Add target_ops argument to to_can_use_hw_breakpoint
[deliverable/binutils-gdb.git] / gdb / aarch64-linux-nat.c
1 /* Native-dependent code for GNU/Linux AArch64.
2
3 Copyright (C) 2011-2014 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "regcache.h"
26 #include "linux-nat.h"
27 #include "target-descriptions.h"
28 #include "auxv.h"
29 #include "gdbcmd.h"
30 #include "aarch64-tdep.h"
31 #include "aarch64-linux-tdep.h"
32 #include "elf/common.h"
33
34 #include <sys/ptrace.h>
35 #include <sys/utsname.h>
36
37 #include "gregset.h"
38
39 #include "features/aarch64.c"
40
41 /* Defines ps_err_e, struct ps_prochandle. */
42 #include "gdb_proc_service.h"
43
44 #ifndef TRAP_HWBKPT
45 #define TRAP_HWBKPT 0x0004
46 #endif
47
48 /* On GNU/Linux, threads are implemented as pseudo-processes, in which
49 case we may be tracing more than one process at a time. In that
50 case, inferior_ptid will contain the main process ID and the
51 individual thread (process) ID. get_thread_id () is used to get
52 the thread id if it's available, and the process id otherwise. */
53
54 static int
55 get_thread_id (ptid_t ptid)
56 {
57 int tid = ptid_get_lwp (ptid);
58
59 if (0 == tid)
60 tid = ptid_get_pid (ptid);
61 return tid;
62 }
63
64 /* Macro definitions, data structures, and code for the hardware
65 breakpoint and hardware watchpoint support follow. We use the
66 following abbreviations throughout the code:
67
68 hw - hardware
69 bp - breakpoint
70 wp - watchpoint */
71
72 /* Maximum number of hardware breakpoint and watchpoint registers.
73 Neither of these values may exceed the width of dr_changed_t
74 measured in bits. */
75
76 #define AARCH64_HBP_MAX_NUM 16
77 #define AARCH64_HWP_MAX_NUM 16
78
79 /* Alignment requirement in bytes for addresses written to
80 hardware breakpoint and watchpoint value registers.
81
82 A ptrace call attempting to set an address that does not meet the
83 alignment criteria will fail. Limited support has been provided in
84 this port for unaligned watchpoints, such that from a GDB user
85 perspective, an unaligned watchpoint may be requested.
86
87 This is achieved by minimally enlarging the watched area to meet the
88 alignment requirement, and if necessary, splitting the watchpoint
89 over several hardware watchpoint registers. */
90
91 #define AARCH64_HBP_ALIGNMENT 4
92 #define AARCH64_HWP_ALIGNMENT 8
93
94 /* The maximum length of a memory region that can be watched by one
95 hardware watchpoint register. */
96
97 #define AARCH64_HWP_MAX_LEN_PER_REG 8
98
99 /* ptrace hardware breakpoint resource info is formatted as follows:
100
101 31 24 16 8 0
102 +---------------+--------------+---------------+---------------+
103 | RESERVED | RESERVED | DEBUG_ARCH | NUM_SLOTS |
104 +---------------+--------------+---------------+---------------+ */
105
106
107 /* Macros to extract fields from the hardware debug information word. */
108 #define AARCH64_DEBUG_NUM_SLOTS(x) ((x) & 0xff)
109 #define AARCH64_DEBUG_ARCH(x) (((x) >> 8) & 0xff)
110
111 /* Macro for the expected version of the ARMv8-A debug architecture. */
112 #define AARCH64_DEBUG_ARCH_V8 0x6
113
114 /* Number of hardware breakpoints/watchpoints the target supports.
115 They are initialized with values obtained via the ptrace calls
116 with NT_ARM_HW_BREAK and NT_ARM_HW_WATCH respectively. */
117
118 static int aarch64_num_bp_regs;
119 static int aarch64_num_wp_regs;
120
121 /* Debugging of hardware breakpoint/watchpoint support. */
122
123 static int debug_hw_points;
124
125 /* Each bit of a variable of this type is used to indicate whether a
126 hardware breakpoint or watchpoint setting has been changed since
127 the last update.
128
129 Bit N corresponds to the Nth hardware breakpoint or watchpoint
130 setting which is managed in aarch64_debug_reg_state, where N is
131 valid between 0 and the total number of the hardware breakpoint or
132 watchpoint debug registers minus 1.
133
134 When bit N is 1, the corresponding breakpoint or watchpoint setting
135 has changed, and therefore the corresponding hardware debug
136 register needs to be updated via the ptrace interface.
137
138 In the per-thread arch-specific data area, we define two such
139 variables for per-thread hardware breakpoint and watchpoint
140 settings respectively.
141
142 This type is part of the mechanism which helps reduce the number of
143 ptrace calls to the kernel, i.e. avoid asking the kernel to write
144 to the debug registers with unchanged values. */
145
146 typedef unsigned LONGEST dr_changed_t;
147
148 /* Set each of the lower M bits of X to 1; assert X is wide enough. */
149
150 #define DR_MARK_ALL_CHANGED(x, m) \
151 do \
152 { \
153 gdb_assert (sizeof ((x)) * 8 >= (m)); \
154 (x) = (((dr_changed_t)1 << (m)) - 1); \
155 } while (0)
156
157 #define DR_MARK_N_CHANGED(x, n) \
158 do \
159 { \
160 (x) |= ((dr_changed_t)1 << (n)); \
161 } while (0)
162
163 #define DR_CLEAR_CHANGED(x) \
164 do \
165 { \
166 (x) = 0; \
167 } while (0)
168
169 #define DR_HAS_CHANGED(x) ((x) != 0)
170 #define DR_N_HAS_CHANGED(x, n) ((x) & ((dr_changed_t)1 << (n)))
171
172 /* Structure for managing the hardware breakpoint/watchpoint resources.
173 DR_ADDR_* stores the address, DR_CTRL_* stores the control register
174 content, and DR_REF_COUNT_* counts the numbers of references to the
175 corresponding bp/wp, by which way the limited hardware resources
176 are not wasted on duplicated bp/wp settings (though so far gdb has
177 done a good job by not sending duplicated bp/wp requests). */
178
179 struct aarch64_debug_reg_state
180 {
181 /* hardware breakpoint */
182 CORE_ADDR dr_addr_bp[AARCH64_HBP_MAX_NUM];
183 unsigned int dr_ctrl_bp[AARCH64_HBP_MAX_NUM];
184 unsigned int dr_ref_count_bp[AARCH64_HBP_MAX_NUM];
185
186 /* hardware watchpoint */
187 CORE_ADDR dr_addr_wp[AARCH64_HWP_MAX_NUM];
188 unsigned int dr_ctrl_wp[AARCH64_HWP_MAX_NUM];
189 unsigned int dr_ref_count_wp[AARCH64_HWP_MAX_NUM];
190 };
191
192 /* Per-process data. We don't bind this to a per-inferior registry
193 because of targets like x86 GNU/Linux that need to keep track of
194 processes that aren't bound to any inferior (e.g., fork children,
195 checkpoints). */
196
197 struct aarch64_process_info
198 {
199 /* Linked list. */
200 struct aarch64_process_info *next;
201
202 /* The process identifier. */
203 pid_t pid;
204
205 /* Copy of aarch64 hardware debug registers. */
206 struct aarch64_debug_reg_state state;
207 };
208
209 static struct aarch64_process_info *aarch64_process_list = NULL;
210
211 /* Find process data for process PID. */
212
213 static struct aarch64_process_info *
214 aarch64_find_process_pid (pid_t pid)
215 {
216 struct aarch64_process_info *proc;
217
218 for (proc = aarch64_process_list; proc; proc = proc->next)
219 if (proc->pid == pid)
220 return proc;
221
222 return NULL;
223 }
224
225 /* Add process data for process PID. Returns newly allocated info
226 object. */
227
228 static struct aarch64_process_info *
229 aarch64_add_process (pid_t pid)
230 {
231 struct aarch64_process_info *proc;
232
233 proc = xcalloc (1, sizeof (*proc));
234 proc->pid = pid;
235
236 proc->next = aarch64_process_list;
237 aarch64_process_list = proc;
238
239 return proc;
240 }
241
242 /* Get data specific info for process PID, creating it if necessary.
