arm-tdep.c: Remove unused arm_displaced_step_copy_insn
[deliverable/binutils-gdb.git] / gdb / aarch64-tdep.c
1 /* Common target dependent code for GDB on AArch64 systems.
2
3 Copyright (C) 2009-2016 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22
23 #include "frame.h"
24 #include "inferior.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "dis-asm.h"
28 #include "regcache.h"
29 #include "reggroups.h"
30 #include "doublest.h"
31 #include "value.h"
32 #include "arch-utils.h"
33 #include "osabi.h"
34 #include "frame-unwind.h"
35 #include "frame-base.h"
36 #include "trad-frame.h"
37 #include "objfiles.h"
38 #include "dwarf2-frame.h"
39 #include "gdbtypes.h"
40 #include "prologue-value.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
43 #include "language.h"
44 #include "infcall.h"
45 #include "ax.h"
46 #include "ax-gdb.h"
47
48 #include "aarch64-tdep.h"
49
50 #include "elf-bfd.h"
51 #include "elf/aarch64.h"
52
53 #include "vec.h"
54
55 #include "record.h"
56 #include "record-full.h"
57
58 #include "features/aarch64.c"
59
60 #include "arch/aarch64-insn.h"
61
62 #include "opcode/aarch64.h"
63
64 #define submask(x) ((1L << ((x) + 1)) - 1)
65 #define bit(obj,st) (((obj) >> (st)) & 1)
66 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
67
68 /* Pseudo register base numbers. */
69 #define AARCH64_Q0_REGNUM 0
70 #define AARCH64_D0_REGNUM (AARCH64_Q0_REGNUM + 32)
71 #define AARCH64_S0_REGNUM (AARCH64_D0_REGNUM + 32)
72 #define AARCH64_H0_REGNUM (AARCH64_S0_REGNUM + 32)
73 #define AARCH64_B0_REGNUM (AARCH64_H0_REGNUM + 32)
74
75 /* The standard register names, and all the valid aliases for them. */
76 static const struct
77 {
78 const char *const name;
79 int regnum;
80 } aarch64_register_aliases[] =
81 {
82 /* 64-bit register names. */
83 {"fp", AARCH64_FP_REGNUM},
84 {"lr", AARCH64_LR_REGNUM},
85 {"sp", AARCH64_SP_REGNUM},
86
87 /* 32-bit register names. */
88 {"w0", AARCH64_X0_REGNUM + 0},
89 {"w1", AARCH64_X0_REGNUM + 1},
90 {"w2", AARCH64_X0_REGNUM + 2},
91 {"w3", AARCH64_X0_REGNUM + 3},
92 {"w4", AARCH64_X0_REGNUM + 4},
93 {"w5", AARCH64_X0_REGNUM + 5},
94 {"w6", AARCH64_X0_REGNUM + 6},
95 {"w7", AARCH64_X0_REGNUM + 7},
96 {"w8", AARCH64_X0_REGNUM + 8},
97 {"w9", AARCH64_X0_REGNUM + 9},
98 {"w10", AARCH64_X0_REGNUM + 10},
99 {"w11", AARCH64_X0_REGNUM + 11},
100 {"w12", AARCH64_X0_REGNUM + 12},
101 {"w13", AARCH64_X0_REGNUM + 13},
102 {"w14", AARCH64_X0_REGNUM + 14},
103 {"w15", AARCH64_X0_REGNUM + 15},
104 {"w16", AARCH64_X0_REGNUM + 16},
105 {"w17", AARCH64_X0_REGNUM + 17},
106 {"w18", AARCH64_X0_REGNUM + 18},
107 {"w19", AARCH64_X0_REGNUM + 19},
108 {"w20", AARCH64_X0_REGNUM + 20},
109 {"w21", AARCH64_X0_REGNUM + 21},
110 {"w22", AARCH64_X0_REGNUM + 22},
111 {"w23", AARCH64_X0_REGNUM + 23},
112 {"w24", AARCH64_X0_REGNUM + 24},
113 {"w25", AARCH64_X0_REGNUM + 25},
114 {"w26", AARCH64_X0_REGNUM + 26},
115 {"w27", AARCH64_X0_REGNUM + 27},
116 {"w28", AARCH64_X0_REGNUM + 28},
117 {"w29", AARCH64_X0_REGNUM + 29},
118 {"w30", AARCH64_X0_REGNUM + 30},
119
120 /* specials */
121 {"ip0", AARCH64_X0_REGNUM + 16},
122 {"ip1", AARCH64_X0_REGNUM + 17}
123 };
124
125 /* The required core 'R' registers. */
126 static const char *const aarch64_r_register_names[] =
127 {
128 /* These registers must appear in consecutive RAW register number
129 order and they must begin with AARCH64_X0_REGNUM! */
130 "x0", "x1", "x2", "x3",
131 "x4", "x5", "x6", "x7",
132 "x8", "x9", "x10", "x11",
133 "x12", "x13", "x14", "x15",
134 "x16", "x17", "x18", "x19",
135 "x20", "x21", "x22", "x23",
136 "x24", "x25", "x26", "x27",
137 "x28", "x29", "x30", "sp",
138 "pc", "cpsr"
139 };
140
141 /* The FP/SIMD 'V' registers. */
142 static const char *const aarch64_v_register_names[] =
143 {
144 /* These registers must appear in consecutive RAW register number
145 order and they must begin with AARCH64_V0_REGNUM! */
146 "v0", "v1", "v2", "v3",
147 "v4", "v5", "v6", "v7",
148 "v8", "v9", "v10", "v11",
149 "v12", "v13", "v14", "v15",
150 "v16", "v17", "v18", "v19",
151 "v20", "v21", "v22", "v23",
152 "v24", "v25", "v26", "v27",
153 "v28", "v29", "v30", "v31",
154 "fpsr",
155 "fpcr"
156 };
157
158 /* AArch64 prologue cache structure. */
159 struct aarch64_prologue_cache
160 {
161 /* The program counter at the start of the function. It is used to
162 identify this frame as a prologue frame. */
163 CORE_ADDR func;
164
165 /* The program counter at the time this frame was created; i.e. where
166 this function was called from. It is used to identify this frame as a
167 stub frame. */
168 CORE_ADDR prev_pc;
169
170 /* The stack pointer at the time this frame was created; i.e. the
171 caller's stack pointer when this function was called. It is used
172 to identify this frame. */
173 CORE_ADDR prev_sp;
174
175 /* Is the target available to read from? */
176 int available_p;
177
178 /* The frame base for this frame is just prev_sp - frame size.
179 FRAMESIZE is the distance from the frame pointer to the
180 initial stack pointer. */
181 int framesize;
182
183 /* The register used to hold the frame pointer for this frame. */
184 int framereg;
185
186 /* Saved register offsets. */
187 struct trad_frame_saved_reg *saved_regs;
188 };
189
190 static void
191 show_aarch64_debug (struct ui_file *file, int from_tty,
192 struct cmd_list_element *c, const char *value)
193 {
194 fprintf_filtered (file, _("AArch64 debugging is %s.\n"), value);
195 }
196
197 /* Analyze a prologue, looking for a recognizable stack frame
198 and frame pointer. Scan until we encounter a store that could
199 clobber the stack frame unexpectedly, or an unknown instruction. */
200
201 static CORE_ADDR
202 aarch64_analyze_prologue (struct gdbarch *gdbarch,
203 CORE_ADDR start, CORE_ADDR limit,
204 struct aarch64_prologue_cache *cache)
205 {
206 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
207 int i;
208 pv_t regs[AARCH64_X_REGISTER_COUNT];
209 struct pv_area *stack;
210 struct cleanup *back_to;
211
212 for (i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
213 regs[i] = pv_register (i, 0);
214 stack = make_pv_area (AARCH64_SP_REGNUM, gdbarch_addr_bit (gdbarch));
215 back_to = make_cleanup_free_pv_area (stack);
216
217 for (; start < limit; start += 4)
218 {
219 uint32_t insn;
220 aarch64_inst inst;
221
222 insn = read_memory_unsigned_integer (start, 4, byte_order_for_code);
223
224 if (aarch64_decode_insn (insn, &inst, 1) != 0)
225 break;
226
227 if (inst.opcode->iclass == addsub_imm
228 && (inst.opcode->op == OP_ADD
229 || strcmp ("sub", inst.opcode->name) == 0))
230 {
231 unsigned rd = inst.operands[0].reg.regno;
232 unsigned rn = inst.operands[1].reg.regno;
233
234 gdb_assert (aarch64_num_of_operands (inst.opcode) == 3);
235 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd_SP);
236 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rn_SP);
237 gdb_assert (inst.operands[2].type == AARCH64_OPND_AIMM);
238
239 if (inst.opcode->op == OP_ADD)
240 {
241 regs[rd] = pv_add_constant (regs[rn],
242 inst.operands[2].imm.value);
243 }
244 else
245 {
246 regs[rd] = pv_add_constant (regs[rn],
247 -inst.operands[2].imm.value);
248 }
249 }
250 else if (inst.opcode->iclass == pcreladdr
251 && inst.operands[1].type == AARCH64_OPND_ADDR_ADRP)
252 {
253 gdb_assert (aarch64_num_of_operands (inst.opcode) == 2);
254 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
255
256 regs[inst.operands[0].reg.regno] = pv_unknown ();
257 }
258 else if (inst.opcode->iclass == branch_imm)
259 {
260 /* Stop analysis on branch. */
261 break;
262 }
263 else if (inst.opcode->iclass == condbranch)
264 {
265 /* Stop analysis on branch. */
266 break;
267 }
268 else if (inst.opcode->iclass == branch_reg)
269 {
270 /* Stop analysis on branch. */
271 break;
272 }
273 else if (inst.opcode->iclass == compbranch)
274 {
275 /* Stop analysis on branch. */
276 break;
277 }
278 else if (inst.opcode->op == OP_MOVZ)
279 {
280 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
281 regs[inst.operands[0].reg.regno] = pv_unknown ();
282 }
283 else if (inst.opcode->iclass == log_shift
284 && strcmp (inst.opcode->name, "orr") == 0)
285 {
286 unsigned rd = inst.operands[0].reg.regno;
287 unsigned rn = inst.operands[1].reg.regno;
288 unsigned rm = inst.operands[2].reg.regno;
289
290 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
291 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rn);
292 gdb_assert (inst.operands[2].type == AARCH64_OPND_Rm_SFT);
293
294 if (inst.operands[2].shifter.amount == 0
295 && rn == AARCH64_SP_REGNUM)
296 regs[rd] = regs[rm];
297 else
298 {
299 if (aarch64_debug)
300 {
301 debug_printf ("aarch64: prologue analysis gave up "
302 "addr=0x%s opcode=0x%x (orr x register)\n",
303 core_addr_to_string_nz (start), insn);
304 }
305 break;
306 }
307 }
308 else if (inst.opcode->op == OP_STUR)
309 {
310 unsigned rt = inst.operands[0].reg.regno;
311 unsigned rn = inst.operands[1].addr.base_regno;
312 int is64
313 = (aarch64_get_qualifier_esize (inst.operands[0].qualifier) == 8);
314
315 gdb_assert (aarch64_num_of_operands (inst.opcode) == 2);
316 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt);
317 gdb_assert (inst.operands[1].type == AARCH64_OPND_ADDR_SIMM9);
318 gdb_assert (!inst.operands[1].addr.offset.is_reg);
319
320 pv_area_store (stack, pv_add_constant (regs[rn],
321 inst.operands[1].addr.offset.imm),
322 is64 ? 8 : 4, regs[rt]);
323 }
324 else if ((inst.opcode->iclass == ldstpair_off
325 || inst.opcode->iclass == ldstpair_indexed)
326 && inst.operands[2].addr.preind
327 && strcmp ("stp", inst.opcode->name) == 0)
328 {
329 unsigned rt1 = inst.operands[0].reg.regno;
330 unsigned rt2 = inst.operands[1].reg.regno;
331 unsigned rn = inst.operands[2].addr.base_regno;
332 int32_t imm = inst.operands[2].addr.offset.imm;
333
334 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt);
335 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rt2);
336 gdb_assert (inst.operands[2].type == AARCH64_OPND_ADDR_SIMM7);
337 gdb_assert (!inst.operands[2].addr.offset.is_reg);
338
339 /* If recording this store would invalidate the store area
340 (perhaps because rn is not known) then we should abandon
341 further prologue analysis. */
342 if (pv_area_store_would_trash (stack,
343 pv_add_constant (regs[rn], imm)))
344 break;
345
346 if (pv_area_store_would_trash (stack,
347 pv_add_constant (regs[rn], imm + 8)))
348 break;
349
350 pv_area_store (stack, pv_add_constant (regs[rn], imm), 8,
351 regs[rt1]);
352 pv_area_store (stack, pv_add_constant (regs[rn], imm + 8), 8,
353 regs[rt2]);
354
355 if (inst.operands[2].addr.writeback)
356 regs[rn] = pv_add_constant (regs[rn], imm);
357
358 }
359 else if (inst.opcode->iclass == testbranch)
360 {
361 /* Stop analysis on branch. */
362 break;
363 }
364 else
365 {
366 if (aarch64_debug)
367 {
368 debug_printf ("aarch64: prologue analysis gave up addr=0x%s"
369 " opcode=0x%x\n",
370 core_addr_to_string_nz (start), insn);
371 }
372 break;
373 }
374 }
375
376 if (cache == NULL)
377 {
378 do_cleanups (back_to);
379 return start;
380 }
381
382 if (pv_is_register (regs[AARCH64_FP_REGNUM], AARCH64_SP_REGNUM))
383 {
384 /* Frame pointer is fp. Frame size is constant. */
385 cache->framereg = AARCH64_FP_REGNUM;
386 cache->framesize = -regs[AARCH64_FP_REGNUM].k;
387 }
388 else if (pv_is_register (regs[AARCH64_SP_REGNUM], AARCH64_SP_REGNUM))
389 {
390 /* Try the stack pointer. */
391 cache->framesize = -regs[AARCH64_SP_REGNUM].k;
392 cache->framereg = AARCH64_SP_REGNUM;
393 }
394 else
395 {
396 /* We're just out of luck. We don't know where the frame is. */
397 cache->framereg = -1;
398 cache->framesize = 0;
399 }
400
401 for (i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
402 {
403 CORE_ADDR offset;
404
405 if (pv_area_find_reg (stack, gdbarch, i, &offset))
406 cache->saved_regs[i].addr = offset;
407 }
408
409 do_cleanups (back_to);
410 return start;
411 }
412
413 /* Implement the "skip_prologue" gdbarch method. */
414
415 static CORE_ADDR
416 aarch64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
417 {
418 unsigned long inst;
419 CORE_ADDR skip_pc;
420 CORE_ADDR func_addr, limit_pc;
421 struct symtab_and_line sal;
422
423 /* See if we can determine the end of the prologue via the symbol
424 table. If so, then return either PC, or the PC after the
425 prologue, whichever is greater. */
426 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
427 {
428 CORE_ADDR post_prologue_pc
429 = skip_prologue_using_sal (gdbarch, func_addr);
430
431 if (post_prologue_pc != 0)
432 return max (pc, post_prologue_pc);
433 }
434
435 /* Can't determine prologue from the symbol table, need to examine
436 instructions. */
437
438 /* Find an upper limit on the function prologue using the debug
439 information. If the debug information could not be used to
440 provide that bound, then use an arbitrary large number as the
441 upper bound. */
442 limit_pc = skip_prologue_using_sal (gdbarch, pc);
443 if (limit_pc == 0)
444 limit_pc = pc + 128; /* Magic. */
445
446 /* Try disassembling prologue. */
447 return aarch64_analyze_prologue (gdbarch, pc, limit_pc, NULL);
448 }
449
450 /* Scan the function prologue for THIS_FRAME and populate the prologue
451 cache CACHE. */
452
453 static void
454 aarch64_scan_prologue (struct frame_info *this_frame,
455 struct aarch64_prologue_cache *cache)
456 {
457 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
458 CORE_ADDR prologue_start;
459 CORE_ADDR prologue_end;
460 CORE_ADDR prev_pc = get_frame_pc (this_frame);
461 struct gdbarch *gdbarch = get_frame_arch (this_frame);
462
463 cache->prev_pc = prev_pc;
464
465 /* Assume we do not find a frame. */
466 cache->framereg = -1;
467 cache->framesize = 0;
468
469 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
470 &prologue_end))
471 {
472 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
473
474 if (sal.line == 0)
475 {
476 /* No line info so use the current PC. */
477 prologue_end = prev_pc;
478 }
479 else if (sal.end < prologue_end)
480 {
481 /* The next line begins after the function end. */
482 prologue_end = sal.end;
483 }
484
485 prologue_end = min (prologue_end, prev_pc);
486 aarch64_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
487 }
488 else
489 {
490 CORE_ADDR frame_loc;
491 LONGEST saved_fp;
492 LONGEST saved_lr;
493 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
494
495 frame_loc = get_frame_register_unsigned (this_frame, AARCH64_FP_REGNUM);
496 if (frame_loc == 0)
497 return;
498
499 cache->framereg = AARCH64_FP_REGNUM;
500 cache->framesize = 16;
501 cache->saved_regs[29].addr = 0;
502 cache->saved_regs[30].addr = 8;
503 }
504 }
505
506 /* Fill in *CACHE with information about the prologue of *THIS_FRAME. This
507 function may throw an exception if the inferior's registers or memory is
508 not available. */
509
510 static void
511 aarch64_make_prologue_cache_1 (struct frame_info *this_frame,
512 struct aarch64_prologue_cache *cache)
513 {
514 CORE_ADDR unwound_fp;
515 int reg;
516
517 aarch64_scan_prologue (this_frame, cache);
518
519 if (cache->framereg == -1)
520 return;
521
522 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
523 if (unwound_fp == 0)
524 return;
525
526 cache->prev_sp = unwound_fp + cache->framesize;
527
528 /* Calculate actual addresses of saved registers using offsets
529 determined by aarch64_analyze_prologue. */
530 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
531 if (trad_frame_addr_p (cache->saved_regs, reg))
532 cache->saved_regs[reg].addr += cache->prev_sp;
533
534 cache->func = get_frame_func (this_frame);
535
536 cache->available_p = 1;
537 }
538
539 /* Allocate and fill in *THIS_CACHE with information about the prologue of
540 *THIS_FRAME. Do not do this is if *THIS_CACHE was already allocated.
