* gdbarch.sh: Document the return_value method. Explain that
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 #ifndef ADA_RETAIN_DOTS
61 #define ADA_RETAIN_DOTS 0
62 #endif
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static void extract_string (CORE_ADDR addr, char *buf);
73
74 static void modify_general_field (char *, LONGEST, int, int);
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *ensure_lval (struct value *, CORE_ADDR *);
109
110 static struct value *convert_actual (struct value *, struct type *,
111 CORE_ADDR *);
112
113 static struct value *make_array_descriptor (struct type *, struct value *,
114 CORE_ADDR *);
115
116 static void ada_add_block_symbols (struct obstack *,
117 struct block *, const char *,
118 domain_enum, struct objfile *,
119 struct symtab *, int);
120
121 static int is_nonfunction (struct ada_symbol_info *, int);
122
123 static void add_defn_to_vec (struct obstack *, struct symbol *,
124 struct block *, struct symtab *);
125
126 static int num_defns_collected (struct obstack *);
127
128 static struct ada_symbol_info *defns_collected (struct obstack *, int);
129
130 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
131 *, const char *, int,
132 domain_enum, int);
133
134 static struct symtab *symtab_for_sym (struct symbol *);
135
136 static struct value *resolve_subexp (struct expression **, int *, int,
137 struct type *);
138
139 static void replace_operator_with_call (struct expression **, int, int, int,
140 struct symbol *, struct block *);
141
142 static int possible_user_operator_p (enum exp_opcode, struct value **);
143
144 static char *ada_op_name (enum exp_opcode);
145
146 static const char *ada_decoded_op_name (enum exp_opcode);
147
148 static int numeric_type_p (struct type *);
149
150 static int integer_type_p (struct type *);
151
152 static int scalar_type_p (struct type *);
153
154 static int discrete_type_p (struct type *);
155
156 static enum ada_renaming_category parse_old_style_renaming (struct type *,
157 const char **,
158 int *,
159 const char **);
160
161 static struct symbol *find_old_style_renaming_symbol (const char *,
162 struct block *);
163
164 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
165 int, int, int *);
166
167 static struct value *evaluate_subexp (struct type *, struct expression *,
168 int *, enum noside);
169
170 static struct value *evaluate_subexp_type (struct expression *, int *);
171
172 static int is_dynamic_field (struct type *, int);
173
174 static struct type *to_fixed_variant_branch_type (struct type *,
175 const gdb_byte *,
176 CORE_ADDR, struct value *);
177
178 static struct type *to_fixed_array_type (struct type *, struct value *, int);
179
180 static struct type *to_fixed_range_type (char *, struct value *,
181 struct objfile *);
182
183 static struct type *to_static_fixed_type (struct type *);
184 static struct type *static_unwrap_type (struct type *type);
185
186 static struct value *unwrap_value (struct value *);
187
188 static struct type *packed_array_type (struct type *, long *);
189
190 static struct type *decode_packed_array_type (struct type *);
191
192 static struct value *decode_packed_array (struct value *);
193
194 static struct value *value_subscript_packed (struct value *, int,
195 struct value **);
196
197 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
198
199 static struct value *coerce_unspec_val_to_type (struct value *,
200 struct type *);
201
202 static struct value *get_var_value (char *, char *);
203
204 static int lesseq_defined_than (struct symbol *, struct symbol *);
205
206 static int equiv_types (struct type *, struct type *);
207
208 static int is_name_suffix (const char *);
209
210 static int wild_match (const char *, int, const char *);
211
212 static struct value *ada_coerce_ref (struct value *);
213
214 static LONGEST pos_atr (struct value *);
215
216 static struct value *value_pos_atr (struct value *);
217
218 static struct value *value_val_atr (struct type *, struct value *);
219
220 static struct symbol *standard_lookup (const char *, const struct block *,
221 domain_enum);
222
223 static struct value *ada_search_struct_field (char *, struct value *, int,
224 struct type *);
225
226 static struct value *ada_value_primitive_field (struct value *, int, int,
227 struct type *);
228
229 static int find_struct_field (char *, struct type *, int,
230 struct type **, int *, int *, int *, int *);
231
232 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
233 struct value *);
234
235 static struct value *ada_to_fixed_value (struct value *);
236
237 static int ada_resolve_function (struct ada_symbol_info *, int,
238 struct value **, int, const char *,
239 struct type *);
240
241 static struct value *ada_coerce_to_simple_array (struct value *);
242
243 static int ada_is_direct_array_type (struct type *);
244
245 static void ada_language_arch_info (struct gdbarch *,
246 struct language_arch_info *);
247
248 static void check_size (const struct type *);
249
250 static struct value *ada_index_struct_field (int, struct value *, int,
251 struct type *);
252
253 static struct value *assign_aggregate (struct value *, struct value *,
254 struct expression *, int *, enum noside);
255
256 static void aggregate_assign_from_choices (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *,
259 int, LONGEST, LONGEST);
260
261 static void aggregate_assign_positional (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int *, int,
264 LONGEST, LONGEST);
265
266
267 static void aggregate_assign_others (struct value *, struct value *,
268 struct expression *,
269 int *, LONGEST *, int, LONGEST, LONGEST);
270
271
272 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
273
274
275 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
276 int *, enum noside);
277
278 static void ada_forward_operator_length (struct expression *, int, int *,
279 int *);
280 \f
281
282
283 /* Maximum-sized dynamic type. */
284 static unsigned int varsize_limit;
285
286 /* FIXME: brobecker/2003-09-17: No longer a const because it is
287 returned by a function that does not return a const char *. */
288 static char *ada_completer_word_break_characters =
289 #ifdef VMS
290 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
291 #else
292 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
293 #endif
294
295 /* The name of the symbol to use to get the name of the main subprogram. */
296 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
297 = "__gnat_ada_main_program_name";
298
299 /* Limit on the number of warnings to raise per expression evaluation. */
300 static int warning_limit = 2;
301
302 /* Number of warning messages issued; reset to 0 by cleanups after
303 expression evaluation. */
304 static int warnings_issued = 0;
305
306 static const char *known_runtime_file_name_patterns[] = {
307 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
308 };
309
310 static const char *known_auxiliary_function_name_patterns[] = {
311 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
312 };
313
314 /* Space for allocating results of ada_lookup_symbol_list. */
315 static struct obstack symbol_list_obstack;
316
317 /* Utilities */
318
319 /* Given DECODED_NAME a string holding a symbol name in its
320 decoded form (ie using the Ada dotted notation), returns
321 its unqualified name. */
322
323 static const char *
324 ada_unqualified_name (const char *decoded_name)
325 {
326 const char *result = strrchr (decoded_name, '.');
327
328 if (result != NULL)
329 result++; /* Skip the dot... */
330 else
331 result = decoded_name;
332
333 return result;
334 }
335
336 /* Return a string starting with '<', followed by STR, and '>'.
337 The result is good until the next call. */
338
339 static char *
340 add_angle_brackets (const char *str)
341 {
342 static char *result = NULL;
343
344 xfree (result);
345 result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char));
346
347 sprintf (result, "<%s>", str);
348 return result;
349 }
350
351 static char *
352 ada_get_gdb_completer_word_break_characters (void)
353 {
354 return ada_completer_word_break_characters;
355 }
356
357 /* Print an array element index using the Ada syntax. */
358
359 static void
360 ada_print_array_index (struct value *index_value, struct ui_file *stream,
361 int format, enum val_prettyprint pretty)
362 {
363 LA_VALUE_PRINT (index_value, stream, format, pretty);
364 fprintf_filtered (stream, " => ");
365 }
366
367 /* Read the string located at ADDR from the inferior and store the
368 result into BUF. */
369
370 static void
371 extract_string (CORE_ADDR addr, char *buf)
372 {
373 int char_index = 0;
374
375 /* Loop, reading one byte at a time, until we reach the '\000'
376 end-of-string marker. */
377 do
378 {
379 target_read_memory (addr + char_index * sizeof (char),
380 buf + char_index * sizeof (char), sizeof (char));
381 char_index++;
382 }
383 while (buf[char_index - 1] != '\000');
384 }
385
386 /* Assuming VECT points to an array of *SIZE objects of size
387 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
388 updating *SIZE as necessary and returning the (new) array. */
389
390 void *
391 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
392 {
393 if (*size < min_size)
394 {
395 *size *= 2;
396 if (*size < min_size)
397 *size = min_size;
398 vect = xrealloc (vect, *size * element_size);
399 }
400 return vect;
401 }
402
403 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
404 suffix of FIELD_NAME beginning "___". */
405
406 static int
407 field_name_match (const char *field_name, const char *target)
408 {
409 int len = strlen (target);
410 return
411 (strncmp (field_name, target, len) == 0
412 && (field_name[len] == '\0'
413 || (strncmp (field_name + len, "___", 3) == 0
414 && strcmp (field_name + strlen (field_name) - 6,
415 "___XVN") != 0)));
416 }
417
418
419 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
420 FIELD_NAME, and return its index. This function also handles fields
421 whose name have ___ suffixes because the compiler sometimes alters
422 their name by adding such a suffix to represent fields with certain
423 constraints. If the field could not be found, return a negative
424 number if MAYBE_MISSING is set. Otherwise raise an error. */
425
426 int
427 ada_get_field_index (const struct type *type, const char *field_name,
428 int maybe_missing)
429 {
430 int fieldno;
431 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
432 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
433 return fieldno;
434
435 if (!maybe_missing)
436 error (_("Unable to find field %s in struct %s. Aborting"),
437 field_name, TYPE_NAME (type));
438
439 return -1;
440 }
441
442 /* The length of the prefix of NAME prior to any "___" suffix. */
443
444 int
445 ada_name_prefix_len (const char *name)
446 {
447 if (name == NULL)
448 return 0;
449 else
450 {
451 const char *p = strstr (name, "___");
452 if (p == NULL)
453 return strlen (name);
454 else
455 return p - name;
456 }
457 }
458
459 /* Return non-zero if SUFFIX is a suffix of STR.
460 Return zero if STR is null. */
461
462 static int
463 is_suffix (const char *str, const char *suffix)
464 {
465 int len1, len2;
466 if (str == NULL)
467 return 0;
468 len1 = strlen (str);
469 len2 = strlen (suffix);
470 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
471 }
472
473 /* Create a value of type TYPE whose contents come from VALADDR, if it
474 is non-null, and whose memory address (in the inferior) is
475 ADDRESS. */
476
477 struct value *
478 value_from_contents_and_address (struct type *type,
479 const gdb_byte *valaddr,
480 CORE_ADDR address)
481 {
482 struct value *v = allocate_value (type);
483 if (valaddr == NULL)
484 set_value_lazy (v, 1);
485 else
486 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
487 VALUE_ADDRESS (v) = address;
488 if (address != 0)
489 VALUE_LVAL (v) = lval_memory;
490 return v;
491 }
492
493 /* The contents of value VAL, treated as a value of type TYPE. The
494 result is an lval in memory if VAL is. */
495
496 static struct value *
497 coerce_unspec_val_to_type (struct value *val, struct type *type)
498 {
499 type = ada_check_typedef (type);
500 if (value_type (val) == type)
501 return val;
502 else
503 {
504 struct value *result;
505
506 /* Make sure that the object size is not unreasonable before
507 trying to allocate some memory for it. */
508 check_size (type);
509
510 result = allocate_value (type);
511 VALUE_LVAL (result) = VALUE_LVAL (val);
512 set_value_bitsize (result, value_bitsize (val));
513 set_value_bitpos (result, value_bitpos (val));
514 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
515 if (value_lazy (val)
516 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
517 set_value_lazy (result, 1);
518 else
519 memcpy (value_contents_raw (result), value_contents (val),
520 TYPE_LENGTH (type));
521 return result;
522 }
523 }
524
525 static const gdb_byte *
526 cond_offset_host (const gdb_byte *valaddr, long offset)
527 {
528 if (valaddr == NULL)
529 return NULL;
530 else
531 return valaddr + offset;
532 }
533
534 static CORE_ADDR
535 cond_offset_target (CORE_ADDR address, long offset)
536 {
537 if (address == 0)
538 return 0;
539 else
540 return address + offset;
541 }
542
543 /* Issue a warning (as for the definition of warning in utils.c, but
544 with exactly one argument rather than ...), unless the limit on the
545 number of warnings has passed during the evaluation of the current
546 expression. */
547
548 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
549 provided by "complaint". */
550 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
551
552 static void
553 lim_warning (const char *format, ...)
554 {
555 va_list args;
556 va_start (args, format);
557
558 warnings_issued += 1;
559 if (warnings_issued <= warning_limit)
560 vwarning (format, args);
561
562 va_end (args);
563 }
564
565 /* Issue an error if the size of an object of type T is unreasonable,
566 i.e. if it would be a bad idea to allocate a value of this type in
567 GDB. */
568
569 static void
570 check_size (const struct type *type)
571 {
572 if (TYPE_LENGTH (type) > varsize_limit)
573 error (_("object size is larger than varsize-limit"));
574 }
575
576
577 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
578 gdbtypes.h, but some of the necessary definitions in that file
579 seem to have gone missing. */
580
581 /* Maximum value of a SIZE-byte signed integer type. */
582 static LONGEST
583 max_of_size (int size)
584 {
585 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
586 return top_bit | (top_bit - 1);
587 }
588
589 /* Minimum value of a SIZE-byte signed integer type. */
590 static LONGEST
591 min_of_size (int size)
592 {
593 return -max_of_size (size) - 1;
594 }
595
596 /* Maximum value of a SIZE-byte unsigned integer type. */
597 static ULONGEST
598 umax_of_size (int size)
599 {
600 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
601 return top_bit | (top_bit - 1);
602 }
603
604 /* Maximum value of integral type T, as a signed quantity. */
605 static LONGEST
606 max_of_type (struct type *t)
607 {
608 if (TYPE_UNSIGNED (t))
609 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
610 else
611 return max_of_size (TYPE_LENGTH (t));
612 }
613
614 /* Minimum value of integral type T, as a signed quantity. */
615 static LONGEST
616 min_of_type (struct type *t)
617 {
618 if (TYPE_UNSIGNED (t))
619 return 0;
620 else
621 return min_of_size (TYPE_LENGTH (t));
622 }
623
624 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
625 static struct value *
626 discrete_type_high_bound (struct type *type)
627 {
628 switch (TYPE_CODE (type))
629 {
630 case TYPE_CODE_RANGE:
631 return value_from_longest (TYPE_TARGET_TYPE (type),
632 TYPE_HIGH_BOUND (type));
633 case TYPE_CODE_ENUM:
634 return
635 value_from_longest (type,
636 TYPE_FIELD_BITPOS (type,
637 TYPE_NFIELDS (type) - 1));
638 case TYPE_CODE_INT:
639 return value_from_longest (type, max_of_type (type));
640 default:
641 error (_("Unexpected type in discrete_type_high_bound."));
642 }
643 }
644
645 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
646 static struct value *
647 discrete_type_low_bound (struct type *type)
648 {
649 switch (TYPE_CODE (type))
650 {
651 case TYPE_CODE_RANGE:
652 return value_from_longest (TYPE_TARGET_TYPE (type),
653 TYPE_LOW_BOUND (type));
654 case TYPE_CODE_ENUM:
655 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
656 case TYPE_CODE_INT:
657 return value_from_longest (type, min_of_type (type));
658 default:
659 error (_("Unexpected type in discrete_type_low_bound."));
660 }
661 }
662
663 /* The identity on non-range types. For range types, the underlying
664 non-range scalar type. */
665
666 static struct type *
667 base_type (struct type *type)
668 {
669 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
670 {
671 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
672 return type;
673 type = TYPE_TARGET_TYPE (type);
674 }
675 return type;
676 }
677 \f
678
679 /* Language Selection */
680
681 /* If the main program is in Ada, return language_ada, otherwise return LANG
682 (the main program is in Ada iif the adainit symbol is found).
683
684 MAIN_PST is not used. */
685
686 enum language
687 ada_update_initial_language (enum language lang,
688 struct partial_symtab *main_pst)
689 {
690 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
691 (struct objfile *) NULL) != NULL)
692 return language_ada;
693
694 return lang;
695 }
696
697 /* If the main procedure is written in Ada, then return its name.
698 The result is good until the next call. Return NULL if the main
699 procedure doesn't appear to be in Ada. */
700
701 char *
702 ada_main_name (void)
703 {
704 struct minimal_symbol *msym;
705 CORE_ADDR main_program_name_addr;
706 static char main_program_name[1024];
707
708 /* For Ada, the name of the main procedure is stored in a specific
709 string constant, generated by the binder. Look for that symbol,
710 extract its address, and then read that string. If we didn't find
711 that string, then most probably the main procedure is not written
712 in Ada. */
713 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
714
715 if (msym != NULL)
716 {
717 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
718 if (main_program_name_addr == 0)
719 error (_("Invalid address for Ada main program name."));
720
721 extract_string (main_program_name_addr, main_program_name);
722 return main_program_name;
723 }
724
725 /* The main procedure doesn't seem to be in Ada. */
726 return NULL;
727 }
728 \f
729 /* Symbols */
730
731 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
732 of NULLs. */
733
734 const struct ada_opname_map ada_opname_table[] = {
735 {"Oadd", "\"+\"", BINOP_ADD},
736 {"Osubtract", "\"-\"", BINOP_SUB},
737 {"Omultiply", "\"*\"", BINOP_MUL},
738 {"Odivide", "\"/\"", BINOP_DIV},
739 {"Omod", "\"mod\"", BINOP_MOD},
740 {"Orem", "\"rem\"", BINOP_REM},
741 {"Oexpon", "\"**\"", BINOP_EXP},
742 {"Olt", "\"<\"", BINOP_LESS},
743 {"Ole", "\"<=\"", BINOP_LEQ},
744 {"Ogt", "\">\"", BINOP_GTR},
745 {"Oge", "\">=\"", BINOP_GEQ},
746 {"Oeq", "\"=\"", BINOP_EQUAL},
747 {"One", "\"/=\"", BINOP_NOTEQUAL},
748 {"Oand", "\"and\"", BINOP_BITWISE_AND},
749 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
750 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
751 {"Oconcat", "\"&\"", BINOP_CONCAT},
752 {"Oabs", "\"abs\"", UNOP_ABS},
753 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
754 {"Oadd", "\"+\"", UNOP_PLUS},
755 {"Osubtract", "\"-\"", UNOP_NEG},
756 {NULL, NULL}
757 };
758
759 /* Return non-zero if STR should be suppressed in info listings. */
760
761 static int
762 is_suppressed_name (const char *str)
763 {
764 if (strncmp (str, "_ada_", 5) == 0)
765 str += 5;
766 if (str[0] == '_' || str[0] == '\000')
767 return 1;
768 else
769 {
770 const char *p;
771 const char *suffix = strstr (str, "___");
772 if (suffix != NULL && suffix[3] != 'X')
773 return 1;
774 if (suffix == NULL)
775 suffix = str + strlen (str);
776 for (p = suffix - 1; p != str; p -= 1)
777 if (isupper (*p))
778 {
779 int i;
780 if (p[0] == 'X' && p[-1] != '_')
781 goto OK;
782 if (*p != 'O')
783 return 1;
784 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
785 if (strncmp (ada_opname_table[i].encoded, p,
786 strlen (ada_opname_table[i].encoded)) == 0)
787 goto OK;
788 return 1;
789 OK:;
790 }
791 return 0;
792 }
793 }
794
795 /* The "encoded" form of DECODED, according to GNAT conventions.
796 The result is valid until the next call to ada_encode. */
797
798 char *
799 ada_encode (const char *decoded)
800 {
801 static char *encoding_buffer = NULL;
802 static size_t encoding_buffer_size = 0;
803 const char *p;
804 int k;
805
806 if (decoded == NULL)
807 return NULL;
808
809 GROW_VECT (encoding_buffer, encoding_buffer_size,
810 2 * strlen (decoded) + 10);
811
812 k = 0;
813 for (p = decoded; *p != '\0'; p += 1)
814 {
815 if (!ADA_RETAIN_DOTS && *p == '.')
816 {
817 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
818 k += 2;
819 }
820 else if (*p == '"')
821 {
822 const struct ada_opname_map *mapping;
823
824 for (mapping = ada_opname_table;
825 mapping->encoded != NULL
826 && strncmp (mapping->decoded, p,
827 strlen (mapping->decoded)) != 0; mapping += 1)
828 ;
829 if (mapping->encoded == NULL)
830 error (_("invalid Ada operator name: %s"), p);
831 strcpy (encoding_buffer + k, mapping->encoded);
832 k += strlen (mapping->encoded);
833 break;
834 }
835 else
836 {
837 encoding_buffer[k] = *p;
838 k += 1;
839 }
840 }
841
842 encoding_buffer[k] = '\0';
843 return encoding_buffer;
844 }
845
846 /* Return NAME folded to lower case, or, if surrounded by single
847 quotes, unfolded, but with the quotes stripped away. Result good
848 to next call. */
849
850 char *
851 ada_fold_name (const char *name)
852 {
853 static char *fold_buffer = NULL;
854 static size_t fold_buffer_size = 0;
855
856 int len = strlen (name);
857 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
858
859 if (name[0] == '\'')
860 {
861 strncpy (fold_buffer, name + 1, len - 2);
862 fold_buffer[len - 2] = '\000';
863 }
864 else
865 {
866 int i;
867 for (i = 0; i <= len; i += 1)
868 fold_buffer[i] = tolower (name[i]);
869 }
870
871 return fold_buffer;
872 }
873
874 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
875
876 static int
877 is_lower_alphanum (const char c)
878 {
879 return (isdigit (c) || (isalpha (c) && islower (c)));
880 }
881
882 /* Remove either of these suffixes:
883 . .{DIGIT}+
884 . ${DIGIT}+
885 . ___{DIGIT}+
886 . __{DIGIT}+.
887 These are suffixes introduced by the compiler for entities such as
888 nested subprogram for instance, in order to avoid name clashes.
889 They do not serve any purpose for the debugger. */
890
891 static void
892 ada_remove_trailing_digits (const char *encoded, int *len)
893 {
894 if (*len > 1 && isdigit (encoded[*len - 1]))
895 {
896 int i = *len - 2;
897 while (i > 0 && isdigit (encoded[i]))
898 i--;
899 if (i >= 0 && encoded[i] == '.')
900 *len = i;
901 else if (i >= 0 && encoded[i] == '$')
902 *len = i;
903 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
904 *len = i - 2;
905 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
906 *len = i - 1;
907 }
908 }
909
910 /* Remove the suffix introduced by the compiler for protected object
911 subprograms. */
912
913 static void
914 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
915 {
916 /* Remove trailing N. */
917
918 /* Protected entry subprograms are broken into two
919 separate subprograms: The first one is unprotected, and has
920 a 'N' suffix; the second is the protected version, and has
921 the 'P' suffix. The second calls the first one after handling
922 the protection. Since the P subprograms are internally generated,
923 we leave these names undecoded, giving the user a clue that this
924 entity is internal. */
925
926 if (*len > 1
927 && encoded[*len - 1] == 'N'
928 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
929 *len = *len - 1;
930 }
931
932 /* If ENCODED follows the GNAT entity encoding conventions, then return
933 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
934 replaced by ENCODED.
935
936 The resulting string is valid until the next call of ada_decode.
937 If the string is unchanged by decoding, the original string pointer
938 is returned. */
939
940 const char *
941 ada_decode (const char *encoded)
942 {
943 int i, j;
944 int len0;
945 const char *p;
946 char *decoded;
947 int at_start_name;
948 static char *decoding_buffer = NULL;
949 static size_t decoding_buffer_size = 0;
950
951 /* The name of the Ada main procedure starts with "_ada_".
952 This prefix is not part of the decoded name, so skip this part
953 if we see this prefix. */
954 if (strncmp (encoded, "_ada_", 5) == 0)
955 encoded += 5;
956
957 /* If the name starts with '_', then it is not a properly encoded
958 name, so do not attempt to decode it. Similarly, if the name
959 starts with '<', the name should not be decoded. */
960 if (encoded[0] == '_' || encoded[0] == '<')
961 goto Suppress;
962
963 len0 = strlen (encoded);
964
965 ada_remove_trailing_digits (encoded, &len0);
966 ada_remove_po_subprogram_suffix (encoded, &len0);
967
968 /* Remove the ___X.* suffix if present. Do not forget to verify that
969 the suffix is located before the current "end" of ENCODED. We want
970 to avoid re-matching parts of ENCODED that have previously been
971 marked as discarded (by decrementing LEN0). */
972 p = strstr (encoded, "___");
973 if (p != NULL && p - encoded < len0 - 3)
974 {
975 if (p[3] == 'X')
976 len0 = p - encoded;
977 else
978 goto Suppress;
979 }
980
981 /* Remove any trailing TKB suffix. It tells us that this symbol
982 is for the body of a task, but that information does not actually
983 appear in the decoded name. */
984
985 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
986 len0 -= 3;
987
988 /* Remove trailing "B" suffixes. */
989 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
990
991 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
992 len0 -= 1;
993
994 /* Make decoded big enough for possible expansion by operator name. */
995
996 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
997 decoded = decoding_buffer;
998
999 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1000
1001 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1002 {
1003 i = len0 - 2;
1004 while ((i >= 0 && isdigit (encoded[i]))
1005 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1006 i -= 1;
1007 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1008 len0 = i - 1;
1009 else if (encoded[i] == '$')
1010 len0 = i;
1011 }
1012
1013 /* The first few characters that are not alphabetic are not part
1014 of any encoding we use, so we can copy them over verbatim. */
1015
1016 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1017 decoded[j] = encoded[i];
1018
1019 at_start_name = 1;
1020 while (i < len0)
1021 {
1022 /* Is this a symbol function? */
1023 if (at_start_name && encoded[i] == 'O')
1024 {
1025 int k;
1026 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1027 {
1028 int op_len = strlen (ada_opname_table[k].encoded);
1029 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1030 op_len - 1) == 0)
1031 && !isalnum (encoded[i + op_len]))
1032 {
1033 strcpy (decoded + j, ada_opname_table[k].decoded);
1034 at_start_name = 0;
1035 i += op_len;
1036 j += strlen (ada_opname_table[k].decoded);
1037 break;
1038 }
1039 }
1040 if (ada_opname_table[k].encoded != NULL)
1041 continue;
1042 }
1043 at_start_name = 0;
1044
1045 /* Replace "TK__" with "__", which will eventually be translated
1046 into "." (just below). */
1047
1048 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1049 i += 2;
1050
1051 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1052 be translated into "." (just below). These are internal names
1053 generated for anonymous blocks inside which our symbol is nested. */
1054
1055 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1056 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1057 && isdigit (encoded [i+4]))
1058 {
1059 int k = i + 5;
1060
1061 while (k < len0 && isdigit (encoded[k]))
1062 k++; /* Skip any extra digit. */
1063
1064 /* Double-check that the "__B_{DIGITS}+" sequence we found
1065 is indeed followed by "__". */
1066 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1067 i = k;
1068 }
1069
1070 /* Remove _E{DIGITS}+[sb] */
1071
1072 /* Just as for protected object subprograms, there are 2 categories
1073 of subprograms created by the compiler for each entry. The first
1074 one implements the actual entry code, and has a suffix following
1075 the convention above; the second one implements the barrier and
1076 uses the same convention as above, except that the 'E' is replaced
1077 by a 'B'.
1078
1079 Just as above, we do not decode the name of barrier functions
1080 to give the user a clue that the code he is debugging has been
1081 internally generated. */
1082
1083 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1084 && isdigit (encoded[i+2]))
1085 {
1086 int k = i + 3;
1087
1088 while (k < len0 && isdigit (encoded[k]))
1089 k++;
1090
1091 if (k < len0
1092 && (encoded[k] == 'b' || encoded[k] == 's'))
1093 {
1094 k++;
1095 /* Just as an extra precaution, make sure that if this
1096 suffix is followed by anything else, it is a '_'.
1097 Otherwise, we matched this sequence by accident. */
1098 if (k == len0
1099 || (k < len0 && encoded[k] == '_'))
1100 i = k;
1101 }
1102 }
1103
1104 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1105 the GNAT front-end in protected object subprograms. */
1106
1107 if (i < len0 + 3
1108 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1109 {
1110 /* Backtrack a bit up until we reach either the begining of
1111 the encoded name, or "__". Make sure that we only find
1112 digits or lowercase characters. */
1113 const char *ptr = encoded + i - 1;
1114
1115 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1116 ptr--;
1117 if (ptr < encoded
1118 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1119 i++;
1120 }
1121
1122 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1123 {
1124 /* This is a X[bn]* sequence not separated from the previous
1125 part of the name with a non-alpha-numeric character (in other
1126 words, immediately following an alpha-numeric character), then
1127 verify that it is placed at the end of the encoded name. If
1128 not, then the encoding is not valid and we should abort the
1129 decoding. Otherwise, just skip it, it is used in body-nested
1130 package names. */
1131 do
1132 i += 1;
1133 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1134 if (i < len0)
1135 goto Suppress;
1136 }
1137 else if (!ADA_RETAIN_DOTS
1138 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1139 {
1140 /* Replace '__' by '.'. */
1141 decoded[j] = '.';
1142 at_start_name = 1;
1143 i += 2;
1144 j += 1;
1145 }
1146 else
1147 {
1148 /* It's a character part of the decoded name, so just copy it
1149 over. */
1150 decoded[j] = encoded[i];
1151 i += 1;
1152 j += 1;
1153 }
1154 }
1155 decoded[j] = '\000';
1156
1157 /* Decoded names should never contain any uppercase character.
1158 Double-check this, and abort the decoding if we find one. */
1159
1160 for (i = 0; decoded[i] != '\0'; i += 1)
1161 if (isupper (decoded[i]) || decoded[i] == ' ')
1162 goto Suppress;
1163
1164 if (strcmp (decoded, encoded) == 0)
1165 return encoded;
1166 else
1167 return decoded;
1168
1169 Suppress:
1170 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1171 decoded = decoding_buffer;
1172 if (encoded[0] == '<')
1173 strcpy (decoded, encoded);
1174 else
1175 sprintf (decoded, "<%s>", encoded);
1176 return decoded;
1177
1178 }
1179
1180 /* Table for keeping permanent unique copies of decoded names. Once
1181 allocated, names in this table are never released. While this is a
1182 storage leak, it should not be significant unless there are massive
1183 changes in the set of decoded names in successive versions of a
1184 symbol table loaded during a single session. */
1185 static struct htab *decoded_names_store;
1186
1187 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1188 in the language-specific part of GSYMBOL, if it has not been
1189 previously computed. Tries to save the decoded name in the same
1190 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1191 in any case, the decoded symbol has a lifetime at least that of
1192 GSYMBOL).
1193 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1194 const, but nevertheless modified to a semantically equivalent form
1195 when a decoded name is cached in it.
1196 */
1197
1198 char *
1199 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1200 {
1201 char **resultp =
1202 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1203 if (*resultp == NULL)
1204 {
1205 const char *decoded = ada_decode (gsymbol->name);
1206 if (gsymbol->bfd_section != NULL)
1207 {
1208 bfd *obfd = gsymbol->bfd_section->owner;
1209 if (obfd != NULL)
1210 {
1211 struct objfile *objf;
1212 ALL_OBJFILES (objf)
1213 {
1214 if (obfd == objf->obfd)
1215 {
1216 *resultp = obsavestring (decoded, strlen (decoded),
1217 &objf->objfile_obstack);
1218 break;
1219 }
1220 }
1221 }
1222 }
1223 /* Sometimes, we can't find a corresponding objfile, in which
1224 case, we put the result on the heap. Since we only decode
1225 when needed, we hope this usually does not cause a
1226 significant memory leak (FIXME). */
1227 if (*resultp == NULL)
1228 {
1229 char **slot = (char **) htab_find_slot (decoded_names_store,
1230 decoded, INSERT);
1231 if (*slot == NULL)
1232 *slot = xstrdup (decoded);
1233 *resultp = *slot;
1234 }
1235 }
1236
1237 return *resultp;
1238 }
1239
1240 char *
1241 ada_la_decode (const char *encoded, int options)
1242 {
1243 return xstrdup (ada_decode (encoded));
1244 }
1245
1246 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1247 suffixes that encode debugging information or leading _ada_ on
1248 SYM_NAME (see is_name_suffix commentary for the debugging
1249 information that is ignored). If WILD, then NAME need only match a
1250 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1251 either argument is NULL. */
1252
1253 int
1254 ada_match_name (const char *sym_name, const char *name, int wild)
1255 {
1256 if (sym_name == NULL || name == NULL)
1257 return 0;
1258 else if (wild)
1259 return wild_match (name, strlen (name), sym_name);
1260 else
1261 {
1262 int len_name = strlen (name);
1263 return (strncmp (sym_name, name, len_name) == 0
1264 && is_name_suffix (sym_name + len_name))
1265 || (strncmp (sym_name, "_ada_", 5) == 0
1266 && strncmp (sym_name + 5, name, len_name) == 0
1267 && is_name_suffix (sym_name + len_name + 5));
1268 }
1269 }
1270
1271 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1272 suppressed in info listings. */
1273
1274 int
1275 ada_suppress_symbol_printing (struct symbol *sym)
1276 {
1277 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1278 return 1;
1279 else
1280 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1281 }
1282 \f
1283
1284 /* Arrays */
1285
1286 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1287
1288 static char *bound_name[] = {
1289 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1290 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1291 };
1292
1293 /* Maximum number of array dimensions we are prepared to handle. */
1294
1295 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1296
1297 /* Like modify_field, but allows bitpos > wordlength. */
1298
1299 static void
1300 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1301 {
1302 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1303 }
1304
1305
1306 /* The desc_* routines return primitive portions of array descriptors
1307 (fat pointers). */
1308
1309 /* The descriptor or array type, if any, indicated by TYPE; removes
1310 level of indirection, if needed. */
1311
1312 static struct type *
1313 desc_base_type (struct type *type)
1314 {
1315 if (type == NULL)
1316 return NULL;
1317 type = ada_check_typedef (type);
1318 if (type != NULL
1319 && (TYPE_CODE (type) == TYPE_CODE_PTR
1320 || TYPE_CODE (type) == TYPE_CODE_REF))
1321 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1322 else
1323 return type;
1324 }
1325
1326 /* True iff TYPE indicates a "thin" array pointer type. */
1327
1328 static int
1329 is_thin_pntr (struct type *type)
1330 {
1331 return
1332 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1333 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1334 }
1335
1336 /* The descriptor type for thin pointer type TYPE. */
1337
1338 static struct type *
1339 thin_descriptor_type (struct type *type)
1340 {
1341 struct type *base_type = desc_base_type (type);
1342 if (base_type == NULL)
1343 return NULL;
1344 if (is_suffix (ada_type_name (base_type), "___XVE"))
1345 return base_type;
1346 else
1347 {
1348 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1349 if (alt_type == NULL)
1350 return base_type;
1351 else
1352 return alt_type;
1353 }
1354 }
1355
1356 /* A pointer to the array data for thin-pointer value VAL. */
1357
1358 static struct value *
1359 thin_data_pntr (struct value *val)
1360 {
1361 struct type *type = value_type (val);
1362 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1363 return value_cast (desc_data_type (thin_descriptor_type (type)),
1364 value_copy (val));
1365 else
1366 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1367 VALUE_ADDRESS (val) + value_offset (val));
1368 }
1369
1370 /* True iff TYPE indicates a "thick" array pointer type. */
1371
1372 static int
1373 is_thick_pntr (struct type *type)
1374 {
1375 type = desc_base_type (type);
1376 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1377 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1378 }
1379
1380 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1381 pointer to one, the type of its bounds data; otherwise, NULL. */
1382
1383 static struct type *
1384 desc_bounds_type (struct type *type)
1385 {
1386 struct type *r;
1387
1388 type = desc_base_type (type);
1389
1390 if (type == NULL)
1391 return NULL;
1392 else if (is_thin_pntr (type))
1393 {
1394 type = thin_descriptor_type (type);
1395 if (type == NULL)
1396 return NULL;
1397 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1398 if (r != NULL)
1399 return ada_check_typedef (r);
1400 }
1401 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1402 {
1403 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1404 if (r != NULL)
1405 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1406 }
1407 return NULL;
1408 }
1409
1410 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1411 one, a pointer to its bounds data. Otherwise NULL. */
1412
1413 static struct value *
1414 desc_bounds (struct value *arr)
1415 {
1416 struct type *type = ada_check_typedef (value_type (arr));
1417 if (is_thin_pntr (type))
1418 {
1419 struct type *bounds_type =
1420 desc_bounds_type (thin_descriptor_type (type));
1421 LONGEST addr;
1422
1423 if (bounds_type == NULL)
1424 error (_("Bad GNAT array descriptor"));
1425
1426 /* NOTE: The following calculation is not really kosher, but
1427 since desc_type is an XVE-encoded type (and shouldn't be),
1428 the correct calculation is a real pain. FIXME (and fix GCC). */
1429 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1430 addr = value_as_long (arr);
1431 else
1432 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1433
1434 return
1435 value_from_longest (lookup_pointer_type (bounds_type),
1436 addr - TYPE_LENGTH (bounds_type));
1437 }
1438
1439 else if (is_thick_pntr (type))
1440 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1441 _("Bad GNAT array descriptor"));
1442 else
1443 return NULL;
1444 }
1445
1446 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1447 position of the field containing the address of the bounds data. */
1448
1449 static int
1450 fat_pntr_bounds_bitpos (struct type *type)
1451 {
1452 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1453 }
1454
1455 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1456 size of the field containing the address of the bounds data. */
1457
1458 static int
1459 fat_pntr_bounds_bitsize (struct type *type)
1460 {
1461 type = desc_base_type (type);
1462
1463 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1464 return TYPE_FIELD_BITSIZE (type, 1);
1465 else
1466 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1467 }
1468
1469 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1470 pointer to one, the type of its array data (a
1471 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1472 ada_type_of_array to get an array type with bounds data. */
1473
1474 static struct type *
1475 desc_data_type (struct type *type)
1476 {
1477 type = desc_base_type (type);
1478
1479 /* NOTE: The following is bogus; see comment in desc_bounds. */
1480 if (is_thin_pntr (type))
1481 return lookup_pointer_type
1482 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1483 else if (is_thick_pntr (type))
1484 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1485 else
1486 return NULL;
1487 }
1488
1489 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1490 its array data. */
1491
1492 static struct value *
1493 desc_data (struct value *arr)
1494 {
1495 struct type *type = value_type (arr);
1496 if (is_thin_pntr (type))
1497 return thin_data_pntr (arr);
1498 else if (is_thick_pntr (type))
1499 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1500 _("Bad GNAT array descriptor"));
1501 else
1502 return NULL;
1503 }
1504
1505
1506 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1507 position of the field containing the address of the data. */
1508
1509 static int
1510 fat_pntr_data_bitpos (struct type *type)
1511 {
1512 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1513 }
1514
1515 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1516 size of the field containing the address of the data. */
1517
1518 static int
1519 fat_pntr_data_bitsize (struct type *type)
1520 {
1521 type = desc_base_type (type);
1522
1523 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1524 return TYPE_FIELD_BITSIZE (type, 0);
1525 else
1526 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1527 }
1528
1529 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1530 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1531 bound, if WHICH is 1. The first bound is I=1. */
1532
1533 static struct value *
1534 desc_one_bound (struct value *bounds, int i, int which)
1535 {
1536 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1537 _("Bad GNAT array descriptor bounds"));
1538 }
1539
1540 /* If BOUNDS is an array-bounds structure type, return the bit position
1541 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1542 bound, if WHICH is 1. The first bound is I=1. */
1543
1544 static int
1545 desc_bound_bitpos (struct type *type, int i, int which)
1546 {
1547 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1548 }
1549
1550 /* If BOUNDS is an array-bounds structure type, return the bit field size
1551 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1552 bound, if WHICH is 1. The first bound is I=1. */
1553
1554 static int
1555 desc_bound_bitsize (struct type *type, int i, int which)
1556 {
1557 type = desc_base_type (type);
1558
1559 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1560 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1561 else
1562 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1563 }
1564
1565 /* If TYPE is the type of an array-bounds structure, the type of its
1566 Ith bound (numbering from 1). Otherwise, NULL. */
1567
1568 static struct type *
1569 desc_index_type (struct type *type, int i)
1570 {
1571 type = desc_base_type (type);
1572
1573 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1574 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1575 else
1576 return NULL;
1577 }
1578
1579 /* The number of index positions in the array-bounds type TYPE.
