*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22
23 #include "defs.h"
24 #include <stdio.h>
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <stdarg.h>
28 #include "demangle.h"
29 #include "gdb_regex.h"
30 #include "frame.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "gdbcmd.h"
34 #include "expression.h"
35 #include "parser-defs.h"
36 #include "language.h"
37 #include "c-lang.h"
38 #include "inferior.h"
39 #include "symfile.h"
40 #include "objfiles.h"
41 #include "breakpoint.h"
42 #include "gdbcore.h"
43 #include "hashtab.h"
44 #include "gdb_obstack.h"
45 #include "ada-lang.h"
46 #include "completer.h"
47 #include "gdb_stat.h"
48 #ifdef UI_OUT
49 #include "ui-out.h"
50 #endif
51 #include "block.h"
52 #include "infcall.h"
53 #include "dictionary.h"
54 #include "exceptions.h"
55
56 #ifndef ADA_RETAIN_DOTS
57 #define ADA_RETAIN_DOTS 0
58 #endif
59
60 /* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64 #ifndef TRUNCATION_TOWARDS_ZERO
65 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66 #endif
67
68
69 static void extract_string (CORE_ADDR addr, char *buf);
70
71 static struct type *ada_create_fundamental_type (struct objfile *, int);
72
73 static void modify_general_field (char *, LONGEST, int, int);
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *ensure_lval (struct value *, CORE_ADDR *);
108
109 static struct value *convert_actual (struct value *, struct type *,
110 CORE_ADDR *);
111
112 static struct value *make_array_descriptor (struct type *, struct value *,
113 CORE_ADDR *);
114
115 static void ada_add_block_symbols (struct obstack *,
116 struct block *, const char *,
117 domain_enum, struct objfile *,
118 struct symtab *, int);
119
120 static int is_nonfunction (struct ada_symbol_info *, int);
121
122 static void add_defn_to_vec (struct obstack *, struct symbol *,
123 struct block *, struct symtab *);
124
125 static int num_defns_collected (struct obstack *);
126
127 static struct ada_symbol_info *defns_collected (struct obstack *, int);
128
129 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
130 *, const char *, int,
131 domain_enum, int);
132
133 static struct symtab *symtab_for_sym (struct symbol *);
134
135 static struct value *resolve_subexp (struct expression **, int *, int,
136 struct type *);
137
138 static void replace_operator_with_call (struct expression **, int, int, int,
139 struct symbol *, struct block *);
140
141 static int possible_user_operator_p (enum exp_opcode, struct value **);
142
143 static char *ada_op_name (enum exp_opcode);
144
145 static const char *ada_decoded_op_name (enum exp_opcode);
146
147 static int numeric_type_p (struct type *);
148
149 static int integer_type_p (struct type *);
150
151 static int scalar_type_p (struct type *);
152
153 static int discrete_type_p (struct type *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
156 int, int, int *);
157
158 static struct value *evaluate_subexp (struct type *, struct expression *,
159 int *, enum noside);
160
161 static struct value *evaluate_subexp_type (struct expression *, int *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (char *, struct value *,
172 struct objfile *);
173
174 static struct type *to_static_fixed_type (struct type *);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *packed_array_type (struct type *, long *);
179
180 static struct type *decode_packed_array_type (struct type *);
181
182 static struct value *decode_packed_array (struct value *);
183
184 static struct value *value_subscript_packed (struct value *, int,
185 struct value **);
186
187 static struct value *coerce_unspec_val_to_type (struct value *,
188 struct type *);
189
190 static struct value *get_var_value (char *, char *);
191
192 static int lesseq_defined_than (struct symbol *, struct symbol *);
193
194 static int equiv_types (struct type *, struct type *);
195
196 static int is_name_suffix (const char *);
197
198 static int wild_match (const char *, int, const char *);
199
200 static struct value *ada_coerce_ref (struct value *);
201
202 static LONGEST pos_atr (struct value *);
203
204 static struct value *value_pos_atr (struct value *);
205
206 static struct value *value_val_atr (struct type *, struct value *);
207
208 static struct symbol *standard_lookup (const char *, const struct block *,
209 domain_enum);
210
211 static struct value *ada_search_struct_field (char *, struct value *, int,
212 struct type *);
213
214 static struct value *ada_value_primitive_field (struct value *, int, int,
215 struct type *);
216
217 static int find_struct_field (char *, struct type *, int,
218 struct type **, int *, int *, int *);
219
220 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
221 struct value *);
222
223 static struct value *ada_to_fixed_value (struct value *);
224
225 static int ada_resolve_function (struct ada_symbol_info *, int,
226 struct value **, int, const char *,
227 struct type *);
228
229 static struct value *ada_coerce_to_simple_array (struct value *);
230
231 static int ada_is_direct_array_type (struct type *);
232
233 static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
235
236 static void check_size (const struct type *);
237 \f
238
239
240 /* Maximum-sized dynamic type. */
241 static unsigned int varsize_limit;
242
243 /* FIXME: brobecker/2003-09-17: No longer a const because it is
244 returned by a function that does not return a const char *. */
245 static char *ada_completer_word_break_characters =
246 #ifdef VMS
247 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
248 #else
249 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
250 #endif
251
252 /* The name of the symbol to use to get the name of the main subprogram. */
253 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
254 = "__gnat_ada_main_program_name";
255
256 /* The name of the runtime function called when an exception is raised. */
257 static const char raise_sym_name[] = "__gnat_raise_nodefer_with_msg";
258
259 /* The name of the runtime function called when an unhandled exception
260 is raised. */
261 static const char raise_unhandled_sym_name[] = "__gnat_unhandled_exception";
262
263 /* The name of the runtime function called when an assert failure is
264 raised. */
265 static const char raise_assert_sym_name[] =
266 "system__assertions__raise_assert_failure";
267
268 /* When GDB stops on an unhandled exception, GDB will go up the stack until
269 if finds a frame corresponding to this function, in order to extract the
270 name of the exception that has been raised from one of the parameters. */
271 static const char process_raise_exception_name[] =
272 "ada__exceptions__process_raise_exception";
273
274 /* A string that reflects the longest exception expression rewrite,
275 aside from the exception name. */
276 static const char longest_exception_template[] =
277 "'__gnat_raise_nodefer_with_msg' if long_integer(e) = long_integer(&)";
278
279 /* Limit on the number of warnings to raise per expression evaluation. */
280 static int warning_limit = 2;
281
282 /* Number of warning messages issued; reset to 0 by cleanups after
283 expression evaluation. */
284 static int warnings_issued = 0;
285
286 static const char *known_runtime_file_name_patterns[] = {
287 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
288 };
289
290 static const char *known_auxiliary_function_name_patterns[] = {
291 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
292 };
293
294 /* Space for allocating results of ada_lookup_symbol_list. */
295 static struct obstack symbol_list_obstack;
296
297 /* Utilities */
298
299
300 static char *
301 ada_get_gdb_completer_word_break_characters (void)
302 {
303 return ada_completer_word_break_characters;
304 }
305
306 /* Read the string located at ADDR from the inferior and store the
307 result into BUF. */
308
309 static void
310 extract_string (CORE_ADDR addr, char *buf)
311 {
312 int char_index = 0;
313
314 /* Loop, reading one byte at a time, until we reach the '\000'
315 end-of-string marker. */
316 do
317 {
318 target_read_memory (addr + char_index * sizeof (char),
319 buf + char_index * sizeof (char), sizeof (char));
320 char_index++;
321 }
322 while (buf[char_index - 1] != '\000');
323 }
324
325 /* Assuming VECT points to an array of *SIZE objects of size
326 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
327 updating *SIZE as necessary and returning the (new) array. */
328
329 void *
330 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
331 {
332 if (*size < min_size)
333 {
334 *size *= 2;
335 if (*size < min_size)
336 *size = min_size;
337 vect = xrealloc (vect, *size * element_size);
338 }
339 return vect;
340 }
341
342 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
343 suffix of FIELD_NAME beginning "___". */
344
345 static int
346 field_name_match (const char *field_name, const char *target)
347 {
348 int len = strlen (target);
349 return
350 (strncmp (field_name, target, len) == 0
351 && (field_name[len] == '\0'
352 || (strncmp (field_name + len, "___", 3) == 0
353 && strcmp (field_name + strlen (field_name) - 6,
354 "___XVN") != 0)));
355 }
356
357
358 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
359 FIELD_NAME, and return its index. This function also handles fields
360 whose name have ___ suffixes because the compiler sometimes alters
361 their name by adding such a suffix to represent fields with certain
362 constraints. If the field could not be found, return a negative
363 number if MAYBE_MISSING is set. Otherwise raise an error. */
364
365 int
366 ada_get_field_index (const struct type *type, const char *field_name,
367 int maybe_missing)
368 {
369 int fieldno;
370 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
371 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
372 return fieldno;
373
374 if (!maybe_missing)
375 error (_("Unable to find field %s in struct %s. Aborting"),
376 field_name, TYPE_NAME (type));
377
378 return -1;
379 }
380
381 /* The length of the prefix of NAME prior to any "___" suffix. */
382
383 int
384 ada_name_prefix_len (const char *name)
385 {
386 if (name == NULL)
387 return 0;
388 else
389 {
390 const char *p = strstr (name, "___");
391 if (p == NULL)
392 return strlen (name);
393 else
394 return p - name;
395 }
396 }
397
398 /* Return non-zero if SUFFIX is a suffix of STR.
399 Return zero if STR is null. */
400
401 static int
402 is_suffix (const char *str, const char *suffix)
403 {
404 int len1, len2;
405 if (str == NULL)
406 return 0;
407 len1 = strlen (str);
408 len2 = strlen (suffix);
409 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
410 }
411
412 /* Create a value of type TYPE whose contents come from VALADDR, if it
413 is non-null, and whose memory address (in the inferior) is
414 ADDRESS. */
415
416 struct value *
417 value_from_contents_and_address (struct type *type,
418 const gdb_byte *valaddr,
419 CORE_ADDR address)
420 {
421 struct value *v = allocate_value (type);
422 if (valaddr == NULL)
423 set_value_lazy (v, 1);
424 else
425 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
426 VALUE_ADDRESS (v) = address;
427 if (address != 0)
428 VALUE_LVAL (v) = lval_memory;
429 return v;
430 }
431
432 /* The contents of value VAL, treated as a value of type TYPE. The
433 result is an lval in memory if VAL is. */
434
435 static struct value *
436 coerce_unspec_val_to_type (struct value *val, struct type *type)
437 {
438 type = ada_check_typedef (type);
439 if (value_type (val) == type)
440 return val;
441 else
442 {
443 struct value *result;
444
445 /* Make sure that the object size is not unreasonable before
446 trying to allocate some memory for it. */
447 check_size (type);
448
449 result = allocate_value (type);
450 VALUE_LVAL (result) = VALUE_LVAL (val);
451 set_value_bitsize (result, value_bitsize (val));
452 set_value_bitpos (result, value_bitpos (val));
453 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
454 if (value_lazy (val)
455 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
456 set_value_lazy (result, 1);
457 else
458 memcpy (value_contents_raw (result), value_contents (val),
459 TYPE_LENGTH (type));
460 return result;
461 }
462 }
463
464 static const gdb_byte *
465 cond_offset_host (const gdb_byte *valaddr, long offset)
466 {
467 if (valaddr == NULL)
468 return NULL;
469 else
470 return valaddr + offset;
471 }
472
473 static CORE_ADDR
474 cond_offset_target (CORE_ADDR address, long offset)
475 {
476 if (address == 0)
477 return 0;
478 else
479 return address + offset;
480 }
481
482 /* Issue a warning (as for the definition of warning in utils.c, but
483 with exactly one argument rather than ...), unless the limit on the
484 number of warnings has passed during the evaluation of the current
485 expression. */
486
487 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
488 provided by "complaint". */
489 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
490
491 static void
492 lim_warning (const char *format, ...)
493 {
494 va_list args;
495 va_start (args, format);
496
497 warnings_issued += 1;
498 if (warnings_issued <= warning_limit)
499 vwarning (format, args);
500
501 va_end (args);
502 }
503
504 /* Issue an error if the size of an object of type T is unreasonable,
505 i.e. if it would be a bad idea to allocate a value of this type in
506 GDB. */
507
508 static void
509 check_size (const struct type *type)
510 {
511 if (TYPE_LENGTH (type) > varsize_limit)
512 error (_("object size is larger than varsize-limit"));
513 }
514
515
516 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
517 gdbtypes.h, but some of the necessary definitions in that file
518 seem to have gone missing. */
519
520 /* Maximum value of a SIZE-byte signed integer type. */
521 static LONGEST
522 max_of_size (int size)
523 {
524 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
525 return top_bit | (top_bit - 1);
526 }
527
528 /* Minimum value of a SIZE-byte signed integer type. */
529 static LONGEST
530 min_of_size (int size)
531 {
532 return -max_of_size (size) - 1;
533 }
534
535 /* Maximum value of a SIZE-byte unsigned integer type. */
536 static ULONGEST
537 umax_of_size (int size)
538 {
539 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
540 return top_bit | (top_bit - 1);
541 }
542
543 /* Maximum value of integral type T, as a signed quantity. */
544 static LONGEST
545 max_of_type (struct type *t)
546 {
547 if (TYPE_UNSIGNED (t))
548 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
549 else
550 return max_of_size (TYPE_LENGTH (t));
551 }
552
553 /* Minimum value of integral type T, as a signed quantity. */
554 static LONGEST
555 min_of_type (struct type *t)
556 {
557 if (TYPE_UNSIGNED (t))
558 return 0;
559 else
560 return min_of_size (TYPE_LENGTH (t));
561 }
562
563 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
564 static struct value *
565 discrete_type_high_bound (struct type *type)
566 {
567 switch (TYPE_CODE (type))
568 {
569 case TYPE_CODE_RANGE:
570 return value_from_longest (TYPE_TARGET_TYPE (type),
571 TYPE_HIGH_BOUND (type));
572 case TYPE_CODE_ENUM:
573 return
574 value_from_longest (type,
575 TYPE_FIELD_BITPOS (type,
576 TYPE_NFIELDS (type) - 1));
577 case TYPE_CODE_INT:
578 return value_from_longest (type, max_of_type (type));
579 default:
580 error (_("Unexpected type in discrete_type_high_bound."));
581 }
582 }
583
584 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
585 static struct value *
586 discrete_type_low_bound (struct type *type)
587 {
588 switch (TYPE_CODE (type))
589 {
590 case TYPE_CODE_RANGE:
591 return value_from_longest (TYPE_TARGET_TYPE (type),
592 TYPE_LOW_BOUND (type));
593 case TYPE_CODE_ENUM:
594 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
595 case TYPE_CODE_INT:
596 return value_from_longest (type, min_of_type (type));
597 default:
598 error (_("Unexpected type in discrete_type_low_bound."));
599 }
600 }
601
602 /* The identity on non-range types. For range types, the underlying
603 non-range scalar type. */
604
605 static struct type *
606 base_type (struct type *type)
607 {
608 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
609 {
610 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
611 return type;
612 type = TYPE_TARGET_TYPE (type);
613 }
614 return type;
615 }
616 \f
617
618 /* Language Selection */
619
620 /* If the main program is in Ada, return language_ada, otherwise return LANG
621 (the main program is in Ada iif the adainit symbol is found).
622
623 MAIN_PST is not used. */
624
625 enum language
626 ada_update_initial_language (enum language lang,
627 struct partial_symtab *main_pst)
628 {
629 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
630 (struct objfile *) NULL) != NULL)
631 return language_ada;
632
633 return lang;
634 }
635
636 /* If the main procedure is written in Ada, then return its name.
637 The result is good until the next call. Return NULL if the main
638 procedure doesn't appear to be in Ada. */
639
640 char *
641 ada_main_name (void)
642 {
643 struct minimal_symbol *msym;
644 CORE_ADDR main_program_name_addr;
645 static char main_program_name[1024];
646
647 /* For Ada, the name of the main procedure is stored in a specific
648 string constant, generated by the binder. Look for that symbol,
649 extract its address, and then read that string. If we didn't find
650 that string, then most probably the main procedure is not written
651 in Ada. */
652 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
653
654 if (msym != NULL)
655 {
656 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
657 if (main_program_name_addr == 0)
658 error (_("Invalid address for Ada main program name."));
659
660 extract_string (main_program_name_addr, main_program_name);
661 return main_program_name;
662 }
663
664 /* The main procedure doesn't seem to be in Ada. */
665 return NULL;
666 }
667 \f
668 /* Symbols */
669
670 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
671 of NULLs. */
672
673 const struct ada_opname_map ada_opname_table[] = {
674 {"Oadd", "\"+\"", BINOP_ADD},
675 {"Osubtract", "\"-\"", BINOP_SUB},
676 {"Omultiply", "\"*\"", BINOP_MUL},
677 {"Odivide", "\"/\"", BINOP_DIV},
678 {"Omod", "\"mod\"", BINOP_MOD},
679 {"Orem", "\"rem\"", BINOP_REM},
680 {"Oexpon", "\"**\"", BINOP_EXP},
681 {"Olt", "\"<\"", BINOP_LESS},
682 {"Ole", "\"<=\"", BINOP_LEQ},
683 {"Ogt", "\">\"", BINOP_GTR},
684 {"Oge", "\">=\"", BINOP_GEQ},
685 {"Oeq", "\"=\"", BINOP_EQUAL},
686 {"One", "\"/=\"", BINOP_NOTEQUAL},
687 {"Oand", "\"and\"", BINOP_BITWISE_AND},
688 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
689 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
690 {"Oconcat", "\"&\"", BINOP_CONCAT},
691 {"Oabs", "\"abs\"", UNOP_ABS},
692 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
693 {"Oadd", "\"+\"", UNOP_PLUS},
694 {"Osubtract", "\"-\"", UNOP_NEG},
695 {NULL, NULL}
696 };
697
698 /* Return non-zero if STR should be suppressed in info listings. */
699
700 static int
701 is_suppressed_name (const char *str)
702 {
703 if (strncmp (str, "_ada_", 5) == 0)
704 str += 5;
705 if (str[0] == '_' || str[0] == '\000')
706 return 1;
707 else
708 {
709 const char *p;
710 const char *suffix = strstr (str, "___");
711 if (suffix != NULL && suffix[3] != 'X')
712 return 1;
713 if (suffix == NULL)
714 suffix = str + strlen (str);
715 for (p = suffix - 1; p != str; p -= 1)
716 if (isupper (*p))
717 {
718 int i;
719 if (p[0] == 'X' && p[-1] != '_')
720 goto OK;
721 if (*p != 'O')
722 return 1;
723 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
724 if (strncmp (ada_opname_table[i].encoded, p,
725 strlen (ada_opname_table[i].encoded)) == 0)
726 goto OK;
727 return 1;
728 OK:;
729 }
730 return 0;
731 }
732 }
733
734 /* The "encoded" form of DECODED, according to GNAT conventions.
735 The result is valid until the next call to ada_encode. */
736
737 char *
738 ada_encode (const char *decoded)
739 {
740 static char *encoding_buffer = NULL;
741 static size_t encoding_buffer_size = 0;
742 const char *p;
743 int k;
744
745 if (decoded == NULL)
746 return NULL;
747
748 GROW_VECT (encoding_buffer, encoding_buffer_size,
749 2 * strlen (decoded) + 10);
750
751 k = 0;
752 for (p = decoded; *p != '\0'; p += 1)
753 {
754 if (!ADA_RETAIN_DOTS && *p == '.')
755 {
756 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
757 k += 2;
758 }
759 else if (*p == '"')
760 {
761 const struct ada_opname_map *mapping;
762
763 for (mapping = ada_opname_table;
764 mapping->encoded != NULL
765 && strncmp (mapping->decoded, p,
766 strlen (mapping->decoded)) != 0; mapping += 1)
767 ;
768 if (mapping->encoded == NULL)
769 error (_("invalid Ada operator name: %s"), p);
770 strcpy (encoding_buffer + k, mapping->encoded);
771 k += strlen (mapping->encoded);
772 break;
773 }
774 else
775 {
776 encoding_buffer[k] = *p;
777 k += 1;
778 }
779 }
780
781 encoding_buffer[k] = '\0';
782 return encoding_buffer;
783 }
784
785 /* Return NAME folded to lower case, or, if surrounded by single
786 quotes, unfolded, but with the quotes stripped away. Result good
787 to next call. */
788
789 char *
790 ada_fold_name (const char *name)
791 {
792 static char *fold_buffer = NULL;
793 static size_t fold_buffer_size = 0;
794
795 int len = strlen (name);
796 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
797
798 if (name[0] == '\'')
799 {
800 strncpy (fold_buffer, name + 1, len - 2);
801 fold_buffer[len - 2] = '\000';
802 }
803 else
804 {
805 int i;
806 for (i = 0; i <= len; i += 1)
807 fold_buffer[i] = tolower (name[i]);
808 }
809
810 return fold_buffer;
811 }
812
813 /* decode:
814 0. Discard trailing .{DIGIT}+ or trailing ___{DIGIT}+
815 These are suffixes introduced by GNAT5 to nested subprogram
816 names, and do not serve any purpose for the debugger.
817 1. Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
818 2. Convert other instances of embedded "__" to `.'.
819 3. Discard leading _ada_.
820 4. Convert operator names to the appropriate quoted symbols.
821 5. Remove everything after first ___ if it is followed by
822 'X'.
823 6. Replace TK__ with __, and a trailing B or TKB with nothing.
824 7. Put symbols that should be suppressed in <...> brackets.
825 8. Remove trailing X[bn]* suffix (indicating names in package bodies).
826
827 The resulting string is valid until the next call of ada_decode.
828 If the string is unchanged by demangling, the original string pointer
829 is returned. */
830
831 const char *
832 ada_decode (const char *encoded)
833 {
834 int i, j;
835 int len0;
836 const char *p;
837 char *decoded;
838 int at_start_name;
839 static char *decoding_buffer = NULL;
840 static size_t decoding_buffer_size = 0;
841
842 if (strncmp (encoded, "_ada_", 5) == 0)
843 encoded += 5;
844
845 if (encoded[0] == '_' || encoded[0] == '<')
846 goto Suppress;
847
848 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+. */
849 len0 = strlen (encoded);
850 if (len0 > 1 && isdigit (encoded[len0 - 1]))
851 {
852 i = len0 - 2;
853 while (i > 0 && isdigit (encoded[i]))
854 i--;
855 if (i >= 0 && encoded[i] == '.')
856 len0 = i;
857 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
858 len0 = i - 2;
859 }
860
861 /* Remove the ___X.* suffix if present. Do not forget to verify that
862 the suffix is located before the current "end" of ENCODED. We want
863 to avoid re-matching parts of ENCODED that have previously been
864 marked as discarded (by decrementing LEN0). */
865 p = strstr (encoded, "___");
866 if (p != NULL && p - encoded < len0 - 3)
867 {
868 if (p[3] == 'X')
869 len0 = p - encoded;
870 else
871 goto Suppress;
872 }
873
874 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
875 len0 -= 3;
876
877 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
878 len0 -= 1;
879
880 /* Make decoded big enough for possible expansion by operator name. */
881 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
882 decoded = decoding_buffer;
883
884 if (len0 > 1 && isdigit (encoded[len0 - 1]))
885 {
886 i = len0 - 2;
887 while ((i >= 0 && isdigit (encoded[i]))
888 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
889 i -= 1;
890 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
891 len0 = i - 1;
892 else if (encoded[i] == '$')
893 len0 = i;
894 }
895
896 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
897 decoded[j] = encoded[i];
898
899 at_start_name = 1;
900 while (i < len0)
901 {
902 if (at_start_name && encoded[i] == 'O')
903 {
904 int k;
905 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
906 {
907 int op_len = strlen (ada_opname_table[k].encoded);
908 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
909 op_len - 1) == 0)
910 && !isalnum (encoded[i + op_len]))
911 {
912 strcpy (decoded + j, ada_opname_table[k].decoded);
913 at_start_name = 0;
914 i += op_len;
915 j += strlen (ada_opname_table[k].decoded);
916 break;
917 }
918 }
919 if (ada_opname_table[k].encoded != NULL)
920 continue;
921 }
922 at_start_name = 0;
923
924 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
925 i += 2;
926 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
927 {
928 do
929 i += 1;
930 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
931 if (i < len0)
932 goto Suppress;
933 }
934 else if (!ADA_RETAIN_DOTS
935 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
936 {
937 decoded[j] = '.';
938 at_start_name = 1;
939 i += 2;
940 j += 1;
941 }
942 else
943 {
944 decoded[j] = encoded[i];
945 i += 1;
946 j += 1;
947 }
948 }
949 decoded[j] = '\000';
950
951 for (i = 0; decoded[i] != '\0'; i += 1)
952 if (isupper (decoded[i]) || decoded[i] == ' ')
953 goto Suppress;
954
955 if (strcmp (decoded, encoded) == 0)
956 return encoded;
957 else
958 return decoded;
959
960 Suppress:
961 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
962 decoded = decoding_buffer;
963 if (encoded[0] == '<')
964 strcpy (decoded, encoded);
965 else
966 sprintf (decoded, "<%s>", encoded);
967 return decoded;
968
969 }
970
971 /* Table for keeping permanent unique copies of decoded names. Once
972 allocated, names in this table are never released. While this is a
973 storage leak, it should not be significant unless there are massive
974 changes in the set of decoded names in successive versions of a
975 symbol table loaded during a single session. */
976 static struct htab *decoded_names_store;
977
978 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
979 in the language-specific part of GSYMBOL, if it has not been
980 previously computed. Tries to save the decoded name in the same
981 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
982 in any case, the decoded symbol has a lifetime at least that of
983 GSYMBOL).
984 The GSYMBOL parameter is "mutable" in the C++ sense: logically
985 const, but nevertheless modified to a semantically equivalent form
986 when a decoded name is cached in it.
