* m68k-tdep.c (m68k_ps_type): New.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23
24 #include "defs.h"
25 #include <stdio.h>
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include <stdarg.h>
29 #include "demangle.h"
30 #include "gdb_regex.h"
31 #include "frame.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "gdbcmd.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37 #include "language.h"
38 #include "c-lang.h"
39 #include "inferior.h"
40 #include "symfile.h"
41 #include "objfiles.h"
42 #include "breakpoint.h"
43 #include "gdbcore.h"
44 #include "hashtab.h"
45 #include "gdb_obstack.h"
46 #include "ada-lang.h"
47 #include "completer.h"
48 #include "gdb_stat.h"
49 #ifdef UI_OUT
50 #include "ui-out.h"
51 #endif
52 #include "block.h"
53 #include "infcall.h"
54 #include "dictionary.h"
55 #include "exceptions.h"
56 #include "annotate.h"
57 #include "valprint.h"
58 #include "source.h"
59 #include "observer.h"
60
61 #ifndef ADA_RETAIN_DOTS
62 #define ADA_RETAIN_DOTS 0
63 #endif
64
65 /* Define whether or not the C operator '/' truncates towards zero for
66 differently signed operands (truncation direction is undefined in C).
67 Copied from valarith.c. */
68
69 #ifndef TRUNCATION_TOWARDS_ZERO
70 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
71 #endif
72
73
74 static void extract_string (CORE_ADDR addr, char *buf);
75
76 static struct type *ada_create_fundamental_type (struct objfile *, int);
77
78 static void modify_general_field (char *, LONGEST, int, int);
79
80 static struct type *desc_base_type (struct type *);
81
82 static struct type *desc_bounds_type (struct type *);
83
84 static struct value *desc_bounds (struct value *);
85
86 static int fat_pntr_bounds_bitpos (struct type *);
87
88 static int fat_pntr_bounds_bitsize (struct type *);
89
90 static struct type *desc_data_type (struct type *);
91
92 static struct value *desc_data (struct value *);
93
94 static int fat_pntr_data_bitpos (struct type *);
95
96 static int fat_pntr_data_bitsize (struct type *);
97
98 static struct value *desc_one_bound (struct value *, int, int);
99
100 static int desc_bound_bitpos (struct type *, int, int);
101
102 static int desc_bound_bitsize (struct type *, int, int);
103
104 static struct type *desc_index_type (struct type *, int);
105
106 static int desc_arity (struct type *);
107
108 static int ada_type_match (struct type *, struct type *, int);
109
110 static int ada_args_match (struct symbol *, struct value **, int);
111
112 static struct value *ensure_lval (struct value *, CORE_ADDR *);
113
114 static struct value *convert_actual (struct value *, struct type *,
115 CORE_ADDR *);
116
117 static struct value *make_array_descriptor (struct type *, struct value *,
118 CORE_ADDR *);
119
120 static void ada_add_block_symbols (struct obstack *,
121 struct block *, const char *,
122 domain_enum, struct objfile *,
123 struct symtab *, int);
124
125 static int is_nonfunction (struct ada_symbol_info *, int);
126
127 static void add_defn_to_vec (struct obstack *, struct symbol *,
128 struct block *, struct symtab *);
129
130 static int num_defns_collected (struct obstack *);
131
132 static struct ada_symbol_info *defns_collected (struct obstack *, int);
133
134 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
135 *, const char *, int,
136 domain_enum, int);
137
138 static struct symtab *symtab_for_sym (struct symbol *);
139
140 static struct value *resolve_subexp (struct expression **, int *, int,
141 struct type *);
142
143 static void replace_operator_with_call (struct expression **, int, int, int,
144 struct symbol *, struct block *);
145
146 static int possible_user_operator_p (enum exp_opcode, struct value **);
147
148 static char *ada_op_name (enum exp_opcode);
149
150 static const char *ada_decoded_op_name (enum exp_opcode);
151
152 static int numeric_type_p (struct type *);
153
154 static int integer_type_p (struct type *);
155
156 static int scalar_type_p (struct type *);
157
158 static int discrete_type_p (struct type *);
159
160 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
161 int, int, int *);
162
163 static struct value *evaluate_subexp (struct type *, struct expression *,
164 int *, enum noside);
165
166 static struct value *evaluate_subexp_type (struct expression *, int *);
167
168 static int is_dynamic_field (struct type *, int);
169
170 static struct type *to_fixed_variant_branch_type (struct type *,
171 const gdb_byte *,
172 CORE_ADDR, struct value *);
173
174 static struct type *to_fixed_array_type (struct type *, struct value *, int);
175
176 static struct type *to_fixed_range_type (char *, struct value *,
177 struct objfile *);
178
179 static struct type *to_static_fixed_type (struct type *);
180
181 static struct value *unwrap_value (struct value *);
182
183 static struct type *packed_array_type (struct type *, long *);
184
185 static struct type *decode_packed_array_type (struct type *);
186
187 static struct value *decode_packed_array (struct value *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int wild_match (const char *, int, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static struct value *ada_to_fixed_value (struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static struct value *ada_coerce_to_simple_array (struct value *);
237
238 static int ada_is_direct_array_type (struct type *);
239
240 static void ada_language_arch_info (struct gdbarch *,
241 struct language_arch_info *);
242
243 static void check_size (const struct type *);
244
245 static struct value *ada_index_struct_field (int, struct value *, int,
246 struct type *);
247
248 static struct value *assign_aggregate (struct value *, struct value *,
249 struct expression *, int *, enum noside);
250
251 static void aggregate_assign_from_choices (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *,
254 int, LONGEST, LONGEST);
255
256 static void aggregate_assign_positional (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *, int,
259 LONGEST, LONGEST);
260
261
262 static void aggregate_assign_others (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int, LONGEST, LONGEST);
265
266
267 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
268
269
270 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
271 int *, enum noside);
272
273 static void ada_forward_operator_length (struct expression *, int, int *,
274 int *);
275 \f
276
277
278 /* Maximum-sized dynamic type. */
279 static unsigned int varsize_limit;
280
281 /* FIXME: brobecker/2003-09-17: No longer a const because it is
282 returned by a function that does not return a const char *. */
283 static char *ada_completer_word_break_characters =
284 #ifdef VMS
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
286 #else
287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
288 #endif
289
290 /* The name of the symbol to use to get the name of the main subprogram. */
291 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
292 = "__gnat_ada_main_program_name";
293
294 /* Limit on the number of warnings to raise per expression evaluation. */
295 static int warning_limit = 2;
296
297 /* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299 static int warnings_issued = 0;
300
301 static const char *known_runtime_file_name_patterns[] = {
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
303 };
304
305 static const char *known_auxiliary_function_name_patterns[] = {
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
307 };
308
309 /* Space for allocating results of ada_lookup_symbol_list. */
310 static struct obstack symbol_list_obstack;
311
312 /* Utilities */
313
314
315 static char *
316 ada_get_gdb_completer_word_break_characters (void)
317 {
318 return ada_completer_word_break_characters;
319 }
320
321 /* Print an array element index using the Ada syntax. */
322
323 static void
324 ada_print_array_index (struct value *index_value, struct ui_file *stream,
325 int format, enum val_prettyprint pretty)
326 {
327 LA_VALUE_PRINT (index_value, stream, format, pretty);
328 fprintf_filtered (stream, " => ");
329 }
330
331 /* Read the string located at ADDR from the inferior and store the
332 result into BUF. */
333
334 static void
335 extract_string (CORE_ADDR addr, char *buf)
336 {
337 int char_index = 0;
338
339 /* Loop, reading one byte at a time, until we reach the '\000'
340 end-of-string marker. */
341 do
342 {
343 target_read_memory (addr + char_index * sizeof (char),
344 buf + char_index * sizeof (char), sizeof (char));
345 char_index++;
346 }
347 while (buf[char_index - 1] != '\000');
348 }
349
350 /* Assuming VECT points to an array of *SIZE objects of size
351 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
352 updating *SIZE as necessary and returning the (new) array. */
353
354 void *
355 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
356 {
357 if (*size < min_size)
358 {
359 *size *= 2;
360 if (*size < min_size)
361 *size = min_size;
362 vect = xrealloc (vect, *size * element_size);
363 }
364 return vect;
365 }
366
367 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
368 suffix of FIELD_NAME beginning "___". */
369
370 static int
371 field_name_match (const char *field_name, const char *target)
372 {
373 int len = strlen (target);
374 return
375 (strncmp (field_name, target, len) == 0
376 && (field_name[len] == '\0'
377 || (strncmp (field_name + len, "___", 3) == 0
378 && strcmp (field_name + strlen (field_name) - 6,
379 "___XVN") != 0)));
380 }
381
382
383 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
384 FIELD_NAME, and return its index. This function also handles fields
385 whose name have ___ suffixes because the compiler sometimes alters
386 their name by adding such a suffix to represent fields with certain
387 constraints. If the field could not be found, return a negative
388 number if MAYBE_MISSING is set. Otherwise raise an error. */
389
390 int
391 ada_get_field_index (const struct type *type, const char *field_name,
392 int maybe_missing)
393 {
394 int fieldno;
395 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
396 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
397 return fieldno;
398
399 if (!maybe_missing)
400 error (_("Unable to find field %s in struct %s. Aborting"),
401 field_name, TYPE_NAME (type));
402
403 return -1;
404 }
405
406 /* The length of the prefix of NAME prior to any "___" suffix. */
407
408 int
409 ada_name_prefix_len (const char *name)
410 {
411 if (name == NULL)
412 return 0;
413 else
414 {
415 const char *p = strstr (name, "___");
416 if (p == NULL)
417 return strlen (name);
418 else
419 return p - name;
420 }
421 }
422
423 /* Return non-zero if SUFFIX is a suffix of STR.
424 Return zero if STR is null. */
425
426 static int
427 is_suffix (const char *str, const char *suffix)
428 {
429 int len1, len2;
430 if (str == NULL)
431 return 0;
432 len1 = strlen (str);
433 len2 = strlen (suffix);
434 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
435 }
436
437 /* Create a value of type TYPE whose contents come from VALADDR, if it
438 is non-null, and whose memory address (in the inferior) is
439 ADDRESS. */
440
441 struct value *
442 value_from_contents_and_address (struct type *type,
443 const gdb_byte *valaddr,
444 CORE_ADDR address)
445 {
446 struct value *v = allocate_value (type);
447 if (valaddr == NULL)
448 set_value_lazy (v, 1);
449 else
450 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
451 VALUE_ADDRESS (v) = address;
452 if (address != 0)
453 VALUE_LVAL (v) = lval_memory;
454 return v;
455 }
456
457 /* The contents of value VAL, treated as a value of type TYPE. The
458 result is an lval in memory if VAL is. */
459
460 static struct value *
461 coerce_unspec_val_to_type (struct value *val, struct type *type)
462 {
463 type = ada_check_typedef (type);
464 if (value_type (val) == type)
465 return val;
466 else
467 {
468 struct value *result;
469
470 /* Make sure that the object size is not unreasonable before
471 trying to allocate some memory for it. */
472 check_size (type);
473
474 result = allocate_value (type);
475 VALUE_LVAL (result) = VALUE_LVAL (val);
476 set_value_bitsize (result, value_bitsize (val));
477 set_value_bitpos (result, value_bitpos (val));
478 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
479 if (value_lazy (val)
480 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
481 set_value_lazy (result, 1);
482 else
483 memcpy (value_contents_raw (result), value_contents (val),
484 TYPE_LENGTH (type));
485 return result;
486 }
487 }
488
489 static const gdb_byte *
490 cond_offset_host (const gdb_byte *valaddr, long offset)
491 {
492 if (valaddr == NULL)
493 return NULL;
494 else
495 return valaddr + offset;
496 }
497
498 static CORE_ADDR
499 cond_offset_target (CORE_ADDR address, long offset)
500 {
501 if (address == 0)
502 return 0;
503 else
504 return address + offset;
505 }
506
507 /* Issue a warning (as for the definition of warning in utils.c, but
508 with exactly one argument rather than ...), unless the limit on the
509 number of warnings has passed during the evaluation of the current
510 expression. */
511
512 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
513 provided by "complaint". */
514 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
515
516 static void
517 lim_warning (const char *format, ...)
518 {
519 va_list args;
520 va_start (args, format);
521
522 warnings_issued += 1;
523 if (warnings_issued <= warning_limit)
524 vwarning (format, args);
525
526 va_end (args);
527 }
528
529 /* Issue an error if the size of an object of type T is unreasonable,
530 i.e. if it would be a bad idea to allocate a value of this type in
531 GDB. */
532
533 static void
534 check_size (const struct type *type)
535 {
536 if (TYPE_LENGTH (type) > varsize_limit)
537 error (_("object size is larger than varsize-limit"));
538 }
539
540
541 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
542 gdbtypes.h, but some of the necessary definitions in that file
543 seem to have gone missing. */
544
545 /* Maximum value of a SIZE-byte signed integer type. */
546 static LONGEST
547 max_of_size (int size)
548 {
549 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
550 return top_bit | (top_bit - 1);
551 }
552
553 /* Minimum value of a SIZE-byte signed integer type. */
554 static LONGEST
555 min_of_size (int size)
556 {
557 return -max_of_size (size) - 1;
558 }
559
560 /* Maximum value of a SIZE-byte unsigned integer type. */
561 static ULONGEST
562 umax_of_size (int size)
563 {
564 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
565 return top_bit | (top_bit - 1);
566 }
567
568 /* Maximum value of integral type T, as a signed quantity. */
569 static LONGEST
570 max_of_type (struct type *t)
571 {
572 if (TYPE_UNSIGNED (t))
573 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
574 else
575 return max_of_size (TYPE_LENGTH (t));
576 }
577
578 /* Minimum value of integral type T, as a signed quantity. */
579 static LONGEST
580 min_of_type (struct type *t)
581 {
582 if (TYPE_UNSIGNED (t))
583 return 0;
584 else
585 return min_of_size (TYPE_LENGTH (t));
586 }
587
588 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
589 static struct value *
590 discrete_type_high_bound (struct type *type)
591 {
592 switch (TYPE_CODE (type))
593 {
594 case TYPE_CODE_RANGE:
595 return value_from_longest (TYPE_TARGET_TYPE (type),
596 TYPE_HIGH_BOUND (type));
597 case TYPE_CODE_ENUM:
598 return
599 value_from_longest (type,
600 TYPE_FIELD_BITPOS (type,
601 TYPE_NFIELDS (type) - 1));
602 case TYPE_CODE_INT:
603 return value_from_longest (type, max_of_type (type));
604 default:
605 error (_("Unexpected type in discrete_type_high_bound."));
606 }
607 }
608
609 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
610 static struct value *
611 discrete_type_low_bound (struct type *type)
612 {
613 switch (TYPE_CODE (type))
614 {
615 case TYPE_CODE_RANGE:
616 return value_from_longest (TYPE_TARGET_TYPE (type),
617 TYPE_LOW_BOUND (type));
618 case TYPE_CODE_ENUM:
619 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
620 case TYPE_CODE_INT:
621 return value_from_longest (type, min_of_type (type));
622 default:
623 error (_("Unexpected type in discrete_type_low_bound."));
624 }
625 }
626
627 /* The identity on non-range types. For range types, the underlying
628 non-range scalar type. */
629
630 static struct type *
631 base_type (struct type *type)
632 {
633 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
634 {
635 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
636 return type;
637 type = TYPE_TARGET_TYPE (type);
638 }
639 return type;
640 }
641 \f
642
643 /* Language Selection */
644
645 /* If the main program is in Ada, return language_ada, otherwise return LANG
646 (the main program is in Ada iif the adainit symbol is found).
647
648 MAIN_PST is not used. */
649
650 enum language
651 ada_update_initial_language (enum language lang,
652 struct partial_symtab *main_pst)
653 {
654 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
655 (struct objfile *) NULL) != NULL)
656 return language_ada;
657
658 return lang;
659 }
660
661 /* If the main procedure is written in Ada, then return its name.
662 The result is good until the next call. Return NULL if the main
663 procedure doesn't appear to be in Ada. */
664
665 char *
666 ada_main_name (void)
667 {
668 struct minimal_symbol *msym;
669 CORE_ADDR main_program_name_addr;
670 static char main_program_name[1024];
671
672 /* For Ada, the name of the main procedure is stored in a specific
673 string constant, generated by the binder. Look for that symbol,
674 extract its address, and then read that string. If we didn't find
675 that string, then most probably the main procedure is not written
676 in Ada. */
677 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
678
679 if (msym != NULL)
680 {
681 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
682 if (main_program_name_addr == 0)
683 error (_("Invalid address for Ada main program name."));
684
685 extract_string (main_program_name_addr, main_program_name);
686 return main_program_name;
687 }
688
689 /* The main procedure doesn't seem to be in Ada. */
690 return NULL;
691 }
692 \f
693 /* Symbols */
694
695 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
696 of NULLs. */
697
698 const struct ada_opname_map ada_opname_table[] = {
699 {"Oadd", "\"+\"", BINOP_ADD},
700 {"Osubtract", "\"-\"", BINOP_SUB},
701 {"Omultiply", "\"*\"", BINOP_MUL},
702 {"Odivide", "\"/\"", BINOP_DIV},
703 {"Omod", "\"mod\"", BINOP_MOD},
704 {"Orem", "\"rem\"", BINOP_REM},
705 {"Oexpon", "\"**\"", BINOP_EXP},
706 {"Olt", "\"<\"", BINOP_LESS},
707 {"Ole", "\"<=\"", BINOP_LEQ},
708 {"Ogt", "\">\"", BINOP_GTR},
709 {"Oge", "\">=\"", BINOP_GEQ},
710 {"Oeq", "\"=\"", BINOP_EQUAL},
711 {"One", "\"/=\"", BINOP_NOTEQUAL},
712 {"Oand", "\"and\"", BINOP_BITWISE_AND},
713 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
714 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
715 {"Oconcat", "\"&\"", BINOP_CONCAT},
716 {"Oabs", "\"abs\"", UNOP_ABS},
717 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
718 {"Oadd", "\"+\"", UNOP_PLUS},
719 {"Osubtract", "\"-\"", UNOP_NEG},
720 {NULL, NULL}
721 };
722
723 /* Return non-zero if STR should be suppressed in info listings. */
724
725 static int
726 is_suppressed_name (const char *str)
727 {
728 if (strncmp (str, "_ada_", 5) == 0)
729 str += 5;
730 if (str[0] == '_' || str[0] == '\000')
731 return 1;
732 else
733 {
734 const char *p;
735 const char *suffix = strstr (str, "___");
736 if (suffix != NULL && suffix[3] != 'X')
737 return 1;
738 if (suffix == NULL)
739 suffix = str + strlen (str);
740 for (p = suffix - 1; p != str; p -= 1)
741 if (isupper (*p))
742 {
743 int i;
744 if (p[0] == 'X' && p[-1] != '_')
745 goto OK;
746 if (*p != 'O')
747 return 1;
748 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
749 if (strncmp (ada_opname_table[i].encoded, p,
750 strlen (ada_opname_table[i].encoded)) == 0)
751 goto OK;
752 return 1;
753 OK:;
754 }
755 return 0;
756 }
757 }
758
759 /* The "encoded" form of DECODED, according to GNAT conventions.
760 The result is valid until the next call to ada_encode. */
761
762 char *
763 ada_encode (const char *decoded)
764 {
765 static char *encoding_buffer = NULL;
766 static size_t encoding_buffer_size = 0;
767 const char *p;
768 int k;
769
770 if (decoded == NULL)
771 return NULL;
772
773 GROW_VECT (encoding_buffer, encoding_buffer_size,
774 2 * strlen (decoded) + 10);
775
776 k = 0;
777 for (p = decoded; *p != '\0'; p += 1)
778 {
779 if (!ADA_RETAIN_DOTS && *p == '.')
780 {
781 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
782 k += 2;
783 }
784 else if (*p == '"')
785 {
786 const struct ada_opname_map *mapping;
787
788 for (mapping = ada_opname_table;
789 mapping->encoded != NULL
790 && strncmp (mapping->decoded, p,
791 strlen (mapping->decoded)) != 0; mapping += 1)
792 ;
793 if (mapping->encoded == NULL)
794 error (_("invalid Ada operator name: %s"), p);
795 strcpy (encoding_buffer + k, mapping->encoded);
796 k += strlen (mapping->encoded);
797 break;
798 }
799 else
800 {
801 encoding_buffer[k] = *p;
802 k += 1;
803 }
804 }
805
806 encoding_buffer[k] = '\0';
807 return encoding_buffer;
808 }
809
810 /* Return NAME folded to lower case, or, if surrounded by single
811 quotes, unfolded, but with the quotes stripped away. Result good
812 to next call. */
813
814 char *
815 ada_fold_name (const char *name)
816 {
817 static char *fold_buffer = NULL;
818 static size_t fold_buffer_size = 0;
819
820 int len = strlen (name);
821 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
822
823 if (name[0] == '\'')
824 {
825 strncpy (fold_buffer, name + 1, len - 2);
826 fold_buffer[len - 2] = '\000';
827 }
828 else
829 {
830 int i;
831 for (i = 0; i <= len; i += 1)
832 fold_buffer[i] = tolower (name[i]);
833 }
834
835 return fold_buffer;
836 }
837
838 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
839
840 static int
841 is_lower_alphanum (const char c)
842 {
843 return (isdigit (c) || (isalpha (c) && islower (c)));
844 }
845
846 /* Decode:
847 . Discard trailing .{DIGIT}+, ${DIGIT}+ or ___{DIGIT}+
848 These are suffixes introduced by GNAT5 to nested subprogram
849 names, and do not serve any purpose for the debugger.
850 . Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
851 . Discard final N if it follows a lowercase alphanumeric character
852 (protected object subprogram suffix)
853 . Convert other instances of embedded "__" to `.'.
854 . Discard leading _ada_.
855 . Convert operator names to the appropriate quoted symbols.
856 . Remove everything after first ___ if it is followed by
857 'X'.
858 . Replace TK__ with __, and a trailing B or TKB with nothing.
859 . Replace _[EB]{DIGIT}+[sb] with nothing (protected object entries)
860 . Put symbols that should be suppressed in <...> brackets.
861 . Remove trailing X[bn]* suffix (indicating names in package bodies).
862
863 The resulting string is valid until the next call of ada_decode.
864 If the string is unchanged by demangling, the original string pointer
865 is returned. */
866
867 const char *
868 ada_decode (const char *encoded)
869 {
870 int i, j;
871 int len0;
872 const char *p;
873 char *decoded;
874 int at_start_name;
875 static char *decoding_buffer = NULL;
876 static size_t decoding_buffer_size = 0;
877
878 if (strncmp (encoded, "_ada_", 5) == 0)
879 encoded += 5;
880
881 if (encoded[0] == '_' || encoded[0] == '<')
882 goto Suppress;
883
884 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+ or __{DIGIT}+. */
885 len0 = strlen (encoded);
886 if (len0 > 1 && isdigit (encoded[len0 - 1]))
887 {
888 i = len0 - 2;
889 while (i > 0 && isdigit (encoded[i]))
890 i--;
891 if (i >= 0 && encoded[i] == '.')
892 len0 = i;
893 else if (i >= 0 && encoded[i] == '$')
894 len0 = i;
895 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
896 len0 = i - 2;
897 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
898 len0 = i - 1;
899 }
900
901 /* Remove trailing N. */
902
903 /* Protected entry subprograms are broken into two
904 separate subprograms: The first one is unprotected, and has
905 a 'N' suffix; the second is the protected version, and has
906 the 'P' suffix. The second calls the first one after handling
907 the protection. Since the P subprograms are internally generated,
908 we leave these names undecoded, giving the user a clue that this
909 entity is internal. */
910
911 if (len0 > 1
912 && encoded[len0 - 1] == 'N'
913 && (isdigit (encoded[len0 - 2]) || islower (encoded[len0 - 2])))
914 len0--;
915
916 /* Remove the ___X.* suffix if present. Do not forget to verify that
917 the suffix is located before the current "end" of ENCODED. We want
918 to avoid re-matching parts of ENCODED that have previously been
919 marked as discarded (by decrementing LEN0). */
920 p = strstr (encoded, "___");
921 if (p != NULL && p - encoded < len0 - 3)
922 {
923 if (p[3] == 'X')
924 len0 = p - encoded;
925 else
926 goto Suppress;
927 }
928
929 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
930 len0 -= 3;
931
932 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
933 len0 -= 1;
934
935 /* Make decoded big enough for possible expansion by operator name. */
936 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
937 decoded = decoding_buffer;
938
939 if (len0 > 1 && isdigit (encoded[len0 - 1]))
940 {
941 i = len0 - 2;
942 while ((i >= 0 && isdigit (encoded[i]))
943 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
944 i -= 1;
945 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
946 len0 = i - 1;
947 else if (encoded[i] == '$')
948 len0 = i;
949 }
950
951 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
952 decoded[j] = encoded[i];
953
954 at_start_name = 1;
955 while (i < len0)
956 {
957 if (at_start_name && encoded[i] == 'O')
958 {
959 int k;
960 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
961 {
962 int op_len = strlen (ada_opname_table[k].encoded);
963 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
964 op_len - 1) == 0)
965 && !isalnum (encoded[i + op_len]))
966 {
967 strcpy (decoded + j, ada_opname_table[k].decoded);
968 at_start_name = 0;
969 i += op_len;
970 j += strlen (ada_opname_table[k].decoded);
971 break;
972 }
973 }
974 if (ada_opname_table[k].encoded != NULL)
975 continue;
976 }
977 at_start_name = 0;
978
979 /* Replace "TK__" with "__", which will eventually be translated
980 into "." (just below). */
981
982 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
983 i += 2;
984
985 /* Remove _E{DIGITS}+[sb] */
986
987 /* Just as for protected object subprograms, there are 2 categories
988 of subprograms created by the compiler for each entry. The first
989 one implements the actual entry code, and has a suffix following
990 the convention above; the second one implements the barrier and
991 uses the same convention as above, except that the 'E' is replaced
992 by a 'B'.
993
994 Just as above, we do not decode the name of barrier functions
995 to give the user a clue that the code he is debugging has been
996 internally generated. */
997
998 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
999 && isdigit (encoded[i+2]))
1000 {
1001 int k = i + 3;
1002
1003 while (k < len0 && isdigit (encoded[k]))
1004 k++;
1005
1006 if (k < len0
1007 && (encoded[k] == 'b' || encoded[k] == 's'))
1008 {
1009 k++;
1010 /* Just as an extra precaution, make sure that if this
1011 suffix is followed by anything else, it is a '_'.
1012 Otherwise, we matched this sequence by accident. */
1013 if (k == len0
1014 || (k < len0 && encoded[k] == '_'))
1015 i = k;
1016 }
1017 }
1018
1019 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1020 the GNAT front-end in protected object subprograms. */
1021
1022 if (i < len0 + 3
1023 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1024 {
1025 /* Backtrack a bit up until we reach either the begining of
1026 the encoded name, or "__". Make sure that we only find
1027 digits or lowercase characters. */
1028 const char *ptr = encoded + i - 1;
1029
1030 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1031 ptr--;
1032 if (ptr < encoded
1033 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1034 i++;
1035 }
1036
1037 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1038 {
1039 do
1040 i += 1;
1041 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1042 if (i < len0)
1043 goto Suppress;
1044 }
1045 else if (!ADA_RETAIN_DOTS
1046 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1047 {
1048 decoded[j] = '.';
1049 at_start_name = 1;
1050 i += 2;
1051 j += 1;
1052 }
1053 else
1054 {
1055 decoded[j] = encoded[i];
1056 i += 1;
1057 j += 1;
1058 }
1059 }
1060 decoded[j] = '\000';
1061
1062 for (i = 0; decoded[i] != '\0'; i += 1)
1063 if (isupper (decoded[i]) || decoded[i] == ' ')
1064 goto Suppress;
1065
1066 if (strcmp (decoded, encoded) == 0)
1067 return encoded;
1068 else
1069 return decoded;
1070
1071 Suppress:
1072 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1073 decoded = decoding_buffer;
1074 if (encoded[0] == '<')
1075 strcpy (decoded, encoded);
1076 else
1077 sprintf (decoded, "<%s>", encoded);
1078 return decoded;
1079
1080 }
1081
1082 /* Table for keeping permanent unique copies of decoded names. Once
1083 allocated, names in this table are never released. While this is a
1084 storage leak, it should not be significant unless there are massive
1085 changes in the set of decoded names in successive versions of a
1086 symbol table loaded during a single session. */
1087 static struct htab *decoded_names_store;
1088
1089 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1090 in the language-specific part of GSYMBOL, if it has not been
1091 previously computed. Tries to save the decoded name in the same
1092 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1093 in any case, the decoded symbol has a lifetime at least that of
1094 GSYMBOL).
1095 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1096 const, but nevertheless modified to a semantically equivalent form
1097 when a decoded name is cached in it.
1098 */
1099
1100 char *
1101 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1102 {
1103 char **resultp =
1104 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1105 if (*resultp == NULL)
1106 {
1107 const char *decoded = ada_decode (gsymbol->name);
1108 if (gsymbol->bfd_section != NULL)
1109 {
1110 bfd *obfd = gsymbol->bfd_section->owner;
1111 if (obfd != NULL)
1112 {
1113 struct objfile *objf;
1114 ALL_OBJFILES (objf)
1115 {
1116 if (obfd == objf->obfd)
1117 {
1118 *resultp = obsavestring (decoded, strlen (decoded),
1119 &objf->objfile_obstack);
1120 break;
1121 }
1122 }
1123 }
1124 }
1125 /* Sometimes, we can't find a corresponding objfile, in which
1126 case, we put the result on the heap. Since we only decode
1127 when needed, we hope this usually does not cause a
1128 significant memory leak (FIXME). */
1129 if (*resultp == NULL)
1130 {
1131 char **slot = (char **) htab_find_slot (decoded_names_store,
1132 decoded, INSERT);
1133 if (*slot == NULL)
1134 *slot = xstrdup (decoded);
1135 *resultp = *slot;
1136 }
1137 }
1138
1139 return *resultp;
1140 }
1141
1142 char *
1143 ada_la_decode (const char *encoded, int options)
1144 {
1145 return xstrdup (ada_decode (encoded));
1146 }
1147
1148 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1149 suffixes that encode debugging information or leading _ada_ on
1150 SYM_NAME (see is_name_suffix commentary for the debugging
1151 information that is ignored). If WILD, then NAME need only match a
1152 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1153 either argument is NULL. */
1154
1155 int
1156 ada_match_name (const char *sym_name, const char *name, int wild)
1157 {
1158 if (sym_name == NULL || name == NULL)
1159 return 0;
1160 else if (wild)
1161 return wild_match (name, strlen (name), sym_name);
1162 else
1163 {
1164 int len_name = strlen (name);
1165 return (strncmp (sym_name, name, len_name) == 0
1166 && is_name_suffix (sym_name + len_name))
1167 || (strncmp (sym_name, "_ada_", 5) == 0
1168 && strncmp (sym_name + 5, name, len_name) == 0
1169 && is_name_suffix (sym_name + len_name + 5));
1170 }
1171 }
1172
1173 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1174 suppressed in info listings. */
1175
1176 int
1177 ada_suppress_symbol_printing (struct symbol *sym)
1178 {
1179 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1180 return 1;
1181 else
1182 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1183 }
1184 \f
1185
1186 /* Arrays */
1187
1188 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1189
1190 static char *bound_name[] = {
1191 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1192 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1193 };
1194
1195 /* Maximum number of array dimensions we are prepared to handle. */
1196
1197 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1198
1199 /* Like modify_field, but allows bitpos > wordlength. */
1200
1201 static void
1202 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1203 {
1204 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1205 }
1206
1207
1208 /* The desc_* routines return primitive portions of array descriptors
1209 (fat pointers). */
1210
1211 /* The descriptor or array type, if any, indicated by TYPE; removes
1212 level of indirection, if needed. */
1213
1214 static struct type *
1215 desc_base_type (struct type *type)
1216 {
1217 if (type == NULL)
1218 return NULL;
1219 type = ada_check_typedef (type);
1220 if (type != NULL
1221 && (TYPE_CODE (type) == TYPE_CODE_PTR
1222 || TYPE_CODE (type) == TYPE_CODE_REF))
1223 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1224 else
1225 return type;
1226 }
1227
1228 /* True iff TYPE indicates a "thin" array pointer type. */
1229
1230 static int
1231 is_thin_pntr (struct type *type)
1232 {
1233 return
1234 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1235 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1236 }
1237
1238 /* The descriptor type for thin pointer type TYPE. */
1239
1240 static struct type *
1241 thin_descriptor_type (struct type *type)
1242 {
1243 struct type *base_type = desc_base_type (type);
1244 if (base_type == NULL)
1245 return NULL;
1246 if (is_suffix (ada_type_name (base_type), "___XVE"))
1247 return base_type;
1248 else
1249 {
1250 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1251 if (alt_type == NULL)
1252 return base_type;
1253 else
1254 return alt_type;
1255 }
1256 }
1257
1258 /* A pointer to the array data for thin-pointer value VAL. */
1259
1260 static struct value *
1261 thin_data_pntr (struct value *val)
1262 {
1263 struct type *type = value_type (val);
1264 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1265 return value_cast (desc_data_type (thin_descriptor_type (type)),
1266 value_copy (val));
1267 else
1268 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1269 VALUE_ADDRESS (val) + value_offset (val));
1270 }
1271
1272 /* True iff TYPE indicates a "thick" array pointer type. */
1273
1274 static int
1275 is_thick_pntr (struct type *type)
1276 {
1277 type = desc_base_type (type);
1278 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1279 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1280 }
1281
1282 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1283 pointer to one, the type of its bounds data; otherwise, NULL. */
1284
1285 static struct type *
1286 desc_bounds_type (struct type *type)
1287 {
1288 struct type *r;
1289
1290 type = desc_base_type (type);
1291
1292 if (type == NULL)
1293 return NULL;
1294 else if (is_thin_pntr (type))
1295 {
1296 type = thin_descriptor_type (type);
1297 if (type == NULL)
1298 return NULL;
1299 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1300 if (r != NULL)
1301 return ada_check_typedef (r);
1302 }
1303 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1304 {
1305 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1306 if (r != NULL)
1307 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1308 }
1309 return NULL;
1310 }
1311
1312 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1313 one, a pointer to its bounds data. Otherwise NULL. */
1314
1315 static struct value *
1316 desc_bounds (struct value *arr)
1317 {
1318 struct type *type = ada_check_typedef (value_type (arr));
1319 if (is_thin_pntr (type))
1320 {
1321 struct type *bounds_type =
1322 desc_bounds_type (thin_descriptor_type (type));
1323 LONGEST addr;
1324
1325 if (desc_bounds_type == NULL)
1326 error (_("Bad GNAT array descriptor"));
1327
1328 /* NOTE: The following calculation is not really kosher, but
1329 since desc_type is an XVE-encoded type (and shouldn't be),
1330 the correct calculation is a real pain. FIXME (and fix GCC). */
1331 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1332 addr = value_as_long (arr);
1333 else
1334 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1335
1336 return
1337 value_from_longest (lookup_pointer_type (bounds_type),
1338 addr - TYPE_LENGTH (bounds_type));
1339 }
1340
1341 else if (is_thick_pntr (type))
1342 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1343 _("Bad GNAT array descriptor"));
1344 else
1345 return NULL;
1346 }
1347
1348 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1349 position of the field containing the address of the bounds data. */
1350
1351 static int
1352 fat_pntr_bounds_bitpos (struct type *type)
1353 {
1354 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1355 }
1356
1357 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1358 size of the field containing the address of the bounds data. */
1359
1360 static int
1361 fat_pntr_bounds_bitsize (struct type *type)
1362 {
1363 type = desc_base_type (type);
1364
1365 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1366 return TYPE_FIELD_BITSIZE (type, 1);
1367 else
1368 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1369 }
1370
1371 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1372 pointer to one, the type of its array data (a
1373 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1374 ada_type_of_array to get an array type with bounds data. */
1375
1376 static struct type *
1377 desc_data_type (struct type *type)
1378 {
1379 type = desc_base_type (type);
1380
1381 /* NOTE: The following is bogus; see comment in desc_bounds. */
1382 if (is_thin_pntr (type))
1383 return lookup_pointer_type
1384 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1385 else if (is_thick_pntr (type))
1386 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1387 else
1388 return NULL;
1389 }
1390
1391 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1392 its array data. */
1393
1394 static struct value *
1395 desc_data (struct value *arr)
1396 {
1397 struct type *type = value_type (arr);
1398 if (is_thin_pntr (type))
1399 return thin_data_pntr (arr);
1400 else if (is_thick_pntr (type))
1401 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1402 _("Bad GNAT array descriptor"));
1403 else
1404 return NULL;
1405 }
1406
1407
1408 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1409 position of the field containing the address of the data. */
1410
1411 static int
1412 fat_pntr_data_bitpos (struct type *type)
1413 {
1414 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1415 }
1416
1417 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1418 size of the field containing the address of the data. */
1419
1420 static int
1421 fat_pntr_data_bitsize (struct type *type)
1422 {
1423 type = desc_base_type (type);
1424
1425 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1426 return TYPE_FIELD_BITSIZE (type, 0);
1427 else
1428 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1429 }
1430
1431 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1432 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1433 bound, if WHICH is 1. The first bound is I=1. */
1434
1435 static struct value *
1436 desc_one_bound (struct value *bounds, int i, int which)
1437 {
1438 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1439 _("Bad GNAT array descriptor bounds"));
1440 }
1441
1442 /* If BOUNDS is an array-bounds structure type, return the bit position
1443 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1444 bound, if WHICH is 1. The first bound is I=1. */
1445
1446 static int
1447 desc_bound_bitpos (struct type *type, int i, int which)
1448 {
1449 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1450 }
1451
1452 /* If BOUNDS is an array-bounds structure type, return the bit field size
1453 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1454 bound, if WHICH is 1. The first bound is I=1. */
1455
1456 static int
1457 desc_bound_bitsize (struct type *type, int i, int which)
1458 {
1459 type = desc_base_type (type);
1460
1461 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1462 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1463 else
1464 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1465 }
1466
1467 /* If TYPE is the type of an array-bounds structure, the type of its
1468 Ith bound (numbering from 1). Otherwise, NULL. */
1469
1470 static struct type *
1471 desc_index_type (struct type *type, int i)
1472 {
1473 type = desc_base_type (type);
1474
1475 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1476 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1477 else
1478 return NULL;
1479 }
1480
1481 /* The number of index positions in the array-bounds type TYPE.
