1 /* Native-dependent code for GNU/Linux AArch64.
3 Copyright (C) 2011-2013 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26 #include "linux-nat.h"
27 #include "target-descriptions.h"
30 #include "aarch64-tdep.h"
31 #include "aarch64-linux-tdep.h"
32 #include "elf/common.h"
34 #include <sys/ptrace.h>
35 #include <sys/utsname.h>
39 #include "features/aarch64.c"
41 /* Defines ps_err_e, struct ps_prochandle. */
42 #include "gdb_proc_service.h"
45 #define TRAP_HWBKPT 0x0004
48 /* On GNU/Linux, threads are implemented as pseudo-processes, in which
49 case we may be tracing more than one process at a time. In that
50 case, inferior_ptid will contain the main process ID and the
51 individual thread (process) ID. get_thread_id () is used to get
52 the thread id if it's available, and the process id otherwise. */
55 get_thread_id (ptid_t ptid
)
57 int tid
= TIDGET (ptid
);
64 /* Macro definitions, data structures, and code for the hardware
65 breakpoint and hardware watchpoint support follow. We use the
66 following abbreviations throughout the code:
72 /* Maximum number of hardware breakpoint and watchpoint registers.
73 Neither of these values may exceed the width of dr_changed_t
76 #define AARCH64_HBP_MAX_NUM 16
77 #define AARCH64_HWP_MAX_NUM 16
79 /* Alignment requirement in bytes for addresses written to
80 hardware breakpoint and watchpoint value registers.
82 A ptrace call attempting to set an address that does not meet the
83 alignment criteria will fail. Limited support has been provided in
84 this port for unaligned watchpoints, such that from a GDB user
85 perspective, an unaligned watchpoint may be requested.
87 This is achieved by minimally enlarging the watched area to meet the
88 alignment requirement, and if necessary, splitting the watchpoint
89 over several hardware watchpoint registers. */
91 #define AARCH64_HBP_ALIGNMENT 4
92 #define AARCH64_HWP_ALIGNMENT 8
94 /* The maximum length of a memory region that can be watched by one
95 hardware watchpoint register. */
97 #define AARCH64_HWP_MAX_LEN_PER_REG 8
99 /* ptrace hardware breakpoint resource info is formatted as follows:
102 +---------------+--------------+---------------+---------------+
103 | RESERVED | RESERVED | DEBUG_ARCH | NUM_SLOTS |
104 +---------------+--------------+---------------+---------------+ */
107 /* Macros to extract fields from the hardware debug information word. */
108 #define AARCH64_DEBUG_NUM_SLOTS(x) ((x) & 0xff)
109 #define AARCH64_DEBUG_ARCH(x) (((x) >> 8) & 0xff)
111 /* Macro for the expected version of the ARMv8-A debug architecture. */
112 #define AARCH64_DEBUG_ARCH_V8 0x6
114 /* Number of hardware breakpoints/watchpoints the target supports.
115 They are initialized with values obtained via the ptrace calls
116 with NT_ARM_HW_BREAK and NT_ARM_HW_WATCH respectively. */
118 static int aarch64_num_bp_regs
;
119 static int aarch64_num_wp_regs
;
121 /* Debugging of hardware breakpoint/watchpoint support. */
123 static int debug_hw_points
;
125 /* Each bit of a variable of this type is used to indicate whether a
126 hardware breakpoint or watchpoint setting has been changed since
129 Bit N corresponds to the Nth hardware breakpoint or watchpoint
130 setting which is managed in aarch64_debug_reg_state, where N is
131 valid between 0 and the total number of the hardware breakpoint or
132 watchpoint debug registers minus 1.
134 When bit N is 1, the corresponding breakpoint or watchpoint setting
135 has changed, and therefore the corresponding hardware debug
136 register needs to be updated via the ptrace interface.
138 In the per-thread arch-specific data area, we define two such
139 variables for per-thread hardware breakpoint and watchpoint
140 settings respectively.
142 This type is part of the mechanism which helps reduce the number of
143 ptrace calls to the kernel, i.e. avoid asking the kernel to write
144 to the debug registers with unchanged values. */
146 typedef unsigned LONGEST dr_changed_t
;
148 /* Set each of the lower M bits of X to 1; assert X is wide enough. */
150 #define DR_MARK_ALL_CHANGED(x, m) \
153 gdb_assert (sizeof ((x)) * 8 >= (m)); \
154 (x) = (((dr_changed_t)1 << (m)) - 1); \
157 #define DR_MARK_N_CHANGED(x, n) \
160 (x) |= ((dr_changed_t)1 << (n)); \
163 #define DR_CLEAR_CHANGED(x) \
169 #define DR_HAS_CHANGED(x) ((x) != 0)
170 #define DR_N_HAS_CHANGED(x, n) ((x) & ((dr_changed_t)1 << (n)))
172 /* Structure for managing the hardware breakpoint/watchpoint resources.
173 DR_ADDR_* stores the address, DR_CTRL_* stores the control register
174 content, and DR_REF_COUNT_* counts the numbers of references to the
175 corresponding bp/wp, by which way the limited hardware resources
176 are not wasted on duplicated bp/wp settings (though so far gdb has
177 done a good job by not sending duplicated bp/wp requests). */
179 struct aarch64_debug_reg_state
181 /* hardware breakpoint */
182 CORE_ADDR dr_addr_bp
[AARCH64_HBP_MAX_NUM
];
183 unsigned int dr_ctrl_bp
[AARCH64_HBP_MAX_NUM
];
184 unsigned int dr_ref_count_bp
[AARCH64_HBP_MAX_NUM
];
186 /* hardware watchpoint */
187 CORE_ADDR dr_addr_wp
[AARCH64_HWP_MAX_NUM
];
188 unsigned int dr_ctrl_wp
[AARCH64_HWP_MAX_NUM
];
189 unsigned int dr_ref_count_wp
[AARCH64_HWP_MAX_NUM
];
192 /* Per-process data. We don't bind this to a per-inferior registry
193 because of targets like x86 GNU/Linux that need to keep track of
194 processes that aren't bound to any inferior (e.g., fork children,
197 struct aarch64_process_info
200 struct aarch64_process_info
*next
;
202 /* The process identifier. */
205 /* Copy of aarch64 hardware debug registers. */
206 struct aarch64_debug_reg_state state
;
209 static struct aarch64_process_info
*aarch64_process_list
= NULL
;
211 /* Find process data for process PID. */
213 static struct aarch64_process_info
*
214 aarch64_find_process_pid (pid_t pid
)
216 struct aarch64_process_info
*proc
;
218 for (proc
= aarch64_process_list
; proc
; proc
= proc
->next
)
219 if (proc
->pid
== pid
)
225 /* Add process data for process PID. Returns newly allocated info
228 static struct aarch64_process_info
*
229 aarch64_add_process (pid_t pid
)
231 struct aarch64_process_info
*proc
;
233 proc
= xcalloc (1, sizeof (*proc
));
236 proc
->next
= aarch64_process_list
;
237 aarch64_process_list
= proc
;
242 /* Get data specific info for process PID, creating it if necessary.