541 Return a pointer to the current aarch64_prologue_cache in
542 *THIS_CACHE. */
543
544 static struct aarch64_prologue_cache *
545 aarch64_make_prologue_cache (struct frame_info *this_frame, void **this_cache)
546 {
547 struct aarch64_prologue_cache *cache;
548
549 if (*this_cache != NULL)
550 return (struct aarch64_prologue_cache *) *this_cache;
551
552 cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
553 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
554 *this_cache = cache;
555
556 TRY
557 {
558 aarch64_make_prologue_cache_1 (this_frame, cache);
559 }
560 CATCH (ex, RETURN_MASK_ERROR)
561 {
562 if (ex.error != NOT_AVAILABLE_ERROR)
563 throw_exception (ex);
564 }
565 END_CATCH
566
567 return cache;
568 }
569
570 /* Implement the "stop_reason" frame_unwind method. */
571
572 static enum unwind_stop_reason
573 aarch64_prologue_frame_unwind_stop_reason (struct frame_info *this_frame,
574 void **this_cache)
575 {
576 struct aarch64_prologue_cache *cache
577 = aarch64_make_prologue_cache (this_frame, this_cache);
578
579 if (!cache->available_p)
580 return UNWIND_UNAVAILABLE;
581
582 /* Halt the backtrace at "_start". */
583 if (cache->prev_pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
584 return UNWIND_OUTERMOST;
585
586 /* We've hit a wall, stop. */
587 if (cache->prev_sp == 0)
588 return UNWIND_OUTERMOST;
589
590 return UNWIND_NO_REASON;
591 }
592
593 /* Our frame ID for a normal frame is the current function's starting
594 PC and the caller's SP when we were called. */
595
596 static void
597 aarch64_prologue_this_id (struct frame_info *this_frame,
598 void **this_cache, struct frame_id *this_id)
599 {
600 struct aarch64_prologue_cache *cache
601 = aarch64_make_prologue_cache (this_frame, this_cache);
602
603 if (!cache->available_p)
604 *this_id = frame_id_build_unavailable_stack (cache->func);
605 else
606 *this_id = frame_id_build (cache->prev_sp, cache->func);
607 }
608
609 /* Implement the "prev_register" frame_unwind method. */
610
611 static struct value *
612 aarch64_prologue_prev_register (struct frame_info *this_frame,
613 void **this_cache, int prev_regnum)
614 {
615 struct gdbarch *gdbarch = get_frame_arch (this_frame);
616 struct aarch64_prologue_cache *cache
617 = aarch64_make_prologue_cache (this_frame, this_cache);
618
619 /* If we are asked to unwind the PC, then we need to return the LR
620 instead. The prologue may save PC, but it will point into this
621 frame's prologue, not the next frame's resume location. */
622 if (prev_regnum == AARCH64_PC_REGNUM)
623 {
624 CORE_ADDR lr;
625
626 lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
627 return frame_unwind_got_constant (this_frame, prev_regnum, lr);
628 }
629
630 /* SP is generally not saved to the stack, but this frame is
631 identified by the next frame's stack pointer at the time of the
632 call. The value was already reconstructed into PREV_SP. */
633 /*
634 +----------+ ^
635 | saved lr | |
636 +->| saved fp |--+
637 | | |
638 | | | <- Previous SP
639 | +----------+
640 | | saved lr |
641 +--| saved fp |<- FP
642 | |
643 | |<- SP
644 +----------+ */
645 if (prev_regnum == AARCH64_SP_REGNUM)
646 return frame_unwind_got_constant (this_frame, prev_regnum,
647 cache->prev_sp);
648
649 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
650 prev_regnum);
651 }
652
653 /* AArch64 prologue unwinder. */
654 struct frame_unwind aarch64_prologue_unwind =
655 {
656 NORMAL_FRAME,
657 aarch64_prologue_frame_unwind_stop_reason,
658 aarch64_prologue_this_id,
659 aarch64_prologue_prev_register,
660 NULL,
661 default_frame_sniffer
662 };
663
664 /* Allocate and fill in *THIS_CACHE with information about the prologue of
665 *THIS_FRAME. Do not do this is if *THIS_CACHE was already allocated.
666 Return a pointer to the current aarch64_prologue_cache in
667 *THIS_CACHE. */
668
669 static struct aarch64_prologue_cache *
670 aarch64_make_stub_cache (struct frame_info *this_frame, void **this_cache)
671 {
672 struct aarch64_prologue_cache *cache;
673
674 if (*this_cache != NULL)
675 return (struct aarch64_prologue_cache *) *this_cache;
676
677 cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
678 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
679 *this_cache = cache;
680
681 TRY
682 {
683 cache->prev_sp = get_frame_register_unsigned (this_frame,
684 AARCH64_SP_REGNUM);
685 cache->prev_pc = get_frame_pc (this_frame);
686 cache->available_p = 1;
687 }
688 CATCH (ex, RETURN_MASK_ERROR)
689 {
690 if (ex.error != NOT_AVAILABLE_ERROR)
691 throw_exception (ex);
692 }
693 END_CATCH
694
695 return cache;
696 }
697
698 /* Implement the "stop_reason" frame_unwind method. */
699
700 static enum unwind_stop_reason
701 aarch64_stub_frame_unwind_stop_reason (struct frame_info *this_frame,
702 void **this_cache)
703 {
704 struct aarch64_prologue_cache *cache
705 = aarch64_make_stub_cache (this_frame, this_cache);
706
707 if (!cache->available_p)
708 return UNWIND_UNAVAILABLE;
709
710 return UNWIND_NO_REASON;
711 }
712
713 /* Our frame ID for a stub frame is the current SP and LR. */
714
715 static void
716 aarch64_stub_this_id (struct frame_info *this_frame,
717 void **this_cache, struct frame_id *this_id)
718 {
719 struct aarch64_prologue_cache *cache
720 = aarch64_make_stub_cache (this_frame, this_cache);
721
722 if (cache->available_p)
723 *this_id = frame_id_build (cache->prev_sp, cache->prev_pc);
724 else
725 *this_id = frame_id_build_unavailable_stack (cache->prev_pc);
726 }
727
728 /* Implement the "sniffer" frame_unwind method. */
729
730 static int
731 aarch64_stub_unwind_sniffer (const struct frame_unwind *self,
732 struct frame_info *this_frame,
733 void **this_prologue_cache)
734 {
735 CORE_ADDR addr_in_block;
736 gdb_byte dummy[4];
737
738 addr_in_block = get_frame_address_in_block (this_frame);
739 if (in_plt_section (addr_in_block)
740 /* We also use the stub winder if the target memory is unreadable
741 to avoid having the prologue unwinder trying to read it. */
742 || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
743 return 1;
744
745 return 0;
746 }
747
748 /* AArch64 stub unwinder. */
749 struct frame_unwind aarch64_stub_unwind =
750 {
751 NORMAL_FRAME,
752 aarch64_stub_frame_unwind_stop_reason,
753 aarch64_stub_this_id,
754 aarch64_prologue_prev_register,
755 NULL,
756 aarch64_stub_unwind_sniffer
757 };
758
759 /* Return the frame base address of *THIS_FRAME. */
760
761 static CORE_ADDR
762 aarch64_normal_frame_base (struct frame_info *this_frame, void **this_cache)
763 {
764 struct aarch64_prologue_cache *cache
765 = aarch64_make_prologue_cache (this_frame, this_cache);
766
767 return cache->prev_sp - cache->framesize;
768 }
769
770 /* AArch64 default frame base information. */
771 struct frame_base aarch64_normal_base =
772 {
773 &aarch64_prologue_unwind,
774 aarch64_normal_frame_base,
775 aarch64_normal_frame_base,
776 aarch64_normal_frame_base
777 };
778
779 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
780 dummy frame. The frame ID's base needs to match the TOS value
781 saved by save_dummy_frame_tos () and returned from
782 aarch64_push_dummy_call, and the PC needs to match the dummy
783 frame's breakpoint. */
784
785 static struct frame_id
786 aarch64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
787 {
788 return frame_id_build (get_frame_register_unsigned (this_frame,
789 AARCH64_SP_REGNUM),
790 get_frame_pc (this_frame));
791 }
792
793 /* Implement the "unwind_pc" gdbarch method. */
794
795 static CORE_ADDR
796 aarch64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
797 {
798 CORE_ADDR pc
799 = frame_unwind_register_unsigned (this_frame, AARCH64_PC_REGNUM);
800
801 return pc;
802 }
803
804 /* Implement the "unwind_sp" gdbarch method. */
805
806 static CORE_ADDR
807 aarch64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
808 {
809 return frame_unwind_register_unsigned (this_frame, AARCH64_SP_REGNUM);
810 }
811
812 /* Return the value of the REGNUM register in the previous frame of
813 *THIS_FRAME. */
814
815 static struct value *
816 aarch64_dwarf2_prev_register (struct frame_info *this_frame,
817 void **this_cache, int regnum)
818 {
819 struct gdbarch *gdbarch = get_frame_arch (this_frame);
820 CORE_ADDR lr;
821
822 switch (regnum)
823 {
824 case AARCH64_PC_REGNUM:
825 lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
826 return frame_unwind_got_constant (this_frame, regnum, lr);
827
828 default:
829 internal_error (__FILE__, __LINE__,
830 _("Unexpected register %d"), regnum);
831 }
832 }
833
834 /* Implement the "init_reg" dwarf2_frame_ops method. */
835
836 static void
837 aarch64_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
838 struct dwarf2_frame_state_reg *reg,
839 struct frame_info *this_frame)
840 {
841 switch (regnum)
842 {
843 case AARCH64_PC_REGNUM:
844 reg->how = DWARF2_FRAME_REG_FN;
845 reg->loc.fn = aarch64_dwarf2_prev_register;
846 break;
847 case AARCH64_SP_REGNUM:
848 reg->how = DWARF2_FRAME_REG_CFA;
849 break;
850 }
851 }
852
853 /* When arguments must be pushed onto the stack, they go on in reverse
854 order. The code below implements a FILO (stack) to do this. */
855
856 typedef struct
857 {
858 /* Value to pass on stack. It can be NULL if this item is for stack
859 padding. */
860 const gdb_byte *data;
861
862 /* Size in bytes of value to pass on stack. */
863 int len;
864 } stack_item_t;
865
866 DEF_VEC_O (stack_item_t);
867
868 /* Return the alignment (in bytes) of the given type. */
869
870 static int
871 aarch64_type_align (struct type *t)
872 {
873 int n;
874 int align;
875 int falign;
876
877 t = check_typedef (t);
878 switch (TYPE_CODE (t))
879 {
880 default:
881 /* Should never happen. */
882 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
883 return 4;
884
885 case TYPE_CODE_PTR:
886 case TYPE_CODE_ENUM:
887 case TYPE_CODE_INT:
888 case TYPE_CODE_FLT:
889 case TYPE_CODE_SET:
890 case TYPE_CODE_RANGE:
891 case TYPE_CODE_BITSTRING:
892 case TYPE_CODE_REF:
893 case TYPE_CODE_CHAR:
894 case TYPE_CODE_BOOL:
895 return TYPE_LENGTH (t);
896
897 case TYPE_CODE_ARRAY:
898 if (TYPE_VECTOR (t))
899 {
900 /* Use the natural alignment for vector types (the same for
901 scalar type), but the maximum alignment is 128-bit. */
902 if (TYPE_LENGTH (t) > 16)
903 return 16;
904 else
905 return TYPE_LENGTH (t);
906 }
907 else
908 return aarch64_type_align (TYPE_TARGET_TYPE (t));
909 case TYPE_CODE_COMPLEX:
910 return aarch64_type_align (TYPE_TARGET_TYPE (t));
911
912 case TYPE_CODE_STRUCT:
913 case TYPE_CODE_UNION:
914 align = 1;
915 for (n = 0; n < TYPE_NFIELDS (t); n++)
916 {
917 falign = aarch64_type_align (TYPE_FIELD_TYPE (t, n));
918 if (falign > align)
919 align = falign;
920 }
921 return align;
922 }
923 }
924
925 /* Return 1 if *TY is a homogeneous floating-point aggregate or
926 homogeneous short-vector aggregate as defined in the AAPCS64 ABI
927 document; otherwise return 0. */
928
929 static int
930 is_hfa_or_hva (struct type *ty)
931 {
932 switch (TYPE_CODE (ty))
933 {
934 case TYPE_CODE_ARRAY:
935 {
936 struct type *target_ty = TYPE_TARGET_TYPE (ty);
937
938 if (TYPE_VECTOR (ty))
939 return 0;
940
941 if (TYPE_LENGTH (ty) <= 4 /* HFA or HVA has at most 4 members. */
942 && (TYPE_CODE (target_ty) == TYPE_CODE_FLT /* HFA */
943 || (TYPE_CODE (target_ty) == TYPE_CODE_ARRAY /* HVA */
944 && TYPE_VECTOR (target_ty))))
945 return 1;
946 break;
947 }
948
949 case TYPE_CODE_UNION:
950 case TYPE_CODE_STRUCT:
951 {
952 /* HFA or HVA has at most four members. */
953 if (TYPE_NFIELDS (ty) > 0 && TYPE_NFIELDS (ty) <= 4)
954 {
955 struct type *member0_type;
956
957 member0_type = check_typedef (TYPE_FIELD_TYPE (ty, 0));
958 if (TYPE_CODE (member0_type) == TYPE_CODE_FLT
959 || (TYPE_CODE (member0_type) == TYPE_CODE_ARRAY
960 && TYPE_VECTOR (member0_type)))
961 {
962 int i;
963
964 for (i = 0; i < TYPE_NFIELDS (ty); i++)
965 {
966 struct type *member1_type;
967
968 member1_type = check_typedef (TYPE_FIELD_TYPE (ty, i));
969 if (TYPE_CODE (member0_type) != TYPE_CODE (member1_type)
970 || (TYPE_LENGTH (member0_type)
971 != TYPE_LENGTH (member1_type)))
972 return 0;
973 }
974 return 1;
975 }
976 }
977 return 0;
978 }
979
980 default:
981 break;
982 }
983
984 return 0;
985 }
986
987 /* AArch64 function call information structure. */
988 struct aarch64_call_info
989 {
990 /* the current argument number. */
991 unsigned argnum;
992
993 /* The next general purpose register number, equivalent to NGRN as
994 described in the AArch64 Procedure Call Standard. */
995 unsigned ngrn;
996
997 /* The next SIMD and floating point register number, equivalent to
998 NSRN as described in the AArch64 Procedure Call Standard. */
999 unsigned nsrn;
1000
1001 /* The next stacked argument address, equivalent to NSAA as
1002 described in the AArch64 Procedure Call Standard. */
1003 unsigned nsaa;
1004
1005 /* Stack item vector. */
1006 VEC(stack_item_t) *si;
1007 };
1008
1009 /* Pass a value in a sequence of consecutive X registers. The caller
1010 is responsbile for ensuring sufficient registers are available. */
1011
1012 static void
1013 pass_in_x (struct gdbarch *gdbarch, struct regcache *regcache,
1014 struct aarch64_call_info *info, struct type *type,
1015 struct value *arg)
1016 {
1017 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1018 int len = TYPE_LENGTH (type);
1019 enum type_code typecode = TYPE_CODE (type);
1020 int regnum = AARCH64_X0_REGNUM + info->ngrn;
1021 const bfd_byte *buf = value_contents (arg);
1022
1023 info->argnum++;
1024
1025 while (len > 0)
1026 {
1027 int partial_len = len < X_REGISTER_SIZE ? len : X_REGISTER_SIZE;
1028 CORE_ADDR regval = extract_unsigned_integer (buf, partial_len,
1029 byte_order);
1030
1031
1032 /* Adjust sub-word struct/union args when big-endian. */
1033 if (byte_order == BFD_ENDIAN_BIG
1034 && partial_len < X_REGISTER_SIZE
1035 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
1036 regval <<= ((X_REGISTER_SIZE - partial_len) * TARGET_CHAR_BIT);
1037
1038 if (aarch64_debug)
1039 {
1040 debug_printf ("arg %d in %s = 0x%s\n", info->argnum,
1041 gdbarch_register_name (gdbarch, regnum),
1042 phex (regval, X_REGISTER_SIZE));
1043 }
1044 regcache_cooked_write_unsigned (regcache, regnum, regval);
1045 len -= partial_len;
1046 buf += partial_len;
1047 regnum++;
1048 }
1049 }
1050
1051 /* Attempt to marshall a value in a V register. Return 1 if
1052 successful, or 0 if insufficient registers are available. This
1053 function, unlike the equivalent pass_in_x() function does not
1054 handle arguments spread across multiple registers. */
1055
1056 static int
1057 pass_in_v (struct gdbarch *gdbarch,
1058 struct regcache *regcache,