1580 Return 0 if TYPE is NULL. */
1581
1582 static int
1583 desc_arity (struct type *type)
1584 {
1585 type = desc_base_type (type);
1586
1587 if (type != NULL)
1588 return TYPE_NFIELDS (type) / 2;
1589 return 0;
1590 }
1591
1592 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1593 an array descriptor type (representing an unconstrained array
1594 type). */
1595
1596 static int
1597 ada_is_direct_array_type (struct type *type)
1598 {
1599 if (type == NULL)
1600 return 0;
1601 type = ada_check_typedef (type);
1602 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1603 || ada_is_array_descriptor_type (type));
1604 }
1605
1606 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1607 * to one. */
1608
1609 int
1610 ada_is_array_type (struct type *type)
1611 {
1612 while (type != NULL
1613 && (TYPE_CODE (type) == TYPE_CODE_PTR
1614 || TYPE_CODE (type) == TYPE_CODE_REF))
1615 type = TYPE_TARGET_TYPE (type);
1616 return ada_is_direct_array_type (type);
1617 }
1618
1619 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1620
1621 int
1622 ada_is_simple_array_type (struct type *type)
1623 {
1624 if (type == NULL)
1625 return 0;
1626 type = ada_check_typedef (type);
1627 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1628 || (TYPE_CODE (type) == TYPE_CODE_PTR
1629 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1630 }
1631
1632 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1633
1634 int
1635 ada_is_array_descriptor_type (struct type *type)
1636 {
1637 struct type *data_type = desc_data_type (type);
1638
1639 if (type == NULL)
1640 return 0;
1641 type = ada_check_typedef (type);
1642 return
1643 data_type != NULL
1644 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1645 && TYPE_TARGET_TYPE (data_type) != NULL
1646 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1647 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1648 && desc_arity (desc_bounds_type (type)) > 0;
1649 }
1650
1651 /* Non-zero iff type is a partially mal-formed GNAT array
1652 descriptor. FIXME: This is to compensate for some problems with
1653 debugging output from GNAT. Re-examine periodically to see if it
1654 is still needed. */
1655
1656 int
1657 ada_is_bogus_array_descriptor (struct type *type)
1658 {
1659 return
1660 type != NULL
1661 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1662 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1663 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1664 && !ada_is_array_descriptor_type (type);
1665 }
1666
1667
1668 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1669 (fat pointer) returns the type of the array data described---specifically,
1670 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1671 in from the descriptor; otherwise, they are left unspecified. If
1672 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1673 returns NULL. The result is simply the type of ARR if ARR is not
1674 a descriptor. */
1675 struct type *
1676 ada_type_of_array (struct value *arr, int bounds)
1677 {
1678 if (ada_is_packed_array_type (value_type (arr)))
1679 return decode_packed_array_type (value_type (arr));
1680
1681 if (!ada_is_array_descriptor_type (value_type (arr)))
1682 return value_type (arr);
1683
1684 if (!bounds)
1685 return
1686 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1687 else
1688 {
1689 struct type *elt_type;
1690 int arity;
1691 struct value *descriptor;
1692 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1693
1694 elt_type = ada_array_element_type (value_type (arr), -1);
1695 arity = ada_array_arity (value_type (arr));
1696
1697 if (elt_type == NULL || arity == 0)
1698 return ada_check_typedef (value_type (arr));
1699
1700 descriptor = desc_bounds (arr);
1701 if (value_as_long (descriptor) == 0)
1702 return NULL;
1703 while (arity > 0)
1704 {
1705 struct type *range_type = alloc_type (objf);
1706 struct type *array_type = alloc_type (objf);
1707 struct value *low = desc_one_bound (descriptor, arity, 0);
1708 struct value *high = desc_one_bound (descriptor, arity, 1);
1709 arity -= 1;
1710
1711 create_range_type (range_type, value_type (low),
1712 longest_to_int (value_as_long (low)),
1713 longest_to_int (value_as_long (high)));
1714 elt_type = create_array_type (array_type, elt_type, range_type);
1715 }
1716
1717 return lookup_pointer_type (elt_type);
1718 }
1719 }
1720
1721 /* If ARR does not represent an array, returns ARR unchanged.
1722 Otherwise, returns either a standard GDB array with bounds set
1723 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1724 GDB array. Returns NULL if ARR is a null fat pointer. */
1725
1726 struct value *
1727 ada_coerce_to_simple_array_ptr (struct value *arr)
1728 {
1729 if (ada_is_array_descriptor_type (value_type (arr)))
1730 {
1731 struct type *arrType = ada_type_of_array (arr, 1);
1732 if (arrType == NULL)
1733 return NULL;
1734 return value_cast (arrType, value_copy (desc_data (arr)));
1735 }
1736 else if (ada_is_packed_array_type (value_type (arr)))
1737 return decode_packed_array (arr);
1738 else
1739 return arr;
1740 }
1741
1742 /* If ARR does not represent an array, returns ARR unchanged.
1743 Otherwise, returns a standard GDB array describing ARR (which may
1744 be ARR itself if it already is in the proper form). */
1745
1746 static struct value *
1747 ada_coerce_to_simple_array (struct value *arr)
1748 {
1749 if (ada_is_array_descriptor_type (value_type (arr)))
1750 {
1751 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1752 if (arrVal == NULL)
1753 error (_("Bounds unavailable for null array pointer."));
1754 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1755 return value_ind (arrVal);
1756 }
1757 else if (ada_is_packed_array_type (value_type (arr)))
1758 return decode_packed_array (arr);
1759 else
1760 return arr;
1761 }
1762
1763 /* If TYPE represents a GNAT array type, return it translated to an
1764 ordinary GDB array type (possibly with BITSIZE fields indicating
1765 packing). For other types, is the identity. */
1766
1767 struct type *
1768 ada_coerce_to_simple_array_type (struct type *type)
1769 {
1770 struct value *mark = value_mark ();
1771 struct value *dummy = value_from_longest (builtin_type_long, 0);
1772 struct type *result;
1773 deprecated_set_value_type (dummy, type);
1774 result = ada_type_of_array (dummy, 0);
1775 value_free_to_mark (mark);
1776 return result;
1777 }
1778
1779 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1780
1781 int
1782 ada_is_packed_array_type (struct type *type)
1783 {
1784 if (type == NULL)
1785 return 0;
1786 type = desc_base_type (type);
1787 type = ada_check_typedef (type);
1788 return
1789 ada_type_name (type) != NULL
1790 && strstr (ada_type_name (type), "___XP") != NULL;
1791 }
1792
1793 /* Given that TYPE is a standard GDB array type with all bounds filled
1794 in, and that the element size of its ultimate scalar constituents
1795 (that is, either its elements, or, if it is an array of arrays, its
1796 elements' elements, etc.) is *ELT_BITS, return an identical type,
1797 but with the bit sizes of its elements (and those of any
1798 constituent arrays) recorded in the BITSIZE components of its
1799 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1800 in bits. */
1801
1802 static struct type *
1803 packed_array_type (struct type *type, long *elt_bits)
1804 {
1805 struct type *new_elt_type;
1806 struct type *new_type;
1807 LONGEST low_bound, high_bound;
1808
1809 type = ada_check_typedef (type);
1810 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1811 return type;
1812
1813 new_type = alloc_type (TYPE_OBJFILE (type));
1814 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1815 elt_bits);
1816 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1817 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1818 TYPE_NAME (new_type) = ada_type_name (type);
1819
1820 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1821 &low_bound, &high_bound) < 0)
1822 low_bound = high_bound = 0;
1823 if (high_bound < low_bound)
1824 *elt_bits = TYPE_LENGTH (new_type) = 0;
1825 else
1826 {
1827 *elt_bits *= (high_bound - low_bound + 1);
1828 TYPE_LENGTH (new_type) =
1829 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1830 }
1831
1832 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1833 return new_type;
1834 }
1835
1836 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1837
1838 static struct type *
1839 decode_packed_array_type (struct type *type)
1840 {
1841 struct symbol *sym;
1842 struct block **blocks;
1843 char *raw_name = ada_type_name (ada_check_typedef (type));
1844 char *name;
1845 char *tail;
1846 struct type *shadow_type;
1847 long bits;
1848 int i, n;
1849
1850 if (!raw_name)
1851 raw_name = ada_type_name (desc_base_type (type));
1852
1853 if (!raw_name)
1854 return NULL;
1855
1856 name = (char *) alloca (strlen (raw_name) + 1);
1857 tail = strstr (raw_name, "___XP");
1858 type = desc_base_type (type);
1859
1860 memcpy (name, raw_name, tail - raw_name);
1861 name[tail - raw_name] = '\000';
1862
1863 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1864 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1865 {
1866 lim_warning (_("could not find bounds information on packed array"));
1867 return NULL;
1868 }
1869 shadow_type = SYMBOL_TYPE (sym);
1870
1871 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1872 {
1873 lim_warning (_("could not understand bounds information on packed array"));
1874 return NULL;
1875 }
1876
1877 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1878 {
1879 lim_warning
1880 (_("could not understand bit size information on packed array"));
1881 return NULL;
1882 }
1883
1884 return packed_array_type (shadow_type, &bits);
1885 }
1886
1887 /* Given that ARR is a struct value *indicating a GNAT packed array,
1888 returns a simple array that denotes that array. Its type is a
1889 standard GDB array type except that the BITSIZEs of the array
1890 target types are set to the number of bits in each element, and the
1891 type length is set appropriately. */
1892
1893 static struct value *
1894 decode_packed_array (struct value *arr)
1895 {
1896 struct type *type;
1897
1898 arr = ada_coerce_ref (arr);
1899 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1900 arr = ada_value_ind (arr);
1901
1902 type = decode_packed_array_type (value_type (arr));
1903 if (type == NULL)
1904 {
1905 error (_("can't unpack array"));
1906 return NULL;
1907 }
1908
1909 if (gdbarch_bits_big_endian (current_gdbarch)
1910 && ada_is_modular_type (value_type (arr)))
1911 {
1912 /* This is a (right-justified) modular type representing a packed
1913 array with no wrapper. In order to interpret the value through
1914 the (left-justified) packed array type we just built, we must
1915 first left-justify it. */
1916 int bit_size, bit_pos;
1917 ULONGEST mod;
1918
1919 mod = ada_modulus (value_type (arr)) - 1;
1920 bit_size = 0;
1921 while (mod > 0)
1922 {
1923 bit_size += 1;
1924 mod >>= 1;
1925 }
1926 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1927 arr = ada_value_primitive_packed_val (arr, NULL,
1928 bit_pos / HOST_CHAR_BIT,
1929 bit_pos % HOST_CHAR_BIT,
1930 bit_size,
1931 type);
1932 }
1933
1934 return coerce_unspec_val_to_type (arr, type);
1935 }
1936
1937
1938 /* The value of the element of packed array ARR at the ARITY indices
1939 given in IND. ARR must be a simple array. */
1940
1941 static struct value *
1942 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1943 {
1944 int i;
1945 int bits, elt_off, bit_off;
1946 long elt_total_bit_offset;
1947 struct type *elt_type;
1948 struct value *v;
1949
1950 bits = 0;
1951 elt_total_bit_offset = 0;
1952 elt_type = ada_check_typedef (value_type (arr));
1953 for (i = 0; i < arity; i += 1)
1954 {
1955 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1956 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1957 error
1958 (_("attempt to do packed indexing of something other than a packed array"));
1959 else
1960 {
1961 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1962 LONGEST lowerbound, upperbound;
1963 LONGEST idx;
1964
1965 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1966 {
1967 lim_warning (_("don't know bounds of array"));
1968 lowerbound = upperbound = 0;
1969 }
1970
1971 idx = value_as_long (value_pos_atr (ind[i]));
1972 if (idx < lowerbound || idx > upperbound)
1973 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1974 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1975 elt_total_bit_offset += (idx - lowerbound) * bits;
1976 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1977 }
1978 }
1979 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1980 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1981
1982 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1983 bits, elt_type);
1984 return v;
1985 }
1986
1987 /* Non-zero iff TYPE includes negative integer values. */
1988
1989 static int
1990 has_negatives (struct type *type)
1991 {
1992 switch (TYPE_CODE (type))
1993 {
1994 default:
1995 return 0;
1996 case TYPE_CODE_INT:
1997 return !TYPE_UNSIGNED (type);
1998 case TYPE_CODE_RANGE:
1999 return TYPE_LOW_BOUND (type) < 0;
2000 }
2001 }
2002
2003
2004 /* Create a new value of type TYPE from the contents of OBJ starting
2005 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2006 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2007 assigning through the result will set the field fetched from.
2008 VALADDR is ignored unless OBJ is NULL, in which case,
2009 VALADDR+OFFSET must address the start of storage containing the
2010 packed value. The value returned in this case is never an lval.
2011 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2012
2013 struct value *
2014 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2015 long offset, int bit_offset, int bit_size,
2016 struct type *type)
2017 {
2018 struct value *v;
2019 int src, /* Index into the source area */
2020 targ, /* Index into the target area */
2021 srcBitsLeft, /* Number of source bits left to move */
2022 nsrc, ntarg, /* Number of source and target bytes */
2023 unusedLS, /* Number of bits in next significant
2024 byte of source that are unused */
2025 accumSize; /* Number of meaningful bits in accum */
2026 unsigned char *bytes; /* First byte containing data to unpack */
2027 unsigned char *unpacked;
2028 unsigned long accum; /* Staging area for bits being transferred */
2029 unsigned char sign;
2030 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2031 /* Transmit bytes from least to most significant; delta is the direction
2032 the indices move. */
2033 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
2034
2035 type = ada_check_typedef (type);
2036
2037 if (obj == NULL)
2038 {
2039 v = allocate_value (type);
2040 bytes = (unsigned char *) (valaddr + offset);
2041 }
2042 else if (value_lazy (obj))
2043 {
2044 v = value_at (type,
2045 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
2046 bytes = (unsigned char *) alloca (len);
2047 read_memory (VALUE_ADDRESS (v), bytes, len);
2048 }
2049 else
2050 {
2051 v = allocate_value (type);
2052 bytes = (unsigned char *) value_contents (obj) + offset;
2053 }
2054
2055 if (obj != NULL)
2056 {
2057 VALUE_LVAL (v) = VALUE_LVAL (obj);
2058 if (VALUE_LVAL (obj) == lval_internalvar)
2059 VALUE_LVAL (v) = lval_internalvar_component;
2060 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
2061 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2062 set_value_bitsize (v, bit_size);
2063 if (value_bitpos (v) >= HOST_CHAR_BIT)
2064 {
2065 VALUE_ADDRESS (v) += 1;
2066 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2067 }
2068 }
2069 else
2070 set_value_bitsize (v, bit_size);
2071 unpacked = (unsigned char *) value_contents (v);
2072
2073 srcBitsLeft = bit_size;
2074 nsrc = len;
2075 ntarg = TYPE_LENGTH (type);
2076 sign = 0;
2077 if (bit_size == 0)
2078 {
2079 memset (unpacked, 0, TYPE_LENGTH (type));
2080 return v;
2081 }
2082 else if (gdbarch_bits_big_endian (current_gdbarch))
2083 {
2084 src = len - 1;
2085 if (has_negatives (type)
2086 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2087 sign = ~0;
2088
2089 unusedLS =
2090 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2091 % HOST_CHAR_BIT;
2092
2093 switch (TYPE_CODE (type))
2094 {
2095 case TYPE_CODE_ARRAY:
2096 case TYPE_CODE_UNION:
2097 case TYPE_CODE_STRUCT:
2098 /* Non-scalar values must be aligned at a byte boundary... */
2099 accumSize =
2100 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2101 /* ... And are placed at the beginning (most-significant) bytes
2102 of the target. */
2103 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2104 break;
2105 default:
2106 accumSize = 0;
2107 targ = TYPE_LENGTH (type) - 1;
2108 break;
2109 }
2110 }
2111 else
2112 {
2113 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2114
2115 src = targ = 0;
2116 unusedLS = bit_offset;
2117 accumSize = 0;
2118
2119 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2120 sign = ~0;
2121 }
2122
2123 accum = 0;
2124 while (nsrc > 0)
2125 {
2126 /* Mask for removing bits of the next source byte that are not
2127 part of the value. */
2128 unsigned int unusedMSMask =
2129 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2130 1;
2131 /* Sign-extend bits for this byte. */
2132 unsigned int signMask = sign & ~unusedMSMask;
2133 accum |=
2134 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2135 accumSize += HOST_CHAR_BIT - unusedLS;
2136 if (accumSize >= HOST_CHAR_BIT)
2137 {
2138 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2139 accumSize -= HOST_CHAR_BIT;
2140 accum >>= HOST_CHAR_BIT;
2141 ntarg -= 1;
2142 targ += delta;
2143 }
2144 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2145 unusedLS = 0;
2146 nsrc -= 1;
2147 src += delta;
2148 }
2149 while (ntarg > 0)
2150 {
2151 accum |= sign << accumSize;
2152 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2153 accumSize -= HOST_CHAR_BIT;
2154 accum >>= HOST_CHAR_BIT;
2155 ntarg -= 1;
2156 targ += delta;
2157 }
2158
2159 return v;
2160 }
2161
2162 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2163 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2164 not overlap. */
2165 static void
2166 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2167 int src_offset, int n)
2168 {
2169 unsigned int accum, mask;
2170 int accum_bits, chunk_size;
2171
2172 target += targ_offset / HOST_CHAR_BIT;
2173 targ_offset %= HOST_CHAR_BIT;
2174 source += src_offset / HOST_CHAR_BIT;
2175 src_offset %= HOST_CHAR_BIT;
2176 if (gdbarch_bits_big_endian (current_gdbarch))
2177 {
2178 accum = (unsigned char) *source;
2179 source += 1;
2180 accum_bits = HOST_CHAR_BIT - src_offset;
2181
2182 while (n > 0)
2183 {
2184 int unused_right;
2185 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2186 accum_bits += HOST_CHAR_BIT;
2187 source += 1;
2188 chunk_size = HOST_CHAR_BIT - targ_offset;
2189 if (chunk_size > n)
2190 chunk_size = n;
2191 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2192 mask = ((1 << chunk_size) - 1) << unused_right;
2193 *target =
2194 (*target & ~mask)
2195 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2196 n -= chunk_size;
2197 accum_bits -= chunk_size;
2198 target += 1;
2199 targ_offset = 0;
2200 }
2201 }
2202 else
2203 {
2204 accum = (unsigned char) *source >> src_offset;
2205 source += 1;
2206 accum_bits = HOST_CHAR_BIT - src_offset;
2207
2208 while (n > 0)
2209 {
2210 accum = accum + ((unsigned char) *source << accum_bits);
2211 accum_bits += HOST_CHAR_BIT;
2212 source += 1;
2213 chunk_size = HOST_CHAR_BIT - targ_offset;
2214 if (chunk_size > n)
2215 chunk_size = n;
2216 mask = ((1 << chunk_size) - 1) << targ_offset;
2217 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2218 n -= chunk_size;
2219 accum_bits -= chunk_size;
2220 accum >>= chunk_size;
2221 target += 1;
2222 targ_offset = 0;
2223 }
2224 }
2225 }
2226
2227 /* Store the contents of FROMVAL into the location of TOVAL.
2228 Return a new value with the location of TOVAL and contents of
2229 FROMVAL. Handles assignment into packed fields that have
2230 floating-point or non-scalar types. */
2231
2232 static struct value *
2233 ada_value_assign (struct value *toval, struct value *fromval)
2234 {
2235 struct type *type = value_type (toval);
2236 int bits = value_bitsize (toval);
2237
2238 toval = ada_coerce_ref (toval);
2239 fromval = ada_coerce_ref (fromval);
2240
2241 if (ada_is_direct_array_type (value_type (toval)))
2242 toval = ada_coerce_to_simple_array (toval);
2243 if (ada_is_direct_array_type (value_type (fromval)))
2244 fromval = ada_coerce_to_simple_array (fromval);
2245
2246 if (!deprecated_value_modifiable (toval))
2247 error (_("Left operand of assignment is not a modifiable lvalue."));
2248
2249 if (VALUE_LVAL (toval) == lval_memory
2250 && bits > 0
2251 && (TYPE_CODE (type) == TYPE_CODE_FLT
2252 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2253 {
2254 int len = (value_bitpos (toval)
2255 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2256 char *buffer = (char *) alloca (len);
2257 struct value *val;
2258 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2259
2260 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2261 fromval = value_cast (type, fromval);
2262
2263 read_memory (to_addr, buffer, len);
2264 if (gdbarch_bits_big_endian (current_gdbarch))
2265 move_bits (buffer, value_bitpos (toval),
2266 value_contents (fromval),
2267 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2268 bits, bits);
2269 else
2270 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2271 0, bits);
2272 write_memory (to_addr, buffer, len);
2273 if (deprecated_memory_changed_hook)
2274 deprecated_memory_changed_hook (to_addr, len);
2275
2276 val = value_copy (toval);
2277 memcpy (value_contents_raw (val), value_contents (fromval),
2278 TYPE_LENGTH (type));
2279 deprecated_set_value_type (val, type);
2280
2281 return val;
2282 }
2283
2284 return value_assign (toval, fromval);
2285 }
2286
2287
2288 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2289 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2290 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2291 * COMPONENT, and not the inferior's memory. The current contents
2292 * of COMPONENT are ignored. */
2293 static void
2294 value_assign_to_component (struct value *container, struct value *component,
2295 struct value *val)
2296 {
2297 LONGEST offset_in_container =
2298 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2299 - VALUE_ADDRESS (container) - value_offset (container));
2300 int bit_offset_in_container =
2301 value_bitpos (component) - value_bitpos (container);
2302 int bits;
2303
2304 val = value_cast (value_type (component), val);
2305
2306 if (value_bitsize (component) == 0)
2307 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2308 else
2309 bits = value_bitsize (component);
2310
2311 if (gdbarch_bits_big_endian (current_gdbarch))
2312 move_bits (value_contents_writeable (container) + offset_in_container,
2313 value_bitpos (container) + bit_offset_in_container,
2314 value_contents (val),
2315 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2316 bits);
2317 else
2318 move_bits (value_contents_writeable (container) + offset_in_container,
2319 value_bitpos (container) + bit_offset_in_container,
2320 value_contents (val), 0, bits);
2321 }
2322
2323 /* The value of the element of array ARR at the ARITY indices given in IND.
2324 ARR may be either a simple array, GNAT array descriptor, or pointer
2325 thereto. */
2326
2327 struct value *
2328 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2329 {
2330 int k;
2331 struct value *elt;
2332 struct type *elt_type;
2333
2334 elt = ada_coerce_to_simple_array (arr);
2335
2336 elt_type = ada_check_typedef (value_type (elt));
2337 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2338 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2339 return value_subscript_packed (elt, arity, ind);
2340
2341 for (k = 0; k < arity; k += 1)
2342 {
2343 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2344 error (_("too many subscripts (%d expected)"), k);
2345 elt = value_subscript (elt, value_pos_atr (ind[k]));
2346 }
2347 return elt;
2348 }
2349
2350 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2351 value of the element of *ARR at the ARITY indices given in
2352 IND. Does not read the entire array into memory. */
2353
2354 struct value *
2355 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2356 struct value **ind)
2357 {
2358 int k;
2359
2360 for (k = 0; k < arity; k += 1)
2361 {
2362 LONGEST lwb, upb;
2363 struct value *idx;
2364
2365 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2366 error (_("too many subscripts (%d expected)"), k);
2367 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2368 value_copy (arr));
2369 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2370 idx = value_pos_atr (ind[k]);
2371 if (lwb != 0)
2372 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2373 arr = value_add (arr, idx);
2374 type = TYPE_TARGET_TYPE (type);
2375 }
2376
2377 return value_ind (arr);
2378 }
2379
2380 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2381 actual type of ARRAY_PTR is ignored), returns a reference to
2382 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2383 bound of this array is LOW, as per Ada rules. */
2384 static struct value *
2385 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2386 int low, int high)
2387 {
2388 CORE_ADDR base = value_as_address (array_ptr)
2389 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2390 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2391 struct type *index_type =
2392 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2393 low, high);
2394 struct type *slice_type =
2395 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2396 return value_from_pointer (lookup_reference_type (slice_type), base);
2397 }
2398
2399
2400 static struct value *
2401 ada_value_slice (struct value *array, int low, int high)
2402 {
2403 struct type *type = value_type (array);
2404 struct type *index_type =
2405 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2406 struct type *slice_type =
2407 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2408 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2409 }
2410
2411 /* If type is a record type in the form of a standard GNAT array
2412 descriptor, returns the number of dimensions for type. If arr is a
2413 simple array, returns the number of "array of"s that prefix its
2414 type designation. Otherwise, returns 0. */
2415
2416 int
2417 ada_array_arity (struct type *type)
2418 {
2419 int arity;
2420
2421 if (type == NULL)
2422 return 0;
2423
2424 type = desc_base_type (type);
2425
2426 arity = 0;
2427 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2428 return desc_arity (desc_bounds_type (type));
2429 else
2430 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2431 {
2432 arity += 1;
2433 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2434 }
2435
2436 return arity;
2437 }
2438
2439 /* If TYPE is a record type in the form of a standard GNAT array
2440 descriptor or a simple array type, returns the element type for
2441 TYPE after indexing by NINDICES indices, or by all indices if
2442 NINDICES is -1. Otherwise, returns NULL. */
2443
2444 struct type *
2445 ada_array_element_type (struct type *type, int nindices)
2446 {
2447 type = desc_base_type (type);
2448
2449 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2450 {
2451 int k;
2452 struct type *p_array_type;
2453
2454 p_array_type = desc_data_type (type);
2455
2456 k = ada_array_arity (type);
2457 if (k == 0)
2458 return NULL;
2459
2460 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2461 if (nindices >= 0 && k > nindices)
2462 k = nindices;
2463 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2464 while (k > 0 && p_array_type != NULL)
2465 {
2466 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2467 k -= 1;
2468 }
2469 return p_array_type;
2470 }
2471 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2472 {
2473 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2474 {
2475 type = TYPE_TARGET_TYPE (type);
2476 nindices -= 1;
2477 }
2478 return type;
2479 }
2480
2481 return NULL;
2482 }
2483
2484 /* The type of nth index in arrays of given type (n numbering from 1).
2485 Does not examine memory. */
2486
2487 struct type *
2488 ada_index_type (struct type *type, int n)
2489 {
2490 struct type *result_type;
2491
2492 type = desc_base_type (type);
2493
2494 if (n > ada_array_arity (type))
2495 return NULL;
2496
2497 if (ada_is_simple_array_type (type))
2498 {
2499 int i;
2500
2501 for (i = 1; i < n; i += 1)
2502 type = TYPE_TARGET_TYPE (type);
2503 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2504 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2505 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2506 perhaps stabsread.c would make more sense. */
2507 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2508 result_type = builtin_type_int;
2509
2510 return result_type;
2511 }
2512 else
2513 return desc_index_type (desc_bounds_type (type), n);
2514 }
2515
2516 /* Given that arr is an array type, returns the lower bound of the
2517 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2518 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2519 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2520 bounds type. It works for other arrays with bounds supplied by
2521 run-time quantities other than discriminants. */
2522
2523 static LONGEST
2524 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2525 struct type ** typep)
2526 {
2527 struct type *type;
2528 struct type *index_type_desc;
2529
2530 if (ada_is_packed_array_type (arr_type))
2531 arr_type = decode_packed_array_type (arr_type);
2532
2533 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2534 {
2535 if (typep != NULL)
2536 *typep = builtin_type_int;
2537 return (LONGEST) - which;
2538 }
2539
2540 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2541 type = TYPE_TARGET_TYPE (arr_type);
2542 else
2543 type = arr_type;
2544
2545 index_type_desc = ada_find_parallel_type (type, "___XA");
2546 if (index_type_desc == NULL)
2547 {
2548 struct type *index_type;
2549
2550 while (n > 1)
2551 {
2552 type = TYPE_TARGET_TYPE (type);
2553 n -= 1;
2554 }
2555
2556 index_type = TYPE_INDEX_TYPE (type);
2557 if (typep != NULL)
2558 *typep = index_type;
2559
2560 /* The index type is either a range type or an enumerated type.
2561 For the range type, we have some macros that allow us to
2562 extract the value of the low and high bounds. But they
2563 do now work for enumerated types. The expressions used
2564 below work for both range and enum types. */
2565 return
2566 (LONGEST) (which == 0
2567 ? TYPE_FIELD_BITPOS (index_type, 0)
2568 : TYPE_FIELD_BITPOS (index_type,
2569 TYPE_NFIELDS (index_type) - 1));
2570 }
2571 else
2572 {
2573 struct type *index_type =
2574 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2575 NULL, TYPE_OBJFILE (arr_type));
2576
2577 if (typep != NULL)
2578 *typep = index_type;
2579
2580 return
2581 (LONGEST) (which == 0
2582 ? TYPE_LOW_BOUND (index_type)
2583 : TYPE_HIGH_BOUND (index_type));
2584 }
2585 }
2586
2587 /* Given that arr is an array value, returns the lower bound of the
2588 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2589 WHICH is 1. This routine will also work for arrays with bounds
2590 supplied by run-time quantities other than discriminants. */
2591
2592 struct value *
2593 ada_array_bound (struct value *arr, int n, int which)
2594 {
2595 struct type *arr_type = value_type (arr);
2596
2597 if (ada_is_packed_array_type (arr_type))
2598 return ada_array_bound (decode_packed_array (arr), n, which);
2599 else if (ada_is_simple_array_type (arr_type))
2600 {
2601 struct type *type;
2602 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2603 return value_from_longest (type, v);
2604 }
2605 else
2606 return desc_one_bound (desc_bounds (arr), n, which);
2607 }
2608
2609 /* Given that arr is an array value, returns the length of the
2610 nth index. This routine will also work for arrays with bounds
2611 supplied by run-time quantities other than discriminants.
2612 Does not work for arrays indexed by enumeration types with representation
2613 clauses at the moment. */
2614
2615 struct value *
2616 ada_array_length (struct value *arr, int n)
2617 {
2618 struct type *arr_type = ada_check_typedef (value_type (arr));
2619
2620 if (ada_is_packed_array_type (arr_type))
2621 return ada_array_length (decode_packed_array (arr), n);
2622
2623 if (ada_is_simple_array_type (arr_type))
2624 {
2625 struct type *type;
2626 LONGEST v =
2627 ada_array_bound_from_type (arr_type, n, 1, &type) -
2628 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2629 return value_from_longest (type, v);
2630 }
2631 else
2632 return
2633 value_from_longest (builtin_type_int,
2634 value_as_long (desc_one_bound (desc_bounds (arr),
2635 n, 1))
2636 - value_as_long (desc_one_bound (desc_bounds (arr),
2637 n, 0)) + 1);
2638 }
2639
2640 /* An empty array whose type is that of ARR_TYPE (an array type),
2641 with bounds LOW to LOW-1. */
2642
2643 static struct value *
2644 empty_array (struct type *arr_type, int low)
2645 {
2646 struct type *index_type =
2647 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2648 low, low - 1);
2649 struct type *elt_type = ada_array_element_type (arr_type, 1);
2650 return allocate_value (create_array_type (NULL, elt_type, index_type));
2651 }
2652 \f
2653
2654 /* Name resolution */
2655
2656 /* The "decoded" name for the user-definable Ada operator corresponding
2657 to OP. */
2658
2659 static const char *
2660 ada_decoded_op_name (enum exp_opcode op)
2661 {
2662 int i;
2663
2664 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2665 {
2666 if (ada_opname_table[i].op == op)
2667 return ada_opname_table[i].decoded;
2668 }
2669 error (_("Could not find operator name for opcode"));
2670 }
2671
2672
2673 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2674 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2675 undefined namespace) and converts operators that are
2676 user-defined into appropriate function calls. If CONTEXT_TYPE is
2677 non-null, it provides a preferred result type [at the moment, only
2678 type void has any effect---causing procedures to be preferred over
2679 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2680 return type is preferred. May change (expand) *EXP. */
2681
2682 static void
2683 resolve (struct expression **expp, int void_context_p)
2684 {
2685 int pc;
2686 pc = 0;
2687 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2688 }
2689
2690 /* Resolve the operator of the subexpression beginning at
2691 position *POS of *EXPP. "Resolving" consists of replacing
2692 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2693 with their resolutions, replacing built-in operators with
2694 function calls to user-defined operators, where appropriate, and,
2695 when DEPROCEDURE_P is non-zero, converting function-valued variables
2696 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2697 are as in ada_resolve, above. */
2698
2699 static struct value *
2700 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2701 struct type *context_type)
2702 {
2703 int pc = *pos;
2704 int i;
2705 struct expression *exp; /* Convenience: == *expp. */
2706 enum exp_opcode op = (*expp)->elts[pc].opcode;
2707 struct value **argvec; /* Vector of operand types (alloca'ed). */
2708 int nargs; /* Number of operands. */
2709 int oplen;
2710
2711 argvec = NULL;
2712 nargs = 0;
2713 exp = *expp;
2714
2715 /* Pass one: resolve operands, saving their types and updating *pos,
2716 if needed. */
2717 switch (op)
2718 {
2719 case OP_FUNCALL:
2720 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2721 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2722 *pos += 7;
2723 else
2724 {
2725 *pos += 3;
2726 resolve_subexp (expp, pos, 0, NULL);
2727 }
2728 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2729 break;
2730
2731 case UNOP_ADDR:
2732 *pos += 1;
2733 resolve_subexp (expp, pos, 0, NULL);
2734 break;
2735
2736 case UNOP_QUAL:
2737 *pos += 3;
2738 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2739 break;
2740
2741 case OP_ATR_MODULUS:
2742 case OP_ATR_SIZE:
2743 case OP_ATR_TAG:
2744 case OP_ATR_FIRST:
2745 case OP_ATR_LAST:
2746 case OP_ATR_LENGTH:
2747 case OP_ATR_POS:
2748 case OP_ATR_VAL:
2749 case OP_ATR_MIN:
2750 case OP_ATR_MAX:
2751 case TERNOP_IN_RANGE:
2752 case BINOP_IN_BOUNDS:
2753 case UNOP_IN_RANGE:
2754 case OP_AGGREGATE:
2755 case OP_OTHERS:
2756 case OP_CHOICES:
2757 case OP_POSITIONAL:
2758 case OP_DISCRETE_RANGE:
2759 case OP_NAME:
2760 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2761 *pos += oplen;
2762 break;
2763
2764 case BINOP_ASSIGN:
2765 {
2766 struct value *arg1;
2767
2768 *pos += 1;
2769 arg1 = resolve_subexp (expp, pos, 0, NULL);
2770 if (arg1 == NULL)
2771 resolve_subexp (expp, pos, 1, NULL);
2772 else
2773 resolve_subexp (expp, pos, 1, value_type (arg1));
2774 break;
2775 }
2776
2777 case UNOP_CAST:
2778 *pos += 3;
2779 nargs = 1;
2780 break;
2781
2782 case BINOP_ADD:
2783 case BINOP_SUB:
2784 case BINOP_MUL:
2785 case BINOP_DIV:
2786 case BINOP_REM:
2787 case BINOP_MOD:
2788 case BINOP_EXP:
2789 case BINOP_CONCAT:
2790 case BINOP_LOGICAL_AND:
2791 case BINOP_LOGICAL_OR:
2792 case BINOP_BITWISE_AND:
2793 case BINOP_BITWISE_IOR:
2794 case BINOP_BITWISE_XOR:
2795
2796 case BINOP_EQUAL:
2797 case BINOP_NOTEQUAL:
2798 case BINOP_LESS:
2799 case BINOP_GTR:
2800 case BINOP_LEQ:
2801 case BINOP_GEQ:
2802
2803 case BINOP_REPEAT:
2804 case BINOP_SUBSCRIPT:
2805 case BINOP_COMMA:
2806 *pos += 1;
2807 nargs = 2;
2808 break;
2809
2810 case UNOP_NEG:
2811 case UNOP_PLUS:
2812 case UNOP_LOGICAL_NOT:
2813 case UNOP_ABS:
2814 case UNOP_IND:
2815 *pos += 1;
2816 nargs = 1;
2817 break;
2818
2819 case OP_LONG:
2820 case OP_DOUBLE:
2821 case OP_VAR_VALUE:
2822 *pos += 4;
2823 break;
2824
2825 case OP_TYPE:
2826 case OP_BOOL:
2827 case OP_LAST:
2828 case OP_INTERNALVAR:
2829 *pos += 3;
2830 break;
2831
2832 case UNOP_MEMVAL:
2833 *pos += 3;
2834 nargs = 1;
2835 break;
2836
2837 case OP_REGISTER:
2838 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2839 break;
2840
2841 case STRUCTOP_STRUCT:
2842 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2843 nargs = 1;
2844 break;
2845
2846 case TERNOP_SLICE:
2847 *pos += 1;
2848 nargs = 3;
2849 break;
2850
2851 case OP_STRING:
2852 break;
2853
2854 default:
2855 error (_("Unexpected operator during name resolution"));
2856 }
2857
2858 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2859 for (i = 0; i < nargs; i += 1)
2860 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2861 argvec[i] = NULL;
2862 exp = *expp;
2863
2864 /* Pass two: perform any resolution on principal operator. */
2865 switch (op)
2866 {
2867 default:
2868 break;
2869
2870 case OP_VAR_VALUE:
2871 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2872 {
2873 struct ada_symbol_info *candidates;
2874 int n_candidates;
2875
2876 n_candidates =
2877 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2878 (exp->elts[pc + 2].symbol),
2879 exp->elts[pc + 1].block, VAR_DOMAIN,
2880 &candidates);
2881
2882 if (n_candidates > 1)
2883 {
2884 /* Types tend to get re-introduced locally, so if there
2885 are any local symbols that are not types, first filter
2886 out all types. */
2887 int j;
2888 for (j = 0; j < n_candidates; j += 1)
2889 switch (SYMBOL_CLASS (candidates[j].sym))
2890 {
2891 case LOC_REGISTER:
2892 case LOC_ARG:
2893 case LOC_REF_ARG:
2894 case LOC_REGPARM:
2895 case LOC_REGPARM_ADDR:
2896 case LOC_LOCAL:
2897 case LOC_LOCAL_ARG:
2898 case LOC_BASEREG:
2899 case LOC_BASEREG_ARG:
2900 case LOC_COMPUTED:
2901 case LOC_COMPUTED_ARG:
2902 goto FoundNonType;
2903 default:
2904 break;
2905 }
2906 FoundNonType:
2907 if (j < n_candidates)
2908 {
2909 j = 0;
2910 while (j < n_candidates)
2911 {
2912 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2913 {
2914 candidates[j] = candidates[n_candidates - 1];
2915 n_candidates -= 1;
2916 }
2917 else
2918 j += 1;
2919 }
2920 }
2921 }
2922
2923 if (n_candidates == 0)
2924 error (_("No definition found for %s"),
2925 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2926 else if (n_candidates == 1)
2927 i = 0;
2928 else if (deprocedure_p
2929 && !is_nonfunction (candidates, n_candidates))
2930 {
2931 i = ada_resolve_function
2932 (candidates, n_candidates, NULL, 0,
2933 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2934 context_type);
2935 if (i < 0)
2936 error (_("Could not find a match for %s"),
2937 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2938 }
2939 else
2940 {
2941 printf_filtered (_("Multiple matches for %s\n"),
2942 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2943 user_select_syms (candidates, n_candidates, 1);
2944 i = 0;
2945 }
2946
2947 exp->elts[pc + 1].block = candidates[i].block;
2948 exp->elts[pc + 2].symbol = candidates[i].sym;
2949 if (innermost_block == NULL
2950 || contained_in (candidates[i].block, innermost_block))
2951 innermost_block = candidates[i].block;
2952 }
2953
2954 if (deprocedure_p
2955 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2956 == TYPE_CODE_FUNC))
2957 {
2958 replace_operator_with_call (expp, pc, 0, 0,
2959 exp->elts[pc + 2].symbol,
2960 exp->elts[pc + 1].block);
2961 exp = *expp;
2962 }
2963 break;
2964
2965 case OP_FUNCALL:
2966 {
2967 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2968 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2969 {
2970 struct ada_symbol_info *candidates;
2971 int n_candidates;
2972
2973 n_candidates =
2974 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2975 (exp->elts[pc + 5].symbol),
2976 exp->elts[pc + 4].block, VAR_DOMAIN,
2977 &candidates);
2978 if (n_candidates == 1)
2979 i = 0;
2980 else
2981 {
2982 i = ada_resolve_function
2983 (candidates, n_candidates,
2984 argvec, nargs,
2985 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2986 context_type);
2987 if (i < 0)
2988 error (_("Could not find a match for %s"),
2989 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2990 }
2991
2992 exp->elts[pc + 4].block = candidates[i].block;
2993 exp->elts[pc + 5].symbol = candidates[i].sym;
2994 if (innermost_block == NULL
2995 || contained_in (candidates[i].block, innermost_block))
2996 innermost_block = candidates[i].block;
2997 }
2998 }
2999 break;
3000 case BINOP_ADD:
3001 case BINOP_SUB:
3002 case BINOP_MUL:
3003 case BINOP_DIV:
3004 case BINOP_REM:
3005 case BINOP_MOD:
3006 case BINOP_CONCAT:
3007 case BINOP_BITWISE_AND:
3008 case BINOP_BITWISE_IOR:
3009 case BINOP_BITWISE_XOR:
3010 case BINOP_EQUAL:
3011 case BINOP_NOTEQUAL:
3012 case BINOP_LESS:
3013 case BINOP_GTR:
3014 case BINOP_LEQ:
3015 case BINOP_GEQ:
3016 case BINOP_EXP:
3017 case UNOP_NEG:
3018 case UNOP_PLUS:
3019 case UNOP_LOGICAL_NOT:
3020 case UNOP_ABS:
3021 if (possible_user_operator_p (op, argvec))
3022 {
3023 struct ada_symbol_info *candidates;
3024 int n_candidates;
3025
3026 n_candidates =
3027 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3028 (struct block *) NULL, VAR_DOMAIN,
3029 &candidates);
3030 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3031 ada_decoded_op_name (op), NULL);
3032 if (i < 0)
3033 break;
3034
3035 replace_operator_with_call (expp, pc, nargs, 1,
3036 candidates[i].sym, candidates[i].block);
3037 exp = *expp;
3038 }
3039 break;
3040
3041 case OP_TYPE:
3042 case OP_REGISTER:
3043 return NULL;
3044 }
3045
3046 *pos = pc;
3047 return evaluate_subexp_type (exp, pos);
3048 }
3049
3050 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3051 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3052 a non-pointer. A type of 'void' (which is never a valid expression type)
3053 by convention matches anything. */
3054 /* The term "match" here is rather loose. The match is heuristic and
3055 liberal. FIXME: TOO liberal, in fact. */
3056
3057 static int
3058 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3059 {
3060 ftype = ada_check_typedef (ftype);
3061 atype = ada_check_typedef (atype);
3062
3063 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3064 ftype = TYPE_TARGET_TYPE (ftype);
3065 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3066 atype = TYPE_TARGET_TYPE (atype);
3067
3068 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
3069 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3070 return 1;
3071
3072 switch (TYPE_CODE (ftype))
3073 {
3074 default:
3075 return 1;
3076 case TYPE_CODE_PTR:
3077 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3078 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3079 TYPE_TARGET_TYPE (atype), 0);
3080 else
3081 return (may_deref
3082 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3083 case TYPE_CODE_INT:
3084 case TYPE_CODE_ENUM:
3085 case TYPE_CODE_RANGE:
3086 switch (TYPE_CODE (atype))
3087 {
3088 case TYPE_CODE_INT:
3089 case TYPE_CODE_ENUM:
3090 case TYPE_CODE_RANGE:
3091 return 1;
3092 default:
3093 return 0;
3094 }
3095
3096 case TYPE_CODE_ARRAY:
3097 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3098 || ada_is_array_descriptor_type (atype));
3099
3100 case TYPE_CODE_STRUCT:
3101 if (ada_is_array_descriptor_type (ftype))
3102 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3103 || ada_is_array_descriptor_type (atype));
3104 else
3105 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3106 && !ada_is_array_descriptor_type (atype));
3107
3108 case TYPE_CODE_UNION:
3109 case TYPE_CODE_FLT:
3110 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3111 }
3112 }
3113
3114 /* Return non-zero if the formals of FUNC "sufficiently match" the
3115 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3116 may also be an enumeral, in which case it is treated as a 0-
3117 argument function. */
3118
3119 static int
3120 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3121 {
3122 int i;
3123 struct type *func_type = SYMBOL_TYPE (func);
3124
3125 if (SYMBOL_CLASS (func) == LOC_CONST
3126 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3127 return (n_actuals == 0);
3128 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3129 return 0;
3130
3131 if (TYPE_NFIELDS (func_type) != n_actuals)
3132 return 0;
3133
3134 for (i = 0; i < n_actuals; i += 1)
3135 {
3136 if (actuals[i] == NULL)
3137 return 0;
3138 else
3139 {
3140 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3141 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3142
3143 if (!ada_type_match (ftype, atype, 1))
3144 return 0;
3145 }
3146 }
3147 return 1;
3148 }
3149
3150 /* False iff function type FUNC_TYPE definitely does not produce a value
3151 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3152 FUNC_TYPE is not a valid function type with a non-null return type
3153 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3154
3155 static int
3156 return_match (struct type *func_type, struct type *context_type)
3157 {
3158 struct type *return_type;
3159
3160 if (func_type == NULL)
3161 return 1;
3162
3163 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3164 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3165 else
3166 return_type = base_type (func_type);
3167 if (return_type == NULL)
3168 return 1;
3169
3170 context_type = base_type (context_type);
3171
3172 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3173 return context_type == NULL || return_type == context_type;
3174 else if (context_type == NULL)
3175 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3176 else
3177 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3178 }
3179
3180
3181 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3182 function (if any) that matches the types of the NARGS arguments in
3183 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3184 that returns that type, then eliminate matches that don't. If
3185 CONTEXT_TYPE is void and there is at least one match that does not
3186 return void, eliminate all matches that do.