987 */
988
989 char *
990 ada_decode_symbol (const struct general_symbol_info *gsymbol)
991 {
992 char **resultp =
993 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
994 if (*resultp == NULL)
995 {
996 const char *decoded = ada_decode (gsymbol->name);
997 if (gsymbol->bfd_section != NULL)
998 {
999 bfd *obfd = gsymbol->bfd_section->owner;
1000 if (obfd != NULL)
1001 {
1002 struct objfile *objf;
1003 ALL_OBJFILES (objf)
1004 {
1005 if (obfd == objf->obfd)
1006 {
1007 *resultp = obsavestring (decoded, strlen (decoded),
1008 &objf->objfile_obstack);
1009 break;
1010 }
1011 }
1012 }
1013 }
1014 /* Sometimes, we can't find a corresponding objfile, in which
1015 case, we put the result on the heap. Since we only decode
1016 when needed, we hope this usually does not cause a
1017 significant memory leak (FIXME). */
1018 if (*resultp == NULL)
1019 {
1020 char **slot = (char **) htab_find_slot (decoded_names_store,
1021 decoded, INSERT);
1022 if (*slot == NULL)
1023 *slot = xstrdup (decoded);
1024 *resultp = *slot;
1025 }
1026 }
1027
1028 return *resultp;
1029 }
1030
1031 char *
1032 ada_la_decode (const char *encoded, int options)
1033 {
1034 return xstrdup (ada_decode (encoded));
1035 }
1036
1037 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1038 suffixes that encode debugging information or leading _ada_ on
1039 SYM_NAME (see is_name_suffix commentary for the debugging
1040 information that is ignored). If WILD, then NAME need only match a
1041 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1042 either argument is NULL. */
1043
1044 int
1045 ada_match_name (const char *sym_name, const char *name, int wild)
1046 {
1047 if (sym_name == NULL || name == NULL)
1048 return 0;
1049 else if (wild)
1050 return wild_match (name, strlen (name), sym_name);
1051 else
1052 {
1053 int len_name = strlen (name);
1054 return (strncmp (sym_name, name, len_name) == 0
1055 && is_name_suffix (sym_name + len_name))
1056 || (strncmp (sym_name, "_ada_", 5) == 0
1057 && strncmp (sym_name + 5, name, len_name) == 0
1058 && is_name_suffix (sym_name + len_name + 5));
1059 }
1060 }
1061
1062 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1063 suppressed in info listings. */
1064
1065 int
1066 ada_suppress_symbol_printing (struct symbol *sym)
1067 {
1068 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1069 return 1;
1070 else
1071 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1072 }
1073 \f
1074
1075 /* Arrays */
1076
1077 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1078
1079 static char *bound_name[] = {
1080 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1081 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1082 };
1083
1084 /* Maximum number of array dimensions we are prepared to handle. */
1085
1086 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1087
1088 /* Like modify_field, but allows bitpos > wordlength. */
1089
1090 static void
1091 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1092 {
1093 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1094 }
1095
1096
1097 /* The desc_* routines return primitive portions of array descriptors
1098 (fat pointers). */
1099
1100 /* The descriptor or array type, if any, indicated by TYPE; removes
1101 level of indirection, if needed. */
1102
1103 static struct type *
1104 desc_base_type (struct type *type)
1105 {
1106 if (type == NULL)
1107 return NULL;
1108 type = ada_check_typedef (type);
1109 if (type != NULL
1110 && (TYPE_CODE (type) == TYPE_CODE_PTR
1111 || TYPE_CODE (type) == TYPE_CODE_REF))
1112 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1113 else
1114 return type;
1115 }
1116
1117 /* True iff TYPE indicates a "thin" array pointer type. */
1118
1119 static int
1120 is_thin_pntr (struct type *type)
1121 {
1122 return
1123 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1124 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1125 }
1126
1127 /* The descriptor type for thin pointer type TYPE. */
1128
1129 static struct type *
1130 thin_descriptor_type (struct type *type)
1131 {
1132 struct type *base_type = desc_base_type (type);
1133 if (base_type == NULL)
1134 return NULL;
1135 if (is_suffix (ada_type_name (base_type), "___XVE"))
1136 return base_type;
1137 else
1138 {
1139 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1140 if (alt_type == NULL)
1141 return base_type;
1142 else
1143 return alt_type;
1144 }
1145 }
1146
1147 /* A pointer to the array data for thin-pointer value VAL. */
1148
1149 static struct value *
1150 thin_data_pntr (struct value *val)
1151 {
1152 struct type *type = value_type (val);
1153 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1154 return value_cast (desc_data_type (thin_descriptor_type (type)),
1155 value_copy (val));
1156 else
1157 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1158 VALUE_ADDRESS (val) + value_offset (val));
1159 }
1160
1161 /* True iff TYPE indicates a "thick" array pointer type. */
1162
1163 static int
1164 is_thick_pntr (struct type *type)
1165 {
1166 type = desc_base_type (type);
1167 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1168 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1169 }
1170
1171 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1172 pointer to one, the type of its bounds data; otherwise, NULL. */
1173
1174 static struct type *
1175 desc_bounds_type (struct type *type)
1176 {
1177 struct type *r;
1178
1179 type = desc_base_type (type);
1180
1181 if (type == NULL)
1182 return NULL;
1183 else if (is_thin_pntr (type))
1184 {
1185 type = thin_descriptor_type (type);
1186 if (type == NULL)
1187 return NULL;
1188 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1189 if (r != NULL)
1190 return ada_check_typedef (r);
1191 }
1192 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1193 {
1194 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1195 if (r != NULL)
1196 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1197 }
1198 return NULL;
1199 }
1200
1201 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1202 one, a pointer to its bounds data. Otherwise NULL. */
1203
1204 static struct value *
1205 desc_bounds (struct value *arr)
1206 {
1207 struct type *type = ada_check_typedef (value_type (arr));
1208 if (is_thin_pntr (type))
1209 {
1210 struct type *bounds_type =
1211 desc_bounds_type (thin_descriptor_type (type));
1212 LONGEST addr;
1213
1214 if (desc_bounds_type == NULL)
1215 error (_("Bad GNAT array descriptor"));
1216
1217 /* NOTE: The following calculation is not really kosher, but
1218 since desc_type is an XVE-encoded type (and shouldn't be),
1219 the correct calculation is a real pain. FIXME (and fix GCC). */
1220 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1221 addr = value_as_long (arr);
1222 else
1223 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1224
1225 return
1226 value_from_longest (lookup_pointer_type (bounds_type),
1227 addr - TYPE_LENGTH (bounds_type));
1228 }
1229
1230 else if (is_thick_pntr (type))
1231 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1232 _("Bad GNAT array descriptor"));
1233 else
1234 return NULL;
1235 }
1236
1237 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1238 position of the field containing the address of the bounds data. */
1239
1240 static int
1241 fat_pntr_bounds_bitpos (struct type *type)
1242 {
1243 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1244 }
1245
1246 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1247 size of the field containing the address of the bounds data. */
1248
1249 static int
1250 fat_pntr_bounds_bitsize (struct type *type)
1251 {
1252 type = desc_base_type (type);
1253
1254 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1255 return TYPE_FIELD_BITSIZE (type, 1);
1256 else
1257 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1258 }
1259
1260 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1261 pointer to one, the type of its array data (a
1262 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1263 ada_type_of_array to get an array type with bounds data. */
1264
1265 static struct type *
1266 desc_data_type (struct type *type)
1267 {
1268 type = desc_base_type (type);
1269
1270 /* NOTE: The following is bogus; see comment in desc_bounds. */
1271 if (is_thin_pntr (type))
1272 return lookup_pointer_type
1273 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1274 else if (is_thick_pntr (type))
1275 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1276 else
1277 return NULL;
1278 }
1279
1280 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1281 its array data. */
1282
1283 static struct value *
1284 desc_data (struct value *arr)
1285 {
1286 struct type *type = value_type (arr);
1287 if (is_thin_pntr (type))
1288 return thin_data_pntr (arr);
1289 else if (is_thick_pntr (type))
1290 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1291 _("Bad GNAT array descriptor"));
1292 else
1293 return NULL;
1294 }
1295
1296
1297 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1298 position of the field containing the address of the data. */
1299
1300 static int
1301 fat_pntr_data_bitpos (struct type *type)
1302 {
1303 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1304 }
1305
1306 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1307 size of the field containing the address of the data. */
1308
1309 static int
1310 fat_pntr_data_bitsize (struct type *type)
1311 {
1312 type = desc_base_type (type);
1313
1314 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1315 return TYPE_FIELD_BITSIZE (type, 0);
1316 else
1317 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1318 }
1319
1320 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1321 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1322 bound, if WHICH is 1. The first bound is I=1. */
1323
1324 static struct value *
1325 desc_one_bound (struct value *bounds, int i, int which)
1326 {
1327 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1328 _("Bad GNAT array descriptor bounds"));
1329 }
1330
1331 /* If BOUNDS is an array-bounds structure type, return the bit position
1332 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1333 bound, if WHICH is 1. The first bound is I=1. */
1334
1335 static int
1336 desc_bound_bitpos (struct type *type, int i, int which)
1337 {
1338 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1339 }
1340
1341 /* If BOUNDS is an array-bounds structure type, return the bit field size
1342 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1343 bound, if WHICH is 1. The first bound is I=1. */
1344
1345 static int
1346 desc_bound_bitsize (struct type *type, int i, int which)
1347 {
1348 type = desc_base_type (type);
1349
1350 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1351 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1352 else
1353 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1354 }
1355
1356 /* If TYPE is the type of an array-bounds structure, the type of its
1357 Ith bound (numbering from 1). Otherwise, NULL. */
1358
1359 static struct type *
1360 desc_index_type (struct type *type, int i)
1361 {
1362 type = desc_base_type (type);
1363
1364 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1365 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1366 else
1367 return NULL;
1368 }
1369
1370 /* The number of index positions in the array-bounds type TYPE.
1371 Return 0 if TYPE is NULL. */
1372
1373 static int
1374 desc_arity (struct type *type)
1375 {
1376 type = desc_base_type (type);
1377
1378 if (type != NULL)
1379 return TYPE_NFIELDS (type) / 2;
1380 return 0;
1381 }
1382
1383 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1384 an array descriptor type (representing an unconstrained array
1385 type). */
1386
1387 static int
1388 ada_is_direct_array_type (struct type *type)
1389 {
1390 if (type == NULL)
1391 return 0;
1392 type = ada_check_typedef (type);
1393 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1394 || ada_is_array_descriptor_type (type));
1395 }
1396
1397 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1398
1399 int
1400 ada_is_simple_array_type (struct type *type)
1401 {
1402 if (type == NULL)
1403 return 0;
1404 type = ada_check_typedef (type);
1405 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1406 || (TYPE_CODE (type) == TYPE_CODE_PTR
1407 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1408 }
1409
1410 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1411
1412 int
1413 ada_is_array_descriptor_type (struct type *type)
1414 {
1415 struct type *data_type = desc_data_type (type);
1416
1417 if (type == NULL)
1418 return 0;
1419 type = ada_check_typedef (type);
1420 return
1421 data_type != NULL
1422 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1423 && TYPE_TARGET_TYPE (data_type) != NULL
1424 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1425 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1426 && desc_arity (desc_bounds_type (type)) > 0;
1427 }
1428
1429 /* Non-zero iff type is a partially mal-formed GNAT array
1430 descriptor. FIXME: This is to compensate for some problems with
1431 debugging output from GNAT. Re-examine periodically to see if it
1432 is still needed. */
1433
1434 int
1435 ada_is_bogus_array_descriptor (struct type *type)
1436 {
1437 return
1438 type != NULL
1439 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1440 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1441 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1442 && !ada_is_array_descriptor_type (type);
1443 }
1444
1445
1446 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1447 (fat pointer) returns the type of the array data described---specifically,
1448 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1449 in from the descriptor; otherwise, they are left unspecified. If
1450 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1451 returns NULL. The result is simply the type of ARR if ARR is not
1452 a descriptor. */
1453 struct type *
1454 ada_type_of_array (struct value *arr, int bounds)
1455 {
1456 if (ada_is_packed_array_type (value_type (arr)))
1457 return decode_packed_array_type (value_type (arr));
1458
1459 if (!ada_is_array_descriptor_type (value_type (arr)))
1460 return value_type (arr);
1461
1462 if (!bounds)
1463 return
1464 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1465 else
1466 {
1467 struct type *elt_type;
1468 int arity;
1469 struct value *descriptor;
1470 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1471
1472 elt_type = ada_array_element_type (value_type (arr), -1);
1473 arity = ada_array_arity (value_type (arr));
1474
1475 if (elt_type == NULL || arity == 0)
1476 return ada_check_typedef (value_type (arr));
1477
1478 descriptor = desc_bounds (arr);
1479 if (value_as_long (descriptor) == 0)
1480 return NULL;
1481 while (arity > 0)
1482 {
1483 struct type *range_type = alloc_type (objf);
1484 struct type *array_type = alloc_type (objf);
1485 struct value *low = desc_one_bound (descriptor, arity, 0);
1486 struct value *high = desc_one_bound (descriptor, arity, 1);
1487 arity -= 1;
1488
1489 create_range_type (range_type, value_type (low),
1490 (int) value_as_long (low),
1491 (int) value_as_long (high));
1492 elt_type = create_array_type (array_type, elt_type, range_type);
1493 }
1494
1495 return lookup_pointer_type (elt_type);
1496 }
1497 }
1498
1499 /* If ARR does not represent an array, returns ARR unchanged.
1500 Otherwise, returns either a standard GDB array with bounds set
1501 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1502 GDB array. Returns NULL if ARR is a null fat pointer. */
1503
1504 struct value *
1505 ada_coerce_to_simple_array_ptr (struct value *arr)
1506 {
1507 if (ada_is_array_descriptor_type (value_type (arr)))
1508 {
1509 struct type *arrType = ada_type_of_array (arr, 1);
1510 if (arrType == NULL)
1511 return NULL;
1512 return value_cast (arrType, value_copy (desc_data (arr)));
1513 }
1514 else if (ada_is_packed_array_type (value_type (arr)))
1515 return decode_packed_array (arr);
1516 else
1517 return arr;
1518 }
1519
1520 /* If ARR does not represent an array, returns ARR unchanged.
1521 Otherwise, returns a standard GDB array describing ARR (which may
1522 be ARR itself if it already is in the proper form). */
1523
1524 static struct value *
1525 ada_coerce_to_simple_array (struct value *arr)
1526 {
1527 if (ada_is_array_descriptor_type (value_type (arr)))
1528 {
1529 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1530 if (arrVal == NULL)
1531 error (_("Bounds unavailable for null array pointer."));
1532 return value_ind (arrVal);
1533 }
1534 else if (ada_is_packed_array_type (value_type (arr)))
1535 return decode_packed_array (arr);
1536 else
1537 return arr;
1538 }
1539
1540 /* If TYPE represents a GNAT array type, return it translated to an
1541 ordinary GDB array type (possibly with BITSIZE fields indicating
1542 packing). For other types, is the identity. */
1543
1544 struct type *
1545 ada_coerce_to_simple_array_type (struct type *type)
1546 {
1547 struct value *mark = value_mark ();
1548 struct value *dummy = value_from_longest (builtin_type_long, 0);
1549 struct type *result;
1550 deprecated_set_value_type (dummy, type);
1551 result = ada_type_of_array (dummy, 0);
1552 value_free_to_mark (mark);
1553 return result;
1554 }
1555
1556 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1557
1558 int
1559 ada_is_packed_array_type (struct type *type)
1560 {
1561 if (type == NULL)
1562 return 0;
1563 type = desc_base_type (type);
1564 type = ada_check_typedef (type);
1565 return
1566 ada_type_name (type) != NULL
1567 && strstr (ada_type_name (type), "___XP") != NULL;
1568 }
1569
1570 /* Given that TYPE is a standard GDB array type with all bounds filled
1571 in, and that the element size of its ultimate scalar constituents
1572 (that is, either its elements, or, if it is an array of arrays, its
1573 elements' elements, etc.) is *ELT_BITS, return an identical type,
1574 but with the bit sizes of its elements (and those of any
1575 constituent arrays) recorded in the BITSIZE components of its
1576 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1577 in bits. */
1578
1579 static struct type *
1580 packed_array_type (struct type *type, long *elt_bits)
1581 {
1582 struct type *new_elt_type;
1583 struct type *new_type;
1584 LONGEST low_bound, high_bound;
1585
1586 type = ada_check_typedef (type);
1587 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1588 return type;
1589
1590 new_type = alloc_type (TYPE_OBJFILE (type));
1591 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1592 elt_bits);
1593 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1594 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1595 TYPE_NAME (new_type) = ada_type_name (type);
1596
1597 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1598 &low_bound, &high_bound) < 0)
1599 low_bound = high_bound = 0;
1600 if (high_bound < low_bound)
1601 *elt_bits = TYPE_LENGTH (new_type) = 0;
1602 else
1603 {
1604 *elt_bits *= (high_bound - low_bound + 1);
1605 TYPE_LENGTH (new_type) =
1606 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1607 }
1608
1609 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1610 return new_type;
1611 }
1612
1613 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1614
1615 static struct type *
1616 decode_packed_array_type (struct type *type)
1617 {
1618 struct symbol *sym;
1619 struct block **blocks;
1620 const char *raw_name = ada_type_name (ada_check_typedef (type));
1621 char *name = (char *) alloca (strlen (raw_name) + 1);
1622 char *tail = strstr (raw_name, "___XP");
1623 struct type *shadow_type;
1624 long bits;
1625 int i, n;
1626
1627 type = desc_base_type (type);
1628
1629 memcpy (name, raw_name, tail - raw_name);
1630 name[tail - raw_name] = '\000';
1631
1632 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1633 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1634 {
1635 lim_warning (_("could not find bounds information on packed array"));
1636 return NULL;
1637 }
1638 shadow_type = SYMBOL_TYPE (sym);
1639
1640 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1641 {
1642 lim_warning (_("could not understand bounds information on packed array"));
1643 return NULL;
1644 }
1645
1646 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1647 {
1648 lim_warning
1649 (_("could not understand bit size information on packed array"));
1650 return NULL;
1651 }
1652
1653 return packed_array_type (shadow_type, &bits);
1654 }
1655
1656 /* Given that ARR is a struct value *indicating a GNAT packed array,
1657 returns a simple array that denotes that array. Its type is a
1658 standard GDB array type except that the BITSIZEs of the array
1659 target types are set to the number of bits in each element, and the
1660 type length is set appropriately. */
1661
1662 static struct value *
1663 decode_packed_array (struct value *arr)
1664 {
1665 struct type *type;
1666
1667 arr = ada_coerce_ref (arr);
1668 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1669 arr = ada_value_ind (arr);
1670
1671 type = decode_packed_array_type (value_type (arr));
1672 if (type == NULL)
1673 {
1674 error (_("can't unpack array"));
1675 return NULL;
1676 }
1677
1678 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1679 {
1680 /* This is a (right-justified) modular type representing a packed
1681 array with no wrapper. In order to interpret the value through
1682 the (left-justified) packed array type we just built, we must
1683 first left-justify it. */
1684 int bit_size, bit_pos;
1685 ULONGEST mod;
1686
1687 mod = ada_modulus (value_type (arr)) - 1;
1688 bit_size = 0;
1689 while (mod > 0)
1690 {
1691 bit_size += 1;
1692 mod >>= 1;
1693 }
1694 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1695 arr = ada_value_primitive_packed_val (arr, NULL,
1696 bit_pos / HOST_CHAR_BIT,
1697 bit_pos % HOST_CHAR_BIT,
1698 bit_size,
1699 type);
1700 }
1701
1702 return coerce_unspec_val_to_type (arr, type);
1703 }
1704
1705
1706 /* The value of the element of packed array ARR at the ARITY indices
1707 given in IND. ARR must be a simple array. */
1708
1709 static struct value *
1710 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1711 {
1712 int i;
1713 int bits, elt_off, bit_off;
1714 long elt_total_bit_offset;
1715 struct type *elt_type;
1716 struct value *v;
1717
1718 bits = 0;
1719 elt_total_bit_offset = 0;
1720 elt_type = ada_check_typedef (value_type (arr));
1721 for (i = 0; i < arity; i += 1)
1722 {
1723 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1724 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1725 error
1726 (_("attempt to do packed indexing of something other than a packed array"));
1727 else
1728 {
1729 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1730 LONGEST lowerbound, upperbound;
1731 LONGEST idx;
1732
1733 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1734 {
1735 lim_warning (_("don't know bounds of array"));
1736 lowerbound = upperbound = 0;
1737 }
1738
1739 idx = value_as_long (value_pos_atr (ind[i]));
1740 if (idx < lowerbound || idx > upperbound)
1741 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1742 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1743 elt_total_bit_offset += (idx - lowerbound) * bits;
1744 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1745 }
1746 }
1747 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1748 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1749
1750 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1751 bits, elt_type);
1752 if (VALUE_LVAL (arr) == lval_internalvar)
1753 VALUE_LVAL (v) = lval_internalvar_component;
1754 else
1755 VALUE_LVAL (v) = VALUE_LVAL (arr);
1756 return v;
1757 }
1758
1759 /* Non-zero iff TYPE includes negative integer values. */
1760
1761 static int
1762 has_negatives (struct type *type)
1763 {
1764 switch (TYPE_CODE (type))
1765 {
1766 default:
1767 return 0;
1768 case TYPE_CODE_INT:
1769 return !TYPE_UNSIGNED (type);
1770 case TYPE_CODE_RANGE:
1771 return TYPE_LOW_BOUND (type) < 0;
1772 }
1773 }
1774
1775
1776 /* Create a new value of type TYPE from the contents of OBJ starting
1777 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1778 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1779 assigning through the result will set the field fetched from.
1780 VALADDR is ignored unless OBJ is NULL, in which case,
1781 VALADDR+OFFSET must address the start of storage containing the
1782 packed value. The value returned in this case is never an lval.
1783 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1784
1785 struct value *
1786 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1787 long offset, int bit_offset, int bit_size,
1788 struct type *type)
1789 {
1790 struct value *v;
1791 int src, /* Index into the source area */
1792 targ, /* Index into the target area */
1793 srcBitsLeft, /* Number of source bits left to move */
1794 nsrc, ntarg, /* Number of source and target bytes */
1795 unusedLS, /* Number of bits in next significant
1796 byte of source that are unused */
1797 accumSize; /* Number of meaningful bits in accum */
1798 unsigned char *bytes; /* First byte containing data to unpack */
1799 unsigned char *unpacked;
1800 unsigned long accum; /* Staging area for bits being transferred */
1801 unsigned char sign;
1802 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1803 /* Transmit bytes from least to most significant; delta is the direction
1804 the indices move. */
1805 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1806
1807 type = ada_check_typedef (type);
1808
1809 if (obj == NULL)
1810 {
1811 v = allocate_value (type);
1812 bytes = (unsigned char *) (valaddr + offset);
1813 }
1814 else if (value_lazy (obj))
1815 {
1816 v = value_at (type,
1817 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
1818 bytes = (unsigned char *) alloca (len);
1819 read_memory (VALUE_ADDRESS (v), bytes, len);
1820 }
1821 else
1822 {
1823 v = allocate_value (type);
1824 bytes = (unsigned char *) value_contents (obj) + offset;
1825 }
1826
1827 if (obj != NULL)
1828 {
1829 VALUE_LVAL (v) = VALUE_LVAL (obj);
1830 if (VALUE_LVAL (obj) == lval_internalvar)
1831 VALUE_LVAL (v) = lval_internalvar_component;
1832 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
1833 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1834 set_value_bitsize (v, bit_size);
1835 if (value_bitpos (v) >= HOST_CHAR_BIT)
1836 {
1837 VALUE_ADDRESS (v) += 1;
1838 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1839 }
1840 }
1841 else
1842 set_value_bitsize (v, bit_size);
1843 unpacked = (unsigned char *) value_contents (v);
1844
1845 srcBitsLeft = bit_size;
1846 nsrc = len;
1847 ntarg = TYPE_LENGTH (type);
1848 sign = 0;
1849 if (bit_size == 0)
1850 {
1851 memset (unpacked, 0, TYPE_LENGTH (type));
1852 return v;
1853 }
1854 else if (BITS_BIG_ENDIAN)
1855 {
1856 src = len - 1;
1857 if (has_negatives (type)
1858 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
1859 sign = ~0;
1860
1861 unusedLS =
1862 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
1863 % HOST_CHAR_BIT;
1864
1865 switch (TYPE_CODE (type))
1866 {
1867 case TYPE_CODE_ARRAY:
1868 case TYPE_CODE_UNION:
1869 case TYPE_CODE_STRUCT:
1870 /* Non-scalar values must be aligned at a byte boundary... */
1871 accumSize =
1872 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
1873 /* ... And are placed at the beginning (most-significant) bytes
1874 of the target. */
1875 targ = src;
1876 break;
1877 default:
1878 accumSize = 0;
1879 targ = TYPE_LENGTH (type) - 1;
1880 break;
1881 }
1882 }
1883 else
1884 {
1885 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
1886
1887 src = targ = 0;
1888 unusedLS = bit_offset;
1889 accumSize = 0;
1890
1891 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
1892 sign = ~0;
1893 }
1894
1895 accum = 0;
1896 while (nsrc > 0)
1897 {
1898 /* Mask for removing bits of the next source byte that are not
1899 part of the value. */
1900 unsigned int unusedMSMask =
1901 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
1902 1;
1903 /* Sign-extend bits for this byte. */
1904 unsigned int signMask = sign & ~unusedMSMask;
1905 accum |=
1906 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
1907 accumSize += HOST_CHAR_BIT - unusedLS;
1908 if (accumSize >= HOST_CHAR_BIT)
1909 {
1910 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
1911 accumSize -= HOST_CHAR_BIT;
1912 accum >>= HOST_CHAR_BIT;
1913 ntarg -= 1;
1914 targ += delta;
1915 }
1916 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
1917 unusedLS = 0;
1918 nsrc -= 1;
1919 src += delta;
1920 }
1921 while (ntarg > 0)
1922 {
1923 accum |= sign << accumSize;
1924 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
1925 accumSize -= HOST_CHAR_BIT;
1926 accum >>= HOST_CHAR_BIT;
1927 ntarg -= 1;
1928 targ += delta;
1929 }
1930
1931 return v;
1932 }
1933
1934 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
1935 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
1936 not overlap. */
1937 static void
1938 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
1939 int src_offset, int n)
1940 {
1941 unsigned int accum, mask;
1942 int accum_bits, chunk_size;
1943
1944 target += targ_offset / HOST_CHAR_BIT;
1945 targ_offset %= HOST_CHAR_BIT;
1946 source += src_offset / HOST_CHAR_BIT;
1947 src_offset %= HOST_CHAR_BIT;
1948 if (BITS_BIG_ENDIAN)
1949 {
1950 accum = (unsigned char) *source;
1951 source += 1;
1952 accum_bits = HOST_CHAR_BIT - src_offset;
1953
1954 while (n > 0)
1955 {
1956 int unused_right;
1957 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
1958 accum_bits += HOST_CHAR_BIT;
1959 source += 1;
1960 chunk_size = HOST_CHAR_BIT - targ_offset;
1961 if (chunk_size > n)
1962 chunk_size = n;
1963 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
1964 mask = ((1 << chunk_size) - 1) << unused_right;
1965 *target =
1966 (*target & ~mask)
1967 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
1968 n -= chunk_size;
1969 accum_bits -= chunk_size;
1970 target += 1;
1971 targ_offset = 0;
1972 }
1973 }
1974 else
1975 {
1976 accum = (unsigned char) *source >> src_offset;
1977 source += 1;
1978 accum_bits = HOST_CHAR_BIT - src_offset;
1979
1980 while (n > 0)
1981 {
1982 accum = accum + ((unsigned char) *source << accum_bits);
1983 accum_bits += HOST_CHAR_BIT;
1984 source += 1;
1985 chunk_size = HOST_CHAR_BIT - targ_offset;
1986 if (chunk_size > n)
1987 chunk_size = n;
1988 mask = ((1 << chunk_size) - 1) << targ_offset;
1989 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
1990 n -= chunk_size;
1991 accum_bits -= chunk_size;
1992 accum >>= chunk_size;
1993 target += 1;
1994 targ_offset = 0;
1995 }
1996 }
1997 }
1998
1999
2000 /* Store the contents of FROMVAL into the location of TOVAL.
2001 Return a new value with the location of TOVAL and contents of
2002 FROMVAL. Handles assignment into packed fields that have
2003 floating-point or non-scalar types. */
2004
2005 static struct value *
2006 ada_value_assign (struct value *toval, struct value *fromval)
2007 {
2008 struct type *type = value_type (toval);
2009 int bits = value_bitsize (toval);
2010
2011 if (!deprecated_value_modifiable (toval))
2012 error (_("Left operand of assignment is not a modifiable lvalue."));
2013
2014 toval = coerce_ref (toval);
2015
2016 if (VALUE_LVAL (toval) == lval_memory
2017 && bits > 0
2018 && (TYPE_CODE (type) == TYPE_CODE_FLT
2019 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2020 {
2021 int len = (value_bitpos (toval)
2022 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2023 char *buffer = (char *) alloca (len);
2024 struct value *val;
2025
2026 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2027 fromval = value_cast (type, fromval);
2028
2029 read_memory (VALUE_ADDRESS (toval) + value_offset (toval), buffer, len);
2030 if (BITS_BIG_ENDIAN)
2031 move_bits (buffer, value_bitpos (toval),
2032 value_contents (fromval),
2033 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2034 bits, bits);
2035 else
2036 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2037 0, bits);
2038 write_memory (VALUE_ADDRESS (toval) + value_offset (toval), buffer,
2039 len);
2040
2041 val = value_copy (toval);
2042 memcpy (value_contents_raw (val), value_contents (fromval),
2043 TYPE_LENGTH (type));
2044 deprecated_set_value_type (val, type);
2045
2046 return val;
2047 }
2048
2049 return value_assign (toval, fromval);
2050 }
2051
2052
2053 /* The value of the element of array ARR at the ARITY indices given in IND.
2054 ARR may be either a simple array, GNAT array descriptor, or pointer
2055 thereto. */
2056
2057 struct value *
2058 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2059 {
2060 int k;
2061 struct value *elt;
2062 struct type *elt_type;
2063
2064 elt = ada_coerce_to_simple_array (arr);
2065
2066 elt_type = ada_check_typedef (value_type (elt));
2067 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2068 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2069 return value_subscript_packed (elt, arity, ind);
2070
2071 for (k = 0; k < arity; k += 1)
2072 {
2073 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2074 error (_("too many subscripts (%d expected)"), k);
2075 elt = value_subscript (elt, value_pos_atr (ind[k]));
2076 }
2077 return elt;
2078 }
2079
2080 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2081 value of the element of *ARR at the ARITY indices given in
2082 IND. Does not read the entire array into memory. */
2083
2084 struct value *
2085 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2086 struct value **ind)
2087 {
2088 int k;
2089
2090 for (k = 0; k < arity; k += 1)
2091 {
2092 LONGEST lwb, upb;
2093 struct value *idx;
2094
2095 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2096 error (_("too many subscripts (%d expected)"), k);
2097 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2098 value_copy (arr));
2099 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2100 idx = value_pos_atr (ind[k]);
2101 if (lwb != 0)
2102 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2103 arr = value_add (arr, idx);
2104 type = TYPE_TARGET_TYPE (type);
2105 }
2106
2107 return value_ind (arr);
2108 }
2109
2110 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2111 actual type of ARRAY_PTR is ignored), returns a reference to
2112 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2113 bound of this array is LOW, as per Ada rules. */
2114 static struct value *
2115 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2116 int low, int high)
2117 {
2118 CORE_ADDR base = value_as_address (array_ptr)
2119 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2120 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2121 struct type *index_type =
2122 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2123 low, high);
2124 struct type *slice_type =
2125 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2126 return value_from_pointer (lookup_reference_type (slice_type), base);
2127 }
2128
2129
2130 static struct value *
2131 ada_value_slice (struct value *array, int low, int high)
2132 {
2133 struct type *type = value_type (array);
2134 struct type *index_type =
2135 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2136 struct type *slice_type =
2137 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2138 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2139 }
2140
2141 /* If type is a record type in the form of a standard GNAT array
2142 descriptor, returns the number of dimensions for type. If arr is a
2143 simple array, returns the number of "array of"s that prefix its
2144 type designation. Otherwise, returns 0. */
2145
2146 int
2147 ada_array_arity (struct type *type)
2148 {
2149 int arity;
2150
2151 if (type == NULL)
2152 return 0;
2153
2154 type = desc_base_type (type);
2155
2156 arity = 0;
2157 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2158 return desc_arity (desc_bounds_type (type));
2159 else
2160 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2161 {
2162 arity += 1;
2163 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2164 }
2165
2166 return arity;
2167 }
2168
2169 /* If TYPE is a record type in the form of a standard GNAT array
2170 descriptor or a simple array type, returns the element type for
2171 TYPE after indexing by NINDICES indices, or by all indices if
2172 NINDICES is -1. Otherwise, returns NULL. */
2173
2174 struct type *
2175 ada_array_element_type (struct type *type, int nindices)
2176 {
2177 type = desc_base_type (type);
2178
2179 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2180 {
2181 int k;
2182 struct type *p_array_type;
2183
2184 p_array_type = desc_data_type (type);
2185
2186 k = ada_array_arity (type);
2187 if (k == 0)
2188 return NULL;
2189
2190 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2191 if (nindices >= 0 && k > nindices)
2192 k = nindices;
2193 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2194 while (k > 0 && p_array_type != NULL)
2195 {
2196 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2197 k -= 1;
2198 }
2199 return p_array_type;
2200 }
2201 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2202 {
2203 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2204 {
2205 type = TYPE_TARGET_TYPE (type);
2206 nindices -= 1;
2207 }
2208 return type;
2209 }
2210
2211 return NULL;
2212 }
2213
2214 /* The type of nth index in arrays of given type (n numbering from 1).
