2013-02-14 Pedro Alves <palves@redhat.com>
[deliverable/binutils-gdb.git] / gdb / aarch64-linux-nat.c
1 /* Native-dependent code for GNU/Linux AArch64.
2
3 Copyright (C) 2011-2013 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "regcache.h"
26 #include "linux-nat.h"
27 #include "target-descriptions.h"
28 #include "auxv.h"
29 #include "gdbcmd.h"
30 #include "aarch64-tdep.h"
31 #include "aarch64-linux-tdep.h"
32 #include "elf/common.h"
33
34 #include <sys/ptrace.h>
35 #include <sys/utsname.h>
36
37 #include "gregset.h"
38
39 #include "features/aarch64.c"
40
41 /* Defines ps_err_e, struct ps_prochandle. */
42 #include "gdb_proc_service.h"
43
44 #ifndef TRAP_HWBKPT
45 #define TRAP_HWBKPT 0x0004
46 #endif
47
48 /* On GNU/Linux, threads are implemented as pseudo-processes, in which
49 case we may be tracing more than one process at a time. In that
50 case, inferior_ptid will contain the main process ID and the
51 individual thread (process) ID. get_thread_id () is used to get
52 the thread id if it's available, and the process id otherwise. */
53
54 static int
55 get_thread_id (ptid_t ptid)
56 {
57 int tid = TIDGET (ptid);
58
59 if (0 == tid)
60 tid = PIDGET (ptid);
61 return tid;
62 }
63
64 /* Macro definitions, data structures, and code for the hardware
65 breakpoint and hardware watchpoint support follow. We use the
66 following abbreviations throughout the code:
67
68 hw - hardware
69 bp - breakpoint
70 wp - watchpoint */
71
72 /* Maximum number of hardware breakpoint and watchpoint registers.
73 Neither of these values may exceed the width of dr_changed_t
74 measured in bits. */
75
76 #define AARCH64_HBP_MAX_NUM 16
77 #define AARCH64_HWP_MAX_NUM 16
78
79 /* Alignment requirement in bytes for addresses written to
80 hardware breakpoint and watchpoint value registers.
81
82 A ptrace call attempting to set an address that does not meet the
83 alignment criteria will fail. Limited support has been provided in
84 this port for unaligned watchpoints, such that from a GDB user
85 perspective, an unaligned watchpoint may be requested.
86
87 This is achieved by minimally enlarging the watched area to meet the
88 alignment requirement, and if necessary, splitting the watchpoint
89 over several hardware watchpoint registers. */
90
91 #define AARCH64_HBP_ALIGNMENT 4
92 #define AARCH64_HWP_ALIGNMENT 8
93
94 /* The maximum length of a memory region that can be watched by one
95 hardware watchpoint register. */
96
97 #define AARCH64_HWP_MAX_LEN_PER_REG 8
98
99 /* ptrace hardware breakpoint resource info is formatted as follows:
100
101 31 24 16 8 0
102 +---------------+--------------+---------------+---------------+
103 | RESERVED | RESERVED | DEBUG_ARCH | NUM_SLOTS |
104 +---------------+--------------+---------------+---------------+ */
105
106
107 /* Macros to extract fields from the hardware debug information word. */
108 #define AARCH64_DEBUG_NUM_SLOTS(x) ((x) & 0xff)
109 #define AARCH64_DEBUG_ARCH(x) (((x) >> 8) & 0xff)
110
111 /* Macro for the expected version of the ARMv8-A debug architecture. */
112 #define AARCH64_DEBUG_ARCH_V8 0x6
113
114 /* Number of hardware breakpoints/watchpoints the target supports.
115 They are initialized with values obtained via the ptrace calls
116 with NT_ARM_HW_BREAK and NT_ARM_HW_WATCH respectively. */
117
118 static int aarch64_num_bp_regs;
119 static int aarch64_num_wp_regs;
120
121 /* Debugging of hardware breakpoint/watchpoint support. */
122
123 static int debug_hw_points;
124
125 /* Each bit of a variable of this type is used to indicate whether a
126 hardware breakpoint or watchpoint setting has been changed since
127 the last update.
128
129 Bit N corresponds to the Nth hardware breakpoint or watchpoint
130 setting which is managed in aarch64_debug_reg_state, where N is
131 valid between 0 and the total number of the hardware breakpoint or
132 watchpoint debug registers minus 1.
133
134 When bit N is 1, the corresponding breakpoint or watchpoint setting
135 has changed, and therefore the corresponding hardware debug
136 register needs to be updated via the ptrace interface.
137
138 In the per-thread arch-specific data area, we define two such
139 variables for per-thread hardware breakpoint and watchpoint
140 settings respectively.
141
142 This type is part of the mechanism which helps reduce the number of
143 ptrace calls to the kernel, i.e. avoid asking the kernel to write
144 to the debug registers with unchanged values. */
145
146 typedef unsigned LONGEST dr_changed_t;
147
148 /* Set each of the lower M bits of X to 1; assert X is wide enough. */
149
150 #define DR_MARK_ALL_CHANGED(x, m) \
151 do \
152 { \
153 gdb_assert (sizeof ((x)) * 8 >= (m)); \
154 (x) = (((dr_changed_t)1 << (m)) - 1); \
155 } while (0)
156
157 #define DR_MARK_N_CHANGED(x, n) \
158 do \
159 { \
160 (x) |= ((dr_changed_t)1 << (n)); \
161 } while (0)
162
163 #define DR_CLEAR_CHANGED(x) \
164 do \
165 { \
166 (x) = 0; \
167 } while (0)
168
169 #define DR_HAS_CHANGED(x) ((x) != 0)
170 #define DR_N_HAS_CHANGED(x, n) ((x) & ((dr_changed_t)1 << (n)))
171
172 /* Structure for managing the hardware breakpoint/watchpoint resources.
173 DR_ADDR_* stores the address, DR_CTRL_* stores the control register
174 content, and DR_REF_COUNT_* counts the numbers of references to the
175 corresponding bp/wp, by which way the limited hardware resources
176 are not wasted on duplicated bp/wp settings (though so far gdb has
177 done a good job by not sending duplicated bp/wp requests). */
178
179 struct aarch64_debug_reg_state
180 {
181 /* hardware breakpoint */
182 CORE_ADDR dr_addr_bp[AARCH64_HBP_MAX_NUM];
183 unsigned int dr_ctrl_bp[AARCH64_HBP_MAX_NUM];
184 unsigned int dr_ref_count_bp[AARCH64_HBP_MAX_NUM];
185
186 /* hardware watchpoint */
187 CORE_ADDR dr_addr_wp[AARCH64_HWP_MAX_NUM];
188 unsigned int dr_ctrl_wp[AARCH64_HWP_MAX_NUM];
189 unsigned int dr_ref_count_wp[AARCH64_HWP_MAX_NUM];
190 };
191
192 /* Per-process data. We don't bind this to a per-inferior registry
193 because of targets like x86 GNU/Linux that need to keep track of
194 processes that aren't bound to any inferior (e.g., fork children,
195 checkpoints). */
196
197 struct aarch64_process_info
198 {
199 /* Linked list. */
200 struct aarch64_process_info *next;
201
202 /* The process identifier. */
203 pid_t pid;
204
205 /* Copy of aarch64 hardware debug registers. */
206 struct aarch64_debug_reg_state state;
207 };
208
209 static struct aarch64_process_info *aarch64_process_list = NULL;
210
211 /* Find process data for process PID. */
212
213 static struct aarch64_process_info *
214 aarch64_find_process_pid (pid_t pid)
215 {
216 struct aarch64_process_info *proc;
217
218 for (proc = aarch64_process_list; proc; proc = proc->next)
219 if (proc->pid == pid)
220 return proc;
221
222 return NULL;
223 }
224
225 /* Add process data for process PID. Returns newly allocated info
226 object. */
227
228 static struct aarch64_process_info *
229 aarch64_add_process (pid_t pid)
230 {
231 struct aarch64_process_info *proc;
232
233 proc = xcalloc (1, sizeof (*proc));
234 proc->pid = pid;
235
236 proc->next = aarch64_process_list;
237 aarch64_process_list = proc;
238
239 return proc;
240 }
241
242 /* Get data specific info for process PID, creating it if necessary.