3187
3188 Asks the user if there is more than one match remaining. Returns -1
3189 if there is no such symbol or none is selected. NAME is used
3190 solely for messages. May re-arrange and modify SYMS in
3191 the process; the index returned is for the modified vector. */
3192
3193 static int
3194 ada_resolve_function (struct ada_symbol_info syms[],
3195 int nsyms, struct value **args, int nargs,
3196 const char *name, struct type *context_type)
3197 {
3198 int k;
3199 int m; /* Number of hits */
3200 struct type *fallback;
3201 struct type *return_type;
3202
3203 return_type = context_type;
3204 if (context_type == NULL)
3205 fallback = builtin_type_void;
3206 else
3207 fallback = NULL;
3208
3209 m = 0;
3210 while (1)
3211 {
3212 for (k = 0; k < nsyms; k += 1)
3213 {
3214 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3215
3216 if (ada_args_match (syms[k].sym, args, nargs)
3217 && return_match (type, return_type))
3218 {
3219 syms[m] = syms[k];
3220 m += 1;
3221 }
3222 }
3223 if (m > 0 || return_type == fallback)
3224 break;
3225 else
3226 return_type = fallback;
3227 }
3228
3229 if (m == 0)
3230 return -1;
3231 else if (m > 1)
3232 {
3233 printf_filtered (_("Multiple matches for %s\n"), name);
3234 user_select_syms (syms, m, 1);
3235 return 0;
3236 }
3237 return 0;
3238 }
3239
3240 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3241 in a listing of choices during disambiguation (see sort_choices, below).
3242 The idea is that overloadings of a subprogram name from the
3243 same package should sort in their source order. We settle for ordering
3244 such symbols by their trailing number (__N or $N). */
3245
3246 static int
3247 encoded_ordered_before (char *N0, char *N1)
3248 {
3249 if (N1 == NULL)
3250 return 0;
3251 else if (N0 == NULL)
3252 return 1;
3253 else
3254 {
3255 int k0, k1;
3256 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3257 ;
3258 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3259 ;
3260 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3261 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3262 {
3263 int n0, n1;
3264 n0 = k0;
3265 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3266 n0 -= 1;
3267 n1 = k1;
3268 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3269 n1 -= 1;
3270 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3271 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3272 }
3273 return (strcmp (N0, N1) < 0);
3274 }
3275 }
3276
3277 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3278 encoded names. */
3279
3280 static void
3281 sort_choices (struct ada_symbol_info syms[], int nsyms)
3282 {
3283 int i;
3284 for (i = 1; i < nsyms; i += 1)
3285 {
3286 struct ada_symbol_info sym = syms[i];
3287 int j;
3288
3289 for (j = i - 1; j >= 0; j -= 1)
3290 {
3291 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3292 SYMBOL_LINKAGE_NAME (sym.sym)))
3293 break;
3294 syms[j + 1] = syms[j];
3295 }
3296 syms[j + 1] = sym;
3297 }
3298 }
3299
3300 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3301 by asking the user (if necessary), returning the number selected,
3302 and setting the first elements of SYMS items. Error if no symbols
3303 selected. */
3304
3305 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3306 to be re-integrated one of these days. */
3307
3308 int
3309 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3310 {
3311 int i;
3312 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3313 int n_chosen;
3314 int first_choice = (max_results == 1) ? 1 : 2;
3315 const char *select_mode = multiple_symbols_select_mode ();
3316
3317 if (max_results < 1)
3318 error (_("Request to select 0 symbols!"));
3319 if (nsyms <= 1)
3320 return nsyms;
3321
3322 if (select_mode == multiple_symbols_cancel)
3323 error (_("\
3324 canceled because the command is ambiguous\n\
3325 See set/show multiple-symbol."));
3326
3327 /* If select_mode is "all", then return all possible symbols.
3328 Only do that if more than one symbol can be selected, of course.
3329 Otherwise, display the menu as usual. */
3330 if (select_mode == multiple_symbols_all && max_results > 1)
3331 return nsyms;
3332
3333 printf_unfiltered (_("[0] cancel\n"));
3334 if (max_results > 1)
3335 printf_unfiltered (_("[1] all\n"));
3336
3337 sort_choices (syms, nsyms);
3338
3339 for (i = 0; i < nsyms; i += 1)
3340 {
3341 if (syms[i].sym == NULL)
3342 continue;
3343
3344 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3345 {
3346 struct symtab_and_line sal =
3347 find_function_start_sal (syms[i].sym, 1);
3348 if (sal.symtab == NULL)
3349 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3350 i + first_choice,
3351 SYMBOL_PRINT_NAME (syms[i].sym),
3352 sal.line);
3353 else
3354 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3355 SYMBOL_PRINT_NAME (syms[i].sym),
3356 sal.symtab->filename, sal.line);
3357 continue;
3358 }
3359 else
3360 {
3361 int is_enumeral =
3362 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3363 && SYMBOL_TYPE (syms[i].sym) != NULL
3364 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3365 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3366
3367 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3368 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3369 i + first_choice,
3370 SYMBOL_PRINT_NAME (syms[i].sym),
3371 symtab->filename, SYMBOL_LINE (syms[i].sym));
3372 else if (is_enumeral
3373 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3374 {
3375 printf_unfiltered (("[%d] "), i + first_choice);
3376 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3377 gdb_stdout, -1, 0);
3378 printf_unfiltered (_("'(%s) (enumeral)\n"),
3379 SYMBOL_PRINT_NAME (syms[i].sym));
3380 }
3381 else if (symtab != NULL)
3382 printf_unfiltered (is_enumeral
3383 ? _("[%d] %s in %s (enumeral)\n")
3384 : _("[%d] %s at %s:?\n"),
3385 i + first_choice,
3386 SYMBOL_PRINT_NAME (syms[i].sym),
3387 symtab->filename);
3388 else
3389 printf_unfiltered (is_enumeral
3390 ? _("[%d] %s (enumeral)\n")
3391 : _("[%d] %s at ?\n"),
3392 i + first_choice,
3393 SYMBOL_PRINT_NAME (syms[i].sym));
3394 }
3395 }
3396
3397 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3398 "overload-choice");
3399
3400 for (i = 0; i < n_chosen; i += 1)
3401 syms[i] = syms[chosen[i]];
3402
3403 return n_chosen;
3404 }
3405
3406 /* Read and validate a set of numeric choices from the user in the
3407 range 0 .. N_CHOICES-1. Place the results in increasing
3408 order in CHOICES[0 .. N-1], and return N.
3409
3410 The user types choices as a sequence of numbers on one line
3411 separated by blanks, encoding them as follows:
3412
3413 + A choice of 0 means to cancel the selection, throwing an error.
3414 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3415 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3416
3417 The user is not allowed to choose more than MAX_RESULTS values.
3418
3419 ANNOTATION_SUFFIX, if present, is used to annotate the input
3420 prompts (for use with the -f switch). */
3421
3422 int
3423 get_selections (int *choices, int n_choices, int max_results,
3424 int is_all_choice, char *annotation_suffix)
3425 {
3426 char *args;
3427 char *prompt;
3428 int n_chosen;
3429 int first_choice = is_all_choice ? 2 : 1;
3430
3431 prompt = getenv ("PS2");
3432 if (prompt == NULL)
3433 prompt = "> ";
3434
3435 args = command_line_input (prompt, 0, annotation_suffix);
3436
3437 if (args == NULL)
3438 error_no_arg (_("one or more choice numbers"));
3439
3440 n_chosen = 0;
3441
3442 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3443 order, as given in args. Choices are validated. */
3444 while (1)
3445 {
3446 char *args2;
3447 int choice, j;
3448
3449 while (isspace (*args))
3450 args += 1;
3451 if (*args == '\0' && n_chosen == 0)
3452 error_no_arg (_("one or more choice numbers"));
3453 else if (*args == '\0')
3454 break;
3455
3456 choice = strtol (args, &args2, 10);
3457 if (args == args2 || choice < 0
3458 || choice > n_choices + first_choice - 1)
3459 error (_("Argument must be choice number"));
3460 args = args2;
3461
3462 if (choice == 0)
3463 error (_("cancelled"));
3464
3465 if (choice < first_choice)
3466 {
3467 n_chosen = n_choices;
3468 for (j = 0; j < n_choices; j += 1)
3469 choices[j] = j;
3470 break;
3471 }
3472 choice -= first_choice;
3473
3474 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3475 {
3476 }
3477
3478 if (j < 0 || choice != choices[j])
3479 {
3480 int k;
3481 for (k = n_chosen - 1; k > j; k -= 1)
3482 choices[k + 1] = choices[k];
3483 choices[j + 1] = choice;
3484 n_chosen += 1;
3485 }
3486 }
3487
3488 if (n_chosen > max_results)
3489 error (_("Select no more than %d of the above"), max_results);
3490
3491 return n_chosen;
3492 }
3493
3494 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3495 on the function identified by SYM and BLOCK, and taking NARGS
3496 arguments. Update *EXPP as needed to hold more space. */
3497
3498 static void
3499 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3500 int oplen, struct symbol *sym,
3501 struct block *block)
3502 {
3503 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3504 symbol, -oplen for operator being replaced). */
3505 struct expression *newexp = (struct expression *)
3506 xmalloc (sizeof (struct expression)
3507 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3508 struct expression *exp = *expp;
3509
3510 newexp->nelts = exp->nelts + 7 - oplen;
3511 newexp->language_defn = exp->language_defn;
3512 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3513 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3514 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3515
3516 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3517 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3518
3519 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3520 newexp->elts[pc + 4].block = block;
3521 newexp->elts[pc + 5].symbol = sym;
3522
3523 *expp = newexp;
3524 xfree (exp);
3525 }
3526
3527 /* Type-class predicates */
3528
3529 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3530 or FLOAT). */
3531
3532 static int
3533 numeric_type_p (struct type *type)
3534 {
3535 if (type == NULL)
3536 return 0;
3537 else
3538 {
3539 switch (TYPE_CODE (type))
3540 {
3541 case TYPE_CODE_INT:
3542 case TYPE_CODE_FLT:
3543 return 1;
3544 case TYPE_CODE_RANGE:
3545 return (type == TYPE_TARGET_TYPE (type)
3546 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3547 default:
3548 return 0;
3549 }
3550 }
3551 }
3552
3553 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3554
3555 static int
3556 integer_type_p (struct type *type)
3557 {
3558 if (type == NULL)
3559 return 0;
3560 else
3561 {
3562 switch (TYPE_CODE (type))
3563 {
3564 case TYPE_CODE_INT:
3565 return 1;
3566 case TYPE_CODE_RANGE:
3567 return (type == TYPE_TARGET_TYPE (type)
3568 || integer_type_p (TYPE_TARGET_TYPE (type)));
3569 default:
3570 return 0;
3571 }
3572 }
3573 }
3574
3575 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3576
3577 static int
3578 scalar_type_p (struct type *type)
3579 {
3580 if (type == NULL)
3581 return 0;
3582 else
3583 {
3584 switch (TYPE_CODE (type))
3585 {
3586 case TYPE_CODE_INT:
3587 case TYPE_CODE_RANGE:
3588 case TYPE_CODE_ENUM:
3589 case TYPE_CODE_FLT:
3590 return 1;
3591 default:
3592 return 0;
3593 }
3594 }
3595 }
3596
3597 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3598
3599 static int
3600 discrete_type_p (struct type *type)
3601 {
3602 if (type == NULL)
3603 return 0;
3604 else
3605 {
3606 switch (TYPE_CODE (type))
3607 {
3608 case TYPE_CODE_INT:
3609 case TYPE_CODE_RANGE:
3610 case TYPE_CODE_ENUM:
3611 return 1;
3612 default:
3613 return 0;
3614 }
3615 }
3616 }
3617
3618 /* Returns non-zero if OP with operands in the vector ARGS could be
3619 a user-defined function. Errs on the side of pre-defined operators
3620 (i.e., result 0). */
3621
3622 static int
3623 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3624 {
3625 struct type *type0 =
3626 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3627 struct type *type1 =
3628 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3629
3630 if (type0 == NULL)
3631 return 0;
3632
3633 switch (op)
3634 {
3635 default:
3636 return 0;
3637
3638 case BINOP_ADD:
3639 case BINOP_SUB:
3640 case BINOP_MUL:
3641 case BINOP_DIV:
3642 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3643
3644 case BINOP_REM:
3645 case BINOP_MOD:
3646 case BINOP_BITWISE_AND:
3647 case BINOP_BITWISE_IOR:
3648 case BINOP_BITWISE_XOR:
3649 return (!(integer_type_p (type0) && integer_type_p (type1)));
3650
3651 case BINOP_EQUAL:
3652 case BINOP_NOTEQUAL:
3653 case BINOP_LESS:
3654 case BINOP_GTR:
3655 case BINOP_LEQ:
3656 case BINOP_GEQ:
3657 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3658
3659 case BINOP_CONCAT:
3660 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3661
3662 case BINOP_EXP:
3663 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3664
3665 case UNOP_NEG:
3666 case UNOP_PLUS:
3667 case UNOP_LOGICAL_NOT:
3668 case UNOP_ABS:
3669 return (!numeric_type_p (type0));
3670
3671 }
3672 }
3673 \f
3674 /* Renaming */
3675
3676 /* NOTES:
3677
3678 1. In the following, we assume that a renaming type's name may
3679 have an ___XD suffix. It would be nice if this went away at some
3680 point.
3681 2. We handle both the (old) purely type-based representation of
3682 renamings and the (new) variable-based encoding. At some point,
3683 it is devoutly to be hoped that the former goes away
3684 (FIXME: hilfinger-2007-07-09).
3685 3. Subprogram renamings are not implemented, although the XRS
3686 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3687
3688 /* If SYM encodes a renaming,
3689
3690 <renaming> renames <renamed entity>,
3691
3692 sets *LEN to the length of the renamed entity's name,
3693 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3694 the string describing the subcomponent selected from the renamed
3695 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3696 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3697 are undefined). Otherwise, returns a value indicating the category
3698 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3699 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3700 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3701 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3702 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3703 may be NULL, in which case they are not assigned.
3704
3705 [Currently, however, GCC does not generate subprogram renamings.] */
3706
3707 enum ada_renaming_category
3708 ada_parse_renaming (struct symbol *sym,
3709 const char **renamed_entity, int *len,
3710 const char **renaming_expr)
3711 {
3712 enum ada_renaming_category kind;
3713 const char *info;
3714 const char *suffix;
3715
3716 if (sym == NULL)
3717 return ADA_NOT_RENAMING;
3718 switch (SYMBOL_CLASS (sym))
3719 {
3720 default:
3721 return ADA_NOT_RENAMING;
3722 case LOC_TYPEDEF:
3723 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3724 renamed_entity, len, renaming_expr);
3725 case LOC_LOCAL:
3726 case LOC_STATIC:
3727 case LOC_COMPUTED:
3728 case LOC_OPTIMIZED_OUT:
3729 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3730 if (info == NULL)
3731 return ADA_NOT_RENAMING;
3732 switch (info[5])
3733 {
3734 case '_':
3735 kind = ADA_OBJECT_RENAMING;
3736 info += 6;
3737 break;
3738 case 'E':
3739 kind = ADA_EXCEPTION_RENAMING;
3740 info += 7;
3741 break;
3742 case 'P':
3743 kind = ADA_PACKAGE_RENAMING;
3744 info += 7;
3745 break;
3746 case 'S':
3747 kind = ADA_SUBPROGRAM_RENAMING;
3748 info += 7;
3749 break;
3750 default:
3751 return ADA_NOT_RENAMING;
3752 }
3753 }
3754
3755 if (renamed_entity != NULL)
3756 *renamed_entity = info;
3757 suffix = strstr (info, "___XE");
3758 if (suffix == NULL || suffix == info)
3759 return ADA_NOT_RENAMING;
3760 if (len != NULL)
3761 *len = strlen (info) - strlen (suffix);
3762 suffix += 5;
3763 if (renaming_expr != NULL)
3764 *renaming_expr = suffix;
3765 return kind;
3766 }
3767
3768 /* Assuming TYPE encodes a renaming according to the old encoding in
3769 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3770 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3771 ADA_NOT_RENAMING otherwise. */
3772 static enum ada_renaming_category
3773 parse_old_style_renaming (struct type *type,
3774 const char **renamed_entity, int *len,
3775 const char **renaming_expr)
3776 {
3777 enum ada_renaming_category kind;
3778 const char *name;
3779 const char *info;
3780 const char *suffix;
3781
3782 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3783 || TYPE_NFIELDS (type) != 1)
3784 return ADA_NOT_RENAMING;
3785
3786 name = type_name_no_tag (type);
3787 if (name == NULL)
3788 return ADA_NOT_RENAMING;
3789
3790 name = strstr (name, "___XR");
3791 if (name == NULL)
3792 return ADA_NOT_RENAMING;
3793 switch (name[5])
3794 {
3795 case '\0':
3796 case '_':
3797 kind = ADA_OBJECT_RENAMING;
3798 break;
3799 case 'E':
3800 kind = ADA_EXCEPTION_RENAMING;
3801 break;
3802 case 'P':
3803 kind = ADA_PACKAGE_RENAMING;
3804 break;
3805 case 'S':
3806 kind = ADA_SUBPROGRAM_RENAMING;
3807 break;
3808 default:
3809 return ADA_NOT_RENAMING;
3810 }
3811
3812 info = TYPE_FIELD_NAME (type, 0);
3813 if (info == NULL)
3814 return ADA_NOT_RENAMING;
3815 if (renamed_entity != NULL)
3816 *renamed_entity = info;
3817 suffix = strstr (info, "___XE");
3818 if (renaming_expr != NULL)
3819 *renaming_expr = suffix + 5;
3820 if (suffix == NULL || suffix == info)
3821 return ADA_NOT_RENAMING;
3822 if (len != NULL)
3823 *len = suffix - info;
3824 return kind;
3825 }
3826
3827 \f
3828
3829 /* Evaluation: Function Calls */
3830
3831 /* Return an lvalue containing the value VAL. This is the identity on
3832 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3833 on the stack, using and updating *SP as the stack pointer, and
3834 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3835
3836 static struct value *
3837 ensure_lval (struct value *val, CORE_ADDR *sp)
3838 {
3839 if (! VALUE_LVAL (val))
3840 {
3841 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3842
3843 /* The following is taken from the structure-return code in
3844 call_function_by_hand. FIXME: Therefore, some refactoring seems
3845 indicated. */
3846 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3847 {
3848 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3849 reserving sufficient space. */
3850 *sp -= len;
3851 if (gdbarch_frame_align_p (current_gdbarch))
3852 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3853 VALUE_ADDRESS (val) = *sp;
3854 }
3855 else
3856 {
3857 /* Stack grows upward. Align the frame, allocate space, and
3858 then again, re-align the frame. */
3859 if (gdbarch_frame_align_p (current_gdbarch))
3860 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3861 VALUE_ADDRESS (val) = *sp;
3862 *sp += len;
3863 if (gdbarch_frame_align_p (current_gdbarch))
3864 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3865 }
3866 VALUE_LVAL (val) = lval_memory;
3867
3868 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3869 }
3870
3871 return val;
3872 }
3873
3874 /* Return the value ACTUAL, converted to be an appropriate value for a
3875 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3876 allocating any necessary descriptors (fat pointers), or copies of
3877 values not residing in memory, updating it as needed. */
3878
3879 struct value *
3880 ada_convert_actual (struct value *actual, struct type *formal_type0,
3881 CORE_ADDR *sp)
3882 {
3883 struct type *actual_type = ada_check_typedef (value_type (actual));
3884 struct type *formal_type = ada_check_typedef (formal_type0);
3885 struct type *formal_target =
3886 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3887 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3888 struct type *actual_target =
3889 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3890 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3891
3892 if (ada_is_array_descriptor_type (formal_target)
3893 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3894 return make_array_descriptor (formal_type, actual, sp);
3895 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3896 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3897 {
3898 struct value *result;
3899 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3900 && ada_is_array_descriptor_type (actual_target))
3901 result = desc_data (actual);
3902 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3903 {
3904 if (VALUE_LVAL (actual) != lval_memory)
3905 {
3906 struct value *val;
3907 actual_type = ada_check_typedef (value_type (actual));
3908 val = allocate_value (actual_type);
3909 memcpy ((char *) value_contents_raw (val),
3910 (char *) value_contents (actual),
3911 TYPE_LENGTH (actual_type));
3912 actual = ensure_lval (val, sp);
3913 }
3914 result = value_addr (actual);
3915 }
3916 else
3917 return actual;
3918 return value_cast_pointers (formal_type, result);
3919 }
3920 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3921 return ada_value_ind (actual);
3922
3923 return actual;
3924 }
3925
3926
3927 /* Push a descriptor of type TYPE for array value ARR on the stack at
3928 *SP, updating *SP to reflect the new descriptor. Return either
3929 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3930 to-descriptor type rather than a descriptor type), a struct value *
3931 representing a pointer to this descriptor. */
3932
3933 static struct value *
3934 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3935 {
3936 struct type *bounds_type = desc_bounds_type (type);
3937 struct type *desc_type = desc_base_type (type);
3938 struct value *descriptor = allocate_value (desc_type);
3939 struct value *bounds = allocate_value (bounds_type);
3940 int i;
3941
3942 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3943 {
3944 modify_general_field (value_contents_writeable (bounds),
3945 value_as_long (ada_array_bound (arr, i, 0)),
3946 desc_bound_bitpos (bounds_type, i, 0),
3947 desc_bound_bitsize (bounds_type, i, 0));
3948 modify_general_field (value_contents_writeable (bounds),
3949 value_as_long (ada_array_bound (arr, i, 1)),
3950 desc_bound_bitpos (bounds_type, i, 1),
3951 desc_bound_bitsize (bounds_type, i, 1));
3952 }
3953
3954 bounds = ensure_lval (bounds, sp);
3955
3956 modify_general_field (value_contents_writeable (descriptor),
3957 VALUE_ADDRESS (ensure_lval (arr, sp)),
3958 fat_pntr_data_bitpos (desc_type),
3959 fat_pntr_data_bitsize (desc_type));
3960
3961 modify_general_field (value_contents_writeable (descriptor),
3962 VALUE_ADDRESS (bounds),
3963 fat_pntr_bounds_bitpos (desc_type),
3964 fat_pntr_bounds_bitsize (desc_type));
3965
3966 descriptor = ensure_lval (descriptor, sp);
3967
3968 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3969 return value_addr (descriptor);
3970 else
3971 return descriptor;
3972 }
3973 \f
3974 /* Dummy definitions for an experimental caching module that is not
3975 * used in the public sources. */
3976
3977 static int
3978 lookup_cached_symbol (const char *name, domain_enum namespace,
3979 struct symbol **sym, struct block **block,
3980 struct symtab **symtab)
3981 {
3982 return 0;
3983 }
3984
3985 static void
3986 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3987 struct block *block, struct symtab *symtab)
3988 {
3989 }
3990 \f
3991 /* Symbol Lookup */
3992
3993 /* Return the result of a standard (literal, C-like) lookup of NAME in
3994 given DOMAIN, visible from lexical block BLOCK. */
3995
3996 static struct symbol *
3997 standard_lookup (const char *name, const struct block *block,
3998 domain_enum domain)
3999 {
4000 struct symbol *sym;
4001 struct symtab *symtab;
4002
4003 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
4004 return sym;
4005 sym =
4006 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
4007 cache_symbol (name, domain, sym, block_found, symtab);
4008 return sym;
4009 }
4010
4011
4012 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4013 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4014 since they contend in overloading in the same way. */
4015 static int
4016 is_nonfunction (struct ada_symbol_info syms[], int n)
4017 {
4018 int i;
4019
4020 for (i = 0; i < n; i += 1)
4021 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4022 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4023 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4024 return 1;
4025
4026 return 0;
4027 }
4028
4029 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4030 struct types. Otherwise, they may not. */
4031
4032 static int
4033 equiv_types (struct type *type0, struct type *type1)
4034 {
4035 if (type0 == type1)
4036 return 1;
4037 if (type0 == NULL || type1 == NULL
4038 || TYPE_CODE (type0) != TYPE_CODE (type1))
4039 return 0;
4040 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4041 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4042 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4043 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4044 return 1;
4045
4046 return 0;
4047 }
4048
4049 /* True iff SYM0 represents the same entity as SYM1, or one that is
4050 no more defined than that of SYM1. */
4051
4052 static int
4053 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4054 {
4055 if (sym0 == sym1)
4056 return 1;
4057 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4058 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4059 return 0;
4060
4061 switch (SYMBOL_CLASS (sym0))
4062 {
4063 case LOC_UNDEF:
4064 return 1;
4065 case LOC_TYPEDEF:
4066 {
4067 struct type *type0 = SYMBOL_TYPE (sym0);
4068 struct type *type1 = SYMBOL_TYPE (sym1);
4069 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4070 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4071 int len0 = strlen (name0);
4072 return
4073 TYPE_CODE (type0) == TYPE_CODE (type1)
4074 && (equiv_types (type0, type1)
4075 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4076 && strncmp (name1 + len0, "___XV", 5) == 0));
4077 }
4078 case LOC_CONST:
4079 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4080 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4081 default:
4082 return 0;
4083 }
4084 }
4085
4086 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4087 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4088
4089 static void
4090 add_defn_to_vec (struct obstack *obstackp,
4091 struct symbol *sym,
4092 struct block *block, struct symtab *symtab)
4093 {
4094 int i;
4095 size_t tmp;
4096 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4097
4098 /* Do not try to complete stub types, as the debugger is probably
4099 already scanning all symbols matching a certain name at the
4100 time when this function is called. Trying to replace the stub
4101 type by its associated full type will cause us to restart a scan
4102 which may lead to an infinite recursion. Instead, the client
4103 collecting the matching symbols will end up collecting several
4104 matches, with at least one of them complete. It can then filter
4105 out the stub ones if needed. */
4106
4107 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4108 {
4109 if (lesseq_defined_than (sym, prevDefns[i].sym))
4110 return;
4111 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4112 {
4113 prevDefns[i].sym = sym;
4114 prevDefns[i].block = block;
4115 prevDefns[i].symtab = symtab;
4116 return;
4117 }
4118 }
4119
4120 {
4121 struct ada_symbol_info info;
4122
4123 info.sym = sym;
4124 info.block = block;
4125 info.symtab = symtab;
4126 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4127 }
4128 }
4129
4130 /* Number of ada_symbol_info structures currently collected in
4131 current vector in *OBSTACKP. */
4132
4133 static int
4134 num_defns_collected (struct obstack *obstackp)
4135 {
4136 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4137 }
4138
4139 /* Vector of ada_symbol_info structures currently collected in current
4140 vector in *OBSTACKP. If FINISH, close off the vector and return
4141 its final address. */
4142
4143 static struct ada_symbol_info *
4144 defns_collected (struct obstack *obstackp, int finish)
4145 {
4146 if (finish)
4147 return obstack_finish (obstackp);
4148 else
4149 return (struct ada_symbol_info *) obstack_base (obstackp);
4150 }
4151
4152 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4153 Check the global symbols if GLOBAL, the static symbols if not.
4154 Do wild-card match if WILD. */
4155
4156 static struct partial_symbol *
4157 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4158 int global, domain_enum namespace, int wild)
4159 {
4160 struct partial_symbol **start;
4161 int name_len = strlen (name);
4162 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4163 int i;
4164
4165 if (length == 0)
4166 {
4167 return (NULL);
4168 }
4169
4170 start = (global ?
4171 pst->objfile->global_psymbols.list + pst->globals_offset :
4172 pst->objfile->static_psymbols.list + pst->statics_offset);
4173
4174 if (wild)
4175 {
4176 for (i = 0; i < length; i += 1)
4177 {
4178 struct partial_symbol *psym = start[i];
4179
4180 if (SYMBOL_DOMAIN (psym) == namespace
4181 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4182 return psym;
4183 }
4184 return NULL;
4185 }
4186 else
4187 {
4188 if (global)
4189 {
4190 int U;
4191 i = 0;
4192 U = length - 1;
4193 while (U - i > 4)
4194 {
4195 int M = (U + i) >> 1;
4196 struct partial_symbol *psym = start[M];
4197 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4198 i = M + 1;
4199 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4200 U = M - 1;
4201 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4202 i = M + 1;
4203 else
4204 U = M;
4205 }
4206 }
4207 else
4208 i = 0;
4209
4210 while (i < length)
4211 {
4212 struct partial_symbol *psym = start[i];
4213
4214 if (SYMBOL_DOMAIN (psym) == namespace)
4215 {
4216 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4217
4218 if (cmp < 0)
4219 {
4220 if (global)
4221 break;
4222 }
4223 else if (cmp == 0
4224 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4225 + name_len))
4226 return psym;
4227 }
4228 i += 1;
4229 }
4230
4231 if (global)
4232 {
4233 int U;
4234 i = 0;
4235 U = length - 1;
4236 while (U - i > 4)
4237 {
4238 int M = (U + i) >> 1;
4239 struct partial_symbol *psym = start[M];
4240 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4241 i = M + 1;
4242 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4243 U = M - 1;
4244 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4245 i = M + 1;
4246 else
4247 U = M;
4248 }
4249 }
4250 else
4251 i = 0;
4252
4253 while (i < length)
4254 {
4255 struct partial_symbol *psym = start[i];
4256
4257 if (SYMBOL_DOMAIN (psym) == namespace)
4258 {
4259 int cmp;
4260
4261 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4262 if (cmp == 0)
4263 {
4264 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4265 if (cmp == 0)
4266 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4267 name_len);
4268 }
4269
4270 if (cmp < 0)
4271 {
4272 if (global)
4273 break;
4274 }
4275 else if (cmp == 0
4276 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4277 + name_len + 5))
4278 return psym;
4279 }
4280 i += 1;
4281 }
4282 }
4283 return NULL;
4284 }
4285
4286 /* Find a symbol table containing symbol SYM or NULL if none. */
4287
4288 static struct symtab *
4289 symtab_for_sym (struct symbol *sym)
4290 {
4291 struct symtab *s;
4292 struct objfile *objfile;
4293 struct block *b;
4294 struct symbol *tmp_sym;
4295 struct dict_iterator iter;
4296 int j;
4297
4298 ALL_PRIMARY_SYMTABS (objfile, s)
4299 {
4300 switch (SYMBOL_CLASS (sym))
4301 {
4302 case LOC_CONST:
4303 case LOC_STATIC:
4304 case LOC_TYPEDEF:
4305 case LOC_REGISTER:
4306 case LOC_LABEL:
4307 case LOC_BLOCK:
4308 case LOC_CONST_BYTES:
4309 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4310 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4311 return s;
4312 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4313 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4314 return s;
4315 break;
4316 default:
4317 break;
4318 }
4319 switch (SYMBOL_CLASS (sym))
4320 {
4321 case LOC_REGISTER:
4322 case LOC_ARG:
4323 case LOC_REF_ARG:
4324 case LOC_REGPARM:
4325 case LOC_REGPARM_ADDR:
4326 case LOC_LOCAL:
4327 case LOC_TYPEDEF:
4328 case LOC_LOCAL_ARG:
4329 case LOC_BASEREG:
4330 case LOC_BASEREG_ARG:
4331 case LOC_COMPUTED:
4332 case LOC_COMPUTED_ARG:
4333 for (j = FIRST_LOCAL_BLOCK;
4334 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4335 {
4336 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4337 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4338 return s;
4339 }
4340 break;
4341 default:
4342 break;
4343 }
4344 }
4345 return NULL;
4346 }
4347
4348 /* Return a minimal symbol matching NAME according to Ada decoding
4349 rules. Returns NULL if there is no such minimal symbol. Names
4350 prefixed with "standard__" are handled specially: "standard__" is
4351 first stripped off, and only static and global symbols are searched. */
4352
4353 struct minimal_symbol *
4354 ada_lookup_simple_minsym (const char *name)
4355 {
4356 struct objfile *objfile;
4357 struct minimal_symbol *msymbol;
4358 int wild_match;
4359
4360 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4361 {
4362 name += sizeof ("standard__") - 1;
4363 wild_match = 0;
4364 }
4365 else
4366 wild_match = (strstr (name, "__") == NULL);
4367
4368 ALL_MSYMBOLS (objfile, msymbol)
4369 {
4370 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4371 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4372 return msymbol;
4373 }
4374
4375 return NULL;
4376 }
4377
4378 /* For all subprograms that statically enclose the subprogram of the
4379 selected frame, add symbols matching identifier NAME in DOMAIN
4380 and their blocks to the list of data in OBSTACKP, as for
4381 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4382 wildcard prefix. */
4383
4384 static void
4385 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4386 const char *name, domain_enum namespace,
4387 int wild_match)
4388 {
4389 }
4390
4391 /* True if TYPE is definitely an artificial type supplied to a symbol
4392 for which no debugging information was given in the symbol file. */
4393
4394 static int
4395 is_nondebugging_type (struct type *type)
4396 {
4397 char *name = ada_type_name (type);
4398 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4399 }
4400
4401 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4402 duplicate other symbols in the list (The only case I know of where
4403 this happens is when object files containing stabs-in-ecoff are
4404 linked with files containing ordinary ecoff debugging symbols (or no
4405 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4406 Returns the number of items in the modified list. */
4407
4408 static int
4409 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4410 {
4411 int i, j;
4412
4413 i = 0;
4414 while (i < nsyms)
4415 {
4416 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4417 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4418 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4419 {
4420 for (j = 0; j < nsyms; j += 1)
4421 {
4422 if (i != j
4423 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4424 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4425 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4426 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4427 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4428 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4429 {
4430 int k;
4431 for (k = i + 1; k < nsyms; k += 1)
4432 syms[k - 1] = syms[k];
4433 nsyms -= 1;
4434 goto NextSymbol;
4435 }
4436 }
4437 }
4438 i += 1;
4439 NextSymbol:
4440 ;
4441 }
4442 return nsyms;
4443 }
4444
4445 /* Given a type that corresponds to a renaming entity, use the type name
4446 to extract the scope (package name or function name, fully qualified,
4447 and following the GNAT encoding convention) where this renaming has been
4448 defined. The string returned needs to be deallocated after use. */
4449
4450 static char *
4451 xget_renaming_scope (struct type *renaming_type)
4452 {
4453 /* The renaming types adhere to the following convention:
4454 <scope>__<rename>___<XR extension>.
