Return zero in aarch64_linux_can_use_hw_breakpoint if target doesn't support HW watch...
[deliverable/binutils-gdb.git] / gdb / aarch64-linux-nat.c
1 /* Native-dependent code for GNU/Linux AArch64.
2
3 Copyright (C) 2011-2015 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "regcache.h"
26 #include "linux-nat.h"
27 #include "target-descriptions.h"
28 #include "auxv.h"
29 #include "gdbcmd.h"
30 #include "aarch64-tdep.h"
31 #include "aarch64-linux-tdep.h"
32 #include "aarch32-linux-nat.h"
33 #include "nat/aarch64-linux-hw-point.h"
34
35 #include "elf/external.h"
36 #include "elf/common.h"
37
38 #include <sys/ptrace.h>
39 #include <sys/utsname.h>
40 #include <asm/ptrace.h>
41
42 #include "gregset.h"
43
44 /* Defines ps_err_e, struct ps_prochandle. */
45 #include "gdb_proc_service.h"
46
47 #ifndef TRAP_HWBKPT
48 #define TRAP_HWBKPT 0x0004
49 #endif
50
51 /* On GNU/Linux, threads are implemented as pseudo-processes, in which
52 case we may be tracing more than one process at a time. In that
53 case, inferior_ptid will contain the main process ID and the
54 individual thread (process) ID. get_thread_id () is used to get
55 the thread id if it's available, and the process id otherwise. */
56
57 static int
58 get_thread_id (ptid_t ptid)
59 {
60 int tid = ptid_get_lwp (ptid);
61
62 if (0 == tid)
63 tid = ptid_get_pid (ptid);
64 return tid;
65 }
66
67 /* Per-process data. We don't bind this to a per-inferior registry
68 because of targets like x86 GNU/Linux that need to keep track of
69 processes that aren't bound to any inferior (e.g., fork children,
70 checkpoints). */
71
72 struct aarch64_process_info
73 {
74 /* Linked list. */
75 struct aarch64_process_info *next;
76
77 /* The process identifier. */
78 pid_t pid;
79
80 /* Copy of aarch64 hardware debug registers. */
81 struct aarch64_debug_reg_state state;
82 };
83
84 static struct aarch64_process_info *aarch64_process_list = NULL;
85
86 /* Find process data for process PID. */
87
88 static struct aarch64_process_info *
89 aarch64_find_process_pid (pid_t pid)
90 {
91 struct aarch64_process_info *proc;
92
93 for (proc = aarch64_process_list; proc; proc = proc->next)
94 if (proc->pid == pid)
95 return proc;
96
97 return NULL;
98 }
99
100 /* Add process data for process PID. Returns newly allocated info
101 object. */
102
103 static struct aarch64_process_info *
104 aarch64_add_process (pid_t pid)
105 {
106 struct aarch64_process_info *proc;
107
108 proc = xcalloc (1, sizeof (*proc));
109 proc->pid = pid;
110
111 proc->next = aarch64_process_list;
112 aarch64_process_list = proc;
113
114 return proc;
115 }
116
117 /* Get data specific info for process PID, creating it if necessary.
118 Never returns NULL. */
119
120 static struct aarch64_process_info *
121 aarch64_process_info_get (pid_t pid)
122 {
123 struct aarch64_process_info *proc;
124
125 proc = aarch64_find_process_pid (pid);
126 if (proc == NULL)
127 proc = aarch64_add_process (pid);
128
129 return proc;
130 }
131
132 /* Called whenever GDB is no longer debugging process PID. It deletes
133 data structures that keep track of debug register state. */
134
135 static void
136 aarch64_forget_process (pid_t pid)
137 {
138 struct aarch64_process_info *proc, **proc_link;
139
140 proc = aarch64_process_list;
141 proc_link = &aarch64_process_list;
142
143 while (proc != NULL)
144 {
145 if (proc->pid == pid)
146 {
147 *proc_link = proc->next;
148
149 xfree (proc);
150 return;
151 }
152
153 proc_link = &proc->next;
154 proc = *proc_link;
155 }
156 }
157
158 /* Get debug registers state for process PID. */
159
160 static struct aarch64_debug_reg_state *
161 aarch64_get_debug_reg_state (pid_t pid)
162 {
163 return &aarch64_process_info_get (pid)->state;
164 }
165
166 struct aarch64_dr_update_callback_param
167 {
168 int is_watchpoint;
169 unsigned int idx;
170 };
171
172 /* Callback for iterate_over_lwps. Records the
173 information about the change of one hardware breakpoint/watchpoint
174 setting for the thread LWP.