243 Never returns NULL. */
244
245 static struct aarch64_process_info *
246 aarch64_process_info_get (pid_t pid)
247 {
248 struct aarch64_process_info *proc;
249
250 proc = aarch64_find_process_pid (pid);
251 if (proc == NULL)
252 proc = aarch64_add_process (pid);
253
254 return proc;
255 }
256
257 /* Called whenever GDB is no longer debugging process PID. It deletes
258 data structures that keep track of debug register state. */
259
260 static void
261 aarch64_forget_process (pid_t pid)
262 {
263 struct aarch64_process_info *proc, **proc_link;
264
265 proc = aarch64_process_list;
266 proc_link = &aarch64_process_list;
267
268 while (proc != NULL)
269 {
270 if (proc->pid == pid)
271 {
272 *proc_link = proc->next;
273
274 xfree (proc);
275 return;
276 }
277
278 proc_link = &proc->next;
279 proc = *proc_link;
280 }
281 }
282
283 /* Get debug registers state for process PID. */
284
285 static struct aarch64_debug_reg_state *
286 aarch64_get_debug_reg_state (pid_t pid)
287 {
288 return &aarch64_process_info_get (pid)->state;
289 }
290
291 /* Per-thread arch-specific data we want to keep. */
292
293 struct arch_lwp_info
294 {
295 /* When bit N is 1, it indicates the Nth hardware breakpoint or
296 watchpoint register pair needs to be updated when the thread is
297 resumed; see aarch64_linux_prepare_to_resume. */
298 dr_changed_t dr_changed_bp;
299 dr_changed_t dr_changed_wp;
300 };
301
302 /* Call ptrace to set the thread TID's hardware breakpoint/watchpoint
303 registers with data from *STATE. */
304
305 static void
306 aarch64_linux_set_debug_regs (const struct aarch64_debug_reg_state *state,
307 int tid, int watchpoint)
308 {
309 int i, count;
310 struct iovec iov;
311 struct user_hwdebug_state regs;
312 const CORE_ADDR *addr;
313 const unsigned int *ctrl;
314
315 iov.iov_base = &regs;
316 iov.iov_len = sizeof (regs);
317 count = watchpoint ? aarch64_num_wp_regs : aarch64_num_bp_regs;
318 addr = watchpoint ? state->dr_addr_wp : state->dr_addr_bp;
319 ctrl = watchpoint ? state->dr_ctrl_wp : state->dr_ctrl_bp;
320
321 for (i = 0; i < count; i++)
322 {
323 regs.dbg_regs[i].addr = addr[i];
324 regs.dbg_regs[i].ctrl = ctrl[i];
325 }
326
327 if (ptrace (PTRACE_SETREGSET, tid,
328 watchpoint ? NT_ARM_HW_WATCH : NT_ARM_HW_BREAK,
329 (void *) &iov))
330 error (_("Unexpected error setting hardware debug registers"));
331 }
332
333 struct aarch64_dr_update_callback_param
334 {
335 int is_watchpoint;
336 unsigned int idx;
337 };
338
339 /* Callback for iterate_over_lwps. Records the
340 information about the change of one hardware breakpoint/watchpoint
341 setting for the thread LWP.
342 The information is passed in via PTR.
343 N.B. The actual updating of hardware debug registers is not
344 carried out until the moment the thread is resumed. */
345
346 static int
347 debug_reg_change_callback (struct lwp_info *lwp, void *ptr)
348 {
349 struct aarch64_dr_update_callback_param *param_p
350 = (struct aarch64_dr_update_callback_param *) ptr;
351 int pid = get_thread_id (lwp->ptid);
352 int idx = param_p->idx;
353 int is_watchpoint = param_p->is_watchpoint;
354 struct arch_lwp_info *info = lwp->arch_private;
355 dr_changed_t *dr_changed_ptr;
356 dr_changed_t dr_changed;
357
358 if (info == NULL)
359 info = lwp->arch_private = XCNEW (struct arch_lwp_info);
360
361 if (debug_hw_points)
362 {
363 fprintf_unfiltered (gdb_stdlog,
364 "debug_reg_change_callback: \n\tOn entry:\n");
365 fprintf_unfiltered (gdb_stdlog,
366 "\tpid%d, dr_changed_bp=0x%s, "
367 "dr_changed_wp=0x%s\n",
368 pid, phex (info->dr_changed_bp, 8),
369 phex (info->dr_changed_wp, 8));
370 }
371
372 dr_changed_ptr = is_watchpoint ? &info->dr_changed_wp
373 : &info->dr_changed_bp;
374 dr_changed = *dr_changed_ptr;
375
376 gdb_assert (idx >= 0
377 && (idx <= (is_watchpoint ? aarch64_num_wp_regs
378 : aarch64_num_bp_regs)));
379
380 /* The actual update is done later just before resuming the lwp,
381 we just mark that one register pair needs updating. */
382 DR_MARK_N_CHANGED (dr_changed, idx);
383 *dr_changed_ptr = dr_changed;
384
385 /* If the lwp isn't stopped, force it to momentarily pause, so
386 we can update its debug registers. */
387 if (!lwp->stopped)
388 linux_stop_lwp (lwp);
389
390 if (debug_hw_points)
391 {
392 fprintf_unfiltered (gdb_stdlog,
393 "\tOn exit:\n\tpid%d, dr_changed_bp=0x%s, "
394 "dr_changed_wp=0x%s\n",
395 pid, phex (info->dr_changed_bp, 8),
396 phex (info->dr_changed_wp, 8));
397 }
398
399 /* Continue the iteration. */
400 return 0;
401 }
402
403 /* Notify each thread that their IDXth breakpoint/watchpoint register
404 pair needs to be updated. The message will be recorded in each
405 thread's arch-specific data area, the actual updating will be done
406 when the thread is resumed. */
407
408 static void
409 aarch64_notify_debug_reg_change (const struct aarch64_debug_reg_state *state,
410 int is_watchpoint, unsigned int idx)
411 {
412 struct aarch64_dr_update_callback_param param;
413 ptid_t pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
414
415 param.is_watchpoint = is_watchpoint;
416 param.idx = idx;
417
418 iterate_over_lwps (pid_ptid, debug_reg_change_callback, (void *) &param);
419 }
420
421 /* Print the values of the cached breakpoint/watchpoint registers. */
422
423 static void
424 aarch64_show_debug_reg_state (struct aarch64_debug_reg_state *state,
425 const char *func, CORE_ADDR addr,
426 int len, int type)
427 {
428 int i;
429
430 fprintf_unfiltered (gdb_stdlog, "%s", func);
431 if (addr || len)
432 fprintf_unfiltered (gdb_stdlog, " (addr=0x%08lx, len=%d, type=%s)",
433 (unsigned long) addr, len,
434 type == hw_write ? "hw-write-watchpoint"
435 : (type == hw_read ? "hw-read-watchpoint"
436 : (type == hw_access ? "hw-access-watchpoint"
437 : (type == hw_execute ? "hw-breakpoint"
438 : "??unknown??"))));
439 fprintf_unfiltered (gdb_stdlog, ":\n");
440
441 fprintf_unfiltered (gdb_stdlog, "\tBREAKPOINTs:\n");
442 for (i = 0; i < aarch64_num_bp_regs; i++)
443 fprintf_unfiltered (gdb_stdlog,
444 "\tBP%d: addr=0x%08lx, ctrl=0x%08x, ref.count=%d\n",
445 i, state->dr_addr_bp[i],
446 state->dr_ctrl_bp[i], state->dr_ref_count_bp[i]);
447
448 fprintf_unfiltered (gdb_stdlog, "\tWATCHPOINTs:\n");
449 for (i = 0; i < aarch64_num_wp_regs; i++)
450 fprintf_unfiltered (gdb_stdlog,