2215 Does not examine memory. */
2216
2217 struct type *
2218 ada_index_type (struct type *type, int n)
2219 {
2220 struct type *result_type;
2221
2222 type = desc_base_type (type);
2223
2224 if (n > ada_array_arity (type))
2225 return NULL;
2226
2227 if (ada_is_simple_array_type (type))
2228 {
2229 int i;
2230
2231 for (i = 1; i < n; i += 1)
2232 type = TYPE_TARGET_TYPE (type);
2233 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2234 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2235 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2236 perhaps stabsread.c would make more sense. */
2237 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2238 result_type = builtin_type_int;
2239
2240 return result_type;
2241 }
2242 else
2243 return desc_index_type (desc_bounds_type (type), n);
2244 }
2245
2246 /* Given that arr is an array type, returns the lower bound of the
2247 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2248 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2249 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2250 bounds type. It works for other arrays with bounds supplied by
2251 run-time quantities other than discriminants. */
2252
2253 LONGEST
2254 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2255 struct type ** typep)
2256 {
2257 struct type *type;
2258 struct type *index_type_desc;
2259
2260 if (ada_is_packed_array_type (arr_type))
2261 arr_type = decode_packed_array_type (arr_type);
2262
2263 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2264 {
2265 if (typep != NULL)
2266 *typep = builtin_type_int;
2267 return (LONGEST) - which;
2268 }
2269
2270 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2271 type = TYPE_TARGET_TYPE (arr_type);
2272 else
2273 type = arr_type;
2274
2275 index_type_desc = ada_find_parallel_type (type, "___XA");
2276 if (index_type_desc == NULL)
2277 {
2278 struct type *range_type;
2279 struct type *index_type;
2280
2281 while (n > 1)
2282 {
2283 type = TYPE_TARGET_TYPE (type);
2284 n -= 1;
2285 }
2286
2287 range_type = TYPE_INDEX_TYPE (type);
2288 index_type = TYPE_TARGET_TYPE (range_type);
2289 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2290 index_type = builtin_type_long;
2291 if (typep != NULL)
2292 *typep = index_type;
2293 return
2294 (LONGEST) (which == 0
2295 ? TYPE_LOW_BOUND (range_type)
2296 : TYPE_HIGH_BOUND (range_type));
2297 }
2298 else
2299 {
2300 struct type *index_type =
2301 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2302 NULL, TYPE_OBJFILE (arr_type));
2303 if (typep != NULL)
2304 *typep = TYPE_TARGET_TYPE (index_type);
2305 return
2306 (LONGEST) (which == 0
2307 ? TYPE_LOW_BOUND (index_type)
2308 : TYPE_HIGH_BOUND (index_type));
2309 }
2310 }
2311
2312 /* Given that arr is an array value, returns the lower bound of the
2313 nth index (numbering from 1) if which is 0, and the upper bound if
2314 which is 1. This routine will also work for arrays with bounds
2315 supplied by run-time quantities other than discriminants. */
2316
2317 struct value *
2318 ada_array_bound (struct value *arr, int n, int which)
2319 {
2320 struct type *arr_type = value_type (arr);
2321
2322 if (ada_is_packed_array_type (arr_type))
2323 return ada_array_bound (decode_packed_array (arr), n, which);
2324 else if (ada_is_simple_array_type (arr_type))
2325 {
2326 struct type *type;
2327 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2328 return value_from_longest (type, v);
2329 }
2330 else
2331 return desc_one_bound (desc_bounds (arr), n, which);
2332 }
2333
2334 /* Given that arr is an array value, returns the length of the
2335 nth index. This routine will also work for arrays with bounds
2336 supplied by run-time quantities other than discriminants.
2337 Does not work for arrays indexed by enumeration types with representation
2338 clauses at the moment. */
2339
2340 struct value *
2341 ada_array_length (struct value *arr, int n)
2342 {
2343 struct type *arr_type = ada_check_typedef (value_type (arr));
2344
2345 if (ada_is_packed_array_type (arr_type))
2346 return ada_array_length (decode_packed_array (arr), n);
2347
2348 if (ada_is_simple_array_type (arr_type))
2349 {
2350 struct type *type;
2351 LONGEST v =
2352 ada_array_bound_from_type (arr_type, n, 1, &type) -
2353 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2354 return value_from_longest (type, v);
2355 }
2356 else
2357 return
2358 value_from_longest (builtin_type_int,
2359 value_as_long (desc_one_bound (desc_bounds (arr),
2360 n, 1))
2361 - value_as_long (desc_one_bound (desc_bounds (arr),
2362 n, 0)) + 1);
2363 }
2364
2365 /* An empty array whose type is that of ARR_TYPE (an array type),
2366 with bounds LOW to LOW-1. */
2367
2368 static struct value *
2369 empty_array (struct type *arr_type, int low)
2370 {
2371 struct type *index_type =
2372 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2373 low, low - 1);
2374 struct type *elt_type = ada_array_element_type (arr_type, 1);
2375 return allocate_value (create_array_type (NULL, elt_type, index_type));
2376 }
2377 \f
2378
2379 /* Name resolution */
2380
2381 /* The "decoded" name for the user-definable Ada operator corresponding
2382 to OP. */
2383
2384 static const char *
2385 ada_decoded_op_name (enum exp_opcode op)
2386 {
2387 int i;
2388
2389 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2390 {
2391 if (ada_opname_table[i].op == op)
2392 return ada_opname_table[i].decoded;
2393 }
2394 error (_("Could not find operator name for opcode"));
2395 }
2396
2397
2398 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2399 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2400 undefined namespace) and converts operators that are
2401 user-defined into appropriate function calls. If CONTEXT_TYPE is
2402 non-null, it provides a preferred result type [at the moment, only
2403 type void has any effect---causing procedures to be preferred over
2404 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2405 return type is preferred. May change (expand) *EXP. */
2406
2407 static void
2408 resolve (struct expression **expp, int void_context_p)
2409 {
2410 int pc;
2411 pc = 0;
2412 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2413 }
2414
2415 /* Resolve the operator of the subexpression beginning at
2416 position *POS of *EXPP. "Resolving" consists of replacing
2417 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2418 with their resolutions, replacing built-in operators with
2419 function calls to user-defined operators, where appropriate, and,
2420 when DEPROCEDURE_P is non-zero, converting function-valued variables
2421 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2422 are as in ada_resolve, above. */
2423
2424 static struct value *
2425 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2426 struct type *context_type)
2427 {
2428 int pc = *pos;
2429 int i;
2430 struct expression *exp; /* Convenience: == *expp. */
2431 enum exp_opcode op = (*expp)->elts[pc].opcode;
2432 struct value **argvec; /* Vector of operand types (alloca'ed). */
2433 int nargs; /* Number of operands. */
2434
2435 argvec = NULL;
2436 nargs = 0;
2437 exp = *expp;
2438
2439 /* Pass one: resolve operands, saving their types and updating *pos. */
2440 switch (op)
2441 {
2442 case OP_FUNCALL:
2443 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2444 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2445 *pos += 7;
2446 else
2447 {
2448 *pos += 3;
2449 resolve_subexp (expp, pos, 0, NULL);
2450 }
2451 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2452 break;
2453
2454 case UNOP_QUAL:
2455 *pos += 3;
2456 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2457 break;
2458
2459 case UNOP_ADDR:
2460 *pos += 1;
2461 resolve_subexp (expp, pos, 0, NULL);
2462 break;
2463
2464 case OP_ATR_MODULUS:
2465 *pos += 4;
2466 break;
2467
2468 case OP_ATR_SIZE:
2469 case OP_ATR_TAG:
2470 *pos += 1;
2471 nargs = 1;
2472 break;
2473
2474 case OP_ATR_FIRST:
2475 case OP_ATR_LAST:
2476 case OP_ATR_LENGTH:
2477 case OP_ATR_POS:
2478 case OP_ATR_VAL:
2479 *pos += 1;
2480 nargs = 2;
2481 break;
2482
2483 case OP_ATR_MIN:
2484 case OP_ATR_MAX:
2485 *pos += 1;
2486 nargs = 3;
2487 break;
2488
2489 case BINOP_ASSIGN:
2490 {
2491 struct value *arg1;
2492
2493 *pos += 1;
2494 arg1 = resolve_subexp (expp, pos, 0, NULL);
2495 if (arg1 == NULL)
2496 resolve_subexp (expp, pos, 1, NULL);
2497 else
2498 resolve_subexp (expp, pos, 1, value_type (arg1));
2499 break;
2500 }
2501
2502 case UNOP_CAST:
2503 case UNOP_IN_RANGE:
2504 *pos += 3;
2505 nargs = 1;
2506 break;
2507
2508 case BINOP_ADD:
2509 case BINOP_SUB:
2510 case BINOP_MUL:
2511 case BINOP_DIV:
2512 case BINOP_REM:
2513 case BINOP_MOD:
2514 case BINOP_EXP:
2515 case BINOP_CONCAT:
2516 case BINOP_LOGICAL_AND:
2517 case BINOP_LOGICAL_OR:
2518 case BINOP_BITWISE_AND:
2519 case BINOP_BITWISE_IOR:
2520 case BINOP_BITWISE_XOR:
2521
2522 case BINOP_EQUAL:
2523 case BINOP_NOTEQUAL:
2524 case BINOP_LESS:
2525 case BINOP_GTR:
2526 case BINOP_LEQ:
2527 case BINOP_GEQ:
2528
2529 case BINOP_REPEAT:
2530 case BINOP_SUBSCRIPT:
2531 case BINOP_COMMA:
2532 *pos += 1;
2533 nargs = 2;
2534 break;
2535
2536 case UNOP_NEG:
2537 case UNOP_PLUS:
2538 case UNOP_LOGICAL_NOT:
2539 case UNOP_ABS:
2540 case UNOP_IND:
2541 *pos += 1;
2542 nargs = 1;
2543 break;
2544
2545 case OP_LONG:
2546 case OP_DOUBLE:
2547 case OP_VAR_VALUE:
2548 *pos += 4;
2549 break;
2550
2551 case OP_TYPE:
2552 case OP_BOOL:
2553 case OP_LAST:
2554 case OP_REGISTER:
2555 case OP_INTERNALVAR:
2556 *pos += 3;
2557 break;
2558
2559 case UNOP_MEMVAL:
2560 *pos += 3;
2561 nargs = 1;
2562 break;
2563
2564 case STRUCTOP_STRUCT:
2565 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2566 nargs = 1;
2567 break;
2568
2569 case OP_STRING:
2570 (*pos) += 3
2571 + BYTES_TO_EXP_ELEM (longest_to_int (exp->elts[pc + 1].longconst)
2572 + 1);
2573 break;
2574
2575 case TERNOP_SLICE:
2576 case TERNOP_IN_RANGE:
2577 *pos += 1;
2578 nargs = 3;
2579 break;
2580
2581 case BINOP_IN_BOUNDS:
2582 *pos += 3;
2583 nargs = 2;
2584 break;
2585
2586 default:
2587 error (_("Unexpected operator during name resolution"));
2588 }
2589
2590 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2591 for (i = 0; i < nargs; i += 1)
2592 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2593 argvec[i] = NULL;
2594 exp = *expp;
2595
2596 /* Pass two: perform any resolution on principal operator. */
2597 switch (op)
2598 {
2599 default:
2600 break;
2601
2602 case OP_VAR_VALUE:
2603 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2604 {
2605 struct ada_symbol_info *candidates;
2606 int n_candidates;
2607
2608 n_candidates =
2609 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2610 (exp->elts[pc + 2].symbol),
2611 exp->elts[pc + 1].block, VAR_DOMAIN,
2612 &candidates);
2613
2614 if (n_candidates > 1)
2615 {
2616 /* Types tend to get re-introduced locally, so if there
2617 are any local symbols that are not types, first filter
2618 out all types. */
2619 int j;
2620 for (j = 0; j < n_candidates; j += 1)
2621 switch (SYMBOL_CLASS (candidates[j].sym))
2622 {
2623 case LOC_REGISTER:
2624 case LOC_ARG:
2625 case LOC_REF_ARG:
2626 case LOC_REGPARM:
2627 case LOC_REGPARM_ADDR:
2628 case LOC_LOCAL:
2629 case LOC_LOCAL_ARG:
2630 case LOC_BASEREG:
2631 case LOC_BASEREG_ARG:
2632 case LOC_COMPUTED:
2633 case LOC_COMPUTED_ARG:
2634 goto FoundNonType;
2635 default:
2636 break;
2637 }
2638 FoundNonType:
2639 if (j < n_candidates)
2640 {
2641 j = 0;
2642 while (j < n_candidates)
2643 {
2644 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2645 {
2646 candidates[j] = candidates[n_candidates - 1];
2647 n_candidates -= 1;
2648 }
2649 else
2650 j += 1;
2651 }
2652 }
2653 }
2654
2655 if (n_candidates == 0)
2656 error (_("No definition found for %s"),
2657 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2658 else if (n_candidates == 1)
2659 i = 0;
2660 else if (deprocedure_p
2661 && !is_nonfunction (candidates, n_candidates))
2662 {
2663 i = ada_resolve_function
2664 (candidates, n_candidates, NULL, 0,
2665 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2666 context_type);
2667 if (i < 0)
2668 error (_("Could not find a match for %s"),
2669 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2670 }
2671 else
2672 {
2673 printf_filtered (_("Multiple matches for %s\n"),
2674 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2675 user_select_syms (candidates, n_candidates, 1);
2676 i = 0;
2677 }
2678
2679 exp->elts[pc + 1].block = candidates[i].block;
2680 exp->elts[pc + 2].symbol = candidates[i].sym;
2681 if (innermost_block == NULL
2682 || contained_in (candidates[i].block, innermost_block))
2683 innermost_block = candidates[i].block;
2684 }
2685
2686 if (deprocedure_p
2687 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2688 == TYPE_CODE_FUNC))
2689 {
2690 replace_operator_with_call (expp, pc, 0, 0,
2691 exp->elts[pc + 2].symbol,
2692 exp->elts[pc + 1].block);
2693 exp = *expp;
2694 }
2695 break;
2696
2697 case OP_FUNCALL:
2698 {
2699 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2700 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2701 {
2702 struct ada_symbol_info *candidates;
2703 int n_candidates;
2704
2705 n_candidates =
2706 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2707 (exp->elts[pc + 5].symbol),
2708 exp->elts[pc + 4].block, VAR_DOMAIN,
2709 &candidates);
2710 if (n_candidates == 1)
2711 i = 0;
2712 else
2713 {
2714 i = ada_resolve_function
2715 (candidates, n_candidates,
2716 argvec, nargs,
2717 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2718 context_type);
2719 if (i < 0)
2720 error (_("Could not find a match for %s"),
2721 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2722 }
2723
2724 exp->elts[pc + 4].block = candidates[i].block;
2725 exp->elts[pc + 5].symbol = candidates[i].sym;
2726 if (innermost_block == NULL
2727 || contained_in (candidates[i].block, innermost_block))
2728 innermost_block = candidates[i].block;
2729 }
2730 }
2731 break;
2732 case BINOP_ADD:
2733 case BINOP_SUB:
2734 case BINOP_MUL:
2735 case BINOP_DIV:
2736 case BINOP_REM:
2737 case BINOP_MOD:
2738 case BINOP_CONCAT:
2739 case BINOP_BITWISE_AND:
2740 case BINOP_BITWISE_IOR:
2741 case BINOP_BITWISE_XOR:
2742 case BINOP_EQUAL:
2743 case BINOP_NOTEQUAL:
2744 case BINOP_LESS:
2745 case BINOP_GTR:
2746 case BINOP_LEQ:
2747 case BINOP_GEQ:
2748 case BINOP_EXP:
2749 case UNOP_NEG:
2750 case UNOP_PLUS:
2751 case UNOP_LOGICAL_NOT:
2752 case UNOP_ABS:
2753 if (possible_user_operator_p (op, argvec))
2754 {
2755 struct ada_symbol_info *candidates;
2756 int n_candidates;
2757
2758 n_candidates =
2759 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2760 (struct block *) NULL, VAR_DOMAIN,
2761 &candidates);
2762 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2763 ada_decoded_op_name (op), NULL);
2764 if (i < 0)
2765 break;
2766
2767 replace_operator_with_call (expp, pc, nargs, 1,
2768 candidates[i].sym, candidates[i].block);
2769 exp = *expp;
2770 }
2771 break;
2772
2773 case OP_TYPE:
2774 return NULL;
2775 }
2776
2777 *pos = pc;
2778 return evaluate_subexp_type (exp, pos);
2779 }
2780
2781 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2782 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2783 a non-pointer. A type of 'void' (which is never a valid expression type)
2784 by convention matches anything. */
2785 /* The term "match" here is rather loose. The match is heuristic and
2786 liberal. FIXME: TOO liberal, in fact. */
2787
2788 static int
2789 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2790 {
2791 ftype = ada_check_typedef (ftype);
2792 atype = ada_check_typedef (atype);
2793
2794 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2795 ftype = TYPE_TARGET_TYPE (ftype);
2796 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2797 atype = TYPE_TARGET_TYPE (atype);
2798
2799 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2800 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2801 return 1;
2802
2803 switch (TYPE_CODE (ftype))
2804 {
2805 default:
2806 return 1;
2807 case TYPE_CODE_PTR:
2808 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2809 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2810 TYPE_TARGET_TYPE (atype), 0);
2811 else
2812 return (may_deref
2813 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2814 case TYPE_CODE_INT:
2815 case TYPE_CODE_ENUM:
2816 case TYPE_CODE_RANGE:
2817 switch (TYPE_CODE (atype))
2818 {
2819 case TYPE_CODE_INT:
2820 case TYPE_CODE_ENUM:
2821 case TYPE_CODE_RANGE:
2822 return 1;
2823 default:
2824 return 0;
2825 }
2826
2827 case TYPE_CODE_ARRAY:
2828 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2829 || ada_is_array_descriptor_type (atype));
2830
2831 case TYPE_CODE_STRUCT:
2832 if (ada_is_array_descriptor_type (ftype))
2833 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2834 || ada_is_array_descriptor_type (atype));
2835 else
2836 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
2837 && !ada_is_array_descriptor_type (atype));
2838
2839 case TYPE_CODE_UNION:
2840 case TYPE_CODE_FLT:
2841 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
2842 }
2843 }
2844
2845 /* Return non-zero if the formals of FUNC "sufficiently match" the
2846 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
2847 may also be an enumeral, in which case it is treated as a 0-
2848 argument function. */
2849
2850 static int
2851 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
2852 {
2853 int i;
2854 struct type *func_type = SYMBOL_TYPE (func);
2855
2856 if (SYMBOL_CLASS (func) == LOC_CONST
2857 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
2858 return (n_actuals == 0);
2859 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
2860 return 0;
2861
2862 if (TYPE_NFIELDS (func_type) != n_actuals)
2863 return 0;
2864
2865 for (i = 0; i < n_actuals; i += 1)
2866 {
2867 if (actuals[i] == NULL)
2868 return 0;
2869 else
2870 {
2871 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
2872 struct type *atype = ada_check_typedef (value_type (actuals[i]));
2873
2874 if (!ada_type_match (ftype, atype, 1))
2875 return 0;
2876 }
2877 }
2878 return 1;
2879 }
2880
2881 /* False iff function type FUNC_TYPE definitely does not produce a value
2882 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
2883 FUNC_TYPE is not a valid function type with a non-null return type
2884 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
2885
2886 static int
2887 return_match (struct type *func_type, struct type *context_type)
2888 {
2889 struct type *return_type;
2890
2891 if (func_type == NULL)
2892 return 1;
2893
2894 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
2895 return_type = base_type (TYPE_TARGET_TYPE (func_type));
2896 else
2897 return_type = base_type (func_type);
2898 if (return_type == NULL)
2899 return 1;
2900
2901 context_type = base_type (context_type);
2902
2903 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
2904 return context_type == NULL || return_type == context_type;
2905 else if (context_type == NULL)
2906 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
2907 else
2908 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
2909 }
2910
2911
2912 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
2913 function (if any) that matches the types of the NARGS arguments in
2914 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
2915 that returns that type, then eliminate matches that don't. If
2916 CONTEXT_TYPE is void and there is at least one match that does not
2917 return void, eliminate all matches that do.
2918
2919 Asks the user if there is more than one match remaining. Returns -1
2920 if there is no such symbol or none is selected. NAME is used
2921 solely for messages. May re-arrange and modify SYMS in
2922 the process; the index returned is for the modified vector. */
2923
2924 static int
2925 ada_resolve_function (struct ada_symbol_info syms[],
2926 int nsyms, struct value **args, int nargs,
2927 const char *name, struct type *context_type)
2928 {
2929 int k;
2930 int m; /* Number of hits */
2931 struct type *fallback;
2932 struct type *return_type;
2933
2934 return_type = context_type;
2935 if (context_type == NULL)
2936 fallback = builtin_type_void;
2937 else
2938 fallback = NULL;
2939
2940 m = 0;
2941 while (1)
2942 {
2943 for (k = 0; k < nsyms; k += 1)
2944 {
2945 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
2946
2947 if (ada_args_match (syms[k].sym, args, nargs)
2948 && return_match (type, return_type))
2949 {
2950 syms[m] = syms[k];
2951 m += 1;
2952 }
2953 }
2954 if (m > 0 || return_type == fallback)
2955 break;
2956 else
2957 return_type = fallback;
2958 }
2959
2960 if (m == 0)
2961 return -1;
2962 else if (m > 1)
2963 {
2964 printf_filtered (_("Multiple matches for %s\n"), name);
2965 user_select_syms (syms, m, 1);
2966 return 0;
2967 }
2968 return 0;
2969 }
2970
2971 /* Returns true (non-zero) iff decoded name N0 should appear before N1
2972 in a listing of choices during disambiguation (see sort_choices, below).
2973 The idea is that overloadings of a subprogram name from the
2974 same package should sort in their source order. We settle for ordering
2975 such symbols by their trailing number (__N or $N). */
2976
2977 static int
2978 encoded_ordered_before (char *N0, char *N1)
2979 {
2980 if (N1 == NULL)
2981 return 0;
2982 else if (N0 == NULL)
2983 return 1;
2984 else
2985 {
2986 int k0, k1;
2987 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
2988 ;
2989 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
2990 ;
2991 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
2992 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
2993 {
2994 int n0, n1;
2995 n0 = k0;
2996 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
2997 n0 -= 1;
2998 n1 = k1;
2999 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3000 n1 -= 1;
3001 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3002 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3003 }
3004 return (strcmp (N0, N1) < 0);
3005 }
3006 }
3007
3008 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3009 encoded names. */
3010
3011 static void
3012 sort_choices (struct ada_symbol_info syms[], int nsyms)
3013 {
3014 int i;
3015 for (i = 1; i < nsyms; i += 1)
3016 {
3017 struct ada_symbol_info sym = syms[i];
3018 int j;
3019
3020 for (j = i - 1; j >= 0; j -= 1)
3021 {
3022 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3023 SYMBOL_LINKAGE_NAME (sym.sym)))
3024 break;
3025 syms[j + 1] = syms[j];
3026 }
3027 syms[j + 1] = sym;
3028 }
3029 }
3030
3031 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3032 by asking the user (if necessary), returning the number selected,
3033 and setting the first elements of SYMS items. Error if no symbols
3034 selected. */
3035
3036 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3037 to be re-integrated one of these days. */
3038
3039 int
3040 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3041 {
3042 int i;
3043 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3044 int n_chosen;
3045 int first_choice = (max_results == 1) ? 1 : 2;
3046
3047 if (max_results < 1)
3048 error (_("Request to select 0 symbols!"));
3049 if (nsyms <= 1)
3050 return nsyms;
3051
3052 printf_unfiltered (_("[0] cancel\n"));
3053 if (max_results > 1)
3054 printf_unfiltered (_("[1] all\n"));
3055
3056 sort_choices (syms, nsyms);
3057
3058 for (i = 0; i < nsyms; i += 1)
3059 {
3060 if (syms[i].sym == NULL)
3061 continue;
3062
3063 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3064 {
3065 struct symtab_and_line sal =
3066 find_function_start_sal (syms[i].sym, 1);
3067 if (sal.symtab == NULL)
3068 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3069 i + first_choice,
3070 SYMBOL_PRINT_NAME (syms[i].sym),
3071 sal.line);
3072 else
3073 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3074 SYMBOL_PRINT_NAME (syms[i].sym),
3075 sal.symtab->filename, sal.line);
3076 continue;
3077 }
3078 else
3079 {
3080 int is_enumeral =
3081 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3082 && SYMBOL_TYPE (syms[i].sym) != NULL
3083 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3084 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3085
3086 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3087 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3088 i + first_choice,
3089 SYMBOL_PRINT_NAME (syms[i].sym),
3090 symtab->filename, SYMBOL_LINE (syms[i].sym));
3091 else if (is_enumeral
3092 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3093 {
3094 printf_unfiltered (("[%d] "), i + first_choice);
3095 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3096 gdb_stdout, -1, 0);
3097 printf_unfiltered (_("'(%s) (enumeral)\n"),
3098 SYMBOL_PRINT_NAME (syms[i].sym));
3099 }
3100 else if (symtab != NULL)
3101 printf_unfiltered (is_enumeral
3102 ? _("[%d] %s in %s (enumeral)\n")
3103 : _("[%d] %s at %s:?\n"),
3104 i + first_choice,
3105 SYMBOL_PRINT_NAME (syms[i].sym),
3106 symtab->filename);
3107 else
3108 printf_unfiltered (is_enumeral
3109 ? _("[%d] %s (enumeral)\n")
3110 : _("[%d] %s at ?\n"),
3111 i + first_choice,
3112 SYMBOL_PRINT_NAME (syms[i].sym));
3113 }
3114 }
3115
3116 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3117 "overload-choice");
3118
3119 for (i = 0; i < n_chosen; i += 1)
3120 syms[i] = syms[chosen[i]];
3121
3122 return n_chosen;
3123 }
3124
3125 /* Read and validate a set of numeric choices from the user in the
3126 range 0 .. N_CHOICES-1. Place the results in increasing
3127 order in CHOICES[0 .. N-1], and return N.
3128
3129 The user types choices as a sequence of numbers on one line
3130 separated by blanks, encoding them as follows:
3131
3132 + A choice of 0 means to cancel the selection, throwing an error.
3133 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3134 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3135