175 The information is passed in via PTR.
176 N.B. The actual updating of hardware debug registers is not
177 carried out until the moment the thread is resumed. */
178
179 static int
180 debug_reg_change_callback (struct lwp_info *lwp, void *ptr)
181 {
182 struct aarch64_dr_update_callback_param *param_p
183 = (struct aarch64_dr_update_callback_param *) ptr;
184 int pid = get_thread_id (lwp->ptid);
185 int idx = param_p->idx;
186 int is_watchpoint = param_p->is_watchpoint;
187 struct arch_lwp_info *info = lwp->arch_private;
188 dr_changed_t *dr_changed_ptr;
189 dr_changed_t dr_changed;
190
191 if (info == NULL)
192 info = lwp->arch_private = XCNEW (struct arch_lwp_info);
193
194 if (show_debug_regs)
195 {
196 fprintf_unfiltered (gdb_stdlog,
197 "debug_reg_change_callback: \n\tOn entry:\n");
198 fprintf_unfiltered (gdb_stdlog,
199 "\tpid%d, dr_changed_bp=0x%s, "
200 "dr_changed_wp=0x%s\n",
201 pid, phex (info->dr_changed_bp, 8),
202 phex (info->dr_changed_wp, 8));
203 }
204
205 dr_changed_ptr = is_watchpoint ? &info->dr_changed_wp
206 : &info->dr_changed_bp;
207 dr_changed = *dr_changed_ptr;
208
209 gdb_assert (idx >= 0
210 && (idx <= (is_watchpoint ? aarch64_num_wp_regs
211 : aarch64_num_bp_regs)));
212
213 /* The actual update is done later just before resuming the lwp,
214 we just mark that one register pair needs updating. */
215 DR_MARK_N_CHANGED (dr_changed, idx);
216 *dr_changed_ptr = dr_changed;
217
218 /* If the lwp isn't stopped, force it to momentarily pause, so
219 we can update its debug registers. */
220 if (!lwp->stopped)
221 linux_stop_lwp (lwp);
222
223 if (show_debug_regs)
224 {
225 fprintf_unfiltered (gdb_stdlog,
226 "\tOn exit:\n\tpid%d, dr_changed_bp=0x%s, "
227 "dr_changed_wp=0x%s\n",
228 pid, phex (info->dr_changed_bp, 8),
229 phex (info->dr_changed_wp, 8));
230 }
231
232 /* Continue the iteration. */
233 return 0;
234 }
235
236 /* Notify each thread that their IDXth breakpoint/watchpoint register
237 pair needs to be updated. The message will be recorded in each
238 thread's arch-specific data area, the actual updating will be done
239 when the thread is resumed. */
240
241 void
242 aarch64_notify_debug_reg_change (const struct aarch64_debug_reg_state *state,
243 int is_watchpoint, unsigned int idx)
244 {
245 struct aarch64_dr_update_callback_param param;
246 ptid_t pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
247
248 param.is_watchpoint = is_watchpoint;
249 param.idx = idx;
250
251 iterate_over_lwps (pid_ptid, debug_reg_change_callback, (void *) &param);
252 }
253
254 /* Fill GDB's register array with the general-purpose register values
255 from the current thread. */
256
257 static void
258 fetch_gregs_from_thread (struct regcache *regcache)
259 {
260 int ret, tid;
261 struct gdbarch *gdbarch = get_regcache_arch (regcache);
262 elf_gregset_t regs;
263 struct iovec iovec;
264
265 /* Make sure REGS can hold all registers contents on both aarch64
266 and arm. */
267 gdb_static_assert (sizeof (regs) >= 18 * 4);
268
269 tid = get_thread_id (inferior_ptid);
270
271 iovec.iov_base = &regs;
272 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
273 iovec.iov_len = 18 * 4;
274 else
275 iovec.iov_len = sizeof (regs);
276
277 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
278 if (ret < 0)
279 perror_with_name (_("Unable to fetch general registers."));
280
281 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
282 aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, 1);
283 else
284 {
285 int regno;
286
287 for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
