
880 /* Why are we saving LR0? What would clobber it? (the dummy frame should
881 be below it on the register stack, no?). */
882 write_register (lrnum++, original_lr0);
883 }
884
885
886
887 /*
888 This routine takes three arguments and makes the cached frames look
889 as if these arguments defined a frame on the cache. This allows the
890 rest of `info frame' to extract the important arguments without much
891 difficulty. Since an individual frame on the 29K is determined by
892 three values (FP, PC, and MSP), we really need all three to do a
893 good job. */
894
895 struct frame_info *
896 setup_arbitrary_frame (argc, argv)
897 int argc;
898 CORE_ADDR *argv;
899 {
900 struct frame_info *frame;
901
902 if (argc != 3)
903 error ("AMD 29k frame specifications require three arguments: rsp pc msp");
904
905 frame = create_new_frame (argv[0], argv[1]);
906
907 if (!frame)
908 fatal ("internal: create_new_frame returned invalid frame id");
909
910 /* Creating a new frame munges the `frame' value from the current
911 GR1, so we restore it again here. FIXME, untangle all this
912 29K frame stuff... */
913 frame->frame = argv[0];
914
915 /* Our MSP is in argv[2]. It'd be intelligent if we could just
916 save this value in the FRAME. But the way it's set up (FIXME),
917 we must save our caller's MSP. We compute that by adding our
918 memory stack frame size to our MSP. */
919 frame->saved_msp = argv[2] + frame->msize;
920
921 return frame;
922 }
923
924 int
925 gdb_print_insn_a29k (memaddr, info)
926 bfd_vma memaddr;
927 disassemble_info *info;
928 {
929 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
930 return print_insn_big_a29k (memaddr, info);
931 else
932 return print_insn_little_a29k (memaddr, info);
933 }
934
935 enum a29k_processor_types processor_type = a29k_unknown;
936
937 void
938 a29k_get_processor_type ()
939 {
940 unsigned int cfg_reg = (unsigned int) read_register (CFG_REGNUM);
941
942 /* Most of these don't have freeze mode. */
943 processor_type = a29k_no_freeze_mode;
944
945 switch ((cfg_reg >> 28) & 0xf)
946 {
947 case 0:
948 fprintf_filtered (gdb_stderr, "Remote debugging an Am29000");
949 break;
950 case 1:
951 fprintf_filtered (gdb_stderr, "Remote debugging an Am29005");
952 break;
953 case 2:
954 fprintf_filtered (gdb_stderr, "Remote debugging an Am29050");
955 processor_type = a29k_freeze_mode;
956 break;
957 case 3:
958 fprintf_filtered (gdb_stderr, "Remote debugging an Am29035");
959 break;
960 case 4:
961 fprintf_filtered (gdb_stderr, "Remote debugging an Am29030");
962 break;
963 case 5:
964 fprintf_filtered (gdb_stderr, "Remote debugging an Am2920*");
965 break;
966 case 6:
967 fprintf_filtered (gdb_stderr, "Remote debugging an Am2924*");
968 break;
969 case 7:
970 fprintf_filtered (gdb_stderr, "Remote debugging an Am29040");
971 break;
972 default:
973 fprintf_filtered (gdb_stderr, "Remote debugging an unknown Am29k\n");
974 /* Don't bother to print the revision. */
975 return;
976 }
977 fprintf_filtered (gdb_stderr, " revision %c\n", 'A' + ((cfg_reg >> 24) & 0x0f));
978 }
979
980 #ifdef GET_LONGJMP_TARGET
981 /* Figure out where the longjmp will land. We expect that we have just entered
982 longjmp and haven't yet setup the stack frame, so the args are still in the
983 output regs. lr2 (LR2_REGNUM) points at the jmp_buf structure from which we
984 extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
985 This routine returns true on success */
986
987 int
988 get_longjmp_target(pc)
989 CORE_ADDR *pc;
990 {
991 CORE_ADDR jb_addr;
992 char buf[sizeof(CORE_ADDR)];
993
994 jb_addr = read_register(LR2_REGNUM);
995
996 if (target_read_memory(jb_addr + JB_PC * JB_ELEMENT_SIZE, (char *) buf,
997 sizeof(CORE_ADDR)))
998 return 0;
999
1000 *pc = extract_address ((PTR) buf, sizeof(CORE_ADDR));
1001 return 1;
1002 }
1003 #endif /* GET_LONGJMP_TARGET */
1004
1005 void
1006 _initialize_a29k_tdep ()
1007 {
1008 extern CORE_ADDR text_end;
1009
1010 tm_print_insn = gdb_print_insn_a29k;
1011
1012 /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
1013 add_show_from_set
1014 (add_set_cmd ("rstack_high_address", class_support, var_uinteger,
1015 (char *)&rstack_high_address,
1016 "Set top address in memory of the register stack.\n\
1017 Attempts to access registers saved above this address will be ignored\n\
1018 or will produce the value -1.", &setlist),
1019 &showlist);
1020
1021 /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
1022 add_show_from_set
1023 (add_set_cmd ("call_scratch_address", class_support, var_uinteger,
1024 (char *)&text_end,
1025 "Set address in memory where small amounts of RAM can be used\n\
1026 when making function calls into the inferior.", &setlist),
1027 &showlist);
1028 }
This page took 0.051557 seconds and 4 git commands to generate.