3136 The user is not allowed to choose more than MAX_RESULTS values.
3137
3138 ANNOTATION_SUFFIX, if present, is used to annotate the input
3139 prompts (for use with the -f switch). */
3140
3141 int
3142 get_selections (int *choices, int n_choices, int max_results,
3143 int is_all_choice, char *annotation_suffix)
3144 {
3145 char *args;
3146 const char *prompt;
3147 int n_chosen;
3148 int first_choice = is_all_choice ? 2 : 1;
3149
3150 prompt = getenv ("PS2");
3151 if (prompt == NULL)
3152 prompt = ">";
3153
3154 printf_unfiltered (("%s "), prompt);
3155 gdb_flush (gdb_stdout);
3156
3157 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3158
3159 if (args == NULL)
3160 error_no_arg (_("one or more choice numbers"));
3161
3162 n_chosen = 0;
3163
3164 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3165 order, as given in args. Choices are validated. */
3166 while (1)
3167 {
3168 char *args2;
3169 int choice, j;
3170
3171 while (isspace (*args))
3172 args += 1;
3173 if (*args == '\0' && n_chosen == 0)
3174 error_no_arg (_("one or more choice numbers"));
3175 else if (*args == '\0')
3176 break;
3177
3178 choice = strtol (args, &args2, 10);
3179 if (args == args2 || choice < 0
3180 || choice > n_choices + first_choice - 1)
3181 error (_("Argument must be choice number"));
3182 args = args2;
3183
3184 if (choice == 0)
3185 error (_("cancelled"));
3186
3187 if (choice < first_choice)
3188 {
3189 n_chosen = n_choices;
3190 for (j = 0; j < n_choices; j += 1)
3191 choices[j] = j;
3192 break;
3193 }
3194 choice -= first_choice;
3195
3196 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3197 {
3198 }
3199
3200 if (j < 0 || choice != choices[j])
3201 {
3202 int k;
3203 for (k = n_chosen - 1; k > j; k -= 1)
3204 choices[k + 1] = choices[k];
3205 choices[j + 1] = choice;
3206 n_chosen += 1;
3207 }
3208 }
3209
3210 if (n_chosen > max_results)
3211 error (_("Select no more than %d of the above"), max_results);
3212
3213 return n_chosen;
3214 }
3215
3216 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3217 on the function identified by SYM and BLOCK, and taking NARGS
3218 arguments. Update *EXPP as needed to hold more space. */
3219
3220 static void
3221 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3222 int oplen, struct symbol *sym,
3223 struct block *block)
3224 {
3225 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3226 symbol, -oplen for operator being replaced). */
3227 struct expression *newexp = (struct expression *)
3228 xmalloc (sizeof (struct expression)
3229 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3230 struct expression *exp = *expp;
3231
3232 newexp->nelts = exp->nelts + 7 - oplen;
3233 newexp->language_defn = exp->language_defn;
3234 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3235 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3236 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3237
3238 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3239 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3240
3241 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3242 newexp->elts[pc + 4].block = block;
3243 newexp->elts[pc + 5].symbol = sym;
3244
3245 *expp = newexp;
3246 xfree (exp);
3247 }
3248
3249 /* Type-class predicates */
3250
3251 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3252 or FLOAT). */
3253
3254 static int
3255 numeric_type_p (struct type *type)
3256 {
3257 if (type == NULL)
3258 return 0;
3259 else
3260 {
3261 switch (TYPE_CODE (type))
3262 {
3263 case TYPE_CODE_INT:
3264 case TYPE_CODE_FLT:
3265 return 1;
3266 case TYPE_CODE_RANGE:
3267 return (type == TYPE_TARGET_TYPE (type)
3268 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3269 default:
3270 return 0;
3271 }
3272 }
3273 }
3274
3275 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3276
3277 static int
3278 integer_type_p (struct type *type)
3279 {
3280 if (type == NULL)
3281 return 0;
3282 else
3283 {
3284 switch (TYPE_CODE (type))
3285 {
3286 case TYPE_CODE_INT:
3287 return 1;
3288 case TYPE_CODE_RANGE:
3289 return (type == TYPE_TARGET_TYPE (type)
3290 || integer_type_p (TYPE_TARGET_TYPE (type)));
3291 default:
3292 return 0;
3293 }
3294 }
3295 }
3296
3297 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3298
3299 static int
3300 scalar_type_p (struct type *type)
3301 {
3302 if (type == NULL)
3303 return 0;
3304 else
3305 {
3306 switch (TYPE_CODE (type))
3307 {
3308 case TYPE_CODE_INT:
3309 case TYPE_CODE_RANGE:
3310 case TYPE_CODE_ENUM:
3311 case TYPE_CODE_FLT:
3312 return 1;
3313 default:
3314 return 0;
3315 }
3316 }
3317 }
3318
3319 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3320
3321 static int
3322 discrete_type_p (struct type *type)
3323 {
3324 if (type == NULL)
3325 return 0;
3326 else
3327 {
3328 switch (TYPE_CODE (type))
3329 {
3330 case TYPE_CODE_INT:
3331 case TYPE_CODE_RANGE:
3332 case TYPE_CODE_ENUM:
3333 return 1;
3334 default:
3335 return 0;
3336 }
3337 }
3338 }
3339
3340 /* Returns non-zero if OP with operands in the vector ARGS could be
3341 a user-defined function. Errs on the side of pre-defined operators
3342 (i.e., result 0). */
3343
3344 static int
3345 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3346 {
3347 struct type *type0 =
3348 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3349 struct type *type1 =
3350 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3351
3352 if (type0 == NULL)
3353 return 0;
3354
3355 switch (op)
3356 {
3357 default:
3358 return 0;
3359
3360 case BINOP_ADD:
3361 case BINOP_SUB:
3362 case BINOP_MUL:
3363 case BINOP_DIV:
3364 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3365
3366 case BINOP_REM:
3367 case BINOP_MOD:
3368 case BINOP_BITWISE_AND:
3369 case BINOP_BITWISE_IOR:
3370 case BINOP_BITWISE_XOR:
3371 return (!(integer_type_p (type0) && integer_type_p (type1)));
3372
3373 case BINOP_EQUAL:
3374 case BINOP_NOTEQUAL:
3375 case BINOP_LESS:
3376 case BINOP_GTR:
3377 case BINOP_LEQ:
3378 case BINOP_GEQ:
3379 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3380
3381 case BINOP_CONCAT:
3382 return
3383 ((TYPE_CODE (type0) != TYPE_CODE_ARRAY
3384 && (TYPE_CODE (type0) != TYPE_CODE_PTR
3385 || TYPE_CODE (TYPE_TARGET_TYPE (type0)) != TYPE_CODE_ARRAY))
3386 || (TYPE_CODE (type1) != TYPE_CODE_ARRAY
3387 && (TYPE_CODE (type1) != TYPE_CODE_PTR
3388 || (TYPE_CODE (TYPE_TARGET_TYPE (type1))
3389 != TYPE_CODE_ARRAY))));
3390
3391 case BINOP_EXP:
3392 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3393
3394 case UNOP_NEG:
3395 case UNOP_PLUS:
3396 case UNOP_LOGICAL_NOT:
3397 case UNOP_ABS:
3398 return (!numeric_type_p (type0));
3399
3400 }
3401 }
3402 \f
3403 /* Renaming */
3404
3405 /* NOTE: In the following, we assume that a renaming type's name may
3406 have an ___XD suffix. It would be nice if this went away at some
3407 point. */
3408
3409 /* If TYPE encodes a renaming, returns the renaming suffix, which
3410 is XR for an object renaming, XRP for a procedure renaming, XRE for
3411 an exception renaming, and XRS for a subprogram renaming. Returns
3412 NULL if NAME encodes none of these. */
3413
3414 const char *
3415 ada_renaming_type (struct type *type)
3416 {
3417 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
3418 {
3419 const char *name = type_name_no_tag (type);
3420 const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
3421 if (suffix == NULL
3422 || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
3423 return NULL;
3424 else
3425 return suffix + 3;
3426 }
3427 else
3428 return NULL;
3429 }
3430
3431 /* Return non-zero iff SYM encodes an object renaming. */
3432
3433 int
3434 ada_is_object_renaming (struct symbol *sym)
3435 {
3436 const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
3437 return renaming_type != NULL
3438 && (renaming_type[2] == '\0' || renaming_type[2] == '_');
3439 }
3440
3441 /* Assuming that SYM encodes a non-object renaming, returns the original
3442 name of the renamed entity. The name is good until the end of
3443 parsing. */
3444
3445 char *
3446 ada_simple_renamed_entity (struct symbol *sym)
3447 {
3448 struct type *type;
3449 const char *raw_name;
3450 int len;
3451 char *result;
3452
3453 type = SYMBOL_TYPE (sym);
3454 if (type == NULL || TYPE_NFIELDS (type) < 1)
3455 error (_("Improperly encoded renaming."));
3456
3457 raw_name = TYPE_FIELD_NAME (type, 0);
3458 len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
3459 if (len <= 0)
3460 error (_("Improperly encoded renaming."));
3461
3462 result = xmalloc (len + 1);
3463 strncpy (result, raw_name, len);
3464 result[len] = '\000';
3465 return result;
3466 }
3467 \f
3468
3469 /* Evaluation: Function Calls */
3470
3471 /* Return an lvalue containing the value VAL. This is the identity on
3472 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3473 on the stack, using and updating *SP as the stack pointer, and
3474 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3475
3476 static struct value *
3477 ensure_lval (struct value *val, CORE_ADDR *sp)
3478 {
3479 if (! VALUE_LVAL (val))
3480 {
3481 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3482
3483 /* The following is taken from the structure-return code in
3484 call_function_by_hand. FIXME: Therefore, some refactoring seems
3485 indicated. */
3486 if (INNER_THAN (1, 2))
3487 {
3488 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3489 reserving sufficient space. */
3490 *sp -= len;
3491 if (gdbarch_frame_align_p (current_gdbarch))
3492 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3493 VALUE_ADDRESS (val) = *sp;
3494 }
3495 else
3496 {
3497 /* Stack grows upward. Align the frame, allocate space, and
3498 then again, re-align the frame. */
3499 if (gdbarch_frame_align_p (current_gdbarch))
3500 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3501 VALUE_ADDRESS (val) = *sp;
3502 *sp += len;
3503 if (gdbarch_frame_align_p (current_gdbarch))
3504 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3505 }
3506
3507 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3508 }
3509
3510 return val;
3511 }
3512
3513 /* Return the value ACTUAL, converted to be an appropriate value for a
3514 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3515 allocating any necessary descriptors (fat pointers), or copies of
3516 values not residing in memory, updating it as needed. */
3517
3518 static struct value *
3519 convert_actual (struct value *actual, struct type *formal_type0,
3520 CORE_ADDR *sp)
3521 {
3522 struct type *actual_type = ada_check_typedef (value_type (actual));
3523 struct type *formal_type = ada_check_typedef (formal_type0);
3524 struct type *formal_target =
3525 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3526 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3527 struct type *actual_target =
3528 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3529 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3530
3531 if (ada_is_array_descriptor_type (formal_target)
3532 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3533 return make_array_descriptor (formal_type, actual, sp);
3534 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3535 {
3536 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3537 && ada_is_array_descriptor_type (actual_target))
3538 return desc_data (actual);
3539 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3540 {
3541 if (VALUE_LVAL (actual) != lval_memory)
3542 {
3543 struct value *val;
3544 actual_type = ada_check_typedef (value_type (actual));
3545 val = allocate_value (actual_type);
3546 memcpy ((char *) value_contents_raw (val),
3547 (char *) value_contents (actual),
3548 TYPE_LENGTH (actual_type));
3549 actual = ensure_lval (val, sp);
3550 }
3551 return value_addr (actual);
3552 }
3553 }
3554 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3555 return ada_value_ind (actual);
3556
3557 return actual;
3558 }
3559
3560
3561 /* Push a descriptor of type TYPE for array value ARR on the stack at
3562 *SP, updating *SP to reflect the new descriptor. Return either
3563 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3564 to-descriptor type rather than a descriptor type), a struct value *
3565 representing a pointer to this descriptor. */
3566
3567 static struct value *
3568 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3569 {
3570 struct type *bounds_type = desc_bounds_type (type);
3571 struct type *desc_type = desc_base_type (type);
3572 struct value *descriptor = allocate_value (desc_type);
3573 struct value *bounds = allocate_value (bounds_type);
3574 int i;
3575
3576 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3577 {
3578 modify_general_field (value_contents_writeable (bounds),
3579 value_as_long (ada_array_bound (arr, i, 0)),
3580 desc_bound_bitpos (bounds_type, i, 0),
3581 desc_bound_bitsize (bounds_type, i, 0));
3582 modify_general_field (value_contents_writeable (bounds),
3583 value_as_long (ada_array_bound (arr, i, 1)),
3584 desc_bound_bitpos (bounds_type, i, 1),
3585 desc_bound_bitsize (bounds_type, i, 1));
3586 }
3587
3588 bounds = ensure_lval (bounds, sp);
3589
3590 modify_general_field (value_contents_writeable (descriptor),
3591 VALUE_ADDRESS (ensure_lval (arr, sp)),
3592 fat_pntr_data_bitpos (desc_type),
3593 fat_pntr_data_bitsize (desc_type));
3594
3595 modify_general_field (value_contents_writeable (descriptor),
3596 VALUE_ADDRESS (bounds),
3597 fat_pntr_bounds_bitpos (desc_type),
3598 fat_pntr_bounds_bitsize (desc_type));
3599
3600 descriptor = ensure_lval (descriptor, sp);
3601
3602 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3603 return value_addr (descriptor);
3604 else
3605 return descriptor;
3606 }
3607
3608
3609 /* Assuming a dummy frame has been established on the target, perform any
3610 conversions needed for calling function FUNC on the NARGS actual
3611 parameters in ARGS, other than standard C conversions. Does
3612 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3613 does not match the number of arguments expected. Use *SP as a
3614 stack pointer for additional data that must be pushed, updating its
3615 value as needed. */
3616
3617 void
3618 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3619 CORE_ADDR *sp)
3620 {
3621 int i;
3622
3623 if (TYPE_NFIELDS (value_type (func)) == 0
3624 || nargs != TYPE_NFIELDS (value_type (func)))
3625 return;
3626
3627 for (i = 0; i < nargs; i += 1)
3628 args[i] =
3629 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3630 }
3631 \f
3632 /* Dummy definitions for an experimental caching module that is not
3633 * used in the public sources. */
3634
3635 static int
3636 lookup_cached_symbol (const char *name, domain_enum namespace,
3637 struct symbol **sym, struct block **block,
3638 struct symtab **symtab)
3639 {
3640 return 0;
3641 }
3642
3643 static void
3644 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3645 struct block *block, struct symtab *symtab)
3646 {
3647 }
3648 \f
3649 /* Symbol Lookup */
3650
3651 /* Return the result of a standard (literal, C-like) lookup of NAME in
3652 given DOMAIN, visible from lexical block BLOCK. */
3653
3654 static struct symbol *
3655 standard_lookup (const char *name, const struct block *block,
3656 domain_enum domain)
3657 {
3658 struct symbol *sym;
3659 struct symtab *symtab;
3660
3661 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3662 return sym;
3663 sym =
3664 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3665 cache_symbol (name, domain, sym, block_found, symtab);
3666 return sym;
3667 }
3668
3669
3670 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3671 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3672 since they contend in overloading in the same way. */
3673 static int
3674 is_nonfunction (struct ada_symbol_info syms[], int n)
3675 {
3676 int i;
3677
3678 for (i = 0; i < n; i += 1)
3679 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3680 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3681 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3682 return 1;
3683
3684 return 0;
3685 }
3686
3687 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3688 struct types. Otherwise, they may not. */
3689
3690 static int
3691 equiv_types (struct type *type0, struct type *type1)
3692 {
3693 if (type0 == type1)
3694 return 1;
3695 if (type0 == NULL || type1 == NULL
3696 || TYPE_CODE (type0) != TYPE_CODE (type1))
3697 return 0;
3698 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3699 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3700 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3701 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3702 return 1;
3703
3704 return 0;
3705 }
3706
3707 /* True iff SYM0 represents the same entity as SYM1, or one that is
3708 no more defined than that of SYM1. */
3709
3710 static int
3711 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3712 {
3713 if (sym0 == sym1)
3714 return 1;
3715 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3716 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3717 return 0;
3718
3719 switch (SYMBOL_CLASS (sym0))
3720 {
3721 case LOC_UNDEF:
3722 return 1;
3723 case LOC_TYPEDEF:
3724 {
3725 struct type *type0 = SYMBOL_TYPE (sym0);
3726 struct type *type1 = SYMBOL_TYPE (sym1);
3727 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3728 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3729 int len0 = strlen (name0);
3730 return
3731 TYPE_CODE (type0) == TYPE_CODE (type1)
3732 && (equiv_types (type0, type1)
3733 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3734 && strncmp (name1 + len0, "___XV", 5) == 0));
3735 }
3736 case LOC_CONST:
3737 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3738 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3739 default:
3740 return 0;
3741 }
3742 }
3743
3744 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3745 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3746
3747 static void
3748 add_defn_to_vec (struct obstack *obstackp,
3749 struct symbol *sym,
3750 struct block *block, struct symtab *symtab)
3751 {
3752 int i;
3753 size_t tmp;
3754 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3755
3756 if (SYMBOL_TYPE (sym) != NULL)
3757 SYMBOL_TYPE (sym) = ada_check_typedef (SYMBOL_TYPE (sym));
3758 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3759 {
3760 if (lesseq_defined_than (sym, prevDefns[i].sym))
3761 return;
3762 else if (lesseq_defined_than (prevDefns[i].sym, sym))
3763 {
3764 prevDefns[i].sym = sym;
3765 prevDefns[i].block = block;
3766 prevDefns[i].symtab = symtab;
3767 return;
3768 }
3769 }
3770
3771 {
3772 struct ada_symbol_info info;
3773
3774 info.sym = sym;
3775 info.block = block;
3776 info.symtab = symtab;
3777 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
3778 }
3779 }
3780
3781 /* Number of ada_symbol_info structures currently collected in
3782 current vector in *OBSTACKP. */
3783
3784 static int
3785 num_defns_collected (struct obstack *obstackp)
3786 {
3787 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
3788 }
3789
3790 /* Vector of ada_symbol_info structures currently collected in current
3791 vector in *OBSTACKP. If FINISH, close off the vector and return
3792 its final address. */
3793
3794 static struct ada_symbol_info *
3795 defns_collected (struct obstack *obstackp, int finish)
3796 {
3797 if (finish)
3798 return obstack_finish (obstackp);
3799 else
3800 return (struct ada_symbol_info *) obstack_base (obstackp);
3801 }
3802
3803 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
3804 Check the global symbols if GLOBAL, the static symbols if not.
3805 Do wild-card match if WILD. */
3806
3807 static struct partial_symbol *
3808 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
3809 int global, domain_enum namespace, int wild)
3810 {
3811 struct partial_symbol **start;
3812 int name_len = strlen (name);
3813 int length = (global ? pst->n_global_syms : pst->n_static_syms);
3814 int i;
3815
3816 if (length == 0)
3817 {
3818 return (NULL);
3819 }
3820
3821 start = (global ?
3822 pst->objfile->global_psymbols.list + pst->globals_offset :
3823 pst->objfile->static_psymbols.list + pst->statics_offset);
3824
3825 if (wild)
3826 {
3827 for (i = 0; i < length; i += 1)
3828 {
3829 struct partial_symbol *psym = start[i];
3830
3831 if (SYMBOL_DOMAIN (psym) == namespace
3832 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
3833 return psym;
3834 }
3835 return NULL;
3836 }
3837 else
3838 {
3839 if (global)
3840 {
3841 int U;
3842 i = 0;
3843 U = length - 1;
3844 while (U - i > 4)
3845 {
3846 int M = (U + i) >> 1;
3847 struct partial_symbol *psym = start[M];
3848 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
3849 i = M + 1;
3850 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
3851 U = M - 1;
3852 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
3853 i = M + 1;
3854 else
3855 U = M;
3856 }
3857 }
3858 else
3859 i = 0;
3860
3861 while (i < length)
3862 {
3863 struct partial_symbol *psym = start[i];
3864
3865 if (SYMBOL_DOMAIN (psym) == namespace)
3866 {
3867 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
3868
3869 if (cmp < 0)
3870 {
3871 if (global)
3872 break;
3873 }
3874 else if (cmp == 0
3875 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
3876 + name_len))
3877 return psym;
3878 }
3879 i += 1;
3880 }
3881
3882 if (global)
3883 {
3884 int U;
3885 i = 0;
3886 U = length - 1;
3887 while (U - i > 4)
3888 {
3889 int M = (U + i) >> 1;
3890 struct partial_symbol *psym = start[M];
3891 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
3892 i = M + 1;
3893 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
3894 U = M - 1;
3895 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
3896 i = M + 1;
3897 else
3898 U = M;
3899 }
3900 }
3901 else
3902 i = 0;
3903
3904 while (i < length)
3905 {
3906 struct partial_symbol *psym = start[i];
3907
3908 if (SYMBOL_DOMAIN (psym) == namespace)
3909 {
3910 int cmp;
3911
3912 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
3913 if (cmp == 0)
3914 {
3915 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
3916 if (cmp == 0)
3917 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
3918 name_len);
3919 }
3920
3921 if (cmp < 0)
3922 {
3923 if (global)
3924 break;
3925 }
3926 else if (cmp == 0
3927 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
3928 + name_len + 5))
3929 return psym;
3930 }
3931 i += 1;
3932 }
3933 }
3934 return NULL;
3935 }
3936
3937 /* Find a symbol table containing symbol SYM or NULL if none. */
3938
3939 static struct symtab *
3940 symtab_for_sym (struct symbol *sym)
3941 {
3942 struct symtab *s;
3943 struct objfile *objfile;
3944 struct block *b;
3945 struct symbol *tmp_sym;
3946 struct dict_iterator iter;
3947 int j;
3948
3949 ALL_SYMTABS (objfile, s)
3950 {
3951 switch (SYMBOL_CLASS (sym))
3952 {
3953 case LOC_CONST:
3954 case LOC_STATIC:
3955 case LOC_TYPEDEF:
3956 case LOC_REGISTER:
3957 case LOC_LABEL:
3958 case LOC_BLOCK:
3959 case LOC_CONST_BYTES:
3960 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3961 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
3962 return s;
3963 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3964 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
3965 return s;
3966 break;
3967 default:
3968 break;
3969 }
3970 switch (SYMBOL_CLASS (sym))
3971 {
3972 case LOC_REGISTER:
3973 case LOC_ARG:
3974 case LOC_REF_ARG:
3975 case LOC_REGPARM:
3976 case LOC_REGPARM_ADDR:
3977 case LOC_LOCAL:
3978 case LOC_TYPEDEF:
3979 case LOC_LOCAL_ARG:
3980 case LOC_BASEREG:
3981 case LOC_BASEREG_ARG:
3982 case LOC_COMPUTED:
3983 case LOC_COMPUTED_ARG:
3984 for (j = FIRST_LOCAL_BLOCK;
3985 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
3986 {
3987 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
3988 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
3989 return s;
3990 }
3991 break;
3992 default:
3993 break;
3994 }
3995 }
3996 return NULL;
3997 }
3998
3999 /* Return a minimal symbol matching NAME according to Ada decoding
4000 rules. Returns NULL if there is no such minimal symbol. Names
4001 prefixed with "standard__" are handled specially: "standard__" is
4002 first stripped off, and only static and global symbols are searched. */
4003
4004 struct minimal_symbol *
4005 ada_lookup_simple_minsym (const char *name)
4006 {
4007 struct objfile *objfile;
4008 struct minimal_symbol *msymbol;
4009 int wild_match;
4010
4011 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4012 {
4013 name += sizeof ("standard__") - 1;
4014 wild_match = 0;
4015 }
4016 else
4017 wild_match = (strstr (name, "__") == NULL);
4018
4019 ALL_MSYMBOLS (objfile, msymbol)
4020 {
4021 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4022 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4023 return msymbol;
4024 }
4025
4026 return NULL;
4027 }
4028
4029 /* For all subprograms that statically enclose the subprogram of the
4030 selected frame, add symbols matching identifier NAME in DOMAIN
4031 and their blocks to the list of data in OBSTACKP, as for
4032 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4033 wildcard prefix. */
4034
4035 static void
4036 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4037 const char *name, domain_enum namespace,
4038 int wild_match)
4039 {
4040 }
4041
4042 /* FIXME: The next two routines belong in symtab.c */
4043
4044 static void
4045 restore_language (void *lang)
4046 {
4047 set_language ((enum language) lang);
4048 }
4049
4050 /* As for lookup_symbol, but performed as if the current language
4051 were LANG. */
4052
4053 struct symbol *
4054 lookup_symbol_in_language (const char *name, const struct block *block,
4055 domain_enum domain, enum language lang,
4056 int *is_a_field_of_this, struct symtab **symtab)
4057 {
4058 struct cleanup *old_chain
4059 = make_cleanup (restore_language, (void *) current_language->la_language);
4060 struct symbol *result;
4061 set_language (lang);
4062 result = lookup_symbol (name, block, domain, is_a_field_of_this, symtab);
4063 do_cleanups (old_chain);
4064 return result;
4065 }
4066
4067 /* True if TYPE is definitely an artificial type supplied to a symbol
4068 for which no debugging information was given in the symbol file. */
4069
4070 static int
4071 is_nondebugging_type (struct type *type)
4072 {
4073 char *name = ada_type_name (type);
4074 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4075 }
4076
4077 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4078 duplicate other symbols in the list (The only case I know of where
4079 this happens is when object files containing stabs-in-ecoff are
4080 linked with files containing ordinary ecoff debugging symbols (or no
4081 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4082 Returns the number of items in the modified list. */
4083
4084 static int
4085 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4086 {
4087 int i, j;
4088
4089 i = 0;
4090 while (i < nsyms)
4091 {
4092 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4093 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4094 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4095 {
4096 for (j = 0; j < nsyms; j += 1)
4097 {
4098 if (i != j
4099 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4100 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4101 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4102 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4103 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4104 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4105 {
4106 int k;
4107 for (k = i + 1; k < nsyms; k += 1)
4108 syms[k - 1] = syms[k];
4109 nsyms -= 1;
4110 goto NextSymbol;
4111 }
4112 }
4113 }
4114 i += 1;
4115 NextSymbol:
4116 ;
4117 }
4118 return nsyms;
4119 }
4120
4121 /* Given a type that corresponds to a renaming entity, use the type name
4122 to extract the scope (package name or function name, fully qualified,
4123 and following the GNAT encoding convention) where this renaming has been
4124 defined. The string returned needs to be deallocated after use. */
4125
4126 static char *
4127 xget_renaming_scope (struct type *renaming_type)
4128 {
4129 /* The renaming types adhere to the following convention:
4130 <scope>__<rename>___<XR extension>.
4131 So, to extract the scope, we search for the "___XR" extension,
4132 and then backtrack until we find the first "__". */
4133
4134 const char *name = type_name_no_tag (renaming_type);
4135 char *suffix = strstr (name, "___XR");
4136 char *last;
4137 int scope_len;
4138 char *scope;
4139
4140 /* Now, backtrack a bit until we find the first "__". Start looking
4141 at suffix - 3, as the <rename> part is at least one character long. */
4142
4143 for (last = suffix - 3; last > name; last--)
4144 if (last[0] == '_' && last[1] == '_')
4145 break;
4146
4147 /* Make a copy of scope and return it. */
4148
4149 scope_len = last - name;
4150 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4151
4152 strncpy (scope, name, scope_len);
4153 scope[scope_len] = '\0';
4154
4155 return scope;
4156 }
4157
4158 /* Return nonzero if NAME corresponds to a package name. */
4159
4160 static int
4161 is_package_name (const char *name)
4162 {
4163 /* Here, We take advantage of the fact that no symbols are generated
4164 for packages, while symbols are generated for each function.
4165 So the condition for NAME represent a package becomes equivalent
4166 to NAME not existing in our list of symbols. There is only one
4167 small complication with library-level functions (see below). */
4168
4169 char *fun_name;
4170
4171 /* If it is a function that has not been defined at library level,
4172 then we should be able to look it up in the symbols. */
4173 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4174 return 0;
4175
4176 /* Library-level function names start with "_ada_". See if function
4177 "_ada_" followed by NAME can be found. */
4178
4179 /* Do a quick check that NAME does not contain "__", since library-level
4180 functions names can not contain "__" in them. */
4181 if (strstr (name, "__") != NULL)
4182 return 0;
4183
4184 fun_name = xstrprintf ("_ada_%s", name);
4185
4186 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4187 }
4188
4189 /* Return nonzero if SYM corresponds to a renaming entity that is
4190 visible from FUNCTION_NAME. */
4191
4192 static int
4193 renaming_is_visible (const struct symbol *sym, char *function_name)
4194 {
4195 char *scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4196
4197 make_cleanup (xfree, scope);
4198
4199 /* If the rename has been defined in a package, then it is visible. */
4200 if (is_package_name (scope))
4201 return 1;
4202
4203 /* Check that the rename is in the current function scope by checking
4204 that its name starts with SCOPE. */
4205
4206 /* If the function name starts with "_ada_", it means that it is
4207 a library-level function. Strip this prefix before doing the
4208 comparison, as the encoding for the renaming does not contain
4209 this prefix. */
4210 if (strncmp (function_name, "_ada_", 5) == 0)
4211 function_name += 5;
4212
4213 return (strncmp (function_name, scope, strlen (scope)) == 0);
4214 }
4215
4216 /* Iterates over the SYMS list and remove any entry that corresponds to
4217 a renaming entity that is not visible from the function associated
4218 with CURRENT_BLOCK.
4219
4220 Rationale:
4221 GNAT emits a type following a specified encoding for each renaming
4222 entity. Unfortunately, STABS currently does not support the definition
4223 of types that are local to a given lexical block, so all renamings types
4224 are emitted at library level. As a consequence, if an application
4225 contains two renaming entities using the same name, and a user tries to
4226 print the value of one of these entities, the result of the ada symbol
4227 lookup will also contain the wrong renaming type.
4228
4229 This function partially covers for this limitation by attempting to
4230 remove from the SYMS list renaming symbols that should be visible
4231 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4232 method with the current information available. The implementation
4233 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4234
4235 - When the user tries to print a rename in a function while there
4236 is another rename entity defined in a package: Normally, the
4237 rename in the function has precedence over the rename in the
4238 package, so the latter should be removed from the list. This is
4239 currently not the case.
4240
4241 - This function will incorrectly remove valid renames if
4242 the CURRENT_BLOCK corresponds to a function which symbol name
4243 has been changed by an "Export" pragma. As a consequence,
4244 the user will be unable to print such rename entities. */
4245
4246 static int
4247 remove_out_of_scope_renamings (struct ada_symbol_info *syms,
4248 int nsyms, struct block *current_block)
4249 {
4250 struct symbol *current_function;
4251 char *current_function_name;
4252 int i;
4253
4254 /* Extract the function name associated to CURRENT_BLOCK.
4255 Abort if unable to do so. */
4256
4257 if (current_block == NULL)
4258 return nsyms;
4259
4260 current_function = block_function (current_block);
4261 if (current_function == NULL)
4262 return nsyms;
4263
4264 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4265 if (current_function_name == NULL)
4266 return nsyms;
4267
4268 /* Check each of the symbols, and remove it from the list if it is
4269 a type corresponding to a renaming that is out of the scope of
4270 the current block. */
4271
4272 i = 0;
4273 while (i < nsyms)
4274 {
4275 if (ada_is_object_renaming (syms[i].sym)
4276 && !renaming_is_visible (syms[i].sym, current_function_name))
4277 {
4278 int j;
4279 for (j = i + 1; j < nsyms; j++)
4280 syms[j - 1] = syms[j];
4281 nsyms -= 1;
4282 }
4283 else
4284 i += 1;
4285 }
4286
4287 return nsyms;
4288 }
4289
4290 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4291 scope and in global scopes, returning the number of matches. Sets
4292 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4293 indicating the symbols found and the blocks and symbol tables (if
4294 any) in which they were found. This vector are transient---good only to
4295 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4296 symbol match within the nest of blocks whose innermost member is BLOCK0,
4297 is the one match returned (no other matches in that or
4298 enclosing blocks is returned). If there are any matches in or
4299 surrounding BLOCK0, then these alone are returned. Otherwise, the
4300 search extends to global and file-scope (static) symbol tables.
4301 Names prefixed with "standard__" are handled specially: "standard__"
4302 is first stripped off, and only static and global symbols are searched. */
4303
4304 int
4305 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4306 domain_enum namespace,
4307 struct ada_symbol_info **results)
4308 {
4309 struct symbol *sym;
4310 struct symtab *s;
4311 struct partial_symtab *ps;
4312 struct blockvector *bv;
4313 struct objfile *objfile;
4314 struct block *block;
4315 const char *name;
4316 struct minimal_symbol *msymbol;
4317 int wild_match;
4318 int cacheIfUnique;
4319 int block_depth;
4320 int ndefns;
4321
4322 obstack_free (&symbol_list_obstack, NULL);
4323 obstack_init (&symbol_list_obstack);
4324
4325 cacheIfUnique = 0;
4326
4327 /* Search specified block and its superiors. */
4328
4329 wild_match = (strstr (name0, "__") == NULL);
4330 name = name0;
4331 block = (struct block *) block0; /* FIXME: No cast ought to be
4332 needed, but adding const will
4333 have a cascade effect. */
4334 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4335 {
4336 wild_match = 0;
4337 block = NULL;
4338 name = name0 + sizeof ("standard__") - 1;
4339 }
4340
4341 block_depth = 0;
4342 while (block != NULL)
4343 {
4344 block_depth += 1;
4345 ada_add_block_symbols (&symbol_list_obstack, block, name,
4346 namespace, NULL, NULL, wild_match);
4347
4348 /* If we found a non-function match, assume that's the one. */
4349 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4350 num_defns_collected (&symbol_list_obstack)))
4351 goto done;
4352
4353 block = BLOCK_SUPERBLOCK (block);
4354 }
4355
4356 /* If no luck so far, try to find NAME as a local symbol in some lexically
4357 enclosing subprogram. */
4358 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4359 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4360 name, namespace, wild_match);
4361
4362 /* If we found ANY matches among non-global symbols, we're done. */
4363
4364 if (num_defns_collected (&symbol_list_obstack) > 0)
4365 goto done;
4366
4367 cacheIfUnique = 1;
4368 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4369 {
4370 if (sym != NULL)
4371 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4372 goto done;
4373 }
4374
4375 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4376 tables, and psymtab's. */
4377
4378 ALL_SYMTABS (objfile, s)
4379 {
4380 QUIT;
4381 if (!s->primary)
4382 continue;
4383 bv = BLOCKVECTOR (s);
4384 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4385 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4386 objfile, s, wild_match);
4387 }
4388
4389 if (namespace == VAR_DOMAIN)
4390 {
4391 ALL_MSYMBOLS (objfile, msymbol)
4392 {
4393 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4394 {
4395 switch (MSYMBOL_TYPE (msymbol))
4396 {
4397 case mst_solib_trampoline:
4398 break;
4399 default:
4400 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4401 if (s != NULL)
4402 {
4403 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4404 QUIT;
4405 bv = BLOCKVECTOR (s);
4406 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4407 ada_add_block_symbols (&symbol_list_obstack, block,
4408 SYMBOL_LINKAGE_NAME (msymbol),
4409 namespace, objfile, s, wild_match);
4410
4411 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4412 {
4413 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4414 ada_add_block_symbols (&symbol_list_obstack, block,
4415 SYMBOL_LINKAGE_NAME (msymbol),
4416 namespace, objfile, s,
4417 wild_match);
4418 }
4419 }
4420 }
4421 }
4422 }
4423 }
4424
4425 ALL_PSYMTABS (objfile, ps)
4426 {
4427 QUIT;
4428 if (!ps->readin
4429 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4430 {
4431 s = PSYMTAB_TO_SYMTAB (ps);
4432 if (!s->primary)
4433 continue;
4434 bv = BLOCKVECTOR (s);
4435 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4436 ada_add_block_symbols (&symbol_list_obstack, block, name,
4437 namespace, objfile, s, wild_match);
4438 }
4439 }
4440
4441 /* Now add symbols from all per-file blocks if we've gotten no hits
4442 (Not strictly correct, but perhaps better than an error).