1482 Return 0 if TYPE is NULL. */
1483
1484 static int
1485 desc_arity (struct type *type)
1486 {
1487 type = desc_base_type (type);
1488
1489 if (type != NULL)
1490 return TYPE_NFIELDS (type) / 2;
1491 return 0;
1492 }
1493
1494 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1495 an array descriptor type (representing an unconstrained array
1496 type). */
1497
1498 static int
1499 ada_is_direct_array_type (struct type *type)
1500 {
1501 if (type == NULL)
1502 return 0;
1503 type = ada_check_typedef (type);
1504 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1505 || ada_is_array_descriptor_type (type));
1506 }
1507
1508 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1509 * to one. */
1510
1511 int
1512 ada_is_array_type (struct type *type)
1513 {
1514 while (type != NULL
1515 && (TYPE_CODE (type) == TYPE_CODE_PTR
1516 || TYPE_CODE (type) == TYPE_CODE_REF))
1517 type = TYPE_TARGET_TYPE (type);
1518 return ada_is_direct_array_type (type);
1519 }
1520
1521 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1522
1523 int
1524 ada_is_simple_array_type (struct type *type)
1525 {
1526 if (type == NULL)
1527 return 0;
1528 type = ada_check_typedef (type);
1529 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1530 || (TYPE_CODE (type) == TYPE_CODE_PTR
1531 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1532 }
1533
1534 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1535
1536 int
1537 ada_is_array_descriptor_type (struct type *type)
1538 {
1539 struct type *data_type = desc_data_type (type);
1540
1541 if (type == NULL)
1542 return 0;
1543 type = ada_check_typedef (type);
1544 return
1545 data_type != NULL
1546 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1547 && TYPE_TARGET_TYPE (data_type) != NULL
1548 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1549 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1550 && desc_arity (desc_bounds_type (type)) > 0;
1551 }
1552
1553 /* Non-zero iff type is a partially mal-formed GNAT array
1554 descriptor. FIXME: This is to compensate for some problems with
1555 debugging output from GNAT. Re-examine periodically to see if it
1556 is still needed. */
1557
1558 int
1559 ada_is_bogus_array_descriptor (struct type *type)
1560 {
1561 return
1562 type != NULL
1563 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1564 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1565 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1566 && !ada_is_array_descriptor_type (type);
1567 }
1568
1569
1570 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1571 (fat pointer) returns the type of the array data described---specifically,
1572 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1573 in from the descriptor; otherwise, they are left unspecified. If
1574 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1575 returns NULL. The result is simply the type of ARR if ARR is not
1576 a descriptor. */
1577 struct type *
1578 ada_type_of_array (struct value *arr, int bounds)
1579 {
1580 if (ada_is_packed_array_type (value_type (arr)))
1581 return decode_packed_array_type (value_type (arr));
1582
1583 if (!ada_is_array_descriptor_type (value_type (arr)))
1584 return value_type (arr);
1585
1586 if (!bounds)
1587 return
1588 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1589 else
1590 {
1591 struct type *elt_type;
1592 int arity;
1593 struct value *descriptor;
1594 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1595
1596 elt_type = ada_array_element_type (value_type (arr), -1);
1597 arity = ada_array_arity (value_type (arr));
1598
1599 if (elt_type == NULL || arity == 0)
1600 return ada_check_typedef (value_type (arr));
1601
1602 descriptor = desc_bounds (arr);
1603 if (value_as_long (descriptor) == 0)
1604 return NULL;
1605 while (arity > 0)
1606 {
1607 struct type *range_type = alloc_type (objf);
1608 struct type *array_type = alloc_type (objf);
1609 struct value *low = desc_one_bound (descriptor, arity, 0);
1610 struct value *high = desc_one_bound (descriptor, arity, 1);
1611 arity -= 1;
1612
1613 create_range_type (range_type, value_type (low),
1614 longest_to_int (value_as_long (low)),
1615 longest_to_int (value_as_long (high)));
1616 elt_type = create_array_type (array_type, elt_type, range_type);
1617 }
1618
1619 return lookup_pointer_type (elt_type);
1620 }
1621 }
1622
1623 /* If ARR does not represent an array, returns ARR unchanged.
1624 Otherwise, returns either a standard GDB array with bounds set
1625 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1626 GDB array. Returns NULL if ARR is a null fat pointer. */
1627
1628 struct value *
1629 ada_coerce_to_simple_array_ptr (struct value *arr)
1630 {
1631 if (ada_is_array_descriptor_type (value_type (arr)))
1632 {
1633 struct type *arrType = ada_type_of_array (arr, 1);
1634 if (arrType == NULL)
1635 return NULL;
1636 return value_cast (arrType, value_copy (desc_data (arr)));
1637 }
1638 else if (ada_is_packed_array_type (value_type (arr)))
1639 return decode_packed_array (arr);
1640 else
1641 return arr;
1642 }
1643
1644 /* If ARR does not represent an array, returns ARR unchanged.
1645 Otherwise, returns a standard GDB array describing ARR (which may
1646 be ARR itself if it already is in the proper form). */
1647
1648 static struct value *
1649 ada_coerce_to_simple_array (struct value *arr)
1650 {
1651 if (ada_is_array_descriptor_type (value_type (arr)))
1652 {
1653 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1654 if (arrVal == NULL)
1655 error (_("Bounds unavailable for null array pointer."));
1656 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1657 return value_ind (arrVal);
1658 }
1659 else if (ada_is_packed_array_type (value_type (arr)))
1660 return decode_packed_array (arr);
1661 else
1662 return arr;
1663 }
1664
1665 /* If TYPE represents a GNAT array type, return it translated to an
1666 ordinary GDB array type (possibly with BITSIZE fields indicating
1667 packing). For other types, is the identity. */
1668
1669 struct type *
1670 ada_coerce_to_simple_array_type (struct type *type)
1671 {
1672 struct value *mark = value_mark ();
1673 struct value *dummy = value_from_longest (builtin_type_long, 0);
1674 struct type *result;
1675 deprecated_set_value_type (dummy, type);
1676 result = ada_type_of_array (dummy, 0);
1677 value_free_to_mark (mark);
1678 return result;
1679 }
1680
1681 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1682
1683 int
1684 ada_is_packed_array_type (struct type *type)
1685 {
1686 if (type == NULL)
1687 return 0;
1688 type = desc_base_type (type);
1689 type = ada_check_typedef (type);
1690 return
1691 ada_type_name (type) != NULL
1692 && strstr (ada_type_name (type), "___XP") != NULL;
1693 }
1694
1695 /* Given that TYPE is a standard GDB array type with all bounds filled
1696 in, and that the element size of its ultimate scalar constituents
1697 (that is, either its elements, or, if it is an array of arrays, its
1698 elements' elements, etc.) is *ELT_BITS, return an identical type,
1699 but with the bit sizes of its elements (and those of any
1700 constituent arrays) recorded in the BITSIZE components of its
1701 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1702 in bits. */
1703
1704 static struct type *
1705 packed_array_type (struct type *type, long *elt_bits)
1706 {
1707 struct type *new_elt_type;
1708 struct type *new_type;
1709 LONGEST low_bound, high_bound;
1710
1711 type = ada_check_typedef (type);
1712 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1713 return type;
1714
1715 new_type = alloc_type (TYPE_OBJFILE (type));
1716 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1717 elt_bits);
1718 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1719 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1720 TYPE_NAME (new_type) = ada_type_name (type);
1721
1722 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1723 &low_bound, &high_bound) < 0)
1724 low_bound = high_bound = 0;
1725 if (high_bound < low_bound)
1726 *elt_bits = TYPE_LENGTH (new_type) = 0;
1727 else
1728 {
1729 *elt_bits *= (high_bound - low_bound + 1);
1730 TYPE_LENGTH (new_type) =
1731 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1732 }
1733
1734 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1735 return new_type;
1736 }
1737
1738 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1739
1740 static struct type *
1741 decode_packed_array_type (struct type *type)
1742 {
1743 struct symbol *sym;
1744 struct block **blocks;
1745 const char *raw_name = ada_type_name (ada_check_typedef (type));
1746 char *name = (char *) alloca (strlen (raw_name) + 1);
1747 char *tail = strstr (raw_name, "___XP");
1748 struct type *shadow_type;
1749 long bits;
1750 int i, n;
1751
1752 type = desc_base_type (type);
1753
1754 memcpy (name, raw_name, tail - raw_name);
1755 name[tail - raw_name] = '\000';
1756
1757 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1758 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1759 {
1760 lim_warning (_("could not find bounds information on packed array"));
1761 return NULL;
1762 }
1763 shadow_type = SYMBOL_TYPE (sym);
1764
1765 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1766 {
1767 lim_warning (_("could not understand bounds information on packed array"));
1768 return NULL;
1769 }
1770
1771 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1772 {
1773 lim_warning
1774 (_("could not understand bit size information on packed array"));
1775 return NULL;
1776 }
1777
1778 return packed_array_type (shadow_type, &bits);
1779 }
1780
1781 /* Given that ARR is a struct value *indicating a GNAT packed array,
1782 returns a simple array that denotes that array. Its type is a
1783 standard GDB array type except that the BITSIZEs of the array
1784 target types are set to the number of bits in each element, and the
1785 type length is set appropriately. */
1786
1787 static struct value *
1788 decode_packed_array (struct value *arr)
1789 {
1790 struct type *type;
1791
1792 arr = ada_coerce_ref (arr);
1793 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1794 arr = ada_value_ind (arr);
1795
1796 type = decode_packed_array_type (value_type (arr));
1797 if (type == NULL)
1798 {
1799 error (_("can't unpack array"));
1800 return NULL;
1801 }
1802
1803 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1804 {
1805 /* This is a (right-justified) modular type representing a packed
1806 array with no wrapper. In order to interpret the value through
1807 the (left-justified) packed array type we just built, we must
1808 first left-justify it. */
1809 int bit_size, bit_pos;
1810 ULONGEST mod;
1811
1812 mod = ada_modulus (value_type (arr)) - 1;
1813 bit_size = 0;
1814 while (mod > 0)
1815 {
1816 bit_size += 1;
1817 mod >>= 1;
1818 }
1819 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1820 arr = ada_value_primitive_packed_val (arr, NULL,
1821 bit_pos / HOST_CHAR_BIT,
1822 bit_pos % HOST_CHAR_BIT,
1823 bit_size,
1824 type);
1825 }
1826
1827 return coerce_unspec_val_to_type (arr, type);
1828 }
1829
1830
1831 /* The value of the element of packed array ARR at the ARITY indices
1832 given in IND. ARR must be a simple array. */
1833
1834 static struct value *
1835 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1836 {
1837 int i;
1838 int bits, elt_off, bit_off;
1839 long elt_total_bit_offset;
1840 struct type *elt_type;
1841 struct value *v;
1842
1843 bits = 0;
1844 elt_total_bit_offset = 0;
1845 elt_type = ada_check_typedef (value_type (arr));
1846 for (i = 0; i < arity; i += 1)
1847 {
1848 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1849 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1850 error
1851 (_("attempt to do packed indexing of something other than a packed array"));
1852 else
1853 {
1854 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1855 LONGEST lowerbound, upperbound;
1856 LONGEST idx;
1857
1858 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1859 {
1860 lim_warning (_("don't know bounds of array"));
1861 lowerbound = upperbound = 0;
1862 }
1863
1864 idx = value_as_long (value_pos_atr (ind[i]));
1865 if (idx < lowerbound || idx > upperbound)
1866 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1867 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1868 elt_total_bit_offset += (idx - lowerbound) * bits;
1869 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1870 }
1871 }
1872 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1873 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1874
1875 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1876 bits, elt_type);
1877 return v;
1878 }
1879
1880 /* Non-zero iff TYPE includes negative integer values. */
1881
1882 static int
1883 has_negatives (struct type *type)
1884 {
1885 switch (TYPE_CODE (type))
1886 {
1887 default:
1888 return 0;
1889 case TYPE_CODE_INT:
1890 return !TYPE_UNSIGNED (type);
1891 case TYPE_CODE_RANGE:
1892 return TYPE_LOW_BOUND (type) < 0;
1893 }
1894 }
1895
1896
1897 /* Create a new value of type TYPE from the contents of OBJ starting
1898 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1899 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1900 assigning through the result will set the field fetched from.
1901 VALADDR is ignored unless OBJ is NULL, in which case,
1902 VALADDR+OFFSET must address the start of storage containing the
1903 packed value. The value returned in this case is never an lval.
1904 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1905
1906 struct value *
1907 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1908 long offset, int bit_offset, int bit_size,
1909 struct type *type)
1910 {
1911 struct value *v;
1912 int src, /* Index into the source area */
1913 targ, /* Index into the target area */
1914 srcBitsLeft, /* Number of source bits left to move */
1915 nsrc, ntarg, /* Number of source and target bytes */
1916 unusedLS, /* Number of bits in next significant
1917 byte of source that are unused */
1918 accumSize; /* Number of meaningful bits in accum */
1919 unsigned char *bytes; /* First byte containing data to unpack */
1920 unsigned char *unpacked;
1921 unsigned long accum; /* Staging area for bits being transferred */
1922 unsigned char sign;
1923 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1924 /* Transmit bytes from least to most significant; delta is the direction
1925 the indices move. */
1926 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1927
1928 type = ada_check_typedef (type);
1929
1930 if (obj == NULL)
1931 {
1932 v = allocate_value (type);
1933 bytes = (unsigned char *) (valaddr + offset);
1934 }
1935 else if (value_lazy (obj))
1936 {
1937 v = value_at (type,
1938 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
1939 bytes = (unsigned char *) alloca (len);
1940 read_memory (VALUE_ADDRESS (v), bytes, len);
1941 }
1942 else
1943 {
1944 v = allocate_value (type);
1945 bytes = (unsigned char *) value_contents (obj) + offset;
1946 }
1947
1948 if (obj != NULL)
1949 {
1950 VALUE_LVAL (v) = VALUE_LVAL (obj);
1951 if (VALUE_LVAL (obj) == lval_internalvar)
1952 VALUE_LVAL (v) = lval_internalvar_component;
1953 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
1954 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1955 set_value_bitsize (v, bit_size);
1956 if (value_bitpos (v) >= HOST_CHAR_BIT)
1957 {
1958 VALUE_ADDRESS (v) += 1;
1959 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1960 }
1961 }
1962 else
1963 set_value_bitsize (v, bit_size);
1964 unpacked = (unsigned char *) value_contents (v);
1965
1966 srcBitsLeft = bit_size;
1967 nsrc = len;
1968 ntarg = TYPE_LENGTH (type);
1969 sign = 0;
1970 if (bit_size == 0)
1971 {
1972 memset (unpacked, 0, TYPE_LENGTH (type));
1973 return v;
1974 }
1975 else if (BITS_BIG_ENDIAN)
1976 {
1977 src = len - 1;
1978 if (has_negatives (type)
1979 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
1980 sign = ~0;
1981
1982 unusedLS =
1983 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
1984 % HOST_CHAR_BIT;
1985
1986 switch (TYPE_CODE (type))
1987 {
1988 case TYPE_CODE_ARRAY:
1989 case TYPE_CODE_UNION:
1990 case TYPE_CODE_STRUCT:
1991 /* Non-scalar values must be aligned at a byte boundary... */
1992 accumSize =
1993 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
1994 /* ... And are placed at the beginning (most-significant) bytes
1995 of the target. */
1996 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
1997 break;
1998 default:
1999 accumSize = 0;
2000 targ = TYPE_LENGTH (type) - 1;
2001 break;
2002 }
2003 }
2004 else
2005 {
2006 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2007
2008 src = targ = 0;
2009 unusedLS = bit_offset;
2010 accumSize = 0;
2011
2012 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2013 sign = ~0;
2014 }
2015
2016 accum = 0;
2017 while (nsrc > 0)
2018 {
2019 /* Mask for removing bits of the next source byte that are not
2020 part of the value. */
2021 unsigned int unusedMSMask =
2022 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2023 1;
2024 /* Sign-extend bits for this byte. */
2025 unsigned int signMask = sign & ~unusedMSMask;
2026 accum |=
2027 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2028 accumSize += HOST_CHAR_BIT - unusedLS;
2029 if (accumSize >= HOST_CHAR_BIT)
2030 {
2031 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2032 accumSize -= HOST_CHAR_BIT;
2033 accum >>= HOST_CHAR_BIT;
2034 ntarg -= 1;
2035 targ += delta;
2036 }
2037 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2038 unusedLS = 0;
2039 nsrc -= 1;
2040 src += delta;
2041 }
2042 while (ntarg > 0)
2043 {
2044 accum |= sign << accumSize;
2045 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2046 accumSize -= HOST_CHAR_BIT;
2047 accum >>= HOST_CHAR_BIT;
2048 ntarg -= 1;
2049 targ += delta;
2050 }
2051
2052 return v;
2053 }
2054
2055 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2056 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2057 not overlap. */
2058 static void
2059 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2060 int src_offset, int n)
2061 {
2062 unsigned int accum, mask;
2063 int accum_bits, chunk_size;
2064
2065 target += targ_offset / HOST_CHAR_BIT;
2066 targ_offset %= HOST_CHAR_BIT;
2067 source += src_offset / HOST_CHAR_BIT;
2068 src_offset %= HOST_CHAR_BIT;
2069 if (BITS_BIG_ENDIAN)
2070 {
2071 accum = (unsigned char) *source;
2072 source += 1;
2073 accum_bits = HOST_CHAR_BIT - src_offset;
2074
2075 while (n > 0)
2076 {
2077 int unused_right;
2078 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2079 accum_bits += HOST_CHAR_BIT;
2080 source += 1;
2081 chunk_size = HOST_CHAR_BIT - targ_offset;
2082 if (chunk_size > n)
2083 chunk_size = n;
2084 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2085 mask = ((1 << chunk_size) - 1) << unused_right;
2086 *target =
2087 (*target & ~mask)
2088 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2089 n -= chunk_size;
2090 accum_bits -= chunk_size;
2091 target += 1;
2092 targ_offset = 0;
2093 }
2094 }
2095 else
2096 {
2097 accum = (unsigned char) *source >> src_offset;
2098 source += 1;
2099 accum_bits = HOST_CHAR_BIT - src_offset;
2100
2101 while (n > 0)
2102 {
2103 accum = accum + ((unsigned char) *source << accum_bits);
2104 accum_bits += HOST_CHAR_BIT;
2105 source += 1;
2106 chunk_size = HOST_CHAR_BIT - targ_offset;
2107 if (chunk_size > n)
2108 chunk_size = n;
2109 mask = ((1 << chunk_size) - 1) << targ_offset;
2110 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2111 n -= chunk_size;
2112 accum_bits -= chunk_size;
2113 accum >>= chunk_size;
2114 target += 1;
2115 targ_offset = 0;
2116 }
2117 }
2118 }
2119
2120 /* Store the contents of FROMVAL into the location of TOVAL.
2121 Return a new value with the location of TOVAL and contents of
2122 FROMVAL. Handles assignment into packed fields that have
2123 floating-point or non-scalar types. */
2124
2125 static struct value *
2126 ada_value_assign (struct value *toval, struct value *fromval)
2127 {
2128 struct type *type = value_type (toval);
2129 int bits = value_bitsize (toval);
2130
2131 toval = ada_coerce_ref (toval);
2132 fromval = ada_coerce_ref (fromval);
2133
2134 if (ada_is_direct_array_type (value_type (toval)))
2135 toval = ada_coerce_to_simple_array (toval);
2136 if (ada_is_direct_array_type (value_type (fromval)))
2137 fromval = ada_coerce_to_simple_array (fromval);
2138
2139 if (!deprecated_value_modifiable (toval))
2140 error (_("Left operand of assignment is not a modifiable lvalue."));
2141
2142 if (VALUE_LVAL (toval) == lval_memory
2143 && bits > 0
2144 && (TYPE_CODE (type) == TYPE_CODE_FLT
2145 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2146 {
2147 int len = (value_bitpos (toval)
2148 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2149 char *buffer = (char *) alloca (len);
2150 struct value *val;
2151 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2152
2153 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2154 fromval = value_cast (type, fromval);
2155
2156 read_memory (to_addr, buffer, len);
2157 if (BITS_BIG_ENDIAN)
2158 move_bits (buffer, value_bitpos (toval),
2159 value_contents (fromval),
2160 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2161 bits, bits);
2162 else
2163 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2164 0, bits);
2165 write_memory (to_addr, buffer, len);
2166 if (deprecated_memory_changed_hook)
2167 deprecated_memory_changed_hook (to_addr, len);
2168
2169 val = value_copy (toval);
2170 memcpy (value_contents_raw (val), value_contents (fromval),
2171 TYPE_LENGTH (type));
2172 deprecated_set_value_type (val, type);
2173
2174 return val;
2175 }
2176
2177 return value_assign (toval, fromval);
2178 }
2179
2180
2181 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2182 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2183 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2184 * COMPONENT, and not the inferior's memory. The current contents
2185 * of COMPONENT are ignored. */
2186 static void
2187 value_assign_to_component (struct value *container, struct value *component,
2188 struct value *val)
2189 {
2190 LONGEST offset_in_container =
2191 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2192 - VALUE_ADDRESS (container) - value_offset (container));
2193 int bit_offset_in_container =
2194 value_bitpos (component) - value_bitpos (container);
2195 int bits;
2196
2197 val = value_cast (value_type (component), val);
2198
2199 if (value_bitsize (component) == 0)
2200 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2201 else
2202 bits = value_bitsize (component);
2203
2204 if (BITS_BIG_ENDIAN)
2205 move_bits (value_contents_writeable (container) + offset_in_container,
2206 value_bitpos (container) + bit_offset_in_container,
2207 value_contents (val),
2208 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2209 bits);
2210 else
2211 move_bits (value_contents_writeable (container) + offset_in_container,
2212 value_bitpos (container) + bit_offset_in_container,
2213 value_contents (val), 0, bits);
2214 }
2215
2216 /* The value of the element of array ARR at the ARITY indices given in IND.
2217 ARR may be either a simple array, GNAT array descriptor, or pointer
2218 thereto. */
2219
2220 struct value *
2221 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2222 {
2223 int k;
2224 struct value *elt;
2225 struct type *elt_type;
2226
2227 elt = ada_coerce_to_simple_array (arr);
2228
2229 elt_type = ada_check_typedef (value_type (elt));
2230 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2231 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2232 return value_subscript_packed (elt, arity, ind);
2233
2234 for (k = 0; k < arity; k += 1)
2235 {
2236 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2237 error (_("too many subscripts (%d expected)"), k);
2238 elt = value_subscript (elt, value_pos_atr (ind[k]));
2239 }
2240 return elt;
2241 }
2242
2243 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2244 value of the element of *ARR at the ARITY indices given in
2245 IND. Does not read the entire array into memory. */
2246
2247 struct value *
2248 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2249 struct value **ind)
2250 {
2251 int k;
2252
2253 for (k = 0; k < arity; k += 1)
2254 {
2255 LONGEST lwb, upb;
2256 struct value *idx;
2257
2258 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2259 error (_("too many subscripts (%d expected)"), k);
2260 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2261 value_copy (arr));
2262 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2263 idx = value_pos_atr (ind[k]);
2264 if (lwb != 0)
2265 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2266 arr = value_add (arr, idx);
2267 type = TYPE_TARGET_TYPE (type);
2268 }
2269
2270 return value_ind (arr);
2271 }
2272
2273 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2274 actual type of ARRAY_PTR is ignored), returns a reference to
2275 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2276 bound of this array is LOW, as per Ada rules. */
2277 static struct value *
2278 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2279 int low, int high)
2280 {
2281 CORE_ADDR base = value_as_address (array_ptr)
2282 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2283 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2284 struct type *index_type =
2285 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2286 low, high);
2287 struct type *slice_type =
2288 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2289 return value_from_pointer (lookup_reference_type (slice_type), base);
2290 }
2291
2292
2293 static struct value *
2294 ada_value_slice (struct value *array, int low, int high)
2295 {
2296 struct type *type = value_type (array);
2297 struct type *index_type =
2298 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2299 struct type *slice_type =
2300 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2301 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2302 }
2303
2304 /* If type is a record type in the form of a standard GNAT array
2305 descriptor, returns the number of dimensions for type. If arr is a
2306 simple array, returns the number of "array of"s that prefix its
2307 type designation. Otherwise, returns 0. */
2308
2309 int
2310 ada_array_arity (struct type *type)
2311 {
2312 int arity;
2313
2314 if (type == NULL)
2315 return 0;
2316
2317 type = desc_base_type (type);
2318
2319 arity = 0;
2320 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2321 return desc_arity (desc_bounds_type (type));
2322 else
2323 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2324 {
2325 arity += 1;
2326 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2327 }
2328
2329 return arity;
2330 }
2331
2332 /* If TYPE is a record type in the form of a standard GNAT array
2333 descriptor or a simple array type, returns the element type for
2334 TYPE after indexing by NINDICES indices, or by all indices if
2335 NINDICES is -1. Otherwise, returns NULL. */
2336
2337 struct type *
2338 ada_array_element_type (struct type *type, int nindices)
2339 {
2340 type = desc_base_type (type);
2341
2342 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2343 {
2344 int k;
2345 struct type *p_array_type;
2346
2347 p_array_type = desc_data_type (type);
2348
2349 k = ada_array_arity (type);
2350 if (k == 0)
2351 return NULL;
2352
2353 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2354 if (nindices >= 0 && k > nindices)
2355 k = nindices;
2356 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2357 while (k > 0 && p_array_type != NULL)
2358 {
2359 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2360 k -= 1;
2361 }
2362 return p_array_type;
2363 }
2364 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2365 {
2366 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2367 {
2368 type = TYPE_TARGET_TYPE (type);
2369 nindices -= 1;
2370 }
2371 return type;
2372 }
2373
2374 return NULL;
2375 }
2376
2377 /* The type of nth index in arrays of given type (n numbering from 1).
2378 Does not examine memory. */
2379
2380 struct type *
2381 ada_index_type (struct type *type, int n)
2382 {
2383 struct type *result_type;
2384
2385 type = desc_base_type (type);
2386
2387 if (n > ada_array_arity (type))
2388 return NULL;
2389
2390 if (ada_is_simple_array_type (type))
2391 {
2392 int i;
2393
2394 for (i = 1; i < n; i += 1)
2395 type = TYPE_TARGET_TYPE (type);
2396 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2397 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2398 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2399 perhaps stabsread.c would make more sense. */
2400 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2401 result_type = builtin_type_int;
2402
2403 return result_type;
2404 }
2405 else
2406 return desc_index_type (desc_bounds_type (type), n);
2407 }
2408
2409 /* Given that arr is an array type, returns the lower bound of the
2410 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2411 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2412 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2413 bounds type. It works for other arrays with bounds supplied by
2414 run-time quantities other than discriminants. */
2415
2416 LONGEST
2417 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2418 struct type ** typep)
2419 {
2420 struct type *type;
2421 struct type *index_type_desc;
2422
2423 if (ada_is_packed_array_type (arr_type))
2424 arr_type = decode_packed_array_type (arr_type);
2425
2426 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2427 {
2428 if (typep != NULL)
2429 *typep = builtin_type_int;
2430 return (LONGEST) - which;
2431 }
2432
2433 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2434 type = TYPE_TARGET_TYPE (arr_type);
2435 else
2436 type = arr_type;
2437
2438 index_type_desc = ada_find_parallel_type (type, "___XA");
2439 if (index_type_desc == NULL)
2440 {
2441 struct type *range_type;
2442 struct type *index_type;
2443
2444 while (n > 1)
2445 {
2446 type = TYPE_TARGET_TYPE (type);
2447 n -= 1;
2448 }
2449
2450 range_type = TYPE_INDEX_TYPE (type);
2451 index_type = TYPE_TARGET_TYPE (range_type);
2452 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2453 index_type = builtin_type_long;
2454 if (typep != NULL)
2455 *typep = index_type;
2456 return
2457 (LONGEST) (which == 0
2458 ? TYPE_LOW_BOUND (range_type)
2459 : TYPE_HIGH_BOUND (range_type));
2460 }
2461 else
2462 {
2463 struct type *index_type =
2464 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2465 NULL, TYPE_OBJFILE (arr_type));
2466 if (typep != NULL)
2467 *typep = TYPE_TARGET_TYPE (index_type);
2468 return
2469 (LONGEST) (which == 0
2470 ? TYPE_LOW_BOUND (index_type)
2471 : TYPE_HIGH_BOUND (index_type));
2472 }
2473 }
2474
2475 /* Given that arr is an array value, returns the lower bound of the
2476 nth index (numbering from 1) if which is 0, and the upper bound if
2477 which is 1. This routine will also work for arrays with bounds
2478 supplied by run-time quantities other than discriminants. */
2479
2480 struct value *
2481 ada_array_bound (struct value *arr, int n, int which)
2482 {
2483 struct type *arr_type = value_type (arr);
2484
2485 if (ada_is_packed_array_type (arr_type))
2486 return ada_array_bound (decode_packed_array (arr), n, which);
2487 else if (ada_is_simple_array_type (arr_type))
2488 {
2489 struct type *type;
2490 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2491 return value_from_longest (type, v);
2492 }
2493 else
2494 return desc_one_bound (desc_bounds (arr), n, which);
2495 }
2496
2497 /* Given that arr is an array value, returns the length of the
2498 nth index. This routine will also work for arrays with bounds
2499 supplied by run-time quantities other than discriminants.
