PR c++/15176:
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <stdio.h>
23 #include "gdb_string.h"
24 #include <ctype.h>
25 #include <stdarg.h>
26 #include "demangle.h"
27 #include "gdb_regex.h"
28 #include "frame.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "expression.h"
33 #include "parser-defs.h"
34 #include "language.h"
35 #include "c-lang.h"
36 #include "inferior.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "breakpoint.h"
40 #include "gdbcore.h"
41 #include "hashtab.h"
42 #include "gdb_obstack.h"
43 #include "ada-lang.h"
44 #include "completer.h"
45 #include "gdb_stat.h"
46 #ifdef UI_OUT
47 #include "ui-out.h"
48 #endif
49 #include "block.h"
50 #include "infcall.h"
51 #include "dictionary.h"
52 #include "exceptions.h"
53 #include "annotate.h"
54 #include "valprint.h"
55 #include "source.h"
56 #include "observer.h"
57 #include "vec.h"
58 #include "stack.h"
59 #include "gdb_vecs.h"
60 #include "typeprint.h"
61
62 #include "psymtab.h"
63 #include "value.h"
64 #include "mi/mi-common.h"
65 #include "arch-utils.h"
66 #include "exceptions.h"
67 #include "cli/cli-utils.h"
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static int full_match (const char *, const char *);
110
111 static struct value *make_array_descriptor (struct type *, struct value *);
112
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
116
117 static int is_nonfunction (struct ada_symbol_info *, int);
118
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 struct block *);
121
122 static int num_defns_collected (struct obstack *);
123
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, const struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 const struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int advance_wild_match (const char **, const char *, int);
206
207 static int wild_match (const char *, const char *);
208
209 static struct value *ada_coerce_ref (struct value *);
210
211 static LONGEST pos_atr (struct value *);
212
213 static struct value *value_pos_atr (struct type *, struct value *);
214
215 static struct value *value_val_atr (struct type *, struct value *);
216
217 static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220 static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *,
248 int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274
275 static struct type *ada_find_any_type (const char *name);
276 \f
277
278
279 /* Maximum-sized dynamic type. */
280 static unsigned int varsize_limit;
281
282 /* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284 static char *ada_completer_word_break_characters =
285 #ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 #else
288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
289 #endif
290
291 /* The name of the symbol to use to get the name of the main subprogram. */
292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
293 = "__gnat_ada_main_program_name";
294
295 /* Limit on the number of warnings to raise per expression evaluation. */
296 static int warning_limit = 2;
297
298 /* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300 static int warnings_issued = 0;
301
302 static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304 };
305
306 static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308 };
309
310 /* Space for allocating results of ada_lookup_symbol_list. */
311 static struct obstack symbol_list_obstack;
312
313 /* Inferior-specific data. */
314
315 /* Per-inferior data for this module. */
316
317 struct ada_inferior_data
318 {
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
329 };
330
331 /* Our key to this module's inferior data. */
332 static const struct inferior_data *ada_inferior_data;
333
334 /* A cleanup routine for our inferior data. */
335 static void
336 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337 {
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343 }
344
345 /* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353 static struct ada_inferior_data *
354 get_ada_inferior_data (struct inferior *inf)
355 {
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366 }
367
368 /* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371 static void
372 ada_inferior_exit (struct inferior *inf)
373 {
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376 }
377
378 /* Utilities */
379
380 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
381 all typedef layers have been peeled. Otherwise, return TYPE.
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407 static struct type *
408 ada_typedef_target_type (struct type *type)
409 {
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413 }
414
415 /* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419 static const char *
420 ada_unqualified_name (const char *decoded_name)
421 {
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430 }
431
432 /* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435 static char *
436 add_angle_brackets (const char *str)
437 {
438 static char *result = NULL;
439
440 xfree (result);
441 result = xstrprintf ("<%s>", str);
442 return result;
443 }
444
445 static char *
446 ada_get_gdb_completer_word_break_characters (void)
447 {
448 return ada_completer_word_break_characters;
449 }
450
451 /* Print an array element index using the Ada syntax. */
452
453 static void
454 ada_print_array_index (struct value *index_value, struct ui_file *stream,
455 const struct value_print_options *options)
456 {
457 LA_VALUE_PRINT (index_value, stream, options);
458 fprintf_filtered (stream, " => ");
459 }
460
461 /* Assuming VECT points to an array of *SIZE objects of size
462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
463 updating *SIZE as necessary and returning the (new) array. */
464
465 void *
466 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
467 {
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
472 *size = min_size;
473 vect = xrealloc (vect, *size * element_size);
474 }
475 return vect;
476 }
477
478 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
479 suffix of FIELD_NAME beginning "___". */
480
481 static int
482 field_name_match (const char *field_name, const char *target)
483 {
484 int len = strlen (target);
485
486 return
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
492 }
493
494
495 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
502
503 int
504 ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506 {
507 int fieldno;
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
512 return fieldno;
513
514 if (!maybe_missing)
515 error (_("Unable to find field %s in struct %s. Aborting"),
516 field_name, TYPE_NAME (struct_type));
517
518 return -1;
519 }
520
521 /* The length of the prefix of NAME prior to any "___" suffix. */
522
523 int
524 ada_name_prefix_len (const char *name)
525 {
526 if (name == NULL)
527 return 0;
528 else
529 {
530 const char *p = strstr (name, "___");
531
532 if (p == NULL)
533 return strlen (name);
534 else
535 return p - name;
536 }
537 }
538
539 /* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
542 static int
543 is_suffix (const char *str, const char *suffix)
544 {
545 int len1, len2;
546
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
552 }
553
554 /* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
556
557 static struct value *
558 coerce_unspec_val_to_type (struct value *val, struct type *type)
559 {
560 type = ada_check_typedef (type);
561 if (value_type (val) == type)
562 return val;
563 else
564 {
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
569 check_size (type);
570
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
580 set_value_component_location (result, val);
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
583 set_value_address (result, value_address (val));
584 set_value_optimized_out (result, value_optimized_out (val));
585 return result;
586 }
587 }
588
589 static const gdb_byte *
590 cond_offset_host (const gdb_byte *valaddr, long offset)
591 {
592 if (valaddr == NULL)
593 return NULL;
594 else
595 return valaddr + offset;
596 }
597
598 static CORE_ADDR
599 cond_offset_target (CORE_ADDR address, long offset)
600 {
601 if (address == 0)
602 return 0;
603 else
604 return address + offset;
605 }
606
607 /* Issue a warning (as for the definition of warning in utils.c, but
608 with exactly one argument rather than ...), unless the limit on the
609 number of warnings has passed during the evaluation of the current
610 expression. */
611
612 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
613 provided by "complaint". */
614 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
615
616 static void
617 lim_warning (const char *format, ...)
618 {
619 va_list args;
620
621 va_start (args, format);
622 warnings_issued += 1;
623 if (warnings_issued <= warning_limit)
624 vwarning (format, args);
625
626 va_end (args);
627 }
628
629 /* Issue an error if the size of an object of type T is unreasonable,
630 i.e. if it would be a bad idea to allocate a value of this type in
631 GDB. */
632
633 static void
634 check_size (const struct type *type)
635 {
636 if (TYPE_LENGTH (type) > varsize_limit)
637 error (_("object size is larger than varsize-limit"));
638 }
639
640 /* Maximum value of a SIZE-byte signed integer type. */
641 static LONGEST
642 max_of_size (int size)
643 {
644 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
645
646 return top_bit | (top_bit - 1);
647 }
648
649 /* Minimum value of a SIZE-byte signed integer type. */
650 static LONGEST
651 min_of_size (int size)
652 {
653 return -max_of_size (size) - 1;
654 }
655
656 /* Maximum value of a SIZE-byte unsigned integer type. */
657 static ULONGEST
658 umax_of_size (int size)
659 {
660 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
661
662 return top_bit | (top_bit - 1);
663 }
664
665 /* Maximum value of integral type T, as a signed quantity. */
666 static LONGEST
667 max_of_type (struct type *t)
668 {
669 if (TYPE_UNSIGNED (t))
670 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
671 else
672 return max_of_size (TYPE_LENGTH (t));
673 }
674
675 /* Minimum value of integral type T, as a signed quantity. */
676 static LONGEST
677 min_of_type (struct type *t)
678 {
679 if (TYPE_UNSIGNED (t))
680 return 0;
681 else
682 return min_of_size (TYPE_LENGTH (t));
683 }
684
685 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
686 LONGEST
687 ada_discrete_type_high_bound (struct type *type)
688 {
689 switch (TYPE_CODE (type))
690 {
691 case TYPE_CODE_RANGE:
692 return TYPE_HIGH_BOUND (type);
693 case TYPE_CODE_ENUM:
694 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
695 case TYPE_CODE_BOOL:
696 return 1;
697 case TYPE_CODE_CHAR:
698 case TYPE_CODE_INT:
699 return max_of_type (type);
700 default:
701 error (_("Unexpected type in ada_discrete_type_high_bound."));
702 }
703 }
704
705 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
706 LONGEST
707 ada_discrete_type_low_bound (struct type *type)
708 {
709 switch (TYPE_CODE (type))
710 {
711 case TYPE_CODE_RANGE:
712 return TYPE_LOW_BOUND (type);
713 case TYPE_CODE_ENUM:
714 return TYPE_FIELD_ENUMVAL (type, 0);
715 case TYPE_CODE_BOOL:
716 return 0;
717 case TYPE_CODE_CHAR:
718 case TYPE_CODE_INT:
719 return min_of_type (type);
720 default:
721 error (_("Unexpected type in ada_discrete_type_low_bound."));
722 }
723 }
724
725 /* The identity on non-range types. For range types, the underlying
726 non-range scalar type. */
727
728 static struct type *
729 get_base_type (struct type *type)
730 {
731 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
732 {
733 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
734 return type;
735 type = TYPE_TARGET_TYPE (type);
736 }
737 return type;
738 }
739
740 /* Return a decoded version of the given VALUE. This means returning
741 a value whose type is obtained by applying all the GNAT-specific
742 encondings, making the resulting type a static but standard description
743 of the initial type. */
744
745 struct value *
746 ada_get_decoded_value (struct value *value)
747 {
748 struct type *type = ada_check_typedef (value_type (value));
749
750 if (ada_is_array_descriptor_type (type)
751 || (ada_is_constrained_packed_array_type (type)
752 && TYPE_CODE (type) != TYPE_CODE_PTR))
753 {
754 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
755 value = ada_coerce_to_simple_array_ptr (value);
756 else
757 value = ada_coerce_to_simple_array (value);
758 }
759 else
760 value = ada_to_fixed_value (value);
761
762 return value;
763 }
764
765 /* Same as ada_get_decoded_value, but with the given TYPE.
766 Because there is no associated actual value for this type,
767 the resulting type might be a best-effort approximation in
768 the case of dynamic types. */
769
770 struct type *
771 ada_get_decoded_type (struct type *type)
772 {
773 type = to_static_fixed_type (type);
774 if (ada_is_constrained_packed_array_type (type))
775 type = ada_coerce_to_simple_array_type (type);
776 return type;
777 }
778
779 \f
780
781 /* Language Selection */
782
783 /* If the main program is in Ada, return language_ada, otherwise return LANG
784 (the main program is in Ada iif the adainit symbol is found). */
785
786 enum language
787 ada_update_initial_language (enum language lang)
788 {
789 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
790 (struct objfile *) NULL) != NULL)
791 return language_ada;
792
793 return lang;
794 }
795
796 /* If the main procedure is written in Ada, then return its name.
797 The result is good until the next call. Return NULL if the main
798 procedure doesn't appear to be in Ada. */
799
800 char *
801 ada_main_name (void)
802 {
803 struct minimal_symbol *msym;
804 static char *main_program_name = NULL;
805
806 /* For Ada, the name of the main procedure is stored in a specific
807 string constant, generated by the binder. Look for that symbol,
808 extract its address, and then read that string. If we didn't find
809 that string, then most probably the main procedure is not written
810 in Ada. */
811 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
812
813 if (msym != NULL)
814 {
815 CORE_ADDR main_program_name_addr;
816 int err_code;
817
818 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
819 if (main_program_name_addr == 0)
820 error (_("Invalid address for Ada main program name."));
821
822 xfree (main_program_name);
823 target_read_string (main_program_name_addr, &main_program_name,
824 1024, &err_code);
825
826 if (err_code != 0)
827 return NULL;
828 return main_program_name;
829 }
830
831 /* The main procedure doesn't seem to be in Ada. */
832 return NULL;
833 }
834 \f
835 /* Symbols */
836
837 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
838 of NULLs. */
839
840 const struct ada_opname_map ada_opname_table[] = {
841 {"Oadd", "\"+\"", BINOP_ADD},
842 {"Osubtract", "\"-\"", BINOP_SUB},
843 {"Omultiply", "\"*\"", BINOP_MUL},
844 {"Odivide", "\"/\"", BINOP_DIV},
845 {"Omod", "\"mod\"", BINOP_MOD},
846 {"Orem", "\"rem\"", BINOP_REM},
847 {"Oexpon", "\"**\"", BINOP_EXP},
848 {"Olt", "\"<\"", BINOP_LESS},
849 {"Ole", "\"<=\"", BINOP_LEQ},
850 {"Ogt", "\">\"", BINOP_GTR},
851 {"Oge", "\">=\"", BINOP_GEQ},
852 {"Oeq", "\"=\"", BINOP_EQUAL},
853 {"One", "\"/=\"", BINOP_NOTEQUAL},
854 {"Oand", "\"and\"", BINOP_BITWISE_AND},
855 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
856 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
857 {"Oconcat", "\"&\"", BINOP_CONCAT},
858 {"Oabs", "\"abs\"", UNOP_ABS},
859 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
860 {"Oadd", "\"+\"", UNOP_PLUS},
861 {"Osubtract", "\"-\"", UNOP_NEG},
862 {NULL, NULL}
863 };
864
865 /* The "encoded" form of DECODED, according to GNAT conventions.
866 The result is valid until the next call to ada_encode. */
867
868 char *
869 ada_encode (const char *decoded)
870 {
871 static char *encoding_buffer = NULL;
872 static size_t encoding_buffer_size = 0;
873 const char *p;
874 int k;
875
876 if (decoded == NULL)
877 return NULL;
878
879 GROW_VECT (encoding_buffer, encoding_buffer_size,
880 2 * strlen (decoded) + 10);
881
882 k = 0;
883 for (p = decoded; *p != '\0'; p += 1)
884 {
885 if (*p == '.')
886 {
887 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
888 k += 2;
889 }
890 else if (*p == '"')
891 {
892 const struct ada_opname_map *mapping;
893
894 for (mapping = ada_opname_table;
895 mapping->encoded != NULL
896 && strncmp (mapping->decoded, p,
897 strlen (mapping->decoded)) != 0; mapping += 1)
898 ;
899 if (mapping->encoded == NULL)
900 error (_("invalid Ada operator name: %s"), p);
901 strcpy (encoding_buffer + k, mapping->encoded);
902 k += strlen (mapping->encoded);
903 break;
904 }
905 else
906 {
907 encoding_buffer[k] = *p;
908 k += 1;
909 }
910 }
911
912 encoding_buffer[k] = '\0';
913 return encoding_buffer;
914 }
915
916 /* Return NAME folded to lower case, or, if surrounded by single
917 quotes, unfolded, but with the quotes stripped away. Result good
918 to next call. */
919
920 char *
921 ada_fold_name (const char *name)
922 {
923 static char *fold_buffer = NULL;
924 static size_t fold_buffer_size = 0;
925
926 int len = strlen (name);
927 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
928
929 if (name[0] == '\'')
930 {
931 strncpy (fold_buffer, name + 1, len - 2);
932 fold_buffer[len - 2] = '\000';
933 }
934 else
935 {
936 int i;
937
938 for (i = 0; i <= len; i += 1)
939 fold_buffer[i] = tolower (name[i]);
940 }
941
942 return fold_buffer;
943 }
944
945 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
946
947 static int
948 is_lower_alphanum (const char c)
949 {
950 return (isdigit (c) || (isalpha (c) && islower (c)));
951 }
952
953 /* ENCODED is the linkage name of a symbol and LEN contains its length.
954 This function saves in LEN the length of that same symbol name but
955 without either of these suffixes:
956 . .{DIGIT}+
957 . ${DIGIT}+
958 . ___{DIGIT}+
959 . __{DIGIT}+.
960
961 These are suffixes introduced by the compiler for entities such as
962 nested subprogram for instance, in order to avoid name clashes.
963 They do not serve any purpose for the debugger. */
964
965 static void
966 ada_remove_trailing_digits (const char *encoded, int *len)
967 {
968 if (*len > 1 && isdigit (encoded[*len - 1]))
969 {
970 int i = *len - 2;
971
972 while (i > 0 && isdigit (encoded[i]))
973 i--;
974 if (i >= 0 && encoded[i] == '.')
975 *len = i;
976 else if (i >= 0 && encoded[i] == '$')
977 *len = i;
978 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
979 *len = i - 2;
980 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
981 *len = i - 1;
982 }
983 }
984
985 /* Remove the suffix introduced by the compiler for protected object
986 subprograms. */
987
988 static void
989 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
990 {
991 /* Remove trailing N. */
992
993 /* Protected entry subprograms are broken into two
994 separate subprograms: The first one is unprotected, and has
995 a 'N' suffix; the second is the protected version, and has
996 the 'P' suffix. The second calls the first one after handling
997 the protection. Since the P subprograms are internally generated,
998 we leave these names undecoded, giving the user a clue that this
999 entity is internal. */
1000
1001 if (*len > 1
1002 && encoded[*len - 1] == 'N'
1003 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1004 *len = *len - 1;
1005 }
1006
1007 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1008
1009 static void
1010 ada_remove_Xbn_suffix (const char *encoded, int *len)
1011 {
1012 int i = *len - 1;
1013
1014 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1015 i--;
1016
1017 if (encoded[i] != 'X')
1018 return;
1019
1020 if (i == 0)
1021 return;
1022
1023 if (isalnum (encoded[i-1]))
1024 *len = i;
1025 }
1026
1027 /* If ENCODED follows the GNAT entity encoding conventions, then return
1028 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1029 replaced by ENCODED.
1030
1031 The resulting string is valid until the next call of ada_decode.
1032 If the string is unchanged by decoding, the original string pointer
1033 is returned. */
1034
1035 const char *
1036 ada_decode (const char *encoded)
1037 {
1038 int i, j;
1039 int len0;
1040 const char *p;
1041 char *decoded;
1042 int at_start_name;
1043 static char *decoding_buffer = NULL;
1044 static size_t decoding_buffer_size = 0;
1045
1046 /* The name of the Ada main procedure starts with "_ada_".
1047 This prefix is not part of the decoded name, so skip this part
1048 if we see this prefix. */
1049 if (strncmp (encoded, "_ada_", 5) == 0)
1050 encoded += 5;
1051
1052 /* If the name starts with '_', then it is not a properly encoded
1053 name, so do not attempt to decode it. Similarly, if the name
1054 starts with '<', the name should not be decoded. */
1055 if (encoded[0] == '_' || encoded[0] == '<')
1056 goto Suppress;
1057
1058 len0 = strlen (encoded);
1059
1060 ada_remove_trailing_digits (encoded, &len0);
1061 ada_remove_po_subprogram_suffix (encoded, &len0);
1062
1063 /* Remove the ___X.* suffix if present. Do not forget to verify that
1064 the suffix is located before the current "end" of ENCODED. We want
1065 to avoid re-matching parts of ENCODED that have previously been
1066 marked as discarded (by decrementing LEN0). */
1067 p = strstr (encoded, "___");
1068 if (p != NULL && p - encoded < len0 - 3)
1069 {
1070 if (p[3] == 'X')
1071 len0 = p - encoded;
1072 else
1073 goto Suppress;
1074 }
1075
1076 /* Remove any trailing TKB suffix. It tells us that this symbol
1077 is for the body of a task, but that information does not actually
1078 appear in the decoded name. */
1079
1080 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1081 len0 -= 3;
1082
1083 /* Remove any trailing TB suffix. The TB suffix is slightly different
1084 from the TKB suffix because it is used for non-anonymous task
1085 bodies. */
1086
1087 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1088 len0 -= 2;
1089
1090 /* Remove trailing "B" suffixes. */
1091 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1092
1093 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1094 len0 -= 1;
1095
1096 /* Make decoded big enough for possible expansion by operator name. */
1097
1098 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1099 decoded = decoding_buffer;
1100
1101 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1102
1103 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1104 {
1105 i = len0 - 2;
1106 while ((i >= 0 && isdigit (encoded[i]))
1107 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1108 i -= 1;
1109 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1110 len0 = i - 1;
1111 else if (encoded[i] == '$')
1112 len0 = i;
1113 }
1114
1115 /* The first few characters that are not alphabetic are not part
1116 of any encoding we use, so we can copy them over verbatim. */
1117
1118 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1119 decoded[j] = encoded[i];
1120
1121 at_start_name = 1;
1122 while (i < len0)
1123 {
1124 /* Is this a symbol function? */
1125 if (at_start_name && encoded[i] == 'O')
1126 {
1127 int k;
1128
1129 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1130 {
1131 int op_len = strlen (ada_opname_table[k].encoded);
1132 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1133 op_len - 1) == 0)
1134 && !isalnum (encoded[i + op_len]))
1135 {
1136 strcpy (decoded + j, ada_opname_table[k].decoded);
1137 at_start_name = 0;
1138 i += op_len;
1139 j += strlen (ada_opname_table[k].decoded);
1140 break;
1141 }
1142 }
1143 if (ada_opname_table[k].encoded != NULL)
1144 continue;
1145 }
1146 at_start_name = 0;
1147
1148 /* Replace "TK__" with "__", which will eventually be translated
1149 into "." (just below). */
1150
1151 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1152 i += 2;
1153
1154 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1155 be translated into "." (just below). These are internal names
1156 generated for anonymous blocks inside which our symbol is nested. */
1157
1158 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1159 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1160 && isdigit (encoded [i+4]))
1161 {
1162 int k = i + 5;
1163
1164 while (k < len0 && isdigit (encoded[k]))
1165 k++; /* Skip any extra digit. */
1166
1167 /* Double-check that the "__B_{DIGITS}+" sequence we found
1168 is indeed followed by "__". */
1169 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1170 i = k;
1171 }
1172
1173 /* Remove _E{DIGITS}+[sb] */
1174
1175 /* Just as for protected object subprograms, there are 2 categories
1176 of subprograms created by the compiler for each entry. The first
1177 one implements the actual entry code, and has a suffix following
1178 the convention above; the second one implements the barrier and
1179 uses the same convention as above, except that the 'E' is replaced
1180 by a 'B'.
1181
1182 Just as above, we do not decode the name of barrier functions
1183 to give the user a clue that the code he is debugging has been
1184 internally generated. */
1185
1186 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1187 && isdigit (encoded[i+2]))
1188 {
1189 int k = i + 3;
1190
1191 while (k < len0 && isdigit (encoded[k]))
1192 k++;
1193
1194 if (k < len0
1195 && (encoded[k] == 'b' || encoded[k] == 's'))
1196 {
1197 k++;
1198 /* Just as an extra precaution, make sure that if this
1199 suffix is followed by anything else, it is a '_'.
1200 Otherwise, we matched this sequence by accident. */
1201 if (k == len0
1202 || (k < len0 && encoded[k] == '_'))
1203 i = k;
1204 }
1205 }
1206
1207 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1208 the GNAT front-end in protected object subprograms. */
1209
1210 if (i < len0 + 3
1211 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1212 {
1213 /* Backtrack a bit up until we reach either the begining of
1214 the encoded name, or "__". Make sure that we only find
1215 digits or lowercase characters. */
1216 const char *ptr = encoded + i - 1;
1217
1218 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1219 ptr--;
1220 if (ptr < encoded
1221 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1222 i++;
1223 }
1224
1225 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1226 {
1227 /* This is a X[bn]* sequence not separated from the previous
1228 part of the name with a non-alpha-numeric character (in other
1229 words, immediately following an alpha-numeric character), then
1230 verify that it is placed at the end of the encoded name. If
1231 not, then the encoding is not valid and we should abort the
1232 decoding. Otherwise, just skip it, it is used in body-nested
1233 package names. */
1234 do
1235 i += 1;
1236 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1237 if (i < len0)
1238 goto Suppress;
1239 }
1240 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1241 {
1242 /* Replace '__' by '.'. */
1243 decoded[j] = '.';
1244 at_start_name = 1;
1245 i += 2;
1246 j += 1;
1247 }
1248 else
1249 {
1250 /* It's a character part of the decoded name, so just copy it
1251 over. */
1252 decoded[j] = encoded[i];
1253 i += 1;
1254 j += 1;
1255 }
1256 }
1257 decoded[j] = '\000';
1258
1259 /* Decoded names should never contain any uppercase character.
1260 Double-check this, and abort the decoding if we find one. */
1261
1262 for (i = 0; decoded[i] != '\0'; i += 1)
1263 if (isupper (decoded[i]) || decoded[i] == ' ')
1264 goto Suppress;
1265
1266 if (strcmp (decoded, encoded) == 0)
1267 return encoded;
1268 else
1269 return decoded;
1270
1271 Suppress:
1272 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1273 decoded = decoding_buffer;
1274 if (encoded[0] == '<')
1275 strcpy (decoded, encoded);
1276 else
1277 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1278 return decoded;
1279
1280 }
1281
1282 /* Table for keeping permanent unique copies of decoded names. Once
1283 allocated, names in this table are never released. While this is a
1284 storage leak, it should not be significant unless there are massive
1285 changes in the set of decoded names in successive versions of a
1286 symbol table loaded during a single session. */
1287 static struct htab *decoded_names_store;
1288
1289 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1290 in the language-specific part of GSYMBOL, if it has not been
1291 previously computed. Tries to save the decoded name in the same
1292 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1293 in any case, the decoded symbol has a lifetime at least that of
1294 GSYMBOL).
1295 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1296 const, but nevertheless modified to a semantically equivalent form
1297 when a decoded name is cached in it. */
1298
1299 const char *
1300 ada_decode_symbol (const struct general_symbol_info *arg)
1301 {
1302 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1303 const char **resultp =
1304 &gsymbol->language_specific.mangled_lang.demangled_name;
1305
1306 if (!gsymbol->ada_mangled)
1307 {
1308 const char *decoded = ada_decode (gsymbol->name);
1309 struct obstack *obstack = gsymbol->language_specific.obstack;
1310
1311 gsymbol->ada_mangled = 1;
1312
1313 if (obstack != NULL)
1314 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1315 else
1316 {
1317 /* Sometimes, we can't find a corresponding objfile, in
1318 which case, we put the result on the heap. Since we only
1319 decode when needed, we hope this usually does not cause a
1320 significant memory leak (FIXME). */
1321
1322 char **slot = (char **) htab_find_slot (decoded_names_store,
1323 decoded, INSERT);
1324
1325 if (*slot == NULL)
1326 *slot = xstrdup (decoded);
1327 *resultp = *slot;
1328 }
1329 }
1330
1331 return *resultp;
1332 }
1333
1334 static char *
1335 ada_la_decode (const char *encoded, int options)
1336 {
1337 return xstrdup (ada_decode (encoded));
1338 }
1339
1340 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1341 suffixes that encode debugging information or leading _ada_ on
1342 SYM_NAME (see is_name_suffix commentary for the debugging
1343 information that is ignored). If WILD, then NAME need only match a
1344 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1345 either argument is NULL. */
1346
1347 static int
1348 match_name (const char *sym_name, const char *name, int wild)
1349 {
1350 if (sym_name == NULL || name == NULL)
1351 return 0;
1352 else if (wild)
1353 return wild_match (sym_name, name) == 0;
1354 else
1355 {
1356 int len_name = strlen (name);
1357
1358 return (strncmp (sym_name, name, len_name) == 0
1359 && is_name_suffix (sym_name + len_name))
1360 || (strncmp (sym_name, "_ada_", 5) == 0
1361 && strncmp (sym_name + 5, name, len_name) == 0
1362 && is_name_suffix (sym_name + len_name + 5));
1363 }
1364 }
1365 \f
1366
1367 /* Arrays */
1368
1369 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1370 generated by the GNAT compiler to describe the index type used
1371 for each dimension of an array, check whether it follows the latest
1372 known encoding. If not, fix it up to conform to the latest encoding.
1373 Otherwise, do nothing. This function also does nothing if
1374 INDEX_DESC_TYPE is NULL.
1375
1376 The GNAT encoding used to describle the array index type evolved a bit.
1377 Initially, the information would be provided through the name of each
1378 field of the structure type only, while the type of these fields was
1379 described as unspecified and irrelevant. The debugger was then expected
1380 to perform a global type lookup using the name of that field in order
1381 to get access to the full index type description. Because these global
1382 lookups can be very expensive, the encoding was later enhanced to make
1383 the global lookup unnecessary by defining the field type as being
1384 the full index type description.
1385
1386 The purpose of this routine is to allow us to support older versions
1387 of the compiler by detecting the use of the older encoding, and by
1388 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1389 we essentially replace each field's meaningless type by the associated
1390 index subtype). */
1391
1392 void
1393 ada_fixup_array_indexes_type (struct type *index_desc_type)
1394 {
1395 int i;
1396
1397 if (index_desc_type == NULL)
1398 return;
1399 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1400
1401 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1402 to check one field only, no need to check them all). If not, return
1403 now.
1404
1405 If our INDEX_DESC_TYPE was generated using the older encoding,
1406 the field type should be a meaningless integer type whose name
1407 is not equal to the field name. */
1408 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1409 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1410 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1411 return;
1412
1413 /* Fixup each field of INDEX_DESC_TYPE. */
1414 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1415 {
1416 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1417 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1418
1419 if (raw_type)
1420 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1421 }
1422 }
1423
1424 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1425
1426 static char *bound_name[] = {
1427 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1428 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1429 };
1430
1431 /* Maximum number of array dimensions we are prepared to handle. */
1432
1433 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1434
1435
1436 /* The desc_* routines return primitive portions of array descriptors
1437 (fat pointers). */
1438
1439 /* The descriptor or array type, if any, indicated by TYPE; removes
1440 level of indirection, if needed. */
1441
1442 static struct type *
1443 desc_base_type (struct type *type)
1444 {
1445 if (type == NULL)
1446 return NULL;
1447 type = ada_check_typedef (type);
1448 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1449 type = ada_typedef_target_type (type);
1450
1451 if (type != NULL
1452 && (TYPE_CODE (type) == TYPE_CODE_PTR
1453 || TYPE_CODE (type) == TYPE_CODE_REF))
1454 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1455 else
1456 return type;
1457 }
1458
1459 /* True iff TYPE indicates a "thin" array pointer type. */
1460
1461 static int
1462 is_thin_pntr (struct type *type)
1463 {
1464 return
1465 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1466 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1467 }
1468
1469 /* The descriptor type for thin pointer type TYPE. */
1470
1471 static struct type *
1472 thin_descriptor_type (struct type *type)
1473 {
1474 struct type *base_type = desc_base_type (type);
1475
1476 if (base_type == NULL)
1477 return NULL;
1478 if (is_suffix (ada_type_name (base_type), "___XVE"))
1479 return base_type;
1480 else
1481 {
1482 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1483
1484 if (alt_type == NULL)
1485 return base_type;
1486 else
1487 return alt_type;
1488 }
1489 }
1490
1491 /* A pointer to the array data for thin-pointer value VAL. */
1492
1493 static struct value *
1494 thin_data_pntr (struct value *val)
1495 {
1496 struct type *type = ada_check_typedef (value_type (val));
1497 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1498
1499 data_type = lookup_pointer_type (data_type);
1500
1501 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1502 return value_cast (data_type, value_copy (val));
1503 else
1504 return value_from_longest (data_type, value_address (val));
1505 }
1506
1507 /* True iff TYPE indicates a "thick" array pointer type. */
1508
1509 static int
1510 is_thick_pntr (struct type *type)
1511 {
1512 type = desc_base_type (type);
1513 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1514 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1515 }
1516
1517 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1518 pointer to one, the type of its bounds data; otherwise, NULL. */
1519
1520 static struct type *
1521 desc_bounds_type (struct type *type)
1522 {
1523 struct type *r;
1524
1525 type = desc_base_type (type);
1526
1527 if (type == NULL)
1528 return NULL;
1529 else if (is_thin_pntr (type))
1530 {
1531 type = thin_descriptor_type (type);
1532 if (type == NULL)
1533 return NULL;
1534 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1535 if (r != NULL)
1536 return ada_check_typedef (r);
1537 }
1538 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1539 {
1540 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1541 if (r != NULL)
1542 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1543 }
1544 return NULL;
1545 }
1546
1547 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1548 one, a pointer to its bounds data. Otherwise NULL. */
1549
1550 static struct value *
1551 desc_bounds (struct value *arr)
1552 {
1553 struct type *type = ada_check_typedef (value_type (arr));
1554
1555 if (is_thin_pntr (type))
1556 {
1557 struct type *bounds_type =
1558 desc_bounds_type (thin_descriptor_type (type));
1559 LONGEST addr;
1560
1561 if (bounds_type == NULL)
1562 error (_("Bad GNAT array descriptor"));
1563
1564 /* NOTE: The following calculation is not really kosher, but
1565 since desc_type is an XVE-encoded type (and shouldn't be),
1566 the correct calculation is a real pain. FIXME (and fix GCC). */
1567 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1568 addr = value_as_long (arr);
1569 else
1570 addr = value_address (arr);
1571
1572 return
1573 value_from_longest (lookup_pointer_type (bounds_type),
1574 addr - TYPE_LENGTH (bounds_type));
1575 }
1576
1577 else if (is_thick_pntr (type))
1578 {
1579 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1580 _("Bad GNAT array descriptor"));
1581 struct type *p_bounds_type = value_type (p_bounds);
1582
1583 if (p_bounds_type
1584 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1585 {
1586 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1587
1588 if (TYPE_STUB (target_type))
1589 p_bounds = value_cast (lookup_pointer_type
1590 (ada_check_typedef (target_type)),
1591 p_bounds);
1592 }
1593 else
1594 error (_("Bad GNAT array descriptor"));
1595
1596 return p_bounds;
1597 }
1598 else
1599 return NULL;
1600 }
1601
1602 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1603 position of the field containing the address of the bounds data. */
1604
1605 static int
1606 fat_pntr_bounds_bitpos (struct type *type)
1607 {
1608 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1609 }
1610
1611 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1612 size of the field containing the address of the bounds data. */
1613
1614 static int
1615 fat_pntr_bounds_bitsize (struct type *type)
1616 {
1617 type = desc_base_type (type);
1618
1619 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1620 return TYPE_FIELD_BITSIZE (type, 1);
1621 else
1622 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1623 }
1624
1625 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1626 pointer to one, the type of its array data (a array-with-no-bounds type);
1627 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1628 data. */
1629
1630 static struct type *
1631 desc_data_target_type (struct type *type)
1632 {
1633 type = desc_base_type (type);
1634
1635 /* NOTE: The following is bogus; see comment in desc_bounds. */
1636 if (is_thin_pntr (type))
1637 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1638 else if (is_thick_pntr (type))
1639 {
1640 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1641
1642 if (data_type
1643 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1644 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1645 }
1646
1647 return NULL;
1648 }
1649
1650 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1651 its array data. */
1652
1653 static struct value *
1654 desc_data (struct value *arr)
1655 {
1656 struct type *type = value_type (arr);
1657
1658 if (is_thin_pntr (type))
1659 return thin_data_pntr (arr);
1660 else if (is_thick_pntr (type))
1661 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1662 _("Bad GNAT array descriptor"));
1663 else
1664 return NULL;
1665 }
1666
1667
1668 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1669 position of the field containing the address of the data. */
1670
1671 static int
1672 fat_pntr_data_bitpos (struct type *type)
1673 {
1674 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1675 }
1676
1677 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1678 size of the field containing the address of the data. */
1679
1680 static int
1681 fat_pntr_data_bitsize (struct type *type)
1682 {
1683 type = desc_base_type (type);
1684
1685 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1686 return TYPE_FIELD_BITSIZE (type, 0);
1687 else
1688 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1689 }
1690
1691 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1692 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1693 bound, if WHICH is 1. The first bound is I=1. */
1694
1695 static struct value *
1696 desc_one_bound (struct value *bounds, int i, int which)
1697 {
1698 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1699 _("Bad GNAT array descriptor bounds"));
1700 }
1701
1702 /* If BOUNDS is an array-bounds structure type, return the bit position
1703 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1704 bound, if WHICH is 1. The first bound is I=1. */
1705
1706 static int
1707 desc_bound_bitpos (struct type *type, int i, int which)
1708 {
1709 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1710 }
1711
1712 /* If BOUNDS is an array-bounds structure type, return the bit field size
1713 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1714 bound, if WHICH is 1. The first bound is I=1. */
1715
1716 static int
1717 desc_bound_bitsize (struct type *type, int i, int which)
1718 {
1719 type = desc_base_type (type);
1720
1721 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1722 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1723 else
1724 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1725 }
1726
1727 /* If TYPE is the type of an array-bounds structure, the type of its
1728 Ith bound (numbering from 1). Otherwise, NULL. */
1729
1730 static struct type *
1731 desc_index_type (struct type *type, int i)
1732 {
1733 type = desc_base_type (type);
1734
1735 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1736 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1737 else
1738 return NULL;
1739 }
1740
1741 /* The number of index positions in the array-bounds type TYPE.
1742 Return 0 if TYPE is NULL. */
1743
1744 static int
1745 desc_arity (struct type *type)
1746 {
1747 type = desc_base_type (type);
1748
1749 if (type != NULL)
1750 return TYPE_NFIELDS (type) / 2;
1751 return 0;
1752 }
1753
1754 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1755 an array descriptor type (representing an unconstrained array
1756 type). */
1757
1758 static int
1759 ada_is_direct_array_type (struct type *type)
1760 {
1761 if (type == NULL)
1762 return 0;
1763 type = ada_check_typedef (type);
1764 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1765 || ada_is_array_descriptor_type (type));
1766 }
1767
1768 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1769 * to one. */
1770
1771 static int
1772 ada_is_array_type (struct type *type)
1773 {
1774 while (type != NULL
1775 && (TYPE_CODE (type) == TYPE_CODE_PTR
1776 || TYPE_CODE (type) == TYPE_CODE_REF))
1777 type = TYPE_TARGET_TYPE (type);
1778 return ada_is_direct_array_type (type);
1779 }
1780
1781 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1782
1783 int
1784 ada_is_simple_array_type (struct type *type)
1785 {
1786 if (type == NULL)
1787 return 0;
1788 type = ada_check_typedef (type);
1789 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1790 || (TYPE_CODE (type) == TYPE_CODE_PTR
1791 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1792 == TYPE_CODE_ARRAY));
1793 }
1794
1795 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1796
1797 int
1798 ada_is_array_descriptor_type (struct type *type)
1799 {
1800 struct type *data_type = desc_data_target_type (type);
1801
1802 if (type == NULL)
1803 return 0;
1804 type = ada_check_typedef (type);
1805 return (data_type != NULL
1806 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1807 && desc_arity (desc_bounds_type (type)) > 0);
1808 }
1809
1810 /* Non-zero iff type is a partially mal-formed GNAT array
1811 descriptor. FIXME: This is to compensate for some problems with
1812 debugging output from GNAT. Re-examine periodically to see if it
1813 is still needed. */
1814
1815 int
1816 ada_is_bogus_array_descriptor (struct type *type)
1817 {
1818 return
1819 type != NULL
1820 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1821 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1822 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1823 && !ada_is_array_descriptor_type (type);
1824 }
1825
1826
1827 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1828 (fat pointer) returns the type of the array data described---specifically,
1829 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1830 in from the descriptor; otherwise, they are left unspecified. If
1831 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1832 returns NULL. The result is simply the type of ARR if ARR is not
1833 a descriptor. */
1834 struct type *
1835 ada_type_of_array (struct value *arr, int bounds)
1836 {
1837 if (ada_is_constrained_packed_array_type (value_type (arr)))
1838 return decode_constrained_packed_array_type (value_type (arr));
1839
1840 if (!ada_is_array_descriptor_type (value_type (arr)))
1841 return value_type (arr);
1842
1843 if (!bounds)
1844 {
1845 struct type *array_type =
1846 ada_check_typedef (desc_data_target_type (value_type (arr)));
1847
1848 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1849 TYPE_FIELD_BITSIZE (array_type, 0) =
1850 decode_packed_array_bitsize (value_type (arr));
1851
1852 return array_type;
1853 }
1854 else
1855 {
1856 struct type *elt_type;
1857 int arity;
1858 struct value *descriptor;
1859
1860 elt_type = ada_array_element_type (value_type (arr), -1);
1861 arity = ada_array_arity (value_type (arr));
1862
1863 if (elt_type == NULL || arity == 0)
1864 return ada_check_typedef (value_type (arr));
1865
1866 descriptor = desc_bounds (arr);
1867 if (value_as_long (descriptor) == 0)
1868 return NULL;
1869 while (arity > 0)
1870 {
1871 struct type *range_type = alloc_type_copy (value_type (arr));
1872 struct type *array_type = alloc_type_copy (value_type (arr));
1873 struct value *low = desc_one_bound (descriptor, arity, 0);
1874 struct value *high = desc_one_bound (descriptor, arity, 1);
1875
1876 arity -= 1;
1877 create_range_type (range_type, value_type (low),
1878 longest_to_int (value_as_long (low)),
1879 longest_to_int (value_as_long (high)));
1880 elt_type = create_array_type (array_type, elt_type, range_type);
1881
1882 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1883 {
1884 /* We need to store the element packed bitsize, as well as
1885 recompute the array size, because it was previously
1886 computed based on the unpacked element size. */
1887 LONGEST lo = value_as_long (low);
1888 LONGEST hi = value_as_long (high);
1889
1890 TYPE_FIELD_BITSIZE (elt_type, 0) =
1891 decode_packed_array_bitsize (value_type (arr));
1892 /* If the array has no element, then the size is already
1893 zero, and does not need to be recomputed. */
1894 if (lo < hi)
1895 {
1896 int array_bitsize =
1897 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1898
1899 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1900 }
1901 }
1902 }
1903
1904 return lookup_pointer_type (elt_type);
1905 }
1906 }
1907
1908 /* If ARR does not represent an array, returns ARR unchanged.
1909 Otherwise, returns either a standard GDB array with bounds set
1910 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1911 GDB array. Returns NULL if ARR is a null fat pointer. */
1912
1913 struct value *
1914 ada_coerce_to_simple_array_ptr (struct value *arr)
1915 {
1916 if (ada_is_array_descriptor_type (value_type (arr)))
1917 {
1918 struct type *arrType = ada_type_of_array (arr, 1);
1919
1920 if (arrType == NULL)
1921 return NULL;
1922 return value_cast (arrType, value_copy (desc_data (arr)));
1923 }
1924 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1925 return decode_constrained_packed_array (arr);
1926 else
1927 return arr;
1928 }
1929
1930 /* If ARR does not represent an array, returns ARR unchanged.