1059 struct aarch64_call_info *info,
1060 int len, const bfd_byte *buf)
1061 {
1062 if (info->nsrn < 8)
1063 {
1064 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1065 int regnum = AARCH64_V0_REGNUM + info->nsrn;
1066 gdb_byte reg[V_REGISTER_SIZE];
1067
1068 info->argnum++;
1069 info->nsrn++;
1070
1071 memset (reg, 0, sizeof (reg));
1072 /* PCS C.1, the argument is allocated to the least significant
1073 bits of V register. */
1074 memcpy (reg, buf, len);
1075 regcache_cooked_write (regcache, regnum, reg);
1076
1077 if (aarch64_debug)
1078 {
1079 debug_printf ("arg %d in %s\n", info->argnum,
1080 gdbarch_register_name (gdbarch, regnum));
1081 }
1082 return 1;
1083 }
1084 info->nsrn = 8;
1085 return 0;
1086 }
1087
1088 /* Marshall an argument onto the stack. */
1089
1090 static void
1091 pass_on_stack (struct aarch64_call_info *info, struct type *type,
1092 struct value *arg)
1093 {
1094 const bfd_byte *buf = value_contents (arg);
1095 int len = TYPE_LENGTH (type);
1096 int align;
1097 stack_item_t item;
1098
1099 info->argnum++;
1100
1101 align = aarch64_type_align (type);
1102
1103 /* PCS C.17 Stack should be aligned to the larger of 8 bytes or the
1104 Natural alignment of the argument's type. */
1105 align = align_up (align, 8);
1106
1107 /* The AArch64 PCS requires at most doubleword alignment. */
1108 if (align > 16)
1109 align = 16;
1110
1111 if (aarch64_debug)
1112 {
1113 debug_printf ("arg %d len=%d @ sp + %d\n", info->argnum, len,
1114 info->nsaa);
1115 }
1116
1117 item.len = len;
1118 item.data = buf;
1119 VEC_safe_push (stack_item_t, info->si, &item);
1120
1121 info->nsaa += len;
1122 if (info->nsaa & (align - 1))
1123 {
1124 /* Push stack alignment padding. */
1125 int pad = align - (info->nsaa & (align - 1));
1126
1127 item.len = pad;
1128 item.data = NULL;
1129
1130 VEC_safe_push (stack_item_t, info->si, &item);
1131 info->nsaa += pad;
1132 }
1133 }
1134
1135 /* Marshall an argument into a sequence of one or more consecutive X
1136 registers or, if insufficient X registers are available then onto
1137 the stack. */
1138
1139 static void
1140 pass_in_x_or_stack (struct gdbarch *gdbarch, struct regcache *regcache,
1141 struct aarch64_call_info *info, struct type *type,
1142 struct value *arg)
1143 {
1144 int len = TYPE_LENGTH (type);
1145 int nregs = (len + X_REGISTER_SIZE - 1) / X_REGISTER_SIZE;
1146
1147 /* PCS C.13 - Pass in registers if we have enough spare */
1148 if (info->ngrn + nregs <= 8)
1149 {
1150 pass_in_x (gdbarch, regcache, info, type, arg);
1151 info->ngrn += nregs;
1152 }
1153 else
1154 {
1155 info->ngrn = 8;
1156 pass_on_stack (info, type, arg);
1157 }
1158 }
1159
1160 /* Pass a value in a V register, or on the stack if insufficient are
1161 available. */
1162
1163 static void
1164 pass_in_v_or_stack (struct gdbarch *gdbarch,
1165 struct regcache *regcache,
1166 struct aarch64_call_info *info,
1167 struct type *type,
1168 struct value *arg)
1169 {
1170 if (!pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (type),
1171 value_contents (arg)))
1172 pass_on_stack (info, type, arg);
1173 }
1174
1175 /* Implement the "push_dummy_call" gdbarch method. */
1176
1177 static CORE_ADDR
1178 aarch64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1179 struct regcache *regcache, CORE_ADDR bp_addr,
1180 int nargs,
1181 struct value **args, CORE_ADDR sp, int struct_return,
1182 CORE_ADDR struct_addr)
1183 {
1184 int nstack = 0;
1185 int argnum;
1186 int x_argreg;
1187 int v_argreg;
1188 struct aarch64_call_info info;
1189 struct type *func_type;
1190 struct type *return_type;
1191 int lang_struct_return;
1192
1193 memset (&info, 0, sizeof (info));
1194
1195 /* We need to know what the type of the called function is in order
1196 to determine the number of named/anonymous arguments for the
1197 actual argument placement, and the return type in order to handle
1198 return value correctly.
1199
1200 The generic code above us views the decision of return in memory
1201 or return in registers as a two stage processes. The language
1202 handler is consulted first and may decide to return in memory (eg
1203 class with copy constructor returned by value), this will cause
1204 the generic code to allocate space AND insert an initial leading
1205 argument.
1206
1207 If the language code does not decide to pass in memory then the
1208 target code is consulted.
1209
1210 If the language code decides to pass in memory we want to move
1211 the pointer inserted as the initial argument from the argument
1212 list and into X8, the conventional AArch64 struct return pointer
1213 register.
1214
1215 This is slightly awkward, ideally the flag "lang_struct_return"
1216 would be passed to the targets implementation of push_dummy_call.
1217 Rather that change the target interface we call the language code
1218 directly ourselves. */
1219
1220 func_type = check_typedef (value_type (function));
1221
1222 /* Dereference function pointer types. */
1223 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1224 func_type = TYPE_TARGET_TYPE (func_type);
1225
1226 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1227 || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
1228
1229 /* If language_pass_by_reference () returned true we will have been
1230 given an additional initial argument, a hidden pointer to the
1231 return slot in memory. */
1232 return_type = TYPE_TARGET_TYPE (func_type);
1233 lang_struct_return = language_pass_by_reference (return_type);
1234
1235 /* Set the return address. For the AArch64, the return breakpoint
1236 is always at BP_ADDR. */
1237 regcache_cooked_write_unsigned (regcache, AARCH64_LR_REGNUM, bp_addr);
1238
1239 /* If we were given an initial argument for the return slot because
1240 lang_struct_return was true, lose it. */
1241 if (lang_struct_return)
1242 {
1243 args++;
1244 nargs--;
1245 }
1246
1247 /* The struct_return pointer occupies X8. */
1248 if (struct_return || lang_struct_return)
1249 {
1250 if (aarch64_debug)
1251 {
1252 debug_printf ("struct return in %s = 0x%s\n",
1253 gdbarch_register_name (gdbarch,
1254 AARCH64_STRUCT_RETURN_REGNUM),
1255 paddress (gdbarch, struct_addr));
1256 }
1257 regcache_cooked_write_unsigned (regcache, AARCH64_STRUCT_RETURN_REGNUM,
1258 struct_addr);
1259 }
1260
1261 for (argnum = 0; argnum < nargs; argnum++)
1262 {
1263 struct value *arg = args[argnum];
1264 struct type *arg_type;
1265 int len;
1266
1267 arg_type = check_typedef (value_type (arg));
1268 len = TYPE_LENGTH (arg_type);
1269
1270 switch (TYPE_CODE (arg_type))
1271 {
1272 case TYPE_CODE_INT:
1273 case TYPE_CODE_BOOL:
1274 case TYPE_CODE_CHAR:
1275 case TYPE_CODE_RANGE:
1276 case TYPE_CODE_ENUM:
1277 if (len < 4)
1278 {
1279 /* Promote to 32 bit integer. */
1280 if (TYPE_UNSIGNED (arg_type))
1281 arg_type = builtin_type (gdbarch)->builtin_uint32;
1282 else
1283 arg_type = builtin_type (gdbarch)->builtin_int32;
1284 arg = value_cast (arg_type, arg);
1285 }
1286 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1287 break;
1288
1289 case TYPE_CODE_COMPLEX:
1290 if (info.nsrn <= 6)
1291 {
1292 const bfd_byte *buf = value_contents (arg);
1293 struct type *target_type =
1294 check_typedef (TYPE_TARGET_TYPE (arg_type));
1295
1296 pass_in_v (gdbarch, regcache, &info,
1297 TYPE_LENGTH (target_type), buf);
1298 pass_in_v (gdbarch, regcache, &info,
1299 TYPE_LENGTH (target_type),
1300 buf + TYPE_LENGTH (target_type));
1301 }
1302 else
1303 {
1304 info.nsrn = 8;
1305 pass_on_stack (&info, arg_type, arg);
1306 }
1307 break;
1308 case TYPE_CODE_FLT:
1309 pass_in_v_or_stack (gdbarch, regcache, &info, arg_type, arg);
1310 break;
1311
1312 case TYPE_CODE_STRUCT:
1313 case TYPE_CODE_ARRAY:
1314 case TYPE_CODE_UNION:
1315 if (is_hfa_or_hva (arg_type))
1316 {
1317 int elements = TYPE_NFIELDS (arg_type);
1318
1319 /* Homogeneous Aggregates */
1320 if (info.nsrn + elements < 8)
1321 {
1322 int i;
1323
1324 for (i = 0; i < elements; i++)
1325 {
1326 /* We know that we have sufficient registers
1327 available therefore this will never fallback
1328 to the stack. */
1329 struct value *field =
1330 value_primitive_field (arg, 0, i, arg_type);
1331 struct type *field_type =
1332 check_typedef (value_type (field));
1333
1334 pass_in_v_or_stack (gdbarch, regcache, &info,
1335 field_type, field);
1336 }
1337 }
1338 else
1339 {
1340 info.nsrn = 8;
1341 pass_on_stack (&info, arg_type, arg);
1342 }
1343 }
1344 else if (TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1345 && TYPE_VECTOR (arg_type) && (len == 16 || len == 8))
1346 {
1347 /* Short vector types are passed in V registers. */
1348 pass_in_v_or_stack (gdbarch, regcache, &info, arg_type, arg);
1349 }
1350 else if (len > 16)
1351 {
1352 /* PCS B.7 Aggregates larger than 16 bytes are passed by
1353 invisible reference. */
1354
1355 /* Allocate aligned storage. */
1356 sp = align_down (sp - len, 16);
1357
1358 /* Write the real data into the stack. */
1359 write_memory (sp, value_contents (arg), len);
1360
1361 /* Construct the indirection. */
1362 arg_type = lookup_pointer_type (arg_type);
1363 arg = value_from_pointer (arg_type, sp);
1364 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1365 }
1366 else
1367 /* PCS C.15 / C.18 multiple values pass. */
1368 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1369 break;
1370
1371 default:
1372 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1373 break;
1374 }
1375 }
1376
1377 /* Make sure stack retains 16 byte alignment. */
1378 if (info.nsaa & 15)
1379 sp -= 16 - (info.nsaa & 15);
1380
1381 while (!VEC_empty (stack_item_t, info.si))
1382 {
1383 stack_item_t *si = VEC_last (stack_item_t, info.si);
1384
1385 sp -= si->len;
1386 if (si->data != NULL)
1387 write_memory (sp, si->data, si->len);
1388 VEC_pop (stack_item_t, info.si);
1389 }
1390
1391 VEC_free (stack_item_t, info.si);
1392
1393 /* Finally, update the SP register. */
1394 regcache_cooked_write_unsigned (regcache, AARCH64_SP_REGNUM, sp);
1395
1396 return sp;
1397 }
1398
1399 /* Implement the "frame_align" gdbarch method. */
1400
1401 static CORE_ADDR
1402 aarch64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1403 {
1404 /* Align the stack to sixteen bytes. */
1405 return sp & ~(CORE_ADDR) 15;
1406 }
1407
1408 /* Return the type for an AdvSISD Q register. */
1409
1410 static struct type *
1411 aarch64_vnq_type (struct gdbarch *gdbarch)
1412 {
1413 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1414
1415 if (tdep->vnq_type == NULL)
1416 {
1417 struct type *t;
1418 struct type *elem;
1419
1420 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnq",
1421 TYPE_CODE_UNION);
1422
1423 elem = builtin_type (gdbarch)->builtin_uint128;
1424 append_composite_type_field (t, "u", elem);
1425
1426 elem = builtin_type (gdbarch)->builtin_int128;
1427 append_composite_type_field (t, "s", elem);
1428
1429 tdep->vnq_type = t;
1430 }
1431
1432 return tdep->vnq_type;
1433 }
1434
1435 /* Return the type for an AdvSISD D register. */
1436
1437 static struct type *
1438 aarch64_vnd_type (struct gdbarch *gdbarch)
1439 {
1440 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1441
1442 if (tdep->vnd_type == NULL)
1443 {
1444 struct type *t;
1445 struct type *elem;
1446
1447 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnd",
1448 TYPE_CODE_UNION);
1449
1450 elem = builtin_type (gdbarch)->builtin_double;
1451 append_composite_type_field (t, "f", elem);
1452
1453 elem = builtin_type (gdbarch)->builtin_uint64;
1454 append_composite_type_field (t, "u", elem);
1455
1456 elem = builtin_type (gdbarch)->builtin_int64;
1457 append_composite_type_field (t, "s", elem);
1458
1459 tdep->vnd_type = t;
1460 }
1461
1462 return tdep->vnd_type;
1463 }
1464
1465 /* Return the type for an AdvSISD S register. */
1466
1467 static struct type *
1468 aarch64_vns_type (struct gdbarch *gdbarch)
1469 {
1470 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1471
1472 if (tdep->vns_type == NULL)
1473 {
1474 struct type *t;
1475 struct type *elem;
1476
1477 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vns",
1478 TYPE_CODE_UNION);
1479
1480 elem = builtin_type (gdbarch)->builtin_float;
1481 append_composite_type_field (t, "f", elem);
1482
1483 elem = builtin_type (gdbarch)->builtin_uint32;
1484 append_composite_type_field (t, "u", elem);
1485
1486 elem = builtin_type (gdbarch)->builtin_int32;
1487 append_composite_type_field (t, "s", elem);
1488
1489 tdep->vns_type = t;
1490 }
1491
1492 return tdep->vns_type;
1493 }
1494
1495 /* Return the type for an AdvSISD H register. */
1496
1497 static struct type *
1498 aarch64_vnh_type (struct gdbarch *gdbarch)
1499 {
1500 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1501
1502 if (tdep->vnh_type == NULL)
1503 {
1504 struct type *t;
1505 struct type *elem;
1506
1507 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnh",
1508 TYPE_CODE_UNION);
1509
1510 elem = builtin_type (gdbarch)->builtin_uint16;
1511 append_composite_type_field (t, "u", elem);
1512
1513 elem = builtin_type (gdbarch)->builtin_int16;
1514 append_composite_type_field (t, "s", elem);
1515
1516 tdep->vnh_type = t;
1517 }
1518
1519 return tdep->vnh_type;
1520 }
1521
1522 /* Return the type for an AdvSISD B register. */
1523
1524 static struct type *
1525 aarch64_vnb_type (struct gdbarch *gdbarch)
1526 {
1527 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1528
1529 if (tdep->vnb_type == NULL)
1530 {
1531 struct type *t;
1532 struct type *elem;
1533
1534 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnb",
1535 TYPE_CODE_UNION);
1536
1537 elem = builtin_type (gdbarch)->builtin_uint8;
1538 append_composite_type_field (t, "u", elem);
1539
1540 elem = builtin_type (gdbarch)->builtin_int8;
1541 append_composite_type_field (t, "s", elem);
1542
1543 tdep->vnb_type = t;
1544 }
1545
1546 return tdep->vnb_type;
1547 }
1548
1549 /* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
1550
1551 static int
1552 aarch64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1553 {
1554 if (reg >= AARCH64_DWARF_X0 && reg <= AARCH64_DWARF_X0 + 30)
1555 return AARCH64_X0_REGNUM + reg - AARCH64_DWARF_X0;
1556
1557 if (reg == AARCH64_DWARF_SP)
1558 return AARCH64_SP_REGNUM;
1559
1560 if (reg >= AARCH64_DWARF_V0 && reg <= AARCH64_DWARF_V0 + 31)
1561 return AARCH64_V0_REGNUM + reg - AARCH64_DWARF_V0;
1562
1563 return -1;
1564 }
1565 \f
1566
1567 /* Implement the "print_insn" gdbarch method. */
1568
1569 static int
1570 aarch64_gdb_print_insn (bfd_vma memaddr, disassemble_info *info)
1571 {
1572 info->symbols = NULL;
1573 return print_insn_aarch64 (memaddr, info);
1574 }
1575
1576 /* AArch64 BRK software debug mode instruction.