243 Never returns NULL. */
245 static struct aarch64_process_info
*
246 aarch64_process_info_get (pid_t pid
)
248 struct aarch64_process_info
*proc
;
250 proc
= aarch64_find_process_pid (pid
);
252 proc
= aarch64_add_process (pid
);
257 /* Called whenever GDB is no longer debugging process PID. It deletes
258 data structures that keep track of debug register state. */
261 aarch64_forget_process (pid_t pid
)
263 struct aarch64_process_info
*proc
, **proc_link
;
265 proc
= aarch64_process_list
;
266 proc_link
= &aarch64_process_list
;
270 if (proc
->pid
== pid
)
272 *proc_link
= proc
->next
;
278 proc_link
= &proc
->next
;
283 /* Get debug registers state for process PID. */
285 static struct aarch64_debug_reg_state
*
286 aarch64_get_debug_reg_state (pid_t pid
)
288 return &aarch64_process_info_get (pid
)->state
;
291 /* Per-thread arch-specific data we want to keep. */
295 /* When bit N is 1, it indicates the Nth hardware breakpoint or
296 watchpoint register pair needs to be updated when the thread is
297 resumed; see aarch64_linux_prepare_to_resume. */
298 dr_changed_t dr_changed_bp
;
299 dr_changed_t dr_changed_wp
;
302 /* Call ptrace to set the thread TID's hardware breakpoint/watchpoint
303 registers with data from *STATE. */
306 aarch64_linux_set_debug_regs (const struct aarch64_debug_reg_state
*state
,
307 int tid
, int watchpoint
)
311 struct user_hwdebug_state regs
;
312 const CORE_ADDR
*addr
;
313 const unsigned int *ctrl
;
315 iov
.iov_base
= ®s
;
316 iov
.iov_len
= sizeof (regs
);
317 count
= watchpoint
? aarch64_num_wp_regs
: aarch64_num_bp_regs
;
318 addr
= watchpoint
? state
->dr_addr_wp
: state
->dr_addr_bp
;
319 ctrl
= watchpoint
? state
->dr_ctrl_wp
: state
->dr_ctrl_bp
;
321 for (i
= 0; i
< count
; i
++)
323 regs
.dbg_regs
[i
].addr
= addr
[i
];
324 regs
.dbg_regs
[i
].ctrl
= ctrl
[i
];
327 if (ptrace (PTRACE_SETREGSET
, tid
,
328 watchpoint
? NT_ARM_HW_WATCH
: NT_ARM_HW_BREAK
,
330 error (_("Unexpected error setting hardware debug registers"));
333 struct aarch64_dr_update_callback_param
339 /* Callback for iterate_over_lwps. Records the
340 information about the change of one hardware breakpoint/watchpoint
341 setting for the thread LWP.
342 The information is passed in via PTR.
343 N.B. The actual updating of hardware debug registers is not
344 carried out until the moment the thread is resumed. */
347 debug_reg_change_callback (struct lwp_info
*lwp
, void *ptr
)
349 struct aarch64_dr_update_callback_param
*param_p
350 = (struct aarch64_dr_update_callback_param
*) ptr
;
351 int pid
= get_thread_id (lwp
->ptid
);
352 int idx
= param_p
->idx
;
353 int is_watchpoint
= param_p
->is_watchpoint
;
354 struct arch_lwp_info
*info
= lwp
->arch_private
;
355 dr_changed_t
*dr_changed_ptr
;
356 dr_changed_t dr_changed
;
359 info
= lwp
->arch_private
= XCNEW (struct arch_lwp_info
);
363 fprintf_unfiltered (gdb_stdlog
,
364 "debug_reg_change_callback: \n\tOn entry:\n");
365 fprintf_unfiltered (gdb_stdlog
,
366 "\tpid%d, dr_changed_bp=0x%s, "
367 "dr_changed_wp=0x%s\n",
368 pid
, phex (info
->dr_changed_bp
, 8),
369 phex (info
->dr_changed_wp
, 8));
372 dr_changed_ptr
= is_watchpoint
? &info
->dr_changed_wp
373 : &info
->dr_changed_bp
;
374 dr_changed
= *dr_changed_ptr
;
377 && (idx
<= (is_watchpoint
? aarch64_num_wp_regs
378 : aarch64_num_bp_regs
)));
380 /* The actual update is done later just before resuming the lwp,
381 we just mark that one register pair needs updating. */
382 DR_MARK_N_CHANGED (dr_changed
, idx
);
383 *dr_changed_ptr
= dr_changed
;
385 /* If the lwp isn't stopped, force it to momentarily pause, so
386 we can update its debug registers. */
388 linux_stop_lwp (lwp
);
392 fprintf_unfiltered (gdb_stdlog
,
393 "\tOn exit:\n\tpid%d, dr_changed_bp=0x%s, "
394 "dr_changed_wp=0x%s\n",
395 pid
, phex (info
->dr_changed_bp
, 8),
396 phex (info
->dr_changed_wp
, 8));
399 /* Continue the iteration. */
403 /* Notify each thread that their IDXth breakpoint/watchpoint register
404 pair needs to be updated. The message will be recorded in each
405 thread's arch-specific data area, the actual updating will be done
406 when the thread is resumed. */
409 aarch64_notify_debug_reg_change (const struct aarch64_debug_reg_state
*state
,
410 int is_watchpoint
, unsigned int idx
)
412 struct aarch64_dr_update_callback_param param
;
413 ptid_t pid_ptid
= pid_to_ptid (ptid_get_pid (inferior_ptid
));
415 param
.is_watchpoint
= is_watchpoint
;
418 iterate_over_lwps (pid_ptid
, debug_reg_change_callback
, (void *) ¶m
);
421 /* Print the values of the cached breakpoint/watchpoint registers. */
424 aarch64_show_debug_reg_state (struct aarch64_debug_reg_state
*state
,
425 const char *func
, CORE_ADDR addr
,
430 fprintf_unfiltered (gdb_stdlog
, "%s", func
);
432 fprintf_unfiltered (gdb_stdlog
, " (addr=0x%08lx, len=%d, type=%s)",
433 (unsigned long) addr
, len
,
434 type
== hw_write
? "hw-write-watchpoint"
435 : (type
== hw_read
? "hw-read-watchpoint"
436 : (type
== hw_access