1931 Otherwise, returns a standard GDB array describing ARR (which may
1932 be ARR itself if it already is in the proper form). */
1933
1934 struct value *
1935 ada_coerce_to_simple_array (struct value *arr)
1936 {
1937 if (ada_is_array_descriptor_type (value_type (arr)))
1938 {
1939 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1940
1941 if (arrVal == NULL)
1942 error (_("Bounds unavailable for null array pointer."));
1943 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1944 return value_ind (arrVal);
1945 }
1946 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1947 return decode_constrained_packed_array (arr);
1948 else
1949 return arr;
1950 }
1951
1952 /* If TYPE represents a GNAT array type, return it translated to an
1953 ordinary GDB array type (possibly with BITSIZE fields indicating
1954 packing). For other types, is the identity. */
1955
1956 struct type *
1957 ada_coerce_to_simple_array_type (struct type *type)
1958 {
1959 if (ada_is_constrained_packed_array_type (type))
1960 return decode_constrained_packed_array_type (type);
1961
1962 if (ada_is_array_descriptor_type (type))
1963 return ada_check_typedef (desc_data_target_type (type));
1964
1965 return type;
1966 }
1967
1968 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1969
1970 static int
1971 ada_is_packed_array_type (struct type *type)
1972 {
1973 if (type == NULL)
1974 return 0;
1975 type = desc_base_type (type);
1976 type = ada_check_typedef (type);
1977 return
1978 ada_type_name (type) != NULL
1979 && strstr (ada_type_name (type), "___XP") != NULL;
1980 }
1981
1982 /* Non-zero iff TYPE represents a standard GNAT constrained
1983 packed-array type. */
1984
1985 int
1986 ada_is_constrained_packed_array_type (struct type *type)
1987 {
1988 return ada_is_packed_array_type (type)
1989 && !ada_is_array_descriptor_type (type);
1990 }
1991
1992 /* Non-zero iff TYPE represents an array descriptor for a
1993 unconstrained packed-array type. */
1994
1995 static int
1996 ada_is_unconstrained_packed_array_type (struct type *type)
1997 {
1998 return ada_is_packed_array_type (type)
1999 && ada_is_array_descriptor_type (type);
2000 }
2001
2002 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2003 return the size of its elements in bits. */
2004
2005 static long
2006 decode_packed_array_bitsize (struct type *type)
2007 {
2008 const char *raw_name;
2009 const char *tail;
2010 long bits;
2011
2012 /* Access to arrays implemented as fat pointers are encoded as a typedef
2013 of the fat pointer type. We need the name of the fat pointer type
2014 to do the decoding, so strip the typedef layer. */
2015 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2016 type = ada_typedef_target_type (type);
2017
2018 raw_name = ada_type_name (ada_check_typedef (type));
2019 if (!raw_name)
2020 raw_name = ada_type_name (desc_base_type (type));
2021
2022 if (!raw_name)
2023 return 0;
2024
2025 tail = strstr (raw_name, "___XP");
2026 gdb_assert (tail != NULL);
2027
2028 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2029 {
2030 lim_warning
2031 (_("could not understand bit size information on packed array"));
2032 return 0;
2033 }
2034
2035 return bits;
2036 }
2037
2038 /* Given that TYPE is a standard GDB array type with all bounds filled
2039 in, and that the element size of its ultimate scalar constituents
2040 (that is, either its elements, or, if it is an array of arrays, its
2041 elements' elements, etc.) is *ELT_BITS, return an identical type,
2042 but with the bit sizes of its elements (and those of any
2043 constituent arrays) recorded in the BITSIZE components of its
2044 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2045 in bits. */
2046
2047 static struct type *
2048 constrained_packed_array_type (struct type *type, long *elt_bits)
2049 {
2050 struct type *new_elt_type;
2051 struct type *new_type;
2052 struct type *index_type_desc;
2053 struct type *index_type;
2054 LONGEST low_bound, high_bound;
2055
2056 type = ada_check_typedef (type);
2057 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2058 return type;
2059
2060 index_type_desc = ada_find_parallel_type (type, "___XA");
2061 if (index_type_desc)
2062 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2063 NULL);
2064 else
2065 index_type = TYPE_INDEX_TYPE (type);
2066
2067 new_type = alloc_type_copy (type);
2068 new_elt_type =
2069 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2070 elt_bits);
2071 create_array_type (new_type, new_elt_type, index_type);
2072 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2073 TYPE_NAME (new_type) = ada_type_name (type);
2074
2075 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2076 low_bound = high_bound = 0;
2077 if (high_bound < low_bound)
2078 *elt_bits = TYPE_LENGTH (new_type) = 0;
2079 else
2080 {
2081 *elt_bits *= (high_bound - low_bound + 1);
2082 TYPE_LENGTH (new_type) =
2083 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2084 }
2085
2086 TYPE_FIXED_INSTANCE (new_type) = 1;
2087 return new_type;
2088 }
2089
2090 /* The array type encoded by TYPE, where
2091 ada_is_constrained_packed_array_type (TYPE). */
2092
2093 static struct type *
2094 decode_constrained_packed_array_type (struct type *type)
2095 {
2096 const char *raw_name = ada_type_name (ada_check_typedef (type));
2097 char *name;
2098 const char *tail;
2099 struct type *shadow_type;
2100 long bits;
2101
2102 if (!raw_name)
2103 raw_name = ada_type_name (desc_base_type (type));
2104
2105 if (!raw_name)
2106 return NULL;
2107
2108 name = (char *) alloca (strlen (raw_name) + 1);
2109 tail = strstr (raw_name, "___XP");
2110 type = desc_base_type (type);
2111
2112 memcpy (name, raw_name, tail - raw_name);
2113 name[tail - raw_name] = '\000';
2114
2115 shadow_type = ada_find_parallel_type_with_name (type, name);
2116
2117 if (shadow_type == NULL)
2118 {
2119 lim_warning (_("could not find bounds information on packed array"));
2120 return NULL;
2121 }
2122 CHECK_TYPEDEF (shadow_type);
2123
2124 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2125 {
2126 lim_warning (_("could not understand bounds "
2127 "information on packed array"));
2128 return NULL;
2129 }
2130
2131 bits = decode_packed_array_bitsize (type);
2132 return constrained_packed_array_type (shadow_type, &bits);
2133 }
2134
2135 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2136 array, returns a simple array that denotes that array. Its type is a
2137 standard GDB array type except that the BITSIZEs of the array
2138 target types are set to the number of bits in each element, and the
2139 type length is set appropriately. */
2140
2141 static struct value *
2142 decode_constrained_packed_array (struct value *arr)
2143 {
2144 struct type *type;
2145
2146 arr = ada_coerce_ref (arr);
2147
2148 /* If our value is a pointer, then dererence it. Make sure that
2149 this operation does not cause the target type to be fixed, as
2150 this would indirectly cause this array to be decoded. The rest
2151 of the routine assumes that the array hasn't been decoded yet,
2152 so we use the basic "value_ind" routine to perform the dereferencing,
2153 as opposed to using "ada_value_ind". */
2154 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2155 arr = value_ind (arr);
2156
2157 type = decode_constrained_packed_array_type (value_type (arr));
2158 if (type == NULL)
2159 {
2160 error (_("can't unpack array"));
2161 return NULL;
2162 }
2163
2164 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2165 && ada_is_modular_type (value_type (arr)))
2166 {
2167 /* This is a (right-justified) modular type representing a packed
2168 array with no wrapper. In order to interpret the value through
2169 the (left-justified) packed array type we just built, we must
2170 first left-justify it. */
2171 int bit_size, bit_pos;
2172 ULONGEST mod;
2173
2174 mod = ada_modulus (value_type (arr)) - 1;
2175 bit_size = 0;
2176 while (mod > 0)
2177 {
2178 bit_size += 1;
2179 mod >>= 1;
2180 }
2181 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2182 arr = ada_value_primitive_packed_val (arr, NULL,
2183 bit_pos / HOST_CHAR_BIT,
2184 bit_pos % HOST_CHAR_BIT,
2185 bit_size,
2186 type);
2187 }
2188
2189 return coerce_unspec_val_to_type (arr, type);
2190 }
2191
2192
2193 /* The value of the element of packed array ARR at the ARITY indices
2194 given in IND. ARR must be a simple array. */
2195
2196 static struct value *
2197 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2198 {
2199 int i;
2200 int bits, elt_off, bit_off;
2201 long elt_total_bit_offset;
2202 struct type *elt_type;
2203 struct value *v;
2204
2205 bits = 0;
2206 elt_total_bit_offset = 0;
2207 elt_type = ada_check_typedef (value_type (arr));
2208 for (i = 0; i < arity; i += 1)
2209 {
2210 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2211 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2212 error
2213 (_("attempt to do packed indexing of "
2214 "something other than a packed array"));
2215 else
2216 {
2217 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2218 LONGEST lowerbound, upperbound;
2219 LONGEST idx;
2220
2221 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2222 {
2223 lim_warning (_("don't know bounds of array"));
2224 lowerbound = upperbound = 0;
2225 }
2226
2227 idx = pos_atr (ind[i]);
2228 if (idx < lowerbound || idx > upperbound)
2229 lim_warning (_("packed array index %ld out of bounds"),
2230 (long) idx);
2231 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2232 elt_total_bit_offset += (idx - lowerbound) * bits;
2233 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2234 }
2235 }
2236 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2237 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2238
2239 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2240 bits, elt_type);
2241 return v;
2242 }
2243
2244 /* Non-zero iff TYPE includes negative integer values. */
2245
2246 static int
2247 has_negatives (struct type *type)
2248 {
2249 switch (TYPE_CODE (type))
2250 {
2251 default:
2252 return 0;
2253 case TYPE_CODE_INT:
2254 return !TYPE_UNSIGNED (type);
2255 case TYPE_CODE_RANGE:
2256 return TYPE_LOW_BOUND (type) < 0;
2257 }
2258 }
2259
2260
2261 /* Create a new value of type TYPE from the contents of OBJ starting
2262 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2263 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2264 assigning through the result will set the field fetched from.
2265 VALADDR is ignored unless OBJ is NULL, in which case,
2266 VALADDR+OFFSET must address the start of storage containing the
2267 packed value. The value returned in this case is never an lval.
2268 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2269
2270 struct value *
2271 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2272 long offset, int bit_offset, int bit_size,
2273 struct type *type)
2274 {
2275 struct value *v;
2276 int src, /* Index into the source area */
2277 targ, /* Index into the target area */
2278 srcBitsLeft, /* Number of source bits left to move */
2279 nsrc, ntarg, /* Number of source and target bytes */
2280 unusedLS, /* Number of bits in next significant
2281 byte of source that are unused */
2282 accumSize; /* Number of meaningful bits in accum */
2283 unsigned char *bytes; /* First byte containing data to unpack */
2284 unsigned char *unpacked;
2285 unsigned long accum; /* Staging area for bits being transferred */
2286 unsigned char sign;
2287 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2288 /* Transmit bytes from least to most significant; delta is the direction
2289 the indices move. */
2290 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2291
2292 type = ada_check_typedef (type);
2293
2294 if (obj == NULL)
2295 {
2296 v = allocate_value (type);
2297 bytes = (unsigned char *) (valaddr + offset);
2298 }
2299 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2300 {
2301 v = value_at (type, value_address (obj));
2302 bytes = (unsigned char *) alloca (len);
2303 read_memory (value_address (v) + offset, bytes, len);
2304 }
2305 else
2306 {
2307 v = allocate_value (type);
2308 bytes = (unsigned char *) value_contents (obj) + offset;
2309 }
2310
2311 if (obj != NULL)
2312 {
2313 long new_offset = offset;
2314
2315 set_value_component_location (v, obj);
2316 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2317 set_value_bitsize (v, bit_size);
2318 if (value_bitpos (v) >= HOST_CHAR_BIT)
2319 {
2320 ++new_offset;
2321 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2322 }
2323 set_value_offset (v, new_offset);
2324
2325 /* Also set the parent value. This is needed when trying to
2326 assign a new value (in inferior memory). */
2327 set_value_parent (v, obj);
2328 value_incref (obj);
2329 }
2330 else
2331 set_value_bitsize (v, bit_size);
2332 unpacked = (unsigned char *) value_contents (v);
2333
2334 srcBitsLeft = bit_size;
2335 nsrc = len;
2336 ntarg = TYPE_LENGTH (type);
2337 sign = 0;
2338 if (bit_size == 0)
2339 {
2340 memset (unpacked, 0, TYPE_LENGTH (type));
2341 return v;
2342 }
2343 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2344 {
2345 src = len - 1;
2346 if (has_negatives (type)
2347 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2348 sign = ~0;
2349
2350 unusedLS =
2351 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2352 % HOST_CHAR_BIT;
2353
2354 switch (TYPE_CODE (type))
2355 {
2356 case TYPE_CODE_ARRAY:
2357 case TYPE_CODE_UNION:
2358 case TYPE_CODE_STRUCT:
2359 /* Non-scalar values must be aligned at a byte boundary... */
2360 accumSize =
2361 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2362 /* ... And are placed at the beginning (most-significant) bytes
2363 of the target. */
2364 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2365 ntarg = targ + 1;
2366 break;
2367 default:
2368 accumSize = 0;
2369 targ = TYPE_LENGTH (type) - 1;
2370 break;
2371 }
2372 }
2373 else
2374 {
2375 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2376
2377 src = targ = 0;
2378 unusedLS = bit_offset;
2379 accumSize = 0;
2380
2381 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2382 sign = ~0;
2383 }
2384
2385 accum = 0;
2386 while (nsrc > 0)
2387 {
2388 /* Mask for removing bits of the next source byte that are not
2389 part of the value. */
2390 unsigned int unusedMSMask =
2391 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2392 1;
2393 /* Sign-extend bits for this byte. */
2394 unsigned int signMask = sign & ~unusedMSMask;
2395
2396 accum |=
2397 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2398 accumSize += HOST_CHAR_BIT - unusedLS;
2399 if (accumSize >= HOST_CHAR_BIT)
2400 {
2401 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2402 accumSize -= HOST_CHAR_BIT;
2403 accum >>= HOST_CHAR_BIT;
2404 ntarg -= 1;
2405 targ += delta;
2406 }
2407 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2408 unusedLS = 0;
2409 nsrc -= 1;
2410 src += delta;
2411 }
2412 while (ntarg > 0)
2413 {
2414 accum |= sign << accumSize;
2415 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2416 accumSize -= HOST_CHAR_BIT;
2417 accum >>= HOST_CHAR_BIT;
2418 ntarg -= 1;
2419 targ += delta;
2420 }
2421
2422 return v;
2423 }
2424
2425 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2426 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2427 not overlap. */
2428 static void
2429 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2430 int src_offset, int n, int bits_big_endian_p)
2431 {
2432 unsigned int accum, mask;
2433 int accum_bits, chunk_size;
2434
2435 target += targ_offset / HOST_CHAR_BIT;
2436 targ_offset %= HOST_CHAR_BIT;
2437 source += src_offset / HOST_CHAR_BIT;
2438 src_offset %= HOST_CHAR_BIT;
2439 if (bits_big_endian_p)
2440 {
2441 accum = (unsigned char) *source;
2442 source += 1;
2443 accum_bits = HOST_CHAR_BIT - src_offset;
2444
2445 while (n > 0)
2446 {
2447 int unused_right;
2448
2449 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2450 accum_bits += HOST_CHAR_BIT;
2451 source += 1;
2452 chunk_size = HOST_CHAR_BIT - targ_offset;
2453 if (chunk_size > n)
2454 chunk_size = n;
2455 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2456 mask = ((1 << chunk_size) - 1) << unused_right;
2457 *target =
2458 (*target & ~mask)
2459 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2460 n -= chunk_size;
2461 accum_bits -= chunk_size;
2462 target += 1;
2463 targ_offset = 0;
2464 }
2465 }
2466 else
2467 {
2468 accum = (unsigned char) *source >> src_offset;
2469 source += 1;
2470 accum_bits = HOST_CHAR_BIT - src_offset;
2471
2472 while (n > 0)
2473 {
2474 accum = accum + ((unsigned char) *source << accum_bits);
2475 accum_bits += HOST_CHAR_BIT;
2476 source += 1;
2477 chunk_size = HOST_CHAR_BIT - targ_offset;
2478 if (chunk_size > n)
2479 chunk_size = n;
2480 mask = ((1 << chunk_size) - 1) << targ_offset;
2481 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2482 n -= chunk_size;
2483 accum_bits -= chunk_size;
2484 accum >>= chunk_size;
2485 target += 1;
2486 targ_offset = 0;
2487 }
2488 }
2489 }
2490
2491 /* Store the contents of FROMVAL into the location of TOVAL.
2492 Return a new value with the location of TOVAL and contents of
2493 FROMVAL. Handles assignment into packed fields that have
2494 floating-point or non-scalar types. */
2495
2496 static struct value *
2497 ada_value_assign (struct value *toval, struct value *fromval)
2498 {
2499 struct type *type = value_type (toval);
2500 int bits = value_bitsize (toval);
2501
2502 toval = ada_coerce_ref (toval);
2503 fromval = ada_coerce_ref (fromval);
2504
2505 if (ada_is_direct_array_type (value_type (toval)))
2506 toval = ada_coerce_to_simple_array (toval);
2507 if (ada_is_direct_array_type (value_type (fromval)))
2508 fromval = ada_coerce_to_simple_array (fromval);
2509
2510 if (!deprecated_value_modifiable (toval))
2511 error (_("Left operand of assignment is not a modifiable lvalue."));
2512
2513 if (VALUE_LVAL (toval) == lval_memory
2514 && bits > 0
2515 && (TYPE_CODE (type) == TYPE_CODE_FLT
2516 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2517 {
2518 int len = (value_bitpos (toval)
2519 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2520 int from_size;
2521 char *buffer = (char *) alloca (len);
2522 struct value *val;
2523 CORE_ADDR to_addr = value_address (toval);
2524
2525 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2526 fromval = value_cast (type, fromval);
2527
2528 read_memory (to_addr, buffer, len);
2529 from_size = value_bitsize (fromval);
2530 if (from_size == 0)
2531 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2532 if (gdbarch_bits_big_endian (get_type_arch (type)))
2533 move_bits (buffer, value_bitpos (toval),
2534 value_contents (fromval), from_size - bits, bits, 1);
2535 else
2536 move_bits (buffer, value_bitpos (toval),
2537 value_contents (fromval), 0, bits, 0);
2538 write_memory_with_notification (to_addr, buffer, len);
2539
2540 val = value_copy (toval);
2541 memcpy (value_contents_raw (val), value_contents (fromval),
2542 TYPE_LENGTH (type));
2543 deprecated_set_value_type (val, type);
2544
2545 return val;
2546 }
2547
2548 return value_assign (toval, fromval);
2549 }
2550
2551
2552 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2553 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2554 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2555 * COMPONENT, and not the inferior's memory. The current contents
2556 * of COMPONENT are ignored. */
2557 static void
2558 value_assign_to_component (struct value *container, struct value *component,
2559 struct value *val)
2560 {
2561 LONGEST offset_in_container =
2562 (LONGEST) (value_address (component) - value_address (container));
2563 int bit_offset_in_container =
2564 value_bitpos (component) - value_bitpos (container);
2565 int bits;
2566
2567 val = value_cast (value_type (component), val);
2568
2569 if (value_bitsize (component) == 0)
2570 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2571 else
2572 bits = value_bitsize (component);
2573
2574 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2575 move_bits (value_contents_writeable (container) + offset_in_container,
2576 value_bitpos (container) + bit_offset_in_container,
2577 value_contents (val),
2578 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2579 bits, 1);
2580 else
2581 move_bits (value_contents_writeable (container) + offset_in_container,
2582 value_bitpos (container) + bit_offset_in_container,
2583 value_contents (val), 0, bits, 0);
2584 }
2585
2586 /* The value of the element of array ARR at the ARITY indices given in IND.
2587 ARR may be either a simple array, GNAT array descriptor, or pointer
2588 thereto. */
2589
2590 struct value *
2591 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2592 {
2593 int k;
2594 struct value *elt;
2595 struct type *elt_type;
2596
2597 elt = ada_coerce_to_simple_array (arr);
2598
2599 elt_type = ada_check_typedef (value_type (elt));
2600 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2601 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2602 return value_subscript_packed (elt, arity, ind);
2603
2604 for (k = 0; k < arity; k += 1)
2605 {
2606 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2607 error (_("too many subscripts (%d expected)"), k);
2608 elt = value_subscript (elt, pos_atr (ind[k]));
2609 }
2610 return elt;
2611 }
2612
2613 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2614 value of the element of *ARR at the ARITY indices given in
2615 IND. Does not read the entire array into memory. */
2616
2617 static struct value *
2618 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2619 struct value **ind)
2620 {
2621 int k;
2622
2623 for (k = 0; k < arity; k += 1)
2624 {
2625 LONGEST lwb, upb;
2626
2627 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2628 error (_("too many subscripts (%d expected)"), k);
2629 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2630 value_copy (arr));
2631 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2632 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2633 type = TYPE_TARGET_TYPE (type);
2634 }
2635
2636 return value_ind (arr);
2637 }
2638
2639 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2640 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2641 elements starting at index LOW. The lower bound of this array is LOW, as
2642 per Ada rules. */
2643 static struct value *
2644 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2645 int low, int high)
2646 {
2647 struct type *type0 = ada_check_typedef (type);
2648 CORE_ADDR base = value_as_address (array_ptr)
2649 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2650 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2651 struct type *index_type =
2652 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2653 low, high);
2654 struct type *slice_type =
2655 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2656
2657 return value_at_lazy (slice_type, base);
2658 }
2659
2660
2661 static struct value *
2662 ada_value_slice (struct value *array, int low, int high)
2663 {
2664 struct type *type = ada_check_typedef (value_type (array));
2665 struct type *index_type =
2666 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2667 struct type *slice_type =
2668 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2669
2670 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2671 }
2672
2673 /* If type is a record type in the form of a standard GNAT array
2674 descriptor, returns the number of dimensions for type. If arr is a
2675 simple array, returns the number of "array of"s that prefix its
2676 type designation. Otherwise, returns 0. */
2677
2678 int
2679 ada_array_arity (struct type *type)
2680 {
2681 int arity;
2682
2683 if (type == NULL)
2684 return 0;
2685
2686 type = desc_base_type (type);
2687
2688 arity = 0;
2689 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2690 return desc_arity (desc_bounds_type (type));
2691 else
2692 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2693 {
2694 arity += 1;
2695 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2696 }
2697
2698 return arity;
2699 }
2700
2701 /* If TYPE is a record type in the form of a standard GNAT array
2702 descriptor or a simple array type, returns the element type for
2703 TYPE after indexing by NINDICES indices, or by all indices if
2704 NINDICES is -1. Otherwise, returns NULL. */
2705
2706 struct type *
2707 ada_array_element_type (struct type *type, int nindices)
2708 {
2709 type = desc_base_type (type);
2710
2711 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2712 {
2713 int k;
2714 struct type *p_array_type;
2715
2716 p_array_type = desc_data_target_type (type);
2717
2718 k = ada_array_arity (type);
2719 if (k == 0)
2720 return NULL;
2721
2722 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2723 if (nindices >= 0 && k > nindices)
2724 k = nindices;
2725 while (k > 0 && p_array_type != NULL)
2726 {
2727 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2728 k -= 1;
2729 }
2730 return p_array_type;
2731 }
2732 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2733 {
2734 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2735 {
2736 type = TYPE_TARGET_TYPE (type);
2737 nindices -= 1;
2738 }
2739 return type;
2740 }
2741
2742 return NULL;
2743 }
2744
2745 /* The type of nth index in arrays of given type (n numbering from 1).
2746 Does not examine memory. Throws an error if N is invalid or TYPE
2747 is not an array type. NAME is the name of the Ada attribute being
2748 evaluated ('range, 'first, 'last, or 'length); it is used in building
2749 the error message. */
2750
2751 static struct type *
2752 ada_index_type (struct type *type, int n, const char *name)
2753 {
2754 struct type *result_type;
2755
2756 type = desc_base_type (type);
2757
2758 if (n < 0 || n > ada_array_arity (type))
2759 error (_("invalid dimension number to '%s"), name);
2760
2761 if (ada_is_simple_array_type (type))
2762 {
2763 int i;
2764
2765 for (i = 1; i < n; i += 1)
2766 type = TYPE_TARGET_TYPE (type);
2767 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2768 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2769 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2770 perhaps stabsread.c would make more sense. */
2771 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2772 result_type = NULL;
2773 }
2774 else
2775 {
2776 result_type = desc_index_type (desc_bounds_type (type), n);
2777 if (result_type == NULL)
2778 error (_("attempt to take bound of something that is not an array"));
2779 }
2780
2781 return result_type;
2782 }
2783
2784 /* Given that arr is an array type, returns the lower bound of the
2785 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2786 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2787 array-descriptor type. It works for other arrays with bounds supplied
2788 by run-time quantities other than discriminants. */
2789
2790 static LONGEST
2791 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2792 {
2793 struct type *type, *elt_type, *index_type_desc, *index_type;
2794 int i;
2795
2796 gdb_assert (which == 0 || which == 1);
2797
2798 if (ada_is_constrained_packed_array_type (arr_type))
2799 arr_type = decode_constrained_packed_array_type (arr_type);
2800
2801 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2802 return (LONGEST) - which;
2803
2804 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2805 type = TYPE_TARGET_TYPE (arr_type);
2806 else
2807 type = arr_type;
2808
2809 elt_type = type;
2810 for (i = n; i > 1; i--)
2811 elt_type = TYPE_TARGET_TYPE (type);
2812
2813 index_type_desc = ada_find_parallel_type (type, "___XA");
2814 ada_fixup_array_indexes_type (index_type_desc);
2815 if (index_type_desc != NULL)
2816 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2817 NULL);
2818 else
2819 index_type = TYPE_INDEX_TYPE (elt_type);
2820
2821 return
2822 (LONGEST) (which == 0
2823 ? ada_discrete_type_low_bound (index_type)
2824 : ada_discrete_type_high_bound (index_type));
2825 }
2826
2827 /* Given that arr is an array value, returns the lower bound of the
2828 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2829 WHICH is 1. This routine will also work for arrays with bounds
2830 supplied by run-time quantities other than discriminants. */
2831
2832 static LONGEST
2833 ada_array_bound (struct value *arr, int n, int which)
2834 {
2835 struct type *arr_type = value_type (arr);
2836
2837 if (ada_is_constrained_packed_array_type (arr_type))
2838 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2839 else if (ada_is_simple_array_type (arr_type))
2840 return ada_array_bound_from_type (arr_type, n, which);
2841 else
2842 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2843 }
2844
2845 /* Given that arr is an array value, returns the length of the
2846 nth index. This routine will also work for arrays with bounds
2847 supplied by run-time quantities other than discriminants.
2848 Does not work for arrays indexed by enumeration types with representation
2849 clauses at the moment. */
2850
2851 static LONGEST
2852 ada_array_length (struct value *arr, int n)
2853 {
2854 struct type *arr_type = ada_check_typedef (value_type (arr));
2855
2856 if (ada_is_constrained_packed_array_type (arr_type))
2857 return ada_array_length (decode_constrained_packed_array (arr), n);
2858
2859 if (ada_is_simple_array_type (arr_type))
2860 return (ada_array_bound_from_type (arr_type, n, 1)
2861 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2862 else
2863 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2864 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2865 }
2866
2867 /* An empty array whose type is that of ARR_TYPE (an array type),
2868 with bounds LOW to LOW-1. */
2869
2870 static struct value *
2871 empty_array (struct type *arr_type, int low)
2872 {
2873 struct type *arr_type0 = ada_check_typedef (arr_type);
2874 struct type *index_type =
2875 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2876 low, low - 1);
2877 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2878
2879 return allocate_value (create_array_type (NULL, elt_type, index_type));
2880 }
2881 \f
2882
2883 /* Name resolution */
2884
2885 /* The "decoded" name for the user-definable Ada operator corresponding
2886 to OP. */
2887
2888 static const char *
2889 ada_decoded_op_name (enum exp_opcode op)
2890 {
2891 int i;
2892
2893 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2894 {
2895 if (ada_opname_table[i].op == op)
2896 return ada_opname_table[i].decoded;
2897 }
2898 error (_("Could not find operator name for opcode"));
2899 }
2900
2901
2902 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2903 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2904 undefined namespace) and converts operators that are
2905 user-defined into appropriate function calls. If CONTEXT_TYPE is
2906 non-null, it provides a preferred result type [at the moment, only
2907 type void has any effect---causing procedures to be preferred over
2908 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2909 return type is preferred. May change (expand) *EXP. */
2910
2911 static void
2912 resolve (struct expression **expp, int void_context_p)
2913 {
2914 struct type *context_type = NULL;
2915 int pc = 0;
2916
2917 if (void_context_p)
2918 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2919
2920 resolve_subexp (expp, &pc, 1, context_type);
2921 }
2922
2923 /* Resolve the operator of the subexpression beginning at
2924 position *POS of *EXPP. "Resolving" consists of replacing
2925 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2926 with their resolutions, replacing built-in operators with
2927 function calls to user-defined operators, where appropriate, and,
2928 when DEPROCEDURE_P is non-zero, converting function-valued variables
2929 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2930 are as in ada_resolve, above. */
2931
2932 static struct value *
2933 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2934 struct type *context_type)
2935 {
2936 int pc = *pos;
2937 int i;
2938 struct expression *exp; /* Convenience: == *expp. */
2939 enum exp_opcode op = (*expp)->elts[pc].opcode;
2940 struct value **argvec; /* Vector of operand types (alloca'ed). */
2941 int nargs; /* Number of operands. */
2942 int oplen;
2943
2944 argvec = NULL;
2945 nargs = 0;
2946 exp = *expp;
2947
2948 /* Pass one: resolve operands, saving their types and updating *pos,
2949 if needed. */
2950 switch (op)
2951 {
2952 case OP_FUNCALL:
2953 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2954 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2955 *pos += 7;
2956 else
2957 {
2958 *pos += 3;
2959 resolve_subexp (expp, pos, 0, NULL);
2960 }
2961 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2962 break;
2963
2964 case UNOP_ADDR:
2965 *pos += 1;
2966 resolve_subexp (expp, pos, 0, NULL);
2967 break;
2968
2969 case UNOP_QUAL:
2970 *pos += 3;
2971 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2972 break;
2973
2974 case OP_ATR_MODULUS:
2975 case OP_ATR_SIZE:
2976 case OP_ATR_TAG:
2977 case OP_ATR_FIRST:
2978 case OP_ATR_LAST:
2979 case OP_ATR_LENGTH:
2980 case OP_ATR_POS:
2981 case OP_ATR_VAL:
2982 case OP_ATR_MIN:
2983 case OP_ATR_MAX:
2984 case TERNOP_IN_RANGE:
2985 case BINOP_IN_BOUNDS:
2986 case UNOP_IN_RANGE:
2987 case OP_AGGREGATE:
2988 case OP_OTHERS:
2989 case OP_CHOICES:
2990 case OP_POSITIONAL:
2991 case OP_DISCRETE_RANGE:
2992 case OP_NAME:
2993 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2994 *pos += oplen;
2995 break;
2996
2997 case BINOP_ASSIGN:
2998 {
2999 struct value *arg1;
3000
3001 *pos += 1;
3002 arg1 = resolve_subexp (expp, pos, 0, NULL);
3003 if (arg1 == NULL)
3004 resolve_subexp (expp, pos, 1, NULL);
3005 else
3006 resolve_subexp (expp, pos, 1, value_type (arg1));
3007 break;
3008 }
3009
3010 case UNOP_CAST:
3011 *pos += 3;
3012 nargs = 1;
3013 break;
3014
3015 case BINOP_ADD:
3016 case BINOP_SUB:
3017 case BINOP_MUL:
3018 case BINOP_DIV:
3019 case BINOP_REM:
3020 case BINOP_MOD:
3021 case BINOP_EXP:
3022 case BINOP_CONCAT:
3023 case BINOP_LOGICAL_AND:
3024 case BINOP_LOGICAL_OR:
3025 case BINOP_BITWISE_AND:
3026 case BINOP_BITWISE_IOR:
3027 case BINOP_BITWISE_XOR:
3028
3029 case BINOP_EQUAL:
3030 case BINOP_NOTEQUAL:
3031 case BINOP_LESS:
3032 case BINOP_GTR:
3033 case BINOP_LEQ:
3034 case BINOP_GEQ:
3035
3036 case BINOP_REPEAT:
3037 case BINOP_SUBSCRIPT:
3038 case BINOP_COMMA:
3039 *pos += 1;
3040 nargs = 2;
3041 break;
3042
3043 case UNOP_NEG:
3044 case UNOP_PLUS:
3045 case UNOP_LOGICAL_NOT:
3046 case UNOP_ABS:
3047 case UNOP_IND:
3048 *pos += 1;
3049 nargs = 1;
3050 break;
3051
3052 case OP_LONG:
3053 case OP_DOUBLE:
3054 case OP_VAR_VALUE:
3055 *pos += 4;
3056 break;
3057
3058 case OP_TYPE:
3059 case OP_BOOL:
3060 case OP_LAST:
3061 case OP_INTERNALVAR:
3062 *pos += 3;
3063 break;
3064
3065 case UNOP_MEMVAL:
3066 *pos += 3;
3067 nargs = 1;
3068 break;
3069
3070 case OP_REGISTER:
3071 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3072 break;
3073
3074 case STRUCTOP_STRUCT:
3075 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3076 nargs = 1;
3077 break;
3078
3079 case TERNOP_SLICE:
3080 *pos += 1;
3081 nargs = 3;
3082 break;
3083
3084 case OP_STRING:
3085 break;
3086
3087 default:
3088 error (_("Unexpected operator during name resolution"));
3089 }
3090
3091 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3092 for (i = 0; i < nargs; i += 1)
3093 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3094 argvec[i] = NULL;
3095 exp = *expp;
3096
3097 /* Pass two: perform any resolution on principal operator. */
3098 switch (op)
3099 {
3100 default:
3101 break;
3102
3103 case OP_VAR_VALUE:
3104 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3105 {
3106 struct ada_symbol_info *candidates;
3107 int n_candidates;
3108
3109 n_candidates =
3110 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3111 (exp->elts[pc + 2].symbol),
3112 exp->elts[pc + 1].block, VAR_DOMAIN,
3113 &candidates);
3114
3115 if (n_candidates > 1)
3116 {
3117 /* Types tend to get re-introduced locally, so if there
3118 are any local symbols that are not types, first filter
3119 out all types. */
3120 int j;
3121 for (j = 0; j < n_candidates; j += 1)
3122 switch (SYMBOL_CLASS (candidates[j].sym))
3123 {
3124 case LOC_REGISTER:
3125 case LOC_ARG:
3126 case LOC_REF_ARG:
3127 case LOC_REGPARM_ADDR:
3128 case LOC_LOCAL:
3129 case LOC_COMPUTED:
3130 goto FoundNonType;
3131 default:
3132 break;
3133 }
3134 FoundNonType:
3135 if (j < n_candidates)
3136 {
3137 j = 0;
3138 while (j < n_candidates)
3139 {
3140 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3141 {
3142 candidates[j] = candidates[n_candidates - 1];
3143 n_candidates -= 1;
3144 }
3145 else
3146 j += 1;
3147 }
3148 }
3149 }
3150
3151 if (n_candidates == 0)
3152 error (_("No definition found for %s"),
3153 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3154 else if (n_candidates == 1)
3155 i = 0;
3156 else if (deprocedure_p
3157 && !is_nonfunction (candidates, n_candidates))
3158 {
3159 i = ada_resolve_function
3160 (candidates, n_candidates, NULL, 0,
3161 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3162 context_type);
3163 if (i < 0)
3164 error (_("Could not find a match for %s"),
3165 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3166 }
3167 else
3168 {
3169 printf_filtered (_("Multiple matches for %s\n"),
3170 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3171 user_select_syms (candidates, n_candidates, 1);
3172 i = 0;
3173 }
3174
3175 exp->elts[pc + 1].block = candidates[i].block;
3176 exp->elts[pc + 2].symbol = candidates[i].sym;
3177 if (innermost_block == NULL
3178 || contained_in (candidates[i].block, innermost_block))
3179 innermost_block = candidates[i].block;
3180 }
3181
3182 if (deprocedure_p
3183 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3184 == TYPE_CODE_FUNC))
3185 {
3186 replace_operator_with_call (expp, pc, 0, 0,
3187 exp->elts[pc + 2].symbol,
3188 exp->elts[pc + 1].block);
3189 exp = *expp;
3190 }
3191 break;
3192
3193 case OP_FUNCALL:
3194 {
3195 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3196 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3197 {
3198 struct ada_symbol_info *candidates;
3199 int n_candidates;
3200
3201 n_candidates =
3202 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3203 (exp->elts[pc + 5].symbol),
3204 exp->elts[pc + 4].block, VAR_DOMAIN,
3205 &candidates);
3206 if (n_candidates == 1)
3207 i = 0;
3208 else
3209 {
3210 i = ada_resolve_function
3211 (candidates, n_candidates,
3212 argvec, nargs,
3213 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3214 context_type);
3215 if (i < 0)
3216 error (_("Could not find a match for %s"),
3217 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3218 }
3219
3220 exp->elts[pc + 4].block = candidates[i].block;
3221 exp->elts[pc + 5].symbol = candidates[i].sym;
3222 if (innermost_block == NULL
3223 || contained_in (candidates[i].block, innermost_block))
3224 innermost_block = candidates[i].block;
3225 }
3226 }
3227 break;
3228 case BINOP_ADD:
3229 case BINOP_SUB:
3230 case BINOP_MUL:
3231 case BINOP_DIV:
3232 case BINOP_REM:
3233 case BINOP_MOD:
3234 case BINOP_CONCAT:
3235 case BINOP_BITWISE_AND:
3236 case BINOP_BITWISE_IOR:
3237 case BINOP_BITWISE_XOR:
3238 case BINOP_EQUAL:
3239 case BINOP_NOTEQUAL:
3240 case BINOP_LESS:
3241 case BINOP_GTR:
3242 case BINOP_LEQ:
3243 case BINOP_GEQ:
3244 case BINOP_EXP:
3245 case UNOP_NEG:
3246 case UNOP_PLUS:
3247 case UNOP_LOGICAL_NOT:
3248 case UNOP_ABS:
3249 if (possible_user_operator_p (op, argvec))
3250 {
3251 struct ada_symbol_info *candidates;
3252 int n_candidates;
3253
3254 n_candidates =
3255 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3256 (struct block *) NULL, VAR_DOMAIN,
3257 &candidates);
3258 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3259 ada_decoded_op_name (op), NULL);
3260 if (i < 0)
3261 break;
3262
3263 replace_operator_with_call (expp, pc, nargs, 1,
3264 candidates[i].sym, candidates[i].block);
3265 exp = *expp;
3266 }
3267 break;
3268
3269 case OP_TYPE:
3270 case OP_REGISTER:
3271 return NULL;
3272 }
3273
3274 *pos = pc;
3275 return evaluate_subexp_type (exp, pos);
3276 }
3277
3278 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3279 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3280 a non-pointer. */
3281 /* The term "match" here is rather loose. The match is heuristic and
3282 liberal. */
3283
3284 static int
3285 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3286 {
3287 ftype = ada_check_typedef (ftype);
3288 atype = ada_check_typedef (atype);
3289
3290 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3291 ftype = TYPE_TARGET_TYPE (ftype);
3292 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3293 atype = TYPE_TARGET_TYPE (atype);
3294
3295 switch (TYPE_CODE (ftype))
3296 {
3297 default:
3298 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3299 case TYPE_CODE_PTR:
3300 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3301 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3302 TYPE_TARGET_TYPE (atype), 0);
3303 else
3304 return (may_deref
3305 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3306 case TYPE_CODE_INT:
3307 case TYPE_CODE_ENUM:
3308 case TYPE_CODE_RANGE:
3309 switch (TYPE_CODE (atype))
3310 {
3311 case TYPE_CODE_INT:
3312 case TYPE_CODE_ENUM:
3313 case TYPE_CODE_RANGE:
3314 return 1;
3315 default:
3316 return 0;
3317 }
3318
3319 case TYPE_CODE_ARRAY:
3320 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3321 || ada_is_array_descriptor_type (atype));
3322
3323 case TYPE_CODE_STRUCT:
3324 if (ada_is_array_descriptor_type (ftype))
3325 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3326 || ada_is_array_descriptor_type (atype));
3327 else
3328 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3329 && !ada_is_array_descriptor_type (atype));
3330
3331 case TYPE_CODE_UNION:
3332 case TYPE_CODE_FLT:
3333 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3334 }
3335 }
3336
3337 /* Return non-zero if the formals of FUNC "sufficiently match" the
3338 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3339 may also be an enumeral, in which case it is treated as a 0-
3340 argument function. */
3341
3342 static int
3343 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3344 {
3345 int i;
3346 struct type *func_type = SYMBOL_TYPE (func);
3347
3348 if (SYMBOL_CLASS (func) == LOC_CONST
3349 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3350 return (n_actuals == 0);
3351 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3352 return 0;
3353
3354 if (TYPE_NFIELDS (func_type) != n_actuals)
3355 return 0;
3356
3357 for (i = 0; i < n_actuals; i += 1)
3358 {
3359 if (actuals[i] == NULL)
3360 return 0;
3361 else
3362 {
3363 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3364 i));
3365 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3366
3367 if (!ada_type_match (ftype, atype, 1))
3368 return 0;
3369 }
3370 }
3371 return 1;
3372 }
3373
3374 /* False iff function type FUNC_TYPE definitely does not produce a value
3375 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3376 FUNC_TYPE is not a valid function type with a non-null return type
3377 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3378
3379 static int
3380 return_match (struct type *func_type, struct type *context_type)
3381 {
3382 struct type *return_type;
3383
3384 if (func_type == NULL)
3385 return 1;
3386
3387 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3388 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3389 else
3390 return_type = get_base_type (func_type);
3391 if (return_type == NULL)
3392 return 1;
3393
3394 context_type = get_base_type (context_type);
3395
3396 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3397 return context_type == NULL || return_type == context_type;
3398 else if (context_type == NULL)
3399 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3400 else
3401 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3402 }
3403
3404
3405 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3406 function (if any) that matches the types of the NARGS arguments in
3407 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3408 that returns that type, then eliminate matches that don't. If
3409 CONTEXT_TYPE is void and there is at least one match that does not
3410 return void, eliminate all matches that do.
3411
3412 Asks the user if there is more than one match remaining. Returns -1
3413 if there is no such symbol or none is selected. NAME is used
3414 solely for messages. May re-arrange and modify SYMS in
3415 the process; the index returned is for the modified vector. */
3416
3417 static int
3418 ada_resolve_function (struct ada_symbol_info syms[],
3419 int nsyms, struct value **args, int nargs,
3420 const char *name, struct type *context_type)
3421 {
3422 int fallback;
3423 int k;
3424 int m; /* Number of hits */
3425
3426 m = 0;
3427 /* In the first pass of the loop, we only accept functions matching
3428 context_type. If none are found, we add a second pass of the loop
3429 where every function is accepted. */
3430 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3431 {
3432 for (k = 0; k < nsyms; k += 1)
3433 {
3434 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3435
3436 if (ada_args_match (syms[k].sym, args, nargs)
3437 && (fallback || return_match (type, context_type)))
3438 {
3439 syms[m] = syms[k];
3440 m += 1;
3441 }
3442 }
3443 }
3444
3445 if (m == 0)
3446 return -1;
3447 else if (m > 1)
3448 {
3449 printf_filtered (_("Multiple matches for %s\n"), name);
3450 user_select_syms (syms, m, 1);
3451 return 0;
3452 }
3453 return 0;
3454 }
3455
3456 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3457 in a listing of choices during disambiguation (see sort_choices, below).
3458 The idea is that overloadings of a subprogram name from the
3459 same package should sort in their source order. We settle for ordering
3460 such symbols by their trailing number (__N or $N). */
3461
3462 static int
3463 encoded_ordered_before (const char *N0, const char *N1)
3464 {
3465 if (N1 == NULL)
3466 return 0;
3467 else if (N0 == NULL)
3468 return 1;
3469 else
3470 {
3471 int k0, k1;
3472
3473 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3474 ;
3475 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3476 ;
3477 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3478 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3479 {
3480 int n0, n1;
3481
3482 n0 = k0;
3483 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3484 n0 -= 1;
3485 n1 = k1;
3486 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3487 n1 -= 1;
3488 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3489 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3490 }
3491 return (strcmp (N0, N1) < 0);
3492 }
3493 }
3494
3495 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3496 encoded names. */
3497
3498 static void
3499 sort_choices (struct ada_symbol_info syms[], int nsyms)
3500 {
3501 int i;
3502
3503 for (i = 1; i < nsyms; i += 1)
3504 {
3505 struct ada_symbol_info sym = syms[i];
3506 int j;
3507
3508 for (j = i - 1; j >= 0; j -= 1)
3509 {
3510 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3511 SYMBOL_LINKAGE_NAME (sym.sym)))
3512 break;
3513 syms[j + 1] = syms[j];
3514 }
3515 syms[j + 1] = sym;
3516 }
3517 }
3518
3519 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3520 by asking the user (if necessary), returning the number selected,
3521 and setting the first elements of SYMS items. Error if no symbols
3522 selected. */
3523
3524 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3525 to be re-integrated one of these days. */
3526
3527 int
3528 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3529 {
3530 int i;
3531 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3532 int n_chosen;
3533 int first_choice = (max_results == 1) ? 1 : 2;
3534 const char *select_mode = multiple_symbols_select_mode ();
3535
3536 if (max_results < 1)
3537 error (_("Request to select 0 symbols!"));
3538 if (nsyms <= 1)
3539 return nsyms;
3540
3541 if (select_mode == multiple_symbols_cancel)
3542 error (_("\
3543 canceled because the command is ambiguous\n\
3544 See set/show multiple-symbol."));
3545
3546 /* If select_mode is "all", then return all possible symbols.
3547 Only do that if more than one symbol can be selected, of course.
3548 Otherwise, display the menu as usual. */
3549 if (select_mode == multiple_symbols_all && max_results > 1)
3550 return nsyms;
3551
3552 printf_unfiltered (_("[0] cancel\n"));
3553 if (max_results > 1)
3554 printf_unfiltered (_("[1] all\n"));
3555
3556 sort_choices (syms, nsyms);
3557
3558 for (i = 0; i < nsyms; i += 1)
3559 {
3560 if (syms[i].sym == NULL)
3561 continue;
3562
3563 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3564 {
3565 struct symtab_and_line sal =
3566 find_function_start_sal (syms[i].sym, 1);
3567
3568 if (sal.symtab == NULL)
3569 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3570 i + first_choice,
3571 SYMBOL_PRINT_NAME (syms[i].sym),
3572 sal.line);
3573 else
3574 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3575 SYMBOL_PRINT_NAME (syms[i].sym),
3576 symtab_to_filename_for_display (sal.symtab),
3577 sal.line);
3578 continue;
3579 }
3580 else
3581 {
3582 int is_enumeral =
3583 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3584 && SYMBOL_TYPE (syms[i].sym) != NULL
3585 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3586 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3587
3588 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3589 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3590 i + first_choice,
3591 SYMBOL_PRINT_NAME (syms[i].sym),
3592 symtab_to_filename_for_display (symtab),
3593 SYMBOL_LINE (syms[i].sym));
3594 else if (is_enumeral
3595 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3596 {
3597 printf_unfiltered (("[%d] "), i + first_choice);
3598 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3599 gdb_stdout, -1, 0, &type_print_raw_options);
3600 printf_unfiltered (_("'(%s) (enumeral)\n"),
3601 SYMBOL_PRINT_NAME (syms[i].sym));
3602 }
3603 else if (symtab != NULL)
3604 printf_unfiltered (is_enumeral
3605 ? _("[%d] %s in %s (enumeral)\n")
3606 : _("[%d] %s at %s:?\n"),
3607 i + first_choice,
3608 SYMBOL_PRINT_NAME (syms[i].sym),
3609 symtab_to_filename_for_display (symtab));
3610 else
3611 printf_unfiltered (is_enumeral
3612 ? _("[%d] %s (enumeral)\n")
3613 : _("[%d] %s at ?\n"),
3614 i + first_choice,
3615 SYMBOL_PRINT_NAME (syms[i].sym));
3616 }
3617 }
3618
3619 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3620 "overload-choice");
3621
3622 for (i = 0; i < n_chosen; i += 1)
3623 syms[i] = syms[chosen[i]];
3624
3625 return n_chosen;
3626 }
3627
3628 /* Read and validate a set of numeric choices from the user in the
3629 range 0 .. N_CHOICES-1. Place the results in increasing
3630 order in CHOICES[0 .. N-1], and return N.
