2009-05-27 Tom Tromey <tromey@redhat.com>
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 /* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64 #ifndef TRUNCATION_TOWARDS_ZERO
65 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66 #endif
67
68 static void extract_string (CORE_ADDR addr, char *buf);
69
70 static void modify_general_field (char *, LONGEST, int, int);
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static struct value *ensure_lval (struct value *, CORE_ADDR *);
105
106 static struct value *convert_actual (struct value *, struct type *,
107 CORE_ADDR *);
108
109 static struct value *make_array_descriptor (struct type *, struct value *,
110 CORE_ADDR *);
111
112 static void ada_add_block_symbols (struct obstack *,
113 struct block *, const char *,
114 domain_enum, struct objfile *, int);
115
116 static int is_nonfunction (struct ada_symbol_info *, int);
117
118 static void add_defn_to_vec (struct obstack *, struct symbol *,
119 struct block *);
120
121 static int num_defns_collected (struct obstack *);
122
123 static struct ada_symbol_info *defns_collected (struct obstack *, int);
124
125 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
126 *, const char *, int,
127 domain_enum, int);
128
129 static struct value *resolve_subexp (struct expression **, int *, int,
130 struct type *);
131
132 static void replace_operator_with_call (struct expression **, int, int, int,
133 struct symbol *, struct block *);
134
135 static int possible_user_operator_p (enum exp_opcode, struct value **);
136
137 static char *ada_op_name (enum exp_opcode);
138
139 static const char *ada_decoded_op_name (enum exp_opcode);
140
141 static int numeric_type_p (struct type *);
142
143 static int integer_type_p (struct type *);
144
145 static int scalar_type_p (struct type *);
146
147 static int discrete_type_p (struct type *);
148
149 static enum ada_renaming_category parse_old_style_renaming (struct type *,
150 const char **,
151 int *,
152 const char **);
153
154 static struct symbol *find_old_style_renaming_symbol (const char *,
155 struct block *);
156
157 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
158 int, int, int *);
159
160 static struct value *evaluate_subexp (struct type *, struct expression *,
161 int *, enum noside);
162
163 static struct value *evaluate_subexp_type (struct expression *, int *);
164
165 static int is_dynamic_field (struct type *, int);
166
167 static struct type *to_fixed_variant_branch_type (struct type *,
168 const gdb_byte *,
169 CORE_ADDR, struct value *);
170
171 static struct type *to_fixed_array_type (struct type *, struct value *, int);
172
173 static struct type *to_fixed_range_type (char *, struct value *,
174 struct objfile *);
175
176 static struct type *to_static_fixed_type (struct type *);
177 static struct type *static_unwrap_type (struct type *type);
178
179 static struct value *unwrap_value (struct value *);
180
181 static struct type *packed_array_type (struct type *, long *);
182
183 static struct type *decode_packed_array_type (struct type *);
184
185 static struct value *decode_packed_array (struct value *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int wild_match (const char *, int, const char *);
204
205 static struct value *ada_coerce_ref (struct value *);
206
207 static LONGEST pos_atr (struct value *);
208
209 static struct value *value_pos_atr (struct type *, struct value *);
210
211 static struct value *value_val_atr (struct type *, struct value *);
212
213 static struct symbol *standard_lookup (const char *, const struct block *,
214 domain_enum);
215
216 static struct value *ada_search_struct_field (char *, struct value *, int,
217 struct type *);
218
219 static struct value *ada_value_primitive_field (struct value *, int, int,
220 struct type *);
221
222 static int find_struct_field (char *, struct type *, int,
223 struct type **, int *, int *, int *, int *);
224
225 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
226 struct value *);
227
228 static struct value *ada_to_fixed_value (struct value *);
229
230 static int ada_resolve_function (struct ada_symbol_info *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234 static struct value *ada_coerce_to_simple_array (struct value *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *, int *, enum noside);
248
249 static void aggregate_assign_from_choices (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *,
252 int, LONGEST, LONGEST);
253
254 static void aggregate_assign_positional (struct value *, struct value *,
255 struct expression *,
256 int *, LONGEST *, int *, int,
257 LONGEST, LONGEST);
258
259
260 static void aggregate_assign_others (struct value *, struct value *,
261 struct expression *,
262 int *, LONGEST *, int, LONGEST, LONGEST);
263
264
265 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
266
267
268 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
269 int *, enum noside);
270
271 static void ada_forward_operator_length (struct expression *, int, int *,
272 int *);
273 \f
274
275
276 /* Maximum-sized dynamic type. */
277 static unsigned int varsize_limit;
278
279 /* FIXME: brobecker/2003-09-17: No longer a const because it is
280 returned by a function that does not return a const char *. */
281 static char *ada_completer_word_break_characters =
282 #ifdef VMS
283 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
284 #else
285 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
286 #endif
287
288 /* The name of the symbol to use to get the name of the main subprogram. */
289 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
290 = "__gnat_ada_main_program_name";
291
292 /* Limit on the number of warnings to raise per expression evaluation. */
293 static int warning_limit = 2;
294
295 /* Number of warning messages issued; reset to 0 by cleanups after
296 expression evaluation. */
297 static int warnings_issued = 0;
298
299 static const char *known_runtime_file_name_patterns[] = {
300 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
301 };
302
303 static const char *known_auxiliary_function_name_patterns[] = {
304 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
305 };
306
307 /* Space for allocating results of ada_lookup_symbol_list. */
308 static struct obstack symbol_list_obstack;
309
310 /* Utilities */
311
312 /* Given DECODED_NAME a string holding a symbol name in its
313 decoded form (ie using the Ada dotted notation), returns
314 its unqualified name. */
315
316 static const char *
317 ada_unqualified_name (const char *decoded_name)
318 {
319 const char *result = strrchr (decoded_name, '.');
320
321 if (result != NULL)
322 result++; /* Skip the dot... */
323 else
324 result = decoded_name;
325
326 return result;
327 }
328
329 /* Return a string starting with '<', followed by STR, and '>'.
330 The result is good until the next call. */
331
332 static char *
333 add_angle_brackets (const char *str)
334 {
335 static char *result = NULL;
336
337 xfree (result);
338 result = xstrprintf ("<%s>", str);
339 return result;
340 }
341
342 static char *
343 ada_get_gdb_completer_word_break_characters (void)
344 {
345 return ada_completer_word_break_characters;
346 }
347
348 /* Print an array element index using the Ada syntax. */
349
350 static void
351 ada_print_array_index (struct value *index_value, struct ui_file *stream,
352 const struct value_print_options *options)
353 {
354 LA_VALUE_PRINT (index_value, stream, options);
355 fprintf_filtered (stream, " => ");
356 }
357
358 /* Read the string located at ADDR from the inferior and store the
359 result into BUF. */
360
361 static void
362 extract_string (CORE_ADDR addr, char *buf)
363 {
364 int char_index = 0;
365
366 /* Loop, reading one byte at a time, until we reach the '\000'
367 end-of-string marker. */
368 do
369 {
370 target_read_memory (addr + char_index * sizeof (char),
371 buf + char_index * sizeof (char), sizeof (char));
372 char_index++;
373 }
374 while (buf[char_index - 1] != '\000');
375 }
376
377 /* Assuming VECT points to an array of *SIZE objects of size
378 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
379 updating *SIZE as necessary and returning the (new) array. */
380
381 void *
382 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
383 {
384 if (*size < min_size)
385 {
386 *size *= 2;
387 if (*size < min_size)
388 *size = min_size;
389 vect = xrealloc (vect, *size * element_size);
390 }
391 return vect;
392 }
393
394 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
395 suffix of FIELD_NAME beginning "___". */
396
397 static int
398 field_name_match (const char *field_name, const char *target)
399 {
400 int len = strlen (target);
401 return
402 (strncmp (field_name, target, len) == 0
403 && (field_name[len] == '\0'
404 || (strncmp (field_name + len, "___", 3) == 0
405 && strcmp (field_name + strlen (field_name) - 6,
406 "___XVN") != 0)));
407 }
408
409
410 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
411 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
412 and return its index. This function also handles fields whose name
413 have ___ suffixes because the compiler sometimes alters their name
414 by adding such a suffix to represent fields with certain constraints.
415 If the field could not be found, return a negative number if
416 MAYBE_MISSING is set. Otherwise raise an error. */
417
418 int
419 ada_get_field_index (const struct type *type, const char *field_name,
420 int maybe_missing)
421 {
422 int fieldno;
423 struct type *struct_type = check_typedef ((struct type *) type);
424
425 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
426 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
427 return fieldno;
428
429 if (!maybe_missing)
430 error (_("Unable to find field %s in struct %s. Aborting"),
431 field_name, TYPE_NAME (struct_type));
432
433 return -1;
434 }
435
436 /* The length of the prefix of NAME prior to any "___" suffix. */
437
438 int
439 ada_name_prefix_len (const char *name)
440 {
441 if (name == NULL)
442 return 0;
443 else
444 {
445 const char *p = strstr (name, "___");
446 if (p == NULL)
447 return strlen (name);
448 else
449 return p - name;
450 }
451 }
452
453 /* Return non-zero if SUFFIX is a suffix of STR.
454 Return zero if STR is null. */
455
456 static int
457 is_suffix (const char *str, const char *suffix)
458 {
459 int len1, len2;
460 if (str == NULL)
461 return 0;
462 len1 = strlen (str);
463 len2 = strlen (suffix);
464 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
465 }
466
467 /* The contents of value VAL, treated as a value of type TYPE. The
468 result is an lval in memory if VAL is. */
469
470 static struct value *
471 coerce_unspec_val_to_type (struct value *val, struct type *type)
472 {
473 type = ada_check_typedef (type);
474 if (value_type (val) == type)
475 return val;
476 else
477 {
478 struct value *result;
479
480 /* Make sure that the object size is not unreasonable before
481 trying to allocate some memory for it. */
482 check_size (type);
483
484 result = allocate_value (type);
485 set_value_component_location (result, val);
486 set_value_bitsize (result, value_bitsize (val));
487 set_value_bitpos (result, value_bitpos (val));
488 set_value_address (result, value_address (val));
489 if (value_lazy (val)
490 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
491 set_value_lazy (result, 1);
492 else
493 memcpy (value_contents_raw (result), value_contents (val),
494 TYPE_LENGTH (type));
495 return result;
496 }
497 }
498
499 static const gdb_byte *
500 cond_offset_host (const gdb_byte *valaddr, long offset)
501 {
502 if (valaddr == NULL)
503 return NULL;
504 else
505 return valaddr + offset;
506 }
507
508 static CORE_ADDR
509 cond_offset_target (CORE_ADDR address, long offset)
510 {
511 if (address == 0)
512 return 0;
513 else
514 return address + offset;
515 }
516
517 /* Issue a warning (as for the definition of warning in utils.c, but
518 with exactly one argument rather than ...), unless the limit on the
519 number of warnings has passed during the evaluation of the current
520 expression. */
521
522 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
523 provided by "complaint". */
524 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
525
526 static void
527 lim_warning (const char *format, ...)
528 {
529 va_list args;
530 va_start (args, format);
531
532 warnings_issued += 1;
533 if (warnings_issued <= warning_limit)
534 vwarning (format, args);
535
536 va_end (args);
537 }
538
539 /* Issue an error if the size of an object of type T is unreasonable,
540 i.e. if it would be a bad idea to allocate a value of this type in
541 GDB. */
542
543 static void
544 check_size (const struct type *type)
545 {
546 if (TYPE_LENGTH (type) > varsize_limit)
547 error (_("object size is larger than varsize-limit"));
548 }
549
550
551 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
552 gdbtypes.h, but some of the necessary definitions in that file
553 seem to have gone missing. */
554
555 /* Maximum value of a SIZE-byte signed integer type. */
556 static LONGEST
557 max_of_size (int size)
558 {
559 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
560 return top_bit | (top_bit - 1);
561 }
562
563 /* Minimum value of a SIZE-byte signed integer type. */
564 static LONGEST
565 min_of_size (int size)
566 {
567 return -max_of_size (size) - 1;
568 }
569
570 /* Maximum value of a SIZE-byte unsigned integer type. */
571 static ULONGEST
572 umax_of_size (int size)
573 {
574 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
575 return top_bit | (top_bit - 1);
576 }
577
578 /* Maximum value of integral type T, as a signed quantity. */
579 static LONGEST
580 max_of_type (struct type *t)
581 {
582 if (TYPE_UNSIGNED (t))
583 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
584 else
585 return max_of_size (TYPE_LENGTH (t));
586 }
587
588 /* Minimum value of integral type T, as a signed quantity. */
589 static LONGEST
590 min_of_type (struct type *t)
591 {
592 if (TYPE_UNSIGNED (t))
593 return 0;
594 else
595 return min_of_size (TYPE_LENGTH (t));
596 }
597
598 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
599 static LONGEST
600 discrete_type_high_bound (struct type *type)
601 {
602 switch (TYPE_CODE (type))
603 {
604 case TYPE_CODE_RANGE:
605 return TYPE_HIGH_BOUND (type);
606 case TYPE_CODE_ENUM:
607 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
608 case TYPE_CODE_BOOL:
609 return 1;
610 case TYPE_CODE_CHAR:
611 case TYPE_CODE_INT:
612 return max_of_type (type);
613 default:
614 error (_("Unexpected type in discrete_type_high_bound."));
615 }
616 }
617
618 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
619 static LONGEST
620 discrete_type_low_bound (struct type *type)
621 {
622 switch (TYPE_CODE (type))
623 {
624 case TYPE_CODE_RANGE:
625 return TYPE_LOW_BOUND (type);
626 case TYPE_CODE_ENUM:
627 return TYPE_FIELD_BITPOS (type, 0);
628 case TYPE_CODE_BOOL:
629 return 0;
630 case TYPE_CODE_CHAR:
631 case TYPE_CODE_INT:
632 return min_of_type (type);
633 default:
634 error (_("Unexpected type in discrete_type_low_bound."));
635 }
636 }
637
638 /* The identity on non-range types. For range types, the underlying
639 non-range scalar type. */
640
641 static struct type *
642 base_type (struct type *type)
643 {
644 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
645 {
646 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
647 return type;
648 type = TYPE_TARGET_TYPE (type);
649 }
650 return type;
651 }
652 \f
653
654 /* Language Selection */
655
656 /* If the main program is in Ada, return language_ada, otherwise return LANG
657 (the main program is in Ada iif the adainit symbol is found).
658
659 MAIN_PST is not used. */
660
661 enum language
662 ada_update_initial_language (enum language lang,
663 struct partial_symtab *main_pst)
664 {
665 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
666 (struct objfile *) NULL) != NULL)
667 return language_ada;
668
669 return lang;
670 }
671
672 /* If the main procedure is written in Ada, then return its name.
673 The result is good until the next call. Return NULL if the main
674 procedure doesn't appear to be in Ada. */
675
676 char *
677 ada_main_name (void)
678 {
679 struct minimal_symbol *msym;
680 static char *main_program_name = NULL;
681
682 /* For Ada, the name of the main procedure is stored in a specific
683 string constant, generated by the binder. Look for that symbol,
684 extract its address, and then read that string. If we didn't find
685 that string, then most probably the main procedure is not written
686 in Ada. */
687 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
688
689 if (msym != NULL)
690 {
691 CORE_ADDR main_program_name_addr;
692 int err_code;
693
694 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
695 if (main_program_name_addr == 0)
696 error (_("Invalid address for Ada main program name."));
697
698 xfree (main_program_name);
699 target_read_string (main_program_name_addr, &main_program_name,
700 1024, &err_code);
701
702 if (err_code != 0)
703 return NULL;
704 return main_program_name;
705 }
706
707 /* The main procedure doesn't seem to be in Ada. */
708 return NULL;
709 }
710 \f
711 /* Symbols */
712
713 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
714 of NULLs. */
715
716 const struct ada_opname_map ada_opname_table[] = {
717 {"Oadd", "\"+\"", BINOP_ADD},
718 {"Osubtract", "\"-\"", BINOP_SUB},
719 {"Omultiply", "\"*\"", BINOP_MUL},
720 {"Odivide", "\"/\"", BINOP_DIV},
721 {"Omod", "\"mod\"", BINOP_MOD},
722 {"Orem", "\"rem\"", BINOP_REM},
723 {"Oexpon", "\"**\"", BINOP_EXP},
724 {"Olt", "\"<\"", BINOP_LESS},
725 {"Ole", "\"<=\"", BINOP_LEQ},
726 {"Ogt", "\">\"", BINOP_GTR},
727 {"Oge", "\">=\"", BINOP_GEQ},
728 {"Oeq", "\"=\"", BINOP_EQUAL},
729 {"One", "\"/=\"", BINOP_NOTEQUAL},
730 {"Oand", "\"and\"", BINOP_BITWISE_AND},
731 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
732 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
733 {"Oconcat", "\"&\"", BINOP_CONCAT},
734 {"Oabs", "\"abs\"", UNOP_ABS},
735 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
736 {"Oadd", "\"+\"", UNOP_PLUS},
737 {"Osubtract", "\"-\"", UNOP_NEG},
738 {NULL, NULL}
739 };
740
741 /* The "encoded" form of DECODED, according to GNAT conventions.
742 The result is valid until the next call to ada_encode. */
743
744 char *
745 ada_encode (const char *decoded)
746 {
747 static char *encoding_buffer = NULL;
748 static size_t encoding_buffer_size = 0;
749 const char *p;
750 int k;
751
752 if (decoded == NULL)
753 return NULL;
754
755 GROW_VECT (encoding_buffer, encoding_buffer_size,
756 2 * strlen (decoded) + 10);
757
758 k = 0;
759 for (p = decoded; *p != '\0'; p += 1)
760 {
761 if (*p == '.')
762 {
763 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
764 k += 2;
765 }
766 else if (*p == '"')
767 {
768 const struct ada_opname_map *mapping;
769
770 for (mapping = ada_opname_table;
771 mapping->encoded != NULL
772 && strncmp (mapping->decoded, p,
773 strlen (mapping->decoded)) != 0; mapping += 1)
774 ;
775 if (mapping->encoded == NULL)
776 error (_("invalid Ada operator name: %s"), p);
777 strcpy (encoding_buffer + k, mapping->encoded);
778 k += strlen (mapping->encoded);
779 break;
780 }
781 else
782 {
783 encoding_buffer[k] = *p;
784 k += 1;
785 }
786 }
787
788 encoding_buffer[k] = '\0';
789 return encoding_buffer;
790 }
791
792 /* Return NAME folded to lower case, or, if surrounded by single
793 quotes, unfolded, but with the quotes stripped away. Result good
794 to next call. */
795
796 char *
797 ada_fold_name (const char *name)
798 {
799 static char *fold_buffer = NULL;
800 static size_t fold_buffer_size = 0;
801
802 int len = strlen (name);
803 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
804
805 if (name[0] == '\'')
806 {
807 strncpy (fold_buffer, name + 1, len - 2);
808 fold_buffer[len - 2] = '\000';
809 }
810 else
811 {
812 int i;
813 for (i = 0; i <= len; i += 1)
814 fold_buffer[i] = tolower (name[i]);
815 }
816
817 return fold_buffer;
818 }
819
820 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
821
822 static int
823 is_lower_alphanum (const char c)
824 {
825 return (isdigit (c) || (isalpha (c) && islower (c)));
826 }
827
828 /* Remove either of these suffixes:
829 . .{DIGIT}+
830 . ${DIGIT}+
831 . ___{DIGIT}+
832 . __{DIGIT}+.
833 These are suffixes introduced by the compiler for entities such as
834 nested subprogram for instance, in order to avoid name clashes.
835 They do not serve any purpose for the debugger. */
836
837 static void
838 ada_remove_trailing_digits (const char *encoded, int *len)
839 {
840 if (*len > 1 && isdigit (encoded[*len - 1]))
841 {
842 int i = *len - 2;
843 while (i > 0 && isdigit (encoded[i]))
844 i--;
845 if (i >= 0 && encoded[i] == '.')
846 *len = i;
847 else if (i >= 0 && encoded[i] == '$')
848 *len = i;
849 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
850 *len = i - 2;
851 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
852 *len = i - 1;
853 }
854 }
855
856 /* Remove the suffix introduced by the compiler for protected object
857 subprograms. */
858
859 static void
860 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
861 {
862 /* Remove trailing N. */
863
864 /* Protected entry subprograms are broken into two
865 separate subprograms: The first one is unprotected, and has
866 a 'N' suffix; the second is the protected version, and has
867 the 'P' suffix. The second calls the first one after handling
868 the protection. Since the P subprograms are internally generated,
869 we leave these names undecoded, giving the user a clue that this
870 entity is internal. */
871
872 if (*len > 1
873 && encoded[*len - 1] == 'N'
874 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
875 *len = *len - 1;
876 }
877
878 /* If ENCODED follows the GNAT entity encoding conventions, then return
879 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
880 replaced by ENCODED.
881
882 The resulting string is valid until the next call of ada_decode.
883 If the string is unchanged by decoding, the original string pointer
884 is returned. */
885
886 const char *
887 ada_decode (const char *encoded)
888 {
889 int i, j;
890 int len0;
891 const char *p;
892 char *decoded;
893 int at_start_name;
894 static char *decoding_buffer = NULL;
895 static size_t decoding_buffer_size = 0;
896
897 /* The name of the Ada main procedure starts with "_ada_".
898 This prefix is not part of the decoded name, so skip this part
899 if we see this prefix. */
900 if (strncmp (encoded, "_ada_", 5) == 0)
901 encoded += 5;
902
903 /* If the name starts with '_', then it is not a properly encoded
904 name, so do not attempt to decode it. Similarly, if the name
905 starts with '<', the name should not be decoded. */
906 if (encoded[0] == '_' || encoded[0] == '<')
907 goto Suppress;
908
909 len0 = strlen (encoded);
910
911 ada_remove_trailing_digits (encoded, &len0);
912 ada_remove_po_subprogram_suffix (encoded, &len0);
913
914 /* Remove the ___X.* suffix if present. Do not forget to verify that
915 the suffix is located before the current "end" of ENCODED. We want
916 to avoid re-matching parts of ENCODED that have previously been
917 marked as discarded (by decrementing LEN0). */
918 p = strstr (encoded, "___");
919 if (p != NULL && p - encoded < len0 - 3)
920 {
921 if (p[3] == 'X')
922 len0 = p - encoded;
923 else
924 goto Suppress;
925 }
926
927 /* Remove any trailing TKB suffix. It tells us that this symbol
928 is for the body of a task, but that information does not actually
929 appear in the decoded name. */
930
931 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
932 len0 -= 3;
933
934 /* Remove trailing "B" suffixes. */
935 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
936
937 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
938 len0 -= 1;
939
940 /* Make decoded big enough for possible expansion by operator name. */
941
942 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
943 decoded = decoding_buffer;
944
945 /* Remove trailing __{digit}+ or trailing ${digit}+. */
946
947 if (len0 > 1 && isdigit (encoded[len0 - 1]))
948 {
949 i = len0 - 2;
950 while ((i >= 0 && isdigit (encoded[i]))
951 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
952 i -= 1;
953 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
954 len0 = i - 1;
955 else if (encoded[i] == '$')
956 len0 = i;
957 }
958
959 /* The first few characters that are not alphabetic are not part
960 of any encoding we use, so we can copy them over verbatim. */
961
962 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
963 decoded[j] = encoded[i];
964
965 at_start_name = 1;
966 while (i < len0)
967 {
968 /* Is this a symbol function? */
969 if (at_start_name && encoded[i] == 'O')
970 {
971 int k;
972 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
973 {
974 int op_len = strlen (ada_opname_table[k].encoded);
975 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
976 op_len - 1) == 0)
977 && !isalnum (encoded[i + op_len]))
978 {
979 strcpy (decoded + j, ada_opname_table[k].decoded);
980 at_start_name = 0;
981 i += op_len;
982 j += strlen (ada_opname_table[k].decoded);
983 break;
984 }
985 }
986 if (ada_opname_table[k].encoded != NULL)
987 continue;
988 }
989 at_start_name = 0;
990
991 /* Replace "TK__" with "__", which will eventually be translated
992 into "." (just below). */
993
994 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
995 i += 2;
996
997 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
998 be translated into "." (just below). These are internal names
999 generated for anonymous blocks inside which our symbol is nested. */
1000
1001 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1002 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1003 && isdigit (encoded [i+4]))
1004 {
1005 int k = i + 5;
1006
1007 while (k < len0 && isdigit (encoded[k]))
1008 k++; /* Skip any extra digit. */
1009
1010 /* Double-check that the "__B_{DIGITS}+" sequence we found
1011 is indeed followed by "__". */
1012 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1013 i = k;
1014 }
1015
1016 /* Remove _E{DIGITS}+[sb] */
1017
1018 /* Just as for protected object subprograms, there are 2 categories
1019 of subprograms created by the compiler for each entry. The first
1020 one implements the actual entry code, and has a suffix following
1021 the convention above; the second one implements the barrier and
1022 uses the same convention as above, except that the 'E' is replaced
1023 by a 'B'.
1024
1025 Just as above, we do not decode the name of barrier functions
1026 to give the user a clue that the code he is debugging has been
1027 internally generated. */
1028
1029 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1030 && isdigit (encoded[i+2]))
1031 {
1032 int k = i + 3;
1033
1034 while (k < len0 && isdigit (encoded[k]))
1035 k++;
1036
1037 if (k < len0
1038 && (encoded[k] == 'b' || encoded[k] == 's'))
1039 {
1040 k++;
1041 /* Just as an extra precaution, make sure that if this
1042 suffix is followed by anything else, it is a '_'.
1043 Otherwise, we matched this sequence by accident. */
1044 if (k == len0
1045 || (k < len0 && encoded[k] == '_'))
1046 i = k;
1047 }
1048 }
1049
1050 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1051 the GNAT front-end in protected object subprograms. */
1052
1053 if (i < len0 + 3
1054 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1055 {
1056 /* Backtrack a bit up until we reach either the begining of
1057 the encoded name, or "__". Make sure that we only find
1058 digits or lowercase characters. */
1059 const char *ptr = encoded + i - 1;
1060
1061 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1062 ptr--;
1063 if (ptr < encoded
1064 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1065 i++;
1066 }
1067
1068 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1069 {
1070 /* This is a X[bn]* sequence not separated from the previous
1071 part of the name with a non-alpha-numeric character (in other
1072 words, immediately following an alpha-numeric character), then
1073 verify that it is placed at the end of the encoded name. If
1074 not, then the encoding is not valid and we should abort the
1075 decoding. Otherwise, just skip it, it is used in body-nested
1076 package names. */
1077 do
1078 i += 1;
1079 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1080 if (i < len0)
1081 goto Suppress;
1082 }
1083 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1084 {
1085 /* Replace '__' by '.'. */
1086 decoded[j] = '.';
1087 at_start_name = 1;
1088 i += 2;
1089 j += 1;
1090 }
1091 else
1092 {
1093 /* It's a character part of the decoded name, so just copy it
1094 over. */
1095 decoded[j] = encoded[i];
1096 i += 1;
1097 j += 1;
1098 }
1099 }
1100 decoded[j] = '\000';
1101
1102 /* Decoded names should never contain any uppercase character.
1103 Double-check this, and abort the decoding if we find one. */
1104
1105 for (i = 0; decoded[i] != '\0'; i += 1)
1106 if (isupper (decoded[i]) || decoded[i] == ' ')
1107 goto Suppress;
1108
1109 if (strcmp (decoded, encoded) == 0)
1110 return encoded;
1111 else
1112 return decoded;
1113
1114 Suppress:
1115 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1116 decoded = decoding_buffer;
1117 if (encoded[0] == '<')
1118 strcpy (decoded, encoded);
1119 else
1120 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1121 return decoded;
1122
1123 }
1124
1125 /* Table for keeping permanent unique copies of decoded names. Once
1126 allocated, names in this table are never released. While this is a
1127 storage leak, it should not be significant unless there are massive
1128 changes in the set of decoded names in successive versions of a
1129 symbol table loaded during a single session. */
1130 static struct htab *decoded_names_store;
1131
1132 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1133 in the language-specific part of GSYMBOL, if it has not been
1134 previously computed. Tries to save the decoded name in the same
1135 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1136 in any case, the decoded symbol has a lifetime at least that of
1137 GSYMBOL).
1138 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1139 const, but nevertheless modified to a semantically equivalent form
1140 when a decoded name is cached in it.
1141 */
1142
1143 char *
1144 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1145 {
1146 char **resultp =
1147 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1148 if (*resultp == NULL)
1149 {
1150 const char *decoded = ada_decode (gsymbol->name);
1151 if (gsymbol->obj_section != NULL)
1152 {
1153 struct objfile *objf = gsymbol->obj_section->objfile;
1154 *resultp = obsavestring (decoded, strlen (decoded),
1155 &objf->objfile_obstack);
1156 }
1157 /* Sometimes, we can't find a corresponding objfile, in which
1158 case, we put the result on the heap. Since we only decode
1159 when needed, we hope this usually does not cause a
1160 significant memory leak (FIXME). */
1161 if (*resultp == NULL)
1162 {
1163 char **slot = (char **) htab_find_slot (decoded_names_store,
1164 decoded, INSERT);
1165 if (*slot == NULL)
1166 *slot = xstrdup (decoded);
1167 *resultp = *slot;
1168 }
1169 }
1170
1171 return *resultp;
1172 }
1173
1174 static char *
1175 ada_la_decode (const char *encoded, int options)
1176 {
1177 return xstrdup (ada_decode (encoded));
1178 }
1179
1180 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1181 suffixes that encode debugging information or leading _ada_ on
1182 SYM_NAME (see is_name_suffix commentary for the debugging
1183 information that is ignored). If WILD, then NAME need only match a
1184 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1185 either argument is NULL. */
1186
1187 static int
1188 ada_match_name (const char *sym_name, const char *name, int wild)
1189 {
1190 if (sym_name == NULL || name == NULL)
1191 return 0;
1192 else if (wild)
1193 return wild_match (name, strlen (name), sym_name);
1194 else
1195 {
1196 int len_name = strlen (name);
1197 return (strncmp (sym_name, name, len_name) == 0
1198 && is_name_suffix (sym_name + len_name))
1199 || (strncmp (sym_name, "_ada_", 5) == 0
1200 && strncmp (sym_name + 5, name, len_name) == 0
1201 && is_name_suffix (sym_name + len_name + 5));
1202 }
1203 }
1204 \f
1205
1206 /* Arrays */
1207
1208 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1209
1210 static char *bound_name[] = {
1211 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1212 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1213 };
1214
1215 /* Maximum number of array dimensions we are prepared to handle. */
1216
1217 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1218
1219 /* Like modify_field, but allows bitpos > wordlength. */
1220
1221 static void
1222 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1223 {
1224 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1225 }
1226
1227
1228 /* The desc_* routines return primitive portions of array descriptors
1229 (fat pointers). */
1230
1231 /* The descriptor or array type, if any, indicated by TYPE; removes
1232 level of indirection, if needed. */
1233
1234 static struct type *
1235 desc_base_type (struct type *type)
1236 {
1237 if (type == NULL)
1238 return NULL;
1239 type = ada_check_typedef (type);
1240 if (type != NULL
1241 && (TYPE_CODE (type) == TYPE_CODE_PTR
1242 || TYPE_CODE (type) == TYPE_CODE_REF))
1243 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1244 else
1245 return type;
1246 }
1247
1248 /* True iff TYPE indicates a "thin" array pointer type. */
1249
1250 static int
1251 is_thin_pntr (struct type *type)
1252 {
1253 return
1254 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1255 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1256 }
1257
1258 /* The descriptor type for thin pointer type TYPE. */
1259
1260 static struct type *
1261 thin_descriptor_type (struct type *type)
1262 {
1263 struct type *base_type = desc_base_type (type);
1264 if (base_type == NULL)
1265 return NULL;
1266 if (is_suffix (ada_type_name (base_type), "___XVE"))
1267 return base_type;
1268 else
1269 {
1270 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1271 if (alt_type == NULL)
1272 return base_type;
1273 else
1274 return alt_type;
1275 }
1276 }
1277
1278 /* A pointer to the array data for thin-pointer value VAL. */
1279
1280 static struct value *
1281 thin_data_pntr (struct value *val)
1282 {
1283 struct type *type = value_type (val);
1284 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1285 data_type = lookup_pointer_type (data_type);
1286
1287 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1288 return value_cast (data_type, value_copy (val));
1289 else
1290 return value_from_longest (data_type, value_address (val));
1291 }
1292
1293 /* True iff TYPE indicates a "thick" array pointer type. */
1294
1295 static int
1296 is_thick_pntr (struct type *type)
1297 {
1298 type = desc_base_type (type);
1299 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1300 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1301 }
1302
1303 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1304 pointer to one, the type of its bounds data; otherwise, NULL. */
1305
1306 static struct type *
1307 desc_bounds_type (struct type *type)
1308 {
1309 struct type *r;
1310
1311 type = desc_base_type (type);
1312
1313 if (type == NULL)
1314 return NULL;
1315 else if (is_thin_pntr (type))
1316 {
1317 type = thin_descriptor_type (type);
1318 if (type == NULL)
1319 return NULL;
1320 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1321 if (r != NULL)
1322 return ada_check_typedef (r);
1323 }
1324 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1325 {
1326 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1327 if (r != NULL)
1328 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1329 }
1330 return NULL;
1331 }
1332
1333 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1334 one, a pointer to its bounds data. Otherwise NULL. */
1335
1336 static struct value *
1337 desc_bounds (struct value *arr)
1338 {
1339 struct type *type = ada_check_typedef (value_type (arr));
1340 if (is_thin_pntr (type))
1341 {
1342 struct type *bounds_type =
1343 desc_bounds_type (thin_descriptor_type (type));
1344 LONGEST addr;
1345
1346 if (bounds_type == NULL)
1347 error (_("Bad GNAT array descriptor"));
1348
1349 /* NOTE: The following calculation is not really kosher, but
1350 since desc_type is an XVE-encoded type (and shouldn't be),
1351 the correct calculation is a real pain. FIXME (and fix GCC). */
1352 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1353 addr = value_as_long (arr);
1354 else
1355 addr = value_address (arr);
1356
1357 return
1358 value_from_longest (lookup_pointer_type (bounds_type),
1359 addr - TYPE_LENGTH (bounds_type));
1360 }
1361
1362 else if (is_thick_pntr (type))
1363 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1364 _("Bad GNAT array descriptor"));
1365 else
1366 return NULL;
1367 }
1368
1369 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1370 position of the field containing the address of the bounds data. */
1371
1372 static int
1373 fat_pntr_bounds_bitpos (struct type *type)
1374 {
1375 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1376 }
1377
1378 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1379 size of the field containing the address of the bounds data. */
1380
1381 static int
1382 fat_pntr_bounds_bitsize (struct type *type)
1383 {
1384 type = desc_base_type (type);
1385
1386 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1387 return TYPE_FIELD_BITSIZE (type, 1);
1388 else
1389 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1390 }
1391
1392 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1393 pointer to one, the type of its array data (a array-with-no-bounds type);
1394 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1395 data. */
1396
1397 static struct type *
1398 desc_data_target_type (struct type *type)
1399 {
1400 type = desc_base_type (type);
1401
1402 /* NOTE: The following is bogus; see comment in desc_bounds. */
1403 if (is_thin_pntr (type))
1404 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1405 else if (is_thick_pntr (type))
1406 {
1407 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1408
1409 if (data_type
1410 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1411 return TYPE_TARGET_TYPE (data_type);
1412 }
1413
1414 return NULL;
1415 }
1416
1417 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1418 its array data. */
1419
1420 static struct value *
1421 desc_data (struct value *arr)
1422 {
1423 struct type *type = value_type (arr);
1424 if (is_thin_pntr (type))
1425 return thin_data_pntr (arr);
1426 else if (is_thick_pntr (type))
1427 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1428 _("Bad GNAT array descriptor"));
1429 else
1430 return NULL;
1431 }
1432
1433
1434 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1435 position of the field containing the address of the data. */
1436
1437 static int
1438 fat_pntr_data_bitpos (struct type *type)
1439 {
1440 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1441 }
1442
1443 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1444 size of the field containing the address of the data. */
1445
1446 static int
1447 fat_pntr_data_bitsize (struct type *type)
1448 {
1449 type = desc_base_type (type);
1450
1451 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1452 return TYPE_FIELD_BITSIZE (type, 0);
1453 else
1454 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1455 }
1456
1457 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1458 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1459 bound, if WHICH is 1. The first bound is I=1. */
1460
1461 static struct value *
1462 desc_one_bound (struct value *bounds, int i, int which)
1463 {
1464 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1465 _("Bad GNAT array descriptor bounds"));
1466 }
1467
1468 /* If BOUNDS is an array-bounds structure type, return the bit position
1469 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1470 bound, if WHICH is 1. The first bound is I=1. */
1471
1472 static int
1473 desc_bound_bitpos (struct type *type, int i, int which)
1474 {
1475 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1476 }
1477
1478 /* If BOUNDS is an array-bounds structure type, return the bit field size
1479 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1480 bound, if WHICH is 1. The first bound is I=1. */
1481
1482 static int
1483 desc_bound_bitsize (struct type *type, int i, int which)
1484 {
1485 type = desc_base_type (type);
1486
1487 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1488 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1489 else
1490 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1491 }
1492
1493 /* If TYPE is the type of an array-bounds structure, the type of its
1494 Ith bound (numbering from 1). Otherwise, NULL. */
1495
1496 static struct type *
1497 desc_index_type (struct type *type, int i)
1498 {
1499 type = desc_base_type (type);
1500
1501 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1502 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1503 else
1504 return NULL;
1505 }
1506
1507 /* The number of index positions in the array-bounds type TYPE.