4443 Do the symtabs first, then check the psymtabs. */
4444
4445 if (num_defns_collected (&symbol_list_obstack) == 0)
4446 {
4447
4448 ALL_SYMTABS (objfile, s)
4449 {
4450 QUIT;
4451 if (!s->primary)
4452 continue;
4453 bv = BLOCKVECTOR (s);
4454 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4455 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4456 objfile, s, wild_match);
4457 }
4458
4459 ALL_PSYMTABS (objfile, ps)
4460 {
4461 QUIT;
4462 if (!ps->readin
4463 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4464 {
4465 s = PSYMTAB_TO_SYMTAB (ps);
4466 bv = BLOCKVECTOR (s);
4467 if (!s->primary)
4468 continue;
4469 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4470 ada_add_block_symbols (&symbol_list_obstack, block, name,
4471 namespace, objfile, s, wild_match);
4472 }
4473 }
4474 }
4475
4476 done:
4477 ndefns = num_defns_collected (&symbol_list_obstack);
4478 *results = defns_collected (&symbol_list_obstack, 1);
4479
4480 ndefns = remove_extra_symbols (*results, ndefns);
4481
4482 if (ndefns == 0)
4483 cache_symbol (name0, namespace, NULL, NULL, NULL);
4484
4485 if (ndefns == 1 && cacheIfUnique)
4486 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4487 (*results)[0].symtab);
4488
4489 ndefns = remove_out_of_scope_renamings (*results, ndefns,
4490 (struct block *) block0);
4491
4492 return ndefns;
4493 }
4494
4495 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4496 scope and in global scopes, or NULL if none. NAME is folded and
4497 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4498 choosing the first symbol if there are multiple choices.
4499 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4500 table in which the symbol was found (in both cases, these
4501 assignments occur only if the pointers are non-null). */
4502
4503 struct symbol *
4504 ada_lookup_symbol (const char *name, const struct block *block0,
4505 domain_enum namespace, int *is_a_field_of_this,
4506 struct symtab **symtab)
4507 {
4508 struct ada_symbol_info *candidates;
4509 int n_candidates;
4510
4511 n_candidates = ada_lookup_symbol_list (ada_encode (ada_fold_name (name)),
4512 block0, namespace, &candidates);
4513
4514 if (n_candidates == 0)
4515 return NULL;
4516
4517 if (is_a_field_of_this != NULL)
4518 *is_a_field_of_this = 0;
4519
4520 if (symtab != NULL)
4521 {
4522 *symtab = candidates[0].symtab;
4523 if (*symtab == NULL && candidates[0].block != NULL)
4524 {
4525 struct objfile *objfile;
4526 struct symtab *s;
4527 struct block *b;
4528 struct blockvector *bv;
4529
4530 /* Search the list of symtabs for one which contains the
4531 address of the start of this block. */
4532 ALL_SYMTABS (objfile, s)
4533 {
4534 bv = BLOCKVECTOR (s);
4535 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4536 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4537 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4538 {
4539 *symtab = s;
4540 return fixup_symbol_section (candidates[0].sym, objfile);
4541 }
4542 return fixup_symbol_section (candidates[0].sym, NULL);
4543 }
4544 }
4545 }
4546 return candidates[0].sym;
4547 }
4548
4549 static struct symbol *
4550 ada_lookup_symbol_nonlocal (const char *name,
4551 const char *linkage_name,
4552 const struct block *block,
4553 const domain_enum domain, struct symtab **symtab)
4554 {
4555 if (linkage_name == NULL)
4556 linkage_name = name;
4557 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4558 NULL, symtab);
4559 }
4560
4561
4562 /* True iff STR is a possible encoded suffix of a normal Ada name
4563 that is to be ignored for matching purposes. Suffixes of parallel
4564 names (e.g., XVE) are not included here. Currently, the possible suffixes
4565 are given by either of the regular expression:
4566
4567 (__[0-9]+)?\.[0-9]+ [nested subprogram suffix, on platforms such
4568 as GNU/Linux]
4569 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4570 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4571 */
4572
4573 static int
4574 is_name_suffix (const char *str)
4575 {
4576 int k;
4577 const char *matching;
4578 const int len = strlen (str);
4579
4580 /* (__[0-9]+)?\.[0-9]+ */
4581 matching = str;
4582 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4583 {
4584 matching += 3;
4585 while (isdigit (matching[0]))
4586 matching += 1;
4587 if (matching[0] == '\0')
4588 return 1;
4589 }
4590
4591 if (matching[0] == '.')
4592 {
4593 matching += 1;
4594 while (isdigit (matching[0]))
4595 matching += 1;
4596 if (matching[0] == '\0')
4597 return 1;
4598 }
4599
4600 /* ___[0-9]+ */
4601 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4602 {
4603 matching = str + 3;
4604 while (isdigit (matching[0]))
4605 matching += 1;
4606 if (matching[0] == '\0')
4607 return 1;
4608 }
4609
4610 /* ??? We should not modify STR directly, as we are doing below. This
4611 is fine in this case, but may become problematic later if we find
4612 that this alternative did not work, and want to try matching
4613 another one from the begining of STR. Since we modified it, we
4614 won't be able to find the begining of the string anymore! */
4615 if (str[0] == 'X')
4616 {
4617 str += 1;
4618 while (str[0] != '_' && str[0] != '\0')
4619 {
4620 if (str[0] != 'n' && str[0] != 'b')
4621 return 0;
4622 str += 1;
4623 }
4624 }
4625 if (str[0] == '\000')
4626 return 1;
4627 if (str[0] == '_')
4628 {
4629 if (str[1] != '_' || str[2] == '\000')
4630 return 0;
4631 if (str[2] == '_')
4632 {
4633 if (strcmp (str + 3, "JM") == 0)
4634 return 1;
4635 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4636 the LJM suffix in favor of the JM one. But we will
4637 still accept LJM as a valid suffix for a reasonable
4638 amount of time, just to allow ourselves to debug programs
4639 compiled using an older version of GNAT. */
4640 if (strcmp (str + 3, "LJM") == 0)
4641 return 1;
4642 if (str[3] != 'X')
4643 return 0;
4644 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4645 || str[4] == 'U' || str[4] == 'P')
4646 return 1;
4647 if (str[4] == 'R' && str[5] != 'T')
4648 return 1;
4649 return 0;
4650 }
4651 if (!isdigit (str[2]))
4652 return 0;
4653 for (k = 3; str[k] != '\0'; k += 1)
4654 if (!isdigit (str[k]) && str[k] != '_')
4655 return 0;
4656 return 1;
4657 }
4658 if (str[0] == '$' && isdigit (str[1]))
4659 {
4660 for (k = 2; str[k] != '\0'; k += 1)
4661 if (!isdigit (str[k]) && str[k] != '_')
4662 return 0;
4663 return 1;
4664 }
4665 return 0;
4666 }
4667
4668 /* Return nonzero if the given string starts with a dot ('.')
4669 followed by zero or more digits.
4670
4671 Note: brobecker/2003-11-10: A forward declaration has not been
4672 added at the begining of this file yet, because this function
4673 is only used to work around a problem found during wild matching
4674 when trying to match minimal symbol names against symbol names
4675 obtained from dwarf-2 data. This function is therefore currently
4676 only used in wild_match() and is likely to be deleted when the
4677 problem in dwarf-2 is fixed. */
4678
4679 static int
4680 is_dot_digits_suffix (const char *str)
4681 {
4682 if (str[0] != '.')
4683 return 0;
4684
4685 str++;
4686 while (isdigit (str[0]))
4687 str++;
4688 return (str[0] == '\0');
4689 }
4690
4691 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4692 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4693 informational suffixes of NAME (i.e., for which is_name_suffix is
4694 true). */
4695
4696 static int
4697 wild_match (const char *patn0, int patn_len, const char *name0)
4698 {
4699 int name_len;
4700 char *name;
4701 char *patn;
4702
4703 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
4704 stored in the symbol table for nested function names is sometimes
4705 different from the name of the associated entity stored in
4706 the dwarf-2 data: This is the case for nested subprograms, where
4707 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
4708 while the symbol name from the dwarf-2 data does not.
4709
4710 Although the DWARF-2 standard documents that entity names stored
4711 in the dwarf-2 data should be identical to the name as seen in
4712 the source code, GNAT takes a different approach as we already use
4713 a special encoding mechanism to convey the information so that
4714 a C debugger can still use the information generated to debug
4715 Ada programs. A corollary is that the symbol names in the dwarf-2
4716 data should match the names found in the symbol table. I therefore
4717 consider this issue as a compiler defect.
4718
4719 Until the compiler is properly fixed, we work-around the problem
4720 by ignoring such suffixes during the match. We do so by making
4721 a copy of PATN0 and NAME0, and then by stripping such a suffix
4722 if present. We then perform the match on the resulting strings. */
4723 {
4724 char *dot;
4725 name_len = strlen (name0);
4726
4727 name = (char *) alloca ((name_len + 1) * sizeof (char));
4728 strcpy (name, name0);
4729 dot = strrchr (name, '.');
4730 if (dot != NULL && is_dot_digits_suffix (dot))
4731 *dot = '\0';
4732
4733 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
4734 strncpy (patn, patn0, patn_len);
4735 patn[patn_len] = '\0';
4736 dot = strrchr (patn, '.');
4737 if (dot != NULL && is_dot_digits_suffix (dot))
4738 {
4739 *dot = '\0';
4740 patn_len = dot - patn;
4741 }
4742 }
4743
4744 /* Now perform the wild match. */
4745
4746 name_len = strlen (name);
4747 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
4748 && strncmp (patn, name + 5, patn_len) == 0
4749 && is_name_suffix (name + patn_len + 5))
4750 return 1;
4751
4752 while (name_len >= patn_len)
4753 {
4754 if (strncmp (patn, name, patn_len) == 0
4755 && is_name_suffix (name + patn_len))
4756 return 1;
4757 do
4758 {
4759 name += 1;
4760 name_len -= 1;
4761 }
4762 while (name_len > 0
4763 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
4764 if (name_len <= 0)
4765 return 0;
4766 if (name[0] == '_')
4767 {
4768 if (!islower (name[2]))
4769 return 0;
4770 name += 2;
4771 name_len -= 2;
4772 }
4773 else
4774 {
4775 if (!islower (name[1]))
4776 return 0;
4777 name += 1;
4778 name_len -= 1;
4779 }
4780 }
4781
4782 return 0;
4783 }
4784
4785
4786 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4787 vector *defn_symbols, updating the list of symbols in OBSTACKP
4788 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4789 OBJFILE is the section containing BLOCK.
4790 SYMTAB is recorded with each symbol added. */
4791
4792 static void
4793 ada_add_block_symbols (struct obstack *obstackp,
4794 struct block *block, const char *name,
4795 domain_enum domain, struct objfile *objfile,
4796 struct symtab *symtab, int wild)
4797 {
4798 struct dict_iterator iter;
4799 int name_len = strlen (name);
4800 /* A matching argument symbol, if any. */
4801 struct symbol *arg_sym;
4802 /* Set true when we find a matching non-argument symbol. */
4803 int found_sym;
4804 struct symbol *sym;
4805
4806 arg_sym = NULL;
4807 found_sym = 0;
4808 if (wild)
4809 {
4810 struct symbol *sym;
4811 ALL_BLOCK_SYMBOLS (block, iter, sym)
4812 {
4813 if (SYMBOL_DOMAIN (sym) == domain
4814 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4815 {
4816 switch (SYMBOL_CLASS (sym))
4817 {
4818 case LOC_ARG:
4819 case LOC_LOCAL_ARG:
4820 case LOC_REF_ARG:
4821 case LOC_REGPARM:
4822 case LOC_REGPARM_ADDR:
4823 case LOC_BASEREG_ARG:
4824 case LOC_COMPUTED_ARG:
4825 arg_sym = sym;
4826 break;
4827 case LOC_UNRESOLVED:
4828 continue;
4829 default:
4830 found_sym = 1;
4831 add_defn_to_vec (obstackp,
4832 fixup_symbol_section (sym, objfile),
4833 block, symtab);
4834 break;
4835 }
4836 }
4837 }
4838 }
4839 else
4840 {
4841 ALL_BLOCK_SYMBOLS (block, iter, sym)
4842 {
4843 if (SYMBOL_DOMAIN (sym) == domain)
4844 {
4845 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
4846 if (cmp == 0
4847 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
4848 {
4849 switch (SYMBOL_CLASS (sym))
4850 {
4851 case LOC_ARG:
4852 case LOC_LOCAL_ARG:
4853 case LOC_REF_ARG:
4854 case LOC_REGPARM:
4855 case LOC_REGPARM_ADDR:
4856 case LOC_BASEREG_ARG:
4857 case LOC_COMPUTED_ARG:
4858 arg_sym = sym;
4859 break;
4860 case LOC_UNRESOLVED:
4861 break;
4862 default:
4863 found_sym = 1;
4864 add_defn_to_vec (obstackp,
4865 fixup_symbol_section (sym, objfile),
4866 block, symtab);
4867 break;
4868 }
4869 }
4870 }
4871 }
4872 }
4873
4874 if (!found_sym && arg_sym != NULL)
4875 {
4876 add_defn_to_vec (obstackp,
4877 fixup_symbol_section (arg_sym, objfile),
4878 block, symtab);
4879 }
4880
4881 if (!wild)
4882 {
4883 arg_sym = NULL;
4884 found_sym = 0;
4885
4886 ALL_BLOCK_SYMBOLS (block, iter, sym)
4887 {
4888 if (SYMBOL_DOMAIN (sym) == domain)
4889 {
4890 int cmp;
4891
4892 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
4893 if (cmp == 0)
4894 {
4895 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
4896 if (cmp == 0)
4897 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
4898 name_len);
4899 }
4900
4901 if (cmp == 0
4902 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
4903 {
4904 switch (SYMBOL_CLASS (sym))
4905 {
4906 case LOC_ARG:
4907 case LOC_LOCAL_ARG:
4908 case LOC_REF_ARG:
4909 case LOC_REGPARM:
4910 case LOC_REGPARM_ADDR:
4911 case LOC_BASEREG_ARG:
4912 case LOC_COMPUTED_ARG:
4913 arg_sym = sym;
4914 break;
4915 case LOC_UNRESOLVED:
4916 break;
4917 default:
4918 found_sym = 1;
4919 add_defn_to_vec (obstackp,
4920 fixup_symbol_section (sym, objfile),
4921 block, symtab);
4922 break;
4923 }
4924 }
4925 }
4926 }
4927
4928 /* NOTE: This really shouldn't be needed for _ada_ symbols.
4929 They aren't parameters, right? */
4930 if (!found_sym && arg_sym != NULL)
4931 {
4932 add_defn_to_vec (obstackp,
4933 fixup_symbol_section (arg_sym, objfile),
4934 block, symtab);
4935 }
4936 }
4937 }
4938 \f
4939 /* Field Access */
4940
4941 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
4942 to be invisible to users. */
4943
4944 int
4945 ada_is_ignored_field (struct type *type, int field_num)
4946 {
4947 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
4948 return 1;
4949 else
4950 {
4951 const char *name = TYPE_FIELD_NAME (type, field_num);
4952 return (name == NULL
4953 || (name[0] == '_' && strncmp (name, "_parent", 7) != 0));
4954 }
4955 }
4956
4957 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
4958 pointer or reference type whose ultimate target has a tag field. */
4959
4960 int
4961 ada_is_tagged_type (struct type *type, int refok)
4962 {
4963 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
4964 }
4965
4966 /* True iff TYPE represents the type of X'Tag */
4967
4968 int
4969 ada_is_tag_type (struct type *type)
4970 {
4971 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
4972 return 0;
4973 else
4974 {
4975 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
4976 return (name != NULL
4977 && strcmp (name, "ada__tags__dispatch_table") == 0);
4978 }
4979 }
4980
4981 /* The type of the tag on VAL. */
4982
4983 struct type *
4984 ada_tag_type (struct value *val)
4985 {
4986 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
4987 }
4988
4989 /* The value of the tag on VAL. */
4990
4991 struct value *
4992 ada_value_tag (struct value *val)
4993 {
4994 return ada_value_struct_elt (val, "_tag", "record");
4995 }
4996
4997 /* The value of the tag on the object of type TYPE whose contents are
4998 saved at VALADDR, if it is non-null, or is at memory address
4999 ADDRESS. */
5000
5001 static struct value *
5002 value_tag_from_contents_and_address (struct type *type,
5003 const gdb_byte *valaddr,
5004 CORE_ADDR address)
5005 {
5006 int tag_byte_offset, dummy1, dummy2;
5007 struct type *tag_type;
5008 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5009 &dummy1, &dummy2))
5010 {
5011 const gdb_byte *valaddr1 = ((valaddr == NULL)
5012 ? NULL
5013 : valaddr + tag_byte_offset);
5014 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5015
5016 return value_from_contents_and_address (tag_type, valaddr1, address1);
5017 }
5018 return NULL;
5019 }
5020
5021 static struct type *
5022 type_from_tag (struct value *tag)
5023 {
5024 const char *type_name = ada_tag_name (tag);
5025 if (type_name != NULL)
5026 return ada_find_any_type (ada_encode (type_name));
5027 return NULL;
5028 }
5029
5030 struct tag_args
5031 {
5032 struct value *tag;
5033 char *name;
5034 };
5035
5036 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5037 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5038 The value stored in ARGS->name is valid until the next call to
5039 ada_tag_name_1. */
5040
5041 static int
5042 ada_tag_name_1 (void *args0)
5043 {
5044 struct tag_args *args = (struct tag_args *) args0;
5045 static char name[1024];
5046 char *p;
5047 struct value *val;
5048 args->name = NULL;
5049 val = ada_value_struct_elt (args->tag, "tsd", NULL);
5050 if (val == NULL)
5051 return 0;
5052 val = ada_value_struct_elt (val, "expanded_name", NULL);
5053 if (val == NULL)
5054 return 0;
5055 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5056 for (p = name; *p != '\0'; p += 1)
5057 if (isalpha (*p))
5058 *p = tolower (*p);
5059 args->name = name;
5060 return 0;
5061 }
5062
5063 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5064 * a C string. */
5065
5066 const char *
5067 ada_tag_name (struct value *tag)
5068 {
5069 struct tag_args args;
5070 if (!ada_is_tag_type (value_type (tag)))
5071 return NULL;
5072 args.tag = tag;
5073 args.name = NULL;
5074 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5075 return args.name;
5076 }
5077
5078 /* The parent type of TYPE, or NULL if none. */
5079
5080 struct type *
5081 ada_parent_type (struct type *type)
5082 {
5083 int i;
5084
5085 type = ada_check_typedef (type);
5086
5087 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5088 return NULL;
5089
5090 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5091 if (ada_is_parent_field (type, i))
5092 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5093
5094 return NULL;
5095 }
5096
5097 /* True iff field number FIELD_NUM of structure type TYPE contains the
5098 parent-type (inherited) fields of a derived type. Assumes TYPE is
5099 a structure type with at least FIELD_NUM+1 fields. */
5100
5101 int
5102 ada_is_parent_field (struct type *type, int field_num)
5103 {
5104 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5105 return (name != NULL
5106 && (strncmp (name, "PARENT", 6) == 0
5107 || strncmp (name, "_parent", 7) == 0));
5108 }
5109
5110 /* True iff field number FIELD_NUM of structure type TYPE is a
5111 transparent wrapper field (which should be silently traversed when doing
5112 field selection and flattened when printing). Assumes TYPE is a
5113 structure type with at least FIELD_NUM+1 fields. Such fields are always
5114 structures. */
5115
5116 int
5117 ada_is_wrapper_field (struct type *type, int field_num)
5118 {
5119 const char *name = TYPE_FIELD_NAME (type, field_num);
5120 return (name != NULL
5121 && (strncmp (name, "PARENT", 6) == 0
5122 || strcmp (name, "REP") == 0
5123 || strncmp (name, "_parent", 7) == 0
5124 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5125 }
5126
5127 /* True iff field number FIELD_NUM of structure or union type TYPE
5128 is a variant wrapper. Assumes TYPE is a structure type with at least
5129 FIELD_NUM+1 fields. */
5130
5131 int
5132 ada_is_variant_part (struct type *type, int field_num)
5133 {
5134 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5135 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5136 || (is_dynamic_field (type, field_num)
5137 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5138 == TYPE_CODE_UNION)));
5139 }
5140
5141 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5142 whose discriminants are contained in the record type OUTER_TYPE,
5143 returns the type of the controlling discriminant for the variant. */
5144
5145 struct type *
5146 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5147 {
5148 char *name = ada_variant_discrim_name (var_type);
5149 struct type *type =
5150 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5151 if (type == NULL)
5152 return builtin_type_int;
5153 else
5154 return type;
5155 }
5156
5157 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5158 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5159 represents a 'when others' clause; otherwise 0. */
5160
5161 int
5162 ada_is_others_clause (struct type *type, int field_num)
5163 {
5164 const char *name = TYPE_FIELD_NAME (type, field_num);
5165 return (name != NULL && name[0] == 'O');
5166 }
5167
5168 /* Assuming that TYPE0 is the type of the variant part of a record,
5169 returns the name of the discriminant controlling the variant.
5170 The value is valid until the next call to ada_variant_discrim_name. */
5171
5172 char *
5173 ada_variant_discrim_name (struct type *type0)
5174 {
5175 static char *result = NULL;
5176 static size_t result_len = 0;
5177 struct type *type;
5178 const char *name;
5179 const char *discrim_end;
5180 const char *discrim_start;
5181
5182 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5183 type = TYPE_TARGET_TYPE (type0);
5184 else
5185 type = type0;
5186
5187 name = ada_type_name (type);
5188
5189 if (name == NULL || name[0] == '\000')
5190 return "";
5191
5192 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5193 discrim_end -= 1)
5194 {
5195 if (strncmp (discrim_end, "___XVN", 6) == 0)
5196 break;
5197 }
5198 if (discrim_end == name)
5199 return "";
5200
5201 for (discrim_start = discrim_end; discrim_start != name + 3;
5202 discrim_start -= 1)
5203 {
5204 if (discrim_start == name + 1)
5205 return "";
5206 if ((discrim_start > name + 3
5207 && strncmp (discrim_start - 3, "___", 3) == 0)
5208 || discrim_start[-1] == '.')
5209 break;
5210 }
5211
5212 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5213 strncpy (result, discrim_start, discrim_end - discrim_start);
5214 result[discrim_end - discrim_start] = '\0';
5215 return result;
5216 }
5217
5218 /* Scan STR for a subtype-encoded number, beginning at position K.
5219 Put the position of the character just past the number scanned in
5220 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5221 Return 1 if there was a valid number at the given position, and 0
5222 otherwise. A "subtype-encoded" number consists of the absolute value
5223 in decimal, followed by the letter 'm' to indicate a negative number.
5224 Assumes 0m does not occur. */
5225
5226 int
5227 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5228 {
5229 ULONGEST RU;
5230
5231 if (!isdigit (str[k]))
5232 return 0;
5233
5234 /* Do it the hard way so as not to make any assumption about
5235 the relationship of unsigned long (%lu scan format code) and
5236 LONGEST. */
5237 RU = 0;
5238 while (isdigit (str[k]))
5239 {
5240 RU = RU * 10 + (str[k] - '0');
5241 k += 1;
5242 }
5243
5244 if (str[k] == 'm')
5245 {
5246 if (R != NULL)
5247 *R = (-(LONGEST) (RU - 1)) - 1;
5248 k += 1;
5249 }
5250 else if (R != NULL)
5251 *R = (LONGEST) RU;
5252
5253 /* NOTE on the above: Technically, C does not say what the results of
5254 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5255 number representable as a LONGEST (although either would probably work
5256 in most implementations). When RU>0, the locution in the then branch
5257 above is always equivalent to the negative of RU. */
5258
5259 if (new_k != NULL)
5260 *new_k = k;
5261 return 1;
5262 }
5263
5264 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5265 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5266 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5267
5268 int
5269 ada_in_variant (LONGEST val, struct type *type, int field_num)
5270 {
5271 const char *name = TYPE_FIELD_NAME (type, field_num);
5272 int p;
5273
5274 p = 0;
5275 while (1)
5276 {
5277 switch (name[p])
5278 {
5279 case '\0':
5280 return 0;
5281 case 'S':
5282 {
5283 LONGEST W;
5284 if (!ada_scan_number (name, p + 1, &W, &p))
5285 return 0;
5286 if (val == W)
5287 return 1;
5288 break;
5289 }
5290 case 'R':
5291 {
5292 LONGEST L, U;
5293 if (!ada_scan_number (name, p + 1, &L, &p)
5294 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5295 return 0;
5296 if (val >= L && val <= U)
5297 return 1;
5298 break;
5299 }
5300 case 'O':
5301 return 1;
5302 default:
5303 return 0;
5304 }
5305 }
5306 }
5307
5308 /* FIXME: Lots of redundancy below. Try to consolidate. */
5309
5310 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5311 ARG_TYPE, extract and return the value of one of its (non-static)
5312 fields. FIELDNO says which field. Differs from value_primitive_field
5313 only in that it can handle packed values of arbitrary type. */
5314
5315 static struct value *
5316 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5317 struct type *arg_type)
5318 {
5319 struct type *type;
5320
5321 arg_type = ada_check_typedef (arg_type);
5322 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5323
5324 /* Handle packed fields. */
5325
5326 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5327 {
5328 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5329 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5330
5331 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5332 offset + bit_pos / 8,
5333 bit_pos % 8, bit_size, type);
5334 }
5335 else
5336 return value_primitive_field (arg1, offset, fieldno, arg_type);
5337 }
5338
5339 /* Find field with name NAME in object of type TYPE. If found, return 1
5340 after setting *FIELD_TYPE_P to the field's type, *BYTE_OFFSET_P to
5341 OFFSET + the byte offset of the field within an object of that type,
5342 *BIT_OFFSET_P to the bit offset modulo byte size of the field, and
5343 *BIT_SIZE_P to its size in bits if the field is packed, and 0 otherwise.
5344 Looks inside wrappers for the field. Returns 0 if field not
5345 found. */
5346 static int
5347 find_struct_field (char *name, struct type *type, int offset,
5348 struct type **field_type_p,
5349 int *byte_offset_p, int *bit_offset_p, int *bit_size_p)
5350 {
5351 int i;
5352
5353 type = ada_check_typedef (type);
5354 *field_type_p = NULL;
5355 *byte_offset_p = *bit_offset_p = *bit_size_p = 0;
5356
5357 for (i = TYPE_NFIELDS (type) - 1; i >= 0; i -= 1)
5358 {
5359 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5360 int fld_offset = offset + bit_pos / 8;
5361 char *t_field_name = TYPE_FIELD_NAME (type, i);
5362
5363 if (t_field_name == NULL)
5364 continue;
5365
5366 else if (field_name_match (t_field_name, name))
5367 {
5368 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5369 *field_type_p = TYPE_FIELD_TYPE (type, i);
5370 *byte_offset_p = fld_offset;
5371 *bit_offset_p = bit_pos % 8;
5372 *bit_size_p = bit_size;
5373 return 1;
5374 }
5375 else if (ada_is_wrapper_field (type, i))
5376 {
5377 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5378 field_type_p, byte_offset_p, bit_offset_p,
5379 bit_size_p))
5380 return 1;
5381 }
5382 else if (ada_is_variant_part (type, i))
5383 {
5384 int j;
5385 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5386
5387 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
5388 {
5389 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5390 fld_offset
5391 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5392 field_type_p, byte_offset_p,
5393 bit_offset_p, bit_size_p))
5394 return 1;
5395 }
5396 }
5397 }
5398 return 0;
5399 }
5400
5401
5402
5403 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5404 and search in it assuming it has (class) type TYPE.
5405 If found, return value, else return NULL.
5406
5407 Searches recursively through wrapper fields (e.g., '_parent'). */
5408
5409 static struct value *
5410 ada_search_struct_field (char *name, struct value *arg, int offset,
5411 struct type *type)
5412 {
5413 int i;
5414 type = ada_check_typedef (type);
5415
5416 for (i = TYPE_NFIELDS (type) - 1; i >= 0; i -= 1)
5417 {
5418 char *t_field_name = TYPE_FIELD_NAME (type, i);
5419
5420 if (t_field_name == NULL)
5421 continue;
5422
5423 else if (field_name_match (t_field_name, name))
5424 return ada_value_primitive_field (arg, offset, i, type);
5425
5426 else if (ada_is_wrapper_field (type, i))
5427 {
5428 struct value *v = /* Do not let indent join lines here. */
5429 ada_search_struct_field (name, arg,
5430 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5431 TYPE_FIELD_TYPE (type, i));
5432 if (v != NULL)
5433 return v;
5434 }
5435
5436 else if (ada_is_variant_part (type, i))
5437 {
5438 int j;
5439 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5440 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5441
5442 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
5443 {
5444 struct value *v = ada_search_struct_field /* Force line break. */
5445 (name, arg,
5446 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5447 TYPE_FIELD_TYPE (field_type, j));
5448 if (v != NULL)
5449 return v;
5450 }
5451 }
5452 }
5453 return NULL;
5454 }
5455
5456 /* Given ARG, a value of type (pointer or reference to a)*
5457 structure/union, extract the component named NAME from the ultimate
5458 target structure/union and return it as a value with its
5459 appropriate type. If ARG is a pointer or reference and the field
5460 is not packed, returns a reference to the field, otherwise the
5461 value of the field (an lvalue if ARG is an lvalue).
5462
5463 The routine searches for NAME among all members of the structure itself
5464 and (recursively) among all members of any wrapper members
5465 (e.g., '_parent').