3631
3632 The user types choices as a sequence of numbers on one line
3633 separated by blanks, encoding them as follows:
3634
3635 + A choice of 0 means to cancel the selection, throwing an error.
3636 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3637 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3638
3639 The user is not allowed to choose more than MAX_RESULTS values.
3640
3641 ANNOTATION_SUFFIX, if present, is used to annotate the input
3642 prompts (for use with the -f switch). */
3643
3644 int
3645 get_selections (int *choices, int n_choices, int max_results,
3646 int is_all_choice, char *annotation_suffix)
3647 {
3648 char *args;
3649 char *prompt;
3650 int n_chosen;
3651 int first_choice = is_all_choice ? 2 : 1;
3652
3653 prompt = getenv ("PS2");
3654 if (prompt == NULL)
3655 prompt = "> ";
3656
3657 args = command_line_input (prompt, 0, annotation_suffix);
3658
3659 if (args == NULL)
3660 error_no_arg (_("one or more choice numbers"));
3661
3662 n_chosen = 0;
3663
3664 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3665 order, as given in args. Choices are validated. */
3666 while (1)
3667 {
3668 char *args2;
3669 int choice, j;
3670
3671 args = skip_spaces (args);
3672 if (*args == '\0' && n_chosen == 0)
3673 error_no_arg (_("one or more choice numbers"));
3674 else if (*args == '\0')
3675 break;
3676
3677 choice = strtol (args, &args2, 10);
3678 if (args == args2 || choice < 0
3679 || choice > n_choices + first_choice - 1)
3680 error (_("Argument must be choice number"));
3681 args = args2;
3682
3683 if (choice == 0)
3684 error (_("cancelled"));
3685
3686 if (choice < first_choice)
3687 {
3688 n_chosen = n_choices;
3689 for (j = 0; j < n_choices; j += 1)
3690 choices[j] = j;
3691 break;
3692 }
3693 choice -= first_choice;
3694
3695 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3696 {
3697 }
3698
3699 if (j < 0 || choice != choices[j])
3700 {
3701 int k;
3702
3703 for (k = n_chosen - 1; k > j; k -= 1)
3704 choices[k + 1] = choices[k];
3705 choices[j + 1] = choice;
3706 n_chosen += 1;
3707 }
3708 }
3709
3710 if (n_chosen > max_results)
3711 error (_("Select no more than %d of the above"), max_results);
3712
3713 return n_chosen;
3714 }
3715
3716 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3717 on the function identified by SYM and BLOCK, and taking NARGS
3718 arguments. Update *EXPP as needed to hold more space. */
3719
3720 static void
3721 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3722 int oplen, struct symbol *sym,
3723 const struct block *block)
3724 {
3725 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3726 symbol, -oplen for operator being replaced). */
3727 struct expression *newexp = (struct expression *)
3728 xzalloc (sizeof (struct expression)
3729 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3730 struct expression *exp = *expp;
3731
3732 newexp->nelts = exp->nelts + 7 - oplen;
3733 newexp->language_defn = exp->language_defn;
3734 newexp->gdbarch = exp->gdbarch;
3735 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3736 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3737 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3738
3739 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3740 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3741
3742 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3743 newexp->elts[pc + 4].block = block;
3744 newexp->elts[pc + 5].symbol = sym;
3745
3746 *expp = newexp;
3747 xfree (exp);
3748 }
3749
3750 /* Type-class predicates */
3751
3752 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3753 or FLOAT). */
3754
3755 static int
3756 numeric_type_p (struct type *type)
3757 {
3758 if (type == NULL)
3759 return 0;
3760 else
3761 {
3762 switch (TYPE_CODE (type))
3763 {
3764 case TYPE_CODE_INT:
3765 case TYPE_CODE_FLT:
3766 return 1;
3767 case TYPE_CODE_RANGE:
3768 return (type == TYPE_TARGET_TYPE (type)
3769 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3770 default:
3771 return 0;
3772 }
3773 }
3774 }
3775
3776 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3777
3778 static int
3779 integer_type_p (struct type *type)
3780 {
3781 if (type == NULL)
3782 return 0;
3783 else
3784 {
3785 switch (TYPE_CODE (type))
3786 {
3787 case TYPE_CODE_INT:
3788 return 1;
3789 case TYPE_CODE_RANGE:
3790 return (type == TYPE_TARGET_TYPE (type)
3791 || integer_type_p (TYPE_TARGET_TYPE (type)));
3792 default:
3793 return 0;
3794 }
3795 }
3796 }
3797
3798 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3799
3800 static int
3801 scalar_type_p (struct type *type)
3802 {
3803 if (type == NULL)
3804 return 0;
3805 else
3806 {
3807 switch (TYPE_CODE (type))
3808 {
3809 case TYPE_CODE_INT:
3810 case TYPE_CODE_RANGE:
3811 case TYPE_CODE_ENUM:
3812 case TYPE_CODE_FLT:
3813 return 1;
3814 default:
3815 return 0;
3816 }
3817 }
3818 }
3819
3820 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3821
3822 static int
3823 discrete_type_p (struct type *type)
3824 {
3825 if (type == NULL)
3826 return 0;
3827 else
3828 {
3829 switch (TYPE_CODE (type))
3830 {
3831 case TYPE_CODE_INT:
3832 case TYPE_CODE_RANGE:
3833 case TYPE_CODE_ENUM:
3834 case TYPE_CODE_BOOL:
3835 return 1;
3836 default:
3837 return 0;
3838 }
3839 }
3840 }
3841
3842 /* Returns non-zero if OP with operands in the vector ARGS could be
3843 a user-defined function. Errs on the side of pre-defined operators
3844 (i.e., result 0). */
3845
3846 static int
3847 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3848 {
3849 struct type *type0 =
3850 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3851 struct type *type1 =
3852 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3853
3854 if (type0 == NULL)
3855 return 0;
3856
3857 switch (op)
3858 {
3859 default:
3860 return 0;
3861
3862 case BINOP_ADD:
3863 case BINOP_SUB:
3864 case BINOP_MUL:
3865 case BINOP_DIV:
3866 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3867
3868 case BINOP_REM:
3869 case BINOP_MOD:
3870 case BINOP_BITWISE_AND:
3871 case BINOP_BITWISE_IOR:
3872 case BINOP_BITWISE_XOR:
3873 return (!(integer_type_p (type0) && integer_type_p (type1)));
3874
3875 case BINOP_EQUAL:
3876 case BINOP_NOTEQUAL:
3877 case BINOP_LESS:
3878 case BINOP_GTR:
3879 case BINOP_LEQ:
3880 case BINOP_GEQ:
3881 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3882
3883 case BINOP_CONCAT:
3884 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3885
3886 case BINOP_EXP:
3887 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3888
3889 case UNOP_NEG:
3890 case UNOP_PLUS:
3891 case UNOP_LOGICAL_NOT:
3892 case UNOP_ABS:
3893 return (!numeric_type_p (type0));
3894
3895 }
3896 }
3897 \f
3898 /* Renaming */
3899
3900 /* NOTES:
3901
3902 1. In the following, we assume that a renaming type's name may
3903 have an ___XD suffix. It would be nice if this went away at some
3904 point.
3905 2. We handle both the (old) purely type-based representation of
3906 renamings and the (new) variable-based encoding. At some point,
3907 it is devoutly to be hoped that the former goes away
3908 (FIXME: hilfinger-2007-07-09).
3909 3. Subprogram renamings are not implemented, although the XRS
3910 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3911
3912 /* If SYM encodes a renaming,
3913
3914 <renaming> renames <renamed entity>,
3915
3916 sets *LEN to the length of the renamed entity's name,
3917 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3918 the string describing the subcomponent selected from the renamed
3919 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3920 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3921 are undefined). Otherwise, returns a value indicating the category
3922 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3923 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3924 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3925 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3926 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3927 may be NULL, in which case they are not assigned.
3928
3929 [Currently, however, GCC does not generate subprogram renamings.] */
3930
3931 enum ada_renaming_category
3932 ada_parse_renaming (struct symbol *sym,
3933 const char **renamed_entity, int *len,
3934 const char **renaming_expr)
3935 {
3936 enum ada_renaming_category kind;
3937 const char *info;
3938 const char *suffix;
3939
3940 if (sym == NULL)
3941 return ADA_NOT_RENAMING;
3942 switch (SYMBOL_CLASS (sym))
3943 {
3944 default:
3945 return ADA_NOT_RENAMING;
3946 case LOC_TYPEDEF:
3947 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3948 renamed_entity, len, renaming_expr);
3949 case LOC_LOCAL:
3950 case LOC_STATIC:
3951 case LOC_COMPUTED:
3952 case LOC_OPTIMIZED_OUT:
3953 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3954 if (info == NULL)
3955 return ADA_NOT_RENAMING;
3956 switch (info[5])
3957 {
3958 case '_':
3959 kind = ADA_OBJECT_RENAMING;
3960 info += 6;
3961 break;
3962 case 'E':
3963 kind = ADA_EXCEPTION_RENAMING;
3964 info += 7;
3965 break;
3966 case 'P':
3967 kind = ADA_PACKAGE_RENAMING;
3968 info += 7;
3969 break;
3970 case 'S':
3971 kind = ADA_SUBPROGRAM_RENAMING;
3972 info += 7;
3973 break;
3974 default:
3975 return ADA_NOT_RENAMING;
3976 }
3977 }
3978
3979 if (renamed_entity != NULL)
3980 *renamed_entity = info;
3981 suffix = strstr (info, "___XE");
3982 if (suffix == NULL || suffix == info)
3983 return ADA_NOT_RENAMING;
3984 if (len != NULL)
3985 *len = strlen (info) - strlen (suffix);
3986 suffix += 5;
3987 if (renaming_expr != NULL)
3988 *renaming_expr = suffix;
3989 return kind;
3990 }
3991
3992 /* Assuming TYPE encodes a renaming according to the old encoding in
3993 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3994 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3995 ADA_NOT_RENAMING otherwise. */
3996 static enum ada_renaming_category
3997 parse_old_style_renaming (struct type *type,
3998 const char **renamed_entity, int *len,
3999 const char **renaming_expr)
4000 {
4001 enum ada_renaming_category kind;
4002 const char *name;
4003 const char *info;
4004 const char *suffix;
4005
4006 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4007 || TYPE_NFIELDS (type) != 1)
4008 return ADA_NOT_RENAMING;
4009
4010 name = type_name_no_tag (type);
4011 if (name == NULL)
4012 return ADA_NOT_RENAMING;
4013
4014 name = strstr (name, "___XR");
4015 if (name == NULL)
4016 return ADA_NOT_RENAMING;
4017 switch (name[5])
4018 {
4019 case '\0':
4020 case '_':
4021 kind = ADA_OBJECT_RENAMING;
4022 break;
4023 case 'E':
4024 kind = ADA_EXCEPTION_RENAMING;
4025 break;
4026 case 'P':
4027 kind = ADA_PACKAGE_RENAMING;
4028 break;
4029 case 'S':
4030 kind = ADA_SUBPROGRAM_RENAMING;
4031 break;
4032 default:
4033 return ADA_NOT_RENAMING;
4034 }
4035
4036 info = TYPE_FIELD_NAME (type, 0);
4037 if (info == NULL)
4038 return ADA_NOT_RENAMING;
4039 if (renamed_entity != NULL)
4040 *renamed_entity = info;
4041 suffix = strstr (info, "___XE");
4042 if (renaming_expr != NULL)
4043 *renaming_expr = suffix + 5;
4044 if (suffix == NULL || suffix == info)
4045 return ADA_NOT_RENAMING;
4046 if (len != NULL)
4047 *len = suffix - info;
4048 return kind;
4049 }
4050
4051 /* Compute the value of the given RENAMING_SYM, which is expected to
4052 be a symbol encoding a renaming expression. BLOCK is the block
4053 used to evaluate the renaming. */
4054
4055 static struct value *
4056 ada_read_renaming_var_value (struct symbol *renaming_sym,
4057 struct block *block)
4058 {
4059 const char *sym_name;
4060 struct expression *expr;
4061 struct value *value;
4062 struct cleanup *old_chain = NULL;
4063
4064 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4065 expr = parse_exp_1 (&sym_name, 0, block, 0);
4066 old_chain = make_cleanup (free_current_contents, &expr);
4067 value = evaluate_expression (expr);
4068
4069 do_cleanups (old_chain);
4070 return value;
4071 }
4072 \f
4073
4074 /* Evaluation: Function Calls */
4075
4076 /* Return an lvalue containing the value VAL. This is the identity on
4077 lvalues, and otherwise has the side-effect of allocating memory
4078 in the inferior where a copy of the value contents is copied. */
4079
4080 static struct value *
4081 ensure_lval (struct value *val)
4082 {
4083 if (VALUE_LVAL (val) == not_lval
4084 || VALUE_LVAL (val) == lval_internalvar)
4085 {
4086 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4087 const CORE_ADDR addr =
4088 value_as_long (value_allocate_space_in_inferior (len));
4089
4090 set_value_address (val, addr);
4091 VALUE_LVAL (val) = lval_memory;
4092 write_memory (addr, value_contents (val), len);
4093 }
4094
4095 return val;
4096 }
4097
4098 /* Return the value ACTUAL, converted to be an appropriate value for a
4099 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4100 allocating any necessary descriptors (fat pointers), or copies of
4101 values not residing in memory, updating it as needed. */
4102
4103 struct value *
4104 ada_convert_actual (struct value *actual, struct type *formal_type0)
4105 {
4106 struct type *actual_type = ada_check_typedef (value_type (actual));
4107 struct type *formal_type = ada_check_typedef (formal_type0);
4108 struct type *formal_target =
4109 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4110 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4111 struct type *actual_target =
4112 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4113 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4114
4115 if (ada_is_array_descriptor_type (formal_target)
4116 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4117 return make_array_descriptor (formal_type, actual);
4118 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4119 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4120 {
4121 struct value *result;
4122
4123 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4124 && ada_is_array_descriptor_type (actual_target))
4125 result = desc_data (actual);
4126 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4127 {
4128 if (VALUE_LVAL (actual) != lval_memory)
4129 {
4130 struct value *val;
4131
4132 actual_type = ada_check_typedef (value_type (actual));
4133 val = allocate_value (actual_type);
4134 memcpy ((char *) value_contents_raw (val),
4135 (char *) value_contents (actual),
4136 TYPE_LENGTH (actual_type));
4137 actual = ensure_lval (val);
4138 }
4139 result = value_addr (actual);
4140 }
4141 else
4142 return actual;
4143 return value_cast_pointers (formal_type, result, 0);
4144 }
4145 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4146 return ada_value_ind (actual);
4147
4148 return actual;
4149 }
4150
4151 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4152 type TYPE. This is usually an inefficient no-op except on some targets
4153 (such as AVR) where the representation of a pointer and an address
4154 differs. */
4155
4156 static CORE_ADDR
4157 value_pointer (struct value *value, struct type *type)
4158 {
4159 struct gdbarch *gdbarch = get_type_arch (type);
4160 unsigned len = TYPE_LENGTH (type);
4161 gdb_byte *buf = alloca (len);
4162 CORE_ADDR addr;
4163
4164 addr = value_address (value);
4165 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4166 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4167 return addr;
4168 }
4169
4170
4171 /* Push a descriptor of type TYPE for array value ARR on the stack at
4172 *SP, updating *SP to reflect the new descriptor. Return either
4173 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4174 to-descriptor type rather than a descriptor type), a struct value *
4175 representing a pointer to this descriptor. */
4176
4177 static struct value *
4178 make_array_descriptor (struct type *type, struct value *arr)
4179 {
4180 struct type *bounds_type = desc_bounds_type (type);
4181 struct type *desc_type = desc_base_type (type);
4182 struct value *descriptor = allocate_value (desc_type);
4183 struct value *bounds = allocate_value (bounds_type);
4184 int i;
4185
4186 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4187 i > 0; i -= 1)
4188 {
4189 modify_field (value_type (bounds), value_contents_writeable (bounds),
4190 ada_array_bound (arr, i, 0),
4191 desc_bound_bitpos (bounds_type, i, 0),
4192 desc_bound_bitsize (bounds_type, i, 0));
4193 modify_field (value_type (bounds), value_contents_writeable (bounds),
4194 ada_array_bound (arr, i, 1),
4195 desc_bound_bitpos (bounds_type, i, 1),
4196 desc_bound_bitsize (bounds_type, i, 1));
4197 }
4198
4199 bounds = ensure_lval (bounds);
4200
4201 modify_field (value_type (descriptor),
4202 value_contents_writeable (descriptor),
4203 value_pointer (ensure_lval (arr),
4204 TYPE_FIELD_TYPE (desc_type, 0)),
4205 fat_pntr_data_bitpos (desc_type),
4206 fat_pntr_data_bitsize (desc_type));
4207
4208 modify_field (value_type (descriptor),
4209 value_contents_writeable (descriptor),
4210 value_pointer (bounds,
4211 TYPE_FIELD_TYPE (desc_type, 1)),
4212 fat_pntr_bounds_bitpos (desc_type),
4213 fat_pntr_bounds_bitsize (desc_type));
4214
4215 descriptor = ensure_lval (descriptor);
4216
4217 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4218 return value_addr (descriptor);
4219 else
4220 return descriptor;
4221 }
4222 \f
4223 /* Dummy definitions for an experimental caching module that is not
4224 * used in the public sources. */
4225
4226 static int
4227 lookup_cached_symbol (const char *name, domain_enum namespace,
4228 struct symbol **sym, struct block **block)
4229 {
4230 return 0;
4231 }
4232
4233 static void
4234 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4235 const struct block *block)
4236 {
4237 }
4238 \f
4239 /* Symbol Lookup */
4240
4241 /* Return nonzero if wild matching should be used when searching for
4242 all symbols matching LOOKUP_NAME.
4243
4244 LOOKUP_NAME is expected to be a symbol name after transformation
4245 for Ada lookups (see ada_name_for_lookup). */
4246
4247 static int
4248 should_use_wild_match (const char *lookup_name)
4249 {
4250 return (strstr (lookup_name, "__") == NULL);
4251 }
4252
4253 /* Return the result of a standard (literal, C-like) lookup of NAME in
4254 given DOMAIN, visible from lexical block BLOCK. */
4255
4256 static struct symbol *
4257 standard_lookup (const char *name, const struct block *block,
4258 domain_enum domain)
4259 {
4260 /* Initialize it just to avoid a GCC false warning. */
4261 struct symbol *sym = NULL;
4262
4263 if (lookup_cached_symbol (name, domain, &sym, NULL))
4264 return sym;
4265 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4266 cache_symbol (name, domain, sym, block_found);
4267 return sym;
4268 }
4269
4270
4271 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4272 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4273 since they contend in overloading in the same way. */
4274 static int
4275 is_nonfunction (struct ada_symbol_info syms[], int n)
4276 {
4277 int i;
4278
4279 for (i = 0; i < n; i += 1)
4280 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4281 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4282 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4283 return 1;
4284
4285 return 0;
4286 }
4287
4288 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4289 struct types. Otherwise, they may not. */
4290
4291 static int
4292 equiv_types (struct type *type0, struct type *type1)
4293 {
4294 if (type0 == type1)
4295 return 1;
4296 if (type0 == NULL || type1 == NULL
4297 || TYPE_CODE (type0) != TYPE_CODE (type1))
4298 return 0;
4299 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4300 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4301 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4302 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4303 return 1;
4304
4305 return 0;
4306 }
4307
4308 /* True iff SYM0 represents the same entity as SYM1, or one that is
4309 no more defined than that of SYM1. */
4310
4311 static int
4312 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4313 {
4314 if (sym0 == sym1)
4315 return 1;
4316 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4317 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4318 return 0;
4319
4320 switch (SYMBOL_CLASS (sym0))
4321 {
4322 case LOC_UNDEF:
4323 return 1;
4324 case LOC_TYPEDEF:
4325 {
4326 struct type *type0 = SYMBOL_TYPE (sym0);
4327 struct type *type1 = SYMBOL_TYPE (sym1);
4328 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4329 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4330 int len0 = strlen (name0);
4331
4332 return
4333 TYPE_CODE (type0) == TYPE_CODE (type1)
4334 && (equiv_types (type0, type1)
4335 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4336 && strncmp (name1 + len0, "___XV", 5) == 0));
4337 }
4338 case LOC_CONST:
4339 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4340 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4341 default:
4342 return 0;
4343 }
4344 }
4345
4346 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4347 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4348
4349 static void
4350 add_defn_to_vec (struct obstack *obstackp,
4351 struct symbol *sym,
4352 struct block *block)
4353 {
4354 int i;
4355 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4356
4357 /* Do not try to complete stub types, as the debugger is probably
4358 already scanning all symbols matching a certain name at the
4359 time when this function is called. Trying to replace the stub
4360 type by its associated full type will cause us to restart a scan
4361 which may lead to an infinite recursion. Instead, the client
4362 collecting the matching symbols will end up collecting several
4363 matches, with at least one of them complete. It can then filter
4364 out the stub ones if needed. */
4365
4366 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4367 {
4368 if (lesseq_defined_than (sym, prevDefns[i].sym))
4369 return;
4370 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4371 {
4372 prevDefns[i].sym = sym;
4373 prevDefns[i].block = block;
4374 return;
4375 }
4376 }
4377
4378 {
4379 struct ada_symbol_info info;
4380
4381 info.sym = sym;
4382 info.block = block;
4383 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4384 }
4385 }
4386
4387 /* Number of ada_symbol_info structures currently collected in
4388 current vector in *OBSTACKP. */
4389
4390 static int
4391 num_defns_collected (struct obstack *obstackp)
4392 {
4393 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4394 }
4395
4396 /* Vector of ada_symbol_info structures currently collected in current
4397 vector in *OBSTACKP. If FINISH, close off the vector and return
4398 its final address. */
4399
4400 static struct ada_symbol_info *
4401 defns_collected (struct obstack *obstackp, int finish)
4402 {
4403 if (finish)
4404 return obstack_finish (obstackp);
4405 else
4406 return (struct ada_symbol_info *) obstack_base (obstackp);
4407 }
4408
4409 /* Return a minimal symbol matching NAME according to Ada decoding
4410 rules. Returns NULL if there is no such minimal symbol. Names
4411 prefixed with "standard__" are handled specially: "standard__" is
4412 first stripped off, and only static and global symbols are searched. */
4413
4414 struct minimal_symbol *
4415 ada_lookup_simple_minsym (const char *name)
4416 {
4417 struct objfile *objfile;
4418 struct minimal_symbol *msymbol;
4419 const int wild_match_p = should_use_wild_match (name);
4420
4421 /* Special case: If the user specifies a symbol name inside package
4422 Standard, do a non-wild matching of the symbol name without
4423 the "standard__" prefix. This was primarily introduced in order
4424 to allow the user to specifically access the standard exceptions
4425 using, for instance, Standard.Constraint_Error when Constraint_Error
4426 is ambiguous (due to the user defining its own Constraint_Error
4427 entity inside its program). */
4428 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4429 name += sizeof ("standard__") - 1;
4430
4431 ALL_MSYMBOLS (objfile, msymbol)
4432 {
4433 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4434 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4435 return msymbol;
4436 }
4437
4438 return NULL;
4439 }
4440
4441 /* For all subprograms that statically enclose the subprogram of the
4442 selected frame, add symbols matching identifier NAME in DOMAIN
4443 and their blocks to the list of data in OBSTACKP, as for
4444 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4445 with a wildcard prefix. */
4446
4447 static void
4448 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4449 const char *name, domain_enum namespace,
4450 int wild_match_p)
4451 {
4452 }
4453
4454 /* True if TYPE is definitely an artificial type supplied to a symbol
4455 for which no debugging information was given in the symbol file. */
4456
4457 static int
4458 is_nondebugging_type (struct type *type)
4459 {
4460 const char *name = ada_type_name (type);
4461
4462 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4463 }
4464
4465 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4466 that are deemed "identical" for practical purposes.
4467
4468 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4469 types and that their number of enumerals is identical (in other
4470 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4471
4472 static int
4473 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4474 {
4475 int i;
4476
4477 /* The heuristic we use here is fairly conservative. We consider
4478 that 2 enumerate types are identical if they have the same
4479 number of enumerals and that all enumerals have the same
4480 underlying value and name. */
4481
4482 /* All enums in the type should have an identical underlying value. */
4483 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4484 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4485 return 0;
4486
4487 /* All enumerals should also have the same name (modulo any numerical
4488 suffix). */
4489 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4490 {
4491 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4492 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4493 int len_1 = strlen (name_1);
4494 int len_2 = strlen (name_2);
4495
4496 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4497 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4498 if (len_1 != len_2
4499 || strncmp (TYPE_FIELD_NAME (type1, i),
4500 TYPE_FIELD_NAME (type2, i),
4501 len_1) != 0)
4502 return 0;
4503 }
4504
4505 return 1;
4506 }
4507
4508 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4509 that are deemed "identical" for practical purposes. Sometimes,
4510 enumerals are not strictly identical, but their types are so similar
4511 that they can be considered identical.
4512
4513 For instance, consider the following code:
4514
4515 type Color is (Black, Red, Green, Blue, White);
4516 type RGB_Color is new Color range Red .. Blue;
4517
4518 Type RGB_Color is a subrange of an implicit type which is a copy
4519 of type Color. If we call that implicit type RGB_ColorB ("B" is
4520 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4521 As a result, when an expression references any of the enumeral
4522 by name (Eg. "print green"), the expression is technically
4523 ambiguous and the user should be asked to disambiguate. But
4524 doing so would only hinder the user, since it wouldn't matter
4525 what choice he makes, the outcome would always be the same.
4526 So, for practical purposes, we consider them as the same. */
4527
4528 static int
4529 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4530 {
4531 int i;
4532
4533 /* Before performing a thorough comparison check of each type,
4534 we perform a series of inexpensive checks. We expect that these
4535 checks will quickly fail in the vast majority of cases, and thus
4536 help prevent the unnecessary use of a more expensive comparison.
4537 Said comparison also expects us to make some of these checks
4538 (see ada_identical_enum_types_p). */
4539
4540 /* Quick check: All symbols should have an enum type. */
4541 for (i = 0; i < nsyms; i++)
4542 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4543 return 0;
4544
4545 /* Quick check: They should all have the same value. */
4546 for (i = 1; i < nsyms; i++)
4547 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4548 return 0;
4549
4550 /* Quick check: They should all have the same number of enumerals. */
4551 for (i = 1; i < nsyms; i++)
4552 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4553 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4554 return 0;
4555
4556 /* All the sanity checks passed, so we might have a set of
4557 identical enumeration types. Perform a more complete
4558 comparison of the type of each symbol. */
4559 for (i = 1; i < nsyms; i++)
4560 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4561 SYMBOL_TYPE (syms[0].sym)))
4562 return 0;
4563
4564 return 1;
4565 }
4566
4567 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4568 duplicate other symbols in the list (The only case I know of where
4569 this happens is when object files containing stabs-in-ecoff are
4570 linked with files containing ordinary ecoff debugging symbols (or no
4571 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4572 Returns the number of items in the modified list. */
4573
4574 static int
4575 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4576 {
4577 int i, j;
4578
4579 /* We should never be called with less than 2 symbols, as there
4580 cannot be any extra symbol in that case. But it's easy to
4581 handle, since we have nothing to do in that case. */
4582 if (nsyms < 2)
4583 return nsyms;
4584
4585 i = 0;
4586 while (i < nsyms)
4587 {
4588 int remove_p = 0;
4589
4590 /* If two symbols have the same name and one of them is a stub type,
4591 the get rid of the stub. */
4592
4593 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4594 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4595 {
4596 for (j = 0; j < nsyms; j++)
4597 {
4598 if (j != i
4599 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4600 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4601 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4602 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4603 remove_p = 1;
4604 }
4605 }
4606
4607 /* Two symbols with the same name, same class and same address
4608 should be identical. */
4609
4610 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4611 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4612 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4613 {
4614 for (j = 0; j < nsyms; j += 1)
4615 {
4616 if (i != j
4617 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4618 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4619 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4620 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4621 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4622 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4623 remove_p = 1;
4624 }
4625 }
4626
4627 if (remove_p)
4628 {
4629 for (j = i + 1; j < nsyms; j += 1)
4630 syms[j - 1] = syms[j];
4631 nsyms -= 1;
4632 }
4633
4634 i += 1;
4635 }
4636
4637 /* If all the remaining symbols are identical enumerals, then
4638 just keep the first one and discard the rest.
4639
4640 Unlike what we did previously, we do not discard any entry
4641 unless they are ALL identical. This is because the symbol
4642 comparison is not a strict comparison, but rather a practical
4643 comparison. If all symbols are considered identical, then
4644 we can just go ahead and use the first one and discard the rest.
4645 But if we cannot reduce the list to a single element, we have
4646 to ask the user to disambiguate anyways. And if we have to
4647 present a multiple-choice menu, it's less confusing if the list
4648 isn't missing some choices that were identical and yet distinct. */
4649 if (symbols_are_identical_enums (syms, nsyms))
4650 nsyms = 1;
4651
4652 return nsyms;
4653 }
4654
4655 /* Given a type that corresponds to a renaming entity, use the type name
4656 to extract the scope (package name or function name, fully qualified,
4657 and following the GNAT encoding convention) where this renaming has been
4658 defined. The string returned needs to be deallocated after use. */
4659
4660 static char *
4661 xget_renaming_scope (struct type *renaming_type)
4662 {
4663 /* The renaming types adhere to the following convention:
4664 <scope>__<rename>___<XR extension>.
4665 So, to extract the scope, we search for the "___XR" extension,
4666 and then backtrack until we find the first "__". */
4667
4668 const char *name = type_name_no_tag (renaming_type);
4669 char *suffix = strstr (name, "___XR");
4670 char *last;
4671 int scope_len;
4672 char *scope;
4673
4674 /* Now, backtrack a bit until we find the first "__". Start looking
4675 at suffix - 3, as the <rename> part is at least one character long. */
4676
4677 for (last = suffix - 3; last > name; last--)
4678 if (last[0] == '_' && last[1] == '_')
4679 break;
4680
4681 /* Make a copy of scope and return it. */
4682
4683 scope_len = last - name;
4684 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4685
4686 strncpy (scope, name, scope_len);
4687 scope[scope_len] = '\0';
4688
4689 return scope;
4690 }
4691
4692 /* Return nonzero if NAME corresponds to a package name. */
4693
4694 static int
4695 is_package_name (const char *name)
4696 {
4697 /* Here, We take advantage of the fact that no symbols are generated
4698 for packages, while symbols are generated for each function.
4699 So the condition for NAME represent a package becomes equivalent
4700 to NAME not existing in our list of symbols. There is only one
4701 small complication with library-level functions (see below). */
4702
4703 char *fun_name;
4704
4705 /* If it is a function that has not been defined at library level,
4706 then we should be able to look it up in the symbols. */
4707 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4708 return 0;
4709
4710 /* Library-level function names start with "_ada_". See if function
4711 "_ada_" followed by NAME can be found. */
4712
4713 /* Do a quick check that NAME does not contain "__", since library-level
4714 functions names cannot contain "__" in them. */
4715 if (strstr (name, "__") != NULL)
4716 return 0;
4717
4718 fun_name = xstrprintf ("_ada_%s", name);
4719
4720 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4721 }
4722
4723 /* Return nonzero if SYM corresponds to a renaming entity that is
4724 not visible from FUNCTION_NAME. */
4725
4726 static int
4727 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4728 {
4729 char *scope;
4730
4731 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4732 return 0;
4733
4734 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4735
4736 make_cleanup (xfree, scope);
4737
4738 /* If the rename has been defined in a package, then it is visible. */
4739 if (is_package_name (scope))
4740 return 0;
4741
4742 /* Check that the rename is in the current function scope by checking
4743 that its name starts with SCOPE. */
4744
4745 /* If the function name starts with "_ada_", it means that it is
4746 a library-level function. Strip this prefix before doing the
4747 comparison, as the encoding for the renaming does not contain
4748 this prefix. */
4749 if (strncmp (function_name, "_ada_", 5) == 0)
4750 function_name += 5;
4751
4752 return (strncmp (function_name, scope, strlen (scope)) != 0);
4753 }
4754
4755 /* Remove entries from SYMS that corresponds to a renaming entity that
4756 is not visible from the function associated with CURRENT_BLOCK or
4757 that is superfluous due to the presence of more specific renaming
4758 information. Places surviving symbols in the initial entries of
4759 SYMS and returns the number of surviving symbols.
4760
4761 Rationale:
4762 First, in cases where an object renaming is implemented as a
4763 reference variable, GNAT may produce both the actual reference
4764 variable and the renaming encoding. In this case, we discard the
4765 latter.
4766
4767 Second, GNAT emits a type following a specified encoding for each renaming
4768 entity. Unfortunately, STABS currently does not support the definition
4769 of types that are local to a given lexical block, so all renamings types
4770 are emitted at library level. As a consequence, if an application
4771 contains two renaming entities using the same name, and a user tries to
4772 print the value of one of these entities, the result of the ada symbol
4773 lookup will also contain the wrong renaming type.
4774
4775 This function partially covers for this limitation by attempting to
4776 remove from the SYMS list renaming symbols that should be visible
4777 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4778 method with the current information available. The implementation
4779 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4780
4781 - When the user tries to print a rename in a function while there
4782 is another rename entity defined in a package: Normally, the
4783 rename in the function has precedence over the rename in the
4784 package, so the latter should be removed from the list. This is
4785 currently not the case.
4786
4787 - This function will incorrectly remove valid renames if
4788 the CURRENT_BLOCK corresponds to a function which symbol name
4789 has been changed by an "Export" pragma. As a consequence,
4790 the user will be unable to print such rename entities. */
4791
4792 static int
4793 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4794 int nsyms, const struct block *current_block)
4795 {
4796 struct symbol *current_function;
4797 const char *current_function_name;
4798 int i;
4799 int is_new_style_renaming;
4800
4801 /* If there is both a renaming foo___XR... encoded as a variable and
4802 a simple variable foo in the same block, discard the latter.
4803 First, zero out such symbols, then compress. */
4804 is_new_style_renaming = 0;
4805 for (i = 0; i < nsyms; i += 1)
4806 {
4807 struct symbol *sym = syms[i].sym;
4808 const struct block *block = syms[i].block;
4809 const char *name;
4810 const char *suffix;
4811
4812 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4813 continue;
4814 name = SYMBOL_LINKAGE_NAME (sym);
4815 suffix = strstr (name, "___XR");
4816
4817 if (suffix != NULL)
4818 {
4819 int name_len = suffix - name;
4820 int j;
4821
4822 is_new_style_renaming = 1;
4823 for (j = 0; j < nsyms; j += 1)
4824 if (i != j && syms[j].sym != NULL
4825 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4826 name_len) == 0
4827 && block == syms[j].block)
4828 syms[j].sym = NULL;
4829 }
4830 }
4831 if (is_new_style_renaming)
4832 {
4833 int j, k;
4834
4835 for (j = k = 0; j < nsyms; j += 1)
4836 if (syms[j].sym != NULL)
4837 {
4838 syms[k] = syms[j];
4839 k += 1;
4840 }
4841 return k;
4842 }
4843
4844 /* Extract the function name associated to CURRENT_BLOCK.
4845 Abort if unable to do so. */
4846
4847 if (current_block == NULL)
4848 return nsyms;
4849
4850 current_function = block_linkage_function (current_block);
4851 if (current_function == NULL)
4852 return nsyms;
4853
4854 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4855 if (current_function_name == NULL)
4856 return nsyms;
4857
4858 /* Check each of the symbols, and remove it from the list if it is
4859 a type corresponding to a renaming that is out of the scope of
4860 the current block. */
4861
4862 i = 0;
4863 while (i < nsyms)
4864 {
4865 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4866 == ADA_OBJECT_RENAMING
4867 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4868 {
4869 int j;
4870
4871 for (j = i + 1; j < nsyms; j += 1)
4872 syms[j - 1] = syms[j];
4873 nsyms -= 1;
4874 }
4875 else
4876 i += 1;
4877 }
4878
4879 return nsyms;
4880 }
4881
4882 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4883 whose name and domain match NAME and DOMAIN respectively.
4884 If no match was found, then extend the search to "enclosing"
4885 routines (in other words, if we're inside a nested function,
4886 search the symbols defined inside the enclosing functions).
4887 If WILD_MATCH_P is nonzero, perform the naming matching in
4888 "wild" mode (see function "wild_match" for more info).
4889
4890 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4891
4892 static void
4893 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4894 struct block *block, domain_enum domain,
4895 int wild_match_p)
4896 {
4897 int block_depth = 0;
4898
4899 while (block != NULL)
4900 {
4901 block_depth += 1;
4902 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4903 wild_match_p);
4904
4905 /* If we found a non-function match, assume that's the one. */
4906 if (is_nonfunction (defns_collected (obstackp, 0),
4907 num_defns_collected (obstackp)))
4908 return;
4909
4910 block = BLOCK_SUPERBLOCK (block);
4911 }
4912
4913 /* If no luck so far, try to find NAME as a local symbol in some lexically
4914 enclosing subprogram. */
4915 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4916 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
4917 }
4918
4919 /* An object of this type is used as the user_data argument when
4920 calling the map_matching_symbols method. */
4921
4922 struct match_data
4923 {
4924 struct objfile *objfile;
4925 struct obstack *obstackp;
4926 struct symbol *arg_sym;
4927 int found_sym;
4928 };
4929
4930 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4931 to a list of symbols. DATA0 is a pointer to a struct match_data *
4932 containing the obstack that collects the symbol list, the file that SYM
4933 must come from, a flag indicating whether a non-argument symbol has
4934 been found in the current block, and the last argument symbol
4935 passed in SYM within the current block (if any). When SYM is null,
4936 marking the end of a block, the argument symbol is added if no
4937 other has been found. */
4938
4939 static int
4940 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4941 {
4942 struct match_data *data = (struct match_data *) data0;
4943
4944 if (sym == NULL)
4945 {
4946 if (!data->found_sym && data->arg_sym != NULL)
4947 add_defn_to_vec (data->obstackp,
4948 fixup_symbol_section (data->arg_sym, data->objfile),
4949 block);
4950 data->found_sym = 0;
4951 data->arg_sym = NULL;
4952 }
4953 else
4954 {
4955 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4956 return 0;
4957 else if (SYMBOL_IS_ARGUMENT (sym))
4958 data->arg_sym = sym;
4959 else
4960 {
4961 data->found_sym = 1;
4962 add_defn_to_vec (data->obstackp,
4963 fixup_symbol_section (sym, data->objfile),
4964 block);
4965 }
4966 }
4967 return 0;
4968 }
4969
4970 /* Compare STRING1 to STRING2, with results as for strcmp.
4971 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4972 implies compare_names (STRING1, STRING2) (they may differ as to
4973 what symbols compare equal). */
4974
4975 static int
4976 compare_names (const char *string1, const char *string2)
4977 {
4978 while (*string1 != '\0' && *string2 != '\0')
4979 {
4980 if (isspace (*string1) || isspace (*string2))
4981 return strcmp_iw_ordered (string1, string2);
4982 if (*string1 != *string2)
4983 break;
4984 string1 += 1;
4985 string2 += 1;
4986 }
4987 switch (*string1)
4988 {
4989 case '(':
4990 return strcmp_iw_ordered (string1, string2);
4991 case '_':
4992 if (*string2 == '\0')
4993 {
4994 if (is_name_suffix (string1))
4995 return 0;
4996 else
4997 return 1;
4998 }
4999 /* FALLTHROUGH */
5000 default:
5001 if (*string2 == '(')
5002 return strcmp_iw_ordered (string1, string2);
5003 else
5004 return *string1 - *string2;
5005 }
5006 }
5007
5008 /* Add to OBSTACKP all non-local symbols whose name and domain match
5009 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5010 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5011
5012 static void
5013 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5014 domain_enum domain, int global,
5015 int is_wild_match)
5016 {
5017 struct objfile *objfile;
5018 struct match_data data;
5019
5020 memset (&data, 0, sizeof data);
5021 data.obstackp = obstackp;
5022
5023 ALL_OBJFILES (objfile)
5024 {
5025 data.objfile = objfile;
5026
5027 if (is_wild_match)
5028 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5029 aux_add_nonlocal_symbols, &data,
5030 wild_match, NULL);
5031 else
5032 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5033 aux_add_nonlocal_symbols, &data,
5034 full_match, compare_names);
5035 }
5036
5037 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5038 {
5039 ALL_OBJFILES (objfile)
5040 {
5041 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5042 strcpy (name1, "_ada_");
5043 strcpy (name1 + sizeof ("_ada_") - 1, name);
5044 data.objfile = objfile;
5045 objfile->sf->qf->map_matching_symbols (name1, domain,
5046 objfile, global,
5047 aux_add_nonlocal_symbols,
5048 &data,
5049 full_match, compare_names);
5050 }
5051 }
5052 }
5053
5054 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5055 non-zero, enclosing scope and in global scopes, returning the number of
5056 matches.
5057 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5058 indicating the symbols found and the blocks and symbol tables (if
5059 any) in which they were found. This vector is transient---good only to
5060 the next call of ada_lookup_symbol_list.
5061
5062 When full_search is non-zero, any non-function/non-enumeral
5063 symbol match within the nest of blocks whose innermost member is BLOCK0,
5064 is the one match returned (no other matches in that or
5065 enclosing blocks is returned). If there are any matches in or
5066 surrounding BLOCK0, then these alone are returned.
5067
5068 Names prefixed with "standard__" are handled specially: "standard__"
5069 is first stripped off, and only static and global symbols are searched. */
5070
5071 static int
5072 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5073 domain_enum namespace,
5074 struct ada_symbol_info **results,
5075 int full_search)
5076 {
5077 struct symbol *sym;
5078 struct block *block;
5079 const char *name;
5080 const int wild_match_p = should_use_wild_match (name0);
5081 int cacheIfUnique;
5082 int ndefns;
5083
5084 obstack_free (&symbol_list_obstack, NULL);
5085 obstack_init (&symbol_list_obstack);
5086
5087 cacheIfUnique = 0;
5088
5089 /* Search specified block and its superiors. */
5090
5091 name = name0;
5092 block = (struct block *) block0; /* FIXME: No cast ought to be
5093 needed, but adding const will
5094 have a cascade effect. */
5095
5096 /* Special case: If the user specifies a symbol name inside package
5097 Standard, do a non-wild matching of the symbol name without
5098 the "standard__" prefix. This was primarily introduced in order
5099 to allow the user to specifically access the standard exceptions
5100 using, for instance, Standard.Constraint_Error when Constraint_Error
5101 is ambiguous (due to the user defining its own Constraint_Error
5102 entity inside its program). */
5103 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5104 {
5105 block = NULL;
5106 name = name0 + sizeof ("standard__") - 1;
5107 }
5108
5109 /* Check the non-global symbols. If we have ANY match, then we're done. */
5110
5111 if (block != NULL)
5112 {
5113 if (full_search)
5114 {
5115 ada_add_local_symbols (&symbol_list_obstack, name, block,
5116 namespace, wild_match_p);
5117 }
5118 else
5119 {
5120 /* In the !full_search case we're are being called by
5121 ada_iterate_over_symbols, and we don't want to search
5122 superblocks. */
5123 ada_add_block_symbols (&symbol_list_obstack, block, name,
5124 namespace, NULL, wild_match_p);
5125 }
5126 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5127 goto done;
5128 }
5129
5130 /* No non-global symbols found. Check our cache to see if we have
5131 already performed this search before. If we have, then return
5132 the same result. */
5133
5134 cacheIfUnique = 1;
5135 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5136 {
5137 if (sym != NULL)
5138 add_defn_to_vec (&symbol_list_obstack, sym, block);
5139 goto done;
5140 }
5141
5142 /* Search symbols from all global blocks. */
5143
5144 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5145 wild_match_p);
5146
5147 /* Now add symbols from all per-file blocks if we've gotten no hits
5148 (not strictly correct, but perhaps better than an error). */
5149
5150 if (num_defns_collected (&symbol_list_obstack) == 0)
5151 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5152 wild_match_p);
5153
5154 done:
5155 ndefns = num_defns_collected (&symbol_list_obstack);
5156 *results = defns_collected (&symbol_list_obstack, 1);
5157
5158 ndefns = remove_extra_symbols (*results, ndefns);
5159
5160 if (ndefns == 0 && full_search)
5161 cache_symbol (name0, namespace, NULL, NULL);
5162
5163 if (ndefns == 1 && full_search && cacheIfUnique)
5164 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5165
5166 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5167
5168 return ndefns;
5169 }
5170
5171 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5172 in global scopes, returning the number of matches, and setting *RESULTS
5173 to a vector of (SYM,BLOCK) tuples.
5174 See ada_lookup_symbol_list_worker for further details. */
5175
5176 int
5177 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5178 domain_enum domain, struct ada_symbol_info **results)
5179 {
5180 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5181 }
5182
5183 /* Implementation of the la_iterate_over_symbols method. */
5184
5185 static void
5186 ada_iterate_over_symbols (const struct block *block,
5187 const char *name, domain_enum domain,
5188 symbol_found_callback_ftype *callback,
5189 void *data)
5190 {
5191 int ndefs, i;
5192 struct ada_symbol_info *results;
5193
5194 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5195 for (i = 0; i < ndefs; ++i)
5196 {
5197 if (! (*callback) (results[i].sym, data))
5198 break;
5199 }
5200 }
5201
5202 /* If NAME is the name of an entity, return a string that should
5203 be used to look that entity up in Ada units. This string should
5204 be deallocated after use using xfree.