451 "\tWP%d: addr=0x%08lx, ctrl=0x%08x, ref.count=%d\n",
452 i, state->dr_addr_wp[i],
453 state->dr_ctrl_wp[i], state->dr_ref_count_wp[i]);
454 }
455
456 /* Fill GDB's register array with the general-purpose register values
457 from the current thread. */
458
459 static void
460 fetch_gregs_from_thread (struct regcache *regcache)
461 {
462 int ret, regno, tid;
463 elf_gregset_t regs;
464 struct iovec iovec;
465
466 tid = get_thread_id (inferior_ptid);
467
468 iovec.iov_base = &regs;
469 iovec.iov_len = sizeof (regs);
470
471 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
472 if (ret < 0)
473 perror_with_name (_("Unable to fetch general registers."));
474
475 for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
476 regcache_raw_supply (regcache, regno,
477 (char *) &regs[regno - AARCH64_X0_REGNUM]);
478 }
479
480 /* Store to the current thread the valid general-purpose register
481 values in the GDB's register array. */
482
483 static void
484 store_gregs_to_thread (const struct regcache *regcache)
485 {
486 int ret, regno, tid;
487 elf_gregset_t regs;
488 struct iovec iovec;
489
490 tid = get_thread_id (inferior_ptid);
491
492 iovec.iov_base = &regs;
493 iovec.iov_len = sizeof (regs);
494
495 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
496 if (ret < 0)
497 perror_with_name (_("Unable to fetch general registers."));
498
499 for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
500 if (REG_VALID == regcache_register_status (regcache, regno))
501 regcache_raw_collect (regcache, regno,
502 (char *) &regs[regno - AARCH64_X0_REGNUM]);
503
504 ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iovec);
505 if (ret < 0)
506 perror_with_name (_("Unable to store general registers."));
507 }
508
509 /* Fill GDB's register array with the fp/simd register values
510 from the current thread. */
511
512 static void
513 fetch_fpregs_from_thread (struct regcache *regcache)
514 {
515 int ret, regno, tid;
516 elf_fpregset_t regs;
517 struct iovec iovec;
518
519 tid = get_thread_id (inferior_ptid);
520
521 iovec.iov_base = &regs;
522 iovec.iov_len = sizeof (regs);
523
524 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
525 if (ret < 0)
526 perror_with_name (_("Unable to fetch FP/SIMD registers."));
527
528 for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
529 regcache_raw_supply (regcache, regno,
530 (char *) &regs.vregs[regno - AARCH64_V0_REGNUM]);
531
532 regcache_raw_supply (regcache, AARCH64_FPSR_REGNUM, (char *) &regs.fpsr);
533 regcache_raw_supply (regcache, AARCH64_FPCR_REGNUM, (char *) &regs.fpcr);
534 }
535
536 /* Store to the current thread the valid fp/simd register
537 values in the GDB's register array. */
538
539 static void
540 store_fpregs_to_thread (const struct regcache *regcache)
541 {
542 int ret, regno, tid;
543 elf_fpregset_t regs;
544 struct iovec iovec;
545
546 tid = get_thread_id (inferior_ptid);
547
548 iovec.iov_base = &regs;
549 iovec.iov_len = sizeof (regs);
550
551 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
552 if (ret < 0)
553 perror_with_name (_("Unable to fetch FP/SIMD registers."));
554
555 for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
556 if (REG_VALID == regcache_register_status (regcache, regno))
557 regcache_raw_collect (regcache, regno,
558 (char *) &regs.vregs[regno - AARCH64_V0_REGNUM]);
559
560 if (REG_VALID == regcache_register_status (regcache, AARCH64_FPSR_REGNUM))
561 regcache_raw_collect (regcache, AARCH64_FPSR_REGNUM, (char *) &regs.fpsr);
562 if (REG_VALID == regcache_register_status (regcache, AARCH64_FPCR_REGNUM))
563 regcache_raw_collect (regcache, AARCH64_FPCR_REGNUM, (char *) &regs.fpcr);
564
565 ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iovec);
566 if (ret < 0)
567 perror_with_name (_("Unable to store FP/SIMD registers."));
568 }
569
570 /* Implement the "to_fetch_register" target_ops method. */
571
572 static void
573 aarch64_linux_fetch_inferior_registers (struct target_ops *ops,
574 struct regcache *regcache,
575 int regno)
576 {
577 if (regno == -1)
578 {
579 fetch_gregs_from_thread (regcache);
580 fetch_fpregs_from_thread (regcache);
581 }
582 else if (regno < AARCH64_V0_REGNUM)
583 fetch_gregs_from_thread (regcache);
584 else
585 fetch_fpregs_from_thread (regcache);
586 }
587
588 /* Implement the "to_store_register" target_ops method. */
589
590 static void
591 aarch64_linux_store_inferior_registers (struct target_ops *ops,
592 struct regcache *regcache,
593 int regno)
594 {
595 if (regno == -1)
596 {
597 store_gregs_to_thread (regcache);
598 store_fpregs_to_thread (regcache);
599 }
600 else if (regno < AARCH64_V0_REGNUM)
601 store_gregs_to_thread (regcache);
602 else
603 store_fpregs_to_thread (regcache);
604 }
605
606 /* Fill register REGNO (if it is a general-purpose register) in
607 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
608 do this for all registers. */
609
610 void
611 fill_gregset (const struct regcache *regcache,
612 gdb_gregset_t *gregsetp, int regno)
613 {
614 gdb_byte *gregs_buf = (gdb_byte *) gregsetp;
615 int i;
616
617 for (i = AARCH64_X0_REGNUM; i <= AARCH64_CPSR_REGNUM; i++)
618 if (regno == -1 || regno == i)
619 regcache_raw_collect (regcache, i,
620 gregs_buf + X_REGISTER_SIZE
621 * (i - AARCH64_X0_REGNUM));
622 }
623
624 /* Fill GDB's register array with the general-purpose register values
625 in *GREGSETP. */
626
627 void
628 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
629 {
630 aarch64_linux_supply_gregset (regcache, (const gdb_byte *) gregsetp);
631 }
632
633 /* Fill register REGNO (if it is a floating-point register) in
634 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
635 do this for all registers. */
636
637 void
638 fill_fpregset (const struct regcache *regcache,
639 gdb_fpregset_t *fpregsetp, int regno)
640 {
641 gdb_byte *fpregs_buf = (gdb_byte *) fpregsetp;
642 int i;
643
644 for (i = AARCH64_V0_REGNUM; i <= AARCH64_V31_REGNUM; i++)
645 if (regno == -1 || regno == i)
646 regcache_raw_collect (regcache, i,
647 fpregs_buf + V_REGISTER_SIZE
648 * (i - AARCH64_V0_REGNUM));
649
650 if (regno == -1 || regno == AARCH64_FPSR_REGNUM)
651 regcache_raw_collect (regcache, AARCH64_FPSR_REGNUM,
652 fpregs_buf + V_REGISTER_SIZE * 32);
653
654 if (regno == -1 || regno == AARCH64_FPCR_REGNUM)
