Mostly trivial enum fixes
[deliverable/binutils-gdb.git] / gdb / aarch64-linux-nat.c
1 /* Native-dependent code for GNU/Linux AArch64.
2
3 Copyright (C) 2011-2015 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "regcache.h"
26 #include "linux-nat.h"
27 #include "target-descriptions.h"
28 #include "auxv.h"
29 #include "gdbcmd.h"
30 #include "aarch64-tdep.h"
31 #include "aarch64-linux-tdep.h"
32 #include "aarch32-linux-nat.h"
33 #include "nat/aarch64-linux-hw-point.h"
34
35 #include "elf/external.h"
36 #include "elf/common.h"
37
38 #include "nat/gdb_ptrace.h"
39 #include <sys/utsname.h>
40 #include <asm/ptrace.h>
41
42 #include "gregset.h"
43
44 /* Defines ps_err_e, struct ps_prochandle. */
45 #include "gdb_proc_service.h"
46
47 #ifndef TRAP_HWBKPT
48 #define TRAP_HWBKPT 0x0004
49 #endif
50
51 /* On GNU/Linux, threads are implemented as pseudo-processes, in which
52 case we may be tracing more than one process at a time. In that
53 case, inferior_ptid will contain the main process ID and the
54 individual thread (process) ID. get_thread_id () is used to get
55 the thread id if it's available, and the process id otherwise. */
56
57 static int
58 get_thread_id (ptid_t ptid)
59 {
60 int tid = ptid_get_lwp (ptid);
61
62 if (0 == tid)
63 tid = ptid_get_pid (ptid);
64 return tid;
65 }
66
67 /* Per-process data. We don't bind this to a per-inferior registry
68 because of targets like x86 GNU/Linux that need to keep track of
69 processes that aren't bound to any inferior (e.g., fork children,
70 checkpoints). */
71
72 struct aarch64_process_info
73 {
74 /* Linked list. */
75 struct aarch64_process_info *next;
76
77 /* The process identifier. */
78 pid_t pid;
79
80 /* Copy of aarch64 hardware debug registers. */
81 struct aarch64_debug_reg_state state;
82 };
83
84 static struct aarch64_process_info *aarch64_process_list = NULL;
85
86 /* Find process data for process PID. */
87
88 static struct aarch64_process_info *
89 aarch64_find_process_pid (pid_t pid)
90 {
91 struct aarch64_process_info *proc;
92
93 for (proc = aarch64_process_list; proc; proc = proc->next)
94 if (proc->pid == pid)
95 return proc;
96
97 return NULL;
98 }
99
100 /* Add process data for process PID. Returns newly allocated info
101 object. */
102
103 static struct aarch64_process_info *
104 aarch64_add_process (pid_t pid)
105 {
106 struct aarch64_process_info *proc;
107
108 proc = xcalloc (1, sizeof (*proc));
109 proc->pid = pid;
110
111 proc->next = aarch64_process_list;
112 aarch64_process_list = proc;
113
114 return proc;
115 }
116
117 /* Get data specific info for process PID, creating it if necessary.
118 Never returns NULL. */
119
120 static struct aarch64_process_info *
121 aarch64_process_info_get (pid_t pid)
122 {
123 struct aarch64_process_info *proc;
124
125 proc = aarch64_find_process_pid (pid);
126 if (proc == NULL)
127 proc = aarch64_add_process (pid);
128
129 return proc;
130 }
131
132 /* Called whenever GDB is no longer debugging process PID. It deletes
133 data structures that keep track of debug register state. */
134
135 static void
136 aarch64_forget_process (pid_t pid)
137 {
138 struct aarch64_process_info *proc, **proc_link;
139
140 proc = aarch64_process_list;
141 proc_link = &aarch64_process_list;
142
143 while (proc != NULL)
144 {
145 if (proc->pid == pid)
146 {
147 *proc_link = proc->next;
148
149 xfree (proc);
150 return;
151 }
152
153 proc_link = &proc->next;
154 proc = *proc_link;
155 }
156 }
157
158 /* Get debug registers state for process PID. */
159
160 static struct aarch64_debug_reg_state *
161 aarch64_get_debug_reg_state (pid_t pid)
162 {
163 return &aarch64_process_info_get (pid)->state;
164 }
165
166 struct aarch64_dr_update_callback_param
167 {
168 int is_watchpoint;
169 unsigned int idx;
170 };
171
172 /* Callback for iterate_over_lwps. Records the
173 information about the change of one hardware breakpoint/watchpoint
174 setting for the thread LWP.