1508 Return 0 if TYPE is NULL. */
1509
1510 static int
1511 desc_arity (struct type *type)
1512 {
1513 type = desc_base_type (type);
1514
1515 if (type != NULL)
1516 return TYPE_NFIELDS (type) / 2;
1517 return 0;
1518 }
1519
1520 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1521 an array descriptor type (representing an unconstrained array
1522 type). */
1523
1524 static int
1525 ada_is_direct_array_type (struct type *type)
1526 {
1527 if (type == NULL)
1528 return 0;
1529 type = ada_check_typedef (type);
1530 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1531 || ada_is_array_descriptor_type (type));
1532 }
1533
1534 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1535 * to one. */
1536
1537 static int
1538 ada_is_array_type (struct type *type)
1539 {
1540 while (type != NULL
1541 && (TYPE_CODE (type) == TYPE_CODE_PTR
1542 || TYPE_CODE (type) == TYPE_CODE_REF))
1543 type = TYPE_TARGET_TYPE (type);
1544 return ada_is_direct_array_type (type);
1545 }
1546
1547 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1548
1549 int
1550 ada_is_simple_array_type (struct type *type)
1551 {
1552 if (type == NULL)
1553 return 0;
1554 type = ada_check_typedef (type);
1555 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1556 || (TYPE_CODE (type) == TYPE_CODE_PTR
1557 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1558 }
1559
1560 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1561
1562 int
1563 ada_is_array_descriptor_type (struct type *type)
1564 {
1565 struct type *data_type = desc_data_target_type (type);
1566
1567 if (type == NULL)
1568 return 0;
1569 type = ada_check_typedef (type);
1570 return (data_type != NULL
1571 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1572 && desc_arity (desc_bounds_type (type)) > 0);
1573 }
1574
1575 /* Non-zero iff type is a partially mal-formed GNAT array
1576 descriptor. FIXME: This is to compensate for some problems with
1577 debugging output from GNAT. Re-examine periodically to see if it
1578 is still needed. */
1579
1580 int
1581 ada_is_bogus_array_descriptor (struct type *type)
1582 {
1583 return
1584 type != NULL
1585 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1586 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1587 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1588 && !ada_is_array_descriptor_type (type);
1589 }
1590
1591
1592 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1593 (fat pointer) returns the type of the array data described---specifically,
1594 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1595 in from the descriptor; otherwise, they are left unspecified. If
1596 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1597 returns NULL. The result is simply the type of ARR if ARR is not
1598 a descriptor. */
1599 struct type *
1600 ada_type_of_array (struct value *arr, int bounds)
1601 {
1602 if (ada_is_packed_array_type (value_type (arr)))
1603 return decode_packed_array_type (value_type (arr));
1604
1605 if (!ada_is_array_descriptor_type (value_type (arr)))
1606 return value_type (arr);
1607
1608 if (!bounds)
1609 return
1610 ada_check_typedef (desc_data_target_type (value_type (arr)));
1611 else
1612 {
1613 struct type *elt_type;
1614 int arity;
1615 struct value *descriptor;
1616 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1617
1618 elt_type = ada_array_element_type (value_type (arr), -1);
1619 arity = ada_array_arity (value_type (arr));
1620
1621 if (elt_type == NULL || arity == 0)
1622 return ada_check_typedef (value_type (arr));
1623
1624 descriptor = desc_bounds (arr);
1625 if (value_as_long (descriptor) == 0)
1626 return NULL;
1627 while (arity > 0)
1628 {
1629 struct type *range_type = alloc_type (objf);
1630 struct type *array_type = alloc_type (objf);
1631 struct value *low = desc_one_bound (descriptor, arity, 0);
1632 struct value *high = desc_one_bound (descriptor, arity, 1);
1633 arity -= 1;
1634
1635 create_range_type (range_type, value_type (low),
1636 longest_to_int (value_as_long (low)),
1637 longest_to_int (value_as_long (high)));
1638 elt_type = create_array_type (array_type, elt_type, range_type);
1639 }
1640
1641 return lookup_pointer_type (elt_type);
1642 }
1643 }
1644
1645 /* If ARR does not represent an array, returns ARR unchanged.
1646 Otherwise, returns either a standard GDB array with bounds set
1647 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1648 GDB array. Returns NULL if ARR is a null fat pointer. */
1649
1650 struct value *
1651 ada_coerce_to_simple_array_ptr (struct value *arr)
1652 {
1653 if (ada_is_array_descriptor_type (value_type (arr)))
1654 {
1655 struct type *arrType = ada_type_of_array (arr, 1);
1656 if (arrType == NULL)
1657 return NULL;
1658 return value_cast (arrType, value_copy (desc_data (arr)));
1659 }
1660 else if (ada_is_packed_array_type (value_type (arr)))
1661 return decode_packed_array (arr);
1662 else
1663 return arr;
1664 }
1665
1666 /* If ARR does not represent an array, returns ARR unchanged.
1667 Otherwise, returns a standard GDB array describing ARR (which may
1668 be ARR itself if it already is in the proper form). */
1669
1670 static struct value *
1671 ada_coerce_to_simple_array (struct value *arr)
1672 {
1673 if (ada_is_array_descriptor_type (value_type (arr)))
1674 {
1675 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1676 if (arrVal == NULL)
1677 error (_("Bounds unavailable for null array pointer."));
1678 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1679 return value_ind (arrVal);
1680 }
1681 else if (ada_is_packed_array_type (value_type (arr)))
1682 return decode_packed_array (arr);
1683 else
1684 return arr;
1685 }
1686
1687 /* If TYPE represents a GNAT array type, return it translated to an
1688 ordinary GDB array type (possibly with BITSIZE fields indicating
1689 packing). For other types, is the identity. */
1690
1691 struct type *
1692 ada_coerce_to_simple_array_type (struct type *type)
1693 {
1694 if (ada_is_packed_array_type (type))
1695 return decode_packed_array_type (type);
1696
1697 if (ada_is_array_descriptor_type (type))
1698 return ada_check_typedef (desc_data_target_type (type));
1699
1700 return type;
1701 }
1702
1703 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1704
1705 int
1706 ada_is_packed_array_type (struct type *type)
1707 {
1708 if (type == NULL)
1709 return 0;
1710 type = desc_base_type (type);
1711 type = ada_check_typedef (type);
1712 return
1713 ada_type_name (type) != NULL
1714 && strstr (ada_type_name (type), "___XP") != NULL;
1715 }
1716
1717 /* Given that TYPE is a standard GDB array type with all bounds filled
1718 in, and that the element size of its ultimate scalar constituents
1719 (that is, either its elements, or, if it is an array of arrays, its
1720 elements' elements, etc.) is *ELT_BITS, return an identical type,
1721 but with the bit sizes of its elements (and those of any
1722 constituent arrays) recorded in the BITSIZE components of its
1723 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1724 in bits. */
1725
1726 static struct type *
1727 packed_array_type (struct type *type, long *elt_bits)
1728 {
1729 struct type *new_elt_type;
1730 struct type *new_type;
1731 LONGEST low_bound, high_bound;
1732
1733 type = ada_check_typedef (type);
1734 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1735 return type;
1736
1737 new_type = alloc_type (TYPE_OBJFILE (type));
1738 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1739 elt_bits);
1740 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1741 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1742 TYPE_NAME (new_type) = ada_type_name (type);
1743
1744 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1745 &low_bound, &high_bound) < 0)
1746 low_bound = high_bound = 0;
1747 if (high_bound < low_bound)
1748 *elt_bits = TYPE_LENGTH (new_type) = 0;
1749 else
1750 {
1751 *elt_bits *= (high_bound - low_bound + 1);
1752 TYPE_LENGTH (new_type) =
1753 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1754 }
1755
1756 TYPE_FIXED_INSTANCE (new_type) = 1;
1757 return new_type;
1758 }
1759
1760 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1761
1762 static struct type *
1763 decode_packed_array_type (struct type *type)
1764 {
1765 struct symbol *sym;
1766 struct block **blocks;
1767 char *raw_name = ada_type_name (ada_check_typedef (type));
1768 char *name;
1769 char *tail;
1770 struct type *shadow_type;
1771 long bits;
1772 int i, n;
1773
1774 if (!raw_name)
1775 raw_name = ada_type_name (desc_base_type (type));
1776
1777 if (!raw_name)
1778 return NULL;
1779
1780 name = (char *) alloca (strlen (raw_name) + 1);
1781 tail = strstr (raw_name, "___XP");
1782 type = desc_base_type (type);
1783
1784 memcpy (name, raw_name, tail - raw_name);
1785 name[tail - raw_name] = '\000';
1786
1787 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1788 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1789 {
1790 lim_warning (_("could not find bounds information on packed array"));
1791 return NULL;
1792 }
1793 shadow_type = SYMBOL_TYPE (sym);
1794 CHECK_TYPEDEF (shadow_type);
1795
1796 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1797 {
1798 lim_warning (_("could not understand bounds information on packed array"));
1799 return NULL;
1800 }
1801
1802 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1803 {
1804 lim_warning
1805 (_("could not understand bit size information on packed array"));
1806 return NULL;
1807 }
1808
1809 return packed_array_type (shadow_type, &bits);
1810 }
1811
1812 /* Given that ARR is a struct value *indicating a GNAT packed array,
1813 returns a simple array that denotes that array. Its type is a
1814 standard GDB array type except that the BITSIZEs of the array
1815 target types are set to the number of bits in each element, and the
1816 type length is set appropriately. */
1817
1818 static struct value *
1819 decode_packed_array (struct value *arr)
1820 {
1821 struct type *type;
1822
1823 arr = ada_coerce_ref (arr);
1824 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1825 arr = ada_value_ind (arr);
1826
1827 type = decode_packed_array_type (value_type (arr));
1828 if (type == NULL)
1829 {
1830 error (_("can't unpack array"));
1831 return NULL;
1832 }
1833
1834 if (gdbarch_bits_big_endian (current_gdbarch)
1835 && ada_is_modular_type (value_type (arr)))
1836 {
1837 /* This is a (right-justified) modular type representing a packed
1838 array with no wrapper. In order to interpret the value through
1839 the (left-justified) packed array type we just built, we must
1840 first left-justify it. */
1841 int bit_size, bit_pos;
1842 ULONGEST mod;
1843
1844 mod = ada_modulus (value_type (arr)) - 1;
1845 bit_size = 0;
1846 while (mod > 0)
1847 {
1848 bit_size += 1;
1849 mod >>= 1;
1850 }
1851 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1852 arr = ada_value_primitive_packed_val (arr, NULL,
1853 bit_pos / HOST_CHAR_BIT,
1854 bit_pos % HOST_CHAR_BIT,
1855 bit_size,
1856 type);
1857 }
1858
1859 return coerce_unspec_val_to_type (arr, type);
1860 }
1861
1862
1863 /* The value of the element of packed array ARR at the ARITY indices
1864 given in IND. ARR must be a simple array. */
1865
1866 static struct value *
1867 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1868 {
1869 int i;
1870 int bits, elt_off, bit_off;
1871 long elt_total_bit_offset;
1872 struct type *elt_type;
1873 struct value *v;
1874
1875 bits = 0;
1876 elt_total_bit_offset = 0;
1877 elt_type = ada_check_typedef (value_type (arr));
1878 for (i = 0; i < arity; i += 1)
1879 {
1880 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1881 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1882 error
1883 (_("attempt to do packed indexing of something other than a packed array"));
1884 else
1885 {
1886 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1887 LONGEST lowerbound, upperbound;
1888 LONGEST idx;
1889
1890 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1891 {
1892 lim_warning (_("don't know bounds of array"));
1893 lowerbound = upperbound = 0;
1894 }
1895
1896 idx = pos_atr (ind[i]);
1897 if (idx < lowerbound || idx > upperbound)
1898 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1899 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1900 elt_total_bit_offset += (idx - lowerbound) * bits;
1901 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1902 }
1903 }
1904 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1905 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1906
1907 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1908 bits, elt_type);
1909 return v;
1910 }
1911
1912 /* Non-zero iff TYPE includes negative integer values. */
1913
1914 static int
1915 has_negatives (struct type *type)
1916 {
1917 switch (TYPE_CODE (type))
1918 {
1919 default:
1920 return 0;
1921 case TYPE_CODE_INT:
1922 return !TYPE_UNSIGNED (type);
1923 case TYPE_CODE_RANGE:
1924 return TYPE_LOW_BOUND (type) < 0;
1925 }
1926 }
1927
1928
1929 /* Create a new value of type TYPE from the contents of OBJ starting
1930 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1931 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1932 assigning through the result will set the field fetched from.
1933 VALADDR is ignored unless OBJ is NULL, in which case,
1934 VALADDR+OFFSET must address the start of storage containing the
1935 packed value. The value returned in this case is never an lval.
1936 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1937
1938 struct value *
1939 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1940 long offset, int bit_offset, int bit_size,
1941 struct type *type)
1942 {
1943 struct value *v;
1944 int src, /* Index into the source area */
1945 targ, /* Index into the target area */
1946 srcBitsLeft, /* Number of source bits left to move */
1947 nsrc, ntarg, /* Number of source and target bytes */
1948 unusedLS, /* Number of bits in next significant
1949 byte of source that are unused */
1950 accumSize; /* Number of meaningful bits in accum */
1951 unsigned char *bytes; /* First byte containing data to unpack */
1952 unsigned char *unpacked;
1953 unsigned long accum; /* Staging area for bits being transferred */
1954 unsigned char sign;
1955 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1956 /* Transmit bytes from least to most significant; delta is the direction
1957 the indices move. */
1958 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
1959
1960 type = ada_check_typedef (type);
1961
1962 if (obj == NULL)
1963 {
1964 v = allocate_value (type);
1965 bytes = (unsigned char *) (valaddr + offset);
1966 }
1967 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
1968 {
1969 v = value_at (type,
1970 value_address (obj) + offset);
1971 bytes = (unsigned char *) alloca (len);
1972 read_memory (value_address (v), bytes, len);
1973 }
1974 else
1975 {
1976 v = allocate_value (type);
1977 bytes = (unsigned char *) value_contents (obj) + offset;
1978 }
1979
1980 if (obj != NULL)
1981 {
1982 CORE_ADDR new_addr;
1983 set_value_component_location (v, obj);
1984 new_addr = value_address (obj) + offset;
1985 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1986 set_value_bitsize (v, bit_size);
1987 if (value_bitpos (v) >= HOST_CHAR_BIT)
1988 {
1989 ++new_addr;
1990 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1991 }
1992 set_value_address (v, new_addr);
1993 }
1994 else
1995 set_value_bitsize (v, bit_size);
1996 unpacked = (unsigned char *) value_contents (v);
1997
1998 srcBitsLeft = bit_size;
1999 nsrc = len;
2000 ntarg = TYPE_LENGTH (type);
2001 sign = 0;
2002 if (bit_size == 0)
2003 {
2004 memset (unpacked, 0, TYPE_LENGTH (type));
2005 return v;
2006 }
2007 else if (gdbarch_bits_big_endian (current_gdbarch))
2008 {
2009 src = len - 1;
2010 if (has_negatives (type)
2011 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2012 sign = ~0;
2013
2014 unusedLS =
2015 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2016 % HOST_CHAR_BIT;
2017
2018 switch (TYPE_CODE (type))
2019 {
2020 case TYPE_CODE_ARRAY:
2021 case TYPE_CODE_UNION:
2022 case TYPE_CODE_STRUCT:
2023 /* Non-scalar values must be aligned at a byte boundary... */
2024 accumSize =
2025 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2026 /* ... And are placed at the beginning (most-significant) bytes
2027 of the target. */
2028 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2029 ntarg = targ + 1;
2030 break;
2031 default:
2032 accumSize = 0;
2033 targ = TYPE_LENGTH (type) - 1;
2034 break;
2035 }
2036 }
2037 else
2038 {
2039 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2040
2041 src = targ = 0;
2042 unusedLS = bit_offset;
2043 accumSize = 0;
2044
2045 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2046 sign = ~0;
2047 }
2048
2049 accum = 0;
2050 while (nsrc > 0)
2051 {
2052 /* Mask for removing bits of the next source byte that are not
2053 part of the value. */
2054 unsigned int unusedMSMask =
2055 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2056 1;
2057 /* Sign-extend bits for this byte. */
2058 unsigned int signMask = sign & ~unusedMSMask;
2059 accum |=
2060 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2061 accumSize += HOST_CHAR_BIT - unusedLS;
2062 if (accumSize >= HOST_CHAR_BIT)
2063 {
2064 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2065 accumSize -= HOST_CHAR_BIT;
2066 accum >>= HOST_CHAR_BIT;
2067 ntarg -= 1;
2068 targ += delta;
2069 }
2070 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2071 unusedLS = 0;
2072 nsrc -= 1;
2073 src += delta;
2074 }
2075 while (ntarg > 0)
2076 {
2077 accum |= sign << accumSize;
2078 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2079 accumSize -= HOST_CHAR_BIT;
2080 accum >>= HOST_CHAR_BIT;
2081 ntarg -= 1;
2082 targ += delta;
2083 }
2084
2085 return v;
2086 }
2087
2088 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2089 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2090 not overlap. */
2091 static void
2092 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2093 int src_offset, int n)
2094 {
2095 unsigned int accum, mask;
2096 int accum_bits, chunk_size;
2097
2098 target += targ_offset / HOST_CHAR_BIT;
2099 targ_offset %= HOST_CHAR_BIT;
2100 source += src_offset / HOST_CHAR_BIT;
2101 src_offset %= HOST_CHAR_BIT;
2102 if (gdbarch_bits_big_endian (current_gdbarch))
2103 {
2104 accum = (unsigned char) *source;
2105 source += 1;
2106 accum_bits = HOST_CHAR_BIT - src_offset;
2107
2108 while (n > 0)
2109 {
2110 int unused_right;
2111 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2112 accum_bits += HOST_CHAR_BIT;
2113 source += 1;
2114 chunk_size = HOST_CHAR_BIT - targ_offset;
2115 if (chunk_size > n)
2116 chunk_size = n;
2117 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2118 mask = ((1 << chunk_size) - 1) << unused_right;
2119 *target =
2120 (*target & ~mask)
2121 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2122 n -= chunk_size;
2123 accum_bits -= chunk_size;
2124 target += 1;
2125 targ_offset = 0;
2126 }
2127 }
2128 else
2129 {
2130 accum = (unsigned char) *source >> src_offset;
2131 source += 1;
2132 accum_bits = HOST_CHAR_BIT - src_offset;
2133
2134 while (n > 0)
2135 {
2136 accum = accum + ((unsigned char) *source << accum_bits);
2137 accum_bits += HOST_CHAR_BIT;
2138 source += 1;
2139 chunk_size = HOST_CHAR_BIT - targ_offset;
2140 if (chunk_size > n)
2141 chunk_size = n;
2142 mask = ((1 << chunk_size) - 1) << targ_offset;
2143 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2144 n -= chunk_size;
2145 accum_bits -= chunk_size;
2146 accum >>= chunk_size;
2147 target += 1;
2148 targ_offset = 0;
2149 }
2150 }
2151 }
2152
2153 /* Store the contents of FROMVAL into the location of TOVAL.
2154 Return a new value with the location of TOVAL and contents of
2155 FROMVAL. Handles assignment into packed fields that have
2156 floating-point or non-scalar types. */
2157
2158 static struct value *
2159 ada_value_assign (struct value *toval, struct value *fromval)
2160 {
2161 struct type *type = value_type (toval);
2162 int bits = value_bitsize (toval);
2163
2164 toval = ada_coerce_ref (toval);
2165 fromval = ada_coerce_ref (fromval);
2166
2167 if (ada_is_direct_array_type (value_type (toval)))
2168 toval = ada_coerce_to_simple_array (toval);
2169 if (ada_is_direct_array_type (value_type (fromval)))
2170 fromval = ada_coerce_to_simple_array (fromval);
2171
2172 if (!deprecated_value_modifiable (toval))
2173 error (_("Left operand of assignment is not a modifiable lvalue."));
2174
2175 if (VALUE_LVAL (toval) == lval_memory
2176 && bits > 0
2177 && (TYPE_CODE (type) == TYPE_CODE_FLT
2178 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2179 {
2180 int len = (value_bitpos (toval)
2181 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2182 int from_size;
2183 char *buffer = (char *) alloca (len);
2184 struct value *val;
2185 CORE_ADDR to_addr = value_address (toval);
2186
2187 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2188 fromval = value_cast (type, fromval);
2189
2190 read_memory (to_addr, buffer, len);
2191 from_size = value_bitsize (fromval);
2192 if (from_size == 0)
2193 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2194 if (gdbarch_bits_big_endian (current_gdbarch))
2195 move_bits (buffer, value_bitpos (toval),
2196 value_contents (fromval), from_size - bits, bits);
2197 else
2198 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2199 0, bits);
2200 write_memory (to_addr, buffer, len);
2201 if (deprecated_memory_changed_hook)
2202 deprecated_memory_changed_hook (to_addr, len);
2203
2204 val = value_copy (toval);
2205 memcpy (value_contents_raw (val), value_contents (fromval),
2206 TYPE_LENGTH (type));
2207 deprecated_set_value_type (val, type);
2208
2209 return val;
2210 }
2211
2212 return value_assign (toval, fromval);
2213 }
2214
2215
2216 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2217 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2218 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2219 * COMPONENT, and not the inferior's memory. The current contents
2220 * of COMPONENT are ignored. */
2221 static void
2222 value_assign_to_component (struct value *container, struct value *component,
2223 struct value *val)
2224 {
2225 LONGEST offset_in_container =
2226 (LONGEST) (value_address (component) - value_address (container));
2227 int bit_offset_in_container =
2228 value_bitpos (component) - value_bitpos (container);
2229 int bits;
2230
2231 val = value_cast (value_type (component), val);
2232
2233 if (value_bitsize (component) == 0)
2234 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2235 else
2236 bits = value_bitsize (component);
2237
2238 if (gdbarch_bits_big_endian (current_gdbarch))
2239 move_bits (value_contents_writeable (container) + offset_in_container,
2240 value_bitpos (container) + bit_offset_in_container,
2241 value_contents (val),
2242 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2243 bits);
2244 else
2245 move_bits (value_contents_writeable (container) + offset_in_container,
2246 value_bitpos (container) + bit_offset_in_container,
2247 value_contents (val), 0, bits);
2248 }
2249
2250 /* The value of the element of array ARR at the ARITY indices given in IND.
2251 ARR may be either a simple array, GNAT array descriptor, or pointer
2252 thereto. */
2253
2254 struct value *
2255 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2256 {
2257 int k;
2258 struct value *elt;
2259 struct type *elt_type;
2260
2261 elt = ada_coerce_to_simple_array (arr);
2262
2263 elt_type = ada_check_typedef (value_type (elt));
2264 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2265 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2266 return value_subscript_packed (elt, arity, ind);
2267
2268 for (k = 0; k < arity; k += 1)
2269 {
2270 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2271 error (_("too many subscripts (%d expected)"), k);
2272 elt = value_subscript (elt, value_pos_atr (builtin_type_int32, ind[k]));
2273 }
2274 return elt;
2275 }
2276
2277 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2278 value of the element of *ARR at the ARITY indices given in
2279 IND. Does not read the entire array into memory. */
2280
2281 static struct value *
2282 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2283 struct value **ind)
2284 {
2285 int k;
2286
2287 for (k = 0; k < arity; k += 1)
2288 {
2289 LONGEST lwb, upb;
2290 struct value *idx;
2291
2292 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2293 error (_("too many subscripts (%d expected)"), k);
2294 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2295 value_copy (arr));
2296 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2297 idx = value_pos_atr (builtin_type_int32, ind[k]);
2298 if (lwb != 0)
2299 idx = value_binop (idx, value_from_longest (value_type (idx), lwb),
2300 BINOP_SUB);
2301
2302 arr = value_ptradd (arr, idx);
2303 type = TYPE_TARGET_TYPE (type);
2304 }
2305
2306 return value_ind (arr);
2307 }
2308
2309 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2310 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2311 elements starting at index LOW. The lower bound of this array is LOW, as
2312 per Ada rules. */
2313 static struct value *
2314 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2315 int low, int high)
2316 {
2317 CORE_ADDR base = value_as_address (array_ptr)
2318 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2319 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2320 struct type *index_type =
2321 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2322 low, high);
2323 struct type *slice_type =
2324 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2325 return value_at_lazy (slice_type, base);
2326 }
2327
2328
2329 static struct value *
2330 ada_value_slice (struct value *array, int low, int high)
2331 {
2332 struct type *type = value_type (array);
2333 struct type *index_type =
2334 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2335 struct type *slice_type =
2336 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2337 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2338 }
2339
2340 /* If type is a record type in the form of a standard GNAT array
2341 descriptor, returns the number of dimensions for type. If arr is a
2342 simple array, returns the number of "array of"s that prefix its
2343 type designation. Otherwise, returns 0. */
2344
2345 int
2346 ada_array_arity (struct type *type)
2347 {
2348 int arity;
2349
2350 if (type == NULL)
2351 return 0;
2352
2353 type = desc_base_type (type);
2354
2355 arity = 0;
2356 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2357 return desc_arity (desc_bounds_type (type));
2358 else
2359 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2360 {
2361 arity += 1;
2362 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2363 }
2364
2365 return arity;
2366 }
2367
2368 /* If TYPE is a record type in the form of a standard GNAT array
2369 descriptor or a simple array type, returns the element type for
2370 TYPE after indexing by NINDICES indices, or by all indices if
2371 NINDICES is -1. Otherwise, returns NULL. */
2372
2373 struct type *
2374 ada_array_element_type (struct type *type, int nindices)
2375 {
2376 type = desc_base_type (type);
2377
2378 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2379 {
2380 int k;
2381 struct type *p_array_type;
2382
2383 p_array_type = desc_data_target_type (type);
2384
2385 k = ada_array_arity (type);
2386 if (k == 0)
2387 return NULL;
2388
2389 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2390 if (nindices >= 0 && k > nindices)
2391 k = nindices;
2392 while (k > 0 && p_array_type != NULL)
2393 {
2394 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2395 k -= 1;
2396 }
2397 return p_array_type;
2398 }
2399 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2400 {
2401 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2402 {
2403 type = TYPE_TARGET_TYPE (type);
2404 nindices -= 1;
2405 }
2406 return type;
2407 }
2408
2409 return NULL;
2410 }
2411
2412 /* The type of nth index in arrays of given type (n numbering from 1).
2413 Does not examine memory. */
2414
2415 struct type *
2416 ada_index_type (struct type *type, int n)
2417 {
2418 struct type *result_type;
2419
2420 type = desc_base_type (type);
2421
2422 if (n > ada_array_arity (type))
2423 return NULL;
2424
2425 if (ada_is_simple_array_type (type))
2426 {
2427 int i;
2428
2429 for (i = 1; i < n; i += 1)
2430 type = TYPE_TARGET_TYPE (type);
2431 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2432 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2433 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2434 perhaps stabsread.c would make more sense. */
2435 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2436 result_type = builtin_type_int32;
2437
2438 return result_type;
2439 }
2440 else
2441 return desc_index_type (desc_bounds_type (type), n);
2442 }
2443
2444 /* Given that arr is an array type, returns the lower bound of the
2445 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2446 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2447 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2448 bounds type. It works for other arrays with bounds supplied by
2449 run-time quantities other than discriminants. */
2450
2451 static LONGEST
2452 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2453 struct type ** typep)
2454 {
2455 struct type *type, *index_type_desc, *index_type;
2456 LONGEST retval;
2457
2458 gdb_assert (which == 0 || which == 1);
2459
2460 if (ada_is_packed_array_type (arr_type))
2461 arr_type = decode_packed_array_type (arr_type);
2462
2463 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2464 {
2465 if (typep != NULL)
2466 *typep = builtin_type_int32;
2467 return (LONGEST) - which;
2468 }
2469
2470 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2471 type = TYPE_TARGET_TYPE (arr_type);
2472 else
2473 type = arr_type;
2474
2475 index_type_desc = ada_find_parallel_type (type, "___XA");
2476 if (index_type_desc != NULL)
2477 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2478 NULL, TYPE_OBJFILE (arr_type));
2479 else
2480 {
2481 while (n > 1)
2482 {
2483 type = TYPE_TARGET_TYPE (type);
2484 n -= 1;
2485 }
2486
2487 index_type = TYPE_INDEX_TYPE (type);
2488 }
2489
2490 switch (TYPE_CODE (index_type))
2491 {
2492 case TYPE_CODE_RANGE:
2493 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2494 : TYPE_HIGH_BOUND (index_type);
2495 break;
2496 case TYPE_CODE_ENUM:
2497 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2498 : TYPE_FIELD_BITPOS (index_type,
2499 TYPE_NFIELDS (index_type) - 1);
2500 break;
2501 default:
2502 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2503 }
2504
2505 if (typep != NULL)
2506 *typep = index_type;
2507
2508 return retval;
2509 }
2510
2511 /* Given that arr is an array value, returns the lower bound of the
2512 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2513 WHICH is 1. This routine will also work for arrays with bounds
2514 supplied by run-time quantities other than discriminants. */
2515
2516 struct value *
2517 ada_array_bound (struct value *arr, int n, int which)
2518 {
2519 struct type *arr_type = value_type (arr);
2520
2521 if (ada_is_packed_array_type (arr_type))
2522 return ada_array_bound (decode_packed_array (arr), n, which);
2523 else if (ada_is_simple_array_type (arr_type))
2524 {
2525 struct type *type;
2526 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2527 return value_from_longest (type, v);
2528 }
2529 else
2530 return desc_one_bound (desc_bounds (arr), n, which);
2531 }
2532
2533 /* Given that arr is an array value, returns the length of the
2534 nth index. This routine will also work for arrays with bounds
2535 supplied by run-time quantities other than discriminants.
2536 Does not work for arrays indexed by enumeration types with representation
2537 clauses at the moment. */
2538
2539 static struct value *
2540 ada_array_length (struct value *arr, int n)
2541 {
2542 struct type *arr_type = ada_check_typedef (value_type (arr));
2543
2544 if (ada_is_packed_array_type (arr_type))
2545 return ada_array_length (decode_packed_array (arr), n);
2546
2547 if (ada_is_simple_array_type (arr_type))
2548 {
2549 struct type *type;
2550 LONGEST v =
2551 ada_array_bound_from_type (arr_type, n, 1, &type) -
2552 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2553 return value_from_longest (type, v);
2554 }
2555 else
2556 return
2557 value_from_longest (builtin_type_int32,
2558 value_as_long (desc_one_bound (desc_bounds (arr),
2559 n, 1))
2560 - value_as_long (desc_one_bound (desc_bounds (arr),
2561 n, 0)) + 1);
2562 }
2563
2564 /* An empty array whose type is that of ARR_TYPE (an array type),
2565 with bounds LOW to LOW-1. */
2566
2567 static struct value *
2568 empty_array (struct type *arr_type, int low)
2569 {
2570 struct type *index_type =
2571 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2572 low, low - 1);
2573 struct type *elt_type = ada_array_element_type (arr_type, 1);
2574 return allocate_value (create_array_type (NULL, elt_type, index_type));
2575 }
2576 \f
2577
2578 /* Name resolution */
2579
2580 /* The "decoded" name for the user-definable Ada operator corresponding
2581 to OP. */
2582
2583 static const char *
2584 ada_decoded_op_name (enum exp_opcode op)
2585 {
2586 int i;
2587
2588 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2589 {
2590 if (ada_opname_table[i].op == op)
2591 return ada_opname_table[i].decoded;
2592 }
2593 error (_("Could not find operator name for opcode"));
2594 }
2595
2596
2597 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2598 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2599 undefined namespace) and converts operators that are
2600 user-defined into appropriate function calls. If CONTEXT_TYPE is
2601 non-null, it provides a preferred result type [at the moment, only
2602 type void has any effect---causing procedures to be preferred over
2603 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2604 return type is preferred. May change (expand) *EXP. */
2605
2606 static void
2607 resolve (struct expression **expp, int void_context_p)
2608 {
2609 int pc;
2610 pc = 0;
2611 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2612 }
2613
2614 /* Resolve the operator of the subexpression beginning at
2615 position *POS of *EXPP. "Resolving" consists of replacing
2616 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2617 with their resolutions, replacing built-in operators with
2618 function calls to user-defined operators, where appropriate, and,
2619 when DEPROCEDURE_P is non-zero, converting function-valued variables
2620 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2621 are as in ada_resolve, above. */
2622
2623 static struct value *
2624 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2625 struct type *context_type)
2626 {
2627 int pc = *pos;
2628 int i;
2629 struct expression *exp; /* Convenience: == *expp. */
2630 enum exp_opcode op = (*expp)->elts[pc].opcode;
2631 struct value **argvec; /* Vector of operand types (alloca'ed). */
2632 int nargs; /* Number of operands. */
2633 int oplen;
2634
2635 argvec = NULL;
2636 nargs = 0;
2637 exp = *expp;
2638
2639 /* Pass one: resolve operands, saving their types and updating *pos,
2640 if needed. */
2641 switch (op)
2642 {
2643 case OP_FUNCALL:
2644 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2645 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2646 *pos += 7;
2647 else
2648 {
2649 *pos += 3;
2650 resolve_subexp (expp, pos, 0, NULL);
2651 }
2652 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2653 break;
2654
2655 case UNOP_ADDR:
2656 *pos += 1;
2657 resolve_subexp (expp, pos, 0, NULL);
2658 break;
2659
2660 case UNOP_QUAL:
2661 *pos += 3;
2662 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2663 break;
2664
2665 case OP_ATR_MODULUS:
2666 case OP_ATR_SIZE:
2667 case OP_ATR_TAG:
2668 case OP_ATR_FIRST:
2669 case OP_ATR_LAST:
2670 case OP_ATR_LENGTH:
2671 case OP_ATR_POS:
2672 case OP_ATR_VAL:
2673 case OP_ATR_MIN:
2674 case OP_ATR_MAX:
2675 case TERNOP_IN_RANGE:
2676 case BINOP_IN_BOUNDS:
2677 case UNOP_IN_RANGE:
2678 case OP_AGGREGATE:
2679 case OP_OTHERS:
2680 case OP_CHOICES:
2681 case OP_POSITIONAL:
2682 case OP_DISCRETE_RANGE:
2683 case OP_NAME:
2684 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2685 *pos += oplen;
2686 break;
2687
2688 case BINOP_ASSIGN:
2689 {
2690 struct value *arg1;
2691
2692 *pos += 1;
2693 arg1 = resolve_subexp (expp, pos, 0, NULL);
2694 if (arg1 == NULL)
2695 resolve_subexp (expp, pos, 1, NULL);
2696 else
2697 resolve_subexp (expp, pos, 1, value_type (arg1));
2698 break;
2699 }
2700
2701 case UNOP_CAST:
2702 *pos += 3;
2703 nargs = 1;
2704 break;
2705
2706 case BINOP_ADD:
2707 case BINOP_SUB:
2708 case BINOP_MUL:
2709 case BINOP_DIV:
2710 case BINOP_REM:
2711 case BINOP_MOD:
2712 case BINOP_EXP:
2713 case BINOP_CONCAT:
2714 case BINOP_LOGICAL_AND:
2715 case BINOP_LOGICAL_OR:
2716 case BINOP_BITWISE_AND:
2717 case BINOP_BITWISE_IOR:
2718 case BINOP_BITWISE_XOR:
2719
2720 case BINOP_EQUAL:
2721 case BINOP_NOTEQUAL:
2722 case BINOP_LESS:
2723 case BINOP_GTR:
2724 case BINOP_LEQ:
2725 case BINOP_GEQ:
2726
2727 case BINOP_REPEAT:
2728 case BINOP_SUBSCRIPT:
2729 case BINOP_COMMA:
2730 *pos += 1;
2731 nargs = 2;
2732 break;
2733
2734 case UNOP_NEG:
2735 case UNOP_PLUS:
2736 case UNOP_LOGICAL_NOT:
2737 case UNOP_ABS:
2738 case UNOP_IND:
2739 *pos += 1;
2740 nargs = 1;
2741 break;
2742
2743 case OP_LONG:
2744 case OP_DOUBLE:
2745 case OP_VAR_VALUE:
2746 *pos += 4;
2747 break;
2748
2749 case OP_TYPE:
2750 case OP_BOOL:
2751 case OP_LAST:
2752 case OP_INTERNALVAR:
2753 *pos += 3;
2754 break;
2755
2756 case UNOP_MEMVAL:
2757 *pos += 3;
2758 nargs = 1;
2759 break;
2760
2761 case OP_REGISTER:
2762 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2763 break;
2764
2765 case STRUCTOP_STRUCT:
2766 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2767 nargs = 1;
2768 break;
2769
2770 case TERNOP_SLICE:
2771 *pos += 1;
2772 nargs = 3;
2773 break;
2774
2775 case OP_STRING:
2776 break;
2777
2778 default:
2779 error (_("Unexpected operator during name resolution"));
2780 }
2781
2782 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2783 for (i = 0; i < nargs; i += 1)
2784 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2785 argvec[i] = NULL;
2786 exp = *expp;
2787
2788 /* Pass two: perform any resolution on principal operator. */
2789 switch (op)
2790 {
2791 default:
2792 break;
2793
2794 case OP_VAR_VALUE:
2795 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2796 {
2797 struct ada_symbol_info *candidates;
2798 int n_candidates;
2799
2800 n_candidates =
2801 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2802 (exp->elts[pc + 2].symbol),
2803 exp->elts[pc + 1].block, VAR_DOMAIN,
2804 &candidates);
2805
2806 if (n_candidates > 1)
2807 {
2808 /* Types tend to get re-introduced locally, so if there
2809 are any local symbols that are not types, first filter
2810 out all types. */
2811 int j;
2812 for (j = 0; j < n_candidates; j += 1)
2813 switch (SYMBOL_CLASS (candidates[j].sym))
2814 {
2815 case LOC_REGISTER:
2816 case LOC_ARG:
2817 case LOC_REF_ARG:
2818 case LOC_REGPARM_ADDR:
2819 case LOC_LOCAL:
2820 case LOC_COMPUTED:
2821 goto FoundNonType;
2822 default:
2823 break;
2824 }
2825 FoundNonType:
2826 if (j < n_candidates)
2827 {
2828 j = 0;
2829 while (j < n_candidates)
2830 {
2831 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2832 {
2833 candidates[j] = candidates[n_candidates - 1];
2834 n_candidates -= 1;
2835 }
2836 else
2837 j += 1;
2838 }
2839 }
2840 }
2841
2842 if (n_candidates == 0)
2843 error (_("No definition found for %s"),
2844 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2845 else if (n_candidates == 1)
2846 i = 0;
2847 else if (deprocedure_p
2848 && !is_nonfunction (candidates, n_candidates))
2849 {
2850 i = ada_resolve_function
2851 (candidates, n_candidates, NULL, 0,
2852 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2853 context_type);
2854 if (i < 0)
2855 error (_("Could not find a match for %s"),
2856 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2857 }
2858 else
2859 {
2860 printf_filtered (_("Multiple matches for %s\n"),
2861 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2862 user_select_syms (candidates, n_candidates, 1);
2863 i = 0;
2864 }
2865
2866 exp->elts[pc + 1].block = candidates[i].block;
2867 exp->elts[pc + 2].symbol = candidates[i].sym;
2868 if (innermost_block == NULL
2869 || contained_in (candidates[i].block, innermost_block))
2870 innermost_block = candidates[i].block;
2871 }
2872
2873 if (deprocedure_p
2874 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2875 == TYPE_CODE_FUNC))
2876 {
2877 replace_operator_with_call (expp, pc, 0, 0,
2878 exp->elts[pc + 2].symbol,
2879 exp->elts[pc + 1].block);
2880 exp = *expp;
2881 }
2882 break;
2883
2884 case OP_FUNCALL:
2885 {
2886 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2887 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2888 {
2889 struct ada_symbol_info *candidates;
2890 int n_candidates;
2891
2892 n_candidates =
2893 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2894 (exp->elts[pc + 5].symbol),
2895 exp->elts[pc + 4].block, VAR_DOMAIN,
2896 &candidates);
2897 if (n_candidates == 1)
2898 i = 0;
2899 else
2900 {
2901 i = ada_resolve_function
2902 (candidates, n_candidates,
2903 argvec, nargs,
2904 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2905 context_type);
2906 if (i < 0)
2907 error (_("Could not find a match for %s"),
2908 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2909 }
2910
2911 exp->elts[pc + 4].block = candidates[i].block;
2912 exp->elts[pc + 5].symbol = candidates[i].sym;
2913 if (innermost_block == NULL
2914 || contained_in (candidates[i].block, innermost_block))
2915 innermost_block = candidates[i].block;
2916 }
2917 }
2918 break;
2919 case BINOP_ADD:
2920 case BINOP_SUB:
2921 case BINOP_MUL:
2922 case BINOP_DIV:
2923 case BINOP_REM:
2924 case BINOP_MOD:
2925 case BINOP_CONCAT:
2926 case BINOP_BITWISE_AND:
2927 case BINOP_BITWISE_IOR:
2928 case BINOP_BITWISE_XOR:
2929 case BINOP_EQUAL:
2930 case BINOP_NOTEQUAL:
2931 case BINOP_LESS:
2932 case BINOP_GTR:
2933 case BINOP_LEQ:
2934 case BINOP_GEQ:
2935 case BINOP_EXP:
2936 case UNOP_NEG:
2937 case UNOP_PLUS:
2938 case UNOP_LOGICAL_NOT:
2939 case UNOP_ABS:
2940 if (possible_user_operator_p (op, argvec))
2941 {
2942 struct ada_symbol_info *candidates;
2943 int n_candidates;
2944
2945 n_candidates =
2946 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2947 (struct block *) NULL, VAR_DOMAIN,
2948 &candidates);
2949 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2950 ada_decoded_op_name (op), NULL);
2951 if (i < 0)
2952 break;
2953
2954 replace_operator_with_call (expp, pc, nargs, 1,
2955 candidates[i].sym, candidates[i].block);
2956 exp = *expp;
2957 }
2958 break;
2959
2960 case OP_TYPE:
2961 case OP_REGISTER:
2962 return NULL;
2963 }
2964
2965 *pos = pc;
2966 return evaluate_subexp_type (exp, pos);
2967 }
2968
2969 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2970 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2971 a non-pointer. A type of 'void' (which is never a valid expression type)
2972 by convention matches anything. */
2973 /* The term "match" here is rather loose. The match is heuristic and
2974 liberal. FIXME: TOO liberal, in fact. */
2975
2976 static int
2977 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2978 {
2979 ftype = ada_check_typedef (ftype);
2980 atype = ada_check_typedef (atype);
2981
2982 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2983 ftype = TYPE_TARGET_TYPE (ftype);
2984 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2985 atype = TYPE_TARGET_TYPE (atype);
2986
2987 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2988 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2989 return 1;
2990
2991 switch (TYPE_CODE (ftype))
2992 {
2993 default:
2994 return 1;
2995 case TYPE_CODE_PTR:
2996 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2997 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2998 TYPE_TARGET_TYPE (atype), 0);
2999 else
3000 return (may_deref
3001 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3002 case TYPE_CODE_INT:
3003 case TYPE_CODE_ENUM:
3004 case TYPE_CODE_RANGE:
3005 switch (TYPE_CODE (atype))
3006 {
3007 case TYPE_CODE_INT:
3008 case TYPE_CODE_ENUM:
3009 case TYPE_CODE_RANGE:
3010 return 1;
3011 default:
3012 return 0;
3013 }
3014
3015 case TYPE_CODE_ARRAY:
3016 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3017 || ada_is_array_descriptor_type (atype));
3018
3019 case TYPE_CODE_STRUCT:
3020 if (ada_is_array_descriptor_type (ftype))
3021 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3022 || ada_is_array_descriptor_type (atype));
3023 else
3024 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3025 && !ada_is_array_descriptor_type (atype));
3026
3027 case TYPE_CODE_UNION:
3028 case TYPE_CODE_FLT:
3029 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3030 }
3031 }
3032
3033 /* Return non-zero if the formals of FUNC "sufficiently match" the
3034 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3035 may also be an enumeral, in which case it is treated as a 0-
3036 argument function. */
3037
3038 static int
3039 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3040 {
3041 int i;
3042 struct type *func_type = SYMBOL_TYPE (func);
3043
3044 if (SYMBOL_CLASS (func) == LOC_CONST
3045 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3046 return (n_actuals == 0);
3047 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3048 return 0;
3049
3050 if (TYPE_NFIELDS (func_type) != n_actuals)
3051 return 0;
3052
3053 for (i = 0; i < n_actuals; i += 1)
3054 {
3055 if (actuals[i] == NULL)
3056 return 0;
3057 else
3058 {
3059 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3060 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3061
3062 if (!ada_type_match (ftype, atype, 1))
3063 return 0;
3064 }
3065 }
3066 return 1;
3067 }
3068
3069 /* False iff function type FUNC_TYPE definitely does not produce a value
3070 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3071 FUNC_TYPE is not a valid function type with a non-null return type
3072 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3073
3074 static int
3075 return_match (struct type *func_type, struct type *context_type)
3076 {
3077 struct type *return_type;
3078
3079 if (func_type == NULL)
3080 return 1;
3081
3082 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3083 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3084 else
3085 return_type = base_type (func_type);
3086 if (return_type == NULL)
3087 return 1;
3088
3089 context_type = base_type (context_type);
3090
3091 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3092 return context_type == NULL || return_type == context_type;
3093 else if (context_type == NULL)
3094 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3095 else
3096 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3097 }
3098
3099
3100 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3101 function (if any) that matches the types of the NARGS arguments in
3102 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3103 that returns that type, then eliminate matches that don't. If
3104 CONTEXT_TYPE is void and there is at least one match that does not
3105 return void, eliminate all matches that do.
