* h8-cfg.texi, all-cfg.texi: new flag GDBSERVER
[deliverable/binutils-gdb.git] / gdb / a29k-tdep.c
1 /* Target-machine dependent code for the AMD 29000
2 Copyright 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
3 Contributed by Cygnus Support. Written by Jim Kingdon.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include "gdbcore.h"
23 #include "frame.h"
24 #include "value.h"
25 #include "symtab.h"
26 #include "inferior.h"
27 #include "gdbcmd.h"
28
29 /* If all these bits in an instruction word are zero, it is a "tag word"
30 which precedes a function entry point and gives stack traceback info.
31 This used to be defined as 0xff000000, but that treated 0x00000deb as
32 a tag word, while it is really used as a breakpoint. */
33 #define TAGWORD_ZERO_MASK 0xff00f800
34
35 extern CORE_ADDR text_start; /* FIXME, kludge... */
36
37 /* The user-settable top of the register stack in virtual memory. We
38 won't attempt to access any stored registers above this address, if set
39 nonzero. */
40
41 static CORE_ADDR rstack_high_address = UINT_MAX;
42
43 /* Structure to hold cached info about function prologues. */
44 struct prologue_info
45 {
46 CORE_ADDR pc; /* First addr after fn prologue */
47 unsigned rsize, msize; /* register stack frame size, mem stack ditto */
48 unsigned mfp_used : 1; /* memory frame pointer used */
49 unsigned rsize_valid : 1; /* Validity bits for the above */
50 unsigned msize_valid : 1;
51 unsigned mfp_valid : 1;
52 };
53
54 /* Examine the prologue of a function which starts at PC. Return
55 the first addess past the prologue. If MSIZE is non-NULL, then
56 set *MSIZE to the memory stack frame size. If RSIZE is non-NULL,
57 then set *RSIZE to the register stack frame size (not including
58 incoming arguments and the return address & frame pointer stored
59 with them). If no prologue is found, *RSIZE is set to zero.
60 If no prologue is found, or a prologue which doesn't involve
61 allocating a memory stack frame, then set *MSIZE to zero.
62
63 Note that both msize and rsize are in bytes. This is not consistent
64 with the _User's Manual_ with respect to rsize, but it is much more
65 convenient.
66
67 If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory
68 frame pointer is being used. */
69 CORE_ADDR
70 examine_prologue (pc, rsize, msize, mfp_used)
71 CORE_ADDR pc;
72 unsigned *msize;
73 unsigned *rsize;
74 int *mfp_used;
75 {
76 long insn;
77 CORE_ADDR p = pc;
78 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
79 struct prologue_info *mi = 0;
80
81 if (msymbol != NULL)
82 mi = (struct prologue_info *) msymbol -> info;
83
84 if (mi != 0)
85 {
86 int valid = 1;
87 if (rsize != NULL)
88 {
89 *rsize = mi->rsize;
90 valid &= mi->rsize_valid;
91 }
92 if (msize != NULL)
93 {
94 *msize = mi->msize;
95 valid &= mi->msize_valid;
96 }
97 if (mfp_used != NULL)
98 {
99 *mfp_used = mi->mfp_used;
100 valid &= mi->mfp_valid;
101 }
102 if (valid)
103 return mi->pc;
104 }
105
106 if (rsize != NULL)
107 *rsize = 0;
108 if (msize != NULL)
109 *msize = 0;
110 if (mfp_used != NULL)
111 *mfp_used = 0;
112
113 /* Prologue must start with subtracting a constant from gr1.