175 The information is passed in via PTR.
176 N.B. The actual updating of hardware debug registers is not
177 carried out until the moment the thread is resumed. */
178
179 static int
180 debug_reg_change_callback (struct lwp_info *lwp, void *ptr)
181 {
182 struct aarch64_dr_update_callback_param *param_p
183 = (struct aarch64_dr_update_callback_param *) ptr;
184 int pid = get_thread_id (lwp->ptid);
185 int idx = param_p->idx;
186 int is_watchpoint = param_p->is_watchpoint;
187 struct arch_lwp_info *info = lwp->arch_private;
188 dr_changed_t *dr_changed_ptr;
189 dr_changed_t dr_changed;
190
191 if (info == NULL)
192 info = lwp->arch_private = XCNEW (struct arch_lwp_info);
193
194 if (show_debug_regs)
195 {
196 fprintf_unfiltered (gdb_stdlog,
197 "debug_reg_change_callback: \n\tOn entry:\n");
198 fprintf_unfiltered (gdb_stdlog,
199 "\tpid%d, dr_changed_bp=0x%s, "
200 "dr_changed_wp=0x%s\n",
201 pid, phex (info->dr_changed_bp, 8),
202 phex (info->dr_changed_wp, 8));
203 }
204
205 dr_changed_ptr = is_watchpoint ? &info->dr_changed_wp
206 : &info->dr_changed_bp;
207 dr_changed = *dr_changed_ptr;
208
209 gdb_assert (idx >= 0
210 && (idx <= (is_watchpoint ? aarch64_num_wp_regs
211 : aarch64_num_bp_regs)));
212
213 /* The actual update is done later just before resuming the lwp,
214 we just mark that one register pair needs updating. */
215 DR_MARK_N_CHANGED (dr_changed, idx);
216 *dr_changed_ptr = dr_changed;
217
218 /* If the lwp isn't stopped, force it to momentarily pause, so
219 we can update its debug registers. */
220 if (!lwp->stopped)
221 linux_stop_lwp (lwp);
222
223 if (show_debug_regs)
224 {
225 fprintf_unfiltered (gdb_stdlog,
226 "\tOn exit:\n\tpid%d, dr_changed_bp=0x%s, "
227 "dr_changed_wp=0x%s\n",
228 pid, phex (info->dr_changed_bp, 8),
229 phex (info->dr_changed_wp, 8));
230 }
231
232 /* Continue the iteration. */
233 return 0;
234 }
235
236 /* Notify each thread that their IDXth breakpoint/watchpoint register
237 pair needs to be updated. The message will be recorded in each
238 thread's arch-specific data area, the actual updating will be done
239 when the thread is resumed. */
240
241 void
242 aarch64_notify_debug_reg_change (const struct aarch64_debug_reg_state *state,
243 int is_watchpoint, unsigned int idx)
244 {
245 struct aarch64_dr_update_callback_param param;
246 ptid_t pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
247
248 param.is_watchpoint = is_watchpoint;
249 param.idx = idx;
250
251 iterate_over_lwps (pid_ptid, debug_reg_change_callback, (void *) &param);
252 }
253
254 /* Fill GDB's register array with the general-purpose register values
255 from the current thread. */
256
257 static void
258 fetch_gregs_from_thread (struct regcache *regcache)
259 {
260 int ret, tid;
261 struct gdbarch *gdbarch = get_regcache_arch (regcache);
262 elf_gregset_t regs;
263 struct iovec iovec;
264
265 /* Make sure REGS can hold all registers contents on both aarch64
266 and arm. */
267 gdb_static_assert (sizeof (regs) >= 18 * 4);
268
269 tid = get_thread_id (inferior_ptid);
270
271 iovec.iov_base = &regs;
272 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
273 iovec.iov_len = 18 * 4;
274 else
275 iovec.iov_len = sizeof (regs);
276
277 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
278 if (ret < 0)
279 perror_with_name (_("Unable to fetch general registers."));
280
281 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
282 aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, 1);
283 else
284 {
285 int regno;
286
287 for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