3106
3107 Asks the user if there is more than one match remaining. Returns -1
3108 if there is no such symbol or none is selected. NAME is used
3109 solely for messages. May re-arrange and modify SYMS in
3110 the process; the index returned is for the modified vector. */
3111
3112 static int
3113 ada_resolve_function (struct ada_symbol_info syms[],
3114 int nsyms, struct value **args, int nargs,
3115 const char *name, struct type *context_type)
3116 {
3117 int k;
3118 int m; /* Number of hits */
3119 struct type *fallback;
3120 struct type *return_type;
3121
3122 return_type = context_type;
3123 if (context_type == NULL)
3124 fallback = builtin_type_void;
3125 else
3126 fallback = NULL;
3127
3128 m = 0;
3129 while (1)
3130 {
3131 for (k = 0; k < nsyms; k += 1)
3132 {
3133 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3134
3135 if (ada_args_match (syms[k].sym, args, nargs)
3136 && return_match (type, return_type))
3137 {
3138 syms[m] = syms[k];
3139 m += 1;
3140 }
3141 }
3142 if (m > 0 || return_type == fallback)
3143 break;
3144 else
3145 return_type = fallback;
3146 }
3147
3148 if (m == 0)
3149 return -1;
3150 else if (m > 1)
3151 {
3152 printf_filtered (_("Multiple matches for %s\n"), name);
3153 user_select_syms (syms, m, 1);
3154 return 0;
3155 }
3156 return 0;
3157 }
3158
3159 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3160 in a listing of choices during disambiguation (see sort_choices, below).
3161 The idea is that overloadings of a subprogram name from the
3162 same package should sort in their source order. We settle for ordering
3163 such symbols by their trailing number (__N or $N). */
3164
3165 static int
3166 encoded_ordered_before (char *N0, char *N1)
3167 {
3168 if (N1 == NULL)
3169 return 0;
3170 else if (N0 == NULL)
3171 return 1;
3172 else
3173 {
3174 int k0, k1;
3175 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3176 ;
3177 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3178 ;
3179 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3180 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3181 {
3182 int n0, n1;
3183 n0 = k0;
3184 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3185 n0 -= 1;
3186 n1 = k1;
3187 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3188 n1 -= 1;
3189 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3190 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3191 }
3192 return (strcmp (N0, N1) < 0);
3193 }
3194 }
3195
3196 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3197 encoded names. */
3198
3199 static void
3200 sort_choices (struct ada_symbol_info syms[], int nsyms)
3201 {
3202 int i;
3203 for (i = 1; i < nsyms; i += 1)
3204 {
3205 struct ada_symbol_info sym = syms[i];
3206 int j;
3207
3208 for (j = i - 1; j >= 0; j -= 1)
3209 {
3210 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3211 SYMBOL_LINKAGE_NAME (sym.sym)))
3212 break;
3213 syms[j + 1] = syms[j];
3214 }
3215 syms[j + 1] = sym;
3216 }
3217 }
3218
3219 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3220 by asking the user (if necessary), returning the number selected,
3221 and setting the first elements of SYMS items. Error if no symbols
3222 selected. */
3223
3224 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3225 to be re-integrated one of these days. */
3226
3227 int
3228 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3229 {
3230 int i;
3231 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3232 int n_chosen;
3233 int first_choice = (max_results == 1) ? 1 : 2;
3234 const char *select_mode = multiple_symbols_select_mode ();
3235
3236 if (max_results < 1)
3237 error (_("Request to select 0 symbols!"));
3238 if (nsyms <= 1)
3239 return nsyms;
3240
3241 if (select_mode == multiple_symbols_cancel)
3242 error (_("\
3243 canceled because the command is ambiguous\n\
3244 See set/show multiple-symbol."));
3245
3246 /* If select_mode is "all", then return all possible symbols.
3247 Only do that if more than one symbol can be selected, of course.
3248 Otherwise, display the menu as usual. */
3249 if (select_mode == multiple_symbols_all && max_results > 1)
3250 return nsyms;
3251
3252 printf_unfiltered (_("[0] cancel\n"));
3253 if (max_results > 1)
3254 printf_unfiltered (_("[1] all\n"));
3255
3256 sort_choices (syms, nsyms);
3257
3258 for (i = 0; i < nsyms; i += 1)
3259 {
3260 if (syms[i].sym == NULL)
3261 continue;
3262
3263 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3264 {
3265 struct symtab_and_line sal =
3266 find_function_start_sal (syms[i].sym, 1);
3267 if (sal.symtab == NULL)
3268 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3269 i + first_choice,
3270 SYMBOL_PRINT_NAME (syms[i].sym),
3271 sal.line);
3272 else
3273 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3274 SYMBOL_PRINT_NAME (syms[i].sym),
3275 sal.symtab->filename, sal.line);
3276 continue;
3277 }
3278 else
3279 {
3280 int is_enumeral =
3281 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3282 && SYMBOL_TYPE (syms[i].sym) != NULL
3283 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3284 struct symtab *symtab = syms[i].sym->symtab;
3285
3286 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3287 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3288 i + first_choice,
3289 SYMBOL_PRINT_NAME (syms[i].sym),
3290 symtab->filename, SYMBOL_LINE (syms[i].sym));
3291 else if (is_enumeral
3292 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3293 {
3294 printf_unfiltered (("[%d] "), i + first_choice);
3295 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3296 gdb_stdout, -1, 0);
3297 printf_unfiltered (_("'(%s) (enumeral)\n"),
3298 SYMBOL_PRINT_NAME (syms[i].sym));
3299 }
3300 else if (symtab != NULL)
3301 printf_unfiltered (is_enumeral
3302 ? _("[%d] %s in %s (enumeral)\n")
3303 : _("[%d] %s at %s:?\n"),
3304 i + first_choice,
3305 SYMBOL_PRINT_NAME (syms[i].sym),
3306 symtab->filename);
3307 else
3308 printf_unfiltered (is_enumeral
3309 ? _("[%d] %s (enumeral)\n")
3310 : _("[%d] %s at ?\n"),
3311 i + first_choice,
3312 SYMBOL_PRINT_NAME (syms[i].sym));
3313 }
3314 }
3315
3316 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3317 "overload-choice");
3318
3319 for (i = 0; i < n_chosen; i += 1)
3320 syms[i] = syms[chosen[i]];
3321
3322 return n_chosen;
3323 }
3324
3325 /* Read and validate a set of numeric choices from the user in the
3326 range 0 .. N_CHOICES-1. Place the results in increasing
3327 order in CHOICES[0 .. N-1], and return N.
3328
3329 The user types choices as a sequence of numbers on one line
3330 separated by blanks, encoding them as follows:
3331
3332 + A choice of 0 means to cancel the selection, throwing an error.
3333 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3334 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3335
3336 The user is not allowed to choose more than MAX_RESULTS values.
3337
3338 ANNOTATION_SUFFIX, if present, is used to annotate the input
3339 prompts (for use with the -f switch). */
3340
3341 int
3342 get_selections (int *choices, int n_choices, int max_results,
3343 int is_all_choice, char *annotation_suffix)
3344 {
3345 char *args;
3346 char *prompt;
3347 int n_chosen;
3348 int first_choice = is_all_choice ? 2 : 1;
3349
3350 prompt = getenv ("PS2");
3351 if (prompt == NULL)
3352 prompt = "> ";
3353
3354 args = command_line_input (prompt, 0, annotation_suffix);
3355
3356 if (args == NULL)
3357 error_no_arg (_("one or more choice numbers"));
3358
3359 n_chosen = 0;
3360
3361 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3362 order, as given in args. Choices are validated. */
3363 while (1)
3364 {
3365 char *args2;
3366 int choice, j;
3367
3368 while (isspace (*args))
3369 args += 1;
3370 if (*args == '\0' && n_chosen == 0)
3371 error_no_arg (_("one or more choice numbers"));
3372 else if (*args == '\0')
3373 break;
3374
3375 choice = strtol (args, &args2, 10);
3376 if (args == args2 || choice < 0
3377 || choice > n_choices + first_choice - 1)
3378 error (_("Argument must be choice number"));
3379 args = args2;
3380
3381 if (choice == 0)
3382 error (_("cancelled"));
3383
3384 if (choice < first_choice)
3385 {
3386 n_chosen = n_choices;
3387 for (j = 0; j < n_choices; j += 1)
3388 choices[j] = j;
3389 break;
3390 }
3391 choice -= first_choice;
3392
3393 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3394 {
3395 }
3396
3397 if (j < 0 || choice != choices[j])
3398 {
3399 int k;
3400 for (k = n_chosen - 1; k > j; k -= 1)
3401 choices[k + 1] = choices[k];
3402 choices[j + 1] = choice;
3403 n_chosen += 1;
3404 }
3405 }
3406
3407 if (n_chosen > max_results)
3408 error (_("Select no more than %d of the above"), max_results);
3409
3410 return n_chosen;
3411 }
3412
3413 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3414 on the function identified by SYM and BLOCK, and taking NARGS
3415 arguments. Update *EXPP as needed to hold more space. */
3416
3417 static void
3418 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3419 int oplen, struct symbol *sym,
3420 struct block *block)
3421 {
3422 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3423 symbol, -oplen for operator being replaced). */
3424 struct expression *newexp = (struct expression *)
3425 xmalloc (sizeof (struct expression)
3426 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3427 struct expression *exp = *expp;
3428
3429 newexp->nelts = exp->nelts + 7 - oplen;
3430 newexp->language_defn = exp->language_defn;
3431 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3432 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3433 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3434
3435 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3436 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3437
3438 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3439 newexp->elts[pc + 4].block = block;
3440 newexp->elts[pc + 5].symbol = sym;
3441
3442 *expp = newexp;
3443 xfree (exp);
3444 }
3445
3446 /* Type-class predicates */
3447
3448 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3449 or FLOAT). */
3450
3451 static int
3452 numeric_type_p (struct type *type)
3453 {
3454 if (type == NULL)
3455 return 0;
3456 else
3457 {
3458 switch (TYPE_CODE (type))
3459 {
3460 case TYPE_CODE_INT:
3461 case TYPE_CODE_FLT:
3462 return 1;
3463 case TYPE_CODE_RANGE:
3464 return (type == TYPE_TARGET_TYPE (type)
3465 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3466 default:
3467 return 0;
3468 }
3469 }
3470 }
3471
3472 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3473
3474 static int
3475 integer_type_p (struct type *type)
3476 {
3477 if (type == NULL)
3478 return 0;
3479 else
3480 {
3481 switch (TYPE_CODE (type))
3482 {
3483 case TYPE_CODE_INT:
3484 return 1;
3485 case TYPE_CODE_RANGE:
3486 return (type == TYPE_TARGET_TYPE (type)
3487 || integer_type_p (TYPE_TARGET_TYPE (type)));
3488 default:
3489 return 0;
3490 }
3491 }
3492 }
3493
3494 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3495
3496 static int
3497 scalar_type_p (struct type *type)
3498 {
3499 if (type == NULL)
3500 return 0;
3501 else
3502 {
3503 switch (TYPE_CODE (type))
3504 {
3505 case TYPE_CODE_INT:
3506 case TYPE_CODE_RANGE:
3507 case TYPE_CODE_ENUM:
3508 case TYPE_CODE_FLT:
3509 return 1;
3510 default:
3511 return 0;
3512 }
3513 }
3514 }
3515
3516 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3517
3518 static int
3519 discrete_type_p (struct type *type)
3520 {
3521 if (type == NULL)
3522 return 0;
3523 else
3524 {
3525 switch (TYPE_CODE (type))
3526 {
3527 case TYPE_CODE_INT:
3528 case TYPE_CODE_RANGE:
3529 case TYPE_CODE_ENUM:
3530 return 1;
3531 default:
3532 return 0;
3533 }
3534 }
3535 }
3536
3537 /* Returns non-zero if OP with operands in the vector ARGS could be
3538 a user-defined function. Errs on the side of pre-defined operators
3539 (i.e., result 0). */
3540
3541 static int
3542 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3543 {
3544 struct type *type0 =
3545 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3546 struct type *type1 =
3547 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3548
3549 if (type0 == NULL)
3550 return 0;
3551
3552 switch (op)
3553 {
3554 default:
3555 return 0;
3556
3557 case BINOP_ADD:
3558 case BINOP_SUB:
3559 case BINOP_MUL:
3560 case BINOP_DIV:
3561 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3562
3563 case BINOP_REM:
3564 case BINOP_MOD:
3565 case BINOP_BITWISE_AND:
3566 case BINOP_BITWISE_IOR:
3567 case BINOP_BITWISE_XOR:
3568 return (!(integer_type_p (type0) && integer_type_p (type1)));
3569
3570 case BINOP_EQUAL:
3571 case BINOP_NOTEQUAL:
3572 case BINOP_LESS:
3573 case BINOP_GTR:
3574 case BINOP_LEQ:
3575 case BINOP_GEQ:
3576 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3577
3578 case BINOP_CONCAT:
3579 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3580
3581 case BINOP_EXP:
3582 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3583
3584 case UNOP_NEG:
3585 case UNOP_PLUS:
3586 case UNOP_LOGICAL_NOT:
3587 case UNOP_ABS:
3588 return (!numeric_type_p (type0));
3589
3590 }
3591 }
3592 \f
3593 /* Renaming */
3594
3595 /* NOTES:
3596
3597 1. In the following, we assume that a renaming type's name may
3598 have an ___XD suffix. It would be nice if this went away at some
3599 point.
3600 2. We handle both the (old) purely type-based representation of
3601 renamings and the (new) variable-based encoding. At some point,
3602 it is devoutly to be hoped that the former goes away
3603 (FIXME: hilfinger-2007-07-09).
3604 3. Subprogram renamings are not implemented, although the XRS
3605 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3606
3607 /* If SYM encodes a renaming,
3608
3609 <renaming> renames <renamed entity>,
3610
3611 sets *LEN to the length of the renamed entity's name,
3612 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3613 the string describing the subcomponent selected from the renamed
3614 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3615 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3616 are undefined). Otherwise, returns a value indicating the category
3617 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3618 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3619 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3620 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3621 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3622 may be NULL, in which case they are not assigned.
3623
3624 [Currently, however, GCC does not generate subprogram renamings.] */
3625
3626 enum ada_renaming_category
3627 ada_parse_renaming (struct symbol *sym,
3628 const char **renamed_entity, int *len,
3629 const char **renaming_expr)
3630 {
3631 enum ada_renaming_category kind;
3632 const char *info;
3633 const char *suffix;
3634
3635 if (sym == NULL)
3636 return ADA_NOT_RENAMING;
3637 switch (SYMBOL_CLASS (sym))
3638 {
3639 default:
3640 return ADA_NOT_RENAMING;
3641 case LOC_TYPEDEF:
3642 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3643 renamed_entity, len, renaming_expr);
3644 case LOC_LOCAL:
3645 case LOC_STATIC:
3646 case LOC_COMPUTED:
3647 case LOC_OPTIMIZED_OUT:
3648 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3649 if (info == NULL)
3650 return ADA_NOT_RENAMING;
3651 switch (info[5])
3652 {
3653 case '_':
3654 kind = ADA_OBJECT_RENAMING;
3655 info += 6;
3656 break;
3657 case 'E':
3658 kind = ADA_EXCEPTION_RENAMING;
3659 info += 7;
3660 break;
3661 case 'P':
3662 kind = ADA_PACKAGE_RENAMING;
3663 info += 7;
3664 break;
3665 case 'S':
3666 kind = ADA_SUBPROGRAM_RENAMING;
3667 info += 7;
3668 break;
3669 default:
3670 return ADA_NOT_RENAMING;
3671 }
3672 }
3673
3674 if (renamed_entity != NULL)
3675 *renamed_entity = info;
3676 suffix = strstr (info, "___XE");
3677 if (suffix == NULL || suffix == info)
3678 return ADA_NOT_RENAMING;
3679 if (len != NULL)
3680 *len = strlen (info) - strlen (suffix);
3681 suffix += 5;
3682 if (renaming_expr != NULL)
3683 *renaming_expr = suffix;
3684 return kind;
3685 }
3686
3687 /* Assuming TYPE encodes a renaming according to the old encoding in
3688 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3689 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3690 ADA_NOT_RENAMING otherwise. */
3691 static enum ada_renaming_category
3692 parse_old_style_renaming (struct type *type,
3693 const char **renamed_entity, int *len,
3694 const char **renaming_expr)
3695 {
3696 enum ada_renaming_category kind;
3697 const char *name;
3698 const char *info;
3699 const char *suffix;
3700
3701 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3702 || TYPE_NFIELDS (type) != 1)
3703 return ADA_NOT_RENAMING;
3704
3705 name = type_name_no_tag (type);
3706 if (name == NULL)
3707 return ADA_NOT_RENAMING;
3708
3709 name = strstr (name, "___XR");
3710 if (name == NULL)
3711 return ADA_NOT_RENAMING;
3712 switch (name[5])
3713 {
3714 case '\0':
3715 case '_':
3716 kind = ADA_OBJECT_RENAMING;
3717 break;
3718 case 'E':
3719 kind = ADA_EXCEPTION_RENAMING;
3720 break;
3721 case 'P':
3722 kind = ADA_PACKAGE_RENAMING;
3723 break;
3724 case 'S':
3725 kind = ADA_SUBPROGRAM_RENAMING;
3726 break;
3727 default:
3728 return ADA_NOT_RENAMING;
3729 }
3730
3731 info = TYPE_FIELD_NAME (type, 0);
3732 if (info == NULL)
3733 return ADA_NOT_RENAMING;
3734 if (renamed_entity != NULL)
3735 *renamed_entity = info;
3736 suffix = strstr (info, "___XE");
3737 if (renaming_expr != NULL)
3738 *renaming_expr = suffix + 5;
3739 if (suffix == NULL || suffix == info)
3740 return ADA_NOT_RENAMING;
3741 if (len != NULL)
3742 *len = suffix - info;
3743 return kind;
3744 }
3745
3746 \f
3747
3748 /* Evaluation: Function Calls */
3749
3750 /* Return an lvalue containing the value VAL. This is the identity on
3751 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3752 on the stack, using and updating *SP as the stack pointer, and
3753 returning an lvalue whose value_address points to the copy. */
3754
3755 static struct value *
3756 ensure_lval (struct value *val, CORE_ADDR *sp)
3757 {
3758 if (! VALUE_LVAL (val))
3759 {
3760 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3761
3762 /* The following is taken from the structure-return code in
3763 call_function_by_hand. FIXME: Therefore, some refactoring seems
3764 indicated. */
3765 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3766 {
3767 /* Stack grows downward. Align SP and value_address (val) after
3768 reserving sufficient space. */
3769 *sp -= len;
3770 if (gdbarch_frame_align_p (current_gdbarch))
3771 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3772 set_value_address (val, *sp);
3773 }
3774 else
3775 {
3776 /* Stack grows upward. Align the frame, allocate space, and
3777 then again, re-align the frame. */
3778 if (gdbarch_frame_align_p (current_gdbarch))
3779 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3780 set_value_address (val, *sp);
3781 *sp += len;
3782 if (gdbarch_frame_align_p (current_gdbarch))
3783 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3784 }
3785 VALUE_LVAL (val) = lval_memory;
3786
3787 write_memory (value_address (val), value_contents_raw (val), len);
3788 }
3789
3790 return val;
3791 }
3792
3793 /* Return the value ACTUAL, converted to be an appropriate value for a
3794 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3795 allocating any necessary descriptors (fat pointers), or copies of
3796 values not residing in memory, updating it as needed. */
3797
3798 struct value *
3799 ada_convert_actual (struct value *actual, struct type *formal_type0,
3800 CORE_ADDR *sp)
3801 {
3802 struct type *actual_type = ada_check_typedef (value_type (actual));
3803 struct type *formal_type = ada_check_typedef (formal_type0);
3804 struct type *formal_target =
3805 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3806 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3807 struct type *actual_target =
3808 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3809 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3810
3811 if (ada_is_array_descriptor_type (formal_target)
3812 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3813 return make_array_descriptor (formal_type, actual, sp);
3814 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3815 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3816 {
3817 struct value *result;
3818 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3819 && ada_is_array_descriptor_type (actual_target))
3820 result = desc_data (actual);
3821 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3822 {
3823 if (VALUE_LVAL (actual) != lval_memory)
3824 {
3825 struct value *val;
3826 actual_type = ada_check_typedef (value_type (actual));
3827 val = allocate_value (actual_type);
3828 memcpy ((char *) value_contents_raw (val),
3829 (char *) value_contents (actual),
3830 TYPE_LENGTH (actual_type));
3831 actual = ensure_lval (val, sp);
3832 }
3833 result = value_addr (actual);
3834 }
3835 else
3836 return actual;
3837 return value_cast_pointers (formal_type, result);
3838 }
3839 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3840 return ada_value_ind (actual);
3841
3842 return actual;
3843 }
3844
3845
3846 /* Push a descriptor of type TYPE for array value ARR on the stack at
3847 *SP, updating *SP to reflect the new descriptor. Return either
3848 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3849 to-descriptor type rather than a descriptor type), a struct value *
3850 representing a pointer to this descriptor. */
3851
3852 static struct value *
3853 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3854 {
3855 struct type *bounds_type = desc_bounds_type (type);
3856 struct type *desc_type = desc_base_type (type);
3857 struct value *descriptor = allocate_value (desc_type);
3858 struct value *bounds = allocate_value (bounds_type);
3859 int i;
3860
3861 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3862 {
3863 modify_general_field (value_contents_writeable (bounds),
3864 value_as_long (ada_array_bound (arr, i, 0)),
3865 desc_bound_bitpos (bounds_type, i, 0),
3866 desc_bound_bitsize (bounds_type, i, 0));
3867 modify_general_field (value_contents_writeable (bounds),
3868 value_as_long (ada_array_bound (arr, i, 1)),
3869 desc_bound_bitpos (bounds_type, i, 1),
3870 desc_bound_bitsize (bounds_type, i, 1));
3871 }
3872
3873 bounds = ensure_lval (bounds, sp);
3874
3875 modify_general_field (value_contents_writeable (descriptor),
3876 value_address (ensure_lval (arr, sp)),
3877 fat_pntr_data_bitpos (desc_type),
3878 fat_pntr_data_bitsize (desc_type));
3879
3880 modify_general_field (value_contents_writeable (descriptor),
3881 value_address (bounds),
3882 fat_pntr_bounds_bitpos (desc_type),
3883 fat_pntr_bounds_bitsize (desc_type));
3884
3885 descriptor = ensure_lval (descriptor, sp);
3886
3887 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3888 return value_addr (descriptor);
3889 else
3890 return descriptor;
3891 }
3892 \f
3893 /* Dummy definitions for an experimental caching module that is not
3894 * used in the public sources. */
3895
3896 static int
3897 lookup_cached_symbol (const char *name, domain_enum namespace,
3898 struct symbol **sym, struct block **block)
3899 {
3900 return 0;
3901 }
3902
3903 static void
3904 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3905 struct block *block)
3906 {
3907 }
3908 \f
3909 /* Symbol Lookup */
3910
3911 /* Return the result of a standard (literal, C-like) lookup of NAME in
3912 given DOMAIN, visible from lexical block BLOCK. */
3913
3914 static struct symbol *
3915 standard_lookup (const char *name, const struct block *block,
3916 domain_enum domain)
3917 {
3918 struct symbol *sym;
3919
3920 if (lookup_cached_symbol (name, domain, &sym, NULL))
3921 return sym;
3922 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3923 cache_symbol (name, domain, sym, block_found);
3924 return sym;
3925 }
3926
3927
3928 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3929 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3930 since they contend in overloading in the same way. */
3931 static int
3932 is_nonfunction (struct ada_symbol_info syms[], int n)
3933 {
3934 int i;
3935
3936 for (i = 0; i < n; i += 1)
3937 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3938 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3939 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3940 return 1;
3941
3942 return 0;
3943 }
3944
3945 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3946 struct types. Otherwise, they may not. */
3947
3948 static int
3949 equiv_types (struct type *type0, struct type *type1)
3950 {
3951 if (type0 == type1)
3952 return 1;
3953 if (type0 == NULL || type1 == NULL
3954 || TYPE_CODE (type0) != TYPE_CODE (type1))
3955 return 0;
3956 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3957 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3958 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3959 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3960 return 1;
3961
3962 return 0;
3963 }
3964
3965 /* True iff SYM0 represents the same entity as SYM1, or one that is
3966 no more defined than that of SYM1. */
3967
3968 static int
3969 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3970 {
3971 if (sym0 == sym1)
3972 return 1;
3973 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3974 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3975 return 0;
3976
3977 switch (SYMBOL_CLASS (sym0))
3978 {
3979 case LOC_UNDEF:
3980 return 1;
3981 case LOC_TYPEDEF:
3982 {
3983 struct type *type0 = SYMBOL_TYPE (sym0);
3984 struct type *type1 = SYMBOL_TYPE (sym1);
3985 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3986 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3987 int len0 = strlen (name0);
3988 return
3989 TYPE_CODE (type0) == TYPE_CODE (type1)
3990 && (equiv_types (type0, type1)
3991 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3992 && strncmp (name1 + len0, "___XV", 5) == 0));
3993 }
3994 case LOC_CONST:
3995 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3996 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3997 default:
3998 return 0;
3999 }
4000 }
4001
4002 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4003 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4004
4005 static void
4006 add_defn_to_vec (struct obstack *obstackp,
4007 struct symbol *sym,
4008 struct block *block)
4009 {
4010 int i;
4011 size_t tmp;
4012 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4013
4014 /* Do not try to complete stub types, as the debugger is probably
4015 already scanning all symbols matching a certain name at the
4016 time when this function is called. Trying to replace the stub
4017 type by its associated full type will cause us to restart a scan
4018 which may lead to an infinite recursion. Instead, the client
4019 collecting the matching symbols will end up collecting several
4020 matches, with at least one of them complete. It can then filter
4021 out the stub ones if needed. */
4022
4023 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4024 {
4025 if (lesseq_defined_than (sym, prevDefns[i].sym))
4026 return;
4027 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4028 {
4029 prevDefns[i].sym = sym;
4030 prevDefns[i].block = block;
4031 return;
4032 }
4033 }
4034
4035 {
4036 struct ada_symbol_info info;
4037
4038 info.sym = sym;
4039 info.block = block;
4040 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4041 }
4042 }
4043
4044 /* Number of ada_symbol_info structures currently collected in
4045 current vector in *OBSTACKP. */
4046
4047 static int
4048 num_defns_collected (struct obstack *obstackp)
4049 {
4050 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4051 }
4052
4053 /* Vector of ada_symbol_info structures currently collected in current
4054 vector in *OBSTACKP. If FINISH, close off the vector and return
4055 its final address. */
4056
4057 static struct ada_symbol_info *
4058 defns_collected (struct obstack *obstackp, int finish)
4059 {
4060 if (finish)
4061 return obstack_finish (obstackp);
4062 else
4063 return (struct ada_symbol_info *) obstack_base (obstackp);
4064 }
4065
4066 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4067 Check the global symbols if GLOBAL, the static symbols if not.
4068 Do wild-card match if WILD. */
4069
4070 static struct partial_symbol *
4071 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4072 int global, domain_enum namespace, int wild)
4073 {
4074 struct partial_symbol **start;
4075 int name_len = strlen (name);
4076 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4077 int i;
4078
4079 if (length == 0)
4080 {
4081 return (NULL);
4082 }
4083
4084 start = (global ?
4085 pst->objfile->global_psymbols.list + pst->globals_offset :
4086 pst->objfile->static_psymbols.list + pst->statics_offset);
4087
4088 if (wild)
4089 {
4090 for (i = 0; i < length; i += 1)
4091 {
4092 struct partial_symbol *psym = start[i];
4093
4094 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4095 SYMBOL_DOMAIN (psym), namespace)
4096 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4097 return psym;
4098 }
4099 return NULL;
4100 }
4101 else
4102 {
4103 if (global)
4104 {
4105 int U;
4106 i = 0;
4107 U = length - 1;
4108 while (U - i > 4)
4109 {
4110 int M = (U + i) >> 1;
4111 struct partial_symbol *psym = start[M];
4112 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4113 i = M + 1;
4114 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4115 U = M - 1;
4116 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4117 i = M + 1;
4118 else
4119 U = M;
4120 }
4121 }
4122 else
4123 i = 0;
4124
4125 while (i < length)
4126 {
4127 struct partial_symbol *psym = start[i];
4128
4129 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4130 SYMBOL_DOMAIN (psym), namespace))
4131 {
4132 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4133
4134 if (cmp < 0)
4135 {
4136 if (global)
4137 break;
4138 }
4139 else if (cmp == 0
4140 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4141 + name_len))
4142 return psym;
4143 }
4144 i += 1;
4145 }
4146
4147 if (global)
4148 {
4149 int U;
4150 i = 0;
4151 U = length - 1;
4152 while (U - i > 4)
4153 {
4154 int M = (U + i) >> 1;
4155 struct partial_symbol *psym = start[M];
4156 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4157 i = M + 1;
4158 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4159 U = M - 1;
4160 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4161 i = M + 1;
4162 else
4163 U = M;
4164 }
4165 }
4166 else
4167 i = 0;
4168
4169 while (i < length)
4170 {
4171 struct partial_symbol *psym = start[i];
4172
4173 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4174 SYMBOL_DOMAIN (psym), namespace))
4175 {
4176 int cmp;
4177
4178 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4179 if (cmp == 0)
4180 {
4181 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4182 if (cmp == 0)
4183 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4184 name_len);
4185 }
4186
4187 if (cmp < 0)
4188 {
4189 if (global)
4190 break;
4191 }
4192 else if (cmp == 0
4193 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4194 + name_len + 5))
4195 return psym;
4196 }
4197 i += 1;
4198 }
4199 }
4200 return NULL;
4201 }
4202
4203 /* Return a minimal symbol matching NAME according to Ada decoding
4204 rules. Returns NULL if there is no such minimal symbol. Names
4205 prefixed with "standard__" are handled specially: "standard__" is
4206 first stripped off, and only static and global symbols are searched. */
4207
4208 struct minimal_symbol *
4209 ada_lookup_simple_minsym (const char *name)
4210 {
4211 struct objfile *objfile;
4212 struct minimal_symbol *msymbol;
4213 int wild_match;
4214
4215 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4216 {
4217 name += sizeof ("standard__") - 1;
4218 wild_match = 0;
4219 }
4220 else
4221 wild_match = (strstr (name, "__") == NULL);
4222
4223 ALL_MSYMBOLS (objfile, msymbol)
4224 {
4225 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4226 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4227 return msymbol;
4228 }
4229
4230 return NULL;
4231 }
4232
4233 /* For all subprograms that statically enclose the subprogram of the
4234 selected frame, add symbols matching identifier NAME in DOMAIN
4235 and their blocks to the list of data in OBSTACKP, as for
4236 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4237 wildcard prefix. */
4238
4239 static void
4240 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4241 const char *name, domain_enum namespace,
4242 int wild_match)
4243 {
4244 }
4245
4246 /* True if TYPE is definitely an artificial type supplied to a symbol
4247 for which no debugging information was given in the symbol file. */
4248
4249 static int
4250 is_nondebugging_type (struct type *type)
4251 {
4252 char *name = ada_type_name (type);
4253 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4254 }
4255
4256 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4257 duplicate other symbols in the list (The only case I know of where
4258 this happens is when object files containing stabs-in-ecoff are
4259 linked with files containing ordinary ecoff debugging symbols (or no
4260 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4261 Returns the number of items in the modified list. */
4262
4263 static int
4264 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4265 {
4266 int i, j;
4267
4268 i = 0;
4269 while (i < nsyms)
4270 {
4271 int remove = 0;
4272
4273 /* If two symbols have the same name and one of them is a stub type,
4274 the get rid of the stub. */
4275
4276 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4277 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4278 {
4279 for (j = 0; j < nsyms; j++)
4280 {
4281 if (j != i
4282 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4283 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4284 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4285 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4286 remove = 1;
4287 }
4288 }
4289
4290 /* Two symbols with the same name, same class and same address
4291 should be identical. */
4292
4293 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4294 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4295 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4296 {
4297 for (j = 0; j < nsyms; j += 1)
4298 {
4299 if (i != j
4300 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4301 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4302 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4303 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4304 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4305 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4306 remove = 1;
4307 }
4308 }
4309
4310 if (remove)
4311 {
4312 for (j = i + 1; j < nsyms; j += 1)
4313 syms[j - 1] = syms[j];
4314 nsyms -= 1;
4315 }
4316
4317 i += 1;
4318 }
4319 return nsyms;
4320 }
4321
4322 /* Given a type that corresponds to a renaming entity, use the type name
4323 to extract the scope (package name or function name, fully qualified,
4324 and following the GNAT encoding convention) where this renaming has been
4325 defined. The string returned needs to be deallocated after use. */
4326
4327 static char *
4328 xget_renaming_scope (struct type *renaming_type)
4329 {
4330 /* The renaming types adhere to the following convention:
4331 <scope>__<rename>___<XR extension>.
4332 So, to extract the scope, we search for the "___XR" extension,
4333 and then backtrack until we find the first "__". */
4334
4335 const char *name = type_name_no_tag (renaming_type);
4336 char *suffix = strstr (name, "___XR");
4337 char *last;
4338 int scope_len;
4339 char *scope;
4340
4341 /* Now, backtrack a bit until we find the first "__". Start looking
4342 at suffix - 3, as the <rename> part is at least one character long. */
4343
4344 for (last = suffix - 3; last > name; last--)
4345 if (last[0] == '_' && last[1] == '_')
4346 break;
4347
4348 /* Make a copy of scope and return it. */
4349
4350 scope_len = last - name;
4351 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4352
4353 strncpy (scope, name, scope_len);
4354 scope[scope_len] = '\0';
4355
4356 return scope;
4357 }
4358
4359 /* Return nonzero if NAME corresponds to a package name. */
4360
4361 static int
4362 is_package_name (const char *name)
4363 {
4364 /* Here, We take advantage of the fact that no symbols are generated
4365 for packages, while symbols are generated for each function.