114 Normally this is sub gr1,gr1,<rsize * 4>. */
115 insn = read_memory_integer (p, 4);
116 if ((insn & 0xffffff00) != 0x25010100)
117 {
118 /* If the frame is large, instead of a single instruction it
119 might be a pair of instructions:
120 const <reg>, <rsize * 4>
121 sub gr1,gr1,<reg>
122 */
123 int reg;
124 /* Possible value for rsize. */
125 unsigned int rsize0;
126
127 if ((insn & 0xff000000) != 0x03000000)
128 {
129 p = pc;
130 goto done;
131 }
132 reg = (insn >> 8) & 0xff;
133 rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff));
134 p += 4;
135 insn = read_memory_integer (p, 4);
136 if ((insn & 0xffffff00) != 0x24010100
137 || (insn & 0xff) != reg)
138 {
139 p = pc;
140 goto done;
141 }
142 if (rsize != NULL)
143 *rsize = rsize0;
144 }
145 else
146 {
147 if (rsize != NULL)
148 *rsize = (insn & 0xff);
149 }
150 p += 4;
151
152 /* Next instruction must be asgeu V_SPILL,gr1,rab.
153 * We don't check the vector number to allow for kernel debugging. The
154 * kernel will use a different trap number.
155 */
156 insn = read_memory_integer (p, 4);
157 if ((insn & 0xff00ffff) != (0x5e000100|RAB_HW_REGNUM))
158 {
159 p = pc;
160 goto done;
161 }
162 p += 4;
163
164 /* Next instruction usually sets the frame pointer (lr1) by adding
165 <size * 4> from gr1. However, this can (and high C does) be
166 deferred until anytime before the first function call. So it is
167 OK if we don't see anything which sets lr1.
168 To allow for alternate register sets (gcc -mkernel-registers) the msp
169 register number is a compile time constant. */
170
171 /* Normally this is just add lr1,gr1,<size * 4>. */
172 insn = read_memory_integer (p, 4);
173 if ((insn & 0xffffff00) == 0x15810100)
174 p += 4;
175 else
176 {
177 /* However, for large frames it can be
178 const <reg>, <size *4>
179 add lr1,gr1,<reg>
180 */
181 int reg;
182 CORE_ADDR q;
183
184 if ((insn & 0xff000000) == 0x03000000)
185 {
186 reg = (insn >> 8) & 0xff;
187 q = p + 4;
188 insn = read_memory_integer (q, 4);
189 if ((insn & 0xffffff00) == 0x14810100
190 && (insn & 0xff) == reg)
191 p = q;
192 }
193 }
194
195 /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory
196 frame pointer is in use. We just check for add lr<anything>,msp,0;
197 we don't check this rsize against the first instruction, and
198 we don't check that the trace-back tag indicates a memory frame pointer
199 is in use.
200 To allow for alternate register sets (gcc -mkernel-registers) the msp
201 register number is a compile time constant.
202
203 The recommended instruction is actually "sll lr<whatever>,msp,0".
204 We check for that, too. Originally Jim Kingdon's code seemed
205 to be looking for a "sub" instruction here, but the mask was set
206 up to lose all the time. */
207 insn = read_memory_integer (p, 4);
208 if (((insn & 0xff80ffff) == (0x15800000|(MSP_HW_REGNUM<<8))) /* add */
209 || ((insn & 0xff80ffff) == (0x81800000|(MSP_HW_REGNUM<<8)))) /* sll */
210 {
211 p += 4;
212 if (mfp_used != NULL)
213 *mfp_used = 1;
214 }
215
216 /* Next comes a subtraction from msp to allocate a memory frame,
217 but only if a memory frame is
218 being used. We don't check msize against the trace-back tag.
219
220 To allow for alternate register sets (gcc -mkernel-registers) the msp
221 register number is a compile time constant.