288 regcache_raw_supply (regcache, regno, &regs[regno - AARCH64_X0_REGNUM]);
289 }
290 }
291
292 /* Store to the current thread the valid general-purpose register
293 values in the GDB's register array. */
294
295 static void
296 store_gregs_to_thread (const struct regcache *regcache)
297 {
298 int ret, tid;
299 elf_gregset_t regs;
300 struct iovec iovec;
301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
302
303 /* Make sure REGS can hold all registers contents on both aarch64
304 and arm. */
305 gdb_static_assert (sizeof (regs) >= 18 * 4);
306 tid = get_thread_id (inferior_ptid);
307
308 iovec.iov_base = &regs;
309 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
310 iovec.iov_len = 18 * 4;
311 else
312 iovec.iov_len = sizeof (regs);
313
314 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
315 if (ret < 0)
316 perror_with_name (_("Unable to fetch general registers."));
317
318 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
319 aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, 1);
320 else
321 {
322 int regno;
323
324 for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
325 if (REG_VALID == regcache_register_status (regcache, regno))
326 regcache_raw_collect (regcache, regno,
327 &regs[regno - AARCH64_X0_REGNUM]);
328 }
329
330 ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iovec);
331 if (ret < 0)
332 perror_with_name (_("Unable to store general registers."));
333 }
334
335 /* Fill GDB's register array with the fp/simd register values
336 from the current thread. */
337
338 static void
339 fetch_fpregs_from_thread (struct regcache *regcache)
340 {
341 int ret, tid;
342 elf_fpregset_t regs;
343 struct iovec iovec;
344 struct gdbarch *gdbarch = get_regcache_arch (regcache);
345
346 /* Make sure REGS can hold all VFP registers contents on both aarch64
347 and arm. */
348 gdb_static_assert (sizeof regs >= VFP_REGS_SIZE);
349
350 tid = get_thread_id (inferior_ptid);
351
352 iovec.iov_base = &regs;
353
354 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
355 {
356 iovec.iov_len = VFP_REGS_SIZE;
357
358 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
359 if (ret < 0)
360 perror_with_name (_("Unable to fetch VFP registers."));
361
362 aarch32_vfp_regcache_supply (regcache, (gdb_byte *) &regs, 32);
363 }
364 else
365 {
366 int regno;
367
368 iovec.iov_len = sizeof (regs);
369
370 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
371 if (ret < 0)
372 perror_with_name (_("Unable to fetch vFP/SIMD registers."));
373
374 for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
375 regcache_raw_supply (regcache, regno,
376 &regs.vregs[regno - AARCH64_V0_REGNUM]);
377
378 regcache_raw_supply (regcache, AARCH64_FPSR_REGNUM, &regs.fpsr);
379 regcache_raw_supply (regcache, AARCH64_FPCR_REGNUM, &regs.fpcr);
380 }
381 }
382
383 /* Store to the current thread the valid fp/simd register
384 values in the GDB's register array. */
385
386 static void
387 store_fpregs_to_thread (const struct regcache *regcache)
388 {
389 int ret, tid;
390 elf_fpregset_t regs;
391 struct iovec iovec;
392 struct gdbarch *gdbarch = get_regcache_arch (regcache);
393
394 /* Make sure REGS can hold all VFP registers contents on both aarch64
395 and arm. */
396 gdb_static_assert (sizeof regs >= VFP_REGS_SIZE);
397 tid = get_thread_id (inferior_ptid);
398
399 iovec.iov_base = &regs;
400
401 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
402 {
403 iovec.iov_len = VFP_REGS_SIZE;
404
405 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
406 if (ret < 0)
407 perror_with_name (_("Unable to fetch VFP registers."));
408
409 aarch32_vfp_regcache_collect (regcache, (gdb_byte *) &regs, 32);