? "hw-access-watchpoint"
437 : (type
== hw_execute
? "hw-breakpoint"
439 fprintf_unfiltered (gdb_stdlog
, ":\n");
441 fprintf_unfiltered (gdb_stdlog
, "\tBREAKPOINTs:\n");
442 for (i
= 0; i
< aarch64_num_bp_regs
; i
++)
443 fprintf_unfiltered (gdb_stdlog
,
444 "\tBP%d: addr=0x%08lx, ctrl=0x%08x, ref.count=%d\n",
445 i
, state
->dr_addr_bp
[i
],
446 state
->dr_ctrl_bp
[i
], state
->dr_ref_count_bp
[i
]);
448 fprintf_unfiltered (gdb_stdlog
, "\tWATCHPOINTs:\n");
449 for (i
= 0; i
< aarch64_num_wp_regs
; i
++)
450 fprintf_unfiltered (gdb_stdlog
,
451 "\tWP%d: addr=0x%08lx, ctrl=0x%08x, ref.count=%d\n",
452 i
, state
->dr_addr_wp
[i
],
453 state
->dr_ctrl_wp
[i
], state
->dr_ref_count_wp
[i
]);
456 /* Fill GDB's register array with the general-purpose register values
457 from the current thread. */
460 fetch_gregs_from_thread (struct regcache
*regcache
)
466 tid
= get_thread_id (inferior_ptid
);
468 iovec
.iov_base
= ®s
;
469 iovec
.iov_len
= sizeof (regs
);
471 ret
= ptrace (PTRACE_GETREGSET
, tid
, NT_PRSTATUS
, &iovec
);
473 perror_with_name (_("Unable to fetch general registers."));
475 for (regno
= AARCH64_X0_REGNUM
; regno
<= AARCH64_CPSR_REGNUM
; regno
++)
476 regcache_raw_supply (regcache
, regno
,
477 (char *) ®s
[regno
- AARCH64_X0_REGNUM
]);
480 /* Store to the current thread the valid general-purpose register
481 values in the GDB's register array. */
484 store_gregs_to_thread (const struct regcache
*regcache
)
490 tid
= get_thread_id (inferior_ptid
);
492 iovec
.iov_base
= ®s
;
493 iovec
.iov_len
= sizeof (regs
);
495 ret
= ptrace (PTRACE_GETREGSET
, tid
, NT_PRSTATUS
, &iovec
);
497 perror_with_name (_("Unable to fetch general registers."));
499 for (regno
= AARCH64_X0_REGNUM
; regno
<= AARCH64_CPSR_REGNUM
; regno
++)
500 if (REG_VALID
== regcache_register_status (regcache
, regno
))
501 regcache_raw_collect (regcache
, regno
,
502 (char *) ®s
[regno
- AARCH64_X0_REGNUM
]);
504 ret
= ptrace (PTRACE_SETREGSET
, tid
, NT_PRSTATUS
, &iovec
);
506 perror_with_name (_("Unable to store general registers."));
509 /* Fill GDB's register array with the fp/simd register values
510 from the current thread. */
513 fetch_fpregs_from_thread (struct regcache
*regcache
)
519 tid
= get_thread_id (inferior_ptid
);
521 iovec
.iov_base
= ®s
;
522 iovec
.iov_len
= sizeof (regs
);
524 ret
= ptrace (PTRACE_GETREGSET
, tid
, NT_FPREGSET
, &iovec
);
526 perror_with_name (_("Unable to fetch FP/SIMD registers."));
528 for (regno
= AARCH64_V0_REGNUM
; regno
<= AARCH64_V31_REGNUM
; regno
++)
529 regcache_raw_supply (regcache
, regno
,
530 (char *) ®s
.vregs
[regno
- AARCH64_V0_REGNUM
]);
532 regcache_raw_supply (regcache
, AARCH64_FPSR_REGNUM
, (char *) ®s
.fpsr
);
533 regcache_raw_supply (regcache
, AARCH64_FPCR_REGNUM
, (char *) ®s
.fpcr
);
536 /* Store to the current thread the valid fp/simd register
537 values in the GDB's register array. */
540 store_fpregs_to_thread (const struct regcache
*regcache
)
546 tid
= get_thread_id (inferior_ptid
);
548 iovec
.iov_base
= ®s
;
549 iovec
.iov_len
= sizeof (regs
);
551 ret
= ptrace (PTRACE_GETREGSET
, tid
, NT_FPREGSET
, &iovec
);
553 perror_with_name (_("Unable to fetch FP/SIMD registers."));
555 for (regno
= AARCH64_V0_REGNUM
; regno
<= AARCH64_V31_REGNUM
; regno
++)
556 if (REG_VALID
== regcache_register_status (regcache
, regno
))
557 regcache_raw_collect (regcache
, regno
,
558 (char *) ®s
.vregs
[regno
- AARCH64_V0_REGNUM
]);
560 if (REG_VALID
== regcache_register_status (regcache
, AARCH64_FPSR_REGNUM
))
561 regcache_raw_collect (regcache
, AARCH64_FPSR_REGNUM
, (char *) ®s
.fpsr
);
562 if (REG_VALID
== regcache_register_status (regcache
, AARCH64_FPCR_REGNUM
))
563 regcache_raw_collect (regcache
, AARCH64_FPCR_REGNUM
, (char *) ®s
.fpcr
);
565 ret
= ptrace (PTRACE_SETREGSET
, tid
, NT_FPREGSET
, &iovec
);
567 perror_with_name (_("Unable to store FP/SIMD registers."));
570 /* Implement the "to_fetch_register" target_ops method. */
573 aarch64_linux_fetch_inferior_registers (struct target_ops
*ops
,
574 struct regcache
*regcache
,
579 fetch_gregs_from_thread (regcache
);
580 fetch_fpregs_from_thread (regcache
);
582 else if (regno
< AARCH64_V0_REGNUM
)
583 fetch_gregs_from_thread (regcache
);
585 fetch_fpregs_from_thread (regcache
);
588 /* Implement the "to_store_register" target_ops method. */
591 aarch64_linux_store_inferior_registers (struct target_ops
*ops
,
592 struct regcache
*regcache
,
597 store_gregs_to_thread (regcache
);
598 store_fpregs_to_thread (regcache
);
600 else if (regno
< AARCH64_V0_REGNUM
)
601 store_gregs_to_thread (regcache
);
603 store_fpregs_to_thread (regcache
);
606 /* Fill register REGNO (if it is a general-purpose register) in
607 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
608 do this for all registers. */
611 fill_gregset (const struct regcache
*regcache
,
612 gdb_gregset_t
*gregsetp
, int regno
)
614 gdb_byte
*gregs_buf
= (gdb_byte
*) gregsetp
;
617 for (i
= AARCH64_X0_REGNUM
; i
<= AARCH64_CPSR_REGNUM
; i