243 Never returns NULL. */
244
245 static struct aarch64_process_info *
246 aarch64_process_info_get (pid_t pid)
247 {
248 struct aarch64_process_info *proc;
249
250 proc = aarch64_find_process_pid (pid);
251 if (proc == NULL)
252 proc = aarch64_add_process (pid);
253
254 return proc;
255 }
256
257 /* Called whenever GDB is no longer debugging process PID. It deletes
258 data structures that keep track of debug register state. */
259
260 static void
261 aarch64_forget_process (pid_t pid)
262 {
263 struct aarch64_process_info *proc, **proc_link;
264
265 proc = aarch64_process_list;
266 proc_link = &aarch64_process_list;
267
268 while (proc != NULL)
269 {
270 if (proc->pid == pid)
271 {
272 *proc_link = proc->next;
273
274 xfree (proc);
275 return;
276 }
277
278 proc_link = &proc->next;
279 proc = *proc_link;
280 }
281 }
282
283 /* Get debug registers state for process PID. */
284
285 static struct aarch64_debug_reg_state *
286 aarch64_get_debug_reg_state (pid_t pid)
287 {
288 return &aarch64_process_info_get (pid)->state;
289 }
290
291 /* Per-thread arch-specific data we want to keep. */
292
293 struct arch_lwp_info
294 {
295 /* When bit N is 1, it indicates the Nth hardware breakpoint or
296 watchpoint register pair needs to be updated when the thread is
297 resumed; see aarch64_linux_prepare_to_resume. */
298 dr_changed_t dr_changed_bp;
299 dr_changed_t dr_changed_wp;
300 };
301
302 /* Call ptrace to set the thread TID's hardware breakpoint/watchpoint
303 registers with data from *STATE. */
304
305 static void
306 aarch64_linux_set_debug_regs (const struct aarch64_debug_reg_state *state,
307 int tid, int watchpoint)
308 {
309 int i, count;
310 struct iovec iov;
311 struct user_hwdebug_state regs;
312 const CORE_ADDR *addr;
313 const unsigned int *ctrl;
314
315 memset (&regs, 0, sizeof (regs));
316 iov.iov_base = &regs;
317 count = watchpoint ? aarch64_num_wp_regs : aarch64_num_bp_regs;
318 addr = watchpoint ? state->dr_addr_wp : state->dr_addr_bp;
319 ctrl = watchpoint ? state->dr_ctrl_wp : state->dr_ctrl_bp;
320 if (count == 0)
321 return;
322 iov.iov_len = (offsetof (struct user_hwdebug_state, dbg_regs[count - 1])
323 + sizeof (regs.dbg_regs [count - 1]));
324
325 for (i = 0; i < count; i++)
326 {
327 regs.dbg_regs[i].addr = addr[i];
328 regs.dbg_regs[i].ctrl = ctrl[i];
329 }
330
331 if (ptrace (PTRACE_SETREGSET, tid,
332 watchpoint ? NT_ARM_HW_WATCH : NT_ARM_HW_BREAK,
333 (void *) &iov))
334 error (_("Unexpected error setting hardware debug registers"));
335 }
336
337 struct aarch64_dr_update_callback_param
338 {
339 int is_watchpoint;
340 unsigned int idx;
341 };
342
343 /* Callback for iterate_over_lwps. Records the
344 information about the change of one hardware breakpoint/watchpoint
345 setting for the thread LWP.
346 The information is passed in via PTR.
347 N.B. The actual updating of hardware debug registers is not
348 carried out until the moment the thread is resumed. */
349
350 static int
351 debug_reg_change_callback (struct lwp_info *lwp, void *ptr)
352 {
353 struct aarch64_dr_update_callback_param *param_p
354 = (struct aarch64_dr_update_callback_param *) ptr;
355 int pid = get_thread_id (lwp->ptid);
356 int idx = param_p->idx;
357 int is_watchpoint = param_p->is_watchpoint;
358 struct arch_lwp_info *info = lwp->arch_private;
359 dr_changed_t *dr_changed_ptr;
360 dr_changed_t dr_changed;
361
362 if (info == NULL)
363 info = lwp->arch_private = XCNEW (struct arch_lwp_info);
364
365 if (debug_hw_points)
366 {
367 fprintf_unfiltered (gdb_stdlog,
368 "debug_reg_change_callback: \n\tOn entry:\n");
369 fprintf_unfiltered (gdb_stdlog,
370 "\tpid%d, dr_changed_bp=0x%s, "
371 "dr_changed_wp=0x%s\n",
372 pid, phex (info->dr_changed_bp, 8),
373 phex (info->dr_changed_wp, 8));
374 }
375
376 dr_changed_ptr = is_watchpoint ? &info->dr_changed_wp
377 : &info->dr_changed_bp;
378 dr_changed = *dr_changed_ptr;
379
380 gdb_assert (idx >= 0
381 && (idx <= (is_watchpoint ? aarch64_num_wp_regs
382 : aarch64_num_bp_regs)));
383
384 /* The actual update is done later just before resuming the lwp,
385 we just mark that one register pair needs updating. */
386 DR_MARK_N_CHANGED (dr_changed, idx);
387 *dr_changed_ptr = dr_changed;
388
389 /* If the lwp isn't stopped, force it to momentarily pause, so
390 we can update its debug registers. */
391 if (!lwp->stopped)
392 linux_stop_lwp (lwp);
393
394 if (debug_hw_points)
395 {
396 fprintf_unfiltered (gdb_stdlog,
397 "\tOn exit:\n\tpid%d, dr_changed_bp=0x%s, "
398 "dr_changed_wp=0x%s\n",
399 pid, phex (info->dr_changed_bp, 8),
400 phex (info->dr_changed_wp, 8));
401 }
402
403 /* Continue the iteration. */
404 return 0;
405 }
406
407 /* Notify each thread that their IDXth breakpoint/watchpoint register
408 pair needs to be updated. The message will be recorded in each
409 thread's arch-specific data area, the actual updating will be done
410 when the thread is resumed. */
411
412 static void
413 aarch64_notify_debug_reg_change (const struct aarch64_debug_reg_state *state,
414 int is_watchpoint, unsigned int idx)
415 {
416 struct aarch64_dr_update_callback_param param;
417 ptid_t pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
418
419 param.is_watchpoint = is_watchpoint;
420 param.idx = idx;
421
422 iterate_over_lwps (pid_ptid, debug_reg_change_callback, (void *) &param);
423 }
424
425 /* Print the values of the cached breakpoint/watchpoint registers. */
426
427 static void
428 aarch64_show_debug_reg_state (struct aarch64_debug_reg_state *state,
429 const char *func, CORE_ADDR addr,
430 int len, int type)
431 {
432 int i;
433
434 fprintf_unfiltered (gdb_stdlog, "%s", func);
435 if (addr || len)
436 fprintf_unfiltered (gdb_stdlog, " (addr=0x%08lx, len=%d, type=%s)",
437 (unsigned long) addr, len,
438 type == hw_write ? "hw-write-watchpoint"
439 : (type == hw_read ? "hw-read-watchpoint"
440 : (type == hw_access ? "hw-access-watchpoint"
441 : (type == hw_execute ? "hw-breakpoint"
442 : "??unknown??"))));
443 fprintf_unfiltered (gdb_stdlog, ":\n");
444
445 fprintf_unfiltered (gdb_stdlog, "\tBREAKPOINTs:\n");
446 for (i = 0; i < aarch64_num_bp_regs; i++)
447 fprintf_unfiltered (gdb_stdlog,
448 "\tBP%d: addr=0x%08lx, ctrl=0x%08x, ref.count=%d\n",
449 i, state->dr_addr_bp[i],
450 state->dr_ctrl_bp[i], state->dr_ref_count_bp[i]);
451
