* symtab.h (enum address_class): Remove LOC_REGPARM and
[deliverable/binutils-gdb.git] / gdb / ada-exp.y
1 /* YACC parser for Ada expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1993, 1994, 1997, 2000, 2003, 2004,
3 2007, 2008 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 /* Parse an Ada expression from text in a string,
23 and return the result as a struct expression pointer.
24 That structure contains arithmetic operations in reverse polish,
25 with constants represented by operations that are followed by special data.
26 See expression.h for the details of the format.
27 What is important here is that it can be built up sequentially
28 during the process of parsing; the lower levels of the tree always
29 come first in the result.
30
31 malloc's and realloc's in this file are transformed to
32 xmalloc and xrealloc respectively by the same sed command in the
33 makefile that remaps any other malloc/realloc inserted by the parser
34 generator. Doing this with #defines and trying to control the interaction
35 with include files (<malloc.h> and <stdlib.h> for example) just became
36 too messy, particularly when such includes can be inserted at random
37 times by the parser generator. */
38
39 %{
40
41 #include "defs.h"
42 #include "gdb_string.h"
43 #include <ctype.h>
44 #include "expression.h"
45 #include "value.h"
46 #include "parser-defs.h"
47 #include "language.h"
48 #include "ada-lang.h"
49 #include "bfd.h" /* Required by objfiles.h. */
50 #include "symfile.h" /* Required by objfiles.h. */
51 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
52 #include "frame.h"
53 #include "block.h"
54
55 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
56 as well as gratuitiously global symbol names, so we can have multiple
57 yacc generated parsers in gdb. These are only the variables
58 produced by yacc. If other parser generators (bison, byacc, etc) produce
59 additional global names that conflict at link time, then those parser
60 generators need to be fixed instead of adding those names to this list. */
61
62 /* NOTE: This is clumsy, especially since BISON and FLEX provide --prefix
63 options. I presume we are maintaining it to accommodate systems
64 without BISON? (PNH) */
65
66 #define yymaxdepth ada_maxdepth
67 #define yyparse _ada_parse /* ada_parse calls this after initialization */
68 #define yylex ada_lex
69 #define yyerror ada_error
70 #define yylval ada_lval
71 #define yychar ada_char
72 #define yydebug ada_debug
73 #define yypact ada_pact
74 #define yyr1 ada_r1
75 #define yyr2 ada_r2
76 #define yydef ada_def
77 #define yychk ada_chk
78 #define yypgo ada_pgo
79 #define yyact ada_act
80 #define yyexca ada_exca
81 #define yyerrflag ada_errflag
82 #define yynerrs ada_nerrs
83 #define yyps ada_ps
84 #define yypv ada_pv
85 #define yys ada_s
86 #define yy_yys ada_yys
87 #define yystate ada_state
88 #define yytmp ada_tmp
89 #define yyv ada_v
90 #define yy_yyv ada_yyv
91 #define yyval ada_val
92 #define yylloc ada_lloc
93 #define yyreds ada_reds /* With YYDEBUG defined */
94 #define yytoks ada_toks /* With YYDEBUG defined */
95 #define yyname ada_name /* With YYDEBUG defined */
96 #define yyrule ada_rule /* With YYDEBUG defined */
97
98 #ifndef YYDEBUG
99 #define YYDEBUG 1 /* Default to yydebug support */
100 #endif
101
102 #define YYFPRINTF parser_fprintf
103
104 struct name_info {
105 struct symbol *sym;
106 struct minimal_symbol *msym;
107 struct block *block;
108 struct stoken stoken;
109 };
110
111 static struct stoken empty_stoken = { "", 0 };
112
113 /* If expression is in the context of TYPE'(...), then TYPE, else
114 * NULL. */
115 static struct type *type_qualifier;
116
117 int yyparse (void);
118
119 static int yylex (void);
120
121 void yyerror (char *);
122
123 static struct stoken string_to_operator (struct stoken);
124
125 static void write_int (LONGEST, struct type *);
126
127 static void write_object_renaming (struct block *, const char *, int,
128 const char *, int);
129
130 static struct type* write_var_or_type (struct block *, struct stoken);
131
132 static void write_name_assoc (struct stoken);
133
134 static void write_exp_op_with_string (enum exp_opcode, struct stoken);
135
136 static struct block *block_lookup (struct block *, char *);
137
138 static LONGEST convert_char_literal (struct type *, LONGEST);
139
140 static void write_ambiguous_var (struct block *, char *, int);
141
142 static struct type *type_int (void);
143
144 static struct type *type_long (void);
145
146 static struct type *type_long_long (void);
147
148 static struct type *type_float (void);
149
150 static struct type *type_double (void);
151
152 static struct type *type_long_double (void);
153
154 static struct type *type_char (void);
155
156 static struct type *type_system_address (void);
157
158 %}
159
160 %union
161 {
162 LONGEST lval;
163 struct {
164 LONGEST val;
165 struct type *type;
166 } typed_val;
167 struct {
168 DOUBLEST dval;
169 struct type *type;
170 } typed_val_float;
171 struct type *tval;
172 struct stoken sval;
173 struct block *bval;
174 struct internalvar *ivar;
175 }
176
177 %type <lval> positional_list component_groups component_associations
178 %type <lval> aggregate_component_list
179 %type <tval> var_or_type
180
181 %token <typed_val> INT NULL_PTR CHARLIT
182 %token <typed_val_float> FLOAT
183 %token COLONCOLON
184 %token <sval> STRING NAME DOT_ID