288 regcache_raw_supply (regcache, regno, &regs[regno - AARCH64_X0_REGNUM]);
289 }
290 }
291
292 /* Store to the current thread the valid general-purpose register
293 values in the GDB's register array. */
294
295 static void
296 store_gregs_to_thread (const struct regcache *regcache)
297 {
298 int ret, tid;
299 elf_gregset_t regs;
300 struct iovec iovec;
301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
302
303 /* Make sure REGS can hold all registers contents on both aarch64
304 and arm. */
305 gdb_static_assert (sizeof (regs) >= 18 * 4);
306 tid = get_thread_id (inferior_ptid);
307
308 iovec.iov_base = &regs;
309 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
310 iovec.iov_len = 18 * 4;
311 else
312 iovec.iov_len = sizeof (regs);
313
314 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
315 if (ret < 0)
316 perror_with_name (_("Unable to fetch general registers."));
317
318 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
319 aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, 1);
320 else
321 {
322 int regno;
323
324 for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
325 if (REG_VALID == regcache_register_status (regcache, regno))
326 regcache_raw_collect (regcache, regno,
327 &regs[regno - AARCH64_X0_REGNUM]);
328 }
329
330 ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iovec);
331 if (ret < 0)
332 perror_with_name (_("Unable to store general registers."));
333 }
334
335 /* Fill GDB's register array with the fp/simd register values
336 from the current thread. */
337
338 static void
339 fetch_fpregs_from_thread (struct regcache *regcache)
340 {
341 int ret, tid;
342 elf_fpregset_t regs;
343 struct iovec iovec;
344 struct gdbarch *gdbarch = get_regcache_arch (regcache);
345
346 /* Make sure REGS can hold all VFP registers contents on both aarch64
347 and arm. */
348 gdb_static_assert (sizeof regs >= VFP_REGS_SIZE);
349
350 tid = get_thread_id (inferior_ptid);
351
352 iovec.iov_base = &regs;
353
354 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
355 {
356 iovec.iov_len = VFP_REGS_SIZE;
357
358 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
359 if (ret < 0)
360 perror_with_name (_("Unable to fetch VFP registers."));
361
362 aarch32_vfp_regcache_supply (regcache, (gdb_byte *) &regs, 32);
363 }
364 else
365 {
366 int regno;
367
368 iovec.iov_len = sizeof (regs);
369
370 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
371 if (ret < 0)
372 perror_with_name (_("Unable to fetch vFP/SIMD registers."));
373
374 for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
375 regcache_raw_supply (regcache, regno,
376 &regs.vregs[regno - AARCH64_V0_REGNUM]);
377
378 regcache_raw_supply (regcache, AARCH64_FPSR_REGNUM, &regs.fpsr);
379 regcache_raw_supply (regcache, AARCH64_FPCR_REGNUM, &regs.fpcr);
380 }
381 }
382
383 /* Store to the current thread the valid fp/simd register
384 values in the GDB's register array. */
385
386 static void
387 store_fpregs_to_thread (const struct regcache *regcache)
388 {
389 int ret, tid;
390 elf_fpregset_t regs;
391 struct iovec iovec;
392 struct gdbarch *gdbarch = get_regcache_arch (regcache);
393
394 /* Make sure REGS can hold all VFP registers contents on both aarch64
395 and arm. */
396 gdb_static_assert (sizeof regs >= VFP_REGS_SIZE);
397 tid = get_thread_id (inferior_ptid);
398
399 iovec.iov_base = &regs;
400
401 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
402 {
403 iovec.iov_len = VFP_REGS_SIZE;
404
405 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
406 if (ret < 0)
407 perror_with_name (_("Unable to fetch VFP registers."));
408
409 aarch32_vfp_regcache_collect (regcache, (gdb_byte *) &regs, 32);