2500 Does not work for arrays indexed by enumeration types with representation
2501 clauses at the moment. */
2502
2503 struct value *
2504 ada_array_length (struct value *arr, int n)
2505 {
2506 struct type *arr_type = ada_check_typedef (value_type (arr));
2507
2508 if (ada_is_packed_array_type (arr_type))
2509 return ada_array_length (decode_packed_array (arr), n);
2510
2511 if (ada_is_simple_array_type (arr_type))
2512 {
2513 struct type *type;
2514 LONGEST v =
2515 ada_array_bound_from_type (arr_type, n, 1, &type) -
2516 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2517 return value_from_longest (type, v);
2518 }
2519 else
2520 return
2521 value_from_longest (builtin_type_int,
2522 value_as_long (desc_one_bound (desc_bounds (arr),
2523 n, 1))
2524 - value_as_long (desc_one_bound (desc_bounds (arr),
2525 n, 0)) + 1);
2526 }
2527
2528 /* An empty array whose type is that of ARR_TYPE (an array type),
2529 with bounds LOW to LOW-1. */
2530
2531 static struct value *
2532 empty_array (struct type *arr_type, int low)
2533 {
2534 struct type *index_type =
2535 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2536 low, low - 1);
2537 struct type *elt_type = ada_array_element_type (arr_type, 1);
2538 return allocate_value (create_array_type (NULL, elt_type, index_type));
2539 }
2540 \f
2541
2542 /* Name resolution */
2543
2544 /* The "decoded" name for the user-definable Ada operator corresponding
2545 to OP. */
2546
2547 static const char *
2548 ada_decoded_op_name (enum exp_opcode op)
2549 {
2550 int i;
2551
2552 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2553 {
2554 if (ada_opname_table[i].op == op)
2555 return ada_opname_table[i].decoded;
2556 }
2557 error (_("Could not find operator name for opcode"));
2558 }
2559
2560
2561 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2562 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2563 undefined namespace) and converts operators that are
2564 user-defined into appropriate function calls. If CONTEXT_TYPE is
2565 non-null, it provides a preferred result type [at the moment, only
2566 type void has any effect---causing procedures to be preferred over
2567 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2568 return type is preferred. May change (expand) *EXP. */
2569
2570 static void
2571 resolve (struct expression **expp, int void_context_p)
2572 {
2573 int pc;
2574 pc = 0;
2575 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2576 }
2577
2578 /* Resolve the operator of the subexpression beginning at
2579 position *POS of *EXPP. "Resolving" consists of replacing
2580 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2581 with their resolutions, replacing built-in operators with
2582 function calls to user-defined operators, where appropriate, and,
2583 when DEPROCEDURE_P is non-zero, converting function-valued variables
2584 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2585 are as in ada_resolve, above. */
2586
2587 static struct value *
2588 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2589 struct type *context_type)
2590 {
2591 int pc = *pos;
2592 int i;
2593 struct expression *exp; /* Convenience: == *expp. */
2594 enum exp_opcode op = (*expp)->elts[pc].opcode;
2595 struct value **argvec; /* Vector of operand types (alloca'ed). */
2596 int nargs; /* Number of operands. */
2597 int oplen;
2598
2599 argvec = NULL;
2600 nargs = 0;
2601 exp = *expp;
2602
2603 /* Pass one: resolve operands, saving their types and updating *pos,
2604 if needed. */
2605 switch (op)
2606 {
2607 case OP_FUNCALL:
2608 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2609 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2610 *pos += 7;
2611 else
2612 {
2613 *pos += 3;
2614 resolve_subexp (expp, pos, 0, NULL);
2615 }
2616 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2617 break;
2618
2619 case UNOP_ADDR:
2620 *pos += 1;
2621 resolve_subexp (expp, pos, 0, NULL);
2622 break;
2623
2624 case UNOP_QUAL:
2625 *pos += 3;
2626 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2627 break;
2628
2629 case OP_ATR_MODULUS:
2630 case OP_ATR_SIZE:
2631 case OP_ATR_TAG:
2632 case OP_ATR_FIRST:
2633 case OP_ATR_LAST:
2634 case OP_ATR_LENGTH:
2635 case OP_ATR_POS:
2636 case OP_ATR_VAL:
2637 case OP_ATR_MIN:
2638 case OP_ATR_MAX:
2639 case TERNOP_IN_RANGE:
2640 case BINOP_IN_BOUNDS:
2641 case UNOP_IN_RANGE:
2642 case OP_AGGREGATE:
2643 case OP_OTHERS:
2644 case OP_CHOICES:
2645 case OP_POSITIONAL:
2646 case OP_DISCRETE_RANGE:
2647 case OP_NAME:
2648 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2649 *pos += oplen;
2650 break;
2651
2652 case BINOP_ASSIGN:
2653 {
2654 struct value *arg1;
2655
2656 *pos += 1;
2657 arg1 = resolve_subexp (expp, pos, 0, NULL);
2658 if (arg1 == NULL)
2659 resolve_subexp (expp, pos, 1, NULL);
2660 else
2661 resolve_subexp (expp, pos, 1, value_type (arg1));
2662 break;
2663 }
2664
2665 case UNOP_CAST:
2666 *pos += 3;
2667 nargs = 1;
2668 break;
2669
2670 case BINOP_ADD:
2671 case BINOP_SUB:
2672 case BINOP_MUL:
2673 case BINOP_DIV:
2674 case BINOP_REM:
2675 case BINOP_MOD:
2676 case BINOP_EXP:
2677 case BINOP_CONCAT:
2678 case BINOP_LOGICAL_AND:
2679 case BINOP_LOGICAL_OR:
2680 case BINOP_BITWISE_AND:
2681 case BINOP_BITWISE_IOR:
2682 case BINOP_BITWISE_XOR:
2683
2684 case BINOP_EQUAL:
2685 case BINOP_NOTEQUAL:
2686 case BINOP_LESS:
2687 case BINOP_GTR:
2688 case BINOP_LEQ:
2689 case BINOP_GEQ:
2690
2691 case BINOP_REPEAT:
2692 case BINOP_SUBSCRIPT:
2693 case BINOP_COMMA:
2694
2695 case UNOP_NEG:
2696 case UNOP_PLUS:
2697 case UNOP_LOGICAL_NOT:
2698 case UNOP_ABS:
2699 case UNOP_IND:
2700 *pos += 1;
2701 nargs = 1;
2702 break;
2703
2704 case OP_LONG:
2705 case OP_DOUBLE:
2706 case OP_VAR_VALUE:
2707 *pos += 4;
2708 break;
2709
2710 case OP_TYPE:
2711 case OP_BOOL:
2712 case OP_LAST:
2713 case OP_INTERNALVAR:
2714 *pos += 3;
2715 break;
2716
2717 case UNOP_MEMVAL:
2718 *pos += 3;
2719 nargs = 1;
2720 break;
2721
2722 case OP_REGISTER:
2723 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2724 break;
2725
2726 case STRUCTOP_STRUCT:
2727 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2728 nargs = 1;
2729 break;
2730
2731 case TERNOP_SLICE:
2732 *pos += 1;
2733 nargs = 3;
2734 break;
2735
2736 case OP_STRING:
2737 break;
2738
2739 default:
2740 error (_("Unexpected operator during name resolution"));
2741 }
2742
2743 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2744 for (i = 0; i < nargs; i += 1)
2745 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2746 argvec[i] = NULL;
2747 exp = *expp;
2748
2749 /* Pass two: perform any resolution on principal operator. */
2750 switch (op)
2751 {
2752 default:
2753 break;
2754
2755 case OP_VAR_VALUE:
2756 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2757 {
2758 struct ada_symbol_info *candidates;
2759 int n_candidates;
2760
2761 n_candidates =
2762 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2763 (exp->elts[pc + 2].symbol),
2764 exp->elts[pc + 1].block, VAR_DOMAIN,
2765 &candidates);
2766
2767 if (n_candidates > 1)
2768 {
2769 /* Types tend to get re-introduced locally, so if there
2770 are any local symbols that are not types, first filter
2771 out all types. */
2772 int j;
2773 for (j = 0; j < n_candidates; j += 1)
2774 switch (SYMBOL_CLASS (candidates[j].sym))
2775 {
2776 case LOC_REGISTER:
2777 case LOC_ARG:
2778 case LOC_REF_ARG:
2779 case LOC_REGPARM:
2780 case LOC_REGPARM_ADDR:
2781 case LOC_LOCAL:
2782 case LOC_LOCAL_ARG:
2783 case LOC_BASEREG:
2784 case LOC_BASEREG_ARG:
2785 case LOC_COMPUTED:
2786 case LOC_COMPUTED_ARG:
2787 goto FoundNonType;
2788 default:
2789 break;
2790 }
2791 FoundNonType:
2792 if (j < n_candidates)
2793 {
2794 j = 0;
2795 while (j < n_candidates)
2796 {
2797 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2798 {
2799 candidates[j] = candidates[n_candidates - 1];
2800 n_candidates -= 1;
2801 }
2802 else
2803 j += 1;
2804 }
2805 }
2806 }
2807
2808 if (n_candidates == 0)
2809 error (_("No definition found for %s"),
2810 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2811 else if (n_candidates == 1)
2812 i = 0;
2813 else if (deprocedure_p
2814 && !is_nonfunction (candidates, n_candidates))
2815 {
2816 i = ada_resolve_function
2817 (candidates, n_candidates, NULL, 0,
2818 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2819 context_type);
2820 if (i < 0)
2821 error (_("Could not find a match for %s"),
2822 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2823 }
2824 else
2825 {
2826 printf_filtered (_("Multiple matches for %s\n"),
2827 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2828 user_select_syms (candidates, n_candidates, 1);
2829 i = 0;
2830 }
2831
2832 exp->elts[pc + 1].block = candidates[i].block;
2833 exp->elts[pc + 2].symbol = candidates[i].sym;
2834 if (innermost_block == NULL
2835 || contained_in (candidates[i].block, innermost_block))
2836 innermost_block = candidates[i].block;
2837 }
2838
2839 if (deprocedure_p
2840 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2841 == TYPE_CODE_FUNC))
2842 {
2843 replace_operator_with_call (expp, pc, 0, 0,
2844 exp->elts[pc + 2].symbol,
2845 exp->elts[pc + 1].block);
2846 exp = *expp;
2847 }
2848 break;
2849
2850 case OP_FUNCALL:
2851 {
2852 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2853 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2854 {
2855 struct ada_symbol_info *candidates;
2856 int n_candidates;
2857
2858 n_candidates =
2859 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2860 (exp->elts[pc + 5].symbol),
2861 exp->elts[pc + 4].block, VAR_DOMAIN,
2862 &candidates);
2863 if (n_candidates == 1)
2864 i = 0;
2865 else
2866 {
2867 i = ada_resolve_function
2868 (candidates, n_candidates,
2869 argvec, nargs,
2870 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2871 context_type);
2872 if (i < 0)
2873 error (_("Could not find a match for %s"),
2874 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2875 }
2876
2877 exp->elts[pc + 4].block = candidates[i].block;
2878 exp->elts[pc + 5].symbol = candidates[i].sym;
2879 if (innermost_block == NULL
2880 || contained_in (candidates[i].block, innermost_block))
2881 innermost_block = candidates[i].block;
2882 }
2883 }
2884 break;
2885 case BINOP_ADD:
2886 case BINOP_SUB:
2887 case BINOP_MUL:
2888 case BINOP_DIV:
2889 case BINOP_REM:
2890 case BINOP_MOD:
2891 case BINOP_CONCAT:
2892 case BINOP_BITWISE_AND:
2893 case BINOP_BITWISE_IOR:
2894 case BINOP_BITWISE_XOR:
2895 case BINOP_EQUAL:
2896 case BINOP_NOTEQUAL:
2897 case BINOP_LESS:
2898 case BINOP_GTR:
2899 case BINOP_LEQ:
2900 case BINOP_GEQ:
2901 case BINOP_EXP:
2902 case UNOP_NEG:
2903 case UNOP_PLUS:
2904 case UNOP_LOGICAL_NOT:
2905 case UNOP_ABS:
2906 if (possible_user_operator_p (op, argvec))
2907 {
2908 struct ada_symbol_info *candidates;
2909 int n_candidates;
2910
2911 n_candidates =
2912 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2913 (struct block *) NULL, VAR_DOMAIN,
2914 &candidates);
2915 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2916 ada_decoded_op_name (op), NULL);
2917 if (i < 0)
2918 break;
2919
2920 replace_operator_with_call (expp, pc, nargs, 1,
2921 candidates[i].sym, candidates[i].block);
2922 exp = *expp;
2923 }
2924 break;
2925
2926 case OP_TYPE:
2927 return NULL;
2928 }
2929
2930 *pos = pc;
2931 return evaluate_subexp_type (exp, pos);
2932 }
2933
2934 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2935 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2936 a non-pointer. A type of 'void' (which is never a valid expression type)
2937 by convention matches anything. */
2938 /* The term "match" here is rather loose. The match is heuristic and
2939 liberal. FIXME: TOO liberal, in fact. */
2940
2941 static int
2942 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2943 {
2944 ftype = ada_check_typedef (ftype);
2945 atype = ada_check_typedef (atype);
2946
2947 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2948 ftype = TYPE_TARGET_TYPE (ftype);
2949 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2950 atype = TYPE_TARGET_TYPE (atype);
2951
2952 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2953 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2954 return 1;
2955
2956 switch (TYPE_CODE (ftype))
2957 {
2958 default:
2959 return 1;
2960 case TYPE_CODE_PTR:
2961 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2962 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2963 TYPE_TARGET_TYPE (atype), 0);
2964 else
2965 return (may_deref
2966 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2967 case TYPE_CODE_INT:
2968 case TYPE_CODE_ENUM:
2969 case TYPE_CODE_RANGE:
2970 switch (TYPE_CODE (atype))
2971 {
2972 case TYPE_CODE_INT:
2973 case TYPE_CODE_ENUM:
2974 case TYPE_CODE_RANGE:
2975 return 1;
2976 default:
2977 return 0;
2978 }
2979
2980 case TYPE_CODE_ARRAY:
2981 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2982 || ada_is_array_descriptor_type (atype));
2983
2984 case TYPE_CODE_STRUCT:
2985 if (ada_is_array_descriptor_type (ftype))
2986 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2987 || ada_is_array_descriptor_type (atype));
2988 else
2989 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
2990 && !ada_is_array_descriptor_type (atype));
2991
2992 case TYPE_CODE_UNION:
2993 case TYPE_CODE_FLT:
2994 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
2995 }
2996 }
2997
2998 /* Return non-zero if the formals of FUNC "sufficiently match" the
2999 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3000 may also be an enumeral, in which case it is treated as a 0-
3001 argument function. */
3002
3003 static int
3004 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3005 {
3006 int i;
3007 struct type *func_type = SYMBOL_TYPE (func);
3008
3009 if (SYMBOL_CLASS (func) == LOC_CONST
3010 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3011 return (n_actuals == 0);
3012 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3013 return 0;
3014
3015 if (TYPE_NFIELDS (func_type) != n_actuals)
3016 return 0;
3017
3018 for (i = 0; i < n_actuals; i += 1)
3019 {
3020 if (actuals[i] == NULL)
3021 return 0;
3022 else
3023 {
3024 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3025 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3026
3027 if (!ada_type_match (ftype, atype, 1))
3028 return 0;
3029 }
3030 }
3031 return 1;
3032 }
3033
3034 /* False iff function type FUNC_TYPE definitely does not produce a value
3035 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3036 FUNC_TYPE is not a valid function type with a non-null return type
3037 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3038
3039 static int
3040 return_match (struct type *func_type, struct type *context_type)
3041 {
3042 struct type *return_type;
3043
3044 if (func_type == NULL)
3045 return 1;
3046
3047 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3048 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3049 else
3050 return_type = base_type (func_type);
3051 if (return_type == NULL)
3052 return 1;
3053
3054 context_type = base_type (context_type);
3055
3056 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3057 return context_type == NULL || return_type == context_type;
3058 else if (context_type == NULL)
3059 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3060 else
3061 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3062 }
3063
3064
3065 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3066 function (if any) that matches the types of the NARGS arguments in
3067 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3068 that returns that type, then eliminate matches that don't. If
3069 CONTEXT_TYPE is void and there is at least one match that does not
3070 return void, eliminate all matches that do.
3071
3072 Asks the user if there is more than one match remaining. Returns -1
3073 if there is no such symbol or none is selected. NAME is used
3074 solely for messages. May re-arrange and modify SYMS in
3075 the process; the index returned is for the modified vector. */
3076
3077 static int
3078 ada_resolve_function (struct ada_symbol_info syms[],
3079 int nsyms, struct value **args, int nargs,
3080 const char *name, struct type *context_type)
3081 {
3082 int k;
3083 int m; /* Number of hits */
3084 struct type *fallback;
3085 struct type *return_type;
3086
3087 return_type = context_type;
3088 if (context_type == NULL)
3089 fallback = builtin_type_void;
3090 else
3091 fallback = NULL;
3092
3093 m = 0;
3094 while (1)
3095 {
3096 for (k = 0; k < nsyms; k += 1)
3097 {
3098 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3099
3100 if (ada_args_match (syms[k].sym, args, nargs)
3101 && return_match (type, return_type))
3102 {
3103 syms[m] = syms[k];
3104 m += 1;
3105 }
3106 }
3107 if (m > 0 || return_type == fallback)
3108 break;
3109 else
3110 return_type = fallback;
3111 }
3112
3113 if (m == 0)
3114 return -1;
3115 else if (m > 1)
3116 {
3117 printf_filtered (_("Multiple matches for %s\n"), name);
3118 user_select_syms (syms, m, 1);
3119 return 0;
3120 }
3121 return 0;
3122 }
3123
3124 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3125 in a listing of choices during disambiguation (see sort_choices, below).
3126 The idea is that overloadings of a subprogram name from the
3127 same package should sort in their source order. We settle for ordering
3128 such symbols by their trailing number (__N or $N). */
3129
3130 static int
3131 encoded_ordered_before (char *N0, char *N1)
3132 {
3133 if (N1 == NULL)
3134 return 0;
3135 else if (N0 == NULL)
3136 return 1;
3137 else
3138 {
3139 int k0, k1;
3140 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3141 ;
3142 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3143 ;
3144 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3145 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3146 {
3147 int n0, n1;
3148 n0 = k0;
3149 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3150 n0 -= 1;
3151 n1 = k1;
3152 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3153 n1 -= 1;
3154 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3155 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3156 }
3157 return (strcmp (N0, N1) < 0);
3158 }
3159 }
3160
3161 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3162 encoded names. */
3163
3164 static void
3165 sort_choices (struct ada_symbol_info syms[], int nsyms)
3166 {
3167 int i;
3168 for (i = 1; i < nsyms; i += 1)
3169 {
3170 struct ada_symbol_info sym = syms[i];
3171 int j;
3172
3173 for (j = i - 1; j >= 0; j -= 1)
3174 {
3175 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3176 SYMBOL_LINKAGE_NAME (sym.sym)))
3177 break;
3178 syms[j + 1] = syms[j];
3179 }
3180 syms[j + 1] = sym;
3181 }
3182 }
3183
3184 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3185 by asking the user (if necessary), returning the number selected,
3186 and setting the first elements of SYMS items. Error if no symbols
3187 selected. */
3188
3189 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3190 to be re-integrated one of these days. */
3191
3192 int
3193 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3194 {
3195 int i;
3196 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3197 int n_chosen;
3198 int first_choice = (max_results == 1) ? 1 : 2;
3199
3200 if (max_results < 1)
3201 error (_("Request to select 0 symbols!"));
3202 if (nsyms <= 1)
3203 return nsyms;
3204
3205 printf_unfiltered (_("[0] cancel\n"));
3206 if (max_results > 1)
3207 printf_unfiltered (_("[1] all\n"));
3208
3209 sort_choices (syms, nsyms);
3210
3211 for (i = 0; i < nsyms; i += 1)
3212 {
3213 if (syms[i].sym == NULL)
3214 continue;
3215
3216 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3217 {
3218 struct symtab_and_line sal =
3219 find_function_start_sal (syms[i].sym, 1);
3220 if (sal.symtab == NULL)
3221 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3222 i + first_choice,
3223 SYMBOL_PRINT_NAME (syms[i].sym),
3224 sal.line);
3225 else
3226 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3227 SYMBOL_PRINT_NAME (syms[i].sym),
3228 sal.symtab->filename, sal.line);
3229 continue;
3230 }
3231 else
3232 {
3233 int is_enumeral =
3234 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3235 && SYMBOL_TYPE (syms[i].sym) != NULL
3236 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3237 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3238
3239 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3240 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3241 i + first_choice,
3242 SYMBOL_PRINT_NAME (syms[i].sym),
3243 symtab->filename, SYMBOL_LINE (syms[i].sym));
3244 else if (is_enumeral
3245 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3246 {
3247 printf_unfiltered (("[%d] "), i + first_choice);
3248 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3249 gdb_stdout, -1, 0);
3250 printf_unfiltered (_("'(%s) (enumeral)\n"),
3251 SYMBOL_PRINT_NAME (syms[i].sym));
3252 }
3253 else if (symtab != NULL)
3254 printf_unfiltered (is_enumeral
3255 ? _("[%d] %s in %s (enumeral)\n")
3256 : _("[%d] %s at %s:?\n"),
3257 i + first_choice,
3258 SYMBOL_PRINT_NAME (syms[i].sym),
3259 symtab->filename);
3260 else
3261 printf_unfiltered (is_enumeral
3262 ? _("[%d] %s (enumeral)\n")
3263 : _("[%d] %s at ?\n"),
3264 i + first_choice,
3265 SYMBOL_PRINT_NAME (syms[i].sym));
3266 }
3267 }
3268
3269 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3270 "overload-choice");
3271
3272 for (i = 0; i < n_chosen; i += 1)
3273 syms[i] = syms[chosen[i]];
3274
3275 return n_chosen;
3276 }
3277
3278 /* Read and validate a set of numeric choices from the user in the
3279 range 0 .. N_CHOICES-1. Place the results in increasing
3280 order in CHOICES[0 .. N-1], and return N.
3281
3282 The user types choices as a sequence of numbers on one line
3283 separated by blanks, encoding them as follows:
3284
3285 + A choice of 0 means to cancel the selection, throwing an error.
3286 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3287 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3288
3289 The user is not allowed to choose more than MAX_RESULTS values.
3290
3291 ANNOTATION_SUFFIX, if present, is used to annotate the input
3292 prompts (for use with the -f switch). */
3293
3294 int
3295 get_selections (int *choices, int n_choices, int max_results,
3296 int is_all_choice, char *annotation_suffix)
3297 {
3298 char *args;
3299 const char *prompt;
3300 int n_chosen;
3301 int first_choice = is_all_choice ? 2 : 1;
3302
3303 prompt = getenv ("PS2");
3304 if (prompt == NULL)
3305 prompt = ">";
3306
3307 printf_unfiltered (("%s "), prompt);
3308 gdb_flush (gdb_stdout);
3309
3310 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3311
3312 if (args == NULL)
3313 error_no_arg (_("one or more choice numbers"));
3314
3315 n_chosen = 0;
3316
3317 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3318 order, as given in args. Choices are validated. */
3319 while (1)
3320 {
3321 char *args2;
3322 int choice, j;
3323
3324 while (isspace (*args))
3325 args += 1;
3326 if (*args == '\0' && n_chosen == 0)
3327 error_no_arg (_("one or more choice numbers"));
3328 else if (*args == '\0')
3329 break;
3330
3331 choice = strtol (args, &args2, 10);
3332 if (args == args2 || choice < 0
3333 || choice > n_choices + first_choice - 1)
3334 error (_("Argument must be choice number"));
3335 args = args2;
3336
3337 if (choice == 0)
3338 error (_("cancelled"));
3339
3340 if (choice < first_choice)
3341 {
3342 n_chosen = n_choices;
3343 for (j = 0; j < n_choices; j += 1)
3344 choices[j] = j;
3345 break;
3346 }
3347 choice -= first_choice;
3348
3349 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3350 {
3351 }
3352
3353 if (j < 0 || choice != choices[j])
3354 {
3355 int k;
3356 for (k = n_chosen - 1; k > j; k -= 1)
3357 choices[k + 1] = choices[k];
3358 choices[j + 1] = choice;
3359 n_chosen += 1;
3360 }
3361 }
3362
3363 if (n_chosen > max_results)
3364 error (_("Select no more than %d of the above"), max_results);
3365
3366 return n_chosen;
3367 }
3368
3369 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3370 on the function identified by SYM and BLOCK, and taking NARGS
3371 arguments. Update *EXPP as needed to hold more space. */
3372
3373 static void
3374 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3375 int oplen, struct symbol *sym,
3376 struct block *block)
3377 {
3378 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3379 symbol, -oplen for operator being replaced). */
3380 struct expression *newexp = (struct expression *)
3381 xmalloc (sizeof (struct expression)
3382 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3383 struct expression *exp = *expp;
3384
3385 newexp->nelts = exp->nelts + 7 - oplen;
3386 newexp->language_defn = exp->language_defn;
3387 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3388 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3389 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3390
3391 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3392 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3393
3394 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3395 newexp->elts[pc + 4].block = block;
3396 newexp->elts[pc + 5].symbol = sym;
3397
3398 *expp = newexp;
3399 xfree (exp);
3400 }
3401
3402 /* Type-class predicates */
3403
3404 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3405 or FLOAT). */
3406
3407 static int
3408 numeric_type_p (struct type *type)
3409 {
3410 if (type == NULL)
3411 return 0;
3412 else
3413 {
3414 switch (TYPE_CODE (type))
3415 {
3416 case TYPE_CODE_INT:
3417 case TYPE_CODE_FLT:
3418 return 1;
3419 case TYPE_CODE_RANGE:
3420 return (type == TYPE_TARGET_TYPE (type)
3421 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3422 default:
3423 return 0;
3424 }
3425 }
3426 }
3427
3428 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3429
3430 static int
3431 integer_type_p (struct type *type)
3432 {
3433 if (type == NULL)
3434 return 0;
3435 else
3436 {
3437 switch (TYPE_CODE (type))
3438 {
3439 case TYPE_CODE_INT:
3440 return 1;
3441 case TYPE_CODE_RANGE:
3442 return (type == TYPE_TARGET_TYPE (type)
3443 || integer_type_p (TYPE_TARGET_TYPE (type)));
3444 default:
3445 return 0;
3446 }
3447 }
3448 }
3449
3450 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3451
3452 static int
3453 scalar_type_p (struct type *type)
3454 {
3455 if (type == NULL)
3456 return 0;
3457 else
3458 {
3459 switch (TYPE_CODE (type))
3460 {
3461 case TYPE_CODE_INT:
3462 case TYPE_CODE_RANGE:
3463 case TYPE_CODE_ENUM:
3464 case TYPE_CODE_FLT:
3465 return 1;
3466 default:
3467 return 0;
3468 }
3469 }
3470 }
3471
3472 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3473
3474 static int
3475 discrete_type_p (struct type *type)
3476 {
3477 if (type == NULL)
3478 return 0;
3479 else
3480 {
3481 switch (TYPE_CODE (type))
3482 {
3483 case TYPE_CODE_INT:
3484 case TYPE_CODE_RANGE:
3485 case TYPE_CODE_ENUM:
3486 return 1;
3487 default:
3488 return 0;
3489 }
3490 }
3491 }
3492
3493 /* Returns non-zero if OP with operands in the vector ARGS could be
3494 a user-defined function. Errs on the side of pre-defined operators
3495 (i.e., result 0). */
3496
3497 static int
3498 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3499 {
3500 struct type *type0 =
3501 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3502 struct type *type1 =
3503 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3504
3505 if (type0 == NULL)
3506 return 0;
3507
3508 switch (op)
3509 {
3510 default:
3511 return 0;
3512
3513 case BINOP_ADD:
3514 case BINOP_SUB:
3515 case BINOP_MUL:
3516 case BINOP_DIV:
3517 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3518
3519 case BINOP_REM:
3520 case BINOP_MOD:
3521 case BINOP_BITWISE_AND:
3522 case BINOP_BITWISE_IOR:
3523 case BINOP_BITWISE_XOR:
3524 return (!(integer_type_p (type0) && integer_type_p (type1)));
3525
3526 case BINOP_EQUAL:
3527 case BINOP_NOTEQUAL:
3528 case BINOP_LESS:
3529 case BINOP_GTR:
3530 case BINOP_LEQ:
3531 case BINOP_GEQ:
3532 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3533
3534 case BINOP_CONCAT:
3535 return
3536 ((TYPE_CODE (type0) != TYPE_CODE_ARRAY
3537 && (TYPE_CODE (type0) != TYPE_CODE_PTR
3538 || TYPE_CODE (TYPE_TARGET_TYPE (type0)) != TYPE_CODE_ARRAY))
3539 || (TYPE_CODE (type1) != TYPE_CODE_ARRAY
3540 && (TYPE_CODE (type1) != TYPE_CODE_PTR
3541 || (TYPE_CODE (TYPE_TARGET_TYPE (type1))
3542 != TYPE_CODE_ARRAY))));
3543
3544 case BINOP_EXP:
3545 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3546
3547 case UNOP_NEG:
3548 case UNOP_PLUS:
3549 case UNOP_LOGICAL_NOT:
3550 case UNOP_ABS:
3551 return (!numeric_type_p (type0));
3552
3553 }
3554 }
3555 \f
3556 /* Renaming */
3557
3558 /* NOTE: In the following, we assume that a renaming type's name may
3559 have an ___XD suffix. It would be nice if this went away at some
3560 point. */
3561
3562 /* If TYPE encodes a renaming, returns the renaming suffix, which
3563 is XR for an object renaming, XRP for a procedure renaming, XRE for
3564 an exception renaming, and XRS for a subprogram renaming. Returns
3565 NULL if NAME encodes none of these. */
3566
3567 const char *
3568 ada_renaming_type (struct type *type)
3569 {
3570 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
3571 {
3572 const char *name = type_name_no_tag (type);
3573 const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
3574 if (suffix == NULL
3575 || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
3576 return NULL;
3577 else
3578 return suffix + 3;
3579 }
3580 else
3581 return NULL;
3582 }
3583
3584 /* Return non-zero iff SYM encodes an object renaming. */
3585
3586 int
3587 ada_is_object_renaming (struct symbol *sym)
3588 {
3589 const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
3590 return renaming_type != NULL
3591 && (renaming_type[2] == '\0' || renaming_type[2] == '_');
3592 }
3593
3594 /* Assuming that SYM encodes a non-object renaming, returns the original
3595 name of the renamed entity. The name is good until the end of
3596 parsing. */
3597
3598 char *
3599 ada_simple_renamed_entity (struct symbol *sym)
3600 {
3601 struct type *type;
3602 const char *raw_name;
3603 int len;
3604 char *result;
3605
3606 type = SYMBOL_TYPE (sym);
3607 if (type == NULL || TYPE_NFIELDS (type) < 1)
3608 error (_("Improperly encoded renaming."));
3609
3610 raw_name = TYPE_FIELD_NAME (type, 0);
3611 len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
3612 if (len <= 0)
3613 error (_("Improperly encoded renaming."));
3614
3615 result = xmalloc (len + 1);
3616 strncpy (result, raw_name, len);
3617 result[len] = '\000';
3618 return result;
3619 }
3620
3621 \f
3622
3623 /* Evaluation: Function Calls */
3624
3625 /* Return an lvalue containing the value VAL. This is the identity on
3626 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3627 on the stack, using and updating *SP as the stack pointer, and
3628 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3629
3630 static struct value *
3631 ensure_lval (struct value *val, CORE_ADDR *sp)
3632 {
3633 if (! VALUE_LVAL (val))
3634 {
3635 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3636
3637 /* The following is taken from the structure-return code in
3638 call_function_by_hand. FIXME: Therefore, some refactoring seems
3639 indicated. */
3640 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3641 {
3642 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3643 reserving sufficient space. */
3644 *sp -= len;
3645 if (gdbarch_frame_align_p (current_gdbarch))
3646 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3647 VALUE_ADDRESS (val) = *sp;
3648 }
3649 else
3650 {
3651 /* Stack grows upward. Align the frame, allocate space, and
3652 then again, re-align the frame. */
3653 if (gdbarch_frame_align_p (current_gdbarch))
3654 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3655 VALUE_ADDRESS (val) = *sp;
3656 *sp += len;
3657 if (gdbarch_frame_align_p (current_gdbarch))
3658 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3659 }
3660
3661 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3662 }
3663
3664 return val;
3665 }
3666
3667 /* Return the value ACTUAL, converted to be an appropriate value for a
3668 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3669 allocating any necessary descriptors (fat pointers), or copies of
3670 values not residing in memory, updating it as needed. */
3671
3672 static struct value *
3673 convert_actual (struct value *actual, struct type *formal_type0,
3674 CORE_ADDR *sp)
3675 {
3676 struct type *actual_type = ada_check_typedef (value_type (actual));
3677 struct type *formal_type = ada_check_typedef (formal_type0);
3678 struct type *formal_target =
3679 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3680 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3681 struct type *actual_target =
3682 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3683 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3684
3685 if (ada_is_array_descriptor_type (formal_target)
3686 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3687 return make_array_descriptor (formal_type, actual, sp);
3688 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3689 {
3690 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3691 && ada_is_array_descriptor_type (actual_target))
3692 return desc_data (actual);
3693 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3694 {
3695 if (VALUE_LVAL (actual) != lval_memory)
3696 {
3697 struct value *val;
3698 actual_type = ada_check_typedef (value_type (actual));
3699 val = allocate_value (actual_type);
3700 memcpy ((char *) value_contents_raw (val),
3701 (char *) value_contents (actual),
3702 TYPE_LENGTH (actual_type));
3703 actual = ensure_lval (val, sp);
3704 }
3705 return value_addr (actual);
3706 }
3707 }
3708 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3709 return ada_value_ind (actual);
3710
3711 return actual;
3712 }
3713
3714
3715 /* Push a descriptor of type TYPE for array value ARR on the stack at
3716 *SP, updating *SP to reflect the new descriptor. Return either
3717 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3718 to-descriptor type rather than a descriptor type), a struct value *
3719 representing a pointer to this descriptor. */
3720
3721 static struct value *
3722 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3723 {
3724 struct type *bounds_type = desc_bounds_type (type);
3725 struct type *desc_type = desc_base_type (type);
3726 struct value *descriptor = allocate_value (desc_type);
3727 struct value *bounds = allocate_value (bounds_type);
3728 int i;
3729
3730 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3731 {
3732 modify_general_field (value_contents_writeable (bounds),
3733 value_as_long (ada_array_bound (arr, i, 0)),
3734 desc_bound_bitpos (bounds_type, i, 0),
3735 desc_bound_bitsize (bounds_type, i, 0));
3736 modify_general_field (value_contents_writeable (bounds),
3737 value_as_long (ada_array_bound (arr, i, 1)),
3738 desc_bound_bitpos (bounds_type, i, 1),
3739 desc_bound_bitsize (bounds_type, i, 1));
3740 }
3741
3742 bounds = ensure_lval (bounds, sp);
3743
3744 modify_general_field (value_contents_writeable (descriptor),
3745 VALUE_ADDRESS (ensure_lval (arr, sp)),
3746 fat_pntr_data_bitpos (desc_type),
3747 fat_pntr_data_bitsize (desc_type));
3748
3749 modify_general_field (value_contents_writeable (descriptor),
3750 VALUE_ADDRESS (bounds),
3751 fat_pntr_bounds_bitpos (desc_type),
3752 fat_pntr_bounds_bitsize (desc_type));
3753
3754 descriptor = ensure_lval (descriptor, sp);
3755
3756 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3757 return value_addr (descriptor);
3758 else
3759 return descriptor;
3760 }
3761
3762
3763 /* Assuming a dummy frame has been established on the target, perform any
3764 conversions needed for calling function FUNC on the NARGS actual
3765 parameters in ARGS, other than standard C conversions. Does
3766 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3767 does not match the number of arguments expected. Use *SP as a
3768 stack pointer for additional data that must be pushed, updating its
3769 value as needed. */
3770
3771 void
3772 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3773 CORE_ADDR *sp)
3774 {
3775 int i;
3776
3777 if (TYPE_NFIELDS (value_type (func)) == 0
3778 || nargs != TYPE_NFIELDS (value_type (func)))
3779 return;
3780
3781 for (i = 0; i < nargs; i += 1)
3782 args[i] =
3783 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3784 }
3785 \f
3786 /* Dummy definitions for an experimental caching module that is not
3787 * used in the public sources. */
3788
3789 static int
3790 lookup_cached_symbol (const char *name, domain_enum namespace,
3791 struct symbol **sym, struct block **block,
3792 struct symtab **symtab)
3793 {
3794 return 0;
3795 }
3796
3797 static void
3798 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3799 struct block *block, struct symtab *symtab)
3800 {
3801 }
3802 \f
3803 /* Symbol Lookup */
3804
3805 /* Return the result of a standard (literal, C-like) lookup of NAME in
3806 given DOMAIN, visible from lexical block BLOCK. */
3807
3808 static struct symbol *
3809 standard_lookup (const char *name, const struct block *block,
3810 domain_enum domain)
3811 {
3812 struct symbol *sym;
3813 struct symtab *symtab;
3814
3815 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3816 return sym;
3817 sym =
3818 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3819 cache_symbol (name, domain, sym, block_found, symtab);
3820 return sym;
3821 }
3822
3823
3824 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3825 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3826 since they contend in overloading in the same way. */
3827 static int
3828 is_nonfunction (struct ada_symbol_info syms[], int n)
3829 {
3830 int i;
3831
3832 for (i = 0; i < n; i += 1)
3833 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3834 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3835 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3836 return 1;
3837
3838 return 0;
3839 }
3840
3841 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3842 struct types. Otherwise, they may not. */
3843
3844 static int
3845 equiv_types (struct type *type0, struct type *type1)
3846 {
3847 if (type0 == type1)
3848 return 1;
3849 if (type0 == NULL || type1 == NULL
3850 || TYPE_CODE (type0) != TYPE_CODE (type1))
3851 return 0;
3852 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3853 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3854 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3855 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3856 return 1;
3857
3858 return 0;
3859 }
3860
3861 /* True iff SYM0 represents the same entity as SYM1, or one that is
3862 no more defined than that of SYM1. */
3863
3864 static int
3865 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3866 {
3867 if (sym0 == sym1)
3868 return 1;
3869 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3870 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3871 return 0;
3872
3873 switch (SYMBOL_CLASS (sym0))
3874 {
3875 case LOC_UNDEF:
3876 return 1;
3877 case LOC_TYPEDEF:
3878 {
3879 struct type *type0 = SYMBOL_TYPE (sym0);
3880 struct type *type1 = SYMBOL_TYPE (sym1);
3881 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3882 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3883 int len0 = strlen (name0);
3884 return
3885 TYPE_CODE (type0) == TYPE_CODE (type1)
3886 && (equiv_types (type0, type1)
3887 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3888 && strncmp (name1 + len0, "___XV", 5) == 0));
3889 }
3890 case LOC_CONST:
3891 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3892 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3893 default:
3894 return 0;
3895 }
3896 }
3897
3898 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3899 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3900
3901 static void
3902 add_defn_to_vec (struct obstack *obstackp,
3903 struct symbol *sym,
3904 struct block *block, struct symtab *symtab)
3905 {
3906 int i;
3907 size_t tmp;
3908 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3909
3910 /* Do not try to complete stub types, as the debugger is probably
3911 already scanning all symbols matching a certain name at the
3912 time when this function is called. Trying to replace the stub
3913 type by its associated full type will cause us to restart a scan
3914 which may lead to an infinite recursion. Instead, the client
3915 collecting the matching symbols will end up collecting several
3916 matches, with at least one of them complete. It can then filter
3917 out the stub ones if needed. */
3918
3919 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3920 {
3921 if (lesseq_defined_than (sym, prevDefns[i].sym))
3922 return;
3923 else if (lesseq_defined_than (prevDefns[i].sym, sym))
3924 {
3925 prevDefns[i].sym = sym;
3926 prevDefns[i].block = block;
3927 prevDefns[i].symtab = symtab;
3928 return;
3929 }
3930 }
3931
3932 {
3933 struct ada_symbol_info info;
3934
3935 info.sym = sym;
3936 info.block = block;
3937 info.symtab = symtab;
3938 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
3939 }
3940 }
3941
3942 /* Number of ada_symbol_info structures currently collected in
3943 current vector in *OBSTACKP. */
3944
3945 static int
3946 num_defns_collected (struct obstack *obstackp)
3947 {
3948 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
3949 }
3950
3951 /* Vector of ada_symbol_info structures currently collected in current
3952 vector in *OBSTACKP. If FINISH, close off the vector and return
3953 its final address. */
3954
3955 static struct ada_symbol_info *
3956 defns_collected (struct obstack *obstackp, int finish)
3957 {
3958 if (finish)
3959 return obstack_finish (obstackp);
3960 else
3961 return (struct ada_symbol_info *) obstack_base (obstackp);
3962 }
3963
3964 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
3965 Check the global symbols if GLOBAL, the static symbols if not.
3966 Do wild-card match if WILD. */
3967
3968 static struct partial_symbol *
3969 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
3970 int global, domain_enum namespace, int wild)
3971 {
3972 struct partial_symbol **start;
3973 int name_len = strlen (name);
3974 int length = (global ? pst->n_global_syms : pst->n_static_syms);
3975 int i;
3976
3977 if (length == 0)
3978 {
3979 return (NULL);
3980 }
3981
3982 start = (global ?
3983 pst->objfile->global_psymbols.list + pst->globals_offset :
3984 pst->objfile->static_psymbols.list + pst->statics_offset);
3985
3986 if (wild)
3987 {
3988 for (i = 0; i < length; i += 1)
3989 {
3990 struct partial_symbol *psym = start[i];
3991
3992 if (SYMBOL_DOMAIN (psym) == namespace
3993 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
3994 return psym;
3995 }
3996 return NULL;
3997 }
3998 else
3999 {
4000 if (global)
4001 {
4002 int U;
4003 i = 0;
4004 U = length - 1;
4005 while (U - i > 4)
4006 {
4007 int M = (U + i) >> 1;
4008 struct partial_symbol *psym = start[M];
4009 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4010 i = M + 1;
4011 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4012 U = M - 1;
4013 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4014 i = M + 1;
4015 else
4016 U = M;
4017 }
4018 }
4019 else
4020 i = 0;
4021
4022 while (i < length)
4023 {
4024 struct partial_symbol *psym = start[i];
4025
4026 if (SYMBOL_DOMAIN (psym) == namespace)
4027 {
4028 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4029
4030 if (cmp < 0)
4031 {
4032 if (global)
4033 break;
4034 }
4035 else if (cmp == 0
4036 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4037 + name_len))
4038 return psym;
4039 }
4040 i += 1;
4041 }
4042
4043 if (global)
4044 {
4045 int U;
4046 i = 0;
4047 U = length - 1;
4048 while (U - i > 4)
4049 {
4050 int M = (U + i) >> 1;
4051 struct partial_symbol *psym = start[M];
4052 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4053 i = M + 1;
4054 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4055 U = M - 1;
4056 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4057 i = M + 1;
4058 else
4059 U = M;
4060 }
4061 }
4062 else
4063 i = 0;
4064
4065 while (i < length)
4066 {
4067 struct partial_symbol *psym = start[i];
4068
4069 if (SYMBOL_DOMAIN (psym) == namespace)
4070 {
4071 int cmp;
4072
4073 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4074 if (cmp == 0)
4075 {
4076 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4077 if (cmp == 0)
4078 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4079 name_len);
4080 }
4081
4082 if (cmp < 0)
4083 {
4084 if (global)
4085 break;
4086 }
4087 else if (cmp == 0
4088 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4089 + name_len + 5))
4090 return psym;
4091 }
4092 i += 1;
4093 }
4094 }
4095 return NULL;
4096 }
4097
4098 /* Find a symbol table containing symbol SYM or NULL if none. */
4099
4100 static struct symtab *
4101 symtab_for_sym (struct symbol *sym)
4102 {
4103 struct symtab *s;
4104 struct objfile *objfile;
4105 struct block *b;
4106 struct symbol *tmp_sym;
4107 struct dict_iterator iter;
4108 int j;
4109
4110 ALL_PRIMARY_SYMTABS (objfile, s)
4111 {
4112 switch (SYMBOL_CLASS (sym))
4113 {
4114 case LOC_CONST:
4115 case LOC_STATIC:
4116 case LOC_TYPEDEF:
4117 case LOC_REGISTER:
4118 case LOC_LABEL:
4119 case LOC_BLOCK:
4120 case LOC_CONST_BYTES:
4121 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4122 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4123 return s;
4124 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4125 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4126 return s;
4127 break;
4128 default:
4129 break;
4130 }
4131 switch (SYMBOL_CLASS (sym))
4132 {
4133 case LOC_REGISTER:
4134 case LOC_ARG:
4135 case LOC_REF_ARG:
4136 case LOC_REGPARM:
4137 case LOC_REGPARM_ADDR:
4138 case LOC_LOCAL:
4139 case LOC_TYPEDEF:
4140 case LOC_LOCAL_ARG:
4141 case LOC_BASEREG:
4142 case LOC_BASEREG_ARG:
4143 case LOC_COMPUTED:
4144 case LOC_COMPUTED_ARG:
4145 for (j = FIRST_LOCAL_BLOCK;
4146 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4147 {
4148 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4149 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4150 return s;
4151 }
4152 break;
4153 default:
4154 break;
4155 }
4156 }
4157 return NULL;
4158 }
4159
4160 /* Return a minimal symbol matching NAME according to Ada decoding
4161 rules. Returns NULL if there is no such minimal symbol. Names
4162 prefixed with "standard__" are handled specially: "standard__" is
4163 first stripped off, and only static and global symbols are searched. */
4164
4165 struct minimal_symbol *
4166 ada_lookup_simple_minsym (const char *name)
4167 {
4168 struct objfile *objfile;
4169 struct minimal_symbol *msymbol;
4170 int wild_match;
4171
4172 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4173 {
4174 name += sizeof ("standard__") - 1;
4175 wild_match = 0;
4176 }
4177 else
4178 wild_match = (strstr (name, "__") == NULL);
4179
4180 ALL_MSYMBOLS (objfile, msymbol)
4181 {
4182 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4183 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4184 return msymbol;
4185 }
4186
4187 return NULL;
4188 }
4189
4190 /* For all subprograms that statically enclose the subprogram of the
4191 selected frame, add symbols matching identifier NAME in DOMAIN
4192 and their blocks to the list of data in OBSTACKP, as for
4193 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4194 wildcard prefix. */
4195
4196 static void
4197 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4198 const char *name, domain_enum namespace,
4199 int wild_match)
4200 {
4201 }
4202
4203 /* True if TYPE is definitely an artificial type supplied to a symbol
4204 for which no debugging information was given in the symbol file. */
4205
4206 static int
4207 is_nondebugging_type (struct type *type)
4208 {
4209 char *name = ada_type_name (type);
4210 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4211 }
4212
4213 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4214 duplicate other symbols in the list (The only case I know of where
4215 this happens is when object files containing stabs-in-ecoff are
4216 linked with files containing ordinary ecoff debugging symbols (or no
4217 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4218 Returns the number of items in the modified list. */
4219
4220 static int
4221 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4222 {
4223 int i, j;
4224
4225 i = 0;
4226 while (i < nsyms)
4227 {
4228 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4229 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4230 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4231 {
4232 for (j = 0; j < nsyms; j += 1)
4233 {
4234 if (i != j
4235 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4236 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4237 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4238 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4239 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4240 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4241 {
4242 int k;
4243 for (k = i + 1; k < nsyms; k += 1)
4244 syms[k - 1] = syms[k];
4245 nsyms -= 1;
4246 goto NextSymbol;
4247 }
4248 }
4249 }
4250 i += 1;
4251 NextSymbol:
4252 ;
4253 }
4254 return nsyms;
4255 }
4256
4257 /* Given a type that corresponds to a renaming entity, use the type name
4258 to extract the scope (package name or function name, fully qualified,
4259 and following the GNAT encoding convention) where this renaming has been
4260 defined. The string returned needs to be deallocated after use. */
4261
4262 static char *
4263 xget_renaming_scope (struct type *renaming_type)
4264 {
4265 /* The renaming types adhere to the following convention:
4266 <scope>__<rename>___<XR extension>.