++)
618 if (regno
== -1 || regno
== i
)
619 regcache_raw_collect (regcache
, i
,
620 gregs_buf
+ X_REGISTER_SIZE
621 * (i
- AARCH64_X0_REGNUM
));
624 /* Fill GDB's register array with the general-purpose register values
628 supply_gregset (struct regcache
*regcache
, const gdb_gregset_t
*gregsetp
)
630 aarch64_linux_supply_gregset (regcache
, (const gdb_byte
*) gregsetp
);
633 /* Fill register REGNO (if it is a floating-point register) in
634 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
635 do this for all registers. */
638 fill_fpregset (const struct regcache
*regcache
,
639 gdb_fpregset_t
*fpregsetp
, int regno
)
641 gdb_byte
*fpregs_buf
= (gdb_byte
*) fpregsetp
;
644 for (i
= AARCH64_V0_REGNUM
; i
<= AARCH64_V31_REGNUM
; i
++)
645 if (regno
== -1 || regno
== i
)
646 regcache_raw_collect (regcache
, i
,
647 fpregs_buf
+ V_REGISTER_SIZE
648 * (i
- AARCH64_V0_REGNUM
));
650 if (regno
== -1 || regno
== AARCH64_FPSR_REGNUM
)
651 regcache_raw_collect (regcache
, AARCH64_FPSR_REGNUM
,
652 fpregs_buf
+ V_REGISTER_SIZE
* 32);
654 if (regno
== -1 || regno
== AARCH64_FPCR_REGNUM
)
655 regcache_raw_collect (regcache
, AARCH64_FPCR_REGNUM
,
656 fpregs_buf
+ V_REGISTER_SIZE
* 32 + 4);
659 /* Fill GDB's register array with the floating-point register values
663 supply_fpregset (struct regcache
*regcache
, const gdb_fpregset_t
*fpregsetp
)
665 aarch64_linux_supply_fpregset (regcache
, (const gdb_byte
*) fpregsetp
);
668 /* Called when resuming a thread.
669 The hardware debug registers are updated when there is any change. */
672 aarch64_linux_prepare_to_resume (struct lwp_info
*lwp
)
674 struct arch_lwp_info
*info
= lwp
->arch_private
;
676 /* NULL means this is the main thread still going through the shell,
677 or, no watchpoint has been set yet. In that case, there's
682 if (DR_HAS_CHANGED (info
->dr_changed_bp
)
683 || DR_HAS_CHANGED (info
->dr_changed_wp
))
685 int tid
= GET_LWP (lwp
->ptid
);
686 struct aarch64_debug_reg_state
*state
687 = aarch64_get_debug_reg_state (ptid_get_pid (lwp
->ptid
));
690 fprintf_unfiltered (gdb_stdlog
, "prepare_to_resume thread %d\n", tid
);
693 if (DR_HAS_CHANGED (info
->dr_changed_wp
))
695 aarch64_linux_set_debug_regs (state
, tid
, 1);
696 DR_CLEAR_CHANGED (info
->dr_changed_wp
);
700 if (DR_HAS_CHANGED (info
->dr_changed_bp
))
702 aarch64_linux_set_debug_regs (state
, tid
, 0);
703 DR_CLEAR_CHANGED (info
->dr_changed_bp
);
709 aarch64_linux_new_thread (struct lwp_info
*lp
)
711 struct arch_lwp_info
*info
= XCNEW (struct arch_lwp_info
);
713 /* Mark that all the hardware breakpoint/watchpoint register pairs
714 for this thread need to be initialized. */
715 DR_MARK_ALL_CHANGED (info
->dr_changed_bp
, aarch64_num_bp_regs
);
716 DR_MARK_ALL_CHANGED (info
->dr_changed_wp
, aarch64_num_wp_regs
);
718 lp
->arch_private
= info
;
721 /* linux_nat_new_fork hook. */
724 aarch64_linux_new_fork (struct lwp_info
*parent
, pid_t child_pid
)
727 struct aarch64_debug_reg_state
*parent_state
;
728 struct aarch64_debug_reg_state
*child_state
;
730 /* NULL means no watchpoint has ever been set in the parent. In
731 that case, there's nothing to do. */
732 if (parent
->arch_private
== NULL
)
735 /* GDB core assumes the child inherits the watchpoints/hw
736 breakpoints of the parent, and will remove them all from the
737 forked off process. Copy the debug registers mirrors into the
738 new process so that all breakpoints and watchpoints can be
741 parent_pid
= ptid_get_pid (parent
->ptid
);
742 parent_state
= aarch64_get_debug_reg_state (parent_pid
);
743 child_state
= aarch64_get_debug_reg_state (child_pid
);
744 *child_state
= *parent_state
;
748 /* Called by libthread_db. Returns a pointer to the thread local
749 storage (or its descriptor). */
752 ps_get_thread_area (const struct ps_prochandle
*ph
,
753 lwpid_t lwpid
, int idx
, void **base
)
758 iovec
.iov_base
= ®
;
759 iovec
.iov_len
= sizeof (reg
);
761 if (ptrace (PTRACE_GETREGSET
, lwpid
, NT_ARM_TLS
, &iovec
) != 0)
764 /* IDX is the bias from the thread pointer to the beginning of the
765 thread descriptor. It has to be subtracted due to implementation
766 quirks in libthread_db. */
767 *base
= (void *) (reg
- idx
);
773 /* Get the hardware debug register capacity information. */
776 aarch64_linux_get_debug_reg_capacity (void)
780 struct user_hwdebug_state dreg_state
;
782 tid
= get_thread_id (inferior_ptid
);
783 iov
.iov_base
= &dreg_state
;
784 iov
.iov_len
= sizeof (dreg_state
);
786 /* Get hardware watchpoint register info. */
787 if (ptrace (PTRACE_GETREGSET
, tid
, NT_ARM_HW_WATCH
, &iov
) == 0
788 && AARCH64_DEBUG_ARCH (dreg_state
.dbg_info
) == AARCH64_DEBUG_ARCH_V8
)
790 aarch64_num_wp_regs
= AARCH64_DEBUG_NUM_SLOTS (dreg_state
.dbg_info
);
791 if (aarch64_num_wp_regs
> AARCH64_HWP_MAX_NUM
)
793 warning (_("Unexpected number of hardware watchpoint registers"
794 " reported by ptrace, got %d, expected %d."),
795 aarch64_num_wp_regs
, AARCH64_HWP_MAX_NUM
);
796 aarch64_num_wp_regs