410 }
411 else
412 {
413 int regno;
414
415 iovec.iov_len = sizeof (regs);
416
417 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
418 if (ret < 0)
419 perror_with_name (_("Unable to fetch FP/SIMD registers."));
420
421 for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
422 if (REG_VALID == regcache_register_status (regcache, regno))
423 regcache_raw_collect (regcache, regno,
424 (char *) &regs.vregs[regno - AARCH64_V0_REGNUM]);
425
426 if (REG_VALID == regcache_register_status (regcache, AARCH64_FPSR_REGNUM))
427 regcache_raw_collect (regcache, AARCH64_FPSR_REGNUM,
428 (char *) &regs.fpsr);
429 if (REG_VALID == regcache_register_status (regcache, AARCH64_FPCR_REGNUM))
430 regcache_raw_collect (regcache, AARCH64_FPCR_REGNUM,
431 (char *) &regs.fpcr);
432 }
433
434 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
435 {
436 ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iovec);
437 if (ret < 0)
438 perror_with_name (_("Unable to store VFP registers."));
439 }
440 else
441 {
442 ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iovec);
443 if (ret < 0)
444 perror_with_name (_("Unable to store FP/SIMD registers."));
445 }
446 }
447
448 /* Implement the "to_fetch_register" target_ops method. */
449
450 static void
451 aarch64_linux_fetch_inferior_registers (struct target_ops *ops,
452 struct regcache *regcache,
453 int regno)
454 {
455 if (regno == -1)
456 {
457 fetch_gregs_from_thread (regcache);
458 fetch_fpregs_from_thread (regcache);
459 }
460 else if (regno < AARCH64_V0_REGNUM)
461 fetch_gregs_from_thread (regcache);
462 else
463 fetch_fpregs_from_thread (regcache);
464 }
465
466 /* Implement the "to_store_register" target_ops method. */
467
468 static void
469 aarch64_linux_store_inferior_registers (struct target_ops *ops,
470 struct regcache *regcache,
471 int regno)
472 {
473 if (regno == -1)
474 {
475 store_gregs_to_thread (regcache);
476 store_fpregs_to_thread (regcache);
477 }
478 else if (regno < AARCH64_V0_REGNUM)
479 store_gregs_to_thread (regcache);
480 else
481 store_fpregs_to_thread (regcache);
482 }
483
484 /* Fill register REGNO (if it is a general-purpose register) in
485 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
486 do this for all registers. */
487
488 void
489 fill_gregset (const struct regcache *regcache,
490 gdb_gregset_t *gregsetp, int regno)
491 {
492 regcache_collect_regset (&aarch64_linux_gregset, regcache,
493 regno, (gdb_byte *) gregsetp,
494 AARCH64_LINUX_SIZEOF_GREGSET);
495 }
496
497 /* Fill GDB's register array with the general-purpose register values
498 in *GREGSETP. */
499
500 void
501 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
502 {
503 regcache_supply_regset (&aarch64_linux_gregset, regcache, -1,
504 (const gdb_byte *) gregsetp,
505 AARCH64_LINUX_SIZEOF_GREGSET);
506 }
507
508 /* Fill register REGNO (if it is a floating-point register) in
509 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
510 do this for all registers. */
511
512 void
513 fill_fpregset (const struct regcache *regcache,
514 gdb_fpregset_t *fpregsetp, int regno)
515 {
516 regcache_collect_regset (&aarch64_linux_fpregset, regcache,
517 regno, (gdb_byte *) fpregsetp,
518 AARCH64_LINUX_SIZEOF_FPREGSET);
519 }
520
521 /* Fill GDB's register array with the floating-point register values
522 in *FPREGSETP. */
523
524 void
525 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
526 {
527 regcache_supply_regset (&aarch64_linux_fpregset, regcache, -1,
528 (const gdb_byte *) fpregsetp,
529 AARCH64_LINUX_SIZEOF_FPREGSET);
530 }
531
532 /* Called when resuming a thread.