222
223 Normally this is just
224 sub msp,msp,<msize>
225 */
226 insn = read_memory_integer (p, 4);
227 if ((insn & 0xffffff00) ==
228 (0x25000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8)))
229 {
230 p += 4;
231 if (msize != NULL)
232 *msize = insn & 0xff;
233 }
234 else
235 {
236 /* For large frames, instead of a single instruction it might
237 be
238
239 const <reg>, <msize>
240 consth <reg>, <msize> ; optional
241 sub msp,msp,<reg>
242 */
243 int reg;
244 unsigned msize0;
245 CORE_ADDR q = p;
246
247 if ((insn & 0xff000000) == 0x03000000)
248 {
249 reg = (insn >> 8) & 0xff;
250 msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff);
251 q += 4;
252 insn = read_memory_integer (q, 4);
253 /* Check for consth. */
254 if ((insn & 0xff000000) == 0x02000000
255 && (insn & 0x0000ff00) == reg)
256 {
257 msize0 |= (insn << 8) & 0xff000000;
258 msize0 |= (insn << 16) & 0x00ff0000;
259 q += 4;
260 insn = read_memory_integer (q, 4);
261 }
262 /* Check for sub msp,msp,<reg>. */
263 if ((insn & 0xffffff00) ==
264 (0x24000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8))
265 && (insn & 0xff) == reg)
266 {
267 p = q + 4;
268 if (msize != NULL)
269 *msize = msize0;
270 }
271 }
272 }
273
274 done:
275 if (msymbol != NULL)
276 {
277 if (mi == 0)
278 {
279 /* Add a new cache entry. */
280 mi = (struct prologue_info *)xmalloc (sizeof (struct prologue_info));
281 msymbol -> info = (char *)mi;
282 mi->rsize_valid = 0;
283 mi->msize_valid = 0;
284 mi->mfp_valid = 0;
285 }
286 /* else, cache entry exists, but info is incomplete. */
287 mi->pc = p;
288 if (rsize != NULL)
289 {
290 mi->rsize = *rsize;
291 mi->rsize_valid = 1;
292 }
293 if (msize != NULL)
294 {
295 mi->msize = *msize;
296 mi->msize_valid = 1;
297 }
298 if (mfp_used != NULL)
299 {
300 mi->mfp_used = *mfp_used;
301 mi->mfp_valid = 1;
302 }
303 }
304 return p;
305 }
306
307 /* Advance PC across any function entry prologue instructions
308 to reach some "real" code. */
309
310 CORE_ADDR
311 skip_prologue (pc)
312 CORE_ADDR pc;
313 {
314 return examine_prologue (pc, (unsigned *)NULL, (unsigned *)NULL,
315 (int *)NULL);
316 }
317 /*
318 * Examine the one or two word tag at the beginning of a function.
319 * The tag word is expect to be at 'p', if it is not there, we fail
320 * by returning 0. The documentation for the tag word was taken from
321 * page 7-15 of the 29050 User's Manual. We are assuming that the
322 * m bit is in bit 22 of the tag word, which seems to be the agreed upon
323 * convention today (1/15/92).
324 * msize is return in bytes.
325 */
326 static int /* 0/1 - failure/success of finding the tag word */
327 examine_tag(p, is_trans, argcount, msize, mfp_used)
328 CORE_ADDR p;
329 int *is_trans;
330 int *argcount;
331 unsigned *msize;
332 int *mfp_used;
333 {
334 unsigned int tag1, tag2;
335
336 tag1 = read_memory_integer (p, 4);
337 if ((tag1 & TAGWORD_ZERO_MASK) != 0) /* Not a tag word */
338 return 0;
339 if (tag1 & (1<<23)) /* A two word tag */
340 {
341 tag2 = read_memory_integer (p+4, 4);
342 if (msize)
343 *msize = tag2;
344 }
345 else /* A one word tag */
346 {
347 if (msize)
348 *msize = tag1 & 0x7ff;
349 }
350 if (is_trans)
351 *is_trans = ((tag1 & (1<<21)) ? 1 : 0);
352 if (argcount)
353 *argcount = (tag1 >> 16) & 0x1f;
354 if (mfp_used)
355 *mfp_used = ((tag1 & (1<<22)) ? 1 : 0);
