int -> enum target_hw_bp_type in aarch64-linux-nat.c
[deliverable/binutils-gdb.git] / gdb / aarch64-linux-nat.c
1 /* Native-dependent code for GNU/Linux AArch64.
2
3 Copyright (C) 2011-2015 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "regcache.h"
26 #include "linux-nat.h"
27 #include "target-descriptions.h"
28 #include "auxv.h"
29 #include "gdbcmd.h"
30 #include "aarch64-tdep.h"
31 #include "aarch64-linux-tdep.h"
32 #include "aarch32-linux-nat.h"
33
34 #include "elf/external.h"
35 #include "elf/common.h"
36
37 #include <sys/ptrace.h>
38 #include <sys/utsname.h>
39 #include <asm/ptrace.h>
40
41 #include "gregset.h"
42
43 /* Defines ps_err_e, struct ps_prochandle. */
44 #include "gdb_proc_service.h"
45
46 #ifndef TRAP_HWBKPT
47 #define TRAP_HWBKPT 0x0004
48 #endif
49
50 /* On GNU/Linux, threads are implemented as pseudo-processes, in which
51 case we may be tracing more than one process at a time. In that
52 case, inferior_ptid will contain the main process ID and the
53 individual thread (process) ID. get_thread_id () is used to get
54 the thread id if it's available, and the process id otherwise. */
55
56 static int
57 get_thread_id (ptid_t ptid)
58 {
59 int tid = ptid_get_lwp (ptid);
60
61 if (0 == tid)
62 tid = ptid_get_pid (ptid);
63 return tid;
64 }
65
66 /* Macro definitions, data structures, and code for the hardware
67 breakpoint and hardware watchpoint support follow. We use the
68 following abbreviations throughout the code:
69
70 hw - hardware
71 bp - breakpoint
72 wp - watchpoint */
73
74 /* Maximum number of hardware breakpoint and watchpoint registers.
75 Neither of these values may exceed the width of dr_changed_t
76 measured in bits. */
77
78 #define AARCH64_HBP_MAX_NUM 16
79 #define AARCH64_HWP_MAX_NUM 16
80
81 /* Alignment requirement in bytes for addresses written to
82 hardware breakpoint and watchpoint value registers.
83
84 A ptrace call attempting to set an address that does not meet the
85 alignment criteria will fail. Limited support has been provided in
86 this port for unaligned watchpoints, such that from a GDB user
87 perspective, an unaligned watchpoint may be requested.
88
89 This is achieved by minimally enlarging the watched area to meet the
90 alignment requirement, and if necessary, splitting the watchpoint
91 over several hardware watchpoint registers. */
92
93 #define AARCH64_HBP_ALIGNMENT 4
94 #define AARCH64_HWP_ALIGNMENT 8
95
96 /* The maximum length of a memory region that can be watched by one
97 hardware watchpoint register. */
98
99 #define AARCH64_HWP_MAX_LEN_PER_REG 8
100
101 /* ptrace hardware breakpoint resource info is formatted as follows:
102
103 31 24 16 8 0
104 +---------------+--------------+---------------+---------------+
105 | RESERVED | RESERVED | DEBUG_ARCH | NUM_SLOTS |
106 +---------------+--------------+---------------+---------------+ */
107
108
109 /* Macros to extract fields from the hardware debug information word. */
110 #define AARCH64_DEBUG_NUM_SLOTS(x) ((x) & 0xff)
111 #define AARCH64_DEBUG_ARCH(x) (((x) >> 8) & 0xff)
112
113 /* Macro for the expected version of the ARMv8-A debug architecture. */
114 #define AARCH64_DEBUG_ARCH_V8 0x6
115
116 /* Number of hardware breakpoints/watchpoints the target supports.
117 They are initialized with values obtained via the ptrace calls
118 with NT_ARM_HW_BREAK and NT_ARM_HW_WATCH respectively. */
119
120 static int aarch64_num_bp_regs;
121 static int aarch64_num_wp_regs;
122
123 /* Each bit of a variable of this type is used to indicate whether a
124 hardware breakpoint or watchpoint setting has been changed since
125 the last update.
126
127 Bit N corresponds to the Nth hardware breakpoint or watchpoint
128 setting which is managed in aarch64_debug_reg_state, where N is
129 valid between 0 and the total number of the hardware breakpoint or
130 watchpoint debug registers minus 1.
131
132 When bit N is 1, the corresponding breakpoint or watchpoint setting
133 has changed, and therefore the corresponding hardware debug
134 register needs to be updated via the ptrace interface.
135
136 In the per-thread arch-specific data area, we define two such
137 variables for per-thread hardware breakpoint and watchpoint
138 settings respectively.
139
140 This type is part of the mechanism which helps reduce the number of
141 ptrace calls to the kernel, i.e. avoid asking the kernel to write
142 to the debug registers with unchanged values. */
143
144 typedef ULONGEST dr_changed_t;
145
146 /* Set each of the lower M bits of X to 1; assert X is wide enough. */
147
148 #define DR_MARK_ALL_CHANGED(x, m) \
149 do \
150 { \
151 gdb_assert (sizeof ((x)) * 8 >= (m)); \
152 (x) = (((dr_changed_t)1 << (m)) - 1); \
153 } while (0)
154
155 #define DR_MARK_N_CHANGED(x, n) \
156 do \
157 { \
158 (x) |= ((dr_changed_t)1 << (n)); \
159 } while (0)
160
161 #define DR_CLEAR_CHANGED(x) \
162 do \
163 { \
164 (x) = 0; \
165 } while (0)
166
167 #define DR_HAS_CHANGED(x) ((x) != 0)
168 #define DR_N_HAS_CHANGED(x, n) ((x) & ((dr_changed_t)1 << (n)))
169
170 /* Structure for managing the hardware breakpoint/watchpoint resources.
171 DR_ADDR_* stores the address, DR_CTRL_* stores the control register
172 content, and DR_REF_COUNT_* counts the numbers of references to the
173 corresponding bp/wp, by which way the limited hardware resources
174 are not wasted on duplicated bp/wp settings (though so far gdb has
175 done a good job by not sending duplicated bp/wp requests). */
176
177 struct aarch64_debug_reg_state
178 {
179 /* hardware breakpoint */
180 CORE_ADDR dr_addr_bp[AARCH64_HBP_MAX_NUM];
181 unsigned int dr_ctrl_bp[AARCH64_HBP_MAX_NUM];
182 unsigned int dr_ref_count_bp[AARCH64_HBP_MAX_NUM];
183
184 /* hardware watchpoint */
185 CORE_ADDR dr_addr_wp[AARCH64_HWP_MAX_NUM];
186 unsigned int dr_ctrl_wp[AARCH64_HWP_MAX_NUM];
187 unsigned int dr_ref_count_wp[AARCH64_HWP_MAX_NUM];
188 };
189
190 /* Per-process data. We don't bind this to a per-inferior registry
191 because of targets like x86 GNU/Linux that need to keep track of
192 processes that aren't bound to any inferior (e.g., fork children,
193 checkpoints). */
194
195 struct aarch64_process_info
196 {
197 /* Linked list. */
198 struct aarch64_process_info *next;
199
200 /* The process identifier. */
201 pid_t pid;
202
203 /* Copy of aarch64 hardware debug registers. */
204 struct aarch64_debug_reg_state state;
205 };
206
207 static struct aarch64_process_info *aarch64_process_list = NULL;
208
209 /* Find process data for process PID. */
210
211 static struct aarch64_process_info *
212 aarch64_find_process_pid (pid_t pid)
213 {
214 struct aarch64_process_info *proc;
215
216 for (proc = aarch64_process_list; proc; proc = proc->next)
217 if (proc->pid == pid)
218 return proc;
219
220 return NULL;
221 }
222
223 /* Add process data for process PID. Returns newly allocated info
224 object. */
225
226 static struct aarch64_process_info *
227 aarch64_add_process (pid_t pid)
228 {
229 struct aarch64_process_info *proc;
230
231 proc = xcalloc (1, sizeof (*proc));
232 proc->pid = pid;
233
234 proc->next = aarch64_process_list;
235 aarch64_process_list = proc;
236
237 return proc;
238 }
239
240 /* Get data specific info for process PID, creating it if necessary.