1577 Note that AArch64 code is always little-endian.
1578 1101.0100.0010.0000.0000.0000.0000.0000 = 0xd4200000. */
1579 static const gdb_byte aarch64_default_breakpoint[] = {0x00, 0x00, 0x20, 0xd4};
1580
1581 /* Implement the "breakpoint_from_pc" gdbarch method. */
1582
1583 static const gdb_byte *
1584 aarch64_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1585 int *lenptr)
1586 {
1587 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1588
1589 *lenptr = sizeof (aarch64_default_breakpoint);
1590 return aarch64_default_breakpoint;
1591 }
1592
1593 /* Extract from an array REGS containing the (raw) register state a
1594 function return value of type TYPE, and copy that, in virtual
1595 format, into VALBUF. */
1596
1597 static void
1598 aarch64_extract_return_value (struct type *type, struct regcache *regs,
1599 gdb_byte *valbuf)
1600 {
1601 struct gdbarch *gdbarch = get_regcache_arch (regs);
1602 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1603
1604 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1605 {
1606 bfd_byte buf[V_REGISTER_SIZE];
1607 int len = TYPE_LENGTH (type);
1608
1609 regcache_cooked_read (regs, AARCH64_V0_REGNUM, buf);
1610 memcpy (valbuf, buf, len);
1611 }
1612 else if (TYPE_CODE (type) == TYPE_CODE_INT
1613 || TYPE_CODE (type) == TYPE_CODE_CHAR
1614 || TYPE_CODE (type) == TYPE_CODE_BOOL
1615 || TYPE_CODE (type) == TYPE_CODE_PTR
1616 || TYPE_CODE (type) == TYPE_CODE_REF
1617 || TYPE_CODE (type) == TYPE_CODE_ENUM)
1618 {
1619 /* If the the type is a plain integer, then the access is
1620 straight-forward. Otherwise we have to play around a bit
1621 more. */
1622 int len = TYPE_LENGTH (type);
1623 int regno = AARCH64_X0_REGNUM;
1624 ULONGEST tmp;
1625
1626 while (len > 0)
1627 {
1628 /* By using store_unsigned_integer we avoid having to do
1629 anything special for small big-endian values. */
1630 regcache_cooked_read_unsigned (regs, regno++, &tmp);
1631 store_unsigned_integer (valbuf,
1632 (len > X_REGISTER_SIZE
1633 ? X_REGISTER_SIZE : len), byte_order, tmp);
1634 len -= X_REGISTER_SIZE;
1635 valbuf += X_REGISTER_SIZE;
1636 }
1637 }
1638 else if (TYPE_CODE (type) == TYPE_CODE_COMPLEX)
1639 {
1640 int regno = AARCH64_V0_REGNUM;
1641 bfd_byte buf[V_REGISTER_SIZE];
1642 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1643 int len = TYPE_LENGTH (target_type);
1644
1645 regcache_cooked_read (regs, regno, buf);
1646 memcpy (valbuf, buf, len);
1647 valbuf += len;
1648 regcache_cooked_read (regs, regno + 1, buf);
1649 memcpy (valbuf, buf, len);
1650 valbuf += len;
1651 }
1652 else if (is_hfa_or_hva (type))
1653 {
1654 int elements = TYPE_NFIELDS (type);
1655 struct type *member_type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1656 int len = TYPE_LENGTH (member_type);
1657 int i;
1658
1659 for (i = 0; i < elements; i++)
1660 {
1661 int regno = AARCH64_V0_REGNUM + i;
1662 bfd_byte buf[V_REGISTER_SIZE];
1663
1664 if (aarch64_debug)
1665 {
1666 debug_printf ("read HFA or HVA return value element %d from %s\n",
1667 i + 1,
1668 gdbarch_register_name (gdbarch, regno));
1669 }
1670 regcache_cooked_read (regs, regno, buf);
1671
1672 memcpy (valbuf, buf, len);
1673 valbuf += len;
1674 }
1675 }
1676 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
1677 && (TYPE_LENGTH (type) == 16 || TYPE_LENGTH (type) == 8))
1678 {
1679 /* Short vector is returned in V register. */
1680 gdb_byte buf[V_REGISTER_SIZE];
1681
1682 regcache_cooked_read (regs, AARCH64_V0_REGNUM, buf);
1683 memcpy (valbuf, buf, TYPE_LENGTH (type));
1684 }
1685 else
1686 {
1687 /* For a structure or union the behaviour is as if the value had
1688 been stored to word-aligned memory and then loaded into
1689 registers with 64-bit load instruction(s). */
1690 int len = TYPE_LENGTH (type);
1691 int regno = AARCH64_X0_REGNUM;
1692 bfd_byte buf[X_REGISTER_SIZE];
1693
1694 while (len > 0)
1695 {
1696 regcache_cooked_read (regs, regno++, buf);
1697 memcpy (valbuf, buf, len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
1698 len -= X_REGISTER_SIZE;
1699 valbuf += X_REGISTER_SIZE;
1700 }
1701 }
1702 }
1703
1704
1705 /* Will a function return an aggregate type in memory or in a
1706 register? Return 0 if an aggregate type can be returned in a
1707 register, 1 if it must be returned in memory. */
1708
1709 static int
1710 aarch64_return_in_memory (struct gdbarch *gdbarch, struct type *type)
1711 {
1712 int nRc;
1713 enum type_code code;
1714
1715 type = check_typedef (type);
1716
1717 if (is_hfa_or_hva (type))
1718 {
1719 /* v0-v7 are used to return values and one register is allocated
1720 for one member. However, HFA or HVA has at most four members. */
1721 return 0;
1722 }
1723
1724 if (TYPE_LENGTH (type) > 16)
1725 {
1726 /* PCS B.6 Aggregates larger than 16 bytes are passed by
1727 invisible reference. */
1728
1729 return 1;
1730 }
1731
1732 return 0;
1733 }
1734
1735 /* Write into appropriate registers a function return value of type
1736 TYPE, given in virtual format. */
1737
1738 static void
1739 aarch64_store_return_value (struct type *type, struct regcache *regs,
1740 const gdb_byte *valbuf)
1741 {
1742 struct gdbarch *gdbarch = get_regcache_arch (regs);
1743 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1744
1745 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1746 {
1747 bfd_byte buf[V_REGISTER_SIZE];
1748 int len = TYPE_LENGTH (type);
1749
1750 memcpy (buf, valbuf, len > V_REGISTER_SIZE ? V_REGISTER_SIZE : len);
1751 regcache_cooked_write (regs, AARCH64_V0_REGNUM, buf);
1752 }
1753 else if (TYPE_CODE (type) == TYPE_CODE_INT
1754 || TYPE_CODE (type) == TYPE_CODE_CHAR
1755 || TYPE_CODE (type) == TYPE_CODE_BOOL
1756 || TYPE_CODE (type) == TYPE_CODE_PTR
1757 || TYPE_CODE (type) == TYPE_CODE_REF
1758 || TYPE_CODE (type) == TYPE_CODE_ENUM)
1759 {
1760 if (TYPE_LENGTH (type) <= X_REGISTER_SIZE)
1761 {
1762 /* Values of one word or less are zero/sign-extended and
1763 returned in r0. */
1764 bfd_byte tmpbuf[X_REGISTER_SIZE];
1765 LONGEST val = unpack_long (type, valbuf);
1766
1767 store_signed_integer (tmpbuf, X_REGISTER_SIZE, byte_order, val);
1768 regcache_cooked_write (regs, AARCH64_X0_REGNUM, tmpbuf);
1769 }
1770 else
1771 {
1772 /* Integral values greater than one word are stored in
1773 consecutive registers starting with r0. This will always
1774 be a multiple of the regiser size. */
1775 int len = TYPE_LENGTH (type);
1776 int regno = AARCH64_X0_REGNUM;
1777
1778 while (len > 0)
1779 {
1780 regcache_cooked_write (regs, regno++, valbuf);
1781 len -= X_REGISTER_SIZE;
1782 valbuf += X_REGISTER_SIZE;
1783 }
1784 }
1785 }
1786 else if (is_hfa_or_hva (type))
1787 {
1788 int elements = TYPE_NFIELDS (type);
1789 struct type *member_type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1790 int len = TYPE_LENGTH (member_type);
1791 int i;
1792
1793 for (i = 0; i < elements; i++)
1794 {
1795 int regno = AARCH64_V0_REGNUM + i;
1796 bfd_byte tmpbuf[MAX_REGISTER_SIZE];
1797
1798 if (aarch64_debug)
1799 {
1800 debug_printf ("write HFA or HVA return value element %d to %s\n",
1801 i + 1,
1802 gdbarch_register_name (gdbarch, regno));
1803 }
1804
1805 memcpy (tmpbuf, valbuf, len);
1806 regcache_cooked_write (regs, regno, tmpbuf);
1807 valbuf += len;
1808 }
1809 }
1810 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
1811 && (TYPE_LENGTH (type) == 8 || TYPE_LENGTH (type) == 16))
1812 {
1813 /* Short vector. */
1814 gdb_byte buf[V_REGISTER_SIZE];
1815
1816 memcpy (buf, valbuf, TYPE_LENGTH (type));
1817 regcache_cooked_write (regs, AARCH64_V0_REGNUM, buf);
1818 }
1819 else
1820 {
1821 /* For a structure or union the behaviour is as if the value had
1822 been stored to word-aligned memory and then loaded into
1823 registers with 64-bit load instruction(s). */
1824 int len = TYPE_LENGTH (type);
1825 int regno = AARCH64_X0_REGNUM;
1826 bfd_byte tmpbuf[X_REGISTER_SIZE];
1827
1828 while (len > 0)
1829 {
1830 memcpy (tmpbuf, valbuf,
1831 len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
1832 regcache_cooked_write (regs, regno++, tmpbuf);
1833 len -= X_REGISTER_SIZE;
1834 valbuf += X_REGISTER_SIZE;
1835 }
1836 }
1837 }
1838
1839 /* Implement the "return_value" gdbarch method. */
1840
1841 static enum return_value_convention
1842 aarch64_return_value (struct gdbarch *gdbarch, struct value *func_value,
1843 struct type *valtype, struct regcache *regcache,
1844 gdb_byte *readbuf, const gdb_byte *writebuf)
1845 {
1846 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1847
1848 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1849 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1850 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1851 {
1852 if (aarch64_return_in_memory (gdbarch, valtype))
1853 {
1854 if (aarch64_debug)
1855 debug_printf ("return value in memory\n");
1856 return RETURN_VALUE_STRUCT_CONVENTION;
1857 }
1858 }
1859
1860 if (writebuf)
1861 aarch64_store_return_value (valtype, regcache, writebuf);
1862
1863 if (readbuf)
1864 aarch64_extract_return_value (valtype, regcache, readbuf);
1865
1866 if (aarch64_debug)
1867 debug_printf ("return value in registers\n");
1868
1869 return RETURN_VALUE_REGISTER_CONVENTION;
1870 }
1871
1872 /* Implement the "get_longjmp_target" gdbarch method. */
1873
1874 static int
1875 aarch64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1876 {
1877 CORE_ADDR jb_addr;
1878 gdb_byte buf[X_REGISTER_SIZE];
1879 struct gdbarch *gdbarch = get_frame_arch (frame);
1880 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1881 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1882
1883 jb_addr = get_frame_register_unsigned (frame, AARCH64_X0_REGNUM);
1884
1885 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
1886 X_REGISTER_SIZE))
1887 return 0;
1888
1889 *pc = extract_unsigned_integer (buf, X_REGISTER_SIZE, byte_order);
1890 return 1;
1891 }
1892
1893 /* Implement the "gen_return_address" gdbarch method. */
1894
1895 static void
1896 aarch64_gen_return_address (struct gdbarch *gdbarch,
1897 struct agent_expr *ax, struct axs_value *value,
1898 CORE_ADDR scope)
1899 {
1900 value->type = register_type (gdbarch, AARCH64_LR_REGNUM);
1901 value->kind = axs_lvalue_register;
1902 value->u.reg = AARCH64_LR_REGNUM;
1903 }
1904 \f
1905
1906 /* Return the pseudo register name corresponding to register regnum. */
1907
1908 static const char *
1909 aarch64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
1910 {
1911 static const char *const q_name[] =
1912 {
1913 "q0", "q1", "q2", "q3",
1914 "q4", "q5", "q6", "q7",
1915 "q8", "q9", "q10", "q11",
1916 "q12", "q13", "q14", "q15",
1917 "q16", "q17", "q18", "q19",
1918 "q20", "q21", "q22", "q23",
1919 "q24", "q25", "q26", "q27",
1920 "q28", "q29", "q30", "q31",
1921 };
1922
1923 static const char *const d_name[] =
1924 {
1925 "d0", "d1", "d2", "d3",
1926 "d4", "d5", "d6", "d7",
1927 "d8", "d9", "d10", "d11",
1928 "d12", "d13", "d14", "d15",
1929 "d16", "d17", "d18", "d19",
1930 "d20", "d21", "d22", "d23",
1931 "d24", "d25", "d26", "d27",
1932 "d28", "d29", "d30", "d31",
1933 };
1934
1935 static const char *const s_name[] =
1936 {
1937 "s0", "s1", "s2", "s3",
1938 "s4", "s5", "s6", "s7",
1939 "s8", "s9", "s10", "s11",
1940 "s12", "s13", "s14", "s15",
1941 "s16", "s17", "s18", "s19",
1942 "s20", "s21", "s22", "s23",
1943 "s24", "s25", "s26", "s27",
1944 "s28", "s29", "s30", "s31",
1945 };
1946
1947 static const char *const h_name[] =
1948 {
1949 "h0", "h1", "h2", "h3",
1950 "h4", "h5", "h6", "h7",
1951 "h8", "h9", "h10", "h11",
1952 "h12", "h13", "h14", "h15",
1953 "h16", "h17", "h18", "h19",
1954 "h20", "h21", "h22", "h23",
1955 "h24", "h25", "h26", "h27",
1956 "h28", "h29", "h30", "h31",
1957 };
1958
1959 static const char *const b_name[] =
1960 {
1961 "b0", "b1", "b2", "b3",
1962 "b4", "b5", "b6", "b7",
1963 "b8", "b9", "b10", "b11",
1964 "b12", "b13", "b14", "b15",
1965 "b16", "b17", "b18", "b19",
1966 "b20", "b21", "b22", "b23",
1967 "b24", "b25", "b26", "b27",
1968 "b28", "b29", "b30", "b31",
1969 };
1970
1971 regnum -= gdbarch_num_regs (gdbarch);
1972
1973 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
1974 return q_name[regnum - AARCH64_Q0_REGNUM];
1975
1976 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
1977 return d_name[regnum - AARCH64_D0_REGNUM];
1978
1979 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
1980 return s_name[regnum - AARCH64_S0_REGNUM];
1981
1982 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
1983 return h_name[regnum - AARCH64_H0_REGNUM];
1984
1985 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
1986 return b_name[regnum - AARCH64_B0_REGNUM];
1987
1988 internal_error (__FILE__, __LINE__,
1989 _("aarch64_pseudo_register_name: bad register number %d"),
1990 regnum);
1991 }
1992
1993 /* Implement the "pseudo_register_type" tdesc_arch_data method. */
1994
1995 static struct type *
1996 aarch64_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1997 {
1998 regnum -= gdbarch_num_regs (gdbarch);
1999
2000 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2001 return aarch64_vnq_type (gdbarch);
2002
2003 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2004 return aarch64_vnd_type (gdbarch);
2005
2006 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2007 return aarch64_vns_type (gdbarch);
2008
2009 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2010 return aarch64_vnh_type (gdbarch);
2011
2012 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2013 return aarch64_vnb_type (gdbarch);
2014
2015 internal_error (__FILE__, __LINE__,
2016 _("aarch64_pseudo_register_type: bad register number %d"),
2017 regnum);
2018 }
2019
2020 /* Implement the "pseudo_register_reggroup_p" tdesc_arch_data method. */
2021
2022 static int
2023 aarch64_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2024 struct reggroup *group)
2025 {
2026 regnum -= gdbarch_num_regs (gdbarch);
2027
2028 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2029 return group == all_reggroup || group == vector_reggroup;
2030 else if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2031 return (group == all_reggroup || group == vector_reggroup