4267 So, to extract the scope, we search for the "___XR" extension,
4268 and then backtrack until we find the first "__". */
4269
4270 const char *name = type_name_no_tag (renaming_type);
4271 char *suffix = strstr (name, "___XR");
4272 char *last;
4273 int scope_len;
4274 char *scope;
4275
4276 /* Now, backtrack a bit until we find the first "__". Start looking
4277 at suffix - 3, as the <rename> part is at least one character long. */
4278
4279 for (last = suffix - 3; last > name; last--)
4280 if (last[0] == '_' && last[1] == '_')
4281 break;
4282
4283 /* Make a copy of scope and return it. */
4284
4285 scope_len = last - name;
4286 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4287
4288 strncpy (scope, name, scope_len);
4289 scope[scope_len] = '\0';
4290
4291 return scope;
4292 }
4293
4294 /* Return nonzero if NAME corresponds to a package name. */
4295
4296 static int
4297 is_package_name (const char *name)
4298 {
4299 /* Here, We take advantage of the fact that no symbols are generated
4300 for packages, while symbols are generated for each function.
4301 So the condition for NAME represent a package becomes equivalent
4302 to NAME not existing in our list of symbols. There is only one
4303 small complication with library-level functions (see below). */
4304
4305 char *fun_name;
4306
4307 /* If it is a function that has not been defined at library level,
4308 then we should be able to look it up in the symbols. */
4309 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4310 return 0;
4311
4312 /* Library-level function names start with "_ada_". See if function
4313 "_ada_" followed by NAME can be found. */
4314
4315 /* Do a quick check that NAME does not contain "__", since library-level
4316 functions names cannot contain "__" in them. */
4317 if (strstr (name, "__") != NULL)
4318 return 0;
4319
4320 fun_name = xstrprintf ("_ada_%s", name);
4321
4322 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4323 }
4324
4325 /* Return nonzero if SYM corresponds to a renaming entity that is
4326 visible from FUNCTION_NAME. */
4327
4328 static int
4329 renaming_is_visible (const struct symbol *sym, char *function_name)
4330 {
4331 char *scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4332
4333 make_cleanup (xfree, scope);
4334
4335 /* If the rename has been defined in a package, then it is visible. */
4336 if (is_package_name (scope))
4337 return 1;
4338
4339 /* Check that the rename is in the current function scope by checking
4340 that its name starts with SCOPE. */
4341
4342 /* If the function name starts with "_ada_", it means that it is
4343 a library-level function. Strip this prefix before doing the
4344 comparison, as the encoding for the renaming does not contain
4345 this prefix. */
4346 if (strncmp (function_name, "_ada_", 5) == 0)
4347 function_name += 5;
4348
4349 return (strncmp (function_name, scope, strlen (scope)) == 0);
4350 }
4351
4352 /* Iterates over the SYMS list and remove any entry that corresponds to
4353 a renaming entity that is not visible from the function associated
4354 with CURRENT_BLOCK.
4355
4356 Rationale:
4357 GNAT emits a type following a specified encoding for each renaming
4358 entity. Unfortunately, STABS currently does not support the definition
4359 of types that are local to a given lexical block, so all renamings types
4360 are emitted at library level. As a consequence, if an application
4361 contains two renaming entities using the same name, and a user tries to
4362 print the value of one of these entities, the result of the ada symbol
4363 lookup will also contain the wrong renaming type.
4364
4365 This function partially covers for this limitation by attempting to
4366 remove from the SYMS list renaming symbols that should be visible
4367 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4368 method with the current information available. The implementation
4369 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4370
4371 - When the user tries to print a rename in a function while there
4372 is another rename entity defined in a package: Normally, the
4373 rename in the function has precedence over the rename in the
4374 package, so the latter should be removed from the list. This is
4375 currently not the case.
4376
4377 - This function will incorrectly remove valid renames if
4378 the CURRENT_BLOCK corresponds to a function which symbol name
4379 has been changed by an "Export" pragma. As a consequence,
4380 the user will be unable to print such rename entities. */
4381
4382 static int
4383 remove_out_of_scope_renamings (struct ada_symbol_info *syms,
4384 int nsyms, const struct block *current_block)
4385 {
4386 struct symbol *current_function;
4387 char *current_function_name;
4388 int i;
4389
4390 /* Extract the function name associated to CURRENT_BLOCK.
4391 Abort if unable to do so. */
4392
4393 if (current_block == NULL)
4394 return nsyms;
4395
4396 current_function = block_function (current_block);
4397 if (current_function == NULL)
4398 return nsyms;
4399
4400 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4401 if (current_function_name == NULL)
4402 return nsyms;
4403
4404 /* Check each of the symbols, and remove it from the list if it is
4405 a type corresponding to a renaming that is out of the scope of
4406 the current block. */
4407
4408 i = 0;
4409 while (i < nsyms)
4410 {
4411 if (ada_is_object_renaming (syms[i].sym)
4412 && !renaming_is_visible (syms[i].sym, current_function_name))
4413 {
4414 int j;
4415 for (j = i + 1; j < nsyms; j++)
4416 syms[j - 1] = syms[j];
4417 nsyms -= 1;
4418 }
4419 else
4420 i += 1;
4421 }
4422
4423 return nsyms;
4424 }
4425
4426 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4427 scope and in global scopes, returning the number of matches. Sets
4428 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4429 indicating the symbols found and the blocks and symbol tables (if
4430 any) in which they were found. This vector are transient---good only to
4431 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4432 symbol match within the nest of blocks whose innermost member is BLOCK0,
4433 is the one match returned (no other matches in that or
4434 enclosing blocks is returned). If there are any matches in or
4435 surrounding BLOCK0, then these alone are returned. Otherwise, the
4436 search extends to global and file-scope (static) symbol tables.
4437 Names prefixed with "standard__" are handled specially: "standard__"
4438 is first stripped off, and only static and global symbols are searched. */
4439
4440 int
4441 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4442 domain_enum namespace,
4443 struct ada_symbol_info **results)
4444 {
4445 struct symbol *sym;
4446 struct symtab *s;
4447 struct partial_symtab *ps;
4448 struct blockvector *bv;
4449 struct objfile *objfile;
4450 struct block *block;
4451 const char *name;
4452 struct minimal_symbol *msymbol;
4453 int wild_match;
4454 int cacheIfUnique;
4455 int block_depth;
4456 int ndefns;
4457
4458 obstack_free (&symbol_list_obstack, NULL);
4459 obstack_init (&symbol_list_obstack);
4460
4461 cacheIfUnique = 0;
4462
4463 /* Search specified block and its superiors. */
4464
4465 wild_match = (strstr (name0, "__") == NULL);
4466 name = name0;
4467 block = (struct block *) block0; /* FIXME: No cast ought to be
4468 needed, but adding const will
4469 have a cascade effect. */
4470 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4471 {
4472 wild_match = 0;
4473 block = NULL;
4474 name = name0 + sizeof ("standard__") - 1;
4475 }
4476
4477 block_depth = 0;
4478 while (block != NULL)
4479 {
4480 block_depth += 1;
4481 ada_add_block_symbols (&symbol_list_obstack, block, name,
4482 namespace, NULL, NULL, wild_match);
4483
4484 /* If we found a non-function match, assume that's the one. */
4485 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4486 num_defns_collected (&symbol_list_obstack)))
4487 goto done;
4488
4489 block = BLOCK_SUPERBLOCK (block);
4490 }
4491
4492 /* If no luck so far, try to find NAME as a local symbol in some lexically
4493 enclosing subprogram. */
4494 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4495 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4496 name, namespace, wild_match);
4497
4498 /* If we found ANY matches among non-global symbols, we're done. */
4499
4500 if (num_defns_collected (&symbol_list_obstack) > 0)
4501 goto done;
4502
4503 cacheIfUnique = 1;
4504 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4505 {
4506 if (sym != NULL)
4507 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4508 goto done;
4509 }
4510
4511 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4512 tables, and psymtab's. */
4513
4514 ALL_PRIMARY_SYMTABS (objfile, s)
4515 {
4516 QUIT;
4517 bv = BLOCKVECTOR (s);
4518 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4519 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4520 objfile, s, wild_match);
4521 }
4522
4523 if (namespace == VAR_DOMAIN)
4524 {
4525 ALL_MSYMBOLS (objfile, msymbol)
4526 {
4527 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4528 {
4529 switch (MSYMBOL_TYPE (msymbol))
4530 {
4531 case mst_solib_trampoline:
4532 break;
4533 default:
4534 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4535 if (s != NULL)
4536 {
4537 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4538 QUIT;
4539 bv = BLOCKVECTOR (s);
4540 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4541 ada_add_block_symbols (&symbol_list_obstack, block,
4542 SYMBOL_LINKAGE_NAME (msymbol),
4543 namespace, objfile, s, wild_match);
4544
4545 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4546 {
4547 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4548 ada_add_block_symbols (&symbol_list_obstack, block,
4549 SYMBOL_LINKAGE_NAME (msymbol),
4550 namespace, objfile, s,
4551 wild_match);
4552 }
4553 }
4554 }
4555 }
4556 }
4557 }
4558
4559 ALL_PSYMTABS (objfile, ps)
4560 {
4561 QUIT;
4562 if (!ps->readin
4563 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4564 {
4565 s = PSYMTAB_TO_SYMTAB (ps);
4566 if (!s->primary)
4567 continue;
4568 bv = BLOCKVECTOR (s);
4569 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4570 ada_add_block_symbols (&symbol_list_obstack, block, name,
4571 namespace, objfile, s, wild_match);
4572 }
4573 }
4574
4575 /* Now add symbols from all per-file blocks if we've gotten no hits
4576 (Not strictly correct, but perhaps better than an error).
4577 Do the symtabs first, then check the psymtabs. */
4578
4579 if (num_defns_collected (&symbol_list_obstack) == 0)
4580 {
4581
4582 ALL_PRIMARY_SYMTABS (objfile, s)
4583 {
4584 QUIT;
4585 bv = BLOCKVECTOR (s);
4586 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4587 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4588 objfile, s, wild_match);
4589 }
4590
4591 ALL_PSYMTABS (objfile, ps)
4592 {
4593 QUIT;
4594 if (!ps->readin
4595 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4596 {
4597 s = PSYMTAB_TO_SYMTAB (ps);
4598 bv = BLOCKVECTOR (s);
4599 if (!s->primary)
4600 continue;
4601 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4602 ada_add_block_symbols (&symbol_list_obstack, block, name,
4603 namespace, objfile, s, wild_match);
4604 }
4605 }
4606 }
4607
4608 done:
4609 ndefns = num_defns_collected (&symbol_list_obstack);
4610 *results = defns_collected (&symbol_list_obstack, 1);
4611
4612 ndefns = remove_extra_symbols (*results, ndefns);
4613
4614 if (ndefns == 0)
4615 cache_symbol (name0, namespace, NULL, NULL, NULL);
4616
4617 if (ndefns == 1 && cacheIfUnique)
4618 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4619 (*results)[0].symtab);
4620
4621 ndefns = remove_out_of_scope_renamings (*results, ndefns, block0);
4622
4623 return ndefns;
4624 }
4625
4626 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4627 scope and in global scopes, or NULL if none. NAME is folded and
4628 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4629 choosing the first symbol if there are multiple choices.
4630 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4631 table in which the symbol was found (in both cases, these
4632 assignments occur only if the pointers are non-null). */
4633
4634 struct symbol *
4635 ada_lookup_symbol (const char *name, const struct block *block0,
4636 domain_enum namespace, int *is_a_field_of_this,
4637 struct symtab **symtab)
4638 {
4639 struct ada_symbol_info *candidates;
4640 int n_candidates;
4641
4642 n_candidates = ada_lookup_symbol_list (ada_encode (ada_fold_name (name)),
4643 block0, namespace, &candidates);
4644
4645 if (n_candidates == 0)
4646 return NULL;
4647
4648 if (is_a_field_of_this != NULL)
4649 *is_a_field_of_this = 0;
4650
4651 if (symtab != NULL)
4652 {
4653 *symtab = candidates[0].symtab;
4654 if (*symtab == NULL && candidates[0].block != NULL)
4655 {
4656 struct objfile *objfile;
4657 struct symtab *s;
4658 struct block *b;
4659 struct blockvector *bv;
4660
4661 /* Search the list of symtabs for one which contains the
4662 address of the start of this block. */
4663 ALL_PRIMARY_SYMTABS (objfile, s)
4664 {
4665 bv = BLOCKVECTOR (s);
4666 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4667 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4668 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4669 {
4670 *symtab = s;
4671 return fixup_symbol_section (candidates[0].sym, objfile);
4672 }
4673 }
4674 /* FIXME: brobecker/2004-11-12: I think that we should never
4675 reach this point. I don't see a reason why we would not
4676 find a symtab for a given block, so I suggest raising an
4677 internal_error exception here. Otherwise, we end up
4678 returning a symbol but no symtab, which certain parts of
4679 the code that rely (indirectly) on this function do not
4680 expect, eventually causing a SEGV. */
4681 return fixup_symbol_section (candidates[0].sym, NULL);
4682 }
4683 }
4684 return candidates[0].sym;
4685 }
4686
4687 static struct symbol *
4688 ada_lookup_symbol_nonlocal (const char *name,
4689 const char *linkage_name,
4690 const struct block *block,
4691 const domain_enum domain, struct symtab **symtab)
4692 {
4693 if (linkage_name == NULL)
4694 linkage_name = name;
4695 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4696 NULL, symtab);
4697 }
4698
4699
4700 /* True iff STR is a possible encoded suffix of a normal Ada name
4701 that is to be ignored for matching purposes. Suffixes of parallel
4702 names (e.g., XVE) are not included here. Currently, the possible suffixes
4703 are given by either of the regular expression:
4704
4705 (__[0-9]+)?[.$][0-9]+ [nested subprogram suffix, on platforms such
4706 as GNU/Linux]
4707 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4708 _E[0-9]+[bs]$ [protected object entry suffixes]
4709 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4710 */
4711
4712 static int
4713 is_name_suffix (const char *str)
4714 {
4715 int k;
4716 const char *matching;
4717 const int len = strlen (str);
4718
4719 /* (__[0-9]+)?\.[0-9]+ */
4720 matching = str;
4721 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4722 {
4723 matching += 3;
4724 while (isdigit (matching[0]))
4725 matching += 1;
4726 if (matching[0] == '\0')
4727 return 1;
4728 }
4729
4730 if (matching[0] == '.' || matching[0] == '$')
4731 {
4732 matching += 1;
4733 while (isdigit (matching[0]))
4734 matching += 1;
4735 if (matching[0] == '\0')
4736 return 1;
4737 }
4738
4739 /* ___[0-9]+ */
4740 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4741 {
4742 matching = str + 3;
4743 while (isdigit (matching[0]))
4744 matching += 1;
4745 if (matching[0] == '\0')
4746 return 1;
4747 }
4748
4749 #if 0
4750 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4751 with a N at the end. Unfortunately, the compiler uses the same
4752 convention for other internal types it creates. So treating
4753 all entity names that end with an "N" as a name suffix causes
4754 some regressions. For instance, consider the case of an enumerated
4755 type. To support the 'Image attribute, it creates an array whose
4756 name ends with N.
4757 Having a single character like this as a suffix carrying some
4758 information is a bit risky. Perhaps we should change the encoding
4759 to be something like "_N" instead. In the meantime, do not do
4760 the following check. */
4761 /* Protected Object Subprograms */
4762 if (len == 1 && str [0] == 'N')
4763 return 1;
4764 #endif
4765
4766 /* _E[0-9]+[bs]$ */
4767 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4768 {
4769 matching = str + 3;
4770 while (isdigit (matching[0]))
4771 matching += 1;
4772 if ((matching[0] == 'b' || matching[0] == 's')
4773 && matching [1] == '\0')
4774 return 1;
4775 }
4776
4777 /* ??? We should not modify STR directly, as we are doing below. This
4778 is fine in this case, but may become problematic later if we find
4779 that this alternative did not work, and want to try matching
4780 another one from the begining of STR. Since we modified it, we
4781 won't be able to find the begining of the string anymore! */
4782 if (str[0] == 'X')
4783 {
4784 str += 1;
4785 while (str[0] != '_' && str[0] != '\0')
4786 {
4787 if (str[0] != 'n' && str[0] != 'b')
4788 return 0;
4789 str += 1;
4790 }
4791 }
4792 if (str[0] == '\000')
4793 return 1;
4794 if (str[0] == '_')
4795 {
4796 if (str[1] != '_' || str[2] == '\000')
4797 return 0;
4798 if (str[2] == '_')
4799 {
4800 if (strcmp (str + 3, "JM") == 0)
4801 return 1;
4802 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4803 the LJM suffix in favor of the JM one. But we will
4804 still accept LJM as a valid suffix for a reasonable
4805 amount of time, just to allow ourselves to debug programs
4806 compiled using an older version of GNAT. */
4807 if (strcmp (str + 3, "LJM") == 0)
4808 return 1;
4809 if (str[3] != 'X')
4810 return 0;
4811 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4812 || str[4] == 'U' || str[4] == 'P')
4813 return 1;
4814 if (str[4] == 'R' && str[5] != 'T')
4815 return 1;
4816 return 0;
4817 }
4818 if (!isdigit (str[2]))
4819 return 0;
4820 for (k = 3; str[k] != '\0'; k += 1)
4821 if (!isdigit (str[k]) && str[k] != '_')
4822 return 0;
4823 return 1;
4824 }
4825 if (str[0] == '$' && isdigit (str[1]))
4826 {
4827 for (k = 2; str[k] != '\0'; k += 1)
4828 if (!isdigit (str[k]) && str[k] != '_')
4829 return 0;
4830 return 1;
4831 }
4832 return 0;
4833 }
4834
4835 /* Return nonzero if the given string starts with a dot ('.')
4836 followed by zero or more digits.
4837
4838 Note: brobecker/2003-11-10: A forward declaration has not been
4839 added at the begining of this file yet, because this function
4840 is only used to work around a problem found during wild matching
4841 when trying to match minimal symbol names against symbol names
4842 obtained from dwarf-2 data. This function is therefore currently
4843 only used in wild_match() and is likely to be deleted when the
4844 problem in dwarf-2 is fixed. */
4845
4846 static int
4847 is_dot_digits_suffix (const char *str)
4848 {
4849 if (str[0] != '.')
4850 return 0;
4851
4852 str++;
4853 while (isdigit (str[0]))
4854 str++;
4855 return (str[0] == '\0');
4856 }
4857
4858 /* Return non-zero if NAME0 is a valid match when doing wild matching.
4859 Certain symbols appear at first to match, except that they turn out
4860 not to follow the Ada encoding and hence should not be used as a wild
4861 match of a given pattern. */
4862
4863 static int
4864 is_valid_name_for_wild_match (const char *name0)
4865 {
4866 const char *decoded_name = ada_decode (name0);
4867 int i;
4868
4869 for (i=0; decoded_name[i] != '\0'; i++)
4870 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4871 return 0;
4872
4873 return 1;
4874 }
4875
4876 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4877 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4878 informational suffixes of NAME (i.e., for which is_name_suffix is
4879 true). */
4880
4881 static int
4882 wild_match (const char *patn0, int patn_len, const char *name0)
4883 {
4884 int name_len;
4885 char *name;
4886 char *patn;
4887
4888 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
4889 stored in the symbol table for nested function names is sometimes
4890 different from the name of the associated entity stored in
4891 the dwarf-2 data: This is the case for nested subprograms, where
4892 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
4893 while the symbol name from the dwarf-2 data does not.
4894
4895 Although the DWARF-2 standard documents that entity names stored
4896 in the dwarf-2 data should be identical to the name as seen in
4897 the source code, GNAT takes a different approach as we already use
4898 a special encoding mechanism to convey the information so that
4899 a C debugger can still use the information generated to debug
4900 Ada programs. A corollary is that the symbol names in the dwarf-2
4901 data should match the names found in the symbol table. I therefore
4902 consider this issue as a compiler defect.
4903
4904 Until the compiler is properly fixed, we work-around the problem
4905 by ignoring such suffixes during the match. We do so by making
4906 a copy of PATN0 and NAME0, and then by stripping such a suffix
4907 if present. We then perform the match on the resulting strings. */
4908 {
4909 char *dot;
4910 name_len = strlen (name0);
4911
4912 name = (char *) alloca ((name_len + 1) * sizeof (char));
4913 strcpy (name, name0);
4914 dot = strrchr (name, '.');
4915 if (dot != NULL && is_dot_digits_suffix (dot))
4916 *dot = '\0';
4917
4918 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
4919 strncpy (patn, patn0, patn_len);
4920 patn[patn_len] = '\0';
4921 dot = strrchr (patn, '.');
4922 if (dot != NULL && is_dot_digits_suffix (dot))
4923 {
4924 *dot = '\0';
4925 patn_len = dot - patn;
4926 }
4927 }
4928
4929 /* Now perform the wild match. */
4930
4931 name_len = strlen (name);
4932 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
4933 && strncmp (patn, name + 5, patn_len) == 0
4934 && is_name_suffix (name + patn_len + 5))
4935 return 1;
4936
4937 while (name_len >= patn_len)
4938 {
4939 if (strncmp (patn, name, patn_len) == 0
4940 && is_name_suffix (name + patn_len))
4941 return (is_valid_name_for_wild_match (name0));
4942 do
4943 {
4944 name += 1;
4945 name_len -= 1;
4946 }
4947 while (name_len > 0
4948 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
4949 if (name_len <= 0)
4950 return 0;
4951 if (name[0] == '_')
4952 {
4953 if (!islower (name[2]))
4954 return 0;
4955 name += 2;
4956 name_len -= 2;
4957 }
4958 else
4959 {
4960 if (!islower (name[1]))
4961 return 0;
4962 name += 1;
4963 name_len -= 1;
4964 }
4965 }
4966
4967 return 0;
4968 }
4969
4970
4971 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4972 vector *defn_symbols, updating the list of symbols in OBSTACKP
4973 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4974 OBJFILE is the section containing BLOCK.
4975 SYMTAB is recorded with each symbol added. */
4976
4977 static void
4978 ada_add_block_symbols (struct obstack *obstackp,
4979 struct block *block, const char *name,
4980 domain_enum domain, struct objfile *objfile,
4981 struct symtab *symtab, int wild)
4982 {
4983 struct dict_iterator iter;
4984 int name_len = strlen (name);
4985 /* A matching argument symbol, if any. */
4986 struct symbol *arg_sym;
4987 /* Set true when we find a matching non-argument symbol. */
4988 int found_sym;
4989 struct symbol *sym;
4990
4991 arg_sym = NULL;
4992 found_sym = 0;
4993 if (wild)
4994 {
4995 struct symbol *sym;
4996 ALL_BLOCK_SYMBOLS (block, iter, sym)
4997 {
4998 if (SYMBOL_DOMAIN (sym) == domain
4999 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5000 {
5001 switch (SYMBOL_CLASS (sym))
5002 {
5003 case LOC_ARG:
5004 case LOC_LOCAL_ARG:
5005 case LOC_REF_ARG:
5006 case LOC_REGPARM:
5007 case LOC_REGPARM_ADDR:
5008 case LOC_BASEREG_ARG:
5009 case LOC_COMPUTED_ARG:
5010 arg_sym = sym;
5011 break;
5012 case LOC_UNRESOLVED:
5013 continue;
5014 default:
5015 found_sym = 1;
5016 add_defn_to_vec (obstackp,
5017 fixup_symbol_section (sym, objfile),
5018 block, symtab);
5019 break;
5020 }
5021 }
5022 }
5023 }
5024 else
5025 {
5026 ALL_BLOCK_SYMBOLS (block, iter, sym)
5027 {
5028 if (SYMBOL_DOMAIN (sym) == domain)
5029 {
5030 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5031 if (cmp == 0
5032 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5033 {
5034 switch (SYMBOL_CLASS (sym))
5035 {
5036 case LOC_ARG:
5037 case LOC_LOCAL_ARG:
5038 case LOC_REF_ARG:
5039 case LOC_REGPARM:
5040 case LOC_REGPARM_ADDR:
5041 case LOC_BASEREG_ARG:
5042 case LOC_COMPUTED_ARG:
5043 arg_sym = sym;
5044 break;
5045 case LOC_UNRESOLVED:
5046 break;
5047 default:
5048 found_sym = 1;
5049 add_defn_to_vec (obstackp,
5050 fixup_symbol_section (sym, objfile),
5051 block, symtab);
5052 break;
5053 }
5054 }
5055 }
5056 }
5057 }
5058
5059 if (!found_sym && arg_sym != NULL)
5060 {
5061 add_defn_to_vec (obstackp,
5062 fixup_symbol_section (arg_sym, objfile),
5063 block, symtab);
5064 }
5065
5066 if (!wild)
5067 {
5068 arg_sym = NULL;
5069 found_sym = 0;
5070
5071 ALL_BLOCK_SYMBOLS (block, iter, sym)
5072 {
5073 if (SYMBOL_DOMAIN (sym) == domain)
5074 {
5075 int cmp;
5076
5077 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5078 if (cmp == 0)
5079 {
5080 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5081 if (cmp == 0)
5082 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5083 name_len);
5084 }
5085
5086 if (cmp == 0
5087 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5088 {
5089 switch (SYMBOL_CLASS (sym))
5090 {
5091 case LOC_ARG:
5092 case LOC_LOCAL_ARG:
5093 case LOC_REF_ARG:
5094 case LOC_REGPARM:
5095 case LOC_REGPARM_ADDR:
5096 case LOC_BASEREG_ARG:
5097 case LOC_COMPUTED_ARG:
5098 arg_sym = sym;
5099 break;
5100 case LOC_UNRESOLVED:
5101 break;
5102 default:
5103 found_sym = 1;
5104 add_defn_to_vec (obstackp,
5105 fixup_symbol_section (sym, objfile),
5106 block, symtab);
5107 break;
5108 }
5109 }
5110 }
5111 }
5112
5113 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5114 They aren't parameters, right? */
5115 if (!found_sym && arg_sym != NULL)
5116 {
5117 add_defn_to_vec (obstackp,
5118 fixup_symbol_section (arg_sym, objfile),
5119 block, symtab);
5120 }
5121 }
5122 }
5123 \f
5124 /* Field Access */
5125
5126 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5127 to be invisible to users. */
5128
5129 int
5130 ada_is_ignored_field (struct type *type, int field_num)
5131 {
5132 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5133 return 1;
5134 else
5135 {
5136 const char *name = TYPE_FIELD_NAME (type, field_num);
5137 return (name == NULL
5138 || (name[0] == '_' && strncmp (name, "_parent", 7) != 0));
5139 }
5140 }
5141
5142 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5143 pointer or reference type whose ultimate target has a tag field. */
5144
5145 int
5146 ada_is_tagged_type (struct type *type, int refok)
5147 {
5148 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5149 }
5150
5151 /* True iff TYPE represents the type of X'Tag */
5152
5153 int
5154 ada_is_tag_type (struct type *type)
5155 {
5156 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5157 return 0;
5158 else
5159 {
5160 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5161 return (name != NULL
5162 && strcmp (name, "ada__tags__dispatch_table") == 0);
5163 }
5164 }
5165
5166 /* The type of the tag on VAL. */
5167
5168 struct type *
5169 ada_tag_type (struct value *val)
5170 {
5171 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5172 }
5173
5174 /* The value of the tag on VAL. */
5175
5176 struct value *
5177 ada_value_tag (struct value *val)
5178 {
5179 return ada_value_struct_elt (val, "_tag", 0);
5180 }
5181
5182 /* The value of the tag on the object of type TYPE whose contents are
5183 saved at VALADDR, if it is non-null, or is at memory address
5184 ADDRESS. */
5185
5186 static struct value *
5187 value_tag_from_contents_and_address (struct type *type,
5188 const gdb_byte *valaddr,
5189 CORE_ADDR address)
5190 {
5191 int tag_byte_offset, dummy1, dummy2;
5192 struct type *tag_type;
5193 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5194 NULL, NULL, NULL))
5195 {
5196 const gdb_byte *valaddr1 = ((valaddr == NULL)
5197 ? NULL
5198 : valaddr + tag_byte_offset);
5199 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5200
5201 return value_from_contents_and_address (tag_type, valaddr1, address1);
5202 }
5203 return NULL;
5204 }
5205
5206 static struct type *
5207 type_from_tag (struct value *tag)
5208 {
5209 const char *type_name = ada_tag_name (tag);
5210 if (type_name != NULL)
5211 return ada_find_any_type (ada_encode (type_name));
5212 return NULL;
5213 }
5214
5215 struct tag_args
5216 {
5217 struct value *tag;
5218 char *name;
5219 };
5220
5221
5222 static int ada_tag_name_1 (void *);
5223 static int ada_tag_name_2 (struct tag_args *);
5224
5225 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5226 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5227 The value stored in ARGS->name is valid until the next call to
5228 ada_tag_name_1. */
5229
5230 static int
5231 ada_tag_name_1 (void *args0)
5232 {
5233 struct tag_args *args = (struct tag_args *) args0;
5234 static char name[1024];
5235 char *p;
5236 struct value *val;
5237 args->name = NULL;
5238 val = ada_value_struct_elt (args->tag, "tsd", 1);
5239 if (val == NULL)
5240 return ada_tag_name_2 (args);
5241 val = ada_value_struct_elt (val, "expanded_name", 1);
5242 if (val == NULL)
5243 return 0;
5244 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5245 for (p = name; *p != '\0'; p += 1)
5246 if (isalpha (*p))
5247 *p = tolower (*p);
5248 args->name = name;
5249 return 0;
5250 }
5251
5252 /* Utility function for ada_tag_name_1 that tries the second
5253 representation for the dispatch table (in which there is no
5254 explicit 'tsd' field in the referent of the tag pointer, and instead
5255 the tsd pointer is stored just before the dispatch table. */
5256
5257 static int
5258 ada_tag_name_2 (struct tag_args *args)
5259 {
5260 struct type *info_type;
5261 static char name[1024];
5262 char *p;
5263 struct value *val, *valp;
5264
5265 args->name = NULL;
5266 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5267 if (info_type == NULL)
5268 return 0;
5269 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5270 valp = value_cast (info_type, args->tag);
5271 if (valp == NULL)
5272 return 0;
5273 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5274 if (val == NULL)
5275 return 0;
5276 val = ada_value_struct_elt (val, "expanded_name", 1);
5277 if (val == NULL)
5278 return 0;
5279 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5280 for (p = name; *p != '\0'; p += 1)
5281 if (isalpha (*p))
5282 *p = tolower (*p);
5283 args->name = name;
5284 return 0;
5285 }
5286
5287 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5288 * a C string. */
5289
5290 const char *
5291 ada_tag_name (struct value *tag)
5292 {
5293 struct tag_args args;
5294 if (!ada_is_tag_type (value_type (tag)))
5295 return NULL;
5296 args.tag = tag;
5297 args.name = NULL;
5298 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5299 return args.name;
5300 }
5301
5302 /* The parent type of TYPE, or NULL if none. */
5303
5304 struct type *
5305 ada_parent_type (struct type *type)
5306 {
5307 int i;
5308
5309 type = ada_check_typedef (type);
5310
5311 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5312 return NULL;
5313
5314 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5315 if (ada_is_parent_field (type, i))
5316 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5317
5318 return NULL;
5319 }
5320
5321 /* True iff field number FIELD_NUM of structure type TYPE contains the
5322 parent-type (inherited) fields of a derived type. Assumes TYPE is
5323 a structure type with at least FIELD_NUM+1 fields. */
5324
5325 int
5326 ada_is_parent_field (struct type *type, int field_num)
5327 {
5328 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5329 return (name != NULL
5330 && (strncmp (name, "PARENT", 6) == 0
5331 || strncmp (name, "_parent", 7) == 0));
5332 }
5333
5334 /* True iff field number FIELD_NUM of structure type TYPE is a
5335 transparent wrapper field (which should be silently traversed when doing
5336 field selection and flattened when printing). Assumes TYPE is a
5337 structure type with at least FIELD_NUM+1 fields. Such fields are always
5338 structures. */
5339
5340 int
5341 ada_is_wrapper_field (struct type *type, int field_num)
5342 {
5343 const char *name = TYPE_FIELD_NAME (type, field_num);
5344 return (name != NULL
5345 && (strncmp (name, "PARENT", 6) == 0
5346 || strcmp (name, "REP") == 0
5347 || strncmp (name, "_parent", 7) == 0
5348 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5349 }
5350
5351 /* True iff field number FIELD_NUM of structure or union type TYPE
5352 is a variant wrapper. Assumes TYPE is a structure type with at least
5353 FIELD_NUM+1 fields. */
5354
5355 int
5356 ada_is_variant_part (struct type *type, int field_num)
5357 {
5358 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5359 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5360 || (is_dynamic_field (type, field_num)
5361 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5362 == TYPE_CODE_UNION)));
5363 }
5364
5365 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5366 whose discriminants are contained in the record type OUTER_TYPE,
5367 returns the type of the controlling discriminant for the variant. */
5368
5369 struct type *
5370 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5371 {
5372 char *name = ada_variant_discrim_name (var_type);
5373 struct type *type =
5374 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5375 if (type == NULL)
5376 return builtin_type_int;
5377 else
5378 return type;
5379 }
5380
5381 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5382 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5383 represents a 'when others' clause; otherwise 0. */
5384
5385 int
5386 ada_is_others_clause (struct type *type, int field_num)
5387 {
5388 const char *name = TYPE_FIELD_NAME (type, field_num);
5389 return (name != NULL && name[0] == 'O');
5390 }
5391
5392 /* Assuming that TYPE0 is the type of the variant part of a record,
5393 returns the name of the discriminant controlling the variant.
5394 The value is valid until the next call to ada_variant_discrim_name. */
5395
5396 char *
5397 ada_variant_discrim_name (struct type *type0)
5398 {
5399 static char *result = NULL;
5400 static size_t result_len = 0;
5401 struct type *type;
5402 const char *name;
5403 const char *discrim_end;
5404 const char *discrim_start;
5405
5406 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5407 type = TYPE_TARGET_TYPE (type0);
5408 else
5409 type = type0;
5410
5411 name = ada_type_name (type);
5412
5413 if (name == NULL || name[0] == '\000')
5414 return "";
5415
5416 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5417 discrim_end -= 1)
5418 {
5419 if (strncmp (discrim_end, "___XVN", 6) == 0)
5420 break;
5421 }
5422 if (discrim_end == name)
5423 return "";
5424
5425 for (discrim_start = discrim_end; discrim_start != name + 3;
5426 discrim_start -= 1)
5427 {
5428 if (discrim_start == name + 1)
5429 return "";
5430 if ((discrim_start > name + 3
5431 && strncmp (discrim_start - 3, "___", 3) == 0)
5432 || discrim_start[-1] == '.')