5466
5467 ERR is a name (for use in error messages) that identifies the class
5468 of entity that ARG is supposed to be. ERR may be null, indicating
5469 that on error, the function simply returns NULL, and does not
5470 throw an error. (FIXME: True only if ARG is a pointer or reference
5471 at the moment). */
5472
5473 struct value *
5474 ada_value_struct_elt (struct value *arg, char *name, char *err)
5475 {
5476 struct type *t, *t1;
5477 struct value *v;
5478
5479 v = NULL;
5480 t1 = t = ada_check_typedef (value_type (arg));
5481 if (TYPE_CODE (t) == TYPE_CODE_REF)
5482 {
5483 t1 = TYPE_TARGET_TYPE (t);
5484 if (t1 == NULL)
5485 {
5486 if (err == NULL)
5487 return NULL;
5488 else
5489 error (_("Bad value type in a %s."), err);
5490 }
5491 t1 = ada_check_typedef (t1);
5492 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5493 {
5494 arg = coerce_ref (arg);
5495 t = t1;
5496 }
5497 }
5498
5499 while (TYPE_CODE (t) == TYPE_CODE_PTR)
5500 {
5501 t1 = TYPE_TARGET_TYPE (t);
5502 if (t1 == NULL)
5503 {
5504 if (err == NULL)
5505 return NULL;
5506 else
5507 error (_("Bad value type in a %s."), err);
5508 }
5509 t1 = ada_check_typedef (t1);
5510 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5511 {
5512 arg = value_ind (arg);
5513 t = t1;
5514 }
5515 else
5516 break;
5517 }
5518
5519 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
5520 {
5521 if (err == NULL)
5522 return NULL;
5523 else
5524 error (_("Attempt to extract a component of a value that is not a %s."),
5525 err);
5526 }
5527
5528 if (t1 == t)
5529 v = ada_search_struct_field (name, arg, 0, t);
5530 else
5531 {
5532 int bit_offset, bit_size, byte_offset;
5533 struct type *field_type;
5534 CORE_ADDR address;
5535
5536 if (TYPE_CODE (t) == TYPE_CODE_PTR)
5537 address = value_as_address (arg);
5538 else
5539 address = unpack_pointer (t, value_contents (arg));
5540
5541 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
5542 if (find_struct_field (name, t1, 0,
5543 &field_type, &byte_offset, &bit_offset,
5544 &bit_size))
5545 {
5546 if (bit_size != 0)
5547 {
5548 if (TYPE_CODE (t) == TYPE_CODE_REF)
5549 arg = ada_coerce_ref (arg);
5550 else
5551 arg = ada_value_ind (arg);
5552 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
5553 bit_offset, bit_size,
5554 field_type);
5555 }
5556 else
5557 v = value_from_pointer (lookup_reference_type (field_type),
5558 address + byte_offset);
5559 }
5560 }
5561
5562 if (v == NULL && err != NULL)
5563 error (_("There is no member named %s."), name);
5564
5565 return v;
5566 }
5567
5568 /* Given a type TYPE, look up the type of the component of type named NAME.
5569 If DISPP is non-null, add its byte displacement from the beginning of a
5570 structure (pointed to by a value) of type TYPE to *DISPP (does not
5571 work for packed fields).
5572
5573 Matches any field whose name has NAME as a prefix, possibly
5574 followed by "___".
5575
5576 TYPE can be either a struct or union. If REFOK, TYPE may also
5577 be a (pointer or reference)+ to a struct or union, and the
5578 ultimate target type will be searched.
5579
5580 Looks recursively into variant clauses and parent types.
5581
5582 If NOERR is nonzero, return NULL if NAME is not suitably defined or
5583 TYPE is not a type of the right kind. */
5584
5585 static struct type *
5586 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
5587 int noerr, int *dispp)
5588 {
5589 int i;
5590
5591 if (name == NULL)
5592 goto BadName;
5593
5594 if (refok && type != NULL)
5595 while (1)
5596 {
5597 type = ada_check_typedef (type);
5598 if (TYPE_CODE (type) != TYPE_CODE_PTR
5599 && TYPE_CODE (type) != TYPE_CODE_REF)
5600 break;
5601 type = TYPE_TARGET_TYPE (type);
5602 }
5603
5604 if (type == NULL
5605 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
5606 && TYPE_CODE (type) != TYPE_CODE_UNION))
5607 {
5608 if (noerr)
5609 return NULL;
5610 else
5611 {
5612 target_terminal_ours ();
5613 gdb_flush (gdb_stdout);
5614 if (type == NULL)
5615 error (_("Type (null) is not a structure or union type"));
5616 else
5617 {
5618 /* XXX: type_sprint */
5619 fprintf_unfiltered (gdb_stderr, _("Type "));
5620 type_print (type, "", gdb_stderr, -1);
5621 error (_(" is not a structure or union type"));
5622 }
5623 }
5624 }
5625
5626 type = to_static_fixed_type (type);
5627
5628 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5629 {
5630 char *t_field_name = TYPE_FIELD_NAME (type, i);
5631 struct type *t;
5632 int disp;
5633
5634 if (t_field_name == NULL)
5635 continue;
5636
5637 else if (field_name_match (t_field_name, name))
5638 {
5639 if (dispp != NULL)
5640 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
5641 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5642 }
5643
5644 else if (ada_is_wrapper_field (type, i))
5645 {
5646 disp = 0;
5647 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
5648 0, 1, &disp);
5649 if (t != NULL)
5650 {
5651 if (dispp != NULL)
5652 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5653 return t;
5654 }
5655 }
5656
5657 else if (ada_is_variant_part (type, i))
5658 {
5659 int j;
5660 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5661
5662 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
5663 {
5664 disp = 0;
5665 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
5666 name, 0, 1, &disp);
5667 if (t != NULL)
5668 {
5669 if (dispp != NULL)
5670 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5671 return t;
5672 }
5673 }
5674 }
5675
5676 }
5677
5678 BadName:
5679 if (!noerr)
5680 {
5681 target_terminal_ours ();
5682 gdb_flush (gdb_stdout);
5683 if (name == NULL)
5684 {
5685 /* XXX: type_sprint */
5686 fprintf_unfiltered (gdb_stderr, _("Type "));
5687 type_print (type, "", gdb_stderr, -1);
5688 error (_(" has no component named <null>"));
5689 }
5690 else
5691 {
5692 /* XXX: type_sprint */
5693 fprintf_unfiltered (gdb_stderr, _("Type "));
5694 type_print (type, "", gdb_stderr, -1);
5695 error (_(" has no component named %s"), name);
5696 }
5697 }
5698
5699 return NULL;
5700 }
5701
5702 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
5703 within a value of type OUTER_TYPE that is stored in GDB at
5704 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
5705 numbering from 0) is applicable. Returns -1 if none are. */
5706
5707 int
5708 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
5709 const gdb_byte *outer_valaddr)
5710 {
5711 int others_clause;
5712 int i;
5713 int disp;
5714 struct type *discrim_type;
5715 char *discrim_name = ada_variant_discrim_name (var_type);
5716 LONGEST discrim_val;
5717
5718 disp = 0;
5719 discrim_type =
5720 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
5721 if (discrim_type == NULL)
5722 return -1;
5723 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
5724
5725 others_clause = -1;
5726 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
5727 {
5728 if (ada_is_others_clause (var_type, i))
5729 others_clause = i;
5730 else if (ada_in_variant (discrim_val, var_type, i))
5731 return i;
5732 }
5733
5734 return others_clause;
5735 }
5736 \f
5737
5738
5739 /* Dynamic-Sized Records */
5740
5741 /* Strategy: The type ostensibly attached to a value with dynamic size
5742 (i.e., a size that is not statically recorded in the debugging
5743 data) does not accurately reflect the size or layout of the value.
5744 Our strategy is to convert these values to values with accurate,
5745 conventional types that are constructed on the fly. */
5746
5747 /* There is a subtle and tricky problem here. In general, we cannot
5748 determine the size of dynamic records without its data. However,
5749 the 'struct value' data structure, which GDB uses to represent
5750 quantities in the inferior process (the target), requires the size
5751 of the type at the time of its allocation in order to reserve space
5752 for GDB's internal copy of the data. That's why the
5753 'to_fixed_xxx_type' routines take (target) addresses as parameters,
5754 rather than struct value*s.
5755
5756 However, GDB's internal history variables ($1, $2, etc.) are
5757 struct value*s containing internal copies of the data that are not, in
5758 general, the same as the data at their corresponding addresses in
5759 the target. Fortunately, the types we give to these values are all
5760 conventional, fixed-size types (as per the strategy described
5761 above), so that we don't usually have to perform the
5762 'to_fixed_xxx_type' conversions to look at their values.
5763 Unfortunately, there is one exception: if one of the internal
5764 history variables is an array whose elements are unconstrained
5765 records, then we will need to create distinct fixed types for each
5766 element selected. */
5767
5768 /* The upshot of all of this is that many routines take a (type, host
5769 address, target address) triple as arguments to represent a value.
5770 The host address, if non-null, is supposed to contain an internal
5771 copy of the relevant data; otherwise, the program is to consult the
5772 target at the target address. */
5773
5774 /* Assuming that VAL0 represents a pointer value, the result of
5775 dereferencing it. Differs from value_ind in its treatment of
5776 dynamic-sized types. */
5777
5778 struct value *
5779 ada_value_ind (struct value *val0)
5780 {
5781 struct value *val = unwrap_value (value_ind (val0));
5782 return ada_to_fixed_value (val);
5783 }
5784
5785 /* The value resulting from dereferencing any "reference to"
5786 qualifiers on VAL0. */
5787
5788 static struct value *
5789 ada_coerce_ref (struct value *val0)
5790 {
5791 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
5792 {
5793 struct value *val = val0;
5794 val = coerce_ref (val);
5795 val = unwrap_value (val);
5796 return ada_to_fixed_value (val);
5797 }
5798 else
5799 return val0;
5800 }
5801
5802 /* Return OFF rounded upward if necessary to a multiple of
5803 ALIGNMENT (a power of 2). */
5804
5805 static unsigned int
5806 align_value (unsigned int off, unsigned int alignment)
5807 {
5808 return (off + alignment - 1) & ~(alignment - 1);
5809 }
5810
5811 /* Return the bit alignment required for field #F of template type TYPE. */
5812
5813 static unsigned int
5814 field_alignment (struct type *type, int f)
5815 {
5816 const char *name = TYPE_FIELD_NAME (type, f);
5817 int len = (name == NULL) ? 0 : strlen (name);
5818 int align_offset;
5819
5820 if (!isdigit (name[len - 1]))
5821 return 1;
5822
5823 if (isdigit (name[len - 2]))
5824 align_offset = len - 2;
5825 else
5826 align_offset = len - 1;
5827
5828 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
5829 return TARGET_CHAR_BIT;
5830
5831 return atoi (name + align_offset) * TARGET_CHAR_BIT;
5832 }
5833
5834 /* Find a symbol named NAME. Ignores ambiguity. */
5835
5836 struct symbol *
5837 ada_find_any_symbol (const char *name)
5838 {
5839 struct symbol *sym;
5840
5841 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
5842 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5843 return sym;
5844
5845 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
5846 return sym;
5847 }
5848
5849 /* Find a type named NAME. Ignores ambiguity. */
5850
5851 struct type *
5852 ada_find_any_type (const char *name)
5853 {
5854 struct symbol *sym = ada_find_any_symbol (name);
5855
5856 if (sym != NULL)
5857 return SYMBOL_TYPE (sym);
5858
5859 return NULL;
5860 }
5861
5862 /* Given a symbol NAME and its associated BLOCK, search all symbols
5863 for its ___XR counterpart, which is the ``renaming'' symbol
5864 associated to NAME. Return this symbol if found, return
5865 NULL otherwise. */
5866
5867 struct symbol *
5868 ada_find_renaming_symbol (const char *name, struct block *block)
5869 {
5870 const struct symbol *function_sym = block_function (block);
5871 char *rename;
5872
5873 if (function_sym != NULL)
5874 {
5875 /* If the symbol is defined inside a function, NAME is not fully
5876 qualified. This means we need to prepend the function name
5877 as well as adding the ``___XR'' suffix to build the name of
5878 the associated renaming symbol. */
5879 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
5880 const int function_name_len = strlen (function_name);
5881 const int rename_len = function_name_len + 2 /* "__" */
5882 + strlen (name) + 6 /* "___XR\0" */ ;
5883
5884 /* Library-level functions are a special case, as GNAT adds
5885 a ``_ada_'' prefix to the function name to avoid namespace
5886 pollution. However, the renaming symbol themselves do not
5887 have this prefix, so we need to skip this prefix if present. */
5888 if (function_name_len > 5 /* "_ada_" */
5889 && strstr (function_name, "_ada_") == function_name)
5890 function_name = function_name + 5;
5891
5892 rename = (char *) alloca (rename_len * sizeof (char));
5893 sprintf (rename, "%s__%s___XR", function_name, name);
5894 }
5895 else
5896 {
5897 const int rename_len = strlen (name) + 6;
5898 rename = (char *) alloca (rename_len * sizeof (char));
5899 sprintf (rename, "%s___XR", name);
5900 }
5901
5902 return ada_find_any_symbol (rename);
5903 }
5904
5905 /* Because of GNAT encoding conventions, several GDB symbols may match a
5906 given type name. If the type denoted by TYPE0 is to be preferred to
5907 that of TYPE1 for purposes of type printing, return non-zero;
5908 otherwise return 0. */
5909
5910 int
5911 ada_prefer_type (struct type *type0, struct type *type1)
5912 {
5913 if (type1 == NULL)
5914 return 1;
5915 else if (type0 == NULL)
5916 return 0;
5917 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
5918 return 1;
5919 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
5920 return 0;
5921 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
5922 return 1;
5923 else if (ada_is_packed_array_type (type0))
5924 return 1;
5925 else if (ada_is_array_descriptor_type (type0)
5926 && !ada_is_array_descriptor_type (type1))
5927 return 1;
5928 else if (ada_renaming_type (type0) != NULL
5929 && ada_renaming_type (type1) == NULL)
5930 return 1;
5931 return 0;
5932 }
5933
5934 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
5935 null, its TYPE_TAG_NAME. Null if TYPE is null. */
5936
5937 char *
5938 ada_type_name (struct type *type)
5939 {
5940 if (type == NULL)
5941 return NULL;
5942 else if (TYPE_NAME (type) != NULL)
5943 return TYPE_NAME (type);
5944 else
5945 return TYPE_TAG_NAME (type);
5946 }
5947
5948 /* Find a parallel type to TYPE whose name is formed by appending
5949 SUFFIX to the name of TYPE. */
5950
5951 struct type *
5952 ada_find_parallel_type (struct type *type, const char *suffix)
5953 {
5954 static char *name;
5955 static size_t name_len = 0;
5956 int len;
5957 char *typename = ada_type_name (type);
5958
5959 if (typename == NULL)
5960 return NULL;
5961
5962 len = strlen (typename);
5963
5964 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
5965
5966 strcpy (name, typename);
5967 strcpy (name + len, suffix);
5968
5969 return ada_find_any_type (name);
5970 }
5971
5972
5973 /* If TYPE is a variable-size record type, return the corresponding template
5974 type describing its fields. Otherwise, return NULL. */
5975
5976 static struct type *
5977 dynamic_template_type (struct type *type)
5978 {
5979 type = ada_check_typedef (type);
5980
5981 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
5982 || ada_type_name (type) == NULL)
5983 return NULL;
5984 else
5985 {
5986 int len = strlen (ada_type_name (type));
5987 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
5988 return type;
5989 else
5990 return ada_find_parallel_type (type, "___XVE");
5991 }
5992 }
5993
5994 /* Assuming that TEMPL_TYPE is a union or struct type, returns
5995 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
5996
5997 static int
5998 is_dynamic_field (struct type *templ_type, int field_num)
5999 {
6000 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6001 return name != NULL
6002 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6003 && strstr (name, "___XVL") != NULL;
6004 }
6005
6006 /* The index of the variant field of TYPE, or -1 if TYPE does not
6007 represent a variant record type. */
6008
6009 static int
6010 variant_field_index (struct type *type)
6011 {
6012 int f;
6013
6014 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6015 return -1;
6016
6017 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6018 {
6019 if (ada_is_variant_part (type, f))
6020 return f;
6021 }
6022 return -1;
6023 }
6024
6025 /* A record type with no fields. */
6026
6027 static struct type *
6028 empty_record (struct objfile *objfile)
6029 {
6030 struct type *type = alloc_type (objfile);
6031 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6032 TYPE_NFIELDS (type) = 0;
6033 TYPE_FIELDS (type) = NULL;
6034 TYPE_NAME (type) = "<empty>";
6035 TYPE_TAG_NAME (type) = NULL;
6036 TYPE_FLAGS (type) = 0;
6037 TYPE_LENGTH (type) = 0;
6038 return type;
6039 }
6040
6041 /* An ordinary record type (with fixed-length fields) that describes
6042 the value of type TYPE at VALADDR or ADDRESS (see comments at
6043 the beginning of this section) VAL according to GNAT conventions.
6044 DVAL0 should describe the (portion of a) record that contains any
6045 necessary discriminants. It should be NULL if value_type (VAL) is
6046 an outer-level type (i.e., as opposed to a branch of a variant.) A
6047 variant field (unless unchecked) is replaced by a particular branch
6048 of the variant.
6049
6050 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6051 length are not statically known are discarded. As a consequence,
6052 VALADDR, ADDRESS and DVAL0 are ignored.
6053
6054 NOTE: Limitations: For now, we assume that dynamic fields and
6055 variants occupy whole numbers of bytes. However, they need not be
6056 byte-aligned. */
6057
6058 struct type *
6059 ada_template_to_fixed_record_type_1 (struct type *type,
6060 const gdb_byte *valaddr,
6061 CORE_ADDR address, struct value *dval0,
6062 int keep_dynamic_fields)
6063 {
6064 struct value *mark = value_mark ();
6065 struct value *dval;
6066 struct type *rtype;
6067 int nfields, bit_len;
6068 int variant_field;
6069 long off;
6070 int fld_bit_len, bit_incr;
6071 int f;
6072
6073 /* Compute the number of fields in this record type that are going
6074 to be processed: unless keep_dynamic_fields, this includes only
6075 fields whose position and length are static will be processed. */
6076 if (keep_dynamic_fields)
6077 nfields = TYPE_NFIELDS (type);
6078 else
6079 {
6080 nfields = 0;
6081 while (nfields < TYPE_NFIELDS (type)
6082 && !ada_is_variant_part (type, nfields)
6083 && !is_dynamic_field (type, nfields))
6084 nfields++;
6085 }
6086
6087 rtype = alloc_type (TYPE_OBJFILE (type));
6088 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6089 INIT_CPLUS_SPECIFIC (rtype);
6090 TYPE_NFIELDS (rtype) = nfields;
6091 TYPE_FIELDS (rtype) = (struct field *)
6092 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6093 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6094 TYPE_NAME (rtype) = ada_type_name (type);
6095 TYPE_TAG_NAME (rtype) = NULL;
6096 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6097
6098 off = 0;
6099 bit_len = 0;
6100 variant_field = -1;
6101
6102 for (f = 0; f < nfields; f += 1)
6103 {
6104 off = align_value (off, field_alignment (type, f))
6105 + TYPE_FIELD_BITPOS (type, f);
6106 TYPE_FIELD_BITPOS (rtype, f) = off;
6107 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6108
6109 if (ada_is_variant_part (type, f))
6110 {
6111 variant_field = f;
6112 fld_bit_len = bit_incr = 0;
6113 }
6114 else if (is_dynamic_field (type, f))
6115 {
6116 if (dval0 == NULL)
6117 dval = value_from_contents_and_address (rtype, valaddr, address);
6118 else
6119 dval = dval0;
6120
6121 TYPE_FIELD_TYPE (rtype, f) =
6122 ada_to_fixed_type
6123 (ada_get_base_type
6124 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6125 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6126 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6127 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6128 bit_incr = fld_bit_len =
6129 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6130 }
6131 else
6132 {
6133 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6134 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6135 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6136 bit_incr = fld_bit_len =
6137 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6138 else
6139 bit_incr = fld_bit_len =
6140 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6141 }
6142 if (off + fld_bit_len > bit_len)
6143 bit_len = off + fld_bit_len;
6144 off += bit_incr;
6145 TYPE_LENGTH (rtype) =
6146 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6147 }
6148
6149 /* We handle the variant part, if any, at the end because of certain
6150 odd cases in which it is re-ordered so as NOT the last field of
6151 the record. This can happen in the presence of representation
6152 clauses. */
6153 if (variant_field >= 0)
6154 {
6155 struct type *branch_type;
6156
6157 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6158
6159 if (dval0 == NULL)
6160 dval = value_from_contents_and_address (rtype, valaddr, address);
6161 else
6162 dval = dval0;
6163
6164 branch_type =
6165 to_fixed_variant_branch_type
6166 (TYPE_FIELD_TYPE (type, variant_field),
6167 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6168 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6169 if (branch_type == NULL)
6170 {
6171 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6172 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6173 TYPE_NFIELDS (rtype) -= 1;
6174 }
6175 else
6176 {
6177 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6178 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6179 fld_bit_len =
6180 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6181 TARGET_CHAR_BIT;
6182 if (off + fld_bit_len > bit_len)
6183 bit_len = off + fld_bit_len;
6184 TYPE_LENGTH (rtype) =
6185 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6186 }
6187 }
6188
6189 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6190 should contain the alignment of that record, which should be a strictly
6191 positive value. If null or negative, then something is wrong, most
6192 probably in the debug info. In that case, we don't round up the size
6193 of the resulting type. If this record is not part of another structure,
6194 the current RTYPE length might be good enough for our purposes. */
6195 if (TYPE_LENGTH (type) <= 0)
6196 {
6197 if (TYPE_NAME (rtype))
6198 warning (_("Invalid type size for `%s' detected: %d."),
6199 TYPE_NAME (rtype), TYPE_LENGTH (type));
6200 else
6201 warning (_("Invalid type size for <unnamed> detected: %d."),
6202 TYPE_LENGTH (type));
6203 }
6204 else
6205 {
6206 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6207 TYPE_LENGTH (type));
6208 }
6209
6210 value_free_to_mark (mark);
6211 if (TYPE_LENGTH (rtype) > varsize_limit)
6212 error (_("record type with dynamic size is larger than varsize-limit"));
6213 return rtype;
6214 }
6215
6216 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6217 of 1. */
6218
6219 static struct type *
6220 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6221 CORE_ADDR address, struct value *dval0)
6222 {
6223 return ada_template_to_fixed_record_type_1 (type, valaddr,
6224 address, dval0, 1);
6225 }
6226
6227 /* An ordinary record type in which ___XVL-convention fields and
6228 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6229 static approximations, containing all possible fields. Uses
6230 no runtime values. Useless for use in values, but that's OK,
6231 since the results are used only for type determinations. Works on both
6232 structs and unions. Representation note: to save space, we memorize
6233 the result of this function in the TYPE_TARGET_TYPE of the
6234 template type. */
6235
6236 static struct type *
6237 template_to_static_fixed_type (struct type *type0)
6238 {
6239 struct type *type;
6240 int nfields;
6241 int f;
6242
6243 if (TYPE_TARGET_TYPE (type0) != NULL)
6244 return TYPE_TARGET_TYPE (type0);
6245
6246 nfields = TYPE_NFIELDS (type0);
6247 type = type0;
6248
6249 for (f = 0; f < nfields; f += 1)
6250 {
6251 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6252 struct type *new_type;
6253
6254 if (is_dynamic_field (type0, f))
6255 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6256 else
6257 new_type = to_static_fixed_type (field_type);
6258 if (type == type0 && new_type != field_type)
6259 {
6260 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6261 TYPE_CODE (type) = TYPE_CODE (type0);
6262 INIT_CPLUS_SPECIFIC (type);
6263 TYPE_NFIELDS (type) = nfields;
6264 TYPE_FIELDS (type) = (struct field *)
6265 TYPE_ALLOC (type, nfields * sizeof (struct field));
6266 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6267 sizeof (struct field) * nfields);
6268 TYPE_NAME (type) = ada_type_name (type0);
6269 TYPE_TAG_NAME (type) = NULL;
6270 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6271 TYPE_LENGTH (type) = 0;
6272 }
6273 TYPE_FIELD_TYPE (type, f) = new_type;
6274 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6275 }
6276 return type;
6277 }
6278
6279 /* Given an object of type TYPE whose contents are at VALADDR and
6280 whose address in memory is ADDRESS, returns a revision of TYPE --
6281 a non-dynamic-sized record with a variant part -- in which
6282 the variant part is replaced with the appropriate branch. Looks
6283 for discriminant values in DVAL0, which can be NULL if the record
6284 contains the necessary discriminant values. */
6285
6286 static struct type *
6287 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6288 CORE_ADDR address, struct value *dval0)
6289 {
6290 struct value *mark = value_mark ();
6291 struct value *dval;
6292 struct type *rtype;
6293 struct type *branch_type;
6294 int nfields = TYPE_NFIELDS (type);
6295 int variant_field = variant_field_index (type);
6296
6297 if (variant_field == -1)
6298 return type;
6299
6300 if (dval0 == NULL)
6301 dval = value_from_contents_and_address (type, valaddr, address);
6302 else
6303 dval = dval0;
6304
6305 rtype = alloc_type (TYPE_OBJFILE (type));
6306 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6307 INIT_CPLUS_SPECIFIC (rtype);
6308 TYPE_NFIELDS (rtype) = nfields;
6309 TYPE_FIELDS (rtype) =
6310 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6311 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6312 sizeof (struct field) * nfields);
6313 TYPE_NAME (rtype) = ada_type_name (type);
6314 TYPE_TAG_NAME (rtype) = NULL;
6315 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6316 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6317
6318 branch_type = to_fixed_variant_branch_type
6319 (TYPE_FIELD_TYPE (type, variant_field),
6320 cond_offset_host (valaddr,
6321 TYPE_FIELD_BITPOS (type, variant_field)
6322 / TARGET_CHAR_BIT),
6323 cond_offset_target (address,
6324 TYPE_FIELD_BITPOS (type, variant_field)
6325 / TARGET_CHAR_BIT), dval);
6326 if (branch_type == NULL)
6327 {
6328 int f;
6329 for (f = variant_field + 1; f < nfields; f += 1)
6330 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6331 TYPE_NFIELDS (rtype) -= 1;
6332 }
6333 else
6334 {
6335 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6336 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6337 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6338 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6339 }
6340 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6341
6342 value_free_to_mark (mark);
6343 return rtype;
6344 }
6345
6346 /* An ordinary record type (with fixed-length fields) that describes
6347 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6348 beginning of this section]. Any necessary discriminants' values
6349 should be in DVAL, a record value; it may be NULL if the object
6350 at ADDR itself contains any necessary discriminant values.
6351 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6352 values from the record are needed. Except in the case that DVAL,
6353 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6354 unchecked) is replaced by a particular branch of the variant.