356 return(1);
357 }
358
359 /* Initialize the frame. In addition to setting "extra" frame info,
360 we also set ->frame because we use it in a nonstandard way, and ->pc
361 because we need to know it to get the other stuff. See the diagram
362 of stacks and the frame cache in tm-a29k.h for more detail. */
363 static void
364 init_frame_info (innermost_frame, fci)
365 int innermost_frame;
366 struct frame_info *fci;
367 {
368 CORE_ADDR p;
369 long insn;
370 unsigned rsize;
371 unsigned msize;
372 int mfp_used, trans;
373 struct symbol *func;
374
375 p = fci->pc;
376
377 if (innermost_frame)
378 fci->frame = read_register (GR1_REGNUM);
379 else
380 fci->frame = fci->next->frame + fci->next->rsize;
381
382 #if CALL_DUMMY_LOCATION == ON_STACK
383 This wont work;
384 #else
385 if (PC_IN_CALL_DUMMY (p, 0, 0))
386 #endif
387 {
388 fci->rsize = DUMMY_FRAME_RSIZE;
389 /* This doesn't matter since we never try to get locals or args
390 from a dummy frame. */
391 fci->msize = 0;
392 /* Dummy frames always use a memory frame pointer. */
393 fci->saved_msp =
394 read_register_stack_integer (fci->frame + DUMMY_FRAME_RSIZE - 4, 4);
395 fci->flags |= (TRANSPARENT|MFP_USED);
396 return;
397 }
398
399 func = find_pc_function (p);
400 if (func != NULL)
401 p = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
402 else
403 {
404 /* Search backward to find the trace-back tag. However,
405 do not trace back beyond the start of the text segment
406 (just as a sanity check to avoid going into never-never land). */
407 while (p >= text_start
408 && ((insn = read_memory_integer (p, 4)) & TAGWORD_ZERO_MASK) != 0)
409 p -= 4;
410
411 if (p < text_start)
412 {
413 /* Couldn't find the trace-back tag.
414 Something strange is going on. */
415 fci->saved_msp = 0;
416 fci->rsize = 0;
417 fci->msize = 0;
418 fci->flags = TRANSPARENT;
419 return;
420 }
421 else
422 /* Advance to the first word of the function, i.e. the word
423 after the trace-back tag. */
424 p += 4;
425 }
426 /* We've found the start of the function.
427 * Try looking for a tag word that indicates whether there is a
428 * memory frame pointer and what the memory stack allocation is.
429 * If one doesn't exist, try using a more exhaustive search of
430 * the prologue. For now we don't care about the argcount or
431 * whether or not the routine is transparent.
432 */
433 if (examine_tag(p-4,&trans,NULL,&msize,&mfp_used)) /* Found a good tag */
434 examine_prologue (p, &rsize, 0, 0);
435 else /* No tag try prologue */
436 examine_prologue (p, &rsize, &msize, &mfp_used);
437
438 fci->rsize = rsize;
439 fci->msize = msize;
440 fci->flags = 0;
441 if (mfp_used)
442 fci->flags |= MFP_USED;
443 if (trans)
444 fci->flags |= TRANSPARENT;
445 if (innermost_frame)
446 {
447 fci->saved_msp = read_register (MSP_REGNUM) + msize;
448 }
449 else
450 {
451 if (mfp_used)
452 fci->saved_msp =
453 read_register_stack_integer (fci->frame + rsize - 4, 4);
454 else
455 fci->saved_msp = fci->next->saved_msp + msize;
456 }
457 }
458
459 void
460 init_extra_frame_info (fci)
461 struct frame_info *fci;
462 {
463 if (fci->next == 0)
464 /* Assume innermost frame. May produce strange results for "info frame"
465 but there isn't any way to tell the difference. */
466 init_frame_info (1, fci);
467 else {
468 /* We're in get_prev_frame_info.