5205
5206 NAME can have any form that the "break" or "print" commands might
5207 recognize. In other words, it does not have to be the "natural"
5208 name, or the "encoded" name. */
5209
5210 char *
5211 ada_name_for_lookup (const char *name)
5212 {
5213 char *canon;
5214 int nlen = strlen (name);
5215
5216 if (name[0] == '<' && name[nlen - 1] == '>')
5217 {
5218 canon = xmalloc (nlen - 1);
5219 memcpy (canon, name + 1, nlen - 2);
5220 canon[nlen - 2] = '\0';
5221 }
5222 else
5223 canon = xstrdup (ada_encode (ada_fold_name (name)));
5224 return canon;
5225 }
5226
5227 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5228 to 1, but choosing the first symbol found if there are multiple
5229 choices.
5230
5231 The result is stored in *INFO, which must be non-NULL.
5232 If no match is found, INFO->SYM is set to NULL. */
5233
5234 void
5235 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5236 domain_enum namespace,
5237 struct ada_symbol_info *info)
5238 {
5239 struct ada_symbol_info *candidates;
5240 int n_candidates;
5241
5242 gdb_assert (info != NULL);
5243 memset (info, 0, sizeof (struct ada_symbol_info));
5244
5245 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5246 if (n_candidates == 0)
5247 return;
5248
5249 *info = candidates[0];
5250 info->sym = fixup_symbol_section (info->sym, NULL);
5251 }
5252
5253 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5254 scope and in global scopes, or NULL if none. NAME is folded and
5255 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5256 choosing the first symbol if there are multiple choices.
5257 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5258
5259 struct symbol *
5260 ada_lookup_symbol (const char *name, const struct block *block0,
5261 domain_enum namespace, int *is_a_field_of_this)
5262 {
5263 struct ada_symbol_info info;
5264
5265 if (is_a_field_of_this != NULL)
5266 *is_a_field_of_this = 0;
5267
5268 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5269 block0, namespace, &info);
5270 return info.sym;
5271 }
5272
5273 static struct symbol *
5274 ada_lookup_symbol_nonlocal (const char *name,
5275 const struct block *block,
5276 const domain_enum domain)
5277 {
5278 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5279 }
5280
5281
5282 /* True iff STR is a possible encoded suffix of a normal Ada name
5283 that is to be ignored for matching purposes. Suffixes of parallel
5284 names (e.g., XVE) are not included here. Currently, the possible suffixes
5285 are given by any of the regular expressions:
5286
5287 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5288 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5289 TKB [subprogram suffix for task bodies]
5290 _E[0-9]+[bs]$ [protected object entry suffixes]
5291 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5292
5293 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5294 match is performed. This sequence is used to differentiate homonyms,
5295 is an optional part of a valid name suffix. */
5296
5297 static int
5298 is_name_suffix (const char *str)
5299 {
5300 int k;
5301 const char *matching;
5302 const int len = strlen (str);
5303
5304 /* Skip optional leading __[0-9]+. */
5305
5306 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5307 {
5308 str += 3;
5309 while (isdigit (str[0]))
5310 str += 1;
5311 }
5312
5313 /* [.$][0-9]+ */
5314
5315 if (str[0] == '.' || str[0] == '$')
5316 {
5317 matching = str + 1;
5318 while (isdigit (matching[0]))
5319 matching += 1;
5320 if (matching[0] == '\0')
5321 return 1;
5322 }
5323
5324 /* ___[0-9]+ */
5325
5326 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5327 {
5328 matching = str + 3;
5329 while (isdigit (matching[0]))
5330 matching += 1;
5331 if (matching[0] == '\0')
5332 return 1;
5333 }
5334
5335 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5336
5337 if (strcmp (str, "TKB") == 0)
5338 return 1;
5339
5340 #if 0
5341 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5342 with a N at the end. Unfortunately, the compiler uses the same
5343 convention for other internal types it creates. So treating
5344 all entity names that end with an "N" as a name suffix causes
5345 some regressions. For instance, consider the case of an enumerated
5346 type. To support the 'Image attribute, it creates an array whose
5347 name ends with N.
5348 Having a single character like this as a suffix carrying some
5349 information is a bit risky. Perhaps we should change the encoding
5350 to be something like "_N" instead. In the meantime, do not do
5351 the following check. */
5352 /* Protected Object Subprograms */
5353 if (len == 1 && str [0] == 'N')
5354 return 1;
5355 #endif
5356
5357 /* _E[0-9]+[bs]$ */
5358 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5359 {
5360 matching = str + 3;
5361 while (isdigit (matching[0]))
5362 matching += 1;
5363 if ((matching[0] == 'b' || matching[0] == 's')
5364 && matching [1] == '\0')
5365 return 1;
5366 }
5367
5368 /* ??? We should not modify STR directly, as we are doing below. This
5369 is fine in this case, but may become problematic later if we find
5370 that this alternative did not work, and want to try matching
5371 another one from the begining of STR. Since we modified it, we
5372 won't be able to find the begining of the string anymore! */
5373 if (str[0] == 'X')
5374 {
5375 str += 1;
5376 while (str[0] != '_' && str[0] != '\0')
5377 {
5378 if (str[0] != 'n' && str[0] != 'b')
5379 return 0;
5380 str += 1;
5381 }
5382 }
5383
5384 if (str[0] == '\000')
5385 return 1;
5386
5387 if (str[0] == '_')
5388 {
5389 if (str[1] != '_' || str[2] == '\000')
5390 return 0;
5391 if (str[2] == '_')
5392 {
5393 if (strcmp (str + 3, "JM") == 0)
5394 return 1;
5395 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5396 the LJM suffix in favor of the JM one. But we will
5397 still accept LJM as a valid suffix for a reasonable
5398 amount of time, just to allow ourselves to debug programs
5399 compiled using an older version of GNAT. */
5400 if (strcmp (str + 3, "LJM") == 0)
5401 return 1;
5402 if (str[3] != 'X')
5403 return 0;
5404 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5405 || str[4] == 'U' || str[4] == 'P')
5406 return 1;
5407 if (str[4] == 'R' && str[5] != 'T')
5408 return 1;
5409 return 0;
5410 }
5411 if (!isdigit (str[2]))
5412 return 0;
5413 for (k = 3; str[k] != '\0'; k += 1)
5414 if (!isdigit (str[k]) && str[k] != '_')
5415 return 0;
5416 return 1;
5417 }
5418 if (str[0] == '$' && isdigit (str[1]))
5419 {
5420 for (k = 2; str[k] != '\0'; k += 1)
5421 if (!isdigit (str[k]) && str[k] != '_')
5422 return 0;
5423 return 1;
5424 }
5425 return 0;
5426 }
5427
5428 /* Return non-zero if the string starting at NAME and ending before
5429 NAME_END contains no capital letters. */
5430
5431 static int
5432 is_valid_name_for_wild_match (const char *name0)
5433 {
5434 const char *decoded_name = ada_decode (name0);
5435 int i;
5436
5437 /* If the decoded name starts with an angle bracket, it means that
5438 NAME0 does not follow the GNAT encoding format. It should then
5439 not be allowed as a possible wild match. */
5440 if (decoded_name[0] == '<')
5441 return 0;
5442
5443 for (i=0; decoded_name[i] != '\0'; i++)
5444 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5445 return 0;
5446
5447 return 1;
5448 }
5449
5450 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5451 that could start a simple name. Assumes that *NAMEP points into
5452 the string beginning at NAME0. */
5453
5454 static int
5455 advance_wild_match (const char **namep, const char *name0, int target0)
5456 {
5457 const char *name = *namep;
5458
5459 while (1)
5460 {
5461 int t0, t1;
5462
5463 t0 = *name;
5464 if (t0 == '_')
5465 {
5466 t1 = name[1];
5467 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5468 {
5469 name += 1;
5470 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5471 break;
5472 else
5473 name += 1;
5474 }
5475 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5476 || name[2] == target0))
5477 {
5478 name += 2;
5479 break;
5480 }
5481 else
5482 return 0;
5483 }
5484 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5485 name += 1;
5486 else
5487 return 0;
5488 }
5489
5490 *namep = name;
5491 return 1;
5492 }
5493
5494 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5495 informational suffixes of NAME (i.e., for which is_name_suffix is
5496 true). Assumes that PATN is a lower-cased Ada simple name. */
5497
5498 static int
5499 wild_match (const char *name, const char *patn)
5500 {
5501 const char *p;
5502 const char *name0 = name;
5503
5504 while (1)
5505 {
5506 const char *match = name;
5507
5508 if (*name == *patn)
5509 {
5510 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5511 if (*p != *name)
5512 break;
5513 if (*p == '\0' && is_name_suffix (name))
5514 return match != name0 && !is_valid_name_for_wild_match (name0);
5515
5516 if (name[-1] == '_')
5517 name -= 1;
5518 }
5519 if (!advance_wild_match (&name, name0, *patn))
5520 return 1;
5521 }
5522 }
5523
5524 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5525 informational suffix. */
5526
5527 static int
5528 full_match (const char *sym_name, const char *search_name)
5529 {
5530 return !match_name (sym_name, search_name, 0);
5531 }
5532
5533
5534 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5535 vector *defn_symbols, updating the list of symbols in OBSTACKP
5536 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5537 OBJFILE is the section containing BLOCK. */
5538
5539 static void
5540 ada_add_block_symbols (struct obstack *obstackp,
5541 struct block *block, const char *name,
5542 domain_enum domain, struct objfile *objfile,
5543 int wild)
5544 {
5545 struct block_iterator iter;
5546 int name_len = strlen (name);
5547 /* A matching argument symbol, if any. */
5548 struct symbol *arg_sym;
5549 /* Set true when we find a matching non-argument symbol. */
5550 int found_sym;
5551 struct symbol *sym;
5552
5553 arg_sym = NULL;
5554 found_sym = 0;
5555 if (wild)
5556 {
5557 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5558 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5559 {
5560 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5561 SYMBOL_DOMAIN (sym), domain)
5562 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5563 {
5564 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5565 continue;
5566 else if (SYMBOL_IS_ARGUMENT (sym))
5567 arg_sym = sym;
5568 else
5569 {
5570 found_sym = 1;
5571 add_defn_to_vec (obstackp,
5572 fixup_symbol_section (sym, objfile),
5573 block);
5574 }
5575 }
5576 }
5577 }
5578 else
5579 {
5580 for (sym = block_iter_match_first (block, name, full_match, &iter);
5581 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5582 {
5583 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5584 SYMBOL_DOMAIN (sym), domain))
5585 {
5586 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5587 {
5588 if (SYMBOL_IS_ARGUMENT (sym))
5589 arg_sym = sym;
5590 else
5591 {
5592 found_sym = 1;
5593 add_defn_to_vec (obstackp,
5594 fixup_symbol_section (sym, objfile),
5595 block);
5596 }
5597 }
5598 }
5599 }
5600 }
5601
5602 if (!found_sym && arg_sym != NULL)
5603 {
5604 add_defn_to_vec (obstackp,
5605 fixup_symbol_section (arg_sym, objfile),
5606 block);
5607 }
5608
5609 if (!wild)
5610 {
5611 arg_sym = NULL;
5612 found_sym = 0;
5613
5614 ALL_BLOCK_SYMBOLS (block, iter, sym)
5615 {
5616 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5617 SYMBOL_DOMAIN (sym), domain))
5618 {
5619 int cmp;
5620
5621 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5622 if (cmp == 0)
5623 {
5624 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5625 if (cmp == 0)
5626 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5627 name_len);
5628 }
5629
5630 if (cmp == 0
5631 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5632 {
5633 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5634 {
5635 if (SYMBOL_IS_ARGUMENT (sym))
5636 arg_sym = sym;
5637 else
5638 {
5639 found_sym = 1;
5640 add_defn_to_vec (obstackp,
5641 fixup_symbol_section (sym, objfile),
5642 block);
5643 }
5644 }
5645 }
5646 }
5647 }
5648
5649 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5650 They aren't parameters, right? */
5651 if (!found_sym && arg_sym != NULL)
5652 {
5653 add_defn_to_vec (obstackp,
5654 fixup_symbol_section (arg_sym, objfile),
5655 block);
5656 }
5657 }
5658 }
5659 \f
5660
5661 /* Symbol Completion */
5662
5663 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5664 name in a form that's appropriate for the completion. The result
5665 does not need to be deallocated, but is only good until the next call.
5666
5667 TEXT_LEN is equal to the length of TEXT.
5668 Perform a wild match if WILD_MATCH_P is set.
5669 ENCODED_P should be set if TEXT represents the start of a symbol name
5670 in its encoded form. */
5671
5672 static const char *
5673 symbol_completion_match (const char *sym_name,
5674 const char *text, int text_len,
5675 int wild_match_p, int encoded_p)
5676 {
5677 const int verbatim_match = (text[0] == '<');
5678 int match = 0;
5679
5680 if (verbatim_match)
5681 {
5682 /* Strip the leading angle bracket. */
5683 text = text + 1;
5684 text_len--;
5685 }
5686
5687 /* First, test against the fully qualified name of the symbol. */
5688
5689 if (strncmp (sym_name, text, text_len) == 0)
5690 match = 1;
5691
5692 if (match && !encoded_p)
5693 {
5694 /* One needed check before declaring a positive match is to verify
5695 that iff we are doing a verbatim match, the decoded version
5696 of the symbol name starts with '<'. Otherwise, this symbol name
5697 is not a suitable completion. */
5698 const char *sym_name_copy = sym_name;
5699 int has_angle_bracket;
5700
5701 sym_name = ada_decode (sym_name);
5702 has_angle_bracket = (sym_name[0] == '<');
5703 match = (has_angle_bracket == verbatim_match);
5704 sym_name = sym_name_copy;
5705 }
5706
5707 if (match && !verbatim_match)
5708 {
5709 /* When doing non-verbatim match, another check that needs to
5710 be done is to verify that the potentially matching symbol name
5711 does not include capital letters, because the ada-mode would
5712 not be able to understand these symbol names without the
5713 angle bracket notation. */
5714 const char *tmp;
5715
5716 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5717 if (*tmp != '\0')
5718 match = 0;
5719 }
5720
5721 /* Second: Try wild matching... */
5722
5723 if (!match && wild_match_p)
5724 {
5725 /* Since we are doing wild matching, this means that TEXT
5726 may represent an unqualified symbol name. We therefore must
5727 also compare TEXT against the unqualified name of the symbol. */
5728 sym_name = ada_unqualified_name (ada_decode (sym_name));
5729
5730 if (strncmp (sym_name, text, text_len) == 0)
5731 match = 1;
5732 }
5733
5734 /* Finally: If we found a mach, prepare the result to return. */
5735
5736 if (!match)
5737 return NULL;
5738
5739 if (verbatim_match)
5740 sym_name = add_angle_brackets (sym_name);
5741
5742 if (!encoded_p)
5743 sym_name = ada_decode (sym_name);
5744
5745 return sym_name;
5746 }
5747
5748 /* A companion function to ada_make_symbol_completion_list().
5749 Check if SYM_NAME represents a symbol which name would be suitable
5750 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5751 it is appended at the end of the given string vector SV.
5752
5753 ORIG_TEXT is the string original string from the user command
5754 that needs to be completed. WORD is the entire command on which
5755 completion should be performed. These two parameters are used to
5756 determine which part of the symbol name should be added to the
5757 completion vector.
5758 if WILD_MATCH_P is set, then wild matching is performed.
5759 ENCODED_P should be set if TEXT represents a symbol name in its
5760 encoded formed (in which case the completion should also be
5761 encoded). */
5762
5763 static void
5764 symbol_completion_add (VEC(char_ptr) **sv,
5765 const char *sym_name,
5766 const char *text, int text_len,
5767 const char *orig_text, const char *word,
5768 int wild_match_p, int encoded_p)
5769 {
5770 const char *match = symbol_completion_match (sym_name, text, text_len,
5771 wild_match_p, encoded_p);
5772 char *completion;
5773
5774 if (match == NULL)
5775 return;
5776
5777 /* We found a match, so add the appropriate completion to the given
5778 string vector. */
5779
5780 if (word == orig_text)
5781 {
5782 completion = xmalloc (strlen (match) + 5);
5783 strcpy (completion, match);
5784 }
5785 else if (word > orig_text)
5786 {
5787 /* Return some portion of sym_name. */
5788 completion = xmalloc (strlen (match) + 5);
5789 strcpy (completion, match + (word - orig_text));
5790 }
5791 else
5792 {
5793 /* Return some of ORIG_TEXT plus sym_name. */
5794 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5795 strncpy (completion, word, orig_text - word);
5796 completion[orig_text - word] = '\0';
5797 strcat (completion, match);
5798 }
5799
5800 VEC_safe_push (char_ptr, *sv, completion);
5801 }
5802
5803 /* An object of this type is passed as the user_data argument to the
5804 expand_partial_symbol_names method. */
5805 struct add_partial_datum
5806 {
5807 VEC(char_ptr) **completions;
5808 const char *text;
5809 int text_len;
5810 const char *text0;
5811 const char *word;
5812 int wild_match;
5813 int encoded;
5814 };
5815
5816 /* A callback for expand_partial_symbol_names. */
5817 static int
5818 ada_expand_partial_symbol_name (const char *name, void *user_data)
5819 {
5820 struct add_partial_datum *data = user_data;
5821
5822 return symbol_completion_match (name, data->text, data->text_len,
5823 data->wild_match, data->encoded) != NULL;
5824 }
5825
5826 /* Return a list of possible symbol names completing TEXT0. WORD is
5827 the entire command on which completion is made. */
5828
5829 static VEC (char_ptr) *
5830 ada_make_symbol_completion_list (const char *text0, const char *word,
5831 enum type_code code)
5832 {
5833 char *text;
5834 int text_len;
5835 int wild_match_p;
5836 int encoded_p;
5837 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5838 struct symbol *sym;
5839 struct symtab *s;
5840 struct minimal_symbol *msymbol;
5841 struct objfile *objfile;
5842 struct block *b, *surrounding_static_block = 0;
5843 int i;
5844 struct block_iterator iter;
5845
5846 gdb_assert (code == TYPE_CODE_UNDEF);
5847
5848 if (text0[0] == '<')
5849 {
5850 text = xstrdup (text0);
5851 make_cleanup (xfree, text);
5852 text_len = strlen (text);
5853 wild_match_p = 0;
5854 encoded_p = 1;
5855 }
5856 else
5857 {
5858 text = xstrdup (ada_encode (text0));
5859 make_cleanup (xfree, text);
5860 text_len = strlen (text);
5861 for (i = 0; i < text_len; i++)
5862 text[i] = tolower (text[i]);
5863
5864 encoded_p = (strstr (text0, "__") != NULL);
5865 /* If the name contains a ".", then the user is entering a fully
5866 qualified entity name, and the match must not be done in wild
5867 mode. Similarly, if the user wants to complete what looks like
5868 an encoded name, the match must not be done in wild mode. */
5869 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
5870 }
5871
5872 /* First, look at the partial symtab symbols. */
5873 {
5874 struct add_partial_datum data;
5875
5876 data.completions = &completions;
5877 data.text = text;
5878 data.text_len = text_len;
5879 data.text0 = text0;
5880 data.word = word;
5881 data.wild_match = wild_match_p;
5882 data.encoded = encoded_p;
5883 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5884 }
5885
5886 /* At this point scan through the misc symbol vectors and add each
5887 symbol you find to the list. Eventually we want to ignore
5888 anything that isn't a text symbol (everything else will be
5889 handled by the psymtab code above). */
5890
5891 ALL_MSYMBOLS (objfile, msymbol)
5892 {
5893 QUIT;
5894 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5895 text, text_len, text0, word, wild_match_p,
5896 encoded_p);
5897 }
5898
5899 /* Search upwards from currently selected frame (so that we can
5900 complete on local vars. */
5901
5902 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5903 {
5904 if (!BLOCK_SUPERBLOCK (b))
5905 surrounding_static_block = b; /* For elmin of dups */
5906
5907 ALL_BLOCK_SYMBOLS (b, iter, sym)
5908 {
5909 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5910 text, text_len, text0, word,
5911 wild_match_p, encoded_p);
5912 }
5913 }
5914
5915 /* Go through the symtabs and check the externs and statics for
5916 symbols which match. */
5917
5918 ALL_SYMTABS (objfile, s)
5919 {
5920 QUIT;
5921 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5922 ALL_BLOCK_SYMBOLS (b, iter, sym)
5923 {
5924 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5925 text, text_len, text0, word,
5926 wild_match_p, encoded_p);
5927 }
5928 }
5929
5930 ALL_SYMTABS (objfile, s)
5931 {
5932 QUIT;
5933 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5934 /* Don't do this block twice. */
5935 if (b == surrounding_static_block)
5936 continue;
5937 ALL_BLOCK_SYMBOLS (b, iter, sym)
5938 {
5939 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5940 text, text_len, text0, word,
5941 wild_match_p, encoded_p);
5942 }
5943 }
5944
5945 return completions;
5946 }
5947
5948 /* Field Access */
5949
5950 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5951 for tagged types. */
5952
5953 static int
5954 ada_is_dispatch_table_ptr_type (struct type *type)
5955 {
5956 const char *name;
5957
5958 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5959 return 0;
5960
5961 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5962 if (name == NULL)
5963 return 0;
5964
5965 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5966 }
5967
5968 /* Return non-zero if TYPE is an interface tag. */
5969
5970 static int
5971 ada_is_interface_tag (struct type *type)
5972 {
5973 const char *name = TYPE_NAME (type);
5974
5975 if (name == NULL)
5976 return 0;
5977
5978 return (strcmp (name, "ada__tags__interface_tag") == 0);
5979 }
5980
5981 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5982 to be invisible to users. */
5983
5984 int
5985 ada_is_ignored_field (struct type *type, int field_num)
5986 {
5987 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5988 return 1;
5989
5990 /* Check the name of that field. */
5991 {
5992 const char *name = TYPE_FIELD_NAME (type, field_num);
5993
5994 /* Anonymous field names should not be printed.
5995 brobecker/2007-02-20: I don't think this can actually happen
5996 but we don't want to print the value of annonymous fields anyway. */
5997 if (name == NULL)
5998 return 1;
5999
6000 /* Normally, fields whose name start with an underscore ("_")
6001 are fields that have been internally generated by the compiler,
6002 and thus should not be printed. The "_parent" field is special,
6003 however: This is a field internally generated by the compiler
6004 for tagged types, and it contains the components inherited from
6005 the parent type. This field should not be printed as is, but
6006 should not be ignored either. */
6007 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6008 return 1;
6009 }
6010
6011 /* If this is the dispatch table of a tagged type or an interface tag,
6012 then ignore. */
6013 if (ada_is_tagged_type (type, 1)
6014 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6015 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6016 return 1;
6017
6018 /* Not a special field, so it should not be ignored. */
6019 return 0;
6020 }
6021
6022 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6023 pointer or reference type whose ultimate target has a tag field. */
6024
6025 int
6026 ada_is_tagged_type (struct type *type, int refok)
6027 {
6028 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6029 }
6030
6031 /* True iff TYPE represents the type of X'Tag */
6032
6033 int
6034 ada_is_tag_type (struct type *type)
6035 {
6036 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6037 return 0;
6038 else
6039 {
6040 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6041
6042 return (name != NULL
6043 && strcmp (name, "ada__tags__dispatch_table") == 0);
6044 }
6045 }
6046
6047 /* The type of the tag on VAL. */
6048
6049 struct type *
6050 ada_tag_type (struct value *val)
6051 {
6052 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6053 }
6054
6055 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6056 retired at Ada 05). */
6057
6058 static int
6059 is_ada95_tag (struct value *tag)
6060 {
6061 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6062 }
6063
6064 /* The value of the tag on VAL. */
6065
6066 struct value *
6067 ada_value_tag (struct value *val)
6068 {
6069 return ada_value_struct_elt (val, "_tag", 0);
6070 }
6071
6072 /* The value of the tag on the object of type TYPE whose contents are
6073 saved at VALADDR, if it is non-null, or is at memory address
6074 ADDRESS. */
6075
6076 static struct value *
6077 value_tag_from_contents_and_address (struct type *type,
6078 const gdb_byte *valaddr,
6079 CORE_ADDR address)
6080 {
6081 int tag_byte_offset;
6082 struct type *tag_type;
6083
6084 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6085 NULL, NULL, NULL))
6086 {
6087 const gdb_byte *valaddr1 = ((valaddr == NULL)
6088 ? NULL
6089 : valaddr + tag_byte_offset);
6090 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6091
6092 return value_from_contents_and_address (tag_type, valaddr1, address1);
6093 }
6094 return NULL;
6095 }
6096
6097 static struct type *
6098 type_from_tag (struct value *tag)
6099 {
6100 const char *type_name = ada_tag_name (tag);
6101
6102 if (type_name != NULL)
6103 return ada_find_any_type (ada_encode (type_name));
6104 return NULL;
6105 }
6106
6107 /* Given a value OBJ of a tagged type, return a value of this
6108 type at the base address of the object. The base address, as
6109 defined in Ada.Tags, it is the address of the primary tag of
6110 the object, and therefore where the field values of its full
6111 view can be fetched. */
6112
6113 struct value *
6114 ada_tag_value_at_base_address (struct value *obj)
6115 {
6116 volatile struct gdb_exception e;
6117 struct value *val;
6118 LONGEST offset_to_top = 0;
6119 struct type *ptr_type, *obj_type;
6120 struct value *tag;
6121 CORE_ADDR base_address;
6122
6123 obj_type = value_type (obj);
6124
6125 /* It is the responsability of the caller to deref pointers. */
6126
6127 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6128 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6129 return obj;
6130
6131 tag = ada_value_tag (obj);
6132 if (!tag)
6133 return obj;
6134
6135 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6136
6137 if (is_ada95_tag (tag))
6138 return obj;
6139
6140 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6141 ptr_type = lookup_pointer_type (ptr_type);
6142 val = value_cast (ptr_type, tag);
6143 if (!val)
6144 return obj;
6145
6146 /* It is perfectly possible that an exception be raised while
6147 trying to determine the base address, just like for the tag;
6148 see ada_tag_name for more details. We do not print the error
6149 message for the same reason. */
6150
6151 TRY_CATCH (e, RETURN_MASK_ERROR)
6152 {
6153 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6154 }
6155
6156 if (e.reason < 0)
6157 return obj;
6158
6159 /* If offset is null, nothing to do. */
6160
6161 if (offset_to_top == 0)
6162 return obj;
6163
6164 /* -1 is a special case in Ada.Tags; however, what should be done
6165 is not quite clear from the documentation. So do nothing for
6166 now. */
6167
6168 if (offset_to_top == -1)
6169 return obj;
6170
6171 base_address = value_address (obj) - offset_to_top;
6172 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6173
6174 /* Make sure that we have a proper tag at the new address.
6175 Otherwise, offset_to_top is bogus (which can happen when
6176 the object is not initialized yet). */
6177
6178 if (!tag)
6179 return obj;
6180
6181 obj_type = type_from_tag (tag);
6182
6183 if (!obj_type)
6184 return obj;
6185
6186 return value_from_contents_and_address (obj_type, NULL, base_address);
6187 }
6188
6189 /* Return the "ada__tags__type_specific_data" type. */
6190
6191 static struct type *
6192 ada_get_tsd_type (struct inferior *inf)
6193 {
6194 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6195
6196 if (data->tsd_type == 0)
6197 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6198 return data->tsd_type;
6199 }
6200
6201 /* Return the TSD (type-specific data) associated to the given TAG.
6202 TAG is assumed to be the tag of a tagged-type entity.
6203
6204 May return NULL if we are unable to get the TSD. */
6205
6206 static struct value *
6207 ada_get_tsd_from_tag (struct value *tag)
6208 {
6209 struct value *val;
6210 struct type *type;
6211
6212 /* First option: The TSD is simply stored as a field of our TAG.
6213 Only older versions of GNAT would use this format, but we have
6214 to test it first, because there are no visible markers for
6215 the current approach except the absence of that field. */
6216
6217 val = ada_value_struct_elt (tag, "tsd", 1);
6218 if (val)
6219 return val;
6220
6221 /* Try the second representation for the dispatch table (in which
6222 there is no explicit 'tsd' field in the referent of the tag pointer,
6223 and instead the tsd pointer is stored just before the dispatch
6224 table. */
6225
6226 type = ada_get_tsd_type (current_inferior());
6227 if (type == NULL)
6228 return NULL;
6229 type = lookup_pointer_type (lookup_pointer_type (type));
6230 val = value_cast (type, tag);
6231 if (val == NULL)
6232 return NULL;
6233 return value_ind (value_ptradd (val, -1));
6234 }
6235
6236 /* Given the TSD of a tag (type-specific data), return a string
6237 containing the name of the associated type.
6238
6239 The returned value is good until the next call. May return NULL
6240 if we are unable to determine the tag name. */
6241
6242 static char *
6243 ada_tag_name_from_tsd (struct value *tsd)
6244 {
6245 static char name[1024];
6246 char *p;
6247 struct value *val;
6248
6249 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6250 if (val == NULL)
6251 return NULL;
6252 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6253 for (p = name; *p != '\0'; p += 1)
6254 if (isalpha (*p))
6255 *p = tolower (*p);
6256 return name;
6257 }
6258
6259 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6260 a C string.
6261
6262 Return NULL if the TAG is not an Ada tag, or if we were unable to
6263 determine the name of that tag. The result is good until the next
6264 call. */
6265
6266 const char *
6267 ada_tag_name (struct value *tag)
6268 {
6269 volatile struct gdb_exception e;
6270 char *name = NULL;
6271
6272 if (!ada_is_tag_type (value_type (tag)))
6273 return NULL;
6274
6275 /* It is perfectly possible that an exception be raised while trying
6276 to determine the TAG's name, even under normal circumstances:
6277 The associated variable may be uninitialized or corrupted, for
6278 instance. We do not let any exception propagate past this point.
6279 instead we return NULL.
6280
6281 We also do not print the error message either (which often is very
6282 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6283 the caller print a more meaningful message if necessary. */
6284 TRY_CATCH (e, RETURN_MASK_ERROR)
6285 {
6286 struct value *tsd = ada_get_tsd_from_tag (tag);
6287
6288 if (tsd != NULL)
6289 name = ada_tag_name_from_tsd (tsd);
6290 }
6291
6292 return name;
6293 }
6294
6295 /* The parent type of TYPE, or NULL if none. */
6296
6297 struct type *
6298 ada_parent_type (struct type *type)
6299 {
6300 int i;
6301
6302 type = ada_check_typedef (type);
6303
6304 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6305 return NULL;
6306
6307 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6308 if (ada_is_parent_field (type, i))
6309 {
6310 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6311
6312 /* If the _parent field is a pointer, then dereference it. */
6313 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6314 parent_type = TYPE_TARGET_TYPE (parent_type);
6315 /* If there is a parallel XVS type, get the actual base type. */
6316 parent_type = ada_get_base_type (parent_type);
6317
6318 return ada_check_typedef (parent_type);
6319 }
6320
6321 return NULL;
6322 }
6323
6324 /* True iff field number FIELD_NUM of structure type TYPE contains the
6325 parent-type (inherited) fields of a derived type. Assumes TYPE is
6326 a structure type with at least FIELD_NUM+1 fields. */
6327
6328 int
6329 ada_is_parent_field (struct type *type, int field_num)
6330 {
6331 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6332
6333 return (name != NULL
6334 && (strncmp (name, "PARENT", 6) == 0
6335 || strncmp (name, "_parent", 7) == 0));
6336 }
6337
6338 /* True iff field number FIELD_NUM of structure type TYPE is a
6339 transparent wrapper field (which should be silently traversed when doing
6340 field selection and flattened when printing). Assumes TYPE is a
6341 structure type with at least FIELD_NUM+1 fields. Such fields are always
6342 structures. */
6343
6344 int
6345 ada_is_wrapper_field (struct type *type, int field_num)
6346 {
6347 const char *name = TYPE_FIELD_NAME (type, field_num);
6348
6349 return (name != NULL
6350 && (strncmp (name, "PARENT", 6) == 0
6351 || strcmp (name, "REP") == 0
6352 || strncmp (name, "_parent", 7) == 0
6353 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6354 }
6355
6356 /* True iff field number FIELD_NUM of structure or union type TYPE
6357 is a variant wrapper. Assumes TYPE is a structure type with at least
6358 FIELD_NUM+1 fields. */
6359
6360 int
6361 ada_is_variant_part (struct type *type, int field_num)
6362 {
6363 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6364
6365 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6366 || (is_dynamic_field (type, field_num)
6367 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6368 == TYPE_CODE_UNION)));
6369 }
6370
6371 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6372 whose discriminants are contained in the record type OUTER_TYPE,
6373 returns the type of the controlling discriminant for the variant.
6374 May return NULL if the type could not be found. */
6375
6376 struct type *
6377 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6378 {
6379 char *name = ada_variant_discrim_name (var_type);
6380
6381 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6382 }
6383
6384 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6385 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6386 represents a 'when others' clause; otherwise 0. */
6387
6388 int
6389 ada_is_others_clause (struct type *type, int field_num)
6390 {
6391 const char *name = TYPE_FIELD_NAME (type, field_num);
6392
6393 return (name != NULL && name[0] == 'O');
6394 }
6395
6396 /* Assuming that TYPE0 is the type of the variant part of a record,
6397 returns the name of the discriminant controlling the variant.
6398 The value is valid until the next call to ada_variant_discrim_name. */
6399
6400 char *
6401 ada_variant_discrim_name (struct type *type0)
6402 {
6403 static char *result = NULL;
6404 static size_t result_len = 0;
6405 struct type *type;
6406 const char *name;
6407 const char *discrim_end;
6408 const char *discrim_start;
6409
6410 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6411 type = TYPE_TARGET_TYPE (type0);
6412 else
6413 type = type0;
6414
6415 name = ada_type_name (type);
6416
6417 if (name == NULL || name[0] == '\000')
6418 return "";
6419
6420 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6421 discrim_end -= 1)
6422 {
6423 if (strncmp (discrim_end, "___XVN", 6) == 0)
6424 break;
6425 }
6426 if (discrim_end == name)
6427 return "";
6428
6429 for (discrim_start = discrim_end; discrim_start != name + 3;
6430 discrim_start -= 1)
6431 {
6432 if (discrim_start == name + 1)
6433 return "";
6434 if ((discrim_start > name + 3
6435 && strncmp (discrim_start - 3, "___", 3) == 0)
6436 || discrim_start[-1] == '.')
6437 break;
6438 }
6439
6440 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6441 strncpy (result, discrim_start, discrim_end - discrim_start);
6442 result[discrim_end - discrim_start] = '\0';
6443 return result;
6444 }
6445
6446 /* Scan STR for a subtype-encoded number, beginning at position K.
6447 Put the position of the character just past the number scanned in
6448 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6449 Return 1 if there was a valid number at the given position, and 0
6450 otherwise. A "subtype-encoded" number consists of the absolute value
6451 in decimal, followed by the letter 'm' to indicate a negative number.
6452 Assumes 0m does not occur. */
6453
6454 int
6455 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6456 {
6457 ULONGEST RU;
6458
6459 if (!isdigit (str[k]))
6460 return 0;
6461
6462 /* Do it the hard way so as not to make any assumption about
6463 the relationship of unsigned long (%lu scan format code) and
6464 LONGEST. */
6465 RU = 0;
6466 while (isdigit (str[k]))
6467 {
6468 RU = RU * 10 + (str[k] - '0');
6469 k += 1;
6470 }
6471
6472 if (str[k] == 'm')
6473 {
6474 if (R != NULL)
6475 *R = (-(LONGEST) (RU - 1)) - 1;
6476 k += 1;
6477 }
6478 else if (R != NULL)
6479 *R = (LONGEST) RU;
6480
6481 /* NOTE on the above: Technically, C does not say what the results of
6482 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6483 number representable as a LONGEST (although either would probably work
6484 in most implementations). When RU>0, the locution in the then branch
6485 above is always equivalent to the negative of RU. */
6486
6487 if (new_k != NULL)
6488 *new_k = k;
6489 return 1;
6490 }
6491
6492 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6493 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6494 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6495
6496 int
6497 ada_in_variant (LONGEST val, struct type *type, int field_num)
6498 {
6499 const char *name = TYPE_FIELD_NAME (type, field_num);
6500 int p;
6501
6502 p = 0;
6503 while (1)
6504 {
6505 switch (name[p])
6506 {
6507 case '\0':
6508 return 0;
6509 case 'S':
6510 {
6511 LONGEST W;
6512
6513 if (!ada_scan_number (name, p + 1, &W, &p))
6514 return 0;
6515 if (val == W)
6516 return 1;
6517 break;
6518 }
6519 case 'R':
6520 {
6521 LONGEST L, U;
6522
6523 if (!ada_scan_number (name, p + 1, &L, &p)
6524 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6525 return 0;
6526 if (val >= L && val <= U)
6527 return 1;
6528 break;
6529 }
6530 case 'O':
6531 return 1;
6532 default:
6533 return 0;
6534 }
6535 }
6536 }
6537
6538 /* FIXME: Lots of redundancy below. Try to consolidate. */
6539
6540 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6541 ARG_TYPE, extract and return the value of one of its (non-static)
6542 fields. FIELDNO says which field. Differs from value_primitive_field
6543 only in that it can handle packed values of arbitrary type. */
6544
6545 static struct value *
6546 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6547 struct type *arg_type)
6548 {
6549 struct type *type;
6550
6551 arg_type = ada_check_typedef (arg_type);
6552 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6553
6554 /* Handle packed fields. */
6555
6556 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6557 {
6558 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6559 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6560
6561 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6562 offset + bit_pos / 8,
6563 bit_pos % 8, bit_size, type);
6564 }
6565 else
6566 return value_primitive_field (arg1, offset, fieldno, arg_type);
6567 }
6568
6569 /* Find field with name NAME in object of type TYPE. If found,
6570 set the following for each argument that is non-null:
6571 - *FIELD_TYPE_P to the field's type;
6572 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6573 an object of that type;
6574 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6575 - *BIT_SIZE_P to its size in bits if the field is packed, and
6576 0 otherwise;
6577 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6578 fields up to but not including the desired field, or by the total
6579 number of fields if not found. A NULL value of NAME never
6580 matches; the function just counts visible fields in this case.
6581
6582 Returns 1 if found, 0 otherwise. */
6583
6584 static int
6585 find_struct_field (const char *name, struct type *type, int offset,
6586 struct type **field_type_p,
6587 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6588 int *index_p)
6589 {
6590 int i;
6591
6592 type = ada_check_typedef (type);
6593
6594 if (field_type_p != NULL)
6595 *field_type_p = NULL;
6596 if (byte_offset_p != NULL)
6597 *byte_offset_p = 0;
6598 if (bit_offset_p != NULL)
6599 *bit_offset_p = 0;
6600 if (bit_size_p != NULL)
6601 *bit_size_p = 0;
6602
6603 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6604 {
6605 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6606 int fld_offset = offset + bit_pos / 8;
6607 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6608
6609 if (t_field_name == NULL)
6610 continue;
6611
6612 else if (name != NULL && field_name_match (t_field_name, name))
6613 {
6614 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6615
6616 if (field_type_p != NULL)
6617 *field_type_p = TYPE_FIELD_TYPE (type, i);
6618 if (byte_offset_p != NULL)
6619 *byte_offset_p = fld_offset;
6620 if (bit_offset_p != NULL)
6621 *bit_offset_p = bit_pos % 8;
6622 if (bit_size_p != NULL)
6623 *bit_size_p = bit_size;
6624 return 1;
6625 }
6626 else if (ada_is_wrapper_field (type, i))
6627 {
6628 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6629 field_type_p, byte_offset_p, bit_offset_p,
6630 bit_size_p, index_p))
6631 return 1;
6632 }
6633 else if (ada_is_variant_part (type, i))
6634 {
6635 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6636 fixed type?? */
6637 int j;
6638 struct type *field_type
6639 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6640
6641 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6642 {
6643 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6644 fld_offset
6645 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6646 field_type_p, byte_offset_p,
6647 bit_offset_p, bit_size_p, index_p))
6648 return 1;
6649 }
6650 }
6651 else if (index_p != NULL)
6652 *index_p += 1;
6653 }
6654 return 0;
6655 }
6656
6657 /* Number of user-visible fields in record type TYPE. */
6658
6659 static int
6660 num_visible_fields (struct type *type)
6661 {
6662 int n;
6663
6664 n = 0;
6665 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6666 return n;
6667 }
6668
6669 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6670 and search in it assuming it has (class) type TYPE.
6671 If found, return value, else return NULL.
6672
6673 Searches recursively through wrapper fields (e.g., '_parent'). */
6674
6675 static struct value *
6676 ada_search_struct_field (char *name, struct value *arg, int offset,
6677 struct type *type)
6678 {
6679 int i;
6680
6681 type = ada_check_typedef (type);
6682 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6683 {
6684 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6685
6686 if (t_field_name == NULL)
6687 continue;
6688
6689 else if (field_name_match (t_field_name, name))
6690 return ada_value_primitive_field (arg, offset, i, type);
6691
6692 else if (ada_is_wrapper_field (type, i))
6693 {
6694 struct value *v = /* Do not let indent join lines here. */
6695 ada_search_struct_field (name, arg,
6696 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6697 TYPE_FIELD_TYPE (type, i));
6698
6699 if (v != NULL)
6700 return v;
6701 }
6702
6703 else if (ada_is_variant_part (type, i))
6704 {
6705 /* PNH: Do we ever get here? See find_struct_field. */
6706 int j;
6707 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6708 i));
6709 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6710
6711 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6712 {
6713 struct value *v = ada_search_struct_field /* Force line
6714 break. */
6715 (name, arg,
6716 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6717 TYPE_FIELD_TYPE (field_type, j));
6718
6719 if (v != NULL)
6720 return v;
6721 }
6722 }
6723 }
6724 return NULL;
6725 }
6726
6727 static struct value *ada_index_struct_field_1 (int *, struct value *,
6728 int, struct type *);
6729
6730
6731 /* Return field #INDEX in ARG, where the index is that returned by
6732 * find_struct_field through its INDEX_P argument. Adjust the address
6733 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6734 * If found, return value, else return NULL. */
6735
6736 static struct value *
6737 ada_index_struct_field (int index, struct value *arg, int offset,
6738 struct type *type)
6739 {
6740 return ada_index_struct_field_1 (&index, arg, offset, type);
6741 }
6742
6743
6744 /* Auxiliary function for ada_index_struct_field. Like
6745 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6746 * *INDEX_P. */
6747
6748 static struct value *
6749 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6750 struct type *type)
6751 {
6752 int i;
6753 type = ada_check_typedef (type);
6754
6755 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6756 {
6757 if (TYPE_FIELD_NAME (type, i) == NULL)
6758 continue;
6759 else if (ada_is_wrapper_field (type, i))
6760 {
6761 struct value *v = /* Do not let indent join lines here. */
6762 ada_index_struct_field_1 (index_p, arg,
6763 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6764 TYPE_FIELD_TYPE (type, i));
6765
6766 if (v != NULL)
6767 return v;
6768 }
6769
6770 else if (ada_is_variant_part (type, i))
6771 {
6772 /* PNH: Do we ever get here? See ada_search_struct_field,
6773 find_struct_field. */
6774 error (_("Cannot assign this kind of variant record"));
6775 }
6776 else if (*index_p == 0)
6777 return ada_value_primitive_field (arg, offset, i, type);
6778 else
6779 *index_p -= 1;
6780 }
6781 return NULL;
6782 }
6783
6784 /* Given ARG, a value of type (pointer or reference to a)*
6785 structure/union, extract the component named NAME from the ultimate
6786 target structure/union and return it as a value with its
6787 appropriate type.
6788
6789 The routine searches for NAME among all members of the structure itself
6790 and (recursively) among all members of any wrapper members
6791 (e.g., '_parent').
6792
6793 If NO_ERR, then simply return NULL in case of error, rather than
6794 calling error. */
6795
6796 struct value *
6797 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6798 {
6799 struct type *t, *t1;
6800 struct value *v;
6801
6802 v = NULL;
6803 t1 = t = ada_check_typedef (value_type (arg));
6804 if (TYPE_CODE (t) == TYPE_CODE_REF)
6805 {
6806 t1 = TYPE_TARGET_TYPE (t);
6807 if (t1 == NULL)
6808 goto BadValue;
6809 t1 = ada_check_typedef (t1);
6810 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6811 {
6812 arg = coerce_ref (arg);
6813 t = t1;
6814 }
6815 }
6816
6817 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6818 {
6819 t1 = TYPE_TARGET_TYPE (t);
6820 if (t1 == NULL)
6821 goto BadValue;
6822 t1 = ada_check_typedef (t1);
6823 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6824 {
6825 arg = value_ind (arg);
6826 t = t1;
6827 }
6828 else
6829 break;
6830 }
6831
6832 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6833 goto BadValue;
6834
6835 if (t1 == t)
6836 v = ada_search_struct_field (name, arg, 0, t);
6837 else
6838 {
6839 int bit_offset, bit_size, byte_offset;
6840 struct type *field_type;
6841 CORE_ADDR address;
6842
6843 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6844 address = value_address (ada_value_ind (arg));
6845 else
6846 address = value_address (ada_coerce_ref (arg));
6847
6848 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6849 if (find_struct_field (name, t1, 0,
6850 &field_type, &byte_offset, &bit_offset,
6851 &bit_size, NULL))
6852 {
6853 if (bit_size != 0)
6854 {
6855 if (TYPE_CODE (t) == TYPE_CODE_REF)
6856 arg = ada_coerce_ref (arg);
6857 else
6858 arg = ada_value_ind (arg);
6859 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6860 bit_offset, bit_size,
6861 field_type);
6862 }
6863 else
6864 v = value_at_lazy (field_type, address + byte_offset);
6865 }
6866 }
6867
6868 if (v != NULL || no_err)
6869 return v;
6870 else
6871 error (_("There is no member named %s."), name);
6872
6873 BadValue:
6874 if (no_err)
6875 return NULL;
6876 else
6877 error (_("Attempt to extract a component of "
6878 "a value that is not a record."));
6879 }
6880
6881 /* Given a type TYPE, look up the type of the component of type named NAME.