533 The hardware debug registers are updated when there is any change. */
534
535 static void
536 aarch64_linux_prepare_to_resume (struct lwp_info *lwp)
537 {
538 struct arch_lwp_info *info = lwp->arch_private;
539
540 /* NULL means this is the main thread still going through the shell,
541 or, no watchpoint has been set yet. In that case, there's
542 nothing to do. */
543 if (info == NULL)
544 return;
545
546 if (DR_HAS_CHANGED (info->dr_changed_bp)
547 || DR_HAS_CHANGED (info->dr_changed_wp))
548 {
549 int tid = ptid_get_lwp (lwp->ptid);
550 struct aarch64_debug_reg_state *state
551 = aarch64_get_debug_reg_state (ptid_get_pid (lwp->ptid));
552
553 if (show_debug_regs)
554 fprintf_unfiltered (gdb_stdlog, "prepare_to_resume thread %d\n", tid);
555
556 /* Watchpoints. */
557 if (DR_HAS_CHANGED (info->dr_changed_wp))
558 {
559 aarch64_linux_set_debug_regs (state, tid, 1);
560 DR_CLEAR_CHANGED (info->dr_changed_wp);
561 }
562
563 /* Breakpoints. */
564 if (DR_HAS_CHANGED (info->dr_changed_bp))
565 {
566 aarch64_linux_set_debug_regs (state, tid, 0);
567 DR_CLEAR_CHANGED (info->dr_changed_bp);
568 }
569 }
570 }
571
572 static void
573 aarch64_linux_new_thread (struct lwp_info *lp)
574 {
575 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info);
576
577 /* Mark that all the hardware breakpoint/watchpoint register pairs
578 for this thread need to be initialized. */
579 DR_MARK_ALL_CHANGED (info->dr_changed_bp, aarch64_num_bp_regs);
580 DR_MARK_ALL_CHANGED (info->dr_changed_wp, aarch64_num_wp_regs);
581
582 lp->arch_private = info;
583 }
584
585 /* linux_nat_new_fork hook. */
586
587 static void
588 aarch64_linux_new_fork (struct lwp_info *parent, pid_t child_pid)
589 {
590 pid_t parent_pid;
591 struct aarch64_debug_reg_state *parent_state;
592 struct aarch64_debug_reg_state *child_state;
593
594 /* NULL means no watchpoint has ever been set in the parent. In
595 that case, there's nothing to do. */
596 if (parent->arch_private == NULL)
597 return;
598
599 /* GDB core assumes the child inherits the watchpoints/hw
600 breakpoints of the parent, and will remove them all from the
601 forked off process. Copy the debug registers mirrors into the
602 new process so that all breakpoints and watchpoints can be
603 removed together. */
604
605 parent_pid = ptid_get_pid (parent->ptid);
606 parent_state = aarch64_get_debug_reg_state (parent_pid);
607 child_state = aarch64_get_debug_reg_state (child_pid);
608 *child_state = *parent_state;
609 }
610 \f
611
612 /* Called by libthread_db. Returns a pointer to the thread local
613 storage (or its descriptor). */
614
615 ps_err_e
616 ps_get_thread_area (const struct ps_prochandle *ph,
617 lwpid_t lwpid, int idx, void **base)
618 {
619 struct iovec iovec;
620 uint64_t reg;
621
622 iovec.iov_base = &reg;
623 iovec.iov_len = sizeof (reg);
624
625 if (ptrace (PTRACE_GETREGSET, lwpid, NT_ARM_TLS, &iovec) != 0)
626 return PS_ERR;
627
628 /* IDX is the bias from the thread pointer to the beginning of the
629 thread descriptor. It has to be subtracted due to implementation
630 quirks in libthread_db. */
631 *base = (void *) (reg - idx);
632
633 return PS_OK;
634 }
635 \f
636
637 static void (*super_post_startup_inferior) (struct target_ops *self,
638 ptid_t ptid);
639
640 /* Implement the "to_post_startup_inferior" target_ops method. */
641
642 static void
643 aarch64_linux_child_post_startup_inferior (struct target_ops *self,
644 ptid_t ptid)
645 {
646 aarch64_forget_process (ptid_get_pid (ptid));
647 aarch64_linux_get_debug_reg_capacity (ptid_get_pid (ptid));
648 super_post_startup_inferior (self, ptid);
649 }
650
651 extern struct target_desc *tdesc_arm_with_vfpv3;
652 extern struct target_desc *tdesc_arm_with_neon;
653
654 /* Implement the "to_read_description" target_ops method. */
655
656 static const struct target_desc *
657 aarch64_linux_read_description (struct target_ops *ops)
658 {
659 CORE_ADDR at_phent;
660
661 if (target_auxv_search (ops, AT_PHENT, &at_phent) == 1)
662 {
663 if (at_phent == sizeof (Elf64_External_Phdr))
664 return tdesc_aarch64;
665 else
666 {
667 CORE_ADDR arm_hwcap = 0;
668