= AARCH64_HWP_MAX_NUM
;
801 warning (_("Unable to determine the number of hardware watchpoints"
803 aarch64_num_wp_regs
= 0;
806 /* Get hardware breakpoint register info. */
807 if (ptrace (PTRACE_GETREGSET
, tid
, NT_ARM_HW_BREAK
, &iov
) == 0
808 && AARCH64_DEBUG_ARCH (dreg_state
.dbg_info
) == AARCH64_DEBUG_ARCH_V8
)
810 aarch64_num_bp_regs
= AARCH64_DEBUG_NUM_SLOTS (dreg_state
.dbg_info
);
811 if (aarch64_num_bp_regs
> AARCH64_HBP_MAX_NUM
)
813 warning (_("Unexpected number of hardware breakpoint registers"
814 " reported by ptrace, got %d, expected %d."),
815 aarch64_num_bp_regs
, AARCH64_HBP_MAX_NUM
);
816 aarch64_num_bp_regs
= AARCH64_HBP_MAX_NUM
;
821 warning (_("Unable to determine the number of hardware breakpoints"
823 aarch64_num_bp_regs
= 0;
827 static void (*super_post_startup_inferior
) (ptid_t ptid
);
829 /* Implement the "to_post_startup_inferior" target_ops method. */
832 aarch64_linux_child_post_startup_inferior (ptid_t ptid
)
834 aarch64_forget_process (ptid_get_pid (ptid
));
835 aarch64_linux_get_debug_reg_capacity ();
836 super_post_startup_inferior (ptid
);
839 /* Implement the "to_read_description" target_ops method. */
841 static const struct target_desc
*
842 aarch64_linux_read_description (struct target_ops
*ops
)
844 initialize_tdesc_aarch64 ();
845 return tdesc_aarch64
;
848 /* Given the (potentially unaligned) watchpoint address in ADDR and
849 length in LEN, return the aligned address and aligned length in
850 *ALIGNED_ADDR_P and *ALIGNED_LEN_P, respectively. The returned
851 aligned address and length will be valid values to write to the
852 hardware watchpoint value and control registers.
854 The given watchpoint may get truncated if more than one hardware
855 register is needed to cover the watched region. *NEXT_ADDR_P
856 and *NEXT_LEN_P, if non-NULL, will return the address and length
857 of the remaining part of the watchpoint (which can be processed
858 by calling this routine again to generate another aligned address
861 See the comment above the function of the same name in
862 gdbserver/linux-aarch64-low.c for more information. */
865 aarch64_align_watchpoint (CORE_ADDR addr
, int len
, CORE_ADDR
*aligned_addr_p
,
866 int *aligned_len_p
, CORE_ADDR
*next_addr_p
,
871 CORE_ADDR aligned_addr
;
872 const unsigned int alignment
= AARCH64_HWP_ALIGNMENT
;
873 const unsigned int max_wp_len
= AARCH64_HWP_MAX_LEN_PER_REG
;
875 /* As assumed by the algorithm. */
876 gdb_assert (alignment
== max_wp_len
);
881 /* Address to be put into the hardware watchpoint value register
883 offset
= addr
& (alignment
- 1);
884 aligned_addr
= addr
- offset
;
886 gdb_assert (offset
>= 0 && offset
< alignment
);
887 gdb_assert (aligned_addr
>= 0 && aligned_addr
<= addr
);
888 gdb_assert (offset
+ len
> 0);
890 if (offset
+ len
>= max_wp_len
)
892 /* Need more than one watchpoint registers; truncate it at the
893 alignment boundary. */
894 aligned_len
= max_wp_len
;
895 len
-= (max_wp_len
- offset
);
896 addr
+= (max_wp_len
- offset
);
897 gdb_assert ((addr
& (alignment
- 1)) == 0);
901 /* Find the smallest valid length that is large enough to
902 accommodate this watchpoint. */
903 static const unsigned char
904 aligned_len_array
[AARCH64_HWP_MAX_LEN_PER_REG
] =
905 { 1, 2, 4, 4, 8, 8, 8, 8 };
907 aligned_len
= aligned_len_array
[offset
+ len
- 1];
913 *aligned_addr_p
= aligned_addr
;
915 *aligned_len_p
= aligned_len
;
922 /* Returns the number of hardware watchpoints of type TYPE that we can
923 set. Value is positive if we can set CNT watchpoints, zero if
924 setting watchpoints of type TYPE is not supported, and negative if
925 CNT is more than the maximum number of watchpoints of type TYPE
926 that we can support. TYPE is one of bp_hardware_watchpoint,
927 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
928 CNT is the number of such watchpoints used so far (including this
929 one). OTHERTYPE is non-zero if other types of watchpoints are
932 We always return 1 here because we don't have enough information
933 about possible overlap of addresses that they want to watch. As an
934 extreme example, consider the case where all the watchpoints watch
935 the same address and the same region length: then we can handle a
936 virtually unlimited number of watchpoints, due to debug register
937 sharing implemented via reference counts. */
940 aarch64_linux_can_use_hw_breakpoint (int type
, int cnt
, int othertype
)
945 /* ptrace expects control registers to be formatted as follows:
948 +--------------------------------+----------+------+------+----+
949 | RESERVED (SBZ) | LENGTH | TYPE | PRIV | EN |
950 +--------------------------------+----------+------+------+----+
952 The TYPE field is ignored for breakpoints. */
954 #define DR_CONTROL_ENABLED(ctrl) (((ctrl) & 0x1) == 1)
955 #define DR_CONTROL_LENGTH(ctrl) (((ctrl) >> 5) & 0xff)
957 /* Utility function that returns the length in bytes of a watchpoint
958 according to the content of a hardware debug control register CTRL.