452 fprintf_unfiltered (gdb_stdlog, "\tWATCHPOINTs:\n");
453 for (i = 0; i < aarch64_num_wp_regs; i++)
454 fprintf_unfiltered (gdb_stdlog,
455 "\tWP%d: addr=0x%08lx, ctrl=0x%08x, ref.count=%d\n",
456 i, state->dr_addr_wp[i],
457 state->dr_ctrl_wp[i], state->dr_ref_count_wp[i]);
458 }
459
460 /* Fill GDB's register array with the general-purpose register values
461 from the current thread. */
462
463 static void
464 fetch_gregs_from_thread (struct regcache *regcache)
465 {
466 int ret, regno, tid;
467 elf_gregset_t regs;
468 struct iovec iovec;
469
470 tid = get_thread_id (inferior_ptid);
471
472 iovec.iov_base = &regs;
473 iovec.iov_len = sizeof (regs);
474
475 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
476 if (ret < 0)
477 perror_with_name (_("Unable to fetch general registers."));
478
479 for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
480 regcache_raw_supply (regcache, regno,
481 (char *) &regs[regno - AARCH64_X0_REGNUM]);
482 }
483
484 /* Store to the current thread the valid general-purpose register
485 values in the GDB's register array. */
486
487 static void
488 store_gregs_to_thread (const struct regcache *regcache)
489 {
490 int ret, regno, tid;
491 elf_gregset_t regs;
492 struct iovec iovec;
493
494 tid = get_thread_id (inferior_ptid);
495
496 iovec.iov_base = &regs;
497 iovec.iov_len = sizeof (regs);
498
499 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
500 if (ret < 0)
501 perror_with_name (_("Unable to fetch general registers."));
502
503 for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
504 if (REG_VALID == regcache_register_status (regcache, regno))
505 regcache_raw_collect (regcache, regno,
506 (char *) &regs[regno - AARCH64_X0_REGNUM]);
507
508 ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iovec);
509 if (ret < 0)
510 perror_with_name (_("Unable to store general registers."));
511 }
512
513 /* Fill GDB's register array with the fp/simd register values
514 from the current thread. */
515
516 static void
517 fetch_fpregs_from_thread (struct regcache *regcache)
518 {
519 int ret, regno, tid;
520 elf_fpregset_t regs;
521 struct iovec iovec;
522
523 tid = get_thread_id (inferior_ptid);
524
525 iovec.iov_base = &regs;
526 iovec.iov_len = sizeof (regs);
527
528 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
529 if (ret < 0)
530 perror_with_name (_("Unable to fetch FP/SIMD registers."));
531
532 for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
533 regcache_raw_supply (regcache, regno,
534 (char *) &regs.vregs[regno - AARCH64_V0_REGNUM]);
535
536 regcache_raw_supply (regcache, AARCH64_FPSR_REGNUM, (char *) &regs.fpsr);
537 regcache_raw_supply (regcache, AARCH64_FPCR_REGNUM, (char *) &regs.fpcr);
538 }
539
540 /* Store to the current thread the valid fp/simd register
541 values in the GDB's register array. */
542
543 static void
544 store_fpregs_to_thread (const struct regcache *regcache)
545 {
546 int ret, regno, tid;
547 elf_fpregset_t regs;
548 struct iovec iovec;
549
550 tid = get_thread_id (inferior_ptid);
551
552 iovec.iov_base = &regs;
553 iovec.iov_len = sizeof (regs);
554
555 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
556 if (ret < 0)
557 perror_with_name (_("Unable to fetch FP/SIMD registers."));
558
559 for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
560 if (REG_VALID == regcache_register_status (regcache, regno))
561 regcache_raw_collect (regcache, regno,
562 (char *) &regs.vregs[regno - AARCH64_V0_REGNUM]);
563
564 if (REG_VALID == regcache_register_status (regcache, AARCH64_FPSR_REGNUM))
565 regcache_raw_collect (regcache, AARCH64_FPSR_REGNUM, (char *) &regs.fpsr);
566 if (REG_VALID == regcache_register_status (regcache, AARCH64_FPCR_REGNUM))
567 regcache_raw_collect (regcache, AARCH64_FPCR_REGNUM, (char *) &regs.fpcr);
568
569 ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iovec);
570 if (ret < 0)
571 perror_with_name (_("Unable to store FP/SIMD registers."));
572 }
573
574 /* Implement the "to_fetch_register" target_ops method. */
575
576 static void
577 aarch64_linux_fetch_inferior_registers (struct target_ops *ops,
578 struct regcache *regcache,
579 int regno)
580 {
581 if (regno == -1)
582 {
583 fetch_gregs_from_thread (regcache);
584 fetch_fpregs_from_thread (regcache);
585 }
586 else if (regno < AARCH64_V0_REGNUM)
587 fetch_gregs_from_thread (regcache);
588 else
589 fetch_fpregs_from_thread (regcache);
590 }
591
592 /* Implement the "to_store_register" target_ops method. */
593
594 static void
595 aarch64_linux_store_inferior_registers (struct target_ops *ops,
596 struct regcache *regcache,
597 int regno)
598 {
599 if (regno == -1)
600 {
601 store_gregs_to_thread (regcache);
602 store_fpregs_to_thread (regcache);
603 }
604 else if (regno < AARCH64_V0_REGNUM)
605 store_gregs_to_thread (regcache);
606 else
607 store_fpregs_to_thread (regcache);
608 }
609
610 /* Fill register REGNO (if it is a general-purpose register) in
611 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
612 do this for all registers. */
613
614 void
615 fill_gregset (const struct regcache *regcache,
616 gdb_gregset_t *gregsetp, int regno)
617 {
618 gdb_byte *gregs_buf = (gdb_byte *) gregsetp;
619 int i;
620
621 for (i = AARCH64_X0_REGNUM; i <= AARCH64_CPSR_REGNUM; i++)
622 if (regno == -1 || regno == i)
623 regcache_raw_collect (regcache, i,
624 gregs_buf + X_REGISTER_SIZE
625 * (i - AARCH64_X0_REGNUM));
626 }
627
628 /* Fill GDB's register array with the general-purpose register values
629 in *GREGSETP. */
630
631 void
632 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
633 {
634 aarch64_linux_supply_gregset (regcache, (const gdb_byte *) gregsetp);
635 }
636
637 /* Fill register REGNO (if it is a floating-point register) in
638 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
639 do this for all registers. */
640
641 void
642 fill_fpregset (const struct regcache *regcache,
643 gdb_fpregset_t *fpregsetp, int regno)
644 {
645 gdb_byte *fpregs_buf = (gdb_byte *) fpregsetp;
646 int i;
647
648 for (i = AARCH64_V0_REGNUM; i <= AARCH64_V31_REGNUM; i++)
649 if (regno == -1 || regno == i)
650 regcache_raw_collect (regcache, i,
651 fpregs_buf + V_REGISTER_SIZE
652 * (i - AARCH64_V0_REGNUM));
653
654 if (regno == -1 || regno == AARCH64_FPSR_REGNUM)
655 regcache_raw_collect (regcache, AARCH64_FPSR_REGNUM,
656 fpregs_buf + V_REGISTER_SIZE * 32);