6355
6356 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6357 is questionable and may be removed. It can arise during the
6358 processing of an unconstrained-array-of-record type where all the
6359 variant branches have exactly the same size. This is because in
6360 such cases, the compiler does not bother to use the XVS convention
6361 when encoding the record. I am currently dubious of this
6362 shortcut and suspect the compiler should be altered. FIXME. */
6363
6364 static struct type *
6365 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6366 CORE_ADDR address, struct value *dval)
6367 {
6368 struct type *templ_type;
6369
6370 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6371 return type0;
6372
6373 templ_type = dynamic_template_type (type0);
6374
6375 if (templ_type != NULL)
6376 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6377 else if (variant_field_index (type0) >= 0)
6378 {
6379 if (dval == NULL && valaddr == NULL && address == 0)
6380 return type0;
6381 return to_record_with_fixed_variant_part (type0, valaddr, address,
6382 dval);
6383 }
6384 else
6385 {
6386 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6387 return type0;
6388 }
6389
6390 }
6391
6392 /* An ordinary record type (with fixed-length fields) that describes
6393 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6394 union type. Any necessary discriminants' values should be in DVAL,
6395 a record value. That is, this routine selects the appropriate
6396 branch of the union at ADDR according to the discriminant value
6397 indicated in the union's type name. */
6398
6399 static struct type *
6400 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
6401 CORE_ADDR address, struct value *dval)
6402 {
6403 int which;
6404 struct type *templ_type;
6405 struct type *var_type;
6406
6407 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
6408 var_type = TYPE_TARGET_TYPE (var_type0);
6409 else
6410 var_type = var_type0;
6411
6412 templ_type = ada_find_parallel_type (var_type, "___XVU");
6413
6414 if (templ_type != NULL)
6415 var_type = templ_type;
6416
6417 which =
6418 ada_which_variant_applies (var_type,
6419 value_type (dval), value_contents (dval));
6420
6421 if (which < 0)
6422 return empty_record (TYPE_OBJFILE (var_type));
6423 else if (is_dynamic_field (var_type, which))
6424 return to_fixed_record_type
6425 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
6426 valaddr, address, dval);
6427 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
6428 return
6429 to_fixed_record_type
6430 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
6431 else
6432 return TYPE_FIELD_TYPE (var_type, which);
6433 }
6434
6435 /* Assuming that TYPE0 is an array type describing the type of a value
6436 at ADDR, and that DVAL describes a record containing any
6437 discriminants used in TYPE0, returns a type for the value that
6438 contains no dynamic components (that is, no components whose sizes
6439 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6440 true, gives an error message if the resulting type's size is over
6441 varsize_limit. */
6442
6443 static struct type *
6444 to_fixed_array_type (struct type *type0, struct value *dval,
6445 int ignore_too_big)
6446 {
6447 struct type *index_type_desc;
6448 struct type *result;
6449
6450 if (ada_is_packed_array_type (type0) /* revisit? */
6451 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
6452 return type0;
6453
6454 index_type_desc = ada_find_parallel_type (type0, "___XA");
6455 if (index_type_desc == NULL)
6456 {
6457 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
6458 /* NOTE: elt_type---the fixed version of elt_type0---should never
6459 depend on the contents of the array in properly constructed
6460 debugging data. */
6461 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
6462
6463 if (elt_type0 == elt_type)
6464 result = type0;
6465 else
6466 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6467 elt_type, TYPE_INDEX_TYPE (type0));
6468 }
6469 else
6470 {
6471 int i;
6472 struct type *elt_type0;
6473
6474 elt_type0 = type0;
6475 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
6476 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
6477
6478 /* NOTE: result---the fixed version of elt_type0---should never
6479 depend on the contents of the array in properly constructed
6480 debugging data. */
6481 result = ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval);
6482 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
6483 {
6484 struct type *range_type =
6485 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
6486 dval, TYPE_OBJFILE (type0));
6487 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6488 result, range_type);
6489 }
6490 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
6491 error (_("array type with dynamic size is larger than varsize-limit"));
6492 }
6493
6494 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
6495 return result;
6496 }
6497
6498
6499 /* A standard type (containing no dynamically sized components)
6500 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
6501 DVAL describes a record containing any discriminants used in TYPE0,
6502 and may be NULL if there are none, or if the object of type TYPE at
6503 ADDRESS or in VALADDR contains these discriminants. */
6504
6505 struct type *
6506 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
6507 CORE_ADDR address, struct value *dval)
6508 {
6509 type = ada_check_typedef (type);
6510 switch (TYPE_CODE (type))
6511 {
6512 default:
6513 return type;
6514 case TYPE_CODE_STRUCT:
6515 {
6516 struct type *static_type = to_static_fixed_type (type);
6517 if (ada_is_tagged_type (static_type, 0))
6518 {
6519 struct type *real_type =
6520 type_from_tag (value_tag_from_contents_and_address (static_type,
6521 valaddr,
6522 address));
6523 if (real_type != NULL)
6524 type = real_type;
6525 }
6526 return to_fixed_record_type (type, valaddr, address, NULL);
6527 }
6528 case TYPE_CODE_ARRAY:
6529 return to_fixed_array_type (type, dval, 1);
6530 case TYPE_CODE_UNION:
6531 if (dval == NULL)
6532 return type;
6533 else
6534 return to_fixed_variant_branch_type (type, valaddr, address, dval);
6535 }
6536 }
6537
6538 /* A standard (static-sized) type corresponding as well as possible to
6539 TYPE0, but based on no runtime data. */
6540
6541 static struct type *
6542 to_static_fixed_type (struct type *type0)
6543 {
6544 struct type *type;
6545
6546 if (type0 == NULL)
6547 return NULL;
6548
6549 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6550 return type0;
6551
6552 type0 = ada_check_typedef (type0);
6553
6554 switch (TYPE_CODE (type0))
6555 {
6556 default:
6557 return type0;
6558 case TYPE_CODE_STRUCT:
6559 type = dynamic_template_type (type0);
6560 if (type != NULL)
6561 return template_to_static_fixed_type (type);
6562 else
6563 return template_to_static_fixed_type (type0);
6564 case TYPE_CODE_UNION:
6565 type = ada_find_parallel_type (type0, "___XVU");
6566 if (type != NULL)
6567 return template_to_static_fixed_type (type);
6568 else
6569 return template_to_static_fixed_type (type0);
6570 }
6571 }
6572
6573 /* A static approximation of TYPE with all type wrappers removed. */
6574
6575 static struct type *
6576 static_unwrap_type (struct type *type)
6577 {
6578 if (ada_is_aligner_type (type))
6579 {
6580 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
6581 if (ada_type_name (type1) == NULL)
6582 TYPE_NAME (type1) = ada_type_name (type);
6583
6584 return static_unwrap_type (type1);
6585 }
6586 else
6587 {
6588 struct type *raw_real_type = ada_get_base_type (type);
6589 if (raw_real_type == type)
6590 return type;
6591 else
6592 return to_static_fixed_type (raw_real_type);
6593 }
6594 }
6595
6596 /* In some cases, incomplete and private types require
6597 cross-references that are not resolved as records (for example,
6598 type Foo;
6599 type FooP is access Foo;
6600 V: FooP;
6601 type Foo is array ...;
6602 ). In these cases, since there is no mechanism for producing
6603 cross-references to such types, we instead substitute for FooP a
6604 stub enumeration type that is nowhere resolved, and whose tag is
6605 the name of the actual type. Call these types "non-record stubs". */
6606
6607 /* A type equivalent to TYPE that is not a non-record stub, if one
6608 exists, otherwise TYPE. */
6609
6610 struct type *
6611 ada_check_typedef (struct type *type)
6612 {
6613 CHECK_TYPEDEF (type);
6614 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
6615 || (TYPE_FLAGS (type) & TYPE_FLAG_STUB) == 0
6616 || TYPE_TAG_NAME (type) == NULL)
6617 return type;
6618 else
6619 {
6620 char *name = TYPE_TAG_NAME (type);
6621 struct type *type1 = ada_find_any_type (name);
6622 return (type1 == NULL) ? type : type1;
6623 }
6624 }
6625
6626 /* A value representing the data at VALADDR/ADDRESS as described by
6627 type TYPE0, but with a standard (static-sized) type that correctly
6628 describes it. If VAL0 is not NULL and TYPE0 already is a standard
6629 type, then return VAL0 [this feature is simply to avoid redundant
6630 creation of struct values]. */
6631
6632 static struct value *
6633 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
6634 struct value *val0)
6635 {
6636 struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
6637 if (type == type0 && val0 != NULL)
6638 return val0;
6639 else
6640 return value_from_contents_and_address (type, 0, address);
6641 }
6642
6643 /* A value representing VAL, but with a standard (static-sized) type
6644 that correctly describes it. Does not necessarily create a new
6645 value. */
6646
6647 static struct value *
6648 ada_to_fixed_value (struct value *val)
6649 {
6650 return ada_to_fixed_value_create (value_type (val),
6651 VALUE_ADDRESS (val) + value_offset (val),
6652 val);
6653 }
6654
6655 /* A value representing VAL, but with a standard (static-sized) type
6656 chosen to approximate the real type of VAL as well as possible, but
6657 without consulting any runtime values. For Ada dynamic-sized
6658 types, therefore, the type of the result is likely to be inaccurate. */
6659
6660 struct value *
6661 ada_to_static_fixed_value (struct value *val)
6662 {
6663 struct type *type =
6664 to_static_fixed_type (static_unwrap_type (value_type (val)));
6665 if (type == value_type (val))
6666 return val;
6667 else
6668 return coerce_unspec_val_to_type (val, type);
6669 }
6670 \f
6671
6672 /* Attributes */
6673
6674 /* Table mapping attribute numbers to names.
6675 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
6676
6677 static const char *attribute_names[] = {
6678 "<?>",
6679
6680 "first",
6681 "last",
6682 "length",
6683 "image",
6684 "max",
6685 "min",
6686 "modulus",
6687 "pos",
6688 "size",
6689 "tag",
6690 "val",
6691 0
6692 };
6693
6694 const char *
6695 ada_attribute_name (enum exp_opcode n)
6696 {
6697 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
6698 return attribute_names[n - OP_ATR_FIRST + 1];
6699 else
6700 return attribute_names[0];
6701 }
6702
6703 /* Evaluate the 'POS attribute applied to ARG. */
6704
6705 static LONGEST
6706 pos_atr (struct value *arg)
6707 {
6708 struct type *type = value_type (arg);
6709
6710 if (!discrete_type_p (type))
6711 error (_("'POS only defined on discrete types"));
6712
6713 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
6714 {
6715 int i;
6716 LONGEST v = value_as_long (arg);
6717
6718 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6719 {
6720 if (v == TYPE_FIELD_BITPOS (type, i))
6721 return i;
6722 }
6723 error (_("enumeration value is invalid: can't find 'POS"));
6724 }
6725 else
6726 return value_as_long (arg);
6727 }
6728
6729 static struct value *
6730 value_pos_atr (struct value *arg)
6731 {
6732 return value_from_longest (builtin_type_int, pos_atr (arg));
6733 }
6734
6735 /* Evaluate the TYPE'VAL attribute applied to ARG. */
6736
6737 static struct value *
6738 value_val_atr (struct type *type, struct value *arg)
6739 {
6740 if (!discrete_type_p (type))
6741 error (_("'VAL only defined on discrete types"));
6742 if (!integer_type_p (value_type (arg)))
6743 error (_("'VAL requires integral argument"));
6744
6745 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
6746 {
6747 long pos = value_as_long (arg);
6748 if (pos < 0 || pos >= TYPE_NFIELDS (type))
6749 error (_("argument to 'VAL out of range"));
6750 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
6751 }
6752 else
6753 return value_from_longest (type, value_as_long (arg));
6754 }
6755 \f
6756
6757 /* Evaluation */
6758
6759 /* True if TYPE appears to be an Ada character type.
6760 [At the moment, this is true only for Character and Wide_Character;
6761 It is a heuristic test that could stand improvement]. */
6762
6763 int
6764 ada_is_character_type (struct type *type)
6765 {
6766 const char *name = ada_type_name (type);
6767 return
6768 name != NULL
6769 && (TYPE_CODE (type) == TYPE_CODE_CHAR
6770 || TYPE_CODE (type) == TYPE_CODE_INT
6771 || TYPE_CODE (type) == TYPE_CODE_RANGE)
6772 && (strcmp (name, "character") == 0
6773 || strcmp (name, "wide_character") == 0
6774 || strcmp (name, "unsigned char") == 0);
6775 }
6776
6777 /* True if TYPE appears to be an Ada string type. */
6778
6779 int
6780 ada_is_string_type (struct type *type)
6781 {
6782 type = ada_check_typedef (type);
6783 if (type != NULL
6784 && TYPE_CODE (type) != TYPE_CODE_PTR
6785 && (ada_is_simple_array_type (type)
6786 || ada_is_array_descriptor_type (type))
6787 && ada_array_arity (type) == 1)
6788 {
6789 struct type *elttype = ada_array_element_type (type, 1);
6790
6791 return ada_is_character_type (elttype);
6792 }
6793 else
6794 return 0;
6795 }
6796
6797
6798 /* True if TYPE is a struct type introduced by the compiler to force the
6799 alignment of a value. Such types have a single field with a
6800 distinctive name. */
6801
6802 int
6803 ada_is_aligner_type (struct type *type)
6804 {
6805 type = ada_check_typedef (type);
6806
6807 /* If we can find a parallel XVS type, then the XVS type should
6808 be used instead of this type. And hence, this is not an aligner
6809 type. */
6810 if (ada_find_parallel_type (type, "___XVS") != NULL)
6811 return 0;
6812
6813 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
6814 && TYPE_NFIELDS (type) == 1
6815 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
6816 }
6817
6818 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
6819 the parallel type. */
6820
6821 struct type *
6822 ada_get_base_type (struct type *raw_type)
6823 {
6824 struct type *real_type_namer;
6825 struct type *raw_real_type;
6826
6827 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
6828 return raw_type;
6829
6830 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
6831 if (real_type_namer == NULL
6832 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
6833 || TYPE_NFIELDS (real_type_namer) != 1)
6834 return raw_type;
6835
6836 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
6837 if (raw_real_type == NULL)
6838 return raw_type;
6839 else
6840 return raw_real_type;
6841 }
6842
6843 /* The type of value designated by TYPE, with all aligners removed. */
6844
6845 struct type *
6846 ada_aligned_type (struct type *type)
6847 {
6848 if (ada_is_aligner_type (type))
6849 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
6850 else
6851 return ada_get_base_type (type);
6852 }
6853
6854
6855 /* The address of the aligned value in an object at address VALADDR
6856 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
6857
6858 const gdb_byte *
6859 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
6860 {
6861 if (ada_is_aligner_type (type))
6862 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
6863 valaddr +
6864 TYPE_FIELD_BITPOS (type,
6865 0) / TARGET_CHAR_BIT);
6866 else
6867 return valaddr;
6868 }
6869
6870
6871
6872 /* The printed representation of an enumeration literal with encoded
6873 name NAME. The value is good to the next call of ada_enum_name. */
6874 const char *
6875 ada_enum_name (const char *name)
6876 {
6877 static char *result;
6878 static size_t result_len = 0;
6879 char *tmp;
6880
6881 /* First, unqualify the enumeration name:
6882 1. Search for the last '.' character. If we find one, then skip
6883 all the preceeding characters, the unqualified name starts
6884 right after that dot.
6885 2. Otherwise, we may be debugging on a target where the compiler
6886 translates dots into "__". Search forward for double underscores,
6887 but stop searching when we hit an overloading suffix, which is
6888 of the form "__" followed by digits. */
6889
6890 tmp = strrchr (name, '.');
6891 if (tmp != NULL)
6892 name = tmp + 1;
6893 else
6894 {
6895 while ((tmp = strstr (name, "__")) != NULL)
6896 {
6897 if (isdigit (tmp[2]))
6898 break;
6899 else
6900 name = tmp + 2;
6901 }
6902 }
6903
6904 if (name[0] == 'Q')
6905 {
6906 int v;
6907 if (name[1] == 'U' || name[1] == 'W')
6908 {
6909 if (sscanf (name + 2, "%x", &v) != 1)
6910 return name;
6911 }
6912 else
6913 return name;
6914
6915 GROW_VECT (result, result_len, 16);
6916 if (isascii (v) && isprint (v))
6917 sprintf (result, "'%c'", v);
6918 else if (name[1] == 'U')
6919 sprintf (result, "[\"%02x\"]", v);
6920 else
6921 sprintf (result, "[\"%04x\"]", v);
6922
6923 return result;
6924 }
6925 else
6926 {
6927 tmp = strstr (name, "__");
6928 if (tmp == NULL)
6929 tmp = strstr (name, "$");
6930 if (tmp != NULL)
6931 {
6932 GROW_VECT (result, result_len, tmp - name + 1);
6933 strncpy (result, name, tmp - name);
6934 result[tmp - name] = '\0';
6935 return result;
6936 }
6937
6938 return name;
6939 }
6940 }
6941
6942 static struct value *
6943 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
6944 enum noside noside)
6945 {
6946 return (*exp->language_defn->la_exp_desc->evaluate_exp)
6947 (expect_type, exp, pos, noside);
6948 }
6949
6950 /* Evaluate the subexpression of EXP starting at *POS as for
6951 evaluate_type, updating *POS to point just past the evaluated
6952 expression. */
6953
6954 static struct value *
6955 evaluate_subexp_type (struct expression *exp, int *pos)
6956 {
6957 return (*exp->language_defn->la_exp_desc->evaluate_exp)
6958 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
6959 }
6960
6961 /* If VAL is wrapped in an aligner or subtype wrapper, return the
6962 value it wraps. */
6963
6964 static struct value *
6965 unwrap_value (struct value *val)
6966 {
6967 struct type *type = ada_check_typedef (value_type (val));
6968 if (ada_is_aligner_type (type))
6969 {
6970 struct value *v = value_struct_elt (&val, NULL, "F",
6971 NULL, "internal structure");
6972 struct type *val_type = ada_check_typedef (value_type (v));
6973 if (ada_type_name (val_type) == NULL)
6974 TYPE_NAME (val_type) = ada_type_name (type);
6975
6976 return unwrap_value (v);
6977 }
6978 else
6979 {
6980 struct type *raw_real_type =
6981 ada_check_typedef (ada_get_base_type (type));
6982
6983 if (type == raw_real_type)
6984 return val;
6985
6986 return
6987 coerce_unspec_val_to_type
6988 (val, ada_to_fixed_type (raw_real_type, 0,
6989 VALUE_ADDRESS (val) + value_offset (val),
6990 NULL));
6991 }
6992 }
6993
6994 static struct value *
6995 cast_to_fixed (struct type *type, struct value *arg)
6996 {
6997 LONGEST val;
6998
6999 if (type == value_type (arg))
7000 return arg;
7001 else if (ada_is_fixed_point_type (value_type (arg)))
7002 val = ada_float_to_fixed (type,
7003 ada_fixed_to_float (value_type (arg),
7004 value_as_long (arg)));
7005 else
7006 {
7007 DOUBLEST argd =
7008 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7009 val = ada_float_to_fixed (type, argd);
7010 }
7011
7012 return value_from_longest (type, val);
7013 }
7014
7015 static struct value *
7016 cast_from_fixed_to_double (struct value *arg)
7017 {
7018 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7019 value_as_long (arg));
7020 return value_from_double (builtin_type_double, val);
7021 }
7022
7023 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7024 return the converted value. */
7025
7026 static struct value *
7027 coerce_for_assign (struct type *type, struct value *val)
7028 {
7029 struct type *type2 = value_type (val);
7030 if (type == type2)
7031 return val;
7032
7033 type2 = ada_check_typedef (type2);
7034 type = ada_check_typedef (type);
7035
7036 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7037 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7038 {
7039 val = ada_value_ind (val);
7040 type2 = value_type (val);
7041 }
7042
7043 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7044 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7045 {
7046 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7047 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7048 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7049 error (_("Incompatible types in assignment"));
7050 deprecated_set_value_type (val, type);
7051 }
7052 return val;
7053 }
7054
7055 static struct value *
7056 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7057 {
7058 struct value *val;
7059 struct type *type1, *type2;
7060 LONGEST v, v1, v2;
7061
7062 arg1 = coerce_ref (arg1);
7063 arg2 = coerce_ref (arg2);
7064 type1 = base_type (ada_check_typedef (value_type (arg1)));
7065 type2 = base_type (ada_check_typedef (value_type (arg2)));
7066
7067 if (TYPE_CODE (type1) != TYPE_CODE_INT
7068 || TYPE_CODE (type2) != TYPE_CODE_INT)
7069 return value_binop (arg1, arg2, op);
7070
7071 switch (op)
7072 {
7073 case BINOP_MOD:
7074 case BINOP_DIV:
7075 case BINOP_REM:
7076 break;
7077 default:
7078 return value_binop (arg1, arg2, op);
7079 }
7080
7081 v2 = value_as_long (arg2);
7082 if (v2 == 0)
7083 error (_("second operand of %s must not be zero."), op_string (op));
7084
7085 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7086 return value_binop (arg1, arg2, op);
7087
7088 v1 = value_as_long (arg1);
7089 switch (op)
7090 {
7091 case BINOP_DIV:
7092 v = v1 / v2;
7093 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7094 v += v > 0 ? -1 : 1;
7095 break;
7096 case BINOP_REM:
7097 v = v1 % v2;
7098 if (v * v1 < 0)
7099 v -= v2;
7100 break;
7101 default:
7102 /* Should not reach this point. */
7103 v = 0;
7104 }
7105
7106 val = allocate_value (type1);
7107 store_unsigned_integer (value_contents_raw (val),
7108 TYPE_LENGTH (value_type (val)), v);
7109 return val;
7110 }
7111
7112 static int
7113 ada_value_equal (struct value *arg1, struct value *arg2)
7114 {
7115 if (ada_is_direct_array_type (value_type (arg1))
7116 || ada_is_direct_array_type (value_type (arg2)))
7117 {
7118 arg1 = ada_coerce_to_simple_array (arg1);
7119 arg2 = ada_coerce_to_simple_array (arg2);
7120 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7121 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7122 error (_("Attempt to compare array with non-array"));
7123 /* FIXME: The following works only for types whose
7124 representations use all bits (no padding or undefined bits)
7125 and do not have user-defined equality. */
7126 return
7127 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7128 && memcmp (value_contents (arg1), value_contents (arg2),
7129 TYPE_LENGTH (value_type (arg1))) == 0;
7130 }
7131 return value_equal (arg1, arg2);
7132 }
7133
7134 struct value *
7135 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
7136 int *pos, enum noside noside)
7137 {
7138 enum exp_opcode op;
7139 int tem, tem2, tem3;
7140 int pc;
7141 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
7142 struct type *type;
7143 int nargs;
7144 struct value **argvec;
7145
7146 pc = *pos;
7147 *pos += 1;
7148 op = exp->elts[pc].opcode;
7149
7150 switch (op)
7151 {
7152 default:
7153 *pos -= 1;
7154 return
7155 unwrap_value (evaluate_subexp_standard
7156 (expect_type, exp, pos, noside));
7157
7158 case OP_STRING:
7159 {
7160 struct value *result;
7161 *pos -= 1;
7162 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
7163 /* The result type will have code OP_STRING, bashed there from
7164 OP_ARRAY. Bash it back. */
7165 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
7166 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
7167 return result;
7168 }
7169
7170 case UNOP_CAST:
7171 (*pos) += 2;
7172 type = exp->elts[pc + 1].type;
7173 arg1 = evaluate_subexp (type, exp, pos, noside);
7174 if (noside == EVAL_SKIP)
7175 goto nosideret;
7176 if (type != ada_check_typedef (value_type (arg1)))
7177 {
7178 if (ada_is_fixed_point_type (type))
7179 arg1 = cast_to_fixed (type, arg1);
7180 else if (ada_is_fixed_point_type (value_type (arg1)))
7181 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
7182 else if (VALUE_LVAL (arg1) == lval_memory)
7183 {
7184 /* This is in case of the really obscure (and undocumented,
7185 but apparently expected) case of (Foo) Bar.all, where Bar
7186 is an integer constant and Foo is a dynamic-sized type.
7187 If we don't do this, ARG1 will simply be relabeled with
7188 TYPE. */
7189 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7190 return value_zero (to_static_fixed_type (type), not_lval);
7191 arg1 =
7192 ada_to_fixed_value_create
7193 (type, VALUE_ADDRESS (arg1) + value_offset (arg1), 0);
7194 }
7195 else
7196 arg1 = value_cast (type, arg1);
7197 }
7198 return arg1;
7199
7200 case UNOP_QUAL:
7201 (*pos) += 2;
7202 type = exp->elts[pc + 1].type;
7203 return ada_evaluate_subexp (type, exp, pos, noside);
7204
7205 case BINOP_ASSIGN:
7206 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7207 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7208 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7209 return arg1;
7210 if (ada_is_fixed_point_type (value_type (arg1)))
7211 arg2 = cast_to_fixed (value_type (arg1), arg2);
7212 else if (ada_is_fixed_point_type (value_type (arg2)))
7213 error
7214 (_("Fixed-point values must be assigned to fixed-point variables"));
7215 else
7216 arg2 = coerce_for_assign (value_type (arg1), arg2);
7217 return ada_value_assign (arg1, arg2);
7218
7219 case BINOP_ADD:
7220 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7221 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7222 if (noside == EVAL_SKIP)
7223 goto nosideret;
7224 if ((ada_is_fixed_point_type (value_type (arg1))
7225 || ada_is_fixed_point_type (value_type (arg2)))
7226 && value_type (arg1) != value_type (arg2))
7227 error (_("Operands of fixed-point addition must have the same type"));
7228 return value_cast (value_type (arg1), value_add (arg1, arg2));
7229
7230 case BINOP_SUB:
7231 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7232 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7233 if (noside == EVAL_SKIP)
7234 goto nosideret;
7235 if ((ada_is_fixed_point_type (value_type (arg1))
7236 || ada_is_fixed_point_type (value_type (arg2)))
7237 && value_type (arg1) != value_type (arg2))
7238 error (_("Operands of fixed-point subtraction must have the same type"));
7239 return value_cast (value_type (arg1), value_sub (arg1, arg2));
7240
7241 case BINOP_MUL:
7242 case BINOP_DIV:
7243 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7244 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7245 if (noside == EVAL_SKIP)
7246 goto nosideret;
7247 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7248 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7249 return value_zero (value_type (arg1), not_lval);
7250 else
7251 {
7252 if (ada_is_fixed_point_type (value_type (arg1)))
7253 arg1 = cast_from_fixed_to_double (arg1);
7254 if (ada_is_fixed_point_type (value_type (arg2)))
7255 arg2 = cast_from_fixed_to_double (arg2);
7256 return ada_value_binop (arg1, arg2, op);
7257 }
7258
7259 case BINOP_REM:
7260 case BINOP_MOD:
7261 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7262 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7263 if (noside == EVAL_SKIP)
7264 goto nosideret;
7265 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7266 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7267 return value_zero (value_type (arg1), not_lval);
7268 else
7269 return ada_value_binop (arg1, arg2, op);
7270
7271 case BINOP_EQUAL:
7272 case BINOP_NOTEQUAL:
7273 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7274 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7275 if (noside == EVAL_SKIP)
7276 goto nosideret;
7277 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7278 tem = 0;
7279 else
7280 tem = ada_value_equal (arg1, arg2);
7281 if (op == BINOP_NOTEQUAL)
7282 tem = !tem;
7283 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
7284
7285 case UNOP_NEG:
7286 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7287 if (noside == EVAL_SKIP)
7288 goto nosideret;
7289 else if (ada_is_fixed_point_type (value_type (arg1)))
7290 return value_cast (value_type (arg1), value_neg (arg1));
7291 else
7292 return value_neg (arg1);
7293
7294 case OP_VAR_VALUE:
7295 *pos -= 1;
7296 if (noside == EVAL_SKIP)
7297 {
7298 *pos += 4;
7299 goto nosideret;
7300 }
7301 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
7302 /* Only encountered when an unresolved symbol occurs in a
7303 context other than a function call, in which case, it is
7304 illegal. */
7305 error (_("Unexpected unresolved symbol, %s, during evaluation"),
7306 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
7307 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7308 {
7309 *pos += 4;
7310 return value_zero
7311 (to_static_fixed_type
7312 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
7313 not_lval);
7314 }
7315 else
7316 {
7317 arg1 =
7318 unwrap_value (evaluate_subexp_standard
7319 (expect_type, exp, pos, noside));
7320 return ada_to_fixed_value (arg1);
7321 }
7322
7323 case OP_FUNCALL:
7324 (*pos) += 2;
7325
7326 /* Allocate arg vector, including space for the function to be
7327 called in argvec[0] and a terminating NULL. */
7328 nargs = longest_to_int (exp->elts[pc + 1].longconst);
7329 argvec =
7330 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
7331
7332 if (exp->elts[*pos].opcode == OP_VAR_VALUE
7333 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
7334 error (_("Unexpected unresolved symbol, %s, during evaluation"),
7335 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
7336 else
7337 {
7338 for (tem = 0; tem <= nargs; tem += 1)
7339 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7340 argvec[tem] = 0;
7341
7342 if (noside == EVAL_SKIP)
7343 goto nosideret;
7344 }
7345
7346 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
7347 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
7348 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
7349 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
7350 && VALUE_LVAL (argvec[0]) == lval_memory))
7351 argvec[0] = value_addr (argvec[0]);
7352
7353 type = ada_check_typedef (value_type (argvec[0]));
7354 if (TYPE_CODE (type) == TYPE_CODE_PTR)
7355 {
7356 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
7357 {
7358 case TYPE_CODE_FUNC:
7359 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
7360 break;
7361 case TYPE_CODE_ARRAY:
7362 break;
7363 case TYPE_CODE_STRUCT:
7364 if (noside != EVAL_AVOID_SIDE_EFFECTS)
7365 argvec[0] = ada_value_ind (argvec[0]);
7366 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
7367 break;
7368 default:
7369 error (_("cannot subscript or call something of type `%s'"),
7370 ada_type_name (value_type (argvec[0])));
7371 break;
7372 }
7373 }
7374
7375 switch (TYPE_CODE (type))
7376 {
7377 case TYPE_CODE_FUNC:
7378 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7379 return allocate_value (TYPE_TARGET_TYPE (type));
7380 return call_function_by_hand (argvec[0], nargs, argvec + 1);
7381 case TYPE_CODE_STRUCT:
7382 {
7383 int arity;
7384
7385 arity = ada_array_arity (type);
7386 type = ada_array_element_type (type, nargs);
7387 if (type == NULL)
7388 error (_("cannot subscript or call a record"));
7389 if (arity != nargs)
7390 error (_("wrong number of subscripts; expecting %d"), arity);
7391 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7392 return allocate_value (ada_aligned_type (type));
7393 return
7394 unwrap_value (ada_value_subscript
7395 (argvec[0], nargs, argvec + 1));
7396 }
7397 case TYPE_CODE_ARRAY:
7398 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7399 {
7400 type = ada_array_element_type (type, nargs);
7401 if (type == NULL)
7402 error (_("element type of array unknown"));
7403 else
7404 return allocate_value (ada_aligned_type (type));
7405 }
7406 return
7407 unwrap_value (ada_value_subscript
7408 (ada_coerce_to_simple_array (argvec[0]),
7409 nargs, argvec + 1));
7410 case TYPE_CODE_PTR: /* Pointer to array */
7411 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
7412 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7413 {
7414 type = ada_array_element_type (type, nargs);
7415 if (type == NULL)
7416 error (_("element type of array unknown"));
7417 else
7418 return allocate_value (ada_aligned_type (type));
7419 }
7420 return
7421 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
7422 nargs, argvec + 1));
7423
7424 default:
7425 error (_("Attempt to index or call something other than an \
7426 array or function"));
7427 }
7428
7429 case TERNOP_SLICE:
7430 {
7431 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7432 struct value *low_bound_val =
7433 evaluate_subexp (NULL_TYPE, exp, pos, noside);
7434 struct value *high_bound_val =
7435 evaluate_subexp (NULL_TYPE, exp, pos, noside);
7436 LONGEST low_bound;
7437 LONGEST high_bound;
7438 low_bound_val = coerce_ref (low_bound_val);
7439 high_bound_val = coerce_ref (high_bound_val);
7440 low_bound = pos_atr (low_bound_val);
7441 high_bound = pos_atr (high_bound_val);
7442
7443 if (noside == EVAL_SKIP)
7444 goto nosideret;
7445
7446 /* If this is a reference to an aligner type, then remove all
7447 the aligners. */
7448 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
7449 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