959 Note that the kernel currently only supports the following Byte
960 Address Select (BAS) values: 0x1, 0x3, 0xf and 0xff, which means
961 that for a hardware watchpoint, its valid length can only be 1
962 byte, 2 bytes, 4 bytes or 8 bytes. */
964 static inline unsigned int
965 aarch64_watchpoint_length (unsigned int ctrl
)
967 switch (DR_CONTROL_LENGTH (ctrl
))
982 /* Given the hardware breakpoint or watchpoint type TYPE and its
983 length LEN, return the expected encoding for a hardware
984 breakpoint/watchpoint control register. */
987 aarch64_point_encode_ctrl_reg (int type
, int len
)
989 unsigned int ctrl
, ttype
;
1007 perror_with_name (_("Unrecognized breakpoint/watchpoint type"));
1011 /* length bitmask */
1012 ctrl
|= ((1 << len
) - 1) << 5;
1013 /* enabled at el0 */
1014 ctrl
|= (2 << 1) | 1;
1019 /* Addresses to be written to the hardware breakpoint and watchpoint
1020 value registers need to be aligned; the alignment is 4-byte and
1021 8-type respectively. Linux kernel rejects any non-aligned address
1022 it receives from the related ptrace call. Furthermore, the kernel
1023 currently only supports the following Byte Address Select (BAS)
1024 values: 0x1, 0x3, 0xf and 0xff, which means that for a hardware
1025 watchpoint to be accepted by the kernel (via ptrace call), its
1026 valid length can only be 1 byte, 2 bytes, 4 bytes or 8 bytes.
1027 Despite these limitations, the unaligned watchpoint is supported in
1030 Return 0 for any non-compliant ADDR and/or LEN; return 1 otherwise. */
1033 aarch64_point_is_aligned (int is_watchpoint
, CORE_ADDR addr
, int len
)
1035 unsigned int alignment
= is_watchpoint
? AARCH64_HWP_ALIGNMENT
1036 : AARCH64_HBP_ALIGNMENT
;
1038 if (addr
& (alignment
- 1))
1041 if (len
!= 8 && len
!= 4 && len
!= 2 && len
!= 1)
1047 /* Record the insertion of one breakpoint/watchpoint, as represented
1048 by ADDR and CTRL, in the cached debug register state area *STATE. */
1051 aarch64_dr_state_insert_one_point (struct aarch64_debug_reg_state
*state
,
1052 int type
, CORE_ADDR addr
, int len
)
1054 int i
, idx
, num_regs
, is_watchpoint
;
1055 unsigned int ctrl
, *dr_ctrl_p
, *dr_ref_count
;
1056 CORE_ADDR
*dr_addr_p
;
1058 /* Set up state pointers. */
1059 is_watchpoint
= (type
!= hw_execute
);
1060 gdb_assert (aarch64_point_is_aligned (is_watchpoint
, addr
, len
));
1063 num_regs
= aarch64_num_wp_regs
;
1064 dr_addr_p
= state
->dr_addr_wp
;
1065 dr_ctrl_p
= state
->dr_ctrl_wp
;
1066 dr_ref_count
= state
->dr_ref_count_wp
;
1070 num_regs
= aarch64_num_bp_regs
;
1071 dr_addr_p
= state
->dr_addr_bp
;
1072 dr_ctrl_p
= state
->dr_ctrl_bp
;
1073 dr_ref_count
= state
->dr_ref_count_bp
;
1076 ctrl
= aarch64_point_encode_ctrl_reg (type
, len
);
1078 /* Find an existing or free register in our cache. */
1080 for (i
= 0; i
< num_regs
; ++i
)
1082 if ((dr_ctrl_p
[i
] & 1) == 0)
1084 gdb_assert (dr_ref_count
[i
] == 0);
1086 /* no break; continue hunting for an existing one. */
1088 else if (dr_addr_p
[i
] == addr
&& dr_ctrl_p
[i
] == ctrl
)
1090 gdb_assert (dr_ref_count
[i
] != 0);
1100 /* Update our cache. */
1101 if ((dr_ctrl_p
[idx
] & 1) == 0)
1104 dr_addr_p
[idx
] = addr
;
1105 dr_ctrl_p
[idx
] = ctrl
;
1106 dr_ref_count
[idx
] = 1;
1107 /* Notify the change. */
1108 aarch64_notify_debug_reg_change (state
, is_watchpoint
, idx
);
1112 /* existing entry */
1113 dr_ref_count
[idx
]++;
1119 /* Record the removal of one breakpoint/watchpoint, as represented by
1120 ADDR and CTRL, in the cached debug register state area *STATE. */
1123 aarch64_dr_state_remove_one_point (struct aarch64_debug_reg_state
*state
,
1124 int type
, CORE_ADDR addr
, int len
)
1126 int i
, num_regs
, is_watchpoint
;
1127 unsigned int ctrl
, *dr_ctrl_p
, *dr_ref_count
;
1128 CORE_ADDR
*dr_addr_p
;
1130 /* Set up state pointers. */
1131 is_watchpoint
= (type
!= hw_execute
);
1132 gdb_assert (aarch64_point_is_aligned (is_watchpoint
, addr
, len
));
1135 num_regs
= aarch64_num_wp_regs
;
1136 dr_addr_p
= state
->dr_addr_wp
;
1137 dr_ctrl_p
= state
->dr_ctrl_wp
;
1138 dr_ref_count
= state
->dr_ref_count_wp
;
1142 num_regs
= aarch64_num_bp_regs
;
1143 dr_addr_p
= state
->dr_addr_bp
;
1144 dr_ctrl_p
= state
->dr_ctrl_bp
;
1145 dr_ref_count
= state
->dr_ref_count_bp
;
1148 ctrl
= aarch64_point_encode_ctrl_reg (type
, len
);
1150 /* Find the entry that matches the ADDR and CTRL. */
1151 for (i
= 0; i
< num_regs
; ++i
)
1152 if (dr_addr_p
[i
] == addr
&& dr_ctrl_p
[i
] == ctrl
)
1154 gdb_assert (dr_ref_count
[i
] != 0);
1162 /* Clear our cache. */
1163 if (--dr_ref_count
[i
] == 0)
1165 /* Clear the enable bit. */
1168 dr_ctrl_p
[i
] = ctrl
;
1169 /* Notify the change. */
1170 aarch64_notify_debug_reg_change (state
, is_watchpoint
, i
);
1176 /* Implement insertion and removal of a single breakpoint. */
1179 aarch64_handle_breakpoint (int type
, CORE_ADDR addr
, int len
, int is_insert
)
1181 struct aarch64_debug_reg_state
*state
;
1183 /* The hardware breakpoint on AArch64 should always be 4-byte
1185 if (!aarch64_point_is_aligned (0 /* is_watchpoint */ , addr
, len
))
1188 state
= aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid
));
1191 return aarch64_dr_state_insert_one_point (state
, type
, addr
, len
);
1193 return aarch64_dr_state_remove_one_point (state
, type
, addr
, len
);
1196 /* Insert a hardware-assisted breakpoint at BP_TGT->placed_address.