185 %type <bval> block
186 %type <lval> arglist tick_arglist
187
188 %type <tval> save_qualifier
189
190 %token DOT_ALL
191
192 /* Special type cases, put in to allow the parser to distinguish different
193 legal basetypes. */
194 %token <sval> SPECIAL_VARIABLE
195
196 %nonassoc ASSIGN
197 %left _AND_ OR XOR THEN ELSE
198 %left '=' NOTEQUAL '<' '>' LEQ GEQ IN DOTDOT
199 %left '@'
200 %left '+' '-' '&'
201 %left UNARY
202 %left '*' '/' MOD REM
203 %right STARSTAR ABS NOT
204
205 /* Artificial token to give NAME => ... and NAME | priority over reducing
206 NAME to <primary> and to give <primary>' priority over reducing <primary>
207 to <simple_exp>. */
208 %nonassoc VAR
209
210 %nonassoc ARROW '|'
211
212 %right TICK_ACCESS TICK_ADDRESS TICK_FIRST TICK_LAST TICK_LENGTH
213 %right TICK_MAX TICK_MIN TICK_MODULUS
214 %right TICK_POS TICK_RANGE TICK_SIZE TICK_TAG TICK_VAL
215 /* The following are right-associative only so that reductions at this
216 precedence have lower precedence than '.' and '('. The syntax still
217 forces a.b.c, e.g., to be LEFT-associated. */
218 %right '.' '(' '[' DOT_ID DOT_ALL
219
220 %token NEW OTHERS
221
222 \f
223 %%
224
225 start : exp1
226 ;
227
228 /* Expressions, including the sequencing operator. */
229 exp1 : exp
230 | exp1 ';' exp
231 { write_exp_elt_opcode (BINOP_COMMA); }
232 | primary ASSIGN exp /* Extension for convenience */
233 { write_exp_elt_opcode (BINOP_ASSIGN); }
234 ;
235
236 /* Expressions, not including the sequencing operator. */
237 primary : primary DOT_ALL
238 { write_exp_elt_opcode (UNOP_IND); }
239 ;
240
241 primary : primary DOT_ID
242 { write_exp_op_with_string (STRUCTOP_STRUCT, $2); }
243 ;
244
245 primary : primary '(' arglist ')'
246 {
247 write_exp_elt_opcode (OP_FUNCALL);
248 write_exp_elt_longcst ($3);
249 write_exp_elt_opcode (OP_FUNCALL);
250 }
251 | var_or_type '(' arglist ')'
252 {
253 if ($1 != NULL)
254 {
255 if ($3 != 1)
256 error (_("Invalid conversion"));
257 write_exp_elt_opcode (UNOP_CAST);
258 write_exp_elt_type ($1);
259 write_exp_elt_opcode (UNOP_CAST);
260 }
261 else
262 {
263 write_exp_elt_opcode (OP_FUNCALL);
264 write_exp_elt_longcst ($3);
265 write_exp_elt_opcode (OP_FUNCALL);
266 }
267 }
268 ;
269
270 primary : var_or_type '\'' save_qualifier { type_qualifier = $1; }
271 '(' exp ')'
272 {
273 if ($1 == NULL)
274 error (_("Type required for qualification"));
275 write_exp_elt_opcode (UNOP_QUAL);
276 write_exp_elt_type ($1);
277 write_exp_elt_opcode (UNOP_QUAL);
278 type_qualifier = $3;
279 }
280 ;
281
282 save_qualifier : { $$ = type_qualifier; }
283 ;
284
285 primary :
286 primary '(' simple_exp DOTDOT simple_exp ')'
287 { write_exp_elt_opcode (TERNOP_SLICE); }
288 | var_or_type '(' simple_exp DOTDOT simple_exp ')'
289 { if ($1 == NULL)
290 write_exp_elt_opcode (TERNOP_SLICE);
291 else
292 error (_("Cannot slice a type"));
293 }
294 ;
295
296 primary : '(' exp1 ')' { }
297 ;
298
299 /* The following rule causes a conflict with the type conversion
300 var_or_type (exp)
301 To get around it, we give '(' higher priority and add bridge rules for
302 var_or_type (exp, exp, ...)
303 var_or_type (exp .. exp)
304 We also have the action for var_or_type(exp) generate a function call
305 when the first symbol does not denote a type. */
306
307 primary : var_or_type %prec VAR
308 { if ($1 != NULL)
309 {
310 write_exp_elt_opcode (OP_TYPE);
311 write_exp_elt_type ($1);
312 write_exp_elt_opcode (OP_TYPE);
313 }
314 }
315 ;
316
317 primary : SPECIAL_VARIABLE /* Various GDB extensions */
318 { write_dollar_variable ($1); }
319 ;
320
321 primary : aggregate
322 ;
323
324 simple_exp : primary
325 ;
326
327 simple_exp : '-' simple_exp %prec UNARY
328 { write_exp_elt_opcode (UNOP_NEG); }
329 ;
330
331 simple_exp : '+' simple_exp %prec UNARY
332 { write_exp_elt_opcode (UNOP_PLUS); }
333 ;
334
335 simple_exp : NOT simple_exp %prec UNARY
336 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
337 ;
338
339 simple_exp : ABS simple_exp %prec UNARY
340 { write_exp_elt_opcode (UNOP_ABS); }
341 ;
342
343 arglist : { $$ = 0; }
344 ;
345
346 arglist : exp
347 { $$ = 1; }
348 | NAME ARROW exp
349 { $$ = 1; }
350 | arglist ',' exp
351 { $$ = $1 + 1; }
352 | arglist ',' NAME ARROW exp
353 { $$ = $1 + 1; }
354 ;
355
356 primary : '{' var_or_type '}' primary %prec '.'
357 /* GDB extension */
358 {
359 if ($2 == NULL)
360 error (_("Type required within braces in coercion"));
361 write_exp_elt_opcode (UNOP_MEMVAL);
362 write_exp_elt_type ($2);
363 write_exp_elt_opcode (UNOP_MEMVAL);
364 }
365 ;
366
367 /* Binary operators in order of decreasing precedence. */
368
369 simple_exp : simple_exp STARSTAR simple_exp
370 { write_exp_elt_opcode (BINOP_EXP); }
371 ;
372
373 simple_exp : simple_exp '*' simple_exp
374 { write_exp_elt_opcode (BINOP_MUL); }
375 ;
376
377 simple_exp : simple_exp '/' simple_exp
378 { write_exp_elt_opcode (BINOP_DIV); }
379 ;
380
381 simple_exp : simple_exp REM simple_exp /* May need to be fixed to give correct Ada REM */
382 { write_exp_elt_opcode (BINOP_REM); }
383 ;
384
385 simple_exp : simple_exp MOD simple_exp
386 { write_exp_elt_opcode (BINOP_MOD); }
387 ;
388
389 simple_exp : simple_exp '@' simple_exp /* GDB extension */
390 { write_exp_elt_opcode (BINOP_REPEAT); }
391 ;
392
393 simple_exp : simple_exp '+' simple_exp
394 { write_exp_elt_opcode (BINOP_ADD); }
395 ;
396