5433 break;
5434 }
5435
5436 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5437 strncpy (result, discrim_start, discrim_end - discrim_start);
5438 result[discrim_end - discrim_start] = '\0';
5439 return result;
5440 }
5441
5442 /* Scan STR for a subtype-encoded number, beginning at position K.
5443 Put the position of the character just past the number scanned in
5444 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5445 Return 1 if there was a valid number at the given position, and 0
5446 otherwise. A "subtype-encoded" number consists of the absolute value
5447 in decimal, followed by the letter 'm' to indicate a negative number.
5448 Assumes 0m does not occur. */
5449
5450 int
5451 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5452 {
5453 ULONGEST RU;
5454
5455 if (!isdigit (str[k]))
5456 return 0;
5457
5458 /* Do it the hard way so as not to make any assumption about
5459 the relationship of unsigned long (%lu scan format code) and
5460 LONGEST. */
5461 RU = 0;
5462 while (isdigit (str[k]))
5463 {
5464 RU = RU * 10 + (str[k] - '0');
5465 k += 1;
5466 }
5467
5468 if (str[k] == 'm')
5469 {
5470 if (R != NULL)
5471 *R = (-(LONGEST) (RU - 1)) - 1;
5472 k += 1;
5473 }
5474 else if (R != NULL)
5475 *R = (LONGEST) RU;
5476
5477 /* NOTE on the above: Technically, C does not say what the results of
5478 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5479 number representable as a LONGEST (although either would probably work
5480 in most implementations). When RU>0, the locution in the then branch
5481 above is always equivalent to the negative of RU. */
5482
5483 if (new_k != NULL)
5484 *new_k = k;
5485 return 1;
5486 }
5487
5488 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5489 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5490 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5491
5492 int
5493 ada_in_variant (LONGEST val, struct type *type, int field_num)
5494 {
5495 const char *name = TYPE_FIELD_NAME (type, field_num);
5496 int p;
5497
5498 p = 0;
5499 while (1)
5500 {
5501 switch (name[p])
5502 {
5503 case '\0':
5504 return 0;
5505 case 'S':
5506 {
5507 LONGEST W;
5508 if (!ada_scan_number (name, p + 1, &W, &p))
5509 return 0;
5510 if (val == W)
5511 return 1;
5512 break;
5513 }
5514 case 'R':
5515 {
5516 LONGEST L, U;
5517 if (!ada_scan_number (name, p + 1, &L, &p)
5518 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5519 return 0;
5520 if (val >= L && val <= U)
5521 return 1;
5522 break;
5523 }
5524 case 'O':
5525 return 1;
5526 default:
5527 return 0;
5528 }
5529 }
5530 }
5531
5532 /* FIXME: Lots of redundancy below. Try to consolidate. */
5533
5534 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5535 ARG_TYPE, extract and return the value of one of its (non-static)
5536 fields. FIELDNO says which field. Differs from value_primitive_field
5537 only in that it can handle packed values of arbitrary type. */
5538
5539 static struct value *
5540 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5541 struct type *arg_type)
5542 {
5543 struct type *type;
5544
5545 arg_type = ada_check_typedef (arg_type);
5546 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5547
5548 /* Handle packed fields. */
5549
5550 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5551 {
5552 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5553 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5554
5555 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5556 offset + bit_pos / 8,
5557 bit_pos % 8, bit_size, type);
5558 }
5559 else
5560 return value_primitive_field (arg1, offset, fieldno, arg_type);
5561 }
5562
5563 /* Find field with name NAME in object of type TYPE. If found,
5564 set the following for each argument that is non-null:
5565 - *FIELD_TYPE_P to the field's type;
5566 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5567 an object of that type;
5568 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5569 - *BIT_SIZE_P to its size in bits if the field is packed, and
5570 0 otherwise;
5571 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5572 fields up to but not including the desired field, or by the total
5573 number of fields if not found. A NULL value of NAME never
5574 matches; the function just counts visible fields in this case.
5575
5576 Returns 1 if found, 0 otherwise. */
5577
5578 static int
5579 find_struct_field (char *name, struct type *type, int offset,
5580 struct type **field_type_p,
5581 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5582 int *index_p)
5583 {
5584 int i;
5585
5586 type = ada_check_typedef (type);
5587
5588 if (field_type_p != NULL)
5589 *field_type_p = NULL;
5590 if (byte_offset_p != NULL)
5591 *byte_offset_p = 0;
5592 if (bit_offset_p != NULL)
5593 *bit_offset_p = 0;
5594 if (bit_size_p != NULL)
5595 *bit_size_p = 0;
5596
5597 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5598 {
5599 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5600 int fld_offset = offset + bit_pos / 8;
5601 char *t_field_name = TYPE_FIELD_NAME (type, i);
5602
5603 if (t_field_name == NULL)
5604 continue;
5605
5606 else if (name != NULL && field_name_match (t_field_name, name))
5607 {
5608 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5609 if (field_type_p != NULL)
5610 *field_type_p = TYPE_FIELD_TYPE (type, i);
5611 if (byte_offset_p != NULL)
5612 *byte_offset_p = fld_offset;
5613 if (bit_offset_p != NULL)
5614 *bit_offset_p = bit_pos % 8;
5615 if (bit_size_p != NULL)
5616 *bit_size_p = bit_size;
5617 return 1;
5618 }
5619 else if (ada_is_wrapper_field (type, i))
5620 {
5621 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5622 field_type_p, byte_offset_p, bit_offset_p,
5623 bit_size_p, index_p))
5624 return 1;
5625 }
5626 else if (ada_is_variant_part (type, i))
5627 {
5628 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5629 fixed type?? */
5630 int j;
5631 struct type *field_type
5632 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5633
5634 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5635 {
5636 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5637 fld_offset
5638 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5639 field_type_p, byte_offset_p,
5640 bit_offset_p, bit_size_p, index_p))
5641 return 1;
5642 }
5643 }
5644 else if (index_p != NULL)
5645 *index_p += 1;
5646 }
5647 return 0;
5648 }
5649
5650 /* Number of user-visible fields in record type TYPE. */
5651
5652 static int
5653 num_visible_fields (struct type *type)
5654 {
5655 int n;
5656 n = 0;
5657 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5658 return n;
5659 }
5660
5661 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5662 and search in it assuming it has (class) type TYPE.
5663 If found, return value, else return NULL.
5664
5665 Searches recursively through wrapper fields (e.g., '_parent'). */
5666
5667 static struct value *
5668 ada_search_struct_field (char *name, struct value *arg, int offset,
5669 struct type *type)
5670 {
5671 int i;
5672 type = ada_check_typedef (type);
5673
5674 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5675 {
5676 char *t_field_name = TYPE_FIELD_NAME (type, i);
5677
5678 if (t_field_name == NULL)
5679 continue;
5680
5681 else if (field_name_match (t_field_name, name))
5682 return ada_value_primitive_field (arg, offset, i, type);
5683
5684 else if (ada_is_wrapper_field (type, i))
5685 {
5686 struct value *v = /* Do not let indent join lines here. */
5687 ada_search_struct_field (name, arg,
5688 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5689 TYPE_FIELD_TYPE (type, i));
5690 if (v != NULL)
5691 return v;
5692 }
5693
5694 else if (ada_is_variant_part (type, i))
5695 {
5696 /* PNH: Do we ever get here? See find_struct_field. */
5697 int j;
5698 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5699 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5700
5701 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5702 {
5703 struct value *v = ada_search_struct_field /* Force line break. */
5704 (name, arg,
5705 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5706 TYPE_FIELD_TYPE (field_type, j));
5707 if (v != NULL)
5708 return v;
5709 }
5710 }
5711 }
5712 return NULL;
5713 }
5714
5715 static struct value *ada_index_struct_field_1 (int *, struct value *,
5716 int, struct type *);
5717
5718
5719 /* Return field #INDEX in ARG, where the index is that returned by
5720 * find_struct_field through its INDEX_P argument. Adjust the address
5721 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5722 * If found, return value, else return NULL. */
5723
5724 static struct value *
5725 ada_index_struct_field (int index, struct value *arg, int offset,
5726 struct type *type)
5727 {
5728 return ada_index_struct_field_1 (&index, arg, offset, type);
5729 }
5730
5731
5732 /* Auxiliary function for ada_index_struct_field. Like
5733 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5734 * *INDEX_P. */
5735
5736 static struct value *
5737 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5738 struct type *type)
5739 {
5740 int i;
5741 type = ada_check_typedef (type);
5742
5743 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5744 {
5745 if (TYPE_FIELD_NAME (type, i) == NULL)
5746 continue;
5747 else if (ada_is_wrapper_field (type, i))
5748 {
5749 struct value *v = /* Do not let indent join lines here. */
5750 ada_index_struct_field_1 (index_p, arg,
5751 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5752 TYPE_FIELD_TYPE (type, i));
5753 if (v != NULL)
5754 return v;
5755 }
5756
5757 else if (ada_is_variant_part (type, i))
5758 {
5759 /* PNH: Do we ever get here? See ada_search_struct_field,
5760 find_struct_field. */
5761 error (_("Cannot assign this kind of variant record"));
5762 }
5763 else if (*index_p == 0)
5764 return ada_value_primitive_field (arg, offset, i, type);
5765 else
5766 *index_p -= 1;
5767 }
5768 return NULL;
5769 }
5770
5771 /* Given ARG, a value of type (pointer or reference to a)*
5772 structure/union, extract the component named NAME from the ultimate
5773 target structure/union and return it as a value with its
5774 appropriate type. If ARG is a pointer or reference and the field
5775 is not packed, returns a reference to the field, otherwise the
5776 value of the field (an lvalue if ARG is an lvalue).
5777
5778 The routine searches for NAME among all members of the structure itself
5779 and (recursively) among all members of any wrapper members
5780 (e.g., '_parent').
5781
5782 If NO_ERR, then simply return NULL in case of error, rather than
5783 calling error. */
5784
5785 struct value *
5786 ada_value_struct_elt (struct value *arg, char *name, int no_err)
5787 {
5788 struct type *t, *t1;
5789 struct value *v;
5790
5791 v = NULL;
5792 t1 = t = ada_check_typedef (value_type (arg));
5793 if (TYPE_CODE (t) == TYPE_CODE_REF)
5794 {
5795 t1 = TYPE_TARGET_TYPE (t);
5796 if (t1 == NULL)
5797 goto BadValue;
5798 t1 = ada_check_typedef (t1);
5799 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5800 {
5801 arg = coerce_ref (arg);
5802 t = t1;
5803 }
5804 }
5805
5806 while (TYPE_CODE (t) == TYPE_CODE_PTR)
5807 {
5808 t1 = TYPE_TARGET_TYPE (t);
5809 if (t1 == NULL)
5810 goto BadValue;
5811 t1 = ada_check_typedef (t1);
5812 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5813 {
5814 arg = value_ind (arg);
5815 t = t1;
5816 }
5817 else
5818 break;
5819 }
5820
5821 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
5822 goto BadValue;
5823
5824 if (t1 == t)
5825 v = ada_search_struct_field (name, arg, 0, t);
5826 else
5827 {
5828 int bit_offset, bit_size, byte_offset;
5829 struct type *field_type;
5830 CORE_ADDR address;
5831
5832 if (TYPE_CODE (t) == TYPE_CODE_PTR)
5833 address = value_as_address (arg);
5834 else
5835 address = unpack_pointer (t, value_contents (arg));
5836
5837 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
5838 if (find_struct_field (name, t1, 0,
5839 &field_type, &byte_offset, &bit_offset,
5840 &bit_size, NULL))
5841 {
5842 if (bit_size != 0)
5843 {
5844 if (TYPE_CODE (t) == TYPE_CODE_REF)
5845 arg = ada_coerce_ref (arg);
5846 else
5847 arg = ada_value_ind (arg);
5848 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
5849 bit_offset, bit_size,
5850 field_type);
5851 }
5852 else
5853 v = value_from_pointer (lookup_reference_type (field_type),
5854 address + byte_offset);
5855 }
5856 }
5857
5858 if (v != NULL || no_err)
5859 return v;
5860 else
5861 error (_("There is no member named %s."), name);
5862
5863 BadValue:
5864 if (no_err)
5865 return NULL;
5866 else
5867 error (_("Attempt to extract a component of a value that is not a record."));
5868 }
5869
5870 /* Given a type TYPE, look up the type of the component of type named NAME.
5871 If DISPP is non-null, add its byte displacement from the beginning of a
5872 structure (pointed to by a value) of type TYPE to *DISPP (does not
5873 work for packed fields).
5874
5875 Matches any field whose name has NAME as a prefix, possibly
5876 followed by "___".
5877
5878 TYPE can be either a struct or union. If REFOK, TYPE may also
5879 be a (pointer or reference)+ to a struct or union, and the
5880 ultimate target type will be searched.
5881
5882 Looks recursively into variant clauses and parent types.
5883
5884 If NOERR is nonzero, return NULL if NAME is not suitably defined or
5885 TYPE is not a type of the right kind. */
5886
5887 static struct type *
5888 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
5889 int noerr, int *dispp)
5890 {
5891 int i;
5892
5893 if (name == NULL)
5894 goto BadName;
5895
5896 if (refok && type != NULL)
5897 while (1)
5898 {
5899 type = ada_check_typedef (type);
5900 if (TYPE_CODE (type) != TYPE_CODE_PTR
5901 && TYPE_CODE (type) != TYPE_CODE_REF)
5902 break;
5903 type = TYPE_TARGET_TYPE (type);
5904 }
5905
5906 if (type == NULL
5907 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
5908 && TYPE_CODE (type) != TYPE_CODE_UNION))
5909 {
5910 if (noerr)
5911 return NULL;
5912 else
5913 {
5914 target_terminal_ours ();
5915 gdb_flush (gdb_stdout);
5916 if (type == NULL)
5917 error (_("Type (null) is not a structure or union type"));
5918 else
5919 {
5920 /* XXX: type_sprint */
5921 fprintf_unfiltered (gdb_stderr, _("Type "));
5922 type_print (type, "", gdb_stderr, -1);
5923 error (_(" is not a structure or union type"));
5924 }
5925 }
5926 }
5927
5928 type = to_static_fixed_type (type);
5929
5930 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5931 {
5932 char *t_field_name = TYPE_FIELD_NAME (type, i);
5933 struct type *t;
5934 int disp;
5935
5936 if (t_field_name == NULL)
5937 continue;
5938
5939 else if (field_name_match (t_field_name, name))
5940 {
5941 if (dispp != NULL)
5942 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
5943 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5944 }
5945
5946 else if (ada_is_wrapper_field (type, i))
5947 {
5948 disp = 0;
5949 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
5950 0, 1, &disp);
5951 if (t != NULL)
5952 {
5953 if (dispp != NULL)
5954 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5955 return t;
5956 }
5957 }
5958
5959 else if (ada_is_variant_part (type, i))
5960 {
5961 int j;
5962 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5963
5964 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
5965 {
5966 disp = 0;
5967 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
5968 name, 0, 1, &disp);
5969 if (t != NULL)
5970 {
5971 if (dispp != NULL)
5972 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5973 return t;
5974 }
5975 }
5976 }
5977
5978 }
5979
5980 BadName:
5981 if (!noerr)
5982 {
5983 target_terminal_ours ();
5984 gdb_flush (gdb_stdout);
5985 if (name == NULL)
5986 {
5987 /* XXX: type_sprint */
5988 fprintf_unfiltered (gdb_stderr, _("Type "));
5989 type_print (type, "", gdb_stderr, -1);
5990 error (_(" has no component named <null>"));
5991 }
5992 else
5993 {
5994 /* XXX: type_sprint */
5995 fprintf_unfiltered (gdb_stderr, _("Type "));
5996 type_print (type, "", gdb_stderr, -1);
5997 error (_(" has no component named %s"), name);
5998 }
5999 }
6000
6001 return NULL;
6002 }
6003
6004 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6005 within a value of type OUTER_TYPE that is stored in GDB at
6006 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6007 numbering from 0) is applicable. Returns -1 if none are. */
6008
6009 int
6010 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6011 const gdb_byte *outer_valaddr)
6012 {
6013 int others_clause;
6014 int i;
6015 int disp;
6016 struct type *discrim_type;
6017 char *discrim_name = ada_variant_discrim_name (var_type);
6018 LONGEST discrim_val;
6019
6020 disp = 0;
6021 discrim_type =
6022 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
6023 if (discrim_type == NULL)
6024 return -1;
6025 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
6026
6027 others_clause = -1;
6028 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6029 {
6030 if (ada_is_others_clause (var_type, i))
6031 others_clause = i;
6032 else if (ada_in_variant (discrim_val, var_type, i))
6033 return i;
6034 }
6035
6036 return others_clause;
6037 }
6038 \f
6039
6040
6041 /* Dynamic-Sized Records */
6042
6043 /* Strategy: The type ostensibly attached to a value with dynamic size
6044 (i.e., a size that is not statically recorded in the debugging
6045 data) does not accurately reflect the size or layout of the value.
6046 Our strategy is to convert these values to values with accurate,
6047 conventional types that are constructed on the fly. */
6048
6049 /* There is a subtle and tricky problem here. In general, we cannot
6050 determine the size of dynamic records without its data. However,
6051 the 'struct value' data structure, which GDB uses to represent
6052 quantities in the inferior process (the target), requires the size
6053 of the type at the time of its allocation in order to reserve space
6054 for GDB's internal copy of the data. That's why the
6055 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6056 rather than struct value*s.
6057
6058 However, GDB's internal history variables ($1, $2, etc.) are
6059 struct value*s containing internal copies of the data that are not, in
6060 general, the same as the data at their corresponding addresses in
6061 the target. Fortunately, the types we give to these values are all
6062 conventional, fixed-size types (as per the strategy described
6063 above), so that we don't usually have to perform the
6064 'to_fixed_xxx_type' conversions to look at their values.
6065 Unfortunately, there is one exception: if one of the internal
6066 history variables is an array whose elements are unconstrained
6067 records, then we will need to create distinct fixed types for each
6068 element selected. */
6069
6070 /* The upshot of all of this is that many routines take a (type, host
6071 address, target address) triple as arguments to represent a value.
6072 The host address, if non-null, is supposed to contain an internal
6073 copy of the relevant data; otherwise, the program is to consult the
6074 target at the target address. */
6075
6076 /* Assuming that VAL0 represents a pointer value, the result of
6077 dereferencing it. Differs from value_ind in its treatment of
6078 dynamic-sized types. */
6079
6080 struct value *
6081 ada_value_ind (struct value *val0)
6082 {
6083 struct value *val = unwrap_value (value_ind (val0));
6084 return ada_to_fixed_value (val);
6085 }
6086
6087 /* The value resulting from dereferencing any "reference to"
6088 qualifiers on VAL0. */
6089
6090 static struct value *
6091 ada_coerce_ref (struct value *val0)
6092 {
6093 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6094 {
6095 struct value *val = val0;
6096 val = coerce_ref (val);
6097 val = unwrap_value (val);
6098 return ada_to_fixed_value (val);
6099 }
6100 else
6101 return val0;
6102 }
6103
6104 /* Return OFF rounded upward if necessary to a multiple of
6105 ALIGNMENT (a power of 2). */
6106
6107 static unsigned int
6108 align_value (unsigned int off, unsigned int alignment)
6109 {
6110 return (off + alignment - 1) & ~(alignment - 1);
6111 }
6112
6113 /* Return the bit alignment required for field #F of template type TYPE. */
6114
6115 static unsigned int
6116 field_alignment (struct type *type, int f)
6117 {
6118 const char *name = TYPE_FIELD_NAME (type, f);
6119 int len = (name == NULL) ? 0 : strlen (name);
6120 int align_offset;
6121
6122 if (!isdigit (name[len - 1]))
6123 return 1;
6124
6125 if (isdigit (name[len - 2]))
6126 align_offset = len - 2;
6127 else
6128 align_offset = len - 1;
6129
6130 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6131 return TARGET_CHAR_BIT;
6132
6133 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6134 }
6135
6136 /* Find a symbol named NAME. Ignores ambiguity. */
6137
6138 struct symbol *
6139 ada_find_any_symbol (const char *name)
6140 {
6141 struct symbol *sym;
6142
6143 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6144 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6145 return sym;
6146
6147 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6148 return sym;
6149 }
6150
6151 /* Find a type named NAME. Ignores ambiguity. */
6152
6153 struct type *
6154 ada_find_any_type (const char *name)
6155 {
6156 struct symbol *sym = ada_find_any_symbol (name);
6157
6158 if (sym != NULL)
6159 return SYMBOL_TYPE (sym);
6160
6161 return NULL;
6162 }
6163
6164 /* Given a symbol NAME and its associated BLOCK, search all symbols
6165 for its ___XR counterpart, which is the ``renaming'' symbol
6166 associated to NAME. Return this symbol if found, return
6167 NULL otherwise. */
6168
6169 struct symbol *
6170 ada_find_renaming_symbol (const char *name, struct block *block)
6171 {
6172 const struct symbol *function_sym = block_function (block);
6173 char *rename;
6174
6175 if (function_sym != NULL)
6176 {
6177 /* If the symbol is defined inside a function, NAME is not fully
6178 qualified. This means we need to prepend the function name
6179 as well as adding the ``___XR'' suffix to build the name of
6180 the associated renaming symbol. */
6181 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6182 /* Function names sometimes contain suffixes used
6183 for instance to qualify nested subprograms. When building
6184 the XR type name, we need to make sure that this suffix is
6185 not included. So do not include any suffix in the function
6186 name length below. */
6187 const int function_name_len = ada_name_prefix_len (function_name);
6188 const int rename_len = function_name_len + 2 /* "__" */
6189 + strlen (name) + 6 /* "___XR\0" */ ;
6190
6191 /* Strip the suffix if necessary. */
6192 function_name[function_name_len] = '\0';
6193
6194 /* Library-level functions are a special case, as GNAT adds
6195 a ``_ada_'' prefix to the function name to avoid namespace
6196 pollution. However, the renaming symbol themselves do not
6197 have this prefix, so we need to skip this prefix if present. */
6198 if (function_name_len > 5 /* "_ada_" */
6199 && strstr (function_name, "_ada_") == function_name)
6200 function_name = function_name + 5;
6201
6202 rename = (char *) alloca (rename_len * sizeof (char));
6203 sprintf (rename, "%s__%s___XR", function_name, name);
6204 }
6205 else
6206 {
6207 const int rename_len = strlen (name) + 6;
6208 rename = (char *) alloca (rename_len * sizeof (char));
6209 sprintf (rename, "%s___XR", name);
6210 }
6211
6212 return ada_find_any_symbol (rename);
6213 }
6214
6215 /* Because of GNAT encoding conventions, several GDB symbols may match a
6216 given type name. If the type denoted by TYPE0 is to be preferred to
6217 that of TYPE1 for purposes of type printing, return non-zero;
6218 otherwise return 0. */
6219
6220 int
6221 ada_prefer_type (struct type *type0, struct type *type1)
6222 {
6223 if (type1 == NULL)
6224 return 1;
6225 else if (type0 == NULL)
6226 return 0;
6227 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6228 return 1;
6229 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6230 return 0;
6231 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6232 return 1;
6233 else if (ada_is_packed_array_type (type0))
6234 return 1;
6235 else if (ada_is_array_descriptor_type (type0)
6236 && !ada_is_array_descriptor_type (type1))
6237 return 1;
6238 else if (ada_renaming_type (type0) != NULL
6239 && ada_renaming_type (type1) == NULL)
6240 return 1;
6241 return 0;
6242 }
6243
6244 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6245 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6246
6247 char *
6248 ada_type_name (struct type *type)
6249 {
6250 if (type == NULL)
6251 return NULL;
6252 else if (TYPE_NAME (type) != NULL)
6253 return TYPE_NAME (type);
6254 else
6255 return TYPE_TAG_NAME (type);
6256 }
6257
6258 /* Find a parallel type to TYPE whose name is formed by appending
6259 SUFFIX to the name of TYPE. */
6260
6261 struct type *
6262 ada_find_parallel_type (struct type *type, const char *suffix)
6263 {
6264 static char *name;
6265 static size_t name_len = 0;
6266 int len;
6267 char *typename = ada_type_name (type);
6268
6269 if (typename == NULL)
6270 return NULL;
6271
6272 len = strlen (typename);
6273
6274 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6275
6276 strcpy (name, typename);
6277 strcpy (name + len, suffix);
6278
6279 return ada_find_any_type (name);
6280 }
6281
6282
6283 /* If TYPE is a variable-size record type, return the corresponding template
6284 type describing its fields. Otherwise, return NULL. */
6285
6286 static struct type *
6287 dynamic_template_type (struct type *type)
6288 {
6289 type = ada_check_typedef (type);
6290
6291 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6292 || ada_type_name (type) == NULL)
6293 return NULL;
6294 else
6295 {
6296 int len = strlen (ada_type_name (type));
6297 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6298 return type;
6299 else
6300 return ada_find_parallel_type (type, "___XVE");
6301 }
6302 }
6303
6304 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6305 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6306
6307 static int
6308 is_dynamic_field (struct type *templ_type, int field_num)
6309 {
6310 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6311 return name != NULL
6312 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6313 && strstr (name, "___XVL") != NULL;
6314 }
6315
6316 /* The index of the variant field of TYPE, or -1 if TYPE does not
6317 represent a variant record type. */
6318
6319 static int
6320 variant_field_index (struct type *type)
6321 {
6322 int f;
6323
6324 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6325 return -1;
6326
6327 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6328 {
6329 if (ada_is_variant_part (type, f))
6330 return f;
6331 }
6332 return -1;
6333 }
6334
6335 /* A record type with no fields. */
6336
6337 static struct type *
6338 empty_record (struct objfile *objfile)
6339 {
6340 struct type *type = alloc_type (objfile);
6341 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6342 TYPE_NFIELDS (type) = 0;
6343 TYPE_FIELDS (type) = NULL;
6344 TYPE_NAME (type) = "<empty>";
6345 TYPE_TAG_NAME (type) = NULL;
6346 TYPE_FLAGS (type) = 0;
6347 TYPE_LENGTH (type) = 0;
6348 return type;
6349 }
6350
6351 /* An ordinary record type (with fixed-length fields) that describes
6352 the value of type TYPE at VALADDR or ADDRESS (see comments at
6353 the beginning of this section) VAL according to GNAT conventions.
6354 DVAL0 should describe the (portion of a) record that contains any
6355 necessary discriminants. It should be NULL if value_type (VAL) is
6356 an outer-level type (i.e., as opposed to a branch of a variant.) A
6357 variant field (unless unchecked) is replaced by a particular branch
6358 of the variant.
6359
6360 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6361 length are not statically known are discarded. As a consequence,
6362 VALADDR, ADDRESS and DVAL0 are ignored.
6363
6364 NOTE: Limitations: For now, we assume that dynamic fields and
6365 variants occupy whole numbers of bytes. However, they need not be
6366 byte-aligned. */
6367
6368 struct type *
6369 ada_template_to_fixed_record_type_1 (struct type *type,
6370 const gdb_byte *valaddr,
6371 CORE_ADDR address, struct value *dval0,
6372 int keep_dynamic_fields)
6373 {
6374 struct value *mark = value_mark ();
6375 struct value *dval;
6376 struct type *rtype;
6377 int nfields, bit_len;
6378 int variant_field;
6379 long off;
6380 int fld_bit_len, bit_incr;
6381 int f;
6382
6383 /* Compute the number of fields in this record type that are going
6384 to be processed: unless keep_dynamic_fields, this includes only
6385 fields whose position and length are static will be processed. */
6386 if (keep_dynamic_fields)
6387 nfields = TYPE_NFIELDS (type);
6388 else
6389 {
6390 nfields = 0;
6391 while (nfields < TYPE_NFIELDS (type)
6392 && !ada_is_variant_part (type, nfields)
6393 && !is_dynamic_field (type, nfields))
6394 nfields++;
6395 }
6396
6397 rtype = alloc_type (TYPE_OBJFILE (type));
6398 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6399 INIT_CPLUS_SPECIFIC (rtype);
6400 TYPE_NFIELDS (rtype) = nfields;
6401 TYPE_FIELDS (rtype) = (struct field *)
6402 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6403 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6404 TYPE_NAME (rtype) = ada_type_name (type);
6405 TYPE_TAG_NAME (rtype) = NULL;
6406 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6407
6408 off = 0;
6409 bit_len = 0;
6410 variant_field = -1;
6411
6412 for (f = 0; f < nfields; f += 1)
6413 {
6414 off = align_value (off, field_alignment (type, f))
6415 + TYPE_FIELD_BITPOS (type, f);
6416 TYPE_FIELD_BITPOS (rtype, f) = off;
6417 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6418
6419 if (ada_is_variant_part (type, f))
6420 {
6421 variant_field = f;
6422 fld_bit_len = bit_incr = 0;
6423 }
6424 else if (is_dynamic_field (type, f))
6425 {
6426 if (dval0 == NULL)
6427 dval = value_from_contents_and_address (rtype, valaddr, address);
6428 else
6429 dval = dval0;
6430
6431 TYPE_FIELD_TYPE (rtype, f) =
6432 ada_to_fixed_type
6433 (ada_get_base_type
6434 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6435 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6436 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6437 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6438 bit_incr = fld_bit_len =
6439 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6440 }
6441 else
6442 {
6443 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6444 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6445 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6446 bit_incr = fld_bit_len =
6447 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6448 else
6449 bit_incr = fld_bit_len =
6450 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6451 }
6452 if (off + fld_bit_len > bit_len)
6453 bit_len = off + fld_bit_len;
6454 off += bit_incr;
6455 TYPE_LENGTH (rtype) =
6456 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6457 }
6458
6459 /* We handle the variant part, if any, at the end because of certain
6460 odd cases in which it is re-ordered so as NOT the last field of
6461 the record. This can happen in the presence of representation
6462 clauses. */
6463 if (variant_field >= 0)
6464 {
6465 struct type *branch_type;
6466
6467 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6468
6469 if (dval0 == NULL)
6470 dval = value_from_contents_and_address (rtype, valaddr, address);
6471 else
6472 dval = dval0;
6473
6474 branch_type =
6475 to_fixed_variant_branch_type
6476 (TYPE_FIELD_TYPE (type, variant_field),
6477 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6478 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6479 if (branch_type == NULL)
6480 {
6481 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6482 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6483 TYPE_NFIELDS (rtype) -= 1;
6484 }
6485 else
6486 {
6487 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6488 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6489 fld_bit_len =
6490 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6491 TARGET_CHAR_BIT;
6492 if (off + fld_bit_len > bit_len)
6493 bit_len = off + fld_bit_len;
6494 TYPE_LENGTH (rtype) =
6495 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6496 }
6497 }
6498
6499 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6500 should contain the alignment of that record, which should be a strictly
6501 positive value. If null or negative, then something is wrong, most
6502 probably in the debug info. In that case, we don't round up the size
6503 of the resulting type. If this record is not part of another structure,
6504 the current RTYPE length might be good enough for our purposes. */
6505 if (TYPE_LENGTH (type) <= 0)
6506 {
6507 if (TYPE_NAME (rtype))
6508 warning (_("Invalid type size for `%s' detected: %d."),
6509 TYPE_NAME (rtype), TYPE_LENGTH (type));
6510 else
6511 warning (_("Invalid type size for <unnamed> detected: %d."),
6512 TYPE_LENGTH (type));
6513 }
6514 else
6515 {
6516 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6517 TYPE_LENGTH (type));
6518 }
6519
6520 value_free_to_mark (mark);
6521 if (TYPE_LENGTH (rtype) > varsize_limit)
6522 error (_("record type with dynamic size is larger than varsize-limit"));
6523 return rtype;
6524 }
6525
6526 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6527 of 1. */
6528
6529 static struct type *
6530 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6531 CORE_ADDR address, struct value *dval0)
6532 {
6533 return ada_template_to_fixed_record_type_1 (type, valaddr,
6534 address, dval0, 1);
6535 }
6536
6537 /* An ordinary record type in which ___XVL-convention fields and
6538 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6539 static approximations, containing all possible fields. Uses
6540 no runtime values. Useless for use in values, but that's OK,
6541 since the results are used only for type determinations. Works on both
6542 structs and unions. Representation note: to save space, we memorize
6543 the result of this function in the TYPE_TARGET_TYPE of the
6544 template type. */
6545
6546 static struct type *
6547 template_to_static_fixed_type (struct type *type0)
6548 {
6549 struct type *type;
6550 int nfields;
6551 int f;
6552
6553 if (TYPE_TARGET_TYPE (type0) != NULL)
6554 return TYPE_TARGET_TYPE (type0);
6555
6556 nfields = TYPE_NFIELDS (type0);
6557 type = type0;
6558
6559 for (f = 0; f < nfields; f += 1)
6560 {
6561 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6562 struct type *new_type;
6563
6564 if (is_dynamic_field (type0, f))
6565 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6566 else
6567 new_type = to_static_fixed_type (field_type);
6568 if (type == type0 && new_type != field_type)
6569 {
6570 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6571 TYPE_CODE (type) = TYPE_CODE (type0);
6572 INIT_CPLUS_SPECIFIC (type);
6573 TYPE_NFIELDS (type) = nfields;
6574 TYPE_FIELDS (type) = (struct field *)
6575 TYPE_ALLOC (type, nfields * sizeof (struct field));
6576 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6577 sizeof (struct field) * nfields);
6578 TYPE_NAME (type) = ada_type_name (type0);
6579 TYPE_TAG_NAME (type) = NULL;
6580 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6581 TYPE_LENGTH (type) = 0;
6582 }
6583 TYPE_FIELD_TYPE (type, f) = new_type;
6584 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6585 }
6586 return type;
6587 }
6588
6589 /* Given an object of type TYPE whose contents are at VALADDR and
6590 whose address in memory is ADDRESS, returns a revision of TYPE --
6591 a non-dynamic-sized record with a variant part -- in which
6592 the variant part is replaced with the appropriate branch. Looks
6593 for discriminant values in DVAL0, which can be NULL if the record
6594 contains the necessary discriminant values. */
6595
6596 static struct type *
6597 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6598 CORE_ADDR address, struct value *dval0)
6599 {
6600 struct value *mark = value_mark ();
6601 struct value *dval;
6602 struct type *rtype;
6603 struct type *branch_type;
6604 int nfields = TYPE_NFIELDS (type);
6605 int variant_field = variant_field_index (type);
6606
6607 if (variant_field == -1)
6608 return type;
6609
6610 if (dval0 == NULL)
6611 dval = value_from_contents_and_address (type, valaddr, address);
6612 else
6613 dval = dval0;
6614
6615 rtype = alloc_type (TYPE_OBJFILE (type));
6616 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6617 INIT_CPLUS_SPECIFIC (rtype);
6618 TYPE_NFIELDS (rtype) = nfields;
6619 TYPE_FIELDS (rtype) =
6620 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6621 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6622 sizeof (struct field) * nfields);
6623 TYPE_NAME (rtype) = ada_type_name (type);
6624 TYPE_TAG_NAME (rtype) = NULL;
6625 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6626 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6627
6628 branch_type = to_fixed_variant_branch_type
6629 (TYPE_FIELD_TYPE (type, variant_field),
6630 cond_offset_host (valaddr,
6631 TYPE_FIELD_BITPOS (type, variant_field)
6632 / TARGET_CHAR_BIT),
6633 cond_offset_target (address,
6634 TYPE_FIELD_BITPOS (type, variant_field)
6635 / TARGET_CHAR_BIT), dval);
6636 if (branch_type == NULL)
6637 {
6638 int f;
6639 for (f = variant_field + 1; f < nfields; f += 1)
6640 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6641 TYPE_NFIELDS (rtype) -= 1;
6642 }
6643 else
6644 {
6645 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6646 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6647 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6648 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6649 }
6650 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6651
6652 value_free_to_mark (mark);
6653 return rtype;
6654 }
6655
6656 /* An ordinary record type (with fixed-length fields) that describes
6657 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6658 beginning of this section]. Any necessary discriminants' values
6659 should be in DVAL, a record value; it may be NULL if the object
6660 at ADDR itself contains any necessary discriminant values.
6661 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6662 values from the record are needed. Except in the case that DVAL,
6663 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6664 unchecked) is replaced by a particular branch of the variant.