6882 If DISPP is non-null, add its byte displacement from the beginning of a
6883 structure (pointed to by a value) of type TYPE to *DISPP (does not
6884 work for packed fields).
6885
6886 Matches any field whose name has NAME as a prefix, possibly
6887 followed by "___".
6888
6889 TYPE can be either a struct or union. If REFOK, TYPE may also
6890 be a (pointer or reference)+ to a struct or union, and the
6891 ultimate target type will be searched.
6892
6893 Looks recursively into variant clauses and parent types.
6894
6895 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6896 TYPE is not a type of the right kind. */
6897
6898 static struct type *
6899 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6900 int noerr, int *dispp)
6901 {
6902 int i;
6903
6904 if (name == NULL)
6905 goto BadName;
6906
6907 if (refok && type != NULL)
6908 while (1)
6909 {
6910 type = ada_check_typedef (type);
6911 if (TYPE_CODE (type) != TYPE_CODE_PTR
6912 && TYPE_CODE (type) != TYPE_CODE_REF)
6913 break;
6914 type = TYPE_TARGET_TYPE (type);
6915 }
6916
6917 if (type == NULL
6918 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6919 && TYPE_CODE (type) != TYPE_CODE_UNION))
6920 {
6921 if (noerr)
6922 return NULL;
6923 else
6924 {
6925 target_terminal_ours ();
6926 gdb_flush (gdb_stdout);
6927 if (type == NULL)
6928 error (_("Type (null) is not a structure or union type"));
6929 else
6930 {
6931 /* XXX: type_sprint */
6932 fprintf_unfiltered (gdb_stderr, _("Type "));
6933 type_print (type, "", gdb_stderr, -1);
6934 error (_(" is not a structure or union type"));
6935 }
6936 }
6937 }
6938
6939 type = to_static_fixed_type (type);
6940
6941 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6942 {
6943 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6944 struct type *t;
6945 int disp;
6946
6947 if (t_field_name == NULL)
6948 continue;
6949
6950 else if (field_name_match (t_field_name, name))
6951 {
6952 if (dispp != NULL)
6953 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6954 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6955 }
6956
6957 else if (ada_is_wrapper_field (type, i))
6958 {
6959 disp = 0;
6960 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6961 0, 1, &disp);
6962 if (t != NULL)
6963 {
6964 if (dispp != NULL)
6965 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6966 return t;
6967 }
6968 }
6969
6970 else if (ada_is_variant_part (type, i))
6971 {
6972 int j;
6973 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6974 i));
6975
6976 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6977 {
6978 /* FIXME pnh 2008/01/26: We check for a field that is
6979 NOT wrapped in a struct, since the compiler sometimes
6980 generates these for unchecked variant types. Revisit
6981 if the compiler changes this practice. */
6982 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6983 disp = 0;
6984 if (v_field_name != NULL
6985 && field_name_match (v_field_name, name))
6986 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6987 else
6988 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6989 j),
6990 name, 0, 1, &disp);
6991
6992 if (t != NULL)
6993 {
6994 if (dispp != NULL)
6995 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6996 return t;
6997 }
6998 }
6999 }
7000
7001 }
7002
7003 BadName:
7004 if (!noerr)
7005 {
7006 target_terminal_ours ();
7007 gdb_flush (gdb_stdout);
7008 if (name == NULL)
7009 {
7010 /* XXX: type_sprint */
7011 fprintf_unfiltered (gdb_stderr, _("Type "));
7012 type_print (type, "", gdb_stderr, -1);
7013 error (_(" has no component named <null>"));
7014 }
7015 else
7016 {
7017 /* XXX: type_sprint */
7018 fprintf_unfiltered (gdb_stderr, _("Type "));
7019 type_print (type, "", gdb_stderr, -1);
7020 error (_(" has no component named %s"), name);
7021 }
7022 }
7023
7024 return NULL;
7025 }
7026
7027 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7028 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7029 represents an unchecked union (that is, the variant part of a
7030 record that is named in an Unchecked_Union pragma). */
7031
7032 static int
7033 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7034 {
7035 char *discrim_name = ada_variant_discrim_name (var_type);
7036
7037 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7038 == NULL);
7039 }
7040
7041
7042 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7043 within a value of type OUTER_TYPE that is stored in GDB at
7044 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7045 numbering from 0) is applicable. Returns -1 if none are. */
7046
7047 int
7048 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7049 const gdb_byte *outer_valaddr)
7050 {
7051 int others_clause;
7052 int i;
7053 char *discrim_name = ada_variant_discrim_name (var_type);
7054 struct value *outer;
7055 struct value *discrim;
7056 LONGEST discrim_val;
7057
7058 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7059 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7060 if (discrim == NULL)
7061 return -1;
7062 discrim_val = value_as_long (discrim);
7063
7064 others_clause = -1;
7065 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7066 {
7067 if (ada_is_others_clause (var_type, i))
7068 others_clause = i;
7069 else if (ada_in_variant (discrim_val, var_type, i))
7070 return i;
7071 }
7072
7073 return others_clause;
7074 }
7075 \f
7076
7077
7078 /* Dynamic-Sized Records */
7079
7080 /* Strategy: The type ostensibly attached to a value with dynamic size
7081 (i.e., a size that is not statically recorded in the debugging
7082 data) does not accurately reflect the size or layout of the value.
7083 Our strategy is to convert these values to values with accurate,
7084 conventional types that are constructed on the fly. */
7085
7086 /* There is a subtle and tricky problem here. In general, we cannot
7087 determine the size of dynamic records without its data. However,
7088 the 'struct value' data structure, which GDB uses to represent
7089 quantities in the inferior process (the target), requires the size
7090 of the type at the time of its allocation in order to reserve space
7091 for GDB's internal copy of the data. That's why the
7092 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7093 rather than struct value*s.
7094
7095 However, GDB's internal history variables ($1, $2, etc.) are
7096 struct value*s containing internal copies of the data that are not, in
7097 general, the same as the data at their corresponding addresses in
7098 the target. Fortunately, the types we give to these values are all
7099 conventional, fixed-size types (as per the strategy described
7100 above), so that we don't usually have to perform the
7101 'to_fixed_xxx_type' conversions to look at their values.
7102 Unfortunately, there is one exception: if one of the internal
7103 history variables is an array whose elements are unconstrained
7104 records, then we will need to create distinct fixed types for each
7105 element selected. */
7106
7107 /* The upshot of all of this is that many routines take a (type, host
7108 address, target address) triple as arguments to represent a value.
7109 The host address, if non-null, is supposed to contain an internal
7110 copy of the relevant data; otherwise, the program is to consult the
7111 target at the target address. */
7112
7113 /* Assuming that VAL0 represents a pointer value, the result of
7114 dereferencing it. Differs from value_ind in its treatment of
7115 dynamic-sized types. */
7116
7117 struct value *
7118 ada_value_ind (struct value *val0)
7119 {
7120 struct value *val = value_ind (val0);
7121
7122 if (ada_is_tagged_type (value_type (val), 0))
7123 val = ada_tag_value_at_base_address (val);
7124
7125 return ada_to_fixed_value (val);
7126 }
7127
7128 /* The value resulting from dereferencing any "reference to"
7129 qualifiers on VAL0. */
7130
7131 static struct value *
7132 ada_coerce_ref (struct value *val0)
7133 {
7134 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7135 {
7136 struct value *val = val0;
7137
7138 val = coerce_ref (val);
7139
7140 if (ada_is_tagged_type (value_type (val), 0))
7141 val = ada_tag_value_at_base_address (val);
7142
7143 return ada_to_fixed_value (val);
7144 }
7145 else
7146 return val0;
7147 }
7148
7149 /* Return OFF rounded upward if necessary to a multiple of
7150 ALIGNMENT (a power of 2). */
7151
7152 static unsigned int
7153 align_value (unsigned int off, unsigned int alignment)
7154 {
7155 return (off + alignment - 1) & ~(alignment - 1);
7156 }
7157
7158 /* Return the bit alignment required for field #F of template type TYPE. */
7159
7160 static unsigned int
7161 field_alignment (struct type *type, int f)
7162 {
7163 const char *name = TYPE_FIELD_NAME (type, f);
7164 int len;
7165 int align_offset;
7166
7167 /* The field name should never be null, unless the debugging information
7168 is somehow malformed. In this case, we assume the field does not
7169 require any alignment. */
7170 if (name == NULL)
7171 return 1;
7172
7173 len = strlen (name);
7174
7175 if (!isdigit (name[len - 1]))
7176 return 1;
7177
7178 if (isdigit (name[len - 2]))
7179 align_offset = len - 2;
7180 else
7181 align_offset = len - 1;
7182
7183 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7184 return TARGET_CHAR_BIT;
7185
7186 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7187 }
7188
7189 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7190
7191 static struct symbol *
7192 ada_find_any_type_symbol (const char *name)
7193 {
7194 struct symbol *sym;
7195
7196 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7197 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7198 return sym;
7199
7200 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7201 return sym;
7202 }
7203
7204 /* Find a type named NAME. Ignores ambiguity. This routine will look
7205 solely for types defined by debug info, it will not search the GDB
7206 primitive types. */
7207
7208 static struct type *
7209 ada_find_any_type (const char *name)
7210 {
7211 struct symbol *sym = ada_find_any_type_symbol (name);
7212
7213 if (sym != NULL)
7214 return SYMBOL_TYPE (sym);
7215
7216 return NULL;
7217 }
7218
7219 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7220 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7221 symbol, in which case it is returned. Otherwise, this looks for
7222 symbols whose name is that of NAME_SYM suffixed with "___XR".
7223 Return symbol if found, and NULL otherwise. */
7224
7225 struct symbol *
7226 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7227 {
7228 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7229 struct symbol *sym;
7230
7231 if (strstr (name, "___XR") != NULL)
7232 return name_sym;
7233
7234 sym = find_old_style_renaming_symbol (name, block);
7235
7236 if (sym != NULL)
7237 return sym;
7238
7239 /* Not right yet. FIXME pnh 7/20/2007. */
7240 sym = ada_find_any_type_symbol (name);
7241 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7242 return sym;
7243 else
7244 return NULL;
7245 }
7246
7247 static struct symbol *
7248 find_old_style_renaming_symbol (const char *name, const struct block *block)
7249 {
7250 const struct symbol *function_sym = block_linkage_function (block);
7251 char *rename;
7252
7253 if (function_sym != NULL)
7254 {
7255 /* If the symbol is defined inside a function, NAME is not fully
7256 qualified. This means we need to prepend the function name
7257 as well as adding the ``___XR'' suffix to build the name of
7258 the associated renaming symbol. */
7259 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7260 /* Function names sometimes contain suffixes used
7261 for instance to qualify nested subprograms. When building
7262 the XR type name, we need to make sure that this suffix is
7263 not included. So do not include any suffix in the function
7264 name length below. */
7265 int function_name_len = ada_name_prefix_len (function_name);
7266 const int rename_len = function_name_len + 2 /* "__" */
7267 + strlen (name) + 6 /* "___XR\0" */ ;
7268
7269 /* Strip the suffix if necessary. */
7270 ada_remove_trailing_digits (function_name, &function_name_len);
7271 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7272 ada_remove_Xbn_suffix (function_name, &function_name_len);
7273
7274 /* Library-level functions are a special case, as GNAT adds
7275 a ``_ada_'' prefix to the function name to avoid namespace
7276 pollution. However, the renaming symbols themselves do not
7277 have this prefix, so we need to skip this prefix if present. */
7278 if (function_name_len > 5 /* "_ada_" */
7279 && strstr (function_name, "_ada_") == function_name)
7280 {
7281 function_name += 5;
7282 function_name_len -= 5;
7283 }
7284
7285 rename = (char *) alloca (rename_len * sizeof (char));
7286 strncpy (rename, function_name, function_name_len);
7287 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7288 "__%s___XR", name);
7289 }
7290 else
7291 {
7292 const int rename_len = strlen (name) + 6;
7293
7294 rename = (char *) alloca (rename_len * sizeof (char));
7295 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7296 }
7297
7298 return ada_find_any_type_symbol (rename);
7299 }
7300
7301 /* Because of GNAT encoding conventions, several GDB symbols may match a
7302 given type name. If the type denoted by TYPE0 is to be preferred to
7303 that of TYPE1 for purposes of type printing, return non-zero;
7304 otherwise return 0. */
7305
7306 int
7307 ada_prefer_type (struct type *type0, struct type *type1)
7308 {
7309 if (type1 == NULL)
7310 return 1;
7311 else if (type0 == NULL)
7312 return 0;
7313 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7314 return 1;
7315 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7316 return 0;
7317 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7318 return 1;
7319 else if (ada_is_constrained_packed_array_type (type0))
7320 return 1;
7321 else if (ada_is_array_descriptor_type (type0)
7322 && !ada_is_array_descriptor_type (type1))
7323 return 1;
7324 else
7325 {
7326 const char *type0_name = type_name_no_tag (type0);
7327 const char *type1_name = type_name_no_tag (type1);
7328
7329 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7330 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7331 return 1;
7332 }
7333 return 0;
7334 }
7335
7336 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7337 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7338
7339 const char *
7340 ada_type_name (struct type *type)
7341 {
7342 if (type == NULL)
7343 return NULL;
7344 else if (TYPE_NAME (type) != NULL)
7345 return TYPE_NAME (type);
7346 else
7347 return TYPE_TAG_NAME (type);
7348 }
7349
7350 /* Search the list of "descriptive" types associated to TYPE for a type
7351 whose name is NAME. */
7352
7353 static struct type *
7354 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7355 {
7356 struct type *result;
7357
7358 /* If there no descriptive-type info, then there is no parallel type
7359 to be found. */
7360 if (!HAVE_GNAT_AUX_INFO (type))
7361 return NULL;
7362
7363 result = TYPE_DESCRIPTIVE_TYPE (type);
7364 while (result != NULL)
7365 {
7366 const char *result_name = ada_type_name (result);
7367
7368 if (result_name == NULL)
7369 {
7370 warning (_("unexpected null name on descriptive type"));
7371 return NULL;
7372 }
7373
7374 /* If the names match, stop. */
7375 if (strcmp (result_name, name) == 0)
7376 break;
7377
7378 /* Otherwise, look at the next item on the list, if any. */
7379 if (HAVE_GNAT_AUX_INFO (result))
7380 result = TYPE_DESCRIPTIVE_TYPE (result);
7381 else
7382 result = NULL;
7383 }
7384
7385 /* If we didn't find a match, see whether this is a packed array. With
7386 older compilers, the descriptive type information is either absent or
7387 irrelevant when it comes to packed arrays so the above lookup fails.
7388 Fall back to using a parallel lookup by name in this case. */
7389 if (result == NULL && ada_is_constrained_packed_array_type (type))
7390 return ada_find_any_type (name);
7391
7392 return result;
7393 }
7394
7395 /* Find a parallel type to TYPE with the specified NAME, using the
7396 descriptive type taken from the debugging information, if available,
7397 and otherwise using the (slower) name-based method. */
7398
7399 static struct type *
7400 ada_find_parallel_type_with_name (struct type *type, const char *name)
7401 {
7402 struct type *result = NULL;
7403
7404 if (HAVE_GNAT_AUX_INFO (type))
7405 result = find_parallel_type_by_descriptive_type (type, name);
7406 else
7407 result = ada_find_any_type (name);
7408
7409 return result;
7410 }
7411
7412 /* Same as above, but specify the name of the parallel type by appending
7413 SUFFIX to the name of TYPE. */
7414
7415 struct type *
7416 ada_find_parallel_type (struct type *type, const char *suffix)
7417 {
7418 char *name;
7419 const char *typename = ada_type_name (type);
7420 int len;
7421
7422 if (typename == NULL)
7423 return NULL;
7424
7425 len = strlen (typename);
7426
7427 name = (char *) alloca (len + strlen (suffix) + 1);
7428
7429 strcpy (name, typename);
7430 strcpy (name + len, suffix);
7431
7432 return ada_find_parallel_type_with_name (type, name);
7433 }
7434
7435 /* If TYPE is a variable-size record type, return the corresponding template
7436 type describing its fields. Otherwise, return NULL. */
7437
7438 static struct type *
7439 dynamic_template_type (struct type *type)
7440 {
7441 type = ada_check_typedef (type);
7442
7443 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7444 || ada_type_name (type) == NULL)
7445 return NULL;
7446 else
7447 {
7448 int len = strlen (ada_type_name (type));
7449
7450 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7451 return type;
7452 else
7453 return ada_find_parallel_type (type, "___XVE");
7454 }
7455 }
7456
7457 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7458 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7459
7460 static int
7461 is_dynamic_field (struct type *templ_type, int field_num)
7462 {
7463 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7464
7465 return name != NULL
7466 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7467 && strstr (name, "___XVL") != NULL;
7468 }
7469
7470 /* The index of the variant field of TYPE, or -1 if TYPE does not
7471 represent a variant record type. */
7472
7473 static int
7474 variant_field_index (struct type *type)
7475 {
7476 int f;
7477
7478 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7479 return -1;
7480
7481 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7482 {
7483 if (ada_is_variant_part (type, f))
7484 return f;
7485 }
7486 return -1;
7487 }
7488
7489 /* A record type with no fields. */
7490
7491 static struct type *
7492 empty_record (struct type *template)
7493 {
7494 struct type *type = alloc_type_copy (template);
7495
7496 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7497 TYPE_NFIELDS (type) = 0;
7498 TYPE_FIELDS (type) = NULL;
7499 INIT_CPLUS_SPECIFIC (type);
7500 TYPE_NAME (type) = "<empty>";
7501 TYPE_TAG_NAME (type) = NULL;
7502 TYPE_LENGTH (type) = 0;
7503 return type;
7504 }
7505
7506 /* An ordinary record type (with fixed-length fields) that describes
7507 the value of type TYPE at VALADDR or ADDRESS (see comments at
7508 the beginning of this section) VAL according to GNAT conventions.
7509 DVAL0 should describe the (portion of a) record that contains any
7510 necessary discriminants. It should be NULL if value_type (VAL) is
7511 an outer-level type (i.e., as opposed to a branch of a variant.) A
7512 variant field (unless unchecked) is replaced by a particular branch
7513 of the variant.
7514
7515 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7516 length are not statically known are discarded. As a consequence,
7517 VALADDR, ADDRESS and DVAL0 are ignored.
7518
7519 NOTE: Limitations: For now, we assume that dynamic fields and
7520 variants occupy whole numbers of bytes. However, they need not be
7521 byte-aligned. */
7522
7523 struct type *
7524 ada_template_to_fixed_record_type_1 (struct type *type,
7525 const gdb_byte *valaddr,
7526 CORE_ADDR address, struct value *dval0,
7527 int keep_dynamic_fields)
7528 {
7529 struct value *mark = value_mark ();
7530 struct value *dval;
7531 struct type *rtype;
7532 int nfields, bit_len;
7533 int variant_field;
7534 long off;
7535 int fld_bit_len;
7536 int f;
7537
7538 /* Compute the number of fields in this record type that are going
7539 to be processed: unless keep_dynamic_fields, this includes only
7540 fields whose position and length are static will be processed. */
7541 if (keep_dynamic_fields)
7542 nfields = TYPE_NFIELDS (type);
7543 else
7544 {
7545 nfields = 0;
7546 while (nfields < TYPE_NFIELDS (type)
7547 && !ada_is_variant_part (type, nfields)
7548 && !is_dynamic_field (type, nfields))
7549 nfields++;
7550 }
7551
7552 rtype = alloc_type_copy (type);
7553 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7554 INIT_CPLUS_SPECIFIC (rtype);
7555 TYPE_NFIELDS (rtype) = nfields;
7556 TYPE_FIELDS (rtype) = (struct field *)
7557 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7558 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7559 TYPE_NAME (rtype) = ada_type_name (type);
7560 TYPE_TAG_NAME (rtype) = NULL;
7561 TYPE_FIXED_INSTANCE (rtype) = 1;
7562
7563 off = 0;
7564 bit_len = 0;
7565 variant_field = -1;
7566
7567 for (f = 0; f < nfields; f += 1)
7568 {
7569 off = align_value (off, field_alignment (type, f))
7570 + TYPE_FIELD_BITPOS (type, f);
7571 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7572 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7573
7574 if (ada_is_variant_part (type, f))
7575 {
7576 variant_field = f;
7577 fld_bit_len = 0;
7578 }
7579 else if (is_dynamic_field (type, f))
7580 {
7581 const gdb_byte *field_valaddr = valaddr;
7582 CORE_ADDR field_address = address;
7583 struct type *field_type =
7584 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7585
7586 if (dval0 == NULL)
7587 {
7588 /* rtype's length is computed based on the run-time
7589 value of discriminants. If the discriminants are not
7590 initialized, the type size may be completely bogus and
7591 GDB may fail to allocate a value for it. So check the
7592 size first before creating the value. */
7593 check_size (rtype);
7594 dval = value_from_contents_and_address (rtype, valaddr, address);
7595 }
7596 else
7597 dval = dval0;
7598
7599 /* If the type referenced by this field is an aligner type, we need
7600 to unwrap that aligner type, because its size might not be set.
7601 Keeping the aligner type would cause us to compute the wrong
7602 size for this field, impacting the offset of the all the fields
7603 that follow this one. */
7604 if (ada_is_aligner_type (field_type))
7605 {
7606 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7607
7608 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7609 field_address = cond_offset_target (field_address, field_offset);
7610 field_type = ada_aligned_type (field_type);
7611 }
7612
7613 field_valaddr = cond_offset_host (field_valaddr,
7614 off / TARGET_CHAR_BIT);
7615 field_address = cond_offset_target (field_address,
7616 off / TARGET_CHAR_BIT);
7617
7618 /* Get the fixed type of the field. Note that, in this case,
7619 we do not want to get the real type out of the tag: if
7620 the current field is the parent part of a tagged record,
7621 we will get the tag of the object. Clearly wrong: the real
7622 type of the parent is not the real type of the child. We
7623 would end up in an infinite loop. */
7624 field_type = ada_get_base_type (field_type);
7625 field_type = ada_to_fixed_type (field_type, field_valaddr,
7626 field_address, dval, 0);
7627 /* If the field size is already larger than the maximum
7628 object size, then the record itself will necessarily
7629 be larger than the maximum object size. We need to make
7630 this check now, because the size might be so ridiculously
7631 large (due to an uninitialized variable in the inferior)
7632 that it would cause an overflow when adding it to the
7633 record size. */
7634 check_size (field_type);
7635
7636 TYPE_FIELD_TYPE (rtype, f) = field_type;
7637 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7638 /* The multiplication can potentially overflow. But because
7639 the field length has been size-checked just above, and
7640 assuming that the maximum size is a reasonable value,
7641 an overflow should not happen in practice. So rather than
7642 adding overflow recovery code to this already complex code,
7643 we just assume that it's not going to happen. */
7644 fld_bit_len =
7645 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7646 }
7647 else
7648 {
7649 /* Note: If this field's type is a typedef, it is important
7650 to preserve the typedef layer.
7651
7652 Otherwise, we might be transforming a typedef to a fat
7653 pointer (encoding a pointer to an unconstrained array),
7654 into a basic fat pointer (encoding an unconstrained
7655 array). As both types are implemented using the same
7656 structure, the typedef is the only clue which allows us
7657 to distinguish between the two options. Stripping it
7658 would prevent us from printing this field appropriately. */
7659 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7660 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7661 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7662 fld_bit_len =
7663 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7664 else
7665 {
7666 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7667
7668 /* We need to be careful of typedefs when computing
7669 the length of our field. If this is a typedef,
7670 get the length of the target type, not the length
7671 of the typedef. */
7672 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7673 field_type = ada_typedef_target_type (field_type);
7674
7675 fld_bit_len =
7676 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7677 }
7678 }
7679 if (off + fld_bit_len > bit_len)
7680 bit_len = off + fld_bit_len;
7681 off += fld_bit_len;
7682 TYPE_LENGTH (rtype) =
7683 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7684 }
7685
7686 /* We handle the variant part, if any, at the end because of certain
7687 odd cases in which it is re-ordered so as NOT to be the last field of
7688 the record. This can happen in the presence of representation
7689 clauses. */
7690 if (variant_field >= 0)
7691 {
7692 struct type *branch_type;
7693
7694 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7695
7696 if (dval0 == NULL)
7697 dval = value_from_contents_and_address (rtype, valaddr, address);
7698 else
7699 dval = dval0;
7700
7701 branch_type =
7702 to_fixed_variant_branch_type
7703 (TYPE_FIELD_TYPE (type, variant_field),
7704 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7705 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7706 if (branch_type == NULL)
7707 {
7708 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7709 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7710 TYPE_NFIELDS (rtype) -= 1;
7711 }
7712 else
7713 {
7714 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7715 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7716 fld_bit_len =
7717 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7718 TARGET_CHAR_BIT;
7719 if (off + fld_bit_len > bit_len)
7720 bit_len = off + fld_bit_len;
7721 TYPE_LENGTH (rtype) =
7722 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7723 }
7724 }
7725
7726 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7727 should contain the alignment of that record, which should be a strictly
7728 positive value. If null or negative, then something is wrong, most
7729 probably in the debug info. In that case, we don't round up the size
7730 of the resulting type. If this record is not part of another structure,
7731 the current RTYPE length might be good enough for our purposes. */
7732 if (TYPE_LENGTH (type) <= 0)
7733 {
7734 if (TYPE_NAME (rtype))
7735 warning (_("Invalid type size for `%s' detected: %d."),
7736 TYPE_NAME (rtype), TYPE_LENGTH (type));
7737 else
7738 warning (_("Invalid type size for <unnamed> detected: %d."),
7739 TYPE_LENGTH (type));
7740 }
7741 else
7742 {
7743 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7744 TYPE_LENGTH (type));
7745 }
7746
7747 value_free_to_mark (mark);
7748 if (TYPE_LENGTH (rtype) > varsize_limit)
7749 error (_("record type with dynamic size is larger than varsize-limit"));
7750 return rtype;
7751 }
7752
7753 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7754 of 1. */
7755
7756 static struct type *
7757 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7758 CORE_ADDR address, struct value *dval0)
7759 {
7760 return ada_template_to_fixed_record_type_1 (type, valaddr,
7761 address, dval0, 1);
7762 }
7763
7764 /* An ordinary record type in which ___XVL-convention fields and
7765 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7766 static approximations, containing all possible fields. Uses
7767 no runtime values. Useless for use in values, but that's OK,
7768 since the results are used only for type determinations. Works on both
7769 structs and unions. Representation note: to save space, we memorize
7770 the result of this function in the TYPE_TARGET_TYPE of the
7771 template type. */
7772
7773 static struct type *
7774 template_to_static_fixed_type (struct type *type0)
7775 {
7776 struct type *type;
7777 int nfields;
7778 int f;
7779
7780 if (TYPE_TARGET_TYPE (type0) != NULL)
7781 return TYPE_TARGET_TYPE (type0);
7782
7783 nfields = TYPE_NFIELDS (type0);
7784 type = type0;
7785
7786 for (f = 0; f < nfields; f += 1)
7787 {
7788 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7789 struct type *new_type;
7790
7791 if (is_dynamic_field (type0, f))
7792 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7793 else
7794 new_type = static_unwrap_type (field_type);
7795 if (type == type0 && new_type != field_type)
7796 {
7797 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7798 TYPE_CODE (type) = TYPE_CODE (type0);
7799 INIT_CPLUS_SPECIFIC (type);
7800 TYPE_NFIELDS (type) = nfields;
7801 TYPE_FIELDS (type) = (struct field *)
7802 TYPE_ALLOC (type, nfields * sizeof (struct field));
7803 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7804 sizeof (struct field) * nfields);
7805 TYPE_NAME (type) = ada_type_name (type0);
7806 TYPE_TAG_NAME (type) = NULL;
7807 TYPE_FIXED_INSTANCE (type) = 1;
7808 TYPE_LENGTH (type) = 0;
7809 }
7810 TYPE_FIELD_TYPE (type, f) = new_type;
7811 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7812 }
7813 return type;
7814 }
7815
7816 /* Given an object of type TYPE whose contents are at VALADDR and
7817 whose address in memory is ADDRESS, returns a revision of TYPE,
7818 which should be a non-dynamic-sized record, in which the variant
7819 part, if any, is replaced with the appropriate branch. Looks
7820 for discriminant values in DVAL0, which can be NULL if the record
7821 contains the necessary discriminant values. */
7822
7823 static struct type *
7824 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7825 CORE_ADDR address, struct value *dval0)
7826 {
7827 struct value *mark = value_mark ();
7828 struct value *dval;
7829 struct type *rtype;
7830 struct type *branch_type;
7831 int nfields = TYPE_NFIELDS (type);
7832 int variant_field = variant_field_index (type);
7833
7834 if (variant_field == -1)
7835 return type;
7836
7837 if (dval0 == NULL)
7838 dval = value_from_contents_and_address (type, valaddr, address);
7839 else
7840 dval = dval0;
7841
7842 rtype = alloc_type_copy (type);
7843 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7844 INIT_CPLUS_SPECIFIC (rtype);
7845 TYPE_NFIELDS (rtype) = nfields;
7846 TYPE_FIELDS (rtype) =
7847 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7848 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7849 sizeof (struct field) * nfields);
7850 TYPE_NAME (rtype) = ada_type_name (type);
7851 TYPE_TAG_NAME (rtype) = NULL;
7852 TYPE_FIXED_INSTANCE (rtype) = 1;
7853 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7854
7855 branch_type = to_fixed_variant_branch_type
7856 (TYPE_FIELD_TYPE (type, variant_field),
7857 cond_offset_host (valaddr,
7858 TYPE_FIELD_BITPOS (type, variant_field)
7859 / TARGET_CHAR_BIT),
7860 cond_offset_target (address,
7861 TYPE_FIELD_BITPOS (type, variant_field)
7862 / TARGET_CHAR_BIT), dval);
7863 if (branch_type == NULL)
7864 {
7865 int f;
7866
7867 for (f = variant_field + 1; f < nfields; f += 1)
7868 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7869 TYPE_NFIELDS (rtype) -= 1;
7870 }
7871 else
7872 {
7873 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7874 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7875 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7876 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7877 }
7878 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7879
7880 value_free_to_mark (mark);
7881 return rtype;
7882 }
7883
7884 /* An ordinary record type (with fixed-length fields) that describes
7885 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7886 beginning of this section]. Any necessary discriminants' values
7887 should be in DVAL, a record value; it may be NULL if the object
7888 at ADDR itself contains any necessary discriminant values.
7889 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7890 values from the record are needed. Except in the case that DVAL,
7891 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7892 unchecked) is replaced by a particular branch of the variant.
7893
7894 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7895 is questionable and may be removed. It can arise during the
7896 processing of an unconstrained-array-of-record type where all the
7897 variant branches have exactly the same size. This is because in
7898 such cases, the compiler does not bother to use the XVS convention
7899 when encoding the record. I am currently dubious of this
7900 shortcut and suspect the compiler should be altered. FIXME. */
7901
7902 static struct type *
7903 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7904 CORE_ADDR address, struct value *dval)
7905 {
7906 struct type *templ_type;
7907
7908 if (TYPE_FIXED_INSTANCE (type0))
7909 return type0;
7910
7911 templ_type = dynamic_template_type (type0);
7912
7913 if (templ_type != NULL)
7914 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7915 else if (variant_field_index (type0) >= 0)
7916 {
7917 if (dval == NULL && valaddr == NULL && address == 0)
7918 return type0;
7919 return to_record_with_fixed_variant_part (type0, valaddr, address,
7920 dval);
7921 }
7922 else
7923 {
7924 TYPE_FIXED_INSTANCE (type0) = 1;
7925 return type0;
7926 }
7927
7928 }
7929
7930 /* An ordinary record type (with fixed-length fields) that describes
7931 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7932 union type. Any necessary discriminants' values should be in DVAL,
7933 a record value. That is, this routine selects the appropriate
7934 branch of the union at ADDR according to the discriminant value
7935 indicated in the union's type name. Returns VAR_TYPE0 itself if
7936 it represents a variant subject to a pragma Unchecked_Union. */
7937
7938 static struct type *
7939 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7940 CORE_ADDR address, struct value *dval)
7941 {
7942 int which;
7943 struct type *templ_type;
7944 struct type *var_type;
7945
7946 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7947 var_type = TYPE_TARGET_TYPE (var_type0);
7948 else
7949 var_type = var_type0;
7950
7951 templ_type = ada_find_parallel_type (var_type, "___XVU");
7952
7953 if (templ_type != NULL)
7954 var_type = templ_type;
7955
7956 if (is_unchecked_variant (var_type, value_type (dval)))
7957 return var_type0;
7958 which =
7959 ada_which_variant_applies (var_type,
7960 value_type (dval), value_contents (dval));
7961
7962 if (which < 0)
7963 return empty_record (var_type);
7964 else if (is_dynamic_field (var_type, which))
7965 return to_fixed_record_type
7966 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7967 valaddr, address, dval);
7968 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7969 return
7970 to_fixed_record_type
7971 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7972 else
7973 return TYPE_FIELD_TYPE (var_type, which);
7974 }
7975
7976 /* Assuming that TYPE0 is an array type describing the type of a value
7977 at ADDR, and that DVAL describes a record containing any
7978 discriminants used in TYPE0, returns a type for the value that
7979 contains no dynamic components (that is, no components whose sizes
7980 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7981 true, gives an error message if the resulting type's size is over
7982 varsize_limit. */
7983
7984 static struct type *
7985 to_fixed_array_type (struct type *type0, struct value *dval,
7986 int ignore_too_big)
7987 {
7988 struct type *index_type_desc;
7989 struct type *result;
7990 int constrained_packed_array_p;
7991
7992 type0 = ada_check_typedef (type0);
7993 if (TYPE_FIXED_INSTANCE (type0))
7994 return type0;
7995
7996 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7997 if (constrained_packed_array_p)
7998 type0 = decode_constrained_packed_array_type (type0);
7999
8000 index_type_desc = ada_find_parallel_type (type0, "___XA");
8001 ada_fixup_array_indexes_type (index_type_desc);
8002 if (index_type_desc == NULL)
8003 {
8004 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8005
8006 /* NOTE: elt_type---the fixed version of elt_type0---should never
8007 depend on the contents of the array in properly constructed
8008 debugging data. */
8009 /* Create a fixed version of the array element type.
8010 We're not providing the address of an element here,
8011 and thus the actual object value cannot be inspected to do
8012 the conversion. This should not be a problem, since arrays of
8013 unconstrained objects are not allowed. In particular, all
8014 the elements of an array of a tagged type should all be of
8015 the same type specified in the debugging info. No need to
8016 consult the object tag. */
8017 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8018
8019 /* Make sure we always create a new array type when dealing with
8020 packed array types, since we're going to fix-up the array
8021 type length and element bitsize a little further down. */
8022 if (elt_type0 == elt_type && !constrained_packed_array_p)
8023 result = type0;
8024 else
8025 result = create_array_type (alloc_type_copy (type0),
8026 elt_type, TYPE_INDEX_TYPE (type0));
8027 }
8028 else
8029 {
8030 int i;
8031 struct type *elt_type0;
8032
8033 elt_type0 = type0;
8034 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8035 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8036
8037 /* NOTE: result---the fixed version of elt_type0---should never
8038 depend on the contents of the array in properly constructed
8039 debugging data. */
8040 /* Create a fixed version of the array element type.
8041 We're not providing the address of an element here,
8042 and thus the actual object value cannot be inspected to do
8043 the conversion. This should not be a problem, since arrays of
8044 unconstrained objects are not allowed. In particular, all
8045 the elements of an array of a tagged type should all be of
8046 the same type specified in the debugging info. No need to
8047 consult the object tag. */
8048 result =
8049 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8050
8051 elt_type0 = type0;
8052 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8053 {
8054 struct type *range_type =
8055 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8056
8057 result = create_array_type (alloc_type_copy (elt_type0),
8058 result, range_type);
8059 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8060 }
8061 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8062 error (_("array type with dynamic size is larger than varsize-limit"));
8063 }
8064
8065 /* We want to preserve the type name. This can be useful when
8066 trying to get the type name of a value that has already been
8067 printed (for instance, if the user did "print VAR; whatis $". */
8068 TYPE_NAME (result) = TYPE_NAME (type0);
8069
8070 if (constrained_packed_array_p)
8071 {
8072 /* So far, the resulting type has been created as if the original
8073 type was a regular (non-packed) array type. As a result, the
8074 bitsize of the array elements needs to be set again, and the array
8075 length needs to be recomputed based on that bitsize. */
8076 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8077 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8078
8079 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8080 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8081 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8082 TYPE_LENGTH (result)++;
8083 }
8084
8085 TYPE_FIXED_INSTANCE (result) = 1;
8086 return result;
8087 }
8088
8089
8090 /* A standard type (containing no dynamically sized components)
8091 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8092 DVAL describes a record containing any discriminants used in TYPE0,
8093 and may be NULL if there are none, or if the object of type TYPE at
8094 ADDRESS or in VALADDR contains these discriminants.
8095
8096 If CHECK_TAG is not null, in the case of tagged types, this function
8097 attempts to locate the object's tag and use it to compute the actual
8098 type. However, when ADDRESS is null, we cannot use it to determine the
8099 location of the tag, and therefore compute the tagged type's actual type.
8100 So we return the tagged type without consulting the tag. */
8101
8102 static struct type *
8103 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8104 CORE_ADDR address, struct value *dval, int check_tag)
8105 {
8106 type = ada_check_typedef (type);
8107 switch (TYPE_CODE (type))
8108 {
8109 default:
8110 return type;
8111 case TYPE_CODE_STRUCT:
8112 {
8113 struct type *static_type = to_static_fixed_type (type);
8114 struct type *fixed_record_type =
8115 to_fixed_record_type (type, valaddr, address, NULL);
8116
8117 /* If STATIC_TYPE is a tagged type and we know the object's address,
8118 then we can determine its tag, and compute the object's actual
8119 type from there. Note that we have to use the fixed record
8120 type (the parent part of the record may have dynamic fields
8121 and the way the location of _tag is expressed may depend on
8122 them). */
8123
8124 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8125 {
8126 struct value *tag =
8127 value_tag_from_contents_and_address
8128 (fixed_record_type,
8129 valaddr,
8130 address);
8131 struct type *real_type = type_from_tag (tag);
8132 struct value *obj =
8133 value_from_contents_and_address (fixed_record_type,
8134 valaddr,
8135 address);
8136 if (real_type != NULL)
8137 return to_fixed_record_type
8138 (real_type, NULL,
8139 value_address (ada_tag_value_at_base_address (obj)), NULL);
8140 }
8141
8142 /* Check to see if there is a parallel ___XVZ variable.
8143 If there is, then it provides the actual size of our type. */
8144 else if (ada_type_name (fixed_record_type) != NULL)
8145 {
8146 const char *name = ada_type_name (fixed_record_type);
8147 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8148 int xvz_found = 0;
8149 LONGEST size;
8150
8151 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8152 size = get_int_var_value (xvz_name, &xvz_found);
8153 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8154 {
8155 fixed_record_type = copy_type (fixed_record_type);
8156 TYPE_LENGTH (fixed_record_type) = size;
8157
8158 /* The FIXED_RECORD_TYPE may have be a stub. We have
8159 observed this when the debugging info is STABS, and
8160 apparently it is something that is hard to fix.
8161
8162 In practice, we don't need the actual type definition
8163 at all, because the presence of the XVZ variable allows us
8164 to assume that there must be a XVS type as well, which we
8165 should be able to use later, when we need the actual type
8166 definition.
8167
8168 In the meantime, pretend that the "fixed" type we are
8169 returning is NOT a stub, because this can cause trouble
8170 when using this type to create new types targeting it.
8171 Indeed, the associated creation routines often check
8172 whether the target type is a stub and will try to replace
8173 it, thus using a type with the wrong size. This, in turn,
8174 might cause the new type to have the wrong size too.
8175 Consider the case of an array, for instance, where the size
8176 of the array is computed from the number of elements in
8177 our array multiplied by the size of its element. */
8178 TYPE_STUB (fixed_record_type) = 0;
8179 }
8180 }
8181 return fixed_record_type;
8182 }
8183 case TYPE_CODE_ARRAY:
8184 return to_fixed_array_type (type, dval, 1);
8185 case TYPE_CODE_UNION:
8186 if (dval == NULL)
8187 return type;
8188 else
8189 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8190 }
8191 }
8192
8193 /* The same as ada_to_fixed_type_1, except that it preserves the type
8194 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8195
8196 The typedef layer needs be preserved in order to differentiate between
8197 arrays and array pointers when both types are implemented using the same
8198 fat pointer. In the array pointer case, the pointer is encoded as
8199 a typedef of the pointer type. For instance, considering:
8200
8201 type String_Access is access String;
8202 S1 : String_Access := null;
8203
8204 To the debugger, S1 is defined as a typedef of type String. But
8205 to the user, it is a pointer. So if the user tries to print S1,
8206 we should not dereference the array, but print the array address
8207 instead.
8208
8209 If we didn't preserve the typedef layer, we would lose the fact that
8210 the type is to be presented as a pointer (needs de-reference before
8211 being printed). And we would also use the source-level type name. */
8212
8213 struct type *
8214 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8215 CORE_ADDR address, struct value *dval, int check_tag)
8216
8217 {
8218 struct type *fixed_type =
8219 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8220
8221 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8222 then preserve the typedef layer.
8223
8224 Implementation note: We can only check the main-type portion of
8225 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8226 from TYPE now returns a type that has the same instance flags
8227 as TYPE. For instance, if TYPE is a "typedef const", and its
8228 target type is a "struct", then the typedef elimination will return
8229 a "const" version of the target type. See check_typedef for more
8230 details about how the typedef layer elimination is done.
8231
8232 brobecker/2010-11-19: It seems to me that the only case where it is
8233 useful to preserve the typedef layer is when dealing with fat pointers.
8234 Perhaps, we could add a check for that and preserve the typedef layer
8235 only in that situation. But this seems unecessary so far, probably
8236 because we call check_typedef/ada_check_typedef pretty much everywhere.
8237 */
8238 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8239 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8240 == TYPE_MAIN_TYPE (fixed_type)))
8241 return type;
8242
8243 return fixed_type;
8244 }
8245
8246 /* A standard (static-sized) type corresponding as well as possible to
8247 TYPE0, but based on no runtime data. */
8248
8249 static struct type *
8250 to_static_fixed_type (struct type *type0)
8251 {
8252 struct type *type;
8253
8254 if (type0 == NULL)
8255 return NULL;
8256
8257 if (TYPE_FIXED_INSTANCE (type0))
8258 return type0;
8259
8260 type0 = ada_check_typedef (type0);
8261
8262 switch (TYPE_CODE (type0))
8263 {
8264 default:
8265 return type0;
8266 case TYPE_CODE_STRUCT:
8267 type = dynamic_template_type (type0);
8268 if (type != NULL)
8269 return template_to_static_fixed_type (type);
8270 else
8271 return template_to_static_fixed_type (type0);
8272 case TYPE_CODE_UNION:
8273 type = ada_find_parallel_type (type0, "___XVU");
8274 if (type != NULL)
8275 return template_to_static_fixed_type (type);
8276 else
8277 return template_to_static_fixed_type (type0);
8278 }
8279 }
8280
8281 /* A static approximation of TYPE with all type wrappers removed. */
8282
8283 static struct type *
8284 static_unwrap_type (struct type *type)
8285 {
8286 if (ada_is_aligner_type (type))
8287 {
8288 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8289 if (ada_type_name (type1) == NULL)
8290 TYPE_NAME (type1) = ada_type_name (type);
8291
8292 return static_unwrap_type (type1);
8293 }
8294 else
8295 {
8296 struct type *raw_real_type = ada_get_base_type (type);
8297
8298 if (raw_real_type == type)
8299 return type;
8300 else
8301 return to_static_fixed_type (raw_real_type);
8302 }
8303 }
8304
8305 /* In some cases, incomplete and private types require
8306 cross-references that are not resolved as records (for example,
8307 type Foo;
8308 type FooP is access Foo;
8309 V: FooP;
8310 type Foo is array ...;
8311 ). In these cases, since there is no mechanism for producing
8312 cross-references to such types, we instead substitute for FooP a
8313 stub enumeration type that is nowhere resolved, and whose tag is
8314 the name of the actual type. Call these types "non-record stubs". */
8315
8316 /* A type equivalent to TYPE that is not a non-record stub, if one
8317 exists, otherwise TYPE. */
8318
8319 struct type *
8320 ada_check_typedef (struct type *type)
8321 {
8322 if (type == NULL)
8323 return NULL;
8324
8325 /* If our type is a typedef type of a fat pointer, then we're done.
8326 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8327 what allows us to distinguish between fat pointers that represent
8328 array types, and fat pointers that represent array access types
8329 (in both cases, the compiler implements them as fat pointers). */
8330 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8331 && is_thick_pntr (ada_typedef_target_type (type)))
8332 return type;
8333
8334 CHECK_TYPEDEF (type);
8335 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8336 || !TYPE_STUB (type)
8337 || TYPE_TAG_NAME (type) == NULL)
8338 return type;
8339 else
8340 {
8341 const char *name = TYPE_TAG_NAME (type);
8342 struct type *type1 = ada_find_any_type (name);
8343
8344 if (type1 == NULL)
8345 return type;
8346
8347 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8348 stubs pointing to arrays, as we don't create symbols for array
8349 types, only for the typedef-to-array types). If that's the case,
8350 strip the typedef layer. */
8351 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8352 type1 = ada_check_typedef (type1);
8353
8354 return type1;
8355 }
8356 }
8357
8358 /* A value representing the data at VALADDR/ADDRESS as described by
8359 type TYPE0, but with a standard (static-sized) type that correctly
8360 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8361 type, then return VAL0 [this feature is simply to avoid redundant
8362 creation of struct values]. */
8363
8364 static struct value *
8365 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8366 struct value *val0)
8367 {
8368 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8369
8370 if (type == type0 && val0 != NULL)
8371 return val0;
8372 else
8373 return value_from_contents_and_address (type, 0, address);
8374 }
8375
8376 /* A value representing VAL, but with a standard (static-sized) type
8377 that correctly describes it. Does not necessarily create a new
8378 value. */
8379
8380 struct value *
8381 ada_to_fixed_value (struct value *val)
8382 {
8383 val = unwrap_value (val);
8384 val = ada_to_fixed_value_create (value_type (val),
8385 value_address (val),
8386 val);
8387 return val;
8388 }
8389 \f
8390
8391 /* Attributes */
8392
8393 /* Table mapping attribute numbers to names.