655 regcache_raw_collect (regcache, AARCH64_FPCR_REGNUM,
656 fpregs_buf + V_REGISTER_SIZE * 32 + 4);
657 }
658
659 /* Fill GDB's register array with the floating-point register values
660 in *FPREGSETP. */
661
662 void
663 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
664 {
665 aarch64_linux_supply_fpregset (regcache, (const gdb_byte *) fpregsetp);
666 }
667
668 /* Called when resuming a thread.
669 The hardware debug registers are updated when there is any change. */
670
671 static void
672 aarch64_linux_prepare_to_resume (struct lwp_info *lwp)
673 {
674 struct arch_lwp_info *info = lwp->arch_private;
675
676 /* NULL means this is the main thread still going through the shell,
677 or, no watchpoint has been set yet. In that case, there's
678 nothing to do. */
679 if (info == NULL)
680 return;
681
682 if (DR_HAS_CHANGED (info->dr_changed_bp)
683 || DR_HAS_CHANGED (info->dr_changed_wp))
684 {
685 int tid = GET_LWP (lwp->ptid);
686 struct aarch64_debug_reg_state *state
687 = aarch64_get_debug_reg_state (ptid_get_pid (lwp->ptid));
688
689 if (debug_hw_points)
690 fprintf_unfiltered (gdb_stdlog, "prepare_to_resume thread %d\n", tid);
691
692 /* Watchpoints. */
693 if (DR_HAS_CHANGED (info->dr_changed_wp))
694 {
695 aarch64_linux_set_debug_regs (state, tid, 1);
696 DR_CLEAR_CHANGED (info->dr_changed_wp);
697 }
698
699 /* Breakpoints. */
700 if (DR_HAS_CHANGED (info->dr_changed_bp))
701 {
702 aarch64_linux_set_debug_regs (state, tid, 0);
703 DR_CLEAR_CHANGED (info->dr_changed_bp);
704 }
705 }
706 }
707
708 static void
709 aarch64_linux_new_thread (struct lwp_info *lp)
710 {
711 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info);
712
713 /* Mark that all the hardware breakpoint/watchpoint register pairs
714 for this thread need to be initialized. */
715 DR_MARK_ALL_CHANGED (info->dr_changed_bp, aarch64_num_bp_regs);
716 DR_MARK_ALL_CHANGED (info->dr_changed_wp, aarch64_num_wp_regs);
717
718 lp->arch_private = info;
719 }
720
721 /* linux_nat_new_fork hook. */
722
723 static void
724 aarch64_linux_new_fork (struct lwp_info *parent, pid_t child_pid)
725 {
726 pid_t parent_pid;
727 struct aarch64_debug_reg_state *parent_state;
728 struct aarch64_debug_reg_state *child_state;
729
730 /* NULL means no watchpoint has ever been set in the parent. In
731 that case, there's nothing to do. */
732 if (parent->arch_private == NULL)
733 return;
734
735 /* GDB core assumes the child inherits the watchpoints/hw
736 breakpoints of the parent, and will remove them all from the
737 forked off process. Copy the debug registers mirrors into the
738 new process so that all breakpoints and watchpoints can be
739 removed together. */
740
741 parent_pid = ptid_get_pid (parent->ptid);
742 parent_state = aarch64_get_debug_reg_state (parent_pid);
743 child_state = aarch64_get_debug_reg_state (child_pid);
744 *child_state = *parent_state;
745 }
746 \f
747
748 /* Called by libthread_db. Returns a pointer to the thread local
749 storage (or its descriptor). */
750
751 ps_err_e
752 ps_get_thread_area (const struct ps_prochandle *ph,
753 lwpid_t lwpid, int idx, void **base)
754 {
755 struct iovec iovec;
756 uint64_t reg;
757
758 iovec.iov_base = &reg;
759 iovec.iov_len = sizeof (reg);
760
761 if (ptrace (PTRACE_GETREGSET, lwpid, NT_ARM_TLS, &iovec) != 0)
762 return PS_ERR;
763
764 /* IDX is the bias from the thread pointer to the beginning of the
765 thread descriptor. It has to be subtracted due to implementation
766 quirks in libthread_db. */
767 *base = (void *) (reg - idx);
768
769 return PS_OK;
770 }
771 \f
772
773 /* Get the hardware debug register capacity information. */
774
775 static void
776 aarch64_linux_get_debug_reg_capacity (void)
777 {
778 int tid;
779 struct iovec iov;
780 struct user_hwdebug_state dreg_state;
781
782 tid = get_thread_id (inferior_ptid);
783 iov.iov_base = &dreg_state;
784 iov.iov_len = sizeof (dreg_state);
785
786 /* Get hardware watchpoint register info. */
787 if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_HW_WATCH, &iov) == 0
788 && AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8)
789 {
790 aarch64_num_wp_regs = AARCH64_DEBUG_NUM_SLOTS (dreg_state.dbg_info);
791 if (aarch64_num_wp_regs > AARCH64_HWP_MAX_NUM)
792 {
793 warning (_("Unexpected number of hardware watchpoint registers"
794 " reported by ptrace, got %d, expected %d."),
795 aarch64_num_wp_regs, AARCH64_HWP_MAX_NUM);
796 aarch64_num_wp_regs = AARCH64_HWP_MAX_NUM;
797 }
798 }
799 else
800 {
801 warning (_("Unable to determine the number of hardware watchpoints"
802 " available."));
803 aarch64_num_wp_regs = 0;
804 }
805
806 /* Get hardware breakpoint register info. */
807 if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_HW_BREAK, &iov) == 0
808 && AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8)
809 {
810 aarch64_num_bp_regs = AARCH64_DEBUG_NUM_SLOTS (dreg_state.dbg_info);
811 if (aarch64_num_bp_regs > AARCH64_HBP_MAX_NUM)
812 {
813 warning (_("Unexpected number of hardware breakpoint registers"
814 " reported by ptrace, got %d, expected %d."),
815 aarch64_num_bp_regs, AARCH64_HBP_MAX_NUM);
816 aarch64_num_bp_regs = AARCH64_HBP_MAX_NUM;
817 }
818 }
819 else
820 {
821 warning (_("Unable to determine the number of hardware breakpoints"
822 " available."));
823 aarch64_num_bp_regs = 0;
824 }
825 }
826
827 static void (*super_post_startup_inferior) (ptid_t ptid);
828
829 /* Implement the "to_post_startup_inferior" target_ops method. */
830
831 static void
832 aarch64_linux_child_post_startup_inferior (ptid_t ptid)
833 {
834 aarch64_forget_process (ptid_get_pid (ptid));
835 aarch64_linux_get_debug_reg_capacity ();
836 super_post_startup_inferior (ptid);
837 }
838
839 /* Implement the "to_read_description" target_ops method. */
840
841 static const struct target_desc *
842 aarch64_linux_read_description (struct target_ops *ops)
843 {
844 initialize_tdesc_aarch64 ();
845 return tdesc_aarch64;
846 }
847
848 /* Given the (potentially unaligned) watchpoint address in ADDR and
849 length in LEN, return the aligned address and aligned length in
850 *ALIGNED_ADDR_P and *ALIGNED_LEN_P, respectively. The returned
851 aligned address and length will be valid values to write to the
852 hardware watchpoint value and control registers.