6665
6666 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6667 is questionable and may be removed. It can arise during the
6668 processing of an unconstrained-array-of-record type where all the
6669 variant branches have exactly the same size. This is because in
6670 such cases, the compiler does not bother to use the XVS convention
6671 when encoding the record. I am currently dubious of this
6672 shortcut and suspect the compiler should be altered. FIXME. */
6673
6674 static struct type *
6675 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6676 CORE_ADDR address, struct value *dval)
6677 {
6678 struct type *templ_type;
6679
6680 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6681 return type0;
6682
6683 templ_type = dynamic_template_type (type0);
6684
6685 if (templ_type != NULL)
6686 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6687 else if (variant_field_index (type0) >= 0)
6688 {
6689 if (dval == NULL && valaddr == NULL && address == 0)
6690 return type0;
6691 return to_record_with_fixed_variant_part (type0, valaddr, address,
6692 dval);
6693 }
6694 else
6695 {
6696 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6697 return type0;
6698 }
6699
6700 }
6701
6702 /* An ordinary record type (with fixed-length fields) that describes
6703 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6704 union type. Any necessary discriminants' values should be in DVAL,
6705 a record value. That is, this routine selects the appropriate
6706 branch of the union at ADDR according to the discriminant value
6707 indicated in the union's type name. */
6708
6709 static struct type *
6710 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
6711 CORE_ADDR address, struct value *dval)
6712 {
6713 int which;
6714 struct type *templ_type;
6715 struct type *var_type;
6716
6717 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
6718 var_type = TYPE_TARGET_TYPE (var_type0);
6719 else
6720 var_type = var_type0;
6721
6722 templ_type = ada_find_parallel_type (var_type, "___XVU");
6723
6724 if (templ_type != NULL)
6725 var_type = templ_type;
6726
6727 which =
6728 ada_which_variant_applies (var_type,
6729 value_type (dval), value_contents (dval));
6730
6731 if (which < 0)
6732 return empty_record (TYPE_OBJFILE (var_type));
6733 else if (is_dynamic_field (var_type, which))
6734 return to_fixed_record_type
6735 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
6736 valaddr, address, dval);
6737 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
6738 return
6739 to_fixed_record_type
6740 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
6741 else
6742 return TYPE_FIELD_TYPE (var_type, which);
6743 }
6744
6745 /* Assuming that TYPE0 is an array type describing the type of a value
6746 at ADDR, and that DVAL describes a record containing any
6747 discriminants used in TYPE0, returns a type for the value that
6748 contains no dynamic components (that is, no components whose sizes
6749 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6750 true, gives an error message if the resulting type's size is over
6751 varsize_limit. */
6752
6753 static struct type *
6754 to_fixed_array_type (struct type *type0, struct value *dval,
6755 int ignore_too_big)
6756 {
6757 struct type *index_type_desc;
6758 struct type *result;
6759
6760 if (ada_is_packed_array_type (type0) /* revisit? */
6761 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
6762 return type0;
6763
6764 index_type_desc = ada_find_parallel_type (type0, "___XA");
6765 if (index_type_desc == NULL)
6766 {
6767 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
6768 /* NOTE: elt_type---the fixed version of elt_type0---should never
6769 depend on the contents of the array in properly constructed
6770 debugging data. */
6771 /* Create a fixed version of the array element type.
6772 We're not providing the address of an element here,
6773 and thus the actual object value cannot be inspected to do
6774 the conversion. This should not be a problem, since arrays of
6775 unconstrained objects are not allowed. In particular, all
6776 the elements of an array of a tagged type should all be of
6777 the same type specified in the debugging info. No need to
6778 consult the object tag. */
6779 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
6780
6781 if (elt_type0 == elt_type)
6782 result = type0;
6783 else
6784 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6785 elt_type, TYPE_INDEX_TYPE (type0));
6786 }
6787 else
6788 {
6789 int i;
6790 struct type *elt_type0;
6791
6792 elt_type0 = type0;
6793 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
6794 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
6795
6796 /* NOTE: result---the fixed version of elt_type0---should never
6797 depend on the contents of the array in properly constructed
6798 debugging data. */
6799 /* Create a fixed version of the array element type.
6800 We're not providing the address of an element here,
6801 and thus the actual object value cannot be inspected to do
6802 the conversion. This should not be a problem, since arrays of
6803 unconstrained objects are not allowed. In particular, all
6804 the elements of an array of a tagged type should all be of
6805 the same type specified in the debugging info. No need to
6806 consult the object tag. */
6807 result = ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval);
6808 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
6809 {
6810 struct type *range_type =
6811 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
6812 dval, TYPE_OBJFILE (type0));
6813 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6814 result, range_type);
6815 }
6816 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
6817 error (_("array type with dynamic size is larger than varsize-limit"));
6818 }
6819
6820 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
6821 return result;
6822 }
6823
6824
6825 /* A standard type (containing no dynamically sized components)
6826 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
6827 DVAL describes a record containing any discriminants used in TYPE0,
6828 and may be NULL if there are none, or if the object of type TYPE at
6829 ADDRESS or in VALADDR contains these discriminants.
6830
6831 In the case of tagged types, this function attempts to locate the object's
6832 tag and use it to compute the actual type. However, when ADDRESS is null,
6833 we cannot use it to determine the location of the tag, and therefore
6834 compute the tagged type's actual type. So we return the tagged type
6835 without consulting the tag. */
6836
6837 struct type *
6838 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
6839 CORE_ADDR address, struct value *dval)
6840 {
6841 type = ada_check_typedef (type);
6842 switch (TYPE_CODE (type))
6843 {
6844 default:
6845 return type;
6846 case TYPE_CODE_STRUCT:
6847 {
6848 struct type *static_type = to_static_fixed_type (type);
6849
6850 /* If STATIC_TYPE is a tagged type and we know the object's address,
6851 then we can determine its tag, and compute the object's actual
6852 type from there. */
6853
6854 if (address != 0 && ada_is_tagged_type (static_type, 0))
6855 {
6856 struct type *real_type =
6857 type_from_tag (value_tag_from_contents_and_address (static_type,
6858 valaddr,
6859 address));
6860 if (real_type != NULL)
6861 type = real_type;
6862 }
6863 return to_fixed_record_type (type, valaddr, address, NULL);
6864 }
6865 case TYPE_CODE_ARRAY:
6866 return to_fixed_array_type (type, dval, 1);
6867 case TYPE_CODE_UNION:
6868 if (dval == NULL)
6869 return type;
6870 else
6871 return to_fixed_variant_branch_type (type, valaddr, address, dval);
6872 }
6873 }
6874
6875 /* A standard (static-sized) type corresponding as well as possible to
6876 TYPE0, but based on no runtime data. */
6877
6878 static struct type *
6879 to_static_fixed_type (struct type *type0)
6880 {
6881 struct type *type;
6882
6883 if (type0 == NULL)
6884 return NULL;
6885
6886 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6887 return type0;
6888
6889 type0 = ada_check_typedef (type0);
6890
6891 switch (TYPE_CODE (type0))
6892 {
6893 default:
6894 return type0;
6895 case TYPE_CODE_STRUCT:
6896 type = dynamic_template_type (type0);
6897 if (type != NULL)
6898 return template_to_static_fixed_type (type);
6899 else
6900 return template_to_static_fixed_type (type0);
6901 case TYPE_CODE_UNION:
6902 type = ada_find_parallel_type (type0, "___XVU");
6903 if (type != NULL)
6904 return template_to_static_fixed_type (type);
6905 else
6906 return template_to_static_fixed_type (type0);
6907 }
6908 }
6909
6910 /* A static approximation of TYPE with all type wrappers removed. */
6911
6912 static struct type *
6913 static_unwrap_type (struct type *type)
6914 {
6915 if (ada_is_aligner_type (type))
6916 {
6917 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
6918 if (ada_type_name (type1) == NULL)
6919 TYPE_NAME (type1) = ada_type_name (type);
6920
6921 return static_unwrap_type (type1);
6922 }
6923 else
6924 {
6925 struct type *raw_real_type = ada_get_base_type (type);
6926 if (raw_real_type == type)
6927 return type;
6928 else
6929 return to_static_fixed_type (raw_real_type);
6930 }
6931 }
6932
6933 /* In some cases, incomplete and private types require
6934 cross-references that are not resolved as records (for example,
6935 type Foo;
6936 type FooP is access Foo;
6937 V: FooP;
6938 type Foo is array ...;
6939 ). In these cases, since there is no mechanism for producing
6940 cross-references to such types, we instead substitute for FooP a
6941 stub enumeration type that is nowhere resolved, and whose tag is
6942 the name of the actual type. Call these types "non-record stubs". */
6943
6944 /* A type equivalent to TYPE that is not a non-record stub, if one
6945 exists, otherwise TYPE. */
6946
6947 struct type *
6948 ada_check_typedef (struct type *type)
6949 {
6950 CHECK_TYPEDEF (type);
6951 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
6952 || !TYPE_STUB (type)
6953 || TYPE_TAG_NAME (type) == NULL)
6954 return type;
6955 else
6956 {
6957 char *name = TYPE_TAG_NAME (type);
6958 struct type *type1 = ada_find_any_type (name);
6959 return (type1 == NULL) ? type : type1;
6960 }
6961 }
6962
6963 /* A value representing the data at VALADDR/ADDRESS as described by
6964 type TYPE0, but with a standard (static-sized) type that correctly
6965 describes it. If VAL0 is not NULL and TYPE0 already is a standard
6966 type, then return VAL0 [this feature is simply to avoid redundant
6967 creation of struct values]. */
6968
6969 static struct value *
6970 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
6971 struct value *val0)
6972 {
6973 struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
6974 if (type == type0 && val0 != NULL)
6975 return val0;
6976 else
6977 return value_from_contents_and_address (type, 0, address);
6978 }
6979
6980 /* A value representing VAL, but with a standard (static-sized) type
6981 that correctly describes it. Does not necessarily create a new
6982 value. */
6983
6984 static struct value *
6985 ada_to_fixed_value (struct value *val)
6986 {
6987 return ada_to_fixed_value_create (value_type (val),
6988 VALUE_ADDRESS (val) + value_offset (val),
6989 val);
6990 }
6991
6992 /* A value representing VAL, but with a standard (static-sized) type
6993 chosen to approximate the real type of VAL as well as possible, but
6994 without consulting any runtime values. For Ada dynamic-sized
6995 types, therefore, the type of the result is likely to be inaccurate. */
6996
6997 struct value *
6998 ada_to_static_fixed_value (struct value *val)
6999 {
7000 struct type *type =
7001 to_static_fixed_type (static_unwrap_type (value_type (val)));
7002 if (type == value_type (val))
7003 return val;
7004 else
7005 return coerce_unspec_val_to_type (val, type);
7006 }
7007 \f
7008
7009 /* Attributes */
7010
7011 /* Table mapping attribute numbers to names.
7012 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7013
7014 static const char *attribute_names[] = {
7015 "<?>",
7016
7017 "first",
7018 "last",
7019 "length",
7020 "image",
7021 "max",
7022 "min",
7023 "modulus",
7024 "pos",
7025 "size",
7026 "tag",
7027 "val",
7028 0
7029 };
7030
7031 const char *
7032 ada_attribute_name (enum exp_opcode n)
7033 {
7034 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7035 return attribute_names[n - OP_ATR_FIRST + 1];
7036 else
7037 return attribute_names[0];
7038 }
7039
7040 /* Evaluate the 'POS attribute applied to ARG. */
7041
7042 static LONGEST
7043 pos_atr (struct value *arg)
7044 {
7045 struct type *type = value_type (arg);
7046
7047 if (!discrete_type_p (type))
7048 error (_("'POS only defined on discrete types"));
7049
7050 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7051 {
7052 int i;
7053 LONGEST v = value_as_long (arg);
7054
7055 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7056 {
7057 if (v == TYPE_FIELD_BITPOS (type, i))
7058 return i;
7059 }
7060 error (_("enumeration value is invalid: can't find 'POS"));
7061 }
7062 else
7063 return value_as_long (arg);
7064 }
7065
7066 static struct value *
7067 value_pos_atr (struct value *arg)
7068 {
7069 return value_from_longest (builtin_type_int, pos_atr (arg));
7070 }
7071
7072 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7073
7074 static struct value *
7075 value_val_atr (struct type *type, struct value *arg)
7076 {
7077 if (!discrete_type_p (type))
7078 error (_("'VAL only defined on discrete types"));
7079 if (!integer_type_p (value_type (arg)))
7080 error (_("'VAL requires integral argument"));
7081
7082 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7083 {
7084 long pos = value_as_long (arg);
7085 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7086 error (_("argument to 'VAL out of range"));
7087 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7088 }
7089 else
7090 return value_from_longest (type, value_as_long (arg));
7091 }
7092 \f
7093
7094 /* Evaluation */
7095
7096 /* True if TYPE appears to be an Ada character type.
7097 [At the moment, this is true only for Character and Wide_Character;
7098 It is a heuristic test that could stand improvement]. */
7099
7100 int
7101 ada_is_character_type (struct type *type)
7102 {
7103 const char *name = ada_type_name (type);
7104 return
7105 name != NULL
7106 && (TYPE_CODE (type) == TYPE_CODE_CHAR
7107 || TYPE_CODE (type) == TYPE_CODE_INT
7108 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7109 && (strcmp (name, "character") == 0
7110 || strcmp (name, "wide_character") == 0
7111 || strcmp (name, "unsigned char") == 0);
7112 }
7113
7114 /* True if TYPE appears to be an Ada string type. */
7115
7116 int
7117 ada_is_string_type (struct type *type)
7118 {
7119 type = ada_check_typedef (type);
7120 if (type != NULL
7121 && TYPE_CODE (type) != TYPE_CODE_PTR
7122 && (ada_is_simple_array_type (type)
7123 || ada_is_array_descriptor_type (type))
7124 && ada_array_arity (type) == 1)
7125 {
7126 struct type *elttype = ada_array_element_type (type, 1);
7127
7128 return ada_is_character_type (elttype);
7129 }
7130 else
7131 return 0;
7132 }
7133
7134
7135 /* True if TYPE is a struct type introduced by the compiler to force the
7136 alignment of a value. Such types have a single field with a
7137 distinctive name. */
7138
7139 int
7140 ada_is_aligner_type (struct type *type)
7141 {
7142 type = ada_check_typedef (type);
7143
7144 /* If we can find a parallel XVS type, then the XVS type should
7145 be used instead of this type. And hence, this is not an aligner
7146 type. */
7147 if (ada_find_parallel_type (type, "___XVS") != NULL)
7148 return 0;
7149
7150 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7151 && TYPE_NFIELDS (type) == 1
7152 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7153 }
7154
7155 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7156 the parallel type. */
7157
7158 struct type *
7159 ada_get_base_type (struct type *raw_type)
7160 {
7161 struct type *real_type_namer;
7162 struct type *raw_real_type;
7163
7164 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7165 return raw_type;
7166
7167 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7168 if (real_type_namer == NULL
7169 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7170 || TYPE_NFIELDS (real_type_namer) != 1)
7171 return raw_type;
7172
7173 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7174 if (raw_real_type == NULL)
7175 return raw_type;
7176 else
7177 return raw_real_type;
7178 }
7179
7180 /* The type of value designated by TYPE, with all aligners removed. */
7181
7182 struct type *
7183 ada_aligned_type (struct type *type)
7184 {
7185 if (ada_is_aligner_type (type))
7186 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7187 else
7188 return ada_get_base_type (type);
7189 }
7190
7191
7192 /* The address of the aligned value in an object at address VALADDR
7193 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7194
7195 const gdb_byte *
7196 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7197 {
7198 if (ada_is_aligner_type (type))
7199 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7200 valaddr +
7201 TYPE_FIELD_BITPOS (type,
7202 0) / TARGET_CHAR_BIT);
7203 else
7204 return valaddr;
7205 }
7206
7207
7208
7209 /* The printed representation of an enumeration literal with encoded
7210 name NAME. The value is good to the next call of ada_enum_name. */
7211 const char *
7212 ada_enum_name (const char *name)
7213 {
7214 static char *result;
7215 static size_t result_len = 0;
7216 char *tmp;
7217
7218 /* First, unqualify the enumeration name:
7219 1. Search for the last '.' character. If we find one, then skip
7220 all the preceeding characters, the unqualified name starts
7221 right after that dot.
7222 2. Otherwise, we may be debugging on a target where the compiler
7223 translates dots into "__". Search forward for double underscores,
7224 but stop searching when we hit an overloading suffix, which is
7225 of the form "__" followed by digits. */
7226
7227 tmp = strrchr (name, '.');
7228 if (tmp != NULL)
7229 name = tmp + 1;
7230 else
7231 {
7232 while ((tmp = strstr (name, "__")) != NULL)
7233 {
7234 if (isdigit (tmp[2]))
7235 break;
7236 else
7237 name = tmp + 2;
7238 }
7239 }
7240
7241 if (name[0] == 'Q')
7242 {
7243 int v;
7244 if (name[1] == 'U' || name[1] == 'W')
7245 {
7246 if (sscanf (name + 2, "%x", &v) != 1)
7247 return name;
7248 }
7249 else
7250 return name;
7251
7252 GROW_VECT (result, result_len, 16);
7253 if (isascii (v) && isprint (v))
7254 sprintf (result, "'%c'", v);
7255 else if (name[1] == 'U')
7256 sprintf (result, "[\"%02x\"]", v);
7257 else
7258 sprintf (result, "[\"%04x\"]", v);
7259
7260 return result;
7261 }
7262 else
7263 {
7264 tmp = strstr (name, "__");
7265 if (tmp == NULL)
7266 tmp = strstr (name, "$");
7267 if (tmp != NULL)
7268 {
7269 GROW_VECT (result, result_len, tmp - name + 1);
7270 strncpy (result, name, tmp - name);
7271 result[tmp - name] = '\0';
7272 return result;
7273 }
7274
7275 return name;
7276 }
7277 }
7278
7279 static struct value *
7280 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7281 enum noside noside)
7282 {
7283 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7284 (expect_type, exp, pos, noside);
7285 }
7286
7287 /* Evaluate the subexpression of EXP starting at *POS as for
7288 evaluate_type, updating *POS to point just past the evaluated
7289 expression. */
7290
7291 static struct value *
7292 evaluate_subexp_type (struct expression *exp, int *pos)
7293 {
7294 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7295 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7296 }
7297
7298 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7299 value it wraps. */
7300
7301 static struct value *
7302 unwrap_value (struct value *val)
7303 {
7304 struct type *type = ada_check_typedef (value_type (val));
7305 if (ada_is_aligner_type (type))
7306 {
7307 struct value *v = value_struct_elt (&val, NULL, "F",
7308 NULL, "internal structure");
7309 struct type *val_type = ada_check_typedef (value_type (v));
7310 if (ada_type_name (val_type) == NULL)
7311 TYPE_NAME (val_type) = ada_type_name (type);
7312
7313 return unwrap_value (v);
7314 }
7315 else
7316 {
7317 struct type *raw_real_type =
7318 ada_check_typedef (ada_get_base_type (type));
7319
7320 if (type == raw_real_type)
7321 return val;
7322
7323 return
7324 coerce_unspec_val_to_type
7325 (val, ada_to_fixed_type (raw_real_type, 0,
7326 VALUE_ADDRESS (val) + value_offset (val),
7327 NULL));
7328 }
7329 }
7330
7331 static struct value *
7332 cast_to_fixed (struct type *type, struct value *arg)
7333 {
7334 LONGEST val;
7335
7336 if (type == value_type (arg))
7337 return arg;
7338 else if (ada_is_fixed_point_type (value_type (arg)))
7339 val = ada_float_to_fixed (type,
7340 ada_fixed_to_float (value_type (arg),
7341 value_as_long (arg)));
7342 else
7343 {
7344 DOUBLEST argd =
7345 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7346 val = ada_float_to_fixed (type, argd);
7347 }
7348
7349 return value_from_longest (type, val);
7350 }
7351
7352 static struct value *
7353 cast_from_fixed_to_double (struct value *arg)
7354 {
7355 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7356 value_as_long (arg));
7357 return value_from_double (builtin_type_double, val);
7358 }
7359
7360 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7361 return the converted value. */
7362
7363 static struct value *
7364 coerce_for_assign (struct type *type, struct value *val)
7365 {
7366 struct type *type2 = value_type (val);
7367 if (type == type2)
7368 return val;
7369
7370 type2 = ada_check_typedef (type2);
7371 type = ada_check_typedef (type);
7372
7373 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7374 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7375 {
7376 val = ada_value_ind (val);
7377 type2 = value_type (val);
7378 }
7379
7380 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7381 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7382 {
7383 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7384 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7385 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7386 error (_("Incompatible types in assignment"));
7387 deprecated_set_value_type (val, type);
7388 }
7389 return val;
7390 }
7391
7392 static struct value *
7393 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7394 {
7395 struct value *val;
7396 struct type *type1, *type2;
7397 LONGEST v, v1, v2;
7398
7399 arg1 = coerce_ref (arg1);
7400 arg2 = coerce_ref (arg2);
7401 type1 = base_type (ada_check_typedef (value_type (arg1)));
7402 type2 = base_type (ada_check_typedef (value_type (arg2)));
7403
7404 if (TYPE_CODE (type1) != TYPE_CODE_INT
7405 || TYPE_CODE (type2) != TYPE_CODE_INT)
7406 return value_binop (arg1, arg2, op);
7407
7408 switch (op)
7409 {
7410 case BINOP_MOD:
7411 case BINOP_DIV:
7412 case BINOP_REM:
7413 break;
7414 default:
7415 return value_binop (arg1, arg2, op);
7416 }
7417
7418 v2 = value_as_long (arg2);
7419 if (v2 == 0)
7420 error (_("second operand of %s must not be zero."), op_string (op));
7421
7422 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7423 return value_binop (arg1, arg2, op);
7424
7425 v1 = value_as_long (arg1);
7426 switch (op)
7427 {
7428 case BINOP_DIV:
7429 v = v1 / v2;
7430 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7431 v += v > 0 ? -1 : 1;
7432 break;
7433 case BINOP_REM:
7434 v = v1 % v2;
7435 if (v * v1 < 0)
7436 v -= v2;
7437 break;
7438 default:
7439 /* Should not reach this point. */
7440 v = 0;
7441 }
7442
7443 val = allocate_value (type1);
7444 store_unsigned_integer (value_contents_raw (val),
7445 TYPE_LENGTH (value_type (val)), v);
7446 return val;
7447 }
7448
7449 static int
7450 ada_value_equal (struct value *arg1, struct value *arg2)
7451 {
7452 if (ada_is_direct_array_type (value_type (arg1))
7453 || ada_is_direct_array_type (value_type (arg2)))
7454 {
7455 arg1 = ada_coerce_to_simple_array (arg1);
7456 arg2 = ada_coerce_to_simple_array (arg2);
7457 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7458 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7459 error (_("Attempt to compare array with non-array"));
7460 /* FIXME: The following works only for types whose
7461 representations use all bits (no padding or undefined bits)
7462 and do not have user-defined equality. */
7463 return
7464 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7465 && memcmp (value_contents (arg1), value_contents (arg2),
7466 TYPE_LENGTH (value_type (arg1))) == 0;
7467 }
7468 return value_equal (arg1, arg2);
7469 }
7470
7471 /* Total number of component associations in the aggregate starting at
7472 index PC in EXP. Assumes that index PC is the start of an
7473 OP_AGGREGATE. */
7474
7475 static int
7476 num_component_specs (struct expression *exp, int pc)
7477 {
7478 int n, m, i;
7479 m = exp->elts[pc + 1].longconst;
7480 pc += 3;
7481 n = 0;
7482 for (i = 0; i < m; i += 1)
7483 {
7484 switch (exp->elts[pc].opcode)
7485 {
7486 default:
7487 n += 1;
7488 break;
7489 case OP_CHOICES:
7490 n += exp->elts[pc + 1].longconst;
7491 break;
7492 }
7493 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7494 }
7495 return n;
7496 }
7497
7498 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7499 component of LHS (a simple array or a record), updating *POS past
7500 the expression, assuming that LHS is contained in CONTAINER. Does
7501 not modify the inferior's memory, nor does it modify LHS (unless
7502 LHS == CONTAINER). */
7503
7504 static void
7505 assign_component (struct value *container, struct value *lhs, LONGEST index,
7506 struct expression *exp, int *pos)
7507 {
7508 struct value *mark = value_mark ();
7509 struct value *elt;
7510 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7511 {
7512 struct value *index_val = value_from_longest (builtin_type_int, index);
7513 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7514 }
7515 else
7516 {
7517 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7518 elt = ada_to_fixed_value (unwrap_value (elt));
7519 }
7520
7521 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7522 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7523 else
7524 value_assign_to_component (container, elt,
7525 ada_evaluate_subexp (NULL, exp, pos,
7526 EVAL_NORMAL));
7527
7528 value_free_to_mark (mark);
7529 }
7530
7531 /* Assuming that LHS represents an lvalue having a record or array
7532 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7533 of that aggregate's value to LHS, advancing *POS past the
7534 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7535 lvalue containing LHS (possibly LHS itself). Does not modify
7536 the inferior's memory, nor does it modify the contents of
7537 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7538
7539 static struct value *
7540 assign_aggregate (struct value *container,
7541 struct value *lhs, struct expression *exp,
7542 int *pos, enum noside noside)
7543 {
7544 struct type *lhs_type;
7545 int n = exp->elts[*pos+1].longconst;
7546 LONGEST low_index, high_index;
7547 int num_specs;
7548 LONGEST *indices;
7549 int max_indices, num_indices;
7550 int is_array_aggregate;
7551 int i;
7552 struct value *mark = value_mark ();
7553
7554 *pos += 3;
7555 if (noside != EVAL_NORMAL)
7556 {
7557 int i;
7558 for (i = 0; i < n; i += 1)
7559 ada_evaluate_subexp (NULL, exp, pos, noside);
7560 return container;
7561 }
7562
7563 container = ada_coerce_ref (container);
7564 if (ada_is_direct_array_type (value_type (container)))
7565 container = ada_coerce_to_simple_array (container);
7566 lhs = ada_coerce_ref (lhs);
7567 if (!deprecated_value_modifiable (lhs))
7568 error (_("Left operand of assignment is not a modifiable lvalue."));
7569
7570 lhs_type = value_type (lhs);
7571 if (ada_is_direct_array_type (lhs_type))
7572 {
7573 lhs = ada_coerce_to_simple_array (lhs);
7574 lhs_type = value_type (lhs);
7575 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7576 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7577 is_array_aggregate = 1;
7578 }
7579 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7580 {
7581 low_index = 0;
7582 high_index = num_visible_fields (lhs_type) - 1;
7583 is_array_aggregate = 0;
7584 }
7585 else
7586 error (_("Left-hand side must be array or record."));
7587
7588 num_specs = num_component_specs (exp, *pos - 3);
7589 max_indices = 4 * num_specs + 4;
7590 indices = alloca (max_indices * sizeof (indices[0]));
7591 indices[0] = indices[1] = low_index - 1;
7592 indices[2] = indices[3] = high_index + 1;
7593 num_indices = 4;
7594
7595 for (i = 0; i < n; i += 1)
7596 {
7597 switch (exp->elts[*pos].opcode)
7598 {
7599 case OP_CHOICES:
7600 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7601 &num_indices, max_indices,
7602 low_index, high_index);
7603 break;
7604 case OP_POSITIONAL:
7605 aggregate_assign_positional (container, lhs, exp, pos, indices,
7606 &num_indices, max_indices,
7607 low_index, high_index);
7608 break;
7609 case OP_OTHERS:
7610 if (i != n-1)
7611 error (_("Misplaced 'others' clause"));
7612 aggregate_assign_others (container, lhs, exp, pos, indices,
7613 num_indices, low_index, high_index);
7614 break;
7615 default:
7616 error (_("Internal error: bad aggregate clause"));
7617 }
7618 }
7619
7620 return container;
7621 }
7622
7623 /* Assign into the component of LHS indexed by the OP_POSITIONAL
7624 construct at *POS, updating *POS past the construct, given that
7625 the positions are relative to lower bound LOW, where HIGH is the
7626 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7627 updating *NUM_INDICES as needed. CONTAINER is as for
7628 assign_aggregate. */
7629 static void
7630 aggregate_assign_positional (struct value *container,
7631 struct value *lhs, struct expression *exp,
7632 int *pos, LONGEST *indices, int *num_indices,
7633 int max_indices, LONGEST low, LONGEST high)
7634 {
7635 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7636
7637 if (ind - 1 == high)
7638 warning (_("Extra components in aggregate ignored."));
7639 if (ind <= high)
7640 {
7641 add_component_interval (ind, ind, indices, num_indices, max_indices);
7642 *pos += 3;
7643 assign_component (container, lhs, ind, exp, pos);
7644 }
7645 else
7646 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7647 }
7648
7649 /* Assign into the components of LHS indexed by the OP_CHOICES
7650 construct at *POS, updating *POS past the construct, given that
7651 the allowable indices are LOW..HIGH. Record the indices assigned
7652 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7653 needed. CONTAINER is as for assign_aggregate. */
7654 static void
7655 aggregate_assign_from_choices (struct value *container,
7656 struct value *lhs, struct expression *exp,
7657 int *pos, LONGEST *indices, int *num_indices,
7658 int max_indices, LONGEST low, LONGEST high)
7659 {
7660 int j;
7661 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
7662 int choice_pos, expr_pc;
7663 int is_array = ada_is_direct_array_type (value_type (lhs));
7664
7665 choice_pos = *pos += 3;
7666
7667 for (j = 0; j < n_choices; j += 1)
7668 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7669 expr_pc = *pos;
7670 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7671
7672 for (j = 0; j < n_choices; j += 1)
7673 {
7674 LONGEST lower, upper;
7675 enum exp_opcode op = exp->elts[choice_pos].opcode;
7676 if (op == OP_DISCRETE_RANGE)
7677 {
7678 choice_pos += 1;
7679 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7680 EVAL_NORMAL));
7681 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7682 EVAL_NORMAL));
7683 }
7684 else if (is_array)
7685 {
7686 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
7687 EVAL_NORMAL));
7688 upper = lower;
7689 }
7690 else
7691 {
7692 int ind;
7693 char *name;
7694 switch (op)
7695 {
7696 case OP_NAME:
7697 name = &exp->elts[choice_pos + 2].string;
7698 break;
7699 case OP_VAR_VALUE:
7700 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
7701 break;
7702 default:
7703 error (_("Invalid record component association."));
7704 }
7705 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
7706 ind = 0;
7707 if (! find_struct_field (name, value_type (lhs), 0,
7708 NULL, NULL, NULL, NULL, &ind))
7709 error (_("Unknown component name: %s."), name);
7710 lower = upper = ind;
7711 }
7712
7713 if (lower <= upper && (lower < low || upper > high))
7714 error (_("Index in component association out of bounds."));
7715
7716 add_component_interval (lower, upper, indices, num_indices,
7717 max_indices);
7718 while (lower <= upper)
7719 {
7720 int pos1;
7721 pos1 = expr_pc;
7722 assign_component (container, lhs, lower, exp, &pos1);
7723 lower += 1;
7724 }
7725 }
7726 }
7727
7728 /* Assign the value of the expression in the OP_OTHERS construct in
7729 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
7730 have not been previously assigned. The index intervals already assigned
7731 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
7732 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
7733 static void
7734 aggregate_assign_others (struct value *container,
7735 struct value *lhs, struct expression *exp,
7736 int *pos, LONGEST *indices, int num_indices,
7737 LONGEST low, LONGEST high)
7738 {
7739 int i;
7740 int expr_pc = *pos+1;
7741
7742 for (i = 0; i < num_indices - 2; i += 2)
7743 {
7744 LONGEST ind;
7745 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
7746 {
7747 int pos;
7748 pos = expr_pc;
7749 assign_component (container, lhs, ind, exp, &pos);
7750 }
7751 }
7752 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7753 }
7754
7755 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
7756 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
7757 modifying *SIZE as needed. It is an error if *SIZE exceeds
7758 MAX_SIZE. The resulting intervals do not overlap. */
7759 static void
7760 add_component_interval (LONGEST low, LONGEST high,
7761 LONGEST* indices, int *size, int max_size)
7762 {
7763 int i, j;
7764 for (i = 0; i < *size; i += 2) {
7765 if (high >= indices[i] && low <= indices[i + 1])
7766 {
7767 int kh;
7768 for (kh = i + 2; kh < *size; kh += 2)
7769 if (high < indices[kh])
7770 break;
7771 if (low < indices[i])
7772 indices[i] = low;
7773 indices[i + 1] = indices[kh - 1];
7774 if (high > indices[i + 1])
7775 indices[i + 1] = high;
7776 memcpy (indices + i + 2, indices + kh, *size - kh);
7777 *size -= kh - i - 2;
7778 return;
7779 }
7780 else if (high < indices[i])
7781 break;
7782 }
7783
7784 if (*size == max_size)
7785 error (_("Internal error: miscounted aggregate components."));
7786 *size += 2;
7787 for (j = *size-1; j >= i+2; j -= 1)
7788 indices[j] = indices[j - 2];
7789 indices[i] = low;
7790 indices[i + 1] = high;
7791 }
7792
7793 static struct value *
7794 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
7795 int *pos, enum noside noside)
7796 {
7797 enum exp_opcode op;
7798 int tem, tem2, tem3;
7799 int pc;
7800 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
7801 struct type *type;
7802 int nargs, oplen;
7803 struct value **argvec;
7804
7805 pc = *pos;
7806 *pos += 1;
7807 op = exp->elts[pc].opcode;
7808
7809 switch (op)
7810 {
7811 default:
7812 *pos -= 1;
7813 return
7814 unwrap_value (evaluate_subexp_standard
7815 (expect_type, exp, pos, noside));
7816
7817 case OP_STRING:
7818 {
7819 struct value *result;
7820 *pos -= 1;
7821 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
7822 /* The result type will have code OP_STRING, bashed there from
7823 OP_ARRAY. Bash it back. */
7824 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
7825 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
7826 return result;
7827 }
7828
7829 case UNOP_CAST:
7830 (*pos) += 2;
7831 type = exp->elts[pc + 1].type;
7832 arg1 = evaluate_subexp (type, exp, pos, noside);
7833 if (noside == EVAL_SKIP)
7834 goto nosideret;
7835 if (type != ada_check_typedef (value_type (arg1)))
7836 {
7837 if (ada_is_fixed_point_type (type))
7838 arg1 = cast_to_fixed (type, arg1);
7839 else if (ada_is_fixed_point_type (value_type (arg1)))
7840 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
7841 else if (VALUE_LVAL (arg1) == lval_memory)
7842 {
7843 /* This is in case of the really obscure (and undocumented,
7844 but apparently expected) case of (Foo) Bar.all, where Bar
7845 is an integer constant and Foo is a dynamic-sized type.