241 Never returns NULL. */
242
243 static struct aarch64_process_info *
244 aarch64_process_info_get (pid_t pid)
245 {
246 struct aarch64_process_info *proc;
247
248 proc = aarch64_find_process_pid (pid);
249 if (proc == NULL)
250 proc = aarch64_add_process (pid);
251
252 return proc;
253 }
254
255 /* Called whenever GDB is no longer debugging process PID. It deletes
256 data structures that keep track of debug register state. */
257
258 static void
259 aarch64_forget_process (pid_t pid)
260 {
261 struct aarch64_process_info *proc, **proc_link;
262
263 proc = aarch64_process_list;
264 proc_link = &aarch64_process_list;
265
266 while (proc != NULL)
267 {
268 if (proc->pid == pid)
269 {
270 *proc_link = proc->next;
271
272 xfree (proc);
273 return;
274 }
275
276 proc_link = &proc->next;
277 proc = *proc_link;
278 }
279 }
280
281 /* Get debug registers state for process PID. */
282
283 static struct aarch64_debug_reg_state *
284 aarch64_get_debug_reg_state (pid_t pid)
285 {
286 return &aarch64_process_info_get (pid)->state;
287 }
288
289 /* Per-thread arch-specific data we want to keep. */
290
291 struct arch_lwp_info
292 {
293 /* When bit N is 1, it indicates the Nth hardware breakpoint or
294 watchpoint register pair needs to be updated when the thread is
295 resumed; see aarch64_linux_prepare_to_resume. */
296 dr_changed_t dr_changed_bp;
297 dr_changed_t dr_changed_wp;
298 };
299
300 /* Call ptrace to set the thread TID's hardware breakpoint/watchpoint
301 registers with data from *STATE. */
302
303 static void
304 aarch64_linux_set_debug_regs (const struct aarch64_debug_reg_state *state,
305 int tid, int watchpoint)
306 {
307 int i, count;
308 struct iovec iov;
309 struct user_hwdebug_state regs;
310 const CORE_ADDR *addr;
311 const unsigned int *ctrl;
312
313 memset (&regs, 0, sizeof (regs));
314 iov.iov_base = &regs;
315 count = watchpoint ? aarch64_num_wp_regs : aarch64_num_bp_regs;
316 addr = watchpoint ? state->dr_addr_wp : state->dr_addr_bp;
317 ctrl = watchpoint ? state->dr_ctrl_wp : state->dr_ctrl_bp;
318 if (count == 0)
319 return;
320 iov.iov_len = (offsetof (struct user_hwdebug_state, dbg_regs[count - 1])
321 + sizeof (regs.dbg_regs [count - 1]));
322
323 for (i = 0; i < count; i++)
324 {
325 regs.dbg_regs[i].addr = addr[i];
326 regs.dbg_regs[i].ctrl = ctrl[i];
327 }
328
329 if (ptrace (PTRACE_SETREGSET, tid,
330 watchpoint ? NT_ARM_HW_WATCH : NT_ARM_HW_BREAK,
331 (void *) &iov))
332 error (_("Unexpected error setting hardware debug registers"));
333 }
334
335 struct aarch64_dr_update_callback_param
336 {
337 int is_watchpoint;
338 unsigned int idx;
339 };
340
341 /* Callback for iterate_over_lwps. Records the
342 information about the change of one hardware breakpoint/watchpoint
343 setting for the thread LWP.
344 The information is passed in via PTR.
345 N.B. The actual updating of hardware debug registers is not
346 carried out until the moment the thread is resumed. */
347
348 static int
349 debug_reg_change_callback (struct lwp_info *lwp, void *ptr)
350 {
351 struct aarch64_dr_update_callback_param *param_p
352 = (struct aarch64_dr_update_callback_param *) ptr;
353 int pid = get_thread_id (lwp->ptid);
354 int idx = param_p->idx;
355 int is_watchpoint = param_p->is_watchpoint;
356 struct arch_lwp_info *info = lwp->arch_private;
357 dr_changed_t *dr_changed_ptr;
358 dr_changed_t dr_changed;
359
360 if (info == NULL)
361 info = lwp->arch_private = XCNEW (struct arch_lwp_info);
362
363 if (show_debug_regs)
364 {
365 fprintf_unfiltered (gdb_stdlog,
366 "debug_reg_change_callback: \n\tOn entry:\n");
367 fprintf_unfiltered (gdb_stdlog,
368 "\tpid%d, dr_changed_bp=0x%s, "
369 "dr_changed_wp=0x%s\n",
370 pid, phex (info->dr_changed_bp, 8),
371 phex (info->dr_changed_wp, 8));
372 }
373
374 dr_changed_ptr = is_watchpoint ? &info->dr_changed_wp
375 : &info->dr_changed_bp;
376 dr_changed = *dr_changed_ptr;
377
378 gdb_assert (idx >= 0
379 && (idx <= (is_watchpoint ? aarch64_num_wp_regs
380 : aarch64_num_bp_regs)));
381
382 /* The actual update is done later just before resuming the lwp,
383 we just mark that one register pair needs updating. */
384 DR_MARK_N_CHANGED (dr_changed, idx);
385 *dr_changed_ptr = dr_changed;
386
387 /* If the lwp isn't stopped, force it to momentarily pause, so
388 we can update its debug registers. */
389 if (!lwp->stopped)
390 linux_stop_lwp (lwp);
391
392 if (show_debug_regs)
393 {
394 fprintf_unfiltered (gdb_stdlog,
395 "\tOn exit:\n\tpid%d, dr_changed_bp=0x%s, "
396 "dr_changed_wp=0x%s\n",
397 pid, phex (info->dr_changed_bp, 8),
398 phex (info->dr_changed_wp, 8));
399 }
400
401 /* Continue the iteration. */
402 return 0;
403 }
404
405 /* Notify each thread that their IDXth breakpoint/watchpoint register
406 pair needs to be updated. The message will be recorded in each
407 thread's arch-specific data area, the actual updating will be done
408 when the thread is resumed. */
409
410 static void
411 aarch64_notify_debug_reg_change (const struct aarch64_debug_reg_state *state,
412 int is_watchpoint, unsigned int idx)
413 {
414 struct aarch64_dr_update_callback_param param;
415 ptid_t pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
416
417 param.is_watchpoint = is_watchpoint;
418 param.idx = idx;
419
420 iterate_over_lwps (pid_ptid, debug_reg_change_callback, (void *) &param);
421 }
422
423 /* Print the values of the cached breakpoint/watchpoint registers. */
424
425 static void
426 aarch64_show_debug_reg_state (struct aarch64_debug_reg_state *state,
427 const char *func, CORE_ADDR addr,
428 int len, int type)
429 {
430 int i;
431
432 fprintf_unfiltered (gdb_stdlog, "%s", func);
433 if (addr || len)
434 fprintf_unfiltered (gdb_stdlog, " (addr=0x%08lx, len=%d, type=%s)",
435 (unsigned long) addr, len,
436 type == hw_write ? "hw-write-watchpoint"
437 : (type == hw_read ? "hw-read-watchpoint"
438 : (type == hw_access ? "hw-access-watchpoint"
439 : (type == hw_execute ? "hw-breakpoint"
440 : "??unknown??"))));
441 fprintf_unfiltered (gdb_stdlog, ":\n");
442
443 fprintf_unfiltered (gdb_stdlog, "\tBREAKPOINTs:\n");
444 for (i = 0; i < aarch64_num_bp_regs; i++)
445 fprintf_unfiltered (gdb_stdlog,
446 "\tBP%d: addr=0x%08lx, ctrl=0x%08x, ref.count=%d\n",
447 i, state->dr_addr_bp[i],
448 state->dr_ctrl_bp[i], state->dr_ref_count_bp[i]);
449
450 fprintf_unfiltered (gdb_stdlog, "\tWATCHPOINTs:\n");
451 for (i = 0; i < aarch64_num_wp_regs; i++)
452 fprintf_unfiltered (gdb_stdlog,