8394 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8395
8396 static const char *attribute_names[] = {
8397 "<?>",
8398
8399 "first",
8400 "last",
8401 "length",
8402 "image",
8403 "max",
8404 "min",
8405 "modulus",
8406 "pos",
8407 "size",
8408 "tag",
8409 "val",
8410 0
8411 };
8412
8413 const char *
8414 ada_attribute_name (enum exp_opcode n)
8415 {
8416 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8417 return attribute_names[n - OP_ATR_FIRST + 1];
8418 else
8419 return attribute_names[0];
8420 }
8421
8422 /* Evaluate the 'POS attribute applied to ARG. */
8423
8424 static LONGEST
8425 pos_atr (struct value *arg)
8426 {
8427 struct value *val = coerce_ref (arg);
8428 struct type *type = value_type (val);
8429
8430 if (!discrete_type_p (type))
8431 error (_("'POS only defined on discrete types"));
8432
8433 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8434 {
8435 int i;
8436 LONGEST v = value_as_long (val);
8437
8438 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8439 {
8440 if (v == TYPE_FIELD_ENUMVAL (type, i))
8441 return i;
8442 }
8443 error (_("enumeration value is invalid: can't find 'POS"));
8444 }
8445 else
8446 return value_as_long (val);
8447 }
8448
8449 static struct value *
8450 value_pos_atr (struct type *type, struct value *arg)
8451 {
8452 return value_from_longest (type, pos_atr (arg));
8453 }
8454
8455 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8456
8457 static struct value *
8458 value_val_atr (struct type *type, struct value *arg)
8459 {
8460 if (!discrete_type_p (type))
8461 error (_("'VAL only defined on discrete types"));
8462 if (!integer_type_p (value_type (arg)))
8463 error (_("'VAL requires integral argument"));
8464
8465 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8466 {
8467 long pos = value_as_long (arg);
8468
8469 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8470 error (_("argument to 'VAL out of range"));
8471 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8472 }
8473 else
8474 return value_from_longest (type, value_as_long (arg));
8475 }
8476 \f
8477
8478 /* Evaluation */
8479
8480 /* True if TYPE appears to be an Ada character type.
8481 [At the moment, this is true only for Character and Wide_Character;
8482 It is a heuristic test that could stand improvement]. */
8483
8484 int
8485 ada_is_character_type (struct type *type)
8486 {
8487 const char *name;
8488
8489 /* If the type code says it's a character, then assume it really is,
8490 and don't check any further. */
8491 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8492 return 1;
8493
8494 /* Otherwise, assume it's a character type iff it is a discrete type
8495 with a known character type name. */
8496 name = ada_type_name (type);
8497 return (name != NULL
8498 && (TYPE_CODE (type) == TYPE_CODE_INT
8499 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8500 && (strcmp (name, "character") == 0
8501 || strcmp (name, "wide_character") == 0
8502 || strcmp (name, "wide_wide_character") == 0
8503 || strcmp (name, "unsigned char") == 0));
8504 }
8505
8506 /* True if TYPE appears to be an Ada string type. */
8507
8508 int
8509 ada_is_string_type (struct type *type)
8510 {
8511 type = ada_check_typedef (type);
8512 if (type != NULL
8513 && TYPE_CODE (type) != TYPE_CODE_PTR
8514 && (ada_is_simple_array_type (type)
8515 || ada_is_array_descriptor_type (type))
8516 && ada_array_arity (type) == 1)
8517 {
8518 struct type *elttype = ada_array_element_type (type, 1);
8519
8520 return ada_is_character_type (elttype);
8521 }
8522 else
8523 return 0;
8524 }
8525
8526 /* The compiler sometimes provides a parallel XVS type for a given
8527 PAD type. Normally, it is safe to follow the PAD type directly,
8528 but older versions of the compiler have a bug that causes the offset
8529 of its "F" field to be wrong. Following that field in that case
8530 would lead to incorrect results, but this can be worked around
8531 by ignoring the PAD type and using the associated XVS type instead.
8532
8533 Set to True if the debugger should trust the contents of PAD types.
8534 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8535 static int trust_pad_over_xvs = 1;
8536
8537 /* True if TYPE is a struct type introduced by the compiler to force the
8538 alignment of a value. Such types have a single field with a
8539 distinctive name. */
8540
8541 int
8542 ada_is_aligner_type (struct type *type)
8543 {
8544 type = ada_check_typedef (type);
8545
8546 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8547 return 0;
8548
8549 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8550 && TYPE_NFIELDS (type) == 1
8551 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8552 }
8553
8554 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8555 the parallel type. */
8556
8557 struct type *
8558 ada_get_base_type (struct type *raw_type)
8559 {
8560 struct type *real_type_namer;
8561 struct type *raw_real_type;
8562
8563 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8564 return raw_type;
8565
8566 if (ada_is_aligner_type (raw_type))
8567 /* The encoding specifies that we should always use the aligner type.
8568 So, even if this aligner type has an associated XVS type, we should
8569 simply ignore it.
8570
8571 According to the compiler gurus, an XVS type parallel to an aligner
8572 type may exist because of a stabs limitation. In stabs, aligner
8573 types are empty because the field has a variable-sized type, and
8574 thus cannot actually be used as an aligner type. As a result,
8575 we need the associated parallel XVS type to decode the type.
8576 Since the policy in the compiler is to not change the internal
8577 representation based on the debugging info format, we sometimes
8578 end up having a redundant XVS type parallel to the aligner type. */
8579 return raw_type;
8580
8581 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8582 if (real_type_namer == NULL
8583 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8584 || TYPE_NFIELDS (real_type_namer) != 1)
8585 return raw_type;
8586
8587 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8588 {
8589 /* This is an older encoding form where the base type needs to be
8590 looked up by name. We prefer the newer enconding because it is
8591 more efficient. */
8592 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8593 if (raw_real_type == NULL)
8594 return raw_type;
8595 else
8596 return raw_real_type;
8597 }
8598
8599 /* The field in our XVS type is a reference to the base type. */
8600 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8601 }
8602
8603 /* The type of value designated by TYPE, with all aligners removed. */
8604
8605 struct type *
8606 ada_aligned_type (struct type *type)
8607 {
8608 if (ada_is_aligner_type (type))
8609 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8610 else
8611 return ada_get_base_type (type);
8612 }
8613
8614
8615 /* The address of the aligned value in an object at address VALADDR
8616 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8617
8618 const gdb_byte *
8619 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8620 {
8621 if (ada_is_aligner_type (type))
8622 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8623 valaddr +
8624 TYPE_FIELD_BITPOS (type,
8625 0) / TARGET_CHAR_BIT);
8626 else
8627 return valaddr;
8628 }
8629
8630
8631
8632 /* The printed representation of an enumeration literal with encoded
8633 name NAME. The value is good to the next call of ada_enum_name. */
8634 const char *
8635 ada_enum_name (const char *name)
8636 {
8637 static char *result;
8638 static size_t result_len = 0;
8639 char *tmp;
8640
8641 /* First, unqualify the enumeration name:
8642 1. Search for the last '.' character. If we find one, then skip
8643 all the preceding characters, the unqualified name starts
8644 right after that dot.
8645 2. Otherwise, we may be debugging on a target where the compiler
8646 translates dots into "__". Search forward for double underscores,
8647 but stop searching when we hit an overloading suffix, which is
8648 of the form "__" followed by digits. */
8649
8650 tmp = strrchr (name, '.');
8651 if (tmp != NULL)
8652 name = tmp + 1;
8653 else
8654 {
8655 while ((tmp = strstr (name, "__")) != NULL)
8656 {
8657 if (isdigit (tmp[2]))
8658 break;
8659 else
8660 name = tmp + 2;
8661 }
8662 }
8663
8664 if (name[0] == 'Q')
8665 {
8666 int v;
8667
8668 if (name[1] == 'U' || name[1] == 'W')
8669 {
8670 if (sscanf (name + 2, "%x", &v) != 1)
8671 return name;
8672 }
8673 else
8674 return name;
8675
8676 GROW_VECT (result, result_len, 16);
8677 if (isascii (v) && isprint (v))
8678 xsnprintf (result, result_len, "'%c'", v);
8679 else if (name[1] == 'U')
8680 xsnprintf (result, result_len, "[\"%02x\"]", v);
8681 else
8682 xsnprintf (result, result_len, "[\"%04x\"]", v);
8683
8684 return result;
8685 }
8686 else
8687 {
8688 tmp = strstr (name, "__");
8689 if (tmp == NULL)
8690 tmp = strstr (name, "$");
8691 if (tmp != NULL)
8692 {
8693 GROW_VECT (result, result_len, tmp - name + 1);
8694 strncpy (result, name, tmp - name);
8695 result[tmp - name] = '\0';
8696 return result;
8697 }
8698
8699 return name;
8700 }
8701 }
8702
8703 /* Evaluate the subexpression of EXP starting at *POS as for
8704 evaluate_type, updating *POS to point just past the evaluated
8705 expression. */
8706
8707 static struct value *
8708 evaluate_subexp_type (struct expression *exp, int *pos)
8709 {
8710 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8711 }
8712
8713 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8714 value it wraps. */
8715
8716 static struct value *
8717 unwrap_value (struct value *val)
8718 {
8719 struct type *type = ada_check_typedef (value_type (val));
8720
8721 if (ada_is_aligner_type (type))
8722 {
8723 struct value *v = ada_value_struct_elt (val, "F", 0);
8724 struct type *val_type = ada_check_typedef (value_type (v));
8725
8726 if (ada_type_name (val_type) == NULL)
8727 TYPE_NAME (val_type) = ada_type_name (type);
8728
8729 return unwrap_value (v);
8730 }
8731 else
8732 {
8733 struct type *raw_real_type =
8734 ada_check_typedef (ada_get_base_type (type));
8735
8736 /* If there is no parallel XVS or XVE type, then the value is
8737 already unwrapped. Return it without further modification. */
8738 if ((type == raw_real_type)
8739 && ada_find_parallel_type (type, "___XVE") == NULL)
8740 return val;
8741
8742 return
8743 coerce_unspec_val_to_type
8744 (val, ada_to_fixed_type (raw_real_type, 0,
8745 value_address (val),
8746 NULL, 1));
8747 }
8748 }
8749
8750 static struct value *
8751 cast_to_fixed (struct type *type, struct value *arg)
8752 {
8753 LONGEST val;
8754
8755 if (type == value_type (arg))
8756 return arg;
8757 else if (ada_is_fixed_point_type (value_type (arg)))
8758 val = ada_float_to_fixed (type,
8759 ada_fixed_to_float (value_type (arg),
8760 value_as_long (arg)));
8761 else
8762 {
8763 DOUBLEST argd = value_as_double (arg);
8764
8765 val = ada_float_to_fixed (type, argd);
8766 }
8767
8768 return value_from_longest (type, val);
8769 }
8770
8771 static struct value *
8772 cast_from_fixed (struct type *type, struct value *arg)
8773 {
8774 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8775 value_as_long (arg));
8776
8777 return value_from_double (type, val);
8778 }
8779
8780 /* Given two array types T1 and T2, return nonzero iff both arrays
8781 contain the same number of elements. */
8782
8783 static int
8784 ada_same_array_size_p (struct type *t1, struct type *t2)
8785 {
8786 LONGEST lo1, hi1, lo2, hi2;
8787
8788 /* Get the array bounds in order to verify that the size of
8789 the two arrays match. */
8790 if (!get_array_bounds (t1, &lo1, &hi1)
8791 || !get_array_bounds (t2, &lo2, &hi2))
8792 error (_("unable to determine array bounds"));
8793
8794 /* To make things easier for size comparison, normalize a bit
8795 the case of empty arrays by making sure that the difference
8796 between upper bound and lower bound is always -1. */
8797 if (lo1 > hi1)
8798 hi1 = lo1 - 1;
8799 if (lo2 > hi2)
8800 hi2 = lo2 - 1;
8801
8802 return (hi1 - lo1 == hi2 - lo2);
8803 }
8804
8805 /* Assuming that VAL is an array of integrals, and TYPE represents
8806 an array with the same number of elements, but with wider integral
8807 elements, return an array "casted" to TYPE. In practice, this
8808 means that the returned array is built by casting each element
8809 of the original array into TYPE's (wider) element type. */
8810
8811 static struct value *
8812 ada_promote_array_of_integrals (struct type *type, struct value *val)
8813 {
8814 struct type *elt_type = TYPE_TARGET_TYPE (type);
8815 LONGEST lo, hi;
8816 struct value *res;
8817 LONGEST i;
8818
8819 /* Verify that both val and type are arrays of scalars, and
8820 that the size of val's elements is smaller than the size
8821 of type's element. */
8822 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8823 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8824 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8825 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8826 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8827 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8828
8829 if (!get_array_bounds (type, &lo, &hi))
8830 error (_("unable to determine array bounds"));
8831
8832 res = allocate_value (type);
8833
8834 /* Promote each array element. */
8835 for (i = 0; i < hi - lo + 1; i++)
8836 {
8837 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8838
8839 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8840 value_contents_all (elt), TYPE_LENGTH (elt_type));
8841 }
8842
8843 return res;
8844 }
8845
8846 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8847 return the converted value. */
8848
8849 static struct value *
8850 coerce_for_assign (struct type *type, struct value *val)
8851 {
8852 struct type *type2 = value_type (val);
8853
8854 if (type == type2)
8855 return val;
8856
8857 type2 = ada_check_typedef (type2);
8858 type = ada_check_typedef (type);
8859
8860 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8861 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8862 {
8863 val = ada_value_ind (val);
8864 type2 = value_type (val);
8865 }
8866
8867 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8868 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8869 {
8870 if (!ada_same_array_size_p (type, type2))
8871 error (_("cannot assign arrays of different length"));
8872
8873 if (is_integral_type (TYPE_TARGET_TYPE (type))
8874 && is_integral_type (TYPE_TARGET_TYPE (type2))
8875 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8876 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8877 {
8878 /* Allow implicit promotion of the array elements to
8879 a wider type. */
8880 return ada_promote_array_of_integrals (type, val);
8881 }
8882
8883 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8884 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8885 error (_("Incompatible types in assignment"));
8886 deprecated_set_value_type (val, type);
8887 }
8888 return val;
8889 }
8890
8891 static struct value *
8892 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8893 {
8894 struct value *val;
8895 struct type *type1, *type2;
8896 LONGEST v, v1, v2;
8897
8898 arg1 = coerce_ref (arg1);
8899 arg2 = coerce_ref (arg2);
8900 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8901 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8902
8903 if (TYPE_CODE (type1) != TYPE_CODE_INT
8904 || TYPE_CODE (type2) != TYPE_CODE_INT)
8905 return value_binop (arg1, arg2, op);
8906
8907 switch (op)
8908 {
8909 case BINOP_MOD:
8910 case BINOP_DIV:
8911 case BINOP_REM:
8912 break;
8913 default:
8914 return value_binop (arg1, arg2, op);
8915 }
8916
8917 v2 = value_as_long (arg2);
8918 if (v2 == 0)
8919 error (_("second operand of %s must not be zero."), op_string (op));
8920
8921 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8922 return value_binop (arg1, arg2, op);
8923
8924 v1 = value_as_long (arg1);
8925 switch (op)
8926 {
8927 case BINOP_DIV:
8928 v = v1 / v2;
8929 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8930 v += v > 0 ? -1 : 1;
8931 break;
8932 case BINOP_REM:
8933 v = v1 % v2;
8934 if (v * v1 < 0)
8935 v -= v2;
8936 break;
8937 default:
8938 /* Should not reach this point. */
8939 v = 0;
8940 }
8941
8942 val = allocate_value (type1);
8943 store_unsigned_integer (value_contents_raw (val),
8944 TYPE_LENGTH (value_type (val)),
8945 gdbarch_byte_order (get_type_arch (type1)), v);
8946 return val;
8947 }
8948
8949 static int
8950 ada_value_equal (struct value *arg1, struct value *arg2)
8951 {
8952 if (ada_is_direct_array_type (value_type (arg1))
8953 || ada_is_direct_array_type (value_type (arg2)))
8954 {
8955 /* Automatically dereference any array reference before
8956 we attempt to perform the comparison. */
8957 arg1 = ada_coerce_ref (arg1);
8958 arg2 = ada_coerce_ref (arg2);
8959
8960 arg1 = ada_coerce_to_simple_array (arg1);
8961 arg2 = ada_coerce_to_simple_array (arg2);
8962 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8963 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8964 error (_("Attempt to compare array with non-array"));
8965 /* FIXME: The following works only for types whose
8966 representations use all bits (no padding or undefined bits)
8967 and do not have user-defined equality. */
8968 return
8969 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8970 && memcmp (value_contents (arg1), value_contents (arg2),
8971 TYPE_LENGTH (value_type (arg1))) == 0;
8972 }
8973 return value_equal (arg1, arg2);
8974 }
8975
8976 /* Total number of component associations in the aggregate starting at
8977 index PC in EXP. Assumes that index PC is the start of an
8978 OP_AGGREGATE. */
8979
8980 static int
8981 num_component_specs (struct expression *exp, int pc)
8982 {
8983 int n, m, i;
8984
8985 m = exp->elts[pc + 1].longconst;
8986 pc += 3;
8987 n = 0;
8988 for (i = 0; i < m; i += 1)
8989 {
8990 switch (exp->elts[pc].opcode)
8991 {
8992 default:
8993 n += 1;
8994 break;
8995 case OP_CHOICES:
8996 n += exp->elts[pc + 1].longconst;
8997 break;
8998 }
8999 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9000 }
9001 return n;
9002 }
9003
9004 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9005 component of LHS (a simple array or a record), updating *POS past
9006 the expression, assuming that LHS is contained in CONTAINER. Does
9007 not modify the inferior's memory, nor does it modify LHS (unless
9008 LHS == CONTAINER). */
9009
9010 static void
9011 assign_component (struct value *container, struct value *lhs, LONGEST index,
9012 struct expression *exp, int *pos)
9013 {
9014 struct value *mark = value_mark ();
9015 struct value *elt;
9016
9017 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9018 {
9019 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9020 struct value *index_val = value_from_longest (index_type, index);
9021
9022 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9023 }
9024 else
9025 {
9026 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9027 elt = ada_to_fixed_value (elt);
9028 }
9029
9030 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9031 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9032 else
9033 value_assign_to_component (container, elt,
9034 ada_evaluate_subexp (NULL, exp, pos,
9035 EVAL_NORMAL));
9036
9037 value_free_to_mark (mark);
9038 }
9039
9040 /* Assuming that LHS represents an lvalue having a record or array
9041 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9042 of that aggregate's value to LHS, advancing *POS past the
9043 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9044 lvalue containing LHS (possibly LHS itself). Does not modify
9045 the inferior's memory, nor does it modify the contents of
9046 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9047
9048 static struct value *
9049 assign_aggregate (struct value *container,
9050 struct value *lhs, struct expression *exp,
9051 int *pos, enum noside noside)
9052 {
9053 struct type *lhs_type;
9054 int n = exp->elts[*pos+1].longconst;
9055 LONGEST low_index, high_index;
9056 int num_specs;
9057 LONGEST *indices;
9058 int max_indices, num_indices;
9059 int i;
9060
9061 *pos += 3;
9062 if (noside != EVAL_NORMAL)
9063 {
9064 for (i = 0; i < n; i += 1)
9065 ada_evaluate_subexp (NULL, exp, pos, noside);
9066 return container;
9067 }
9068
9069 container = ada_coerce_ref (container);
9070 if (ada_is_direct_array_type (value_type (container)))
9071 container = ada_coerce_to_simple_array (container);
9072 lhs = ada_coerce_ref (lhs);
9073 if (!deprecated_value_modifiable (lhs))
9074 error (_("Left operand of assignment is not a modifiable lvalue."));
9075
9076 lhs_type = value_type (lhs);
9077 if (ada_is_direct_array_type (lhs_type))
9078 {
9079 lhs = ada_coerce_to_simple_array (lhs);
9080 lhs_type = value_type (lhs);
9081 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9082 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9083 }
9084 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9085 {
9086 low_index = 0;
9087 high_index = num_visible_fields (lhs_type) - 1;
9088 }
9089 else
9090 error (_("Left-hand side must be array or record."));
9091
9092 num_specs = num_component_specs (exp, *pos - 3);
9093 max_indices = 4 * num_specs + 4;
9094 indices = alloca (max_indices * sizeof (indices[0]));
9095 indices[0] = indices[1] = low_index - 1;
9096 indices[2] = indices[3] = high_index + 1;
9097 num_indices = 4;
9098
9099 for (i = 0; i < n; i += 1)
9100 {
9101 switch (exp->elts[*pos].opcode)
9102 {
9103 case OP_CHOICES:
9104 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9105 &num_indices, max_indices,
9106 low_index, high_index);
9107 break;
9108 case OP_POSITIONAL:
9109 aggregate_assign_positional (container, lhs, exp, pos, indices,
9110 &num_indices, max_indices,
9111 low_index, high_index);
9112 break;
9113 case OP_OTHERS:
9114 if (i != n-1)
9115 error (_("Misplaced 'others' clause"));
9116 aggregate_assign_others (container, lhs, exp, pos, indices,
9117 num_indices, low_index, high_index);
9118 break;
9119 default:
9120 error (_("Internal error: bad aggregate clause"));
9121 }
9122 }
9123
9124 return container;
9125 }
9126
9127 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9128 construct at *POS, updating *POS past the construct, given that
9129 the positions are relative to lower bound LOW, where HIGH is the
9130 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9131 updating *NUM_INDICES as needed. CONTAINER is as for
9132 assign_aggregate. */
9133 static void
9134 aggregate_assign_positional (struct value *container,
9135 struct value *lhs, struct expression *exp,
9136 int *pos, LONGEST *indices, int *num_indices,
9137 int max_indices, LONGEST low, LONGEST high)
9138 {
9139 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9140
9141 if (ind - 1 == high)
9142 warning (_("Extra components in aggregate ignored."));
9143 if (ind <= high)
9144 {
9145 add_component_interval (ind, ind, indices, num_indices, max_indices);
9146 *pos += 3;
9147 assign_component (container, lhs, ind, exp, pos);
9148 }
9149 else
9150 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9151 }
9152
9153 /* Assign into the components of LHS indexed by the OP_CHOICES
9154 construct at *POS, updating *POS past the construct, given that
9155 the allowable indices are LOW..HIGH. Record the indices assigned
9156 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9157 needed. CONTAINER is as for assign_aggregate. */
9158 static void
9159 aggregate_assign_from_choices (struct value *container,
9160 struct value *lhs, struct expression *exp,
9161 int *pos, LONGEST *indices, int *num_indices,
9162 int max_indices, LONGEST low, LONGEST high)
9163 {
9164 int j;
9165 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9166 int choice_pos, expr_pc;
9167 int is_array = ada_is_direct_array_type (value_type (lhs));
9168
9169 choice_pos = *pos += 3;
9170
9171 for (j = 0; j < n_choices; j += 1)
9172 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9173 expr_pc = *pos;
9174 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9175
9176 for (j = 0; j < n_choices; j += 1)
9177 {
9178 LONGEST lower, upper;
9179 enum exp_opcode op = exp->elts[choice_pos].opcode;
9180
9181 if (op == OP_DISCRETE_RANGE)
9182 {
9183 choice_pos += 1;
9184 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9185 EVAL_NORMAL));
9186 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9187 EVAL_NORMAL));
9188 }
9189 else if (is_array)
9190 {
9191 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9192 EVAL_NORMAL));
9193 upper = lower;
9194 }
9195 else
9196 {
9197 int ind;
9198 const char *name;
9199
9200 switch (op)
9201 {
9202 case OP_NAME:
9203 name = &exp->elts[choice_pos + 2].string;
9204 break;
9205 case OP_VAR_VALUE:
9206 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9207 break;
9208 default:
9209 error (_("Invalid record component association."));
9210 }
9211 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9212 ind = 0;
9213 if (! find_struct_field (name, value_type (lhs), 0,
9214 NULL, NULL, NULL, NULL, &ind))
9215 error (_("Unknown component name: %s."), name);
9216 lower = upper = ind;
9217 }
9218
9219 if (lower <= upper && (lower < low || upper > high))
9220 error (_("Index in component association out of bounds."));
9221
9222 add_component_interval (lower, upper, indices, num_indices,
9223 max_indices);
9224 while (lower <= upper)
9225 {
9226 int pos1;
9227
9228 pos1 = expr_pc;
9229 assign_component (container, lhs, lower, exp, &pos1);
9230 lower += 1;
9231 }
9232 }
9233 }
9234
9235 /* Assign the value of the expression in the OP_OTHERS construct in
9236 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9237 have not been previously assigned. The index intervals already assigned
9238 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9239 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9240 static void
9241 aggregate_assign_others (struct value *container,
9242 struct value *lhs, struct expression *exp,
9243 int *pos, LONGEST *indices, int num_indices,
9244 LONGEST low, LONGEST high)
9245 {
9246 int i;
9247 int expr_pc = *pos + 1;
9248
9249 for (i = 0; i < num_indices - 2; i += 2)
9250 {
9251 LONGEST ind;
9252
9253 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9254 {
9255 int localpos;
9256
9257 localpos = expr_pc;
9258 assign_component (container, lhs, ind, exp, &localpos);
9259 }
9260 }
9261 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9262 }
9263
9264 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9265 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9266 modifying *SIZE as needed. It is an error if *SIZE exceeds
9267 MAX_SIZE. The resulting intervals do not overlap. */
9268 static void
9269 add_component_interval (LONGEST low, LONGEST high,
9270 LONGEST* indices, int *size, int max_size)
9271 {
9272 int i, j;
9273
9274 for (i = 0; i < *size; i += 2) {
9275 if (high >= indices[i] && low <= indices[i + 1])
9276 {
9277 int kh;
9278
9279 for (kh = i + 2; kh < *size; kh += 2)
9280 if (high < indices[kh])
9281 break;
9282 if (low < indices[i])
9283 indices[i] = low;
9284 indices[i + 1] = indices[kh - 1];
9285 if (high > indices[i + 1])
9286 indices[i + 1] = high;
9287 memcpy (indices + i + 2, indices + kh, *size - kh);
9288 *size -= kh - i - 2;
9289 return;
9290 }
9291 else if (high < indices[i])
9292 break;
9293 }
9294
9295 if (*size == max_size)
9296 error (_("Internal error: miscounted aggregate components."));
9297 *size += 2;
9298 for (j = *size-1; j >= i+2; j -= 1)
9299 indices[j] = indices[j - 2];
9300 indices[i] = low;
9301 indices[i + 1] = high;
9302 }
9303
9304 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9305 is different. */
9306
9307 static struct value *
9308 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9309 {
9310 if (type == ada_check_typedef (value_type (arg2)))
9311 return arg2;
9312
9313 if (ada_is_fixed_point_type (type))
9314 return (cast_to_fixed (type, arg2));
9315
9316 if (ada_is_fixed_point_type (value_type (arg2)))
9317 return cast_from_fixed (type, arg2);
9318
9319 return value_cast (type, arg2);
9320 }
9321
9322 /* Evaluating Ada expressions, and printing their result.
9323 ------------------------------------------------------
9324
9325 1. Introduction:
9326 ----------------
9327
9328 We usually evaluate an Ada expression in order to print its value.
9329 We also evaluate an expression in order to print its type, which
9330 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9331 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9332 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9333 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9334 similar.
9335
9336 Evaluating expressions is a little more complicated for Ada entities
9337 than it is for entities in languages such as C. The main reason for
9338 this is that Ada provides types whose definition might be dynamic.
9339 One example of such types is variant records. Or another example
9340 would be an array whose bounds can only be known at run time.
9341
9342 The following description is a general guide as to what should be
9343 done (and what should NOT be done) in order to evaluate an expression
9344 involving such types, and when. This does not cover how the semantic
9345 information is encoded by GNAT as this is covered separatly. For the
9346 document used as the reference for the GNAT encoding, see exp_dbug.ads
9347 in the GNAT sources.
9348
9349 Ideally, we should embed each part of this description next to its
9350 associated code. Unfortunately, the amount of code is so vast right
9351 now that it's hard to see whether the code handling a particular
9352 situation might be duplicated or not. One day, when the code is
9353 cleaned up, this guide might become redundant with the comments
9354 inserted in the code, and we might want to remove it.
9355
9356 2. ``Fixing'' an Entity, the Simple Case:
9357 -----------------------------------------
9358
9359 When evaluating Ada expressions, the tricky issue is that they may
9360 reference entities whose type contents and size are not statically
9361 known. Consider for instance a variant record:
9362
9363 type Rec (Empty : Boolean := True) is record
9364 case Empty is
9365 when True => null;
9366 when False => Value : Integer;
9367 end case;
9368 end record;
9369 Yes : Rec := (Empty => False, Value => 1);
9370 No : Rec := (empty => True);
9371
9372 The size and contents of that record depends on the value of the
9373 descriminant (Rec.Empty). At this point, neither the debugging
9374 information nor the associated type structure in GDB are able to
9375 express such dynamic types. So what the debugger does is to create
9376 "fixed" versions of the type that applies to the specific object.
9377 We also informally refer to this opperation as "fixing" an object,
9378 which means creating its associated fixed type.
9379
9380 Example: when printing the value of variable "Yes" above, its fixed
9381 type would look like this:
9382
9383 type Rec is record
9384 Empty : Boolean;
9385 Value : Integer;
9386 end record;
9387
9388 On the other hand, if we printed the value of "No", its fixed type
9389 would become:
9390
9391 type Rec is record
9392 Empty : Boolean;
9393 end record;
9394
9395 Things become a little more complicated when trying to fix an entity
9396 with a dynamic type that directly contains another dynamic type,
9397 such as an array of variant records, for instance. There are
9398 two possible cases: Arrays, and records.
9399
9400 3. ``Fixing'' Arrays:
9401 ---------------------
9402
9403 The type structure in GDB describes an array in terms of its bounds,
9404 and the type of its elements. By design, all elements in the array
9405 have the same type and we cannot represent an array of variant elements
9406 using the current type structure in GDB. When fixing an array,
9407 we cannot fix the array element, as we would potentially need one
9408 fixed type per element of the array. As a result, the best we can do
9409 when fixing an array is to produce an array whose bounds and size
9410 are correct (allowing us to read it from memory), but without having
9411 touched its element type. Fixing each element will be done later,
9412 when (if) necessary.
9413
9414 Arrays are a little simpler to handle than records, because the same
9415 amount of memory is allocated for each element of the array, even if
9416 the amount of space actually used by each element differs from element
9417 to element. Consider for instance the following array of type Rec:
9418
9419 type Rec_Array is array (1 .. 2) of Rec;
9420
9421 The actual amount of memory occupied by each element might be different
9422 from element to element, depending on the value of their discriminant.
9423 But the amount of space reserved for each element in the array remains
9424 fixed regardless. So we simply need to compute that size using
9425 the debugging information available, from which we can then determine
9426 the array size (we multiply the number of elements of the array by
9427 the size of each element).
9428
9429 The simplest case is when we have an array of a constrained element
9430 type. For instance, consider the following type declarations:
9431
9432 type Bounded_String (Max_Size : Integer) is
9433 Length : Integer;
9434 Buffer : String (1 .. Max_Size);
9435 end record;
9436 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9437
9438 In this case, the compiler describes the array as an array of
9439 variable-size elements (identified by its XVS suffix) for which
9440 the size can be read in the parallel XVZ variable.
9441
9442 In the case of an array of an unconstrained element type, the compiler
9443 wraps the array element inside a private PAD type. This type should not
9444 be shown to the user, and must be "unwrap"'ed before printing. Note
9445 that we also use the adjective "aligner" in our code to designate
9446 these wrapper types.
9447
9448 In some cases, the size allocated for each element is statically
9449 known. In that case, the PAD type already has the correct size,
9450 and the array element should remain unfixed.
9451
9452 But there are cases when this size is not statically known.
9453 For instance, assuming that "Five" is an integer variable:
9454
9455 type Dynamic is array (1 .. Five) of Integer;
9456 type Wrapper (Has_Length : Boolean := False) is record
9457 Data : Dynamic;
9458 case Has_Length is
9459 when True => Length : Integer;
9460 when False => null;
9461 end case;
9462 end record;
9463 type Wrapper_Array is array (1 .. 2) of Wrapper;
9464
9465 Hello : Wrapper_Array := (others => (Has_Length => True,
9466 Data => (others => 17),
9467 Length => 1));
9468
9469
9470 The debugging info would describe variable Hello as being an
9471 array of a PAD type. The size of that PAD type is not statically
9472 known, but can be determined using a parallel XVZ variable.
9473 In that case, a copy of the PAD type with the correct size should
9474 be used for the fixed array.
9475
9476 3. ``Fixing'' record type objects:
9477 ----------------------------------
9478
9479 Things are slightly different from arrays in the case of dynamic
9480 record types. In this case, in order to compute the associated
9481 fixed type, we need to determine the size and offset of each of
9482 its components. This, in turn, requires us to compute the fixed
9483 type of each of these components.
9484
9485 Consider for instance the example:
9486
9487 type Bounded_String (Max_Size : Natural) is record
9488 Str : String (1 .. Max_Size);
9489 Length : Natural;
9490 end record;
9491 My_String : Bounded_String (Max_Size => 10);
9492
9493 In that case, the position of field "Length" depends on the size
9494 of field Str, which itself depends on the value of the Max_Size
9495 discriminant. In order to fix the type of variable My_String,
9496 we need to fix the type of field Str. Therefore, fixing a variant
9497 record requires us to fix each of its components.
9498
9499 However, if a component does not have a dynamic size, the component
9500 should not be fixed. In particular, fields that use a PAD type
9501 should not fixed. Here is an example where this might happen
9502 (assuming type Rec above):
9503
9504 type Container (Big : Boolean) is record
9505 First : Rec;
9506 After : Integer;
9507 case Big is
9508 when True => Another : Integer;
9509 when False => null;
9510 end case;
9511 end record;
9512 My_Container : Container := (Big => False,
9513 First => (Empty => True),
9514 After => 42);
9515
9516 In that example, the compiler creates a PAD type for component First,
9517 whose size is constant, and then positions the component After just
9518 right after it. The offset of component After is therefore constant
9519 in this case.
9520
9521 The debugger computes the position of each field based on an algorithm
9522 that uses, among other things, the actual position and size of the field
9523 preceding it. Let's now imagine that the user is trying to print
9524 the value of My_Container. If the type fixing was recursive, we would
9525 end up computing the offset of field After based on the size of the
9526 fixed version of field First. And since in our example First has
9527 only one actual field, the size of the fixed type is actually smaller
9528 than the amount of space allocated to that field, and thus we would
9529 compute the wrong offset of field After.
9530
9531 To make things more complicated, we need to watch out for dynamic
9532 components of variant records (identified by the ___XVL suffix in
9533 the component name). Even if the target type is a PAD type, the size
9534 of that type might not be statically known. So the PAD type needs
9535 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9536 we might end up with the wrong size for our component. This can be
9537 observed with the following type declarations:
9538
9539 type Octal is new Integer range 0 .. 7;
9540 type Octal_Array is array (Positive range <>) of Octal;
9541 pragma Pack (Octal_Array);
9542
9543 type Octal_Buffer (Size : Positive) is record
9544 Buffer : Octal_Array (1 .. Size);
9545 Length : Integer;
9546 end record;
9547
9548 In that case, Buffer is a PAD type whose size is unset and needs
9549 to be computed by fixing the unwrapped type.
9550
9551 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9552 ----------------------------------------------------------
9553
9554 Lastly, when should the sub-elements of an entity that remained unfixed
9555 thus far, be actually fixed?
9556
9557 The answer is: Only when referencing that element. For instance
9558 when selecting one component of a record, this specific component
9559 should be fixed at that point in time. Or when printing the value
9560 of a record, each component should be fixed before its value gets
9561 printed. Similarly for arrays, the element of the array should be
9562 fixed when printing each element of the array, or when extracting
9563 one element out of that array. On the other hand, fixing should
9564 not be performed on the elements when taking a slice of an array!
9565
9566 Note that one of the side-effects of miscomputing the offset and
9567 size of each field is that we end up also miscomputing the size
9568 of the containing type. This can have adverse results when computing
9569 the value of an entity. GDB fetches the value of an entity based
9570 on the size of its type, and thus a wrong size causes GDB to fetch
9571 the wrong amount of memory. In the case where the computed size is
9572 too small, GDB fetches too little data to print the value of our
9573 entiry. Results in this case as unpredicatble, as we usually read
9574 past the buffer containing the data =:-o. */
9575
9576 /* Implement the evaluate_exp routine in the exp_descriptor structure
9577 for the Ada language. */
9578
9579 static struct value *
9580 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9581 int *pos, enum noside noside)
9582 {
9583 enum exp_opcode op;
9584 int tem;
9585 int pc;
9586 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9587 struct type *type;
9588 int nargs, oplen;
9589 struct value **argvec;
9590
9591 pc = *pos;
9592 *pos += 1;
9593 op = exp->elts[pc].opcode;
9594
9595 switch (op)
9596 {
9597 default:
9598 *pos -= 1;
9599 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9600
9601 if (noside == EVAL_NORMAL)
9602 arg1 = unwrap_value (arg1);
9603
9604 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9605 then we need to perform the conversion manually, because
9606 evaluate_subexp_standard doesn't do it. This conversion is
9607 necessary in Ada because the different kinds of float/fixed
9608 types in Ada have different representations.
9609
9610 Similarly, we need to perform the conversion from OP_LONG
9611 ourselves. */
9612 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9613 arg1 = ada_value_cast (expect_type, arg1, noside);
9614
9615 return arg1;
9616
9617 case OP_STRING:
9618 {
9619 struct value *result;
9620
9621 *pos -= 1;
9622 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9623 /* The result type will have code OP_STRING, bashed there from
9624 OP_ARRAY. Bash it back. */
9625 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9626 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9627 return result;
9628 }
9629
9630 case UNOP_CAST:
9631 (*pos) += 2;
9632 type = exp->elts[pc + 1].type;
9633 arg1 = evaluate_subexp (type, exp, pos, noside);
9634 if (noside == EVAL_SKIP)
9635 goto nosideret;
9636 arg1 = ada_value_cast (type, arg1, noside);
9637 return arg1;
9638
9639 case UNOP_QUAL:
9640 (*pos) += 2;
9641 type = exp->elts[pc + 1].type;
9642 return ada_evaluate_subexp (type, exp, pos, noside);
9643
9644 case BINOP_ASSIGN:
9645 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9646 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9647 {
9648 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9649 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9650 return arg1;
9651 return ada_value_assign (arg1, arg1);
9652 }
9653 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9654 except if the lhs of our assignment is a convenience variable.
9655 In the case of assigning to a convenience variable, the lhs
9656 should be exactly the result of the evaluation of the rhs. */
9657 type = value_type (arg1);
9658 if (VALUE_LVAL (arg1) == lval_internalvar)
9659 type = NULL;
9660 arg2 = evaluate_subexp (type, exp, pos, noside);
9661 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9662 return arg1;
9663 if (ada_is_fixed_point_type (value_type (arg1)))
9664 arg2 = cast_to_fixed (value_type (arg1), arg2);
9665 else if (ada_is_fixed_point_type (value_type (arg2)))
9666 error
9667 (_("Fixed-point values must be assigned to fixed-point variables"));
9668 else
9669 arg2 = coerce_for_assign (value_type (arg1), arg2);
9670 return ada_value_assign (arg1, arg2);
9671
9672 case BINOP_ADD:
9673 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9674 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9675 if (noside == EVAL_SKIP)
9676 goto nosideret;
9677 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9678 return (value_from_longest
9679 (value_type (arg1),
9680 value_as_long (arg1) + value_as_long (arg2)));
9681 if ((ada_is_fixed_point_type (value_type (arg1))
9682 || ada_is_fixed_point_type (value_type (arg2)))
9683 && value_type (arg1) != value_type (arg2))
9684 error (_("Operands of fixed-point addition must have the same type"));
9685 /* Do the addition, and cast the result to the type of the first
9686 argument. We cannot cast the result to a reference type, so if
9687 ARG1 is a reference type, find its underlying type. */
9688 type = value_type (arg1);
9689 while (TYPE_CODE (type) == TYPE_CODE_REF)
9690 type = TYPE_TARGET_TYPE (type);
9691 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9692 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9693
9694 case BINOP_SUB:
9695 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9696 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9697 if (noside == EVAL_SKIP)
9698 goto nosideret;
9699 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9700 return (value_from_longest
9701 (value_type (arg1),
9702 value_as_long (arg1) - value_as_long (arg2)));
9703 if ((ada_is_fixed_point_type (value_type (arg1))
9704 || ada_is_fixed_point_type (value_type (arg2)))
9705 && value_type (arg1) != value_type (arg2))
9706 error (_("Operands of fixed-point subtraction "
9707 "must have the same type"));
9708 /* Do the substraction, and cast the result to the type of the first
9709 argument. We cannot cast the result to a reference type, so if
9710 ARG1 is a reference type, find its underlying type. */
9711 type = value_type (arg1);
9712 while (TYPE_CODE (type) == TYPE_CODE_REF)
9713 type = TYPE_TARGET_TYPE (type);
9714 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9715 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9716
9717 case BINOP_MUL:
9718 case BINOP_DIV:
9719 case BINOP_REM:
9720 case BINOP_MOD:
9721 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9722 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9723 if (noside == EVAL_SKIP)
9724 goto nosideret;
9725 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9726 {
9727 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9728 return value_zero (value_type (arg1), not_lval);
9729 }
9730 else
9731 {
9732 type = builtin_type (exp->gdbarch)->builtin_double;
9733 if (ada_is_fixed_point_type (value_type (arg1)))
9734 arg1 = cast_from_fixed (type, arg1);
9735 if (ada_is_fixed_point_type (value_type (arg2)))
9736 arg2 = cast_from_fixed (type, arg2);
9737 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9738 return ada_value_binop (arg1, arg2, op);
9739 }
9740
9741 case BINOP_EQUAL:
9742 case BINOP_NOTEQUAL:
9743 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9744 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9745 if (noside == EVAL_SKIP)
9746 goto nosideret;
9747 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9748 tem = 0;
9749 else
9750 {
9751 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9752 tem = ada_value_equal (arg1, arg2);
9753 }
9754 if (op == BINOP_NOTEQUAL)
9755 tem = !tem;
9756 type = language_bool_type (exp->language_defn, exp->gdbarch);
9757 return value_from_longest (type, (LONGEST) tem);
9758
9759 case UNOP_NEG:
9760 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9761 if (noside == EVAL_SKIP)
9762 goto nosideret;
9763 else if (ada_is_fixed_point_type (value_type (arg1)))
9764 return value_cast (value_type (arg1), value_neg (arg1));
9765 else
9766 {
9767 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9768 return value_neg (arg1);
9769 }
9770
9771 case BINOP_LOGICAL_AND:
9772 case BINOP_LOGICAL_OR:
9773 case UNOP_LOGICAL_NOT:
9774 {
9775 struct value *val;
9776
9777 *pos -= 1;
9778 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9779 type = language_bool_type (exp->language_defn, exp->gdbarch);
9780 return value_cast (type, val);
9781 }
9782
9783 case BINOP_BITWISE_AND:
9784 case BINOP_BITWISE_IOR:
9785 case BINOP_BITWISE_XOR:
9786 {
9787 struct value *val;
9788
9789 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9790 *pos = pc;
9791 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9792
9793 return value_cast (value_type (arg1), val);
9794 }
9795
9796 case OP_VAR_VALUE:
9797 *pos -= 1;
9798
9799 if (noside == EVAL_SKIP)
9800 {
9801 *pos += 4;
9802 goto nosideret;
9803 }
9804 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9805 /* Only encountered when an unresolved symbol occurs in a
9806 context other than a function call, in which case, it is
9807 invalid. */
9808 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9809 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9810 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9811 {
9812 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9813 /* Check to see if this is a tagged type. We also need to handle
9814 the case where the type is a reference to a tagged type, but
9815 we have to be careful to exclude pointers to tagged types.
9816 The latter should be shown as usual (as a pointer), whereas
9817 a reference should mostly be transparent to the user. */
9818 if (ada_is_tagged_type (type, 0)
9819 || (TYPE_CODE(type) == TYPE_CODE_REF
9820 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9821 {
9822 /* Tagged types are a little special in the fact that the real
9823 type is dynamic and can only be determined by inspecting the
9824 object's tag. This means that we need to get the object's
9825 value first (EVAL_NORMAL) and then extract the actual object
9826 type from its tag.
9827
9828 Note that we cannot skip the final step where we extract
9829 the object type from its tag, because the EVAL_NORMAL phase
9830 results in dynamic components being resolved into fixed ones.
9831 This can cause problems when trying to print the type
9832 description of tagged types whose parent has a dynamic size:
9833 We use the type name of the "_parent" component in order
9834 to print the name of the ancestor type in the type description.
9835 If that component had a dynamic size, the resolution into
9836 a fixed type would result in the loss of that type name,
9837 thus preventing us from printing the name of the ancestor
9838 type in the type description. */
9839 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9840
9841 if (TYPE_CODE (type) != TYPE_CODE_REF)
9842 {
9843 struct type *actual_type;
9844
9845 actual_type = type_from_tag (ada_value_tag (arg1));
9846 if (actual_type == NULL)
9847 /* If, for some reason, we were unable to determine
9848 the actual type from the tag, then use the static
9849 approximation that we just computed as a fallback.