1197 Return 0 on success, -1 on failure. */
1200 aarch64_linux_insert_hw_breakpoint (struct gdbarch
*gdbarch
,
1201 struct bp_target_info
*bp_tgt
)
1204 CORE_ADDR addr
= bp_tgt
->placed_address
;
1206 const int type
= hw_execute
;
1208 if (debug_hw_points
)
1211 "insert_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
1212 (unsigned long) addr
, len
);
1214 ret
= aarch64_handle_breakpoint (type
, addr
, len
, 1 /* is_insert */);
1216 if (debug_hw_points
> 1)
1218 struct aarch64_debug_reg_state
*state
1219 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid
));
1221 aarch64_show_debug_reg_state (state
,
1222 "insert_hw_watchpoint", addr
, len
, type
);
1228 /* Remove a hardware-assisted breakpoint at BP_TGT->placed_address.
1229 Return 0 on success, -1 on failure. */
1232 aarch64_linux_remove_hw_breakpoint (struct gdbarch
*gdbarch
,
1233 struct bp_target_info
*bp_tgt
)
1236 CORE_ADDR addr
= bp_tgt
->placed_address
;
1238 const int type
= hw_execute
;
1240 if (debug_hw_points
)
1242 (gdb_stdlog
, "remove_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
1243 (unsigned long) addr
, len
);
1245 ret
= aarch64_handle_breakpoint (type
, addr
, len
, 0 /* is_insert */);
1247 if (debug_hw_points
> 1)
1249 struct aarch64_debug_reg_state
*state
1250 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid
));
1252 aarch64_show_debug_reg_state (state
,
1253 "remove_hw_watchpoint", addr
, len
, type
);
1259 /* This is essentially the same as aarch64_handle_breakpoint, apart
1260 from that it is an aligned watchpoint to be handled. */
1263 aarch64_handle_aligned_watchpoint (int type
, CORE_ADDR addr
, int len
,
1266 struct aarch64_debug_reg_state
*state
1267 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid
));
1270 return aarch64_dr_state_insert_one_point (state
, type
, addr
, len
);
1272 return aarch64_dr_state_remove_one_point (state
, type
, addr
, len
);
1275 /* Insert/remove unaligned watchpoint by calling
1276 aarch64_align_watchpoint repeatedly until the whole watched region,
1277 as represented by ADDR and LEN, has been properly aligned and ready
1278 to be written to one or more hardware watchpoint registers.
1279 IS_INSERT indicates whether this is an insertion or a deletion.
1280 Return 0 if succeed. */
1283 aarch64_handle_unaligned_watchpoint (int type
, CORE_ADDR addr
, int len
,
1286 struct aarch64_debug_reg_state
*state
1287 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid
));
1291 CORE_ADDR aligned_addr
;
1292 int aligned_len
, ret
;
1294 aarch64_align_watchpoint (addr
, len
, &aligned_addr
, &aligned_len
,
1298 ret
= aarch64_dr_state_insert_one_point (state
, type
, aligned_addr
,
1301 ret
= aarch64_dr_state_remove_one_point (state
, type
, aligned_addr
,
1304 if (debug_hw_points
)
1305 fprintf_unfiltered (gdb_stdlog
,
1306 "handle_unaligned_watchpoint: is_insert: %d\n"
1307 " aligned_addr: 0x%08lx, aligned_len: %d\n"
1308 " next_addr: 0x%08lx, next_len: %d\n",
1309 is_insert
, aligned_addr
, aligned_len
, addr
, len
);
1318 /* Implements insertion and removal of a single watchpoint. */
1321 aarch64_handle_watchpoint (int type
, CORE_ADDR addr
, int len
, int is_insert
)
1323 if (aarch64_point_is_aligned (1 /* is_watchpoint */ , addr
, len
))
1324 return aarch64_handle_aligned_watchpoint (type
, addr
, len
, is_insert
);
1326 return aarch64_handle_unaligned_watchpoint (type
, addr
, len
, is_insert
);
1329 /* Implement the "to_insert_watchpoint" target_ops method.
1331 Insert a watchpoint to watch a memory region which starts at
1332 address ADDR and whose length is LEN bytes. Watch memory accesses
1333 of the type TYPE. Return 0 on success, -1 on failure. */
1336 aarch64_linux_insert_watchpoint (CORE_ADDR addr
, int len
, int type
,
1337 struct expression
*cond
)
1341 if (debug_hw_points
)
1342 fprintf_unfiltered (gdb_stdlog
,
1343 "insert_watchpoint on entry (addr=0x%08lx, len=%d)\n",
1344 (unsigned long) addr
, len
);
1346 gdb_assert (type
!= hw_execute
);
1348 ret
= aarch64_handle_watchpoint (type
, addr
, len
, 1 /* is_insert */);
1350 if (debug_hw_points
> 1)
1352 struct aarch64_debug_reg_state
*state
1353 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid
));
1355 aarch64_show_debug_reg_state (state
,
1356 "insert_watchpoint", addr
, len
, type
);
1362 /* Implement the "to_remove_watchpoint" target_ops method.