4455 So, to extract the scope, we search for the "___XR" extension,
4456 and then backtrack until we find the first "__". */
4457
4458 const char *name = type_name_no_tag (renaming_type);
4459 char *suffix = strstr (name, "___XR");
4460 char *last;
4461 int scope_len;
4462 char *scope;
4463
4464 /* Now, backtrack a bit until we find the first "__". Start looking
4465 at suffix - 3, as the <rename> part is at least one character long. */
4466
4467 for (last = suffix - 3; last > name; last--)
4468 if (last[0] == '_' && last[1] == '_')
4469 break;
4470
4471 /* Make a copy of scope and return it. */
4472
4473 scope_len = last - name;
4474 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4475
4476 strncpy (scope, name, scope_len);
4477 scope[scope_len] = '\0';
4478
4479 return scope;
4480 }
4481
4482 /* Return nonzero if NAME corresponds to a package name. */
4483
4484 static int
4485 is_package_name (const char *name)
4486 {
4487 /* Here, We take advantage of the fact that no symbols are generated
4488 for packages, while symbols are generated for each function.
4489 So the condition for NAME represent a package becomes equivalent
4490 to NAME not existing in our list of symbols. There is only one
4491 small complication with library-level functions (see below). */
4492
4493 char *fun_name;
4494
4495 /* If it is a function that has not been defined at library level,
4496 then we should be able to look it up in the symbols. */
4497 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4498 return 0;
4499
4500 /* Library-level function names start with "_ada_". See if function
4501 "_ada_" followed by NAME can be found. */
4502
4503 /* Do a quick check that NAME does not contain "__", since library-level
4504 functions names cannot contain "__" in them. */
4505 if (strstr (name, "__") != NULL)
4506 return 0;
4507
4508 fun_name = xstrprintf ("_ada_%s", name);
4509
4510 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4511 }
4512
4513 /* Return nonzero if SYM corresponds to a renaming entity that is
4514 not visible from FUNCTION_NAME. */
4515
4516 static int
4517 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4518 {
4519 char *scope;
4520
4521 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4522 return 0;
4523
4524 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4525
4526 make_cleanup (xfree, scope);
4527
4528 /* If the rename has been defined in a package, then it is visible. */
4529 if (is_package_name (scope))
4530 return 0;
4531
4532 /* Check that the rename is in the current function scope by checking
4533 that its name starts with SCOPE. */
4534
4535 /* If the function name starts with "_ada_", it means that it is
4536 a library-level function. Strip this prefix before doing the
4537 comparison, as the encoding for the renaming does not contain
4538 this prefix. */
4539 if (strncmp (function_name, "_ada_", 5) == 0)
4540 function_name += 5;
4541
4542 return (strncmp (function_name, scope, strlen (scope)) != 0);
4543 }
4544
4545 /* Remove entries from SYMS that corresponds to a renaming entity that
4546 is not visible from the function associated with CURRENT_BLOCK or
4547 that is superfluous due to the presence of more specific renaming
4548 information. Places surviving symbols in the initial entries of
4549 SYMS and returns the number of surviving symbols.
4550
4551 Rationale:
4552 First, in cases where an object renaming is implemented as a
4553 reference variable, GNAT may produce both the actual reference
4554 variable and the renaming encoding. In this case, we discard the
4555 latter.
4556
4557 Second, GNAT emits a type following a specified encoding for each renaming
4558 entity. Unfortunately, STABS currently does not support the definition
4559 of types that are local to a given lexical block, so all renamings types
4560 are emitted at library level. As a consequence, if an application
4561 contains two renaming entities using the same name, and a user tries to
4562 print the value of one of these entities, the result of the ada symbol
4563 lookup will also contain the wrong renaming type.
4564
4565 This function partially covers for this limitation by attempting to
4566 remove from the SYMS list renaming symbols that should be visible
4567 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4568 method with the current information available. The implementation
4569 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4570
4571 - When the user tries to print a rename in a function while there
4572 is another rename entity defined in a package: Normally, the
4573 rename in the function has precedence over the rename in the
4574 package, so the latter should be removed from the list. This is
4575 currently not the case.
4576
4577 - This function will incorrectly remove valid renames if
4578 the CURRENT_BLOCK corresponds to a function which symbol name
4579 has been changed by an "Export" pragma. As a consequence,
4580 the user will be unable to print such rename entities. */
4581
4582 static int
4583 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4584 int nsyms, const struct block *current_block)
4585 {
4586 struct symbol *current_function;
4587 char *current_function_name;
4588 int i;
4589 int is_new_style_renaming;
4590
4591 /* If there is both a renaming foo___XR... encoded as a variable and
4592 a simple variable foo in the same block, discard the latter.
4593 First, zero out such symbols, then compress. */
4594 is_new_style_renaming = 0;
4595 for (i = 0; i < nsyms; i += 1)
4596 {
4597 struct symbol *sym = syms[i].sym;
4598 struct block *block = syms[i].block;
4599 const char *name;
4600 const char *suffix;
4601
4602 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4603 continue;
4604 name = SYMBOL_LINKAGE_NAME (sym);
4605 suffix = strstr (name, "___XR");
4606
4607 if (suffix != NULL)
4608 {
4609 int name_len = suffix - name;
4610 int j;
4611 is_new_style_renaming = 1;
4612 for (j = 0; j < nsyms; j += 1)
4613 if (i != j && syms[j].sym != NULL
4614 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4615 name_len) == 0
4616 && block == syms[j].block)
4617 syms[j].sym = NULL;
4618 }
4619 }
4620 if (is_new_style_renaming)
4621 {
4622 int j, k;
4623
4624 for (j = k = 0; j < nsyms; j += 1)
4625 if (syms[j].sym != NULL)
4626 {
4627 syms[k] = syms[j];
4628 k += 1;
4629 }
4630 return k;
4631 }
4632
4633 /* Extract the function name associated to CURRENT_BLOCK.
4634 Abort if unable to do so. */
4635
4636 if (current_block == NULL)
4637 return nsyms;
4638
4639 current_function = block_function (current_block);
4640 if (current_function == NULL)
4641 return nsyms;
4642
4643 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4644 if (current_function_name == NULL)
4645 return nsyms;
4646
4647 /* Check each of the symbols, and remove it from the list if it is
4648 a type corresponding to a renaming that is out of the scope of
4649 the current block. */
4650
4651 i = 0;
4652 while (i < nsyms)
4653 {
4654 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4655 == ADA_OBJECT_RENAMING
4656 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4657 {
4658 int j;
4659 for (j = i + 1; j < nsyms; j += 1)
4660 syms[j - 1] = syms[j];
4661 nsyms -= 1;
4662 }
4663 else
4664 i += 1;
4665 }
4666
4667 return nsyms;
4668 }
4669
4670 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4671 scope and in global scopes, returning the number of matches. Sets
4672 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4673 indicating the symbols found and the blocks and symbol tables (if
4674 any) in which they were found. This vector are transient---good only to
4675 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4676 symbol match within the nest of blocks whose innermost member is BLOCK0,
4677 is the one match returned (no other matches in that or
4678 enclosing blocks is returned). If there are any matches in or
4679 surrounding BLOCK0, then these alone are returned. Otherwise, the
4680 search extends to global and file-scope (static) symbol tables.
4681 Names prefixed with "standard__" are handled specially: "standard__"
4682 is first stripped off, and only static and global symbols are searched. */
4683
4684 int
4685 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4686 domain_enum namespace,
4687 struct ada_symbol_info **results)
4688 {
4689 struct symbol *sym;
4690 struct symtab *s;
4691 struct partial_symtab *ps;
4692 struct blockvector *bv;
4693 struct objfile *objfile;
4694 struct block *block;
4695 const char *name;
4696 struct minimal_symbol *msymbol;
4697 int wild_match;
4698 int cacheIfUnique;
4699 int block_depth;
4700 int ndefns;
4701
4702 obstack_free (&symbol_list_obstack, NULL);
4703 obstack_init (&symbol_list_obstack);
4704
4705 cacheIfUnique = 0;
4706
4707 /* Search specified block and its superiors. */
4708
4709 wild_match = (strstr (name0, "__") == NULL);
4710 name = name0;
4711 block = (struct block *) block0; /* FIXME: No cast ought to be
4712 needed, but adding const will
4713 have a cascade effect. */
4714 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4715 {
4716 wild_match = 0;
4717 block = NULL;
4718 name = name0 + sizeof ("standard__") - 1;
4719 }
4720
4721 block_depth = 0;
4722 while (block != NULL)
4723 {
4724 block_depth += 1;
4725 ada_add_block_symbols (&symbol_list_obstack, block, name,
4726 namespace, NULL, NULL, wild_match);
4727
4728 /* If we found a non-function match, assume that's the one. */
4729 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4730 num_defns_collected (&symbol_list_obstack)))
4731 goto done;
4732
4733 block = BLOCK_SUPERBLOCK (block);
4734 }
4735
4736 /* If no luck so far, try to find NAME as a local symbol in some lexically
4737 enclosing subprogram. */
4738 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4739 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4740 name, namespace, wild_match);
4741
4742 /* If we found ANY matches among non-global symbols, we're done. */
4743
4744 if (num_defns_collected (&symbol_list_obstack) > 0)
4745 goto done;
4746
4747 cacheIfUnique = 1;
4748 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4749 {
4750 if (sym != NULL)
4751 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4752 goto done;
4753 }
4754
4755 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4756 tables, and psymtab's. */
4757
4758 ALL_PRIMARY_SYMTABS (objfile, s)
4759 {
4760 QUIT;
4761 bv = BLOCKVECTOR (s);
4762 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4763 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4764 objfile, s, wild_match);
4765 }
4766
4767 if (namespace == VAR_DOMAIN)
4768 {
4769 ALL_MSYMBOLS (objfile, msymbol)
4770 {
4771 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4772 {
4773 switch (MSYMBOL_TYPE (msymbol))
4774 {
4775 case mst_solib_trampoline:
4776 break;
4777 default:
4778 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4779 if (s != NULL)
4780 {
4781 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4782 QUIT;
4783 bv = BLOCKVECTOR (s);
4784 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4785 ada_add_block_symbols (&symbol_list_obstack, block,
4786 SYMBOL_LINKAGE_NAME (msymbol),
4787 namespace, objfile, s, wild_match);
4788
4789 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4790 {
4791 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4792 ada_add_block_symbols (&symbol_list_obstack, block,
4793 SYMBOL_LINKAGE_NAME (msymbol),
4794 namespace, objfile, s,
4795 wild_match);
4796 }
4797 }
4798 }
4799 }
4800 }
4801 }
4802
4803 ALL_PSYMTABS (objfile, ps)
4804 {
4805 QUIT;
4806 if (!ps->readin
4807 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4808 {
4809 s = PSYMTAB_TO_SYMTAB (ps);
4810 if (!s->primary)
4811 continue;
4812 bv = BLOCKVECTOR (s);
4813 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4814 ada_add_block_symbols (&symbol_list_obstack, block, name,
4815 namespace, objfile, s, wild_match);
4816 }
4817 }
4818
4819 /* Now add symbols from all per-file blocks if we've gotten no hits
4820 (Not strictly correct, but perhaps better than an error).
4821 Do the symtabs first, then check the psymtabs. */
4822
4823 if (num_defns_collected (&symbol_list_obstack) == 0)
4824 {
4825
4826 ALL_PRIMARY_SYMTABS (objfile, s)
4827 {
4828 QUIT;
4829 bv = BLOCKVECTOR (s);
4830 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4831 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4832 objfile, s, wild_match);
4833 }
4834
4835 ALL_PSYMTABS (objfile, ps)
4836 {
4837 QUIT;
4838 if (!ps->readin
4839 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4840 {
4841 s = PSYMTAB_TO_SYMTAB (ps);
4842 bv = BLOCKVECTOR (s);
4843 if (!s->primary)
4844 continue;
4845 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4846 ada_add_block_symbols (&symbol_list_obstack, block, name,
4847 namespace, objfile, s, wild_match);
4848 }
4849 }
4850 }
4851
4852 done:
4853 ndefns = num_defns_collected (&symbol_list_obstack);
4854 *results = defns_collected (&symbol_list_obstack, 1);
4855
4856 ndefns = remove_extra_symbols (*results, ndefns);
4857
4858 if (ndefns == 0)
4859 cache_symbol (name0, namespace, NULL, NULL, NULL);
4860
4861 if (ndefns == 1 && cacheIfUnique)
4862 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4863 (*results)[0].symtab);
4864
4865 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4866
4867 return ndefns;
4868 }
4869
4870 struct symbol *
4871 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4872 domain_enum namespace,
4873 struct block **block_found, struct symtab **symtab)
4874 {
4875 struct ada_symbol_info *candidates;
4876 int n_candidates;
4877
4878 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4879
4880 if (n_candidates == 0)
4881 return NULL;
4882
4883 if (block_found != NULL)
4884 *block_found = candidates[0].block;
4885
4886 if (symtab != NULL)
4887 {
4888 *symtab = candidates[0].symtab;
4889 if (*symtab == NULL && candidates[0].block != NULL)
4890 {
4891 struct objfile *objfile;
4892 struct symtab *s;
4893 struct block *b;
4894 struct blockvector *bv;
4895
4896 /* Search the list of symtabs for one which contains the
4897 address of the start of this block. */
4898 ALL_PRIMARY_SYMTABS (objfile, s)
4899 {
4900 bv = BLOCKVECTOR (s);
4901 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4902 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4903 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4904 {
4905 *symtab = s;
4906 return fixup_symbol_section (candidates[0].sym, objfile);
4907 }
4908 }
4909 /* FIXME: brobecker/2004-11-12: I think that we should never
4910 reach this point. I don't see a reason why we would not
4911 find a symtab for a given block, so I suggest raising an
4912 internal_error exception here. Otherwise, we end up
4913 returning a symbol but no symtab, which certain parts of
4914 the code that rely (indirectly) on this function do not
4915 expect, eventually causing a SEGV. */
4916 return fixup_symbol_section (candidates[0].sym, NULL);
4917 }
4918 }
4919 return candidates[0].sym;
4920 }
4921
4922 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4923 scope and in global scopes, or NULL if none. NAME is folded and
4924 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4925 choosing the first symbol if there are multiple choices.
4926 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4927 table in which the symbol was found (in both cases, these
4928 assignments occur only if the pointers are non-null). */
4929 struct symbol *
4930 ada_lookup_symbol (const char *name, const struct block *block0,
4931 domain_enum namespace, int *is_a_field_of_this,
4932 struct symtab **symtab)
4933 {
4934 if (is_a_field_of_this != NULL)
4935 *is_a_field_of_this = 0;
4936
4937 return
4938 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4939 block0, namespace, NULL, symtab);
4940 }
4941
4942 static struct symbol *
4943 ada_lookup_symbol_nonlocal (const char *name,
4944 const char *linkage_name,
4945 const struct block *block,
4946 const domain_enum domain, struct symtab **symtab)
4947 {
4948 if (linkage_name == NULL)
4949 linkage_name = name;
4950 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4951 NULL, symtab);
4952 }
4953
4954
4955 /* True iff STR is a possible encoded suffix of a normal Ada name
4956 that is to be ignored for matching purposes. Suffixes of parallel
4957 names (e.g., XVE) are not included here. Currently, the possible suffixes
4958 are given by either of the regular expression:
4959
4960 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4961 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4962 _E[0-9]+[bs]$ [protected object entry suffixes]
4963 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4964
4965 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4966 match is performed. This sequence is used to differentiate homonyms,
4967 is an optional part of a valid name suffix. */
4968
4969 static int
4970 is_name_suffix (const char *str)
4971 {
4972 int k;
4973 const char *matching;
4974 const int len = strlen (str);
4975
4976 /* Skip optional leading __[0-9]+. */
4977
4978 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4979 {
4980 str += 3;
4981 while (isdigit (str[0]))
4982 str += 1;
4983 }
4984
4985 /* [.$][0-9]+ */
4986
4987 if (str[0] == '.' || str[0] == '$')
4988 {
4989 matching = str + 1;
4990 while (isdigit (matching[0]))
4991 matching += 1;
4992 if (matching[0] == '\0')
4993 return 1;
4994 }
4995
4996 /* ___[0-9]+ */
4997
4998 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4999 {
5000 matching = str + 3;
5001 while (isdigit (matching[0]))
5002 matching += 1;
5003 if (matching[0] == '\0')
5004 return 1;
5005 }
5006
5007 #if 0
5008 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5009 with a N at the end. Unfortunately, the compiler uses the same
5010 convention for other internal types it creates. So treating
5011 all entity names that end with an "N" as a name suffix causes
5012 some regressions. For instance, consider the case of an enumerated
5013 type. To support the 'Image attribute, it creates an array whose
5014 name ends with N.
5015 Having a single character like this as a suffix carrying some
5016 information is a bit risky. Perhaps we should change the encoding
5017 to be something like "_N" instead. In the meantime, do not do
5018 the following check. */
5019 /* Protected Object Subprograms */
5020 if (len == 1 && str [0] == 'N')
5021 return 1;
5022 #endif
5023
5024 /* _E[0-9]+[bs]$ */
5025 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5026 {
5027 matching = str + 3;
5028 while (isdigit (matching[0]))
5029 matching += 1;
5030 if ((matching[0] == 'b' || matching[0] == 's')
5031 && matching [1] == '\0')
5032 return 1;
5033 }
5034
5035 /* ??? We should not modify STR directly, as we are doing below. This
5036 is fine in this case, but may become problematic later if we find
5037 that this alternative did not work, and want to try matching
5038 another one from the begining of STR. Since we modified it, we
5039 won't be able to find the begining of the string anymore! */
5040 if (str[0] == 'X')
5041 {
5042 str += 1;
5043 while (str[0] != '_' && str[0] != '\0')
5044 {
5045 if (str[0] != 'n' && str[0] != 'b')
5046 return 0;
5047 str += 1;
5048 }
5049 }
5050
5051 if (str[0] == '\000')
5052 return 1;
5053
5054 if (str[0] == '_')
5055 {
5056 if (str[1] != '_' || str[2] == '\000')
5057 return 0;
5058 if (str[2] == '_')
5059 {
5060 if (strcmp (str + 3, "JM") == 0)
5061 return 1;
5062 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5063 the LJM suffix in favor of the JM one. But we will
5064 still accept LJM as a valid suffix for a reasonable
5065 amount of time, just to allow ourselves to debug programs
5066 compiled using an older version of GNAT. */
5067 if (strcmp (str + 3, "LJM") == 0)
5068 return 1;
5069 if (str[3] != 'X')
5070 return 0;
5071 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5072 || str[4] == 'U' || str[4] == 'P')
5073 return 1;
5074 if (str[4] == 'R' && str[5] != 'T')
5075 return 1;
5076 return 0;
5077 }
5078 if (!isdigit (str[2]))
5079 return 0;
5080 for (k = 3; str[k] != '\0'; k += 1)
5081 if (!isdigit (str[k]) && str[k] != '_')
5082 return 0;
5083 return 1;
5084 }
5085 if (str[0] == '$' && isdigit (str[1]))
5086 {
5087 for (k = 2; str[k] != '\0'; k += 1)
5088 if (!isdigit (str[k]) && str[k] != '_')
5089 return 0;
5090 return 1;
5091 }
5092 return 0;
5093 }
5094
5095 /* Return nonzero if the given string starts with a dot ('.')
5096 followed by zero or more digits.
5097
5098 Note: brobecker/2003-11-10: A forward declaration has not been
5099 added at the begining of this file yet, because this function
5100 is only used to work around a problem found during wild matching
5101 when trying to match minimal symbol names against symbol names
5102 obtained from dwarf-2 data. This function is therefore currently
5103 only used in wild_match() and is likely to be deleted when the
5104 problem in dwarf-2 is fixed. */
5105
5106 static int
5107 is_dot_digits_suffix (const char *str)
5108 {
5109 if (str[0] != '.')
5110 return 0;
5111
5112 str++;
5113 while (isdigit (str[0]))
5114 str++;
5115 return (str[0] == '\0');
5116 }
5117
5118 /* Return non-zero if the string starting at NAME and ending before
5119 NAME_END contains no capital letters. */
5120
5121 static int
5122 is_valid_name_for_wild_match (const char *name0)
5123 {
5124 const char *decoded_name = ada_decode (name0);
5125 int i;
5126
5127 for (i=0; decoded_name[i] != '\0'; i++)
5128 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5129 return 0;
5130
5131 return 1;
5132 }
5133
5134 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
5135 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5136 informational suffixes of NAME (i.e., for which is_name_suffix is
5137 true). */
5138
5139 static int
5140 wild_match (const char *patn0, int patn_len, const char *name0)
5141 {
5142 int name_len;
5143 char *name;
5144 char *name_start;
5145 char *patn;
5146
5147 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
5148 stored in the symbol table for nested function names is sometimes
5149 different from the name of the associated entity stored in
5150 the dwarf-2 data: This is the case for nested subprograms, where
5151 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
5152 while the symbol name from the dwarf-2 data does not.
5153
5154 Although the DWARF-2 standard documents that entity names stored
5155 in the dwarf-2 data should be identical to the name as seen in
5156 the source code, GNAT takes a different approach as we already use
5157 a special encoding mechanism to convey the information so that
5158 a C debugger can still use the information generated to debug
5159 Ada programs. A corollary is that the symbol names in the dwarf-2
5160 data should match the names found in the symbol table. I therefore
5161 consider this issue as a compiler defect.
5162
5163 Until the compiler is properly fixed, we work-around the problem
5164 by ignoring such suffixes during the match. We do so by making
5165 a copy of PATN0 and NAME0, and then by stripping such a suffix
5166 if present. We then perform the match on the resulting strings. */
5167 {
5168 char *dot;
5169 name_len = strlen (name0);
5170
5171 name = name_start = (char *) alloca ((name_len + 1) * sizeof (char));
5172 strcpy (name, name0);
5173 dot = strrchr (name, '.');
5174 if (dot != NULL && is_dot_digits_suffix (dot))
5175 *dot = '\0';
5176
5177 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
5178 strncpy (patn, patn0, patn_len);
5179 patn[patn_len] = '\0';
5180 dot = strrchr (patn, '.');
5181 if (dot != NULL && is_dot_digits_suffix (dot))
5182 {
5183 *dot = '\0';
5184 patn_len = dot - patn;
5185 }
5186 }
5187
5188 /* Now perform the wild match. */
5189
5190 name_len = strlen (name);
5191 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
5192 && strncmp (patn, name + 5, patn_len) == 0
5193 && is_name_suffix (name + patn_len + 5))
5194 return 1;
5195
5196 while (name_len >= patn_len)
5197 {
5198 if (strncmp (patn, name, patn_len) == 0
5199 && is_name_suffix (name + patn_len))
5200 return (name == name_start || is_valid_name_for_wild_match (name0));
5201 do
5202 {
5203 name += 1;
5204 name_len -= 1;
5205 }
5206 while (name_len > 0
5207 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
5208 if (name_len <= 0)
5209 return 0;
5210 if (name[0] == '_')
5211 {
5212 if (!islower (name[2]))
5213 return 0;
5214 name += 2;
5215 name_len -= 2;
5216 }
5217 else
5218 {
5219 if (!islower (name[1]))
5220 return 0;
5221 name += 1;
5222 name_len -= 1;
5223 }
5224 }
5225
5226 return 0;
5227 }
5228
5229
5230 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5231 vector *defn_symbols, updating the list of symbols in OBSTACKP
5232 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5233 OBJFILE is the section containing BLOCK.
5234 SYMTAB is recorded with each symbol added. */
5235
5236 static void
5237 ada_add_block_symbols (struct obstack *obstackp,
5238 struct block *block, const char *name,
5239 domain_enum domain, struct objfile *objfile,
5240 struct symtab *symtab, int wild)
5241 {
5242 struct dict_iterator iter;
5243 int name_len = strlen (name);
5244 /* A matching argument symbol, if any. */
5245 struct symbol *arg_sym;
5246 /* Set true when we find a matching non-argument symbol. */
5247 int found_sym;
5248 struct symbol *sym;
5249
5250 arg_sym = NULL;
5251 found_sym = 0;
5252 if (wild)
5253 {
5254 struct symbol *sym;
5255 ALL_BLOCK_SYMBOLS (block, iter, sym)
5256 {
5257 if (SYMBOL_DOMAIN (sym) == domain
5258 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5259 {
5260 switch (SYMBOL_CLASS (sym))
5261 {
5262 case LOC_ARG:
5263 case LOC_LOCAL_ARG:
5264 case LOC_REF_ARG:
5265 case LOC_REGPARM:
5266 case LOC_REGPARM_ADDR:
5267 case LOC_BASEREG_ARG:
5268 case LOC_COMPUTED_ARG:
5269 arg_sym = sym;
5270 break;
5271 case LOC_UNRESOLVED:
5272 continue;
5273 default:
5274 found_sym = 1;
5275 add_defn_to_vec (obstackp,
5276 fixup_symbol_section (sym, objfile),
5277 block, symtab);
5278 break;
5279 }
5280 }
5281 }
5282 }
5283 else
5284 {
5285 ALL_BLOCK_SYMBOLS (block, iter, sym)
5286 {
5287 if (SYMBOL_DOMAIN (sym) == domain)
5288 {
5289 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5290 if (cmp == 0
5291 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5292 {
5293 switch (SYMBOL_CLASS (sym))
5294 {
5295 case LOC_ARG:
5296 case LOC_LOCAL_ARG:
5297 case LOC_REF_ARG:
5298 case LOC_REGPARM:
5299 case LOC_REGPARM_ADDR:
5300 case LOC_BASEREG_ARG:
5301 case LOC_COMPUTED_ARG:
5302 arg_sym = sym;
5303 break;
5304 case LOC_UNRESOLVED:
5305 break;
5306 default:
5307 found_sym = 1;
5308 add_defn_to_vec (obstackp,
5309 fixup_symbol_section (sym, objfile),
5310 block, symtab);
5311 break;
5312 }
5313 }
5314 }
5315 }
5316 }
5317
5318 if (!found_sym && arg_sym != NULL)
5319 {
5320 add_defn_to_vec (obstackp,
5321 fixup_symbol_section (arg_sym, objfile),
5322 block, symtab);
5323 }
5324
5325 if (!wild)
5326 {
5327 arg_sym = NULL;
5328 found_sym = 0;
5329
5330 ALL_BLOCK_SYMBOLS (block, iter, sym)
5331 {
5332 if (SYMBOL_DOMAIN (sym) == domain)
5333 {
5334 int cmp;
5335
5336 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5337 if (cmp == 0)
5338 {
5339 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5340 if (cmp == 0)
5341 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5342 name_len);
5343 }
5344
5345 if (cmp == 0
5346 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5347 {
5348 switch (SYMBOL_CLASS (sym))
5349 {
5350 case LOC_ARG:
5351 case LOC_LOCAL_ARG:
5352 case LOC_REF_ARG:
5353 case LOC_REGPARM:
5354 case LOC_REGPARM_ADDR:
5355 case LOC_BASEREG_ARG:
5356 case LOC_COMPUTED_ARG:
5357 arg_sym = sym;
5358 break;
5359 case LOC_UNRESOLVED:
5360 break;
5361 default:
5362 found_sym = 1;
5363 add_defn_to_vec (obstackp,
5364 fixup_symbol_section (sym, objfile),
5365 block, symtab);
5366 break;
5367 }
5368 }
5369 }
5370 }
5371
5372 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5373 They aren't parameters, right? */
5374 if (!found_sym && arg_sym != NULL)
5375 {
5376 add_defn_to_vec (obstackp,
5377 fixup_symbol_section (arg_sym, objfile),
5378 block, symtab);
5379 }
5380 }
5381 }
5382 \f
5383
5384 /* Symbol Completion */
5385
5386 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5387 name in a form that's appropriate for the completion. The result
5388 does not need to be deallocated, but is only good until the next call.
5389
5390 TEXT_LEN is equal to the length of TEXT.
5391 Perform a wild match if WILD_MATCH is set.
5392 ENCODED should be set if TEXT represents the start of a symbol name
5393 in its encoded form. */
5394
5395 static const char *
5396 symbol_completion_match (const char *sym_name,
5397 const char *text, int text_len,
5398 int wild_match, int encoded)
5399 {
5400 char *result;
5401 const int verbatim_match = (text[0] == '<');
5402 int match = 0;
5403
5404 if (verbatim_match)
5405 {
5406 /* Strip the leading angle bracket. */
5407 text = text + 1;
5408 text_len--;
5409 }
5410
5411 /* First, test against the fully qualified name of the symbol. */
5412
5413 if (strncmp (sym_name, text, text_len) == 0)
5414 match = 1;
5415
5416 if (match && !encoded)
5417 {
5418 /* One needed check before declaring a positive match is to verify
5419 that iff we are doing a verbatim match, the decoded version
5420 of the symbol name starts with '<'. Otherwise, this symbol name
5421 is not a suitable completion. */
5422 const char *sym_name_copy = sym_name;
5423 int has_angle_bracket;
5424
5425 sym_name = ada_decode (sym_name);
5426 has_angle_bracket = (sym_name[0] == '<');
5427 match = (has_angle_bracket == verbatim_match);
5428 sym_name = sym_name_copy;
5429 }
5430
5431 if (match && !verbatim_match)
5432 {
5433 /* When doing non-verbatim match, another check that needs to
5434 be done is to verify that the potentially matching symbol name
5435 does not include capital letters, because the ada-mode would
5436 not be able to understand these symbol names without the
5437 angle bracket notation. */
5438 const char *tmp;
5439
5440 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5441 if (*tmp != '\0')
5442 match = 0;
5443 }
5444
5445 /* Second: Try wild matching... */
5446
5447 if (!match && wild_match)
5448 {
5449 /* Since we are doing wild matching, this means that TEXT
5450 may represent an unqualified symbol name. We therefore must
5451 also compare TEXT against the unqualified name of the symbol. */
5452 sym_name = ada_unqualified_name (ada_decode (sym_name));
5453
5454 if (strncmp (sym_name, text, text_len) == 0)
5455 match = 1;
5456 }
5457
5458 /* Finally: If we found a mach, prepare the result to return. */
5459
5460 if (!match)
5461 return NULL;
5462
5463 if (verbatim_match)
5464 sym_name = add_angle_brackets (sym_name);
5465
5466 if (!encoded)
5467 sym_name = ada_decode (sym_name);
5468
5469 return sym_name;
5470 }
5471
5472 typedef char *char_ptr;
5473 DEF_VEC_P (char_ptr);
5474
5475 /* A companion function to ada_make_symbol_completion_list().
5476 Check if SYM_NAME represents a symbol which name would be suitable
5477 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5478 it is appended at the end of the given string vector SV.
5479
5480 ORIG_TEXT is the string original string from the user command
5481 that needs to be completed. WORD is the entire command on which
5482 completion should be performed. These two parameters are used to
5483 determine which part of the symbol name should be added to the
5484 completion vector.
5485 if WILD_MATCH is set, then wild matching is performed.
5486 ENCODED should be set if TEXT represents a symbol name in its
5487 encoded formed (in which case the completion should also be
5488 encoded). */
5489
5490 static void
5491 symbol_completion_add (VEC(char_ptr) **sv,
5492 const char *sym_name,
5493 const char *text, int text_len,
5494 const char *orig_text, const char *word,
5495 int wild_match, int encoded)
5496 {
5497 const char *match = symbol_completion_match (sym_name, text, text_len,
5498 wild_match, encoded);
5499 char *completion;
5500
5501 if (match == NULL)
5502 return;
5503
5504 /* We found a match, so add the appropriate completion to the given
5505 string vector. */
5506
5507 if (word == orig_text)
5508 {
5509 completion = xmalloc (strlen (match) + 5);
5510 strcpy (completion, match);
5511 }
5512 else if (word > orig_text)
5513 {
5514 /* Return some portion of sym_name. */
5515 completion = xmalloc (strlen (match) + 5);
5516 strcpy (completion, match + (word - orig_text));
5517 }
5518 else
5519 {
5520 /* Return some of ORIG_TEXT plus sym_name. */
5521 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5522 strncpy (completion, word, orig_text - word);
5523 completion[orig_text - word] = '\0';
5524 strcat (completion, match);
5525 }
5526
5527 VEC_safe_push (char_ptr, *sv, completion);
5528 }
5529
5530 /* Return a list of possible symbol names completing TEXT0. The list
5531 is NULL terminated. WORD is the entire command on which completion
5532 is made. */
5533
5534 static char **
5535 ada_make_symbol_completion_list (char *text0, char *word)
5536 {
5537 char *text;
5538 int text_len;
5539 int wild_match;
5540 int encoded;
5541 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5542 struct symbol *sym;
5543 struct symtab *s;
5544 struct partial_symtab *ps;
5545 struct minimal_symbol *msymbol;
5546 struct objfile *objfile;
5547 struct block *b, *surrounding_static_block = 0;
5548 int i;
5549 struct dict_iterator iter;
5550
5551 if (text0[0] == '<')
5552 {
5553 text = xstrdup (text0);
5554 make_cleanup (xfree, text);
5555 text_len = strlen (text);
5556 wild_match = 0;
5557 encoded = 1;
5558 }
5559 else
5560 {
5561 text = xstrdup (ada_encode (text0));
5562 make_cleanup (xfree, text);
5563 text_len = strlen (text);
5564 for (i = 0; i < text_len; i++)
5565 text[i] = tolower (text[i]);
5566
5567 encoded = (strstr (text0, "__") != NULL);
5568 /* If the name contains a ".", then the user is entering a fully
5569 qualified entity name, and the match must not be done in wild
5570 mode. Similarly, if the user wants to complete what looks like
5571 an encoded name, the match must not be done in wild mode. */
5572 wild_match = (strchr (text0, '.') == NULL && !encoded);
5573 }
5574
5575 /* First, look at the partial symtab symbols. */
5576 ALL_PSYMTABS (objfile, ps)
5577 {
5578 struct partial_symbol **psym;
5579
5580 /* If the psymtab's been read in we'll get it when we search
5581 through the blockvector. */
5582 if (ps->readin)
5583 continue;
5584
5585 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5586 psym < (objfile->global_psymbols.list + ps->globals_offset
5587 + ps->n_global_syms); psym++)
5588 {
5589 QUIT;
5590 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5591 text, text_len, text0, word,
5592 wild_match, encoded);
5593 }
5594
5595 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5596 psym < (objfile->static_psymbols.list + ps->statics_offset
5597 + ps->n_static_syms); psym++)
5598 {
5599 QUIT;
5600 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5601 text, text_len, text0, word,
5602 wild_match, encoded);
5603 }
5604 }
5605
5606 /* At this point scan through the misc symbol vectors and add each
5607 symbol you find to the list. Eventually we want to ignore
5608 anything that isn't a text symbol (everything else will be
5609 handled by the psymtab code above). */
5610
5611 ALL_MSYMBOLS (objfile, msymbol)
5612 {
5613 QUIT;
5614 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5615 text, text_len, text0, word, wild_match, encoded);
5616 }
5617
5618 /* Search upwards from currently selected frame (so that we can
5619 complete on local vars. */
5620
5621 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5622 {
5623 if (!BLOCK_SUPERBLOCK (b))
5624 surrounding_static_block = b; /* For elmin of dups */
5625
5626 ALL_BLOCK_SYMBOLS (b, iter, sym)
5627 {
5628 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5629 text, text_len, text0, word,
5630 wild_match, encoded);
5631 }
5632 }
5633
5634 /* Go through the symtabs and check the externs and statics for
5635 symbols which match. */
5636
5637 ALL_SYMTABS (objfile, s)
5638 {
5639 QUIT;
5640 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5641 ALL_BLOCK_SYMBOLS (b, iter, sym)
5642 {
5643 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5644 text, text_len, text0, word,
5645 wild_match, encoded);
5646 }
5647 }
5648
5649 ALL_SYMTABS (objfile, s)
5650 {
5651 QUIT;
5652 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5653 /* Don't do this block twice. */
5654 if (b == surrounding_static_block)
5655 continue;
5656 ALL_BLOCK_SYMBOLS (b, iter, sym)
5657 {
5658 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5659 text, text_len, text0, word,
5660 wild_match, encoded);
5661 }
5662 }
5663
5664 /* Append the closing NULL entry. */
5665 VEC_safe_push (char_ptr, completions, NULL);
5666
5667 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5668 return the copy. It's unfortunate that we have to make a copy
5669 of an array that we're about to destroy, but there is nothing much
5670 we can do about it. Fortunately, it's typically not a very large
5671 array. */
5672 {
5673 const size_t completions_size =
5674 VEC_length (char_ptr, completions) * sizeof (char *);
5675 char **result = malloc (completions_size);
5676
5677 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5678
5679 VEC_free (char_ptr, completions);
5680 return result;
5681 }
5682 }
5683
5684 /* Field Access */
5685
5686 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5687 for tagged types. */
5688
5689 static int
5690 ada_is_dispatch_table_ptr_type (struct type *type)
5691 {
5692 char *name;
5693
5694 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5695 return 0;
5696
5697 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5698 if (name == NULL)
5699 return 0;
5700
5701 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5702 }
5703
5704 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5705 to be invisible to users. */
5706
5707 int
5708 ada_is_ignored_field (struct type *type, int field_num)
5709 {
5710 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5711 return 1;
5712
5713 /* Check the name of that field. */
5714 {
5715 const char *name = TYPE_FIELD_NAME (type, field_num);
5716
5717 /* Anonymous field names should not be printed.