453 "\tWP%d: addr=0x%08lx, ctrl=0x%08x, ref.count=%d\n",
454 i, state->dr_addr_wp[i],
455 state->dr_ctrl_wp[i], state->dr_ref_count_wp[i]);
456 }
457
458 /* Fill GDB's register array with the general-purpose register values
459 from the current thread. */
460
461 static void
462 fetch_gregs_from_thread (struct regcache *regcache)
463 {
464 int ret, tid;
465 struct gdbarch *gdbarch = get_regcache_arch (regcache);
466 elf_gregset_t regs;
467 struct iovec iovec;
468
469 /* Make sure REGS can hold all registers contents on both aarch64
470 and arm. */
471 gdb_static_assert (sizeof (regs) >= 18 * 4);
472
473 tid = get_thread_id (inferior_ptid);
474
475 iovec.iov_base = &regs;
476 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
477 iovec.iov_len = 18 * 4;
478 else
479 iovec.iov_len = sizeof (regs);
480
481 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
482 if (ret < 0)
483 perror_with_name (_("Unable to fetch general registers."));
484
485 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
486 aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, 1);
487 else
488 {
489 int regno;
490
491 for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
492 regcache_raw_supply (regcache, regno, &regs[regno - AARCH64_X0_REGNUM]);
493 }
494 }
495
496 /* Store to the current thread the valid general-purpose register
497 values in the GDB's register array. */
498
499 static void
500 store_gregs_to_thread (const struct regcache *regcache)
501 {
502 int ret, tid;
503 elf_gregset_t regs;
504 struct iovec iovec;
505 struct gdbarch *gdbarch = get_regcache_arch (regcache);
506
507 /* Make sure REGS can hold all registers contents on both aarch64
508 and arm. */
509 gdb_static_assert (sizeof (regs) >= 18 * 4);
510 tid = get_thread_id (inferior_ptid);
511
512 iovec.iov_base = &regs;
513 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
514 iovec.iov_len = 18 * 4;
515 else
516 iovec.iov_len = sizeof (regs);
517
518 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
519 if (ret < 0)
520 perror_with_name (_("Unable to fetch general registers."));
521
522 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
523 aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, 1);
524 else
525 {
526 int regno;
527
528 for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
529 if (REG_VALID == regcache_register_status (regcache, regno))
530 regcache_raw_collect (regcache, regno,
531 &regs[regno - AARCH64_X0_REGNUM]);
532 }
533
534 ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iovec);
535 if (ret < 0)
536 perror_with_name (_("Unable to store general registers."));
537 }
538
539 /* Fill GDB's register array with the fp/simd register values
540 from the current thread. */
541
542 static void
543 fetch_fpregs_from_thread (struct regcache *regcache)
544 {
545 int ret, tid;
546 elf_fpregset_t regs;
547 struct iovec iovec;
548 struct gdbarch *gdbarch = get_regcache_arch (regcache);
549
550 /* Make sure REGS can hold all VFP registers contents on both aarch64
551 and arm. */
552 gdb_static_assert (sizeof regs >= VFP_REGS_SIZE);
553
554 tid = get_thread_id (inferior_ptid);
555
556 iovec.iov_base = &regs;
557
558 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
559 {
560 iovec.iov_len = VFP_REGS_SIZE;
561
562 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
563 if (ret < 0)
564 perror_with_name (_("Unable to fetch VFP registers."));
565
566 aarch32_vfp_regcache_supply (regcache, (gdb_byte *) &regs, 32);
567 }
568 else
569 {
570 int regno;
571
572 iovec.iov_len = sizeof (regs);
573
574 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
575 if (ret < 0)
576 perror_with_name (_("Unable to fetch vFP/SIMD registers."));
577
578 for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
579 regcache_raw_supply (regcache, regno,
580 &regs.vregs[regno - AARCH64_V0_REGNUM]);
581
582 regcache_raw_supply (regcache, AARCH64_FPSR_REGNUM, &regs.fpsr);
583 regcache_raw_supply (regcache, AARCH64_FPCR_REGNUM, &regs.fpcr);
584 }
585 }
586
587 /* Store to the current thread the valid fp/simd register
588 values in the GDB's register array. */
589
590 static void
591 store_fpregs_to_thread (const struct regcache *regcache)
592 {
593 int ret, tid;
594 elf_fpregset_t regs;
595 struct iovec iovec;
596 struct gdbarch *gdbarch = get_regcache_arch (regcache);
597
598 /* Make sure REGS can hold all VFP registers contents on both aarch64
599 and arm. */
600 gdb_static_assert (sizeof regs >= VFP_REGS_SIZE);
601 tid = get_thread_id (inferior_ptid);
602
603 iovec.iov_base = &regs;
604
605 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
606 {
607 iovec.iov_len = VFP_REGS_SIZE;
608
609 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
610 if (ret < 0)
611 perror_with_name (_("Unable to fetch VFP registers."));
612
613 aarch32_vfp_regcache_collect (regcache, (gdb_byte *) &regs, 32);
614 }
615 else
616 {
617 int regno;
618
619 iovec.iov_len = sizeof (regs);
620
621 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
622 if (ret < 0)
623 perror_with_name (_("Unable to fetch FP/SIMD registers."));
624
625 for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
626 if (REG_VALID == regcache_register_status (regcache, regno))
627 regcache_raw_collect (regcache, regno,
628 (char *) &regs.vregs[regno - AARCH64_V0_REGNUM]);
629
630 if (REG_VALID == regcache_register_status (regcache, AARCH64_FPSR_REGNUM))
631 regcache_raw_collect (regcache, AARCH64_FPSR_REGNUM,
632 (char *) &regs.fpsr);
633 if (REG_VALID == regcache_register_status (regcache, AARCH64_FPCR_REGNUM))
634 regcache_raw_collect (regcache, AARCH64_FPCR_REGNUM,
635 (char *) &regs.fpcr);
636 }
637
638 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
639 {
640 ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iovec);
641 if (ret < 0)
642 perror_with_name (_("Unable to store VFP registers."));
643 }
644 else
645 {
646 ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iovec);
647 if (ret < 0)
648 perror_with_name (_("Unable to store FP/SIMD registers."));
649 }
650 }
651
652 /* Implement the "to_fetch_register" target_ops method. */
653
654 static void
655 aarch64_linux_fetch_inferior_registers (struct target_ops *ops,
656 struct regcache *regcache,
657 int regno)
658 {
659 if (regno == -1)
660 {
661 fetch_gregs_from_thread (regcache);
662 fetch_fpregs_from_thread (regcache);
663 }
664 else if (regno < AARCH64_V0_REGNUM)
665 fetch_gregs_from_thread (regcache);
666 else