853
854 The given watchpoint may get truncated if more than one hardware
855 register is needed to cover the watched region. *NEXT_ADDR_P
856 and *NEXT_LEN_P, if non-NULL, will return the address and length
857 of the remaining part of the watchpoint (which can be processed
858 by calling this routine again to generate another aligned address
859 and length pair.
860
861 See the comment above the function of the same name in
862 gdbserver/linux-aarch64-low.c for more information. */
863
864 static void
865 aarch64_align_watchpoint (CORE_ADDR addr, int len, CORE_ADDR *aligned_addr_p,
866 int *aligned_len_p, CORE_ADDR *next_addr_p,
867 int *next_len_p)
868 {
869 int aligned_len;
870 unsigned int offset;
871 CORE_ADDR aligned_addr;
872 const unsigned int alignment = AARCH64_HWP_ALIGNMENT;
873 const unsigned int max_wp_len = AARCH64_HWP_MAX_LEN_PER_REG;
874
875 /* As assumed by the algorithm. */
876 gdb_assert (alignment == max_wp_len);
877
878 if (len <= 0)
879 return;
880
881 /* Address to be put into the hardware watchpoint value register
882 must be aligned. */
883 offset = addr & (alignment - 1);
884 aligned_addr = addr - offset;
885
886 gdb_assert (offset >= 0 && offset < alignment);
887 gdb_assert (aligned_addr >= 0 && aligned_addr <= addr);
888 gdb_assert (offset + len > 0);
889
890 if (offset + len >= max_wp_len)
891 {
892 /* Need more than one watchpoint registers; truncate it at the
893 alignment boundary. */
894 aligned_len = max_wp_len;
895 len -= (max_wp_len - offset);
896 addr += (max_wp_len - offset);
897 gdb_assert ((addr & (alignment - 1)) == 0);
898 }
899 else
900 {
901 /* Find the smallest valid length that is large enough to
902 accommodate this watchpoint. */
903 static const unsigned char
904 aligned_len_array[AARCH64_HWP_MAX_LEN_PER_REG] =
905 { 1, 2, 4, 4, 8, 8, 8, 8 };
906
907 aligned_len = aligned_len_array[offset + len - 1];
908 addr += len;
909 len = 0;
910 }
911
912 if (aligned_addr_p)
913 *aligned_addr_p = aligned_addr;
914 if (aligned_len_p)
915 *aligned_len_p = aligned_len;
916 if (next_addr_p)
917 *next_addr_p = addr;
918 if (next_len_p)
919 *next_len_p = len;
920 }
921
922 /* Returns the number of hardware watchpoints of type TYPE that we can
923 set. Value is positive if we can set CNT watchpoints, zero if
924 setting watchpoints of type TYPE is not supported, and negative if
925 CNT is more than the maximum number of watchpoints of type TYPE
926 that we can support. TYPE is one of bp_hardware_watchpoint,
927 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
928 CNT is the number of such watchpoints used so far (including this
929 one). OTHERTYPE is non-zero if other types of watchpoints are
930 currently enabled.
931
932 We always return 1 here because we don't have enough information
933 about possible overlap of addresses that they want to watch. As an
934 extreme example, consider the case where all the watchpoints watch
935 the same address and the same region length: then we can handle a
936 virtually unlimited number of watchpoints, due to debug register
937 sharing implemented via reference counts. */
938
939 static int
940 aarch64_linux_can_use_hw_breakpoint (int type, int cnt, int othertype)
941 {
942 return 1;
943 }
944
945 /* ptrace expects control registers to be formatted as follows:
946
947 31 13 5 3 1 0
948 +--------------------------------+----------+------+------+----+
949 | RESERVED (SBZ) | LENGTH | TYPE | PRIV | EN |
950 +--------------------------------+----------+------+------+----+
951
952 The TYPE field is ignored for breakpoints. */
953
954 #define DR_CONTROL_ENABLED(ctrl) (((ctrl) & 0x1) == 1)
955 #define DR_CONTROL_LENGTH(ctrl) (((ctrl) >> 5) & 0xff)
956
957 /* Utility function that returns the length in bytes of a watchpoint
958 according to the content of a hardware debug control register CTRL.