5718 brobecker/2007-02-20: I don't think this can actually happen
5719 but we don't want to print the value of annonymous fields anyway. */
5720 if (name == NULL)
5721 return 1;
5722
5723 /* A field named "_parent" is internally generated by GNAT for
5724 tagged types, and should not be printed either. */
5725 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5726 return 1;
5727 }
5728
5729 /* If this is the dispatch table of a tagged type, then ignore. */
5730 if (ada_is_tagged_type (type, 1)
5731 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5732 return 1;
5733
5734 /* Not a special field, so it should not be ignored. */
5735 return 0;
5736 }
5737
5738 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5739 pointer or reference type whose ultimate target has a tag field. */
5740
5741 int
5742 ada_is_tagged_type (struct type *type, int refok)
5743 {
5744 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5745 }
5746
5747 /* True iff TYPE represents the type of X'Tag */
5748
5749 int
5750 ada_is_tag_type (struct type *type)
5751 {
5752 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5753 return 0;
5754 else
5755 {
5756 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5757 return (name != NULL
5758 && strcmp (name, "ada__tags__dispatch_table") == 0);
5759 }
5760 }
5761
5762 /* The type of the tag on VAL. */
5763
5764 struct type *
5765 ada_tag_type (struct value *val)
5766 {
5767 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5768 }
5769
5770 /* The value of the tag on VAL. */
5771
5772 struct value *
5773 ada_value_tag (struct value *val)
5774 {
5775 return ada_value_struct_elt (val, "_tag", 0);
5776 }
5777
5778 /* The value of the tag on the object of type TYPE whose contents are
5779 saved at VALADDR, if it is non-null, or is at memory address
5780 ADDRESS. */
5781
5782 static struct value *
5783 value_tag_from_contents_and_address (struct type *type,
5784 const gdb_byte *valaddr,
5785 CORE_ADDR address)
5786 {
5787 int tag_byte_offset, dummy1, dummy2;
5788 struct type *tag_type;
5789 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5790 NULL, NULL, NULL))
5791 {
5792 const gdb_byte *valaddr1 = ((valaddr == NULL)
5793 ? NULL
5794 : valaddr + tag_byte_offset);
5795 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5796
5797 return value_from_contents_and_address (tag_type, valaddr1, address1);
5798 }
5799 return NULL;
5800 }
5801
5802 static struct type *
5803 type_from_tag (struct value *tag)
5804 {
5805 const char *type_name = ada_tag_name (tag);
5806 if (type_name != NULL)
5807 return ada_find_any_type (ada_encode (type_name));
5808 return NULL;
5809 }
5810
5811 struct tag_args
5812 {
5813 struct value *tag;
5814 char *name;
5815 };
5816
5817
5818 static int ada_tag_name_1 (void *);
5819 static int ada_tag_name_2 (struct tag_args *);
5820
5821 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5822 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5823 The value stored in ARGS->name is valid until the next call to
5824 ada_tag_name_1. */
5825
5826 static int
5827 ada_tag_name_1 (void *args0)
5828 {
5829 struct tag_args *args = (struct tag_args *) args0;
5830 static char name[1024];
5831 char *p;
5832 struct value *val;
5833 args->name = NULL;
5834 val = ada_value_struct_elt (args->tag, "tsd", 1);
5835 if (val == NULL)
5836 return ada_tag_name_2 (args);
5837 val = ada_value_struct_elt (val, "expanded_name", 1);
5838 if (val == NULL)
5839 return 0;
5840 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5841 for (p = name; *p != '\0'; p += 1)
5842 if (isalpha (*p))
5843 *p = tolower (*p);
5844 args->name = name;
5845 return 0;
5846 }
5847
5848 /* Utility function for ada_tag_name_1 that tries the second
5849 representation for the dispatch table (in which there is no
5850 explicit 'tsd' field in the referent of the tag pointer, and instead
5851 the tsd pointer is stored just before the dispatch table. */
5852
5853 static int
5854 ada_tag_name_2 (struct tag_args *args)
5855 {
5856 struct type *info_type;
5857 static char name[1024];
5858 char *p;
5859 struct value *val, *valp;
5860
5861 args->name = NULL;
5862 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5863 if (info_type == NULL)
5864 return 0;
5865 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5866 valp = value_cast (info_type, args->tag);
5867 if (valp == NULL)
5868 return 0;
5869 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5870 if (val == NULL)
5871 return 0;
5872 val = ada_value_struct_elt (val, "expanded_name", 1);
5873 if (val == NULL)
5874 return 0;
5875 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5876 for (p = name; *p != '\0'; p += 1)
5877 if (isalpha (*p))
5878 *p = tolower (*p);
5879 args->name = name;
5880 return 0;
5881 }
5882
5883 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5884 * a C string. */
5885
5886 const char *
5887 ada_tag_name (struct value *tag)
5888 {
5889 struct tag_args args;
5890 if (!ada_is_tag_type (value_type (tag)))
5891 return NULL;
5892 args.tag = tag;
5893 args.name = NULL;
5894 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5895 return args.name;
5896 }
5897
5898 /* The parent type of TYPE, or NULL if none. */
5899
5900 struct type *
5901 ada_parent_type (struct type *type)
5902 {
5903 int i;
5904
5905 type = ada_check_typedef (type);
5906
5907 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5908 return NULL;
5909
5910 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5911 if (ada_is_parent_field (type, i))
5912 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5913
5914 return NULL;
5915 }
5916
5917 /* True iff field number FIELD_NUM of structure type TYPE contains the
5918 parent-type (inherited) fields of a derived type. Assumes TYPE is
5919 a structure type with at least FIELD_NUM+1 fields. */
5920
5921 int
5922 ada_is_parent_field (struct type *type, int field_num)
5923 {
5924 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5925 return (name != NULL
5926 && (strncmp (name, "PARENT", 6) == 0
5927 || strncmp (name, "_parent", 7) == 0));
5928 }
5929
5930 /* True iff field number FIELD_NUM of structure type TYPE is a
5931 transparent wrapper field (which should be silently traversed when doing
5932 field selection and flattened when printing). Assumes TYPE is a
5933 structure type with at least FIELD_NUM+1 fields. Such fields are always
5934 structures. */
5935
5936 int
5937 ada_is_wrapper_field (struct type *type, int field_num)
5938 {
5939 const char *name = TYPE_FIELD_NAME (type, field_num);
5940 return (name != NULL
5941 && (strncmp (name, "PARENT", 6) == 0
5942 || strcmp (name, "REP") == 0
5943 || strncmp (name, "_parent", 7) == 0
5944 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5945 }
5946
5947 /* True iff field number FIELD_NUM of structure or union type TYPE
5948 is a variant wrapper. Assumes TYPE is a structure type with at least
5949 FIELD_NUM+1 fields. */
5950
5951 int
5952 ada_is_variant_part (struct type *type, int field_num)
5953 {
5954 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5955 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5956 || (is_dynamic_field (type, field_num)
5957 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5958 == TYPE_CODE_UNION)));
5959 }
5960
5961 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5962 whose discriminants are contained in the record type OUTER_TYPE,
5963 returns the type of the controlling discriminant for the variant. */
5964
5965 struct type *
5966 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5967 {
5968 char *name = ada_variant_discrim_name (var_type);
5969 struct type *type =
5970 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5971 if (type == NULL)
5972 return builtin_type_int;
5973 else
5974 return type;
5975 }
5976
5977 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5978 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5979 represents a 'when others' clause; otherwise 0. */
5980
5981 int
5982 ada_is_others_clause (struct type *type, int field_num)
5983 {
5984 const char *name = TYPE_FIELD_NAME (type, field_num);
5985 return (name != NULL && name[0] == 'O');
5986 }
5987
5988 /* Assuming that TYPE0 is the type of the variant part of a record,
5989 returns the name of the discriminant controlling the variant.
5990 The value is valid until the next call to ada_variant_discrim_name. */
5991
5992 char *
5993 ada_variant_discrim_name (struct type *type0)
5994 {
5995 static char *result = NULL;
5996 static size_t result_len = 0;
5997 struct type *type;
5998 const char *name;
5999 const char *discrim_end;
6000 const char *discrim_start;
6001
6002 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6003 type = TYPE_TARGET_TYPE (type0);
6004 else
6005 type = type0;
6006
6007 name = ada_type_name (type);
6008
6009 if (name == NULL || name[0] == '\000')
6010 return "";
6011
6012 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6013 discrim_end -= 1)
6014 {
6015 if (strncmp (discrim_end, "___XVN", 6) == 0)
6016 break;
6017 }
6018 if (discrim_end == name)
6019 return "";
6020
6021 for (discrim_start = discrim_end; discrim_start != name + 3;
6022 discrim_start -= 1)
6023 {
6024 if (discrim_start == name + 1)
6025 return "";
6026 if ((discrim_start > name + 3
6027 && strncmp (discrim_start - 3, "___", 3) == 0)
6028 || discrim_start[-1] == '.')
6029 break;
6030 }
6031
6032 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6033 strncpy (result, discrim_start, discrim_end - discrim_start);
6034 result[discrim_end - discrim_start] = '\0';
6035 return result;
6036 }
6037
6038 /* Scan STR for a subtype-encoded number, beginning at position K.
6039 Put the position of the character just past the number scanned in
6040 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6041 Return 1 if there was a valid number at the given position, and 0
6042 otherwise. A "subtype-encoded" number consists of the absolute value
6043 in decimal, followed by the letter 'm' to indicate a negative number.
6044 Assumes 0m does not occur. */
6045
6046 int
6047 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6048 {
6049 ULONGEST RU;
6050
6051 if (!isdigit (str[k]))
6052 return 0;
6053
6054 /* Do it the hard way so as not to make any assumption about
6055 the relationship of unsigned long (%lu scan format code) and
6056 LONGEST. */
6057 RU = 0;
6058 while (isdigit (str[k]))
6059 {
6060 RU = RU * 10 + (str[k] - '0');
6061 k += 1;
6062 }
6063
6064 if (str[k] == 'm')
6065 {
6066 if (R != NULL)
6067 *R = (-(LONGEST) (RU - 1)) - 1;
6068 k += 1;
6069 }
6070 else if (R != NULL)
6071 *R = (LONGEST) RU;
6072
6073 /* NOTE on the above: Technically, C does not say what the results of
6074 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6075 number representable as a LONGEST (although either would probably work
6076 in most implementations). When RU>0, the locution in the then branch
6077 above is always equivalent to the negative of RU. */
6078
6079 if (new_k != NULL)
6080 *new_k = k;
6081 return 1;
6082 }
6083
6084 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6085 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6086 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6087
6088 int
6089 ada_in_variant (LONGEST val, struct type *type, int field_num)
6090 {
6091 const char *name = TYPE_FIELD_NAME (type, field_num);
6092 int p;
6093
6094 p = 0;
6095 while (1)
6096 {
6097 switch (name[p])
6098 {
6099 case '\0':
6100 return 0;
6101 case 'S':
6102 {
6103 LONGEST W;
6104 if (!ada_scan_number (name, p + 1, &W, &p))
6105 return 0;
6106 if (val == W)
6107 return 1;
6108 break;
6109 }
6110 case 'R':
6111 {
6112 LONGEST L, U;
6113 if (!ada_scan_number (name, p + 1, &L, &p)
6114 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6115 return 0;
6116 if (val >= L && val <= U)
6117 return 1;
6118 break;
6119 }
6120 case 'O':
6121 return 1;
6122 default:
6123 return 0;
6124 }
6125 }
6126 }
6127
6128 /* FIXME: Lots of redundancy below. Try to consolidate. */
6129
6130 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6131 ARG_TYPE, extract and return the value of one of its (non-static)
6132 fields. FIELDNO says which field. Differs from value_primitive_field
6133 only in that it can handle packed values of arbitrary type. */
6134
6135 static struct value *
6136 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6137 struct type *arg_type)
6138 {
6139 struct type *type;
6140
6141 arg_type = ada_check_typedef (arg_type);
6142 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6143
6144 /* Handle packed fields. */
6145
6146 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6147 {
6148 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6149 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6150
6151 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6152 offset + bit_pos / 8,
6153 bit_pos % 8, bit_size, type);
6154 }
6155 else
6156 return value_primitive_field (arg1, offset, fieldno, arg_type);
6157 }
6158
6159 /* Find field with name NAME in object of type TYPE. If found,
6160 set the following for each argument that is non-null:
6161 - *FIELD_TYPE_P to the field's type;
6162 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6163 an object of that type;
6164 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6165 - *BIT_SIZE_P to its size in bits if the field is packed, and
6166 0 otherwise;
6167 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6168 fields up to but not including the desired field, or by the total
6169 number of fields if not found. A NULL value of NAME never
6170 matches; the function just counts visible fields in this case.
6171
6172 Returns 1 if found, 0 otherwise. */
6173
6174 static int
6175 find_struct_field (char *name, struct type *type, int offset,
6176 struct type **field_type_p,
6177 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6178 int *index_p)
6179 {
6180 int i;
6181
6182 type = ada_check_typedef (type);
6183
6184 if (field_type_p != NULL)
6185 *field_type_p = NULL;
6186 if (byte_offset_p != NULL)
6187 *byte_offset_p = 0;
6188 if (bit_offset_p != NULL)
6189 *bit_offset_p = 0;
6190 if (bit_size_p != NULL)
6191 *bit_size_p = 0;
6192
6193 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6194 {
6195 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6196 int fld_offset = offset + bit_pos / 8;
6197 char *t_field_name = TYPE_FIELD_NAME (type, i);
6198
6199 if (t_field_name == NULL)
6200 continue;
6201
6202 else if (name != NULL && field_name_match (t_field_name, name))
6203 {
6204 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6205 if (field_type_p != NULL)
6206 *field_type_p = TYPE_FIELD_TYPE (type, i);
6207 if (byte_offset_p != NULL)
6208 *byte_offset_p = fld_offset;
6209 if (bit_offset_p != NULL)
6210 *bit_offset_p = bit_pos % 8;
6211 if (bit_size_p != NULL)
6212 *bit_size_p = bit_size;
6213 return 1;
6214 }
6215 else if (ada_is_wrapper_field (type, i))
6216 {
6217 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6218 field_type_p, byte_offset_p, bit_offset_p,
6219 bit_size_p, index_p))
6220 return 1;
6221 }
6222 else if (ada_is_variant_part (type, i))
6223 {
6224 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6225 fixed type?? */
6226 int j;
6227 struct type *field_type
6228 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6229
6230 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6231 {
6232 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6233 fld_offset
6234 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6235 field_type_p, byte_offset_p,
6236 bit_offset_p, bit_size_p, index_p))
6237 return 1;
6238 }
6239 }
6240 else if (index_p != NULL)
6241 *index_p += 1;
6242 }
6243 return 0;
6244 }
6245
6246 /* Number of user-visible fields in record type TYPE. */
6247
6248 static int
6249 num_visible_fields (struct type *type)
6250 {
6251 int n;
6252 n = 0;
6253 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6254 return n;
6255 }
6256
6257 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6258 and search in it assuming it has (class) type TYPE.
6259 If found, return value, else return NULL.
6260
6261 Searches recursively through wrapper fields (e.g., '_parent'). */
6262
6263 static struct value *
6264 ada_search_struct_field (char *name, struct value *arg, int offset,
6265 struct type *type)
6266 {
6267 int i;
6268 type = ada_check_typedef (type);
6269
6270 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6271 {
6272 char *t_field_name = TYPE_FIELD_NAME (type, i);
6273
6274 if (t_field_name == NULL)
6275 continue;
6276
6277 else if (field_name_match (t_field_name, name))
6278 return ada_value_primitive_field (arg, offset, i, type);
6279
6280 else if (ada_is_wrapper_field (type, i))
6281 {
6282 struct value *v = /* Do not let indent join lines here. */
6283 ada_search_struct_field (name, arg,
6284 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6285 TYPE_FIELD_TYPE (type, i));
6286 if (v != NULL)
6287 return v;
6288 }
6289
6290 else if (ada_is_variant_part (type, i))
6291 {
6292 /* PNH: Do we ever get here? See find_struct_field. */
6293 int j;
6294 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6295 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6296
6297 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6298 {
6299 struct value *v = ada_search_struct_field /* Force line break. */
6300 (name, arg,
6301 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6302 TYPE_FIELD_TYPE (field_type, j));
6303 if (v != NULL)
6304 return v;
6305 }
6306 }
6307 }
6308 return NULL;
6309 }
6310
6311 static struct value *ada_index_struct_field_1 (int *, struct value *,
6312 int, struct type *);
6313
6314
6315 /* Return field #INDEX in ARG, where the index is that returned by
6316 * find_struct_field through its INDEX_P argument. Adjust the address
6317 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6318 * If found, return value, else return NULL. */
6319
6320 static struct value *
6321 ada_index_struct_field (int index, struct value *arg, int offset,
6322 struct type *type)
6323 {
6324 return ada_index_struct_field_1 (&index, arg, offset, type);
6325 }
6326
6327
6328 /* Auxiliary function for ada_index_struct_field. Like
6329 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6330 * *INDEX_P. */
6331
6332 static struct value *
6333 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6334 struct type *type)
6335 {
6336 int i;
6337 type = ada_check_typedef (type);
6338
6339 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6340 {
6341 if (TYPE_FIELD_NAME (type, i) == NULL)
6342 continue;
6343 else if (ada_is_wrapper_field (type, i))
6344 {
6345 struct value *v = /* Do not let indent join lines here. */
6346 ada_index_struct_field_1 (index_p, arg,
6347 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6348 TYPE_FIELD_TYPE (type, i));
6349 if (v != NULL)
6350 return v;
6351 }
6352
6353 else if (ada_is_variant_part (type, i))
6354 {
6355 /* PNH: Do we ever get here? See ada_search_struct_field,
6356 find_struct_field. */
6357 error (_("Cannot assign this kind of variant record"));
6358 }
6359 else if (*index_p == 0)
6360 return ada_value_primitive_field (arg, offset, i, type);
6361 else
6362 *index_p -= 1;
6363 }
6364 return NULL;
6365 }
6366
6367 /* Given ARG, a value of type (pointer or reference to a)*
6368 structure/union, extract the component named NAME from the ultimate
6369 target structure/union and return it as a value with its
6370 appropriate type. If ARG is a pointer or reference and the field
6371 is not packed, returns a reference to the field, otherwise the
6372 value of the field (an lvalue if ARG is an lvalue).
6373
6374 The routine searches for NAME among all members of the structure itself
6375 and (recursively) among all members of any wrapper members
6376 (e.g., '_parent').
6377
6378 If NO_ERR, then simply return NULL in case of error, rather than
6379 calling error. */
6380
6381 struct value *
6382 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6383 {
6384 struct type *t, *t1;
6385 struct value *v;
6386
6387 v = NULL;
6388 t1 = t = ada_check_typedef (value_type (arg));
6389 if (TYPE_CODE (t) == TYPE_CODE_REF)
6390 {
6391 t1 = TYPE_TARGET_TYPE (t);
6392 if (t1 == NULL)
6393 goto BadValue;
6394 t1 = ada_check_typedef (t1);
6395 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6396 {
6397 arg = coerce_ref (arg);
6398 t = t1;
6399 }
6400 }
6401
6402 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6403 {
6404 t1 = TYPE_TARGET_TYPE (t);
6405 if (t1 == NULL)
6406 goto BadValue;
6407 t1 = ada_check_typedef (t1);
6408 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6409 {
6410 arg = value_ind (arg);
6411 t = t1;
6412 }
6413 else
6414 break;
6415 }
6416
6417 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6418 goto BadValue;
6419
6420 if (t1 == t)
6421 v = ada_search_struct_field (name, arg, 0, t);
6422 else
6423 {
6424 int bit_offset, bit_size, byte_offset;
6425 struct type *field_type;
6426 CORE_ADDR address;
6427
6428 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6429 address = value_as_address (arg);
6430 else
6431 address = unpack_pointer (t, value_contents (arg));
6432
6433 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6434 if (find_struct_field (name, t1, 0,
6435 &field_type, &byte_offset, &bit_offset,
6436 &bit_size, NULL))
6437 {
6438 if (bit_size != 0)
6439 {
6440 if (TYPE_CODE (t) == TYPE_CODE_REF)
6441 arg = ada_coerce_ref (arg);
6442 else
6443 arg = ada_value_ind (arg);
6444 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6445 bit_offset, bit_size,
6446 field_type);
6447 }
6448 else
6449 v = value_from_pointer (lookup_reference_type (field_type),
6450 address + byte_offset);
6451 }
6452 }
6453
6454 if (v != NULL || no_err)
6455 return v;
6456 else
6457 error (_("There is no member named %s."), name);
6458
6459 BadValue:
6460 if (no_err)
6461 return NULL;
6462 else
6463 error (_("Attempt to extract a component of a value that is not a record."));
6464 }
6465
6466 /* Given a type TYPE, look up the type of the component of type named NAME.
6467 If DISPP is non-null, add its byte displacement from the beginning of a
6468 structure (pointed to by a value) of type TYPE to *DISPP (does not
6469 work for packed fields).
6470
6471 Matches any field whose name has NAME as a prefix, possibly
6472 followed by "___".
6473
6474 TYPE can be either a struct or union. If REFOK, TYPE may also
6475 be a (pointer or reference)+ to a struct or union, and the
6476 ultimate target type will be searched.
6477
6478 Looks recursively into variant clauses and parent types.
6479
6480 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6481 TYPE is not a type of the right kind. */
6482
6483 static struct type *
6484 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6485 int noerr, int *dispp)
6486 {
6487 int i;
6488
6489 if (name == NULL)
6490 goto BadName;
6491
6492 if (refok && type != NULL)
6493 while (1)
6494 {
6495 type = ada_check_typedef (type);
6496 if (TYPE_CODE (type) != TYPE_CODE_PTR
6497 && TYPE_CODE (type) != TYPE_CODE_REF)
6498 break;
6499 type = TYPE_TARGET_TYPE (type);
6500 }
6501
6502 if (type == NULL
6503 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6504 && TYPE_CODE (type) != TYPE_CODE_UNION))
6505 {
6506 if (noerr)
6507 return NULL;
6508 else
6509 {
6510 target_terminal_ours ();
6511 gdb_flush (gdb_stdout);
6512 if (type == NULL)
6513 error (_("Type (null) is not a structure or union type"));
6514 else
6515 {
6516 /* XXX: type_sprint */
6517 fprintf_unfiltered (gdb_stderr, _("Type "));
6518 type_print (type, "", gdb_stderr, -1);
6519 error (_(" is not a structure or union type"));
6520 }
6521 }
6522 }
6523
6524 type = to_static_fixed_type (type);
6525
6526 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6527 {
6528 char *t_field_name = TYPE_FIELD_NAME (type, i);
6529 struct type *t;
6530 int disp;
6531
6532 if (t_field_name == NULL)
6533 continue;
6534
6535 else if (field_name_match (t_field_name, name))
6536 {
6537 if (dispp != NULL)
6538 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6539 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6540 }
6541
6542 else if (ada_is_wrapper_field (type, i))
6543 {
6544 disp = 0;
6545 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6546 0, 1, &disp);
6547 if (t != NULL)
6548 {
6549 if (dispp != NULL)
6550 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6551 return t;
6552 }
6553 }
6554
6555 else if (ada_is_variant_part (type, i))
6556 {
6557 int j;
6558 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6559
6560 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6561 {
6562 disp = 0;
6563 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6564 name, 0, 1, &disp);
6565 if (t != NULL)
6566 {
6567 if (dispp != NULL)
6568 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6569 return t;
6570 }
6571 }
6572 }
6573
6574 }
6575
6576 BadName:
6577 if (!noerr)
6578 {
6579 target_terminal_ours ();
6580 gdb_flush (gdb_stdout);
6581 if (name == NULL)
6582 {
6583 /* XXX: type_sprint */
6584 fprintf_unfiltered (gdb_stderr, _("Type "));
6585 type_print (type, "", gdb_stderr, -1);
6586 error (_(" has no component named <null>"));
6587 }
6588 else
6589 {
6590 /* XXX: type_sprint */
6591 fprintf_unfiltered (gdb_stderr, _("Type "));
6592 type_print (type, "", gdb_stderr, -1);
6593 error (_(" has no component named %s"), name);
6594 }
6595 }
6596
6597 return NULL;
6598 }
6599
6600 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6601 within a value of type OUTER_TYPE that is stored in GDB at
6602 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6603 numbering from 0) is applicable. Returns -1 if none are. */
6604
6605 int
6606 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6607 const gdb_byte *outer_valaddr)
6608 {
6609 int others_clause;
6610 int i;
6611 char *discrim_name = ada_variant_discrim_name (var_type);
6612 struct value *outer;
6613 struct value *discrim;
6614 LONGEST discrim_val;
6615
6616 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6617 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6618 if (discrim == NULL)
6619 return -1;
6620 discrim_val = value_as_long (discrim);
6621
6622 others_clause = -1;
6623 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6624 {
6625 if (ada_is_others_clause (var_type, i))
6626 others_clause = i;
6627 else if (ada_in_variant (discrim_val, var_type, i))
6628 return i;
6629 }
6630
6631 return others_clause;
6632 }
6633 \f
6634
6635
6636 /* Dynamic-Sized Records */
6637
6638 /* Strategy: The type ostensibly attached to a value with dynamic size
6639 (i.e., a size that is not statically recorded in the debugging
6640 data) does not accurately reflect the size or layout of the value.
6641 Our strategy is to convert these values to values with accurate,
6642 conventional types that are constructed on the fly. */
6643
6644 /* There is a subtle and tricky problem here. In general, we cannot
6645 determine the size of dynamic records without its data. However,
6646 the 'struct value' data structure, which GDB uses to represent
6647 quantities in the inferior process (the target), requires the size
6648 of the type at the time of its allocation in order to reserve space
6649 for GDB's internal copy of the data. That's why the
6650 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6651 rather than struct value*s.
6652
6653 However, GDB's internal history variables ($1, $2, etc.) are
6654 struct value*s containing internal copies of the data that are not, in
6655 general, the same as the data at their corresponding addresses in
6656 the target. Fortunately, the types we give to these values are all
6657 conventional, fixed-size types (as per the strategy described
6658 above), so that we don't usually have to perform the
6659 'to_fixed_xxx_type' conversions to look at their values.
6660 Unfortunately, there is one exception: if one of the internal
6661 history variables is an array whose elements are unconstrained
6662 records, then we will need to create distinct fixed types for each
6663 element selected. */
6664
6665 /* The upshot of all of this is that many routines take a (type, host
6666 address, target address) triple as arguments to represent a value.
6667 The host address, if non-null, is supposed to contain an internal
6668 copy of the relevant data; otherwise, the program is to consult the
6669 target at the target address. */
6670
6671 /* Assuming that VAL0 represents a pointer value, the result of
6672 dereferencing it. Differs from value_ind in its treatment of
6673 dynamic-sized types. */
6674
6675 struct value *
6676 ada_value_ind (struct value *val0)
6677 {
6678 struct value *val = unwrap_value (value_ind (val0));
6679 return ada_to_fixed_value (val);
6680 }
6681
6682 /* The value resulting from dereferencing any "reference to"
6683 qualifiers on VAL0. */
6684
6685 static struct value *
6686 ada_coerce_ref (struct value *val0)
6687 {
6688 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6689 {
6690 struct value *val = val0;
6691 val = coerce_ref (val);
6692 val = unwrap_value (val);
6693 return ada_to_fixed_value (val);
6694 }
6695 else
6696 return val0;
6697 }
6698
6699 /* Return OFF rounded upward if necessary to a multiple of
6700 ALIGNMENT (a power of 2). */
6701
6702 static unsigned int
6703 align_value (unsigned int off, unsigned int alignment)
6704 {
6705 return (off + alignment - 1) & ~(alignment - 1);
6706 }
6707
6708 /* Return the bit alignment required for field #F of template type TYPE. */
6709
6710 static unsigned int
6711 field_alignment (struct type *type, int f)
6712 {
6713 const char *name = TYPE_FIELD_NAME (type, f);
6714 int len;
6715 int align_offset;
6716
6717 /* The field name should never be null, unless the debugging information
6718 is somehow malformed. In this case, we assume the field does not
6719 require any alignment. */
6720 if (name == NULL)
6721 return 1;
6722
6723 len = strlen (name);
6724
6725 if (!isdigit (name[len - 1]))
6726 return 1;
6727
6728 if (isdigit (name[len - 2]))
6729 align_offset = len - 2;
6730 else
6731 align_offset = len - 1;
6732
6733 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6734 return TARGET_CHAR_BIT;
6735
6736 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6737 }
6738
6739 /* Find a symbol named NAME. Ignores ambiguity. */
6740
6741 struct symbol *
6742 ada_find_any_symbol (const char *name)
6743 {
6744 struct symbol *sym;
6745
6746 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6747 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6748 return sym;
6749
6750 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6751 return sym;
6752 }
6753
6754 /* Find a type named NAME. Ignores ambiguity. */
6755
6756 struct type *
6757 ada_find_any_type (const char *name)
6758 {
6759 struct symbol *sym = ada_find_any_symbol (name);
6760
6761 if (sym != NULL)
6762 return SYMBOL_TYPE (sym);
6763
6764 return NULL;
6765 }
6766
6767 /* Given NAME and an associated BLOCK, search all symbols for
6768 NAME suffixed with "___XR", which is the ``renaming'' symbol
6769 associated to NAME. Return this symbol if found, return
6770 NULL otherwise. */
6771
6772 struct symbol *
6773 ada_find_renaming_symbol (const char *name, struct block *block)
6774 {
6775 struct symbol *sym;
6776
6777 sym = find_old_style_renaming_symbol (name, block);
6778
6779 if (sym != NULL)
6780 return sym;
6781
6782 /* Not right yet. FIXME pnh 7/20/2007. */
6783 sym = ada_find_any_symbol (name);
6784 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6785 return sym;
6786 else
6787 return NULL;
6788 }
6789
6790 static struct symbol *
6791 find_old_style_renaming_symbol (const char *name, struct block *block)
6792 {
6793 const struct symbol *function_sym = block_function (block);
6794 char *rename;
6795
6796 if (function_sym != NULL)
6797 {
6798 /* If the symbol is defined inside a function, NAME is not fully
6799 qualified. This means we need to prepend the function name
6800 as well as adding the ``___XR'' suffix to build the name of
6801 the associated renaming symbol. */
6802 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6803 /* Function names sometimes contain suffixes used
6804 for instance to qualify nested subprograms. When building
6805 the XR type name, we need to make sure that this suffix is
6806 not included. So do not include any suffix in the function
6807 name length below. */
6808 const int function_name_len = ada_name_prefix_len (function_name);
6809 const int rename_len = function_name_len + 2 /* "__" */
6810 + strlen (name) + 6 /* "___XR\0" */ ;
6811
6812 /* Strip the suffix if necessary. */
6813 function_name[function_name_len] = '\0';
6814
6815 /* Library-level functions are a special case, as GNAT adds
6816 a ``_ada_'' prefix to the function name to avoid namespace
6817 pollution. However, the renaming symbols themselves do not
6818 have this prefix, so we need to skip this prefix if present. */
6819 if (function_name_len > 5 /* "_ada_" */
6820 && strstr (function_name, "_ada_") == function_name)
6821 function_name = function_name + 5;
6822
6823 rename = (char *) alloca (rename_len * sizeof (char));
6824 sprintf (rename, "%s__%s___XR", function_name, name);
6825 }
6826 else
6827 {
6828 const int rename_len = strlen (name) + 6;
6829 rename = (char *) alloca (rename_len * sizeof (char));
6830 sprintf (rename, "%s___XR", name);
6831 }
6832
6833 return ada_find_any_symbol (rename);
6834 }
6835
6836 /* Because of GNAT encoding conventions, several GDB symbols may match a
6837 given type name. If the type denoted by TYPE0 is to be preferred to
6838 that of TYPE1 for purposes of type printing, return non-zero;
6839 otherwise return 0. */
6840
6841 int
6842 ada_prefer_type (struct type *type0, struct type *type1)
6843 {
6844 if (type1 == NULL)
6845 return 1;
6846 else if (type0 == NULL)
6847 return 0;
6848 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6849 return 1;
6850 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6851 return 0;
6852 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6853 return 1;
6854 else if (ada_is_packed_array_type (type0))
6855 return 1;
6856 else if (ada_is_array_descriptor_type (type0)
6857 && !ada_is_array_descriptor_type (type1))
6858 return 1;
6859 else
6860 {
6861 const char *type0_name = type_name_no_tag (type0);
6862 const char *type1_name = type_name_no_tag (type1);
6863
6864 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6865 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6866 return 1;
6867 }
6868 return 0;
6869 }
6870
6871 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6872 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6873
6874 char *
6875 ada_type_name (struct type *type)
6876 {
6877 if (type == NULL)
6878 return NULL;
6879 else if (TYPE_NAME (type) != NULL)
6880 return TYPE_NAME (type);
6881 else
6882 return TYPE_TAG_NAME (type);
6883 }
6884
6885 /* Find a parallel type to TYPE whose name is formed by appending
6886 SUFFIX to the name of TYPE. */
6887
6888 struct type *
6889 ada_find_parallel_type (struct type *type, const char *suffix)
6890 {
6891 static char *name;
6892 static size_t name_len = 0;
6893 int len;
6894 char *typename = ada_type_name (type);
6895
6896 if (typename == NULL)
6897 return NULL;
6898
6899 len = strlen (typename);
6900
6901 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6902
6903 strcpy (name, typename);
6904 strcpy (name + len, suffix);
6905
6906 return ada_find_any_type (name);
6907 }
6908
6909
6910 /* If TYPE is a variable-size record type, return the corresponding template
6911 type describing its fields. Otherwise, return NULL. */
6912
6913 static struct type *
6914 dynamic_template_type (struct type *type)
6915 {
6916 type = ada_check_typedef (type);
6917
6918 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6919 || ada_type_name (type) == NULL)
6920 return NULL;
6921 else
6922 {
6923 int len = strlen (ada_type_name (type));
6924 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6925 return type;
6926 else
6927 return ada_find_parallel_type (type, "___XVE");
6928 }
6929 }
6930
6931 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6932 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6933
6934 static int
6935 is_dynamic_field (struct type *templ_type, int field_num)
6936 {
6937 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6938 return name != NULL
6939 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6940 && strstr (name, "___XVL") != NULL;
6941 }
6942
6943 /* The index of the variant field of TYPE, or -1 if TYPE does not
6944 represent a variant record type. */
6945
6946 static int
6947 variant_field_index (struct type *type)
6948 {
6949 int f;
6950
6951 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6952 return -1;
6953
6954 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6955 {
6956 if (ada_is_variant_part (type, f))
6957 return f;
6958 }
6959 return -1;
6960 }
6961
6962 /* A record type with no fields. */
6963
6964 static struct type *
6965 empty_record (struct objfile *objfile)
6966 {
6967 struct type *type = alloc_type (objfile);
6968 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6969 TYPE_NFIELDS (type) = 0;
6970 TYPE_FIELDS (type) = NULL;
6971 TYPE_NAME (type) = "<empty>";
6972 TYPE_TAG_NAME (type) = NULL;
6973 TYPE_FLAGS (type) = 0;
6974 TYPE_LENGTH (type) = 0;
6975 return type;
6976 }
6977
6978 /* An ordinary record type (with fixed-length fields) that describes
6979 the value of type TYPE at VALADDR or ADDRESS (see comments at
6980 the beginning of this section) VAL according to GNAT conventions.
6981 DVAL0 should describe the (portion of a) record that contains any
6982 necessary discriminants. It should be NULL if value_type (VAL) is
6983 an outer-level type (i.e., as opposed to a branch of a variant.) A
6984 variant field (unless unchecked) is replaced by a particular branch
6985 of the variant.