469 Take care of everything in init_frame_pc. */
470 ;
471 }
472 }
473
474 void
475 init_frame_pc (fromleaf, fci)
476 int fromleaf;
477 struct frame_info *fci;
478 {
479 fci->pc = (fromleaf ? SAVED_PC_AFTER_CALL (fci->next) :
480 fci->next ? FRAME_SAVED_PC (fci->next) : read_pc ());
481 init_frame_info (fromleaf, fci);
482 }
483 \f
484 /* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their
485 offsets being relative to the memory stack pointer (high C) or
486 saved_msp (gcc). */
487
488 CORE_ADDR
489 frame_locals_address (fi)
490 struct frame_info *fi;
491 {
492 if (fi->flags & MFP_USED)
493 return fi->saved_msp;
494 else
495 return fi->saved_msp - fi->msize;
496 }
497 \f
498 /* Routines for reading the register stack. The caller gets to treat
499 the register stack as a uniform stack in memory, from address $gr1
500 straight through $rfb and beyond. */
501
502 /* Analogous to read_memory except the length is understood to be 4.
503 Also, myaddr can be NULL (meaning don't bother to read), and
504 if actual_mem_addr is non-NULL, store there the address that it
505 was fetched from (or if from a register the offset within
506 registers). Set *LVAL to lval_memory or lval_register, depending
507 on where it came from. The contents written into MYADDR are in
508 target format. */
509 void
510 read_register_stack (memaddr, myaddr, actual_mem_addr, lval)
511 CORE_ADDR memaddr;
512 char *myaddr;
513 CORE_ADDR *actual_mem_addr;
514 enum lval_type *lval;
515 {
516 long rfb = read_register (RFB_REGNUM);
517 long rsp = read_register (RSP_REGNUM);
518
519 /* If we don't do this 'info register' stops in the middle. */
520 if (memaddr >= rstack_high_address)
521 {
522 /* a bogus value */
523 static char val[] = {~0, ~0, ~0, ~0};
524 /* It's in a local register, but off the end of the stack. */
525 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
526 if (myaddr != NULL)
527 {
528 /* Provide bogusness */
529 memcpy (myaddr, val, 4);
530 }
531 supply_register(regnum, val); /* More bogusness */
532 if (lval != NULL)
533 *lval = lval_register;
534 if (actual_mem_addr != NULL)
535 *actual_mem_addr = REGISTER_BYTE (regnum);
536 }
537 /* If it's in the part of the register stack that's in real registers,
538 get the value from the registers. If it's anywhere else in memory
539 (e.g. in another thread's saved stack), skip this part and get
540 it from real live memory. */
541 else if (memaddr < rfb && memaddr >= rsp)
542 {
543 /* It's in a register. */
544 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
545 if (regnum > LR0_REGNUM + 127)
546 error ("Attempt to read register stack out of range.");
547 if (myaddr != NULL)
548 read_register_gen (regnum, myaddr);
549 if (lval != NULL)
550 *lval = lval_register;
551 if (actual_mem_addr != NULL)
552 *actual_mem_addr = REGISTER_BYTE (regnum);
553 }
554 else
555 {
556 /* It's in the memory portion of the register stack. */
557 if (myaddr != NULL)
558 read_memory (memaddr, myaddr, 4);
559 if (lval != NULL)
560 *lval = lval_memory;
561 if (actual_mem_addr != NULL)
562 *actual_mem_addr = memaddr;
563 }
564 }
565
566 /* Analogous to read_memory_integer
567 except the length is understood to be 4. */
568 long
569 read_register_stack_integer (memaddr, len)
570 CORE_ADDR memaddr;
571 int len;
572 {
573 char buf[4];
574 read_register_stack (memaddr, buf, NULL, NULL);
575 return extract_signed_integer (buf, 4);
576 }
577
578 /* Copy 4 bytes from GDB memory at MYADDR into inferior memory
579 at MEMADDR and put the actual address written into in
580 *ACTUAL_MEM_ADDR. */
581 static void
582 write_register_stack (memaddr, myaddr, actual_mem_addr)
583 CORE_ADDR memaddr;
584 char *myaddr;
585 CORE_ADDR *actual_mem_addr;
586 {
587 long rfb = read_register (RFB_REGNUM);
588 long rsp = read_register (RSP_REGNUM);
589 /* If we don't do this 'info register' stops in the middle. */
590 if (memaddr >= rstack_high_address)
591 {
592 /* It's in a register, but off the end of the stack. */
593 if (actual_mem_addr != NULL)
594 *actual_mem_addr = 0;
595 }
596 else if (memaddr < rfb)
597 {
598 /* It's in a register. */
599 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
600 if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
601 error ("Attempt to read register stack out of range.");
602 if (myaddr != NULL)
603 write_register (regnum, *(long *)myaddr);
604 if (actual_mem_addr != NULL)
605 *actual_mem_addr = 0;
606 }
607 else
608 {
609 /* It's in the memory portion of the register stack. */
610 if (myaddr != NULL)
611 write_memory (memaddr, myaddr, 4);
612 if (actual_mem_addr != NULL)
613 *actual_mem_addr = memaddr;
614 }
615 }
616 \f
617 /* Find register number REGNUM relative to FRAME and put its
618 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
619 was optimized out (and thus can't be fetched). If the variable
620 was fetched from memory, set *ADDRP to where it was fetched from,
621 otherwise it was fetched from a register.