669 if (target_auxv_search (ops, AT_HWCAP, &arm_hwcap) != 1)
670 return ops->beneath->to_read_description (ops->beneath);
671
672 #ifndef COMPAT_HWCAP_VFP
673 #define COMPAT_HWCAP_VFP (1 << 6)
674 #endif
675 #ifndef COMPAT_HWCAP_NEON
676 #define COMPAT_HWCAP_NEON (1 << 12)
677 #endif
678 #ifndef COMPAT_HWCAP_VFPv3
679 #define COMPAT_HWCAP_VFPv3 (1 << 13)
680 #endif
681
682 if (arm_hwcap & COMPAT_HWCAP_VFP)
683 {
684 char *buf;
685 const struct target_desc *result = NULL;
686
687 if (arm_hwcap & COMPAT_HWCAP_NEON)
688 result = tdesc_arm_with_neon;
689 else if (arm_hwcap & COMPAT_HWCAP_VFPv3)
690 result = tdesc_arm_with_vfpv3;
691
692 return result;
693 }
694
695 return NULL;
696 }
697 }
698
699 return tdesc_aarch64;
700 }
701
702 /* Returns the number of hardware watchpoints of type TYPE that we can
703 set. Value is positive if we can set CNT watchpoints, zero if
704 setting watchpoints of type TYPE is not supported, and negative if
705 CNT is more than the maximum number of watchpoints of type TYPE
706 that we can support. TYPE is one of bp_hardware_watchpoint,
707 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
708 CNT is the number of such watchpoints used so far (including this
709 one). OTHERTYPE is non-zero if other types of watchpoints are
710 currently enabled. */
711
712 static int
713 aarch64_linux_can_use_hw_breakpoint (struct target_ops *self,
714 enum bptype type,
715 int cnt, int othertype)
716 {
717 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
718 || type == bp_access_watchpoint || type == bp_watchpoint)
719 {
720 if (aarch64_num_wp_regs == 0)
721 return 0;
722 }
723 else if (type == bp_hardware_breakpoint)
724 {
725 if (aarch64_num_bp_regs == 0)
726 return 0;
727 }
728 else
729 gdb_assert_not_reached ("unexpected breakpoint type");
730
731 /* We always return 1 here because we don't have enough information
732 about possible overlap of addresses that they want to watch. As an
733 extreme example, consider the case where all the watchpoints watch
734 the same address and the same region length: then we can handle a
735 virtually unlimited number of watchpoints, due to debug register
736 sharing implemented via reference counts. */
737 return 1;
738 }
739
740 /* Insert a hardware-assisted breakpoint at BP_TGT->reqstd_address.
741 Return 0 on success, -1 on failure. */
742
743 static int
744 aarch64_linux_insert_hw_breakpoint (struct target_ops *self,
745 struct gdbarch *gdbarch,
746 struct bp_target_info *bp_tgt)
747 {
748 int ret;
749 CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address;
750 const int len = 4;
751 const enum target_hw_bp_type type = hw_execute;
752 struct aarch64_debug_reg_state *state
753 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
754
755 if (show_debug_regs)
756 fprintf_unfiltered
757 (gdb_stdlog,
758 "insert_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
759 (unsigned long) addr, len);
760
761 ret = aarch64_handle_breakpoint (type, addr, len, 1 /* is_insert */, state);
762
763 if (show_debug_regs)
764 {
765 aarch64_show_debug_reg_state (state,
766 "insert_hw_breakpoint", addr, len, type);
767 }
768
769 return ret;
770 }
771
772 /* Remove a hardware-assisted breakpoint at BP_TGT->placed_address.
773 Return 0 on success, -1 on failure. */
774
775 static int
776 aarch64_linux_remove_hw_breakpoint (struct target_ops *self,
777 struct gdbarch *gdbarch,
778 struct bp_target_info *bp_tgt)
779 {
780 int ret;
781 CORE_ADDR addr = bp_tgt->placed_address;
782 const int len = 4;
783 const enum target_hw_bp_type type = hw_execute;
784 struct aarch64_debug_reg_state *state
785 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
786
787 if (show_debug_regs)
788 fprintf_unfiltered
789 (gdb_stdlog, "remove_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
790 (unsigned long) addr, len);
791
792 ret = aarch64_handle_breakpoint (type, addr, len, 0 /* is_insert */, state);
793
794 if (show_debug_regs)
795 {
796 aarch64_show_debug_reg_state (state,
797 "remove_hw_watchpoint", addr, len, type);
798 }
799
800 return ret;
801 }
802
803 /* Implement the "to_insert_watchpoint" target_ops method.