657
658 if (regno == -1 || regno == AARCH64_FPCR_REGNUM)
659 regcache_raw_collect (regcache, AARCH64_FPCR_REGNUM,
660 fpregs_buf + V_REGISTER_SIZE * 32 + 4);
661 }
662
663 /* Fill GDB's register array with the floating-point register values
664 in *FPREGSETP. */
665
666 void
667 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
668 {
669 aarch64_linux_supply_fpregset (regcache, (const gdb_byte *) fpregsetp);
670 }
671
672 /* Called when resuming a thread.
673 The hardware debug registers are updated when there is any change. */
674
675 static void
676 aarch64_linux_prepare_to_resume (struct lwp_info *lwp)
677 {
678 struct arch_lwp_info *info = lwp->arch_private;
679
680 /* NULL means this is the main thread still going through the shell,
681 or, no watchpoint has been set yet. In that case, there's
682 nothing to do. */
683 if (info == NULL)
684 return;
685
686 if (DR_HAS_CHANGED (info->dr_changed_bp)
687 || DR_HAS_CHANGED (info->dr_changed_wp))
688 {
689 int tid = ptid_get_lwp (lwp->ptid);
690 struct aarch64_debug_reg_state *state
691 = aarch64_get_debug_reg_state (ptid_get_pid (lwp->ptid));
692
693 if (debug_hw_points)
694 fprintf_unfiltered (gdb_stdlog, "prepare_to_resume thread %d\n", tid);
695
696 /* Watchpoints. */
697 if (DR_HAS_CHANGED (info->dr_changed_wp))
698 {
699 aarch64_linux_set_debug_regs (state, tid, 1);
700 DR_CLEAR_CHANGED (info->dr_changed_wp);
701 }
702
703 /* Breakpoints. */
704 if (DR_HAS_CHANGED (info->dr_changed_bp))
705 {
706 aarch64_linux_set_debug_regs (state, tid, 0);
707 DR_CLEAR_CHANGED (info->dr_changed_bp);
708 }
709 }
710 }
711
712 static void
713 aarch64_linux_new_thread (struct lwp_info *lp)
714 {
715 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info);
716
717 /* Mark that all the hardware breakpoint/watchpoint register pairs
718 for this thread need to be initialized. */
719 DR_MARK_ALL_CHANGED (info->dr_changed_bp, aarch64_num_bp_regs);
720 DR_MARK_ALL_CHANGED (info->dr_changed_wp, aarch64_num_wp_regs);
721
722 lp->arch_private = info;
723 }
724
725 /* linux_nat_new_fork hook. */
726
727 static void
728 aarch64_linux_new_fork (struct lwp_info *parent, pid_t child_pid)
729 {
730 pid_t parent_pid;
731 struct aarch64_debug_reg_state *parent_state;
732 struct aarch64_debug_reg_state *child_state;
733
734 /* NULL means no watchpoint has ever been set in the parent. In
735 that case, there's nothing to do. */
736 if (parent->arch_private == NULL)
737 return;
738
739 /* GDB core assumes the child inherits the watchpoints/hw
740 breakpoints of the parent, and will remove them all from the
741 forked off process. Copy the debug registers mirrors into the
742 new process so that all breakpoints and watchpoints can be
743 removed together. */
744
745 parent_pid = ptid_get_pid (parent->ptid);
746 parent_state = aarch64_get_debug_reg_state (parent_pid);
747 child_state = aarch64_get_debug_reg_state (child_pid);
748 *child_state = *parent_state;
749 }
750 \f
751
752 /* Called by libthread_db. Returns a pointer to the thread local
753 storage (or its descriptor). */
754
755 ps_err_e
756 ps_get_thread_area (const struct ps_prochandle *ph,
757 lwpid_t lwpid, int idx, void **base)
758 {
759 struct iovec iovec;
760 uint64_t reg;
761
762 iovec.iov_base = &reg;
763 iovec.iov_len = sizeof (reg);
764
765 if (ptrace (PTRACE_GETREGSET, lwpid, NT_ARM_TLS, &iovec) != 0)
766 return PS_ERR;
767
768 /* IDX is the bias from the thread pointer to the beginning of the
769 thread descriptor. It has to be subtracted due to implementation
770 quirks in libthread_db. */
771 *base = (void *) (reg - idx);
772
773 return PS_OK;
774 }
775 \f
776
777 /* Get the hardware debug register capacity information. */
778
779 static void
780 aarch64_linux_get_debug_reg_capacity (void)
781 {
782 int tid;
783 struct iovec iov;
784 struct user_hwdebug_state dreg_state;
785
786 tid = get_thread_id (inferior_ptid);
787 iov.iov_base = &dreg_state;
788 iov.iov_len = sizeof (dreg_state);
789
790 /* Get hardware watchpoint register info. */
791 if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_HW_WATCH, &iov) == 0
792 && AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8)
793 {
794 aarch64_num_wp_regs = AARCH64_DEBUG_NUM_SLOTS (dreg_state.dbg_info);
795 if (aarch64_num_wp_regs > AARCH64_HWP_MAX_NUM)
796 {
797 warning (_("Unexpected number of hardware watchpoint registers"
798 " reported by ptrace, got %d, expected %d."),
799 aarch64_num_wp_regs, AARCH64_HWP_MAX_NUM);
800 aarch64_num_wp_regs = AARCH64_HWP_MAX_NUM;
801 }
802 }
803 else
804 {
805 warning (_("Unable to determine the number of hardware watchpoints"
806 " available."));
807 aarch64_num_wp_regs = 0;
808 }
809
810 /* Get hardware breakpoint register info. */
811 if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_HW_BREAK, &iov) == 0
812 && AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8)
813 {
814 aarch64_num_bp_regs = AARCH64_DEBUG_NUM_SLOTS (dreg_state.dbg_info);
815 if (aarch64_num_bp_regs > AARCH64_HBP_MAX_NUM)
816 {
817 warning (_("Unexpected number of hardware breakpoint registers"
818 " reported by ptrace, got %d, expected %d."),
819 aarch64_num_bp_regs, AARCH64_HBP_MAX_NUM);
820 aarch64_num_bp_regs = AARCH64_HBP_MAX_NUM;
821 }
822 }
823 else
824 {
825 warning (_("Unable to determine the number of hardware breakpoints"
826 " available."));
827 aarch64_num_bp_regs = 0;
828 }
829 }
830
831 static void (*super_post_startup_inferior) (ptid_t ptid);
832
833 /* Implement the "to_post_startup_inferior" target_ops method. */
834
835 static void
836 aarch64_linux_child_post_startup_inferior (ptid_t ptid)
837 {
838 aarch64_forget_process (ptid_get_pid (ptid));
839 aarch64_linux_get_debug_reg_capacity ();
840 super_post_startup_inferior (ptid);
841 }
842
843 /* Implement the "to_read_description" target_ops method. */
844
845 static const struct target_desc *
846 aarch64_linux_read_description (struct target_ops *ops)
847 {
848 initialize_tdesc_aarch64 ();
849 return tdesc_aarch64;
850 }
851
852 /* Given the (potentially unaligned) watchpoint address in ADDR and
853 length in LEN, return the aligned address and aligned length in
854 *ALIGNED_ADDR_P and *ALIGNED_LEN_P, respectively. The returned
855 aligned address and length will be valid values to write to the
856 hardware watchpoint value and control registers.