397 simple_exp : simple_exp '&' simple_exp
398 { write_exp_elt_opcode (BINOP_CONCAT); }
399 ;
400
401 simple_exp : simple_exp '-' simple_exp
402 { write_exp_elt_opcode (BINOP_SUB); }
403 ;
404
405 relation : simple_exp
406 ;
407
408 relation : simple_exp '=' simple_exp
409 { write_exp_elt_opcode (BINOP_EQUAL); }
410 ;
411
412 relation : simple_exp NOTEQUAL simple_exp
413 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
414 ;
415
416 relation : simple_exp LEQ simple_exp
417 { write_exp_elt_opcode (BINOP_LEQ); }
418 ;
419
420 relation : simple_exp IN simple_exp DOTDOT simple_exp
421 { write_exp_elt_opcode (TERNOP_IN_RANGE); }
422 | simple_exp IN primary TICK_RANGE tick_arglist
423 { write_exp_elt_opcode (BINOP_IN_BOUNDS);
424 write_exp_elt_longcst ((LONGEST) $5);
425 write_exp_elt_opcode (BINOP_IN_BOUNDS);
426 }
427 | simple_exp IN var_or_type %prec TICK_ACCESS
428 {
429 if ($3 == NULL)
430 error (_("Right operand of 'in' must be type"));
431 write_exp_elt_opcode (UNOP_IN_RANGE);
432 write_exp_elt_type ($3);
433 write_exp_elt_opcode (UNOP_IN_RANGE);
434 }
435 | simple_exp NOT IN simple_exp DOTDOT simple_exp
436 { write_exp_elt_opcode (TERNOP_IN_RANGE);
437 write_exp_elt_opcode (UNOP_LOGICAL_NOT);
438 }
439 | simple_exp NOT IN primary TICK_RANGE tick_arglist
440 { write_exp_elt_opcode (BINOP_IN_BOUNDS);
441 write_exp_elt_longcst ((LONGEST) $6);
442 write_exp_elt_opcode (BINOP_IN_BOUNDS);
443 write_exp_elt_opcode (UNOP_LOGICAL_NOT);
444 }
445 | simple_exp NOT IN var_or_type %prec TICK_ACCESS
446 {
447 if ($4 == NULL)
448 error (_("Right operand of 'in' must be type"));
449 write_exp_elt_opcode (UNOP_IN_RANGE);
450 write_exp_elt_type ($4);
451 write_exp_elt_opcode (UNOP_IN_RANGE);
452 write_exp_elt_opcode (UNOP_LOGICAL_NOT);
453 }
454 ;
455
456 relation : simple_exp GEQ simple_exp
457 { write_exp_elt_opcode (BINOP_GEQ); }
458 ;
459
460 relation : simple_exp '<' simple_exp
461 { write_exp_elt_opcode (BINOP_LESS); }
462 ;
463
464 relation : simple_exp '>' simple_exp
465 { write_exp_elt_opcode (BINOP_GTR); }
466 ;
467
468 exp : relation
469 | and_exp
470 | and_then_exp
471 | or_exp
472 | or_else_exp
473 | xor_exp
474 ;
475
476 and_exp :
477 relation _AND_ relation
478 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
479 | and_exp _AND_ relation
480 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
481 ;
482
483 and_then_exp :
484 relation _AND_ THEN relation
485 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
486 | and_then_exp _AND_ THEN relation
487 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
488 ;
489
490 or_exp :
491 relation OR relation
492 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
493 | or_exp OR relation
494 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
495 ;
496
497 or_else_exp :
498 relation OR ELSE relation
499 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
500 | or_else_exp OR ELSE relation
501 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
502 ;
503
504 xor_exp : relation XOR relation
505 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
506 | xor_exp XOR relation
507 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
508 ;
509
510 /* Primaries can denote types (OP_TYPE). In cases such as
511 primary TICK_ADDRESS, where a type would be invalid, it will be
512 caught when evaluate_subexp in ada-lang.c tries to evaluate the
513 primary, expecting a value. Precedence rules resolve the ambiguity
514 in NAME TICK_ACCESS in favor of shifting to form a var_or_type. A
515 construct such as aType'access'access will again cause an error when
516 aType'access evaluates to a type that evaluate_subexp attempts to
517 evaluate. */
518 primary : primary TICK_ACCESS
519 { write_exp_elt_opcode (UNOP_ADDR); }
520 | primary TICK_ADDRESS
521 { write_exp_elt_opcode (UNOP_ADDR);
522 write_exp_elt_opcode (UNOP_CAST);
523 write_exp_elt_type (type_system_address ());
524 write_exp_elt_opcode (UNOP_CAST);
525 }
526 | primary TICK_FIRST tick_arglist
527 { write_int ($3, type_int ());
528 write_exp_elt_opcode (OP_ATR_FIRST); }
529 | primary TICK_LAST tick_arglist
530 { write_int ($3, type_int ());
531 write_exp_elt_opcode (OP_ATR_LAST); }
532 | primary TICK_LENGTH tick_arglist
533 { write_int ($3, type_int ());
534 write_exp_elt_opcode (OP_ATR_LENGTH); }
535 | primary TICK_SIZE
536 { write_exp_elt_opcode (OP_ATR_SIZE); }
537 | primary TICK_TAG
538 { write_exp_elt_opcode (OP_ATR_TAG); }
539 | opt_type_prefix TICK_MIN '(' exp ',' exp ')'
540 { write_exp_elt_opcode (OP_ATR_MIN); }
541 | opt_type_prefix TICK_MAX '(' exp ',' exp ')'
542 { write_exp_elt_opcode (OP_ATR_MAX); }
543 | opt_type_prefix TICK_POS '(' exp ')'
544 { write_exp_elt_opcode (OP_ATR_POS); }
545 | type_prefix TICK_VAL '(' exp ')'
546 { write_exp_elt_opcode (OP_ATR_VAL); }
547 | type_prefix TICK_MODULUS
548 { write_exp_elt_opcode (OP_ATR_MODULUS); }
549 ;
550
551 tick_arglist : %prec '('
552 { $$ = 1; }
553 | '(' INT ')'
554 { $$ = $2.val; }
555 ;
556
557 type_prefix :
558 var_or_type
559 {
560 if ($1 == NULL)
561 error (_("Prefix must be type"));
562 write_exp_elt_opcode (OP_TYPE);
563 write_exp_elt_type ($1);
564 write_exp_elt_opcode (OP_TYPE); }
565 ;
566
567 opt_type_prefix :
568 type_prefix
569 | /* EMPTY */
570 { write_exp_elt_opcode (OP_TYPE);
571 write_exp_elt_type (builtin_type_void);
572 write_exp_elt_opcode (OP_TYPE); }
573 ;
574
575
576 primary : INT