804
805 Insert a watchpoint to watch a memory region which starts at
806 address ADDR and whose length is LEN bytes. Watch memory accesses
807 of the type TYPE. Return 0 on success, -1 on failure. */
808
809 static int
810 aarch64_linux_insert_watchpoint (struct target_ops *self,
811 CORE_ADDR addr, int len,
812 enum target_hw_bp_type type,
813 struct expression *cond)
814 {
815 int ret;
816 struct aarch64_debug_reg_state *state
817 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
818
819 if (show_debug_regs)
820 fprintf_unfiltered (gdb_stdlog,
821 "insert_watchpoint on entry (addr=0x%08lx, len=%d)\n",
822 (unsigned long) addr, len);
823
824 gdb_assert (type != hw_execute);
825
826 ret = aarch64_handle_watchpoint (type, addr, len, 1 /* is_insert */, state);
827
828 if (show_debug_regs)
829 {
830 aarch64_show_debug_reg_state (state,
831 "insert_watchpoint", addr, len, type);
832 }
833
834 return ret;
835 }
836
837 /* Implement the "to_remove_watchpoint" target_ops method.
838 Remove a watchpoint that watched the memory region which starts at
839 address ADDR, whose length is LEN bytes, and for accesses of the
840 type TYPE. Return 0 on success, -1 on failure. */
841
842 static int
843 aarch64_linux_remove_watchpoint (struct target_ops *self,
844 CORE_ADDR addr, int len,
845 enum target_hw_bp_type type,
846 struct expression *cond)
847 {
848 int ret;
849 struct aarch64_debug_reg_state *state
850 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
851
852 if (show_debug_regs)
853 fprintf_unfiltered (gdb_stdlog,
854 "remove_watchpoint on entry (addr=0x%08lx, len=%d)\n",
855 (unsigned long) addr, len);
856
857 gdb_assert (type != hw_execute);
858
859 ret = aarch64_handle_watchpoint (type, addr, len, 0 /* is_insert */, state);
860
861 if (show_debug_regs)
862 {
863 aarch64_show_debug_reg_state (state,
864 "remove_watchpoint", addr, len, type);
865 }
866
867 return ret;
868 }
869
870 /* Implement the "to_region_ok_for_hw_watchpoint" target_ops method. */
871
872 static int
873 aarch64_linux_region_ok_for_hw_watchpoint (struct target_ops *self,
874 CORE_ADDR addr, int len)
875 {
876 CORE_ADDR aligned_addr;
877
878 /* Can not set watchpoints for zero or negative lengths. */
879 if (len <= 0)
880 return 0;
881
882 /* Must have hardware watchpoint debug register(s). */
883 if (aarch64_num_wp_regs == 0)
884 return 0;
885
886 /* We support unaligned watchpoint address and arbitrary length,
887 as long as the size of the whole watched area after alignment
888 doesn't exceed size of the total area that all watchpoint debug
889 registers can watch cooperatively.
890
891 This is a very relaxed rule, but unfortunately there are
892 limitations, e.g. false-positive hits, due to limited support of
893 hardware debug registers in the kernel. See comment above
894 aarch64_align_watchpoint for more information. */
895
896 aligned_addr = addr & ~(AARCH64_HWP_MAX_LEN_PER_REG - 1);
897 if (aligned_addr + aarch64_num_wp_regs * AARCH64_HWP_MAX_LEN_PER_REG
898 < addr + len)
899 return 0;
900
901 /* All tests passed so we are likely to be able to set the watchpoint.
902 The reason that it is 'likely' rather than 'must' is because
903 we don't check the current usage of the watchpoint registers, and
904 there may not be enough registers available for this watchpoint.