2032 || group == float_reggroup);
2033 else if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2034 return (group == all_reggroup || group == vector_reggroup
2035 || group == float_reggroup);
2036 else if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2037 return group == all_reggroup || group == vector_reggroup;
2038 else if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2039 return group == all_reggroup || group == vector_reggroup;
2040
2041 return group == all_reggroup;
2042 }
2043
2044 /* Implement the "pseudo_register_read_value" gdbarch method. */
2045
2046 static struct value *
2047 aarch64_pseudo_read_value (struct gdbarch *gdbarch,
2048 struct regcache *regcache,
2049 int regnum)
2050 {
2051 gdb_byte reg_buf[MAX_REGISTER_SIZE];
2052 struct value *result_value;
2053 gdb_byte *buf;
2054
2055 result_value = allocate_value (register_type (gdbarch, regnum));
2056 VALUE_LVAL (result_value) = lval_register;
2057 VALUE_REGNUM (result_value) = regnum;
2058 buf = value_contents_raw (result_value);
2059
2060 regnum -= gdbarch_num_regs (gdbarch);
2061
2062 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2063 {
2064 enum register_status status;
2065 unsigned v_regnum;
2066
2067 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_Q0_REGNUM;
2068 status = regcache_raw_read (regcache, v_regnum, reg_buf);
2069 if (status != REG_VALID)
2070 mark_value_bytes_unavailable (result_value, 0,
2071 TYPE_LENGTH (value_type (result_value)));
2072 else
2073 memcpy (buf, reg_buf, Q_REGISTER_SIZE);
2074 return result_value;
2075 }
2076
2077 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2078 {
2079 enum register_status status;
2080 unsigned v_regnum;
2081
2082 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_D0_REGNUM;
2083 status = regcache_raw_read (regcache, v_regnum, reg_buf);
2084 if (status != REG_VALID)
2085 mark_value_bytes_unavailable (result_value, 0,
2086 TYPE_LENGTH (value_type (result_value)));
2087 else
2088 memcpy (buf, reg_buf, D_REGISTER_SIZE);
2089 return result_value;
2090 }
2091
2092 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2093 {
2094 enum register_status status;
2095 unsigned v_regnum;
2096
2097 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_S0_REGNUM;
2098 status = regcache_raw_read (regcache, v_regnum, reg_buf);
2099 if (status != REG_VALID)
2100 mark_value_bytes_unavailable (result_value, 0,
2101 TYPE_LENGTH (value_type (result_value)));
2102 else
2103 memcpy (buf, reg_buf, S_REGISTER_SIZE);
2104 return result_value;
2105 }
2106
2107 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2108 {
2109 enum register_status status;
2110 unsigned v_regnum;
2111
2112 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_H0_REGNUM;
2113 status = regcache_raw_read (regcache, v_regnum, reg_buf);
2114 if (status != REG_VALID)
2115 mark_value_bytes_unavailable (result_value, 0,
2116 TYPE_LENGTH (value_type (result_value)));
2117 else
2118 memcpy (buf, reg_buf, H_REGISTER_SIZE);
2119 return result_value;
2120 }
2121
2122 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2123 {
2124 enum register_status status;
2125 unsigned v_regnum;
2126
2127 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_B0_REGNUM;
2128 status = regcache_raw_read (regcache, v_regnum, reg_buf);
2129 if (status != REG_VALID)
2130 mark_value_bytes_unavailable (result_value, 0,
2131 TYPE_LENGTH (value_type (result_value)));
2132 else
2133 memcpy (buf, reg_buf, B_REGISTER_SIZE);
2134 return result_value;
2135 }
2136
2137 gdb_assert_not_reached ("regnum out of bound");
2138 }
2139
2140 /* Implement the "pseudo_register_write" gdbarch method. */
2141
2142 static void
2143 aarch64_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
2144 int regnum, const gdb_byte *buf)
2145 {
2146 gdb_byte reg_buf[MAX_REGISTER_SIZE];
2147
2148 /* Ensure the register buffer is zero, we want gdb writes of the
2149 various 'scalar' pseudo registers to behavior like architectural
2150 writes, register width bytes are written the remainder are set to
2151 zero. */
2152 memset (reg_buf, 0, sizeof (reg_buf));
2153
2154 regnum -= gdbarch_num_regs (gdbarch);
2155
2156 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2157 {
2158 /* pseudo Q registers */
2159 unsigned v_regnum;
2160
2161 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_Q0_REGNUM;
2162 memcpy (reg_buf, buf, Q_REGISTER_SIZE);
2163 regcache_raw_write (regcache, v_regnum, reg_buf);
2164 return;
2165 }
2166
2167 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2168 {
2169 /* pseudo D registers */
2170 unsigned v_regnum;
2171
2172 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_D0_REGNUM;
2173 memcpy (reg_buf, buf, D_REGISTER_SIZE);
2174 regcache_raw_write (regcache, v_regnum, reg_buf);
2175 return;
2176 }
2177
2178 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2179 {
2180 unsigned v_regnum;
2181
2182 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_S0_REGNUM;
2183 memcpy (reg_buf, buf, S_REGISTER_SIZE);
2184 regcache_raw_write (regcache, v_regnum, reg_buf);
2185 return;
2186 }
2187
2188 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2189 {
2190 /* pseudo H registers */
2191 unsigned v_regnum;
2192
2193 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_H0_REGNUM;
2194 memcpy (reg_buf, buf, H_REGISTER_SIZE);
2195 regcache_raw_write (regcache, v_regnum, reg_buf);
2196 return;
2197 }
2198
2199 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2200 {
2201 /* pseudo B registers */
2202 unsigned v_regnum;
2203
2204 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_B0_REGNUM;
2205 memcpy (reg_buf, buf, B_REGISTER_SIZE);
2206 regcache_raw_write (regcache, v_regnum, reg_buf);
2207 return;
2208 }
2209
2210 gdb_assert_not_reached ("regnum out of bound");
2211 }
2212
2213 /* Callback function for user_reg_add. */
2214
2215 static struct value *
2216 value_of_aarch64_user_reg (struct frame_info *frame, const void *baton)
2217 {
2218 const int *reg_p = (const int *) baton;
2219
2220 return value_of_register (*reg_p, frame);
2221 }
2222 \f
2223
2224 /* Implement the "software_single_step" gdbarch method, needed to
2225 single step through atomic sequences on AArch64. */
2226
2227 static int
2228 aarch64_software_single_step (struct frame_info *frame)
2229 {
2230 struct gdbarch *gdbarch = get_frame_arch (frame);
2231 struct address_space *aspace = get_frame_address_space (frame);
2232 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2233 const int insn_size = 4;
2234 const int atomic_sequence_length = 16; /* Instruction sequence length. */
2235 CORE_ADDR pc = get_frame_pc (frame);
2236 CORE_ADDR breaks[2] = { -1, -1 };
2237 CORE_ADDR loc = pc;
2238 CORE_ADDR closing_insn = 0;
2239 uint32_t insn = read_memory_unsigned_integer (loc, insn_size,
2240 byte_order_for_code);
2241 int index;
2242 int insn_count;
2243 int bc_insn_count = 0; /* Conditional branch instruction count. */
2244 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
2245 aarch64_inst inst;
2246
2247 if (aarch64_decode_insn (insn, &inst, 1) != 0)
2248 return 0;
2249
2250 /* Look for a Load Exclusive instruction which begins the sequence. */
2251 if (inst.opcode->iclass != ldstexcl || bit (insn, 22) == 0)
2252 return 0;
2253
2254 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
2255 {
2256 loc += insn_size;
2257 insn = read_memory_unsigned_integer (loc, insn_size,
2258 byte_order_for_code);
2259
2260 if (aarch64_decode_insn (insn, &inst, 1) != 0)
2261 return 0;
2262 /* Check if the instruction is a conditional branch. */
2263 if (inst.opcode->iclass == condbranch)
2264 {
2265 gdb_assert (inst.operands[0].type == AARCH64_OPND_ADDR_PCREL19);
2266
2267 if (bc_insn_count >= 1)
2268 return 0;
2269
2270 /* It is, so we'll try to set a breakpoint at the destination. */
2271 breaks[1] = loc + inst.operands[0].imm.value;
2272
2273 bc_insn_count++;
2274 last_breakpoint++;
2275 }
2276
2277 /* Look for the Store Exclusive which closes the atomic sequence. */
2278 if (inst.opcode->iclass == ldstexcl && bit (insn, 22) == 0)
2279 {
2280 closing_insn = loc;
2281 break;
2282 }
2283 }
2284
2285 /* We didn't find a closing Store Exclusive instruction, fall back. */
2286 if (!closing_insn)
2287 return 0;
2288
2289 /* Insert breakpoint after the end of the atomic sequence. */
2290 breaks[0] = loc + insn_size;
2291
2292 /* Check for duplicated breakpoints, and also check that the second
2293 breakpoint is not within the atomic sequence. */
2294 if (last_breakpoint
2295 && (breaks[1] == breaks[0]
2296 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
2297 last_breakpoint = 0;
2298
2299 /* Insert the breakpoint at the end of the sequence, and one at the
2300 destination of the conditional branch, if it exists. */
2301 for (index = 0; index <= last_breakpoint; index++)
2302 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
2303
2304 return 1;
2305 }
2306
2307 struct displaced_step_closure
2308 {
2309 /* It is true when condition instruction, such as B.CON, TBZ, etc,
2310 is being displaced stepping. */
2311 int cond;
2312
2313 /* PC adjustment offset after displaced stepping. */
2314 int32_t pc_adjust;
2315 };
2316
2317 /* Data when visiting instructions for displaced stepping. */
2318
2319 struct aarch64_displaced_step_data
2320 {
2321 struct aarch64_insn_data base;
2322
2323 /* The address where the instruction will be executed at. */
2324 CORE_ADDR new_addr;
2325 /* Buffer of instructions to be copied to NEW_ADDR to execute. */
2326 uint32_t insn_buf[DISPLACED_MODIFIED_INSNS];
2327 /* Number of instructions in INSN_BUF. */
2328 unsigned insn_count;
2329 /* Registers when doing displaced stepping. */
2330 struct regcache *regs;
2331
2332 struct displaced_step_closure *dsc;
2333 };
2334
2335 /* Implementation of aarch64_insn_visitor method "b". */
2336
2337 static void
2338 aarch64_displaced_step_b (const int is_bl, const int32_t offset,
2339 struct aarch64_insn_data *data)
2340 {
2341 struct aarch64_displaced_step_data *dsd
2342 = (struct aarch64_displaced_step_data *) data;
2343 int32_t new_offset = data->insn_addr - dsd->new_addr + offset;
2344
2345 if (can_encode_int32 (new_offset, 28))
2346 {
2347 /* Emit B rather than BL, because executing BL on a new address
2348 will get the wrong address into LR. In order to avoid this,
2349 we emit B, and update LR if the instruction is BL. */
2350 emit_b (dsd->insn_buf, 0, new_offset);
2351 dsd->insn_count++;
2352 }
2353 else
2354 {
2355 /* Write NOP. */
2356 emit_nop (dsd->insn_buf);
2357 dsd->insn_count++;
2358 dsd->dsc->pc_adjust = offset;
2359 }
2360
2361 if (is_bl)
2362 {
2363 /* Update LR. */
2364 regcache_cooked_write_unsigned (dsd->regs, AARCH64_LR_REGNUM,
2365 data->insn_addr + 4);
2366 }
2367 }
2368
2369 /* Implementation of aarch64_insn_visitor method "b_cond". */
2370
2371 static void
2372 aarch64_displaced_step_b_cond (const unsigned cond, const int32_t offset,
2373 struct aarch64_insn_data *data)
2374 {
2375 struct aarch64_displaced_step_data *dsd
2376 = (struct aarch64_displaced_step_data *) data;
2377 int32_t new_offset = data->insn_addr - dsd->new_addr + offset;
2378
2379 /* GDB has to fix up PC after displaced step this instruction
2380 differently according to the condition is true or false. Instead
2381 of checking COND against conditional flags, we can use
2382 the following instructions, and GDB can tell how to fix up PC
2383 according to the PC value.
2384
2385 B.COND TAKEN ; If cond is true, then jump to TAKEN.
2386 INSN1 ;
2387 TAKEN:
2388 INSN2
2389 */
2390
2391 emit_bcond (dsd->insn_buf, cond, 8);
2392 dsd->dsc->cond = 1;
2393 dsd->dsc->pc_adjust = offset;
2394 dsd->insn_count = 1;
2395 }
2396
2397 /* Dynamically allocate a new register. If we know the register
2398 statically, we should make it a global as above instead of using this
2399 helper function. */
2400
2401 static struct aarch64_register
2402 aarch64_register (unsigned num, int is64)
2403 {
2404 return (struct aarch64_register) { num, is64 };
2405 }
2406
2407 /* Implementation of aarch64_insn_visitor method "cb". */
2408
2409 static void
2410 aarch64_displaced_step_cb (const int32_t offset, const int is_cbnz,
2411 const unsigned rn, int is64,
2412 struct aarch64_insn_data *data)
2413 {
2414 struct aarch64_displaced_step_data *dsd
2415 = (struct aarch64_displaced_step_data *) data;
2416 int32_t new_offset = data->insn_addr - dsd->new_addr + offset;
2417
2418 /* The offset is out of range for a compare and branch
2419 instruction. We can use the following instructions instead:
2420
2421 CBZ xn, TAKEN ; xn == 0, then jump to TAKEN.
2422 INSN1 ;
2423 TAKEN:
2424 INSN2
2425 */
2426 emit_cb (dsd->insn_buf, is_cbnz, aarch64_register (rn, is64), 8);
2427 dsd->insn_count = 1;
2428 dsd->dsc->cond = 1;
2429 dsd->dsc->pc_adjust = offset;
2430 }
2431
2432 /* Implementation of aarch64_insn_visitor method "tb". */
2433
2434 static void
2435 aarch64_displaced_step_tb (const int32_t offset, int is_tbnz,
2436 const unsigned rt, unsigned bit,
2437 struct aarch64_insn_data *data)
2438 {
2439 struct aarch64_displaced_step_data *dsd
2440 = (struct aarch64_displaced_step_data *) data;
2441 int32_t new_offset = data->insn_addr - dsd->new_addr + offset;
2442
2443 /* The offset is out of range for a test bit and branch
2444 instruction We can use the following instructions instead:
2445
2446 TBZ xn, #bit, TAKEN ; xn[bit] == 0, then jump to TAKEN.
2447 INSN1 ;
2448 TAKEN:
2449 INSN2
2450
2451 */
2452 emit_tb (dsd->insn_buf, is_tbnz, bit, aarch64_register (rt, 1), 8);
2453 dsd->insn_count = 1;
2454 dsd->dsc->cond = 1;
2455 dsd->dsc->pc_adjust = offset;
2456 }
2457
2458 /* Implementation of aarch64_insn_visitor method "adr". */
2459
2460 static void
2461 aarch64_displaced_step_adr (const int32_t offset, const unsigned rd,
2462 const int is_adrp, struct aarch64_insn_data *data)
2463 {
2464 struct aarch64_displaced_step_data *dsd
2465 = (struct aarch64_displaced_step_data *) data;
2466 /* We know exactly the address the ADR{P,} instruction will compute.