577 { write_int ((LONGEST) $1.val, $1.type); }
578 ;
579
580 primary : CHARLIT
581 { write_int (convert_char_literal (type_qualifier, $1.val),
582 (type_qualifier == NULL)
583 ? $1.type : type_qualifier);
584 }
585 ;
586
587 primary : FLOAT
588 { write_exp_elt_opcode (OP_DOUBLE);
589 write_exp_elt_type ($1.type);
590 write_exp_elt_dblcst ($1.dval);
591 write_exp_elt_opcode (OP_DOUBLE);
592 }
593 ;
594
595 primary : NULL_PTR
596 { write_int (0, type_int ()); }
597 ;
598
599 primary : STRING
600 {
601 write_exp_op_with_string (OP_STRING, $1);
602 }
603 ;
604
605 primary : NEW NAME
606 { error (_("NEW not implemented.")); }
607 ;
608
609 var_or_type: NAME %prec VAR
610 { $$ = write_var_or_type (NULL, $1); }
611 | block NAME %prec VAR
612 { $$ = write_var_or_type ($1, $2); }
613 | NAME TICK_ACCESS
614 {
615 $$ = write_var_or_type (NULL, $1);
616 if ($$ == NULL)
617 write_exp_elt_opcode (UNOP_ADDR);
618 else
619 $$ = lookup_pointer_type ($$);
620 }
621 | block NAME TICK_ACCESS
622 {
623 $$ = write_var_or_type ($1, $2);
624 if ($$ == NULL)
625 write_exp_elt_opcode (UNOP_ADDR);
626 else
627 $$ = lookup_pointer_type ($$);
628 }
629 ;
630
631 /* GDB extension */
632 block : NAME COLONCOLON
633 { $$ = block_lookup (NULL, $1.ptr); }
634 | block NAME COLONCOLON
635 { $$ = block_lookup ($1, $2.ptr); }
636 ;
637
638 aggregate :
639 '(' aggregate_component_list ')'
640 {
641 write_exp_elt_opcode (OP_AGGREGATE);
642 write_exp_elt_longcst ($2);
643 write_exp_elt_opcode (OP_AGGREGATE);
644 }
645 ;
646
647 aggregate_component_list :
648 component_groups { $$ = $1; }
649 | positional_list exp
650 { write_exp_elt_opcode (OP_POSITIONAL);
651 write_exp_elt_longcst ($1);
652 write_exp_elt_opcode (OP_POSITIONAL);
653 $$ = $1 + 1;
654 }
655 | positional_list component_groups
656 { $$ = $1 + $2; }
657 ;
658
659 positional_list :
660 exp ','
661 { write_exp_elt_opcode (OP_POSITIONAL);
662 write_exp_elt_longcst (0);
663 write_exp_elt_opcode (OP_POSITIONAL);
664 $$ = 1;
665 }
666 | positional_list exp ','
667 { write_exp_elt_opcode (OP_POSITIONAL);
668 write_exp_elt_longcst ($1);
669 write_exp_elt_opcode (OP_POSITIONAL);
670 $$ = $1 + 1;
671 }
672 ;
673
674 component_groups:
675 others { $$ = 1; }
676 | component_group { $$ = 1; }
677 | component_group ',' component_groups
678 { $$ = $3 + 1; }
679 ;
680
681 others : OTHERS ARROW exp
682 { write_exp_elt_opcode (OP_OTHERS); }
683 ;
684
685 component_group :
686 component_associations
687 {
688 write_exp_elt_opcode (OP_CHOICES);
689 write_exp_elt_longcst ($1);
690 write_exp_elt_opcode (OP_CHOICES);
691 }
692 ;
693
694 /* We use this somewhat obscure definition in order to handle NAME => and
695 NAME | differently from exp => and exp |. ARROW and '|' have a precedence
696 above that of the reduction of NAME to var_or_type. By delaying
697 decisions until after the => or '|', we convert the ambiguity to a
698 resolved shift/reduce conflict. */
699 component_associations :
700 NAME ARROW
701 { write_name_assoc ($1); }
702 exp { $$ = 1; }
703 | simple_exp ARROW exp
704 { $$ = 1; }
705 | simple_exp DOTDOT simple_exp ARROW
706 { write_exp_elt_opcode (OP_DISCRETE_RANGE);
707 write_exp_op_with_string (OP_NAME, empty_stoken);
708 }
709 exp { $$ = 1; }
710 | NAME '|'
711 { write_name_assoc ($1); }
712 component_associations { $$ = $4 + 1; }
713 | simple_exp '|'
714 component_associations { $$ = $3 + 1; }
715 | simple_exp DOTDOT simple_exp '|'
716 { write_exp_elt_opcode (OP_DISCRETE_RANGE); }
717 component_associations { $$ = $6 + 1; }
718 ;
719
720 /* Some extensions borrowed from C, for the benefit of those who find they
721 can't get used to Ada notation in GDB. */
722
723 primary : '*' primary %prec '.'
724 { write_exp_elt_opcode (UNOP_IND); }
725 | '&' primary %prec '.'
726 { write_exp_elt_opcode (UNOP_ADDR); }
727 | primary '[' exp ']'
728 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
729 ;
730
731 %%
732
733 /* yylex defined in ada-lex.c: Reads one token, getting characters */
734 /* through lexptr. */
735
736 /* Remap normal flex interface names (yylex) as well as gratuitiously */
737 /* global symbol names, so we can have multiple flex-generated parsers */
738 /* in gdb. */
739
740 /* (See note above on previous definitions for YACC.) */
741
742 #define yy_create_buffer ada_yy_create_buffer
743 #define yy_delete_buffer ada_yy_delete_buffer
744 #define yy_init_buffer ada_yy_init_buffer
745 #define yy_load_buffer_state ada_yy_load_buffer_state
746 #define yy_switch_to_buffer ada_yy_switch_to_buffer
747 #define yyrestart ada_yyrestart
748 #define yytext ada_yytext
749 #define yywrap ada_yywrap
750
751 static struct obstack temp_parse_space;
752
753 /* The following kludge was found necessary to prevent conflicts between */
754 /* defs.h and non-standard stdlib.h files. */
755 #define qsort __qsort__dummy
756 #include "ada-lex.c"
757
758 int
759 ada_parse (void)
760 {
761 lexer_init (yyin); /* (Re-)initialize lexer. */
762 type_qualifier = NULL;
763 obstack_free (&temp_parse_space, NULL);
764 obstack_init (&temp_parse_space);
765
766 return _ada_parse ();
767 }
768
769 void
770 yyerror (char *msg)
771 {
772 error (_("Error in expression, near `%s'."), lexptr);
773 }
774
775 /* The operator name corresponding to operator symbol STRING (adds
776 quotes and maps to lower-case). Destroys the previous contents of
777 the array pointed to by STRING.ptr. Error if STRING does not match