857
858 The given watchpoint may get truncated if more than one hardware
859 register is needed to cover the watched region. *NEXT_ADDR_P
860 and *NEXT_LEN_P, if non-NULL, will return the address and length
861 of the remaining part of the watchpoint (which can be processed
862 by calling this routine again to generate another aligned address
863 and length pair.
864
865 See the comment above the function of the same name in
866 gdbserver/linux-aarch64-low.c for more information. */
867
868 static void
869 aarch64_align_watchpoint (CORE_ADDR addr, int len, CORE_ADDR *aligned_addr_p,
870 int *aligned_len_p, CORE_ADDR *next_addr_p,
871 int *next_len_p)
872 {
873 int aligned_len;
874 unsigned int offset;
875 CORE_ADDR aligned_addr;
876 const unsigned int alignment = AARCH64_HWP_ALIGNMENT;
877 const unsigned int max_wp_len = AARCH64_HWP_MAX_LEN_PER_REG;
878
879 /* As assumed by the algorithm. */
880 gdb_assert (alignment == max_wp_len);
881
882 if (len <= 0)
883 return;
884
885 /* Address to be put into the hardware watchpoint value register
886 must be aligned. */
887 offset = addr & (alignment - 1);
888 aligned_addr = addr - offset;
889
890 gdb_assert (offset >= 0 && offset < alignment);
891 gdb_assert (aligned_addr >= 0 && aligned_addr <= addr);
892 gdb_assert (offset + len > 0);
893
894 if (offset + len >= max_wp_len)
895 {
896 /* Need more than one watchpoint registers; truncate it at the
897 alignment boundary. */
898 aligned_len = max_wp_len;
899 len -= (max_wp_len - offset);
900 addr += (max_wp_len - offset);
901 gdb_assert ((addr & (alignment - 1)) == 0);
902 }
903 else
904 {
905 /* Find the smallest valid length that is large enough to
906 accommodate this watchpoint. */
907 static const unsigned char
908 aligned_len_array[AARCH64_HWP_MAX_LEN_PER_REG] =
909 { 1, 2, 4, 4, 8, 8, 8, 8 };
910
911 aligned_len = aligned_len_array[offset + len - 1];
912 addr += len;
913 len = 0;
914 }
915
916 if (aligned_addr_p)
917 *aligned_addr_p = aligned_addr;
918 if (aligned_len_p)
919 *aligned_len_p = aligned_len;
920 if (next_addr_p)
921 *next_addr_p = addr;
922 if (next_len_p)
923 *next_len_p = len;
924 }
925
926 /* Returns the number of hardware watchpoints of type TYPE that we can
927 set. Value is positive if we can set CNT watchpoints, zero if
928 setting watchpoints of type TYPE is not supported, and negative if
929 CNT is more than the maximum number of watchpoints of type TYPE
930 that we can support. TYPE is one of bp_hardware_watchpoint,
931 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
932 CNT is the number of such watchpoints used so far (including this
933 one). OTHERTYPE is non-zero if other types of watchpoints are
934 currently enabled.
935
936 We always return 1 here because we don't have enough information
937 about possible overlap of addresses that they want to watch. As an
938 extreme example, consider the case where all the watchpoints watch
939 the same address and the same region length: then we can handle a
940 virtually unlimited number of watchpoints, due to debug register
941 sharing implemented via reference counts. */
942
943 static int
944 aarch64_linux_can_use_hw_breakpoint (struct target_ops *self,
945 int type, int cnt, int othertype)
946 {
947 return 1;
948 }
949
950 /* ptrace expects control registers to be formatted as follows:
951
952 31 13 5 3 1 0
953 +--------------------------------+----------+------+------+----+
954 | RESERVED (SBZ) | LENGTH | TYPE | PRIV | EN |
955 +--------------------------------+----------+------+------+----+
956
957 The TYPE field is ignored for breakpoints. */
958
959 #define DR_CONTROL_ENABLED(ctrl) (((ctrl) & 0x1) == 1)
960 #define DR_CONTROL_LENGTH(ctrl) (((ctrl) >> 5) & 0xff)
961
962 /* Utility function that returns the length in bytes of a watchpoint
963 according to the content of a hardware debug control register CTRL.