410 }
411 else
412 {
413 int regno;
414
415 iovec.iov_len = sizeof (regs);
416
417 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
418 if (ret < 0)
419 perror_with_name (_("Unable to fetch FP/SIMD registers."));
420
421 for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
422 if (REG_VALID == regcache_register_status (regcache, regno))
423 regcache_raw_collect (regcache, regno,
424 (char *) &regs.vregs[regno - AARCH64_V0_REGNUM]);
425
426 if (REG_VALID == regcache_register_status (regcache, AARCH64_FPSR_REGNUM))
427 regcache_raw_collect (regcache, AARCH64_FPSR_REGNUM,
428 (char *) &regs.fpsr);
429 if (REG_VALID == regcache_register_status (regcache, AARCH64_FPCR_REGNUM))
430 regcache_raw_collect (regcache, AARCH64_FPCR_REGNUM,
431 (char *) &regs.fpcr);
432 }
433
434 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
435 {
436 ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iovec);
437 if (ret < 0)
438 perror_with_name (_("Unable to store VFP registers."));
439 }
440 else
441 {
442 ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iovec);
443 if (ret < 0)
444 perror_with_name (_("Unable to store FP/SIMD registers."));
445 }
446 }
447
448 /* Implement the "to_fetch_register" target_ops method. */
449
450 static void
451 aarch64_linux_fetch_inferior_registers (struct target_ops *ops,
452 struct regcache *regcache,
453 int regno)
454 {
455 if (regno == -1)
456 {
457 fetch_gregs_from_thread (regcache);
458 fetch_fpregs_from_thread (regcache);
459 }
460 else if (regno < AARCH64_V0_REGNUM)
461 fetch_gregs_from_thread (regcache);
462 else
463 fetch_fpregs_from_thread (regcache);
464 }
465
466 /* Implement the "to_store_register" target_ops method. */
467
468 static void
469 aarch64_linux_store_inferior_registers (struct target_ops *ops,
470 struct regcache *regcache,
471 int regno)
472 {
473 if (regno == -1)
474 {
475 store_gregs_to_thread (regcache);
476 store_fpregs_to_thread (regcache);
477 }
478 else if (regno < AARCH64_V0_REGNUM)
479 store_gregs_to_thread (regcache);
480 else
481 store_fpregs_to_thread (regcache);
482 }
483
484 /* Fill register REGNO (if it is a general-purpose register) in
485 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
486 do this for all registers. */
487
488 void
489 fill_gregset (const struct regcache *regcache,
490 gdb_gregset_t *gregsetp, int regno)
491 {
492 regcache_collect_regset (&aarch64_linux_gregset, regcache,
493 regno, (gdb_byte *) gregsetp,
494 AARCH64_LINUX_SIZEOF_GREGSET);
495 }
496
497 /* Fill GDB's register array with the general-purpose register values
498 in *GREGSETP. */
499
500 void
501 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
502 {
503 regcache_supply_regset (&aarch64_linux_gregset, regcache, -1,
504 (const gdb_byte *) gregsetp,
505 AARCH64_LINUX_SIZEOF_GREGSET);
506 }
507
508 /* Fill register REGNO (if it is a floating-point register) in
509 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
510 do this for all registers. */
511
512 void
513 fill_fpregset (const struct regcache *regcache,
514 gdb_fpregset_t *fpregsetp, int regno)
515 {
516 regcache_collect_regset (&aarch64_linux_fpregset, regcache,
517 regno, (gdb_byte *) fpregsetp,
518 AARCH64_LINUX_SIZEOF_FPREGSET);
519 }
520
521 /* Fill GDB's register array with the floating-point register values
522 in *FPREGSETP. */
523
524 void
525 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
526 {
527 regcache_supply_regset (&aarch64_linux_fpregset, regcache, -1,
528 (const gdb_byte *) fpregsetp,
529 AARCH64_LINUX_SIZEOF_FPREGSET);
530 }
531
532 /* Called when resuming a thread.