667 fetch_fpregs_from_thread (regcache);
668 }
669
670 /* Implement the "to_store_register" target_ops method. */
671
672 static void
673 aarch64_linux_store_inferior_registers (struct target_ops *ops,
674 struct regcache *regcache,
675 int regno)
676 {
677 if (regno == -1)
678 {
679 store_gregs_to_thread (regcache);
680 store_fpregs_to_thread (regcache);
681 }
682 else if (regno < AARCH64_V0_REGNUM)
683 store_gregs_to_thread (regcache);
684 else
685 store_fpregs_to_thread (regcache);
686 }
687
688 /* Fill register REGNO (if it is a general-purpose register) in
689 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
690 do this for all registers. */
691
692 void
693 fill_gregset (const struct regcache *regcache,
694 gdb_gregset_t *gregsetp, int regno)
695 {
696 regcache_collect_regset (&aarch64_linux_gregset, regcache,
697 regno, (gdb_byte *) gregsetp,
698 AARCH64_LINUX_SIZEOF_GREGSET);
699 }
700
701 /* Fill GDB's register array with the general-purpose register values
702 in *GREGSETP. */
703
704 void
705 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
706 {
707 regcache_supply_regset (&aarch64_linux_gregset, regcache, -1,
708 (const gdb_byte *) gregsetp,
709 AARCH64_LINUX_SIZEOF_GREGSET);
710 }
711
712 /* Fill register REGNO (if it is a floating-point register) in
713 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
714 do this for all registers. */
715
716 void
717 fill_fpregset (const struct regcache *regcache,
718 gdb_fpregset_t *fpregsetp, int regno)
719 {
720 regcache_collect_regset (&aarch64_linux_fpregset, regcache,
721 regno, (gdb_byte *) fpregsetp,
722 AARCH64_LINUX_SIZEOF_FPREGSET);
723 }
724
725 /* Fill GDB's register array with the floating-point register values
726 in *FPREGSETP. */
727
728 void
729 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
730 {
731 regcache_supply_regset (&aarch64_linux_fpregset, regcache, -1,
732 (const gdb_byte *) fpregsetp,
733 AARCH64_LINUX_SIZEOF_FPREGSET);
734 }
735
736 /* Called when resuming a thread.
737 The hardware debug registers are updated when there is any change. */
738
739 static void
740 aarch64_linux_prepare_to_resume (struct lwp_info *lwp)
741 {
742 struct arch_lwp_info *info = lwp->arch_private;
743
744 /* NULL means this is the main thread still going through the shell,
745 or, no watchpoint has been set yet. In that case, there's
746 nothing to do. */
747 if (info == NULL)
748 return;
749
750 if (DR_HAS_CHANGED (info->dr_changed_bp)
751 || DR_HAS_CHANGED (info->dr_changed_wp))
752 {
753 int tid = ptid_get_lwp (lwp->ptid);
754 struct aarch64_debug_reg_state *state
755 = aarch64_get_debug_reg_state (ptid_get_pid (lwp->ptid));
756
757 if (show_debug_regs)
758 fprintf_unfiltered (gdb_stdlog, "prepare_to_resume thread %d\n", tid);
759
760 /* Watchpoints. */
761 if (DR_HAS_CHANGED (info->dr_changed_wp))
762 {
763 aarch64_linux_set_debug_regs (state, tid, 1);
764 DR_CLEAR_CHANGED (info->dr_changed_wp);
765 }
766
767 /* Breakpoints. */
768 if (DR_HAS_CHANGED (info->dr_changed_bp))
769 {
770 aarch64_linux_set_debug_regs (state, tid, 0);
771 DR_CLEAR_CHANGED (info->dr_changed_bp);
772 }
773 }
774 }
775
776 static void
777 aarch64_linux_new_thread (struct lwp_info *lp)
778 {
779 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info);
780
781 /* Mark that all the hardware breakpoint/watchpoint register pairs
782 for this thread need to be initialized. */
783 DR_MARK_ALL_CHANGED (info->dr_changed_bp, aarch64_num_bp_regs);
784 DR_MARK_ALL_CHANGED (info->dr_changed_wp, aarch64_num_wp_regs);
785
786 lp->arch_private = info;
787 }
788
789 /* linux_nat_new_fork hook. */
790
791 static void
792 aarch64_linux_new_fork (struct lwp_info *parent, pid_t child_pid)
793 {
794 pid_t parent_pid;
795 struct aarch64_debug_reg_state *parent_state;
796 struct aarch64_debug_reg_state *child_state;
797
798 /* NULL means no watchpoint has ever been set in the parent. In
799 that case, there's nothing to do. */
800 if (parent->arch_private == NULL)
801 return;
802
803 /* GDB core assumes the child inherits the watchpoints/hw
804 breakpoints of the parent, and will remove them all from the
805 forked off process. Copy the debug registers mirrors into the
806 new process so that all breakpoints and watchpoints can be
807 removed together. */
808
809 parent_pid = ptid_get_pid (parent->ptid);
810 parent_state = aarch64_get_debug_reg_state (parent_pid);
811 child_state = aarch64_get_debug_reg_state (child_pid);
812 *child_state = *parent_state;
813 }
814 \f
815
816 /* Called by libthread_db. Returns a pointer to the thread local
817 storage (or its descriptor). */
818
819 ps_err_e
820 ps_get_thread_area (const struct ps_prochandle *ph,
821 lwpid_t lwpid, int idx, void **base)
822 {
823 struct iovec iovec;
824 uint64_t reg;
825
826 iovec.iov_base = &reg;
827 iovec.iov_len = sizeof (reg);
828
829 if (ptrace (PTRACE_GETREGSET, lwpid, NT_ARM_TLS, &iovec) != 0)
830 return PS_ERR;
831
832 /* IDX is the bias from the thread pointer to the beginning of the
833 thread descriptor. It has to be subtracted due to implementation
834 quirks in libthread_db. */
835 *base = (void *) (reg - idx);
836
837 return PS_OK;
838 }
839 \f
840
841 /* Get the hardware debug register capacity information from the
842 inferior represented by PTID. */
843
844 static void
845 aarch64_linux_get_debug_reg_capacity (ptid_t ptid)
846 {
847 int tid;
848 struct iovec iov;
849 struct user_hwdebug_state dreg_state;
850
851 tid = ptid_get_pid (ptid);
852 iov.iov_base = &dreg_state;
853 iov.iov_len = sizeof (dreg_state);
854
855 /* Get hardware watchpoint register info. */
856 if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_HW_WATCH, &iov) == 0
857 && AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8)
858 {
859 aarch64_num_wp_regs = AARCH64_DEBUG_NUM_SLOTS (dreg_state.dbg_info);
860 if (aarch64_num_wp_regs > AARCH64_HWP_MAX_NUM)
861 {
862 warning (_("Unexpected number of hardware watchpoint registers"
863 " reported by ptrace, got %d, expected %d."),
864 aarch64_num_wp_regs, AARCH64_HWP_MAX_NUM);
865 aarch64_num_wp_regs = AARCH64_HWP_MAX_NUM;
866 }
867 }
868 else
869 {
870 warning (_("Unable to determine the number of hardware watchpoints"
871 " available."));
872 aarch64_num_wp_regs = 0;
873 }
874
875 /* Get hardware breakpoint register info. */
876 if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_HW_BREAK, &iov) == 0
877 && AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8)
878 {