622
623 The argument RAW_BUFFER must point to aligned memory. */
624 void
625 get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lvalp)
626 char *raw_buffer;
627 int *optimized;
628 CORE_ADDR *addrp;
629 FRAME frame;
630 int regnum;
631 enum lval_type *lvalp;
632 {
633 struct frame_info *fi;
634 CORE_ADDR addr;
635 enum lval_type lval;
636
637 if (frame == 0)
638 return;
639
640 fi = get_frame_info (frame);
641
642 /* Once something has a register number, it doesn't get optimized out. */
643 if (optimized != NULL)
644 *optimized = 0;
645 if (regnum == RSP_REGNUM)
646 {
647 if (raw_buffer != NULL)
648 {
649 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), fi->frame);
650 }
651 if (lvalp != NULL)
652 *lvalp = not_lval;
653 return;
654 }
655 else if (regnum == PC_REGNUM)
656 {
657 if (raw_buffer != NULL)
658 {
659 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), fi->pc);
660 }
661
662 /* Not sure we have to do this. */
663 if (lvalp != NULL)
664 *lvalp = not_lval;
665
666 return;
667 }
668 else if (regnum == MSP_REGNUM)
669 {
670 if (raw_buffer != NULL)
671 {
672 if (fi->next != NULL)
673 {
674 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
675 fi->next->saved_msp);
676 }
677 else
678 read_register_gen (MSP_REGNUM, raw_buffer);
679 }
680 /* The value may have been computed, not fetched. */
681 if (lvalp != NULL)
682 *lvalp = not_lval;
683 return;
684 }
685 else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128)
686 {
687 /* These registers are not saved over procedure calls,
688 so just print out the current values. */
689 if (raw_buffer != NULL)
690 read_register_gen (regnum, raw_buffer);
691 if (lvalp != NULL)
692 *lvalp = lval_register;
693 if (addrp != NULL)
694 *addrp = REGISTER_BYTE (regnum);
695 return;
696 }
697
698 addr = fi->frame + (regnum - LR0_REGNUM) * 4;
699 if (raw_buffer != NULL)
700 read_register_stack (addr, raw_buffer, &addr, &lval);
701 if (lvalp != NULL)
702 *lvalp = lval;
703 if (addrp != NULL)
704 *addrp = addr;
705 }
706 \f
707
708 /* Discard from the stack the innermost frame,
709 restoring all saved registers. */
710
711 void
712 pop_frame ()
713 {
714 FRAME frame = get_current_frame ();
715 struct frame_info *fi = get_frame_info (frame);
716 CORE_ADDR rfb = read_register (RFB_REGNUM);
717 CORE_ADDR gr1 = fi->frame + fi->rsize;
718 CORE_ADDR lr1;
719 int i;
720
721 /* If popping a dummy frame, need to restore registers. */
722 if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM),
723 read_register (SP_REGNUM),
724 FRAME_FP (fi)))
725 {
726 int lrnum = LR0_REGNUM + DUMMY_ARG/4;
727 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
728 write_register (SR_REGNUM (i + 128),read_register (lrnum++));
729 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
730 write_register (SR_REGNUM(i+160), read_register (lrnum++));
731 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
732 write_register (RETURN_REGNUM + i, read_register (lrnum++));
733 /* Restore the PCs. */
734 write_register(PC_REGNUM, read_register (lrnum++));
735 write_register(NPC_REGNUM, read_register (lrnum));
736 }
737
738 /* Restore the memory stack pointer. */
739 write_register (MSP_REGNUM, fi->saved_msp);
740 /* Restore the register stack pointer. */
741 write_register (GR1_REGNUM, gr1);