533 The hardware debug registers are updated when there is any change. */
534
535 static void
536 aarch64_linux_prepare_to_resume (struct lwp_info *lwp)
537 {
538 struct arch_lwp_info *info = lwp->arch_private;
539
540 /* NULL means this is the main thread still going through the shell,
541 or, no watchpoint has been set yet. In that case, there's
542 nothing to do. */
543 if (info == NULL)
544 return;
545
546 if (DR_HAS_CHANGED (info->dr_changed_bp)
547 || DR_HAS_CHANGED (info->dr_changed_wp))
548 {
549 int tid = ptid_get_lwp (lwp->ptid);
550 struct aarch64_debug_reg_state *state
551 = aarch64_get_debug_reg_state (ptid_get_pid (lwp->ptid));
552
553 if (show_debug_regs)
554 fprintf_unfiltered (gdb_stdlog, "prepare_to_resume thread %d\n", tid);
555
556 /* Watchpoints. */
557 if (DR_HAS_CHANGED (info->dr_changed_wp))
558 {
559 aarch64_linux_set_debug_regs (state, tid, 1);
560 DR_CLEAR_CHANGED (info->dr_changed_wp);
561 }
562
563 /* Breakpoints. */
564 if (DR_HAS_CHANGED (info->dr_changed_bp))
565 {
566 aarch64_linux_set_debug_regs (state, tid, 0);
567 DR_CLEAR_CHANGED (info->dr_changed_bp);
568 }
569 }
570 }
571
572 static void
573 aarch64_linux_new_thread (struct lwp_info *lp)
574 {
575 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info);
576
577 /* Mark that all the hardware breakpoint/watchpoint register pairs
578 for this thread need to be initialized. */
579 DR_MARK_ALL_CHANGED (info->dr_changed_bp, aarch64_num_bp_regs);
580 DR_MARK_ALL_CHANGED (info->dr_changed_wp, aarch64_num_wp_regs);
581
582 lp->arch_private = info;
583 }
584
585 /* linux_nat_new_fork hook. */
586
587 static void
588 aarch64_linux_new_fork (struct lwp_info *parent, pid_t child_pid)
589 {
590 pid_t parent_pid;
591 struct aarch64_debug_reg_state *parent_state;
592 struct aarch64_debug_reg_state *child_state;
593
594 /* NULL means no watchpoint has ever been set in the parent. In
595 that case, there's nothing to do. */
596 if (parent->arch_private == NULL)
597 return;
598
599 /* GDB core assumes the child inherits the watchpoints/hw
600 breakpoints of the parent, and will remove them all from the
601 forked off process. Copy the debug registers mirrors into the
602 new process so that all breakpoints and watchpoints can be
603 removed together. */
604
605 parent_pid = ptid_get_pid (parent->ptid);
606 parent_state = aarch64_get_debug_reg_state (parent_pid);
607 child_state = aarch64_get_debug_reg_state (child_pid);
608 *child_state = *parent_state;
609 }
610 \f
611
612 /* Called by libthread_db. Returns a pointer to the thread local
613 storage (or its descriptor). */
614
615 ps_err_e
616 ps_get_thread_area (const struct ps_prochandle *ph,
617 lwpid_t lwpid, int idx, void **base)
618 {
619 struct iovec iovec;
620 uint64_t reg;
621
622 iovec.iov_base = &reg;
623 iovec.iov_len = sizeof (reg);
624
625 if (ptrace (PTRACE_GETREGSET, lwpid, NT_ARM_TLS, &iovec) != 0)
626 return PS_ERR;
627
628 /* IDX is the bias from the thread pointer to the beginning of the
629 thread descriptor. It has to be subtracted due to implementation
630 quirks in libthread_db. */
631 *base = (void *) (reg - idx);
632
633 return PS_OK;
634 }
635 \f
636
637 static void (*super_post_startup_inferior) (struct target_ops *self,
638 ptid_t ptid);
639
640 /* Implement the "to_post_startup_inferior" target_ops method. */
641
642 static void
643 aarch64_linux_child_post_startup_inferior (struct target_ops *self,
644 ptid_t ptid)
645 {
646 aarch64_forget_process (ptid_get_pid (ptid));
647 aarch64_linux_get_debug_reg_capacity (ptid_get_pid (ptid));
648 super_post_startup_inferior (self, ptid);
649 }
650
651 extern struct target_desc *tdesc_arm_with_vfpv3;
652 extern struct target_desc *tdesc_arm_with_neon;
653
654 /* Implement the "to_read_description" target_ops method. */
655
656 static const struct target_desc *
657 aarch64_linux_read_description (struct target_ops *ops)
658 {
659 CORE_ADDR at_phent;
660
661 if (target_auxv_search (ops, AT_PHENT, &at_phent) == 1)
662 {
663 if (at_phent == sizeof (Elf64_External_Phdr))
664 return tdesc_aarch64;
665 else
666 {
667 CORE_ADDR arm_hwcap = 0;
668