2467 We can just write it to the destination register. */
2468 CORE_ADDR address = data->insn_addr + offset;
2469
2470 if (is_adrp)
2471 {
2472 /* Clear the lower 12 bits of the offset to get the 4K page. */
2473 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rd,
2474 address & ~0xfff);
2475 }
2476 else
2477 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rd,
2478 address);
2479
2480 dsd->dsc->pc_adjust = 4;
2481 emit_nop (dsd->insn_buf);
2482 dsd->insn_count = 1;
2483 }
2484
2485 /* Implementation of aarch64_insn_visitor method "ldr_literal". */
2486
2487 static void
2488 aarch64_displaced_step_ldr_literal (const int32_t offset, const int is_sw,
2489 const unsigned rt, const int is64,
2490 struct aarch64_insn_data *data)
2491 {
2492 struct aarch64_displaced_step_data *dsd
2493 = (struct aarch64_displaced_step_data *) data;
2494 CORE_ADDR address = data->insn_addr + offset;
2495 struct aarch64_memory_operand zero = { MEMORY_OPERAND_OFFSET, 0 };
2496
2497 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rt,
2498 address);
2499
2500 if (is_sw)
2501 dsd->insn_count = emit_ldrsw (dsd->insn_buf, aarch64_register (rt, 1),
2502 aarch64_register (rt, 1), zero);
2503 else
2504 dsd->insn_count = emit_ldr (dsd->insn_buf, aarch64_register (rt, is64),
2505 aarch64_register (rt, 1), zero);
2506
2507 dsd->dsc->pc_adjust = 4;
2508 }
2509
2510 /* Implementation of aarch64_insn_visitor method "others". */
2511
2512 static void
2513 aarch64_displaced_step_others (const uint32_t insn,
2514 struct aarch64_insn_data *data)
2515 {
2516 struct aarch64_displaced_step_data *dsd
2517 = (struct aarch64_displaced_step_data *) data;
2518
2519 aarch64_emit_insn (dsd->insn_buf, insn);
2520 dsd->insn_count = 1;
2521
2522 if ((insn & 0xfffffc1f) == 0xd65f0000)
2523 {
2524 /* RET */
2525 dsd->dsc->pc_adjust = 0;
2526 }
2527 else
2528 dsd->dsc->pc_adjust = 4;
2529 }
2530
2531 static const struct aarch64_insn_visitor visitor =
2532 {
2533 aarch64_displaced_step_b,
2534 aarch64_displaced_step_b_cond,
2535 aarch64_displaced_step_cb,
2536 aarch64_displaced_step_tb,
2537 aarch64_displaced_step_adr,
2538 aarch64_displaced_step_ldr_literal,
2539 aarch64_displaced_step_others,
2540 };
2541
2542 /* Implement the "displaced_step_copy_insn" gdbarch method. */
2543
2544 struct displaced_step_closure *
2545 aarch64_displaced_step_copy_insn (struct gdbarch *gdbarch,
2546 CORE_ADDR from, CORE_ADDR to,
2547 struct regcache *regs)
2548 {
2549 struct displaced_step_closure *dsc = NULL;
2550 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2551 uint32_t insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
2552 struct aarch64_displaced_step_data dsd;
2553 aarch64_inst inst;
2554
2555 if (aarch64_decode_insn (insn, &inst, 1) != 0)
2556 return NULL;
2557
2558 /* Look for a Load Exclusive instruction which begins the sequence. */
2559 if (inst.opcode->iclass == ldstexcl && bit (insn, 22))
2560 {
2561 /* We can't displaced step atomic sequences. */
2562 return NULL;
2563 }
2564
2565 dsc = XCNEW (struct displaced_step_closure);
2566 dsd.base.insn_addr = from;
2567 dsd.new_addr = to;
2568 dsd.regs = regs;
2569 dsd.dsc = dsc;
2570 dsd.insn_count = 0;
2571 aarch64_relocate_instruction (insn, &visitor,
2572 (struct aarch64_insn_data *) &dsd);
2573 gdb_assert (dsd.insn_count <= DISPLACED_MODIFIED_INSNS);
2574
2575 if (dsd.insn_count != 0)
2576 {
2577 int i;
2578
2579 /* Instruction can be relocated to scratch pad. Copy
2580 relocated instruction(s) there. */
2581 for (i = 0; i < dsd.insn_count; i++)
2582 {
2583 if (debug_displaced)
2584 {
2585 debug_printf ("displaced: writing insn ");
2586 debug_printf ("%.8x", dsd.insn_buf[i]);
2587 debug_printf (" at %s\n", paddress (gdbarch, to + i * 4));
2588 }
2589 write_memory_unsigned_integer (to + i * 4, 4, byte_order_for_code,
2590 (ULONGEST) dsd.insn_buf[i]);
2591 }
2592 }
2593 else
2594 {
2595 xfree (dsc);
2596 dsc = NULL;
2597 }
2598
2599 return dsc;
2600 }
2601
2602 /* Implement the "displaced_step_fixup" gdbarch method. */
2603
2604 void
2605 aarch64_displaced_step_fixup (struct gdbarch *gdbarch,
2606 struct displaced_step_closure *dsc,
2607 CORE_ADDR from, CORE_ADDR to,
2608 struct regcache *regs)
2609 {
2610 if (dsc->cond)
2611 {
2612 ULONGEST pc;
2613
2614 regcache_cooked_read_unsigned (regs, AARCH64_PC_REGNUM, &pc);
2615 if (pc - to == 8)
2616 {
2617 /* Condition is true. */
2618 }
2619 else if (pc - to == 4)
2620 {
2621 /* Condition is false. */
2622 dsc->pc_adjust = 4;
2623 }
2624 else
2625 gdb_assert_not_reached ("Unexpected PC value after displaced stepping");
2626 }
2627
2628 if (dsc->pc_adjust != 0)
2629 {
2630 if (debug_displaced)
2631 {
2632 debug_printf ("displaced: fixup: set PC to %s:%d\n",
2633 paddress (gdbarch, from), dsc->pc_adjust);
2634 }
2635 regcache_cooked_write_unsigned (regs, AARCH64_PC_REGNUM,
2636 from + dsc->pc_adjust);
2637 }
2638 }
2639
2640 /* Implement the "displaced_step_hw_singlestep" gdbarch method. */
2641
2642 int
2643 aarch64_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
2644 struct displaced_step_closure *closure)
2645 {
2646 return 1;
2647 }
2648
2649 /* Initialize the current architecture based on INFO. If possible,
2650 re-use an architecture from ARCHES, which is a list of
2651 architectures already created during this debugging session.
2652
2653 Called e.g. at program startup, when reading a core file, and when
2654 reading a binary file. */
2655
2656 static struct gdbarch *
2657 aarch64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2658 {
2659 struct gdbarch_tdep *tdep;
2660 struct gdbarch *gdbarch;
2661 struct gdbarch_list *best_arch;
2662 struct tdesc_arch_data *tdesc_data = NULL;
2663 const struct target_desc *tdesc = info.target_desc;
2664 int i;
2665 int have_fpa_registers = 1;
2666 int valid_p = 1;
2667 const struct tdesc_feature *feature;
2668 int num_regs = 0;
2669 int num_pseudo_regs = 0;
2670
2671 /* Ensure we always have a target descriptor. */
2672 if (!tdesc_has_registers (tdesc))
2673 tdesc = tdesc_aarch64;
2674
2675 gdb_assert (tdesc);
2676
2677 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.core");
2678
2679 if (feature == NULL)
2680 return NULL;
2681
2682 tdesc_data = tdesc_data_alloc ();
2683
2684 /* Validate the descriptor provides the mandatory core R registers
2685 and allocate their numbers. */
2686 for (i = 0; i < ARRAY_SIZE (aarch64_r_register_names); i++)
2687 valid_p &=
2688 tdesc_numbered_register (feature, tdesc_data, AARCH64_X0_REGNUM + i,
2689 aarch64_r_register_names[i]);
2690
2691 num_regs = AARCH64_X0_REGNUM + i;
2692
2693 /* Look for the V registers. */
2694 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.fpu");
2695 if (feature)
2696 {
2697 /* Validate the descriptor provides the mandatory V registers
2698 and allocate their numbers. */
2699 for (i = 0; i < ARRAY_SIZE (aarch64_v_register_names); i++)
2700 valid_p &=
2701 tdesc_numbered_register (feature, tdesc_data, AARCH64_V0_REGNUM + i,
2702 aarch64_v_register_names[i]);
2703
2704 num_regs = AARCH64_V0_REGNUM + i;
2705
2706 num_pseudo_regs += 32; /* add the Qn scalar register pseudos */
2707 num_pseudo_regs += 32; /* add the Dn scalar register pseudos */
2708 num_pseudo_regs += 32; /* add the Sn scalar register pseudos */
2709 num_pseudo_regs += 32; /* add the Hn scalar register pseudos */
2710 num_pseudo_regs += 32; /* add the Bn scalar register pseudos */
2711 }
2712
2713 if (!valid_p)
2714 {
2715 tdesc_data_cleanup (tdesc_data);
2716 return NULL;
2717 }
2718
2719 /* AArch64 code is always little-endian. */
2720 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
2721
2722 /* If there is already a candidate, use it. */
2723 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2724 best_arch != NULL;
2725 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2726 {
2727 /* Found a match. */
2728 break;
2729 }
2730
2731 if (best_arch != NULL)
2732 {
2733 if (tdesc_data != NULL)
2734 tdesc_data_cleanup (tdesc_data);
2735 return best_arch->gdbarch;
2736 }
2737
2738 tdep = XCNEW (struct gdbarch_tdep);
2739 gdbarch = gdbarch_alloc (&info, tdep);
2740
2741 /* This should be low enough for everything. */
2742 tdep->lowest_pc = 0x20;
2743 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2744 tdep->jb_elt_size = 8;
2745
2746 set_gdbarch_push_dummy_call (gdbarch, aarch64_push_dummy_call);
2747 set_gdbarch_frame_align (gdbarch, aarch64_frame_align);
2748
2749 /* Frame handling. */
2750 set_gdbarch_dummy_id (gdbarch, aarch64_dummy_id);
2751 set_gdbarch_unwind_pc (gdbarch, aarch64_unwind_pc);
2752 set_gdbarch_unwind_sp (gdbarch, aarch64_unwind_sp);
2753
2754 /* Advance PC across function entry code. */
2755 set_gdbarch_skip_prologue (gdbarch, aarch64_skip_prologue);
2756
2757 /* The stack grows downward. */
2758 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2759
2760 /* Breakpoint manipulation. */
2761 set_gdbarch_breakpoint_from_pc (gdbarch, aarch64_breakpoint_from_pc);
2762 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2763 set_gdbarch_software_single_step (gdbarch, aarch64_software_single_step);
2764
2765 /* Information about registers, etc. */
2766 set_gdbarch_sp_regnum (gdbarch, AARCH64_SP_REGNUM);
2767 set_gdbarch_pc_regnum (gdbarch, AARCH64_PC_REGNUM);
2768 set_gdbarch_num_regs (gdbarch, num_regs);
2769
2770 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudo_regs);
2771 set_gdbarch_pseudo_register_read_value (gdbarch, aarch64_pseudo_read_value);
2772 set_gdbarch_pseudo_register_write (gdbarch, aarch64_pseudo_write);
2773 set_tdesc_pseudo_register_name (gdbarch, aarch64_pseudo_register_name);
2774 set_tdesc_pseudo_register_type (gdbarch, aarch64_pseudo_register_type);
2775 set_tdesc_pseudo_register_reggroup_p (gdbarch,
2776 aarch64_pseudo_register_reggroup_p);
2777
2778 /* ABI */
2779 set_gdbarch_short_bit (gdbarch, 16);
2780 set_gdbarch_int_bit (gdbarch, 32);
2781 set_gdbarch_float_bit (gdbarch, 32);
2782 set_gdbarch_double_bit (gdbarch, 64);
2783 set_gdbarch_long_double_bit (gdbarch, 128);
2784 set_gdbarch_long_bit (gdbarch, 64);
2785 set_gdbarch_long_long_bit (gdbarch, 64);
2786 set_gdbarch_ptr_bit (gdbarch, 64);
2787 set_gdbarch_char_signed (gdbarch, 0);
2788 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2789 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2790 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
2791
2792 /* Internal <-> external register number maps. */
2793 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, aarch64_dwarf_reg_to_regnum);
2794
2795 /* Returning results. */
2796 set_gdbarch_return_value (gdbarch, aarch64_return_value);
2797
2798 /* Disassembly. */
2799 set_gdbarch_print_insn (gdbarch, aarch64_gdb_print_insn);
2800
2801 /* Virtual tables. */
2802 set_gdbarch_vbit_in_delta (gdbarch, 1);
2803
2804 /* Hook in the ABI-specific overrides, if they have been registered. */
2805 info.target_desc = tdesc;
2806 info.tdep_info = (void *) tdesc_data;
2807 gdbarch_init_osabi (info, gdbarch);
2808
2809 dwarf2_frame_set_init_reg (gdbarch, aarch64_dwarf2_frame_init_reg);
2810
2811 /* Add some default predicates. */
2812 frame_unwind_append_unwinder (gdbarch, &aarch64_stub_unwind);
2813 dwarf2_append_unwinders (gdbarch);
2814 frame_unwind_append_unwinder (gdbarch, &aarch64_prologue_unwind);
2815
2816 frame_base_set_default (gdbarch, &aarch64_normal_base);
2817
2818 /* Now we have tuned the configuration, set a few final things,
2819 based on what the OS ABI has told us. */
2820
2821 if (tdep->jb_pc >= 0)
2822 set_gdbarch_get_longjmp_target (gdbarch, aarch64_get_longjmp_target);
2823
2824 set_gdbarch_gen_return_address (gdbarch, aarch64_gen_return_address);
2825
2826 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
2827
2828 /* Add standard register aliases. */
2829 for (i = 0; i < ARRAY_SIZE (aarch64_register_aliases); i++)
2830 user_reg_add (gdbarch, aarch64_register_aliases[i].name,
2831 value_of_aarch64_user_reg,
2832 &aarch64_register_aliases[i].regnum);
2833
2834 return gdbarch;
2835 }
2836
2837 static void
2838 aarch64_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
2839 {
2840 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2841
2842 if (tdep == NULL)
2843 return;
2844
2845 fprintf_unfiltered (file, _("aarch64_dump_tdep: Lowest pc = 0x%s"),
2846 paddress (gdbarch, tdep->lowest_pc));
2847 }
2848
2849 /* Suppress warning from -Wmissing-prototypes. */
2850 extern initialize_file_ftype _initialize_aarch64_tdep;
2851
2852 void
2853 _initialize_aarch64_tdep (void)
2854 {
2855 gdbarch_register (bfd_arch_aarch64, aarch64_gdbarch_init,
2856 aarch64_dump_tdep);
2857
2858 initialize_tdesc_aarch64 ();
2859
2860 /* Debug this file's internals. */
2861 add_setshow_boolean_cmd ("aarch64", class_maintenance, &aarch64_debug, _("\
2862 Set AArch64 debugging."), _("\
2863 Show AArch64 debugging."), _("\
2864 When on, AArch64 specific debugging is enabled."),
2865 NULL,
2866 show_aarch64_debug,
2867 &setdebuglist, &showdebuglist);
2868 }
2869
2870 /* AArch64 process record-replay related structures, defines etc. */
2871
2872 #define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \
2873 do \
2874 { \
2875 unsigned int reg_len = LENGTH; \
2876 if (reg_len) \
2877 { \
2878 REGS = XNEWVEC (uint32_t, reg_len); \
2879 memcpy(&REGS[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \
2880 } \
2881 } \
2882 while (0)
2883
2884 #define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \
2885 do \
2886 { \
2887 unsigned int mem_len = LENGTH; \
2888 if (mem_len) \
2889 { \
2890 MEMS = XNEWVEC (struct aarch64_mem_r, mem_len); \
2891 memcpy(&MEMS->len, &RECORD_BUF[0], \
2892 sizeof(struct aarch64_mem_r) * LENGTH); \
2893 } \
2894 } \
2895 while (0)
2896
2897 /* AArch64 record/replay structures and enumerations. */
2898
2899 struct aarch64_mem_r
2900 {
2901 uint64_t len; /* Record length. */
2902 uint64_t addr; /* Memory address. */
2903 };
2904
2905 enum aarch64_record_result
2906 {
2907 AARCH64_RECORD_SUCCESS,
2908 AARCH64_RECORD_FAILURE,
2909 AARCH64_RECORD_UNSUPPORTED,