879 aarch64_num_bp_regs = AARCH64_DEBUG_NUM_SLOTS (dreg_state.dbg_info);
880 if (aarch64_num_bp_regs > AARCH64_HBP_MAX_NUM)
881 {
882 warning (_("Unexpected number of hardware breakpoint registers"
883 " reported by ptrace, got %d, expected %d."),
884 aarch64_num_bp_regs, AARCH64_HBP_MAX_NUM);
885 aarch64_num_bp_regs = AARCH64_HBP_MAX_NUM;
886 }
887 }
888 else
889 {
890 warning (_("Unable to determine the number of hardware breakpoints"
891 " available."));
892 aarch64_num_bp_regs = 0;
893 }
894 }
895
896 static void (*super_post_startup_inferior) (struct target_ops *self,
897 ptid_t ptid);
898
899 /* Implement the "to_post_startup_inferior" target_ops method. */
900
901 static void
902 aarch64_linux_child_post_startup_inferior (struct target_ops *self,
903 ptid_t ptid)
904 {
905 aarch64_forget_process (ptid_get_pid (ptid));
906 aarch64_linux_get_debug_reg_capacity (ptid);
907 super_post_startup_inferior (self, ptid);
908 }
909
910 extern struct target_desc *tdesc_arm_with_vfpv3;
911 extern struct target_desc *tdesc_arm_with_neon;
912
913 /* Implement the "to_read_description" target_ops method. */
914
915 static const struct target_desc *
916 aarch64_linux_read_description (struct target_ops *ops)
917 {
918 CORE_ADDR at_phent;
919
920 if (target_auxv_search (ops, AT_PHENT, &at_phent) == 1)
921 {
922 if (at_phent == sizeof (Elf64_External_Phdr))
923 return tdesc_aarch64;
924 else
925 {
926 CORE_ADDR arm_hwcap = 0;
927
928 if (target_auxv_search (ops, AT_HWCAP, &arm_hwcap) != 1)
929 return ops->beneath->to_read_description (ops->beneath);
930
931 #ifndef COMPAT_HWCAP_VFP
932 #define COMPAT_HWCAP_VFP (1 << 6)
933 #endif
934 #ifndef COMPAT_HWCAP_NEON
935 #define COMPAT_HWCAP_NEON (1 << 12)
936 #endif
937 #ifndef COMPAT_HWCAP_VFPv3
938 #define COMPAT_HWCAP_VFPv3 (1 << 13)
939 #endif
940
941 if (arm_hwcap & COMPAT_HWCAP_VFP)
942 {
943 char *buf;
944 const struct target_desc *result = NULL;
945
946 if (arm_hwcap & COMPAT_HWCAP_NEON)
947 result = tdesc_arm_with_neon;
948 else if (arm_hwcap & COMPAT_HWCAP_VFPv3)
949 result = tdesc_arm_with_vfpv3;
950
951 return result;
952 }
953
954 return NULL;
955 }
956 }
957
958 return tdesc_aarch64;
959 }
960
961 /* Given the (potentially unaligned) watchpoint address in ADDR and
962 length in LEN, return the aligned address and aligned length in
963 *ALIGNED_ADDR_P and *ALIGNED_LEN_P, respectively. The returned
964 aligned address and length will be valid values to write to the
965 hardware watchpoint value and control registers.
966
967 The given watchpoint may get truncated if more than one hardware
968 register is needed to cover the watched region. *NEXT_ADDR_P
969 and *NEXT_LEN_P, if non-NULL, will return the address and length
970 of the remaining part of the watchpoint (which can be processed
971 by calling this routine again to generate another aligned address
972 and length pair.
973
974 See the comment above the function of the same name in
975 gdbserver/linux-aarch64-low.c for more information. */
976
977 static void
978 aarch64_align_watchpoint (CORE_ADDR addr, int len, CORE_ADDR *aligned_addr_p,
979 int *aligned_len_p, CORE_ADDR *next_addr_p,
980 int *next_len_p)
981 {
982 int aligned_len;
983 unsigned int offset;
984 CORE_ADDR aligned_addr;
985 const unsigned int alignment = AARCH64_HWP_ALIGNMENT;
986 const unsigned int max_wp_len = AARCH64_HWP_MAX_LEN_PER_REG;
987
988 /* As assumed by the algorithm. */
989 gdb_assert (alignment == max_wp_len);
990
991 if (len <= 0)
992 return;
993
994 /* Address to be put into the hardware watchpoint value register
995 must be aligned. */
996 offset = addr & (alignment - 1);
997 aligned_addr = addr - offset;
998
999 gdb_assert (offset >= 0 && offset < alignment);
1000 gdb_assert (aligned_addr >= 0 && aligned_addr <= addr);
1001 gdb_assert (offset + len > 0);
1002
1003 if (offset + len >= max_wp_len)
1004 {
1005 /* Need more than one watchpoint registers; truncate it at the
1006 alignment boundary. */
1007 aligned_len = max_wp_len;
1008 len -= (max_wp_len - offset);
1009 addr += (max_wp_len - offset);
1010 gdb_assert ((addr & (alignment - 1)) == 0);
1011 }
1012 else
1013 {
1014 /* Find the smallest valid length that is large enough to
1015 accommodate this watchpoint. */
1016 static const unsigned char
1017 aligned_len_array[AARCH64_HWP_MAX_LEN_PER_REG] =
1018 { 1, 2, 4, 4, 8, 8, 8, 8 };
1019
1020 aligned_len = aligned_len_array[offset + len - 1];
1021 addr += len;
1022 len = 0;
1023 }
1024
1025 if (aligned_addr_p)
1026 *aligned_addr_p = aligned_addr;
1027 if (aligned_len_p)
1028 *aligned_len_p = aligned_len;
1029 if (next_addr_p)
1030 *next_addr_p = addr;
1031 if (next_len_p)
1032 *next_len_p = len;
1033 }
1034
1035 /* Returns the number of hardware watchpoints of type TYPE that we can
1036 set. Value is positive if we can set CNT watchpoints, zero if
1037 setting watchpoints of type TYPE is not supported, and negative if
1038 CNT is more than the maximum number of watchpoints of type TYPE
1039 that we can support. TYPE is one of bp_hardware_watchpoint,
1040 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1041 CNT is the number of such watchpoints used so far (including this
1042 one). OTHERTYPE is non-zero if other types of watchpoints are
1043 currently enabled.
1044
1045 We always return 1 here because we don't have enough information
1046 about possible overlap of addresses that they want to watch. As an
1047 extreme example, consider the case where all the watchpoints watch
1048 the same address and the same region length: then we can handle a
1049 virtually unlimited number of watchpoints, due to debug register
1050 sharing implemented via reference counts. */
1051
1052 static int
1053 aarch64_linux_can_use_hw_breakpoint (struct target_ops *self,
1054 int type, int cnt, int othertype)
1055 {
1056 return 1;
1057 }
1058
1059 /* ptrace expects control registers to be formatted as follows:
1060
1061 31 13 5 3 1 0
1062 +--------------------------------+----------+------+------+----+
1063 | RESERVED (SBZ) | LENGTH | TYPE | PRIV | EN |
1064 +--------------------------------+----------+------+------+----+
1065
1066 The TYPE field is ignored for breakpoints. */
1067
1068 #define DR_CONTROL_ENABLED(ctrl) (((ctrl) & 0x1) == 1)
1069 #define DR_CONTROL_LENGTH(ctrl) (((ctrl) >> 5) & 0xff)
1070
1071 /* Utility function that returns the length in bytes of a watchpoint
1072 according to the content of a hardware debug control register CTRL.