964 Note that the kernel currently only supports the following Byte
965 Address Select (BAS) values: 0x1, 0x3, 0xf and 0xff, which means
966 that for a hardware watchpoint, its valid length can only be 1
967 byte, 2 bytes, 4 bytes or 8 bytes. */
968
969 static inline unsigned int
970 aarch64_watchpoint_length (unsigned int ctrl)
971 {
972 switch (DR_CONTROL_LENGTH (ctrl))
973 {
974 case 0x01:
975 return 1;
976 case 0x03:
977 return 2;
978 case 0x0f:
979 return 4;
980 case 0xff:
981 return 8;
982 default:
983 return 0;
984 }
985 }
986
987 /* Given the hardware breakpoint or watchpoint type TYPE and its
988 length LEN, return the expected encoding for a hardware
989 breakpoint/watchpoint control register. */
990
991 static unsigned int
992 aarch64_point_encode_ctrl_reg (int type, int len)
993 {
994 unsigned int ctrl, ttype;
995
996 /* type */
997 switch (type)
998 {
999 case hw_write:
1000 ttype = 2;
1001 break;
1002 case hw_read:
1003 ttype = 1;
1004 break;
1005 case hw_access:
1006 ttype = 3;
1007 break;
1008 case hw_execute:
1009 ttype = 0;
1010 break;
1011 default:
1012 perror_with_name (_("Unrecognized breakpoint/watchpoint type"));
1013 }
1014 ctrl = ttype << 3;
1015
1016 /* length bitmask */
1017 ctrl |= ((1 << len) - 1) << 5;
1018 /* enabled at el0 */
1019 ctrl |= (2 << 1) | 1;
1020
1021 return ctrl;
1022 }
1023
1024 /* Addresses to be written to the hardware breakpoint and watchpoint
1025 value registers need to be aligned; the alignment is 4-byte and
1026 8-type respectively. Linux kernel rejects any non-aligned address
1027 it receives from the related ptrace call. Furthermore, the kernel
1028 currently only supports the following Byte Address Select (BAS)
1029 values: 0x1, 0x3, 0xf and 0xff, which means that for a hardware
1030 watchpoint to be accepted by the kernel (via ptrace call), its
1031 valid length can only be 1 byte, 2 bytes, 4 bytes or 8 bytes.
1032 Despite these limitations, the unaligned watchpoint is supported in
1033 this port.
1034
1035 Return 0 for any non-compliant ADDR and/or LEN; return 1 otherwise. */
1036
1037 static int
1038 aarch64_point_is_aligned (int is_watchpoint, CORE_ADDR addr, int len)
1039 {
1040 unsigned int alignment = is_watchpoint ? AARCH64_HWP_ALIGNMENT
1041 : AARCH64_HBP_ALIGNMENT;
1042
1043 if (addr & (alignment - 1))
1044 return 0;
1045
1046 if (len != 8 && len != 4 && len != 2 && len != 1)
1047 return 0;
1048
1049 return 1;
1050 }
1051
1052 /* Record the insertion of one breakpoint/watchpoint, as represented
1053 by ADDR and CTRL, in the cached debug register state area *STATE. */
1054
1055 static int
1056 aarch64_dr_state_insert_one_point (struct aarch64_debug_reg_state *state,
1057 int type, CORE_ADDR addr, int len)
1058 {
1059 int i, idx, num_regs, is_watchpoint;
1060 unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
1061 CORE_ADDR *dr_addr_p;
1062
1063 /* Set up state pointers. */
1064 is_watchpoint = (type != hw_execute);
1065 gdb_assert (aarch64_point_is_aligned (is_watchpoint, addr, len));
1066 if (is_watchpoint)
1067 {
1068 num_regs = aarch64_num_wp_regs;
1069 dr_addr_p = state->dr_addr_wp;
1070 dr_ctrl_p = state->dr_ctrl_wp;
1071 dr_ref_count = state->dr_ref_count_wp;
1072 }
1073 else
1074 {
1075 num_regs = aarch64_num_bp_regs;
1076 dr_addr_p = state->dr_addr_bp;
1077 dr_ctrl_p = state->dr_ctrl_bp;
1078 dr_ref_count = state->dr_ref_count_bp;
1079 }
1080
1081 ctrl = aarch64_point_encode_ctrl_reg (type, len);
1082
1083 /* Find an existing or free register in our cache. */
1084 idx = -1;
1085 for (i = 0; i < num_regs; ++i)
1086 {
1087 if ((dr_ctrl_p[i] & 1) == 0)
1088 {
1089 gdb_assert (dr_ref_count[i] == 0);
1090 idx = i;
1091 /* no break; continue hunting for an existing one. */
1092 }
1093 else if (dr_addr_p[i] == addr && dr_ctrl_p[i] == ctrl)
1094 {
1095 gdb_assert (dr_ref_count[i] != 0);
1096 idx = i;
1097 break;
1098 }
1099 }
1100
1101 /* No space. */
1102 if (idx == -1)
1103 return -1;
1104
1105 /* Update our cache. */
1106 if ((dr_ctrl_p[idx] & 1) == 0)
1107 {
1108 /* new entry */
1109 dr_addr_p[idx] = addr;
1110 dr_ctrl_p[idx] = ctrl;
1111 dr_ref_count[idx] = 1;
1112 /* Notify the change. */
1113 aarch64_notify_debug_reg_change (state, is_watchpoint, idx);
1114 }
1115 else
1116 {
1117 /* existing entry */
1118 dr_ref_count[idx]++;
1119 }
1120
1121 return 0;
1122 }
1123
1124 /* Record the removal of one breakpoint/watchpoint, as represented by
1125 ADDR and CTRL, in the cached debug register state area *STATE. */
1126
1127 static int
1128 aarch64_dr_state_remove_one_point (struct aarch64_debug_reg_state *state,
1129 int type, CORE_ADDR addr, int len)
1130 {
1131 int i, num_regs, is_watchpoint;
1132 unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
1133 CORE_ADDR *dr_addr_p;
1134
1135 /* Set up state pointers. */
1136 is_watchpoint = (type != hw_execute);
1137 gdb_assert (aarch64_point_is_aligned (is_watchpoint, addr, len));
1138 if (is_watchpoint)
1139 {
1140 num_regs = aarch64_num_wp_regs;
1141 dr_addr_p = state->dr_addr_wp;
1142 dr_ctrl_p = state->dr_ctrl_wp;
1143 dr_ref_count = state->dr_ref_count_wp;
1144 }
1145 else
1146 {
1147 num_regs = aarch64_num_bp_regs;
1148 dr_addr_p = state->dr_addr_bp;
1149 dr_ctrl_p = state->dr_ctrl_bp;
1150 dr_ref_count = state->dr_ref_count_bp;
1151 }
1152
1153 ctrl = aarch64_point_encode_ctrl_reg (type, len);
1154
1155 /* Find the entry that matches the ADDR and CTRL. */
1156 for (i = 0; i < num_regs; ++i)
1157 if (dr_addr_p[i] == addr && dr_ctrl_p[i] == ctrl)
1158 {
1159 gdb_assert (dr_ref_count[i] != 0);
1160 break;
1161 }
1162
1163 /* Not found. */
1164 if (i == num_regs)
1165 return -1;
1166
1167 /* Clear our cache. */
1168 if (--dr_ref_count[i] == 0)
1169 {
1170 /* Clear the enable bit. */
1171 ctrl &= ~1;
1172 dr_addr_p[i] = 0;
1173 dr_ctrl_p[i] = ctrl;
1174 /* Notify the change. */
1175 aarch64_notify_debug_reg_change (state, is_watchpoint, i);
1176 }
1177
1178 return 0;
1179 }
1180
1181 /* Implement insertion and removal of a single breakpoint. */
1182
1183 static int
1184 aarch64_handle_breakpoint (int type, CORE_ADDR addr, int len, int is_insert)
1185 {
1186 struct aarch64_debug_reg_state *state;
1187
1188 /* The hardware breakpoint on AArch64 should always be 4-byte
1189 aligned. */
1190 if (!aarch64_point_is_aligned (0 /* is_watchpoint */ , addr, len))
1191 return -1;
1192
1193 state = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1194
1195 if (is_insert)
1196 return aarch64_dr_state_insert_one_point (state, type, addr, len);
1197 else
1198 return aarch64_dr_state_remove_one_point (state, type, addr, len);
1199 }
1200
1201 /* Insert a hardware-assisted breakpoint at BP_TGT->placed_address.