4366 So the condition for NAME represent a package becomes equivalent
4367 to NAME not existing in our list of symbols. There is only one
4368 small complication with library-level functions (see below). */
4369
4370 char *fun_name;
4371
4372 /* If it is a function that has not been defined at library level,
4373 then we should be able to look it up in the symbols. */
4374 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4375 return 0;
4376
4377 /* Library-level function names start with "_ada_". See if function
4378 "_ada_" followed by NAME can be found. */
4379
4380 /* Do a quick check that NAME does not contain "__", since library-level
4381 functions names cannot contain "__" in them. */
4382 if (strstr (name, "__") != NULL)
4383 return 0;
4384
4385 fun_name = xstrprintf ("_ada_%s", name);
4386
4387 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4388 }
4389
4390 /* Return nonzero if SYM corresponds to a renaming entity that is
4391 not visible from FUNCTION_NAME. */
4392
4393 static int
4394 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4395 {
4396 char *scope;
4397
4398 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4399 return 0;
4400
4401 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4402
4403 make_cleanup (xfree, scope);
4404
4405 /* If the rename has been defined in a package, then it is visible. */
4406 if (is_package_name (scope))
4407 return 0;
4408
4409 /* Check that the rename is in the current function scope by checking
4410 that its name starts with SCOPE. */
4411
4412 /* If the function name starts with "_ada_", it means that it is
4413 a library-level function. Strip this prefix before doing the
4414 comparison, as the encoding for the renaming does not contain
4415 this prefix. */
4416 if (strncmp (function_name, "_ada_", 5) == 0)
4417 function_name += 5;
4418
4419 return (strncmp (function_name, scope, strlen (scope)) != 0);
4420 }
4421
4422 /* Remove entries from SYMS that corresponds to a renaming entity that
4423 is not visible from the function associated with CURRENT_BLOCK or
4424 that is superfluous due to the presence of more specific renaming
4425 information. Places surviving symbols in the initial entries of
4426 SYMS and returns the number of surviving symbols.
4427
4428 Rationale:
4429 First, in cases where an object renaming is implemented as a
4430 reference variable, GNAT may produce both the actual reference
4431 variable and the renaming encoding. In this case, we discard the
4432 latter.
4433
4434 Second, GNAT emits a type following a specified encoding for each renaming
4435 entity. Unfortunately, STABS currently does not support the definition
4436 of types that are local to a given lexical block, so all renamings types
4437 are emitted at library level. As a consequence, if an application
4438 contains two renaming entities using the same name, and a user tries to
4439 print the value of one of these entities, the result of the ada symbol
4440 lookup will also contain the wrong renaming type.
4441
4442 This function partially covers for this limitation by attempting to
4443 remove from the SYMS list renaming symbols that should be visible
4444 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4445 method with the current information available. The implementation
4446 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4447
4448 - When the user tries to print a rename in a function while there
4449 is another rename entity defined in a package: Normally, the
4450 rename in the function has precedence over the rename in the
4451 package, so the latter should be removed from the list. This is
4452 currently not the case.
4453
4454 - This function will incorrectly remove valid renames if
4455 the CURRENT_BLOCK corresponds to a function which symbol name
4456 has been changed by an "Export" pragma. As a consequence,
4457 the user will be unable to print such rename entities. */
4458
4459 static int
4460 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4461 int nsyms, const struct block *current_block)
4462 {
4463 struct symbol *current_function;
4464 char *current_function_name;
4465 int i;
4466 int is_new_style_renaming;
4467
4468 /* If there is both a renaming foo___XR... encoded as a variable and
4469 a simple variable foo in the same block, discard the latter.
4470 First, zero out such symbols, then compress. */
4471 is_new_style_renaming = 0;
4472 for (i = 0; i < nsyms; i += 1)
4473 {
4474 struct symbol *sym = syms[i].sym;
4475 struct block *block = syms[i].block;
4476 const char *name;
4477 const char *suffix;
4478
4479 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4480 continue;
4481 name = SYMBOL_LINKAGE_NAME (sym);
4482 suffix = strstr (name, "___XR");
4483
4484 if (suffix != NULL)
4485 {
4486 int name_len = suffix - name;
4487 int j;
4488 is_new_style_renaming = 1;
4489 for (j = 0; j < nsyms; j += 1)
4490 if (i != j && syms[j].sym != NULL
4491 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4492 name_len) == 0
4493 && block == syms[j].block)
4494 syms[j].sym = NULL;
4495 }
4496 }
4497 if (is_new_style_renaming)
4498 {
4499 int j, k;
4500
4501 for (j = k = 0; j < nsyms; j += 1)
4502 if (syms[j].sym != NULL)
4503 {
4504 syms[k] = syms[j];
4505 k += 1;
4506 }
4507 return k;
4508 }
4509
4510 /* Extract the function name associated to CURRENT_BLOCK.
4511 Abort if unable to do so. */
4512
4513 if (current_block == NULL)
4514 return nsyms;
4515
4516 current_function = block_linkage_function (current_block);
4517 if (current_function == NULL)
4518 return nsyms;
4519
4520 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4521 if (current_function_name == NULL)
4522 return nsyms;
4523
4524 /* Check each of the symbols, and remove it from the list if it is
4525 a type corresponding to a renaming that is out of the scope of
4526 the current block. */
4527
4528 i = 0;
4529 while (i < nsyms)
4530 {
4531 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4532 == ADA_OBJECT_RENAMING
4533 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4534 {
4535 int j;
4536 for (j = i + 1; j < nsyms; j += 1)
4537 syms[j - 1] = syms[j];
4538 nsyms -= 1;
4539 }
4540 else
4541 i += 1;
4542 }
4543
4544 return nsyms;
4545 }
4546
4547 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4548 whose name and domain match NAME and DOMAIN respectively.
4549 If no match was found, then extend the search to "enclosing"
4550 routines (in other words, if we're inside a nested function,
4551 search the symbols defined inside the enclosing functions).
4552
4553 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4554
4555 static void
4556 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4557 struct block *block, domain_enum domain,
4558 int wild_match)
4559 {
4560 int block_depth = 0;
4561
4562 while (block != NULL)
4563 {
4564 block_depth += 1;
4565 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4566
4567 /* If we found a non-function match, assume that's the one. */
4568 if (is_nonfunction (defns_collected (obstackp, 0),
4569 num_defns_collected (obstackp)))
4570 return;
4571
4572 block = BLOCK_SUPERBLOCK (block);
4573 }
4574
4575 /* If no luck so far, try to find NAME as a local symbol in some lexically
4576 enclosing subprogram. */
4577 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4578 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4579 }
4580
4581 /* Add to OBSTACKP all non-local symbols whose name and domain match
4582 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4583 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4584
4585 static void
4586 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4587 domain_enum domain, int global,
4588 int wild_match)
4589 {
4590 struct objfile *objfile;
4591 struct partial_symtab *ps;
4592
4593 ALL_PSYMTABS (objfile, ps)
4594 {
4595 QUIT;
4596 if (ps->readin
4597 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4598 {
4599 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4600 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4601
4602 if (s == NULL || !s->primary)
4603 continue;
4604 ada_add_block_symbols (obstackp,
4605 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4606 name, domain, objfile, wild_match);
4607 }
4608 }
4609 }
4610
4611 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4612 scope and in global scopes, returning the number of matches. Sets
4613 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4614 indicating the symbols found and the blocks and symbol tables (if
4615 any) in which they were found. This vector are transient---good only to
4616 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4617 symbol match within the nest of blocks whose innermost member is BLOCK0,
4618 is the one match returned (no other matches in that or
4619 enclosing blocks is returned). If there are any matches in or
4620 surrounding BLOCK0, then these alone are returned. Otherwise, the
4621 search extends to global and file-scope (static) symbol tables.
4622 Names prefixed with "standard__" are handled specially: "standard__"
4623 is first stripped off, and only static and global symbols are searched. */
4624
4625 int
4626 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4627 domain_enum namespace,
4628 struct ada_symbol_info **results)
4629 {
4630 struct symbol *sym;
4631 struct block *block;
4632 const char *name;
4633 int wild_match;
4634 int cacheIfUnique;
4635 int ndefns;
4636
4637 obstack_free (&symbol_list_obstack, NULL);
4638 obstack_init (&symbol_list_obstack);
4639
4640 cacheIfUnique = 0;
4641
4642 /* Search specified block and its superiors. */
4643
4644 wild_match = (strstr (name0, "__") == NULL);
4645 name = name0;
4646 block = (struct block *) block0; /* FIXME: No cast ought to be
4647 needed, but adding const will
4648 have a cascade effect. */
4649
4650 /* Special case: If the user specifies a symbol name inside package
4651 Standard, do a non-wild matching of the symbol name without
4652 the "standard__" prefix. This was primarily introduced in order
4653 to allow the user to specifically access the standard exceptions
4654 using, for instance, Standard.Constraint_Error when Constraint_Error
4655 is ambiguous (due to the user defining its own Constraint_Error
4656 entity inside its program). */
4657 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4658 {
4659 wild_match = 0;
4660 block = NULL;
4661 name = name0 + sizeof ("standard__") - 1;
4662 }
4663
4664 /* Check the non-global symbols. If we have ANY match, then we're done. */
4665
4666 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4667 wild_match);
4668 if (num_defns_collected (&symbol_list_obstack) > 0)
4669 goto done;
4670
4671 /* No non-global symbols found. Check our cache to see if we have
4672 already performed this search before. If we have, then return
4673 the same result. */
4674
4675 cacheIfUnique = 1;
4676 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4677 {
4678 if (sym != NULL)
4679 add_defn_to_vec (&symbol_list_obstack, sym, block);
4680 goto done;
4681 }
4682
4683 /* Search symbols from all global blocks. */
4684
4685 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4686 wild_match);
4687
4688 /* Now add symbols from all per-file blocks if we've gotten no hits
4689 (not strictly correct, but perhaps better than an error). */
4690
4691 if (num_defns_collected (&symbol_list_obstack) == 0)
4692 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4693 wild_match);
4694
4695 done:
4696 ndefns = num_defns_collected (&symbol_list_obstack);
4697 *results = defns_collected (&symbol_list_obstack, 1);
4698
4699 ndefns = remove_extra_symbols (*results, ndefns);
4700
4701 if (ndefns == 0)
4702 cache_symbol (name0, namespace, NULL, NULL);
4703
4704 if (ndefns == 1 && cacheIfUnique)
4705 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4706
4707 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4708
4709 return ndefns;
4710 }
4711
4712 struct symbol *
4713 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4714 domain_enum namespace, struct block **block_found)
4715 {
4716 struct ada_symbol_info *candidates;
4717 int n_candidates;
4718
4719 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4720
4721 if (n_candidates == 0)
4722 return NULL;
4723
4724 if (block_found != NULL)
4725 *block_found = candidates[0].block;
4726
4727 return fixup_symbol_section (candidates[0].sym, NULL);
4728 }
4729
4730 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4731 scope and in global scopes, or NULL if none. NAME is folded and
4732 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4733 choosing the first symbol if there are multiple choices.
4734 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4735 table in which the symbol was found (in both cases, these
4736 assignments occur only if the pointers are non-null). */
4737 struct symbol *
4738 ada_lookup_symbol (const char *name, const struct block *block0,
4739 domain_enum namespace, int *is_a_field_of_this)
4740 {
4741 if (is_a_field_of_this != NULL)
4742 *is_a_field_of_this = 0;
4743
4744 return
4745 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4746 block0, namespace, NULL);
4747 }
4748
4749 static struct symbol *
4750 ada_lookup_symbol_nonlocal (const char *name,
4751 const char *linkage_name,
4752 const struct block *block,
4753 const domain_enum domain)
4754 {
4755 if (linkage_name == NULL)
4756 linkage_name = name;
4757 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4758 NULL);
4759 }
4760
4761
4762 /* True iff STR is a possible encoded suffix of a normal Ada name
4763 that is to be ignored for matching purposes. Suffixes of parallel
4764 names (e.g., XVE) are not included here. Currently, the possible suffixes
4765 are given by any of the regular expressions:
4766
4767 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4768 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4769 _E[0-9]+[bs]$ [protected object entry suffixes]
4770 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4771
4772 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4773 match is performed. This sequence is used to differentiate homonyms,
4774 is an optional part of a valid name suffix. */
4775
4776 static int
4777 is_name_suffix (const char *str)
4778 {
4779 int k;
4780 const char *matching;
4781 const int len = strlen (str);
4782
4783 /* Skip optional leading __[0-9]+. */
4784
4785 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4786 {
4787 str += 3;
4788 while (isdigit (str[0]))
4789 str += 1;
4790 }
4791
4792 /* [.$][0-9]+ */
4793
4794 if (str[0] == '.' || str[0] == '$')
4795 {
4796 matching = str + 1;
4797 while (isdigit (matching[0]))
4798 matching += 1;
4799 if (matching[0] == '\0')
4800 return 1;
4801 }
4802
4803 /* ___[0-9]+ */
4804
4805 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4806 {
4807 matching = str + 3;
4808 while (isdigit (matching[0]))
4809 matching += 1;
4810 if (matching[0] == '\0')
4811 return 1;
4812 }
4813
4814 #if 0
4815 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4816 with a N at the end. Unfortunately, the compiler uses the same
4817 convention for other internal types it creates. So treating
4818 all entity names that end with an "N" as a name suffix causes
4819 some regressions. For instance, consider the case of an enumerated
4820 type. To support the 'Image attribute, it creates an array whose
4821 name ends with N.
4822 Having a single character like this as a suffix carrying some
4823 information is a bit risky. Perhaps we should change the encoding
4824 to be something like "_N" instead. In the meantime, do not do
4825 the following check. */
4826 /* Protected Object Subprograms */
4827 if (len == 1 && str [0] == 'N')
4828 return 1;
4829 #endif
4830
4831 /* _E[0-9]+[bs]$ */
4832 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4833 {
4834 matching = str + 3;
4835 while (isdigit (matching[0]))
4836 matching += 1;
4837 if ((matching[0] == 'b' || matching[0] == 's')
4838 && matching [1] == '\0')
4839 return 1;
4840 }
4841
4842 /* ??? We should not modify STR directly, as we are doing below. This
4843 is fine in this case, but may become problematic later if we find
4844 that this alternative did not work, and want to try matching
4845 another one from the begining of STR. Since we modified it, we
4846 won't be able to find the begining of the string anymore! */
4847 if (str[0] == 'X')
4848 {
4849 str += 1;
4850 while (str[0] != '_' && str[0] != '\0')
4851 {
4852 if (str[0] != 'n' && str[0] != 'b')
4853 return 0;
4854 str += 1;
4855 }
4856 }
4857
4858 if (str[0] == '\000')
4859 return 1;
4860
4861 if (str[0] == '_')
4862 {
4863 if (str[1] != '_' || str[2] == '\000')
4864 return 0;
4865 if (str[2] == '_')
4866 {
4867 if (strcmp (str + 3, "JM") == 0)
4868 return 1;
4869 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4870 the LJM suffix in favor of the JM one. But we will
4871 still accept LJM as a valid suffix for a reasonable
4872 amount of time, just to allow ourselves to debug programs
4873 compiled using an older version of GNAT. */
4874 if (strcmp (str + 3, "LJM") == 0)
4875 return 1;
4876 if (str[3] != 'X')
4877 return 0;
4878 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4879 || str[4] == 'U' || str[4] == 'P')
4880 return 1;
4881 if (str[4] == 'R' && str[5] != 'T')
4882 return 1;
4883 return 0;
4884 }
4885 if (!isdigit (str[2]))
4886 return 0;
4887 for (k = 3; str[k] != '\0'; k += 1)
4888 if (!isdigit (str[k]) && str[k] != '_')
4889 return 0;
4890 return 1;
4891 }
4892 if (str[0] == '$' && isdigit (str[1]))
4893 {
4894 for (k = 2; str[k] != '\0'; k += 1)
4895 if (!isdigit (str[k]) && str[k] != '_')
4896 return 0;
4897 return 1;
4898 }
4899 return 0;
4900 }
4901
4902 /* Return non-zero if the string starting at NAME and ending before
4903 NAME_END contains no capital letters. */
4904
4905 static int
4906 is_valid_name_for_wild_match (const char *name0)
4907 {
4908 const char *decoded_name = ada_decode (name0);
4909 int i;
4910
4911 /* If the decoded name starts with an angle bracket, it means that
4912 NAME0 does not follow the GNAT encoding format. It should then
4913 not be allowed as a possible wild match. */
4914 if (decoded_name[0] == '<')
4915 return 0;
4916
4917 for (i=0; decoded_name[i] != '\0'; i++)
4918 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4919 return 0;
4920
4921 return 1;
4922 }
4923
4924 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4925 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4926 informational suffixes of NAME (i.e., for which is_name_suffix is
4927 true). */
4928
4929 static int
4930 wild_match (const char *patn0, int patn_len, const char *name0)
4931 {
4932 char* match;
4933 const char* start;
4934 start = name0;
4935 while (1)
4936 {
4937 match = strstr (start, patn0);
4938 if (match == NULL)
4939 return 0;
4940 if ((match == name0
4941 || match[-1] == '.'
4942 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4943 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4944 && is_name_suffix (match + patn_len))
4945 return (match == name0 || is_valid_name_for_wild_match (name0));
4946 start = match + 1;
4947 }
4948 }
4949
4950 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4951 vector *defn_symbols, updating the list of symbols in OBSTACKP
4952 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4953 OBJFILE is the section containing BLOCK.
4954 SYMTAB is recorded with each symbol added. */
4955
4956 static void
4957 ada_add_block_symbols (struct obstack *obstackp,
4958 struct block *block, const char *name,
4959 domain_enum domain, struct objfile *objfile,
4960 int wild)
4961 {
4962 struct dict_iterator iter;
4963 int name_len = strlen (name);
4964 /* A matching argument symbol, if any. */
4965 struct symbol *arg_sym;
4966 /* Set true when we find a matching non-argument symbol. */
4967 int found_sym;
4968 struct symbol *sym;
4969
4970 arg_sym = NULL;
4971 found_sym = 0;
4972 if (wild)
4973 {
4974 struct symbol *sym;
4975 ALL_BLOCK_SYMBOLS (block, iter, sym)
4976 {
4977 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4978 SYMBOL_DOMAIN (sym), domain)
4979 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4980 {
4981 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4982 continue;
4983 else if (SYMBOL_IS_ARGUMENT (sym))
4984 arg_sym = sym;
4985 else
4986 {
4987 found_sym = 1;
4988 add_defn_to_vec (obstackp,
4989 fixup_symbol_section (sym, objfile),
4990 block);
4991 }
4992 }
4993 }
4994 }
4995 else
4996 {
4997 ALL_BLOCK_SYMBOLS (block, iter, sym)
4998 {
4999 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5000 SYMBOL_DOMAIN (sym), domain))
5001 {
5002 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5003 if (cmp == 0
5004 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5005 {
5006 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5007 {
5008 if (SYMBOL_IS_ARGUMENT (sym))
5009 arg_sym = sym;
5010 else
5011 {
5012 found_sym = 1;
5013 add_defn_to_vec (obstackp,
5014 fixup_symbol_section (sym, objfile),
5015 block);
5016 }
5017 }
5018 }
5019 }
5020 }
5021 }
5022
5023 if (!found_sym && arg_sym != NULL)
5024 {
5025 add_defn_to_vec (obstackp,
5026 fixup_symbol_section (arg_sym, objfile),
5027 block);
5028 }
5029
5030 if (!wild)
5031 {
5032 arg_sym = NULL;
5033 found_sym = 0;
5034
5035 ALL_BLOCK_SYMBOLS (block, iter, sym)
5036 {
5037 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5038 SYMBOL_DOMAIN (sym), domain))
5039 {
5040 int cmp;
5041
5042 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5043 if (cmp == 0)
5044 {
5045 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5046 if (cmp == 0)
5047 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5048 name_len);
5049 }
5050
5051 if (cmp == 0
5052 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5053 {
5054 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5055 {
5056 if (SYMBOL_IS_ARGUMENT (sym))
5057 arg_sym = sym;
5058 else
5059 {
5060 found_sym = 1;
5061 add_defn_to_vec (obstackp,
5062 fixup_symbol_section (sym, objfile),
5063 block);
5064 }
5065 }
5066 }
5067 }
5068 }
5069
5070 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5071 They aren't parameters, right? */
5072 if (!found_sym && arg_sym != NULL)
5073 {
5074 add_defn_to_vec (obstackp,
5075 fixup_symbol_section (arg_sym, objfile),
5076 block);
5077 }
5078 }
5079 }
5080 \f
5081
5082 /* Symbol Completion */
5083
5084 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5085 name in a form that's appropriate for the completion. The result
5086 does not need to be deallocated, but is only good until the next call.
5087
5088 TEXT_LEN is equal to the length of TEXT.
5089 Perform a wild match if WILD_MATCH is set.
5090 ENCODED should be set if TEXT represents the start of a symbol name
5091 in its encoded form. */
5092
5093 static const char *
5094 symbol_completion_match (const char *sym_name,
5095 const char *text, int text_len,
5096 int wild_match, int encoded)
5097 {
5098 char *result;
5099 const int verbatim_match = (text[0] == '<');
5100 int match = 0;
5101
5102 if (verbatim_match)
5103 {
5104 /* Strip the leading angle bracket. */
5105 text = text + 1;
5106 text_len--;
5107 }
5108
5109 /* First, test against the fully qualified name of the symbol. */
5110
5111 if (strncmp (sym_name, text, text_len) == 0)
5112 match = 1;
5113
5114 if (match && !encoded)
5115 {
5116 /* One needed check before declaring a positive match is to verify
5117 that iff we are doing a verbatim match, the decoded version
5118 of the symbol name starts with '<'. Otherwise, this symbol name
5119 is not a suitable completion. */
5120 const char *sym_name_copy = sym_name;
5121 int has_angle_bracket;
5122
5123 sym_name = ada_decode (sym_name);
5124 has_angle_bracket = (sym_name[0] == '<');
5125 match = (has_angle_bracket == verbatim_match);
5126 sym_name = sym_name_copy;
5127 }
5128
5129 if (match && !verbatim_match)
5130 {
5131 /* When doing non-verbatim match, another check that needs to
5132 be done is to verify that the potentially matching symbol name
5133 does not include capital letters, because the ada-mode would
5134 not be able to understand these symbol names without the
5135 angle bracket notation. */
5136 const char *tmp;
5137
5138 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5139 if (*tmp != '\0')
5140 match = 0;
5141 }
5142
5143 /* Second: Try wild matching... */
5144
5145 if (!match && wild_match)
5146 {
5147 /* Since we are doing wild matching, this means that TEXT
5148 may represent an unqualified symbol name. We therefore must
5149 also compare TEXT against the unqualified name of the symbol. */
5150 sym_name = ada_unqualified_name (ada_decode (sym_name));
5151
5152 if (strncmp (sym_name, text, text_len) == 0)
5153 match = 1;
5154 }
5155
5156 /* Finally: If we found a mach, prepare the result to return. */
5157
5158 if (!match)
5159 return NULL;
5160
5161 if (verbatim_match)
5162 sym_name = add_angle_brackets (sym_name);
5163
5164 if (!encoded)
5165 sym_name = ada_decode (sym_name);
5166
5167 return sym_name;
5168 }
5169
5170 typedef char *char_ptr;
5171 DEF_VEC_P (char_ptr);
5172
5173 /* A companion function to ada_make_symbol_completion_list().
5174 Check if SYM_NAME represents a symbol which name would be suitable
5175 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5176 it is appended at the end of the given string vector SV.
5177
5178 ORIG_TEXT is the string original string from the user command
5179 that needs to be completed. WORD is the entire command on which
5180 completion should be performed. These two parameters are used to
5181 determine which part of the symbol name should be added to the
5182 completion vector.
5183 if WILD_MATCH is set, then wild matching is performed.
5184 ENCODED should be set if TEXT represents a symbol name in its
5185 encoded formed (in which case the completion should also be
5186 encoded). */
5187
5188 static void
5189 symbol_completion_add (VEC(char_ptr) **sv,
5190 const char *sym_name,
5191 const char *text, int text_len,
5192 const char *orig_text, const char *word,
5193 int wild_match, int encoded)
5194 {
5195 const char *match = symbol_completion_match (sym_name, text, text_len,
5196 wild_match, encoded);
5197 char *completion;
5198
5199 if (match == NULL)
5200 return;
5201
5202 /* We found a match, so add the appropriate completion to the given
5203 string vector. */
5204
5205 if (word == orig_text)
5206 {
5207 completion = xmalloc (strlen (match) + 5);
5208 strcpy (completion, match);
5209 }
5210 else if (word > orig_text)
5211 {
5212 /* Return some portion of sym_name. */
5213 completion = xmalloc (strlen (match) + 5);
5214 strcpy (completion, match + (word - orig_text));
5215 }
5216 else
5217 {
5218 /* Return some of ORIG_TEXT plus sym_name. */
5219 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5220 strncpy (completion, word, orig_text - word);
5221 completion[orig_text - word] = '\0';
5222 strcat (completion, match);
5223 }
5224
5225 VEC_safe_push (char_ptr, *sv, completion);
5226 }
5227
5228 /* Return a list of possible symbol names completing TEXT0. The list
5229 is NULL terminated. WORD is the entire command on which completion
5230 is made. */
5231
5232 static char **
5233 ada_make_symbol_completion_list (char *text0, char *word)
5234 {
5235 char *text;
5236 int text_len;
5237 int wild_match;
5238 int encoded;
5239 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5240 struct symbol *sym;
5241 struct symtab *s;
5242 struct partial_symtab *ps;
5243 struct minimal_symbol *msymbol;
5244 struct objfile *objfile;
5245 struct block *b, *surrounding_static_block = 0;
5246 int i;
5247 struct dict_iterator iter;
5248
5249 if (text0[0] == '<')
5250 {
5251 text = xstrdup (text0);
5252 make_cleanup (xfree, text);
5253 text_len = strlen (text);
5254 wild_match = 0;
5255 encoded = 1;
5256 }
5257 else
5258 {
5259 text = xstrdup (ada_encode (text0));
5260 make_cleanup (xfree, text);
5261 text_len = strlen (text);
5262 for (i = 0; i < text_len; i++)
5263 text[i] = tolower (text[i]);
5264
5265 encoded = (strstr (text0, "__") != NULL);
5266 /* If the name contains a ".", then the user is entering a fully
5267 qualified entity name, and the match must not be done in wild
5268 mode. Similarly, if the user wants to complete what looks like
5269 an encoded name, the match must not be done in wild mode. */
5270 wild_match = (strchr (text0, '.') == NULL && !encoded);
5271 }
5272
5273 /* First, look at the partial symtab symbols. */
5274 ALL_PSYMTABS (objfile, ps)
5275 {
5276 struct partial_symbol **psym;
5277
5278 /* If the psymtab's been read in we'll get it when we search
5279 through the blockvector. */
5280 if (ps->readin)
5281 continue;
5282
5283 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5284 psym < (objfile->global_psymbols.list + ps->globals_offset
5285 + ps->n_global_syms); psym++)
5286 {
5287 QUIT;
5288 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5289 text, text_len, text0, word,
5290 wild_match, encoded);
5291 }
5292
5293 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5294 psym < (objfile->static_psymbols.list + ps->statics_offset
5295 + ps->n_static_syms); psym++)
5296 {
5297 QUIT;
5298 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5299 text, text_len, text0, word,
5300 wild_match, encoded);
5301 }
5302 }
5303
5304 /* At this point scan through the misc symbol vectors and add each
5305 symbol you find to the list. Eventually we want to ignore
5306 anything that isn't a text symbol (everything else will be
5307 handled by the psymtab code above). */
5308
5309 ALL_MSYMBOLS (objfile, msymbol)
5310 {
5311 QUIT;
5312 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5313 text, text_len, text0, word, wild_match, encoded);
5314 }
5315
5316 /* Search upwards from currently selected frame (so that we can
5317 complete on local vars. */
5318
5319 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5320 {
5321 if (!BLOCK_SUPERBLOCK (b))
5322 surrounding_static_block = b; /* For elmin of dups */
5323
5324 ALL_BLOCK_SYMBOLS (b, iter, sym)
5325 {
5326 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5327 text, text_len, text0, word,
5328 wild_match, encoded);
5329 }
5330 }
5331
5332 /* Go through the symtabs and check the externs and statics for
5333 symbols which match. */
5334
5335 ALL_SYMTABS (objfile, s)
5336 {
5337 QUIT;
5338 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5339 ALL_BLOCK_SYMBOLS (b, iter, sym)
5340 {
5341 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5342 text, text_len, text0, word,
5343 wild_match, encoded);
5344 }
5345 }
5346
5347 ALL_SYMTABS (objfile, s)
5348 {
5349 QUIT;
5350 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5351 /* Don't do this block twice. */
5352 if (b == surrounding_static_block)
5353 continue;
5354 ALL_BLOCK_SYMBOLS (b, iter, sym)
5355 {
5356 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5357 text, text_len, text0, word,
5358 wild_match, encoded);
5359 }
5360 }
5361
5362 /* Append the closing NULL entry. */
5363 VEC_safe_push (char_ptr, completions, NULL);
5364
5365 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5366 return the copy. It's unfortunate that we have to make a copy
5367 of an array that we're about to destroy, but there is nothing much
5368 we can do about it. Fortunately, it's typically not a very large
5369 array. */
5370 {
5371 const size_t completions_size =
5372 VEC_length (char_ptr, completions) * sizeof (char *);
5373 char **result = malloc (completions_size);
5374
5375 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5376
5377 VEC_free (char_ptr, completions);
5378 return result;
5379 }
5380 }
5381
5382 /* Field Access */
5383
5384 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5385 for tagged types. */
5386
5387 static int
5388 ada_is_dispatch_table_ptr_type (struct type *type)
5389 {
5390 char *name;
5391
5392 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5393 return 0;
5394
5395 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5396 if (name == NULL)
5397 return 0;
5398
5399 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5400 }
5401
5402 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5403 to be invisible to users. */
5404
5405 int
5406 ada_is_ignored_field (struct type *type, int field_num)
5407 {
5408 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5409 return 1;
5410
5411 /* Check the name of that field. */
5412 {
5413 const char *name = TYPE_FIELD_NAME (type, field_num);
5414
5415 /* Anonymous field names should not be printed.
5416 brobecker/2007-02-20: I don't think this can actually happen
5417 but we don't want to print the value of annonymous fields anyway. */
5418 if (name == NULL)
5419 return 1;
5420
5421 /* A field named "_parent" is internally generated by GNAT for
5422 tagged types, and should not be printed either. */
5423 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5424 return 1;
5425 }
5426
5427 /* If this is the dispatch table of a tagged type, then ignore. */
5428 if (ada_is_tagged_type (type, 1)
5429 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5430 return 1;
5431
5432 /* Not a special field, so it should not be ignored. */
5433 return 0;
5434 }
5435
5436 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5437 pointer or reference type whose ultimate target has a tag field. */
5438
5439 int
5440 ada_is_tagged_type (struct type *type, int refok)
5441 {
5442 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5443 }
5444
5445 /* True iff TYPE represents the type of X'Tag */
5446
5447 int
5448 ada_is_tag_type (struct type *type)
5449 {
5450 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5451 return 0;
5452 else
5453 {
5454 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5455 return (name != NULL
5456 && strcmp (name, "ada__tags__dispatch_table") == 0);
5457 }
5458 }
5459
5460 /* The type of the tag on VAL. */
5461
5462 struct type *
5463 ada_tag_type (struct value *val)
5464 {
5465 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5466 }
5467
5468 /* The value of the tag on VAL. */
5469
5470 struct value *
5471 ada_value_tag (struct value *val)
5472 {
5473 return ada_value_struct_elt (val, "_tag", 0);
5474 }
5475
5476 /* The value of the tag on the object of type TYPE whose contents are
5477 saved at VALADDR, if it is non-null, or is at memory address
5478 ADDRESS. */
5479
5480 static struct value *
5481 value_tag_from_contents_and_address (struct type *type,
5482 const gdb_byte *valaddr,
5483 CORE_ADDR address)
5484 {
5485 int tag_byte_offset, dummy1, dummy2;
5486 struct type *tag_type;
5487 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5488 NULL, NULL, NULL))
5489 {
5490 const gdb_byte *valaddr1 = ((valaddr == NULL)
5491 ? NULL
5492 : valaddr + tag_byte_offset);
5493 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5494
5495 return value_from_contents_and_address (tag_type, valaddr1, address1);
5496 }
5497 return NULL;
5498 }
5499
5500 static struct type *
5501 type_from_tag (struct value *tag)
5502 {
5503 const char *type_name = ada_tag_name (tag);
5504 if (type_name != NULL)
5505 return ada_find_any_type (ada_encode (type_name));
5506 return NULL;
5507 }
5508
5509 struct tag_args
5510 {
5511 struct value *tag;
5512 char *name;
5513 };
5514
5515
5516 static int ada_tag_name_1 (void *);
5517 static int ada_tag_name_2 (struct tag_args *);
5518
5519 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5520 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5521 The value stored in ARGS->name is valid until the next call to
5522 ada_tag_name_1. */
5523
5524 static int
5525 ada_tag_name_1 (void *args0)
5526 {
5527 struct tag_args *args = (struct tag_args *) args0;
5528 static char name[1024];
5529 char *p;
5530 struct value *val;
5531 args->name = NULL;
5532 val = ada_value_struct_elt (args->tag, "tsd", 1);
5533 if (val == NULL)
5534 return ada_tag_name_2 (args);
5535 val = ada_value_struct_elt (val, "expanded_name", 1);
5536 if (val == NULL)
5537 return 0;
5538 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5539 for (p = name; *p != '\0'; p += 1)
5540 if (isalpha (*p))
5541 *p = tolower (*p);
5542 args->name = name;
5543 return 0;
5544 }
5545
5546 /* Utility function for ada_tag_name_1 that tries the second
5547 representation for the dispatch table (in which there is no
5548 explicit 'tsd' field in the referent of the tag pointer, and instead
5549 the tsd pointer is stored just before the dispatch table. */
5550
5551 static int
5552 ada_tag_name_2 (struct tag_args *args)
5553 {
5554 struct type *info_type;
5555 static char name[1024];
5556 char *p;
5557 struct value *val, *valp;
5558
5559 args->name = NULL;
5560 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5561 if (info_type == NULL)
5562 return 0;
5563 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5564 valp = value_cast (info_type, args->tag);
5565 if (valp == NULL)
5566 return 0;
5567 val = value_ind (value_ptradd (valp,
5568 value_from_longest (builtin_type_int8, -1)));
5569 if (val == NULL)
5570 return 0;
5571 val = ada_value_struct_elt (val, "expanded_name", 1);
5572 if (val == NULL)
5573 return 0;
5574 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5575 for (p = name; *p != '\0'; p += 1)
5576 if (isalpha (*p))
5577 *p = tolower (*p);
5578 args->name = name;
5579 return 0;
5580 }
5581
5582 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5583 * a C string. */
5584
5585 const char *
5586 ada_tag_name (struct value *tag)
5587 {
5588 struct tag_args args;
5589 if (!ada_is_tag_type (value_type (tag)))
5590 return NULL;
5591 args.tag = tag;
5592 args.name = NULL;
5593 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5594 return args.name;
5595 }
5596
5597 /* The parent type of TYPE, or NULL if none. */
5598
5599 struct type *
5600 ada_parent_type (struct type *type)
5601 {
5602 int i;
5603
5604 type = ada_check_typedef (type);
5605
5606 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5607 return NULL;
5608
5609 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5610 if (ada_is_parent_field (type, i))
5611 {
5612 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5613
5614 /* If the _parent field is a pointer, then dereference it. */
5615 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5616 parent_type = TYPE_TARGET_TYPE (parent_type);
5617 /* If there is a parallel XVS type, get the actual base type. */
5618 parent_type = ada_get_base_type (parent_type);
5619
5620 return ada_check_typedef (parent_type);
5621 }
5622
5623 return NULL;
5624 }
5625
5626 /* True iff field number FIELD_NUM of structure type TYPE contains the
5627 parent-type (inherited) fields of a derived type. Assumes TYPE is
5628 a structure type with at least FIELD_NUM+1 fields. */
5629
5630 int
5631 ada_is_parent_field (struct type *type, int field_num)
5632 {
5633 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5634 return (name != NULL
5635 && (strncmp (name, "PARENT", 6) == 0
5636 || strncmp (name, "_parent", 7) == 0));
5637 }
5638
5639 /* True iff field number FIELD_NUM of structure type TYPE is a
5640 transparent wrapper field (which should be silently traversed when doing
5641 field selection and flattened when printing). Assumes TYPE is a
5642 structure type with at least FIELD_NUM+1 fields. Such fields are always
5643 structures. */
5644
5645 int
5646 ada_is_wrapper_field (struct type *type, int field_num)
5647 {
5648 const char *name = TYPE_FIELD_NAME (type, field_num);
5649 return (name != NULL
5650 && (strncmp (name, "PARENT", 6) == 0
5651 || strcmp (name, "REP") == 0
5652 || strncmp (name, "_parent", 7) == 0
5653 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5654 }
5655
5656 /* True iff field number FIELD_NUM of structure or union type TYPE
5657 is a variant wrapper. Assumes TYPE is a structure type with at least
5658 FIELD_NUM+1 fields. */
5659
5660 int
5661 ada_is_variant_part (struct type *type, int field_num)
5662 {
5663 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5664 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5665 || (is_dynamic_field (type, field_num)
5666 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5667 == TYPE_CODE_UNION)));
5668 }
5669
5670 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5671 whose discriminants are contained in the record type OUTER_TYPE,
5672 returns the type of the controlling discriminant for the variant. */
5673
5674 struct type *
5675 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5676 {
5677 char *name = ada_variant_discrim_name (var_type);
5678 struct type *type =
5679 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5680 if (type == NULL)
5681 return builtin_type_int32;
5682 else
5683 return type;
5684 }
5685
5686 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5687 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5688 represents a 'when others' clause; otherwise 0. */
5689
5690 int
5691 ada_is_others_clause (struct type *type, int field_num)
5692 {
5693 const char *name = TYPE_FIELD_NAME (type, field_num);
5694 return (name != NULL && name[0] == 'O');
5695 }
5696
5697 /* Assuming that TYPE0 is the type of the variant part of a record,
5698 returns the name of the discriminant controlling the variant.
5699 The value is valid until the next call to ada_variant_discrim_name. */
5700
5701 char *
5702 ada_variant_discrim_name (struct type *type0)
5703 {
5704 static char *result = NULL;
5705 static size_t result_len = 0;
5706 struct type *type;
5707 const char *name;
5708 const char *discrim_end;
5709 const char *discrim_start;
5710
5711 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5712 type = TYPE_TARGET_TYPE (type0);
5713 else
5714 type = type0;
5715
5716 name = ada_type_name (type);
5717
5718 if (name == NULL || name[0] == '\000')
5719 return "";
5720
5721 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5722 discrim_end -= 1)
5723 {
5724 if (strncmp (discrim_end, "___XVN", 6) == 0)
5725 break;
5726 }
5727 if (discrim_end == name)
5728 return "";
5729
5730 for (discrim_start = discrim_end; discrim_start != name + 3;
5731 discrim_start -= 1)
5732 {
5733 if (discrim_start == name + 1)
5734 return "";
5735 if ((discrim_start > name + 3
5736 && strncmp (discrim_start - 3, "___", 3) == 0)
5737 || discrim_start[-1] == '.')
5738 break;
5739 }
5740
5741 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5742 strncpy (result, discrim_start, discrim_end - discrim_start);
5743 result[discrim_end - discrim_start] = '\0';
5744 return result;
5745 }
5746
5747 /* Scan STR for a subtype-encoded number, beginning at position K.