959 Note that the kernel currently only supports the following Byte
960 Address Select (BAS) values: 0x1, 0x3, 0xf and 0xff, which means
961 that for a hardware watchpoint, its valid length can only be 1
962 byte, 2 bytes, 4 bytes or 8 bytes. */
963
964 static inline unsigned int
965 aarch64_watchpoint_length (unsigned int ctrl)
966 {
967 switch (DR_CONTROL_LENGTH (ctrl))
968 {
969 case 0x01:
970 return 1;
971 case 0x03:
972 return 2;
973 case 0x0f:
974 return 4;
975 case 0xff:
976 return 8;
977 default:
978 return 0;
979 }
980 }
981
982 /* Given the hardware breakpoint or watchpoint type TYPE and its
983 length LEN, return the expected encoding for a hardware
984 breakpoint/watchpoint control register. */
985
986 static unsigned int
987 aarch64_point_encode_ctrl_reg (int type, int len)
988 {
989 unsigned int ctrl, ttype;
990
991 /* type */
992 switch (type)
993 {
994 case hw_write:
995 ttype = 2;
996 break;
997 case hw_read:
998 ttype = 1;
999 break;
1000 case hw_access:
1001 ttype = 3;
1002 break;
1003 case hw_execute:
1004 ttype = 0;
1005 break;
1006 default:
1007 perror_with_name (_("Unrecognized breakpoint/watchpoint type"));
1008 }
1009 ctrl = ttype << 3;
1010
1011 /* length bitmask */
1012 ctrl |= ((1 << len) - 1) << 5;
1013 /* enabled at el0 */
1014 ctrl |= (2 << 1) | 1;
1015
1016 return ctrl;
1017 }
1018
1019 /* Addresses to be written to the hardware breakpoint and watchpoint
1020 value registers need to be aligned; the alignment is 4-byte and
1021 8-type respectively. Linux kernel rejects any non-aligned address
1022 it receives from the related ptrace call. Furthermore, the kernel
1023 currently only supports the following Byte Address Select (BAS)
1024 values: 0x1, 0x3, 0xf and 0xff, which means that for a hardware
1025 watchpoint to be accepted by the kernel (via ptrace call), its
1026 valid length can only be 1 byte, 2 bytes, 4 bytes or 8 bytes.
1027 Despite these limitations, the unaligned watchpoint is supported in
1028 this port.
1029
1030 Return 0 for any non-compliant ADDR and/or LEN; return 1 otherwise. */
1031
1032 static int
1033 aarch64_point_is_aligned (int is_watchpoint, CORE_ADDR addr, int len)
1034 {
1035 unsigned int alignment = is_watchpoint ? AARCH64_HWP_ALIGNMENT
1036 : AARCH64_HBP_ALIGNMENT;
1037
1038 if (addr & (alignment - 1))
1039 return 0;
1040
1041 if (len != 8 && len != 4 && len != 2 && len != 1)
1042 return 0;
1043
1044 return 1;
1045 }
1046
1047 /* Record the insertion of one breakpoint/watchpoint, as represented
1048 by ADDR and CTRL, in the cached debug register state area *STATE. */
1049
1050 static int
1051 aarch64_dr_state_insert_one_point (struct aarch64_debug_reg_state *state,
1052 int type, CORE_ADDR addr, int len)
1053 {
1054 int i, idx, num_regs, is_watchpoint;
1055 unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
1056 CORE_ADDR *dr_addr_p;
1057
1058 /* Set up state pointers. */
1059 is_watchpoint = (type != hw_execute);
1060 gdb_assert (aarch64_point_is_aligned (is_watchpoint, addr, len));
1061 if (is_watchpoint)
1062 {
1063 num_regs = aarch64_num_wp_regs;
1064 dr_addr_p = state->dr_addr_wp;
1065 dr_ctrl_p = state->dr_ctrl_wp;
1066 dr_ref_count = state->dr_ref_count_wp;
1067 }
1068 else
1069 {
1070 num_regs = aarch64_num_bp_regs;
1071 dr_addr_p = state->dr_addr_bp;
1072 dr_ctrl_p = state->dr_ctrl_bp;
1073 dr_ref_count = state->dr_ref_count_bp;
1074 }
1075
1076 ctrl = aarch64_point_encode_ctrl_reg (type, len);
1077
1078 /* Find an existing or free register in our cache. */
1079 idx = -1;
1080 for (i = 0; i < num_regs; ++i)
1081 {
1082 if ((dr_ctrl_p[i] & 1) == 0)
1083 {
1084 gdb_assert (dr_ref_count[i] == 0);
1085 idx = i;
1086 /* no break; continue hunting for an existing one. */
1087 }
1088 else if (dr_addr_p[i] == addr && dr_ctrl_p[i] == ctrl)
1089 {
1090 gdb_assert (dr_ref_count[i] != 0);
1091 idx = i;
1092 break;
1093 }
1094 }
1095
1096 /* No space. */
1097 if (idx == -1)
1098 return -1;
1099
1100 /* Update our cache. */
1101 if ((dr_ctrl_p[idx] & 1) == 0)
1102 {
1103 /* new entry */
1104 dr_addr_p[idx] = addr;
1105 dr_ctrl_p[idx] = ctrl;
1106 dr_ref_count[idx] = 1;
1107 /* Notify the change. */
1108 aarch64_notify_debug_reg_change (state, is_watchpoint, idx);
1109 }
1110 else
1111 {
1112 /* existing entry */
1113 dr_ref_count[idx]++;
1114 }
1115
1116 return 0;
1117 }
1118
1119 /* Record the removal of one breakpoint/watchpoint, as represented by
1120 ADDR and CTRL, in the cached debug register state area *STATE. */
1121
1122 static int
1123 aarch64_dr_state_remove_one_point (struct aarch64_debug_reg_state *state,
1124 int type, CORE_ADDR addr, int len)
1125 {
1126 int i, num_regs, is_watchpoint;
1127 unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
1128 CORE_ADDR *dr_addr_p;
1129
1130 /* Set up state pointers. */
1131 is_watchpoint = (type != hw_execute);
1132 gdb_assert (aarch64_point_is_aligned (is_watchpoint, addr, len));
1133 if (is_watchpoint)
1134 {
1135 num_regs = aarch64_num_wp_regs;
1136 dr_addr_p = state->dr_addr_wp;
1137 dr_ctrl_p = state->dr_ctrl_wp;
1138 dr_ref_count = state->dr_ref_count_wp;
1139 }
1140 else
1141 {
1142 num_regs = aarch64_num_bp_regs;
1143 dr_addr_p = state->dr_addr_bp;
1144 dr_ctrl_p = state->dr_ctrl_bp;
1145 dr_ref_count = state->dr_ref_count_bp;
1146 }
1147
1148 ctrl = aarch64_point_encode_ctrl_reg (type, len);
1149
1150 /* Find the entry that matches the ADDR and CTRL. */
1151 for (i = 0; i < num_regs; ++i)
1152 if (dr_addr_p[i] == addr && dr_ctrl_p[i] == ctrl)
1153 {
1154 gdb_assert (dr_ref_count[i] != 0);
1155 break;
1156 }
1157
1158 /* Not found. */
1159 if (i == num_regs)
1160 return -1;
1161
1162 /* Clear our cache. */
1163 if (--dr_ref_count[i] == 0)
1164 {
1165 /* Clear the enable bit. */
1166 ctrl &= ~1;
1167 dr_addr_p[i] = 0;
1168 dr_ctrl_p[i] = ctrl;
1169 /* Notify the change. */
1170 aarch64_notify_debug_reg_change (state, is_watchpoint, i);
1171 }
1172
1173 return 0;
1174 }
1175
1176 /* Implement insertion and removal of a single breakpoint. */
1177
1178 static int
1179 aarch64_handle_breakpoint (int type, CORE_ADDR addr, int len, int is_insert)
1180 {
1181 struct aarch64_debug_reg_state *state;
1182
1183 /* The hardware breakpoint on AArch64 should always be 4-byte
1184 aligned. */
1185 if (!aarch64_point_is_aligned (0 /* is_watchpoint */ , addr, len))
1186 return -1;
1187
1188 state = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1189
1190 if (is_insert)
1191 return aarch64_dr_state_insert_one_point (state, type, addr, len);
1192 else
1193 return aarch64_dr_state_remove_one_point (state, type, addr, len);
1194 }
1195
1196 /* Insert a hardware-assisted breakpoint at BP_TGT->placed_address.