2910 AARCH64_RECORD_UNKNOWN
2911 };
2912
2913 typedef struct insn_decode_record_t
2914 {
2915 struct gdbarch *gdbarch;
2916 struct regcache *regcache;
2917 CORE_ADDR this_addr; /* Address of insn to be recorded. */
2918 uint32_t aarch64_insn; /* Insn to be recorded. */
2919 uint32_t mem_rec_count; /* Count of memory records. */
2920 uint32_t reg_rec_count; /* Count of register records. */
2921 uint32_t *aarch64_regs; /* Registers to be recorded. */
2922 struct aarch64_mem_r *aarch64_mems; /* Memory locations to be recorded. */
2923 } insn_decode_record;
2924
2925 /* Record handler for data processing - register instructions. */
2926
2927 static unsigned int
2928 aarch64_record_data_proc_reg (insn_decode_record *aarch64_insn_r)
2929 {
2930 uint8_t reg_rd, insn_bits24_27, insn_bits21_23;
2931 uint32_t record_buf[4];
2932
2933 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
2934 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
2935 insn_bits21_23 = bits (aarch64_insn_r->aarch64_insn, 21, 23);
2936
2937 if (!bit (aarch64_insn_r->aarch64_insn, 28))
2938 {
2939 uint8_t setflags;
2940
2941 /* Logical (shifted register). */
2942 if (insn_bits24_27 == 0x0a)
2943 setflags = (bits (aarch64_insn_r->aarch64_insn, 29, 30) == 0x03);
2944 /* Add/subtract. */
2945 else if (insn_bits24_27 == 0x0b)
2946 setflags = bit (aarch64_insn_r->aarch64_insn, 29);
2947 else
2948 return AARCH64_RECORD_UNKNOWN;
2949
2950 record_buf[0] = reg_rd;
2951 aarch64_insn_r->reg_rec_count = 1;
2952 if (setflags)
2953 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
2954 }
2955 else
2956 {
2957 if (insn_bits24_27 == 0x0b)
2958 {
2959 /* Data-processing (3 source). */
2960 record_buf[0] = reg_rd;
2961 aarch64_insn_r->reg_rec_count = 1;
2962 }
2963 else if (insn_bits24_27 == 0x0a)
2964 {
2965 if (insn_bits21_23 == 0x00)
2966 {
2967 /* Add/subtract (with carry). */
2968 record_buf[0] = reg_rd;
2969 aarch64_insn_r->reg_rec_count = 1;
2970 if (bit (aarch64_insn_r->aarch64_insn, 29))
2971 {
2972 record_buf[1] = AARCH64_CPSR_REGNUM;
2973 aarch64_insn_r->reg_rec_count = 2;
2974 }
2975 }
2976 else if (insn_bits21_23 == 0x02)
2977 {
2978 /* Conditional compare (register) and conditional compare
2979 (immediate) instructions. */
2980 record_buf[0] = AARCH64_CPSR_REGNUM;
2981 aarch64_insn_r->reg_rec_count = 1;
2982 }
2983 else if (insn_bits21_23 == 0x04 || insn_bits21_23 == 0x06)
2984 {
2985 /* CConditional select. */
2986 /* Data-processing (2 source). */
2987 /* Data-processing (1 source). */
2988 record_buf[0] = reg_rd;
2989 aarch64_insn_r->reg_rec_count = 1;
2990 }
2991 else
2992 return AARCH64_RECORD_UNKNOWN;
2993 }
2994 }
2995
2996 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
2997 record_buf);
2998 return AARCH64_RECORD_SUCCESS;
2999 }
3000
3001 /* Record handler for data processing - immediate instructions. */
3002
3003 static unsigned int
3004 aarch64_record_data_proc_imm (insn_decode_record *aarch64_insn_r)
3005 {
3006 uint8_t reg_rd, insn_bit28, insn_bit23, insn_bits24_27, setflags;
3007 uint32_t record_buf[4];
3008
3009 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3010 insn_bit28 = bit (aarch64_insn_r->aarch64_insn, 28);
3011 insn_bit23 = bit (aarch64_insn_r->aarch64_insn, 23);
3012 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3013
3014 if (insn_bits24_27 == 0x00 /* PC rel addressing. */
3015 || insn_bits24_27 == 0x03 /* Bitfield and Extract. */
3016 || (insn_bits24_27 == 0x02 && insn_bit23)) /* Move wide (immediate). */
3017 {
3018 record_buf[0] = reg_rd;
3019 aarch64_insn_r->reg_rec_count = 1;
3020 }
3021 else if (insn_bits24_27 == 0x01)
3022 {
3023 /* Add/Subtract (immediate). */
3024 setflags = bit (aarch64_insn_r->aarch64_insn, 29);
3025 record_buf[0] = reg_rd;
3026 aarch64_insn_r->reg_rec_count = 1;
3027 if (setflags)
3028 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
3029 }
3030 else if (insn_bits24_27 == 0x02 && !insn_bit23)
3031 {
3032 /* Logical (immediate). */
3033 setflags = bits (aarch64_insn_r->aarch64_insn, 29, 30) == 0x03;
3034 record_buf[0] = reg_rd;
3035 aarch64_insn_r->reg_rec_count = 1;
3036 if (setflags)
3037 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
3038 }
3039 else
3040 return AARCH64_RECORD_UNKNOWN;
3041
3042 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3043 record_buf);
3044 return AARCH64_RECORD_SUCCESS;
3045 }
3046
3047 /* Record handler for branch, exception generation and system instructions. */
3048
3049 static unsigned int
3050 aarch64_record_branch_except_sys (insn_decode_record *aarch64_insn_r)
3051 {
3052 struct gdbarch_tdep *tdep = gdbarch_tdep (aarch64_insn_r->gdbarch);
3053 uint8_t insn_bits24_27, insn_bits28_31, insn_bits22_23;
3054 uint32_t record_buf[4];
3055
3056 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3057 insn_bits28_31 = bits (aarch64_insn_r->aarch64_insn, 28, 31);
3058 insn_bits22_23 = bits (aarch64_insn_r->aarch64_insn, 22, 23);
3059
3060 if (insn_bits28_31 == 0x0d)
3061 {
3062 /* Exception generation instructions. */
3063 if (insn_bits24_27 == 0x04)
3064 {
3065 if (!bits (aarch64_insn_r->aarch64_insn, 2, 4)
3066 && !bits (aarch64_insn_r->aarch64_insn, 21, 23)
3067 && bits (aarch64_insn_r->aarch64_insn, 0, 1) == 0x01)
3068 {
3069 ULONGEST svc_number;
3070
3071 regcache_raw_read_unsigned (aarch64_insn_r->regcache, 8,
3072 &svc_number);
3073 return tdep->aarch64_syscall_record (aarch64_insn_r->regcache,
3074 svc_number);
3075 }
3076 else
3077 return AARCH64_RECORD_UNSUPPORTED;
3078 }
3079 /* System instructions. */
3080 else if (insn_bits24_27 == 0x05 && insn_bits22_23 == 0x00)
3081 {
3082 uint32_t reg_rt, reg_crn;
3083
3084 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3085 reg_crn = bits (aarch64_insn_r->aarch64_insn, 12, 15);
3086
3087 /* Record rt in case of sysl and mrs instructions. */
3088 if (bit (aarch64_insn_r->aarch64_insn, 21))
3089 {
3090 record_buf[0] = reg_rt;
3091 aarch64_insn_r->reg_rec_count = 1;
3092 }
3093 /* Record cpsr for hint and msr(immediate) instructions. */
3094 else if (reg_crn == 0x02 || reg_crn == 0x04)
3095 {
3096 record_buf[0] = AARCH64_CPSR_REGNUM;
3097 aarch64_insn_r->reg_rec_count = 1;
3098 }
3099 }
3100 /* Unconditional branch (register). */
3101 else if((insn_bits24_27 & 0x0e) == 0x06)
3102 {
3103 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3104 if (bits (aarch64_insn_r->aarch64_insn, 21, 22) == 0x01)
3105 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_LR_REGNUM;
3106 }
3107 else
3108 return AARCH64_RECORD_UNKNOWN;
3109 }
3110 /* Unconditional branch (immediate). */
3111 else if ((insn_bits28_31 & 0x07) == 0x01 && (insn_bits24_27 & 0x0c) == 0x04)
3112 {
3113 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3114 if (bit (aarch64_insn_r->aarch64_insn, 31))
3115 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_LR_REGNUM;
3116 }
3117 else
3118 /* Compare & branch (immediate), Test & branch (immediate) and
3119 Conditional branch (immediate). */
3120 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3121
3122 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3123 record_buf);
3124 return AARCH64_RECORD_SUCCESS;
3125 }
3126
3127 /* Record handler for advanced SIMD load and store instructions. */
3128
3129 static unsigned int
3130 aarch64_record_asimd_load_store (insn_decode_record *aarch64_insn_r)
3131 {
3132 CORE_ADDR address;
3133 uint64_t addr_offset = 0;
3134 uint32_t record_buf[24];
3135 uint64_t record_buf_mem[24];
3136 uint32_t reg_rn, reg_rt;
3137 uint32_t reg_index = 0, mem_index = 0;
3138 uint8_t opcode_bits, size_bits;
3139
3140 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3141 reg_rn = bits (aarch64_insn_r->aarch64_insn, 5, 9);
3142 size_bits = bits (aarch64_insn_r->aarch64_insn, 10, 11);
3143 opcode_bits = bits (aarch64_insn_r->aarch64_insn, 12, 15);
3144 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn, &address);
3145
3146 if (record_debug)
3147 debug_printf ("Process record: Advanced SIMD load/store\n");
3148
3149 /* Load/store single structure. */
3150 if (bit (aarch64_insn_r->aarch64_insn, 24))
3151 {
3152 uint8_t sindex, scale, selem, esize, replicate = 0;
3153 scale = opcode_bits >> 2;
3154 selem = ((opcode_bits & 0x02) |
3155 bit (aarch64_insn_r->aarch64_insn, 21)) + 1;
3156 switch (scale)
3157 {
3158 case 1:
3159 if (size_bits & 0x01)
3160 return AARCH64_RECORD_UNKNOWN;
3161 break;
3162 case 2:
3163 if ((size_bits >> 1) & 0x01)
3164 return AARCH64_RECORD_UNKNOWN;
3165 if (size_bits & 0x01)
3166 {
3167 if (!((opcode_bits >> 1) & 0x01))
3168 scale = 3;
3169 else
3170 return AARCH64_RECORD_UNKNOWN;
3171 }
3172 break;
3173 case 3:
3174 if (bit (aarch64_insn_r->aarch64_insn, 22) && !(opcode_bits & 0x01))
3175 {
3176 scale = size_bits;
3177 replicate = 1;
3178 break;
3179 }
3180 else
3181 return AARCH64_RECORD_UNKNOWN;
3182 default:
3183 break;
3184 }
3185 esize = 8 << scale;
3186 if (replicate)
3187 for (sindex = 0; sindex < selem; sindex++)
3188 {
3189 record_buf[reg_index++] = reg_rt + AARCH64_V0_REGNUM;
3190 reg_rt = (reg_rt + 1) % 32;
3191 }
3192 else
3193 {
3194 for (sindex = 0; sindex < selem; sindex++)
3195 {
3196 if (bit (aarch64_insn_r->aarch64_insn, 22))
3197 record_buf[reg_index++] = reg_rt + AARCH64_V0_REGNUM;
3198 else
3199 {
3200 record_buf_mem[mem_index++] = esize / 8;
3201 record_buf_mem[mem_index++] = address + addr_offset;
3202 }
3203 addr_offset = addr_offset + (esize / 8);
3204 reg_rt = (reg_rt + 1) % 32;
3205 }
3206 }
3207 }
3208 /* Load/store multiple structure. */
3209 else
3210 {
3211 uint8_t selem, esize, rpt, elements;
3212 uint8_t eindex, rindex;
3213
3214 esize = 8 << size_bits;
3215 if (bit (aarch64_insn_r->aarch64_insn, 30))
3216 elements = 128 / esize;
3217 else
3218 elements = 64 / esize;
3219
3220 switch (opcode_bits)
3221 {
3222 /*LD/ST4 (4 Registers). */
3223 case 0:
3224 rpt = 1;
3225 selem = 4;
3226 break;
3227 /*LD/ST1 (4 Registers). */
3228 case 2:
3229 rpt = 4;
3230 selem = 1;
3231 break;
3232 /*LD/ST3 (3 Registers). */
3233 case 4:
3234 rpt = 1;
3235 selem = 3;
3236 break;
3237 /*LD/ST1 (3 Registers). */
3238 case 6:
3239 rpt = 3;
3240 selem = 1;
3241 break;
3242 /*LD/ST1 (1 Register). */
3243 case 7:
3244 rpt = 1;
3245 selem = 1;
3246 break;
3247 /*LD/ST2 (2 Registers). */
3248 case 8:
3249 rpt = 1;
3250 selem = 2;
3251 break;
3252 /*LD/ST1 (2 Registers). */
3253 case 10:
3254 rpt = 2;
3255 selem = 1;
3256 break;
3257 default:
3258 return AARCH64_RECORD_UNSUPPORTED;
3259 break;
3260 }
3261 for (rindex = 0; rindex < rpt; rindex++)
3262 for (eindex = 0; eindex < elements; eindex++)
3263 {
3264 uint8_t reg_tt, sindex;
3265 reg_tt = (reg_rt + rindex) % 32;
3266 for (sindex = 0; sindex < selem; sindex++)
3267 {
3268 if (bit (aarch64_insn_r->aarch64_insn, 22))
3269 record_buf[reg_index++] = reg_tt + AARCH64_V0_REGNUM;
3270 else
3271 {
3272 record_buf_mem[mem_index++] = esize / 8;
3273 record_buf_mem[mem_index++] = address + addr_offset;
3274 }
3275 addr_offset = addr_offset + (esize / 8);
3276 reg_tt = (reg_tt + 1) % 32;
3277 }
3278 }
3279 }
3280
3281 if (bit (aarch64_insn_r->aarch64_insn, 23))
3282 record_buf[reg_index++] = reg_rn;
3283
3284 aarch64_insn_r->reg_rec_count = reg_index;
3285 aarch64_insn_r->mem_rec_count = mem_index / 2;
3286 MEM_ALLOC (aarch64_insn_r->aarch64_mems, aarch64_insn_r->mem_rec_count,
3287 record_buf_mem);
3288 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3289 record_buf);
3290 return AARCH64_RECORD_SUCCESS;
3291 }
3292
3293 /* Record handler for load and store instructions. */
3294
3295 static unsigned int
3296 aarch64_record_load_store (insn_decode_record *aarch64_insn_r)
3297 {
3298 uint8_t insn_bits24_27, insn_bits28_29, insn_bits10_11;
3299 uint8_t insn_bit23, insn_bit21;
3300 uint8_t opc, size_bits, ld_flag, vector_flag;
3301 uint32_t reg_rn, reg_rt, reg_rt2;
3302 uint64_t datasize, offset;
3303 uint32_t record_buf[8];
3304 uint64_t record_buf_mem[8];
3305 CORE_ADDR address;
3306
3307 insn_bits10_11 = bits (aarch64_insn_r->aarch64_insn, 10, 11);
3308 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3309 insn_bits28_29 = bits (aarch64_insn_r->aarch64_insn, 28, 29);
3310 insn_bit21 = bit (aarch64_insn_r->aarch64_insn, 21);
3311 insn_bit23 = bit (aarch64_insn_r->aarch64_insn, 23);
3312 ld_flag = bit (aarch64_insn_r->aarch64_insn, 22);
3313 vector_flag = bit (aarch64_insn_r->aarch64_insn, 26);
3314 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3315 reg_rn = bits (aarch64_insn_r->aarch64_insn, 5, 9);
3316 reg_rt2 = bits (aarch64_insn_r->aarch64_insn, 10, 14);
3317 size_bits = bits (aarch64_insn_r->aarch64_insn, 30, 31);
3318
3319 /* Load/store exclusive. */
3320 if (insn_bits24_27 == 0x08 && insn_bits28_29 == 0x00)
3321 {
3322 if (record_debug)
3323 debug_printf ("Process record: load/store exclusive\n");
3324
3325 if (ld_flag)
3326 {
3327 record_buf[0] = reg_rt;
3328 aarch64_insn_r->reg_rec_count = 1;
3329 if (insn_bit21)
3330 {
3331 record_buf[1] = reg_rt2;
3332 aarch64_insn_r->reg_rec_count = 2;
3333 }
3334 }
3335 else
3336 {
3337 if (insn_bit21)
3338 datasize = (8 << size_bits) * 2;
3339 else
3340 datasize = (8 << size_bits);
3341 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3342 &address);
3343 record_buf_mem[0] = datasize / 8;
3344 record_buf_mem[1] = address;
3345 aarch64_insn_r->mem_rec_count = 1;
3346 if (!insn_bit23)
3347 {
3348 /* Save register rs. */
3349 record_buf[0] = bits (aarch64_insn_r->aarch64_insn, 16, 20);
3350 aarch64_insn_r->reg_rec_count = 1;
3351 }
3352 }
3353 }
3354 /* Load register (literal) instructions decoding. */
3355 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x01)
3356 {
3357 if (record_debug)
3358 debug_printf ("Process record: load register (literal)\n");
3359 if (vector_flag)
3360 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3361 else
3362 record_buf[0] = reg_rt;
3363 aarch64_insn_r->reg_rec_count = 1;
3364 }
3365 /* All types of load/store pair instructions decoding. */
3366 else if ((insn_bits24_27 & 0x0a) == 0x08 && insn_bits28_29 == 0x02)
3367 {
3368 if (record_debug)