5748 Put the position of the character just past the number scanned in
5749 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5750 Return 1 if there was a valid number at the given position, and 0
5751 otherwise. A "subtype-encoded" number consists of the absolute value
5752 in decimal, followed by the letter 'm' to indicate a negative number.
5753 Assumes 0m does not occur. */
5754
5755 int
5756 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5757 {
5758 ULONGEST RU;
5759
5760 if (!isdigit (str[k]))
5761 return 0;
5762
5763 /* Do it the hard way so as not to make any assumption about
5764 the relationship of unsigned long (%lu scan format code) and
5765 LONGEST. */
5766 RU = 0;
5767 while (isdigit (str[k]))
5768 {
5769 RU = RU * 10 + (str[k] - '0');
5770 k += 1;
5771 }
5772
5773 if (str[k] == 'm')
5774 {
5775 if (R != NULL)
5776 *R = (-(LONGEST) (RU - 1)) - 1;
5777 k += 1;
5778 }
5779 else if (R != NULL)
5780 *R = (LONGEST) RU;
5781
5782 /* NOTE on the above: Technically, C does not say what the results of
5783 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5784 number representable as a LONGEST (although either would probably work
5785 in most implementations). When RU>0, the locution in the then branch
5786 above is always equivalent to the negative of RU. */
5787
5788 if (new_k != NULL)
5789 *new_k = k;
5790 return 1;
5791 }
5792
5793 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5794 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5795 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5796
5797 int
5798 ada_in_variant (LONGEST val, struct type *type, int field_num)
5799 {
5800 const char *name = TYPE_FIELD_NAME (type, field_num);
5801 int p;
5802
5803 p = 0;
5804 while (1)
5805 {
5806 switch (name[p])
5807 {
5808 case '\0':
5809 return 0;
5810 case 'S':
5811 {
5812 LONGEST W;
5813 if (!ada_scan_number (name, p + 1, &W, &p))
5814 return 0;
5815 if (val == W)
5816 return 1;
5817 break;
5818 }
5819 case 'R':
5820 {
5821 LONGEST L, U;
5822 if (!ada_scan_number (name, p + 1, &L, &p)
5823 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5824 return 0;
5825 if (val >= L && val <= U)
5826 return 1;
5827 break;
5828 }
5829 case 'O':
5830 return 1;
5831 default:
5832 return 0;
5833 }
5834 }
5835 }
5836
5837 /* FIXME: Lots of redundancy below. Try to consolidate. */
5838
5839 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5840 ARG_TYPE, extract and return the value of one of its (non-static)
5841 fields. FIELDNO says which field. Differs from value_primitive_field
5842 only in that it can handle packed values of arbitrary type. */
5843
5844 static struct value *
5845 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5846 struct type *arg_type)
5847 {
5848 struct type *type;
5849
5850 arg_type = ada_check_typedef (arg_type);
5851 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5852
5853 /* Handle packed fields. */
5854
5855 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5856 {
5857 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5858 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5859
5860 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5861 offset + bit_pos / 8,
5862 bit_pos % 8, bit_size, type);
5863 }
5864 else
5865 return value_primitive_field (arg1, offset, fieldno, arg_type);
5866 }
5867
5868 /* Find field with name NAME in object of type TYPE. If found,
5869 set the following for each argument that is non-null:
5870 - *FIELD_TYPE_P to the field's type;
5871 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5872 an object of that type;
5873 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5874 - *BIT_SIZE_P to its size in bits if the field is packed, and
5875 0 otherwise;
5876 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5877 fields up to but not including the desired field, or by the total
5878 number of fields if not found. A NULL value of NAME never
5879 matches; the function just counts visible fields in this case.
5880
5881 Returns 1 if found, 0 otherwise. */
5882
5883 static int
5884 find_struct_field (char *name, struct type *type, int offset,
5885 struct type **field_type_p,
5886 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5887 int *index_p)
5888 {
5889 int i;
5890
5891 type = ada_check_typedef (type);
5892
5893 if (field_type_p != NULL)
5894 *field_type_p = NULL;
5895 if (byte_offset_p != NULL)
5896 *byte_offset_p = 0;
5897 if (bit_offset_p != NULL)
5898 *bit_offset_p = 0;
5899 if (bit_size_p != NULL)
5900 *bit_size_p = 0;
5901
5902 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5903 {
5904 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5905 int fld_offset = offset + bit_pos / 8;
5906 char *t_field_name = TYPE_FIELD_NAME (type, i);
5907
5908 if (t_field_name == NULL)
5909 continue;
5910
5911 else if (name != NULL && field_name_match (t_field_name, name))
5912 {
5913 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5914 if (field_type_p != NULL)
5915 *field_type_p = TYPE_FIELD_TYPE (type, i);
5916 if (byte_offset_p != NULL)
5917 *byte_offset_p = fld_offset;
5918 if (bit_offset_p != NULL)
5919 *bit_offset_p = bit_pos % 8;
5920 if (bit_size_p != NULL)
5921 *bit_size_p = bit_size;
5922 return 1;
5923 }
5924 else if (ada_is_wrapper_field (type, i))
5925 {
5926 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5927 field_type_p, byte_offset_p, bit_offset_p,
5928 bit_size_p, index_p))
5929 return 1;
5930 }
5931 else if (ada_is_variant_part (type, i))
5932 {
5933 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5934 fixed type?? */
5935 int j;
5936 struct type *field_type
5937 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5938
5939 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5940 {
5941 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5942 fld_offset
5943 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5944 field_type_p, byte_offset_p,
5945 bit_offset_p, bit_size_p, index_p))
5946 return 1;
5947 }
5948 }
5949 else if (index_p != NULL)
5950 *index_p += 1;
5951 }
5952 return 0;
5953 }
5954
5955 /* Number of user-visible fields in record type TYPE. */
5956
5957 static int
5958 num_visible_fields (struct type *type)
5959 {
5960 int n;
5961 n = 0;
5962 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5963 return n;
5964 }
5965
5966 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5967 and search in it assuming it has (class) type TYPE.
5968 If found, return value, else return NULL.
5969
5970 Searches recursively through wrapper fields (e.g., '_parent'). */
5971
5972 static struct value *
5973 ada_search_struct_field (char *name, struct value *arg, int offset,
5974 struct type *type)
5975 {
5976 int i;
5977 type = ada_check_typedef (type);
5978
5979 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5980 {
5981 char *t_field_name = TYPE_FIELD_NAME (type, i);
5982
5983 if (t_field_name == NULL)
5984 continue;
5985
5986 else if (field_name_match (t_field_name, name))
5987 return ada_value_primitive_field (arg, offset, i, type);
5988
5989 else if (ada_is_wrapper_field (type, i))
5990 {
5991 struct value *v = /* Do not let indent join lines here. */
5992 ada_search_struct_field (name, arg,
5993 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5994 TYPE_FIELD_TYPE (type, i));
5995 if (v != NULL)
5996 return v;
5997 }
5998
5999 else if (ada_is_variant_part (type, i))
6000 {
6001 /* PNH: Do we ever get here? See find_struct_field. */
6002 int j;
6003 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6004 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6005
6006 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6007 {
6008 struct value *v = ada_search_struct_field /* Force line break. */
6009 (name, arg,
6010 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6011 TYPE_FIELD_TYPE (field_type, j));
6012 if (v != NULL)
6013 return v;
6014 }
6015 }
6016 }
6017 return NULL;
6018 }
6019
6020 static struct value *ada_index_struct_field_1 (int *, struct value *,
6021 int, struct type *);
6022
6023
6024 /* Return field #INDEX in ARG, where the index is that returned by
6025 * find_struct_field through its INDEX_P argument. Adjust the address
6026 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6027 * If found, return value, else return NULL. */
6028
6029 static struct value *
6030 ada_index_struct_field (int index, struct value *arg, int offset,
6031 struct type *type)
6032 {
6033 return ada_index_struct_field_1 (&index, arg, offset, type);
6034 }
6035
6036
6037 /* Auxiliary function for ada_index_struct_field. Like
6038 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6039 * *INDEX_P. */
6040
6041 static struct value *
6042 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6043 struct type *type)
6044 {
6045 int i;
6046 type = ada_check_typedef (type);
6047
6048 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6049 {
6050 if (TYPE_FIELD_NAME (type, i) == NULL)
6051 continue;
6052 else if (ada_is_wrapper_field (type, i))
6053 {
6054 struct value *v = /* Do not let indent join lines here. */
6055 ada_index_struct_field_1 (index_p, arg,
6056 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6057 TYPE_FIELD_TYPE (type, i));
6058 if (v != NULL)
6059 return v;
6060 }
6061
6062 else if (ada_is_variant_part (type, i))
6063 {
6064 /* PNH: Do we ever get here? See ada_search_struct_field,
6065 find_struct_field. */
6066 error (_("Cannot assign this kind of variant record"));
6067 }
6068 else if (*index_p == 0)
6069 return ada_value_primitive_field (arg, offset, i, type);
6070 else
6071 *index_p -= 1;
6072 }
6073 return NULL;
6074 }
6075
6076 /* Given ARG, a value of type (pointer or reference to a)*
6077 structure/union, extract the component named NAME from the ultimate
6078 target structure/union and return it as a value with its
6079 appropriate type.
6080
6081 The routine searches for NAME among all members of the structure itself
6082 and (recursively) among all members of any wrapper members
6083 (e.g., '_parent').
6084
6085 If NO_ERR, then simply return NULL in case of error, rather than
6086 calling error. */
6087
6088 struct value *
6089 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6090 {
6091 struct type *t, *t1;
6092 struct value *v;
6093
6094 v = NULL;
6095 t1 = t = ada_check_typedef (value_type (arg));
6096 if (TYPE_CODE (t) == TYPE_CODE_REF)
6097 {
6098 t1 = TYPE_TARGET_TYPE (t);
6099 if (t1 == NULL)
6100 goto BadValue;
6101 t1 = ada_check_typedef (t1);
6102 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6103 {
6104 arg = coerce_ref (arg);
6105 t = t1;
6106 }
6107 }
6108
6109 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6110 {
6111 t1 = TYPE_TARGET_TYPE (t);
6112 if (t1 == NULL)
6113 goto BadValue;
6114 t1 = ada_check_typedef (t1);
6115 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6116 {
6117 arg = value_ind (arg);
6118 t = t1;
6119 }
6120 else
6121 break;
6122 }
6123
6124 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6125 goto BadValue;
6126
6127 if (t1 == t)
6128 v = ada_search_struct_field (name, arg, 0, t);
6129 else
6130 {
6131 int bit_offset, bit_size, byte_offset;
6132 struct type *field_type;
6133 CORE_ADDR address;
6134
6135 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6136 address = value_as_address (arg);
6137 else
6138 address = unpack_pointer (t, value_contents (arg));
6139
6140 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6141 if (find_struct_field (name, t1, 0,
6142 &field_type, &byte_offset, &bit_offset,
6143 &bit_size, NULL))
6144 {
6145 if (bit_size != 0)
6146 {
6147 if (TYPE_CODE (t) == TYPE_CODE_REF)
6148 arg = ada_coerce_ref (arg);
6149 else
6150 arg = ada_value_ind (arg);
6151 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6152 bit_offset, bit_size,
6153 field_type);
6154 }
6155 else
6156 v = value_at_lazy (field_type, address + byte_offset);
6157 }
6158 }
6159
6160 if (v != NULL || no_err)
6161 return v;
6162 else
6163 error (_("There is no member named %s."), name);
6164
6165 BadValue:
6166 if (no_err)
6167 return NULL;
6168 else
6169 error (_("Attempt to extract a component of a value that is not a record."));
6170 }
6171
6172 /* Given a type TYPE, look up the type of the component of type named NAME.
6173 If DISPP is non-null, add its byte displacement from the beginning of a
6174 structure (pointed to by a value) of type TYPE to *DISPP (does not
6175 work for packed fields).
6176
6177 Matches any field whose name has NAME as a prefix, possibly
6178 followed by "___".
6179
6180 TYPE can be either a struct or union. If REFOK, TYPE may also
6181 be a (pointer or reference)+ to a struct or union, and the
6182 ultimate target type will be searched.
6183
6184 Looks recursively into variant clauses and parent types.
6185
6186 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6187 TYPE is not a type of the right kind. */
6188
6189 static struct type *
6190 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6191 int noerr, int *dispp)
6192 {
6193 int i;
6194
6195 if (name == NULL)
6196 goto BadName;
6197
6198 if (refok && type != NULL)
6199 while (1)
6200 {
6201 type = ada_check_typedef (type);
6202 if (TYPE_CODE (type) != TYPE_CODE_PTR
6203 && TYPE_CODE (type) != TYPE_CODE_REF)
6204 break;
6205 type = TYPE_TARGET_TYPE (type);
6206 }
6207
6208 if (type == NULL
6209 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6210 && TYPE_CODE (type) != TYPE_CODE_UNION))
6211 {
6212 if (noerr)
6213 return NULL;
6214 else
6215 {
6216 target_terminal_ours ();
6217 gdb_flush (gdb_stdout);
6218 if (type == NULL)
6219 error (_("Type (null) is not a structure or union type"));
6220 else
6221 {
6222 /* XXX: type_sprint */
6223 fprintf_unfiltered (gdb_stderr, _("Type "));
6224 type_print (type, "", gdb_stderr, -1);
6225 error (_(" is not a structure or union type"));
6226 }
6227 }
6228 }
6229
6230 type = to_static_fixed_type (type);
6231
6232 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6233 {
6234 char *t_field_name = TYPE_FIELD_NAME (type, i);
6235 struct type *t;
6236 int disp;
6237
6238 if (t_field_name == NULL)
6239 continue;
6240
6241 else if (field_name_match (t_field_name, name))
6242 {
6243 if (dispp != NULL)
6244 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6245 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6246 }
6247
6248 else if (ada_is_wrapper_field (type, i))
6249 {
6250 disp = 0;
6251 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6252 0, 1, &disp);
6253 if (t != NULL)
6254 {
6255 if (dispp != NULL)
6256 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6257 return t;
6258 }
6259 }
6260
6261 else if (ada_is_variant_part (type, i))
6262 {
6263 int j;
6264 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6265
6266 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6267 {
6268 /* FIXME pnh 2008/01/26: We check for a field that is
6269 NOT wrapped in a struct, since the compiler sometimes
6270 generates these for unchecked variant types. Revisit
6271 if the compiler changes this practice. */
6272 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6273 disp = 0;
6274 if (v_field_name != NULL
6275 && field_name_match (v_field_name, name))
6276 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6277 else
6278 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6279 name, 0, 1, &disp);
6280
6281 if (t != NULL)
6282 {
6283 if (dispp != NULL)
6284 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6285 return t;
6286 }
6287 }
6288 }
6289
6290 }
6291
6292 BadName:
6293 if (!noerr)
6294 {
6295 target_terminal_ours ();
6296 gdb_flush (gdb_stdout);
6297 if (name == NULL)
6298 {
6299 /* XXX: type_sprint */
6300 fprintf_unfiltered (gdb_stderr, _("Type "));
6301 type_print (type, "", gdb_stderr, -1);
6302 error (_(" has no component named <null>"));
6303 }
6304 else
6305 {
6306 /* XXX: type_sprint */
6307 fprintf_unfiltered (gdb_stderr, _("Type "));
6308 type_print (type, "", gdb_stderr, -1);
6309 error (_(" has no component named %s"), name);
6310 }
6311 }
6312
6313 return NULL;
6314 }
6315
6316 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6317 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6318 represents an unchecked union (that is, the variant part of a
6319 record that is named in an Unchecked_Union pragma). */
6320
6321 static int
6322 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6323 {
6324 char *discrim_name = ada_variant_discrim_name (var_type);
6325 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6326 == NULL);
6327 }
6328
6329
6330 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6331 within a value of type OUTER_TYPE that is stored in GDB at
6332 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6333 numbering from 0) is applicable. Returns -1 if none are. */
6334
6335 int
6336 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6337 const gdb_byte *outer_valaddr)
6338 {
6339 int others_clause;
6340 int i;
6341 char *discrim_name = ada_variant_discrim_name (var_type);
6342 struct value *outer;
6343 struct value *discrim;
6344 LONGEST discrim_val;
6345
6346 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6347 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6348 if (discrim == NULL)
6349 return -1;
6350 discrim_val = value_as_long (discrim);
6351
6352 others_clause = -1;
6353 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6354 {
6355 if (ada_is_others_clause (var_type, i))
6356 others_clause = i;
6357 else if (ada_in_variant (discrim_val, var_type, i))
6358 return i;
6359 }
6360
6361 return others_clause;
6362 }
6363 \f
6364
6365
6366 /* Dynamic-Sized Records */
6367
6368 /* Strategy: The type ostensibly attached to a value with dynamic size
6369 (i.e., a size that is not statically recorded in the debugging
6370 data) does not accurately reflect the size or layout of the value.
6371 Our strategy is to convert these values to values with accurate,
6372 conventional types that are constructed on the fly. */
6373
6374 /* There is a subtle and tricky problem here. In general, we cannot
6375 determine the size of dynamic records without its data. However,
6376 the 'struct value' data structure, which GDB uses to represent
6377 quantities in the inferior process (the target), requires the size
6378 of the type at the time of its allocation in order to reserve space
6379 for GDB's internal copy of the data. That's why the
6380 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6381 rather than struct value*s.
6382
6383 However, GDB's internal history variables ($1, $2, etc.) are
6384 struct value*s containing internal copies of the data that are not, in
6385 general, the same as the data at their corresponding addresses in
6386 the target. Fortunately, the types we give to these values are all
6387 conventional, fixed-size types (as per the strategy described
6388 above), so that we don't usually have to perform the
6389 'to_fixed_xxx_type' conversions to look at their values.
6390 Unfortunately, there is one exception: if one of the internal
6391 history variables is an array whose elements are unconstrained
6392 records, then we will need to create distinct fixed types for each
6393 element selected. */
6394
6395 /* The upshot of all of this is that many routines take a (type, host
6396 address, target address) triple as arguments to represent a value.
6397 The host address, if non-null, is supposed to contain an internal
6398 copy of the relevant data; otherwise, the program is to consult the
6399 target at the target address. */
6400
6401 /* Assuming that VAL0 represents a pointer value, the result of
6402 dereferencing it. Differs from value_ind in its treatment of
6403 dynamic-sized types. */
6404
6405 struct value *
6406 ada_value_ind (struct value *val0)
6407 {
6408 struct value *val = unwrap_value (value_ind (val0));
6409 return ada_to_fixed_value (val);
6410 }
6411
6412 /* The value resulting from dereferencing any "reference to"
6413 qualifiers on VAL0. */
6414
6415 static struct value *
6416 ada_coerce_ref (struct value *val0)
6417 {
6418 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6419 {
6420 struct value *val = val0;
6421 val = coerce_ref (val);
6422 val = unwrap_value (val);
6423 return ada_to_fixed_value (val);
6424 }
6425 else
6426 return val0;
6427 }
6428
6429 /* Return OFF rounded upward if necessary to a multiple of
6430 ALIGNMENT (a power of 2). */
6431
6432 static unsigned int
6433 align_value (unsigned int off, unsigned int alignment)
6434 {
6435 return (off + alignment - 1) & ~(alignment - 1);
6436 }
6437
6438 /* Return the bit alignment required for field #F of template type TYPE. */
6439
6440 static unsigned int
6441 field_alignment (struct type *type, int f)
6442 {
6443 const char *name = TYPE_FIELD_NAME (type, f);
6444 int len;
6445 int align_offset;
6446
6447 /* The field name should never be null, unless the debugging information
6448 is somehow malformed. In this case, we assume the field does not
6449 require any alignment. */
6450 if (name == NULL)
6451 return 1;
6452
6453 len = strlen (name);
6454
6455 if (!isdigit (name[len - 1]))
6456 return 1;
6457
6458 if (isdigit (name[len - 2]))
6459 align_offset = len - 2;
6460 else
6461 align_offset = len - 1;
6462
6463 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6464 return TARGET_CHAR_BIT;
6465
6466 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6467 }
6468
6469 /* Find a symbol named NAME. Ignores ambiguity. */
6470
6471 struct symbol *
6472 ada_find_any_symbol (const char *name)
6473 {
6474 struct symbol *sym;
6475
6476 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6477 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6478 return sym;
6479
6480 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6481 return sym;
6482 }
6483
6484 /* Find a type named NAME. Ignores ambiguity. This routine will look
6485 solely for types defined by debug info, it will not search the GDB
6486 primitive types. */
6487
6488 struct type *
6489 ada_find_any_type (const char *name)
6490 {
6491 struct symbol *sym = ada_find_any_symbol (name);
6492
6493 if (sym != NULL)
6494 return SYMBOL_TYPE (sym);
6495
6496 return NULL;
6497 }
6498
6499 /* Given NAME and an associated BLOCK, search all symbols for
6500 NAME suffixed with "___XR", which is the ``renaming'' symbol
6501 associated to NAME. Return this symbol if found, return
6502 NULL otherwise. */
6503
6504 struct symbol *
6505 ada_find_renaming_symbol (const char *name, struct block *block)
6506 {
6507 struct symbol *sym;
6508
6509 sym = find_old_style_renaming_symbol (name, block);
6510
6511 if (sym != NULL)
6512 return sym;
6513
6514 /* Not right yet. FIXME pnh 7/20/2007. */
6515 sym = ada_find_any_symbol (name);
6516 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6517 return sym;
6518 else
6519 return NULL;
6520 }
6521
6522 static struct symbol *
6523 find_old_style_renaming_symbol (const char *name, struct block *block)
6524 {
6525 const struct symbol *function_sym = block_linkage_function (block);
6526 char *rename;
6527
6528 if (function_sym != NULL)
6529 {
6530 /* If the symbol is defined inside a function, NAME is not fully
6531 qualified. This means we need to prepend the function name
6532 as well as adding the ``___XR'' suffix to build the name of
6533 the associated renaming symbol. */
6534 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6535 /* Function names sometimes contain suffixes used
6536 for instance to qualify nested subprograms. When building
6537 the XR type name, we need to make sure that this suffix is
6538 not included. So do not include any suffix in the function
6539 name length below. */
6540 const int function_name_len = ada_name_prefix_len (function_name);
6541 const int rename_len = function_name_len + 2 /* "__" */
6542 + strlen (name) + 6 /* "___XR\0" */ ;
6543
6544 /* Strip the suffix if necessary. */
6545 function_name[function_name_len] = '\0';
6546
6547 /* Library-level functions are a special case, as GNAT adds
6548 a ``_ada_'' prefix to the function name to avoid namespace
6549 pollution. However, the renaming symbols themselves do not
6550 have this prefix, so we need to skip this prefix if present. */
6551 if (function_name_len > 5 /* "_ada_" */
6552 && strstr (function_name, "_ada_") == function_name)
6553 function_name = function_name + 5;
6554
6555 rename = (char *) alloca (rename_len * sizeof (char));
6556 xsnprintf (rename, rename_len * sizeof (char), "%s__%s___XR",
6557 function_name, name);
6558 }
6559 else
6560 {
6561 const int rename_len = strlen (name) + 6;
6562 rename = (char *) alloca (rename_len * sizeof (char));
6563 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6564 }
6565
6566 return ada_find_any_symbol (rename);
6567 }
6568
6569 /* Because of GNAT encoding conventions, several GDB symbols may match a
6570 given type name. If the type denoted by TYPE0 is to be preferred to
6571 that of TYPE1 for purposes of type printing, return non-zero;
6572 otherwise return 0. */
6573
6574 int
6575 ada_prefer_type (struct type *type0, struct type *type1)
6576 {
6577 if (type1 == NULL)
6578 return 1;
6579 else if (type0 == NULL)
6580 return 0;
6581 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6582 return 1;
6583 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6584 return 0;
6585 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6586 return 1;
6587 else if (ada_is_packed_array_type (type0))
6588 return 1;
6589 else if (ada_is_array_descriptor_type (type0)
6590 && !ada_is_array_descriptor_type (type1))
6591 return 1;
6592 else
6593 {
6594 const char *type0_name = type_name_no_tag (type0);
6595 const char *type1_name = type_name_no_tag (type1);
6596
6597 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6598 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6599 return 1;
6600 }
6601 return 0;
6602 }
6603
6604 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6605 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6606
6607 char *
6608 ada_type_name (struct type *type)
6609 {
6610 if (type == NULL)
6611 return NULL;
6612 else if (TYPE_NAME (type) != NULL)
6613 return TYPE_NAME (type);
6614 else
6615 return TYPE_TAG_NAME (type);
6616 }
6617
6618 /* Find a parallel type to TYPE whose name is formed by appending
6619 SUFFIX to the name of TYPE. */
6620
6621 struct type *
6622 ada_find_parallel_type (struct type *type, const char *suffix)
6623 {
6624 static char *name;
6625 static size_t name_len = 0;
6626 int len;
6627 char *typename = ada_type_name (type);
6628
6629 if (typename == NULL)
6630 return NULL;
6631
6632 len = strlen (typename);
6633
6634 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6635
6636 strcpy (name, typename);
6637 strcpy (name + len, suffix);
6638
6639 return ada_find_any_type (name);
6640 }
6641
6642
6643 /* If TYPE is a variable-size record type, return the corresponding template
6644 type describing its fields. Otherwise, return NULL. */
6645
6646 static struct type *
6647 dynamic_template_type (struct type *type)
6648 {
6649 type = ada_check_typedef (type);
6650
6651 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6652 || ada_type_name (type) == NULL)
6653 return NULL;
6654 else
6655 {
6656 int len = strlen (ada_type_name (type));
6657 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6658 return type;
6659 else
6660 return ada_find_parallel_type (type, "___XVE");
6661 }
6662 }
6663
6664 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6665 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6666
6667 static int
6668 is_dynamic_field (struct type *templ_type, int field_num)
6669 {
6670 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6671 return name != NULL
6672 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6673 && strstr (name, "___XVL") != NULL;
6674 }
6675
6676 /* The index of the variant field of TYPE, or -1 if TYPE does not
6677 represent a variant record type. */
6678
6679 static int
6680 variant_field_index (struct type *type)
6681 {
6682 int f;
6683
6684 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6685 return -1;
6686
6687 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6688 {
6689 if (ada_is_variant_part (type, f))
6690 return f;
6691 }
6692 return -1;
6693 }
6694
6695 /* A record type with no fields. */
6696
6697 static struct type *
6698 empty_record (struct objfile *objfile)
6699 {
6700 struct type *type = alloc_type (objfile);
6701 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6702 TYPE_NFIELDS (type) = 0;
6703 TYPE_FIELDS (type) = NULL;
6704 INIT_CPLUS_SPECIFIC (type);
6705 TYPE_NAME (type) = "<empty>";
6706 TYPE_TAG_NAME (type) = NULL;
6707 TYPE_LENGTH (type) = 0;
6708 return type;
6709 }
6710
6711 /* An ordinary record type (with fixed-length fields) that describes
6712 the value of type TYPE at VALADDR or ADDRESS (see comments at
6713 the beginning of this section) VAL according to GNAT conventions.
6714 DVAL0 should describe the (portion of a) record that contains any
6715 necessary discriminants. It should be NULL if value_type (VAL) is
6716 an outer-level type (i.e., as opposed to a branch of a variant.) A
6717 variant field (unless unchecked) is replaced by a particular branch
6718 of the variant.
6719
6720 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6721 length are not statically known are discarded. As a consequence,
6722 VALADDR, ADDRESS and DVAL0 are ignored.
6723
6724 NOTE: Limitations: For now, we assume that dynamic fields and
6725 variants occupy whole numbers of bytes. However, they need not be
6726 byte-aligned. */
6727
6728 struct type *
6729 ada_template_to_fixed_record_type_1 (struct type *type,
6730 const gdb_byte *valaddr,
6731 CORE_ADDR address, struct value *dval0,
6732 int keep_dynamic_fields)
6733 {
6734 struct value *mark = value_mark ();
6735 struct value *dval;
6736 struct type *rtype;
6737 int nfields, bit_len;
6738 int variant_field;
6739 long off;
6740 int fld_bit_len, bit_incr;
6741 int f;
6742
6743 /* Compute the number of fields in this record type that are going
6744 to be processed: unless keep_dynamic_fields, this includes only
6745 fields whose position and length are static will be processed. */
6746 if (keep_dynamic_fields)
6747 nfields = TYPE_NFIELDS (type);
6748 else
6749 {
6750 nfields = 0;
6751 while (nfields < TYPE_NFIELDS (type)
6752 && !ada_is_variant_part (type, nfields)
6753 && !is_dynamic_field (type, nfields))
6754 nfields++;
6755 }
6756
6757 rtype = alloc_type (TYPE_OBJFILE (type));
6758 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6759 INIT_CPLUS_SPECIFIC (rtype);
6760 TYPE_NFIELDS (rtype) = nfields;
6761 TYPE_FIELDS (rtype) = (struct field *)
6762 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6763 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6764 TYPE_NAME (rtype) = ada_type_name (type);
6765 TYPE_TAG_NAME (rtype) = NULL;
6766 TYPE_FIXED_INSTANCE (rtype) = 1;
6767
6768 off = 0;
6769 bit_len = 0;
6770 variant_field = -1;
6771
6772 for (f = 0; f < nfields; f += 1)
6773 {
6774 off = align_value (off, field_alignment (type, f))
6775 + TYPE_FIELD_BITPOS (type, f);
6776 TYPE_FIELD_BITPOS (rtype, f) = off;
6777 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6778
6779 if (ada_is_variant_part (type, f))
6780 {
6781 variant_field = f;
6782 fld_bit_len = bit_incr = 0;
6783 }
6784 else if (is_dynamic_field (type, f))
6785 {
6786 if (dval0 == NULL)
6787 {
6788 /* rtype's length is computed based on the run-time
6789 value of discriminants. If the discriminants are not
6790 initialized, the type size may be completely bogus and
6791 GDB may fail to allocate a value for it. So check the
6792 size first before creating the value. */
6793 check_size (rtype);
6794 dval = value_from_contents_and_address (rtype, valaddr, address);
6795 }
6796 else
6797 dval = dval0;
6798
6799 /* Get the fixed type of the field. Note that, in this case, we
6800 do not want to get the real type out of the tag: if the current
6801 field is the parent part of a tagged record, we will get the
6802 tag of the object. Clearly wrong: the real type of the parent
6803 is not the real type of the child. We would end up in an infinite
6804 loop. */
6805 TYPE_FIELD_TYPE (rtype, f) =
6806 ada_to_fixed_type
6807 (ada_get_base_type
6808 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6809 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6810 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
6811 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6812 bit_incr = fld_bit_len =
6813 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6814 }
6815 else
6816 {
6817 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6818 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6819 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6820 bit_incr = fld_bit_len =
6821 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6822 else
6823 bit_incr = fld_bit_len =
6824 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6825 }
6826 if (off + fld_bit_len > bit_len)
6827 bit_len = off + fld_bit_len;
6828 off += bit_incr;
6829 TYPE_LENGTH (rtype) =
6830 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6831 }
6832
6833 /* We handle the variant part, if any, at the end because of certain
6834 odd cases in which it is re-ordered so as NOT to be the last field of
6835 the record. This can happen in the presence of representation
6836 clauses. */
6837 if (variant_field >= 0)
6838 {
6839 struct type *branch_type;
6840
6841 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6842
6843 if (dval0 == NULL)
6844 dval = value_from_contents_and_address (rtype, valaddr, address);
6845 else
6846 dval = dval0;
6847
6848 branch_type =
6849 to_fixed_variant_branch_type
6850 (TYPE_FIELD_TYPE (type, variant_field),
6851 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6852 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6853 if (branch_type == NULL)
6854 {
6855 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6856 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6857 TYPE_NFIELDS (rtype) -= 1;
6858 }
6859 else
6860 {
6861 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6862 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6863 fld_bit_len =
6864 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6865 TARGET_CHAR_BIT;
6866 if (off + fld_bit_len > bit_len)
6867 bit_len = off + fld_bit_len;
6868 TYPE_LENGTH (rtype) =
6869 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6870 }
6871 }
6872
6873 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6874 should contain the alignment of that record, which should be a strictly
6875 positive value. If null or negative, then something is wrong, most
6876 probably in the debug info. In that case, we don't round up the size
6877 of the resulting type. If this record is not part of another structure,
6878 the current RTYPE length might be good enough for our purposes. */
6879 if (TYPE_LENGTH (type) <= 0)
6880 {
6881 if (TYPE_NAME (rtype))
6882 warning (_("Invalid type size for `%s' detected: %d."),
6883 TYPE_NAME (rtype), TYPE_LENGTH (type));
6884 else
6885 warning (_("Invalid type size for <unnamed> detected: %d."),
6886 TYPE_LENGTH (type));
6887 }
6888 else
6889 {
6890 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6891 TYPE_LENGTH (type));
6892 }
6893
6894 value_free_to_mark (mark);
6895 if (TYPE_LENGTH (rtype) > varsize_limit)
6896 error (_("record type with dynamic size is larger than varsize-limit"));
6897 return rtype;
6898 }
6899
6900 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6901 of 1. */
6902
6903 static struct type *
6904 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6905 CORE_ADDR address, struct value *dval0)
6906 {
6907 return ada_template_to_fixed_record_type_1 (type, valaddr,
6908 address, dval0, 1);
6909 }
6910
6911 /* An ordinary record type in which ___XVL-convention fields and
6912 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6913 static approximations, containing all possible fields. Uses
6914 no runtime values. Useless for use in values, but that's OK,
6915 since the results are used only for type determinations. Works on both
6916 structs and unions. Representation note: to save space, we memorize
6917 the result of this function in the TYPE_TARGET_TYPE of the
6918 template type. */
6919
6920 static struct type *
6921 template_to_static_fixed_type (struct type *type0)
6922 {
6923 struct type *type;
6924 int nfields;
6925 int f;
6926
6927 if (TYPE_TARGET_TYPE (type0) != NULL)
6928 return TYPE_TARGET_TYPE (type0);
6929
6930 nfields = TYPE_NFIELDS (type0);
6931 type = type0;
6932
6933 for (f = 0; f < nfields; f += 1)
6934 {
6935 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6936 struct type *new_type;
6937
6938 if (is_dynamic_field (type0, f))
6939 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6940 else
6941 new_type = static_unwrap_type (field_type);
6942 if (type == type0 && new_type != field_type)
6943 {
6944 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6945 TYPE_CODE (type) = TYPE_CODE (type0);
6946 INIT_CPLUS_SPECIFIC (type);
6947 TYPE_NFIELDS (type) = nfields;
6948 TYPE_FIELDS (type) = (struct field *)
6949 TYPE_ALLOC (type, nfields * sizeof (struct field));
6950 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6951 sizeof (struct field) * nfields);
6952 TYPE_NAME (type) = ada_type_name (type0);
6953 TYPE_TAG_NAME (type) = NULL;
6954 TYPE_FIXED_INSTANCE (type) = 1;
6955 TYPE_LENGTH (type) = 0;
6956 }
6957 TYPE_FIELD_TYPE (type, f) = new_type;
6958 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6959 }
6960 return type;
6961 }
6962
6963 /* Given an object of type TYPE whose contents are at VALADDR and
6964 whose address in memory is ADDRESS, returns a revision of TYPE,
6965 which should be a non-dynamic-sized record, in which the variant
6966 part, if any, is replaced with the appropriate branch. Looks
6967 for discriminant values in DVAL0, which can be NULL if the record
6968 contains the necessary discriminant values. */
6969
6970 static struct type *
6971 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6972 CORE_ADDR address, struct value *dval0)
6973 {
6974 struct value *mark = value_mark ();
6975 struct value *dval;
6976 struct type *rtype;
6977 struct type *branch_type;
6978 int nfields = TYPE_NFIELDS (type);
6979 int variant_field = variant_field_index (type);
6980
6981 if (variant_field == -1)
6982 return type;
6983
6984 if (dval0 == NULL)
6985 dval = value_from_contents_and_address (type, valaddr, address);
6986 else
6987 dval = dval0;
6988
6989 rtype = alloc_type (TYPE_OBJFILE (type));
6990 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6991 INIT_CPLUS_SPECIFIC (rtype);
6992 TYPE_NFIELDS (rtype) = nfields;
6993 TYPE_FIELDS (rtype) =
6994 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6995 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6996 sizeof (struct field) * nfields);
6997 TYPE_NAME (rtype) = ada_type_name (type);
6998 TYPE_TAG_NAME (rtype) = NULL;
6999 TYPE_FIXED_INSTANCE (rtype) = 1;
7000 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7001
7002 branch_type = to_fixed_variant_branch_type
7003 (TYPE_FIELD_TYPE (type, variant_field),
7004 cond_offset_host (valaddr,
7005 TYPE_FIELD_BITPOS (type, variant_field)
7006 / TARGET_CHAR_BIT),
7007 cond_offset_target (address,
7008 TYPE_FIELD_BITPOS (type, variant_field)
7009 / TARGET_CHAR_BIT), dval);
7010 if (branch_type == NULL)
7011 {
7012 int f;
7013 for (f = variant_field + 1; f < nfields; f += 1)
7014 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7015 TYPE_NFIELDS (rtype) -= 1;
7016 }
7017 else
7018 {
7019 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7020 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7021 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7022 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7023 }
7024 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7025
7026 value_free_to_mark (mark);
7027 return rtype;
7028 }
7029
7030 /* An ordinary record type (with fixed-length fields) that describes
7031 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7032 beginning of this section]. Any necessary discriminants' values
7033 should be in DVAL, a record value; it may be NULL if the object
7034 at ADDR itself contains any necessary discriminant values.
7035 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7036 values from the record are needed. Except in the case that DVAL,
7037 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7038 unchecked) is replaced by a particular branch of the variant.