669 if (target_auxv_search (ops, AT_HWCAP, &arm_hwcap) != 1)
670 return ops->beneath->to_read_description (ops->beneath);
671
672 #ifndef COMPAT_HWCAP_VFP
673 #define COMPAT_HWCAP_VFP (1 << 6)
674 #endif
675 #ifndef COMPAT_HWCAP_NEON
676 #define COMPAT_HWCAP_NEON (1 << 12)
677 #endif
678 #ifndef COMPAT_HWCAP_VFPv3
679 #define COMPAT_HWCAP_VFPv3 (1 << 13)
680 #endif
681
682 if (arm_hwcap & COMPAT_HWCAP_VFP)
683 {
684 char *buf;
685 const struct target_desc *result = NULL;
686
687 if (arm_hwcap & COMPAT_HWCAP_NEON)
688 result = tdesc_arm_with_neon;
689 else if (arm_hwcap & COMPAT_HWCAP_VFPv3)
690 result = tdesc_arm_with_vfpv3;
691
692 return result;
693 }
694
695 return NULL;
696 }
697 }
698
699 return tdesc_aarch64;
700 }
701
702 /* Returns the number of hardware watchpoints of type TYPE that we can
703 set. Value is positive if we can set CNT watchpoints, zero if
704 setting watchpoints of type TYPE is not supported, and negative if
705 CNT is more than the maximum number of watchpoints of type TYPE
706 that we can support. TYPE is one of bp_hardware_watchpoint,
707 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
708 CNT is the number of such watchpoints used so far (including this
709 one). OTHERTYPE is non-zero if other types of watchpoints are
710 currently enabled. */
711
712 static int
713 aarch64_linux_can_use_hw_breakpoint (struct target_ops *self,
714 int type, int cnt, int othertype)
715 {
716 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
717 || type == bp_access_watchpoint || type == bp_watchpoint)
718 {
719 if (aarch64_num_wp_regs == 0)
720 return 0;
721 }
722 else if (type == bp_hardware_breakpoint)
723 {
724 if (aarch64_num_bp_regs == 0)
725 return 0;
726 }
727 else
728 gdb_assert_not_reached ("unexpected breakpoint type");
729
730 /* We always return 1 here because we don't have enough information
731 about possible overlap of addresses that they want to watch. As an
732 extreme example, consider the case where all the watchpoints watch
733 the same address and the same region length: then we can handle a
734 virtually unlimited number of watchpoints, due to debug register
735 sharing implemented via reference counts. */
736 return 1;
737 }
738
739 /* Insert a hardware-assisted breakpoint at BP_TGT->reqstd_address.
740 Return 0 on success, -1 on failure. */
741
742 static int
743 aarch64_linux_insert_hw_breakpoint (struct target_ops *self,
744 struct gdbarch *gdbarch,
745 struct bp_target_info *bp_tgt)
746 {
747 int ret;
748 CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address;
749 const int len = 4;
750 const enum target_hw_bp_type type = hw_execute;
751 struct aarch64_debug_reg_state *state
752 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
753
754 if (show_debug_regs)
755 fprintf_unfiltered
756 (gdb_stdlog,
757 "insert_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
758 (unsigned long) addr, len);
759
760 ret = aarch64_handle_breakpoint (type, addr, len, 1 /* is_insert */, state);
761
762 if (show_debug_regs)
763 {
764 aarch64_show_debug_reg_state (state,
765 "insert_hw_breakpoint", addr, len, type);
766 }
767
768 return ret;
769 }
770
771 /* Remove a hardware-assisted breakpoint at BP_TGT->placed_address.
772 Return 0 on success, -1 on failure. */
773
774 static int
775 aarch64_linux_remove_hw_breakpoint (struct target_ops *self,
776 struct gdbarch *gdbarch,
777 struct bp_target_info *bp_tgt)
778 {
779 int ret;
780 CORE_ADDR addr = bp_tgt->placed_address;
781 const int len = 4;
782 const enum target_hw_bp_type type = hw_execute;
783 struct aarch64_debug_reg_state *state
784 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
785
786 if (show_debug_regs)
787 fprintf_unfiltered
788 (gdb_stdlog, "remove_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
789 (unsigned long) addr, len);
790
791 ret = aarch64_handle_breakpoint (type, addr, len, 0 /* is_insert */, state);
792
793 if (show_debug_regs)
794 {
795 aarch64_show_debug_reg_state (state,
796 "remove_hw_watchpoint", addr, len, type);
797 }
798
799 return ret;
800 }
801
802 /* Implement the "to_insert_watchpoint" target_ops method.