6986
6987 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6988 length are not statically known are discarded. As a consequence,
6989 VALADDR, ADDRESS and DVAL0 are ignored.
6990
6991 NOTE: Limitations: For now, we assume that dynamic fields and
6992 variants occupy whole numbers of bytes. However, they need not be
6993 byte-aligned. */
6994
6995 struct type *
6996 ada_template_to_fixed_record_type_1 (struct type *type,
6997 const gdb_byte *valaddr,
6998 CORE_ADDR address, struct value *dval0,
6999 int keep_dynamic_fields)
7000 {
7001 struct value *mark = value_mark ();
7002 struct value *dval;
7003 struct type *rtype;
7004 int nfields, bit_len;
7005 int variant_field;
7006 long off;
7007 int fld_bit_len, bit_incr;
7008 int f;
7009
7010 /* Compute the number of fields in this record type that are going
7011 to be processed: unless keep_dynamic_fields, this includes only
7012 fields whose position and length are static will be processed. */
7013 if (keep_dynamic_fields)
7014 nfields = TYPE_NFIELDS (type);
7015 else
7016 {
7017 nfields = 0;
7018 while (nfields < TYPE_NFIELDS (type)
7019 && !ada_is_variant_part (type, nfields)
7020 && !is_dynamic_field (type, nfields))
7021 nfields++;
7022 }
7023
7024 rtype = alloc_type (TYPE_OBJFILE (type));
7025 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7026 INIT_CPLUS_SPECIFIC (rtype);
7027 TYPE_NFIELDS (rtype) = nfields;
7028 TYPE_FIELDS (rtype) = (struct field *)
7029 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7030 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7031 TYPE_NAME (rtype) = ada_type_name (type);
7032 TYPE_TAG_NAME (rtype) = NULL;
7033 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
7034
7035 off = 0;
7036 bit_len = 0;
7037 variant_field = -1;
7038
7039 for (f = 0; f < nfields; f += 1)
7040 {
7041 off = align_value (off, field_alignment (type, f))
7042 + TYPE_FIELD_BITPOS (type, f);
7043 TYPE_FIELD_BITPOS (rtype, f) = off;
7044 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7045
7046 if (ada_is_variant_part (type, f))
7047 {
7048 variant_field = f;
7049 fld_bit_len = bit_incr = 0;
7050 }
7051 else if (is_dynamic_field (type, f))
7052 {
7053 if (dval0 == NULL)
7054 dval = value_from_contents_and_address (rtype, valaddr, address);
7055 else
7056 dval = dval0;
7057
7058 /* Get the fixed type of the field. Note that, in this case, we
7059 do not want to get the real type out of the tag: if the current
7060 field is the parent part of a tagged record, we will get the
7061 tag of the object. Clearly wrong: the real type of the parent
7062 is not the real type of the child. We would end up in an infinite
7063 loop. */
7064 TYPE_FIELD_TYPE (rtype, f) =
7065 ada_to_fixed_type
7066 (ada_get_base_type
7067 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
7068 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7069 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
7070 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7071 bit_incr = fld_bit_len =
7072 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7073 }
7074 else
7075 {
7076 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7077 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7078 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7079 bit_incr = fld_bit_len =
7080 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7081 else
7082 bit_incr = fld_bit_len =
7083 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
7084 }
7085 if (off + fld_bit_len > bit_len)
7086 bit_len = off + fld_bit_len;
7087 off += bit_incr;
7088 TYPE_LENGTH (rtype) =
7089 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7090 }
7091
7092 /* We handle the variant part, if any, at the end because of certain
7093 odd cases in which it is re-ordered so as NOT the last field of
7094 the record. This can happen in the presence of representation
7095 clauses. */
7096 if (variant_field >= 0)
7097 {
7098 struct type *branch_type;
7099
7100 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7101
7102 if (dval0 == NULL)
7103 dval = value_from_contents_and_address (rtype, valaddr, address);
7104 else
7105 dval = dval0;
7106
7107 branch_type =
7108 to_fixed_variant_branch_type
7109 (TYPE_FIELD_TYPE (type, variant_field),
7110 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7111 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7112 if (branch_type == NULL)
7113 {
7114 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7115 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7116 TYPE_NFIELDS (rtype) -= 1;
7117 }
7118 else
7119 {
7120 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7121 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7122 fld_bit_len =
7123 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7124 TARGET_CHAR_BIT;
7125 if (off + fld_bit_len > bit_len)
7126 bit_len = off + fld_bit_len;
7127 TYPE_LENGTH (rtype) =
7128 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7129 }
7130 }
7131
7132 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7133 should contain the alignment of that record, which should be a strictly
7134 positive value. If null or negative, then something is wrong, most
7135 probably in the debug info. In that case, we don't round up the size
7136 of the resulting type. If this record is not part of another structure,
7137 the current RTYPE length might be good enough for our purposes. */
7138 if (TYPE_LENGTH (type) <= 0)
7139 {
7140 if (TYPE_NAME (rtype))
7141 warning (_("Invalid type size for `%s' detected: %d."),
7142 TYPE_NAME (rtype), TYPE_LENGTH (type));
7143 else
7144 warning (_("Invalid type size for <unnamed> detected: %d."),
7145 TYPE_LENGTH (type));
7146 }
7147 else
7148 {
7149 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7150 TYPE_LENGTH (type));
7151 }
7152
7153 value_free_to_mark (mark);
7154 if (TYPE_LENGTH (rtype) > varsize_limit)
7155 error (_("record type with dynamic size is larger than varsize-limit"));
7156 return rtype;
7157 }
7158
7159 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7160 of 1. */
7161
7162 static struct type *
7163 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7164 CORE_ADDR address, struct value *dval0)
7165 {
7166 return ada_template_to_fixed_record_type_1 (type, valaddr,
7167 address, dval0, 1);
7168 }
7169
7170 /* An ordinary record type in which ___XVL-convention fields and
7171 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7172 static approximations, containing all possible fields. Uses
7173 no runtime values. Useless for use in values, but that's OK,
7174 since the results are used only for type determinations. Works on both
7175 structs and unions. Representation note: to save space, we memorize
7176 the result of this function in the TYPE_TARGET_TYPE of the
7177 template type. */
7178
7179 static struct type *
7180 template_to_static_fixed_type (struct type *type0)
7181 {
7182 struct type *type;
7183 int nfields;
7184 int f;
7185
7186 if (TYPE_TARGET_TYPE (type0) != NULL)
7187 return TYPE_TARGET_TYPE (type0);
7188
7189 nfields = TYPE_NFIELDS (type0);
7190 type = type0;
7191
7192 for (f = 0; f < nfields; f += 1)
7193 {
7194 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7195 struct type *new_type;
7196
7197 if (is_dynamic_field (type0, f))
7198 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7199 else
7200 new_type = static_unwrap_type (field_type);
7201 if (type == type0 && new_type != field_type)
7202 {
7203 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
7204 TYPE_CODE (type) = TYPE_CODE (type0);
7205 INIT_CPLUS_SPECIFIC (type);
7206 TYPE_NFIELDS (type) = nfields;
7207 TYPE_FIELDS (type) = (struct field *)
7208 TYPE_ALLOC (type, nfields * sizeof (struct field));
7209 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7210 sizeof (struct field) * nfields);
7211 TYPE_NAME (type) = ada_type_name (type0);
7212 TYPE_TAG_NAME (type) = NULL;
7213 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
7214 TYPE_LENGTH (type) = 0;
7215 }
7216 TYPE_FIELD_TYPE (type, f) = new_type;
7217 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7218 }
7219 return type;
7220 }
7221
7222 /* Given an object of type TYPE whose contents are at VALADDR and
7223 whose address in memory is ADDRESS, returns a revision of TYPE --
7224 a non-dynamic-sized record with a variant part -- in which
7225 the variant part is replaced with the appropriate branch. Looks
7226 for discriminant values in DVAL0, which can be NULL if the record
7227 contains the necessary discriminant values. */
7228
7229 static struct type *
7230 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7231 CORE_ADDR address, struct value *dval0)
7232 {
7233 struct value *mark = value_mark ();
7234 struct value *dval;
7235 struct type *rtype;
7236 struct type *branch_type;
7237 int nfields = TYPE_NFIELDS (type);
7238 int variant_field = variant_field_index (type);
7239
7240 if (variant_field == -1)
7241 return type;
7242
7243 if (dval0 == NULL)
7244 dval = value_from_contents_and_address (type, valaddr, address);
7245 else
7246 dval = dval0;
7247
7248 rtype = alloc_type (TYPE_OBJFILE (type));
7249 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7250 INIT_CPLUS_SPECIFIC (rtype);
7251 TYPE_NFIELDS (rtype) = nfields;
7252 TYPE_FIELDS (rtype) =
7253 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7254 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7255 sizeof (struct field) * nfields);
7256 TYPE_NAME (rtype) = ada_type_name (type);
7257 TYPE_TAG_NAME (rtype) = NULL;
7258 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
7259 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7260
7261 branch_type = to_fixed_variant_branch_type
7262 (TYPE_FIELD_TYPE (type, variant_field),
7263 cond_offset_host (valaddr,
7264 TYPE_FIELD_BITPOS (type, variant_field)
7265 / TARGET_CHAR_BIT),
7266 cond_offset_target (address,
7267 TYPE_FIELD_BITPOS (type, variant_field)
7268 / TARGET_CHAR_BIT), dval);
7269 if (branch_type == NULL)
7270 {
7271 int f;
7272 for (f = variant_field + 1; f < nfields; f += 1)
7273 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7274 TYPE_NFIELDS (rtype) -= 1;
7275 }
7276 else
7277 {
7278 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7279 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7280 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7281 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7282 }
7283 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7284
7285 value_free_to_mark (mark);
7286 return rtype;
7287 }
7288
7289 /* An ordinary record type (with fixed-length fields) that describes
7290 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7291 beginning of this section]. Any necessary discriminants' values
7292 should be in DVAL, a record value; it may be NULL if the object
7293 at ADDR itself contains any necessary discriminant values.
7294 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7295 values from the record are needed. Except in the case that DVAL,
7296 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7297 unchecked) is replaced by a particular branch of the variant.
7298
7299 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7300 is questionable and may be removed. It can arise during the
7301 processing of an unconstrained-array-of-record type where all the
7302 variant branches have exactly the same size. This is because in
7303 such cases, the compiler does not bother to use the XVS convention
7304 when encoding the record. I am currently dubious of this
7305 shortcut and suspect the compiler should be altered. FIXME. */
7306
7307 static struct type *
7308 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7309 CORE_ADDR address, struct value *dval)
7310 {
7311 struct type *templ_type;
7312
7313 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7314 return type0;
7315
7316 templ_type = dynamic_template_type (type0);
7317
7318 if (templ_type != NULL)
7319 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7320 else if (variant_field_index (type0) >= 0)
7321 {
7322 if (dval == NULL && valaddr == NULL && address == 0)
7323 return type0;
7324 return to_record_with_fixed_variant_part (type0, valaddr, address,
7325 dval);
7326 }
7327 else
7328 {
7329 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
7330 return type0;
7331 }
7332
7333 }
7334
7335 /* An ordinary record type (with fixed-length fields) that describes
7336 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7337 union type. Any necessary discriminants' values should be in DVAL,
7338 a record value. That is, this routine selects the appropriate
7339 branch of the union at ADDR according to the discriminant value
7340 indicated in the union's type name. */
7341
7342 static struct type *
7343 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7344 CORE_ADDR address, struct value *dval)
7345 {
7346 int which;
7347 struct type *templ_type;
7348 struct type *var_type;
7349
7350 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7351 var_type = TYPE_TARGET_TYPE (var_type0);
7352 else
7353 var_type = var_type0;
7354
7355 templ_type = ada_find_parallel_type (var_type, "___XVU");
7356
7357 if (templ_type != NULL)
7358 var_type = templ_type;
7359
7360 which =
7361 ada_which_variant_applies (var_type,
7362 value_type (dval), value_contents (dval));
7363
7364 if (which < 0)
7365 return empty_record (TYPE_OBJFILE (var_type));
7366 else if (is_dynamic_field (var_type, which))
7367 return to_fixed_record_type
7368 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7369 valaddr, address, dval);
7370 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7371 return
7372 to_fixed_record_type
7373 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7374 else
7375 return TYPE_FIELD_TYPE (var_type, which);
7376 }
7377
7378 /* Assuming that TYPE0 is an array type describing the type of a value
7379 at ADDR, and that DVAL describes a record containing any
7380 discriminants used in TYPE0, returns a type for the value that
7381 contains no dynamic components (that is, no components whose sizes
7382 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7383 true, gives an error message if the resulting type's size is over
7384 varsize_limit. */
7385
7386 static struct type *
7387 to_fixed_array_type (struct type *type0, struct value *dval,
7388 int ignore_too_big)
7389 {
7390 struct type *index_type_desc;
7391 struct type *result;
7392
7393 if (ada_is_packed_array_type (type0) /* revisit? */
7394 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
7395 return type0;
7396
7397 index_type_desc = ada_find_parallel_type (type0, "___XA");
7398 if (index_type_desc == NULL)
7399 {
7400 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7401 /* NOTE: elt_type---the fixed version of elt_type0---should never
7402 depend on the contents of the array in properly constructed
7403 debugging data. */
7404 /* Create a fixed version of the array element type.
7405 We're not providing the address of an element here,
7406 and thus the actual object value cannot be inspected to do
7407 the conversion. This should not be a problem, since arrays of
7408 unconstrained objects are not allowed. In particular, all
7409 the elements of an array of a tagged type should all be of
7410 the same type specified in the debugging info. No need to
7411 consult the object tag. */
7412 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7413
7414 if (elt_type0 == elt_type)
7415 result = type0;
7416 else
7417 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7418 elt_type, TYPE_INDEX_TYPE (type0));
7419 }
7420 else
7421 {
7422 int i;
7423 struct type *elt_type0;
7424
7425 elt_type0 = type0;
7426 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7427 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7428
7429 /* NOTE: result---the fixed version of elt_type0---should never
7430 depend on the contents of the array in properly constructed
7431 debugging data. */
7432 /* Create a fixed version of the array element type.
7433 We're not providing the address of an element here,
7434 and thus the actual object value cannot be inspected to do
7435 the conversion. This should not be a problem, since arrays of
7436 unconstrained objects are not allowed. In particular, all
7437 the elements of an array of a tagged type should all be of
7438 the same type specified in the debugging info. No need to
7439 consult the object tag. */
7440 result =
7441 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7442 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7443 {
7444 struct type *range_type =
7445 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7446 dval, TYPE_OBJFILE (type0));
7447 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7448 result, range_type);
7449 }
7450 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7451 error (_("array type with dynamic size is larger than varsize-limit"));
7452 }
7453
7454 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
7455 return result;
7456 }
7457
7458
7459 /* A standard type (containing no dynamically sized components)
7460 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7461 DVAL describes a record containing any discriminants used in TYPE0,
7462 and may be NULL if there are none, or if the object of type TYPE at
7463 ADDRESS or in VALADDR contains these discriminants.
7464
7465 If CHECK_TAG is not null, in the case of tagged types, this function
7466 attempts to locate the object's tag and use it to compute the actual
7467 type. However, when ADDRESS is null, we cannot use it to determine the
7468 location of the tag, and therefore compute the tagged type's actual type.
7469 So we return the tagged type without consulting the tag. */
7470
7471 static struct type *
7472 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7473 CORE_ADDR address, struct value *dval, int check_tag)
7474 {
7475 type = ada_check_typedef (type);
7476 switch (TYPE_CODE (type))
7477 {
7478 default:
7479 return type;
7480 case TYPE_CODE_STRUCT:
7481 {
7482 struct type *static_type = to_static_fixed_type (type);
7483 struct type *fixed_record_type =
7484 to_fixed_record_type (type, valaddr, address, NULL);
7485 /* If STATIC_TYPE is a tagged type and we know the object's address,
7486 then we can determine its tag, and compute the object's actual
7487 type from there. Note that we have to use the fixed record
7488 type (the parent part of the record may have dynamic fields
7489 and the way the location of _tag is expressed may depend on
7490 them). */
7491
7492 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7493 {
7494 struct type *real_type =
7495 type_from_tag (value_tag_from_contents_and_address
7496 (fixed_record_type,
7497 valaddr,
7498 address));
7499 if (real_type != NULL)
7500 return to_fixed_record_type (real_type, valaddr, address, NULL);
7501 }
7502 return fixed_record_type;
7503 }
7504 case TYPE_CODE_ARRAY:
7505 return to_fixed_array_type (type, dval, 1);
7506 case TYPE_CODE_UNION:
7507 if (dval == NULL)
7508 return type;
7509 else
7510 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7511 }
7512 }
7513
7514 /* The same as ada_to_fixed_type_1, except that it preserves the type
7515 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7516 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7517
7518 struct type *
7519 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7520 CORE_ADDR address, struct value *dval, int check_tag)
7521
7522 {
7523 struct type *fixed_type =
7524 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7525
7526 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7527 && TYPE_TARGET_TYPE (type) == fixed_type)
7528 return type;
7529
7530 return fixed_type;
7531 }
7532
7533 /* A standard (static-sized) type corresponding as well as possible to
7534 TYPE0, but based on no runtime data. */
7535
7536 static struct type *
7537 to_static_fixed_type (struct type *type0)
7538 {
7539 struct type *type;
7540
7541 if (type0 == NULL)
7542 return NULL;
7543
7544 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7545 return type0;
7546
7547 type0 = ada_check_typedef (type0);
7548
7549 switch (TYPE_CODE (type0))
7550 {
7551 default:
7552 return type0;
7553 case TYPE_CODE_STRUCT:
7554 type = dynamic_template_type (type0);
7555 if (type != NULL)
7556 return template_to_static_fixed_type (type);
7557 else
7558 return template_to_static_fixed_type (type0);
7559 case TYPE_CODE_UNION:
7560 type = ada_find_parallel_type (type0, "___XVU");
7561 if (type != NULL)
7562 return template_to_static_fixed_type (type);
7563 else
7564 return template_to_static_fixed_type (type0);
7565 }
7566 }
7567
7568 /* A static approximation of TYPE with all type wrappers removed. */
7569
7570 static struct type *
7571 static_unwrap_type (struct type *type)
7572 {
7573 if (ada_is_aligner_type (type))
7574 {
7575 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7576 if (ada_type_name (type1) == NULL)
7577 TYPE_NAME (type1) = ada_type_name (type);
7578
7579 return static_unwrap_type (type1);
7580 }
7581 else
7582 {
7583 struct type *raw_real_type = ada_get_base_type (type);
7584 if (raw_real_type == type)
7585 return type;
7586 else
7587 return to_static_fixed_type (raw_real_type);
7588 }
7589 }
7590
7591 /* In some cases, incomplete and private types require
7592 cross-references that are not resolved as records (for example,
7593 type Foo;
7594 type FooP is access Foo;
7595 V: FooP;
7596 type Foo is array ...;
7597 ). In these cases, since there is no mechanism for producing
7598 cross-references to such types, we instead substitute for FooP a
7599 stub enumeration type that is nowhere resolved, and whose tag is
7600 the name of the actual type. Call these types "non-record stubs". */
7601
7602 /* A type equivalent to TYPE that is not a non-record stub, if one
7603 exists, otherwise TYPE. */
7604
7605 struct type *
7606 ada_check_typedef (struct type *type)
7607 {
7608 if (type == NULL)
7609 return NULL;
7610
7611 CHECK_TYPEDEF (type);
7612 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7613 || !TYPE_STUB (type)
7614 || TYPE_TAG_NAME (type) == NULL)
7615 return type;
7616 else
7617 {
7618 char *name = TYPE_TAG_NAME (type);
7619 struct type *type1 = ada_find_any_type (name);
7620 return (type1 == NULL) ? type : type1;
7621 }
7622 }
7623
7624 /* A value representing the data at VALADDR/ADDRESS as described by
7625 type TYPE0, but with a standard (static-sized) type that correctly
7626 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7627 type, then return VAL0 [this feature is simply to avoid redundant
7628 creation of struct values]. */
7629
7630 static struct value *
7631 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7632 struct value *val0)
7633 {
7634 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7635 if (type == type0 && val0 != NULL)
7636 return val0;
7637 else
7638 return value_from_contents_and_address (type, 0, address);
7639 }
7640
7641 /* A value representing VAL, but with a standard (static-sized) type
7642 that correctly describes it. Does not necessarily create a new
7643 value. */
7644
7645 static struct value *
7646 ada_to_fixed_value (struct value *val)
7647 {
7648 return ada_to_fixed_value_create (value_type (val),
7649 VALUE_ADDRESS (val) + value_offset (val),
7650 val);
7651 }
7652
7653 /* A value representing VAL, but with a standard (static-sized) type
7654 chosen to approximate the real type of VAL as well as possible, but
7655 without consulting any runtime values. For Ada dynamic-sized
7656 types, therefore, the type of the result is likely to be inaccurate. */
7657
7658 struct value *
7659 ada_to_static_fixed_value (struct value *val)
7660 {
7661 struct type *type =
7662 to_static_fixed_type (static_unwrap_type (value_type (val)));
7663 if (type == value_type (val))
7664 return val;
7665 else
7666 return coerce_unspec_val_to_type (val, type);
7667 }
7668 \f
7669
7670 /* Attributes */
7671
7672 /* Table mapping attribute numbers to names.
7673 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7674
7675 static const char *attribute_names[] = {
7676 "<?>",
7677
7678 "first",
7679 "last",
7680 "length",
7681 "image",
7682 "max",
7683 "min",
7684 "modulus",
7685 "pos",
7686 "size",
7687 "tag",
7688 "val",
7689 0
7690 };
7691
7692 const char *
7693 ada_attribute_name (enum exp_opcode n)
7694 {
7695 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7696 return attribute_names[n - OP_ATR_FIRST + 1];
7697 else
7698 return attribute_names[0];
7699 }
7700
7701 /* Evaluate the 'POS attribute applied to ARG. */
7702
7703 static LONGEST
7704 pos_atr (struct value *arg)
7705 {
7706 struct type *type = value_type (arg);
7707
7708 if (!discrete_type_p (type))
7709 error (_("'POS only defined on discrete types"));
7710
7711 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7712 {
7713 int i;
7714 LONGEST v = value_as_long (arg);
7715
7716 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7717 {
7718 if (v == TYPE_FIELD_BITPOS (type, i))
7719 return i;
7720 }
7721 error (_("enumeration value is invalid: can't find 'POS"));
7722 }
7723 else
7724 return value_as_long (arg);
7725 }
7726
7727 static struct value *
7728 value_pos_atr (struct value *arg)
7729 {
7730 return value_from_longest (builtin_type_int, pos_atr (arg));
7731 }
7732
7733 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7734
7735 static struct value *
7736 value_val_atr (struct type *type, struct value *arg)
7737 {
7738 if (!discrete_type_p (type))
7739 error (_("'VAL only defined on discrete types"));
7740 if (!integer_type_p (value_type (arg)))
7741 error (_("'VAL requires integral argument"));
7742
7743 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7744 {
7745 long pos = value_as_long (arg);
7746 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7747 error (_("argument to 'VAL out of range"));
7748 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7749 }
7750 else
7751 return value_from_longest (type, value_as_long (arg));
7752 }
7753 \f
7754
7755 /* Evaluation */
7756
7757 /* True if TYPE appears to be an Ada character type.
7758 [At the moment, this is true only for Character and Wide_Character;
7759 It is a heuristic test that could stand improvement]. */
7760
7761 int
7762 ada_is_character_type (struct type *type)
7763 {
7764 const char *name;
7765
7766 /* If the type code says it's a character, then assume it really is,
7767 and don't check any further. */
7768 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7769 return 1;
7770
7771 /* Otherwise, assume it's a character type iff it is a discrete type
7772 with a known character type name. */
7773 name = ada_type_name (type);
7774 return (name != NULL
7775 && (TYPE_CODE (type) == TYPE_CODE_INT
7776 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7777 && (strcmp (name, "character") == 0
7778 || strcmp (name, "wide_character") == 0
7779 || strcmp (name, "wide_wide_character") == 0
7780 || strcmp (name, "unsigned char") == 0));
7781 }
7782
7783 /* True if TYPE appears to be an Ada string type. */
7784
7785 int
7786 ada_is_string_type (struct type *type)
7787 {
7788 type = ada_check_typedef (type);
7789 if (type != NULL
7790 && TYPE_CODE (type) != TYPE_CODE_PTR
7791 && (ada_is_simple_array_type (type)
7792 || ada_is_array_descriptor_type (type))
7793 && ada_array_arity (type) == 1)
7794 {
7795 struct type *elttype = ada_array_element_type (type, 1);
7796
7797 return ada_is_character_type (elttype);
7798 }
7799 else
7800 return 0;
7801 }
7802
7803
7804 /* True if TYPE is a struct type introduced by the compiler to force the
7805 alignment of a value. Such types have a single field with a
7806 distinctive name. */
7807
7808 int
7809 ada_is_aligner_type (struct type *type)
7810 {
7811 type = ada_check_typedef (type);
7812
7813 /* If we can find a parallel XVS type, then the XVS type should
7814 be used instead of this type. And hence, this is not an aligner
7815 type. */
7816 if (ada_find_parallel_type (type, "___XVS") != NULL)
7817 return 0;
7818
7819 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7820 && TYPE_NFIELDS (type) == 1
7821 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7822 }
7823
7824 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7825 the parallel type. */
7826
7827 struct type *
7828 ada_get_base_type (struct type *raw_type)
7829 {
7830 struct type *real_type_namer;
7831 struct type *raw_real_type;
7832
7833 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7834 return raw_type;
7835
7836 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7837 if (real_type_namer == NULL
7838 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7839 || TYPE_NFIELDS (real_type_namer) != 1)
7840 return raw_type;
7841
7842 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7843 if (raw_real_type == NULL)
7844 return raw_type;
7845 else
7846 return raw_real_type;
7847 }
7848
7849 /* The type of value designated by TYPE, with all aligners removed. */
7850
7851 struct type *
7852 ada_aligned_type (struct type *type)
7853 {
7854 if (ada_is_aligner_type (type))
7855 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7856 else
7857 return ada_get_base_type (type);
7858 }
7859
7860
7861 /* The address of the aligned value in an object at address VALADDR
7862 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7863
7864 const gdb_byte *
7865 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7866 {
7867 if (ada_is_aligner_type (type))
7868 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7869 valaddr +
7870 TYPE_FIELD_BITPOS (type,
7871 0) / TARGET_CHAR_BIT);
7872 else
7873 return valaddr;
7874 }
7875
7876
7877
7878 /* The printed representation of an enumeration literal with encoded
7879 name NAME. The value is good to the next call of ada_enum_name. */
7880 const char *
7881 ada_enum_name (const char *name)
7882 {
7883 static char *result;
7884 static size_t result_len = 0;
7885 char *tmp;
7886
7887 /* First, unqualify the enumeration name:
7888 1. Search for the last '.' character. If we find one, then skip
7889 all the preceeding characters, the unqualified name starts
7890 right after that dot.
7891 2. Otherwise, we may be debugging on a target where the compiler
7892 translates dots into "__". Search forward for double underscores,
7893 but stop searching when we hit an overloading suffix, which is
7894 of the form "__" followed by digits. */
7895
7896 tmp = strrchr (name, '.');
7897 if (tmp != NULL)
7898 name = tmp + 1;
7899 else
7900 {
7901 while ((tmp = strstr (name, "__")) != NULL)
7902 {
7903 if (isdigit (tmp[2]))
7904 break;
7905 else
7906 name = tmp + 2;
7907 }
7908 }
7909
7910 if (name[0] == 'Q')
7911 {
7912 int v;
7913 if (name[1] == 'U' || name[1] == 'W')
7914 {
7915 if (sscanf (name + 2, "%x", &v) != 1)
7916 return name;
7917 }
7918 else
7919 return name;
7920
7921 GROW_VECT (result, result_len, 16);
7922 if (isascii (v) && isprint (v))
7923 sprintf (result, "'%c'", v);
7924 else if (name[1] == 'U')
7925 sprintf (result, "[\"%02x\"]", v);
7926 else
7927 sprintf (result, "[\"%04x\"]", v);
7928
7929 return result;
7930 }
7931 else
7932 {
7933 tmp = strstr (name, "__");
7934 if (tmp == NULL)
7935 tmp = strstr (name, "$");
7936 if (tmp != NULL)
7937 {
7938 GROW_VECT (result, result_len, tmp - name + 1);
7939 strncpy (result, name, tmp - name);
7940 result[tmp - name] = '\0';
7941 return result;
7942 }
7943
7944 return name;
7945 }
7946 }
7947
7948 static struct value *
7949 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7950 enum noside noside)
7951 {
7952 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7953 (expect_type, exp, pos, noside);
7954 }
7955
7956 /* Evaluate the subexpression of EXP starting at *POS as for
7957 evaluate_type, updating *POS to point just past the evaluated
7958 expression. */
7959
7960 static struct value *
7961 evaluate_subexp_type (struct expression *exp, int *pos)
7962 {
7963 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7964 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7965 }
7966
7967 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7968 value it wraps. */
7969
7970 static struct value *
7971 unwrap_value (struct value *val)
7972 {
7973 struct type *type = ada_check_typedef (value_type (val));
7974 if (ada_is_aligner_type (type))
7975 {
7976 struct value *v = value_struct_elt (&val, NULL, "F",
7977 NULL, "internal structure");
7978 struct type *val_type = ada_check_typedef (value_type (v));
7979 if (ada_type_name (val_type) == NULL)
7980 TYPE_NAME (val_type) = ada_type_name (type);
7981
7982 return unwrap_value (v);
7983 }
7984 else
7985 {
7986 struct type *raw_real_type =
7987 ada_check_typedef (ada_get_base_type (type));
7988
7989 if (type == raw_real_type)
7990 return val;
7991
7992 return
7993 coerce_unspec_val_to_type
7994 (val, ada_to_fixed_type (raw_real_type, 0,
7995 VALUE_ADDRESS (val) + value_offset (val),
7996 NULL, 1));
7997 }
7998 }
7999
8000 static struct value *
8001 cast_to_fixed (struct type *type, struct value *arg)
8002 {
8003 LONGEST val;
8004
8005 if (type == value_type (arg))
8006 return arg;
8007 else if (ada_is_fixed_point_type (value_type (arg)))
8008 val = ada_float_to_fixed (type,
8009 ada_fixed_to_float (value_type (arg),
8010 value_as_long (arg)));
8011 else
8012 {
8013 DOUBLEST argd =
8014 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
8015 val = ada_float_to_fixed (type, argd);
8016 }
8017
8018 return value_from_longest (type, val);
8019 }
8020
8021 static struct value *
8022 cast_from_fixed_to_double (struct value *arg)
8023 {
8024 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8025 value_as_long (arg));
8026 return value_from_double (builtin_type_double, val);
8027 }
8028
8029 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8030 return the converted value. */
8031
8032 static struct value *
8033 coerce_for_assign (struct type *type, struct value *val)
8034 {
8035 struct type *type2 = value_type (val);
8036 if (type == type2)
8037 return val;
8038
8039 type2 = ada_check_typedef (type2);
8040 type = ada_check_typedef (type);
8041
8042 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8043 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8044 {
8045 val = ada_value_ind (val);
8046 type2 = value_type (val);
8047 }
8048
8049 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8050 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8051 {
8052 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8053 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8054 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8055 error (_("Incompatible types in assignment"));
8056 deprecated_set_value_type (val, type);
8057 }
8058 return val;
8059 }
8060
8061 static struct value *
8062 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8063 {
8064 struct value *val;
8065 struct type *type1, *type2;
8066 LONGEST v, v1, v2;
8067
8068 arg1 = coerce_ref (arg1);
8069 arg2 = coerce_ref (arg2);
8070 type1 = base_type (ada_check_typedef (value_type (arg1)));
8071 type2 = base_type (ada_check_typedef (value_type (arg2)));
8072
8073 if (TYPE_CODE (type1) != TYPE_CODE_INT
8074 || TYPE_CODE (type2) != TYPE_CODE_INT)
8075 return value_binop (arg1, arg2, op);
8076
8077 switch (op)
8078 {
8079 case BINOP_MOD:
8080 case BINOP_DIV:
8081 case BINOP_REM:
8082 break;
8083 default:
8084 return value_binop (arg1, arg2, op);
8085 }
8086
8087 v2 = value_as_long (arg2);
8088 if (v2 == 0)
8089 error (_("second operand of %s must not be zero."), op_string (op));
8090
8091 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8092 return value_binop (arg1, arg2, op);
8093
8094 v1 = value_as_long (arg1);
8095 switch (op)
8096 {
8097 case BINOP_DIV:
8098 v = v1 / v2;
8099 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8100 v += v > 0 ? -1 : 1;
8101 break;
8102 case BINOP_REM:
8103 v = v1 % v2;
8104 if (v * v1 < 0)
8105 v -= v2;
8106 break;
8107 default:
8108 /* Should not reach this point. */
8109 v = 0;
8110 }
8111
8112 val = allocate_value (type1);
8113 store_unsigned_integer (value_contents_raw (val),
8114 TYPE_LENGTH (value_type (val)), v);
8115 return val;
8116 }
8117
8118 static int
8119 ada_value_equal (struct value *arg1, struct value *arg2)
8120 {
8121 if (ada_is_direct_array_type (value_type (arg1))
8122 || ada_is_direct_array_type (value_type (arg2)))
8123 {
8124 /* Automatically dereference any array reference before
8125 we attempt to perform the comparison. */
8126 arg1 = ada_coerce_ref (arg1);
8127 arg2 = ada_coerce_ref (arg2);
8128
8129 arg1 = ada_coerce_to_simple_array (arg1);
8130 arg2 = ada_coerce_to_simple_array (arg2);
8131 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8132 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8133 error (_("Attempt to compare array with non-array"));
8134 /* FIXME: The following works only for types whose
8135 representations use all bits (no padding or undefined bits)
8136 and do not have user-defined equality. */
8137 return
8138 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8139 && memcmp (value_contents (arg1), value_contents (arg2),
8140 TYPE_LENGTH (value_type (arg1))) == 0;
8141 }
8142 return value_equal (arg1, arg2);
8143 }
8144
8145 /* Total number of component associations in the aggregate starting at
8146 index PC in EXP. Assumes that index PC is the start of an
8147 OP_AGGREGATE. */
8148
8149 static int
8150 num_component_specs (struct expression *exp, int pc)
8151 {
8152 int n, m, i;
8153 m = exp->elts[pc + 1].longconst;
8154 pc += 3;
8155 n = 0;
8156 for (i = 0; i < m; i += 1)
8157 {
8158 switch (exp->elts[pc].opcode)
8159 {
8160 default:
8161 n += 1;
8162 break;
8163 case OP_CHOICES:
8164 n += exp->elts[pc + 1].longconst;
8165 break;
8166 }
8167 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8168 }
8169 return n;
8170 }
8171
8172 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8173 component of LHS (a simple array or a record), updating *POS past
8174 the expression, assuming that LHS is contained in CONTAINER. Does
8175 not modify the inferior's memory, nor does it modify LHS (unless
8176 LHS == CONTAINER). */
8177
8178 static void
8179 assign_component (struct value *container, struct value *lhs, LONGEST index,
8180 struct expression *exp, int *pos)
8181 {
8182 struct value *mark = value_mark ();
8183 struct value *elt;
8184 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8185 {
8186 struct value *index_val = value_from_longest (builtin_type_int, index);
8187 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8188 }
8189 else
8190 {
8191 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8192 elt = ada_to_fixed_value (unwrap_value (elt));
8193 }
8194
8195 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8196 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8197 else
8198 value_assign_to_component (container, elt,
8199 ada_evaluate_subexp (NULL, exp, pos,
8200 EVAL_NORMAL));
8201
8202 value_free_to_mark (mark);
8203 }
8204
8205 /* Assuming that LHS represents an lvalue having a record or array
8206 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8207 of that aggregate's value to LHS, advancing *POS past the
8208 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8209 lvalue containing LHS (possibly LHS itself). Does not modify
8210 the inferior's memory, nor does it modify the contents of
8211 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8212
8213 static struct value *
8214 assign_aggregate (struct value *container,
8215 struct value *lhs, struct expression *exp,
8216 int *pos, enum noside noside)
8217 {
8218 struct type *lhs_type;
8219 int n = exp->elts[*pos+1].longconst;
8220 LONGEST low_index, high_index;
8221 int num_specs;
8222 LONGEST *indices;
8223 int max_indices, num_indices;
8224 int is_array_aggregate;
8225 int i;
8226 struct value *mark = value_mark ();
8227
8228 *pos += 3;
8229 if (noside != EVAL_NORMAL)
8230 {
8231 int i;
8232 for (i = 0; i < n; i += 1)
8233 ada_evaluate_subexp (NULL, exp, pos, noside);
8234 return container;
8235 }
8236
8237 container = ada_coerce_ref (container);
8238 if (ada_is_direct_array_type (value_type (container)))
8239 container = ada_coerce_to_simple_array (container);
8240 lhs = ada_coerce_ref (lhs);
8241 if (!deprecated_value_modifiable (lhs))
8242 error (_("Left operand of assignment is not a modifiable lvalue."));
8243
8244 lhs_type = value_type (lhs);
8245 if (ada_is_direct_array_type (lhs_type))
8246 {
8247 lhs = ada_coerce_to_simple_array (lhs);
8248 lhs_type = value_type (lhs);
8249 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8250 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8251 is_array_aggregate = 1;
8252 }
8253 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8254 {
8255 low_index = 0;
8256 high_index = num_visible_fields (lhs_type) - 1;
8257 is_array_aggregate = 0;
8258 }
8259 else
8260 error (_("Left-hand side must be array or record."));
8261
8262 num_specs = num_component_specs (exp, *pos - 3);
8263 max_indices = 4 * num_specs + 4;
8264 indices = alloca (max_indices * sizeof (indices[0]));
8265 indices[0] = indices[1] = low_index - 1;
8266 indices[2] = indices[3] = high_index + 1;
8267 num_indices = 4;
8268
8269 for (i = 0; i < n; i += 1)
8270 {
8271 switch (exp->elts[*pos].opcode)
8272 {
8273 case OP_CHOICES:
8274 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8275 &num_indices, max_indices,
8276 low_index, high_index);
8277 break;
8278 case OP_POSITIONAL:
8279 aggregate_assign_positional (container, lhs, exp, pos, indices,
8280 &num_indices, max_indices,
8281 low_index, high_index);
8282 break;
8283 case OP_OTHERS:
8284 if (i != n-1)
8285 error (_("Misplaced 'others' clause"));
8286 aggregate_assign_others (container, lhs, exp, pos, indices,
8287 num_indices, low_index, high_index);
8288 break;
8289 default:
8290 error (_("Internal error: bad aggregate clause"));
8291 }
8292 }
8293
8294 return container;
8295 }
8296
8297 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8298 construct at *POS, updating *POS past the construct, given that
8299 the positions are relative to lower bound LOW, where HIGH is the
8300 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8301 updating *NUM_INDICES as needed. CONTAINER is as for
8302 assign_aggregate. */
8303 static void
8304 aggregate_assign_positional (struct value *container,
8305 struct value *lhs, struct expression *exp,
8306 int *pos, LONGEST *indices, int *num_indices,
8307 int max_indices, LONGEST low, LONGEST high)
8308 {
8309 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8310
8311 if (ind - 1 == high)
8312 warning (_("Extra components in aggregate ignored."));
8313 if (ind <= high)
8314 {
8315 add_component_interval (ind, ind, indices, num_indices, max_indices);
8316 *pos += 3;
8317 assign_component (container, lhs, ind, exp, pos);
8318 }
8319 else
8320 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8321 }
8322
8323 /* Assign into the components of LHS indexed by the OP_CHOICES
8324 construct at *POS, updating *POS past the construct, given that
8325 the allowable indices are LOW..HIGH. Record the indices assigned
8326 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8327 needed. CONTAINER is as for assign_aggregate. */
8328 static void
8329 aggregate_assign_from_choices (struct value *container,
8330 struct value *lhs, struct expression *exp,
8331 int *pos, LONGEST *indices, int *num_indices,
8332 int max_indices, LONGEST low, LONGEST high)
8333 {
8334 int j;
8335 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8336 int choice_pos, expr_pc;
8337 int is_array = ada_is_direct_array_type (value_type (lhs));
8338
8339 choice_pos = *pos += 3;
8340
8341 for (j = 0; j < n_choices; j += 1)
8342 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8343 expr_pc = *pos;
8344 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8345
8346 for (j = 0; j < n_choices; j += 1)
8347 {
8348 LONGEST lower, upper;
8349 enum exp_opcode op = exp->elts[choice_pos].opcode;
8350 if (op == OP_DISCRETE_RANGE)
8351 {
8352 choice_pos += 1;
8353 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8354 EVAL_NORMAL));
8355 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8356 EVAL_NORMAL));
8357 }
8358 else if (is_array)
8359 {
8360 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8361 EVAL_NORMAL));
8362 upper = lower;
8363 }
8364 else
8365 {
8366 int ind;
8367 char *name;
8368 switch (op)
8369 {
8370 case OP_NAME:
8371 name = &exp->elts[choice_pos + 2].string;
8372 break;
8373 case OP_VAR_VALUE:
8374 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8375 break;
8376 default:
8377 error (_("Invalid record component association."));
8378 }
8379 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8380 ind = 0;
8381 if (! find_struct_field (name, value_type (lhs), 0,
8382 NULL, NULL, NULL, NULL, &ind))
8383 error (_("Unknown component name: %s."), name);
8384 lower = upper = ind;
8385 }
8386
8387 if (lower <= upper && (lower < low || upper > high))
8388 error (_("Index in component association out of bounds."));
8389
8390 add_component_interval (lower, upper, indices, num_indices,
8391 max_indices);
8392 while (lower <= upper)
8393 {
8394 int pos1;
8395 pos1 = expr_pc;
8396 assign_component (container, lhs, lower, exp, &pos1);
8397 lower += 1;
8398 }
8399 }
8400 }
8401
8402 /* Assign the value of the expression in the OP_OTHERS construct in
8403 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8404 have not been previously assigned. The index intervals already assigned
8405 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8406 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8407 static void
8408 aggregate_assign_others (struct value *container,
8409 struct value *lhs, struct expression *exp,
8410 int *pos, LONGEST *indices, int num_indices,
8411 LONGEST low, LONGEST high)
8412 {
8413 int i;
8414 int expr_pc = *pos+1;
8415
8416 for (i = 0; i < num_indices - 2; i += 2)
8417 {
8418 LONGEST ind;
8419 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8420 {
8421 int pos;
8422 pos = expr_pc;
8423 assign_component (container, lhs, ind, exp, &pos);
8424 }
8425 }
8426 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8427 }
8428
8429 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8430 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8431 modifying *SIZE as needed. It is an error if *SIZE exceeds
8432 MAX_SIZE. The resulting intervals do not overlap. */
8433 static void
8434 add_component_interval (LONGEST low, LONGEST high,
8435 LONGEST* indices, int *size, int max_size)
8436 {
8437 int i, j;
8438 for (i = 0; i < *size; i += 2) {
8439 if (high >= indices[i] && low <= indices[i + 1])
8440 {
8441 int kh;
8442 for (kh = i + 2; kh < *size; kh += 2)
8443 if (high < indices[kh])
8444 break;
8445 if (low < indices[i])
8446 indices[i] = low;
8447 indices[i + 1] = indices[kh - 1];
8448 if (high > indices[i + 1])
8449 indices[i + 1] = high;
8450 memcpy (indices + i + 2, indices + kh, *size - kh);
8451 *size -= kh - i - 2;
8452 return;
8453 }
8454 else if (high < indices[i])
8455 break;
8456 }
8457
8458 if (*size == max_size)
8459 error (_("Internal error: miscounted aggregate components."));
8460 *size += 2;
8461 for (j = *size-1; j >= i+2; j -= 1)
8462 indices[j] = indices[j - 2];
8463 indices[i] = low;
8464 indices[i + 1] = high;
8465 }
8466
8467 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8468 is different. */
8469
8470 static struct value *
8471 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8472 {
8473 if (type == ada_check_typedef (value_type (arg2)))
8474 return arg2;
8475
8476 if (ada_is_fixed_point_type (type))
8477 return (cast_to_fixed (type, arg2));
8478
8479 if (ada_is_fixed_point_type (value_type (arg2)))
8480 return value_cast (type, cast_from_fixed_to_double (arg2));
8481
8482 return value_cast (type, arg2);
8483 }
8484
8485 static struct value *
8486 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8487 int *pos, enum noside noside)
8488 {
8489 enum exp_opcode op;
8490 int tem, tem2, tem3;
8491 int pc;
8492 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8493 struct type *type;
8494 int nargs, oplen;
8495 struct value **argvec;
8496
8497 pc = *pos;
8498 *pos += 1;
8499 op = exp->elts[pc].opcode;
8500
8501 switch (op)
8502 {
8503 default:
8504 *pos -= 1;
8505 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8506 arg1 = unwrap_value (arg1);
8507
8508 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8509 then we need to perform the conversion manually, because
8510 evaluate_subexp_standard doesn't do it. This conversion is
8511 necessary in Ada because the different kinds of float/fixed
8512 types in Ada have different representations.