778 a valid Ada operator. Assumes that STRING.ptr points to a
779 null-terminated string and that, if STRING is a valid operator
780 symbol, the array pointed to by STRING.ptr contains at least
781 STRING.length+3 characters. */
782
783 static struct stoken
784 string_to_operator (struct stoken string)
785 {
786 int i;
787
788 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
789 {
790 if (string.length == strlen (ada_opname_table[i].decoded)-2
791 && strncasecmp (string.ptr, ada_opname_table[i].decoded+1,
792 string.length) == 0)
793 {
794 strncpy (string.ptr, ada_opname_table[i].decoded,
795 string.length+2);
796 string.length += 2;
797 return string;
798 }
799 }
800 error (_("Invalid operator symbol `%s'"), string.ptr);
801 }
802
803 /* Emit expression to access an instance of SYM, in block BLOCK (if
804 * non-NULL), and with :: qualification ORIG_LEFT_CONTEXT. */
805 static void
806 write_var_from_sym (struct block *orig_left_context,
807 struct block *block,
808 struct symbol *sym)
809 {
810 if (orig_left_context == NULL && symbol_read_needs_frame (sym))
811 {
812 if (innermost_block == 0
813 || contained_in (block, innermost_block))
814 innermost_block = block;
815 }
816
817 write_exp_elt_opcode (OP_VAR_VALUE);
818 write_exp_elt_block (block);
819 write_exp_elt_sym (sym);
820 write_exp_elt_opcode (OP_VAR_VALUE);
821 }
822
823 /* Write integer constant ARG of type TYPE. */
824
825 static void
826 write_int (LONGEST arg, struct type *type)
827 {
828 write_exp_elt_opcode (OP_LONG);
829 write_exp_elt_type (type);
830 write_exp_elt_longcst (arg);
831 write_exp_elt_opcode (OP_LONG);
832 }
833
834 /* Write an OPCODE, string, OPCODE sequence to the current expression. */
835 static void
836 write_exp_op_with_string (enum exp_opcode opcode, struct stoken token)
837 {
838 write_exp_elt_opcode (opcode);
839 write_exp_string (token);
840 write_exp_elt_opcode (opcode);
841 }
842
843 /* Emit expression corresponding to the renamed object named
844 * designated by RENAMED_ENTITY[0 .. RENAMED_ENTITY_LEN-1] in the
845 * context of ORIG_LEFT_CONTEXT, to which is applied the operations
846 * encoded by RENAMING_EXPR. MAX_DEPTH is the maximum number of
847 * cascaded renamings to allow. If ORIG_LEFT_CONTEXT is null, it
848 * defaults to the currently selected block. ORIG_SYMBOL is the
849 * symbol that originally encoded the renaming. It is needed only
850 * because its prefix also qualifies any index variables used to index
851 * or slice an array. It should not be necessary once we go to the
852 * new encoding entirely (FIXME pnh 7/20/2007). */
853
854 static void
855 write_object_renaming (struct block *orig_left_context,
856 const char *renamed_entity, int renamed_entity_len,
857 const char *renaming_expr, int max_depth)
858 {
859 char *name;
860 enum { SIMPLE_INDEX, LOWER_BOUND, UPPER_BOUND } slice_state;
861 struct symbol *sym;
862 struct block *block;
863
864 if (max_depth <= 0)
865 error (_("Could not find renamed symbol"));
866
867 if (orig_left_context == NULL)
868 orig_left_context = get_selected_block (NULL);
869
870 name = obsavestring (renamed_entity, renamed_entity_len, &temp_parse_space);
871 sym = ada_lookup_encoded_symbol (name, orig_left_context, VAR_DOMAIN,
872 &block);
873 if (sym == NULL)
874 error (_("Could not find renamed variable: %s"), ada_decode (name));
875 else if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
876 /* We have a renaming of an old-style renaming symbol. Don't
877 trust the block information. */
878 block = orig_left_context;
879
880 {
881 const char *inner_renamed_entity;
882 int inner_renamed_entity_len;
883 const char *inner_renaming_expr;
884
885 switch (ada_parse_renaming (sym, &inner_renamed_entity,
886 &inner_renamed_entity_len,
887 &inner_renaming_expr))
888 {
889 case ADA_NOT_RENAMING:
890 write_var_from_sym (orig_left_context, block, sym);
891 break;
892 case ADA_OBJECT_RENAMING:
893 write_object_renaming (block,
894 inner_renamed_entity, inner_renamed_entity_len,
895 inner_renaming_expr, max_depth - 1);
896 break;
897 default:
898 goto BadEncoding;
899 }
900 }
901
902 slice_state = SIMPLE_INDEX;
903 while (*renaming_expr == 'X')
904 {
905 renaming_expr += 1;
906
907 switch (*renaming_expr) {
908 case 'A':
909 renaming_expr += 1;
910 write_exp_elt_opcode (UNOP_IND);
911 break;
912 case 'L':
913 slice_state = LOWER_BOUND;
914 case 'S':
915 renaming_expr += 1;
916 if (isdigit (*renaming_expr))
917 {
918 char *next;
919 long val = strtol (renaming_expr, &next, 10);
920 if (next == renaming_expr)
921 goto BadEncoding;
922 renaming_expr = next;
923 write_exp_elt_opcode (OP_LONG);
924 write_exp_elt_type (type_int ());
925 write_exp_elt_longcst ((LONGEST) val);
926 write_exp_elt_opcode (OP_LONG);
927 }
928 else
929 {
930 const char *end;
931 char *index_name;
932 struct symbol *index_sym;
933
934 end = strchr (renaming_expr, 'X');
935 if (end == NULL)
936 end = renaming_expr + strlen (renaming_expr);
937
938 index_name =
939 obsavestring (renaming_expr, end - renaming_expr,
940 &temp_parse_space);
941 renaming_expr = end;
942
943 index_sym = ada_lookup_encoded_symbol (index_name, NULL,
944 VAR_DOMAIN, &block);
945 if (index_sym == NULL)
946 error (_("Could not find %s"), index_name);
947 else if (SYMBOL_CLASS (index_sym) == LOC_TYPEDEF)
948 /* Index is an old-style renaming symbol. */
949 block = orig_left_context;