7039
7040 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7041 is questionable and may be removed. It can arise during the
7042 processing of an unconstrained-array-of-record type where all the
7043 variant branches have exactly the same size. This is because in
7044 such cases, the compiler does not bother to use the XVS convention
7045 when encoding the record. I am currently dubious of this
7046 shortcut and suspect the compiler should be altered. FIXME. */
7047
7048 static struct type *
7049 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7050 CORE_ADDR address, struct value *dval)
7051 {
7052 struct type *templ_type;
7053
7054 if (TYPE_FIXED_INSTANCE (type0))
7055 return type0;
7056
7057 templ_type = dynamic_template_type (type0);
7058
7059 if (templ_type != NULL)
7060 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7061 else if (variant_field_index (type0) >= 0)
7062 {
7063 if (dval == NULL && valaddr == NULL && address == 0)
7064 return type0;
7065 return to_record_with_fixed_variant_part (type0, valaddr, address,
7066 dval);
7067 }
7068 else
7069 {
7070 TYPE_FIXED_INSTANCE (type0) = 1;
7071 return type0;
7072 }
7073
7074 }
7075
7076 /* An ordinary record type (with fixed-length fields) that describes
7077 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7078 union type. Any necessary discriminants' values should be in DVAL,
7079 a record value. That is, this routine selects the appropriate
7080 branch of the union at ADDR according to the discriminant value
7081 indicated in the union's type name. Returns VAR_TYPE0 itself if
7082 it represents a variant subject to a pragma Unchecked_Union. */
7083
7084 static struct type *
7085 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7086 CORE_ADDR address, struct value *dval)
7087 {
7088 int which;
7089 struct type *templ_type;
7090 struct type *var_type;
7091
7092 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7093 var_type = TYPE_TARGET_TYPE (var_type0);
7094 else
7095 var_type = var_type0;
7096
7097 templ_type = ada_find_parallel_type (var_type, "___XVU");
7098
7099 if (templ_type != NULL)
7100 var_type = templ_type;
7101
7102 if (is_unchecked_variant (var_type, value_type (dval)))
7103 return var_type0;
7104 which =
7105 ada_which_variant_applies (var_type,
7106 value_type (dval), value_contents (dval));
7107
7108 if (which < 0)
7109 return empty_record (TYPE_OBJFILE (var_type));
7110 else if (is_dynamic_field (var_type, which))
7111 return to_fixed_record_type
7112 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7113 valaddr, address, dval);
7114 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7115 return
7116 to_fixed_record_type
7117 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7118 else
7119 return TYPE_FIELD_TYPE (var_type, which);
7120 }
7121
7122 /* Assuming that TYPE0 is an array type describing the type of a value
7123 at ADDR, and that DVAL describes a record containing any
7124 discriminants used in TYPE0, returns a type for the value that
7125 contains no dynamic components (that is, no components whose sizes
7126 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7127 true, gives an error message if the resulting type's size is over
7128 varsize_limit. */
7129
7130 static struct type *
7131 to_fixed_array_type (struct type *type0, struct value *dval,
7132 int ignore_too_big)
7133 {
7134 struct type *index_type_desc;
7135 struct type *result;
7136
7137 if (ada_is_packed_array_type (type0) /* revisit? */
7138 || TYPE_FIXED_INSTANCE (type0))
7139 return type0;
7140
7141 index_type_desc = ada_find_parallel_type (type0, "___XA");
7142 if (index_type_desc == NULL)
7143 {
7144 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7145 /* NOTE: elt_type---the fixed version of elt_type0---should never
7146 depend on the contents of the array in properly constructed
7147 debugging data. */
7148 /* Create a fixed version of the array element type.
7149 We're not providing the address of an element here,
7150 and thus the actual object value cannot be inspected to do
7151 the conversion. This should not be a problem, since arrays of
7152 unconstrained objects are not allowed. In particular, all
7153 the elements of an array of a tagged type should all be of
7154 the same type specified in the debugging info. No need to
7155 consult the object tag. */
7156 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7157
7158 if (elt_type0 == elt_type)
7159 result = type0;
7160 else
7161 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7162 elt_type, TYPE_INDEX_TYPE (type0));
7163 }
7164 else
7165 {
7166 int i;
7167 struct type *elt_type0;
7168
7169 elt_type0 = type0;
7170 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7171 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7172
7173 /* NOTE: result---the fixed version of elt_type0---should never
7174 depend on the contents of the array in properly constructed
7175 debugging data. */
7176 /* Create a fixed version of the array element type.
7177 We're not providing the address of an element here,
7178 and thus the actual object value cannot be inspected to do
7179 the conversion. This should not be a problem, since arrays of
7180 unconstrained objects are not allowed. In particular, all
7181 the elements of an array of a tagged type should all be of
7182 the same type specified in the debugging info. No need to
7183 consult the object tag. */
7184 result =
7185 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7186 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7187 {
7188 struct type *range_type =
7189 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7190 dval, TYPE_OBJFILE (type0));
7191 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7192 result, range_type);
7193 }
7194 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7195 error (_("array type with dynamic size is larger than varsize-limit"));
7196 }
7197
7198 TYPE_FIXED_INSTANCE (result) = 1;
7199 return result;
7200 }
7201
7202
7203 /* A standard type (containing no dynamically sized components)
7204 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7205 DVAL describes a record containing any discriminants used in TYPE0,
7206 and may be NULL if there are none, or if the object of type TYPE at
7207 ADDRESS or in VALADDR contains these discriminants.
7208
7209 If CHECK_TAG is not null, in the case of tagged types, this function
7210 attempts to locate the object's tag and use it to compute the actual
7211 type. However, when ADDRESS is null, we cannot use it to determine the
7212 location of the tag, and therefore compute the tagged type's actual type.
7213 So we return the tagged type without consulting the tag. */
7214
7215 static struct type *
7216 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7217 CORE_ADDR address, struct value *dval, int check_tag)
7218 {
7219 type = ada_check_typedef (type);
7220 switch (TYPE_CODE (type))
7221 {
7222 default:
7223 return type;
7224 case TYPE_CODE_STRUCT:
7225 {
7226 struct type *static_type = to_static_fixed_type (type);
7227 struct type *fixed_record_type =
7228 to_fixed_record_type (type, valaddr, address, NULL);
7229 /* If STATIC_TYPE is a tagged type and we know the object's address,
7230 then we can determine its tag, and compute the object's actual
7231 type from there. Note that we have to use the fixed record
7232 type (the parent part of the record may have dynamic fields
7233 and the way the location of _tag is expressed may depend on
7234 them). */
7235
7236 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7237 {
7238 struct type *real_type =
7239 type_from_tag (value_tag_from_contents_and_address
7240 (fixed_record_type,
7241 valaddr,
7242 address));
7243 if (real_type != NULL)
7244 return to_fixed_record_type (real_type, valaddr, address, NULL);
7245 }
7246
7247 /* Check to see if there is a parallel ___XVZ variable.
7248 If there is, then it provides the actual size of our type. */
7249 else if (ada_type_name (fixed_record_type) != NULL)
7250 {
7251 char *name = ada_type_name (fixed_record_type);
7252 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7253 int xvz_found = 0;
7254 LONGEST size;
7255
7256 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7257 size = get_int_var_value (xvz_name, &xvz_found);
7258 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7259 {
7260 fixed_record_type = copy_type (fixed_record_type);
7261 TYPE_LENGTH (fixed_record_type) = size;
7262
7263 /* The FIXED_RECORD_TYPE may have be a stub. We have
7264 observed this when the debugging info is STABS, and
7265 apparently it is something that is hard to fix.
7266
7267 In practice, we don't need the actual type definition
7268 at all, because the presence of the XVZ variable allows us
7269 to assume that there must be a XVS type as well, which we
7270 should be able to use later, when we need the actual type
7271 definition.
7272
7273 In the meantime, pretend that the "fixed" type we are
7274 returning is NOT a stub, because this can cause trouble
7275 when using this type to create new types targeting it.
7276 Indeed, the associated creation routines often check
7277 whether the target type is a stub and will try to replace
7278 it, thus using a type with the wrong size. This, in turn,
7279 might cause the new type to have the wrong size too.
7280 Consider the case of an array, for instance, where the size
7281 of the array is computed from the number of elements in
7282 our array multiplied by the size of its element. */
7283 TYPE_STUB (fixed_record_type) = 0;
7284 }
7285 }
7286 return fixed_record_type;
7287 }
7288 case TYPE_CODE_ARRAY:
7289 return to_fixed_array_type (type, dval, 1);
7290 case TYPE_CODE_UNION:
7291 if (dval == NULL)
7292 return type;
7293 else
7294 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7295 }
7296 }
7297
7298 /* The same as ada_to_fixed_type_1, except that it preserves the type
7299 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7300 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7301
7302 struct type *
7303 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7304 CORE_ADDR address, struct value *dval, int check_tag)
7305
7306 {
7307 struct type *fixed_type =
7308 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7309
7310 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7311 && TYPE_TARGET_TYPE (type) == fixed_type)
7312 return type;
7313
7314 return fixed_type;
7315 }
7316
7317 /* A standard (static-sized) type corresponding as well as possible to
7318 TYPE0, but based on no runtime data. */
7319
7320 static struct type *
7321 to_static_fixed_type (struct type *type0)
7322 {
7323 struct type *type;
7324
7325 if (type0 == NULL)
7326 return NULL;
7327
7328 if (TYPE_FIXED_INSTANCE (type0))
7329 return type0;
7330
7331 type0 = ada_check_typedef (type0);
7332
7333 switch (TYPE_CODE (type0))
7334 {
7335 default:
7336 return type0;
7337 case TYPE_CODE_STRUCT:
7338 type = dynamic_template_type (type0);
7339 if (type != NULL)
7340 return template_to_static_fixed_type (type);
7341 else
7342 return template_to_static_fixed_type (type0);
7343 case TYPE_CODE_UNION:
7344 type = ada_find_parallel_type (type0, "___XVU");
7345 if (type != NULL)
7346 return template_to_static_fixed_type (type);
7347 else
7348 return template_to_static_fixed_type (type0);
7349 }
7350 }
7351
7352 /* A static approximation of TYPE with all type wrappers removed. */
7353
7354 static struct type *
7355 static_unwrap_type (struct type *type)
7356 {
7357 if (ada_is_aligner_type (type))
7358 {
7359 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7360 if (ada_type_name (type1) == NULL)
7361 TYPE_NAME (type1) = ada_type_name (type);
7362
7363 return static_unwrap_type (type1);
7364 }
7365 else
7366 {
7367 struct type *raw_real_type = ada_get_base_type (type);
7368 if (raw_real_type == type)
7369 return type;
7370 else
7371 return to_static_fixed_type (raw_real_type);
7372 }
7373 }
7374
7375 /* In some cases, incomplete and private types require
7376 cross-references that are not resolved as records (for example,
7377 type Foo;
7378 type FooP is access Foo;
7379 V: FooP;
7380 type Foo is array ...;
7381 ). In these cases, since there is no mechanism for producing
7382 cross-references to such types, we instead substitute for FooP a
7383 stub enumeration type that is nowhere resolved, and whose tag is
7384 the name of the actual type. Call these types "non-record stubs". */
7385
7386 /* A type equivalent to TYPE that is not a non-record stub, if one
7387 exists, otherwise TYPE. */
7388
7389 struct type *
7390 ada_check_typedef (struct type *type)
7391 {
7392 if (type == NULL)
7393 return NULL;
7394
7395 CHECK_TYPEDEF (type);
7396 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7397 || !TYPE_STUB (type)
7398 || TYPE_TAG_NAME (type) == NULL)
7399 return type;
7400 else
7401 {
7402 char *name = TYPE_TAG_NAME (type);
7403 struct type *type1 = ada_find_any_type (name);
7404 return (type1 == NULL) ? type : type1;
7405 }
7406 }
7407
7408 /* A value representing the data at VALADDR/ADDRESS as described by
7409 type TYPE0, but with a standard (static-sized) type that correctly
7410 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7411 type, then return VAL0 [this feature is simply to avoid redundant
7412 creation of struct values]. */
7413
7414 static struct value *
7415 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7416 struct value *val0)
7417 {
7418 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7419 if (type == type0 && val0 != NULL)
7420 return val0;
7421 else
7422 return value_from_contents_and_address (type, 0, address);
7423 }
7424
7425 /* A value representing VAL, but with a standard (static-sized) type
7426 that correctly describes it. Does not necessarily create a new
7427 value. */
7428
7429 static struct value *
7430 ada_to_fixed_value (struct value *val)
7431 {
7432 return ada_to_fixed_value_create (value_type (val),
7433 value_address (val),
7434 val);
7435 }
7436
7437 /* A value representing VAL, but with a standard (static-sized) type
7438 chosen to approximate the real type of VAL as well as possible, but
7439 without consulting any runtime values. For Ada dynamic-sized
7440 types, therefore, the type of the result is likely to be inaccurate. */
7441
7442 static struct value *
7443 ada_to_static_fixed_value (struct value *val)
7444 {
7445 struct type *type =
7446 to_static_fixed_type (static_unwrap_type (value_type (val)));
7447 if (type == value_type (val))
7448 return val;
7449 else
7450 return coerce_unspec_val_to_type (val, type);
7451 }
7452 \f
7453
7454 /* Attributes */
7455
7456 /* Table mapping attribute numbers to names.
7457 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7458
7459 static const char *attribute_names[] = {
7460 "<?>",
7461
7462 "first",
7463 "last",
7464 "length",
7465 "image",
7466 "max",
7467 "min",
7468 "modulus",
7469 "pos",
7470 "size",
7471 "tag",
7472 "val",
7473 0
7474 };
7475
7476 const char *
7477 ada_attribute_name (enum exp_opcode n)
7478 {
7479 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7480 return attribute_names[n - OP_ATR_FIRST + 1];
7481 else
7482 return attribute_names[0];
7483 }
7484
7485 /* Evaluate the 'POS attribute applied to ARG. */
7486
7487 static LONGEST
7488 pos_atr (struct value *arg)
7489 {
7490 struct value *val = coerce_ref (arg);
7491 struct type *type = value_type (val);
7492
7493 if (!discrete_type_p (type))
7494 error (_("'POS only defined on discrete types"));
7495
7496 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7497 {
7498 int i;
7499 LONGEST v = value_as_long (val);
7500
7501 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7502 {
7503 if (v == TYPE_FIELD_BITPOS (type, i))
7504 return i;
7505 }
7506 error (_("enumeration value is invalid: can't find 'POS"));
7507 }
7508 else
7509 return value_as_long (val);
7510 }
7511
7512 static struct value *
7513 value_pos_atr (struct type *type, struct value *arg)
7514 {
7515 return value_from_longest (type, pos_atr (arg));
7516 }
7517
7518 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7519
7520 static struct value *
7521 value_val_atr (struct type *type, struct value *arg)
7522 {
7523 if (!discrete_type_p (type))
7524 error (_("'VAL only defined on discrete types"));
7525 if (!integer_type_p (value_type (arg)))
7526 error (_("'VAL requires integral argument"));
7527
7528 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7529 {
7530 long pos = value_as_long (arg);
7531 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7532 error (_("argument to 'VAL out of range"));
7533 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7534 }
7535 else
7536 return value_from_longest (type, value_as_long (arg));
7537 }
7538 \f
7539
7540 /* Evaluation */
7541
7542 /* True if TYPE appears to be an Ada character type.
7543 [At the moment, this is true only for Character and Wide_Character;
7544 It is a heuristic test that could stand improvement]. */
7545
7546 int
7547 ada_is_character_type (struct type *type)
7548 {
7549 const char *name;
7550
7551 /* If the type code says it's a character, then assume it really is,
7552 and don't check any further. */
7553 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7554 return 1;
7555
7556 /* Otherwise, assume it's a character type iff it is a discrete type
7557 with a known character type name. */
7558 name = ada_type_name (type);
7559 return (name != NULL
7560 && (TYPE_CODE (type) == TYPE_CODE_INT
7561 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7562 && (strcmp (name, "character") == 0
7563 || strcmp (name, "wide_character") == 0
7564 || strcmp (name, "wide_wide_character") == 0
7565 || strcmp (name, "unsigned char") == 0));
7566 }
7567
7568 /* True if TYPE appears to be an Ada string type. */
7569
7570 int
7571 ada_is_string_type (struct type *type)
7572 {
7573 type = ada_check_typedef (type);
7574 if (type != NULL
7575 && TYPE_CODE (type) != TYPE_CODE_PTR
7576 && (ada_is_simple_array_type (type)
7577 || ada_is_array_descriptor_type (type))
7578 && ada_array_arity (type) == 1)
7579 {
7580 struct type *elttype = ada_array_element_type (type, 1);
7581
7582 return ada_is_character_type (elttype);
7583 }
7584 else
7585 return 0;
7586 }
7587
7588
7589 /* True if TYPE is a struct type introduced by the compiler to force the
7590 alignment of a value. Such types have a single field with a
7591 distinctive name. */
7592
7593 int
7594 ada_is_aligner_type (struct type *type)
7595 {
7596 type = ada_check_typedef (type);
7597
7598 /* If we can find a parallel XVS type, then the XVS type should
7599 be used instead of this type. And hence, this is not an aligner
7600 type. */
7601 if (ada_find_parallel_type (type, "___XVS") != NULL)
7602 return 0;
7603
7604 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7605 && TYPE_NFIELDS (type) == 1
7606 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7607 }
7608
7609 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7610 the parallel type. */
7611
7612 struct type *
7613 ada_get_base_type (struct type *raw_type)
7614 {
7615 struct type *real_type_namer;
7616 struct type *raw_real_type;
7617
7618 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7619 return raw_type;
7620
7621 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7622 if (real_type_namer == NULL
7623 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7624 || TYPE_NFIELDS (real_type_namer) != 1)
7625 return raw_type;
7626
7627 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7628 if (raw_real_type == NULL)
7629 return raw_type;
7630 else
7631 return raw_real_type;
7632 }
7633
7634 /* The type of value designated by TYPE, with all aligners removed. */
7635
7636 struct type *
7637 ada_aligned_type (struct type *type)
7638 {
7639 if (ada_is_aligner_type (type))
7640 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7641 else
7642 return ada_get_base_type (type);
7643 }
7644
7645
7646 /* The address of the aligned value in an object at address VALADDR
7647 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7648
7649 const gdb_byte *
7650 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7651 {
7652 if (ada_is_aligner_type (type))
7653 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7654 valaddr +
7655 TYPE_FIELD_BITPOS (type,
7656 0) / TARGET_CHAR_BIT);
7657 else
7658 return valaddr;
7659 }
7660
7661
7662
7663 /* The printed representation of an enumeration literal with encoded
7664 name NAME. The value is good to the next call of ada_enum_name. */
7665 const char *
7666 ada_enum_name (const char *name)
7667 {
7668 static char *result;
7669 static size_t result_len = 0;
7670 char *tmp;
7671
7672 /* First, unqualify the enumeration name:
7673 1. Search for the last '.' character. If we find one, then skip
7674 all the preceeding characters, the unqualified name starts
7675 right after that dot.
7676 2. Otherwise, we may be debugging on a target where the compiler
7677 translates dots into "__". Search forward for double underscores,
7678 but stop searching when we hit an overloading suffix, which is
7679 of the form "__" followed by digits. */
7680
7681 tmp = strrchr (name, '.');
7682 if (tmp != NULL)
7683 name = tmp + 1;
7684 else
7685 {
7686 while ((tmp = strstr (name, "__")) != NULL)
7687 {
7688 if (isdigit (tmp[2]))
7689 break;
7690 else
7691 name = tmp + 2;
7692 }
7693 }
7694
7695 if (name[0] == 'Q')
7696 {
7697 int v;
7698 if (name[1] == 'U' || name[1] == 'W')
7699 {
7700 if (sscanf (name + 2, "%x", &v) != 1)
7701 return name;
7702 }
7703 else
7704 return name;
7705
7706 GROW_VECT (result, result_len, 16);
7707 if (isascii (v) && isprint (v))
7708 xsnprintf (result, result_len, "'%c'", v);
7709 else if (name[1] == 'U')
7710 xsnprintf (result, result_len, "[\"%02x\"]", v);
7711 else
7712 xsnprintf (result, result_len, "[\"%04x\"]", v);
7713
7714 return result;
7715 }
7716 else
7717 {
7718 tmp = strstr (name, "__");
7719 if (tmp == NULL)
7720 tmp = strstr (name, "$");
7721 if (tmp != NULL)
7722 {
7723 GROW_VECT (result, result_len, tmp - name + 1);
7724 strncpy (result, name, tmp - name);
7725 result[tmp - name] = '\0';
7726 return result;
7727 }
7728
7729 return name;
7730 }
7731 }
7732
7733 static struct value *
7734 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7735 enum noside noside)
7736 {
7737 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7738 (expect_type, exp, pos, noside);
7739 }
7740
7741 /* Evaluate the subexpression of EXP starting at *POS as for
7742 evaluate_type, updating *POS to point just past the evaluated
7743 expression. */
7744
7745 static struct value *
7746 evaluate_subexp_type (struct expression *exp, int *pos)
7747 {
7748 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7749 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7750 }
7751
7752 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7753 value it wraps. */
7754
7755 static struct value *
7756 unwrap_value (struct value *val)
7757 {
7758 struct type *type = ada_check_typedef (value_type (val));
7759 if (ada_is_aligner_type (type))
7760 {
7761 struct value *v = ada_value_struct_elt (val, "F", 0);
7762 struct type *val_type = ada_check_typedef (value_type (v));
7763 if (ada_type_name (val_type) == NULL)
7764 TYPE_NAME (val_type) = ada_type_name (type);
7765
7766 return unwrap_value (v);
7767 }
7768 else
7769 {
7770 struct type *raw_real_type =
7771 ada_check_typedef (ada_get_base_type (type));
7772
7773 if (type == raw_real_type)
7774 return val;
7775
7776 return
7777 coerce_unspec_val_to_type
7778 (val, ada_to_fixed_type (raw_real_type, 0,
7779 value_address (val),
7780 NULL, 1));
7781 }
7782 }
7783
7784 static struct value *
7785 cast_to_fixed (struct type *type, struct value *arg)
7786 {
7787 LONGEST val;
7788
7789 if (type == value_type (arg))
7790 return arg;
7791 else if (ada_is_fixed_point_type (value_type (arg)))
7792 val = ada_float_to_fixed (type,
7793 ada_fixed_to_float (value_type (arg),
7794 value_as_long (arg)));
7795 else
7796 {
7797 DOUBLEST argd = value_as_double (arg);
7798 val = ada_float_to_fixed (type, argd);
7799 }
7800
7801 return value_from_longest (type, val);
7802 }
7803
7804 static struct value *
7805 cast_from_fixed (struct type *type, struct value *arg)
7806 {
7807 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7808 value_as_long (arg));
7809 return value_from_double (type, val);
7810 }
7811
7812 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7813 return the converted value. */
7814
7815 static struct value *
7816 coerce_for_assign (struct type *type, struct value *val)
7817 {
7818 struct type *type2 = value_type (val);
7819 if (type == type2)
7820 return val;
7821
7822 type2 = ada_check_typedef (type2);
7823 type = ada_check_typedef (type);
7824
7825 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7826 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7827 {
7828 val = ada_value_ind (val);
7829 type2 = value_type (val);
7830 }
7831
7832 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7833 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7834 {
7835 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7836 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7837 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7838 error (_("Incompatible types in assignment"));
7839 deprecated_set_value_type (val, type);
7840 }
7841 return val;
7842 }
7843
7844 static struct value *
7845 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7846 {
7847 struct value *val;
7848 struct type *type1, *type2;
7849 LONGEST v, v1, v2;
7850
7851 arg1 = coerce_ref (arg1);
7852 arg2 = coerce_ref (arg2);
7853 type1 = base_type (ada_check_typedef (value_type (arg1)));
7854 type2 = base_type (ada_check_typedef (value_type (arg2)));
7855
7856 if (TYPE_CODE (type1) != TYPE_CODE_INT
7857 || TYPE_CODE (type2) != TYPE_CODE_INT)
7858 return value_binop (arg1, arg2, op);
7859
7860 switch (op)
7861 {
7862 case BINOP_MOD:
7863 case BINOP_DIV:
7864 case BINOP_REM:
7865 break;
7866 default:
7867 return value_binop (arg1, arg2, op);
7868 }
7869
7870 v2 = value_as_long (arg2);
7871 if (v2 == 0)
7872 error (_("second operand of %s must not be zero."), op_string (op));
7873
7874 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7875 return value_binop (arg1, arg2, op);
7876
7877 v1 = value_as_long (arg1);
7878 switch (op)
7879 {
7880 case BINOP_DIV:
7881 v = v1 / v2;
7882 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7883 v += v > 0 ? -1 : 1;
7884 break;
7885 case BINOP_REM:
7886 v = v1 % v2;
7887 if (v * v1 < 0)
7888 v -= v2;
7889 break;
7890 default:
7891 /* Should not reach this point. */
7892 v = 0;
7893 }
7894
7895 val = allocate_value (type1);
7896 store_unsigned_integer (value_contents_raw (val),
7897 TYPE_LENGTH (value_type (val)), v);
7898 return val;
7899 }
7900
7901 static int
7902 ada_value_equal (struct value *arg1, struct value *arg2)
7903 {
7904 if (ada_is_direct_array_type (value_type (arg1))
7905 || ada_is_direct_array_type (value_type (arg2)))
7906 {
7907 /* Automatically dereference any array reference before
7908 we attempt to perform the comparison. */
7909 arg1 = ada_coerce_ref (arg1);
7910 arg2 = ada_coerce_ref (arg2);
7911
7912 arg1 = ada_coerce_to_simple_array (arg1);
7913 arg2 = ada_coerce_to_simple_array (arg2);
7914 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7915 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7916 error (_("Attempt to compare array with non-array"));
7917 /* FIXME: The following works only for types whose
7918 representations use all bits (no padding or undefined bits)
7919 and do not have user-defined equality. */
7920 return
7921 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7922 && memcmp (value_contents (arg1), value_contents (arg2),
7923 TYPE_LENGTH (value_type (arg1))) == 0;
7924 }
7925 return value_equal (arg1, arg2);
7926 }
7927
7928 /* Total number of component associations in the aggregate starting at
7929 index PC in EXP. Assumes that index PC is the start of an
7930 OP_AGGREGATE. */
7931
7932 static int
7933 num_component_specs (struct expression *exp, int pc)
7934 {
7935 int n, m, i;
7936 m = exp->elts[pc + 1].longconst;
7937 pc += 3;
7938 n = 0;
7939 for (i = 0; i < m; i += 1)
7940 {
7941 switch (exp->elts[pc].opcode)
7942 {
7943 default:
7944 n += 1;
7945 break;
7946 case OP_CHOICES:
7947 n += exp->elts[pc + 1].longconst;
7948 break;
7949 }
7950 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7951 }
7952 return n;
7953 }
7954
7955 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7956 component of LHS (a simple array or a record), updating *POS past
7957 the expression, assuming that LHS is contained in CONTAINER. Does
7958 not modify the inferior's memory, nor does it modify LHS (unless
7959 LHS == CONTAINER). */
7960
7961 static void
7962 assign_component (struct value *container, struct value *lhs, LONGEST index,
7963 struct expression *exp, int *pos)
7964 {
7965 struct value *mark = value_mark ();
7966 struct value *elt;
7967 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7968 {
7969 struct value *index_val = value_from_longest (builtin_type_int32, index);
7970 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7971 }
7972 else
7973 {
7974 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7975 elt = ada_to_fixed_value (unwrap_value (elt));
7976 }
7977
7978 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7979 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7980 else
7981 value_assign_to_component (container, elt,
7982 ada_evaluate_subexp (NULL, exp, pos,
7983 EVAL_NORMAL));
7984
7985 value_free_to_mark (mark);
7986 }
7987
7988 /* Assuming that LHS represents an lvalue having a record or array
7989 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7990 of that aggregate's value to LHS, advancing *POS past the
7991 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7992 lvalue containing LHS (possibly LHS itself). Does not modify
7993 the inferior's memory, nor does it modify the contents of
7994 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7995
7996 static struct value *
7997 assign_aggregate (struct value *container,
7998 struct value *lhs, struct expression *exp,
7999 int *pos, enum noside noside)
8000 {
8001 struct type *lhs_type;
8002 int n = exp->elts[*pos+1].longconst;
8003 LONGEST low_index, high_index;
8004 int num_specs;
8005 LONGEST *indices;
8006 int max_indices, num_indices;
8007 int is_array_aggregate;
8008 int i;
8009 struct value *mark = value_mark ();
8010
8011 *pos += 3;
8012 if (noside != EVAL_NORMAL)
8013 {
8014 int i;
8015 for (i = 0; i < n; i += 1)
8016 ada_evaluate_subexp (NULL, exp, pos, noside);
8017 return container;
8018 }
8019
8020 container = ada_coerce_ref (container);
8021 if (ada_is_direct_array_type (value_type (container)))
8022 container = ada_coerce_to_simple_array (container);
8023 lhs = ada_coerce_ref (lhs);
8024 if (!deprecated_value_modifiable (lhs))
8025 error (_("Left operand of assignment is not a modifiable lvalue."));
8026
8027 lhs_type = value_type (lhs);
8028 if (ada_is_direct_array_type (lhs_type))
8029 {
8030 lhs = ada_coerce_to_simple_array (lhs);
8031 lhs_type = value_type (lhs);
8032 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8033 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8034 is_array_aggregate = 1;
8035 }
8036 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8037 {
8038 low_index = 0;
8039 high_index = num_visible_fields (lhs_type) - 1;
8040 is_array_aggregate = 0;
8041 }
8042 else
8043 error (_("Left-hand side must be array or record."));
8044
8045 num_specs = num_component_specs (exp, *pos - 3);
8046 max_indices = 4 * num_specs + 4;
8047 indices = alloca (max_indices * sizeof (indices[0]));
8048 indices[0] = indices[1] = low_index - 1;
8049 indices[2] = indices[3] = high_index + 1;
8050 num_indices = 4;
8051
8052 for (i = 0; i < n; i += 1)
8053 {
8054 switch (exp->elts[*pos].opcode)
8055 {
8056 case OP_CHOICES:
8057 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8058 &num_indices, max_indices,
8059 low_index, high_index);
8060 break;
8061 case OP_POSITIONAL:
8062 aggregate_assign_positional (container, lhs, exp, pos, indices,
8063 &num_indices, max_indices,
8064 low_index, high_index);
8065 break;
8066 case OP_OTHERS:
8067 if (i != n-1)
8068 error (_("Misplaced 'others' clause"));
8069 aggregate_assign_others (container, lhs, exp, pos, indices,
8070 num_indices, low_index, high_index);
8071 break;
8072 default:
8073 error (_("Internal error: bad aggregate clause"));
8074 }
8075 }
8076
8077 return container;
8078 }
8079
8080 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8081 construct at *POS, updating *POS past the construct, given that
8082 the positions are relative to lower bound LOW, where HIGH is the
8083 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8084 updating *NUM_INDICES as needed. CONTAINER is as for
8085 assign_aggregate. */
8086 static void
8087 aggregate_assign_positional (struct value *container,
8088 struct value *lhs, struct expression *exp,
8089 int *pos, LONGEST *indices, int *num_indices,
8090 int max_indices, LONGEST low, LONGEST high)
8091 {
8092 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8093
8094 if (ind - 1 == high)
8095 warning (_("Extra components in aggregate ignored."));
8096 if (ind <= high)
8097 {
8098 add_component_interval (ind, ind, indices, num_indices, max_indices);
8099 *pos += 3;
8100 assign_component (container, lhs, ind, exp, pos);
8101 }
8102 else
8103 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8104 }
8105
8106 /* Assign into the components of LHS indexed by the OP_CHOICES
8107 construct at *POS, updating *POS past the construct, given that
8108 the allowable indices are LOW..HIGH. Record the indices assigned
8109 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8110 needed. CONTAINER is as for assign_aggregate. */
8111 static void
8112 aggregate_assign_from_choices (struct value *container,
8113 struct value *lhs, struct expression *exp,
8114 int *pos, LONGEST *indices, int *num_indices,
8115 int max_indices, LONGEST low, LONGEST high)
8116 {
8117 int j;
8118 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8119 int choice_pos, expr_pc;
8120 int is_array = ada_is_direct_array_type (value_type (lhs));
8121
8122 choice_pos = *pos += 3;
8123
8124 for (j = 0; j < n_choices; j += 1)
8125 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8126 expr_pc = *pos;
8127 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8128
8129 for (j = 0; j < n_choices; j += 1)
8130 {
8131 LONGEST lower, upper;
8132 enum exp_opcode op = exp->elts[choice_pos].opcode;
8133 if (op == OP_DISCRETE_RANGE)
8134 {
8135 choice_pos += 1;
8136 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8137 EVAL_NORMAL));
8138 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8139 EVAL_NORMAL));
8140 }
8141 else if (is_array)
8142 {
8143 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8144 EVAL_NORMAL));
8145 upper = lower;
8146 }
8147 else
8148 {
8149 int ind;
8150 char *name;
8151 switch (op)
8152 {
8153 case OP_NAME:
8154 name = &exp->elts[choice_pos + 2].string;
8155 break;
8156 case OP_VAR_VALUE:
8157 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8158 break;
8159 default:
8160 error (_("Invalid record component association."));
8161 }
8162 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8163 ind = 0;
8164 if (! find_struct_field (name, value_type (lhs), 0,
8165 NULL, NULL, NULL, NULL, &ind))
8166 error (_("Unknown component name: %s."), name);
8167 lower = upper = ind;
8168 }
8169
8170 if (lower <= upper && (lower < low || upper > high))
8171 error (_("Index in component association out of bounds."));
8172
8173 add_component_interval (lower, upper, indices, num_indices,
8174 max_indices);
8175 while (lower <= upper)
8176 {
8177 int pos1;
8178 pos1 = expr_pc;
8179 assign_component (container, lhs, lower, exp, &pos1);
8180 lower += 1;
8181 }
8182 }
8183 }
8184
8185 /* Assign the value of the expression in the OP_OTHERS construct in
8186 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8187 have not been previously assigned. The index intervals already assigned
8188 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8189 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8190 static void
8191 aggregate_assign_others (struct value *container,
8192 struct value *lhs, struct expression *exp,
8193 int *pos, LONGEST *indices, int num_indices,
8194 LONGEST low, LONGEST high)
8195 {
8196 int i;
8197 int expr_pc = *pos+1;
8198
8199 for (i = 0; i < num_indices - 2; i += 2)
8200 {
8201 LONGEST ind;
8202 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8203 {
8204 int pos;
8205 pos = expr_pc;
8206 assign_component (container, lhs, ind, exp, &pos);
8207 }
8208 }
8209 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8210 }
8211
8212 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8213 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8214 modifying *SIZE as needed. It is an error if *SIZE exceeds
8215 MAX_SIZE. The resulting intervals do not overlap. */
8216 static void
8217 add_component_interval (LONGEST low, LONGEST high,
8218 LONGEST* indices, int *size, int max_size)
8219 {
8220 int i, j;
8221 for (i = 0; i < *size; i += 2) {
8222 if (high >= indices[i] && low <= indices[i + 1])
8223 {
8224 int kh;
8225 for (kh = i + 2; kh < *size; kh += 2)
8226 if (high < indices[kh])
8227 break;
8228 if (low < indices[i])
8229 indices[i] = low;
8230 indices[i + 1] = indices[kh - 1];
8231 if (high > indices[i + 1])
8232 indices[i + 1] = high;
8233 memcpy (indices + i + 2, indices + kh, *size - kh);
8234 *size -= kh - i - 2;
8235 return;
8236 }
8237 else if (high < indices[i])
8238 break;
8239 }
8240
8241 if (*size == max_size)
8242 error (_("Internal error: miscounted aggregate components."));
8243 *size += 2;
8244 for (j = *size-1; j >= i+2; j -= 1)
8245 indices[j] = indices[j - 2];
8246 indices[i] = low;
8247 indices[i + 1] = high;
8248 }
8249
8250 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8251 is different. */
8252
8253 static struct value *
8254 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8255 {
8256 if (type == ada_check_typedef (value_type (arg2)))
8257 return arg2;
8258
8259 if (ada_is_fixed_point_type (type))
8260 return (cast_to_fixed (type, arg2));
8261
8262 if (ada_is_fixed_point_type (value_type (arg2)))
8263 return cast_from_fixed (type, arg2);
8264
8265 return value_cast (type, arg2);
8266 }
8267
8268 static struct value *
8269 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8270 int *pos, enum noside noside)
8271 {
8272 enum exp_opcode op;
8273 int tem, tem2, tem3;
8274 int pc;
8275 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8276 struct type *type;
8277 int nargs, oplen;
8278 struct value **argvec;
8279
8280 pc = *pos;
8281 *pos += 1;
8282 op = exp->elts[pc].opcode;
8283
8284 switch (op)
8285 {
8286 default:
8287 *pos -= 1;
8288 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8289 arg1 = unwrap_value (arg1);
8290
8291 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8292 then we need to perform the conversion manually, because
8293 evaluate_subexp_standard doesn't do it. This conversion is
8294 necessary in Ada because the different kinds of float/fixed
8295 types in Ada have different representations.
8296
8297 Similarly, we need to perform the conversion from OP_LONG
8298 ourselves. */
8299 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8300 arg1 = ada_value_cast (expect_type, arg1, noside);
8301
8302 return arg1;
8303
8304 case OP_STRING:
8305 {
8306 struct value *result;
8307 *pos -= 1;
8308 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8309 /* The result type will have code OP_STRING, bashed there from
8310 OP_ARRAY. Bash it back. */
8311 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8312 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8313 return result;
8314 }
8315
8316 case UNOP_CAST:
8317 (*pos) += 2;
8318 type = exp->elts[pc + 1].type;
8319 arg1 = evaluate_subexp (type, exp, pos, noside);
8320 if (noside == EVAL_SKIP)
8321 goto nosideret;
8322 arg1 = ada_value_cast (type, arg1, noside);
8323 return arg1;
8324
8325 case UNOP_QUAL:
8326 (*pos) += 2;
8327 type = exp->elts[pc + 1].type;
8328 return ada_evaluate_subexp (type, exp, pos, noside);
8329
8330 case BINOP_ASSIGN:
8331 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8332 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8333 {
8334 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8335 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8336 return arg1;
8337 return ada_value_assign (arg1, arg1);
8338 }
8339 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8340 except if the lhs of our assignment is a convenience variable.