8513
8514 Similarly, we need to perform the conversion from OP_LONG
8515 ourselves. */
8516 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8517 arg1 = ada_value_cast (expect_type, arg1, noside);
8518
8519 return arg1;
8520
8521 case OP_STRING:
8522 {
8523 struct value *result;
8524 *pos -= 1;
8525 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8526 /* The result type will have code OP_STRING, bashed there from
8527 OP_ARRAY. Bash it back. */
8528 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8529 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8530 return result;
8531 }
8532
8533 case UNOP_CAST:
8534 (*pos) += 2;
8535 type = exp->elts[pc + 1].type;
8536 arg1 = evaluate_subexp (type, exp, pos, noside);
8537 if (noside == EVAL_SKIP)
8538 goto nosideret;
8539 arg1 = ada_value_cast (type, arg1, noside);
8540 return arg1;
8541
8542 case UNOP_QUAL:
8543 (*pos) += 2;
8544 type = exp->elts[pc + 1].type;
8545 return ada_evaluate_subexp (type, exp, pos, noside);
8546
8547 case BINOP_ASSIGN:
8548 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8549 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8550 {
8551 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8552 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8553 return arg1;
8554 return ada_value_assign (arg1, arg1);
8555 }
8556 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8557 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8558 return arg1;
8559 if (ada_is_fixed_point_type (value_type (arg1)))
8560 arg2 = cast_to_fixed (value_type (arg1), arg2);
8561 else if (ada_is_fixed_point_type (value_type (arg2)))
8562 error
8563 (_("Fixed-point values must be assigned to fixed-point variables"));
8564 else
8565 arg2 = coerce_for_assign (value_type (arg1), arg2);
8566 return ada_value_assign (arg1, arg2);
8567
8568 case BINOP_ADD:
8569 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8570 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8571 if (noside == EVAL_SKIP)
8572 goto nosideret;
8573 if ((ada_is_fixed_point_type (value_type (arg1))
8574 || ada_is_fixed_point_type (value_type (arg2)))
8575 && value_type (arg1) != value_type (arg2))
8576 error (_("Operands of fixed-point addition must have the same type"));
8577 /* Do the addition, and cast the result to the type of the first
8578 argument. We cannot cast the result to a reference type, so if
8579 ARG1 is a reference type, find its underlying type. */
8580 type = value_type (arg1);
8581 while (TYPE_CODE (type) == TYPE_CODE_REF)
8582 type = TYPE_TARGET_TYPE (type);
8583 return value_cast (type, value_add (arg1, arg2));
8584
8585 case BINOP_SUB:
8586 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8587 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8588 if (noside == EVAL_SKIP)
8589 goto nosideret;
8590 if ((ada_is_fixed_point_type (value_type (arg1))
8591 || ada_is_fixed_point_type (value_type (arg2)))
8592 && value_type (arg1) != value_type (arg2))
8593 error (_("Operands of fixed-point subtraction must have the same type"));
8594 /* Do the substraction, and cast the result to the type of the first
8595 argument. We cannot cast the result to a reference type, so if
8596 ARG1 is a reference type, find its underlying type. */
8597 type = value_type (arg1);
8598 while (TYPE_CODE (type) == TYPE_CODE_REF)
8599 type = TYPE_TARGET_TYPE (type);
8600 return value_cast (type, value_sub (arg1, arg2));
8601
8602 case BINOP_MUL:
8603 case BINOP_DIV:
8604 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8605 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8606 if (noside == EVAL_SKIP)
8607 goto nosideret;
8608 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8609 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8610 return value_zero (value_type (arg1), not_lval);
8611 else
8612 {
8613 if (ada_is_fixed_point_type (value_type (arg1)))
8614 arg1 = cast_from_fixed_to_double (arg1);
8615 if (ada_is_fixed_point_type (value_type (arg2)))
8616 arg2 = cast_from_fixed_to_double (arg2);
8617 return ada_value_binop (arg1, arg2, op);
8618 }
8619
8620 case BINOP_REM:
8621 case BINOP_MOD:
8622 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8623 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8624 if (noside == EVAL_SKIP)
8625 goto nosideret;
8626 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8627 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8628 return value_zero (value_type (arg1), not_lval);
8629 else
8630 return ada_value_binop (arg1, arg2, op);
8631
8632 case BINOP_EQUAL:
8633 case BINOP_NOTEQUAL:
8634 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8635 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8636 if (noside == EVAL_SKIP)
8637 goto nosideret;
8638 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8639 tem = 0;
8640 else
8641 tem = ada_value_equal (arg1, arg2);
8642 if (op == BINOP_NOTEQUAL)
8643 tem = !tem;
8644 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
8645
8646 case UNOP_NEG:
8647 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8648 if (noside == EVAL_SKIP)
8649 goto nosideret;
8650 else if (ada_is_fixed_point_type (value_type (arg1)))
8651 return value_cast (value_type (arg1), value_neg (arg1));
8652 else
8653 return value_neg (arg1);
8654
8655 case BINOP_LOGICAL_AND:
8656 case BINOP_LOGICAL_OR:
8657 case UNOP_LOGICAL_NOT:
8658 {
8659 struct value *val;
8660
8661 *pos -= 1;
8662 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8663 return value_cast (LA_BOOL_TYPE, val);
8664 }
8665
8666 case BINOP_BITWISE_AND:
8667 case BINOP_BITWISE_IOR:
8668 case BINOP_BITWISE_XOR:
8669 {
8670 struct value *val;
8671
8672 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8673 *pos = pc;
8674 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8675
8676 return value_cast (value_type (arg1), val);
8677 }
8678
8679 case OP_VAR_VALUE:
8680 *pos -= 1;
8681
8682 /* Tagged types are a little special in the fact that the real type
8683 is dynamic and can only be determined by inspecting the object
8684 value. So even if we're support to do an EVAL_AVOID_SIDE_EFFECTS
8685 evaluation, we force an EVAL_NORMAL evaluation for tagged types. */
8686 if (noside == EVAL_AVOID_SIDE_EFFECTS
8687 && ada_is_tagged_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol), 1))
8688 noside = EVAL_NORMAL;
8689
8690 if (noside == EVAL_SKIP)
8691 {
8692 *pos += 4;
8693 goto nosideret;
8694 }
8695 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8696 /* Only encountered when an unresolved symbol occurs in a
8697 context other than a function call, in which case, it is
8698 invalid. */
8699 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8700 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8701 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8702 {
8703 *pos += 4;
8704 return value_zero
8705 (to_static_fixed_type
8706 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8707 not_lval);
8708 }
8709 else
8710 {
8711 arg1 =
8712 unwrap_value (evaluate_subexp_standard
8713 (expect_type, exp, pos, noside));
8714 return ada_to_fixed_value (arg1);
8715 }
8716
8717 case OP_FUNCALL:
8718 (*pos) += 2;
8719
8720 /* Allocate arg vector, including space for the function to be
8721 called in argvec[0] and a terminating NULL. */
8722 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8723 argvec =
8724 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8725
8726 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8727 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8728 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8729 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8730 else
8731 {
8732 for (tem = 0; tem <= nargs; tem += 1)
8733 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8734 argvec[tem] = 0;
8735
8736 if (noside == EVAL_SKIP)
8737 goto nosideret;
8738 }
8739
8740 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8741 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8742 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8743 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8744 && VALUE_LVAL (argvec[0]) == lval_memory))
8745 argvec[0] = value_addr (argvec[0]);
8746
8747 type = ada_check_typedef (value_type (argvec[0]));
8748 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8749 {
8750 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8751 {
8752 case TYPE_CODE_FUNC:
8753 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8754 break;
8755 case TYPE_CODE_ARRAY:
8756 break;
8757 case TYPE_CODE_STRUCT:
8758 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8759 argvec[0] = ada_value_ind (argvec[0]);
8760 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8761 break;
8762 default:
8763 error (_("cannot subscript or call something of type `%s'"),
8764 ada_type_name (value_type (argvec[0])));
8765 break;
8766 }
8767 }
8768
8769 switch (TYPE_CODE (type))
8770 {
8771 case TYPE_CODE_FUNC:
8772 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8773 return allocate_value (TYPE_TARGET_TYPE (type));
8774 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8775 case TYPE_CODE_STRUCT:
8776 {
8777 int arity;
8778
8779 arity = ada_array_arity (type);
8780 type = ada_array_element_type (type, nargs);
8781 if (type == NULL)
8782 error (_("cannot subscript or call a record"));
8783 if (arity != nargs)
8784 error (_("wrong number of subscripts; expecting %d"), arity);
8785 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8786 return value_zero (ada_aligned_type (type), lval_memory);
8787 return
8788 unwrap_value (ada_value_subscript
8789 (argvec[0], nargs, argvec + 1));
8790 }
8791 case TYPE_CODE_ARRAY:
8792 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8793 {
8794 type = ada_array_element_type (type, nargs);
8795 if (type == NULL)
8796 error (_("element type of array unknown"));
8797 else
8798 return value_zero (ada_aligned_type (type), lval_memory);
8799 }
8800 return
8801 unwrap_value (ada_value_subscript
8802 (ada_coerce_to_simple_array (argvec[0]),
8803 nargs, argvec + 1));
8804 case TYPE_CODE_PTR: /* Pointer to array */
8805 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8806 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8807 {
8808 type = ada_array_element_type (type, nargs);
8809 if (type == NULL)
8810 error (_("element type of array unknown"));
8811 else
8812 return value_zero (ada_aligned_type (type), lval_memory);
8813 }
8814 return
8815 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8816 nargs, argvec + 1));
8817
8818 default:
8819 error (_("Attempt to index or call something other than an "
8820 "array or function"));
8821 }
8822
8823 case TERNOP_SLICE:
8824 {
8825 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8826 struct value *low_bound_val =
8827 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8828 struct value *high_bound_val =
8829 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8830 LONGEST low_bound;
8831 LONGEST high_bound;
8832 low_bound_val = coerce_ref (low_bound_val);
8833 high_bound_val = coerce_ref (high_bound_val);
8834 low_bound = pos_atr (low_bound_val);
8835 high_bound = pos_atr (high_bound_val);
8836
8837 if (noside == EVAL_SKIP)
8838 goto nosideret;
8839
8840 /* If this is a reference to an aligner type, then remove all
8841 the aligners. */
8842 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8843 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8844 TYPE_TARGET_TYPE (value_type (array)) =
8845 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8846
8847 if (ada_is_packed_array_type (value_type (array)))
8848 error (_("cannot slice a packed array"));
8849
8850 /* If this is a reference to an array or an array lvalue,
8851 convert to a pointer. */
8852 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8853 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8854 && VALUE_LVAL (array) == lval_memory))
8855 array = value_addr (array);
8856
8857 if (noside == EVAL_AVOID_SIDE_EFFECTS
8858 && ada_is_array_descriptor_type (ada_check_typedef
8859 (value_type (array))))
8860 return empty_array (ada_type_of_array (array, 0), low_bound);
8861
8862 array = ada_coerce_to_simple_array_ptr (array);
8863
8864 /* If we have more than one level of pointer indirection,
8865 dereference the value until we get only one level. */
8866 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8867 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8868 == TYPE_CODE_PTR))
8869 array = value_ind (array);
8870
8871 /* Make sure we really do have an array type before going further,
8872 to avoid a SEGV when trying to get the index type or the target
8873 type later down the road if the debug info generated by
8874 the compiler is incorrect or incomplete. */
8875 if (!ada_is_simple_array_type (value_type (array)))
8876 error (_("cannot take slice of non-array"));
8877
8878 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8879 {
8880 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8881 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8882 low_bound);
8883 else
8884 {
8885 struct type *arr_type0 =
8886 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8887 NULL, 1);
8888 return ada_value_slice_ptr (array, arr_type0,
8889 longest_to_int (low_bound),
8890 longest_to_int (high_bound));
8891 }
8892 }
8893 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8894 return array;
8895 else if (high_bound < low_bound)
8896 return empty_array (value_type (array), low_bound);
8897 else
8898 return ada_value_slice (array, longest_to_int (low_bound),
8899 longest_to_int (high_bound));
8900 }
8901
8902 case UNOP_IN_RANGE:
8903 (*pos) += 2;
8904 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8905 type = exp->elts[pc + 1].type;
8906
8907 if (noside == EVAL_SKIP)
8908 goto nosideret;
8909
8910 switch (TYPE_CODE (type))
8911 {
8912 default:
8913 lim_warning (_("Membership test incompletely implemented; "
8914 "always returns true"));
8915 return value_from_longest (builtin_type_int, (LONGEST) 1);
8916
8917 case TYPE_CODE_RANGE:
8918 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8919 arg3 = value_from_longest (builtin_type_int,
8920 TYPE_HIGH_BOUND (type));
8921 return
8922 value_from_longest (builtin_type_int,
8923 (value_less (arg1, arg3)
8924 || value_equal (arg1, arg3))
8925 && (value_less (arg2, arg1)
8926 || value_equal (arg2, arg1)));
8927 }
8928
8929 case BINOP_IN_BOUNDS:
8930 (*pos) += 2;
8931 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8932 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8933
8934 if (noside == EVAL_SKIP)
8935 goto nosideret;
8936
8937 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8938 return value_zero (builtin_type_int, not_lval);
8939
8940 tem = longest_to_int (exp->elts[pc + 1].longconst);
8941
8942 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8943 error (_("invalid dimension number to 'range"));
8944
8945 arg3 = ada_array_bound (arg2, tem, 1);
8946 arg2 = ada_array_bound (arg2, tem, 0);
8947
8948 return
8949 value_from_longest (builtin_type_int,
8950 (value_less (arg1, arg3)
8951 || value_equal (arg1, arg3))
8952 && (value_less (arg2, arg1)
8953 || value_equal (arg2, arg1)));
8954
8955 case TERNOP_IN_RANGE:
8956 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8957 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8958 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8959
8960 if (noside == EVAL_SKIP)
8961 goto nosideret;
8962
8963 return
8964 value_from_longest (builtin_type_int,
8965 (value_less (arg1, arg3)
8966 || value_equal (arg1, arg3))
8967 && (value_less (arg2, arg1)
8968 || value_equal (arg2, arg1)));
8969
8970 case OP_ATR_FIRST:
8971 case OP_ATR_LAST:
8972 case OP_ATR_LENGTH:
8973 {
8974 struct type *type_arg;
8975 if (exp->elts[*pos].opcode == OP_TYPE)
8976 {
8977 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8978 arg1 = NULL;
8979 type_arg = exp->elts[pc + 2].type;
8980 }
8981 else
8982 {
8983 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8984 type_arg = NULL;
8985 }
8986
8987 if (exp->elts[*pos].opcode != OP_LONG)
8988 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8989 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8990 *pos += 4;
8991
8992 if (noside == EVAL_SKIP)
8993 goto nosideret;
8994
8995 if (type_arg == NULL)
8996 {
8997 arg1 = ada_coerce_ref (arg1);
8998
8999 if (ada_is_packed_array_type (value_type (arg1)))
9000 arg1 = ada_coerce_to_simple_array (arg1);
9001
9002 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
9003 error (_("invalid dimension number to '%s"),
9004 ada_attribute_name (op));
9005
9006 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9007 {
9008 type = ada_index_type (value_type (arg1), tem);
9009 if (type == NULL)
9010 error
9011 (_("attempt to take bound of something that is not an array"));
9012 return allocate_value (type);
9013 }
9014
9015 switch (op)
9016 {
9017 default: /* Should never happen. */
9018 error (_("unexpected attribute encountered"));
9019 case OP_ATR_FIRST:
9020 return ada_array_bound (arg1, tem, 0);
9021 case OP_ATR_LAST:
9022 return ada_array_bound (arg1, tem, 1);
9023 case OP_ATR_LENGTH:
9024 return ada_array_length (arg1, tem);
9025 }
9026 }
9027 else if (discrete_type_p (type_arg))
9028 {
9029 struct type *range_type;
9030 char *name = ada_type_name (type_arg);
9031 range_type = NULL;
9032 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9033 range_type =
9034 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
9035 if (range_type == NULL)
9036 range_type = type_arg;
9037 switch (op)
9038 {
9039 default:
9040 error (_("unexpected attribute encountered"));
9041 case OP_ATR_FIRST:
9042 return discrete_type_low_bound (range_type);
9043 case OP_ATR_LAST:
9044 return discrete_type_high_bound (range_type);
9045 case OP_ATR_LENGTH:
9046 error (_("the 'length attribute applies only to array types"));
9047 }
9048 }
9049 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9050 error (_("unimplemented type attribute"));
9051 else
9052 {
9053 LONGEST low, high;
9054
9055 if (ada_is_packed_array_type (type_arg))
9056 type_arg = decode_packed_array_type (type_arg);
9057
9058 if (tem < 1 || tem > ada_array_arity (type_arg))
9059 error (_("invalid dimension number to '%s"),
9060 ada_attribute_name (op));
9061
9062 type = ada_index_type (type_arg, tem);
9063 if (type == NULL)
9064 error
9065 (_("attempt to take bound of something that is not an array"));
9066 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9067 return allocate_value (type);
9068
9069 switch (op)
9070 {
9071 default:
9072 error (_("unexpected attribute encountered"));
9073 case OP_ATR_FIRST:
9074 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9075 return value_from_longest (type, low);
9076 case OP_ATR_LAST:
9077 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
9078 return value_from_longest (type, high);
9079 case OP_ATR_LENGTH:
9080 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9081 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
9082 return value_from_longest (type, high - low + 1);
9083 }
9084 }
9085 }
9086
9087 case OP_ATR_TAG:
9088 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9089 if (noside == EVAL_SKIP)
9090 goto nosideret;
9091
9092 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9093 return value_zero (ada_tag_type (arg1), not_lval);
9094
9095 return ada_value_tag (arg1);
9096
9097 case OP_ATR_MIN:
9098 case OP_ATR_MAX:
9099 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9100 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9101 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9102 if (noside == EVAL_SKIP)
9103 goto nosideret;
9104 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9105 return value_zero (value_type (arg1), not_lval);
9106 else
9107 return value_binop (arg1, arg2,
9108 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9109
9110 case OP_ATR_MODULUS:
9111 {
9112 struct type *type_arg = exp->elts[pc + 2].type;
9113 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9114
9115 if (noside == EVAL_SKIP)
9116 goto nosideret;
9117
9118 if (!ada_is_modular_type (type_arg))
9119 error (_("'modulus must be applied to modular type"));
9120
9121 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9122 ada_modulus (type_arg));
9123 }
9124
9125
9126 case OP_ATR_POS:
9127 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9128 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9129 if (noside == EVAL_SKIP)
9130 goto nosideret;
9131 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9132 return value_zero (builtin_type_int, not_lval);
9133 else
9134 return value_pos_atr (arg1);
9135
9136 case OP_ATR_SIZE:
9137 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9138 if (noside == EVAL_SKIP)
9139 goto nosideret;
9140 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9141 return value_zero (builtin_type_int, not_lval);
9142 else
9143 return value_from_longest (builtin_type_int,
9144 TARGET_CHAR_BIT
9145 * TYPE_LENGTH (value_type (arg1)));
9146
9147 case OP_ATR_VAL:
9148 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9149 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9150 type = exp->elts[pc + 2].type;
9151 if (noside == EVAL_SKIP)
9152 goto nosideret;
9153 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9154 return value_zero (type, not_lval);
9155 else
9156 return value_val_atr (type, arg1);
9157
9158 case BINOP_EXP:
9159 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9160 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9161 if (noside == EVAL_SKIP)
9162 goto nosideret;
9163 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9164 return value_zero (value_type (arg1), not_lval);
9165 else
9166 return value_binop (arg1, arg2, op);
9167
9168 case UNOP_PLUS:
9169 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9170 if (noside == EVAL_SKIP)
9171 goto nosideret;
9172 else
9173 return arg1;
9174
9175 case UNOP_ABS:
9176 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9177 if (noside == EVAL_SKIP)
9178 goto nosideret;
9179 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9180 return value_neg (arg1);
9181 else
9182 return arg1;
9183
9184 case UNOP_IND:
9185 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
9186 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
9187 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
9188 if (noside == EVAL_SKIP)
9189 goto nosideret;
9190 type = ada_check_typedef (value_type (arg1));
9191 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9192 {
9193 if (ada_is_array_descriptor_type (type))
9194 /* GDB allows dereferencing GNAT array descriptors. */
9195 {
9196 struct type *arrType = ada_type_of_array (arg1, 0);
9197 if (arrType == NULL)
9198 error (_("Attempt to dereference null array pointer."));
9199 return value_at_lazy (arrType, 0);
9200 }
9201 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9202 || TYPE_CODE (type) == TYPE_CODE_REF
9203 /* In C you can dereference an array to get the 1st elt. */
9204 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9205 {
9206 type = to_static_fixed_type
9207 (ada_aligned_type
9208 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9209 check_size (type);
9210 return value_zero (type, lval_memory);
9211 }
9212 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9213 /* GDB allows dereferencing an int. */
9214 return value_zero (builtin_type_int, lval_memory);
9215 else
9216 error (_("Attempt to take contents of a non-pointer value."));
9217 }
9218 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9219 type = ada_check_typedef (value_type (arg1));
9220
9221 if (ada_is_array_descriptor_type (type))
9222 /* GDB allows dereferencing GNAT array descriptors. */
9223 return ada_coerce_to_simple_array (arg1);
9224 else
9225 return ada_value_ind (arg1);
9226
9227 case STRUCTOP_STRUCT:
9228 tem = longest_to_int (exp->elts[pc + 1].longconst);
9229 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9230 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9231 if (noside == EVAL_SKIP)
9232 goto nosideret;
9233 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9234 {
9235 struct type *type1 = value_type (arg1);
9236 if (ada_is_tagged_type (type1, 1))
9237 {
9238 type = ada_lookup_struct_elt_type (type1,
9239 &exp->elts[pc + 2].string,
9240 1, 1, NULL);
9241 if (type == NULL)
9242 /* In this case, we assume that the field COULD exist
9243 in some extension of the type. Return an object of
9244 "type" void, which will match any formal
9245 (see ada_type_match). */
9246 return value_zero (builtin_type_void, lval_memory);
9247 }
9248 else
9249 type =
9250 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9251 0, NULL);
9252
9253 return value_zero (ada_aligned_type (type), lval_memory);
9254 }
9255 else
9256 return
9257 ada_to_fixed_value (unwrap_value
9258 (ada_value_struct_elt
9259 (arg1, &exp->elts[pc + 2].string, 0)));
9260 case OP_TYPE:
9261 /* The value is not supposed to be used. This is here to make it
9262 easier to accommodate expressions that contain types. */
9263 (*pos) += 2;
9264 if (noside == EVAL_SKIP)
9265 goto nosideret;
9266 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9267 return allocate_value (exp->elts[pc + 1].type);
9268 else
9269 error (_("Attempt to use a type name as an expression"));
9270
9271 case OP_AGGREGATE:
9272 case OP_CHOICES:
9273 case OP_OTHERS:
9274 case OP_DISCRETE_RANGE:
9275 case OP_POSITIONAL:
9276 case OP_NAME:
9277 if (noside == EVAL_NORMAL)
9278 switch (op)
9279 {
9280 case OP_NAME:
9281 error (_("Undefined name, ambiguous name, or renaming used in "
9282 "component association: %s."), &exp->elts[pc+2].string);
9283 case OP_AGGREGATE:
9284 error (_("Aggregates only allowed on the right of an assignment"));
9285 default:
9286 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9287 }
9288
9289 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9290 *pos += oplen - 1;
9291 for (tem = 0; tem < nargs; tem += 1)
9292 ada_evaluate_subexp (NULL, exp, pos, noside);
9293 goto nosideret;
9294 }
9295
9296 nosideret:
9297 return value_from_longest (builtin_type_long, (LONGEST) 1);
9298 }
9299 \f
9300
9301 /* Fixed point */
9302
9303 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9304 type name that encodes the 'small and 'delta information.
9305 Otherwise, return NULL. */
9306
9307 static const char *
9308 fixed_type_info (struct type *type)
9309 {
9310 const char *name = ada_type_name (type);
9311 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9312
9313 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9314 {
9315 const char *tail = strstr (name, "___XF_");
9316 if (tail == NULL)
9317 return NULL;
9318 else
9319 return tail + 5;
9320 }
9321 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9322 return fixed_type_info (TYPE_TARGET_TYPE (type));
9323 else
9324 return NULL;
9325 }
9326
9327 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9328
9329 int
9330 ada_is_fixed_point_type (struct type *type)
9331 {
9332 return fixed_type_info (type) != NULL;
9333 }
9334
9335 /* Return non-zero iff TYPE represents a System.Address type. */
9336
9337 int
9338 ada_is_system_address_type (struct type *type)
9339 {
9340 return (TYPE_NAME (type)
9341 && strcmp (TYPE_NAME (type), "system__address") == 0);
9342 }
9343
9344 /* Assuming that TYPE is the representation of an Ada fixed-point
9345 type, return its delta, or -1 if the type is malformed and the
9346 delta cannot be determined. */
9347
9348 DOUBLEST
9349 ada_delta (struct type *type)
9350 {
9351 const char *encoding = fixed_type_info (type);
9352 long num, den;
9353
9354 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9355 return -1.0;
9356 else
9357 return (DOUBLEST) num / (DOUBLEST) den;
9358 }
9359
9360 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9361 factor ('SMALL value) associated with the type. */
9362
9363 static DOUBLEST
9364 scaling_factor (struct type *type)
9365 {
9366 const char *encoding = fixed_type_info (type);
9367 unsigned long num0, den0, num1, den1;
9368 int n;
9369
9370 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9371
9372 if (n < 2)
9373 return 1.0;
9374 else if (n == 4)
9375 return (DOUBLEST) num1 / (DOUBLEST) den1;
9376 else
9377 return (DOUBLEST) num0 / (DOUBLEST) den0;
9378 }
9379
9380
9381 /* Assuming that X is the representation of a value of fixed-point
9382 type TYPE, return its floating-point equivalent. */
9383
9384 DOUBLEST
9385 ada_fixed_to_float (struct type *type, LONGEST x)
9386 {
9387 return (DOUBLEST) x *scaling_factor (type);
9388 }
9389
9390 /* The representation of a fixed-point value of type TYPE
9391 corresponding to the value X. */
9392
9393 LONGEST
9394 ada_float_to_fixed (struct type *type, DOUBLEST x)
9395 {
9396 return (LONGEST) (x / scaling_factor (type) + 0.5);
9397 }
9398
9399
9400 /* VAX floating formats */
9401
9402 /* Non-zero iff TYPE represents one of the special VAX floating-point
9403 types. */
9404
9405 int
9406 ada_is_vax_floating_type (struct type *type)
9407 {
9408 int name_len =
9409 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9410 return
9411 name_len > 6
9412 && (TYPE_CODE (type) == TYPE_CODE_INT
9413 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9414 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9415 }
9416
9417 /* The type of special VAX floating-point type this is, assuming
9418 ada_is_vax_floating_point. */
9419
9420 int
9421 ada_vax_float_type_suffix (struct type *type)
9422 {
9423 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9424 }
9425
9426 /* A value representing the special debugging function that outputs
9427 VAX floating-point values of the type represented by TYPE. Assumes
9428 ada_is_vax_floating_type (TYPE). */
9429
9430 struct value *
9431 ada_vax_float_print_function (struct type *type)
9432 {
9433 switch (ada_vax_float_type_suffix (type))
9434 {
9435 case 'F':
9436 return get_var_value ("DEBUG_STRING_F", 0);
9437 case 'D':
9438 return get_var_value ("DEBUG_STRING_D", 0);
9439 case 'G':
9440 return get_var_value ("DEBUG_STRING_G", 0);
9441 default:
9442 error (_("invalid VAX floating-point type"));
9443 }
9444 }
9445 \f
9446
9447 /* Range types */
9448
9449 /* Scan STR beginning at position K for a discriminant name, and
9450 return the value of that discriminant field of DVAL in *PX. If
9451 PNEW_K is not null, put the position of the character beyond the
9452 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9453 not alter *PX and *PNEW_K if unsuccessful. */
9454
9455 static int
9456 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9457 int *pnew_k)
9458 {
9459 static char *bound_buffer = NULL;
9460 static size_t bound_buffer_len = 0;
9461 char *bound;
9462 char *pend;
9463 struct value *bound_val;
9464
9465 if (dval == NULL || str == NULL || str[k] == '\0')
9466 return 0;
9467
9468 pend = strstr (str + k, "__");
9469 if (pend == NULL)
9470 {
9471 bound = str + k;
9472 k += strlen (bound);
9473 }
9474 else
9475 {
9476 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9477 bound = bound_buffer;
9478 strncpy (bound_buffer, str + k, pend - (str + k));
9479 bound[pend - (str + k)] = '\0';
9480 k = pend - str;
9481 }
9482
9483 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9484 if (bound_val == NULL)
9485 return 0;
9486
9487 *px = value_as_long (bound_val);
9488 if (pnew_k != NULL)
9489 *pnew_k = k;
9490 return 1;
9491 }
9492
9493 /* Value of variable named NAME in the current environment. If
9494 no such variable found, then if ERR_MSG is null, returns 0, and
9495 otherwise causes an error with message ERR_MSG. */
9496
9497 static struct value *
9498 get_var_value (char *name, char *err_msg)
9499 {
9500 struct ada_symbol_info *syms;
9501 int nsyms;
9502
9503 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9504 &syms);
9505
9506 if (nsyms != 1)
9507 {
9508 if (err_msg == NULL)
9509 return 0;
9510 else
9511 error (("%s"), err_msg);
9512 }
9513
9514 return value_of_variable (syms[0].sym, syms[0].block);
9515 }
9516
9517 /* Value of integer variable named NAME in the current environment. If
9518 no such variable found, returns 0, and sets *FLAG to 0. If
9519 successful, sets *FLAG to 1. */
9520
9521 LONGEST
9522 get_int_var_value (char *name, int *flag)
9523 {
9524 struct value *var_val = get_var_value (name, 0);
9525
9526 if (var_val == 0)
9527 {
9528 if (flag != NULL)
9529 *flag = 0;
9530 return 0;
9531 }
9532 else
9533 {
9534 if (flag != NULL)
9535 *flag = 1;
9536 return value_as_long (var_val);
9537 }
9538 }
9539
9540
9541 /* Return a range type whose base type is that of the range type named
9542 NAME in the current environment, and whose bounds are calculated
9543 from NAME according to the GNAT range encoding conventions.
9544 Extract discriminant values, if needed, from DVAL. If a new type
9545 must be created, allocate in OBJFILE's space. The bounds
9546 information, in general, is encoded in NAME, the base type given in
9547 the named range type. */
9548
9549 static struct type *
9550 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9551 {
9552 struct type *raw_type = ada_find_any_type (name);
9553 struct type *base_type;
9554 char *subtype_info;
9555
9556 if (raw_type == NULL)
9557 base_type = builtin_type_int;
9558 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9559 base_type = TYPE_TARGET_TYPE (raw_type);
9560 else
9561 base_type = raw_type;
9562
9563 subtype_info = strstr (name, "___XD");
9564 if (subtype_info == NULL)
9565 return raw_type;
9566 else
9567 {
9568 static char *name_buf = NULL;
9569 static size_t name_len = 0;
9570 int prefix_len = subtype_info - name;
9571 LONGEST L, U;
9572 struct type *type;
9573 char *bounds_str;
9574 int n;
9575
9576 GROW_VECT (name_buf, name_len, prefix_len + 5);
9577 strncpy (name_buf, name, prefix_len);
9578 name_buf[prefix_len] = '\0';
9579
9580 subtype_info += 5;
9581 bounds_str = strchr (subtype_info, '_');
9582 n = 1;
9583
9584 if (*subtype_info == 'L')
9585 {
9586 if (!ada_scan_number (bounds_str, n, &L, &n)
9587 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9588 return raw_type;
9589 if (bounds_str[n] == '_')
9590 n += 2;
9591 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9592 n += 1;
9593 subtype_info += 1;
9594 }
9595 else
9596 {
9597 int ok;
9598 strcpy (name_buf + prefix_len, "___L");
9599 L = get_int_var_value (name_buf, &ok);
9600 if (!ok)
9601 {
9602 lim_warning (_("Unknown lower bound, using 1."));
9603 L = 1;
9604 }
9605 }
9606
9607 if (*subtype_info == 'U')
9608 {
9609 if (!ada_scan_number (bounds_str, n, &U, &n)
9610 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9611 return raw_type;
9612 }
9613 else
9614 {
9615 int ok;
9616 strcpy (name_buf + prefix_len, "___U");
9617 U = get_int_var_value (name_buf, &ok);
9618 if (!ok)
9619 {
9620 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9621 U = L;
9622 }
9623 }
9624
9625 if (objfile == NULL)
9626 objfile = TYPE_OBJFILE (base_type);
9627 type = create_range_type (alloc_type (objfile), base_type, L, U);
9628 TYPE_NAME (type) = name;
9629 return type;
9630 }
9631 }
9632
9633 /* True iff NAME is the name of a range type. */
9634
9635 int
9636 ada_is_range_type_name (const char *name)
9637 {
9638 return (name != NULL && strstr (name, "___XD"));
9639 }
9640 \f
9641
9642 /* Modular types */
9643
9644 /* True iff TYPE is an Ada modular type. */
9645
9646 int
9647 ada_is_modular_type (struct type *type)
9648 {
9649 struct type *subranged_type = base_type (type);
9650
9651 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9652 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
9653 && TYPE_UNSIGNED (subranged_type));
9654 }
9655
9656 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9657
9658 ULONGEST
9659 ada_modulus (struct type * type)
9660 {
9661 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9662 }
9663 \f
9664
9665 /* Ada exception catchpoint support:
9666 ---------------------------------
9667
9668 We support 3 kinds of exception catchpoints:
9669 . catchpoints on Ada exceptions
9670 . catchpoints on unhandled Ada exceptions
9671 . catchpoints on failed assertions
9672
9673 Exceptions raised during failed assertions, or unhandled exceptions
9674 could perfectly be caught with the general catchpoint on Ada exceptions.
9675 However, we can easily differentiate these two special cases, and having
9676 the option to distinguish these two cases from the rest can be useful
9677 to zero-in on certain situations.
9678
9679 Exception catchpoints are a specialized form of breakpoint,
9680 since they rely on inserting breakpoints inside known routines
9681 of the GNAT runtime. The implementation therefore uses a standard
9682 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9683 of breakpoint_ops.
9684
9685 Support in the runtime for exception catchpoints have been changed
9686 a few times already, and these changes affect the implementation
9687 of these catchpoints. In order to be able to support several
9688 variants of the runtime, we use a sniffer that will determine
9689 the runtime variant used by the program being debugged.
9690
9691 At this time, we do not support the use of conditions on Ada exception
9692 catchpoints. The COND and COND_STRING fields are therefore set
9693 to NULL (most of the time, see below).
9694
9695 Conditions where EXP_STRING, COND, and COND_STRING are used:
9696
9697 When a user specifies the name of a specific exception in the case
9698 of catchpoints on Ada exceptions, we store the name of that exception
9699 in the EXP_STRING. We then translate this request into an actual
9700 condition stored in COND_STRING, and then parse it into an expression
9701 stored in COND. */
9702
9703 /* The different types of catchpoints that we introduced for catching
9704 Ada exceptions. */
9705
9706 enum exception_catchpoint_kind
9707 {
9708 ex_catch_exception,
9709 ex_catch_exception_unhandled,
9710 ex_catch_assert
9711 };
9712
9713 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9714
9715 /* A structure that describes how to support exception catchpoints
9716 for a given executable. */
9717
9718 struct exception_support_info
9719 {
9720 /* The name of the symbol to break on in order to insert
9721 a catchpoint on exceptions. */
9722 const char *catch_exception_sym;
9723
9724 /* The name of the symbol to break on in order to insert
9725 a catchpoint on unhandled exceptions. */
9726 const char *catch_exception_unhandled_sym;
9727
9728 /* The name of the symbol to break on in order to insert
9729 a catchpoint on failed assertions. */
9730 const char *catch_assert_sym;
9731
9732 /* Assuming that the inferior just triggered an unhandled exception
9733 catchpoint, this function is responsible for returning the address
9734 in inferior memory where the name of that exception is stored.