9850 This can happen if the debugging information is
9851 incomplete, for instance. */
9852 actual_type = type;
9853 return value_zero (actual_type, not_lval);
9854 }
9855 else
9856 {
9857 /* In the case of a ref, ada_coerce_ref takes care
9858 of determining the actual type. But the evaluation
9859 should return a ref as it should be valid to ask
9860 for its address; so rebuild a ref after coerce. */
9861 arg1 = ada_coerce_ref (arg1);
9862 return value_ref (arg1);
9863 }
9864 }
9865
9866 *pos += 4;
9867 return value_zero
9868 (to_static_fixed_type
9869 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9870 not_lval);
9871 }
9872 else
9873 {
9874 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9875 return ada_to_fixed_value (arg1);
9876 }
9877
9878 case OP_FUNCALL:
9879 (*pos) += 2;
9880
9881 /* Allocate arg vector, including space for the function to be
9882 called in argvec[0] and a terminating NULL. */
9883 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9884 argvec =
9885 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9886
9887 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9888 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9889 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9890 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9891 else
9892 {
9893 for (tem = 0; tem <= nargs; tem += 1)
9894 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9895 argvec[tem] = 0;
9896
9897 if (noside == EVAL_SKIP)
9898 goto nosideret;
9899 }
9900
9901 if (ada_is_constrained_packed_array_type
9902 (desc_base_type (value_type (argvec[0]))))
9903 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9904 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9905 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9906 /* This is a packed array that has already been fixed, and
9907 therefore already coerced to a simple array. Nothing further
9908 to do. */
9909 ;
9910 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9911 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9912 && VALUE_LVAL (argvec[0]) == lval_memory))
9913 argvec[0] = value_addr (argvec[0]);
9914
9915 type = ada_check_typedef (value_type (argvec[0]));
9916
9917 /* Ada allows us to implicitly dereference arrays when subscripting
9918 them. So, if this is an array typedef (encoding use for array
9919 access types encoded as fat pointers), strip it now. */
9920 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9921 type = ada_typedef_target_type (type);
9922
9923 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9924 {
9925 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9926 {
9927 case TYPE_CODE_FUNC:
9928 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9929 break;
9930 case TYPE_CODE_ARRAY:
9931 break;
9932 case TYPE_CODE_STRUCT:
9933 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9934 argvec[0] = ada_value_ind (argvec[0]);
9935 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9936 break;
9937 default:
9938 error (_("cannot subscript or call something of type `%s'"),
9939 ada_type_name (value_type (argvec[0])));
9940 break;
9941 }
9942 }
9943
9944 switch (TYPE_CODE (type))
9945 {
9946 case TYPE_CODE_FUNC:
9947 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9948 {
9949 struct type *rtype = TYPE_TARGET_TYPE (type);
9950
9951 if (TYPE_GNU_IFUNC (type))
9952 return allocate_value (TYPE_TARGET_TYPE (rtype));
9953 return allocate_value (rtype);
9954 }
9955 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9956 case TYPE_CODE_INTERNAL_FUNCTION:
9957 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9958 /* We don't know anything about what the internal
9959 function might return, but we have to return
9960 something. */
9961 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9962 not_lval);
9963 else
9964 return call_internal_function (exp->gdbarch, exp->language_defn,
9965 argvec[0], nargs, argvec + 1);
9966
9967 case TYPE_CODE_STRUCT:
9968 {
9969 int arity;
9970
9971 arity = ada_array_arity (type);
9972 type = ada_array_element_type (type, nargs);
9973 if (type == NULL)
9974 error (_("cannot subscript or call a record"));
9975 if (arity != nargs)
9976 error (_("wrong number of subscripts; expecting %d"), arity);
9977 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9978 return value_zero (ada_aligned_type (type), lval_memory);
9979 return
9980 unwrap_value (ada_value_subscript
9981 (argvec[0], nargs, argvec + 1));
9982 }
9983 case TYPE_CODE_ARRAY:
9984 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9985 {
9986 type = ada_array_element_type (type, nargs);
9987 if (type == NULL)
9988 error (_("element type of array unknown"));
9989 else
9990 return value_zero (ada_aligned_type (type), lval_memory);
9991 }
9992 return
9993 unwrap_value (ada_value_subscript
9994 (ada_coerce_to_simple_array (argvec[0]),
9995 nargs, argvec + 1));
9996 case TYPE_CODE_PTR: /* Pointer to array */
9997 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9998 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9999 {
10000 type = ada_array_element_type (type, nargs);
10001 if (type == NULL)
10002 error (_("element type of array unknown"));
10003 else
10004 return value_zero (ada_aligned_type (type), lval_memory);
10005 }
10006 return
10007 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10008 nargs, argvec + 1));
10009
10010 default:
10011 error (_("Attempt to index or call something other than an "
10012 "array or function"));
10013 }
10014
10015 case TERNOP_SLICE:
10016 {
10017 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10018 struct value *low_bound_val =
10019 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10020 struct value *high_bound_val =
10021 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10022 LONGEST low_bound;
10023 LONGEST high_bound;
10024
10025 low_bound_val = coerce_ref (low_bound_val);
10026 high_bound_val = coerce_ref (high_bound_val);
10027 low_bound = pos_atr (low_bound_val);
10028 high_bound = pos_atr (high_bound_val);
10029
10030 if (noside == EVAL_SKIP)
10031 goto nosideret;
10032
10033 /* If this is a reference to an aligner type, then remove all
10034 the aligners. */
10035 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10036 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10037 TYPE_TARGET_TYPE (value_type (array)) =
10038 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10039
10040 if (ada_is_constrained_packed_array_type (value_type (array)))
10041 error (_("cannot slice a packed array"));
10042
10043 /* If this is a reference to an array or an array lvalue,
10044 convert to a pointer. */
10045 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10046 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10047 && VALUE_LVAL (array) == lval_memory))
10048 array = value_addr (array);
10049
10050 if (noside == EVAL_AVOID_SIDE_EFFECTS
10051 && ada_is_array_descriptor_type (ada_check_typedef
10052 (value_type (array))))
10053 return empty_array (ada_type_of_array (array, 0), low_bound);
10054
10055 array = ada_coerce_to_simple_array_ptr (array);
10056
10057 /* If we have more than one level of pointer indirection,
10058 dereference the value until we get only one level. */
10059 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10060 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10061 == TYPE_CODE_PTR))
10062 array = value_ind (array);
10063
10064 /* Make sure we really do have an array type before going further,
10065 to avoid a SEGV when trying to get the index type or the target
10066 type later down the road if the debug info generated by
10067 the compiler is incorrect or incomplete. */
10068 if (!ada_is_simple_array_type (value_type (array)))
10069 error (_("cannot take slice of non-array"));
10070
10071 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10072 == TYPE_CODE_PTR)
10073 {
10074 struct type *type0 = ada_check_typedef (value_type (array));
10075
10076 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10077 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10078 else
10079 {
10080 struct type *arr_type0 =
10081 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10082
10083 return ada_value_slice_from_ptr (array, arr_type0,
10084 longest_to_int (low_bound),
10085 longest_to_int (high_bound));
10086 }
10087 }
10088 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10089 return array;
10090 else if (high_bound < low_bound)
10091 return empty_array (value_type (array), low_bound);
10092 else
10093 return ada_value_slice (array, longest_to_int (low_bound),
10094 longest_to_int (high_bound));
10095 }
10096
10097 case UNOP_IN_RANGE:
10098 (*pos) += 2;
10099 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10100 type = check_typedef (exp->elts[pc + 1].type);
10101
10102 if (noside == EVAL_SKIP)
10103 goto nosideret;
10104
10105 switch (TYPE_CODE (type))
10106 {
10107 default:
10108 lim_warning (_("Membership test incompletely implemented; "
10109 "always returns true"));
10110 type = language_bool_type (exp->language_defn, exp->gdbarch);
10111 return value_from_longest (type, (LONGEST) 1);
10112
10113 case TYPE_CODE_RANGE:
10114 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10115 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10116 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10117 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10118 type = language_bool_type (exp->language_defn, exp->gdbarch);
10119 return
10120 value_from_longest (type,
10121 (value_less (arg1, arg3)
10122 || value_equal (arg1, arg3))
10123 && (value_less (arg2, arg1)
10124 || value_equal (arg2, arg1)));
10125 }
10126
10127 case BINOP_IN_BOUNDS:
10128 (*pos) += 2;
10129 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10130 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10131
10132 if (noside == EVAL_SKIP)
10133 goto nosideret;
10134
10135 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10136 {
10137 type = language_bool_type (exp->language_defn, exp->gdbarch);
10138 return value_zero (type, not_lval);
10139 }
10140
10141 tem = longest_to_int (exp->elts[pc + 1].longconst);
10142
10143 type = ada_index_type (value_type (arg2), tem, "range");
10144 if (!type)
10145 type = value_type (arg1);
10146
10147 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10148 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10149
10150 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10151 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10152 type = language_bool_type (exp->language_defn, exp->gdbarch);
10153 return
10154 value_from_longest (type,
10155 (value_less (arg1, arg3)
10156 || value_equal (arg1, arg3))
10157 && (value_less (arg2, arg1)
10158 || value_equal (arg2, arg1)));
10159
10160 case TERNOP_IN_RANGE:
10161 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10162 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10163 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10164
10165 if (noside == EVAL_SKIP)
10166 goto nosideret;
10167
10168 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10169 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10170 type = language_bool_type (exp->language_defn, exp->gdbarch);
10171 return
10172 value_from_longest (type,
10173 (value_less (arg1, arg3)
10174 || value_equal (arg1, arg3))
10175 && (value_less (arg2, arg1)
10176 || value_equal (arg2, arg1)));
10177
10178 case OP_ATR_FIRST:
10179 case OP_ATR_LAST:
10180 case OP_ATR_LENGTH:
10181 {
10182 struct type *type_arg;
10183
10184 if (exp->elts[*pos].opcode == OP_TYPE)
10185 {
10186 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10187 arg1 = NULL;
10188 type_arg = check_typedef (exp->elts[pc + 2].type);
10189 }
10190 else
10191 {
10192 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10193 type_arg = NULL;
10194 }
10195
10196 if (exp->elts[*pos].opcode != OP_LONG)
10197 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10198 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10199 *pos += 4;
10200
10201 if (noside == EVAL_SKIP)
10202 goto nosideret;
10203
10204 if (type_arg == NULL)
10205 {
10206 arg1 = ada_coerce_ref (arg1);
10207
10208 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10209 arg1 = ada_coerce_to_simple_array (arg1);
10210
10211 type = ada_index_type (value_type (arg1), tem,
10212 ada_attribute_name (op));
10213 if (type == NULL)
10214 type = builtin_type (exp->gdbarch)->builtin_int;
10215
10216 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10217 return allocate_value (type);
10218
10219 switch (op)
10220 {
10221 default: /* Should never happen. */
10222 error (_("unexpected attribute encountered"));
10223 case OP_ATR_FIRST:
10224 return value_from_longest
10225 (type, ada_array_bound (arg1, tem, 0));
10226 case OP_ATR_LAST:
10227 return value_from_longest
10228 (type, ada_array_bound (arg1, tem, 1));
10229 case OP_ATR_LENGTH:
10230 return value_from_longest
10231 (type, ada_array_length (arg1, tem));
10232 }
10233 }
10234 else if (discrete_type_p (type_arg))
10235 {
10236 struct type *range_type;
10237 const char *name = ada_type_name (type_arg);
10238
10239 range_type = NULL;
10240 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10241 range_type = to_fixed_range_type (type_arg, NULL);
10242 if (range_type == NULL)
10243 range_type = type_arg;
10244 switch (op)
10245 {
10246 default:
10247 error (_("unexpected attribute encountered"));
10248 case OP_ATR_FIRST:
10249 return value_from_longest
10250 (range_type, ada_discrete_type_low_bound (range_type));
10251 case OP_ATR_LAST:
10252 return value_from_longest
10253 (range_type, ada_discrete_type_high_bound (range_type));
10254 case OP_ATR_LENGTH:
10255 error (_("the 'length attribute applies only to array types"));
10256 }
10257 }
10258 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10259 error (_("unimplemented type attribute"));
10260 else
10261 {
10262 LONGEST low, high;
10263
10264 if (ada_is_constrained_packed_array_type (type_arg))
10265 type_arg = decode_constrained_packed_array_type (type_arg);
10266
10267 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10268 if (type == NULL)
10269 type = builtin_type (exp->gdbarch)->builtin_int;
10270
10271 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10272 return allocate_value (type);
10273
10274 switch (op)
10275 {
10276 default:
10277 error (_("unexpected attribute encountered"));
10278 case OP_ATR_FIRST:
10279 low = ada_array_bound_from_type (type_arg, tem, 0);
10280 return value_from_longest (type, low);
10281 case OP_ATR_LAST:
10282 high = ada_array_bound_from_type (type_arg, tem, 1);
10283 return value_from_longest (type, high);
10284 case OP_ATR_LENGTH:
10285 low = ada_array_bound_from_type (type_arg, tem, 0);
10286 high = ada_array_bound_from_type (type_arg, tem, 1);
10287 return value_from_longest (type, high - low + 1);
10288 }
10289 }
10290 }
10291
10292 case OP_ATR_TAG:
10293 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10294 if (noside == EVAL_SKIP)
10295 goto nosideret;
10296
10297 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10298 return value_zero (ada_tag_type (arg1), not_lval);
10299
10300 return ada_value_tag (arg1);
10301
10302 case OP_ATR_MIN:
10303 case OP_ATR_MAX:
10304 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10305 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10306 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10307 if (noside == EVAL_SKIP)
10308 goto nosideret;
10309 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10310 return value_zero (value_type (arg1), not_lval);
10311 else
10312 {
10313 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10314 return value_binop (arg1, arg2,
10315 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10316 }
10317
10318 case OP_ATR_MODULUS:
10319 {
10320 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10321
10322 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10323 if (noside == EVAL_SKIP)
10324 goto nosideret;
10325
10326 if (!ada_is_modular_type (type_arg))
10327 error (_("'modulus must be applied to modular type"));
10328
10329 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10330 ada_modulus (type_arg));
10331 }
10332
10333
10334 case OP_ATR_POS:
10335 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10336 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10337 if (noside == EVAL_SKIP)
10338 goto nosideret;
10339 type = builtin_type (exp->gdbarch)->builtin_int;
10340 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10341 return value_zero (type, not_lval);
10342 else
10343 return value_pos_atr (type, arg1);
10344
10345 case OP_ATR_SIZE:
10346 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10347 type = value_type (arg1);
10348
10349 /* If the argument is a reference, then dereference its type, since
10350 the user is really asking for the size of the actual object,
10351 not the size of the pointer. */
10352 if (TYPE_CODE (type) == TYPE_CODE_REF)
10353 type = TYPE_TARGET_TYPE (type);
10354
10355 if (noside == EVAL_SKIP)
10356 goto nosideret;
10357 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10358 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10359 else
10360 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10361 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10362
10363 case OP_ATR_VAL:
10364 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10365 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10366 type = exp->elts[pc + 2].type;
10367 if (noside == EVAL_SKIP)
10368 goto nosideret;
10369 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10370 return value_zero (type, not_lval);
10371 else
10372 return value_val_atr (type, arg1);
10373
10374 case BINOP_EXP:
10375 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10376 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10377 if (noside == EVAL_SKIP)
10378 goto nosideret;
10379 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10380 return value_zero (value_type (arg1), not_lval);
10381 else
10382 {
10383 /* For integer exponentiation operations,
10384 only promote the first argument. */
10385 if (is_integral_type (value_type (arg2)))
10386 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10387 else
10388 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10389
10390 return value_binop (arg1, arg2, op);
10391 }
10392
10393 case UNOP_PLUS:
10394 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10395 if (noside == EVAL_SKIP)
10396 goto nosideret;
10397 else
10398 return arg1;
10399
10400 case UNOP_ABS:
10401 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10402 if (noside == EVAL_SKIP)
10403 goto nosideret;
10404 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10405 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10406 return value_neg (arg1);
10407 else
10408 return arg1;
10409
10410 case UNOP_IND:
10411 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10412 if (noside == EVAL_SKIP)
10413 goto nosideret;
10414 type = ada_check_typedef (value_type (arg1));
10415 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10416 {
10417 if (ada_is_array_descriptor_type (type))
10418 /* GDB allows dereferencing GNAT array descriptors. */
10419 {
10420 struct type *arrType = ada_type_of_array (arg1, 0);
10421
10422 if (arrType == NULL)
10423 error (_("Attempt to dereference null array pointer."));
10424 return value_at_lazy (arrType, 0);
10425 }
10426 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10427 || TYPE_CODE (type) == TYPE_CODE_REF
10428 /* In C you can dereference an array to get the 1st elt. */
10429 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10430 {
10431 type = to_static_fixed_type
10432 (ada_aligned_type
10433 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10434 check_size (type);
10435 return value_zero (type, lval_memory);
10436 }
10437 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10438 {
10439 /* GDB allows dereferencing an int. */
10440 if (expect_type == NULL)
10441 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10442 lval_memory);
10443 else
10444 {
10445 expect_type =
10446 to_static_fixed_type (ada_aligned_type (expect_type));
10447 return value_zero (expect_type, lval_memory);
10448 }
10449 }
10450 else
10451 error (_("Attempt to take contents of a non-pointer value."));
10452 }
10453 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10454 type = ada_check_typedef (value_type (arg1));
10455
10456 if (TYPE_CODE (type) == TYPE_CODE_INT)
10457 /* GDB allows dereferencing an int. If we were given
10458 the expect_type, then use that as the target type.
10459 Otherwise, assume that the target type is an int. */
10460 {
10461 if (expect_type != NULL)
10462 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10463 arg1));
10464 else
10465 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10466 (CORE_ADDR) value_as_address (arg1));
10467 }
10468
10469 if (ada_is_array_descriptor_type (type))
10470 /* GDB allows dereferencing GNAT array descriptors. */
10471 return ada_coerce_to_simple_array (arg1);
10472 else
10473 return ada_value_ind (arg1);
10474
10475 case STRUCTOP_STRUCT:
10476 tem = longest_to_int (exp->elts[pc + 1].longconst);
10477 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10478 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10479 if (noside == EVAL_SKIP)
10480 goto nosideret;
10481 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10482 {
10483 struct type *type1 = value_type (arg1);
10484
10485 if (ada_is_tagged_type (type1, 1))
10486 {
10487 type = ada_lookup_struct_elt_type (type1,
10488 &exp->elts[pc + 2].string,
10489 1, 1, NULL);
10490 if (type == NULL)
10491 /* In this case, we assume that the field COULD exist
10492 in some extension of the type. Return an object of
10493 "type" void, which will match any formal
10494 (see ada_type_match). */
10495 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10496 lval_memory);
10497 }
10498 else
10499 type =
10500 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10501 0, NULL);
10502
10503 return value_zero (ada_aligned_type (type), lval_memory);
10504 }
10505 else
10506 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10507 arg1 = unwrap_value (arg1);
10508 return ada_to_fixed_value (arg1);
10509
10510 case OP_TYPE:
10511 /* The value is not supposed to be used. This is here to make it
10512 easier to accommodate expressions that contain types. */
10513 (*pos) += 2;
10514 if (noside == EVAL_SKIP)
10515 goto nosideret;
10516 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10517 return allocate_value (exp->elts[pc + 1].type);
10518 else
10519 error (_("Attempt to use a type name as an expression"));
10520
10521 case OP_AGGREGATE:
10522 case OP_CHOICES:
10523 case OP_OTHERS:
10524 case OP_DISCRETE_RANGE:
10525 case OP_POSITIONAL:
10526 case OP_NAME:
10527 if (noside == EVAL_NORMAL)
10528 switch (op)
10529 {
10530 case OP_NAME:
10531 error (_("Undefined name, ambiguous name, or renaming used in "
10532 "component association: %s."), &exp->elts[pc+2].string);
10533 case OP_AGGREGATE:
10534 error (_("Aggregates only allowed on the right of an assignment"));
10535 default:
10536 internal_error (__FILE__, __LINE__,
10537 _("aggregate apparently mangled"));
10538 }
10539
10540 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10541 *pos += oplen - 1;
10542 for (tem = 0; tem < nargs; tem += 1)
10543 ada_evaluate_subexp (NULL, exp, pos, noside);
10544 goto nosideret;
10545 }
10546
10547 nosideret:
10548 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10549 }
10550 \f
10551
10552 /* Fixed point */
10553
10554 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10555 type name that encodes the 'small and 'delta information.
10556 Otherwise, return NULL. */
10557
10558 static const char *
10559 fixed_type_info (struct type *type)
10560 {
10561 const char *name = ada_type_name (type);
10562 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10563
10564 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10565 {
10566 const char *tail = strstr (name, "___XF_");
10567
10568 if (tail == NULL)
10569 return NULL;
10570 else
10571 return tail + 5;
10572 }
10573 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10574 return fixed_type_info (TYPE_TARGET_TYPE (type));
10575 else
10576 return NULL;
10577 }
10578
10579 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10580
10581 int
10582 ada_is_fixed_point_type (struct type *type)
10583 {
10584 return fixed_type_info (type) != NULL;
10585 }
10586
10587 /* Return non-zero iff TYPE represents a System.Address type. */
10588
10589 int
10590 ada_is_system_address_type (struct type *type)
10591 {
10592 return (TYPE_NAME (type)
10593 && strcmp (TYPE_NAME (type), "system__address") == 0);
10594 }
10595
10596 /* Assuming that TYPE is the representation of an Ada fixed-point
10597 type, return its delta, or -1 if the type is malformed and the
10598 delta cannot be determined. */
10599
10600 DOUBLEST
10601 ada_delta (struct type *type)
10602 {
10603 const char *encoding = fixed_type_info (type);
10604 DOUBLEST num, den;
10605
10606 /* Strictly speaking, num and den are encoded as integer. However,
10607 they may not fit into a long, and they will have to be converted
10608 to DOUBLEST anyway. So scan them as DOUBLEST. */
10609 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10610 &num, &den) < 2)
10611 return -1.0;
10612 else
10613 return num / den;
10614 }
10615
10616 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10617 factor ('SMALL value) associated with the type. */
10618
10619 static DOUBLEST
10620 scaling_factor (struct type *type)
10621 {
10622 const char *encoding = fixed_type_info (type);
10623 DOUBLEST num0, den0, num1, den1;
10624 int n;
10625
10626 /* Strictly speaking, num's and den's are encoded as integer. However,
10627 they may not fit into a long, and they will have to be converted
10628 to DOUBLEST anyway. So scan them as DOUBLEST. */
10629 n = sscanf (encoding,
10630 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10631 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10632 &num0, &den0, &num1, &den1);
10633
10634 if (n < 2)
10635 return 1.0;
10636 else if (n == 4)
10637 return num1 / den1;
10638 else
10639 return num0 / den0;
10640 }
10641
10642
10643 /* Assuming that X is the representation of a value of fixed-point
10644 type TYPE, return its floating-point equivalent. */
10645
10646 DOUBLEST
10647 ada_fixed_to_float (struct type *type, LONGEST x)
10648 {
10649 return (DOUBLEST) x *scaling_factor (type);
10650 }
10651
10652 /* The representation of a fixed-point value of type TYPE
10653 corresponding to the value X. */
10654
10655 LONGEST
10656 ada_float_to_fixed (struct type *type, DOUBLEST x)
10657 {
10658 return (LONGEST) (x / scaling_factor (type) + 0.5);
10659 }
10660
10661 \f
10662
10663 /* Range types */
10664
10665 /* Scan STR beginning at position K for a discriminant name, and
10666 return the value of that discriminant field of DVAL in *PX. If
10667 PNEW_K is not null, put the position of the character beyond the
10668 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10669 not alter *PX and *PNEW_K if unsuccessful. */
10670
10671 static int
10672 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10673 int *pnew_k)
10674 {
10675 static char *bound_buffer = NULL;
10676 static size_t bound_buffer_len = 0;
10677 char *bound;
10678 char *pend;
10679 struct value *bound_val;
10680
10681 if (dval == NULL || str == NULL || str[k] == '\0')
10682 return 0;
10683
10684 pend = strstr (str + k, "__");
10685 if (pend == NULL)
10686 {
10687 bound = str + k;
10688 k += strlen (bound);
10689 }
10690 else
10691 {
10692 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10693 bound = bound_buffer;
10694 strncpy (bound_buffer, str + k, pend - (str + k));
10695 bound[pend - (str + k)] = '\0';
10696 k = pend - str;
10697 }
10698
10699 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10700 if (bound_val == NULL)
10701 return 0;
10702
10703 *px = value_as_long (bound_val);
10704 if (pnew_k != NULL)
10705 *pnew_k = k;
10706 return 1;
10707 }
10708
10709 /* Value of variable named NAME in the current environment. If
10710 no such variable found, then if ERR_MSG is null, returns 0, and
10711 otherwise causes an error with message ERR_MSG. */
10712
10713 static struct value *
10714 get_var_value (char *name, char *err_msg)
10715 {
10716 struct ada_symbol_info *syms;
10717 int nsyms;
10718
10719 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10720 &syms);
10721
10722 if (nsyms != 1)
10723 {
10724 if (err_msg == NULL)
10725 return 0;
10726 else
10727 error (("%s"), err_msg);
10728 }
10729
10730 return value_of_variable (syms[0].sym, syms[0].block);
10731 }
10732
10733 /* Value of integer variable named NAME in the current environment. If
10734 no such variable found, returns 0, and sets *FLAG to 0. If
10735 successful, sets *FLAG to 1. */
10736
10737 LONGEST
10738 get_int_var_value (char *name, int *flag)
10739 {
10740 struct value *var_val = get_var_value (name, 0);
10741
10742 if (var_val == 0)
10743 {
10744 if (flag != NULL)
10745 *flag = 0;
10746 return 0;
10747 }
10748 else
10749 {
10750 if (flag != NULL)
10751 *flag = 1;
10752 return value_as_long (var_val);
10753 }
10754 }
10755
10756
10757 /* Return a range type whose base type is that of the range type named
10758 NAME in the current environment, and whose bounds are calculated
10759 from NAME according to the GNAT range encoding conventions.
10760 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10761 corresponding range type from debug information; fall back to using it
10762 if symbol lookup fails. If a new type must be created, allocate it
10763 like ORIG_TYPE was. The bounds information, in general, is encoded
10764 in NAME, the base type given in the named range type. */
10765
10766 static struct type *
10767 to_fixed_range_type (struct type *raw_type, struct value *dval)
10768 {
10769 const char *name;
10770 struct type *base_type;
10771 char *subtype_info;
10772
10773 gdb_assert (raw_type != NULL);
10774 gdb_assert (TYPE_NAME (raw_type) != NULL);
10775
10776 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10777 base_type = TYPE_TARGET_TYPE (raw_type);
10778 else
10779 base_type = raw_type;
10780
10781 name = TYPE_NAME (raw_type);
10782 subtype_info = strstr (name, "___XD");
10783 if (subtype_info == NULL)
10784 {
10785 LONGEST L = ada_discrete_type_low_bound (raw_type);
10786 LONGEST U = ada_discrete_type_high_bound (raw_type);
10787
10788 if (L < INT_MIN || U > INT_MAX)
10789 return raw_type;
10790 else
10791 return create_range_type (alloc_type_copy (raw_type), raw_type,
10792 ada_discrete_type_low_bound (raw_type),
10793 ada_discrete_type_high_bound (raw_type));
10794 }
10795 else
10796 {
10797 static char *name_buf = NULL;
10798 static size_t name_len = 0;
10799 int prefix_len = subtype_info - name;
10800 LONGEST L, U;
10801 struct type *type;
10802 char *bounds_str;
10803 int n;
10804
10805 GROW_VECT (name_buf, name_len, prefix_len + 5);
10806 strncpy (name_buf, name, prefix_len);
10807 name_buf[prefix_len] = '\0';
10808
10809 subtype_info += 5;
10810 bounds_str = strchr (subtype_info, '_');
10811 n = 1;
10812
10813 if (*subtype_info == 'L')
10814 {
10815 if (!ada_scan_number (bounds_str, n, &L, &n)
10816 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10817 return raw_type;
10818 if (bounds_str[n] == '_')
10819 n += 2;
10820 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10821 n += 1;
10822 subtype_info += 1;
10823 }
10824 else
10825 {
10826 int ok;
10827
10828 strcpy (name_buf + prefix_len, "___L");
10829 L = get_int_var_value (name_buf, &ok);
10830 if (!ok)
10831 {
10832 lim_warning (_("Unknown lower bound, using 1."));
10833 L = 1;
10834 }
10835 }
10836
10837 if (*subtype_info == 'U')
10838 {
10839 if (!ada_scan_number (bounds_str, n, &U, &n)
10840 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10841 return raw_type;
10842 }
10843 else
10844 {
10845 int ok;
10846
10847 strcpy (name_buf + prefix_len, "___U");
10848 U = get_int_var_value (name_buf, &ok);
10849 if (!ok)
10850 {
10851 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10852 U = L;
10853 }
10854 }
10855
10856 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10857 TYPE_NAME (type) = name;
10858 return type;
10859 }
10860 }
10861
10862 /* True iff NAME is the name of a range type. */
10863
10864 int
10865 ada_is_range_type_name (const char *name)
10866 {
10867 return (name != NULL && strstr (name, "___XD"));
10868 }
10869 \f
10870
10871 /* Modular types */
10872
10873 /* True iff TYPE is an Ada modular type. */
10874
10875 int
10876 ada_is_modular_type (struct type *type)
10877 {
10878 struct type *subranged_type = get_base_type (type);
10879
10880 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10881 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10882 && TYPE_UNSIGNED (subranged_type));
10883 }
10884
10885 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10886
10887 ULONGEST
10888 ada_modulus (struct type *type)
10889 {
10890 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10891 }
10892 \f
10893
10894 /* Ada exception catchpoint support:
10895 ---------------------------------
10896
10897 We support 3 kinds of exception catchpoints:
10898 . catchpoints on Ada exceptions
10899 . catchpoints on unhandled Ada exceptions
10900 . catchpoints on failed assertions
10901
10902 Exceptions raised during failed assertions, or unhandled exceptions
10903 could perfectly be caught with the general catchpoint on Ada exceptions.
10904 However, we can easily differentiate these two special cases, and having
10905 the option to distinguish these two cases from the rest can be useful
10906 to zero-in on certain situations.
10907
10908 Exception catchpoints are a specialized form of breakpoint,
10909 since they rely on inserting breakpoints inside known routines
10910 of the GNAT runtime. The implementation therefore uses a standard
10911 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10912 of breakpoint_ops.
10913
10914 Support in the runtime for exception catchpoints have been changed
10915 a few times already, and these changes affect the implementation
10916 of these catchpoints. In order to be able to support several
10917 variants of the runtime, we use a sniffer that will determine
10918 the runtime variant used by the program being debugged. */
10919
10920 /* The different types of catchpoints that we introduced for catching
10921 Ada exceptions. */
10922
10923 enum exception_catchpoint_kind
10924 {
10925 ex_catch_exception,
10926 ex_catch_exception_unhandled,
10927 ex_catch_assert
10928 };
10929
10930 /* Ada's standard exceptions. */
10931
10932 static char *standard_exc[] = {
10933 "constraint_error",
10934 "program_error",
10935 "storage_error",
10936 "tasking_error"
10937 };
10938
10939 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10940
10941 /* A structure that describes how to support exception catchpoints
10942 for a given executable. */
10943
10944 struct exception_support_info
10945 {
10946 /* The name of the symbol to break on in order to insert
10947 a catchpoint on exceptions. */
10948 const char *catch_exception_sym;
10949
10950 /* The name of the symbol to break on in order to insert
10951 a catchpoint on unhandled exceptions. */
10952 const char *catch_exception_unhandled_sym;
10953
10954 /* The name of the symbol to break on in order to insert
10955 a catchpoint on failed assertions. */
10956 const char *catch_assert_sym;
10957
10958 /* Assuming that the inferior just triggered an unhandled exception
10959 catchpoint, this function is responsible for returning the address
10960 in inferior memory where the name of that exception is stored.
10961 Return zero if the address could not be computed. */
10962 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10963 };
10964
10965 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10966 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10967
10968 /* The following exception support info structure describes how to
10969 implement exception catchpoints with the latest version of the
10970 Ada runtime (as of 2007-03-06). */
10971
10972 static const struct exception_support_info default_exception_support_info =
10973 {
10974 "__gnat_debug_raise_exception", /* catch_exception_sym */
10975 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10976 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10977 ada_unhandled_exception_name_addr
10978 };
10979
10980 /* The following exception support info structure describes how to
10981 implement exception catchpoints with a slightly older version
10982 of the Ada runtime. */
10983
10984 static const struct exception_support_info exception_support_info_fallback =
10985 {
10986 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10987 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10988 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10989 ada_unhandled_exception_name_addr_from_raise
10990 };
10991
10992 /* Return nonzero if we can detect the exception support routines
10993 described in EINFO.
10994
10995 This function errors out if an abnormal situation is detected
10996 (for instance, if we find the exception support routines, but
10997 that support is found to be incomplete). */
10998
10999 static int
11000 ada_has_this_exception_support (const struct exception_support_info *einfo)
11001 {
11002 struct symbol *sym;
11003
11004 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11005 that should be compiled with debugging information. As a result, we
11006 expect to find that symbol in the symtabs. */
11007
11008 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11009 if (sym == NULL)
11010 {
11011 /* Perhaps we did not find our symbol because the Ada runtime was
11012 compiled without debugging info, or simply stripped of it.
11013 It happens on some GNU/Linux distributions for instance, where
11014 users have to install a separate debug package in order to get
11015 the runtime's debugging info. In that situation, let the user
11016 know why we cannot insert an Ada exception catchpoint.
11017
11018 Note: Just for the purpose of inserting our Ada exception
11019 catchpoint, we could rely purely on the associated minimal symbol.
11020 But we would be operating in degraded mode anyway, since we are
11021 still lacking the debugging info needed later on to extract
11022 the name of the exception being raised (this name is printed in
11023 the catchpoint message, and is also used when trying to catch
11024 a specific exception). We do not handle this case for now. */
11025 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
11026 error (_("Your Ada runtime appears to be missing some debugging "
11027 "information.\nCannot insert Ada exception catchpoint "
11028 "in this configuration."));
11029
11030 return 0;
11031 }
11032
11033 /* Make sure that the symbol we found corresponds to a function. */
11034
11035 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11036 error (_("Symbol \"%s\" is not a function (class = %d)"),
11037 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11038
11039 return 1;
11040 }
11041
11042 /* Inspect the Ada runtime and determine which exception info structure
11043 should be used to provide support for exception catchpoints.
11044
11045 This function will always set the per-inferior exception_info,
11046 or raise an error. */
11047
11048 static void
11049 ada_exception_support_info_sniffer (void)
11050 {
11051 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11052
11053 /* If the exception info is already known, then no need to recompute it. */
11054 if (data->exception_info != NULL)
11055 return;
11056
11057 /* Check the latest (default) exception support info. */
11058 if (ada_has_this_exception_support (&default_exception_support_info))
11059 {
11060 data->exception_info = &default_exception_support_info;
11061 return;
11062 }
11063
11064 /* Try our fallback exception suport info. */
11065 if (ada_has_this_exception_support (&exception_support_info_fallback))
11066 {
11067 data->exception_info = &exception_support_info_fallback;
11068 return;
11069 }
11070
11071 /* Sometimes, it is normal for us to not be able to find the routine
11072 we are looking for. This happens when the program is linked with
11073 the shared version of the GNAT runtime, and the program has not been
11074 started yet. Inform the user of these two possible causes if
11075 applicable. */
11076
11077 if (ada_update_initial_language (language_unknown) != language_ada)
11078 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11079
11080 /* If the symbol does not exist, then check that the program is
11081 already started, to make sure that shared libraries have been
11082 loaded. If it is not started, this may mean that the symbol is
11083 in a shared library. */
11084
11085 if (ptid_get_pid (inferior_ptid) == 0)
11086 error (_("Unable to insert catchpoint. Try to start the program first."));
11087
11088 /* At this point, we know that we are debugging an Ada program and
11089 that the inferior has been started, but we still are not able to
11090 find the run-time symbols. That can mean that we are in
11091 configurable run time mode, or that a-except as been optimized
11092 out by the linker... In any case, at this point it is not worth
11093 supporting this feature. */
11094
11095 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11096 }
11097
11098 /* True iff FRAME is very likely to be that of a function that is
11099 part of the runtime system. This is all very heuristic, but is
11100 intended to be used as advice as to what frames are uninteresting
11101 to most users. */
11102
11103 static int
11104 is_known_support_routine (struct frame_info *frame)
11105 {
11106 struct symtab_and_line sal;
11107 const char *func_name;
11108 enum language func_lang;
11109 int i;
11110 const char *fullname;
11111
11112 /* If this code does not have any debugging information (no symtab),
11113 This cannot be any user code. */
11114
11115 find_frame_sal (frame, &sal);
11116 if (sal.symtab == NULL)
11117 return 1;
11118
11119 /* If there is a symtab, but the associated source file cannot be
11120 located, then assume this is not user code: Selecting a frame
11121 for which we cannot display the code would not be very helpful
11122 for the user. This should also take care of case such as VxWorks
11123 where the kernel has some debugging info provided for a few units. */
11124
11125 fullname = symtab_to_fullname (sal.symtab);
11126 if (access (fullname, R_OK) != 0)
11127 return 1;
11128
11129 /* Check the unit filename againt the Ada runtime file naming.
11130 We also check the name of the objfile against the name of some
11131 known system libraries that sometimes come with debugging info
11132 too. */
11133
11134 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11135 {
11136 re_comp (known_runtime_file_name_patterns[i]);
11137 if (re_exec (lbasename (sal.symtab->filename)))
11138 return 1;
11139 if (sal.symtab->objfile != NULL
11140 && re_exec (sal.symtab->objfile->name))
11141 return 1;
11142 }
11143
11144 /* Check whether the function is a GNAT-generated entity. */
11145
11146 find_frame_funname (frame, &func_name, &func_lang, NULL);
11147 if (func_name == NULL)
11148 return 1;
11149
11150 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11151 {
11152 re_comp (known_auxiliary_function_name_patterns[i]);
11153 if (re_exec (func_name))
11154 return 1;
11155 }
11156
11157 return 0;
11158 }
11159
11160 /* Find the first frame that contains debugging information and that is not
11161 part of the Ada run-time, starting from FI and moving upward. */
11162
11163 void
11164 ada_find_printable_frame (struct frame_info *fi)
11165 {
11166 for (; fi != NULL; fi = get_prev_frame (fi))
11167 {
11168 if (!is_known_support_routine (fi))
11169 {
11170 select_frame (fi);
11171 break;
11172 }
11173 }
11174
11175 }
11176
11177 /* Assuming that the inferior just triggered an unhandled exception
11178 catchpoint, return the address in inferior memory where the name
11179 of the exception is stored.
11180
11181 Return zero if the address could not be computed. */
11182
11183 static CORE_ADDR
11184 ada_unhandled_exception_name_addr (void)
11185 {
11186 return parse_and_eval_address ("e.full_name");
11187 }
11188
11189 /* Same as ada_unhandled_exception_name_addr, except that this function
11190 should be used when the inferior uses an older version of the runtime,
11191 where the exception name needs to be extracted from a specific frame
11192 several frames up in the callstack. */
11193
11194 static CORE_ADDR
11195 ada_unhandled_exception_name_addr_from_raise (void)
11196 {
11197 int frame_level;
11198 struct frame_info *fi;
11199 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11200
11201 /* To determine the name of this exception, we need to select
11202 the frame corresponding to RAISE_SYM_NAME. This frame is
11203 at least 3 levels up, so we simply skip the first 3 frames
11204 without checking the name of their associated function. */
11205 fi = get_current_frame ();
11206 for (frame_level = 0; frame_level < 3; frame_level += 1)
11207 if (fi != NULL)
11208 fi = get_prev_frame (fi);
11209
11210 while (fi != NULL)
11211 {
11212 const char *func_name;
11213 enum language func_lang;
11214
11215 find_frame_funname (fi, &func_name, &func_lang, NULL);
11216 if (func_name != NULL
11217 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
11218 break; /* We found the frame we were looking for... */
11219 fi = get_prev_frame (fi);
11220 }
11221
11222 if (fi == NULL)
11223 return 0;
11224
11225 select_frame (fi);
11226 return parse_and_eval_address ("id.full_name");
11227 }
11228
11229 /* Assuming the inferior just triggered an Ada exception catchpoint
11230 (of any type), return the address in inferior memory where the name
11231 of the exception is stored, if applicable.
11232
11233 Return zero if the address could not be computed, or if not relevant. */
11234
11235 static CORE_ADDR
11236 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
11237 struct breakpoint *b)
11238 {
11239 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11240
11241 switch (ex)
11242 {
11243 case ex_catch_exception:
11244 return (parse_and_eval_address ("e.full_name"));
11245 break;
11246
11247 case ex_catch_exception_unhandled:
11248 return data->exception_info->unhandled_exception_name_addr ();
11249 break;
11250
11251 case ex_catch_assert:
11252 return 0; /* Exception name is not relevant in this case. */
11253 break;
11254
11255 default:
11256 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11257 break;
11258 }
11259
11260 return 0; /* Should never be reached. */
11261 }
11262
11263 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11264 any error that ada_exception_name_addr_1 might cause to be thrown.
11265 When an error is intercepted, a warning with the error message is printed,
11266 and zero is returned. */
11267
11268 static CORE_ADDR
11269 ada_exception_name_addr (enum exception_catchpoint_kind ex,
11270 struct breakpoint *b)
11271 {
11272 volatile struct gdb_exception e;
11273 CORE_ADDR result = 0;
11274
11275 TRY_CATCH (e, RETURN_MASK_ERROR)
11276 {
11277 result = ada_exception_name_addr_1 (ex, b);
11278 }
11279
11280 if (e.reason < 0)
11281 {
11282 warning (_("failed to get exception name: %s"), e.message);
11283 return 0;
11284 }
11285
11286 return result;
11287 }
11288
11289 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11290 char *, char **,
11291 const struct breakpoint_ops **);
11292 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11293
11294 /* Ada catchpoints.
11295
11296 In the case of catchpoints on Ada exceptions, the catchpoint will
11297 stop the target on every exception the program throws. When a user
11298 specifies the name of a specific exception, we translate this
11299 request into a condition expression (in text form), and then parse
11300 it into an expression stored in each of the catchpoint's locations.
11301 We then use this condition to check whether the exception that was
11302 raised is the one the user is interested in. If not, then the
11303 target is resumed again. We store the name of the requested
11304 exception, in order to be able to re-set the condition expression
11305 when symbols change. */
11306
11307 /* An instance of this type is used to represent an Ada catchpoint
11308 breakpoint location. It includes a "struct bp_location" as a kind
11309 of base class; users downcast to "struct bp_location *" when
11310 needed. */
11311
11312 struct ada_catchpoint_location
11313 {
11314 /* The base class. */
11315 struct bp_location base;
11316
11317 /* The condition that checks whether the exception that was raised
11318 is the specific exception the user specified on catchpoint
11319 creation. */
11320 struct expression *excep_cond_expr;
11321 };
11322
11323 /* Implement the DTOR method in the bp_location_ops structure for all
11324 Ada exception catchpoint kinds. */
11325
11326 static void
11327 ada_catchpoint_location_dtor (struct bp_location *bl)
11328 {
11329 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11330
11331 xfree (al->excep_cond_expr);
11332 }
11333
11334 /* The vtable to be used in Ada catchpoint locations. */
11335
11336 static const struct bp_location_ops ada_catchpoint_location_ops =
11337 {
11338 ada_catchpoint_location_dtor
11339 };
11340
11341 /* An instance of this type is used to represent an Ada catchpoint.