1202 Return 0 on success, -1 on failure. */
1203
1204 static int
1205 aarch64_linux_insert_hw_breakpoint (struct gdbarch *gdbarch,
1206 struct bp_target_info *bp_tgt)
1207 {
1208 int ret;
1209 CORE_ADDR addr = bp_tgt->placed_address;
1210 const int len = 4;
1211 const int type = hw_execute;
1212
1213 if (debug_hw_points)
1214 fprintf_unfiltered
1215 (gdb_stdlog,
1216 "insert_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
1217 (unsigned long) addr, len);
1218
1219 ret = aarch64_handle_breakpoint (type, addr, len, 1 /* is_insert */);
1220
1221 if (debug_hw_points > 1)
1222 {
1223 struct aarch64_debug_reg_state *state
1224 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1225
1226 aarch64_show_debug_reg_state (state,
1227 "insert_hw_watchpoint", addr, len, type);
1228 }
1229
1230 return ret;
1231 }
1232
1233 /* Remove a hardware-assisted breakpoint at BP_TGT->placed_address.
1234 Return 0 on success, -1 on failure. */
1235
1236 static int
1237 aarch64_linux_remove_hw_breakpoint (struct gdbarch *gdbarch,
1238 struct bp_target_info *bp_tgt)
1239 {
1240 int ret;
1241 CORE_ADDR addr = bp_tgt->placed_address;
1242 const int len = 4;
1243 const int type = hw_execute;
1244
1245 if (debug_hw_points)
1246 fprintf_unfiltered
1247 (gdb_stdlog, "remove_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
1248 (unsigned long) addr, len);
1249
1250 ret = aarch64_handle_breakpoint (type, addr, len, 0 /* is_insert */);
1251
1252 if (debug_hw_points > 1)
1253 {
1254 struct aarch64_debug_reg_state *state
1255 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1256
1257 aarch64_show_debug_reg_state (state,
1258 "remove_hw_watchpoint", addr, len, type);
1259 }
1260
1261 return ret;
1262 }
1263
1264 /* This is essentially the same as aarch64_handle_breakpoint, apart
1265 from that it is an aligned watchpoint to be handled. */
1266
1267 static int
1268 aarch64_handle_aligned_watchpoint (int type, CORE_ADDR addr, int len,
1269 int is_insert)
1270 {
1271 struct aarch64_debug_reg_state *state
1272 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1273
1274 if (is_insert)
1275 return aarch64_dr_state_insert_one_point (state, type, addr, len);
1276 else
1277 return aarch64_dr_state_remove_one_point (state, type, addr, len);
1278 }
1279
1280 /* Insert/remove unaligned watchpoint by calling
1281 aarch64_align_watchpoint repeatedly until the whole watched region,
1282 as represented by ADDR and LEN, has been properly aligned and ready
1283 to be written to one or more hardware watchpoint registers.
1284 IS_INSERT indicates whether this is an insertion or a deletion.
1285 Return 0 if succeed. */
1286
1287 static int
1288 aarch64_handle_unaligned_watchpoint (int type, CORE_ADDR addr, int len,
1289 int is_insert)
1290 {
1291 struct aarch64_debug_reg_state *state
1292 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1293
1294 while (len > 0)
1295 {
1296 CORE_ADDR aligned_addr;
1297 int aligned_len, ret;
1298
1299 aarch64_align_watchpoint (addr, len, &aligned_addr, &aligned_len,
1300 &addr, &len);
1301
1302 if (is_insert)
1303 ret = aarch64_dr_state_insert_one_point (state, type, aligned_addr,
1304 aligned_len);
1305 else
1306 ret = aarch64_dr_state_remove_one_point (state, type, aligned_addr,
1307 aligned_len);
1308
1309 if (debug_hw_points)
1310 fprintf_unfiltered (gdb_stdlog,
1311 "handle_unaligned_watchpoint: is_insert: %d\n"
1312 " aligned_addr: 0x%08lx, aligned_len: %d\n"
1313 " next_addr: 0x%08lx, next_len: %d\n",
1314 is_insert, aligned_addr, aligned_len, addr, len);
1315
1316 if (ret != 0)
1317 return ret;
1318 }
1319
1320 return 0;
1321 }
1322
1323 /* Implements insertion and removal of a single watchpoint. */
1324
1325 static int
1326 aarch64_handle_watchpoint (int type, CORE_ADDR addr, int len, int is_insert)
1327 {
1328 if (aarch64_point_is_aligned (1 /* is_watchpoint */ , addr, len))
1329 return aarch64_handle_aligned_watchpoint (type, addr, len, is_insert);
1330 else
1331 return aarch64_handle_unaligned_watchpoint (type, addr, len, is_insert);
1332 }
1333
1334 /* Implement the "to_insert_watchpoint" target_ops method.
1335
1336 Insert a watchpoint to watch a memory region which starts at
1337 address ADDR and whose length is LEN bytes. Watch memory accesses
1338 of the type TYPE. Return 0 on success, -1 on failure. */
1339
1340 static int
1341 aarch64_linux_insert_watchpoint (CORE_ADDR addr, int len, int type,
1342 struct expression *cond)
1343 {
1344 int ret;
1345
1346 if (debug_hw_points)
1347 fprintf_unfiltered (gdb_stdlog,
1348 "insert_watchpoint on entry (addr=0x%08lx, len=%d)\n",
1349 (unsigned long) addr, len);
1350
1351 gdb_assert (type != hw_execute);
1352
1353 ret = aarch64_handle_watchpoint (type, addr, len, 1 /* is_insert */);
1354
1355 if (debug_hw_points > 1)
1356 {
1357 struct aarch64_debug_reg_state *state
1358 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1359
1360 aarch64_show_debug_reg_state (state,
1361 "insert_watchpoint", addr, len, type);
1362 }
1363
1364 return ret;
1365 }
1366
1367 /* Implement the "to_remove_watchpoint" target_ops method.