9735 Return zero if the address could not be computed. */
9736 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9737 };
9738
9739 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9740 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9741
9742 /* The following exception support info structure describes how to
9743 implement exception catchpoints with the latest version of the
9744 Ada runtime (as of 2007-03-06). */
9745
9746 static const struct exception_support_info default_exception_support_info =
9747 {
9748 "__gnat_debug_raise_exception", /* catch_exception_sym */
9749 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9750 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9751 ada_unhandled_exception_name_addr
9752 };
9753
9754 /* The following exception support info structure describes how to
9755 implement exception catchpoints with a slightly older version
9756 of the Ada runtime. */
9757
9758 static const struct exception_support_info exception_support_info_fallback =
9759 {
9760 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9761 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9762 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9763 ada_unhandled_exception_name_addr_from_raise
9764 };
9765
9766 /* For each executable, we sniff which exception info structure to use
9767 and cache it in the following global variable. */
9768
9769 static const struct exception_support_info *exception_info = NULL;
9770
9771 /* Inspect the Ada runtime and determine which exception info structure
9772 should be used to provide support for exception catchpoints.
9773
9774 This function will always set exception_info, or raise an error. */
9775
9776 static void
9777 ada_exception_support_info_sniffer (void)
9778 {
9779 struct symbol *sym;
9780
9781 /* If the exception info is already known, then no need to recompute it. */
9782 if (exception_info != NULL)
9783 return;
9784
9785 /* Check the latest (default) exception support info. */
9786 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9787 NULL, VAR_DOMAIN);
9788 if (sym != NULL)
9789 {
9790 exception_info = &default_exception_support_info;
9791 return;
9792 }
9793
9794 /* Try our fallback exception suport info. */
9795 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9796 NULL, VAR_DOMAIN);
9797 if (sym != NULL)
9798 {
9799 exception_info = &exception_support_info_fallback;
9800 return;
9801 }
9802
9803 /* Sometimes, it is normal for us to not be able to find the routine
9804 we are looking for. This happens when the program is linked with
9805 the shared version of the GNAT runtime, and the program has not been
9806 started yet. Inform the user of these two possible causes if
9807 applicable. */
9808
9809 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9810 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9811
9812 /* If the symbol does not exist, then check that the program is
9813 already started, to make sure that shared libraries have been
9814 loaded. If it is not started, this may mean that the symbol is
9815 in a shared library. */
9816
9817 if (ptid_get_pid (inferior_ptid) == 0)
9818 error (_("Unable to insert catchpoint. Try to start the program first."));
9819
9820 /* At this point, we know that we are debugging an Ada program and
9821 that the inferior has been started, but we still are not able to
9822 find the run-time symbols. That can mean that we are in
9823 configurable run time mode, or that a-except as been optimized
9824 out by the linker... In any case, at this point it is not worth
9825 supporting this feature. */
9826
9827 error (_("Cannot insert catchpoints in this configuration."));
9828 }
9829
9830 /* An observer of "executable_changed" events.
9831 Its role is to clear certain cached values that need to be recomputed
9832 each time a new executable is loaded by GDB. */
9833
9834 static void
9835 ada_executable_changed_observer (void *unused)
9836 {
9837 /* If the executable changed, then it is possible that the Ada runtime
9838 is different. So we need to invalidate the exception support info
9839 cache. */
9840 exception_info = NULL;
9841 }
9842
9843 /* Return the name of the function at PC, NULL if could not find it.
9844 This function only checks the debugging information, not the symbol
9845 table. */
9846
9847 static char *
9848 function_name_from_pc (CORE_ADDR pc)
9849 {
9850 char *func_name;
9851
9852 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9853 return NULL;
9854
9855 return func_name;
9856 }
9857
9858 /* True iff FRAME is very likely to be that of a function that is
9859 part of the runtime system. This is all very heuristic, but is
9860 intended to be used as advice as to what frames are uninteresting
9861 to most users. */
9862
9863 static int
9864 is_known_support_routine (struct frame_info *frame)
9865 {
9866 struct symtab_and_line sal;
9867 char *func_name;
9868 int i;
9869
9870 /* If this code does not have any debugging information (no symtab),
9871 This cannot be any user code. */
9872
9873 find_frame_sal (frame, &sal);
9874 if (sal.symtab == NULL)
9875 return 1;
9876
9877 /* If there is a symtab, but the associated source file cannot be
9878 located, then assume this is not user code: Selecting a frame
9879 for which we cannot display the code would not be very helpful
9880 for the user. This should also take care of case such as VxWorks
9881 where the kernel has some debugging info provided for a few units. */
9882
9883 if (symtab_to_fullname (sal.symtab) == NULL)
9884 return 1;
9885
9886 /* Check the unit filename againt the Ada runtime file naming.
9887 We also check the name of the objfile against the name of some
9888 known system libraries that sometimes come with debugging info
9889 too. */
9890
9891 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9892 {
9893 re_comp (known_runtime_file_name_patterns[i]);
9894 if (re_exec (sal.symtab->filename))
9895 return 1;
9896 if (sal.symtab->objfile != NULL
9897 && re_exec (sal.symtab->objfile->name))
9898 return 1;
9899 }
9900
9901 /* Check whether the function is a GNAT-generated entity. */
9902
9903 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9904 if (func_name == NULL)
9905 return 1;
9906
9907 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9908 {
9909 re_comp (known_auxiliary_function_name_patterns[i]);
9910 if (re_exec (func_name))
9911 return 1;
9912 }
9913
9914 return 0;
9915 }
9916
9917 /* Find the first frame that contains debugging information and that is not
9918 part of the Ada run-time, starting from FI and moving upward. */
9919
9920 static void
9921 ada_find_printable_frame (struct frame_info *fi)
9922 {
9923 for (; fi != NULL; fi = get_prev_frame (fi))
9924 {
9925 if (!is_known_support_routine (fi))
9926 {
9927 select_frame (fi);
9928 break;
9929 }
9930 }
9931
9932 }
9933
9934 /* Assuming that the inferior just triggered an unhandled exception
9935 catchpoint, return the address in inferior memory where the name
9936 of the exception is stored.
9937
9938 Return zero if the address could not be computed. */
9939
9940 static CORE_ADDR
9941 ada_unhandled_exception_name_addr (void)
9942 {
9943 return parse_and_eval_address ("e.full_name");
9944 }
9945
9946 /* Same as ada_unhandled_exception_name_addr, except that this function
9947 should be used when the inferior uses an older version of the runtime,
9948 where the exception name needs to be extracted from a specific frame
9949 several frames up in the callstack. */
9950
9951 static CORE_ADDR
9952 ada_unhandled_exception_name_addr_from_raise (void)
9953 {
9954 int frame_level;
9955 struct frame_info *fi;
9956
9957 /* To determine the name of this exception, we need to select
9958 the frame corresponding to RAISE_SYM_NAME. This frame is
9959 at least 3 levels up, so we simply skip the first 3 frames
9960 without checking the name of their associated function. */
9961 fi = get_current_frame ();
9962 for (frame_level = 0; frame_level < 3; frame_level += 1)
9963 if (fi != NULL)
9964 fi = get_prev_frame (fi);
9965
9966 while (fi != NULL)
9967 {
9968 const char *func_name =
9969 function_name_from_pc (get_frame_address_in_block (fi));
9970 if (func_name != NULL
9971 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9972 break; /* We found the frame we were looking for... */
9973 fi = get_prev_frame (fi);
9974 }
9975
9976 if (fi == NULL)
9977 return 0;
9978
9979 select_frame (fi);
9980 return parse_and_eval_address ("id.full_name");
9981 }
9982
9983 /* Assuming the inferior just triggered an Ada exception catchpoint
9984 (of any type), return the address in inferior memory where the name
9985 of the exception is stored, if applicable.
9986
9987 Return zero if the address could not be computed, or if not relevant. */
9988
9989 static CORE_ADDR
9990 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9991 struct breakpoint *b)
9992 {
9993 switch (ex)
9994 {
9995 case ex_catch_exception:
9996 return (parse_and_eval_address ("e.full_name"));
9997 break;
9998
9999 case ex_catch_exception_unhandled:
10000 return exception_info->unhandled_exception_name_addr ();
10001 break;
10002
10003 case ex_catch_assert:
10004 return 0; /* Exception name is not relevant in this case. */
10005 break;
10006
10007 default:
10008 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10009 break;
10010 }
10011
10012 return 0; /* Should never be reached. */
10013 }
10014
10015 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10016 any error that ada_exception_name_addr_1 might cause to be thrown.
10017 When an error is intercepted, a warning with the error message is printed,
10018 and zero is returned. */
10019
10020 static CORE_ADDR
10021 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10022 struct breakpoint *b)
10023 {
10024 struct gdb_exception e;
10025 CORE_ADDR result = 0;
10026
10027 TRY_CATCH (e, RETURN_MASK_ERROR)
10028 {
10029 result = ada_exception_name_addr_1 (ex, b);
10030 }
10031
10032 if (e.reason < 0)
10033 {
10034 warning (_("failed to get exception name: %s"), e.message);
10035 return 0;
10036 }
10037
10038 return result;
10039 }
10040
10041 /* Implement the PRINT_IT method in the breakpoint_ops structure
10042 for all exception catchpoint kinds. */
10043
10044 static enum print_stop_action
10045 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10046 {
10047 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10048 char exception_name[256];
10049
10050 if (addr != 0)
10051 {
10052 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10053 exception_name [sizeof (exception_name) - 1] = '\0';
10054 }
10055
10056 ada_find_printable_frame (get_current_frame ());
10057
10058 annotate_catchpoint (b->number);
10059 switch (ex)
10060 {
10061 case ex_catch_exception:
10062 if (addr != 0)
10063 printf_filtered (_("\nCatchpoint %d, %s at "),
10064 b->number, exception_name);
10065 else
10066 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10067 break;
10068 case ex_catch_exception_unhandled:
10069 if (addr != 0)
10070 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10071 b->number, exception_name);
10072 else
10073 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10074 b->number);
10075 break;
10076 case ex_catch_assert:
10077 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10078 b->number);
10079 break;
10080 }
10081
10082 return PRINT_SRC_AND_LOC;
10083 }
10084
10085 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10086 for all exception catchpoint kinds. */
10087
10088 static void
10089 print_one_exception (enum exception_catchpoint_kind ex,
10090 struct breakpoint *b, CORE_ADDR *last_addr)
10091 {
10092 if (addressprint)
10093 {
10094 annotate_field (4);
10095 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10096 }
10097
10098 annotate_field (5);
10099 *last_addr = b->loc->address;
10100 switch (ex)
10101 {
10102 case ex_catch_exception:
10103 if (b->exp_string != NULL)
10104 {
10105 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10106
10107 ui_out_field_string (uiout, "what", msg);
10108 xfree (msg);
10109 }
10110 else
10111 ui_out_field_string (uiout, "what", "all Ada exceptions");
10112
10113 break;
10114
10115 case ex_catch_exception_unhandled:
10116 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10117 break;
10118
10119 case ex_catch_assert:
10120 ui_out_field_string (uiout, "what", "failed Ada assertions");
10121 break;
10122
10123 default:
10124 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10125 break;
10126 }
10127 }
10128
10129 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10130 for all exception catchpoint kinds. */
10131
10132 static void
10133 print_mention_exception (enum exception_catchpoint_kind ex,
10134 struct breakpoint *b)
10135 {
10136 switch (ex)
10137 {
10138 case ex_catch_exception:
10139 if (b->exp_string != NULL)
10140 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10141 b->number, b->exp_string);
10142 else
10143 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10144
10145 break;
10146
10147 case ex_catch_exception_unhandled:
10148 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10149 b->number);
10150 break;
10151
10152 case ex_catch_assert:
10153 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10154 break;
10155
10156 default:
10157 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10158 break;
10159 }
10160 }
10161
10162 /* Virtual table for "catch exception" breakpoints. */
10163
10164 static enum print_stop_action
10165 print_it_catch_exception (struct breakpoint *b)
10166 {
10167 return print_it_exception (ex_catch_exception, b);
10168 }
10169
10170 static void
10171 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10172 {
10173 print_one_exception (ex_catch_exception, b, last_addr);
10174 }
10175
10176 static void
10177 print_mention_catch_exception (struct breakpoint *b)
10178 {
10179 print_mention_exception (ex_catch_exception, b);
10180 }
10181
10182 static struct breakpoint_ops catch_exception_breakpoint_ops =
10183 {
10184 print_it_catch_exception,
10185 print_one_catch_exception,
10186 print_mention_catch_exception
10187 };
10188
10189 /* Virtual table for "catch exception unhandled" breakpoints. */
10190
10191 static enum print_stop_action
10192 print_it_catch_exception_unhandled (struct breakpoint *b)
10193 {
10194 return print_it_exception (ex_catch_exception_unhandled, b);
10195 }
10196
10197 static void
10198 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10199 {
10200 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10201 }
10202
10203 static void
10204 print_mention_catch_exception_unhandled (struct breakpoint *b)
10205 {
10206 print_mention_exception (ex_catch_exception_unhandled, b);
10207 }
10208
10209 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10210 print_it_catch_exception_unhandled,
10211 print_one_catch_exception_unhandled,
10212 print_mention_catch_exception_unhandled
10213 };
10214
10215 /* Virtual table for "catch assert" breakpoints. */
10216
10217 static enum print_stop_action
10218 print_it_catch_assert (struct breakpoint *b)
10219 {
10220 return print_it_exception (ex_catch_assert, b);
10221 }
10222
10223 static void
10224 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10225 {
10226 print_one_exception (ex_catch_assert, b, last_addr);
10227 }
10228
10229 static void
10230 print_mention_catch_assert (struct breakpoint *b)
10231 {
10232 print_mention_exception (ex_catch_assert, b);
10233 }
10234
10235 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10236 print_it_catch_assert,
10237 print_one_catch_assert,
10238 print_mention_catch_assert
10239 };
10240
10241 /* Return non-zero if B is an Ada exception catchpoint. */
10242
10243 int
10244 ada_exception_catchpoint_p (struct breakpoint *b)
10245 {
10246 return (b->ops == &catch_exception_breakpoint_ops
10247 || b->ops == &catch_exception_unhandled_breakpoint_ops
10248 || b->ops == &catch_assert_breakpoint_ops);
10249 }
10250
10251 /* Return a newly allocated copy of the first space-separated token
10252 in ARGSP, and then adjust ARGSP to point immediately after that
10253 token.
10254
10255 Return NULL if ARGPS does not contain any more tokens. */
10256
10257 static char *
10258 ada_get_next_arg (char **argsp)
10259 {
10260 char *args = *argsp;
10261 char *end;
10262 char *result;
10263
10264 /* Skip any leading white space. */
10265
10266 while (isspace (*args))
10267 args++;
10268
10269 if (args[0] == '\0')
10270 return NULL; /* No more arguments. */
10271
10272 /* Find the end of the current argument. */
10273
10274 end = args;
10275 while (*end != '\0' && !isspace (*end))
10276 end++;
10277
10278 /* Adjust ARGSP to point to the start of the next argument. */
10279
10280 *argsp = end;
10281
10282 /* Make a copy of the current argument and return it. */
10283
10284 result = xmalloc (end - args + 1);
10285 strncpy (result, args, end - args);
10286 result[end - args] = '\0';
10287
10288 return result;
10289 }
10290
10291 /* Split the arguments specified in a "catch exception" command.
10292 Set EX to the appropriate catchpoint type.
10293 Set EXP_STRING to the name of the specific exception if
10294 specified by the user. */
10295
10296 static void
10297 catch_ada_exception_command_split (char *args,
10298 enum exception_catchpoint_kind *ex,
10299 char **exp_string)
10300 {
10301 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10302 char *exception_name;
10303
10304 exception_name = ada_get_next_arg (&args);
10305 make_cleanup (xfree, exception_name);
10306
10307 /* Check that we do not have any more arguments. Anything else
10308 is unexpected. */
10309
10310 while (isspace (*args))
10311 args++;
10312
10313 if (args[0] != '\0')
10314 error (_("Junk at end of expression"));
10315
10316 discard_cleanups (old_chain);
10317
10318 if (exception_name == NULL)
10319 {
10320 /* Catch all exceptions. */
10321 *ex = ex_catch_exception;
10322 *exp_string = NULL;
10323 }
10324 else if (strcmp (exception_name, "unhandled") == 0)
10325 {
10326 /* Catch unhandled exceptions. */
10327 *ex = ex_catch_exception_unhandled;
10328 *exp_string = NULL;
10329 }
10330 else
10331 {
10332 /* Catch a specific exception. */
10333 *ex = ex_catch_exception;
10334 *exp_string = exception_name;
10335 }
10336 }
10337
10338 /* Return the name of the symbol on which we should break in order to
10339 implement a catchpoint of the EX kind. */
10340
10341 static const char *
10342 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10343 {
10344 gdb_assert (exception_info != NULL);
10345
10346 switch (ex)
10347 {
10348 case ex_catch_exception:
10349 return (exception_info->catch_exception_sym);
10350 break;
10351 case ex_catch_exception_unhandled:
10352 return (exception_info->catch_exception_unhandled_sym);
10353 break;
10354 case ex_catch_assert:
10355 return (exception_info->catch_assert_sym);
10356 break;
10357 default:
10358 internal_error (__FILE__, __LINE__,
10359 _("unexpected catchpoint kind (%d)"), ex);
10360 }
10361 }
10362
10363 /* Return the breakpoint ops "virtual table" used for catchpoints
10364 of the EX kind. */
10365
10366 static struct breakpoint_ops *
10367 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10368 {
10369 switch (ex)
10370 {
10371 case ex_catch_exception:
10372 return (&catch_exception_breakpoint_ops);
10373 break;
10374 case ex_catch_exception_unhandled:
10375 return (&catch_exception_unhandled_breakpoint_ops);
10376 break;
10377 case ex_catch_assert:
10378 return (&catch_assert_breakpoint_ops);
10379 break;
10380 default:
10381 internal_error (__FILE__, __LINE__,
10382 _("unexpected catchpoint kind (%d)"), ex);
10383 }
10384 }
10385
10386 /* Return the condition that will be used to match the current exception
10387 being raised with the exception that the user wants to catch. This
10388 assumes that this condition is used when the inferior just triggered
10389 an exception catchpoint.
10390
10391 The string returned is a newly allocated string that needs to be
10392 deallocated later. */
10393
10394 static char *
10395 ada_exception_catchpoint_cond_string (const char *exp_string)
10396 {
10397 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10398 }
10399
10400 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10401
10402 static struct expression *
10403 ada_parse_catchpoint_condition (char *cond_string,
10404 struct symtab_and_line sal)
10405 {
10406 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10407 }
10408
10409 /* Return the symtab_and_line that should be used to insert an exception
10410 catchpoint of the TYPE kind.
10411
10412 EX_STRING should contain the name of a specific exception
10413 that the catchpoint should catch, or NULL otherwise.
10414
10415 The idea behind all the remaining parameters is that their names match
10416 the name of certain fields in the breakpoint structure that are used to
10417 handle exception catchpoints. This function returns the value to which
10418 these fields should be set, depending on the type of catchpoint we need
10419 to create.
10420
10421 If COND and COND_STRING are both non-NULL, any value they might
10422 hold will be free'ed, and then replaced by newly allocated ones.
10423 These parameters are left untouched otherwise. */
10424
10425 static struct symtab_and_line
10426 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10427 char **addr_string, char **cond_string,
10428 struct expression **cond, struct breakpoint_ops **ops)
10429 {
10430 const char *sym_name;
10431 struct symbol *sym;
10432 struct symtab_and_line sal;
10433
10434 /* First, find out which exception support info to use. */
10435 ada_exception_support_info_sniffer ();
10436
10437 /* Then lookup the function on which we will break in order to catch
10438 the Ada exceptions requested by the user. */
10439
10440 sym_name = ada_exception_sym_name (ex);
10441 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10442
10443 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10444 that should be compiled with debugging information. As a result, we
10445 expect to find that symbol in the symtabs. If we don't find it, then
10446 the target most likely does not support Ada exceptions, or we cannot
10447 insert exception breakpoints yet, because the GNAT runtime hasn't been
10448 loaded yet. */
10449
10450 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10451 in such a way that no debugging information is produced for the symbol
10452 we are looking for. In this case, we could search the minimal symbols
10453 as a fall-back mechanism. This would still be operating in degraded
10454 mode, however, as we would still be missing the debugging information
10455 that is needed in order to extract the name of the exception being
10456 raised (this name is printed in the catchpoint message, and is also
10457 used when trying to catch a specific exception). We do not handle
10458 this case for now. */
10459
10460 if (sym == NULL)
10461 error (_("Unable to break on '%s' in this configuration."), sym_name);
10462
10463 /* Make sure that the symbol we found corresponds to a function. */
10464 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10465 error (_("Symbol \"%s\" is not a function (class = %d)"),
10466 sym_name, SYMBOL_CLASS (sym));
10467
10468 sal = find_function_start_sal (sym, 1);
10469
10470 /* Set ADDR_STRING. */
10471
10472 *addr_string = xstrdup (sym_name);
10473
10474 /* Set the COND and COND_STRING (if not NULL). */
10475
10476 if (cond_string != NULL && cond != NULL)
10477 {
10478 if (*cond_string != NULL)
10479 {
10480 xfree (*cond_string);
10481 *cond_string = NULL;
10482 }
10483 if (*cond != NULL)
10484 {
10485 xfree (*cond);
10486 *cond = NULL;
10487 }
10488 if (exp_string != NULL)
10489 {
10490 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10491 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10492 }
10493 }
10494
10495 /* Set OPS. */
10496 *ops = ada_exception_breakpoint_ops (ex);
10497
10498 return sal;
10499 }
10500
10501 /* Parse the arguments (ARGS) of the "catch exception" command.
10502
10503 Set TYPE to the appropriate exception catchpoint type.
10504 If the user asked the catchpoint to catch only a specific
10505 exception, then save the exception name in ADDR_STRING.
10506
10507 See ada_exception_sal for a description of all the remaining
10508 function arguments of this function. */
10509
10510 struct symtab_and_line
10511 ada_decode_exception_location (char *args, char **addr_string,
10512 char **exp_string, char **cond_string,
10513 struct expression **cond,
10514 struct breakpoint_ops **ops)
10515 {
10516 enum exception_catchpoint_kind ex;
10517
10518 catch_ada_exception_command_split (args, &ex, exp_string);
10519 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10520 cond, ops);
10521 }
10522
10523 struct symtab_and_line
10524 ada_decode_assert_location (char *args, char **addr_string,
10525 struct breakpoint_ops **ops)
10526 {
10527 /* Check that no argument where provided at the end of the command. */
10528
10529 if (args != NULL)
10530 {
10531 while (isspace (*args))
10532 args++;
10533 if (*args != '\0')
10534 error (_("Junk at end of arguments."));
10535 }
10536
10537 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10538 ops);
10539 }
10540
10541 /* Operators */
10542 /* Information about operators given special treatment in functions
10543 below. */
10544 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10545
10546 #define ADA_OPERATORS \
10547 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10548 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10549 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10550 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10551 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10552 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10553 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10554 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10555 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10556 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10557 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10558 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10559 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10560 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10561 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10562 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10563 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10564 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10565 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10566
10567 static void
10568 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10569 {
10570 switch (exp->elts[pc - 1].opcode)
10571 {
10572 default:
10573 operator_length_standard (exp, pc, oplenp, argsp);
10574 break;
10575
10576 #define OP_DEFN(op, len, args, binop) \
10577 case op: *oplenp = len; *argsp = args; break;
10578 ADA_OPERATORS;
10579 #undef OP_DEFN
10580
10581 case OP_AGGREGATE:
10582 *oplenp = 3;
10583 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10584 break;
10585
10586 case OP_CHOICES:
10587 *oplenp = 3;
10588 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10589 break;
10590 }
10591 }
10592
10593 static char *
10594 ada_op_name (enum exp_opcode opcode)
10595 {
10596 switch (opcode)
10597 {
10598 default:
10599 return op_name_standard (opcode);
10600
10601 #define OP_DEFN(op, len, args, binop) case op: return #op;
10602 ADA_OPERATORS;
10603 #undef OP_DEFN
10604
10605 case OP_AGGREGATE:
10606 return "OP_AGGREGATE";
10607 case OP_CHOICES:
10608 return "OP_CHOICES";
10609 case OP_NAME:
10610 return "OP_NAME";
10611 }
10612 }
10613
10614 /* As for operator_length, but assumes PC is pointing at the first
10615 element of the operator, and gives meaningful results only for the
10616 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10617
10618 static void
10619 ada_forward_operator_length (struct expression *exp, int pc,
10620 int *oplenp, int *argsp)
10621 {
10622 switch (exp->elts[pc].opcode)
10623 {
10624 default:
10625 *oplenp = *argsp = 0;
10626 break;
10627
10628 #define OP_DEFN(op, len, args, binop) \
10629 case op: *oplenp = len; *argsp = args; break;
10630 ADA_OPERATORS;
10631 #undef OP_DEFN
10632
10633 case OP_AGGREGATE:
10634 *oplenp = 3;
10635 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10636 break;
10637
10638 case OP_CHOICES:
10639 *oplenp = 3;
10640 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10641 break;
10642
10643 case OP_STRING:
10644 case OP_NAME:
10645 {
10646 int len = longest_to_int (exp->elts[pc + 1].longconst);
10647 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10648 *argsp = 0;
10649 break;
10650 }
10651 }
10652 }
10653
10654 static int
10655 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10656 {
10657 enum exp_opcode op = exp->elts[elt].opcode;
10658 int oplen, nargs;
10659 int pc = elt;
10660 int i;
10661
10662 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10663
10664 switch (op)
10665 {
10666 /* Ada attributes ('Foo). */
10667 case OP_ATR_FIRST:
10668 case OP_ATR_LAST:
10669 case OP_ATR_LENGTH:
10670 case OP_ATR_IMAGE:
10671 case OP_ATR_MAX:
10672 case OP_ATR_MIN:
10673 case OP_ATR_MODULUS:
10674 case OP_ATR_POS:
10675 case OP_ATR_SIZE:
10676 case OP_ATR_TAG:
10677 case OP_ATR_VAL:
10678 break;
10679
10680 case UNOP_IN_RANGE:
10681 case UNOP_QUAL:
10682 /* XXX: gdb_sprint_host_address, type_sprint */
10683 fprintf_filtered (stream, _("Type @"));
10684 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10685 fprintf_filtered (stream, " (");
10686 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10687 fprintf_filtered (stream, ")");
10688 break;
10689 case BINOP_IN_BOUNDS:
10690 fprintf_filtered (stream, " (%d)",
10691 longest_to_int (exp->elts[pc + 2].longconst));
10692 break;
10693 case TERNOP_IN_RANGE:
10694 break;
10695
10696 case OP_AGGREGATE:
10697 case OP_OTHERS:
10698 case OP_DISCRETE_RANGE:
10699 case OP_POSITIONAL:
10700 case OP_CHOICES:
10701 break;
10702
10703 case OP_NAME:
10704 case OP_STRING:
10705 {
10706 char *name = &exp->elts[elt + 2].string;
10707 int len = longest_to_int (exp->elts[elt + 1].longconst);
10708 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10709 break;
10710 }
10711
10712 default:
10713 return dump_subexp_body_standard (exp, stream, elt);
10714 }
10715
10716 elt += oplen;
10717 for (i = 0; i < nargs; i += 1)
10718 elt = dump_subexp (exp, stream, elt);
10719
10720 return elt;
10721 }
10722
10723 /* The Ada extension of print_subexp (q.v.). */
10724
10725 static void
10726 ada_print_subexp (struct expression *exp, int *pos,
10727 struct ui_file *stream, enum precedence prec)
10728 {
10729 int oplen, nargs, i;
10730 int pc = *pos;
10731 enum exp_opcode op = exp->elts[pc].opcode;
10732
10733 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10734
10735 *pos += oplen;
10736 switch (op)
10737 {
10738 default:
10739 *pos -= oplen;
10740 print_subexp_standard (exp, pos, stream, prec);
10741 return;
10742
10743 case OP_VAR_VALUE:
10744 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10745 return;
10746
10747 case BINOP_IN_BOUNDS:
10748 /* XXX: sprint_subexp */
10749 print_subexp (exp, pos, stream, PREC_SUFFIX);
10750 fputs_filtered (" in ", stream);
10751 print_subexp (exp, pos, stream, PREC_SUFFIX);
10752 fputs_filtered ("'range", stream);
10753 if (exp->elts[pc + 1].longconst > 1)
10754 fprintf_filtered (stream, "(%ld)",
10755 (long) exp->elts[pc + 1].longconst);
10756 return;
10757
10758 case TERNOP_IN_RANGE:
10759 if (prec >= PREC_EQUAL)
10760 fputs_filtered ("(", stream);
10761 /* XXX: sprint_subexp */
10762 print_subexp (exp, pos, stream, PREC_SUFFIX);
10763 fputs_filtered (" in ", stream);
10764 print_subexp (exp, pos, stream, PREC_EQUAL);
10765 fputs_filtered (" .. ", stream);
10766 print_subexp (exp, pos, stream, PREC_EQUAL);
10767 if (prec >= PREC_EQUAL)
10768 fputs_filtered (")", stream);
10769 return;
10770
10771 case OP_ATR_FIRST:
10772 case OP_ATR_LAST:
10773 case OP_ATR_LENGTH:
10774 case OP_ATR_IMAGE:
10775 case OP_ATR_MAX:
10776 case OP_ATR_MIN:
10777 case OP_ATR_MODULUS:
10778 case OP_ATR_POS:
10779 case OP_ATR_SIZE:
10780 case OP_ATR_TAG:
10781 case OP_ATR_VAL:
10782 if (exp->elts[*pos].opcode == OP_TYPE)
10783 {
10784 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10785 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10786 *pos += 3;
10787 }
10788 else
10789 print_subexp (exp, pos, stream, PREC_SUFFIX);
10790 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10791 if (nargs > 1)
10792 {
10793 int tem;
10794 for (tem = 1; tem < nargs; tem += 1)
10795 {
10796 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10797 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10798 }
10799 fputs_filtered (")", stream);
10800 }
10801 return;
10802
10803 case UNOP_QUAL:
10804 type_print (exp->elts[pc + 1].type, "", stream, 0);
10805 fputs_filtered ("'(", stream);
10806 print_subexp (exp, pos, stream, PREC_PREFIX);
10807 fputs_filtered (")", stream);
10808 return;
10809
10810 case UNOP_IN_RANGE:
10811 /* XXX: sprint_subexp */
10812 print_subexp (exp, pos, stream, PREC_SUFFIX);
10813 fputs_filtered (" in ", stream);
10814 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10815 return;
10816
10817 case OP_DISCRETE_RANGE:
10818 print_subexp (exp, pos, stream, PREC_SUFFIX);
10819 fputs_filtered ("..", stream);
10820 print_subexp (exp, pos, stream, PREC_SUFFIX);
10821 return;
10822
10823 case OP_OTHERS:
10824 fputs_filtered ("others => ", stream);
10825 print_subexp (exp, pos, stream, PREC_SUFFIX);
10826 return;
10827
10828 case OP_CHOICES:
10829 for (i = 0; i < nargs-1; i += 1)
10830 {
10831 if (i > 0)
10832 fputs_filtered ("|", stream);
10833 print_subexp (exp, pos, stream, PREC_SUFFIX);
10834 }
10835 fputs_filtered (" => ", stream);
10836 print_subexp (exp, pos, stream, PREC_SUFFIX);
10837 return;
10838
10839 case OP_POSITIONAL:
10840 print_subexp (exp, pos, stream, PREC_SUFFIX);
10841 return;
10842
10843 case OP_AGGREGATE:
10844 fputs_filtered ("(", stream);
10845 for (i = 0; i < nargs; i += 1)
10846 {
10847 if (i > 0)
10848 fputs_filtered (", ", stream);
10849 print_subexp (exp, pos, stream, PREC_SUFFIX);
10850 }
10851 fputs_filtered (")", stream);
10852 return;
10853 }
10854 }
10855
10856 /* Table mapping opcodes into strings for printing operators
10857 and precedences of the operators. */
10858
10859 static const struct op_print ada_op_print_tab[] = {
10860 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10861 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10862 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10863 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10864 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10865 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10866 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10867 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10868 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10869 {">=", BINOP_GEQ, PREC_ORDER, 0},
10870 {">", BINOP_GTR, PREC_ORDER, 0},
10871 {"<", BINOP_LESS, PREC_ORDER, 0},
10872 {">>", BINOP_RSH, PREC_SHIFT, 0},
10873 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10874 {"+", BINOP_ADD, PREC_ADD, 0},
10875 {"-", BINOP_SUB, PREC_ADD, 0},
10876 {"&", BINOP_CONCAT, PREC_ADD, 0},
10877 {"*", BINOP_MUL, PREC_MUL, 0},
10878 {"/", BINOP_DIV, PREC_MUL, 0},
10879 {"rem", BINOP_REM, PREC_MUL, 0},
10880 {"mod", BINOP_MOD, PREC_MUL, 0},
10881 {"**", BINOP_EXP, PREC_REPEAT, 0},
10882 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10883 {"-", UNOP_NEG, PREC_PREFIX, 0},
10884 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10885 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10886 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10887 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10888 {".all", UNOP_IND, PREC_SUFFIX, 1},
10889 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10890 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10891 {NULL, 0, 0, 0}
10892 };
10893 \f
10894 enum ada_primitive_types {
10895 ada_primitive_type_int,
10896 ada_primitive_type_long,
10897 ada_primitive_type_short,
10898 ada_primitive_type_char,
10899 ada_primitive_type_float,
10900 ada_primitive_type_double,
10901 ada_primitive_type_void,
10902 ada_primitive_type_long_long,
10903 ada_primitive_type_long_double,
10904 ada_primitive_type_natural,
10905 ada_primitive_type_positive,
10906 ada_primitive_type_system_address,
10907 nr_ada_primitive_types
10908 };
10909
10910 static void
10911 ada_language_arch_info (struct gdbarch *gdbarch,
10912 struct language_arch_info *lai)
10913 {
10914 const struct builtin_type *builtin = builtin_type (gdbarch);
10915 lai->primitive_type_vector
10916 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10917 struct type *);
10918 lai->primitive_type_vector [ada_primitive_type_int] =
10919 init_type (TYPE_CODE_INT,
10920 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10921 0, "integer", (struct objfile *) NULL);
10922 lai->primitive_type_vector [ada_primitive_type_long] =
10923 init_type (TYPE_CODE_INT,
10924 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10925 0, "long_integer", (struct objfile *) NULL);
10926 lai->primitive_type_vector [ada_primitive_type_short] =
10927 init_type (TYPE_CODE_INT,
10928 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10929 0, "short_integer", (struct objfile *) NULL);
10930 lai->string_char_type =
10931 lai->primitive_type_vector [ada_primitive_type_char] =
10932 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10933 0, "character", (struct objfile *) NULL);
10934 lai->primitive_type_vector [ada_primitive_type_float] =
10935 init_type (TYPE_CODE_FLT,
10936 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10937 0, "float", (struct objfile *) NULL);
10938 lai->primitive_type_vector [ada_primitive_type_double] =
10939 init_type (TYPE_CODE_FLT,
10940 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10941 0, "long_float", (struct objfile *) NULL);
10942 lai->primitive_type_vector [ada_primitive_type_long_long] =
10943 init_type (TYPE_CODE_INT,
10944 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10945 0, "long_long_integer", (struct objfile *) NULL);
10946 lai->primitive_type_vector [ada_primitive_type_long_double] =
10947 init_type (TYPE_CODE_FLT,
10948 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10949 0, "long_long_float", (struct objfile *) NULL);
10950 lai->primitive_type_vector [ada_primitive_type_natural] =
10951 init_type (TYPE_CODE_INT,
10952 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10953 0, "natural", (struct objfile *) NULL);
10954 lai->primitive_type_vector [ada_primitive_type_positive] =
10955 init_type (TYPE_CODE_INT,
10956 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10957 0, "positive", (struct objfile *) NULL);
10958 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10959
10960 lai->primitive_type_vector [ada_primitive_type_system_address] =
10961 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10962 (struct objfile *) NULL));
10963 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10964 = "system__address";
10965 }
10966 \f
10967 /* Language vector */
10968
10969 /* Not really used, but needed in the ada_language_defn. */
10970
10971 static void
10972 emit_char (int c, struct ui_file *stream, int quoter)
10973 {
10974 ada_emit_char (c, stream, quoter, 1);
10975 }
10976
10977 static int
10978 parse (void)
10979 {
10980 warnings_issued = 0;
10981 return ada_parse ();
10982 }
10983
10984 static const struct exp_descriptor ada_exp_descriptor = {
10985 ada_print_subexp,
10986 ada_operator_length,
10987 ada_op_name,
10988 ada_dump_subexp_body,
10989 ada_evaluate_subexp
10990 };
10991
10992 const struct language_defn ada_language_defn = {
10993 "ada", /* Language name */
10994 language_ada,
10995 range_check_off,
10996 type_check_off,
10997 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10998 that's not quite what this means. */
10999 array_row_major,
11000 &ada_exp_descriptor,
11001 parse,
11002 ada_error,
11003 resolve,
11004 ada_printchar, /* Print a character constant */
11005 ada_printstr, /* Function to print string constant */
11006 emit_char, /* Function to print single char (not used) */
11007 ada_print_type, /* Print a type using appropriate syntax */
11008 ada_val_print, /* Print a value using appropriate syntax */
11009 ada_value_print, /* Print a top-level value */
11010 NULL, /* Language specific skip_trampoline */
11011 NULL, /* name_of_this */
11012 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11013 basic_lookup_transparent_type, /* lookup_transparent_type */
11014 ada_la_decode, /* Language specific symbol demangler */
11015 NULL, /* Language specific class_name_from_physname */
11016 ada_op_print_tab, /* expression operators for printing */
11017 0, /* c-style arrays */
11018 1, /* String lower bound */
11019 ada_get_gdb_completer_word_break_characters,
11020 ada_make_symbol_completion_list,
11021 ada_language_arch_info,
11022 ada_print_array_index,
11023 default_pass_by_reference,
11024 LANG_MAGIC
11025 };
11026
11027 void
11028 _initialize_ada_language (void)
11029 {
11030 add_language (&ada_language_defn);
11031
11032 varsize_limit = 65536;
11033
11034 obstack_init (&symbol_list_obstack);
11035
11036 decoded_names_store = htab_create_alloc
11037 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11038 NULL, xcalloc, xfree);
11039
11040 observer_attach_executable_changed (ada_executable_changed_observer);
11041 }
This page took 0.330667 seconds and 4 git commands to generate.