1363 Remove a watchpoint that watched the memory region which starts at
1364 address ADDR, whose length is LEN bytes, and for accesses of the
1365 type TYPE. Return 0 on success, -1 on failure. */
1368 aarch64_linux_remove_watchpoint (CORE_ADDR addr
, int len
, int type
,
1369 struct expression
*cond
)
1373 if (debug_hw_points
)
1374 fprintf_unfiltered (gdb_stdlog
,
1375 "remove_watchpoint on entry (addr=0x%08lx, len=%d)\n",
1376 (unsigned long) addr
, len
);
1378 gdb_assert (type
!= hw_execute
);
1380 ret
= aarch64_handle_watchpoint (type
, addr
, len
, 0 /* is_insert */);
1382 if (debug_hw_points
> 1)
1384 struct aarch64_debug_reg_state
*state
1385 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid
));
1387 aarch64_show_debug_reg_state (state
,
1388 "remove_watchpoint", addr
, len
, type
);
1394 /* Implement the "to_region_ok_for_hw_watchpoint" target_ops method. */
1397 aarch64_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr
, int len
)
1399 CORE_ADDR aligned_addr
;
1401 /* Can not set watchpoints for zero or negative lengths. */
1405 /* Must have hardware watchpoint debug register(s). */
1406 if (aarch64_num_wp_regs
== 0)
1409 /* We support unaligned watchpoint address and arbitrary length,
1410 as long as the size of the whole watched area after alignment
1411 doesn't exceed size of the total area that all watchpoint debug
1412 registers can watch cooperatively.
1414 This is a very relaxed rule, but unfortunately there are
1415 limitations, e.g. false-positive hits, due to limited support of
1416 hardware debug registers in the kernel. See comment above
1417 aarch64_align_watchpoint for more information. */
1419 aligned_addr
= addr
& ~(AARCH64_HWP_MAX_LEN_PER_REG
- 1);
1420 if (aligned_addr
+ aarch64_num_wp_regs
* AARCH64_HWP_MAX_LEN_PER_REG
1424 /* All tests passed so we are likely to be able to set the watchpoint.
1425 The reason that it is 'likely' rather than 'must' is because
1426 we don't check the current usage of the watchpoint registers, and
1427 there may not be enough registers available for this watchpoint.
1428 Ideally we should check the cached debug register state, however
1429 the checking is costly. */
1433 /* Implement the "to_stopped_data_address" target_ops method. */
1436 aarch64_linux_stopped_data_address (struct target_ops
*target
,
1441 struct aarch64_debug_reg_state
*state
;
1443 if (!linux_nat_get_siginfo (inferior_ptid
, &siginfo
))
1446 /* This must be a hardware breakpoint. */
1447 if (siginfo
.si_signo
!= SIGTRAP
1448 || (siginfo
.si_code
& 0xffff) != TRAP_HWBKPT
)
1451 /* Check if the address matches any watched address. */
1452 state
= aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid
));
1453 for (i
= aarch64_num_wp_regs
- 1; i
>= 0; --i
)
1455 const unsigned int len
= aarch64_watchpoint_length (state
->dr_ctrl_wp
[i
]);
1456 const CORE_ADDR addr_trap
= (CORE_ADDR
) siginfo
.si_addr
;
1457 const CORE_ADDR addr_watch
= state
->dr_addr_wp
[i
];
1459 if (state
->dr_ref_count_wp
[i
]
1460 && DR_CONTROL_ENABLED (state
->dr_ctrl_wp
[i
])
1461 && addr_trap
>= addr_watch
1462 && addr_trap
< addr_watch
+ len
)
1464 *addr_p
= addr_trap
;
1472 /* Implement the "to_stopped_by_watchpoint" target_ops method. */
1475 aarch64_linux_stopped_by_watchpoint (void)
1479 return aarch64_linux_stopped_data_address (¤t_target
, &addr
);
1482 /* Implement the "to_watchpoint_addr_within_range" target_ops method. */
1485 aarch64_linux_watchpoint_addr_within_range (struct target_ops
*target
,
1487 CORE_ADDR start
, int length
)
1489 return start
<= addr
&& start
+ length
- 1 >= addr
;
1492 /* Define AArch64 maintenance commands. */
1495 add_show_debug_regs_command (void)
1497 /* A maintenance command to enable printing the internal DRi mirror
1499 add_setshow_boolean_cmd ("show-debug-regs", class_maintenance
,
1500 &debug_hw_points
, _("\
1501 Set whether to show variables that mirror the AArch64 debug registers."), _("\
1502 Show whether to show variables that mirror the AArch64 debug registers."), _("\
1503 Use \"on\" to enable, \"off\" to disable.\n\
1504 If enabled, the debug registers values are shown when GDB inserts\n\
1505 or removes a hardware breakpoint or watchpoint, and when the inferior\n\
1506 triggers a breakpoint or watchpoint."),
1509 &maintenance_set_cmdlist
,
1510 &maintenance_show_cmdlist
);
1513 /* -Wmissing-prototypes. */
1514 void _initialize_aarch64_linux_nat (void);
1517 _initialize_aarch64_linux_nat (void)
1519 struct target_ops
*t
;
1521 /* Fill in the generic GNU/Linux methods. */
1522 t
= linux_target ();
1524 add_show_debug_regs_command ();
1526 /* Add our register access methods. */
1527 t
->to_fetch_registers
= aarch64_linux_fetch_inferior_registers
;
1528 t
->to_store_registers
= aarch64_linux_store_inferior_registers
;
1530 t
->to_read_description
= aarch64_linux_read_description
;
1532 t
->to_can_use_hw_breakpoint
= aarch64_linux_can_use_hw_breakpoint
;
1533 t
->to_insert_hw_breakpoint
= aarch64_linux_insert_hw_breakpoint
;
1534 t
->to_remove_hw_breakpoint
= aarch64_linux_remove_hw_breakpoint
;
1535 t
->to_region_ok_for_hw_watchpoint
=
1536 aarch64_linux_region_ok_for_hw_watchpoint
;
1537 t
->to_insert_watchpoint
= aarch64_linux_insert_watchpoint
;
1538 t
->to_remove_watchpoint
= aarch64_linux_remove_watchpoint
;
1539 t
->to_stopped_by_watchpoint
= aarch64_linux_stopped_by_watchpoint
;
1540 t
->to_stopped_data_address
= aarch64_linux_stopped_data_address
;
1541 t
->to_watchpoint_addr_within_range
=
1542 aarch64_linux_watchpoint_addr_within_range
;
1544 /* Override the GNU/Linux inferior startup hook. */
1545 super_post_startup_inferior
= t
->to_post_startup_inferior
;
1546 t
->to_post_startup_inferior
= aarch64_linux_child_post_startup_inferior
;
1548 /* Register the target. */
1549 linux_nat_add_target (t
);
1550 linux_nat_set_new_thread (t
, aarch64_linux_new_thread
);
1551 linux_nat_set_new_fork (t
, aarch64_linux_new_fork
);
1552 linux_nat_set_forget_process (t
, aarch64_forget_process
);
1553 linux_nat_set_prepare_to_resume (t
, aarch64_linux_prepare_to_resume
);