7846 If we don't do this, ARG1 will simply be relabeled with
7847 TYPE. */
7848 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7849 return value_zero (to_static_fixed_type (type), not_lval);
7850 arg1 =
7851 ada_to_fixed_value_create
7852 (type, VALUE_ADDRESS (arg1) + value_offset (arg1), 0);
7853 }
7854 else
7855 arg1 = value_cast (type, arg1);
7856 }
7857 return arg1;
7858
7859 case UNOP_QUAL:
7860 (*pos) += 2;
7861 type = exp->elts[pc + 1].type;
7862 return ada_evaluate_subexp (type, exp, pos, noside);
7863
7864 case BINOP_ASSIGN:
7865 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7866 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7867 {
7868 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
7869 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7870 return arg1;
7871 return ada_value_assign (arg1, arg1);
7872 }
7873 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7874 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7875 return arg1;
7876 if (ada_is_fixed_point_type (value_type (arg1)))
7877 arg2 = cast_to_fixed (value_type (arg1), arg2);
7878 else if (ada_is_fixed_point_type (value_type (arg2)))
7879 error
7880 (_("Fixed-point values must be assigned to fixed-point variables"));
7881 else
7882 arg2 = coerce_for_assign (value_type (arg1), arg2);
7883 return ada_value_assign (arg1, arg2);
7884
7885 case BINOP_ADD:
7886 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7887 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7888 if (noside == EVAL_SKIP)
7889 goto nosideret;
7890 if ((ada_is_fixed_point_type (value_type (arg1))
7891 || ada_is_fixed_point_type (value_type (arg2)))
7892 && value_type (arg1) != value_type (arg2))
7893 error (_("Operands of fixed-point addition must have the same type"));
7894 return value_cast (value_type (arg1), value_add (arg1, arg2));
7895
7896 case BINOP_SUB:
7897 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7898 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7899 if (noside == EVAL_SKIP)
7900 goto nosideret;
7901 if ((ada_is_fixed_point_type (value_type (arg1))
7902 || ada_is_fixed_point_type (value_type (arg2)))
7903 && value_type (arg1) != value_type (arg2))
7904 error (_("Operands of fixed-point subtraction must have the same type"));
7905 return value_cast (value_type (arg1), value_sub (arg1, arg2));
7906
7907 case BINOP_MUL:
7908 case BINOP_DIV:
7909 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7910 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7911 if (noside == EVAL_SKIP)
7912 goto nosideret;
7913 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7914 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7915 return value_zero (value_type (arg1), not_lval);
7916 else
7917 {
7918 if (ada_is_fixed_point_type (value_type (arg1)))
7919 arg1 = cast_from_fixed_to_double (arg1);
7920 if (ada_is_fixed_point_type (value_type (arg2)))
7921 arg2 = cast_from_fixed_to_double (arg2);
7922 return ada_value_binop (arg1, arg2, op);
7923 }
7924
7925 case BINOP_REM:
7926 case BINOP_MOD:
7927 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7928 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7929 if (noside == EVAL_SKIP)
7930 goto nosideret;
7931 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7932 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7933 return value_zero (value_type (arg1), not_lval);
7934 else
7935 return ada_value_binop (arg1, arg2, op);
7936
7937 case BINOP_EQUAL:
7938 case BINOP_NOTEQUAL:
7939 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7940 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7941 if (noside == EVAL_SKIP)
7942 goto nosideret;
7943 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7944 tem = 0;
7945 else
7946 tem = ada_value_equal (arg1, arg2);
7947 if (op == BINOP_NOTEQUAL)
7948 tem = !tem;
7949 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
7950
7951 case UNOP_NEG:
7952 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7953 if (noside == EVAL_SKIP)
7954 goto nosideret;
7955 else if (ada_is_fixed_point_type (value_type (arg1)))
7956 return value_cast (value_type (arg1), value_neg (arg1));
7957 else
7958 return value_neg (arg1);
7959
7960 case OP_VAR_VALUE:
7961 *pos -= 1;
7962 if (noside == EVAL_SKIP)
7963 {
7964 *pos += 4;
7965 goto nosideret;
7966 }
7967 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
7968 /* Only encountered when an unresolved symbol occurs in a
7969 context other than a function call, in which case, it is
7970 invalid. */
7971 error (_("Unexpected unresolved symbol, %s, during evaluation"),
7972 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
7973 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7974 {
7975 *pos += 4;
7976 return value_zero
7977 (to_static_fixed_type
7978 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
7979 not_lval);
7980 }
7981 else
7982 {
7983 arg1 =
7984 unwrap_value (evaluate_subexp_standard
7985 (expect_type, exp, pos, noside));
7986 return ada_to_fixed_value (arg1);
7987 }
7988
7989 case OP_FUNCALL:
7990 (*pos) += 2;
7991
7992 /* Allocate arg vector, including space for the function to be
7993 called in argvec[0] and a terminating NULL. */
7994 nargs = longest_to_int (exp->elts[pc + 1].longconst);
7995 argvec =
7996 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
7997
7998 if (exp->elts[*pos].opcode == OP_VAR_VALUE
7999 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8000 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8001 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8002 else
8003 {
8004 for (tem = 0; tem <= nargs; tem += 1)
8005 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8006 argvec[tem] = 0;
8007
8008 if (noside == EVAL_SKIP)
8009 goto nosideret;
8010 }
8011
8012 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8013 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8014 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8015 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8016 && VALUE_LVAL (argvec[0]) == lval_memory))
8017 argvec[0] = value_addr (argvec[0]);
8018
8019 type = ada_check_typedef (value_type (argvec[0]));
8020 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8021 {
8022 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8023 {
8024 case TYPE_CODE_FUNC:
8025 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8026 break;
8027 case TYPE_CODE_ARRAY:
8028 break;
8029 case TYPE_CODE_STRUCT:
8030 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8031 argvec[0] = ada_value_ind (argvec[0]);
8032 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8033 break;
8034 default:
8035 error (_("cannot subscript or call something of type `%s'"),
8036 ada_type_name (value_type (argvec[0])));
8037 break;
8038 }
8039 }
8040
8041 switch (TYPE_CODE (type))
8042 {
8043 case TYPE_CODE_FUNC:
8044 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8045 return allocate_value (TYPE_TARGET_TYPE (type));
8046 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8047 case TYPE_CODE_STRUCT:
8048 {
8049 int arity;
8050
8051 arity = ada_array_arity (type);
8052 type = ada_array_element_type (type, nargs);
8053 if (type == NULL)
8054 error (_("cannot subscript or call a record"));
8055 if (arity != nargs)
8056 error (_("wrong number of subscripts; expecting %d"), arity);
8057 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8058 return allocate_value (ada_aligned_type (type));
8059 return
8060 unwrap_value (ada_value_subscript
8061 (argvec[0], nargs, argvec + 1));
8062 }
8063 case TYPE_CODE_ARRAY:
8064 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8065 {
8066 type = ada_array_element_type (type, nargs);
8067 if (type == NULL)
8068 error (_("element type of array unknown"));
8069 else
8070 return allocate_value (ada_aligned_type (type));
8071 }
8072 return
8073 unwrap_value (ada_value_subscript
8074 (ada_coerce_to_simple_array (argvec[0]),
8075 nargs, argvec + 1));
8076 case TYPE_CODE_PTR: /* Pointer to array */
8077 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8078 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8079 {
8080 type = ada_array_element_type (type, nargs);
8081 if (type == NULL)
8082 error (_("element type of array unknown"));
8083 else
8084 return allocate_value (ada_aligned_type (type));
8085 }
8086 return
8087 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8088 nargs, argvec + 1));
8089
8090 default:
8091 error (_("Attempt to index or call something other than an "
8092 "array or function"));
8093 }
8094
8095 case TERNOP_SLICE:
8096 {
8097 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8098 struct value *low_bound_val =
8099 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8100 struct value *high_bound_val =
8101 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8102 LONGEST low_bound;
8103 LONGEST high_bound;
8104 low_bound_val = coerce_ref (low_bound_val);
8105 high_bound_val = coerce_ref (high_bound_val);
8106 low_bound = pos_atr (low_bound_val);
8107 high_bound = pos_atr (high_bound_val);
8108
8109 if (noside == EVAL_SKIP)
8110 goto nosideret;
8111
8112 /* If this is a reference to an aligner type, then remove all
8113 the aligners. */
8114 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8115 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8116 TYPE_TARGET_TYPE (value_type (array)) =
8117 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8118
8119 if (ada_is_packed_array_type (value_type (array)))
8120 error (_("cannot slice a packed array"));
8121
8122 /* If this is a reference to an array or an array lvalue,
8123 convert to a pointer. */
8124 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8125 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8126 && VALUE_LVAL (array) == lval_memory))
8127 array = value_addr (array);
8128
8129 if (noside == EVAL_AVOID_SIDE_EFFECTS
8130 && ada_is_array_descriptor_type (ada_check_typedef
8131 (value_type (array))))
8132 return empty_array (ada_type_of_array (array, 0), low_bound);
8133
8134 array = ada_coerce_to_simple_array_ptr (array);
8135
8136 /* If we have more than one level of pointer indirection,
8137 dereference the value until we get only one level. */
8138 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8139 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8140 == TYPE_CODE_PTR))
8141 array = value_ind (array);
8142
8143 /* Make sure we really do have an array type before going further,
8144 to avoid a SEGV when trying to get the index type or the target
8145 type later down the road if the debug info generated by
8146 the compiler is incorrect or incomplete. */
8147 if (!ada_is_simple_array_type (value_type (array)))
8148 error (_("cannot take slice of non-array"));
8149
8150 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8151 {
8152 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8153 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8154 low_bound);
8155 else
8156 {
8157 struct type *arr_type0 =
8158 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8159 NULL, 1);
8160 return ada_value_slice_ptr (array, arr_type0,
8161 longest_to_int (low_bound),
8162 longest_to_int (high_bound));
8163 }
8164 }
8165 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8166 return array;
8167 else if (high_bound < low_bound)
8168 return empty_array (value_type (array), low_bound);
8169 else
8170 return ada_value_slice (array, longest_to_int (low_bound),
8171 longest_to_int (high_bound));
8172 }
8173
8174 case UNOP_IN_RANGE:
8175 (*pos) += 2;
8176 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8177 type = exp->elts[pc + 1].type;
8178
8179 if (noside == EVAL_SKIP)
8180 goto nosideret;
8181
8182 switch (TYPE_CODE (type))
8183 {
8184 default:
8185 lim_warning (_("Membership test incompletely implemented; "
8186 "always returns true"));
8187 return value_from_longest (builtin_type_int, (LONGEST) 1);
8188
8189 case TYPE_CODE_RANGE:
8190 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8191 arg3 = value_from_longest (builtin_type_int,
8192 TYPE_HIGH_BOUND (type));
8193 return
8194 value_from_longest (builtin_type_int,
8195 (value_less (arg1, arg3)
8196 || value_equal (arg1, arg3))
8197 && (value_less (arg2, arg1)
8198 || value_equal (arg2, arg1)));
8199 }
8200
8201 case BINOP_IN_BOUNDS:
8202 (*pos) += 2;
8203 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8204 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8205
8206 if (noside == EVAL_SKIP)
8207 goto nosideret;
8208
8209 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8210 return value_zero (builtin_type_int, not_lval);
8211
8212 tem = longest_to_int (exp->elts[pc + 1].longconst);
8213
8214 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8215 error (_("invalid dimension number to 'range"));
8216
8217 arg3 = ada_array_bound (arg2, tem, 1);
8218 arg2 = ada_array_bound (arg2, tem, 0);
8219
8220 return
8221 value_from_longest (builtin_type_int,
8222 (value_less (arg1, arg3)
8223 || value_equal (arg1, arg3))
8224 && (value_less (arg2, arg1)
8225 || value_equal (arg2, arg1)));
8226
8227 case TERNOP_IN_RANGE:
8228 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8229 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8230 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8231
8232 if (noside == EVAL_SKIP)
8233 goto nosideret;
8234
8235 return
8236 value_from_longest (builtin_type_int,
8237 (value_less (arg1, arg3)
8238 || value_equal (arg1, arg3))
8239 && (value_less (arg2, arg1)
8240 || value_equal (arg2, arg1)));
8241
8242 case OP_ATR_FIRST:
8243 case OP_ATR_LAST:
8244 case OP_ATR_LENGTH:
8245 {
8246 struct type *type_arg;
8247 if (exp->elts[*pos].opcode == OP_TYPE)
8248 {
8249 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8250 arg1 = NULL;
8251 type_arg = exp->elts[pc + 2].type;
8252 }
8253 else
8254 {
8255 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8256 type_arg = NULL;
8257 }
8258
8259 if (exp->elts[*pos].opcode != OP_LONG)
8260 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8261 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8262 *pos += 4;
8263
8264 if (noside == EVAL_SKIP)
8265 goto nosideret;
8266
8267 if (type_arg == NULL)
8268 {
8269 arg1 = ada_coerce_ref (arg1);
8270
8271 if (ada_is_packed_array_type (value_type (arg1)))
8272 arg1 = ada_coerce_to_simple_array (arg1);
8273
8274 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8275 error (_("invalid dimension number to '%s"),
8276 ada_attribute_name (op));
8277
8278 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8279 {
8280 type = ada_index_type (value_type (arg1), tem);
8281 if (type == NULL)
8282 error
8283 (_("attempt to take bound of something that is not an array"));
8284 return allocate_value (type);
8285 }
8286
8287 switch (op)
8288 {
8289 default: /* Should never happen. */
8290 error (_("unexpected attribute encountered"));
8291 case OP_ATR_FIRST:
8292 return ada_array_bound (arg1, tem, 0);
8293 case OP_ATR_LAST:
8294 return ada_array_bound (arg1, tem, 1);
8295 case OP_ATR_LENGTH:
8296 return ada_array_length (arg1, tem);
8297 }
8298 }
8299 else if (discrete_type_p (type_arg))
8300 {
8301 struct type *range_type;
8302 char *name = ada_type_name (type_arg);
8303 range_type = NULL;
8304 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8305 range_type =
8306 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8307 if (range_type == NULL)
8308 range_type = type_arg;
8309 switch (op)
8310 {
8311 default:
8312 error (_("unexpected attribute encountered"));
8313 case OP_ATR_FIRST:
8314 return discrete_type_low_bound (range_type);
8315 case OP_ATR_LAST:
8316 return discrete_type_high_bound (range_type);
8317 case OP_ATR_LENGTH:
8318 error (_("the 'length attribute applies only to array types"));
8319 }
8320 }
8321 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8322 error (_("unimplemented type attribute"));
8323 else
8324 {
8325 LONGEST low, high;
8326
8327 if (ada_is_packed_array_type (type_arg))
8328 type_arg = decode_packed_array_type (type_arg);
8329
8330 if (tem < 1 || tem > ada_array_arity (type_arg))
8331 error (_("invalid dimension number to '%s"),
8332 ada_attribute_name (op));
8333
8334 type = ada_index_type (type_arg, tem);
8335 if (type == NULL)
8336 error
8337 (_("attempt to take bound of something that is not an array"));
8338 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8339 return allocate_value (type);
8340
8341 switch (op)
8342 {
8343 default:
8344 error (_("unexpected attribute encountered"));
8345 case OP_ATR_FIRST:
8346 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8347 return value_from_longest (type, low);
8348 case OP_ATR_LAST:
8349 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8350 return value_from_longest (type, high);
8351 case OP_ATR_LENGTH:
8352 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8353 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8354 return value_from_longest (type, high - low + 1);
8355 }
8356 }
8357 }
8358
8359 case OP_ATR_TAG:
8360 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8361 if (noside == EVAL_SKIP)
8362 goto nosideret;
8363
8364 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8365 return value_zero (ada_tag_type (arg1), not_lval);
8366
8367 return ada_value_tag (arg1);
8368
8369 case OP_ATR_MIN:
8370 case OP_ATR_MAX:
8371 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8372 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8373 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8374 if (noside == EVAL_SKIP)
8375 goto nosideret;
8376 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8377 return value_zero (value_type (arg1), not_lval);
8378 else
8379 return value_binop (arg1, arg2,
8380 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8381
8382 case OP_ATR_MODULUS:
8383 {
8384 struct type *type_arg = exp->elts[pc + 2].type;
8385 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8386
8387 if (noside == EVAL_SKIP)
8388 goto nosideret;
8389
8390 if (!ada_is_modular_type (type_arg))
8391 error (_("'modulus must be applied to modular type"));
8392
8393 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8394 ada_modulus (type_arg));
8395 }
8396
8397
8398 case OP_ATR_POS:
8399 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8400 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8401 if (noside == EVAL_SKIP)
8402 goto nosideret;
8403 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8404 return value_zero (builtin_type_int, not_lval);
8405 else
8406 return value_pos_atr (arg1);
8407
8408 case OP_ATR_SIZE:
8409 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8410 if (noside == EVAL_SKIP)
8411 goto nosideret;
8412 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8413 return value_zero (builtin_type_int, not_lval);
8414 else
8415 return value_from_longest (builtin_type_int,
8416 TARGET_CHAR_BIT
8417 * TYPE_LENGTH (value_type (arg1)));
8418
8419 case OP_ATR_VAL:
8420 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8421 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8422 type = exp->elts[pc + 2].type;
8423 if (noside == EVAL_SKIP)
8424 goto nosideret;
8425 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8426 return value_zero (type, not_lval);
8427 else
8428 return value_val_atr (type, arg1);
8429
8430 case BINOP_EXP:
8431 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8432 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8433 if (noside == EVAL_SKIP)
8434 goto nosideret;
8435 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8436 return value_zero (value_type (arg1), not_lval);
8437 else
8438 return value_binop (arg1, arg2, op);
8439
8440 case UNOP_PLUS:
8441 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8442 if (noside == EVAL_SKIP)
8443 goto nosideret;
8444 else
8445 return arg1;
8446
8447 case UNOP_ABS:
8448 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8449 if (noside == EVAL_SKIP)
8450 goto nosideret;
8451 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
8452 return value_neg (arg1);
8453 else
8454 return arg1;
8455
8456 case UNOP_IND:
8457 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
8458 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
8459 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8460 if (noside == EVAL_SKIP)
8461 goto nosideret;
8462 type = ada_check_typedef (value_type (arg1));
8463 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8464 {
8465 if (ada_is_array_descriptor_type (type))
8466 /* GDB allows dereferencing GNAT array descriptors. */
8467 {
8468 struct type *arrType = ada_type_of_array (arg1, 0);
8469 if (arrType == NULL)
8470 error (_("Attempt to dereference null array pointer."));
8471 return value_at_lazy (arrType, 0);
8472 }
8473 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8474 || TYPE_CODE (type) == TYPE_CODE_REF
8475 /* In C you can dereference an array to get the 1st elt. */
8476 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
8477 {
8478 type = to_static_fixed_type
8479 (ada_aligned_type
8480 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8481 check_size (type);
8482 return value_zero (type, lval_memory);
8483 }
8484 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8485 /* GDB allows dereferencing an int. */
8486 return value_zero (builtin_type_int, lval_memory);
8487 else
8488 error (_("Attempt to take contents of a non-pointer value."));
8489 }
8490 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
8491 type = ada_check_typedef (value_type (arg1));
8492
8493 if (ada_is_array_descriptor_type (type))
8494 /* GDB allows dereferencing GNAT array descriptors. */
8495 return ada_coerce_to_simple_array (arg1);
8496 else
8497 return ada_value_ind (arg1);
8498
8499 case STRUCTOP_STRUCT:
8500 tem = longest_to_int (exp->elts[pc + 1].longconst);
8501 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8502 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8503 if (noside == EVAL_SKIP)
8504 goto nosideret;
8505 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8506 {
8507 struct type *type1 = value_type (arg1);
8508 if (ada_is_tagged_type (type1, 1))
8509 {
8510 type = ada_lookup_struct_elt_type (type1,
8511 &exp->elts[pc + 2].string,
8512 1, 1, NULL);
8513 if (type == NULL)
8514 /* In this case, we assume that the field COULD exist
8515 in some extension of the type. Return an object of
8516 "type" void, which will match any formal
8517 (see ada_type_match). */
8518 return value_zero (builtin_type_void, lval_memory);
8519 }
8520 else
8521 type =
8522 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8523 0, NULL);
8524
8525 return value_zero (ada_aligned_type (type), lval_memory);
8526 }
8527 else
8528 return
8529 ada_to_fixed_value (unwrap_value
8530 (ada_value_struct_elt
8531 (arg1, &exp->elts[pc + 2].string, 0)));
8532 case OP_TYPE:
8533 /* The value is not supposed to be used. This is here to make it
8534 easier to accommodate expressions that contain types. */
8535 (*pos) += 2;
8536 if (noside == EVAL_SKIP)
8537 goto nosideret;
8538 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8539 return allocate_value (exp->elts[pc + 1].type);
8540 else
8541 error (_("Attempt to use a type name as an expression"));
8542
8543 case OP_AGGREGATE:
8544 case OP_CHOICES:
8545 case OP_OTHERS:
8546 case OP_DISCRETE_RANGE:
8547 case OP_POSITIONAL:
8548 case OP_NAME:
8549 if (noside == EVAL_NORMAL)
8550 switch (op)
8551 {
8552 case OP_NAME:
8553 error (_("Undefined name, ambiguous name, or renaming used in "
8554 "component association: %s."), &exp->elts[pc+2].string);
8555 case OP_AGGREGATE:
8556 error (_("Aggregates only allowed on the right of an assignment"));
8557 default:
8558 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
8559 }
8560
8561 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8562 *pos += oplen - 1;
8563 for (tem = 0; tem < nargs; tem += 1)
8564 ada_evaluate_subexp (NULL, exp, pos, noside);
8565 goto nosideret;
8566 }
8567
8568 nosideret:
8569 return value_from_longest (builtin_type_long, (LONGEST) 1);
8570 }
8571 \f
8572
8573 /* Fixed point */
8574
8575 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
8576 type name that encodes the 'small and 'delta information.
8577 Otherwise, return NULL. */
8578
8579 static const char *
8580 fixed_type_info (struct type *type)
8581 {
8582 const char *name = ada_type_name (type);
8583 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8584
8585 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8586 {
8587 const char *tail = strstr (name, "___XF_");
8588 if (tail == NULL)
8589 return NULL;
8590 else
8591 return tail + 5;
8592 }
8593 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8594 return fixed_type_info (TYPE_TARGET_TYPE (type));
8595 else
8596 return NULL;
8597 }
8598
8599 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
8600
8601 int
8602 ada_is_fixed_point_type (struct type *type)
8603 {
8604 return fixed_type_info (type) != NULL;
8605 }
8606
8607 /* Return non-zero iff TYPE represents a System.Address type. */
8608
8609 int
8610 ada_is_system_address_type (struct type *type)
8611 {
8612 return (TYPE_NAME (type)
8613 && strcmp (TYPE_NAME (type), "system__address") == 0);
8614 }
8615
8616 /* Assuming that TYPE is the representation of an Ada fixed-point
8617 type, return its delta, or -1 if the type is malformed and the
8618 delta cannot be determined. */
8619
8620 DOUBLEST
8621 ada_delta (struct type *type)
8622 {
8623 const char *encoding = fixed_type_info (type);
8624 long num, den;
8625
8626 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
8627 return -1.0;
8628 else
8629 return (DOUBLEST) num / (DOUBLEST) den;
8630 }
8631
8632 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
8633 factor ('SMALL value) associated with the type. */
8634
8635 static DOUBLEST
8636 scaling_factor (struct type *type)
8637 {
8638 const char *encoding = fixed_type_info (type);
8639 unsigned long num0, den0, num1, den1;
8640 int n;
8641
8642 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
8643
8644 if (n < 2)
8645 return 1.0;
8646 else if (n == 4)
8647 return (DOUBLEST) num1 / (DOUBLEST) den1;
8648 else
8649 return (DOUBLEST) num0 / (DOUBLEST) den0;
8650 }
8651
8652
8653 /* Assuming that X is the representation of a value of fixed-point
8654 type TYPE, return its floating-point equivalent. */
8655
8656 DOUBLEST
8657 ada_fixed_to_float (struct type *type, LONGEST x)
8658 {
8659 return (DOUBLEST) x *scaling_factor (type);
8660 }
8661
8662 /* The representation of a fixed-point value of type TYPE
8663 corresponding to the value X. */
8664
8665 LONGEST
8666 ada_float_to_fixed (struct type *type, DOUBLEST x)
8667 {
8668 return (LONGEST) (x / scaling_factor (type) + 0.5);
8669 }
8670
8671
8672 /* VAX floating formats */
8673
8674 /* Non-zero iff TYPE represents one of the special VAX floating-point
8675 types. */
8676
8677 int
8678 ada_is_vax_floating_type (struct type *type)
8679 {
8680 int name_len =
8681 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
8682 return
8683 name_len > 6
8684 && (TYPE_CODE (type) == TYPE_CODE_INT
8685 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8686 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
8687 }
8688
8689 /* The type of special VAX floating-point type this is, assuming
8690 ada_is_vax_floating_point. */
8691
8692 int
8693 ada_vax_float_type_suffix (struct type *type)
8694 {
8695 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
8696 }
8697
8698 /* A value representing the special debugging function that outputs
8699 VAX floating-point values of the type represented by TYPE. Assumes
8700 ada_is_vax_floating_type (TYPE). */
8701
8702 struct value *
8703 ada_vax_float_print_function (struct type *type)
8704 {
8705 switch (ada_vax_float_type_suffix (type))
8706 {
8707 case 'F':
8708 return get_var_value ("DEBUG_STRING_F", 0);
8709 case 'D':
8710 return get_var_value ("DEBUG_STRING_D", 0);
8711 case 'G':
8712 return get_var_value ("DEBUG_STRING_G", 0);
8713 default:
8714 error (_("invalid VAX floating-point type"));
8715 }
8716 }
8717 \f
8718
8719 /* Range types */
8720
8721 /* Scan STR beginning at position K for a discriminant name, and
8722 return the value of that discriminant field of DVAL in *PX. If
8723 PNEW_K is not null, put the position of the character beyond the
8724 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
8725 not alter *PX and *PNEW_K if unsuccessful. */
8726
8727 static int
8728 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
8729 int *pnew_k)
8730 {
8731 static char *bound_buffer = NULL;
8732 static size_t bound_buffer_len = 0;
8733 char *bound;
8734 char *pend;
8735 struct value *bound_val;
8736
8737 if (dval == NULL || str == NULL || str[k] == '\0')
8738 return 0;
8739
8740 pend = strstr (str + k, "__");
8741 if (pend == NULL)
8742 {
8743 bound = str + k;
8744 k += strlen (bound);
8745 }
8746 else
8747 {
8748 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
8749 bound = bound_buffer;
8750 strncpy (bound_buffer, str + k, pend - (str + k));
8751 bound[pend - (str + k)] = '\0';
8752 k = pend - str;
8753 }
8754
8755 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
8756 if (bound_val == NULL)
8757 return 0;
8758
8759 *px = value_as_long (bound_val);
8760 if (pnew_k != NULL)
8761 *pnew_k = k;
8762 return 1;
8763 }
8764
8765 /* Value of variable named NAME in the current environment. If
8766 no such variable found, then if ERR_MSG is null, returns 0, and
8767 otherwise causes an error with message ERR_MSG. */
8768
8769 static struct value *
8770 get_var_value (char *name, char *err_msg)
8771 {
8772 struct ada_symbol_info *syms;
8773 int nsyms;
8774
8775 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
8776 &syms);
8777
8778 if (nsyms != 1)
8779 {
8780 if (err_msg == NULL)
8781 return 0;
8782 else
8783 error (("%s"), err_msg);
8784 }
8785
8786 return value_of_variable (syms[0].sym, syms[0].block);
8787 }
8788
8789 /* Value of integer variable named NAME in the current environment. If
8790 no such variable found, returns 0, and sets *FLAG to 0. If
8791 successful, sets *FLAG to 1. */
8792
8793 LONGEST
8794 get_int_var_value (char *name, int *flag)
8795 {
8796 struct value *var_val = get_var_value (name, 0);
8797
8798 if (var_val == 0)
8799 {
8800 if (flag != NULL)
8801 *flag = 0;
8802 return 0;
8803 }
8804 else
8805 {
8806 if (flag != NULL)
8807 *flag = 1;
8808 return value_as_long (var_val);
8809 }
8810 }
8811
8812
8813 /* Return a range type whose base type is that of the range type named
8814 NAME in the current environment, and whose bounds are calculated
8815 from NAME according to the GNAT range encoding conventions.
8816 Extract discriminant values, if needed, from DVAL. If a new type
8817 must be created, allocate in OBJFILE's space. The bounds
8818 information, in general, is encoded in NAME, the base type given in
8819 the named range type. */
8820
8821 static struct type *
8822 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
8823 {
8824 struct type *raw_type = ada_find_any_type (name);
8825 struct type *base_type;
8826 char *subtype_info;
8827
8828 if (raw_type == NULL)
8829 base_type = builtin_type_int;
8830 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
8831 base_type = TYPE_TARGET_TYPE (raw_type);
8832 else
8833 base_type = raw_type;
8834
8835 subtype_info = strstr (name, "___XD");
8836 if (subtype_info == NULL)
8837 return raw_type;
8838 else
8839 {
8840 static char *name_buf = NULL;
8841 static size_t name_len = 0;
8842 int prefix_len = subtype_info - name;
8843 LONGEST L, U;
8844 struct type *type;
8845 char *bounds_str;
8846 int n;
8847
8848 GROW_VECT (name_buf, name_len, prefix_len + 5);
8849 strncpy (name_buf, name, prefix_len);
8850 name_buf[prefix_len] = '\0';
8851
8852 subtype_info += 5;
8853 bounds_str = strchr (subtype_info, '_');
8854 n = 1;
8855
8856 if (*subtype_info == 'L')
8857 {
8858 if (!ada_scan_number (bounds_str, n, &L, &n)
8859 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
8860 return raw_type;
8861 if (bounds_str[n] == '_')
8862 n += 2;
8863 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
8864 n += 1;
8865 subtype_info += 1;
8866 }
8867 else
8868 {
8869 int ok;
8870 strcpy (name_buf + prefix_len, "___L");
8871 L = get_int_var_value (name_buf, &ok);
8872 if (!ok)
8873 {
8874 lim_warning (_("Unknown lower bound, using 1."));
8875 L = 1;
8876 }
8877 }
8878
8879 if (*subtype_info == 'U')
8880 {
8881 if (!ada_scan_number (bounds_str, n, &U, &n)
8882 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
8883 return raw_type;
8884 }
8885 else
8886 {
8887 int ok;
8888 strcpy (name_buf + prefix_len, "___U");
8889 U = get_int_var_value (name_buf, &ok);
8890 if (!ok)
8891 {
8892 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
8893 U = L;
8894 }
8895 }
8896
8897 if (objfile == NULL)
8898 objfile = TYPE_OBJFILE (base_type);
8899 type = create_range_type (alloc_type (objfile), base_type, L, U);
8900 TYPE_NAME (type) = name;
8901 return type;
8902 }
8903 }
8904
8905 /* True iff NAME is the name of a range type. */
8906
8907 int
8908 ada_is_range_type_name (const char *name)
8909 {
8910 return (name != NULL && strstr (name, "___XD"));
8911 }
8912 \f
8913
8914 /* Modular types */
8915
8916 /* True iff TYPE is an Ada modular type. */
8917
8918 int
8919 ada_is_modular_type (struct type *type)
8920 {
8921 struct type *subranged_type = base_type (type);
8922
8923 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
8924 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
8925 && TYPE_UNSIGNED (subranged_type));
8926 }
8927
8928 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
8929
8930 ULONGEST
8931 ada_modulus (struct type * type)
8932 {
8933 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
8934 }
8935 \f
8936
8937 /* Ada exception catchpoint support:
8938 ---------------------------------
8939
8940 We support 3 kinds of exception catchpoints:
8941 . catchpoints on Ada exceptions
8942 . catchpoints on unhandled Ada exceptions
8943 . catchpoints on failed assertions
8944
8945 Exceptions raised during failed assertions, or unhandled exceptions
8946 could perfectly be caught with the general catchpoint on Ada exceptions.
8947 However, we can easily differentiate these two special cases, and having
8948 the option to distinguish these two cases from the rest can be useful
8949 to zero-in on certain situations.
8950
8951 Exception catchpoints are a specialized form of breakpoint,
8952 since they rely on inserting breakpoints inside known routines
8953 of the GNAT runtime. The implementation therefore uses a standard
8954 breakpoint structure of the BP_BREAKPOINT type, but with its own set
8955 of breakpoint_ops.
8956
8957 Support in the runtime for exception catchpoints have been changed
8958 a few times already, and these changes affect the implementation
8959 of these catchpoints. In order to be able to support several
8960 variants of the runtime, we use a sniffer that will determine
8961 the runtime variant used by the program being debugged.
8962
8963 At this time, we do not support the use of conditions on Ada exception
8964 catchpoints. The COND and COND_STRING fields are therefore set
8965 to NULL (most of the time, see below).
8966
8967 Conditions where EXP_STRING, COND, and COND_STRING are used:
8968
8969 When a user specifies the name of a specific exception in the case
8970 of catchpoints on Ada exceptions, we store the name of that exception
8971 in the EXP_STRING. We then translate this request into an actual
8972 condition stored in COND_STRING, and then parse it into an expression
8973 stored in COND. */
8974
8975 /* The different types of catchpoints that we introduced for catching
8976 Ada exceptions. */
8977
8978 enum exception_catchpoint_kind
8979 {
8980 ex_catch_exception,
8981 ex_catch_exception_unhandled,
8982 ex_catch_assert
8983 };
8984
8985 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
8986
8987 /* A structure that describes how to support exception catchpoints
8988 for a given executable. */
8989
8990 struct exception_support_info
8991 {
8992 /* The name of the symbol to break on in order to insert
8993 a catchpoint on exceptions. */
8994 const char *catch_exception_sym;
8995
8996 /* The name of the symbol to break on in order to insert
8997 a catchpoint on unhandled exceptions. */
8998 const char *catch_exception_unhandled_sym;
8999
9000 /* The name of the symbol to break on in order to insert
9001 a catchpoint on failed assertions. */
9002 const char *catch_assert_sym;
9003
9004 /* Assuming that the inferior just triggered an unhandled exception
9005 catchpoint, this function is responsible for returning the address
9006 in inferior memory where the name of that exception is stored.
9007 Return zero if the address could not be computed. */
9008 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9009 };
9010
9011 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9012 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9013
9014 /* The following exception support info structure describes how to
9015 implement exception catchpoints with the latest version of the
9016 Ada runtime (as of 2007-03-06). */
9017
9018 static const struct exception_support_info default_exception_support_info =
9019 {
9020 "__gnat_debug_raise_exception", /* catch_exception_sym */
9021 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9022 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9023 ada_unhandled_exception_name_addr
9024 };
9025
9026 /* The following exception support info structure describes how to
9027 implement exception catchpoints with a slightly older version
9028 of the Ada runtime. */
9029
9030 static const struct exception_support_info exception_support_info_fallback =
9031 {
9032 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9033 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9034 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9035 ada_unhandled_exception_name_addr_from_raise
9036 };
9037
9038 /* For each executable, we sniff which exception info structure to use
9039 and cache it in the following global variable. */
9040
9041 static const struct exception_support_info *exception_info = NULL;
9042
9043 /* Inspect the Ada runtime and determine which exception info structure
9044 should be used to provide support for exception catchpoints.
9045
9046 This function will always set exception_info, or raise an error. */
9047
9048 static void
9049 ada_exception_support_info_sniffer (void)
9050 {
9051 struct symbol *sym;
9052
9053 /* If the exception info is already known, then no need to recompute it. */
9054 if (exception_info != NULL)
9055 return;
9056
9057 /* Check the latest (default) exception support info. */
9058 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9059 NULL, VAR_DOMAIN);
9060 if (sym != NULL)
9061 {
9062 exception_info = &default_exception_support_info;
9063 return;
9064 }
9065
9066 /* Try our fallback exception suport info. */
9067 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9068 NULL, VAR_DOMAIN);
9069 if (sym != NULL)
9070 {
9071 exception_info = &exception_support_info_fallback;
9072 return;
9073 }
9074
9075 /* Sometimes, it is normal for us to not be able to find the routine
9076 we are looking for. This happens when the program is linked with
9077 the shared version of the GNAT runtime, and the program has not been
9078 started yet. Inform the user of these two possible causes if
9079 applicable. */
9080
9081 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9082 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9083
9084 /* If the symbol does not exist, then check that the program is
9085 already started, to make sure that shared libraries have been
9086 loaded. If it is not started, this may mean that the symbol is
9087 in a shared library. */
9088
9089 if (ptid_get_pid (inferior_ptid) == 0)
9090 error (_("Unable to insert catchpoint. Try to start the program first."));
9091
9092 /* At this point, we know that we are debugging an Ada program and
9093 that the inferior has been started, but we still are not able to
9094 find the run-time symbols. That can mean that we are in
9095 configurable run time mode, or that a-except as been optimized
9096 out by the linker... In any case, at this point it is not worth
9097 supporting this feature. */
9098
9099 error (_("Cannot insert catchpoints in this configuration."));
9100 }
9101
9102 /* An observer of "executable_changed" events.
9103 Its role is to clear certain cached values that need to be recomputed
9104 each time a new executable is loaded by GDB. */
9105
9106 static void
9107 ada_executable_changed_observer (void *unused)
9108 {
9109 /* If the executable changed, then it is possible that the Ada runtime
9110 is different. So we need to invalidate the exception support info
9111 cache. */
9112 exception_info = NULL;
9113 }
9114
9115 /* Return the name of the function at PC, NULL if could not find it.
9116 This function only checks the debugging information, not the symbol
9117 table. */
9118
9119 static char *
9120 function_name_from_pc (CORE_ADDR pc)
9121 {
9122 char *func_name;
9123
9124 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9125 return NULL;
9126
9127 return func_name;
9128 }
9129
9130 /* True iff FRAME is very likely to be that of a function that is
9131 part of the runtime system. This is all very heuristic, but is
9132 intended to be used as advice as to what frames are uninteresting
9133 to most users. */
9134
9135 static int
9136 is_known_support_routine (struct frame_info *frame)
9137 {
9138 struct symtab_and_line sal;
9139 char *func_name;
9140 int i;
9141
9142 /* If this code does not have any debugging information (no symtab),
9143 This cannot be any user code. */
9144
9145 find_frame_sal (frame, &sal);
9146 if (sal.symtab == NULL)
9147 return 1;
9148
9149 /* If there is a symtab, but the associated source file cannot be
9150 located, then assume this is not user code: Selecting a frame
9151 for which we cannot display the code would not be very helpful
9152 for the user. This should also take care of case such as VxWorks
9153 where the kernel has some debugging info provided for a few units. */
9154
9155 if (symtab_to_fullname (sal.symtab) == NULL)
9156 return 1;
9157
9158 /* Check the unit filename againt the Ada runtime file naming.
9159 We also check the name of the objfile against the name of some
9160 known system libraries that sometimes come with debugging info
9161 too. */
9162
9163 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9164 {
9165 re_comp (known_runtime_file_name_patterns[i]);
9166 if (re_exec (sal.symtab->filename))
9167 return 1;
9168 if (sal.symtab->objfile != NULL
9169 && re_exec (sal.symtab->objfile->name))
9170 return 1;
9171 }
9172
9173 /* Check whether the function is a GNAT-generated entity. */
9174
9175 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9176 if (func_name == NULL)
9177 return 1;
9178
9179 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9180 {
9181 re_comp (known_auxiliary_function_name_patterns[i]);
9182 if (re_exec (func_name))
9183 return 1;
9184 }
9185
9186 return 0;
9187 }
9188
9189 /* Find the first frame that contains debugging information and that is not
9190 part of the Ada run-time, starting from FI and moving upward. */
9191
9192 static void
9193 ada_find_printable_frame (struct frame_info *fi)
9194 {
9195 for (; fi != NULL; fi = get_prev_frame (fi))
9196 {
9197 if (!is_known_support_routine (fi))
9198 {
9199 select_frame (fi);
9200 break;
9201 }
9202 }
9203
9204 }
9205
9206 /* Assuming that the inferior just triggered an unhandled exception
9207 catchpoint, return the address in inferior memory where the name
9208 of the exception is stored.
9209
9210 Return zero if the address could not be computed. */
9211
9212 static CORE_ADDR
9213 ada_unhandled_exception_name_addr (void)
9214 {
9215 return parse_and_eval_address ("e.full_name");
9216 }
9217
9218 /* Same as ada_unhandled_exception_name_addr, except that this function
9219 should be used when the inferior uses an older version of the runtime,
9220 where the exception name needs to be extracted from a specific frame
9221 several frames up in the callstack. */
9222
9223 static CORE_ADDR
9224 ada_unhandled_exception_name_addr_from_raise (void)
9225 {
9226 int frame_level;
9227 struct frame_info *fi;
9228
9229 /* To determine the name of this exception, we need to select
9230 the frame corresponding to RAISE_SYM_NAME. This frame is
9231 at least 3 levels up, so we simply skip the first 3 frames
9232 without checking the name of their associated function. */
9233 fi = get_current_frame ();
9234 for (frame_level = 0; frame_level < 3; frame_level += 1)
9235 if (fi != NULL)
9236 fi = get_prev_frame (fi);
9237
9238 while (fi != NULL)
9239 {
9240 const char *func_name =
9241 function_name_from_pc (get_frame_address_in_block (fi));
9242 if (func_name != NULL
9243 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9244 break; /* We found the frame we were looking for... */
9245 fi = get_prev_frame (fi);
9246 }
9247
9248 if (fi == NULL)
9249 return 0;
9250
9251 select_frame (fi);
9252 return parse_and_eval_address ("id.full_name");
9253 }
9254
9255 /* Assuming the inferior just triggered an Ada exception catchpoint
9256 (of any type), return the address in inferior memory where the name
9257 of the exception is stored, if applicable.