1073 Note that the kernel currently only supports the following Byte
1074 Address Select (BAS) values: 0x1, 0x3, 0xf and 0xff, which means
1075 that for a hardware watchpoint, its valid length can only be 1
1076 byte, 2 bytes, 4 bytes or 8 bytes. */
1077
1078 static inline unsigned int
1079 aarch64_watchpoint_length (unsigned int ctrl)
1080 {
1081 switch (DR_CONTROL_LENGTH (ctrl))
1082 {
1083 case 0x01:
1084 return 1;
1085 case 0x03:
1086 return 2;
1087 case 0x0f:
1088 return 4;
1089 case 0xff:
1090 return 8;
1091 default:
1092 return 0;
1093 }
1094 }
1095
1096 /* Given the hardware breakpoint or watchpoint type TYPE and its
1097 length LEN, return the expected encoding for a hardware
1098 breakpoint/watchpoint control register. */
1099
1100 static unsigned int
1101 aarch64_point_encode_ctrl_reg (int type, int len)
1102 {
1103 unsigned int ctrl, ttype;
1104
1105 /* type */
1106 switch (type)
1107 {
1108 case hw_write:
1109 ttype = 2;
1110 break;
1111 case hw_read:
1112 ttype = 1;
1113 break;
1114 case hw_access:
1115 ttype = 3;
1116 break;
1117 case hw_execute:
1118 ttype = 0;
1119 break;
1120 default:
1121 perror_with_name (_("Unrecognized breakpoint/watchpoint type"));
1122 }
1123 ctrl = ttype << 3;
1124
1125 /* length bitmask */
1126 ctrl |= ((1 << len) - 1) << 5;
1127 /* enabled at el0 */
1128 ctrl |= (2 << 1) | 1;
1129
1130 return ctrl;
1131 }
1132
1133 /* Addresses to be written to the hardware breakpoint and watchpoint
1134 value registers need to be aligned; the alignment is 4-byte and
1135 8-type respectively. Linux kernel rejects any non-aligned address
1136 it receives from the related ptrace call. Furthermore, the kernel
1137 currently only supports the following Byte Address Select (BAS)
1138 values: 0x1, 0x3, 0xf and 0xff, which means that for a hardware
1139 watchpoint to be accepted by the kernel (via ptrace call), its
1140 valid length can only be 1 byte, 2 bytes, 4 bytes or 8 bytes.
1141 Despite these limitations, the unaligned watchpoint is supported in
1142 this port.
1143
1144 Return 0 for any non-compliant ADDR and/or LEN; return 1 otherwise. */
1145
1146 static int
1147 aarch64_point_is_aligned (int is_watchpoint, CORE_ADDR addr, int len)
1148 {
1149 unsigned int alignment = is_watchpoint ? AARCH64_HWP_ALIGNMENT
1150 : AARCH64_HBP_ALIGNMENT;
1151
1152 if (addr & (alignment - 1))
1153 return 0;
1154
1155 if (len != 8 && len != 4 && len != 2 && len != 1)
1156 return 0;
1157
1158 return 1;
1159 }
1160
1161 /* Record the insertion of one breakpoint/watchpoint, as represented
1162 by ADDR and CTRL, in the cached debug register state area *STATE. */
1163
1164 static int
1165 aarch64_dr_state_insert_one_point (struct aarch64_debug_reg_state *state,
1166 enum target_hw_bp_type type, CORE_ADDR addr,
1167 int len)
1168 {
1169 int i, idx, num_regs, is_watchpoint;
1170 unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
1171 CORE_ADDR *dr_addr_p;
1172
1173 /* Set up state pointers. */
1174 is_watchpoint = (type != hw_execute);
1175 gdb_assert (aarch64_point_is_aligned (is_watchpoint, addr, len));
1176 if (is_watchpoint)
1177 {
1178 num_regs = aarch64_num_wp_regs;
1179 dr_addr_p = state->dr_addr_wp;
1180 dr_ctrl_p = state->dr_ctrl_wp;
1181 dr_ref_count = state->dr_ref_count_wp;
1182 }
1183 else
1184 {
1185 num_regs = aarch64_num_bp_regs;
1186 dr_addr_p = state->dr_addr_bp;
1187 dr_ctrl_p = state->dr_ctrl_bp;
1188 dr_ref_count = state->dr_ref_count_bp;
1189 }
1190
1191 ctrl = aarch64_point_encode_ctrl_reg (type, len);
1192
1193 /* Find an existing or free register in our cache. */
1194 idx = -1;
1195 for (i = 0; i < num_regs; ++i)
1196 {
1197 if ((dr_ctrl_p[i] & 1) == 0)
1198 {
1199 gdb_assert (dr_ref_count[i] == 0);
1200 idx = i;
1201 /* no break; continue hunting for an existing one. */
1202 }
1203 else if (dr_addr_p[i] == addr && dr_ctrl_p[i] == ctrl)
1204 {
1205 gdb_assert (dr_ref_count[i] != 0);
1206 idx = i;
1207 break;
1208 }
1209 }
1210
1211 /* No space. */
1212 if (idx == -1)
1213 return -1;
1214
1215 /* Update our cache. */
1216 if ((dr_ctrl_p[idx] & 1) == 0)
1217 {
1218 /* new entry */
1219 dr_addr_p[idx] = addr;
1220 dr_ctrl_p[idx] = ctrl;
1221 dr_ref_count[idx] = 1;
1222 /* Notify the change. */
1223 aarch64_notify_debug_reg_change (state, is_watchpoint, idx);
1224 }
1225 else
1226 {
1227 /* existing entry */
1228 dr_ref_count[idx]++;
1229 }
1230
1231 return 0;
1232 }
1233
1234 /* Record the removal of one breakpoint/watchpoint, as represented by
1235 ADDR and CTRL, in the cached debug register state area *STATE. */
1236
1237 static int
1238 aarch64_dr_state_remove_one_point (struct aarch64_debug_reg_state *state,
1239 enum target_hw_bp_type type, CORE_ADDR addr,
1240 int len)
1241 {
1242 int i, num_regs, is_watchpoint;
1243 unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
1244 CORE_ADDR *dr_addr_p;
1245
1246 /* Set up state pointers. */
1247 is_watchpoint = (type != hw_execute);
1248 gdb_assert (aarch64_point_is_aligned (is_watchpoint, addr, len));
1249 if (is_watchpoint)
1250 {
1251 num_regs = aarch64_num_wp_regs;
1252 dr_addr_p = state->dr_addr_wp;
1253 dr_ctrl_p = state->dr_ctrl_wp;
1254 dr_ref_count = state->dr_ref_count_wp;
1255 }
1256 else
1257 {
1258 num_regs = aarch64_num_bp_regs;
1259 dr_addr_p = state->dr_addr_bp;
1260 dr_ctrl_p = state->dr_ctrl_bp;
1261 dr_ref_count = state->dr_ref_count_bp;
1262 }
1263
1264 ctrl = aarch64_point_encode_ctrl_reg (type, len);
1265
1266 /* Find the entry that matches the ADDR and CTRL. */
1267 for (i = 0; i < num_regs; ++i)
1268 if (dr_addr_p[i] == addr && dr_ctrl_p[i] == ctrl)
1269 {
1270 gdb_assert (dr_ref_count[i] != 0);
1271 break;
1272 }
1273
1274 /* Not found. */
1275 if (i == num_regs)
1276 return -1;
1277
1278 /* Clear our cache. */
1279 if (--dr_ref_count[i] == 0)
1280 {
1281 /* Clear the enable bit. */
1282 ctrl &= ~1;
1283 dr_addr_p[i] = 0;
1284 dr_ctrl_p[i] = ctrl;
1285 /* Notify the change. */
1286 aarch64_notify_debug_reg_change (state, is_watchpoint, i);
1287 }
1288
1289 return 0;
1290 }
1291
1292 /* Implement insertion and removal of a single breakpoint. */
1293
1294 static int
1295 aarch64_handle_breakpoint (enum target_hw_bp_type type, CORE_ADDR addr,
1296 int len, int is_insert)
1297 {
1298 struct aarch64_debug_reg_state *state;
1299
1300 /* The hardware breakpoint on AArch64 should always be 4-byte
1301 aligned. */
1302 if (!aarch64_point_is_aligned (0 /* is_watchpoint */ , addr, len))
1303 return -1;
1304
1305 state = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1306
1307 if (is_insert)
1308 return aarch64_dr_state_insert_one_point (state, type, addr, len);
1309 else
1310 return aarch64_dr_state_remove_one_point (state, type, addr, len);
1311 }
1312
1313 /* Insert a hardware-assisted breakpoint at BP_TGT->reqstd_address.