742 /* Check whether we need to fill registers. */
743 lr1 = read_register (LR0_REGNUM + 1);
744 if (lr1 > rfb)
745 {
746 /* Fill. */
747 int num_bytes = lr1 - rfb;
748 int i;
749 long word;
750 write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes);
751 write_register (RFB_REGNUM, lr1);
752 for (i = 0; i < num_bytes; i += 4)
753 {
754 /* Note: word is in host byte order. */
755 word = read_memory_integer (rfb + i, 4);
756 write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word);
757 }
758 }
759 flush_cached_frames ();
760 set_current_frame (create_new_frame (0, read_pc()));
761 }
762
763 /* Push an empty stack frame, to record the current PC, etc. */
764
765 void
766 push_dummy_frame ()
767 {
768 long w;
769 CORE_ADDR rab, gr1;
770 CORE_ADDR msp = read_register (MSP_REGNUM);
771 int lrnum, i, saved_lr0;
772
773
774 /* Allocate the new frame. */
775 gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE;
776 write_register (GR1_REGNUM, gr1);
777
778 rab = read_register (RAB_REGNUM);
779 if (gr1 < rab)
780 {
781 /* We need to spill registers. */
782 int num_bytes = rab - gr1;
783 CORE_ADDR rfb = read_register (RFB_REGNUM);
784 int i;
785 long word;
786
787 write_register (RFB_REGNUM, rfb - num_bytes);
788 write_register (RAB_REGNUM, gr1);
789 for (i = 0; i < num_bytes; i += 4)
790 {
791 /* Note: word is in target byte order. */
792 read_register_gen (LR0_REGNUM + i / 4, (char *) &word);
793 write_memory (rfb - num_bytes + i, (char *) &word, 4);
794 }
795 }
796
797 /* There are no arguments in to the dummy frame, so we don't need
798 more than rsize plus the return address and lr1. */
799 write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4);
800
801 /* Set the memory frame pointer. */
802 write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp);
803
804 /* Allocate arg_slop. */
805 write_register (MSP_REGNUM, msp - 16 * 4);
806
807 /* Save registers. */
808 lrnum = LR0_REGNUM + DUMMY_ARG/4;
809 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
810 write_register (lrnum++, read_register (SR_REGNUM (i + 128)));
811 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
812 write_register (lrnum++, read_register (SR_REGNUM (i + 160)));
813 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
814 write_register (lrnum++, read_register (RETURN_REGNUM + i));
815 /* Save the PCs. */
816 write_register (lrnum++, read_register (PC_REGNUM));
817 write_register (lrnum, read_register (NPC_REGNUM));
818 }
819
820
821 void
822 _initialize_29k()
823 {
824 extern CORE_ADDR text_end;
825
826 /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
827 add_show_from_set
828 (add_set_cmd ("rstack_high_address", class_support, var_uinteger,
829 (char *)&rstack_high_address,
830 "Set top address in memory of the register stack.\n\
831 Attempts to access registers saved above this address will be ignored\n\
832 or will produce the value -1.", &setlist),
833 &showlist);
834
835 /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
836 add_show_from_set
837 (add_set_cmd ("call_scratch_address", class_support, var_uinteger,
838 (char *)&text_end,
839 "Set address in memory where small amounts of RAM can be used\n\
840 when making function calls into the inferior.", &setlist),
841 &showlist);
842 }
This page took 0.046122 seconds and 4 git commands to generate.