9258
9259 Return zero if the address could not be computed, or if not relevant. */
9260
9261 static CORE_ADDR
9262 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9263 struct breakpoint *b)
9264 {
9265 switch (ex)
9266 {
9267 case ex_catch_exception:
9268 return (parse_and_eval_address ("e.full_name"));
9269 break;
9270
9271 case ex_catch_exception_unhandled:
9272 return exception_info->unhandled_exception_name_addr ();
9273 break;
9274
9275 case ex_catch_assert:
9276 return 0; /* Exception name is not relevant in this case. */
9277 break;
9278
9279 default:
9280 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9281 break;
9282 }
9283
9284 return 0; /* Should never be reached. */
9285 }
9286
9287 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9288 any error that ada_exception_name_addr_1 might cause to be thrown.
9289 When an error is intercepted, a warning with the error message is printed,
9290 and zero is returned. */
9291
9292 static CORE_ADDR
9293 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9294 struct breakpoint *b)
9295 {
9296 struct gdb_exception e;
9297 CORE_ADDR result = 0;
9298
9299 TRY_CATCH (e, RETURN_MASK_ERROR)
9300 {
9301 result = ada_exception_name_addr_1 (ex, b);
9302 }
9303
9304 if (e.reason < 0)
9305 {
9306 warning (_("failed to get exception name: %s"), e.message);
9307 return 0;
9308 }
9309
9310 return result;
9311 }
9312
9313 /* Implement the PRINT_IT method in the breakpoint_ops structure
9314 for all exception catchpoint kinds. */
9315
9316 static enum print_stop_action
9317 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9318 {
9319 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9320 char exception_name[256];
9321
9322 if (addr != 0)
9323 {
9324 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9325 exception_name [sizeof (exception_name) - 1] = '\0';
9326 }
9327
9328 ada_find_printable_frame (get_current_frame ());
9329
9330 annotate_catchpoint (b->number);
9331 switch (ex)
9332 {
9333 case ex_catch_exception:
9334 if (addr != 0)
9335 printf_filtered (_("\nCatchpoint %d, %s at "),
9336 b->number, exception_name);
9337 else
9338 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9339 break;
9340 case ex_catch_exception_unhandled:
9341 if (addr != 0)
9342 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9343 b->number, exception_name);
9344 else
9345 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9346 b->number);
9347 break;
9348 case ex_catch_assert:
9349 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9350 b->number);
9351 break;
9352 }
9353
9354 return PRINT_SRC_AND_LOC;
9355 }
9356
9357 /* Implement the PRINT_ONE method in the breakpoint_ops structure
9358 for all exception catchpoint kinds. */
9359
9360 static void
9361 print_one_exception (enum exception_catchpoint_kind ex,
9362 struct breakpoint *b, CORE_ADDR *last_addr)
9363 {
9364 if (addressprint)
9365 {
9366 annotate_field (4);
9367 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9368 }
9369
9370 annotate_field (5);
9371 *last_addr = b->loc->address;
9372 switch (ex)
9373 {
9374 case ex_catch_exception:
9375 if (b->exp_string != NULL)
9376 {
9377 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9378
9379 ui_out_field_string (uiout, "what", msg);
9380 xfree (msg);
9381 }
9382 else
9383 ui_out_field_string (uiout, "what", "all Ada exceptions");
9384
9385 break;
9386
9387 case ex_catch_exception_unhandled:
9388 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
9389 break;
9390
9391 case ex_catch_assert:
9392 ui_out_field_string (uiout, "what", "failed Ada assertions");
9393 break;
9394
9395 default:
9396 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9397 break;
9398 }
9399 }
9400
9401 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
9402 for all exception catchpoint kinds. */
9403
9404 static void
9405 print_mention_exception (enum exception_catchpoint_kind ex,
9406 struct breakpoint *b)
9407 {
9408 switch (ex)
9409 {
9410 case ex_catch_exception:
9411 if (b->exp_string != NULL)
9412 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
9413 b->number, b->exp_string);
9414 else
9415 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
9416
9417 break;
9418
9419 case ex_catch_exception_unhandled:
9420 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
9421 b->number);
9422 break;
9423
9424 case ex_catch_assert:
9425 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
9426 break;
9427
9428 default:
9429 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9430 break;
9431 }
9432 }
9433
9434 /* Virtual table for "catch exception" breakpoints. */
9435
9436 static enum print_stop_action
9437 print_it_catch_exception (struct breakpoint *b)
9438 {
9439 return print_it_exception (ex_catch_exception, b);
9440 }
9441
9442 static void
9443 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
9444 {
9445 print_one_exception (ex_catch_exception, b, last_addr);
9446 }
9447
9448 static void
9449 print_mention_catch_exception (struct breakpoint *b)
9450 {
9451 print_mention_exception (ex_catch_exception, b);
9452 }
9453
9454 static struct breakpoint_ops catch_exception_breakpoint_ops =
9455 {
9456 print_it_catch_exception,
9457 print_one_catch_exception,
9458 print_mention_catch_exception
9459 };
9460
9461 /* Virtual table for "catch exception unhandled" breakpoints. */
9462
9463 static enum print_stop_action
9464 print_it_catch_exception_unhandled (struct breakpoint *b)
9465 {
9466 return print_it_exception (ex_catch_exception_unhandled, b);
9467 }
9468
9469 static void
9470 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
9471 {
9472 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
9473 }
9474
9475 static void
9476 print_mention_catch_exception_unhandled (struct breakpoint *b)
9477 {
9478 print_mention_exception (ex_catch_exception_unhandled, b);
9479 }
9480
9481 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
9482 print_it_catch_exception_unhandled,
9483 print_one_catch_exception_unhandled,
9484 print_mention_catch_exception_unhandled
9485 };
9486
9487 /* Virtual table for "catch assert" breakpoints. */
9488
9489 static enum print_stop_action
9490 print_it_catch_assert (struct breakpoint *b)
9491 {
9492 return print_it_exception (ex_catch_assert, b);
9493 }
9494
9495 static void
9496 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
9497 {
9498 print_one_exception (ex_catch_assert, b, last_addr);
9499 }
9500
9501 static void
9502 print_mention_catch_assert (struct breakpoint *b)
9503 {
9504 print_mention_exception (ex_catch_assert, b);
9505 }
9506
9507 static struct breakpoint_ops catch_assert_breakpoint_ops = {
9508 print_it_catch_assert,
9509 print_one_catch_assert,
9510 print_mention_catch_assert
9511 };
9512
9513 /* Return non-zero if B is an Ada exception catchpoint. */
9514
9515 int
9516 ada_exception_catchpoint_p (struct breakpoint *b)
9517 {
9518 return (b->ops == &catch_exception_breakpoint_ops
9519 || b->ops == &catch_exception_unhandled_breakpoint_ops
9520 || b->ops == &catch_assert_breakpoint_ops);
9521 }
9522
9523 /* Return a newly allocated copy of the first space-separated token
9524 in ARGSP, and then adjust ARGSP to point immediately after that
9525 token.
9526
9527 Return NULL if ARGPS does not contain any more tokens. */
9528
9529 static char *
9530 ada_get_next_arg (char **argsp)
9531 {
9532 char *args = *argsp;
9533 char *end;
9534 char *result;
9535
9536 /* Skip any leading white space. */
9537
9538 while (isspace (*args))
9539 args++;
9540
9541 if (args[0] == '\0')
9542 return NULL; /* No more arguments. */
9543
9544 /* Find the end of the current argument. */
9545
9546 end = args;
9547 while (*end != '\0' && !isspace (*end))
9548 end++;
9549
9550 /* Adjust ARGSP to point to the start of the next argument. */
9551
9552 *argsp = end;
9553
9554 /* Make a copy of the current argument and return it. */
9555
9556 result = xmalloc (end - args + 1);
9557 strncpy (result, args, end - args);
9558 result[end - args] = '\0';
9559
9560 return result;
9561 }
9562
9563 /* Split the arguments specified in a "catch exception" command.
9564 Set EX to the appropriate catchpoint type.
9565 Set EXP_STRING to the name of the specific exception if
9566 specified by the user. */
9567
9568 static void
9569 catch_ada_exception_command_split (char *args,
9570 enum exception_catchpoint_kind *ex,
9571 char **exp_string)
9572 {
9573 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
9574 char *exception_name;
9575
9576 exception_name = ada_get_next_arg (&args);
9577 make_cleanup (xfree, exception_name);
9578
9579 /* Check that we do not have any more arguments. Anything else
9580 is unexpected. */
9581
9582 while (isspace (*args))
9583 args++;
9584
9585 if (args[0] != '\0')
9586 error (_("Junk at end of expression"));
9587
9588 discard_cleanups (old_chain);
9589
9590 if (exception_name == NULL)
9591 {
9592 /* Catch all exceptions. */
9593 *ex = ex_catch_exception;
9594 *exp_string = NULL;
9595 }
9596 else if (strcmp (exception_name, "unhandled") == 0)
9597 {
9598 /* Catch unhandled exceptions. */
9599 *ex = ex_catch_exception_unhandled;
9600 *exp_string = NULL;
9601 }
9602 else
9603 {
9604 /* Catch a specific exception. */
9605 *ex = ex_catch_exception;
9606 *exp_string = exception_name;
9607 }
9608 }
9609
9610 /* Return the name of the symbol on which we should break in order to
9611 implement a catchpoint of the EX kind. */
9612
9613 static const char *
9614 ada_exception_sym_name (enum exception_catchpoint_kind ex)
9615 {
9616 gdb_assert (exception_info != NULL);
9617
9618 switch (ex)
9619 {
9620 case ex_catch_exception:
9621 return (exception_info->catch_exception_sym);
9622 break;
9623 case ex_catch_exception_unhandled:
9624 return (exception_info->catch_exception_unhandled_sym);
9625 break;
9626 case ex_catch_assert:
9627 return (exception_info->catch_assert_sym);
9628 break;
9629 default:
9630 internal_error (__FILE__, __LINE__,
9631 _("unexpected catchpoint kind (%d)"), ex);
9632 }
9633 }
9634
9635 /* Return the breakpoint ops "virtual table" used for catchpoints
9636 of the EX kind. */
9637
9638 static struct breakpoint_ops *
9639 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
9640 {
9641 switch (ex)
9642 {
9643 case ex_catch_exception:
9644 return (&catch_exception_breakpoint_ops);
9645 break;
9646 case ex_catch_exception_unhandled:
9647 return (&catch_exception_unhandled_breakpoint_ops);
9648 break;
9649 case ex_catch_assert:
9650 return (&catch_assert_breakpoint_ops);
9651 break;
9652 default:
9653 internal_error (__FILE__, __LINE__,
9654 _("unexpected catchpoint kind (%d)"), ex);
9655 }
9656 }
9657
9658 /* Return the condition that will be used to match the current exception
9659 being raised with the exception that the user wants to catch. This
9660 assumes that this condition is used when the inferior just triggered
9661 an exception catchpoint.
9662
9663 The string returned is a newly allocated string that needs to be
9664 deallocated later. */
9665
9666 static char *
9667 ada_exception_catchpoint_cond_string (const char *exp_string)
9668 {
9669 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
9670 }
9671
9672 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
9673
9674 static struct expression *
9675 ada_parse_catchpoint_condition (char *cond_string,
9676 struct symtab_and_line sal)
9677 {
9678 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
9679 }
9680
9681 /* Return the symtab_and_line that should be used to insert an exception
9682 catchpoint of the TYPE kind.
9683
9684 EX_STRING should contain the name of a specific exception
9685 that the catchpoint should catch, or NULL otherwise.
9686
9687 The idea behind all the remaining parameters is that their names match
9688 the name of certain fields in the breakpoint structure that are used to
9689 handle exception catchpoints. This function returns the value to which
9690 these fields should be set, depending on the type of catchpoint we need
9691 to create.
9692
9693 If COND and COND_STRING are both non-NULL, any value they might
9694 hold will be free'ed, and then replaced by newly allocated ones.
9695 These parameters are left untouched otherwise. */
9696
9697 static struct symtab_and_line
9698 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
9699 char **addr_string, char **cond_string,
9700 struct expression **cond, struct breakpoint_ops **ops)
9701 {
9702 const char *sym_name;
9703 struct symbol *sym;
9704 struct symtab_and_line sal;
9705
9706 /* First, find out which exception support info to use. */
9707 ada_exception_support_info_sniffer ();
9708
9709 /* Then lookup the function on which we will break in order to catch
9710 the Ada exceptions requested by the user. */
9711
9712 sym_name = ada_exception_sym_name (ex);
9713 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
9714
9715 /* The symbol we're looking up is provided by a unit in the GNAT runtime
9716 that should be compiled with debugging information. As a result, we
9717 expect to find that symbol in the symtabs. If we don't find it, then
9718 the target most likely does not support Ada exceptions, or we cannot
9719 insert exception breakpoints yet, because the GNAT runtime hasn't been
9720 loaded yet. */
9721
9722 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
9723 in such a way that no debugging information is produced for the symbol
9724 we are looking for. In this case, we could search the minimal symbols
9725 as a fall-back mechanism. This would still be operating in degraded
9726 mode, however, as we would still be missing the debugging information
9727 that is needed in order to extract the name of the exception being
9728 raised (this name is printed in the catchpoint message, and is also
9729 used when trying to catch a specific exception). We do not handle
9730 this case for now. */
9731
9732 if (sym == NULL)
9733 error (_("Unable to break on '%s' in this configuration."), sym_name);
9734
9735 /* Make sure that the symbol we found corresponds to a function. */
9736 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
9737 error (_("Symbol \"%s\" is not a function (class = %d)"),
9738 sym_name, SYMBOL_CLASS (sym));
9739
9740 sal = find_function_start_sal (sym, 1);
9741
9742 /* Set ADDR_STRING. */
9743
9744 *addr_string = xstrdup (sym_name);
9745
9746 /* Set the COND and COND_STRING (if not NULL). */
9747
9748 if (cond_string != NULL && cond != NULL)
9749 {
9750 if (*cond_string != NULL)
9751 {
9752 xfree (*cond_string);
9753 *cond_string = NULL;
9754 }
9755 if (*cond != NULL)
9756 {
9757 xfree (*cond);
9758 *cond = NULL;
9759 }
9760 if (exp_string != NULL)
9761 {
9762 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
9763 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
9764 }
9765 }
9766
9767 /* Set OPS. */
9768 *ops = ada_exception_breakpoint_ops (ex);
9769
9770 return sal;
9771 }
9772
9773 /* Parse the arguments (ARGS) of the "catch exception" command.
9774
9775 Set TYPE to the appropriate exception catchpoint type.
9776 If the user asked the catchpoint to catch only a specific
9777 exception, then save the exception name in ADDR_STRING.
9778
9779 See ada_exception_sal for a description of all the remaining
9780 function arguments of this function. */
9781
9782 struct symtab_and_line
9783 ada_decode_exception_location (char *args, char **addr_string,
9784 char **exp_string, char **cond_string,
9785 struct expression **cond,
9786 struct breakpoint_ops **ops)
9787 {
9788 enum exception_catchpoint_kind ex;
9789
9790 catch_ada_exception_command_split (args, &ex, exp_string);
9791 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
9792 cond, ops);
9793 }
9794
9795 struct symtab_and_line
9796 ada_decode_assert_location (char *args, char **addr_string,
9797 struct breakpoint_ops **ops)
9798 {
9799 /* Check that no argument where provided at the end of the command. */
9800
9801 if (args != NULL)
9802 {
9803 while (isspace (*args))
9804 args++;
9805 if (*args != '\0')
9806 error (_("Junk at end of arguments."));
9807 }
9808
9809 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
9810 ops);
9811 }
9812
9813 /* Operators */
9814 /* Information about operators given special treatment in functions
9815 below. */
9816 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
9817
9818 #define ADA_OPERATORS \
9819 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
9820 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
9821 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
9822 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
9823 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
9824 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
9825 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
9826 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
9827 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
9828 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
9829 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
9830 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
9831 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
9832 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
9833 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
9834 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
9835 OP_DEFN (OP_OTHERS, 1, 1, 0) \
9836 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
9837 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
9838
9839 static void
9840 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
9841 {
9842 switch (exp->elts[pc - 1].opcode)
9843 {
9844 default:
9845 operator_length_standard (exp, pc, oplenp, argsp);
9846 break;
9847
9848 #define OP_DEFN(op, len, args, binop) \
9849 case op: *oplenp = len; *argsp = args; break;
9850 ADA_OPERATORS;
9851 #undef OP_DEFN
9852
9853 case OP_AGGREGATE:
9854 *oplenp = 3;
9855 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
9856 break;
9857
9858 case OP_CHOICES:
9859 *oplenp = 3;
9860 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
9861 break;
9862 }
9863 }
9864
9865 static char *
9866 ada_op_name (enum exp_opcode opcode)
9867 {
9868 switch (opcode)
9869 {
9870 default:
9871 return op_name_standard (opcode);
9872
9873 #define OP_DEFN(op, len, args, binop) case op: return #op;
9874 ADA_OPERATORS;
9875 #undef OP_DEFN
9876
9877 case OP_AGGREGATE:
9878 return "OP_AGGREGATE";
9879 case OP_CHOICES:
9880 return "OP_CHOICES";
9881 case OP_NAME:
9882 return "OP_NAME";
9883 }
9884 }
9885
9886 /* As for operator_length, but assumes PC is pointing at the first
9887 element of the operator, and gives meaningful results only for the
9888 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
9889
9890 static void
9891 ada_forward_operator_length (struct expression *exp, int pc,
9892 int *oplenp, int *argsp)
9893 {
9894 switch (exp->elts[pc].opcode)
9895 {
9896 default:
9897 *oplenp = *argsp = 0;
9898 break;
9899
9900 #define OP_DEFN(op, len, args, binop) \
9901 case op: *oplenp = len; *argsp = args; break;
9902 ADA_OPERATORS;
9903 #undef OP_DEFN
9904
9905 case OP_AGGREGATE:
9906 *oplenp = 3;
9907 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
9908 break;
9909
9910 case OP_CHOICES:
9911 *oplenp = 3;
9912 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
9913 break;
9914
9915 case OP_STRING:
9916 case OP_NAME:
9917 {
9918 int len = longest_to_int (exp->elts[pc + 1].longconst);
9919 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
9920 *argsp = 0;
9921 break;
9922 }
9923 }
9924 }
9925
9926 static int
9927 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
9928 {
9929 enum exp_opcode op = exp->elts[elt].opcode;
9930 int oplen, nargs;
9931 int pc = elt;
9932 int i;
9933
9934 ada_forward_operator_length (exp, elt, &oplen, &nargs);
9935
9936 switch (op)
9937 {
9938 /* Ada attributes ('Foo). */
9939 case OP_ATR_FIRST:
9940 case OP_ATR_LAST:
9941 case OP_ATR_LENGTH:
9942 case OP_ATR_IMAGE:
9943 case OP_ATR_MAX:
9944 case OP_ATR_MIN:
9945 case OP_ATR_MODULUS:
9946 case OP_ATR_POS:
9947 case OP_ATR_SIZE:
9948 case OP_ATR_TAG:
9949 case OP_ATR_VAL:
9950 break;
9951
9952 case UNOP_IN_RANGE:
9953 case UNOP_QUAL:
9954 /* XXX: gdb_sprint_host_address, type_sprint */
9955 fprintf_filtered (stream, _("Type @"));
9956 gdb_print_host_address (exp->elts[pc + 1].type, stream);
9957 fprintf_filtered (stream, " (");
9958 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
9959 fprintf_filtered (stream, ")");
9960 break;
9961 case BINOP_IN_BOUNDS:
9962 fprintf_filtered (stream, " (%d)",
9963 longest_to_int (exp->elts[pc + 2].longconst));
9964 break;
9965 case TERNOP_IN_RANGE:
9966 break;
9967
9968 case OP_AGGREGATE:
9969 case OP_OTHERS:
9970 case OP_DISCRETE_RANGE:
9971 case OP_POSITIONAL:
9972 case OP_CHOICES:
9973 break;
9974
9975 case OP_NAME:
9976 case OP_STRING:
9977 {
9978 char *name = &exp->elts[elt + 2].string;
9979 int len = longest_to_int (exp->elts[elt + 1].longconst);
9980 fprintf_filtered (stream, "Text: `%.*s'", len, name);
9981 break;
9982 }
9983
9984 default:
9985 return dump_subexp_body_standard (exp, stream, elt);
9986 }
9987
9988 elt += oplen;
9989 for (i = 0; i < nargs; i += 1)
9990 elt = dump_subexp (exp, stream, elt);
9991
9992 return elt;
9993 }
9994
9995 /* The Ada extension of print_subexp (q.v.). */
9996
9997 static void
9998 ada_print_subexp (struct expression *exp, int *pos,
9999 struct ui_file *stream, enum precedence prec)
10000 {
10001 int oplen, nargs, i;
10002 int pc = *pos;
10003 enum exp_opcode op = exp->elts[pc].opcode;
10004
10005 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10006
10007 *pos += oplen;
10008 switch (op)
10009 {
10010 default:
10011 *pos -= oplen;
10012 print_subexp_standard (exp, pos, stream, prec);
10013 return;
10014
10015 case OP_VAR_VALUE:
10016 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10017 return;
10018
10019 case BINOP_IN_BOUNDS:
10020 /* XXX: sprint_subexp */
10021 print_subexp (exp, pos, stream, PREC_SUFFIX);
10022 fputs_filtered (" in ", stream);
10023 print_subexp (exp, pos, stream, PREC_SUFFIX);
10024 fputs_filtered ("'range", stream);
10025 if (exp->elts[pc + 1].longconst > 1)
10026 fprintf_filtered (stream, "(%ld)",
10027 (long) exp->elts[pc + 1].longconst);
10028 return;
10029
10030 case TERNOP_IN_RANGE:
10031 if (prec >= PREC_EQUAL)
10032 fputs_filtered ("(", stream);
10033 /* XXX: sprint_subexp */
10034 print_subexp (exp, pos, stream, PREC_SUFFIX);
10035 fputs_filtered (" in ", stream);
10036 print_subexp (exp, pos, stream, PREC_EQUAL);
10037 fputs_filtered (" .. ", stream);
10038 print_subexp (exp, pos, stream, PREC_EQUAL);
10039 if (prec >= PREC_EQUAL)
10040 fputs_filtered (")", stream);
10041 return;
10042
10043 case OP_ATR_FIRST:
10044 case OP_ATR_LAST:
10045 case OP_ATR_LENGTH:
10046 case OP_ATR_IMAGE:
10047 case OP_ATR_MAX:
10048 case OP_ATR_MIN:
10049 case OP_ATR_MODULUS:
10050 case OP_ATR_POS:
10051 case OP_ATR_SIZE:
10052 case OP_ATR_TAG:
10053 case OP_ATR_VAL:
10054 if (exp->elts[*pos].opcode == OP_TYPE)
10055 {
10056 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10057 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10058 *pos += 3;
10059 }
10060 else
10061 print_subexp (exp, pos, stream, PREC_SUFFIX);
10062 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10063 if (nargs > 1)
10064 {
10065 int tem;
10066 for (tem = 1; tem < nargs; tem += 1)
10067 {
10068 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10069 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10070 }
10071 fputs_filtered (")", stream);
10072 }
10073 return;
10074
10075 case UNOP_QUAL:
10076 type_print (exp->elts[pc + 1].type, "", stream, 0);
10077 fputs_filtered ("'(", stream);
10078 print_subexp (exp, pos, stream, PREC_PREFIX);
10079 fputs_filtered (")", stream);
10080 return;
10081
10082 case UNOP_IN_RANGE:
10083 /* XXX: sprint_subexp */
10084 print_subexp (exp, pos, stream, PREC_SUFFIX);
10085 fputs_filtered (" in ", stream);
10086 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10087 return;
10088
10089 case OP_DISCRETE_RANGE:
10090 print_subexp (exp, pos, stream, PREC_SUFFIX);
10091 fputs_filtered ("..", stream);
10092 print_subexp (exp, pos, stream, PREC_SUFFIX);
10093 return;
10094
10095 case OP_OTHERS:
10096 fputs_filtered ("others => ", stream);
10097 print_subexp (exp, pos, stream, PREC_SUFFIX);
10098 return;
10099
10100 case OP_CHOICES:
10101 for (i = 0; i < nargs-1; i += 1)
10102 {
10103 if (i > 0)
10104 fputs_filtered ("|", stream);
10105 print_subexp (exp, pos, stream, PREC_SUFFIX);
10106 }
10107 fputs_filtered (" => ", stream);
10108 print_subexp (exp, pos, stream, PREC_SUFFIX);
10109 return;
10110
10111 case OP_POSITIONAL:
10112 print_subexp (exp, pos, stream, PREC_SUFFIX);
10113 return;
10114
10115 case OP_AGGREGATE:
10116 fputs_filtered ("(", stream);
10117 for (i = 0; i < nargs; i += 1)
10118 {
10119 if (i > 0)
10120 fputs_filtered (", ", stream);
10121 print_subexp (exp, pos, stream, PREC_SUFFIX);
10122 }
10123 fputs_filtered (")", stream);
10124 return;
10125 }
10126 }
10127
10128 /* Table mapping opcodes into strings for printing operators
10129 and precedences of the operators. */
10130
10131 static const struct op_print ada_op_print_tab[] = {
10132 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10133 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10134 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10135 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10136 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10137 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10138 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10139 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10140 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10141 {">=", BINOP_GEQ, PREC_ORDER, 0},
10142 {">", BINOP_GTR, PREC_ORDER, 0},
10143 {"<", BINOP_LESS, PREC_ORDER, 0},
10144 {">>", BINOP_RSH, PREC_SHIFT, 0},
10145 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10146 {"+", BINOP_ADD, PREC_ADD, 0},
10147 {"-", BINOP_SUB, PREC_ADD, 0},
10148 {"&", BINOP_CONCAT, PREC_ADD, 0},
10149 {"*", BINOP_MUL, PREC_MUL, 0},
10150 {"/", BINOP_DIV, PREC_MUL, 0},
10151 {"rem", BINOP_REM, PREC_MUL, 0},
10152 {"mod", BINOP_MOD, PREC_MUL, 0},
10153 {"**", BINOP_EXP, PREC_REPEAT, 0},
10154 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10155 {"-", UNOP_NEG, PREC_PREFIX, 0},
10156 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10157 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10158 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10159 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10160 {".all", UNOP_IND, PREC_SUFFIX, 1},
10161 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10162 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10163 {NULL, 0, 0, 0}
10164 };
10165 \f
10166 /* Fundamental Ada Types */
10167
10168 /* Create a fundamental Ada type using default reasonable for the current
10169 target machine.
10170
10171 Some object/debugging file formats (DWARF version 1, COFF, etc) do not
10172 define fundamental types such as "int" or "double". Others (stabs or
10173 DWARF version 2, etc) do define fundamental types. For the formats which
10174 don't provide fundamental types, gdb can create such types using this
10175 function.
10176
10177 FIXME: Some compilers distinguish explicitly signed integral types
10178 (signed short, signed int, signed long) from "regular" integral types
10179 (short, int, long) in the debugging information. There is some dis-
10180 agreement as to how useful this feature is. In particular, gcc does
10181 not support this. Also, only some debugging formats allow the
10182 distinction to be passed on to a debugger. For now, we always just
10183 use "short", "int", or "long" as the type name, for both the implicit
10184 and explicitly signed types. This also makes life easier for the
10185 gdb test suite since we don't have to account for the differences
10186 in output depending upon what the compiler and debugging format
10187 support. We will probably have to re-examine the issue when gdb
10188 starts taking it's fundamental type information directly from the
10189 debugging information supplied by the compiler. fnf@cygnus.com */
10190
10191 static struct type *
10192 ada_create_fundamental_type (struct objfile *objfile, int typeid)
10193 {
10194 struct type *type = NULL;
10195
10196 switch (typeid)
10197 {
10198 default:
10199 /* FIXME: For now, if we are asked to produce a type not in this
10200 language, create the equivalent of a C integer type with the
10201 name "<?type?>". When all the dust settles from the type
10202 reconstruction work, this should probably become an error. */
10203 type = init_type (TYPE_CODE_INT,
10204 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10205 0, "<?type?>", objfile);
10206 warning (_("internal error: no Ada fundamental type %d"), typeid);
10207 break;
10208 case FT_VOID:
10209 type = init_type (TYPE_CODE_VOID,
10210 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10211 0, "void", objfile);
10212 break;
10213 case FT_CHAR:
10214 type = init_type (TYPE_CODE_INT,
10215 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10216 0, "character", objfile);
10217 break;
10218 case FT_SIGNED_CHAR:
10219 type = init_type (TYPE_CODE_INT,
10220 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10221 0, "signed char", objfile);
10222 break;
10223 case FT_UNSIGNED_CHAR:
10224 type = init_type (TYPE_CODE_INT,
10225 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10226 TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
10227 break;
10228 case FT_SHORT:
10229 type = init_type (TYPE_CODE_INT,
10230 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
10231 0, "short_integer", objfile);
10232 break;
10233 case FT_SIGNED_SHORT:
10234 type = init_type (TYPE_CODE_INT,
10235 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
10236 0, "short_integer", objfile);
10237 break;
10238 case FT_UNSIGNED_SHORT:
10239 type = init_type (TYPE_CODE_INT,
10240 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
10241 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
10242 break;
10243 case FT_INTEGER:
10244 type = init_type (TYPE_CODE_INT,
10245 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10246 0, "integer", objfile);
10247 break;
10248 case FT_SIGNED_INTEGER:
10249 type = init_type (TYPE_CODE_INT,
10250 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10251 0, "integer", objfile); /* FIXME -fnf */
10252 break;
10253 case FT_UNSIGNED_INTEGER:
10254 type = init_type (TYPE_CODE_INT,
10255 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10256 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
10257 break;
10258 case FT_LONG:
10259 type = init_type (TYPE_CODE_INT,
10260 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10261 0, "long_integer", objfile);
10262 break;
10263 case FT_SIGNED_LONG:
10264 type = init_type (TYPE_CODE_INT,
10265 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10266 0, "long_integer", objfile);
10267 break;
10268 case FT_UNSIGNED_LONG:
10269 type = init_type (TYPE_CODE_INT,
10270 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10271 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
10272 break;
10273 case FT_LONG_LONG:
10274 type = init_type (TYPE_CODE_INT,
10275 gdbarch_long_long_bit (current_gdbarch)
10276 / TARGET_CHAR_BIT,
10277 0, "long_long_integer", objfile);
10278 break;
10279 case FT_SIGNED_LONG_LONG:
10280 type = init_type (TYPE_CODE_INT,
10281 gdbarch_long_long_bit (current_gdbarch)
10282 / TARGET_CHAR_BIT,
10283 0, "long_long_integer", objfile);
10284 break;
10285 case FT_UNSIGNED_LONG_LONG:
10286 type = init_type (TYPE_CODE_INT,
10287 gdbarch_long_long_bit (current_gdbarch)
10288 / TARGET_CHAR_BIT,
10289 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
10290 break;
10291 case FT_FLOAT:
10292 type = init_type (TYPE_CODE_FLT,
10293 gdbarch_float_bit (current_gdbarch) / TARGET_CHAR_BIT,
10294 0, "float", objfile);
10295 break;
10296 case FT_DBL_PREC_FLOAT:
10297 type = init_type (TYPE_CODE_FLT,
10298 gdbarch_double_bit (current_gdbarch) / TARGET_CHAR_BIT,
10299 0, "long_float", objfile);
10300 break;
10301 case FT_EXT_PREC_FLOAT:
10302 type = init_type (TYPE_CODE_FLT,
10303 gdbarch_long_double_bit (current_gdbarch)
10304 / TARGET_CHAR_BIT,
10305 0, "long_long_float", objfile);
10306 break;
10307 }
10308 return (type);
10309 }
10310
10311 enum ada_primitive_types {
10312 ada_primitive_type_int,
10313 ada_primitive_type_long,
10314 ada_primitive_type_short,
10315 ada_primitive_type_char,
10316 ada_primitive_type_float,
10317 ada_primitive_type_double,
10318 ada_primitive_type_void,
10319 ada_primitive_type_long_long,
10320 ada_primitive_type_long_double,
10321 ada_primitive_type_natural,
10322 ada_primitive_type_positive,
10323 ada_primitive_type_system_address,
10324 nr_ada_primitive_types
10325 };
10326
10327 static void
10328 ada_language_arch_info (struct gdbarch *current_gdbarch,
10329 struct language_arch_info *lai)
10330 {
10331 const struct builtin_type *builtin = builtin_type (current_gdbarch);
10332 lai->primitive_type_vector
10333 = GDBARCH_OBSTACK_CALLOC (current_gdbarch, nr_ada_primitive_types + 1,
10334 struct type *);
10335 lai->primitive_type_vector [ada_primitive_type_int] =
10336 init_type (TYPE_CODE_INT,
10337 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10338 0, "integer", (struct objfile *) NULL);
10339 lai->primitive_type_vector [ada_primitive_type_long] =
10340 init_type (TYPE_CODE_INT,
10341 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10342 0, "long_integer", (struct objfile *) NULL);
10343 lai->primitive_type_vector [ada_primitive_type_short] =
10344 init_type (TYPE_CODE_INT,
10345 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
10346 0, "short_integer", (struct objfile *) NULL);
10347 lai->string_char_type =
10348 lai->primitive_type_vector [ada_primitive_type_char] =
10349 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10350 0, "character", (struct objfile *) NULL);
10351 lai->primitive_type_vector [ada_primitive_type_float] =
10352 init_type (TYPE_CODE_FLT,
10353 gdbarch_float_bit (current_gdbarch)/ TARGET_CHAR_BIT,
10354 0, "float", (struct objfile *) NULL);
10355 lai->primitive_type_vector [ada_primitive_type_double] =
10356 init_type (TYPE_CODE_FLT,
10357 gdbarch_double_bit (current_gdbarch) / TARGET_CHAR_BIT,
10358 0, "long_float", (struct objfile *) NULL);
10359 lai->primitive_type_vector [ada_primitive_type_long_long] =
10360 init_type (TYPE_CODE_INT,
10361 gdbarch_long_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10362 0, "long_long_integer", (struct objfile *) NULL);
10363 lai->primitive_type_vector [ada_primitive_type_long_double] =
10364 init_type (TYPE_CODE_FLT,
10365 gdbarch_double_bit (current_gdbarch) / TARGET_CHAR_BIT,
10366 0, "long_long_float", (struct objfile *) NULL);
10367 lai->primitive_type_vector [ada_primitive_type_natural] =
10368 init_type (TYPE_CODE_INT,
10369 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10370 0, "natural", (struct objfile *) NULL);
10371 lai->primitive_type_vector [ada_primitive_type_positive] =
10372 init_type (TYPE_CODE_INT,
10373 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10374 0, "positive", (struct objfile *) NULL);
10375 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10376
10377 lai->primitive_type_vector [ada_primitive_type_system_address] =
10378 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10379 (struct objfile *) NULL));
10380 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10381 = "system__address";
10382 }
10383 \f
10384 /* Language vector */
10385
10386 /* Not really used, but needed in the ada_language_defn. */
10387
10388 static void
10389 emit_char (int c, struct ui_file *stream, int quoter)
10390 {
10391 ada_emit_char (c, stream, quoter, 1);
10392 }
10393
10394 static int
10395 parse (void)
10396 {
10397 warnings_issued = 0;
10398 return ada_parse ();
10399 }
10400
10401 static const struct exp_descriptor ada_exp_descriptor = {
10402 ada_print_subexp,
10403 ada_operator_length,
10404 ada_op_name,
10405 ada_dump_subexp_body,
10406 ada_evaluate_subexp
10407 };
10408
10409 const struct language_defn ada_language_defn = {
10410 "ada", /* Language name */
10411 language_ada,
10412 NULL,
10413 range_check_off,
10414 type_check_off,
10415 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10416 that's not quite what this means. */
10417 array_row_major,
10418 &ada_exp_descriptor,
10419 parse,
10420 ada_error,
10421 resolve,
10422 ada_printchar, /* Print a character constant */
10423 ada_printstr, /* Function to print string constant */
10424 emit_char, /* Function to print single char (not used) */
10425 ada_create_fundamental_type, /* Create fundamental type in this language */
10426 ada_print_type, /* Print a type using appropriate syntax */
10427 ada_val_print, /* Print a value using appropriate syntax */
10428 ada_value_print, /* Print a top-level value */
10429 NULL, /* Language specific skip_trampoline */
10430 NULL, /* value_of_this */
10431 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10432 basic_lookup_transparent_type, /* lookup_transparent_type */
10433 ada_la_decode, /* Language specific symbol demangler */
10434 NULL, /* Language specific class_name_from_physname */
10435 ada_op_print_tab, /* expression operators for printing */
10436 0, /* c-style arrays */
10437 1, /* String lower bound */
10438 NULL,
10439 ada_get_gdb_completer_word_break_characters,
10440 ada_language_arch_info,
10441 ada_print_array_index,
10442 LANG_MAGIC
10443 };
10444
10445 void
10446 _initialize_ada_language (void)
10447 {
10448 add_language (&ada_language_defn);
10449
10450 varsize_limit = 65536;
10451
10452 obstack_init (&symbol_list_obstack);
10453
10454 decoded_names_store = htab_create_alloc
10455 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10456 NULL, xcalloc, xfree);
10457 }
This page took 0.298258 seconds and 4 git commands to generate.