1314 Return 0 on success, -1 on failure. */
1315
1316 static int
1317 aarch64_linux_insert_hw_breakpoint (struct target_ops *self,
1318 struct gdbarch *gdbarch,
1319 struct bp_target_info *bp_tgt)
1320 {
1321 int ret;
1322 CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address;
1323 const int len = 4;
1324 const enum target_hw_bp_type type = hw_execute;
1325
1326 if (show_debug_regs)
1327 fprintf_unfiltered
1328 (gdb_stdlog,
1329 "insert_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
1330 (unsigned long) addr, len);
1331
1332 ret = aarch64_handle_breakpoint (type, addr, len, 1 /* is_insert */);
1333
1334 if (show_debug_regs)
1335 {
1336 struct aarch64_debug_reg_state *state
1337 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1338
1339 aarch64_show_debug_reg_state (state,
1340 "insert_hw_breakpoint", addr, len, type);
1341 }
1342
1343 return ret;
1344 }
1345
1346 /* Remove a hardware-assisted breakpoint at BP_TGT->placed_address.
1347 Return 0 on success, -1 on failure. */
1348
1349 static int
1350 aarch64_linux_remove_hw_breakpoint (struct target_ops *self,
1351 struct gdbarch *gdbarch,
1352 struct bp_target_info *bp_tgt)
1353 {
1354 int ret;
1355 CORE_ADDR addr = bp_tgt->placed_address;
1356 const int len = 4;
1357 const enum target_hw_bp_type type = hw_execute;
1358
1359 if (show_debug_regs)
1360 fprintf_unfiltered
1361 (gdb_stdlog, "remove_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
1362 (unsigned long) addr, len);
1363
1364 ret = aarch64_handle_breakpoint (type, addr, len, 0 /* is_insert */);
1365
1366 if (show_debug_regs)
1367 {
1368 struct aarch64_debug_reg_state *state
1369 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1370
1371 aarch64_show_debug_reg_state (state,
1372 "remove_hw_watchpoint", addr, len, type);
1373 }
1374
1375 return ret;
1376 }
1377
1378 /* This is essentially the same as aarch64_handle_breakpoint, apart
1379 from that it is an aligned watchpoint to be handled. */
1380
1381 static int
1382 aarch64_handle_aligned_watchpoint (enum target_hw_bp_type type, CORE_ADDR addr,
1383 int len, int is_insert)
1384 {
1385 struct aarch64_debug_reg_state *state
1386 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1387
1388 if (is_insert)
1389 return aarch64_dr_state_insert_one_point (state, type, addr, len);
1390 else
1391 return aarch64_dr_state_remove_one_point (state, type, addr, len);
1392 }
1393
1394 /* Insert/remove unaligned watchpoint by calling
1395 aarch64_align_watchpoint repeatedly until the whole watched region,
1396 as represented by ADDR and LEN, has been properly aligned and ready
1397 to be written to one or more hardware watchpoint registers.
1398 IS_INSERT indicates whether this is an insertion or a deletion.
1399 Return 0 if succeed. */
1400
1401 static int
1402 aarch64_handle_unaligned_watchpoint (int type, CORE_ADDR addr, int len,
1403 int is_insert)
1404 {
1405 struct aarch64_debug_reg_state *state
1406 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1407
1408 while (len > 0)
1409 {
1410 CORE_ADDR aligned_addr;
1411 int aligned_len, ret;
1412
1413 aarch64_align_watchpoint (addr, len, &aligned_addr, &aligned_len,
1414 &addr, &len);
1415
1416 if (is_insert)
1417 ret = aarch64_dr_state_insert_one_point (state, type, aligned_addr,
1418 aligned_len);
1419 else
1420 ret = aarch64_dr_state_remove_one_point (state, type, aligned_addr,
1421 aligned_len);
1422
1423 if (show_debug_regs)
1424 fprintf_unfiltered (gdb_stdlog,
1425 "handle_unaligned_watchpoint: is_insert: %d\n"
1426 " aligned_addr: 0x%08lx, aligned_len: %d\n"
1427 " next_addr: 0x%08lx, next_len: %d\n",
1428 is_insert, aligned_addr, aligned_len, addr, len);
1429
1430 if (ret != 0)
1431 return ret;
1432 }
1433
1434 return 0;
1435 }
1436
1437 /* Implements insertion and removal of a single watchpoint. */
1438
1439 static int
1440 aarch64_handle_watchpoint (int type, CORE_ADDR addr, int len, int is_insert)
1441 {
1442 if (aarch64_point_is_aligned (1 /* is_watchpoint */ , addr, len))
1443 return aarch64_handle_aligned_watchpoint (type, addr, len, is_insert);
1444 else
1445 return aarch64_handle_unaligned_watchpoint (type, addr, len, is_insert);
1446 }
1447
1448 /* Implement the "to_insert_watchpoint" target_ops method.
1449
1450 Insert a watchpoint to watch a memory region which starts at
1451 address ADDR and whose length is LEN bytes. Watch memory accesses
1452 of the type TYPE. Return 0 on success, -1 on failure. */
1453
1454 static int
1455 aarch64_linux_insert_watchpoint (struct target_ops *self,
1456 CORE_ADDR addr, int len, int type,
1457 struct expression *cond)
1458 {
1459 int ret;
1460
1461 if (show_debug_regs)
1462 fprintf_unfiltered (gdb_stdlog,
1463 "insert_watchpoint on entry (addr=0x%08lx, len=%d)\n",
1464 (unsigned long) addr, len);
1465
1466 gdb_assert (type != hw_execute);
1467
1468 ret = aarch64_handle_watchpoint (type, addr, len, 1 /* is_insert */);
1469
1470 if (show_debug_regs)
1471 {
1472 struct aarch64_debug_reg_state *state
1473 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1474
1475 aarch64_show_debug_reg_state (state,
1476 "insert_watchpoint", addr, len, type);
1477 }
1478
1479 return ret;
1480 }
1481
1482 /* Implement the "to_remove_watchpoint" target_ops method.