8341 In the case of assigning to a convenience variable, the lhs
8342 should be exactly the result of the evaluation of the rhs. */
8343 type = value_type (arg1);
8344 if (VALUE_LVAL (arg1) == lval_internalvar)
8345 type = NULL;
8346 arg2 = evaluate_subexp (type, exp, pos, noside);
8347 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8348 return arg1;
8349 if (ada_is_fixed_point_type (value_type (arg1)))
8350 arg2 = cast_to_fixed (value_type (arg1), arg2);
8351 else if (ada_is_fixed_point_type (value_type (arg2)))
8352 error
8353 (_("Fixed-point values must be assigned to fixed-point variables"));
8354 else
8355 arg2 = coerce_for_assign (value_type (arg1), arg2);
8356 return ada_value_assign (arg1, arg2);
8357
8358 case BINOP_ADD:
8359 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8360 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8361 if (noside == EVAL_SKIP)
8362 goto nosideret;
8363 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8364 return (value_from_longest
8365 (value_type (arg1),
8366 value_as_long (arg1) + value_as_long (arg2)));
8367 if ((ada_is_fixed_point_type (value_type (arg1))
8368 || ada_is_fixed_point_type (value_type (arg2)))
8369 && value_type (arg1) != value_type (arg2))
8370 error (_("Operands of fixed-point addition must have the same type"));
8371 /* Do the addition, and cast the result to the type of the first
8372 argument. We cannot cast the result to a reference type, so if
8373 ARG1 is a reference type, find its underlying type. */
8374 type = value_type (arg1);
8375 while (TYPE_CODE (type) == TYPE_CODE_REF)
8376 type = TYPE_TARGET_TYPE (type);
8377 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8378 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8379
8380 case BINOP_SUB:
8381 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8382 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8383 if (noside == EVAL_SKIP)
8384 goto nosideret;
8385 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8386 return (value_from_longest
8387 (value_type (arg1),
8388 value_as_long (arg1) - value_as_long (arg2)));
8389 if ((ada_is_fixed_point_type (value_type (arg1))
8390 || ada_is_fixed_point_type (value_type (arg2)))
8391 && value_type (arg1) != value_type (arg2))
8392 error (_("Operands of fixed-point subtraction must have the same type"));
8393 /* Do the substraction, and cast the result to the type of the first
8394 argument. We cannot cast the result to a reference type, so if
8395 ARG1 is a reference type, find its underlying type. */
8396 type = value_type (arg1);
8397 while (TYPE_CODE (type) == TYPE_CODE_REF)
8398 type = TYPE_TARGET_TYPE (type);
8399 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8400 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8401
8402 case BINOP_MUL:
8403 case BINOP_DIV:
8404 case BINOP_REM:
8405 case BINOP_MOD:
8406 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8407 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8408 if (noside == EVAL_SKIP)
8409 goto nosideret;
8410 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8411 {
8412 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8413 return value_zero (value_type (arg1), not_lval);
8414 }
8415 else
8416 {
8417 type = builtin_type (exp->gdbarch)->builtin_double;
8418 if (ada_is_fixed_point_type (value_type (arg1)))
8419 arg1 = cast_from_fixed (type, arg1);
8420 if (ada_is_fixed_point_type (value_type (arg2)))
8421 arg2 = cast_from_fixed (type, arg2);
8422 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8423 return ada_value_binop (arg1, arg2, op);
8424 }
8425
8426 case BINOP_EQUAL:
8427 case BINOP_NOTEQUAL:
8428 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8429 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8430 if (noside == EVAL_SKIP)
8431 goto nosideret;
8432 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8433 tem = 0;
8434 else
8435 {
8436 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8437 tem = ada_value_equal (arg1, arg2);
8438 }
8439 if (op == BINOP_NOTEQUAL)
8440 tem = !tem;
8441 type = language_bool_type (exp->language_defn, exp->gdbarch);
8442 return value_from_longest (type, (LONGEST) tem);
8443
8444 case UNOP_NEG:
8445 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8446 if (noside == EVAL_SKIP)
8447 goto nosideret;
8448 else if (ada_is_fixed_point_type (value_type (arg1)))
8449 return value_cast (value_type (arg1), value_neg (arg1));
8450 else
8451 {
8452 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8453 return value_neg (arg1);
8454 }
8455
8456 case BINOP_LOGICAL_AND:
8457 case BINOP_LOGICAL_OR:
8458 case UNOP_LOGICAL_NOT:
8459 {
8460 struct value *val;
8461
8462 *pos -= 1;
8463 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8464 type = language_bool_type (exp->language_defn, exp->gdbarch);
8465 return value_cast (type, val);
8466 }
8467
8468 case BINOP_BITWISE_AND:
8469 case BINOP_BITWISE_IOR:
8470 case BINOP_BITWISE_XOR:
8471 {
8472 struct value *val;
8473
8474 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8475 *pos = pc;
8476 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8477
8478 return value_cast (value_type (arg1), val);
8479 }
8480
8481 case OP_VAR_VALUE:
8482 *pos -= 1;
8483
8484 if (noside == EVAL_SKIP)
8485 {
8486 *pos += 4;
8487 goto nosideret;
8488 }
8489 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8490 /* Only encountered when an unresolved symbol occurs in a
8491 context other than a function call, in which case, it is
8492 invalid. */
8493 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8494 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8495 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8496 {
8497 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8498 if (ada_is_tagged_type (type, 0))
8499 {
8500 /* Tagged types are a little special in the fact that the real
8501 type is dynamic and can only be determined by inspecting the
8502 object's tag. This means that we need to get the object's
8503 value first (EVAL_NORMAL) and then extract the actual object
8504 type from its tag.
8505
8506 Note that we cannot skip the final step where we extract
8507 the object type from its tag, because the EVAL_NORMAL phase
8508 results in dynamic components being resolved into fixed ones.
8509 This can cause problems when trying to print the type
8510 description of tagged types whose parent has a dynamic size:
8511 We use the type name of the "_parent" component in order
8512 to print the name of the ancestor type in the type description.
8513 If that component had a dynamic size, the resolution into
8514 a fixed type would result in the loss of that type name,
8515 thus preventing us from printing the name of the ancestor
8516 type in the type description. */
8517 struct type *actual_type;
8518
8519 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8520 actual_type = type_from_tag (ada_value_tag (arg1));
8521 if (actual_type == NULL)
8522 /* If, for some reason, we were unable to determine
8523 the actual type from the tag, then use the static
8524 approximation that we just computed as a fallback.
8525 This can happen if the debugging information is
8526 incomplete, for instance. */
8527 actual_type = type;
8528
8529 return value_zero (actual_type, not_lval);
8530 }
8531
8532 *pos += 4;
8533 return value_zero
8534 (to_static_fixed_type
8535 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8536 not_lval);
8537 }
8538 else
8539 {
8540 arg1 =
8541 unwrap_value (evaluate_subexp_standard
8542 (expect_type, exp, pos, noside));
8543 return ada_to_fixed_value (arg1);
8544 }
8545
8546 case OP_FUNCALL:
8547 (*pos) += 2;
8548
8549 /* Allocate arg vector, including space for the function to be
8550 called in argvec[0] and a terminating NULL. */
8551 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8552 argvec =
8553 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8554
8555 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8556 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8557 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8558 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8559 else
8560 {
8561 for (tem = 0; tem <= nargs; tem += 1)
8562 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8563 argvec[tem] = 0;
8564
8565 if (noside == EVAL_SKIP)
8566 goto nosideret;
8567 }
8568
8569 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8570 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8571 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8572 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8573 && VALUE_LVAL (argvec[0]) == lval_memory))
8574 argvec[0] = value_addr (argvec[0]);
8575
8576 type = ada_check_typedef (value_type (argvec[0]));
8577 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8578 {
8579 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8580 {
8581 case TYPE_CODE_FUNC:
8582 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8583 break;
8584 case TYPE_CODE_ARRAY:
8585 break;
8586 case TYPE_CODE_STRUCT:
8587 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8588 argvec[0] = ada_value_ind (argvec[0]);
8589 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8590 break;
8591 default:
8592 error (_("cannot subscript or call something of type `%s'"),
8593 ada_type_name (value_type (argvec[0])));
8594 break;
8595 }
8596 }
8597
8598 switch (TYPE_CODE (type))
8599 {
8600 case TYPE_CODE_FUNC:
8601 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8602 return allocate_value (TYPE_TARGET_TYPE (type));
8603 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8604 case TYPE_CODE_STRUCT:
8605 {
8606 int arity;
8607
8608 arity = ada_array_arity (type);
8609 type = ada_array_element_type (type, nargs);
8610 if (type == NULL)
8611 error (_("cannot subscript or call a record"));
8612 if (arity != nargs)
8613 error (_("wrong number of subscripts; expecting %d"), arity);
8614 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8615 return value_zero (ada_aligned_type (type), lval_memory);
8616 return
8617 unwrap_value (ada_value_subscript
8618 (argvec[0], nargs, argvec + 1));
8619 }
8620 case TYPE_CODE_ARRAY:
8621 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8622 {
8623 type = ada_array_element_type (type, nargs);
8624 if (type == NULL)
8625 error (_("element type of array unknown"));
8626 else
8627 return value_zero (ada_aligned_type (type), lval_memory);
8628 }
8629 return
8630 unwrap_value (ada_value_subscript
8631 (ada_coerce_to_simple_array (argvec[0]),
8632 nargs, argvec + 1));
8633 case TYPE_CODE_PTR: /* Pointer to array */
8634 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8635 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8636 {
8637 type = ada_array_element_type (type, nargs);
8638 if (type == NULL)
8639 error (_("element type of array unknown"));
8640 else
8641 return value_zero (ada_aligned_type (type), lval_memory);
8642 }
8643 return
8644 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8645 nargs, argvec + 1));
8646
8647 default:
8648 error (_("Attempt to index or call something other than an "
8649 "array or function"));
8650 }
8651
8652 case TERNOP_SLICE:
8653 {
8654 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8655 struct value *low_bound_val =
8656 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8657 struct value *high_bound_val =
8658 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8659 LONGEST low_bound;
8660 LONGEST high_bound;
8661 low_bound_val = coerce_ref (low_bound_val);
8662 high_bound_val = coerce_ref (high_bound_val);
8663 low_bound = pos_atr (low_bound_val);
8664 high_bound = pos_atr (high_bound_val);
8665
8666 if (noside == EVAL_SKIP)
8667 goto nosideret;
8668
8669 /* If this is a reference to an aligner type, then remove all
8670 the aligners. */
8671 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8672 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8673 TYPE_TARGET_TYPE (value_type (array)) =
8674 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8675
8676 if (ada_is_packed_array_type (value_type (array)))
8677 error (_("cannot slice a packed array"));
8678
8679 /* If this is a reference to an array or an array lvalue,
8680 convert to a pointer. */
8681 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8682 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8683 && VALUE_LVAL (array) == lval_memory))
8684 array = value_addr (array);
8685
8686 if (noside == EVAL_AVOID_SIDE_EFFECTS
8687 && ada_is_array_descriptor_type (ada_check_typedef
8688 (value_type (array))))
8689 return empty_array (ada_type_of_array (array, 0), low_bound);
8690
8691 array = ada_coerce_to_simple_array_ptr (array);
8692
8693 /* If we have more than one level of pointer indirection,
8694 dereference the value until we get only one level. */
8695 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8696 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8697 == TYPE_CODE_PTR))
8698 array = value_ind (array);
8699
8700 /* Make sure we really do have an array type before going further,
8701 to avoid a SEGV when trying to get the index type or the target
8702 type later down the road if the debug info generated by
8703 the compiler is incorrect or incomplete. */
8704 if (!ada_is_simple_array_type (value_type (array)))
8705 error (_("cannot take slice of non-array"));
8706
8707 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8708 {
8709 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8710 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8711 low_bound);
8712 else
8713 {
8714 struct type *arr_type0 =
8715 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8716 NULL, 1);
8717 return ada_value_slice_from_ptr (array, arr_type0,
8718 longest_to_int (low_bound),
8719 longest_to_int (high_bound));
8720 }
8721 }
8722 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8723 return array;
8724 else if (high_bound < low_bound)
8725 return empty_array (value_type (array), low_bound);
8726 else
8727 return ada_value_slice (array, longest_to_int (low_bound),
8728 longest_to_int (high_bound));
8729 }
8730
8731 case UNOP_IN_RANGE:
8732 (*pos) += 2;
8733 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8734 type = check_typedef (exp->elts[pc + 1].type);
8735
8736 if (noside == EVAL_SKIP)
8737 goto nosideret;
8738
8739 switch (TYPE_CODE (type))
8740 {
8741 default:
8742 lim_warning (_("Membership test incompletely implemented; "
8743 "always returns true"));
8744 type = language_bool_type (exp->language_defn, exp->gdbarch);
8745 return value_from_longest (type, (LONGEST) 1);
8746
8747 case TYPE_CODE_RANGE:
8748 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
8749 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
8750 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8751 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
8752 type = language_bool_type (exp->language_defn, exp->gdbarch);
8753 return
8754 value_from_longest (type,
8755 (value_less (arg1, arg3)
8756 || value_equal (arg1, arg3))
8757 && (value_less (arg2, arg1)
8758 || value_equal (arg2, arg1)));
8759 }
8760
8761 case BINOP_IN_BOUNDS:
8762 (*pos) += 2;
8763 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8764 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8765
8766 if (noside == EVAL_SKIP)
8767 goto nosideret;
8768
8769 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8770 {
8771 type = language_bool_type (exp->language_defn, exp->gdbarch);
8772 return value_zero (type, not_lval);
8773 }
8774
8775 tem = longest_to_int (exp->elts[pc + 1].longconst);
8776
8777 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8778 error (_("invalid dimension number to 'range"));
8779
8780 arg3 = ada_array_bound (arg2, tem, 1);
8781 arg2 = ada_array_bound (arg2, tem, 0);
8782
8783 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8784 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
8785 type = language_bool_type (exp->language_defn, exp->gdbarch);
8786 return
8787 value_from_longest (type,
8788 (value_less (arg1, arg3)
8789 || value_equal (arg1, arg3))
8790 && (value_less (arg2, arg1)
8791 || value_equal (arg2, arg1)));
8792
8793 case TERNOP_IN_RANGE:
8794 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8795 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8796 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8797
8798 if (noside == EVAL_SKIP)
8799 goto nosideret;
8800
8801 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8802 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
8803 type = language_bool_type (exp->language_defn, exp->gdbarch);
8804 return
8805 value_from_longest (type,
8806 (value_less (arg1, arg3)
8807 || value_equal (arg1, arg3))
8808 && (value_less (arg2, arg1)
8809 || value_equal (arg2, arg1)));
8810
8811 case OP_ATR_FIRST:
8812 case OP_ATR_LAST:
8813 case OP_ATR_LENGTH:
8814 {
8815 struct type *type_arg;
8816 if (exp->elts[*pos].opcode == OP_TYPE)
8817 {
8818 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8819 arg1 = NULL;
8820 type_arg = check_typedef (exp->elts[pc + 2].type);
8821 }
8822 else
8823 {
8824 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8825 type_arg = NULL;
8826 }
8827
8828 if (exp->elts[*pos].opcode != OP_LONG)
8829 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8830 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8831 *pos += 4;
8832
8833 if (noside == EVAL_SKIP)
8834 goto nosideret;
8835
8836 if (type_arg == NULL)
8837 {
8838 arg1 = ada_coerce_ref (arg1);
8839
8840 if (ada_is_packed_array_type (value_type (arg1)))
8841 arg1 = ada_coerce_to_simple_array (arg1);
8842
8843 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8844 error (_("invalid dimension number to '%s"),
8845 ada_attribute_name (op));
8846
8847 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8848 {
8849 type = ada_index_type (value_type (arg1), tem);
8850 if (type == NULL)
8851 error
8852 (_("attempt to take bound of something that is not an array"));
8853 return allocate_value (type);
8854 }
8855
8856 switch (op)
8857 {
8858 default: /* Should never happen. */
8859 error (_("unexpected attribute encountered"));
8860 case OP_ATR_FIRST:
8861 return ada_array_bound (arg1, tem, 0);
8862 case OP_ATR_LAST:
8863 return ada_array_bound (arg1, tem, 1);
8864 case OP_ATR_LENGTH:
8865 return ada_array_length (arg1, tem);
8866 }
8867 }
8868 else if (discrete_type_p (type_arg))
8869 {
8870 struct type *range_type;
8871 char *name = ada_type_name (type_arg);
8872 range_type = NULL;
8873 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8874 range_type =
8875 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8876 if (range_type == NULL)
8877 range_type = type_arg;
8878 switch (op)
8879 {
8880 default:
8881 error (_("unexpected attribute encountered"));
8882 case OP_ATR_FIRST:
8883 return value_from_longest
8884 (range_type, discrete_type_low_bound (range_type));
8885 case OP_ATR_LAST:
8886 return value_from_longest
8887 (range_type, discrete_type_high_bound (range_type));
8888 case OP_ATR_LENGTH:
8889 error (_("the 'length attribute applies only to array types"));
8890 }
8891 }
8892 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8893 error (_("unimplemented type attribute"));
8894 else
8895 {
8896 LONGEST low, high;
8897
8898 if (ada_is_packed_array_type (type_arg))
8899 type_arg = decode_packed_array_type (type_arg);
8900
8901 if (tem < 1 || tem > ada_array_arity (type_arg))
8902 error (_("invalid dimension number to '%s"),
8903 ada_attribute_name (op));
8904
8905 type = ada_index_type (type_arg, tem);
8906 if (type == NULL)
8907 error
8908 (_("attempt to take bound of something that is not an array"));
8909 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8910 return allocate_value (type);
8911
8912 switch (op)
8913 {
8914 default:
8915 error (_("unexpected attribute encountered"));
8916 case OP_ATR_FIRST:
8917 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8918 return value_from_longest (type, low);
8919 case OP_ATR_LAST:
8920 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8921 return value_from_longest (type, high);
8922 case OP_ATR_LENGTH:
8923 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8924 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8925 return value_from_longest (type, high - low + 1);
8926 }
8927 }
8928 }
8929
8930 case OP_ATR_TAG:
8931 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8932 if (noside == EVAL_SKIP)
8933 goto nosideret;
8934
8935 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8936 return value_zero (ada_tag_type (arg1), not_lval);
8937
8938 return ada_value_tag (arg1);
8939
8940 case OP_ATR_MIN:
8941 case OP_ATR_MAX:
8942 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8943 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8944 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8945 if (noside == EVAL_SKIP)
8946 goto nosideret;
8947 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8948 return value_zero (value_type (arg1), not_lval);
8949 else
8950 {
8951 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8952 return value_binop (arg1, arg2,
8953 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8954 }
8955
8956 case OP_ATR_MODULUS:
8957 {
8958 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
8959 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8960
8961 if (noside == EVAL_SKIP)
8962 goto nosideret;
8963
8964 if (!ada_is_modular_type (type_arg))
8965 error (_("'modulus must be applied to modular type"));
8966
8967 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8968 ada_modulus (type_arg));
8969 }
8970
8971
8972 case OP_ATR_POS:
8973 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8974 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8975 if (noside == EVAL_SKIP)
8976 goto nosideret;
8977 type = builtin_type (exp->gdbarch)->builtin_int;
8978 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8979 return value_zero (type, not_lval);
8980 else
8981 return value_pos_atr (type, arg1);
8982
8983 case OP_ATR_SIZE:
8984 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8985 type = value_type (arg1);
8986
8987 /* If the argument is a reference, then dereference its type, since
8988 the user is really asking for the size of the actual object,
8989 not the size of the pointer. */
8990 if (TYPE_CODE (type) == TYPE_CODE_REF)
8991 type = TYPE_TARGET_TYPE (type);
8992
8993 if (noside == EVAL_SKIP)
8994 goto nosideret;
8995 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8996 return value_zero (builtin_type_int32, not_lval);
8997 else
8998 return value_from_longest (builtin_type_int32,
8999 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9000
9001 case OP_ATR_VAL:
9002 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9003 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9004 type = exp->elts[pc + 2].type;
9005 if (noside == EVAL_SKIP)
9006 goto nosideret;
9007 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9008 return value_zero (type, not_lval);
9009 else
9010 return value_val_atr (type, arg1);
9011
9012 case BINOP_EXP:
9013 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9014 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9015 if (noside == EVAL_SKIP)
9016 goto nosideret;
9017 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9018 return value_zero (value_type (arg1), not_lval);
9019 else
9020 {
9021 /* For integer exponentiation operations,
9022 only promote the first argument. */
9023 if (is_integral_type (value_type (arg2)))
9024 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9025 else
9026 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9027
9028 return value_binop (arg1, arg2, op);
9029 }
9030
9031 case UNOP_PLUS:
9032 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9033 if (noside == EVAL_SKIP)
9034 goto nosideret;
9035 else
9036 return arg1;
9037
9038 case UNOP_ABS:
9039 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9040 if (noside == EVAL_SKIP)
9041 goto nosideret;
9042 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9043 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9044 return value_neg (arg1);
9045 else
9046 return arg1;
9047
9048 case UNOP_IND:
9049 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9050 if (noside == EVAL_SKIP)
9051 goto nosideret;
9052 type = ada_check_typedef (value_type (arg1));
9053 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9054 {
9055 if (ada_is_array_descriptor_type (type))
9056 /* GDB allows dereferencing GNAT array descriptors. */
9057 {
9058 struct type *arrType = ada_type_of_array (arg1, 0);
9059 if (arrType == NULL)
9060 error (_("Attempt to dereference null array pointer."));
9061 return value_at_lazy (arrType, 0);
9062 }
9063 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9064 || TYPE_CODE (type) == TYPE_CODE_REF
9065 /* In C you can dereference an array to get the 1st elt. */
9066 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9067 {
9068 type = to_static_fixed_type
9069 (ada_aligned_type
9070 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9071 check_size (type);
9072 return value_zero (type, lval_memory);
9073 }
9074 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9075 {
9076 /* GDB allows dereferencing an int. */
9077 if (expect_type == NULL)
9078 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9079 lval_memory);
9080 else
9081 {
9082 expect_type =
9083 to_static_fixed_type (ada_aligned_type (expect_type));
9084 return value_zero (expect_type, lval_memory);
9085 }
9086 }
9087 else
9088 error (_("Attempt to take contents of a non-pointer value."));
9089 }
9090 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9091 type = ada_check_typedef (value_type (arg1));
9092
9093 if (TYPE_CODE (type) == TYPE_CODE_INT)
9094 /* GDB allows dereferencing an int. If we were given
9095 the expect_type, then use that as the target type.
9096 Otherwise, assume that the target type is an int. */
9097 {
9098 if (expect_type != NULL)
9099 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9100 arg1));
9101 else
9102 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9103 (CORE_ADDR) value_as_address (arg1));
9104 }
9105
9106 if (ada_is_array_descriptor_type (type))
9107 /* GDB allows dereferencing GNAT array descriptors. */
9108 return ada_coerce_to_simple_array (arg1);
9109 else
9110 return ada_value_ind (arg1);
9111
9112 case STRUCTOP_STRUCT:
9113 tem = longest_to_int (exp->elts[pc + 1].longconst);
9114 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9115 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9116 if (noside == EVAL_SKIP)
9117 goto nosideret;
9118 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9119 {
9120 struct type *type1 = value_type (arg1);
9121 if (ada_is_tagged_type (type1, 1))
9122 {
9123 type = ada_lookup_struct_elt_type (type1,
9124 &exp->elts[pc + 2].string,
9125 1, 1, NULL);
9126 if (type == NULL)
9127 /* In this case, we assume that the field COULD exist
9128 in some extension of the type. Return an object of
9129 "type" void, which will match any formal
9130 (see ada_type_match). */
9131 return value_zero (builtin_type_void, lval_memory);
9132 }
9133 else
9134 type =
9135 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9136 0, NULL);
9137
9138 return value_zero (ada_aligned_type (type), lval_memory);
9139 }
9140 else
9141 return
9142 ada_to_fixed_value (unwrap_value
9143 (ada_value_struct_elt
9144 (arg1, &exp->elts[pc + 2].string, 0)));
9145 case OP_TYPE:
9146 /* The value is not supposed to be used. This is here to make it
9147 easier to accommodate expressions that contain types. */
9148 (*pos) += 2;
9149 if (noside == EVAL_SKIP)
9150 goto nosideret;
9151 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9152 return allocate_value (exp->elts[pc + 1].type);
9153 else
9154 error (_("Attempt to use a type name as an expression"));
9155
9156 case OP_AGGREGATE:
9157 case OP_CHOICES:
9158 case OP_OTHERS:
9159 case OP_DISCRETE_RANGE:
9160 case OP_POSITIONAL:
9161 case OP_NAME:
9162 if (noside == EVAL_NORMAL)
9163 switch (op)
9164 {
9165 case OP_NAME:
9166 error (_("Undefined name, ambiguous name, or renaming used in "
9167 "component association: %s."), &exp->elts[pc+2].string);
9168 case OP_AGGREGATE:
9169 error (_("Aggregates only allowed on the right of an assignment"));
9170 default:
9171 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9172 }
9173
9174 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9175 *pos += oplen - 1;
9176 for (tem = 0; tem < nargs; tem += 1)
9177 ada_evaluate_subexp (NULL, exp, pos, noside);
9178 goto nosideret;
9179 }
9180
9181 nosideret:
9182 return value_from_longest (builtin_type_int8, (LONGEST) 1);
9183 }
9184 \f
9185
9186 /* Fixed point */
9187
9188 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9189 type name that encodes the 'small and 'delta information.
9190 Otherwise, return NULL. */
9191
9192 static const char *
9193 fixed_type_info (struct type *type)
9194 {
9195 const char *name = ada_type_name (type);
9196 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9197
9198 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9199 {
9200 const char *tail = strstr (name, "___XF_");
9201 if (tail == NULL)
9202 return NULL;
9203 else
9204 return tail + 5;
9205 }
9206 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9207 return fixed_type_info (TYPE_TARGET_TYPE (type));
9208 else
9209 return NULL;
9210 }
9211
9212 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9213
9214 int
9215 ada_is_fixed_point_type (struct type *type)
9216 {
9217 return fixed_type_info (type) != NULL;
9218 }
9219
9220 /* Return non-zero iff TYPE represents a System.Address type. */
9221
9222 int
9223 ada_is_system_address_type (struct type *type)
9224 {
9225 return (TYPE_NAME (type)
9226 && strcmp (TYPE_NAME (type), "system__address") == 0);
9227 }
9228
9229 /* Assuming that TYPE is the representation of an Ada fixed-point
9230 type, return its delta, or -1 if the type is malformed and the
9231 delta cannot be determined. */
9232
9233 DOUBLEST
9234 ada_delta (struct type *type)
9235 {
9236 const char *encoding = fixed_type_info (type);
9237 DOUBLEST num, den;
9238
9239 /* Strictly speaking, num and den are encoded as integer. However,
9240 they may not fit into a long, and they will have to be converted
9241 to DOUBLEST anyway. So scan them as DOUBLEST. */
9242 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9243 &num, &den) < 2)
9244 return -1.0;
9245 else
9246 return num / den;
9247 }
9248
9249 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9250 factor ('SMALL value) associated with the type. */
9251
9252 static DOUBLEST
9253 scaling_factor (struct type *type)
9254 {
9255 const char *encoding = fixed_type_info (type);
9256 DOUBLEST num0, den0, num1, den1;
9257 int n;
9258
9259 /* Strictly speaking, num's and den's are encoded as integer. However,
9260 they may not fit into a long, and they will have to be converted
9261 to DOUBLEST anyway. So scan them as DOUBLEST. */
9262 n = sscanf (encoding,
9263 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9264 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9265 &num0, &den0, &num1, &den1);
9266
9267 if (n < 2)
9268 return 1.0;
9269 else if (n == 4)
9270 return num1 / den1;
9271 else
9272 return num0 / den0;
9273 }
9274
9275
9276 /* Assuming that X is the representation of a value of fixed-point
9277 type TYPE, return its floating-point equivalent. */
9278
9279 DOUBLEST
9280 ada_fixed_to_float (struct type *type, LONGEST x)
9281 {
9282 return (DOUBLEST) x *scaling_factor (type);
9283 }
9284
9285 /* The representation of a fixed-point value of type TYPE
9286 corresponding to the value X. */
9287
9288 LONGEST
9289 ada_float_to_fixed (struct type *type, DOUBLEST x)
9290 {
9291 return (LONGEST) (x / scaling_factor (type) + 0.5);
9292 }
9293
9294
9295 /* VAX floating formats */
9296
9297 /* Non-zero iff TYPE represents one of the special VAX floating-point
9298 types. */
9299
9300 int
9301 ada_is_vax_floating_type (struct type *type)
9302 {
9303 int name_len =
9304 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9305 return
9306 name_len > 6
9307 && (TYPE_CODE (type) == TYPE_CODE_INT
9308 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9309 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9310 }
9311
9312 /* The type of special VAX floating-point type this is, assuming
9313 ada_is_vax_floating_point. */
9314
9315 int
9316 ada_vax_float_type_suffix (struct type *type)
9317 {
9318 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9319 }
9320
9321 /* A value representing the special debugging function that outputs
9322 VAX floating-point values of the type represented by TYPE. Assumes
9323 ada_is_vax_floating_type (TYPE). */
9324
9325 struct value *
9326 ada_vax_float_print_function (struct type *type)
9327 {
9328 switch (ada_vax_float_type_suffix (type))
9329 {
9330 case 'F':
9331 return get_var_value ("DEBUG_STRING_F", 0);
9332 case 'D':
9333 return get_var_value ("DEBUG_STRING_D", 0);
9334 case 'G':
9335 return get_var_value ("DEBUG_STRING_G", 0);
9336 default:
9337 error (_("invalid VAX floating-point type"));
9338 }
9339 }
9340 \f
9341
9342 /* Range types */
9343
9344 /* Scan STR beginning at position K for a discriminant name, and
9345 return the value of that discriminant field of DVAL in *PX. If
9346 PNEW_K is not null, put the position of the character beyond the
9347 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9348 not alter *PX and *PNEW_K if unsuccessful. */
9349
9350 static int
9351 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9352 int *pnew_k)
9353 {
9354 static char *bound_buffer = NULL;
9355 static size_t bound_buffer_len = 0;
9356 char *bound;
9357 char *pend;
9358 struct value *bound_val;
9359
9360 if (dval == NULL || str == NULL || str[k] == '\0')
9361 return 0;
9362
9363 pend = strstr (str + k, "__");
9364 if (pend == NULL)
9365 {
9366 bound = str + k;
9367 k += strlen (bound);
9368 }
9369 else
9370 {
9371 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9372 bound = bound_buffer;
9373 strncpy (bound_buffer, str + k, pend - (str + k));
9374 bound[pend - (str + k)] = '\0';
9375 k = pend - str;
9376 }
9377
9378 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9379 if (bound_val == NULL)
9380 return 0;
9381
9382 *px = value_as_long (bound_val);
9383 if (pnew_k != NULL)
9384 *pnew_k = k;
9385 return 1;
9386 }
9387
9388 /* Value of variable named NAME in the current environment. If
9389 no such variable found, then if ERR_MSG is null, returns 0, and
9390 otherwise causes an error with message ERR_MSG. */
9391
9392 static struct value *
9393 get_var_value (char *name, char *err_msg)
9394 {
9395 struct ada_symbol_info *syms;
9396 int nsyms;
9397
9398 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9399 &syms);
9400
9401 if (nsyms != 1)
9402 {
9403 if (err_msg == NULL)
9404 return 0;
9405 else
9406 error (("%s"), err_msg);
9407 }
9408
9409 return value_of_variable (syms[0].sym, syms[0].block);
9410 }
9411
9412 /* Value of integer variable named NAME in the current environment. If
9413 no such variable found, returns 0, and sets *FLAG to 0. If
9414 successful, sets *FLAG to 1. */
9415
9416 LONGEST
9417 get_int_var_value (char *name, int *flag)
9418 {
9419 struct value *var_val = get_var_value (name, 0);
9420
9421 if (var_val == 0)
9422 {
9423 if (flag != NULL)
9424 *flag = 0;
9425 return 0;
9426 }
9427 else
9428 {
9429 if (flag != NULL)
9430 *flag = 1;
9431 return value_as_long (var_val);
9432 }
9433 }
9434
9435
9436 /* Return a range type whose base type is that of the range type named
9437 NAME in the current environment, and whose bounds are calculated
9438 from NAME according to the GNAT range encoding conventions.
9439 Extract discriminant values, if needed, from DVAL. If a new type
9440 must be created, allocate in OBJFILE's space. The bounds
9441 information, in general, is encoded in NAME, the base type given in
9442 the named range type. */
9443
9444 static struct type *
9445 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9446 {
9447 struct type *raw_type = ada_find_any_type (name);
9448 struct type *base_type;
9449 char *subtype_info;
9450
9451 /* Also search primitive types if type symbol could not be found. */
9452 if (raw_type == NULL)
9453 raw_type = language_lookup_primitive_type_by_name
9454 (language_def (language_ada), current_gdbarch, name);
9455
9456 if (raw_type == NULL)
9457 base_type = builtin_type_int32;
9458 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9459 base_type = TYPE_TARGET_TYPE (raw_type);
9460 else
9461 base_type = raw_type;
9462
9463 subtype_info = strstr (name, "___XD");
9464 if (subtype_info == NULL)
9465 {
9466 LONGEST L = discrete_type_low_bound (raw_type);
9467 LONGEST U = discrete_type_high_bound (raw_type);
9468 if (L < INT_MIN || U > INT_MAX)
9469 return raw_type;
9470 else
9471 return create_range_type (alloc_type (objfile), raw_type,
9472 discrete_type_low_bound (raw_type),
9473 discrete_type_high_bound (raw_type));
9474 }
9475 else
9476 {
9477 static char *name_buf = NULL;
9478 static size_t name_len = 0;
9479 int prefix_len = subtype_info - name;
9480 LONGEST L, U;
9481 struct type *type;
9482 char *bounds_str;
9483 int n;
9484
9485 GROW_VECT (name_buf, name_len, prefix_len + 5);
9486 strncpy (name_buf, name, prefix_len);
9487 name_buf[prefix_len] = '\0';
9488
9489 subtype_info += 5;
9490 bounds_str = strchr (subtype_info, '_');
9491 n = 1;
9492
9493 if (*subtype_info == 'L')
9494 {
9495 if (!ada_scan_number (bounds_str, n, &L, &n)
9496 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9497 return raw_type;
9498 if (bounds_str[n] == '_')
9499 n += 2;
9500 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9501 n += 1;
9502 subtype_info += 1;
9503 }
9504 else
9505 {
9506 int ok;
9507 strcpy (name_buf + prefix_len, "___L");
9508 L = get_int_var_value (name_buf, &ok);
9509 if (!ok)
9510 {
9511 lim_warning (_("Unknown lower bound, using 1."));
9512 L = 1;
9513 }
9514 }
9515
9516 if (*subtype_info == 'U')
9517 {
9518 if (!ada_scan_number (bounds_str, n, &U, &n)
9519 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9520 return raw_type;
9521 }
9522 else
9523 {
9524 int ok;
9525 strcpy (name_buf + prefix_len, "___U");
9526 U = get_int_var_value (name_buf, &ok);
9527 if (!ok)
9528 {
9529 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9530 U = L;
9531 }
9532 }
9533
9534 if (objfile == NULL)
9535 objfile = TYPE_OBJFILE (base_type);
9536 type = create_range_type (alloc_type (objfile), base_type, L, U);
9537 TYPE_NAME (type) = name;
9538 return type;
9539 }
9540 }
9541
9542 /* True iff NAME is the name of a range type. */
9543
9544 int
9545 ada_is_range_type_name (const char *name)
9546 {
9547 return (name != NULL && strstr (name, "___XD"));
9548 }
9549 \f
9550
9551 /* Modular types */
9552
9553 /* True iff TYPE is an Ada modular type. */
9554
9555 int
9556 ada_is_modular_type (struct type *type)
9557 {
9558 struct type *subranged_type = base_type (type);
9559
9560 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9561 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9562 && TYPE_UNSIGNED (subranged_type));
9563 }
9564
9565 /* Try to determine the lower and upper bounds of the given modular type
9566 using the type name only. Return non-zero and set L and U as the lower
9567 and upper bounds (respectively) if successful. */
9568
9569 int
9570 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9571 {
9572 char *name = ada_type_name (type);
9573 char *suffix;
9574 int k;
9575 LONGEST U;
9576
9577 if (name == NULL)
9578 return 0;
9579
9580 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9581 we are looking for static bounds, which means an __XDLU suffix.
9582 Moreover, we know that the lower bound of modular types is always
9583 zero, so the actual suffix should start with "__XDLU_0__", and
9584 then be followed by the upper bound value. */
9585 suffix = strstr (name, "__XDLU_0__");
9586 if (suffix == NULL)
9587 return 0;
9588 k = 10;
9589 if (!ada_scan_number (suffix, k, &U, NULL))
9590 return 0;
9591
9592 *modulus = (ULONGEST) U + 1;
9593 return 1;
9594 }
9595
9596 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9597
9598 ULONGEST
9599 ada_modulus (struct type *type)
9600 {
9601 ULONGEST modulus;
9602
9603 /* Normally, the modulus of a modular type is equal to the value of
9604 its upper bound + 1. However, the upper bound is currently stored
9605 as an int, which is not always big enough to hold the actual bound
9606 value. To workaround this, try to take advantage of the encoding
9607 that GNAT uses with with discrete types. To avoid some unnecessary
9608 parsing, we do this only when the size of TYPE is greater than
9609 the size of the field holding the bound. */
9610 if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type))
9611 && ada_modulus_from_name (type, &modulus))
9612 return modulus;
9613
9614 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
9615 }
9616 \f
9617
9618 /* Ada exception catchpoint support:
9619 ---------------------------------
9620
9621 We support 3 kinds of exception catchpoints:
9622 . catchpoints on Ada exceptions
9623 . catchpoints on unhandled Ada exceptions
9624 . catchpoints on failed assertions
9625
9626 Exceptions raised during failed assertions, or unhandled exceptions
9627 could perfectly be caught with the general catchpoint on Ada exceptions.
9628 However, we can easily differentiate these two special cases, and having
9629 the option to distinguish these two cases from the rest can be useful
9630 to zero-in on certain situations.
9631
9632 Exception catchpoints are a specialized form of breakpoint,
9633 since they rely on inserting breakpoints inside known routines
9634 of the GNAT runtime. The implementation therefore uses a standard
9635 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9636 of breakpoint_ops.
9637
9638 Support in the runtime for exception catchpoints have been changed
9639 a few times already, and these changes affect the implementation
9640 of these catchpoints. In order to be able to support several
9641 variants of the runtime, we use a sniffer that will determine
9642 the runtime variant used by the program being debugged.
9643
9644 At this time, we do not support the use of conditions on Ada exception
9645 catchpoints. The COND and COND_STRING fields are therefore set
9646 to NULL (most of the time, see below).
9647
9648 Conditions where EXP_STRING, COND, and COND_STRING are used:
9649
9650 When a user specifies the name of a specific exception in the case
9651 of catchpoints on Ada exceptions, we store the name of that exception
9652 in the EXP_STRING. We then translate this request into an actual
9653 condition stored in COND_STRING, and then parse it into an expression
9654 stored in COND. */
9655
9656 /* The different types of catchpoints that we introduced for catching
9657 Ada exceptions. */
9658
9659 enum exception_catchpoint_kind
9660 {
9661 ex_catch_exception,
9662 ex_catch_exception_unhandled,
9663 ex_catch_assert
9664 };
9665
9666 /* Ada's standard exceptions. */
9667
9668 static char *standard_exc[] = {
9669 "constraint_error",
9670 "program_error",
9671 "storage_error",
9672 "tasking_error"
9673 };
9674
9675 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9676
9677 /* A structure that describes how to support exception catchpoints
9678 for a given executable. */
9679
9680 struct exception_support_info
9681 {
9682 /* The name of the symbol to break on in order to insert
9683 a catchpoint on exceptions. */
9684 const char *catch_exception_sym;
9685
9686 /* The name of the symbol to break on in order to insert
9687 a catchpoint on unhandled exceptions. */
9688 const char *catch_exception_unhandled_sym;
9689
9690 /* The name of the symbol to break on in order to insert
9691 a catchpoint on failed assertions. */
9692 const char *catch_assert_sym;
9693
9694 /* Assuming that the inferior just triggered an unhandled exception
9695 catchpoint, this function is responsible for returning the address
9696 in inferior memory where the name of that exception is stored.
9697 Return zero if the address could not be computed. */
9698 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9699 };
9700
9701 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9702 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9703
9704 /* The following exception support info structure describes how to
9705 implement exception catchpoints with the latest version of the
9706 Ada runtime (as of 2007-03-06). */
9707
9708 static const struct exception_support_info default_exception_support_info =
9709 {
9710 "__gnat_debug_raise_exception", /* catch_exception_sym */
9711 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9712 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9713 ada_unhandled_exception_name_addr
9714 };
9715
9716 /* The following exception support info structure describes how to
9717 implement exception catchpoints with a slightly older version
9718 of the Ada runtime. */
9719
9720 static const struct exception_support_info exception_support_info_fallback =
9721 {
9722 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9723 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9724 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9725 ada_unhandled_exception_name_addr_from_raise
9726 };
9727
9728 /* For each executable, we sniff which exception info structure to use
9729 and cache it in the following global variable. */
9730
9731 static const struct exception_support_info *exception_info = NULL;
9732
9733 /* Inspect the Ada runtime and determine which exception info structure
9734 should be used to provide support for exception catchpoints.