1197 Return 0 on success, -1 on failure. */
1198
1199 static int
1200 aarch64_linux_insert_hw_breakpoint (struct gdbarch *gdbarch,
1201 struct bp_target_info *bp_tgt)
1202 {
1203 int ret;
1204 CORE_ADDR addr = bp_tgt->placed_address;
1205 const int len = 4;
1206 const int type = hw_execute;
1207
1208 if (debug_hw_points)
1209 fprintf_unfiltered
1210 (gdb_stdlog,
1211 "insert_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
1212 (unsigned long) addr, len);
1213
1214 ret = aarch64_handle_breakpoint (type, addr, len, 1 /* is_insert */);
1215
1216 if (debug_hw_points > 1)
1217 {
1218 struct aarch64_debug_reg_state *state
1219 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1220
1221 aarch64_show_debug_reg_state (state,
1222 "insert_hw_watchpoint", addr, len, type);
1223 }
1224
1225 return ret;
1226 }
1227
1228 /* Remove a hardware-assisted breakpoint at BP_TGT->placed_address.
1229 Return 0 on success, -1 on failure. */
1230
1231 static int
1232 aarch64_linux_remove_hw_breakpoint (struct gdbarch *gdbarch,
1233 struct bp_target_info *bp_tgt)
1234 {
1235 int ret;
1236 CORE_ADDR addr = bp_tgt->placed_address;
1237 const int len = 4;
1238 const int type = hw_execute;
1239
1240 if (debug_hw_points)
1241 fprintf_unfiltered
1242 (gdb_stdlog, "remove_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
1243 (unsigned long) addr, len);
1244
1245 ret = aarch64_handle_breakpoint (type, addr, len, 0 /* is_insert */);
1246
1247 if (debug_hw_points > 1)
1248 {
1249 struct aarch64_debug_reg_state *state
1250 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1251
1252 aarch64_show_debug_reg_state (state,
1253 "remove_hw_watchpoint", addr, len, type);
1254 }
1255
1256 return ret;
1257 }
1258
1259 /* This is essentially the same as aarch64_handle_breakpoint, apart
1260 from that it is an aligned watchpoint to be handled. */
1261
1262 static int
1263 aarch64_handle_aligned_watchpoint (int type, CORE_ADDR addr, int len,
1264 int is_insert)
1265 {
1266 struct aarch64_debug_reg_state *state
1267 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1268
1269 if (is_insert)
1270 return aarch64_dr_state_insert_one_point (state, type, addr, len);
1271 else
1272 return aarch64_dr_state_remove_one_point (state, type, addr, len);
1273 }
1274
1275 /* Insert/remove unaligned watchpoint by calling
1276 aarch64_align_watchpoint repeatedly until the whole watched region,
1277 as represented by ADDR and LEN, has been properly aligned and ready
1278 to be written to one or more hardware watchpoint registers.
1279 IS_INSERT indicates whether this is an insertion or a deletion.
1280 Return 0 if succeed. */
1281
1282 static int
1283 aarch64_handle_unaligned_watchpoint (int type, CORE_ADDR addr, int len,
1284 int is_insert)
1285 {
1286 struct aarch64_debug_reg_state *state
1287 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1288
1289 while (len > 0)
1290 {
1291 CORE_ADDR aligned_addr;
1292 int aligned_len, ret;
1293
1294 aarch64_align_watchpoint (addr, len, &aligned_addr, &aligned_len,
1295 &addr, &len);
1296
1297 if (is_insert)
1298 ret = aarch64_dr_state_insert_one_point (state, type, aligned_addr,
1299 aligned_len);
1300 else
1301 ret = aarch64_dr_state_remove_one_point (state, type, aligned_addr,
1302 aligned_len);
1303
1304 if (debug_hw_points)
1305 fprintf_unfiltered (gdb_stdlog,
1306 "handle_unaligned_watchpoint: is_insert: %d\n"
1307 " aligned_addr: 0x%08lx, aligned_len: %d\n"
1308 " next_addr: 0x%08lx, next_len: %d\n",
1309 is_insert, aligned_addr, aligned_len, addr, len);
1310
1311 if (ret != 0)
1312 return ret;
1313 }
1314
1315 return 0;
1316 }
1317
1318 /* Implements insertion and removal of a single watchpoint. */
1319
1320 static int
1321 aarch64_handle_watchpoint (int type, CORE_ADDR addr, int len, int is_insert)
1322 {
1323 if (aarch64_point_is_aligned (1 /* is_watchpoint */ , addr, len))
1324 return aarch64_handle_aligned_watchpoint (type, addr, len, is_insert);
1325 else
1326 return aarch64_handle_unaligned_watchpoint (type, addr, len, is_insert);
1327 }
1328
1329 /* Implement the "to_insert_watchpoint" target_ops method.
1330
1331 Insert a watchpoint to watch a memory region which starts at
1332 address ADDR and whose length is LEN bytes. Watch memory accesses
1333 of the type TYPE. Return 0 on success, -1 on failure. */
1334
1335 static int
1336 aarch64_linux_insert_watchpoint (CORE_ADDR addr, int len, int type,
1337 struct expression *cond)
1338 {
1339 int ret;
1340
1341 if (debug_hw_points)
1342 fprintf_unfiltered (gdb_stdlog,
1343 "insert_watchpoint on entry (addr=0x%08lx, len=%d)\n",
1344 (unsigned long) addr, len);
1345
1346 gdb_assert (type != hw_execute);
1347
1348 ret = aarch64_handle_watchpoint (type, addr, len, 1 /* is_insert */);
1349
1350 if (debug_hw_points > 1)
1351 {
1352 struct aarch64_debug_reg_state *state
1353 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1354
1355 aarch64_show_debug_reg_state (state,
1356 "insert_watchpoint", addr, len, type);
1357 }
1358
1359 return ret;
1360 }
1361
1362 /* Implement the "to_remove_watchpoint" target_ops method.