1483 Remove a watchpoint that watched the memory region which starts at
1484 address ADDR, whose length is LEN bytes, and for accesses of the
1485 type TYPE. Return 0 on success, -1 on failure. */
1486
1487 static int
1488 aarch64_linux_remove_watchpoint (struct target_ops *self,
1489 CORE_ADDR addr, int len, int type,
1490 struct expression *cond)
1491 {
1492 int ret;
1493
1494 if (show_debug_regs)
1495 fprintf_unfiltered (gdb_stdlog,
1496 "remove_watchpoint on entry (addr=0x%08lx, len=%d)\n",
1497 (unsigned long) addr, len);
1498
1499 gdb_assert (type != hw_execute);
1500
1501 ret = aarch64_handle_watchpoint (type, addr, len, 0 /* is_insert */);
1502
1503 if (show_debug_regs)
1504 {
1505 struct aarch64_debug_reg_state *state
1506 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1507
1508 aarch64_show_debug_reg_state (state,
1509 "remove_watchpoint", addr, len, type);
1510 }
1511
1512 return ret;
1513 }
1514
1515 /* Implement the "to_region_ok_for_hw_watchpoint" target_ops method. */
1516
1517 static int
1518 aarch64_linux_region_ok_for_hw_watchpoint (struct target_ops *self,
1519 CORE_ADDR addr, int len)
1520 {
1521 CORE_ADDR aligned_addr;
1522
1523 /* Can not set watchpoints for zero or negative lengths. */
1524 if (len <= 0)
1525 return 0;
1526
1527 /* Must have hardware watchpoint debug register(s). */
1528 if (aarch64_num_wp_regs == 0)
1529 return 0;
1530
1531 /* We support unaligned watchpoint address and arbitrary length,
1532 as long as the size of the whole watched area after alignment
1533 doesn't exceed size of the total area that all watchpoint debug
1534 registers can watch cooperatively.
1535
1536 This is a very relaxed rule, but unfortunately there are
1537 limitations, e.g. false-positive hits, due to limited support of
1538 hardware debug registers in the kernel. See comment above
1539 aarch64_align_watchpoint for more information. */
1540
1541 aligned_addr = addr & ~(AARCH64_HWP_MAX_LEN_PER_REG - 1);
1542 if (aligned_addr + aarch64_num_wp_regs * AARCH64_HWP_MAX_LEN_PER_REG
1543 < addr + len)
1544 return 0;
1545
1546 /* All tests passed so we are likely to be able to set the watchpoint.
1547 The reason that it is 'likely' rather than 'must' is because
1548 we don't check the current usage of the watchpoint registers, and
1549 there may not be enough registers available for this watchpoint.
1550 Ideally we should check the cached debug register state, however
1551 the checking is costly. */
1552 return 1;
1553 }
1554
1555 /* Implement the "to_stopped_data_address" target_ops method. */
1556
1557 static int
1558 aarch64_linux_stopped_data_address (struct target_ops *target,
1559 CORE_ADDR *addr_p)
1560 {
1561 siginfo_t siginfo;
1562 int i, tid;
1563 struct aarch64_debug_reg_state *state;
1564
1565 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
1566 return 0;
1567
1568 /* This must be a hardware breakpoint. */
1569 if (siginfo.si_signo != SIGTRAP
1570 || (siginfo.si_code & 0xffff) != TRAP_HWBKPT)
1571 return 0;
1572
1573 /* Check if the address matches any watched address. */
1574 state = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1575 for (i = aarch64_num_wp_regs - 1; i >= 0; --i)
1576 {
1577 const unsigned int len = aarch64_watchpoint_length (state->dr_ctrl_wp[i]);
1578 const CORE_ADDR addr_trap = (CORE_ADDR) siginfo.si_addr;
1579 const CORE_ADDR addr_watch = state->dr_addr_wp[i];
1580
1581 if (state->dr_ref_count_wp[i]
1582 && DR_CONTROL_ENABLED (state->dr_ctrl_wp[i])
1583 && addr_trap >= addr_watch
1584 && addr_trap < addr_watch + len)
1585 {
1586 *addr_p = addr_trap;
1587 return 1;
1588 }
1589 }
1590
1591 return 0;
1592 }
1593
1594 /* Implement the "to_stopped_by_watchpoint" target_ops method. */
1595
1596 static int
1597 aarch64_linux_stopped_by_watchpoint (struct target_ops *ops)
1598 {
1599 CORE_ADDR addr;
1600
1601 return aarch64_linux_stopped_data_address (ops, &addr);
1602 }
1603
1604 /* Implement the "to_watchpoint_addr_within_range" target_ops method. */
1605
1606 static int
1607 aarch64_linux_watchpoint_addr_within_range (struct target_ops *target,
1608 CORE_ADDR addr,
1609 CORE_ADDR start, int length)
1610 {
1611 return start <= addr && start + length - 1 >= addr;
1612 }
1613
1614 /* Define AArch64 maintenance commands. */
1615
1616 static void
1617 add_show_debug_regs_command (void)
1618 {
1619 /* A maintenance command to enable printing the internal DRi mirror
1620 variables. */
1621 add_setshow_boolean_cmd ("show-debug-regs", class_maintenance,
1622 &show_debug_regs, _("\
1623 Set whether to show variables that mirror the AArch64 debug registers."), _("\
1624 Show whether to show variables that mirror the AArch64 debug registers."), _("\
1625 Use \"on\" to enable, \"off\" to disable.\n\
1626 If enabled, the debug registers values are shown when GDB inserts\n\
1627 or removes a hardware breakpoint or watchpoint, and when the inferior\n\
1628 triggers a breakpoint or watchpoint."),
1629 NULL,
1630 NULL,
1631 &maintenance_set_cmdlist,
1632 &maintenance_show_cmdlist);
1633 }
1634
1635 /* -Wmissing-prototypes. */
1636 void _initialize_aarch64_linux_nat (void);
1637
1638 void
1639 _initialize_aarch64_linux_nat (void)
1640 {
1641 struct target_ops *t;
1642
1643 /* Fill in the generic GNU/Linux methods. */
1644 t = linux_target ();
1645
1646 add_show_debug_regs_command ();
1647
1648 /* Add our register access methods. */
1649 t->to_fetch_registers = aarch64_linux_fetch_inferior_registers;
1650 t->to_store_registers = aarch64_linux_store_inferior_registers;
1651
1652 t->to_read_description = aarch64_linux_read_description;
1653
1654 t->to_can_use_hw_breakpoint = aarch64_linux_can_use_hw_breakpoint;
1655 t->to_insert_hw_breakpoint = aarch64_linux_insert_hw_breakpoint;
1656 t->to_remove_hw_breakpoint = aarch64_linux_remove_hw_breakpoint;
1657 t->to_region_ok_for_hw_watchpoint =
1658 aarch64_linux_region_ok_for_hw_watchpoint;
1659 t->to_insert_watchpoint = aarch64_linux_insert_watchpoint;
1660 t->to_remove_watchpoint = aarch64_linux_remove_watchpoint;
1661 t->to_stopped_by_watchpoint = aarch64_linux_stopped_by_watchpoint;
1662 t->to_stopped_data_address = aarch64_linux_stopped_data_address;
1663 t->to_watchpoint_addr_within_range =
1664 aarch64_linux_watchpoint_addr_within_range;
1665
1666 /* Override the GNU/Linux inferior startup hook. */
1667 super_post_startup_inferior = t->to_post_startup_inferior;
1668 t->to_post_startup_inferior = aarch64_linux_child_post_startup_inferior;
1669
1670 /* Register the target. */
1671 linux_nat_add_target (t);
1672 linux_nat_set_new_thread (t, aarch64_linux_new_thread);
1673 linux_nat_set_new_fork (t, aarch64_linux_new_fork);
1674 linux_nat_set_forget_process (t, aarch64_forget_process);
1675 linux_nat_set_prepare_to_resume (t, aarch64_linux_prepare_to_resume);
1676 }
This page took 0.06398 seconds and 4 git commands to generate.