3369 debug_printf ("Process record: load/store pair\n");
3370
3371 if (ld_flag)
3372 {
3373 if (vector_flag)
3374 {
3375 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3376 record_buf[1] = reg_rt2 + AARCH64_V0_REGNUM;
3377 }
3378 else
3379 {
3380 record_buf[0] = reg_rt;
3381 record_buf[1] = reg_rt2;
3382 }
3383 aarch64_insn_r->reg_rec_count = 2;
3384 }
3385 else
3386 {
3387 uint16_t imm7_off;
3388 imm7_off = bits (aarch64_insn_r->aarch64_insn, 15, 21);
3389 if (!vector_flag)
3390 size_bits = size_bits >> 1;
3391 datasize = 8 << (2 + size_bits);
3392 offset = (imm7_off & 0x40) ? (~imm7_off & 0x007f) + 1 : imm7_off;
3393 offset = offset << (2 + size_bits);
3394 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3395 &address);
3396 if (!((insn_bits24_27 & 0x0b) == 0x08 && insn_bit23))
3397 {
3398 if (imm7_off & 0x40)
3399 address = address - offset;
3400 else
3401 address = address + offset;
3402 }
3403
3404 record_buf_mem[0] = datasize / 8;
3405 record_buf_mem[1] = address;
3406 record_buf_mem[2] = datasize / 8;
3407 record_buf_mem[3] = address + (datasize / 8);
3408 aarch64_insn_r->mem_rec_count = 2;
3409 }
3410 if (bit (aarch64_insn_r->aarch64_insn, 23))
3411 record_buf[aarch64_insn_r->reg_rec_count++] = reg_rn;
3412 }
3413 /* Load/store register (unsigned immediate) instructions. */
3414 else if ((insn_bits24_27 & 0x0b) == 0x09 && insn_bits28_29 == 0x03)
3415 {
3416 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
3417 if (!(opc >> 1))
3418 if (opc & 0x01)
3419 ld_flag = 0x01;
3420 else
3421 ld_flag = 0x0;
3422 else
3423 if (size_bits != 0x03)
3424 ld_flag = 0x01;
3425 else
3426 return AARCH64_RECORD_UNKNOWN;
3427
3428 if (record_debug)
3429 {
3430 debug_printf ("Process record: load/store (unsigned immediate):"
3431 " size %x V %d opc %x\n", size_bits, vector_flag,
3432 opc);
3433 }
3434
3435 if (!ld_flag)
3436 {
3437 offset = bits (aarch64_insn_r->aarch64_insn, 10, 21);
3438 datasize = 8 << size_bits;
3439 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3440 &address);
3441 offset = offset << size_bits;
3442 address = address + offset;
3443
3444 record_buf_mem[0] = datasize >> 3;
3445 record_buf_mem[1] = address;
3446 aarch64_insn_r->mem_rec_count = 1;
3447 }
3448 else
3449 {
3450 if (vector_flag)
3451 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3452 else
3453 record_buf[0] = reg_rt;
3454 aarch64_insn_r->reg_rec_count = 1;
3455 }
3456 }
3457 /* Load/store register (register offset) instructions. */
3458 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x03
3459 && insn_bits10_11 == 0x02 && insn_bit21)
3460 {
3461 if (record_debug)
3462 debug_printf ("Process record: load/store (register offset)\n");
3463 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
3464 if (!(opc >> 1))
3465 if (opc & 0x01)
3466 ld_flag = 0x01;
3467 else
3468 ld_flag = 0x0;
3469 else
3470 if (size_bits != 0x03)
3471 ld_flag = 0x01;
3472 else
3473 return AARCH64_RECORD_UNKNOWN;
3474
3475 if (!ld_flag)
3476 {
3477 uint64_t reg_rm_val;
3478 regcache_raw_read_unsigned (aarch64_insn_r->regcache,
3479 bits (aarch64_insn_r->aarch64_insn, 16, 20), &reg_rm_val);
3480 if (bit (aarch64_insn_r->aarch64_insn, 12))
3481 offset = reg_rm_val << size_bits;
3482 else
3483 offset = reg_rm_val;
3484 datasize = 8 << size_bits;
3485 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3486 &address);
3487 address = address + offset;
3488 record_buf_mem[0] = datasize >> 3;
3489 record_buf_mem[1] = address;
3490 aarch64_insn_r->mem_rec_count = 1;
3491 }
3492 else
3493 {
3494 if (vector_flag)
3495 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3496 else
3497 record_buf[0] = reg_rt;
3498 aarch64_insn_r->reg_rec_count = 1;
3499 }
3500 }
3501 /* Load/store register (immediate and unprivileged) instructions. */
3502 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x03
3503 && !insn_bit21)
3504 {
3505 if (record_debug)
3506 {
3507 debug_printf ("Process record: load/store "
3508 "(immediate and unprivileged)\n");
3509 }
3510 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
3511 if (!(opc >> 1))
3512 if (opc & 0x01)
3513 ld_flag = 0x01;
3514 else
3515 ld_flag = 0x0;
3516 else
3517 if (size_bits != 0x03)
3518 ld_flag = 0x01;
3519 else
3520 return AARCH64_RECORD_UNKNOWN;
3521
3522 if (!ld_flag)
3523 {
3524 uint16_t imm9_off;
3525 imm9_off = bits (aarch64_insn_r->aarch64_insn, 12, 20);
3526 offset = (imm9_off & 0x0100) ? (((~imm9_off) & 0x01ff) + 1) : imm9_off;
3527 datasize = 8 << size_bits;
3528 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3529 &address);
3530 if (insn_bits10_11 != 0x01)
3531 {
3532 if (imm9_off & 0x0100)
3533 address = address - offset;
3534 else
3535 address = address + offset;
3536 }
3537 record_buf_mem[0] = datasize >> 3;
3538 record_buf_mem[1] = address;
3539 aarch64_insn_r->mem_rec_count = 1;
3540 }
3541 else
3542 {
3543 if (vector_flag)
3544 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3545 else
3546 record_buf[0] = reg_rt;
3547 aarch64_insn_r->reg_rec_count = 1;
3548 }
3549 if (insn_bits10_11 == 0x01 || insn_bits10_11 == 0x03)
3550 record_buf[aarch64_insn_r->reg_rec_count++] = reg_rn;
3551 }
3552 /* Advanced SIMD load/store instructions. */
3553 else
3554 return aarch64_record_asimd_load_store (aarch64_insn_r);
3555
3556 MEM_ALLOC (aarch64_insn_r->aarch64_mems, aarch64_insn_r->mem_rec_count,
3557 record_buf_mem);
3558 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3559 record_buf);
3560 return AARCH64_RECORD_SUCCESS;
3561 }
3562
3563 /* Record handler for data processing SIMD and floating point instructions. */
3564
3565 static unsigned int
3566 aarch64_record_data_proc_simd_fp (insn_decode_record *aarch64_insn_r)
3567 {
3568 uint8_t insn_bit21, opcode, rmode, reg_rd;
3569 uint8_t insn_bits24_27, insn_bits28_31, insn_bits10_11, insn_bits12_15;
3570 uint8_t insn_bits11_14;
3571 uint32_t record_buf[2];
3572
3573 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3574 insn_bits28_31 = bits (aarch64_insn_r->aarch64_insn, 28, 31);
3575 insn_bits10_11 = bits (aarch64_insn_r->aarch64_insn, 10, 11);
3576 insn_bits12_15 = bits (aarch64_insn_r->aarch64_insn, 12, 15);
3577 insn_bits11_14 = bits (aarch64_insn_r->aarch64_insn, 11, 14);
3578 opcode = bits (aarch64_insn_r->aarch64_insn, 16, 18);
3579 rmode = bits (aarch64_insn_r->aarch64_insn, 19, 20);
3580 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3581 insn_bit21 = bit (aarch64_insn_r->aarch64_insn, 21);
3582
3583 if (record_debug)
3584 debug_printf ("Process record: data processing SIMD/FP: ");
3585
3586 if ((insn_bits28_31 & 0x05) == 0x01 && insn_bits24_27 == 0x0e)
3587 {
3588 /* Floating point - fixed point conversion instructions. */
3589 if (!insn_bit21)
3590 {
3591 if (record_debug)
3592 debug_printf ("FP - fixed point conversion");
3593
3594 if ((opcode >> 1) == 0x0 && rmode == 0x03)
3595 record_buf[0] = reg_rd;
3596 else
3597 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3598 }
3599 /* Floating point - conditional compare instructions. */
3600 else if (insn_bits10_11 == 0x01)
3601 {
3602 if (record_debug)
3603 debug_printf ("FP - conditional compare");
3604
3605 record_buf[0] = AARCH64_CPSR_REGNUM;
3606 }
3607 /* Floating point - data processing (2-source) and
3608 conditional select instructions. */
3609 else if (insn_bits10_11 == 0x02 || insn_bits10_11 == 0x03)
3610 {
3611 if (record_debug)
3612 debug_printf ("FP - DP (2-source)");
3613
3614 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3615 }
3616 else if (insn_bits10_11 == 0x00)
3617 {
3618 /* Floating point - immediate instructions. */
3619 if ((insn_bits12_15 & 0x01) == 0x01
3620 || (insn_bits12_15 & 0x07) == 0x04)
3621 {
3622 if (record_debug)
3623 debug_printf ("FP - immediate");
3624 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3625 }
3626 /* Floating point - compare instructions. */
3627 else if ((insn_bits12_15 & 0x03) == 0x02)
3628 {
3629 if (record_debug)
3630 debug_printf ("FP - immediate");
3631 record_buf[0] = AARCH64_CPSR_REGNUM;
3632 }
3633 /* Floating point - integer conversions instructions. */
3634 else if (insn_bits12_15 == 0x00)
3635 {
3636 /* Convert float to integer instruction. */
3637 if (!(opcode >> 1) || ((opcode >> 1) == 0x02 && !rmode))
3638 {
3639 if (record_debug)
3640 debug_printf ("float to int conversion");
3641
3642 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
3643 }
3644 /* Convert integer to float instruction. */
3645 else if ((opcode >> 1) == 0x01 && !rmode)
3646 {
3647 if (record_debug)
3648 debug_printf ("int to float conversion");
3649
3650 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3651 }
3652 /* Move float to integer instruction. */
3653 else if ((opcode >> 1) == 0x03)
3654 {
3655 if (record_debug)
3656 debug_printf ("move float to int");
3657
3658 if (!(opcode & 0x01))
3659 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
3660 else
3661 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3662 }
3663 else
3664 return AARCH64_RECORD_UNKNOWN;
3665 }
3666 else
3667 return AARCH64_RECORD_UNKNOWN;
3668 }
3669 else
3670 return AARCH64_RECORD_UNKNOWN;
3671 }
3672 else if ((insn_bits28_31 & 0x09) == 0x00 && insn_bits24_27 == 0x0e)
3673 {
3674 if (record_debug)
3675 debug_printf ("SIMD copy");
3676
3677 /* Advanced SIMD copy instructions. */
3678 if (!bits (aarch64_insn_r->aarch64_insn, 21, 23)
3679 && !bit (aarch64_insn_r->aarch64_insn, 15)
3680 && bit (aarch64_insn_r->aarch64_insn, 10))
3681 {
3682 if (insn_bits11_14 == 0x05 || insn_bits11_14 == 0x07)
3683 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
3684 else
3685 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3686 }
3687 else
3688 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3689 }
3690 /* All remaining floating point or advanced SIMD instructions. */
3691 else
3692 {
3693 if (record_debug)
3694 debug_printf ("all remain");
3695
3696 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3697 }
3698
3699 if (record_debug)
3700 debug_printf ("\n");
3701
3702 aarch64_insn_r->reg_rec_count++;
3703 gdb_assert (aarch64_insn_r->reg_rec_count == 1);
3704 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3705 record_buf);
3706 return AARCH64_RECORD_SUCCESS;
3707 }
3708
3709 /* Decodes insns type and invokes its record handler. */
3710
3711 static unsigned int
3712 aarch64_record_decode_insn_handler (insn_decode_record *aarch64_insn_r)
3713 {
3714 uint32_t ins_bit25, ins_bit26, ins_bit27, ins_bit28;
3715
3716 ins_bit25 = bit (aarch64_insn_r->aarch64_insn, 25);
3717 ins_bit26 = bit (aarch64_insn_r->aarch64_insn, 26);
3718 ins_bit27 = bit (aarch64_insn_r->aarch64_insn, 27);
3719 ins_bit28 = bit (aarch64_insn_r->aarch64_insn, 28);
3720
3721 /* Data processing - immediate instructions. */
3722 if (!ins_bit26 && !ins_bit27 && ins_bit28)
3723 return aarch64_record_data_proc_imm (aarch64_insn_r);
3724
3725 /* Branch, exception generation and system instructions. */
3726 if (ins_bit26 && !ins_bit27 && ins_bit28)
3727 return aarch64_record_branch_except_sys (aarch64_insn_r);
3728
3729 /* Load and store instructions. */
3730 if (!ins_bit25 && ins_bit27)
3731 return aarch64_record_load_store (aarch64_insn_r);
3732
3733 /* Data processing - register instructions. */
3734 if (ins_bit25 && !ins_bit26 && ins_bit27)
3735 return aarch64_record_data_proc_reg (aarch64_insn_r);
3736
3737 /* Data processing - SIMD and floating point instructions. */
3738 if (ins_bit25 && ins_bit26 && ins_bit27)
3739 return aarch64_record_data_proc_simd_fp (aarch64_insn_r);
3740
3741 return AARCH64_RECORD_UNSUPPORTED;
3742 }
3743
3744 /* Cleans up local record registers and memory allocations. */
3745
3746 static void
3747 deallocate_reg_mem (insn_decode_record *record)
3748 {
3749 xfree (record->aarch64_regs);
3750 xfree (record->aarch64_mems);
3751 }
3752
3753 /* Parse the current instruction and record the values of the registers and
3754 memory that will be changed in current instruction to record_arch_list
3755 return -1 if something is wrong. */
3756
3757 int
3758 aarch64_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
3759 CORE_ADDR insn_addr)
3760 {
3761 uint32_t rec_no = 0;
3762 uint8_t insn_size = 4;
3763 uint32_t ret = 0;
3764 ULONGEST t_bit = 0, insn_id = 0;
3765 gdb_byte buf[insn_size];
3766 insn_decode_record aarch64_record;
3767
3768 memset (&buf[0], 0, insn_size);
3769 memset (&aarch64_record, 0, sizeof (insn_decode_record));
3770 target_read_memory (insn_addr, &buf[0], insn_size);
3771 aarch64_record.aarch64_insn
3772 = (uint32_t) extract_unsigned_integer (&buf[0],
3773 insn_size,
3774 gdbarch_byte_order (gdbarch));
3775 aarch64_record.regcache = regcache;
3776 aarch64_record.this_addr = insn_addr;
3777 aarch64_record.gdbarch = gdbarch;
3778
3779 ret = aarch64_record_decode_insn_handler (&aarch64_record);
3780 if (ret == AARCH64_RECORD_UNSUPPORTED)
3781 {
3782 printf_unfiltered (_("Process record does not support instruction "
3783 "0x%0x at address %s.\n"),
3784 aarch64_record.aarch64_insn,
3785 paddress (gdbarch, insn_addr));
3786 ret = -1;
3787 }
3788
3789 if (0 == ret)
3790 {
3791 /* Record registers. */
3792 record_full_arch_list_add_reg (aarch64_record.regcache,
3793 AARCH64_PC_REGNUM);
3794 /* Always record register CPSR. */
3795 record_full_arch_list_add_reg (aarch64_record.regcache,
3796 AARCH64_CPSR_REGNUM);
3797 if (aarch64_record.aarch64_regs)
3798 for (rec_no = 0; rec_no < aarch64_record.reg_rec_count; rec_no++)
3799 if (record_full_arch_list_add_reg (aarch64_record.regcache,
3800 aarch64_record.aarch64_regs[rec_no]))
3801 ret = -1;
3802
3803 /* Record memories. */
3804 if (aarch64_record.aarch64_mems)
3805 for (rec_no = 0; rec_no < aarch64_record.mem_rec_count; rec_no++)
3806 if (record_full_arch_list_add_mem
3807 ((CORE_ADDR)aarch64_record.aarch64_mems[rec_no].addr,
3808 aarch64_record.aarch64_mems[rec_no].len))
3809 ret = -1;
3810
3811 if (record_full_arch_list_add_end ())
3812 ret = -1;
3813 }
3814
3815 deallocate_reg_mem (&aarch64_record);
3816 return ret;
3817 }
This page took 0.108492 seconds and 4 git commands to generate.