905 Ideally we should check the cached debug register state, however
906 the checking is costly. */
907 return 1;
908 }
909
910 /* Implement the "to_stopped_data_address" target_ops method. */
911
912 static int
913 aarch64_linux_stopped_data_address (struct target_ops *target,
914 CORE_ADDR *addr_p)
915 {
916 siginfo_t siginfo;
917 int i, tid;
918 struct aarch64_debug_reg_state *state;
919
920 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
921 return 0;
922
923 /* This must be a hardware breakpoint. */
924 if (siginfo.si_signo != SIGTRAP
925 || (siginfo.si_code & 0xffff) != TRAP_HWBKPT)
926 return 0;
927
928 /* Check if the address matches any watched address. */
929 state = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
930 for (i = aarch64_num_wp_regs - 1; i >= 0; --i)
931 {
932 const unsigned int len = aarch64_watchpoint_length (state->dr_ctrl_wp[i]);
933 const CORE_ADDR addr_trap = (CORE_ADDR) siginfo.si_addr;
934 const CORE_ADDR addr_watch = state->dr_addr_wp[i];
935
936 if (state->dr_ref_count_wp[i]
937 && DR_CONTROL_ENABLED (state->dr_ctrl_wp[i])
938 && addr_trap >= addr_watch
939 && addr_trap < addr_watch + len)
940 {
941 *addr_p = addr_trap;
942 return 1;
943 }
944 }
945
946 return 0;
947 }
948
949 /* Implement the "to_stopped_by_watchpoint" target_ops method. */
950
951 static int
952 aarch64_linux_stopped_by_watchpoint (struct target_ops *ops)
953 {
954 CORE_ADDR addr;
955
956 return aarch64_linux_stopped_data_address (ops, &addr);
957 }
958
959 /* Implement the "to_watchpoint_addr_within_range" target_ops method. */
960
961 static int
962 aarch64_linux_watchpoint_addr_within_range (struct target_ops *target,
963 CORE_ADDR addr,
964 CORE_ADDR start, int length)
965 {
966 return start <= addr && start + length - 1 >= addr;
967 }
968
969 /* Define AArch64 maintenance commands. */
970
971 static void
972 add_show_debug_regs_command (void)
973 {
974 /* A maintenance command to enable printing the internal DRi mirror
975 variables. */
976 add_setshow_boolean_cmd ("show-debug-regs", class_maintenance,
977 &show_debug_regs, _("\
978 Set whether to show variables that mirror the AArch64 debug registers."), _("\
979 Show whether to show variables that mirror the AArch64 debug registers."), _("\
980 Use \"on\" to enable, \"off\" to disable.\n\
981 If enabled, the debug registers values are shown when GDB inserts\n\
982 or removes a hardware breakpoint or watchpoint, and when the inferior\n\
983 triggers a breakpoint or watchpoint."),
984 NULL,
985 NULL,
986 &maintenance_set_cmdlist,
987 &maintenance_show_cmdlist);
988 }
989
990 /* -Wmissing-prototypes. */
991 void _initialize_aarch64_linux_nat (void);
992
993 void
994 _initialize_aarch64_linux_nat (void)
995 {
996 struct target_ops *t;
997
998 /* Fill in the generic GNU/Linux methods. */
999 t = linux_target ();
1000
1001 add_show_debug_regs_command ();
1002
1003 /* Add our register access methods. */
1004 t->to_fetch_registers = aarch64_linux_fetch_inferior_registers;
1005 t->to_store_registers = aarch64_linux_store_inferior_registers;
1006
1007 t->to_read_description = aarch64_linux_read_description;
1008
1009 t->to_can_use_hw_breakpoint = aarch64_linux_can_use_hw_breakpoint;
1010 t->to_insert_hw_breakpoint = aarch64_linux_insert_hw_breakpoint;
1011 t->to_remove_hw_breakpoint = aarch64_linux_remove_hw_breakpoint;
1012 t->to_region_ok_for_hw_watchpoint =
1013 aarch64_linux_region_ok_for_hw_watchpoint;
1014 t->to_insert_watchpoint = aarch64_linux_insert_watchpoint;
1015 t->to_remove_watchpoint = aarch64_linux_remove_watchpoint;
1016 t->to_stopped_by_watchpoint = aarch64_linux_stopped_by_watchpoint;
1017 t->to_stopped_data_address = aarch64_linux_stopped_data_address;
1018 t->to_watchpoint_addr_within_range =
1019 aarch64_linux_watchpoint_addr_within_range;
1020
1021 /* Override the GNU/Linux inferior startup hook. */
1022 super_post_startup_inferior = t->to_post_startup_inferior;
1023 t->to_post_startup_inferior = aarch64_linux_child_post_startup_inferior;
1024
1025 /* Register the target. */
1026 linux_nat_add_target (t);
1027 linux_nat_set_new_thread (t, aarch64_linux_new_thread);
1028 linux_nat_set_new_fork (t, aarch64_linux_new_fork);
1029 linux_nat_set_forget_process (t, aarch64_forget_process);
1030 linux_nat_set_prepare_to_resume (t, aarch64_linux_prepare_to_resume);
1031 }
This page took 0.054061 seconds and 5 git commands to generate.