11342 It includes a "struct breakpoint" as a kind of base class; users
11343 downcast to "struct breakpoint *" when needed. */
11344
11345 struct ada_catchpoint
11346 {
11347 /* The base class. */
11348 struct breakpoint base;
11349
11350 /* The name of the specific exception the user specified. */
11351 char *excep_string;
11352 };
11353
11354 /* Parse the exception condition string in the context of each of the
11355 catchpoint's locations, and store them for later evaluation. */
11356
11357 static void
11358 create_excep_cond_exprs (struct ada_catchpoint *c)
11359 {
11360 struct cleanup *old_chain;
11361 struct bp_location *bl;
11362 char *cond_string;
11363
11364 /* Nothing to do if there's no specific exception to catch. */
11365 if (c->excep_string == NULL)
11366 return;
11367
11368 /* Same if there are no locations... */
11369 if (c->base.loc == NULL)
11370 return;
11371
11372 /* Compute the condition expression in text form, from the specific
11373 expection we want to catch. */
11374 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11375 old_chain = make_cleanup (xfree, cond_string);
11376
11377 /* Iterate over all the catchpoint's locations, and parse an
11378 expression for each. */
11379 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11380 {
11381 struct ada_catchpoint_location *ada_loc
11382 = (struct ada_catchpoint_location *) bl;
11383 struct expression *exp = NULL;
11384
11385 if (!bl->shlib_disabled)
11386 {
11387 volatile struct gdb_exception e;
11388 const char *s;
11389
11390 s = cond_string;
11391 TRY_CATCH (e, RETURN_MASK_ERROR)
11392 {
11393 exp = parse_exp_1 (&s, bl->address,
11394 block_for_pc (bl->address), 0);
11395 }
11396 if (e.reason < 0)
11397 warning (_("failed to reevaluate internal exception condition "
11398 "for catchpoint %d: %s"),
11399 c->base.number, e.message);
11400 }
11401
11402 ada_loc->excep_cond_expr = exp;
11403 }
11404
11405 do_cleanups (old_chain);
11406 }
11407
11408 /* Implement the DTOR method in the breakpoint_ops structure for all
11409 exception catchpoint kinds. */
11410
11411 static void
11412 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11413 {
11414 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11415
11416 xfree (c->excep_string);
11417
11418 bkpt_breakpoint_ops.dtor (b);
11419 }
11420
11421 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11422 structure for all exception catchpoint kinds. */
11423
11424 static struct bp_location *
11425 allocate_location_exception (enum exception_catchpoint_kind ex,
11426 struct breakpoint *self)
11427 {
11428 struct ada_catchpoint_location *loc;
11429
11430 loc = XNEW (struct ada_catchpoint_location);
11431 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11432 loc->excep_cond_expr = NULL;
11433 return &loc->base;
11434 }
11435
11436 /* Implement the RE_SET method in the breakpoint_ops structure for all
11437 exception catchpoint kinds. */
11438
11439 static void
11440 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11441 {
11442 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11443
11444 /* Call the base class's method. This updates the catchpoint's
11445 locations. */
11446 bkpt_breakpoint_ops.re_set (b);
11447
11448 /* Reparse the exception conditional expressions. One for each
11449 location. */
11450 create_excep_cond_exprs (c);
11451 }
11452
11453 /* Returns true if we should stop for this breakpoint hit. If the
11454 user specified a specific exception, we only want to cause a stop
11455 if the program thrown that exception. */
11456
11457 static int
11458 should_stop_exception (const struct bp_location *bl)
11459 {
11460 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11461 const struct ada_catchpoint_location *ada_loc
11462 = (const struct ada_catchpoint_location *) bl;
11463 volatile struct gdb_exception ex;
11464 int stop;
11465
11466 /* With no specific exception, should always stop. */
11467 if (c->excep_string == NULL)
11468 return 1;
11469
11470 if (ada_loc->excep_cond_expr == NULL)
11471 {
11472 /* We will have a NULL expression if back when we were creating
11473 the expressions, this location's had failed to parse. */
11474 return 1;
11475 }
11476
11477 stop = 1;
11478 TRY_CATCH (ex, RETURN_MASK_ALL)
11479 {
11480 struct value *mark;
11481
11482 mark = value_mark ();
11483 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11484 value_free_to_mark (mark);
11485 }
11486 if (ex.reason < 0)
11487 exception_fprintf (gdb_stderr, ex,
11488 _("Error in testing exception condition:\n"));
11489 return stop;
11490 }
11491
11492 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11493 for all exception catchpoint kinds. */
11494
11495 static void
11496 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11497 {
11498 bs->stop = should_stop_exception (bs->bp_location_at);
11499 }
11500
11501 /* Implement the PRINT_IT method in the breakpoint_ops structure
11502 for all exception catchpoint kinds. */
11503
11504 static enum print_stop_action
11505 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11506 {
11507 struct ui_out *uiout = current_uiout;
11508 struct breakpoint *b = bs->breakpoint_at;
11509
11510 annotate_catchpoint (b->number);
11511
11512 if (ui_out_is_mi_like_p (uiout))
11513 {
11514 ui_out_field_string (uiout, "reason",
11515 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11516 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11517 }
11518
11519 ui_out_text (uiout,
11520 b->disposition == disp_del ? "\nTemporary catchpoint "
11521 : "\nCatchpoint ");
11522 ui_out_field_int (uiout, "bkptno", b->number);
11523 ui_out_text (uiout, ", ");
11524
11525 switch (ex)
11526 {
11527 case ex_catch_exception:
11528 case ex_catch_exception_unhandled:
11529 {
11530 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11531 char exception_name[256];
11532
11533 if (addr != 0)
11534 {
11535 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11536 exception_name [sizeof (exception_name) - 1] = '\0';
11537 }
11538 else
11539 {
11540 /* For some reason, we were unable to read the exception
11541 name. This could happen if the Runtime was compiled
11542 without debugging info, for instance. In that case,
11543 just replace the exception name by the generic string
11544 "exception" - it will read as "an exception" in the
11545 notification we are about to print. */
11546 memcpy (exception_name, "exception", sizeof ("exception"));
11547 }
11548 /* In the case of unhandled exception breakpoints, we print
11549 the exception name as "unhandled EXCEPTION_NAME", to make
11550 it clearer to the user which kind of catchpoint just got
11551 hit. We used ui_out_text to make sure that this extra
11552 info does not pollute the exception name in the MI case. */
11553 if (ex == ex_catch_exception_unhandled)
11554 ui_out_text (uiout, "unhandled ");
11555 ui_out_field_string (uiout, "exception-name", exception_name);
11556 }
11557 break;
11558 case ex_catch_assert:
11559 /* In this case, the name of the exception is not really
11560 important. Just print "failed assertion" to make it clearer
11561 that his program just hit an assertion-failure catchpoint.
11562 We used ui_out_text because this info does not belong in
11563 the MI output. */
11564 ui_out_text (uiout, "failed assertion");
11565 break;
11566 }
11567 ui_out_text (uiout, " at ");
11568 ada_find_printable_frame (get_current_frame ());
11569
11570 return PRINT_SRC_AND_LOC;
11571 }
11572
11573 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11574 for all exception catchpoint kinds. */
11575
11576 static void
11577 print_one_exception (enum exception_catchpoint_kind ex,
11578 struct breakpoint *b, struct bp_location **last_loc)
11579 {
11580 struct ui_out *uiout = current_uiout;
11581 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11582 struct value_print_options opts;
11583
11584 get_user_print_options (&opts);
11585 if (opts.addressprint)
11586 {
11587 annotate_field (4);
11588 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11589 }
11590
11591 annotate_field (5);
11592 *last_loc = b->loc;
11593 switch (ex)
11594 {
11595 case ex_catch_exception:
11596 if (c->excep_string != NULL)
11597 {
11598 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11599
11600 ui_out_field_string (uiout, "what", msg);
11601 xfree (msg);
11602 }
11603 else
11604 ui_out_field_string (uiout, "what", "all Ada exceptions");
11605
11606 break;
11607
11608 case ex_catch_exception_unhandled:
11609 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11610 break;
11611
11612 case ex_catch_assert:
11613 ui_out_field_string (uiout, "what", "failed Ada assertions");
11614 break;
11615
11616 default:
11617 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11618 break;
11619 }
11620 }
11621
11622 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11623 for all exception catchpoint kinds. */
11624
11625 static void
11626 print_mention_exception (enum exception_catchpoint_kind ex,
11627 struct breakpoint *b)
11628 {
11629 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11630 struct ui_out *uiout = current_uiout;
11631
11632 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11633 : _("Catchpoint "));
11634 ui_out_field_int (uiout, "bkptno", b->number);
11635 ui_out_text (uiout, ": ");
11636
11637 switch (ex)
11638 {
11639 case ex_catch_exception:
11640 if (c->excep_string != NULL)
11641 {
11642 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11643 struct cleanup *old_chain = make_cleanup (xfree, info);
11644
11645 ui_out_text (uiout, info);
11646 do_cleanups (old_chain);
11647 }
11648 else
11649 ui_out_text (uiout, _("all Ada exceptions"));
11650 break;
11651
11652 case ex_catch_exception_unhandled:
11653 ui_out_text (uiout, _("unhandled Ada exceptions"));
11654 break;
11655
11656 case ex_catch_assert:
11657 ui_out_text (uiout, _("failed Ada assertions"));
11658 break;
11659
11660 default:
11661 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11662 break;
11663 }
11664 }
11665
11666 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11667 for all exception catchpoint kinds. */
11668
11669 static void
11670 print_recreate_exception (enum exception_catchpoint_kind ex,
11671 struct breakpoint *b, struct ui_file *fp)
11672 {
11673 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11674
11675 switch (ex)
11676 {
11677 case ex_catch_exception:
11678 fprintf_filtered (fp, "catch exception");
11679 if (c->excep_string != NULL)
11680 fprintf_filtered (fp, " %s", c->excep_string);
11681 break;
11682
11683 case ex_catch_exception_unhandled:
11684 fprintf_filtered (fp, "catch exception unhandled");
11685 break;
11686
11687 case ex_catch_assert:
11688 fprintf_filtered (fp, "catch assert");
11689 break;
11690
11691 default:
11692 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11693 }
11694 print_recreate_thread (b, fp);
11695 }
11696
11697 /* Virtual table for "catch exception" breakpoints. */
11698
11699 static void
11700 dtor_catch_exception (struct breakpoint *b)
11701 {
11702 dtor_exception (ex_catch_exception, b);
11703 }
11704
11705 static struct bp_location *
11706 allocate_location_catch_exception (struct breakpoint *self)
11707 {
11708 return allocate_location_exception (ex_catch_exception, self);
11709 }
11710
11711 static void
11712 re_set_catch_exception (struct breakpoint *b)
11713 {
11714 re_set_exception (ex_catch_exception, b);
11715 }
11716
11717 static void
11718 check_status_catch_exception (bpstat bs)
11719 {
11720 check_status_exception (ex_catch_exception, bs);
11721 }
11722
11723 static enum print_stop_action
11724 print_it_catch_exception (bpstat bs)
11725 {
11726 return print_it_exception (ex_catch_exception, bs);
11727 }
11728
11729 static void
11730 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11731 {
11732 print_one_exception (ex_catch_exception, b, last_loc);
11733 }
11734
11735 static void
11736 print_mention_catch_exception (struct breakpoint *b)
11737 {
11738 print_mention_exception (ex_catch_exception, b);
11739 }
11740
11741 static void
11742 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11743 {
11744 print_recreate_exception (ex_catch_exception, b, fp);
11745 }
11746
11747 static struct breakpoint_ops catch_exception_breakpoint_ops;
11748
11749 /* Virtual table for "catch exception unhandled" breakpoints. */
11750
11751 static void
11752 dtor_catch_exception_unhandled (struct breakpoint *b)
11753 {
11754 dtor_exception (ex_catch_exception_unhandled, b);
11755 }
11756
11757 static struct bp_location *
11758 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11759 {
11760 return allocate_location_exception (ex_catch_exception_unhandled, self);
11761 }
11762
11763 static void
11764 re_set_catch_exception_unhandled (struct breakpoint *b)
11765 {
11766 re_set_exception (ex_catch_exception_unhandled, b);
11767 }
11768
11769 static void
11770 check_status_catch_exception_unhandled (bpstat bs)
11771 {
11772 check_status_exception (ex_catch_exception_unhandled, bs);
11773 }
11774
11775 static enum print_stop_action
11776 print_it_catch_exception_unhandled (bpstat bs)
11777 {
11778 return print_it_exception (ex_catch_exception_unhandled, bs);
11779 }
11780
11781 static void
11782 print_one_catch_exception_unhandled (struct breakpoint *b,
11783 struct bp_location **last_loc)
11784 {
11785 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11786 }
11787
11788 static void
11789 print_mention_catch_exception_unhandled (struct breakpoint *b)
11790 {
11791 print_mention_exception (ex_catch_exception_unhandled, b);
11792 }
11793
11794 static void
11795 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11796 struct ui_file *fp)
11797 {
11798 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11799 }
11800
11801 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11802
11803 /* Virtual table for "catch assert" breakpoints. */
11804
11805 static void
11806 dtor_catch_assert (struct breakpoint *b)
11807 {
11808 dtor_exception (ex_catch_assert, b);
11809 }
11810
11811 static struct bp_location *
11812 allocate_location_catch_assert (struct breakpoint *self)
11813 {
11814 return allocate_location_exception (ex_catch_assert, self);
11815 }
11816
11817 static void
11818 re_set_catch_assert (struct breakpoint *b)
11819 {
11820 re_set_exception (ex_catch_assert, b);
11821 }
11822
11823 static void
11824 check_status_catch_assert (bpstat bs)
11825 {
11826 check_status_exception (ex_catch_assert, bs);
11827 }
11828
11829 static enum print_stop_action
11830 print_it_catch_assert (bpstat bs)
11831 {
11832 return print_it_exception (ex_catch_assert, bs);
11833 }
11834
11835 static void
11836 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11837 {
11838 print_one_exception (ex_catch_assert, b, last_loc);
11839 }
11840
11841 static void
11842 print_mention_catch_assert (struct breakpoint *b)
11843 {
11844 print_mention_exception (ex_catch_assert, b);
11845 }
11846
11847 static void
11848 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11849 {
11850 print_recreate_exception (ex_catch_assert, b, fp);
11851 }
11852
11853 static struct breakpoint_ops catch_assert_breakpoint_ops;
11854
11855 /* Return a newly allocated copy of the first space-separated token
11856 in ARGSP, and then adjust ARGSP to point immediately after that
11857 token.
11858
11859 Return NULL if ARGPS does not contain any more tokens. */
11860
11861 static char *
11862 ada_get_next_arg (char **argsp)
11863 {
11864 char *args = *argsp;
11865 char *end;
11866 char *result;
11867
11868 args = skip_spaces (args);
11869 if (args[0] == '\0')
11870 return NULL; /* No more arguments. */
11871
11872 /* Find the end of the current argument. */
11873
11874 end = skip_to_space (args);
11875
11876 /* Adjust ARGSP to point to the start of the next argument. */
11877
11878 *argsp = end;
11879
11880 /* Make a copy of the current argument and return it. */
11881
11882 result = xmalloc (end - args + 1);
11883 strncpy (result, args, end - args);
11884 result[end - args] = '\0';
11885
11886 return result;
11887 }
11888
11889 /* Split the arguments specified in a "catch exception" command.
11890 Set EX to the appropriate catchpoint type.
11891 Set EXCEP_STRING to the name of the specific exception if
11892 specified by the user.
11893 If a condition is found at the end of the arguments, the condition
11894 expression is stored in COND_STRING (memory must be deallocated
11895 after use). Otherwise COND_STRING is set to NULL. */
11896
11897 static void
11898 catch_ada_exception_command_split (char *args,
11899 enum exception_catchpoint_kind *ex,
11900 char **excep_string,
11901 char **cond_string)
11902 {
11903 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11904 char *exception_name;
11905 char *cond = NULL;
11906
11907 exception_name = ada_get_next_arg (&args);
11908 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11909 {
11910 /* This is not an exception name; this is the start of a condition
11911 expression for a catchpoint on all exceptions. So, "un-get"
11912 this token, and set exception_name to NULL. */
11913 xfree (exception_name);
11914 exception_name = NULL;
11915 args -= 2;
11916 }
11917 make_cleanup (xfree, exception_name);
11918
11919 /* Check to see if we have a condition. */
11920
11921 args = skip_spaces (args);
11922 if (strncmp (args, "if", 2) == 0
11923 && (isspace (args[2]) || args[2] == '\0'))
11924 {
11925 args += 2;
11926 args = skip_spaces (args);
11927
11928 if (args[0] == '\0')
11929 error (_("Condition missing after `if' keyword"));
11930 cond = xstrdup (args);
11931 make_cleanup (xfree, cond);
11932
11933 args += strlen (args);
11934 }
11935
11936 /* Check that we do not have any more arguments. Anything else
11937 is unexpected. */
11938
11939 if (args[0] != '\0')
11940 error (_("Junk at end of expression"));
11941
11942 discard_cleanups (old_chain);
11943
11944 if (exception_name == NULL)
11945 {
11946 /* Catch all exceptions. */
11947 *ex = ex_catch_exception;
11948 *excep_string = NULL;
11949 }
11950 else if (strcmp (exception_name, "unhandled") == 0)
11951 {
11952 /* Catch unhandled exceptions. */
11953 *ex = ex_catch_exception_unhandled;
11954 *excep_string = NULL;
11955 }
11956 else
11957 {
11958 /* Catch a specific exception. */
11959 *ex = ex_catch_exception;
11960 *excep_string = exception_name;
11961 }
11962 *cond_string = cond;
11963 }
11964
11965 /* Return the name of the symbol on which we should break in order to
11966 implement a catchpoint of the EX kind. */
11967
11968 static const char *
11969 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11970 {
11971 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11972
11973 gdb_assert (data->exception_info != NULL);
11974
11975 switch (ex)
11976 {
11977 case ex_catch_exception:
11978 return (data->exception_info->catch_exception_sym);
11979 break;
11980 case ex_catch_exception_unhandled:
11981 return (data->exception_info->catch_exception_unhandled_sym);
11982 break;
11983 case ex_catch_assert:
11984 return (data->exception_info->catch_assert_sym);
11985 break;
11986 default:
11987 internal_error (__FILE__, __LINE__,
11988 _("unexpected catchpoint kind (%d)"), ex);
11989 }
11990 }
11991
11992 /* Return the breakpoint ops "virtual table" used for catchpoints
11993 of the EX kind. */
11994
11995 static const struct breakpoint_ops *
11996 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11997 {
11998 switch (ex)
11999 {
12000 case ex_catch_exception:
12001 return (&catch_exception_breakpoint_ops);
12002 break;
12003 case ex_catch_exception_unhandled:
12004 return (&catch_exception_unhandled_breakpoint_ops);
12005 break;
12006 case ex_catch_assert:
12007 return (&catch_assert_breakpoint_ops);
12008 break;
12009 default:
12010 internal_error (__FILE__, __LINE__,
12011 _("unexpected catchpoint kind (%d)"), ex);
12012 }
12013 }
12014
12015 /* Return the condition that will be used to match the current exception
12016 being raised with the exception that the user wants to catch. This
12017 assumes that this condition is used when the inferior just triggered
12018 an exception catchpoint.
12019
12020 The string returned is a newly allocated string that needs to be
12021 deallocated later. */
12022
12023 static char *
12024 ada_exception_catchpoint_cond_string (const char *excep_string)
12025 {
12026 int i;
12027
12028 /* The standard exceptions are a special case. They are defined in
12029 runtime units that have been compiled without debugging info; if
12030 EXCEP_STRING is the not-fully-qualified name of a standard
12031 exception (e.g. "constraint_error") then, during the evaluation
12032 of the condition expression, the symbol lookup on this name would
12033 *not* return this standard exception. The catchpoint condition
12034 may then be set only on user-defined exceptions which have the
12035 same not-fully-qualified name (e.g. my_package.constraint_error).
12036
12037 To avoid this unexcepted behavior, these standard exceptions are
12038 systematically prefixed by "standard". This means that "catch
12039 exception constraint_error" is rewritten into "catch exception
12040 standard.constraint_error".
12041
12042 If an exception named contraint_error is defined in another package of
12043 the inferior program, then the only way to specify this exception as a
12044 breakpoint condition is to use its fully-qualified named:
12045 e.g. my_package.constraint_error. */
12046
12047 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12048 {
12049 if (strcmp (standard_exc [i], excep_string) == 0)
12050 {
12051 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12052 excep_string);
12053 }
12054 }
12055 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12056 }
12057
12058 /* Return the symtab_and_line that should be used to insert an exception
12059 catchpoint of the TYPE kind.
12060
12061 EXCEP_STRING should contain the name of a specific exception that
12062 the catchpoint should catch, or NULL otherwise.
12063
12064 ADDR_STRING returns the name of the function where the real
12065 breakpoint that implements the catchpoints is set, depending on the
12066 type of catchpoint we need to create. */
12067
12068 static struct symtab_and_line
12069 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
12070 char **addr_string, const struct breakpoint_ops **ops)
12071 {
12072 const char *sym_name;
12073 struct symbol *sym;
12074
12075 /* First, find out which exception support info to use. */
12076 ada_exception_support_info_sniffer ();
12077
12078 /* Then lookup the function on which we will break in order to catch
12079 the Ada exceptions requested by the user. */
12080 sym_name = ada_exception_sym_name (ex);
12081 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12082
12083 /* We can assume that SYM is not NULL at this stage. If the symbol
12084 did not exist, ada_exception_support_info_sniffer would have
12085 raised an exception.
12086
12087 Also, ada_exception_support_info_sniffer should have already
12088 verified that SYM is a function symbol. */
12089 gdb_assert (sym != NULL);
12090 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12091
12092 /* Set ADDR_STRING. */
12093 *addr_string = xstrdup (sym_name);
12094
12095 /* Set OPS. */
12096 *ops = ada_exception_breakpoint_ops (ex);
12097
12098 return find_function_start_sal (sym, 1);
12099 }
12100
12101 /* Parse the arguments (ARGS) of the "catch exception" command.
12102
12103 If the user asked the catchpoint to catch only a specific
12104 exception, then save the exception name in ADDR_STRING.
12105
12106 If the user provided a condition, then set COND_STRING to
12107 that condition expression (the memory must be deallocated
12108 after use). Otherwise, set COND_STRING to NULL.
12109
12110 See ada_exception_sal for a description of all the remaining
12111 function arguments of this function. */
12112
12113 static struct symtab_and_line
12114 ada_decode_exception_location (char *args, char **addr_string,
12115 char **excep_string,
12116 char **cond_string,
12117 const struct breakpoint_ops **ops)
12118 {
12119 enum exception_catchpoint_kind ex;
12120
12121 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
12122 return ada_exception_sal (ex, *excep_string, addr_string, ops);
12123 }
12124
12125 /* Create an Ada exception catchpoint. */
12126
12127 static void
12128 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12129 struct symtab_and_line sal,
12130 char *addr_string,
12131 char *excep_string,
12132 char *cond_string,
12133 const struct breakpoint_ops *ops,
12134 int tempflag,
12135 int from_tty)
12136 {
12137 struct ada_catchpoint *c;
12138
12139 c = XNEW (struct ada_catchpoint);
12140 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12141 ops, tempflag, from_tty);
12142 c->excep_string = excep_string;
12143 create_excep_cond_exprs (c);
12144 if (cond_string != NULL)
12145 set_breakpoint_condition (&c->base, cond_string, from_tty);
12146 install_breakpoint (0, &c->base, 1);
12147 }
12148
12149 /* Implement the "catch exception" command. */
12150
12151 static void
12152 catch_ada_exception_command (char *arg, int from_tty,
12153 struct cmd_list_element *command)
12154 {
12155 struct gdbarch *gdbarch = get_current_arch ();
12156 int tempflag;
12157 struct symtab_and_line sal;
12158 char *addr_string = NULL;
12159 char *excep_string = NULL;
12160 char *cond_string = NULL;
12161 const struct breakpoint_ops *ops = NULL;
12162
12163 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12164
12165 if (!arg)
12166 arg = "";
12167 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
12168 &cond_string, &ops);
12169 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12170 excep_string, cond_string, ops,
12171 tempflag, from_tty);
12172 }
12173
12174 /* Assuming that ARGS contains the arguments of a "catch assert"
12175 command, parse those arguments and return a symtab_and_line object
12176 for a failed assertion catchpoint.
12177
12178 Set ADDR_STRING to the name of the function where the real
12179 breakpoint that implements the catchpoint is set.
12180
12181 If ARGS contains a condition, set COND_STRING to that condition
12182 (the memory needs to be deallocated after use). Otherwise, set
12183 COND_STRING to NULL. */
12184
12185 static struct symtab_and_line
12186 ada_decode_assert_location (char *args, char **addr_string,
12187 char **cond_string,
12188 const struct breakpoint_ops **ops)
12189 {
12190 args = skip_spaces (args);
12191
12192 /* Check whether a condition was provided. */
12193 if (strncmp (args, "if", 2) == 0
12194 && (isspace (args[2]) || args[2] == '\0'))
12195 {
12196 args += 2;
12197 args = skip_spaces (args);
12198 if (args[0] == '\0')
12199 error (_("condition missing after `if' keyword"));
12200 *cond_string = xstrdup (args);
12201 }
12202
12203 /* Otherwise, there should be no other argument at the end of
12204 the command. */
12205 else if (args[0] != '\0')
12206 error (_("Junk at end of arguments."));
12207
12208 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
12209 }
12210
12211 /* Implement the "catch assert" command. */
12212
12213 static void
12214 catch_assert_command (char *arg, int from_tty,
12215 struct cmd_list_element *command)
12216 {
12217 struct gdbarch *gdbarch = get_current_arch ();
12218 int tempflag;
12219 struct symtab_and_line sal;
12220 char *addr_string = NULL;
12221 char *cond_string = NULL;
12222 const struct breakpoint_ops *ops = NULL;
12223
12224 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12225
12226 if (!arg)
12227 arg = "";
12228 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
12229 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12230 NULL, cond_string, ops, tempflag,
12231 from_tty);
12232 }
12233 /* Operators */
12234 /* Information about operators given special treatment in functions
12235 below. */
12236 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12237
12238 #define ADA_OPERATORS \
12239 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12240 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12241 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12242 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12243 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12244 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12245 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12246 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12247 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12248 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12249 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12250 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12251 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12252 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12253 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12254 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12255 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12256 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12257 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12258
12259 static void
12260 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12261 int *argsp)
12262 {
12263 switch (exp->elts[pc - 1].opcode)
12264 {
12265 default:
12266 operator_length_standard (exp, pc, oplenp, argsp);
12267 break;
12268
12269 #define OP_DEFN(op, len, args, binop) \
12270 case op: *oplenp = len; *argsp = args; break;
12271 ADA_OPERATORS;
12272 #undef OP_DEFN
12273
12274 case OP_AGGREGATE:
12275 *oplenp = 3;
12276 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12277 break;
12278
12279 case OP_CHOICES:
12280 *oplenp = 3;
12281 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12282 break;
12283 }
12284 }
12285
12286 /* Implementation of the exp_descriptor method operator_check. */
12287
12288 static int
12289 ada_operator_check (struct expression *exp, int pos,
12290 int (*objfile_func) (struct objfile *objfile, void *data),
12291 void *data)
12292 {
12293 const union exp_element *const elts = exp->elts;
12294 struct type *type = NULL;
12295
12296 switch (elts[pos].opcode)
12297 {
12298 case UNOP_IN_RANGE:
12299 case UNOP_QUAL:
12300 type = elts[pos + 1].type;
12301 break;
12302
12303 default:
12304 return operator_check_standard (exp, pos, objfile_func, data);
12305 }
12306
12307 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12308
12309 if (type && TYPE_OBJFILE (type)
12310 && (*objfile_func) (TYPE_OBJFILE (type), data))
12311 return 1;
12312
12313 return 0;
12314 }
12315
12316 static char *
12317 ada_op_name (enum exp_opcode opcode)
12318 {
12319 switch (opcode)
12320 {
12321 default:
12322 return op_name_standard (opcode);
12323
12324 #define OP_DEFN(op, len, args, binop) case op: return #op;
12325 ADA_OPERATORS;
12326 #undef OP_DEFN
12327
12328 case OP_AGGREGATE:
12329 return "OP_AGGREGATE";
12330 case OP_CHOICES:
12331 return "OP_CHOICES";
12332 case OP_NAME:
12333 return "OP_NAME";
12334 }
12335 }
12336
12337 /* As for operator_length, but assumes PC is pointing at the first
12338 element of the operator, and gives meaningful results only for the
12339 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12340
12341 static void
12342 ada_forward_operator_length (struct expression *exp, int pc,
12343 int *oplenp, int *argsp)
12344 {
12345 switch (exp->elts[pc].opcode)
12346 {
12347 default:
12348 *oplenp = *argsp = 0;
12349 break;
12350
12351 #define OP_DEFN(op, len, args, binop) \
12352 case op: *oplenp = len; *argsp = args; break;
12353 ADA_OPERATORS;
12354 #undef OP_DEFN
12355
12356 case OP_AGGREGATE:
12357 *oplenp = 3;
12358 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12359 break;
12360
12361 case OP_CHOICES:
12362 *oplenp = 3;
12363 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12364 break;
12365
12366 case OP_STRING:
12367 case OP_NAME:
12368 {
12369 int len = longest_to_int (exp->elts[pc + 1].longconst);
12370
12371 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12372 *argsp = 0;
12373 break;
12374 }
12375 }
12376 }
12377
12378 static int
12379 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12380 {
12381 enum exp_opcode op = exp->elts[elt].opcode;
12382 int oplen, nargs;
12383 int pc = elt;
12384 int i;
12385
12386 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12387
12388 switch (op)
12389 {
12390 /* Ada attributes ('Foo). */
12391 case OP_ATR_FIRST:
12392 case OP_ATR_LAST:
12393 case OP_ATR_LENGTH:
12394 case OP_ATR_IMAGE:
12395 case OP_ATR_MAX:
12396 case OP_ATR_MIN:
12397 case OP_ATR_MODULUS:
12398 case OP_ATR_POS:
12399 case OP_ATR_SIZE:
12400 case OP_ATR_TAG:
12401 case OP_ATR_VAL:
12402 break;
12403
12404 case UNOP_IN_RANGE:
12405 case UNOP_QUAL:
12406 /* XXX: gdb_sprint_host_address, type_sprint */
12407 fprintf_filtered (stream, _("Type @"));
12408 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12409 fprintf_filtered (stream, " (");
12410 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12411 fprintf_filtered (stream, ")");
12412 break;
12413 case BINOP_IN_BOUNDS:
12414 fprintf_filtered (stream, " (%d)",
12415 longest_to_int (exp->elts[pc + 2].longconst));
12416 break;
12417 case TERNOP_IN_RANGE:
12418 break;
12419
12420 case OP_AGGREGATE:
12421 case OP_OTHERS:
12422 case OP_DISCRETE_RANGE:
12423 case OP_POSITIONAL:
12424 case OP_CHOICES:
12425 break;
12426
12427 case OP_NAME:
12428 case OP_STRING:
12429 {
12430 char *name = &exp->elts[elt + 2].string;
12431 int len = longest_to_int (exp->elts[elt + 1].longconst);
12432
12433 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12434 break;
12435 }
12436
12437 default:
12438 return dump_subexp_body_standard (exp, stream, elt);
12439 }
12440
12441 elt += oplen;
12442 for (i = 0; i < nargs; i += 1)
12443 elt = dump_subexp (exp, stream, elt);
12444
12445 return elt;
12446 }
12447
12448 /* The Ada extension of print_subexp (q.v.). */
12449
12450 static void
12451 ada_print_subexp (struct expression *exp, int *pos,
12452 struct ui_file *stream, enum precedence prec)
12453 {
12454 int oplen, nargs, i;
12455 int pc = *pos;
12456 enum exp_opcode op = exp->elts[pc].opcode;
12457
12458 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12459
12460 *pos += oplen;
12461 switch (op)
12462 {
12463 default:
12464 *pos -= oplen;
12465 print_subexp_standard (exp, pos, stream, prec);
12466 return;
12467
12468 case OP_VAR_VALUE:
12469 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12470 return;
12471
12472 case BINOP_IN_BOUNDS:
12473 /* XXX: sprint_subexp */
12474 print_subexp (exp, pos, stream, PREC_SUFFIX);
12475 fputs_filtered (" in ", stream);
12476 print_subexp (exp, pos, stream, PREC_SUFFIX);
12477 fputs_filtered ("'range", stream);
12478 if (exp->elts[pc + 1].longconst > 1)
12479 fprintf_filtered (stream, "(%ld)",
12480 (long) exp->elts[pc + 1].longconst);
12481 return;
12482
12483 case TERNOP_IN_RANGE:
12484 if (prec >= PREC_EQUAL)
12485 fputs_filtered ("(", stream);
12486 /* XXX: sprint_subexp */
12487 print_subexp (exp, pos, stream, PREC_SUFFIX);
12488 fputs_filtered (" in ", stream);
12489 print_subexp (exp, pos, stream, PREC_EQUAL);
12490 fputs_filtered (" .. ", stream);
12491 print_subexp (exp, pos, stream, PREC_EQUAL);
12492 if (prec >= PREC_EQUAL)
12493 fputs_filtered (")", stream);
12494 return;
12495
12496 case OP_ATR_FIRST:
12497 case OP_ATR_LAST:
12498 case OP_ATR_LENGTH:
12499 case OP_ATR_IMAGE:
12500 case OP_ATR_MAX:
12501 case OP_ATR_MIN:
12502 case OP_ATR_MODULUS:
12503 case OP_ATR_POS:
12504 case OP_ATR_SIZE:
12505 case OP_ATR_TAG:
12506 case OP_ATR_VAL:
12507 if (exp->elts[*pos].opcode == OP_TYPE)
12508 {
12509 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12510 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12511 &type_print_raw_options);
12512 *pos += 3;
12513 }
12514 else
12515 print_subexp (exp, pos, stream, PREC_SUFFIX);
12516 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12517 if (nargs > 1)
12518 {
12519 int tem;
12520
12521 for (tem = 1; tem < nargs; tem += 1)
12522 {
12523 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12524 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12525 }
12526 fputs_filtered (")", stream);
12527 }
12528 return;
12529
12530 case UNOP_QUAL:
12531 type_print (exp->elts[pc + 1].type, "", stream, 0);
12532 fputs_filtered ("'(", stream);
12533 print_subexp (exp, pos, stream, PREC_PREFIX);
12534 fputs_filtered (")", stream);
12535 return;
12536
12537 case UNOP_IN_RANGE:
12538 /* XXX: sprint_subexp */
12539 print_subexp (exp, pos, stream, PREC_SUFFIX);
12540 fputs_filtered (" in ", stream);
12541 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12542 &type_print_raw_options);
12543 return;
12544
12545 case OP_DISCRETE_RANGE:
12546 print_subexp (exp, pos, stream, PREC_SUFFIX);
12547 fputs_filtered ("..", stream);
12548 print_subexp (exp, pos, stream, PREC_SUFFIX);
12549 return;
12550
12551 case OP_OTHERS:
12552 fputs_filtered ("others => ", stream);
12553 print_subexp (exp, pos, stream, PREC_SUFFIX);
12554 return;
12555
12556 case OP_CHOICES:
12557 for (i = 0; i < nargs-1; i += 1)
12558 {
12559 if (i > 0)
12560 fputs_filtered ("|", stream);
12561 print_subexp (exp, pos, stream, PREC_SUFFIX);
12562 }
12563 fputs_filtered (" => ", stream);
12564 print_subexp (exp, pos, stream, PREC_SUFFIX);
12565 return;
12566
12567 case OP_POSITIONAL:
12568 print_subexp (exp, pos, stream, PREC_SUFFIX);
12569 return;
12570
12571 case OP_AGGREGATE:
12572 fputs_filtered ("(", stream);
12573 for (i = 0; i < nargs; i += 1)
12574 {
12575 if (i > 0)
12576 fputs_filtered (", ", stream);
12577 print_subexp (exp, pos, stream, PREC_SUFFIX);
12578 }
12579 fputs_filtered (")", stream);
12580 return;
12581 }
12582 }
12583
12584 /* Table mapping opcodes into strings for printing operators
12585 and precedences of the operators. */
12586
12587 static const struct op_print ada_op_print_tab[] = {
12588 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12589 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12590 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12591 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12592 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12593 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12594 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12595 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12596 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12597 {">=", BINOP_GEQ, PREC_ORDER, 0},
12598 {">", BINOP_GTR, PREC_ORDER, 0},
12599 {"<", BINOP_LESS, PREC_ORDER, 0},
12600 {">>", BINOP_RSH, PREC_SHIFT, 0},
12601 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12602 {"+", BINOP_ADD, PREC_ADD, 0},
12603 {"-", BINOP_SUB, PREC_ADD, 0},
12604 {"&", BINOP_CONCAT, PREC_ADD, 0},
12605 {"*", BINOP_MUL, PREC_MUL, 0},
12606 {"/", BINOP_DIV, PREC_MUL, 0},
12607 {"rem", BINOP_REM, PREC_MUL, 0},
12608 {"mod", BINOP_MOD, PREC_MUL, 0},
12609 {"**", BINOP_EXP, PREC_REPEAT, 0},
12610 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12611 {"-", UNOP_NEG, PREC_PREFIX, 0},
12612 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12613 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12614 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12615 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12616 {".all", UNOP_IND, PREC_SUFFIX, 1},
12617 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12618 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12619 {NULL, 0, 0, 0}
12620 };
12621 \f
12622 enum ada_primitive_types {
12623 ada_primitive_type_int,
12624 ada_primitive_type_long,
12625 ada_primitive_type_short,
12626 ada_primitive_type_char,
12627 ada_primitive_type_float,
12628 ada_primitive_type_double,
12629 ada_primitive_type_void,
12630 ada_primitive_type_long_long,
12631 ada_primitive_type_long_double,
12632 ada_primitive_type_natural,
12633 ada_primitive_type_positive,
12634 ada_primitive_type_system_address,
12635 nr_ada_primitive_types
12636 };
12637
12638 static void
12639 ada_language_arch_info (struct gdbarch *gdbarch,
12640 struct language_arch_info *lai)
12641 {
12642 const struct builtin_type *builtin = builtin_type (gdbarch);
12643
12644 lai->primitive_type_vector
12645 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12646 struct type *);
12647
12648 lai->primitive_type_vector [ada_primitive_type_int]
12649 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12650 0, "integer");
12651 lai->primitive_type_vector [ada_primitive_type_long]
12652 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12653 0, "long_integer");
12654 lai->primitive_type_vector [ada_primitive_type_short]
12655 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12656 0, "short_integer");
12657 lai->string_char_type
12658 = lai->primitive_type_vector [ada_primitive_type_char]
12659 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12660 lai->primitive_type_vector [ada_primitive_type_float]
12661 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12662 "float", NULL);
12663 lai->primitive_type_vector [ada_primitive_type_double]
12664 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12665 "long_float", NULL);
12666 lai->primitive_type_vector [ada_primitive_type_long_long]
12667 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12668 0, "long_long_integer");
12669 lai->primitive_type_vector [ada_primitive_type_long_double]
12670 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12671 "long_long_float", NULL);
12672 lai->primitive_type_vector [ada_primitive_type_natural]
12673 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12674 0, "natural");
12675 lai->primitive_type_vector [ada_primitive_type_positive]
12676 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12677 0, "positive");
12678 lai->primitive_type_vector [ada_primitive_type_void]
12679 = builtin->builtin_void;
12680
12681 lai->primitive_type_vector [ada_primitive_type_system_address]
12682 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12683 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12684 = "system__address";
12685
12686 lai->bool_type_symbol = NULL;
12687 lai->bool_type_default = builtin->builtin_bool;
12688 }
12689 \f
12690 /* Language vector */
12691
12692 /* Not really used, but needed in the ada_language_defn. */
12693
12694 static void
12695 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12696 {
12697 ada_emit_char (c, type, stream, quoter, 1);
12698 }
12699
12700 static int
12701 parse (void)
12702 {
12703 warnings_issued = 0;
12704 return ada_parse ();
12705 }
12706
12707 static const struct exp_descriptor ada_exp_descriptor = {
12708 ada_print_subexp,
12709 ada_operator_length,
12710 ada_operator_check,
12711 ada_op_name,
12712 ada_dump_subexp_body,
12713 ada_evaluate_subexp
12714 };
12715
12716 /* Implement the "la_get_symbol_name_cmp" language_defn method
12717 for Ada. */
12718
12719 static symbol_name_cmp_ftype
12720 ada_get_symbol_name_cmp (const char *lookup_name)
12721 {
12722 if (should_use_wild_match (lookup_name))
12723 return wild_match;
12724 else
12725 return compare_names;
12726 }
12727
12728 /* Implement the "la_read_var_value" language_defn method for Ada. */
12729
12730 static struct value *
12731 ada_read_var_value (struct symbol *var, struct frame_info *frame)
12732 {
12733 struct block *frame_block = NULL;
12734 struct symbol *renaming_sym = NULL;
12735
12736 /* The only case where default_read_var_value is not sufficient
12737 is when VAR is a renaming... */
12738 if (frame)
12739 frame_block = get_frame_block (frame, NULL);
12740 if (frame_block)
12741 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12742 if (renaming_sym != NULL)
12743 return ada_read_renaming_var_value (renaming_sym, frame_block);
12744
12745 /* This is a typical case where we expect the default_read_var_value
12746 function to work. */
12747 return default_read_var_value (var, frame);
12748 }
12749
12750 const struct language_defn ada_language_defn = {
12751 "ada", /* Language name */
12752 language_ada,
12753 range_check_off,
12754 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12755 that's not quite what this means. */
12756 array_row_major,
12757 macro_expansion_no,
12758 &ada_exp_descriptor,
12759 parse,
12760 ada_error,
12761 resolve,
12762 ada_printchar, /* Print a character constant */
12763 ada_printstr, /* Function to print string constant */
12764 emit_char, /* Function to print single char (not used) */
12765 ada_print_type, /* Print a type using appropriate syntax */
12766 ada_print_typedef, /* Print a typedef using appropriate syntax */
12767 ada_val_print, /* Print a value using appropriate syntax */
12768 ada_value_print, /* Print a top-level value */
12769 ada_read_var_value, /* la_read_var_value */
12770 NULL, /* Language specific skip_trampoline */
12771 NULL, /* name_of_this */
12772 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12773 basic_lookup_transparent_type, /* lookup_transparent_type */
12774 ada_la_decode, /* Language specific symbol demangler */
12775 NULL, /* Language specific
12776 class_name_from_physname */
12777 ada_op_print_tab, /* expression operators for printing */
12778 0, /* c-style arrays */
12779 1, /* String lower bound */
12780 ada_get_gdb_completer_word_break_characters,
12781 ada_make_symbol_completion_list,
12782 ada_language_arch_info,
12783 ada_print_array_index,
12784 default_pass_by_reference,
12785 c_get_string,
12786 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12787 ada_iterate_over_symbols,
12788 LANG_MAGIC
12789 };
12790
12791 /* Provide a prototype to silence -Wmissing-prototypes. */
12792 extern initialize_file_ftype _initialize_ada_language;
12793
12794 /* Command-list for the "set/show ada" prefix command. */
12795 static struct cmd_list_element *set_ada_list;
12796 static struct cmd_list_element *show_ada_list;
12797
12798 /* Implement the "set ada" prefix command. */
12799
12800 static void
12801 set_ada_command (char *arg, int from_tty)
12802 {
12803 printf_unfiltered (_(\
12804 "\"set ada\" must be followed by the name of a setting.\n"));
12805 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12806 }
12807
12808 /* Implement the "show ada" prefix command. */
12809
12810 static void
12811 show_ada_command (char *args, int from_tty)
12812 {
12813 cmd_show_list (show_ada_list, from_tty, "");
12814 }
12815
12816 static void
12817 initialize_ada_catchpoint_ops (void)
12818 {
12819 struct breakpoint_ops *ops;
12820
12821 initialize_breakpoint_ops ();
12822
12823 ops = &catch_exception_breakpoint_ops;
12824 *ops = bkpt_breakpoint_ops;
12825 ops->dtor = dtor_catch_exception;
12826 ops->allocate_location = allocate_location_catch_exception;
12827 ops->re_set = re_set_catch_exception;
12828 ops->check_status = check_status_catch_exception;
12829 ops->print_it = print_it_catch_exception;
12830 ops->print_one = print_one_catch_exception;
12831 ops->print_mention = print_mention_catch_exception;
12832 ops->print_recreate = print_recreate_catch_exception;
12833
12834 ops = &catch_exception_unhandled_breakpoint_ops;
12835 *ops = bkpt_breakpoint_ops;
12836 ops->dtor = dtor_catch_exception_unhandled;
12837 ops->allocate_location = allocate_location_catch_exception_unhandled;
12838 ops->re_set = re_set_catch_exception_unhandled;
12839 ops->check_status = check_status_catch_exception_unhandled;
12840 ops->print_it = print_it_catch_exception_unhandled;
12841 ops->print_one = print_one_catch_exception_unhandled;
12842 ops->print_mention = print_mention_catch_exception_unhandled;
12843 ops->print_recreate = print_recreate_catch_exception_unhandled;
12844
12845 ops = &catch_assert_breakpoint_ops;
12846 *ops = bkpt_breakpoint_ops;
12847 ops->dtor = dtor_catch_assert;
12848 ops->allocate_location = allocate_location_catch_assert;
12849 ops->re_set = re_set_catch_assert;
12850 ops->check_status = check_status_catch_assert;
12851 ops->print_it = print_it_catch_assert;
12852 ops->print_one = print_one_catch_assert;
12853 ops->print_mention = print_mention_catch_assert;
12854 ops->print_recreate = print_recreate_catch_assert;
12855 }
12856
12857 void
12858 _initialize_ada_language (void)
12859 {
12860 add_language (&ada_language_defn);
12861
12862 initialize_ada_catchpoint_ops ();
12863
12864 add_prefix_cmd ("ada", no_class, set_ada_command,
12865 _("Prefix command for changing Ada-specfic settings"),
12866 &set_ada_list, "set ada ", 0, &setlist);
12867
12868 add_prefix_cmd ("ada", no_class, show_ada_command,
12869 _("Generic command for showing Ada-specific settings."),
12870 &show_ada_list, "show ada ", 0, &showlist);
12871
12872 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12873 &trust_pad_over_xvs, _("\
12874 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12875 Show whether an optimization trusting PAD types over XVS types is activated"),
12876 _("\
12877 This is related to the encoding used by the GNAT compiler. The debugger\n\
12878 should normally trust the contents of PAD types, but certain older versions\n\
12879 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12880 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12881 work around this bug. It is always safe to turn this option \"off\", but\n\
12882 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12883 this option to \"off\" unless necessary."),
12884 NULL, NULL, &set_ada_list, &show_ada_list);
12885
12886 add_catch_command ("exception", _("\
12887 Catch Ada exceptions, when raised.\n\
12888 With an argument, catch only exceptions with the given name."),
12889 catch_ada_exception_command,
12890 NULL,
12891 CATCH_PERMANENT,
12892 CATCH_TEMPORARY);
12893 add_catch_command ("assert", _("\
12894 Catch failed Ada assertions, when raised.\n\
12895 With an argument, catch only exceptions with the given name."),
12896 catch_assert_command,
12897 NULL,
12898 CATCH_PERMANENT,
12899 CATCH_TEMPORARY);
12900
12901 varsize_limit = 65536;
12902
12903 obstack_init (&symbol_list_obstack);
12904
12905 decoded_names_store = htab_create_alloc
12906 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12907 NULL, xcalloc, xfree);
12908
12909 /* Setup per-inferior data. */
12910 observer_attach_inferior_exit (ada_inferior_exit);
12911 ada_inferior_data
12912 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
12913 }
This page took 0.346643 seconds and 4 git commands to generate.