950 write_var_from_sym (NULL, block, index_sym);
951 }
952 if (slice_state == SIMPLE_INDEX)
953 {
954 write_exp_elt_opcode (OP_FUNCALL);
955 write_exp_elt_longcst ((LONGEST) 1);
956 write_exp_elt_opcode (OP_FUNCALL);
957 }
958 else if (slice_state == LOWER_BOUND)
959 slice_state = UPPER_BOUND;
960 else if (slice_state == UPPER_BOUND)
961 {
962 write_exp_elt_opcode (TERNOP_SLICE);
963 slice_state = SIMPLE_INDEX;
964 }
965 break;
966
967 case 'R':
968 {
969 struct stoken field_name;
970 const char *end;
971 renaming_expr += 1;
972
973 if (slice_state != SIMPLE_INDEX)
974 goto BadEncoding;
975 end = strchr (renaming_expr, 'X');
976 if (end == NULL)
977 end = renaming_expr + strlen (renaming_expr);
978 field_name.length = end - renaming_expr;
979 field_name.ptr = xmalloc (end - renaming_expr + 1);
980 strncpy (field_name.ptr, renaming_expr, end - renaming_expr);
981 field_name.ptr[end - renaming_expr] = '\000';
982 renaming_expr = end;
983 write_exp_op_with_string (STRUCTOP_STRUCT, field_name);
984 break;
985 }
986
987 default:
988 goto BadEncoding;
989 }
990 }
991 if (slice_state == SIMPLE_INDEX)
992 return;
993
994 BadEncoding:
995 error (_("Internal error in encoding of renaming declaration"));
996 }
997
998 static struct block*
999 block_lookup (struct block *context, char *raw_name)
1000 {
1001 char *name;
1002 struct ada_symbol_info *syms;
1003 int nsyms;
1004 struct symtab *symtab;
1005
1006 if (raw_name[0] == '\'')
1007 {
1008 raw_name += 1;
1009 name = raw_name;
1010 }
1011 else
1012 name = ada_encode (raw_name);
1013
1014 nsyms = ada_lookup_symbol_list (name, context, VAR_DOMAIN, &syms);
1015 if (context == NULL &&
1016 (nsyms == 0 || SYMBOL_CLASS (syms[0].sym) != LOC_BLOCK))
1017 symtab = lookup_symtab (name);
1018 else
1019 symtab = NULL;
1020
1021 if (symtab != NULL)
1022 return BLOCKVECTOR_BLOCK (BLOCKVECTOR (symtab), STATIC_BLOCK);
1023 else if (nsyms == 0 || SYMBOL_CLASS (syms[0].sym) != LOC_BLOCK)
1024 {
1025 if (context == NULL)
1026 error (_("No file or function \"%s\"."), raw_name);
1027 else
1028 error (_("No function \"%s\" in specified context."), raw_name);
1029 }
1030 else
1031 {
1032 if (nsyms > 1)
1033 warning (_("Function name \"%s\" ambiguous here"), raw_name);
1034 return SYMBOL_BLOCK_VALUE (syms[0].sym);
1035 }
1036 }
1037
1038 static struct symbol*
1039 select_possible_type_sym (struct ada_symbol_info *syms, int nsyms)
1040 {
1041 int i;
1042 int preferred_index;
1043 struct type *preferred_type;
1044
1045 preferred_index = -1; preferred_type = NULL;
1046 for (i = 0; i < nsyms; i += 1)
1047 switch (SYMBOL_CLASS (syms[i].sym))
1048 {
1049 case LOC_TYPEDEF:
1050 if (ada_prefer_type (SYMBOL_TYPE (syms[i].sym), preferred_type))
1051 {
1052 preferred_index = i;
1053 preferred_type = SYMBOL_TYPE (syms[i].sym);
1054 }
1055 break;
1056 case LOC_REGISTER:
1057 case LOC_ARG:
1058 case LOC_REF_ARG:
1059 case LOC_REGPARM_ADDR:
1060 case LOC_LOCAL:
1061 case LOC_COMPUTED:
1062 return NULL;
1063 default:
1064 break;
1065 }
1066 if (preferred_type == NULL)
1067 return NULL;
1068 return syms[preferred_index].sym;
1069 }
1070
1071 static struct type*
1072 find_primitive_type (char *name)
1073 {
1074 struct type *type;
1075 type = language_lookup_primitive_type_by_name (current_language,
1076 current_gdbarch,
1077 name);
1078 if (type == NULL && strcmp ("system__address", name) == 0)
1079 type = type_system_address ();
1080
1081 if (type != NULL)
1082 {
1083 /* Check to see if we have a regular definition of this
1084 type that just didn't happen to have been read yet. */
1085 int ntypes;
1086 struct symbol *sym;
1087 char *expanded_name =
1088 (char *) alloca (strlen (name) + sizeof ("standard__"));
1089 strcpy (expanded_name, "standard__");
1090 strcat (expanded_name, name);
1091 sym = ada_lookup_symbol (expanded_name, NULL, VAR_DOMAIN, NULL);
1092 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1093 type = SYMBOL_TYPE (sym);
1094 }
1095
1096 return type;
1097 }
1098
1099 static int
1100 chop_selector (char *name, int end)
1101 {
1102 int i;
1103 for (i = end - 1; i > 0; i -= 1)
1104 if (name[i] == '.' || (name[i] == '_' && name[i+1] == '_'))
1105 return i;
1106 return -1;
1107 }
1108
1109 /* If NAME is a string beginning with a separator (either '__', or
1110 '.'), chop this separator and return the result; else, return
1111 NAME. */
1112
1113 static char *
1114 chop_separator (char *name)
1115 {
1116 if (*name == '.')
1117 return name + 1;
1118
1119 if (name[0] == '_' && name[1] == '_')
1120 return name + 2;
1121
1122 return name;
1123 }
1124
1125 /* Given that SELS is a string of the form (<sep><identifier>)*, where
1126 <sep> is '__' or '.', write the indicated sequence of
1127 STRUCTOP_STRUCT expression operators. */
1128 static void
1129 write_selectors (char *sels)
1130 {
1131 while (*sels != '\0')
1132 {
1133 struct stoken field_name;
1134 char *p = chop_separator (sels);
1135 sels = p;
1136 while (*sels != '\0' && *sels != '.'
1137 && (sels[0] != '_' || sels[1] != '_'))
1138 sels += 1;
1139 field_name.length = sels - p;
1140 field_name.ptr = p;
1141 write_exp_op_with_string (STRUCTOP_STRUCT, field_name);
1142 }
1143 }
1144
1145 /* Write a variable access (OP_VAR_VALUE) to ambiguous encoded name
1146 NAME[0..LEN-1], in block context BLOCK, to be resolved later. Writes
1147 a temporary symbol that is valid until the next call to ada_parse.