803
804 Insert a watchpoint to watch a memory region which starts at
805 address ADDR and whose length is LEN bytes. Watch memory accesses
806 of the type TYPE. Return 0 on success, -1 on failure. */
807
808 static int
809 aarch64_linux_insert_watchpoint (struct target_ops *self,
810 CORE_ADDR addr, int len, int type,
811 struct expression *cond)
812 {
813 int ret;
814 struct aarch64_debug_reg_state *state
815 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
816
817 if (show_debug_regs)
818 fprintf_unfiltered (gdb_stdlog,
819 "insert_watchpoint on entry (addr=0x%08lx, len=%d)\n",
820 (unsigned long) addr, len);
821
822 gdb_assert (type != hw_execute);
823
824 ret = aarch64_handle_watchpoint (type, addr, len, 1 /* is_insert */, state);
825
826 if (show_debug_regs)
827 {
828 aarch64_show_debug_reg_state (state,
829 "insert_watchpoint", addr, len, type);
830 }
831
832 return ret;
833 }
834
835 /* Implement the "to_remove_watchpoint" target_ops method.
836 Remove a watchpoint that watched the memory region which starts at
837 address ADDR, whose length is LEN bytes, and for accesses of the
838 type TYPE. Return 0 on success, -1 on failure. */
839
840 static int
841 aarch64_linux_remove_watchpoint (struct target_ops *self,
842 CORE_ADDR addr, int len, int type,
843 struct expression *cond)
844 {
845 int ret;
846 struct aarch64_debug_reg_state *state
847 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
848
849 if (show_debug_regs)
850 fprintf_unfiltered (gdb_stdlog,
851 "remove_watchpoint on entry (addr=0x%08lx, len=%d)\n",
852 (unsigned long) addr, len);
853
854 gdb_assert (type != hw_execute);
855
856 ret = aarch64_handle_watchpoint (type, addr, len, 0 /* is_insert */, state);
857
858 if (show_debug_regs)
859 {
860 aarch64_show_debug_reg_state (state,
861 "remove_watchpoint", addr, len, type);
862 }
863
864 return ret;
865 }
866
867 /* Implement the "to_region_ok_for_hw_watchpoint" target_ops method. */
868
869 static int
870 aarch64_linux_region_ok_for_hw_watchpoint (struct target_ops *self,
871 CORE_ADDR addr, int len)
872 {
873 CORE_ADDR aligned_addr;
874
875 /* Can not set watchpoints for zero or negative lengths. */
876 if (len <= 0)
877 return 0;
878
879 /* Must have hardware watchpoint debug register(s). */
880 if (aarch64_num_wp_regs == 0)
881 return 0;
882
883 /* We support unaligned watchpoint address and arbitrary length,
884 as long as the size of the whole watched area after alignment
885 doesn't exceed size of the total area that all watchpoint debug
886 registers can watch cooperatively.
887
888 This is a very relaxed rule, but unfortunately there are
889 limitations, e.g. false-positive hits, due to limited support of
890 hardware debug registers in the kernel. See comment above
891 aarch64_align_watchpoint for more information. */
892
893 aligned_addr = addr & ~(AARCH64_HWP_MAX_LEN_PER_REG - 1);
894 if (aligned_addr + aarch64_num_wp_regs * AARCH64_HWP_MAX_LEN_PER_REG
895 < addr + len)
896 return 0;
897
898 /* All tests passed so we are likely to be able to set the watchpoint.
899 The reason that it is 'likely' rather than 'must' is because
900 we don't check the current usage of the watchpoint registers, and
901 there may not be enough registers available for this watchpoint.