1363 Remove a watchpoint that watched the memory region which starts at
1364 address ADDR, whose length is LEN bytes, and for accesses of the
1365 type TYPE. Return 0 on success, -1 on failure. */
1366
1367 static int
1368 aarch64_linux_remove_watchpoint (CORE_ADDR addr, int len, int type,
1369 struct expression *cond)
1370 {
1371 int ret;
1372
1373 if (debug_hw_points)
1374 fprintf_unfiltered (gdb_stdlog,
1375 "remove_watchpoint on entry (addr=0x%08lx, len=%d)\n",
1376 (unsigned long) addr, len);
1377
1378 gdb_assert (type != hw_execute);
1379
1380 ret = aarch64_handle_watchpoint (type, addr, len, 0 /* is_insert */);
1381
1382 if (debug_hw_points > 1)
1383 {
1384 struct aarch64_debug_reg_state *state
1385 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1386
1387 aarch64_show_debug_reg_state (state,
1388 "remove_watchpoint", addr, len, type);
1389 }
1390
1391 return ret;
1392 }
1393
1394 /* Implement the "to_region_ok_for_hw_watchpoint" target_ops method. */
1395
1396 static int
1397 aarch64_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1398 {
1399 CORE_ADDR aligned_addr;
1400
1401 /* Can not set watchpoints for zero or negative lengths. */
1402 if (len <= 0)
1403 return 0;
1404
1405 /* Must have hardware watchpoint debug register(s). */
1406 if (aarch64_num_wp_regs == 0)
1407 return 0;
1408
1409 /* We support unaligned watchpoint address and arbitrary length,
1410 as long as the size of the whole watched area after alignment
1411 doesn't exceed size of the total area that all watchpoint debug
1412 registers can watch cooperatively.
1413
1414 This is a very relaxed rule, but unfortunately there are
1415 limitations, e.g. false-positive hits, due to limited support of
1416 hardware debug registers in the kernel. See comment above
1417 aarch64_align_watchpoint for more information. */
1418
1419 aligned_addr = addr & ~(AARCH64_HWP_MAX_LEN_PER_REG - 1);
1420 if (aligned_addr + aarch64_num_wp_regs * AARCH64_HWP_MAX_LEN_PER_REG
1421 < addr + len)
1422 return 0;
1423
1424 /* All tests passed so we are likely to be able to set the watchpoint.
1425 The reason that it is 'likely' rather than 'must' is because
1426 we don't check the current usage of the watchpoint registers, and
1427 there may not be enough registers available for this watchpoint.
1428 Ideally we should check the cached debug register state, however
1429 the checking is costly. */
1430 return 1;
1431 }
1432
1433 /* Implement the "to_stopped_data_address" target_ops method. */
1434
1435 static int
1436 aarch64_linux_stopped_data_address (struct target_ops *target,
1437 CORE_ADDR *addr_p)
1438 {
1439 siginfo_t siginfo;
1440 int i, tid;
1441 struct aarch64_debug_reg_state *state;
1442
1443 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
1444 return 0;
1445
1446 /* This must be a hardware breakpoint. */
1447 if (siginfo.si_signo != SIGTRAP
1448 || (siginfo.si_code & 0xffff) != TRAP_HWBKPT)
1449 return 0;
1450
1451 /* Check if the address matches any watched address. */
1452 state = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1453 for (i = aarch64_num_wp_regs - 1; i >= 0; --i)
1454 {
1455 const unsigned int len = aarch64_watchpoint_length (state->dr_ctrl_wp[i]);
1456 const CORE_ADDR addr_trap = (CORE_ADDR) siginfo.si_addr;
1457 const CORE_ADDR addr_watch = state->dr_addr_wp[i];
1458
1459 if (state->dr_ref_count_wp[i]
1460 && DR_CONTROL_ENABLED (state->dr_ctrl_wp[i])
1461 && addr_trap >= addr_watch
1462 && addr_trap < addr_watch + len)
1463 {
1464 *addr_p = addr_trap;
1465 return 1;
1466 }
1467 }
1468
1469 return 0;
1470 }
1471
1472 /* Implement the "to_stopped_by_watchpoint" target_ops method. */
1473
1474 static int
1475 aarch64_linux_stopped_by_watchpoint (void)
1476 {
1477 CORE_ADDR addr;
1478
1479 return aarch64_linux_stopped_data_address (&current_target, &addr);
1480 }
1481
1482 /* Implement the "to_watchpoint_addr_within_range" target_ops method. */
1483
1484 static int
1485 aarch64_linux_watchpoint_addr_within_range (struct target_ops *target,
1486 CORE_ADDR addr,
1487 CORE_ADDR start, int length)
1488 {
1489 return start <= addr && start + length - 1 >= addr;
1490 }
1491
1492 /* Define AArch64 maintenance commands. */
1493
1494 static void
1495 add_show_debug_regs_command (void)
1496 {
1497 /* A maintenance command to enable printing the internal DRi mirror
1498 variables. */
1499 add_setshow_boolean_cmd ("show-debug-regs", class_maintenance,
1500 &debug_hw_points, _("\
1501 Set whether to show variables that mirror the AArch64 debug registers."), _("\
1502 Show whether to show variables that mirror the AArch64 debug registers."), _("\
1503 Use \"on\" to enable, \"off\" to disable.\n\
1504 If enabled, the debug registers values are shown when GDB inserts\n\
1505 or removes a hardware breakpoint or watchpoint, and when the inferior\n\
1506 triggers a breakpoint or watchpoint."),
1507 NULL,
1508 NULL,
1509 &maintenance_set_cmdlist,
1510 &maintenance_show_cmdlist);
1511 }
1512
1513 /* -Wmissing-prototypes. */
1514 void _initialize_aarch64_linux_nat (void);
1515
1516 void
1517 _initialize_aarch64_linux_nat (void)
1518 {
1519 struct target_ops *t;
1520
1521 /* Fill in the generic GNU/Linux methods. */
1522 t = linux_target ();
1523
1524 add_show_debug_regs_command ();
1525
1526 /* Add our register access methods. */
1527 t->to_fetch_registers = aarch64_linux_fetch_inferior_registers;
1528 t->to_store_registers = aarch64_linux_store_inferior_registers;
1529
1530 t->to_read_description = aarch64_linux_read_description;
1531
1532 t->to_can_use_hw_breakpoint = aarch64_linux_can_use_hw_breakpoint;
1533 t->to_insert_hw_breakpoint = aarch64_linux_insert_hw_breakpoint;
1534 t->to_remove_hw_breakpoint = aarch64_linux_remove_hw_breakpoint;
1535 t->to_region_ok_for_hw_watchpoint =
1536 aarch64_linux_region_ok_for_hw_watchpoint;
1537 t->to_insert_watchpoint = aarch64_linux_insert_watchpoint;
1538 t->to_remove_watchpoint = aarch64_linux_remove_watchpoint;
1539 t->to_stopped_by_watchpoint = aarch64_linux_stopped_by_watchpoint;
1540 t->to_stopped_data_address = aarch64_linux_stopped_data_address;
1541 t->to_watchpoint_addr_within_range =
1542 aarch64_linux_watchpoint_addr_within_range;
1543
1544 /* Override the GNU/Linux inferior startup hook. */
1545 super_post_startup_inferior = t->to_post_startup_inferior;
1546 t->to_post_startup_inferior = aarch64_linux_child_post_startup_inferior;
1547
1548 /* Register the target. */
1549 linux_nat_add_target (t);
1550 linux_nat_set_new_thread (t, aarch64_linux_new_thread);
1551 linux_nat_set_new_fork (t, aarch64_linux_new_fork);
1552 linux_nat_set_forget_process (t, aarch64_forget_process);
1553 linux_nat_set_prepare_to_resume (t, aarch64_linux_prepare_to_resume);
1554 }
This page took 0.061438 seconds and 5 git commands to generate.