1148 */
1149 static void
1150 write_ambiguous_var (struct block *block, char *name, int len)
1151 {
1152 struct symbol *sym =
1153 obstack_alloc (&temp_parse_space, sizeof (struct symbol));
1154 memset (sym, 0, sizeof (struct symbol));
1155 SYMBOL_DOMAIN (sym) = UNDEF_DOMAIN;
1156 SYMBOL_LINKAGE_NAME (sym) = obsavestring (name, len, &temp_parse_space);
1157 SYMBOL_LANGUAGE (sym) = language_ada;
1158
1159 write_exp_elt_opcode (OP_VAR_VALUE);
1160 write_exp_elt_block (block);
1161 write_exp_elt_sym (sym);
1162 write_exp_elt_opcode (OP_VAR_VALUE);
1163 }
1164
1165 /* A convenient wrapper around ada_get_field_index that takes
1166 a non NUL-terminated FIELD_NAME0 and a FIELD_NAME_LEN instead
1167 of a NUL-terminated field name. */
1168
1169 static int
1170 ada_nget_field_index (const struct type *type, const char *field_name0,
1171 int field_name_len, int maybe_missing)
1172 {
1173 char *field_name = alloca ((field_name_len + 1) * sizeof (char));
1174
1175 strncpy (field_name, field_name0, field_name_len);
1176 field_name[field_name_len] = '\0';
1177 return ada_get_field_index (type, field_name, maybe_missing);
1178 }
1179
1180 /* If encoded_field_name is the name of a field inside symbol SYM,
1181 then return the type of that field. Otherwise, return NULL.
1182
1183 This function is actually recursive, so if ENCODED_FIELD_NAME
1184 doesn't match one of the fields of our symbol, then try to see
1185 if ENCODED_FIELD_NAME could not be a succession of field names
1186 (in other words, the user entered an expression of the form
1187 TYPE_NAME.FIELD1.FIELD2.FIELD3), in which case we evaluate
1188 each field name sequentially to obtain the desired field type.
1189 In case of failure, we return NULL. */
1190
1191 static struct type *
1192 get_symbol_field_type (struct symbol *sym, char *encoded_field_name)
1193 {
1194 char *field_name = encoded_field_name;
1195 char *subfield_name;
1196 struct type *type = SYMBOL_TYPE (sym);
1197 int fieldno;
1198
1199 if (type == NULL || field_name == NULL)
1200 return NULL;
1201
1202 while (field_name[0] != '\0')
1203 {
1204 field_name = chop_separator (field_name);
1205
1206 fieldno = ada_get_field_index (type, field_name, 1);
1207 if (fieldno >= 0)
1208 return TYPE_FIELD_TYPE (type, fieldno);
1209
1210 subfield_name = field_name;
1211 while (*subfield_name != '\0' && *subfield_name != '.'
1212 && (subfield_name[0] != '_' || subfield_name[1] != '_'))
1213 subfield_name += 1;
1214
1215 if (subfield_name[0] == '\0')
1216 return NULL;
1217
1218 fieldno = ada_nget_field_index (type, field_name,
1219 subfield_name - field_name, 1);
1220 if (fieldno < 0)
1221 return NULL;
1222
1223 type = TYPE_FIELD_TYPE (type, fieldno);
1224 field_name = subfield_name;
1225 }
1226
1227 return NULL;
1228 }
1229
1230 /* Look up NAME0 (an unencoded identifier or dotted name) in BLOCK (or
1231 expression_block_context if NULL). If it denotes a type, return
1232 that type. Otherwise, write expression code to evaluate it as an
1233 object and return NULL. In this second case, NAME0 will, in general,
1234 have the form <name>(.<selector_name>)*, where <name> is an object
1235 or renaming encoded in the debugging data. Calls error if no
1236 prefix <name> matches a name in the debugging data (i.e., matches
1237 either a complete name or, as a wild-card match, the final
1238 identifier). */
1239
1240 static struct type*
1241 write_var_or_type (struct block *block, struct stoken name0)
1242 {
1243 int depth;
1244 char *encoded_name;
1245 int name_len;
1246
1247 if (block == NULL)
1248 block = expression_context_block;
1249
1250 encoded_name = ada_encode (name0.ptr);
1251 name_len = strlen (encoded_name);
1252 encoded_name = obsavestring (encoded_name, name_len, &temp_parse_space);
1253 for (depth = 0; depth < MAX_RENAMING_CHAIN_LENGTH; depth += 1)
1254 {
1255 int tail_index;
1256
1257 tail_index = name_len;
1258 while (tail_index > 0)
1259 {
1260 int nsyms;
1261 struct ada_symbol_info *syms;
1262 struct symbol *type_sym;
1263 struct symbol *renaming_sym;
1264 const char* renaming;
1265 int renaming_len;
1266 const char* renaming_expr;
1267 int terminator = encoded_name[tail_index];
1268
1269 encoded_name[tail_index] = '\0';
1270 nsyms = ada_lookup_symbol_list (encoded_name, block,
1271 VAR_DOMAIN, &syms);
1272 encoded_name[tail_index] = terminator;
1273
1274 /* A single symbol may rename a package or object. */
1275
1276 /* This should go away when we move entirely to new version.
1277 FIXME pnh 7/20/2007. */
1278 if (nsyms == 1)
1279 {
1280 struct symbol *renaming =
1281 ada_find_renaming_symbol (SYMBOL_LINKAGE_NAME (syms[0].sym),
1282 syms[0].block);
1283
1284 if (renaming != NULL)
1285 syms[0].sym = renaming;
1286 }
1287
1288 type_sym = select_possible_type_sym (syms, nsyms);
1289
1290 if (type_sym != NULL)
1291 renaming_sym = type_sym;
1292 else if (nsyms == 1)
1293 renaming_sym = syms[0].sym;
1294 else
1295 renaming_sym = NULL;
1296
1297 switch (ada_parse_renaming (renaming_sym, &renaming,
1298 &renaming_len, &renaming_expr))
1299 {
1300 case ADA_NOT_RENAMING:
1301 break;
1302 case ADA_PACKAGE_RENAMING:
1303 case ADA_EXCEPTION_RENAMING:
1304 case ADA_SUBPROGRAM_RENAMING:
1305 {
1306 char *new_name
1307 = obstack_alloc (&temp_parse_space,
1308 renaming_len + name_len - tail_index + 1);
1309 strncpy (new_name, renaming, renaming_len);
1310 strcpy (new_name + renaming_len, encoded_name + tail_index);
1311 encoded_name = new_name;
1312 name_len = renaming_len + name_len - tail_index;
1313 goto TryAfterRenaming;
1314 }
1315 case ADA_OBJECT_RENAMING:
1316 write_object_renaming (block, renaming, renaming_len,
1317 renaming_expr, MAX_RENAMING_CHAIN_LENGTH);
1318 write_selectors (encoded_name + tail_index);
1319 return NULL;
1320 default:
1321 internal_error (__FILE__, __LINE__,
1322 _("impossible value from ada_parse_renaming"));
1323 }
1324
1325 if (type_sym != NULL)
1326 {
1327 struct type *field_type;
1328
1329 if (tail_index == name_len)
1330 return SYMBOL_TYPE (type_sym);
1331
1332 /* We have some extraneous characters after the type name.