1368 Remove a watchpoint that watched the memory region which starts at
1369 address ADDR, whose length is LEN bytes, and for accesses of the
1370 type TYPE. Return 0 on success, -1 on failure. */
1371
1372 static int
1373 aarch64_linux_remove_watchpoint (CORE_ADDR addr, int len, int type,
1374 struct expression *cond)
1375 {
1376 int ret;
1377
1378 if (debug_hw_points)
1379 fprintf_unfiltered (gdb_stdlog,
1380 "remove_watchpoint on entry (addr=0x%08lx, len=%d)\n",
1381 (unsigned long) addr, len);
1382
1383 gdb_assert (type != hw_execute);
1384
1385 ret = aarch64_handle_watchpoint (type, addr, len, 0 /* is_insert */);
1386
1387 if (debug_hw_points > 1)
1388 {
1389 struct aarch64_debug_reg_state *state
1390 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1391
1392 aarch64_show_debug_reg_state (state,
1393 "remove_watchpoint", addr, len, type);
1394 }
1395
1396 return ret;
1397 }
1398
1399 /* Implement the "to_region_ok_for_hw_watchpoint" target_ops method. */
1400
1401 static int
1402 aarch64_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1403 {
1404 CORE_ADDR aligned_addr;
1405
1406 /* Can not set watchpoints for zero or negative lengths. */
1407 if (len <= 0)
1408 return 0;
1409
1410 /* Must have hardware watchpoint debug register(s). */
1411 if (aarch64_num_wp_regs == 0)
1412 return 0;
1413
1414 /* We support unaligned watchpoint address and arbitrary length,
1415 as long as the size of the whole watched area after alignment
1416 doesn't exceed size of the total area that all watchpoint debug
1417 registers can watch cooperatively.
1418
1419 This is a very relaxed rule, but unfortunately there are
1420 limitations, e.g. false-positive hits, due to limited support of
1421 hardware debug registers in the kernel. See comment above
1422 aarch64_align_watchpoint for more information. */
1423
1424 aligned_addr = addr & ~(AARCH64_HWP_MAX_LEN_PER_REG - 1);
1425 if (aligned_addr + aarch64_num_wp_regs * AARCH64_HWP_MAX_LEN_PER_REG
1426 < addr + len)
1427 return 0;
1428
1429 /* All tests passed so we are likely to be able to set the watchpoint.
1430 The reason that it is 'likely' rather than 'must' is because
1431 we don't check the current usage of the watchpoint registers, and
1432 there may not be enough registers available for this watchpoint.
1433 Ideally we should check the cached debug register state, however
1434 the checking is costly. */
1435 return 1;
1436 }
1437
1438 /* Implement the "to_stopped_data_address" target_ops method. */
1439
1440 static int
1441 aarch64_linux_stopped_data_address (struct target_ops *target,
1442 CORE_ADDR *addr_p)
1443 {
1444 siginfo_t siginfo;
1445 int i, tid;
1446 struct aarch64_debug_reg_state *state;
1447
1448 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
1449 return 0;
1450
1451 /* This must be a hardware breakpoint. */
1452 if (siginfo.si_signo != SIGTRAP
1453 || (siginfo.si_code & 0xffff) != TRAP_HWBKPT)
1454 return 0;
1455
1456 /* Check if the address matches any watched address. */
1457 state = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1458 for (i = aarch64_num_wp_regs - 1; i >= 0; --i)
1459 {
1460 const unsigned int len = aarch64_watchpoint_length (state->dr_ctrl_wp[i]);
1461 const CORE_ADDR addr_trap = (CORE_ADDR) siginfo.si_addr;
1462 const CORE_ADDR addr_watch = state->dr_addr_wp[i];
1463
1464 if (state->dr_ref_count_wp[i]
1465 && DR_CONTROL_ENABLED (state->dr_ctrl_wp[i])
1466 && addr_trap >= addr_watch
1467 && addr_trap < addr_watch + len)
1468 {
1469 *addr_p = addr_trap;
1470 return 1;
1471 }
1472 }
1473
1474 return 0;
1475 }
1476
1477 /* Implement the "to_stopped_by_watchpoint" target_ops method. */
1478
1479 static int
1480 aarch64_linux_stopped_by_watchpoint (struct target_ops *ops)
1481 {
1482 CORE_ADDR addr;
1483
1484 return aarch64_linux_stopped_data_address (ops, &addr);
1485 }
1486
1487 /* Implement the "to_watchpoint_addr_within_range" target_ops method. */
1488
1489 static int
1490 aarch64_linux_watchpoint_addr_within_range (struct target_ops *target,
1491 CORE_ADDR addr,
1492 CORE_ADDR start, int length)
1493 {
1494 return start <= addr && start + length - 1 >= addr;
1495 }
1496
1497 /* Define AArch64 maintenance commands. */
1498
1499 static void
1500 add_show_debug_regs_command (void)
1501 {
1502 /* A maintenance command to enable printing the internal DRi mirror
1503 variables. */
1504 add_setshow_boolean_cmd ("show-debug-regs", class_maintenance,
1505 &debug_hw_points, _("\
1506 Set whether to show variables that mirror the AArch64 debug registers."), _("\
1507 Show whether to show variables that mirror the AArch64 debug registers."), _("\
1508 Use \"on\" to enable, \"off\" to disable.\n\
1509 If enabled, the debug registers values are shown when GDB inserts\n\
1510 or removes a hardware breakpoint or watchpoint, and when the inferior\n\
1511 triggers a breakpoint or watchpoint."),
1512 NULL,
1513 NULL,
1514 &maintenance_set_cmdlist,
1515 &maintenance_show_cmdlist);
1516 }
1517
1518 /* -Wmissing-prototypes. */
1519 void _initialize_aarch64_linux_nat (void);
1520
1521 void
1522 _initialize_aarch64_linux_nat (void)
1523 {
1524 struct target_ops *t;
1525
1526 /* Fill in the generic GNU/Linux methods. */
1527 t = linux_target ();
1528
1529 add_show_debug_regs_command ();
1530
1531 /* Add our register access methods. */
1532 t->to_fetch_registers = aarch64_linux_fetch_inferior_registers;
1533 t->to_store_registers = aarch64_linux_store_inferior_registers;
1534
1535 t->to_read_description = aarch64_linux_read_description;
1536
1537 t->to_can_use_hw_breakpoint = aarch64_linux_can_use_hw_breakpoint;
1538 t->to_insert_hw_breakpoint = aarch64_linux_insert_hw_breakpoint;
1539 t->to_remove_hw_breakpoint = aarch64_linux_remove_hw_breakpoint;
1540 t->to_region_ok_for_hw_watchpoint =
1541 aarch64_linux_region_ok_for_hw_watchpoint;
1542 t->to_insert_watchpoint = aarch64_linux_insert_watchpoint;
1543 t->to_remove_watchpoint = aarch64_linux_remove_watchpoint;
1544 t->to_stopped_by_watchpoint = aarch64_linux_stopped_by_watchpoint;
1545 t->to_stopped_data_address = aarch64_linux_stopped_data_address;
1546 t->to_watchpoint_addr_within_range =
1547 aarch64_linux_watchpoint_addr_within_range;
1548
1549 /* Override the GNU/Linux inferior startup hook. */
1550 super_post_startup_inferior = t->to_post_startup_inferior;
1551 t->to_post_startup_inferior = aarch64_linux_child_post_startup_inferior;
1552
1553 /* Register the target. */
1554 linux_nat_add_target (t);
1555 linux_nat_set_new_thread (t, aarch64_linux_new_thread);
1556 linux_nat_set_new_fork (t, aarch64_linux_new_fork);
1557 linux_nat_set_forget_process (t, aarch64_forget_process);
1558 linux_nat_set_prepare_to_resume (t, aarch64_linux_prepare_to_resume);
1559 }
This page took 0.06165 seconds and 4 git commands to generate.