902 Ideally we should check the cached debug register state, however
903 the checking is costly. */
904 return 1;
905 }
906
907 /* Implement the "to_stopped_data_address" target_ops method. */
908
909 static int
910 aarch64_linux_stopped_data_address (struct target_ops *target,
911 CORE_ADDR *addr_p)
912 {
913 siginfo_t siginfo;
914 int i, tid;
915 struct aarch64_debug_reg_state *state;
916
917 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
918 return 0;
919
920 /* This must be a hardware breakpoint. */
921 if (siginfo.si_signo != SIGTRAP
922 || (siginfo.si_code & 0xffff) != TRAP_HWBKPT)
923 return 0;
924
925 /* Check if the address matches any watched address. */
926 state = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
927 for (i = aarch64_num_wp_regs - 1; i >= 0; --i)
928 {
929 const unsigned int len = aarch64_watchpoint_length (state->dr_ctrl_wp[i]);
930 const CORE_ADDR addr_trap = (CORE_ADDR) siginfo.si_addr;
931 const CORE_ADDR addr_watch = state->dr_addr_wp[i];
932
933 if (state->dr_ref_count_wp[i]
934 && DR_CONTROL_ENABLED (state->dr_ctrl_wp[i])
935 && addr_trap >= addr_watch
936 && addr_trap < addr_watch + len)
937 {
938 *addr_p = addr_trap;
939 return 1;
940 }
941 }
942
943 return 0;
944 }
945
946 /* Implement the "to_stopped_by_watchpoint" target_ops method. */
947
948 static int
949 aarch64_linux_stopped_by_watchpoint (struct target_ops *ops)
950 {
951 CORE_ADDR addr;
952
953 return aarch64_linux_stopped_data_address (ops, &addr);
954 }
955
956 /* Implement the "to_watchpoint_addr_within_range" target_ops method. */
957
958 static int
959 aarch64_linux_watchpoint_addr_within_range (struct target_ops *target,
960 CORE_ADDR addr,
961 CORE_ADDR start, int length)
962 {
963 return start <= addr && start + length - 1 >= addr;
964 }
965
966 /* Define AArch64 maintenance commands. */
967
968 static void
969 add_show_debug_regs_command (void)
970 {
971 /* A maintenance command to enable printing the internal DRi mirror
972 variables. */
973 add_setshow_boolean_cmd ("show-debug-regs", class_maintenance,
974 &show_debug_regs, _("\
975 Set whether to show variables that mirror the AArch64 debug registers."), _("\
976 Show whether to show variables that mirror the AArch64 debug registers."), _("\
977 Use \"on\" to enable, \"off\" to disable.\n\
978 If enabled, the debug registers values are shown when GDB inserts\n\
979 or removes a hardware breakpoint or watchpoint, and when the inferior\n\
980 triggers a breakpoint or watchpoint."),
981 NULL,
982 NULL,
983 &maintenance_set_cmdlist,
984 &maintenance_show_cmdlist);
985 }
986
987 /* -Wmissing-prototypes. */
988 void _initialize_aarch64_linux_nat (void);
989
990 void
991 _initialize_aarch64_linux_nat (void)
992 {
993 struct target_ops *t;
994
995 /* Fill in the generic GNU/Linux methods. */
996 t = linux_target ();
997
998 add_show_debug_regs_command ();
999
1000 /* Add our register access methods. */
1001 t->to_fetch_registers = aarch64_linux_fetch_inferior_registers;
1002 t->to_store_registers = aarch64_linux_store_inferior_registers;
1003
1004 t->to_read_description = aarch64_linux_read_description;
1005
1006 t->to_can_use_hw_breakpoint = aarch64_linux_can_use_hw_breakpoint;
1007 t->to_insert_hw_breakpoint = aarch64_linux_insert_hw_breakpoint;
1008 t->to_remove_hw_breakpoint = aarch64_linux_remove_hw_breakpoint;
1009 t->to_region_ok_for_hw_watchpoint =
1010 aarch64_linux_region_ok_for_hw_watchpoint;
1011 t->to_insert_watchpoint = aarch64_linux_insert_watchpoint;
1012 t->to_remove_watchpoint = aarch64_linux_remove_watchpoint;
1013 t->to_stopped_by_watchpoint = aarch64_linux_stopped_by_watchpoint;
1014 t->to_stopped_data_address = aarch64_linux_stopped_data_address;
1015 t->to_watchpoint_addr_within_range =
1016 aarch64_linux_watchpoint_addr_within_range;
1017
1018 /* Override the GNU/Linux inferior startup hook. */
1019 super_post_startup_inferior = t->to_post_startup_inferior;
1020 t->to_post_startup_inferior = aarch64_linux_child_post_startup_inferior;
1021
1022 /* Register the target. */
1023 linux_nat_add_target (t);
1024 linux_nat_set_new_thread (t, aarch64_linux_new_thread);
1025 linux_nat_set_new_fork (t, aarch64_linux_new_fork);
1026 linux_nat_set_forget_process (t, aarch64_forget_process);
1027 linux_nat_set_prepare_to_resume (t, aarch64_linux_prepare_to_resume);
1028 }
This page took 0.07239 seconds and 5 git commands to generate.