1333 If this is an expression "TYPE_NAME.FIELD0.[...].FIELDN",
1334 then try to get the type of FIELDN. */
1335 field_type
1336 = get_symbol_field_type (type_sym, encoded_name + tail_index);
1337 if (field_type != NULL)
1338 return field_type;
1339 else
1340 error (_("Invalid attempt to select from type: \"%s\"."),
1341 name0.ptr);
1342 }
1343 else if (tail_index == name_len && nsyms == 0)
1344 {
1345 struct type *type = find_primitive_type (encoded_name);
1346
1347 if (type != NULL)
1348 return type;
1349 }
1350
1351 if (nsyms == 1)
1352 {
1353 write_var_from_sym (block, syms[0].block, syms[0].sym);
1354 write_selectors (encoded_name + tail_index);
1355 return NULL;
1356 }
1357 else if (nsyms == 0)
1358 {
1359 int i;
1360 struct minimal_symbol *msym
1361 = ada_lookup_simple_minsym (encoded_name);
1362 if (msym != NULL)
1363 {
1364 write_exp_msymbol (msym, lookup_function_type (type_int ()),
1365 type_int ());
1366 /* Maybe cause error here rather than later? FIXME? */
1367 write_selectors (encoded_name + tail_index);
1368 return NULL;
1369 }
1370
1371 if (tail_index == name_len
1372 && strncmp (encoded_name, "standard__",
1373 sizeof ("standard__") - 1) == 0)
1374 error (_("No definition of \"%s\" found."), name0.ptr);
1375
1376 tail_index = chop_selector (encoded_name, tail_index);
1377 }
1378 else
1379 {
1380 write_ambiguous_var (block, encoded_name, tail_index);
1381 write_selectors (encoded_name + tail_index);
1382 return NULL;
1383 }
1384 }
1385
1386 if (!have_full_symbols () && !have_partial_symbols () && block == NULL)
1387 error (_("No symbol table is loaded. Use the \"file\" command."));
1388 if (block == expression_context_block)
1389 error (_("No definition of \"%s\" in current context."), name0.ptr);
1390 else
1391 error (_("No definition of \"%s\" in specified context."), name0.ptr);
1392
1393 TryAfterRenaming: ;
1394 }
1395
1396 error (_("Could not find renamed symbol \"%s\""), name0.ptr);
1397
1398 }
1399
1400 /* Write a left side of a component association (e.g., NAME in NAME =>
1401 exp). If NAME has the form of a selected component, write it as an
1402 ordinary expression. If it is a simple variable that unambiguously
1403 corresponds to exactly one symbol that does not denote a type or an
1404 object renaming, also write it normally as an OP_VAR_VALUE.
1405 Otherwise, write it as an OP_NAME.
1406
1407 Unfortunately, we don't know at this point whether NAME is supposed
1408 to denote a record component name or the value of an array index.
1409 Therefore, it is not appropriate to disambiguate an ambiguous name
1410 as we normally would, nor to replace a renaming with its referent.
1411 As a result, in the (one hopes) rare case that one writes an
1412 aggregate such as (R => 42) where R renames an object or is an
1413 ambiguous name, one must write instead ((R) => 42). */
1414
1415 static void
1416 write_name_assoc (struct stoken name)
1417 {
1418 if (strchr (name.ptr, '.') == NULL)
1419 {
1420 struct ada_symbol_info *syms;
1421 int nsyms = ada_lookup_symbol_list (name.ptr, expression_context_block,
1422 VAR_DOMAIN, &syms);
1423 if (nsyms != 1 || SYMBOL_CLASS (syms[0].sym) == LOC_TYPEDEF)
1424 write_exp_op_with_string (OP_NAME, name);
1425 else
1426 write_var_from_sym (NULL, syms[0].block, syms[0].sym);
1427 }
1428 else
1429 if (write_var_or_type (NULL, name) != NULL)
1430 error (_("Invalid use of type."));
1431 }
1432
1433 /* Convert the character literal whose ASCII value would be VAL to the
1434 appropriate value of type TYPE, if there is a translation.
1435 Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
1436 the literal 'A' (VAL == 65), returns 0. */
1437
1438 static LONGEST
1439 convert_char_literal (struct type *type, LONGEST val)
1440 {
1441 char name[7];
1442 int f;
1443
1444 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM)
1445 return val;
1446 sprintf (name, "QU%02x", (int) val);
1447 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
1448 {
1449 if (strcmp (name, TYPE_FIELD_NAME (type, f)) == 0)
1450 return TYPE_FIELD_BITPOS (type, f);
1451 }
1452 return val;
1453 }
1454
1455 static struct type *
1456 type_int (void)
1457 {
1458 return builtin_type (current_gdbarch)->builtin_int;
1459 }
1460
1461 static struct type *
1462 type_long (void)
1463 {
1464 return builtin_type (current_gdbarch)->builtin_long;
1465 }
1466
1467 static struct type *
1468 type_long_long (void)
1469 {
1470 return builtin_type (current_gdbarch)->builtin_long_long;
1471 }
1472
1473 static struct type *
1474 type_float (void)
1475 {
1476 return builtin_type (current_gdbarch)->builtin_float;
1477 }
1478
1479 static struct type *
1480 type_double (void)
1481 {
1482 return builtin_type (current_gdbarch)->builtin_double;
1483 }
1484
1485 static struct type *
1486 type_long_double (void)
1487 {
1488 return builtin_type (current_gdbarch)->builtin_long_double;
1489 }
1490
1491 static struct type *
1492 type_char (void)
1493 {
1494 return language_string_char_type (current_language, current_gdbarch);
1495 }
1496
1497 static struct type *
1498 type_system_address (void)
1499 {
1500 struct type *type
1501 = language_lookup_primitive_type_by_name (current_language,
1502 current_gdbarch,
1503 "system__address");
1504 return type != NULL ? type : lookup_pointer_type (builtin_type_void);
1505 }
1506
1507 void
1508 _initialize_ada_exp (void)
1509 {
1510 obstack_init (&temp_parse_space);
1511 }
1512
1513 /* FIXME: hilfingr/2004-10-05: Hack to remove warning. The function
1514 string_to_operator is supposed to be used for cases where one
1515 calls an operator function with prefix notation, as in
1516 "+" (a, b), but at some point, this code seems to have gone
1517 missing. */
1518
1519 struct stoken (*dummy_string_to_ada_operator) (struct stoken)
1520 = string_to_operator;
This page took 0.086629 seconds and 4 git commands to generate.