9735
9736 This function will always set exception_info, or raise an error. */
9737
9738 static void
9739 ada_exception_support_info_sniffer (void)
9740 {
9741 struct symbol *sym;
9742
9743 /* If the exception info is already known, then no need to recompute it. */
9744 if (exception_info != NULL)
9745 return;
9746
9747 /* Check the latest (default) exception support info. */
9748 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9749 NULL, VAR_DOMAIN);
9750 if (sym != NULL)
9751 {
9752 exception_info = &default_exception_support_info;
9753 return;
9754 }
9755
9756 /* Try our fallback exception suport info. */
9757 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9758 NULL, VAR_DOMAIN);
9759 if (sym != NULL)
9760 {
9761 exception_info = &exception_support_info_fallback;
9762 return;
9763 }
9764
9765 /* Sometimes, it is normal for us to not be able to find the routine
9766 we are looking for. This happens when the program is linked with
9767 the shared version of the GNAT runtime, and the program has not been
9768 started yet. Inform the user of these two possible causes if
9769 applicable. */
9770
9771 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9772 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9773
9774 /* If the symbol does not exist, then check that the program is
9775 already started, to make sure that shared libraries have been
9776 loaded. If it is not started, this may mean that the symbol is
9777 in a shared library. */
9778
9779 if (ptid_get_pid (inferior_ptid) == 0)
9780 error (_("Unable to insert catchpoint. Try to start the program first."));
9781
9782 /* At this point, we know that we are debugging an Ada program and
9783 that the inferior has been started, but we still are not able to
9784 find the run-time symbols. That can mean that we are in
9785 configurable run time mode, or that a-except as been optimized
9786 out by the linker... In any case, at this point it is not worth
9787 supporting this feature. */
9788
9789 error (_("Cannot insert catchpoints in this configuration."));
9790 }
9791
9792 /* An observer of "executable_changed" events.
9793 Its role is to clear certain cached values that need to be recomputed
9794 each time a new executable is loaded by GDB. */
9795
9796 static void
9797 ada_executable_changed_observer (void)
9798 {
9799 /* If the executable changed, then it is possible that the Ada runtime
9800 is different. So we need to invalidate the exception support info
9801 cache. */
9802 exception_info = NULL;
9803 }
9804
9805 /* Return the name of the function at PC, NULL if could not find it.
9806 This function only checks the debugging information, not the symbol
9807 table. */
9808
9809 static char *
9810 function_name_from_pc (CORE_ADDR pc)
9811 {
9812 char *func_name;
9813
9814 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9815 return NULL;
9816
9817 return func_name;
9818 }
9819
9820 /* True iff FRAME is very likely to be that of a function that is
9821 part of the runtime system. This is all very heuristic, but is
9822 intended to be used as advice as to what frames are uninteresting
9823 to most users. */
9824
9825 static int
9826 is_known_support_routine (struct frame_info *frame)
9827 {
9828 struct symtab_and_line sal;
9829 char *func_name;
9830 int i;
9831
9832 /* If this code does not have any debugging information (no symtab),
9833 This cannot be any user code. */
9834
9835 find_frame_sal (frame, &sal);
9836 if (sal.symtab == NULL)
9837 return 1;
9838
9839 /* If there is a symtab, but the associated source file cannot be
9840 located, then assume this is not user code: Selecting a frame
9841 for which we cannot display the code would not be very helpful
9842 for the user. This should also take care of case such as VxWorks
9843 where the kernel has some debugging info provided for a few units. */
9844
9845 if (symtab_to_fullname (sal.symtab) == NULL)
9846 return 1;
9847
9848 /* Check the unit filename againt the Ada runtime file naming.
9849 We also check the name of the objfile against the name of some
9850 known system libraries that sometimes come with debugging info
9851 too. */
9852
9853 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9854 {
9855 re_comp (known_runtime_file_name_patterns[i]);
9856 if (re_exec (sal.symtab->filename))
9857 return 1;
9858 if (sal.symtab->objfile != NULL
9859 && re_exec (sal.symtab->objfile->name))
9860 return 1;
9861 }
9862
9863 /* Check whether the function is a GNAT-generated entity. */
9864
9865 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9866 if (func_name == NULL)
9867 return 1;
9868
9869 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9870 {
9871 re_comp (known_auxiliary_function_name_patterns[i]);
9872 if (re_exec (func_name))
9873 return 1;
9874 }
9875
9876 return 0;
9877 }
9878
9879 /* Find the first frame that contains debugging information and that is not
9880 part of the Ada run-time, starting from FI and moving upward. */
9881
9882 void
9883 ada_find_printable_frame (struct frame_info *fi)
9884 {
9885 for (; fi != NULL; fi = get_prev_frame (fi))
9886 {
9887 if (!is_known_support_routine (fi))
9888 {
9889 select_frame (fi);
9890 break;
9891 }
9892 }
9893
9894 }
9895
9896 /* Assuming that the inferior just triggered an unhandled exception
9897 catchpoint, return the address in inferior memory where the name
9898 of the exception is stored.
9899
9900 Return zero if the address could not be computed. */
9901
9902 static CORE_ADDR
9903 ada_unhandled_exception_name_addr (void)
9904 {
9905 return parse_and_eval_address ("e.full_name");
9906 }
9907
9908 /* Same as ada_unhandled_exception_name_addr, except that this function
9909 should be used when the inferior uses an older version of the runtime,
9910 where the exception name needs to be extracted from a specific frame
9911 several frames up in the callstack. */
9912
9913 static CORE_ADDR
9914 ada_unhandled_exception_name_addr_from_raise (void)
9915 {
9916 int frame_level;
9917 struct frame_info *fi;
9918
9919 /* To determine the name of this exception, we need to select
9920 the frame corresponding to RAISE_SYM_NAME. This frame is
9921 at least 3 levels up, so we simply skip the first 3 frames
9922 without checking the name of their associated function. */
9923 fi = get_current_frame ();
9924 for (frame_level = 0; frame_level < 3; frame_level += 1)
9925 if (fi != NULL)
9926 fi = get_prev_frame (fi);
9927
9928 while (fi != NULL)
9929 {
9930 const char *func_name =
9931 function_name_from_pc (get_frame_address_in_block (fi));
9932 if (func_name != NULL
9933 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9934 break; /* We found the frame we were looking for... */
9935 fi = get_prev_frame (fi);
9936 }
9937
9938 if (fi == NULL)
9939 return 0;
9940
9941 select_frame (fi);
9942 return parse_and_eval_address ("id.full_name");
9943 }
9944
9945 /* Assuming the inferior just triggered an Ada exception catchpoint
9946 (of any type), return the address in inferior memory where the name
9947 of the exception is stored, if applicable.
9948
9949 Return zero if the address could not be computed, or if not relevant. */
9950
9951 static CORE_ADDR
9952 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9953 struct breakpoint *b)
9954 {
9955 switch (ex)
9956 {
9957 case ex_catch_exception:
9958 return (parse_and_eval_address ("e.full_name"));
9959 break;
9960
9961 case ex_catch_exception_unhandled:
9962 return exception_info->unhandled_exception_name_addr ();
9963 break;
9964
9965 case ex_catch_assert:
9966 return 0; /* Exception name is not relevant in this case. */
9967 break;
9968
9969 default:
9970 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9971 break;
9972 }
9973
9974 return 0; /* Should never be reached. */
9975 }
9976
9977 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9978 any error that ada_exception_name_addr_1 might cause to be thrown.
9979 When an error is intercepted, a warning with the error message is printed,
9980 and zero is returned. */
9981
9982 static CORE_ADDR
9983 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9984 struct breakpoint *b)
9985 {
9986 struct gdb_exception e;
9987 CORE_ADDR result = 0;
9988
9989 TRY_CATCH (e, RETURN_MASK_ERROR)
9990 {
9991 result = ada_exception_name_addr_1 (ex, b);
9992 }
9993
9994 if (e.reason < 0)
9995 {
9996 warning (_("failed to get exception name: %s"), e.message);
9997 return 0;
9998 }
9999
10000 return result;
10001 }
10002
10003 /* Implement the PRINT_IT method in the breakpoint_ops structure
10004 for all exception catchpoint kinds. */
10005
10006 static enum print_stop_action
10007 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10008 {
10009 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10010 char exception_name[256];
10011
10012 if (addr != 0)
10013 {
10014 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10015 exception_name [sizeof (exception_name) - 1] = '\0';
10016 }
10017
10018 ada_find_printable_frame (get_current_frame ());
10019
10020 annotate_catchpoint (b->number);
10021 switch (ex)
10022 {
10023 case ex_catch_exception:
10024 if (addr != 0)
10025 printf_filtered (_("\nCatchpoint %d, %s at "),
10026 b->number, exception_name);
10027 else
10028 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10029 break;
10030 case ex_catch_exception_unhandled:
10031 if (addr != 0)
10032 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10033 b->number, exception_name);
10034 else
10035 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10036 b->number);
10037 break;
10038 case ex_catch_assert:
10039 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10040 b->number);
10041 break;
10042 }
10043
10044 return PRINT_SRC_AND_LOC;
10045 }
10046
10047 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10048 for all exception catchpoint kinds. */
10049
10050 static void
10051 print_one_exception (enum exception_catchpoint_kind ex,
10052 struct breakpoint *b, CORE_ADDR *last_addr)
10053 {
10054 struct value_print_options opts;
10055
10056 get_user_print_options (&opts);
10057 if (opts.addressprint)
10058 {
10059 annotate_field (4);
10060 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10061 }
10062
10063 annotate_field (5);
10064 *last_addr = b->loc->address;
10065 switch (ex)
10066 {
10067 case ex_catch_exception:
10068 if (b->exp_string != NULL)
10069 {
10070 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10071
10072 ui_out_field_string (uiout, "what", msg);
10073 xfree (msg);
10074 }
10075 else
10076 ui_out_field_string (uiout, "what", "all Ada exceptions");
10077
10078 break;
10079
10080 case ex_catch_exception_unhandled:
10081 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10082 break;
10083
10084 case ex_catch_assert:
10085 ui_out_field_string (uiout, "what", "failed Ada assertions");
10086 break;
10087
10088 default:
10089 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10090 break;
10091 }
10092 }
10093
10094 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10095 for all exception catchpoint kinds. */
10096
10097 static void
10098 print_mention_exception (enum exception_catchpoint_kind ex,
10099 struct breakpoint *b)
10100 {
10101 switch (ex)
10102 {
10103 case ex_catch_exception:
10104 if (b->exp_string != NULL)
10105 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10106 b->number, b->exp_string);
10107 else
10108 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10109
10110 break;
10111
10112 case ex_catch_exception_unhandled:
10113 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10114 b->number);
10115 break;
10116
10117 case ex_catch_assert:
10118 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10119 break;
10120
10121 default:
10122 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10123 break;
10124 }
10125 }
10126
10127 /* Virtual table for "catch exception" breakpoints. */
10128
10129 static enum print_stop_action
10130 print_it_catch_exception (struct breakpoint *b)
10131 {
10132 return print_it_exception (ex_catch_exception, b);
10133 }
10134
10135 static void
10136 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10137 {
10138 print_one_exception (ex_catch_exception, b, last_addr);
10139 }
10140
10141 static void
10142 print_mention_catch_exception (struct breakpoint *b)
10143 {
10144 print_mention_exception (ex_catch_exception, b);
10145 }
10146
10147 static struct breakpoint_ops catch_exception_breakpoint_ops =
10148 {
10149 NULL, /* insert */
10150 NULL, /* remove */
10151 NULL, /* breakpoint_hit */
10152 print_it_catch_exception,
10153 print_one_catch_exception,
10154 print_mention_catch_exception
10155 };
10156
10157 /* Virtual table for "catch exception unhandled" breakpoints. */
10158
10159 static enum print_stop_action
10160 print_it_catch_exception_unhandled (struct breakpoint *b)
10161 {
10162 return print_it_exception (ex_catch_exception_unhandled, b);
10163 }
10164
10165 static void
10166 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10167 {
10168 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10169 }
10170
10171 static void
10172 print_mention_catch_exception_unhandled (struct breakpoint *b)
10173 {
10174 print_mention_exception (ex_catch_exception_unhandled, b);
10175 }
10176
10177 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10178 NULL, /* insert */
10179 NULL, /* remove */
10180 NULL, /* breakpoint_hit */
10181 print_it_catch_exception_unhandled,
10182 print_one_catch_exception_unhandled,
10183 print_mention_catch_exception_unhandled
10184 };
10185
10186 /* Virtual table for "catch assert" breakpoints. */
10187
10188 static enum print_stop_action
10189 print_it_catch_assert (struct breakpoint *b)
10190 {
10191 return print_it_exception (ex_catch_assert, b);
10192 }
10193
10194 static void
10195 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10196 {
10197 print_one_exception (ex_catch_assert, b, last_addr);
10198 }
10199
10200 static void
10201 print_mention_catch_assert (struct breakpoint *b)
10202 {
10203 print_mention_exception (ex_catch_assert, b);
10204 }
10205
10206 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10207 NULL, /* insert */
10208 NULL, /* remove */
10209 NULL, /* breakpoint_hit */
10210 print_it_catch_assert,
10211 print_one_catch_assert,
10212 print_mention_catch_assert
10213 };
10214
10215 /* Return non-zero if B is an Ada exception catchpoint. */
10216
10217 int
10218 ada_exception_catchpoint_p (struct breakpoint *b)
10219 {
10220 return (b->ops == &catch_exception_breakpoint_ops
10221 || b->ops == &catch_exception_unhandled_breakpoint_ops
10222 || b->ops == &catch_assert_breakpoint_ops);
10223 }
10224
10225 /* Return a newly allocated copy of the first space-separated token
10226 in ARGSP, and then adjust ARGSP to point immediately after that
10227 token.
10228
10229 Return NULL if ARGPS does not contain any more tokens. */
10230
10231 static char *
10232 ada_get_next_arg (char **argsp)
10233 {
10234 char *args = *argsp;
10235 char *end;
10236 char *result;
10237
10238 /* Skip any leading white space. */
10239
10240 while (isspace (*args))
10241 args++;
10242
10243 if (args[0] == '\0')
10244 return NULL; /* No more arguments. */
10245
10246 /* Find the end of the current argument. */
10247
10248 end = args;
10249 while (*end != '\0' && !isspace (*end))
10250 end++;
10251
10252 /* Adjust ARGSP to point to the start of the next argument. */
10253
10254 *argsp = end;
10255
10256 /* Make a copy of the current argument and return it. */
10257
10258 result = xmalloc (end - args + 1);
10259 strncpy (result, args, end - args);
10260 result[end - args] = '\0';
10261
10262 return result;
10263 }
10264
10265 /* Split the arguments specified in a "catch exception" command.
10266 Set EX to the appropriate catchpoint type.
10267 Set EXP_STRING to the name of the specific exception if
10268 specified by the user. */
10269
10270 static void
10271 catch_ada_exception_command_split (char *args,
10272 enum exception_catchpoint_kind *ex,
10273 char **exp_string)
10274 {
10275 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10276 char *exception_name;
10277
10278 exception_name = ada_get_next_arg (&args);
10279 make_cleanup (xfree, exception_name);
10280
10281 /* Check that we do not have any more arguments. Anything else
10282 is unexpected. */
10283
10284 while (isspace (*args))
10285 args++;
10286
10287 if (args[0] != '\0')
10288 error (_("Junk at end of expression"));
10289
10290 discard_cleanups (old_chain);
10291
10292 if (exception_name == NULL)
10293 {
10294 /* Catch all exceptions. */
10295 *ex = ex_catch_exception;
10296 *exp_string = NULL;
10297 }
10298 else if (strcmp (exception_name, "unhandled") == 0)
10299 {
10300 /* Catch unhandled exceptions. */
10301 *ex = ex_catch_exception_unhandled;
10302 *exp_string = NULL;
10303 }
10304 else
10305 {
10306 /* Catch a specific exception. */
10307 *ex = ex_catch_exception;
10308 *exp_string = exception_name;
10309 }
10310 }
10311
10312 /* Return the name of the symbol on which we should break in order to
10313 implement a catchpoint of the EX kind. */
10314
10315 static const char *
10316 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10317 {
10318 gdb_assert (exception_info != NULL);
10319
10320 switch (ex)
10321 {
10322 case ex_catch_exception:
10323 return (exception_info->catch_exception_sym);
10324 break;
10325 case ex_catch_exception_unhandled:
10326 return (exception_info->catch_exception_unhandled_sym);
10327 break;
10328 case ex_catch_assert:
10329 return (exception_info->catch_assert_sym);
10330 break;
10331 default:
10332 internal_error (__FILE__, __LINE__,
10333 _("unexpected catchpoint kind (%d)"), ex);
10334 }
10335 }
10336
10337 /* Return the breakpoint ops "virtual table" used for catchpoints
10338 of the EX kind. */
10339
10340 static struct breakpoint_ops *
10341 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10342 {
10343 switch (ex)
10344 {
10345 case ex_catch_exception:
10346 return (&catch_exception_breakpoint_ops);
10347 break;
10348 case ex_catch_exception_unhandled:
10349 return (&catch_exception_unhandled_breakpoint_ops);
10350 break;
10351 case ex_catch_assert:
10352 return (&catch_assert_breakpoint_ops);
10353 break;
10354 default:
10355 internal_error (__FILE__, __LINE__,
10356 _("unexpected catchpoint kind (%d)"), ex);
10357 }
10358 }
10359
10360 /* Return the condition that will be used to match the current exception
10361 being raised with the exception that the user wants to catch. This
10362 assumes that this condition is used when the inferior just triggered
10363 an exception catchpoint.
10364
10365 The string returned is a newly allocated string that needs to be
10366 deallocated later. */
10367
10368 static char *
10369 ada_exception_catchpoint_cond_string (const char *exp_string)
10370 {
10371 int i;
10372
10373 /* The standard exceptions are a special case. They are defined in
10374 runtime units that have been compiled without debugging info; if
10375 EXP_STRING is the not-fully-qualified name of a standard
10376 exception (e.g. "constraint_error") then, during the evaluation
10377 of the condition expression, the symbol lookup on this name would
10378 *not* return this standard exception. The catchpoint condition
10379 may then be set only on user-defined exceptions which have the
10380 same not-fully-qualified name (e.g. my_package.constraint_error).
10381
10382 To avoid this unexcepted behavior, these standard exceptions are
10383 systematically prefixed by "standard". This means that "catch
10384 exception constraint_error" is rewritten into "catch exception
10385 standard.constraint_error".
10386
10387 If an exception named contraint_error is defined in another package of
10388 the inferior program, then the only way to specify this exception as a
10389 breakpoint condition is to use its fully-qualified named:
10390 e.g. my_package.constraint_error. */
10391
10392 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10393 {
10394 if (strcmp (standard_exc [i], exp_string) == 0)
10395 {
10396 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10397 exp_string);
10398 }
10399 }
10400 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10401 }
10402
10403 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10404
10405 static struct expression *
10406 ada_parse_catchpoint_condition (char *cond_string,
10407 struct symtab_and_line sal)
10408 {
10409 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10410 }
10411
10412 /* Return the symtab_and_line that should be used to insert an exception
10413 catchpoint of the TYPE kind.
10414
10415 EX_STRING should contain the name of a specific exception
10416 that the catchpoint should catch, or NULL otherwise.
10417
10418 The idea behind all the remaining parameters is that their names match
10419 the name of certain fields in the breakpoint structure that are used to
10420 handle exception catchpoints. This function returns the value to which
10421 these fields should be set, depending on the type of catchpoint we need
10422 to create.
10423
10424 If COND and COND_STRING are both non-NULL, any value they might
10425 hold will be free'ed, and then replaced by newly allocated ones.
10426 These parameters are left untouched otherwise. */
10427
10428 static struct symtab_and_line
10429 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10430 char **addr_string, char **cond_string,
10431 struct expression **cond, struct breakpoint_ops **ops)
10432 {
10433 const char *sym_name;
10434 struct symbol *sym;
10435 struct symtab_and_line sal;
10436
10437 /* First, find out which exception support info to use. */
10438 ada_exception_support_info_sniffer ();
10439
10440 /* Then lookup the function on which we will break in order to catch
10441 the Ada exceptions requested by the user. */
10442
10443 sym_name = ada_exception_sym_name (ex);
10444 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10445
10446 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10447 that should be compiled with debugging information. As a result, we
10448 expect to find that symbol in the symtabs. If we don't find it, then
10449 the target most likely does not support Ada exceptions, or we cannot
10450 insert exception breakpoints yet, because the GNAT runtime hasn't been
10451 loaded yet. */
10452
10453 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10454 in such a way that no debugging information is produced for the symbol
10455 we are looking for. In this case, we could search the minimal symbols
10456 as a fall-back mechanism. This would still be operating in degraded
10457 mode, however, as we would still be missing the debugging information
10458 that is needed in order to extract the name of the exception being
10459 raised (this name is printed in the catchpoint message, and is also
10460 used when trying to catch a specific exception). We do not handle
10461 this case for now. */
10462
10463 if (sym == NULL)
10464 error (_("Unable to break on '%s' in this configuration."), sym_name);
10465
10466 /* Make sure that the symbol we found corresponds to a function. */
10467 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10468 error (_("Symbol \"%s\" is not a function (class = %d)"),
10469 sym_name, SYMBOL_CLASS (sym));
10470
10471 sal = find_function_start_sal (sym, 1);
10472
10473 /* Set ADDR_STRING. */
10474
10475 *addr_string = xstrdup (sym_name);
10476
10477 /* Set the COND and COND_STRING (if not NULL). */
10478
10479 if (cond_string != NULL && cond != NULL)
10480 {
10481 if (*cond_string != NULL)
10482 {
10483 xfree (*cond_string);
10484 *cond_string = NULL;
10485 }
10486 if (*cond != NULL)
10487 {
10488 xfree (*cond);
10489 *cond = NULL;
10490 }
10491 if (exp_string != NULL)
10492 {
10493 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10494 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10495 }
10496 }
10497
10498 /* Set OPS. */
10499 *ops = ada_exception_breakpoint_ops (ex);
10500
10501 return sal;
10502 }
10503
10504 /* Parse the arguments (ARGS) of the "catch exception" command.
10505
10506 Set TYPE to the appropriate exception catchpoint type.
10507 If the user asked the catchpoint to catch only a specific
10508 exception, then save the exception name in ADDR_STRING.
10509
10510 See ada_exception_sal for a description of all the remaining
10511 function arguments of this function. */
10512
10513 struct symtab_and_line
10514 ada_decode_exception_location (char *args, char **addr_string,
10515 char **exp_string, char **cond_string,
10516 struct expression **cond,
10517 struct breakpoint_ops **ops)
10518 {
10519 enum exception_catchpoint_kind ex;
10520
10521 catch_ada_exception_command_split (args, &ex, exp_string);
10522 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10523 cond, ops);
10524 }
10525
10526 struct symtab_and_line
10527 ada_decode_assert_location (char *args, char **addr_string,
10528 struct breakpoint_ops **ops)
10529 {
10530 /* Check that no argument where provided at the end of the command. */
10531
10532 if (args != NULL)
10533 {
10534 while (isspace (*args))
10535 args++;
10536 if (*args != '\0')
10537 error (_("Junk at end of arguments."));
10538 }
10539
10540 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10541 ops);
10542 }
10543
10544 /* Operators */
10545 /* Information about operators given special treatment in functions
10546 below. */
10547 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10548
10549 #define ADA_OPERATORS \
10550 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10551 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10552 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10553 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10554 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10555 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10556 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10557 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10558 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10559 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10560 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10561 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10562 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10563 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10564 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10565 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10566 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10567 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10568 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10569
10570 static void
10571 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10572 {
10573 switch (exp->elts[pc - 1].opcode)
10574 {
10575 default:
10576 operator_length_standard (exp, pc, oplenp, argsp);
10577 break;
10578
10579 #define OP_DEFN(op, len, args, binop) \
10580 case op: *oplenp = len; *argsp = args; break;
10581 ADA_OPERATORS;
10582 #undef OP_DEFN
10583
10584 case OP_AGGREGATE:
10585 *oplenp = 3;
10586 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10587 break;
10588
10589 case OP_CHOICES:
10590 *oplenp = 3;
10591 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10592 break;
10593 }
10594 }
10595
10596 static char *
10597 ada_op_name (enum exp_opcode opcode)
10598 {
10599 switch (opcode)
10600 {
10601 default:
10602 return op_name_standard (opcode);
10603
10604 #define OP_DEFN(op, len, args, binop) case op: return #op;
10605 ADA_OPERATORS;
10606 #undef OP_DEFN
10607
10608 case OP_AGGREGATE:
10609 return "OP_AGGREGATE";
10610 case OP_CHOICES:
10611 return "OP_CHOICES";
10612 case OP_NAME:
10613 return "OP_NAME";
10614 }
10615 }
10616
10617 /* As for operator_length, but assumes PC is pointing at the first
10618 element of the operator, and gives meaningful results only for the
10619 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10620
10621 static void
10622 ada_forward_operator_length (struct expression *exp, int pc,
10623 int *oplenp, int *argsp)
10624 {
10625 switch (exp->elts[pc].opcode)
10626 {
10627 default:
10628 *oplenp = *argsp = 0;
10629 break;
10630
10631 #define OP_DEFN(op, len, args, binop) \
10632 case op: *oplenp = len; *argsp = args; break;
10633 ADA_OPERATORS;
10634 #undef OP_DEFN
10635
10636 case OP_AGGREGATE:
10637 *oplenp = 3;
10638 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10639 break;
10640
10641 case OP_CHOICES:
10642 *oplenp = 3;
10643 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10644 break;
10645
10646 case OP_STRING:
10647 case OP_NAME:
10648 {
10649 int len = longest_to_int (exp->elts[pc + 1].longconst);
10650 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10651 *argsp = 0;
10652 break;
10653 }
10654 }
10655 }
10656
10657 static int
10658 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10659 {
10660 enum exp_opcode op = exp->elts[elt].opcode;
10661 int oplen, nargs;
10662 int pc = elt;
10663 int i;
10664
10665 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10666
10667 switch (op)
10668 {
10669 /* Ada attributes ('Foo). */
10670 case OP_ATR_FIRST:
10671 case OP_ATR_LAST:
10672 case OP_ATR_LENGTH:
10673 case OP_ATR_IMAGE:
10674 case OP_ATR_MAX:
10675 case OP_ATR_MIN:
10676 case OP_ATR_MODULUS:
10677 case OP_ATR_POS:
10678 case OP_ATR_SIZE:
10679 case OP_ATR_TAG:
10680 case OP_ATR_VAL:
10681 break;
10682
10683 case UNOP_IN_RANGE:
10684 case UNOP_QUAL:
10685 /* XXX: gdb_sprint_host_address, type_sprint */
10686 fprintf_filtered (stream, _("Type @"));
10687 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10688 fprintf_filtered (stream, " (");
10689 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10690 fprintf_filtered (stream, ")");
10691 break;
10692 case BINOP_IN_BOUNDS:
10693 fprintf_filtered (stream, " (%d)",
10694 longest_to_int (exp->elts[pc + 2].longconst));
10695 break;
10696 case TERNOP_IN_RANGE:
10697 break;
10698
10699 case OP_AGGREGATE:
10700 case OP_OTHERS:
10701 case OP_DISCRETE_RANGE:
10702 case OP_POSITIONAL:
10703 case OP_CHOICES:
10704 break;
10705
10706 case OP_NAME:
10707 case OP_STRING:
10708 {
10709 char *name = &exp->elts[elt + 2].string;
10710 int len = longest_to_int (exp->elts[elt + 1].longconst);
10711 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10712 break;
10713 }
10714
10715 default:
10716 return dump_subexp_body_standard (exp, stream, elt);
10717 }
10718
10719 elt += oplen;
10720 for (i = 0; i < nargs; i += 1)
10721 elt = dump_subexp (exp, stream, elt);
10722
10723 return elt;
10724 }
10725
10726 /* The Ada extension of print_subexp (q.v.). */
10727
10728 static void
10729 ada_print_subexp (struct expression *exp, int *pos,
10730 struct ui_file *stream, enum precedence prec)
10731 {
10732 int oplen, nargs, i;
10733 int pc = *pos;
10734 enum exp_opcode op = exp->elts[pc].opcode;
10735
10736 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10737
10738 *pos += oplen;
10739 switch (op)
10740 {
10741 default:
10742 *pos -= oplen;
10743 print_subexp_standard (exp, pos, stream, prec);
10744 return;
10745
10746 case OP_VAR_VALUE:
10747 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10748 return;
10749
10750 case BINOP_IN_BOUNDS:
10751 /* XXX: sprint_subexp */
10752 print_subexp (exp, pos, stream, PREC_SUFFIX);
10753 fputs_filtered (" in ", stream);
10754 print_subexp (exp, pos, stream, PREC_SUFFIX);
10755 fputs_filtered ("'range", stream);
10756 if (exp->elts[pc + 1].longconst > 1)
10757 fprintf_filtered (stream, "(%ld)",
10758 (long) exp->elts[pc + 1].longconst);
10759 return;
10760
10761 case TERNOP_IN_RANGE:
10762 if (prec >= PREC_EQUAL)
10763 fputs_filtered ("(", stream);
10764 /* XXX: sprint_subexp */
10765 print_subexp (exp, pos, stream, PREC_SUFFIX);
10766 fputs_filtered (" in ", stream);
10767 print_subexp (exp, pos, stream, PREC_EQUAL);
10768 fputs_filtered (" .. ", stream);
10769 print_subexp (exp, pos, stream, PREC_EQUAL);
10770 if (prec >= PREC_EQUAL)
10771 fputs_filtered (")", stream);
10772 return;
10773
10774 case OP_ATR_FIRST:
10775 case OP_ATR_LAST:
10776 case OP_ATR_LENGTH:
10777 case OP_ATR_IMAGE:
10778 case OP_ATR_MAX:
10779 case OP_ATR_MIN:
10780 case OP_ATR_MODULUS:
10781 case OP_ATR_POS:
10782 case OP_ATR_SIZE:
10783 case OP_ATR_TAG:
10784 case OP_ATR_VAL:
10785 if (exp->elts[*pos].opcode == OP_TYPE)
10786 {
10787 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10788 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10789 *pos += 3;
10790 }
10791 else
10792 print_subexp (exp, pos, stream, PREC_SUFFIX);
10793 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10794 if (nargs > 1)
10795 {
10796 int tem;
10797 for (tem = 1; tem < nargs; tem += 1)
10798 {
10799 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10800 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10801 }
10802 fputs_filtered (")", stream);
10803 }
10804 return;
10805
10806 case UNOP_QUAL:
10807 type_print (exp->elts[pc + 1].type, "", stream, 0);
10808 fputs_filtered ("'(", stream);
10809 print_subexp (exp, pos, stream, PREC_PREFIX);
10810 fputs_filtered (")", stream);
10811 return;
10812
10813 case UNOP_IN_RANGE:
10814 /* XXX: sprint_subexp */
10815 print_subexp (exp, pos, stream, PREC_SUFFIX);
10816 fputs_filtered (" in ", stream);
10817 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10818 return;
10819
10820 case OP_DISCRETE_RANGE:
10821 print_subexp (exp, pos, stream, PREC_SUFFIX);
10822 fputs_filtered ("..", stream);
10823 print_subexp (exp, pos, stream, PREC_SUFFIX);
10824 return;
10825
10826 case OP_OTHERS:
10827 fputs_filtered ("others => ", stream);
10828 print_subexp (exp, pos, stream, PREC_SUFFIX);
10829 return;
10830
10831 case OP_CHOICES:
10832 for (i = 0; i < nargs-1; i += 1)
10833 {
10834 if (i > 0)
10835 fputs_filtered ("|", stream);
10836 print_subexp (exp, pos, stream, PREC_SUFFIX);
10837 }
10838 fputs_filtered (" => ", stream);
10839 print_subexp (exp, pos, stream, PREC_SUFFIX);
10840 return;
10841
10842 case OP_POSITIONAL:
10843 print_subexp (exp, pos, stream, PREC_SUFFIX);
10844 return;
10845
10846 case OP_AGGREGATE:
10847 fputs_filtered ("(", stream);
10848 for (i = 0; i < nargs; i += 1)
10849 {
10850 if (i > 0)
10851 fputs_filtered (", ", stream);
10852 print_subexp (exp, pos, stream, PREC_SUFFIX);
10853 }
10854 fputs_filtered (")", stream);
10855 return;
10856 }
10857 }
10858
10859 /* Table mapping opcodes into strings for printing operators
10860 and precedences of the operators. */
10861
10862 static const struct op_print ada_op_print_tab[] = {
10863 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10864 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10865 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10866 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10867 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10868 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10869 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10870 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10871 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10872 {">=", BINOP_GEQ, PREC_ORDER, 0},
10873 {">", BINOP_GTR, PREC_ORDER, 0},
10874 {"<", BINOP_LESS, PREC_ORDER, 0},
10875 {">>", BINOP_RSH, PREC_SHIFT, 0},
10876 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10877 {"+", BINOP_ADD, PREC_ADD, 0},
10878 {"-", BINOP_SUB, PREC_ADD, 0},
10879 {"&", BINOP_CONCAT, PREC_ADD, 0},
10880 {"*", BINOP_MUL, PREC_MUL, 0},
10881 {"/", BINOP_DIV, PREC_MUL, 0},
10882 {"rem", BINOP_REM, PREC_MUL, 0},
10883 {"mod", BINOP_MOD, PREC_MUL, 0},
10884 {"**", BINOP_EXP, PREC_REPEAT, 0},
10885 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10886 {"-", UNOP_NEG, PREC_PREFIX, 0},
10887 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10888 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10889 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10890 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10891 {".all", UNOP_IND, PREC_SUFFIX, 1},
10892 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10893 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10894 {NULL, 0, 0, 0}
10895 };
10896 \f
10897 enum ada_primitive_types {
10898 ada_primitive_type_int,
10899 ada_primitive_type_long,
10900 ada_primitive_type_short,
10901 ada_primitive_type_char,
10902 ada_primitive_type_float,
10903 ada_primitive_type_double,
10904 ada_primitive_type_void,
10905 ada_primitive_type_long_long,
10906 ada_primitive_type_long_double,
10907 ada_primitive_type_natural,
10908 ada_primitive_type_positive,
10909 ada_primitive_type_system_address,
10910 nr_ada_primitive_types
10911 };
10912
10913 static void
10914 ada_language_arch_info (struct gdbarch *gdbarch,
10915 struct language_arch_info *lai)
10916 {
10917 const struct builtin_type *builtin = builtin_type (gdbarch);
10918 lai->primitive_type_vector
10919 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10920 struct type *);
10921 lai->primitive_type_vector [ada_primitive_type_int] =
10922 init_type (TYPE_CODE_INT,
10923 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10924 0, "integer", (struct objfile *) NULL);
10925 lai->primitive_type_vector [ada_primitive_type_long] =
10926 init_type (TYPE_CODE_INT,
10927 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10928 0, "long_integer", (struct objfile *) NULL);
10929 lai->primitive_type_vector [ada_primitive_type_short] =
10930 init_type (TYPE_CODE_INT,
10931 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10932 0, "short_integer", (struct objfile *) NULL);
10933 lai->string_char_type =
10934 lai->primitive_type_vector [ada_primitive_type_char] =
10935 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10936 0, "character", (struct objfile *) NULL);
10937 lai->primitive_type_vector [ada_primitive_type_float] =
10938 init_type (TYPE_CODE_FLT,
10939 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10940 0, "float", (struct objfile *) NULL);
10941 lai->primitive_type_vector [ada_primitive_type_double] =
10942 init_type (TYPE_CODE_FLT,
10943 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10944 0, "long_float", (struct objfile *) NULL);
10945 lai->primitive_type_vector [ada_primitive_type_long_long] =
10946 init_type (TYPE_CODE_INT,
10947 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10948 0, "long_long_integer", (struct objfile *) NULL);
10949 lai->primitive_type_vector [ada_primitive_type_long_double] =
10950 init_type (TYPE_CODE_FLT,
10951 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10952 0, "long_long_float", (struct objfile *) NULL);
10953 lai->primitive_type_vector [ada_primitive_type_natural] =
10954 init_type (TYPE_CODE_INT,
10955 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10956 0, "natural", (struct objfile *) NULL);
10957 lai->primitive_type_vector [ada_primitive_type_positive] =
10958 init_type (TYPE_CODE_INT,
10959 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10960 0, "positive", (struct objfile *) NULL);
10961 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10962
10963 lai->primitive_type_vector [ada_primitive_type_system_address] =
10964 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10965 (struct objfile *) NULL));
10966 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10967 = "system__address";
10968
10969 lai->bool_type_symbol = NULL;
10970 lai->bool_type_default = builtin->builtin_bool;
10971 }
10972 \f
10973 /* Language vector */
10974
10975 /* Not really used, but needed in the ada_language_defn. */
10976
10977 static void
10978 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
10979 {
10980 ada_emit_char (c, type, stream, quoter, 1);
10981 }
10982
10983 static int
10984 parse (void)
10985 {
10986 warnings_issued = 0;
10987 return ada_parse ();
10988 }
10989
10990 static const struct exp_descriptor ada_exp_descriptor = {
10991 ada_print_subexp,
10992 ada_operator_length,
10993 ada_op_name,
10994 ada_dump_subexp_body,
10995 ada_evaluate_subexp
10996 };
10997
10998 const struct language_defn ada_language_defn = {
10999 "ada", /* Language name */
11000 language_ada,
11001 range_check_off,
11002 type_check_off,
11003 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11004 that's not quite what this means. */
11005 array_row_major,
11006 macro_expansion_no,
11007 &ada_exp_descriptor,
11008 parse,
11009 ada_error,
11010 resolve,
11011 ada_printchar, /* Print a character constant */
11012 ada_printstr, /* Function to print string constant */
11013 emit_char, /* Function to print single char (not used) */
11014 ada_print_type, /* Print a type using appropriate syntax */
11015 default_print_typedef, /* Print a typedef using appropriate syntax */
11016 ada_val_print, /* Print a value using appropriate syntax */
11017 ada_value_print, /* Print a top-level value */
11018 NULL, /* Language specific skip_trampoline */
11019 NULL, /* name_of_this */
11020 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11021 basic_lookup_transparent_type, /* lookup_transparent_type */
11022 ada_la_decode, /* Language specific symbol demangler */
11023 NULL, /* Language specific class_name_from_physname */
11024 ada_op_print_tab, /* expression operators for printing */
11025 0, /* c-style arrays */
11026 1, /* String lower bound */
11027 ada_get_gdb_completer_word_break_characters,
11028 ada_make_symbol_completion_list,
11029 ada_language_arch_info,
11030 ada_print_array_index,
11031 default_pass_by_reference,
11032 c_get_string,
11033 LANG_MAGIC
11034 };
11035
11036 /* Provide a prototype to silence -Wmissing-prototypes. */
11037 extern initialize_file_ftype _initialize_ada_language;
11038
11039 void
11040 _initialize_ada_language (void)
11041 {
11042 add_language (&ada_language_defn);
11043
11044 varsize_limit = 65536;
11045
11046 obstack_init (&symbol_list_obstack);
11047
11048 decoded_names_store = htab_create_alloc
11049 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11050 NULL, xcalloc, xfree);
11051
11052 observer_attach_executable_changed (ada_executable_changed_observer);
11053 }
This page took 0.285617 seconds and 4 git commands to generate.