7450 TYPE_TARGET_TYPE (value_type (array)) =
7451 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
7452
7453 if (ada_is_packed_array_type (value_type (array)))
7454 error (_("cannot slice a packed array"));
7455
7456 /* If this is a reference to an array or an array lvalue,
7457 convert to a pointer. */
7458 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
7459 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
7460 && VALUE_LVAL (array) == lval_memory))
7461 array = value_addr (array);
7462
7463 if (noside == EVAL_AVOID_SIDE_EFFECTS
7464 && ada_is_array_descriptor_type (ada_check_typedef
7465 (value_type (array))))
7466 return empty_array (ada_type_of_array (array, 0), low_bound);
7467
7468 array = ada_coerce_to_simple_array_ptr (array);
7469
7470 /* If we have more than one level of pointer indirection,
7471 dereference the value until we get only one level. */
7472 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
7473 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
7474 == TYPE_CODE_PTR))
7475 array = value_ind (array);
7476
7477 /* Make sure we really do have an array type before going further,
7478 to avoid a SEGV when trying to get the index type or the target
7479 type later down the road if the debug info generated by
7480 the compiler is incorrect or incomplete. */
7481 if (!ada_is_simple_array_type (value_type (array)))
7482 error (_("cannot take slice of non-array"));
7483
7484 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
7485 {
7486 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
7487 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
7488 low_bound);
7489 else
7490 {
7491 struct type *arr_type0 =
7492 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
7493 NULL, 1);
7494 return ada_value_slice_ptr (array, arr_type0,
7495 (int) low_bound,
7496 (int) high_bound);
7497 }
7498 }
7499 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7500 return array;
7501 else if (high_bound < low_bound)
7502 return empty_array (value_type (array), low_bound);
7503 else
7504 return ada_value_slice (array, (int) low_bound, (int) high_bound);
7505 }
7506
7507 case UNOP_IN_RANGE:
7508 (*pos) += 2;
7509 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7510 type = exp->elts[pc + 1].type;
7511
7512 if (noside == EVAL_SKIP)
7513 goto nosideret;
7514
7515 switch (TYPE_CODE (type))
7516 {
7517 default:
7518 lim_warning (_("Membership test incompletely implemented; \
7519 always returns true"));
7520 return value_from_longest (builtin_type_int, (LONGEST) 1);
7521
7522 case TYPE_CODE_RANGE:
7523 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
7524 arg3 = value_from_longest (builtin_type_int,
7525 TYPE_HIGH_BOUND (type));
7526 return
7527 value_from_longest (builtin_type_int,
7528 (value_less (arg1, arg3)
7529 || value_equal (arg1, arg3))
7530 && (value_less (arg2, arg1)
7531 || value_equal (arg2, arg1)));
7532 }
7533
7534 case BINOP_IN_BOUNDS:
7535 (*pos) += 2;
7536 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7537 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7538
7539 if (noside == EVAL_SKIP)
7540 goto nosideret;
7541
7542 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7543 return value_zero (builtin_type_int, not_lval);
7544
7545 tem = longest_to_int (exp->elts[pc + 1].longconst);
7546
7547 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
7548 error (_("invalid dimension number to 'range"));
7549
7550 arg3 = ada_array_bound (arg2, tem, 1);
7551 arg2 = ada_array_bound (arg2, tem, 0);
7552
7553 return
7554 value_from_longest (builtin_type_int,
7555 (value_less (arg1, arg3)
7556 || value_equal (arg1, arg3))
7557 && (value_less (arg2, arg1)
7558 || value_equal (arg2, arg1)));
7559
7560 case TERNOP_IN_RANGE:
7561 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7562 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7563 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7564
7565 if (noside == EVAL_SKIP)
7566 goto nosideret;
7567
7568 return
7569 value_from_longest (builtin_type_int,
7570 (value_less (arg1, arg3)
7571 || value_equal (arg1, arg3))
7572 && (value_less (arg2, arg1)
7573 || value_equal (arg2, arg1)));
7574
7575 case OP_ATR_FIRST:
7576 case OP_ATR_LAST:
7577 case OP_ATR_LENGTH:
7578 {
7579 struct type *type_arg;
7580 if (exp->elts[*pos].opcode == OP_TYPE)
7581 {
7582 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7583 arg1 = NULL;
7584 type_arg = exp->elts[pc + 2].type;
7585 }
7586 else
7587 {
7588 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7589 type_arg = NULL;
7590 }
7591
7592 if (exp->elts[*pos].opcode != OP_LONG)
7593 error (_("Invalid operand to '%s"), ada_attribute_name (op));
7594 tem = longest_to_int (exp->elts[*pos + 2].longconst);
7595 *pos += 4;
7596
7597 if (noside == EVAL_SKIP)
7598 goto nosideret;
7599
7600 if (type_arg == NULL)
7601 {
7602 arg1 = ada_coerce_ref (arg1);
7603
7604 if (ada_is_packed_array_type (value_type (arg1)))
7605 arg1 = ada_coerce_to_simple_array (arg1);
7606
7607 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
7608 error (_("invalid dimension number to '%s"),
7609 ada_attribute_name (op));
7610
7611 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7612 {
7613 type = ada_index_type (value_type (arg1), tem);
7614 if (type == NULL)
7615 error
7616 (_("attempt to take bound of something that is not an array"));
7617 return allocate_value (type);
7618 }
7619
7620 switch (op)
7621 {
7622 default: /* Should never happen. */
7623 error (_("unexpected attribute encountered"));
7624 case OP_ATR_FIRST:
7625 return ada_array_bound (arg1, tem, 0);
7626 case OP_ATR_LAST:
7627 return ada_array_bound (arg1, tem, 1);
7628 case OP_ATR_LENGTH:
7629 return ada_array_length (arg1, tem);
7630 }
7631 }
7632 else if (discrete_type_p (type_arg))
7633 {
7634 struct type *range_type;
7635 char *name = ada_type_name (type_arg);
7636 range_type = NULL;
7637 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
7638 range_type =
7639 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
7640 if (range_type == NULL)
7641 range_type = type_arg;
7642 switch (op)
7643 {
7644 default:
7645 error (_("unexpected attribute encountered"));
7646 case OP_ATR_FIRST:
7647 return discrete_type_low_bound (range_type);
7648 case OP_ATR_LAST:
7649 return discrete_type_high_bound (range_type);
7650 case OP_ATR_LENGTH:
7651 error (_("the 'length attribute applies only to array types"));
7652 }
7653 }
7654 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
7655 error (_("unimplemented type attribute"));
7656 else
7657 {
7658 LONGEST low, high;
7659
7660 if (ada_is_packed_array_type (type_arg))
7661 type_arg = decode_packed_array_type (type_arg);
7662
7663 if (tem < 1 || tem > ada_array_arity (type_arg))
7664 error (_("invalid dimension number to '%s"),
7665 ada_attribute_name (op));
7666
7667 type = ada_index_type (type_arg, tem);
7668 if (type == NULL)
7669 error
7670 (_("attempt to take bound of something that is not an array"));
7671 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7672 return allocate_value (type);
7673
7674 switch (op)
7675 {
7676 default:
7677 error (_("unexpected attribute encountered"));
7678 case OP_ATR_FIRST:
7679 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
7680 return value_from_longest (type, low);
7681 case OP_ATR_LAST:
7682 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
7683 return value_from_longest (type, high);
7684 case OP_ATR_LENGTH:
7685 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
7686 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
7687 return value_from_longest (type, high - low + 1);
7688 }
7689 }
7690 }
7691
7692 case OP_ATR_TAG:
7693 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7694 if (noside == EVAL_SKIP)
7695 goto nosideret;
7696
7697 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7698 return value_zero (ada_tag_type (arg1), not_lval);
7699
7700 return ada_value_tag (arg1);
7701
7702 case OP_ATR_MIN:
7703 case OP_ATR_MAX:
7704 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7705 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7706 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7707 if (noside == EVAL_SKIP)
7708 goto nosideret;
7709 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7710 return value_zero (value_type (arg1), not_lval);
7711 else
7712 return value_binop (arg1, arg2,
7713 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
7714
7715 case OP_ATR_MODULUS:
7716 {
7717 struct type *type_arg = exp->elts[pc + 2].type;
7718 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7719
7720 if (noside == EVAL_SKIP)
7721 goto nosideret;
7722
7723 if (!ada_is_modular_type (type_arg))
7724 error (_("'modulus must be applied to modular type"));
7725
7726 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
7727 ada_modulus (type_arg));
7728 }
7729
7730
7731 case OP_ATR_POS:
7732 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7733 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7734 if (noside == EVAL_SKIP)
7735 goto nosideret;
7736 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7737 return value_zero (builtin_type_int, not_lval);
7738 else
7739 return value_pos_atr (arg1);
7740
7741 case OP_ATR_SIZE:
7742 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7743 if (noside == EVAL_SKIP)
7744 goto nosideret;
7745 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7746 return value_zero (builtin_type_int, not_lval);
7747 else
7748 return value_from_longest (builtin_type_int,
7749 TARGET_CHAR_BIT
7750 * TYPE_LENGTH (value_type (arg1)));
7751
7752 case OP_ATR_VAL:
7753 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7754 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7755 type = exp->elts[pc + 2].type;
7756 if (noside == EVAL_SKIP)
7757 goto nosideret;
7758 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7759 return value_zero (type, not_lval);
7760 else
7761 return value_val_atr (type, arg1);
7762
7763 case BINOP_EXP:
7764 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7765 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7766 if (noside == EVAL_SKIP)
7767 goto nosideret;
7768 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7769 return value_zero (value_type (arg1), not_lval);
7770 else
7771 return value_binop (arg1, arg2, op);
7772
7773 case UNOP_PLUS:
7774 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7775 if (noside == EVAL_SKIP)
7776 goto nosideret;
7777 else
7778 return arg1;
7779
7780 case UNOP_ABS:
7781 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7782 if (noside == EVAL_SKIP)
7783 goto nosideret;
7784 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
7785 return value_neg (arg1);
7786 else
7787 return arg1;
7788
7789 case UNOP_IND:
7790 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
7791 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
7792 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
7793 if (noside == EVAL_SKIP)
7794 goto nosideret;
7795 type = ada_check_typedef (value_type (arg1));
7796 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7797 {
7798 if (ada_is_array_descriptor_type (type))
7799 /* GDB allows dereferencing GNAT array descriptors. */
7800 {
7801 struct type *arrType = ada_type_of_array (arg1, 0);
7802 if (arrType == NULL)
7803 error (_("Attempt to dereference null array pointer."));
7804 return value_at_lazy (arrType, 0);
7805 }
7806 else if (TYPE_CODE (type) == TYPE_CODE_PTR
7807 || TYPE_CODE (type) == TYPE_CODE_REF
7808 /* In C you can dereference an array to get the 1st elt. */
7809 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
7810 {
7811 type = to_static_fixed_type
7812 (ada_aligned_type
7813 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
7814 check_size (type);
7815 return value_zero (type, lval_memory);
7816 }
7817 else if (TYPE_CODE (type) == TYPE_CODE_INT)
7818 /* GDB allows dereferencing an int. */
7819 return value_zero (builtin_type_int, lval_memory);
7820 else
7821 error (_("Attempt to take contents of a non-pointer value."));
7822 }
7823 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
7824 type = ada_check_typedef (value_type (arg1));
7825
7826 if (ada_is_array_descriptor_type (type))
7827 /* GDB allows dereferencing GNAT array descriptors. */
7828 return ada_coerce_to_simple_array (arg1);
7829 else
7830 return ada_value_ind (arg1);
7831
7832 case STRUCTOP_STRUCT:
7833 tem = longest_to_int (exp->elts[pc + 1].longconst);
7834 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
7835 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7836 if (noside == EVAL_SKIP)
7837 goto nosideret;
7838 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7839 {
7840 struct type *type1 = value_type (arg1);
7841 if (ada_is_tagged_type (type1, 1))
7842 {
7843 type = ada_lookup_struct_elt_type (type1,
7844 &exp->elts[pc + 2].string,
7845 1, 1, NULL);
7846 if (type == NULL)
7847 /* In this case, we assume that the field COULD exist
7848 in some extension of the type. Return an object of
7849 "type" void, which will match any formal
7850 (see ada_type_match). */
7851 return value_zero (builtin_type_void, lval_memory);
7852 }
7853 else
7854 type =
7855 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
7856 0, NULL);
7857
7858 return value_zero (ada_aligned_type (type), lval_memory);
7859 }
7860 else
7861 return
7862 ada_to_fixed_value (unwrap_value
7863 (ada_value_struct_elt
7864 (arg1, &exp->elts[pc + 2].string, "record")));
7865 case OP_TYPE:
7866 /* The value is not supposed to be used. This is here to make it
7867 easier to accommodate expressions that contain types. */
7868 (*pos) += 2;
7869 if (noside == EVAL_SKIP)
7870 goto nosideret;
7871 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7872 return allocate_value (builtin_type_void);
7873 else
7874 error (_("Attempt to use a type name as an expression"));
7875 }
7876
7877 nosideret:
7878 return value_from_longest (builtin_type_long, (LONGEST) 1);
7879 }
7880 \f
7881
7882 /* Fixed point */
7883
7884 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
7885 type name that encodes the 'small and 'delta information.
7886 Otherwise, return NULL. */
7887
7888 static const char *
7889 fixed_type_info (struct type *type)
7890 {
7891 const char *name = ada_type_name (type);
7892 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
7893
7894 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
7895 {
7896 const char *tail = strstr (name, "___XF_");
7897 if (tail == NULL)
7898 return NULL;
7899 else
7900 return tail + 5;
7901 }
7902 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
7903 return fixed_type_info (TYPE_TARGET_TYPE (type));
7904 else
7905 return NULL;
7906 }
7907
7908 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
7909
7910 int
7911 ada_is_fixed_point_type (struct type *type)
7912 {
7913 return fixed_type_info (type) != NULL;
7914 }
7915
7916 /* Return non-zero iff TYPE represents a System.Address type. */
7917
7918 int
7919 ada_is_system_address_type (struct type *type)
7920 {
7921 return (TYPE_NAME (type)
7922 && strcmp (TYPE_NAME (type), "system__address") == 0);
7923 }
7924
7925 /* Assuming that TYPE is the representation of an Ada fixed-point
7926 type, return its delta, or -1 if the type is malformed and the
7927 delta cannot be determined. */
7928
7929 DOUBLEST
7930 ada_delta (struct type *type)
7931 {
7932 const char *encoding = fixed_type_info (type);
7933 long num, den;
7934
7935 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
7936 return -1.0;
7937 else
7938 return (DOUBLEST) num / (DOUBLEST) den;
7939 }
7940
7941 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
7942 factor ('SMALL value) associated with the type. */
7943
7944 static DOUBLEST
7945 scaling_factor (struct type *type)
7946 {
7947 const char *encoding = fixed_type_info (type);
7948 unsigned long num0, den0, num1, den1;
7949 int n;
7950
7951 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
7952
7953 if (n < 2)
7954 return 1.0;
7955 else if (n == 4)
7956 return (DOUBLEST) num1 / (DOUBLEST) den1;
7957 else
7958 return (DOUBLEST) num0 / (DOUBLEST) den0;
7959 }
7960
7961
7962 /* Assuming that X is the representation of a value of fixed-point
7963 type TYPE, return its floating-point equivalent. */
7964
7965 DOUBLEST
7966 ada_fixed_to_float (struct type *type, LONGEST x)
7967 {
7968 return (DOUBLEST) x *scaling_factor (type);
7969 }
7970
7971 /* The representation of a fixed-point value of type TYPE
7972 corresponding to the value X. */
7973
7974 LONGEST
7975 ada_float_to_fixed (struct type *type, DOUBLEST x)
7976 {
7977 return (LONGEST) (x / scaling_factor (type) + 0.5);
7978 }
7979
7980
7981 /* VAX floating formats */
7982
7983 /* Non-zero iff TYPE represents one of the special VAX floating-point
7984 types. */
7985
7986 int
7987 ada_is_vax_floating_type (struct type *type)
7988 {
7989 int name_len =
7990 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
7991 return
7992 name_len > 6
7993 && (TYPE_CODE (type) == TYPE_CODE_INT
7994 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7995 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
7996 }
7997
7998 /* The type of special VAX floating-point type this is, assuming
7999 ada_is_vax_floating_point. */
8000
8001 int
8002 ada_vax_float_type_suffix (struct type *type)
8003 {
8004 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
8005 }
8006
8007 /* A value representing the special debugging function that outputs
8008 VAX floating-point values of the type represented by TYPE. Assumes
8009 ada_is_vax_floating_type (TYPE). */
8010
8011 struct value *
8012 ada_vax_float_print_function (struct type *type)
8013 {
8014 switch (ada_vax_float_type_suffix (type))
8015 {
8016 case 'F':
8017 return get_var_value ("DEBUG_STRING_F", 0);
8018 case 'D':
8019 return get_var_value ("DEBUG_STRING_D", 0);
8020 case 'G':
8021 return get_var_value ("DEBUG_STRING_G", 0);
8022 default:
8023 error (_("invalid VAX floating-point type"));
8024 }
8025 }
8026 \f
8027
8028 /* Range types */
8029
8030 /* Scan STR beginning at position K for a discriminant name, and
8031 return the value of that discriminant field of DVAL in *PX. If
8032 PNEW_K is not null, put the position of the character beyond the
8033 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
8034 not alter *PX and *PNEW_K if unsuccessful. */
8035
8036 static int
8037 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
8038 int *pnew_k)
8039 {
8040 static char *bound_buffer = NULL;
8041 static size_t bound_buffer_len = 0;
8042 char *bound;
8043 char *pend;
8044 struct value *bound_val;
8045
8046 if (dval == NULL || str == NULL || str[k] == '\0')
8047 return 0;
8048
8049 pend = strstr (str + k, "__");
8050 if (pend == NULL)
8051 {
8052 bound = str + k;
8053 k += strlen (bound);
8054 }
8055 else
8056 {
8057 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
8058 bound = bound_buffer;
8059 strncpy (bound_buffer, str + k, pend - (str + k));
8060 bound[pend - (str + k)] = '\0';
8061 k = pend - str;
8062 }
8063
8064 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
8065 if (bound_val == NULL)
8066 return 0;
8067
8068 *px = value_as_long (bound_val);
8069 if (pnew_k != NULL)
8070 *pnew_k = k;
8071 return 1;
8072 }
8073
8074 /* Value of variable named NAME in the current environment. If
8075 no such variable found, then if ERR_MSG is null, returns 0, and
8076 otherwise causes an error with message ERR_MSG. */
8077
8078 static struct value *
8079 get_var_value (char *name, char *err_msg)
8080 {
8081 struct ada_symbol_info *syms;
8082 int nsyms;
8083
8084 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
8085 &syms);
8086
8087 if (nsyms != 1)
8088 {
8089 if (err_msg == NULL)
8090 return 0;
8091 else
8092 error (("%s"), err_msg);
8093 }
8094
8095 return value_of_variable (syms[0].sym, syms[0].block);
8096 }
8097
8098 /* Value of integer variable named NAME in the current environment. If
8099 no such variable found, returns 0, and sets *FLAG to 0. If
8100 successful, sets *FLAG to 1. */
8101
8102 LONGEST
8103 get_int_var_value (char *name, int *flag)
8104 {
8105 struct value *var_val = get_var_value (name, 0);
8106
8107 if (var_val == 0)
8108 {
8109 if (flag != NULL)
8110 *flag = 0;
8111 return 0;
8112 }
8113 else
8114 {
8115 if (flag != NULL)
8116 *flag = 1;
8117 return value_as_long (var_val);
8118 }
8119 }
8120
8121
8122 /* Return a range type whose base type is that of the range type named
8123 NAME in the current environment, and whose bounds are calculated
8124 from NAME according to the GNAT range encoding conventions.
8125 Extract discriminant values, if needed, from DVAL. If a new type
8126 must be created, allocate in OBJFILE's space. The bounds
8127 information, in general, is encoded in NAME, the base type given in
8128 the named range type. */
8129
8130 static struct type *
8131 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
8132 {
8133 struct type *raw_type = ada_find_any_type (name);
8134 struct type *base_type;
8135 char *subtype_info;
8136
8137 if (raw_type == NULL)
8138 base_type = builtin_type_int;
8139 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
8140 base_type = TYPE_TARGET_TYPE (raw_type);
8141 else
8142 base_type = raw_type;
8143
8144 subtype_info = strstr (name, "___XD");
8145 if (subtype_info == NULL)
8146 return raw_type;
8147 else
8148 {
8149 static char *name_buf = NULL;
8150 static size_t name_len = 0;
8151 int prefix_len = subtype_info - name;
8152 LONGEST L, U;
8153 struct type *type;
8154 char *bounds_str;
8155 int n;
8156
8157 GROW_VECT (name_buf, name_len, prefix_len + 5);
8158 strncpy (name_buf, name, prefix_len);
8159 name_buf[prefix_len] = '\0';
8160
8161 subtype_info += 5;
8162 bounds_str = strchr (subtype_info, '_');
8163 n = 1;
8164
8165 if (*subtype_info == 'L')
8166 {
8167 if (!ada_scan_number (bounds_str, n, &L, &n)
8168 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
8169 return raw_type;
8170 if (bounds_str[n] == '_')
8171 n += 2;
8172 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
8173 n += 1;
8174 subtype_info += 1;
8175 }
8176 else
8177 {
8178 int ok;
8179 strcpy (name_buf + prefix_len, "___L");
8180 L = get_int_var_value (name_buf, &ok);
8181 if (!ok)
8182 {
8183 lim_warning (_("Unknown lower bound, using 1."));
8184 L = 1;
8185 }
8186 }
8187
8188 if (*subtype_info == 'U')
8189 {
8190 if (!ada_scan_number (bounds_str, n, &U, &n)
8191 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
8192 return raw_type;
8193 }
8194 else
8195 {
8196 int ok;
8197 strcpy (name_buf + prefix_len, "___U");
8198 U = get_int_var_value (name_buf, &ok);
8199 if (!ok)
8200 {
8201 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
8202 U = L;
8203 }
8204 }
8205
8206 if (objfile == NULL)
8207 objfile = TYPE_OBJFILE (base_type);
8208 type = create_range_type (alloc_type (objfile), base_type, L, U);
8209 TYPE_NAME (type) = name;
8210 return type;
8211 }
8212 }
8213
8214 /* True iff NAME is the name of a range type. */
8215
8216 int
8217 ada_is_range_type_name (const char *name)
8218 {
8219 return (name != NULL && strstr (name, "___XD"));
8220 }
8221 \f
8222
8223 /* Modular types */
8224
8225 /* True iff TYPE is an Ada modular type. */
8226
8227 int
8228 ada_is_modular_type (struct type *type)
8229 {
8230 struct type *subranged_type = base_type (type);
8231
8232 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
8233 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
8234 && TYPE_UNSIGNED (subranged_type));
8235 }
8236
8237 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
8238
8239 ULONGEST
8240 ada_modulus (struct type * type)
8241 {
8242 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
8243 }
8244 \f
8245 /* Operators */
8246 /* Information about operators given special treatment in functions
8247 below. */
8248 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
8249
8250 #define ADA_OPERATORS \
8251 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
8252 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
8253 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
8254 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
8255 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
8256 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
8257 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
8258 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
8259 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
8260 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
8261 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
8262 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
8263 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
8264 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
8265 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
8266 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0)
8267
8268 static void
8269 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
8270 {
8271 switch (exp->elts[pc - 1].opcode)
8272 {
8273 default:
8274 operator_length_standard (exp, pc, oplenp, argsp);
8275 break;
8276
8277 #define OP_DEFN(op, len, args, binop) \
8278 case op: *oplenp = len; *argsp = args; break;
8279 ADA_OPERATORS;
8280 #undef OP_DEFN
8281 }
8282 }
8283
8284 static char *
8285 ada_op_name (enum exp_opcode opcode)
8286 {
8287 switch (opcode)
8288 {
8289 default:
8290 return op_name_standard (opcode);
8291 #define OP_DEFN(op, len, args, binop) case op: return #op;
8292 ADA_OPERATORS;
8293 #undef OP_DEFN
8294 }
8295 }
8296
8297 /* As for operator_length, but assumes PC is pointing at the first
8298 element of the operator, and gives meaningful results only for the
8299 Ada-specific operators. */
8300
8301 static void
8302 ada_forward_operator_length (struct expression *exp, int pc,
8303 int *oplenp, int *argsp)
8304 {
8305 switch (exp->elts[pc].opcode)
8306 {
8307 default:
8308 *oplenp = *argsp = 0;
8309 break;
8310 #define OP_DEFN(op, len, args, binop) \
8311 case op: *oplenp = len; *argsp = args; break;
8312 ADA_OPERATORS;
8313 #undef OP_DEFN
8314 }
8315 }
8316
8317 static int
8318 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
8319 {
8320 enum exp_opcode op = exp->elts[elt].opcode;
8321 int oplen, nargs;
8322 int pc = elt;
8323 int i;
8324
8325 ada_forward_operator_length (exp, elt, &oplen, &nargs);
8326
8327 switch (op)
8328 {
8329 /* Ada attributes ('Foo). */
8330 case OP_ATR_FIRST:
8331 case OP_ATR_LAST:
8332 case OP_ATR_LENGTH:
8333 case OP_ATR_IMAGE:
8334 case OP_ATR_MAX:
8335 case OP_ATR_MIN:
8336 case OP_ATR_MODULUS:
8337 case OP_ATR_POS:
8338 case OP_ATR_SIZE:
8339 case OP_ATR_TAG:
8340 case OP_ATR_VAL:
8341 break;
8342
8343 case UNOP_IN_RANGE:
8344 case UNOP_QUAL:
8345 /* XXX: gdb_sprint_host_address, type_sprint */
8346 fprintf_filtered (stream, _("Type @"));
8347 gdb_print_host_address (exp->elts[pc + 1].type, stream);
8348 fprintf_filtered (stream, " (");
8349 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
8350 fprintf_filtered (stream, ")");
8351 break;
8352 case BINOP_IN_BOUNDS:
8353 fprintf_filtered (stream, " (%d)", (int) exp->elts[pc + 2].longconst);
8354 break;
8355 case TERNOP_IN_RANGE:
8356 break;
8357
8358 default:
8359 return dump_subexp_body_standard (exp, stream, elt);
8360 }
8361
8362 elt += oplen;
8363 for (i = 0; i < nargs; i += 1)
8364 elt = dump_subexp (exp, stream, elt);
8365
8366 return elt;
8367 }
8368
8369 /* The Ada extension of print_subexp (q.v.). */
8370
8371 static void
8372 ada_print_subexp (struct expression *exp, int *pos,
8373 struct ui_file *stream, enum precedence prec)
8374 {
8375 int oplen, nargs;
8376 int pc = *pos;
8377 enum exp_opcode op = exp->elts[pc].opcode;
8378
8379 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8380
8381 switch (op)
8382 {
8383 default:
8384 print_subexp_standard (exp, pos, stream, prec);
8385 return;
8386
8387 case OP_VAR_VALUE:
8388 *pos += oplen;
8389 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
8390 return;
8391
8392 case BINOP_IN_BOUNDS:
8393 /* XXX: sprint_subexp */
8394 *pos += oplen;
8395 print_subexp (exp, pos, stream, PREC_SUFFIX);
8396 fputs_filtered (" in ", stream);
8397 print_subexp (exp, pos, stream, PREC_SUFFIX);
8398 fputs_filtered ("'range", stream);
8399 if (exp->elts[pc + 1].longconst > 1)
8400 fprintf_filtered (stream, "(%ld)",
8401 (long) exp->elts[pc + 1].longconst);
8402 return;
8403
8404 case TERNOP_IN_RANGE:
8405 *pos += oplen;
8406 if (prec >= PREC_EQUAL)
8407 fputs_filtered ("(", stream);
8408 /* XXX: sprint_subexp */
8409 print_subexp (exp, pos, stream, PREC_SUFFIX);
8410 fputs_filtered (" in ", stream);
8411 print_subexp (exp, pos, stream, PREC_EQUAL);
8412 fputs_filtered (" .. ", stream);
8413 print_subexp (exp, pos, stream, PREC_EQUAL);
8414 if (prec >= PREC_EQUAL)
8415 fputs_filtered (")", stream);
8416 return;
8417
8418 case OP_ATR_FIRST:
8419 case OP_ATR_LAST:
8420 case OP_ATR_LENGTH:
8421 case OP_ATR_IMAGE:
8422 case OP_ATR_MAX:
8423 case OP_ATR_MIN:
8424 case OP_ATR_MODULUS:
8425 case OP_ATR_POS:
8426 case OP_ATR_SIZE:
8427 case OP_ATR_TAG:
8428 case OP_ATR_VAL:
8429 *pos += oplen;
8430 if (exp->elts[*pos].opcode == OP_TYPE)
8431 {
8432 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
8433 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
8434 *pos += 3;
8435 }
8436 else
8437 print_subexp (exp, pos, stream, PREC_SUFFIX);
8438 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
8439 if (nargs > 1)
8440 {
8441 int tem;
8442 for (tem = 1; tem < nargs; tem += 1)
8443 {
8444 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
8445 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
8446 }
8447 fputs_filtered (")", stream);
8448 }
8449 return;
8450
8451 case UNOP_QUAL:
8452 *pos += oplen;
8453 type_print (exp->elts[pc + 1].type, "", stream, 0);
8454 fputs_filtered ("'(", stream);
8455 print_subexp (exp, pos, stream, PREC_PREFIX);
8456 fputs_filtered (")", stream);
8457 return;
8458
8459 case UNOP_IN_RANGE:
8460 *pos += oplen;
8461 /* XXX: sprint_subexp */
8462 print_subexp (exp, pos, stream, PREC_SUFFIX);
8463 fputs_filtered (" in ", stream);
8464 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
8465 return;
8466 }
8467 }
8468
8469 /* Table mapping opcodes into strings for printing operators
8470 and precedences of the operators. */
8471
8472 static const struct op_print ada_op_print_tab[] = {
8473 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
8474 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
8475 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
8476 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
8477 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
8478 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
8479 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
8480 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
8481 {"<=", BINOP_LEQ, PREC_ORDER, 0},
8482 {">=", BINOP_GEQ, PREC_ORDER, 0},
8483 {">", BINOP_GTR, PREC_ORDER, 0},
8484 {"<", BINOP_LESS, PREC_ORDER, 0},
8485 {">>", BINOP_RSH, PREC_SHIFT, 0},
8486 {"<<", BINOP_LSH, PREC_SHIFT, 0},
8487 {"+", BINOP_ADD, PREC_ADD, 0},
8488 {"-", BINOP_SUB, PREC_ADD, 0},
8489 {"&", BINOP_CONCAT, PREC_ADD, 0},
8490 {"*", BINOP_MUL, PREC_MUL, 0},
8491 {"/", BINOP_DIV, PREC_MUL, 0},
8492 {"rem", BINOP_REM, PREC_MUL, 0},
8493 {"mod", BINOP_MOD, PREC_MUL, 0},
8494 {"**", BINOP_EXP, PREC_REPEAT, 0},
8495 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
8496 {"-", UNOP_NEG, PREC_PREFIX, 0},
8497 {"+", UNOP_PLUS, PREC_PREFIX, 0},
8498 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
8499 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
8500 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
8501 {".all", UNOP_IND, PREC_SUFFIX, 1},
8502 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
8503 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
8504 {NULL, 0, 0, 0}
8505 };
8506 \f
8507 /* Fundamental Ada Types */
8508
8509 /* Create a fundamental Ada type using default reasonable for the current
8510 target machine.
8511
8512 Some object/debugging file formats (DWARF version 1, COFF, etc) do not
8513 define fundamental types such as "int" or "double". Others (stabs or
8514 DWARF version 2, etc) do define fundamental types. For the formats which
8515 don't provide fundamental types, gdb can create such types using this
8516 function.
8517
8518 FIXME: Some compilers distinguish explicitly signed integral types
8519 (signed short, signed int, signed long) from "regular" integral types
8520 (short, int, long) in the debugging information. There is some dis-
8521 agreement as to how useful this feature is. In particular, gcc does
8522 not support this. Also, only some debugging formats allow the
8523 distinction to be passed on to a debugger. For now, we always just
8524 use "short", "int", or "long" as the type name, for both the implicit
8525 and explicitly signed types. This also makes life easier for the
8526 gdb test suite since we don't have to account for the differences
8527 in output depending upon what the compiler and debugging format
8528 support. We will probably have to re-examine the issue when gdb
8529 starts taking it's fundamental type information directly from the
8530 debugging information supplied by the compiler. fnf@cygnus.com */
8531
8532 static struct type *
8533 ada_create_fundamental_type (struct objfile *objfile, int typeid)
8534 {
8535 struct type *type = NULL;
8536
8537 switch (typeid)
8538 {
8539 default:
8540 /* FIXME: For now, if we are asked to produce a type not in this
8541 language, create the equivalent of a C integer type with the
8542 name "<?type?>". When all the dust settles from the type
8543 reconstruction work, this should probably become an error. */
8544 type = init_type (TYPE_CODE_INT,
8545 TARGET_INT_BIT / TARGET_CHAR_BIT,
8546 0, "<?type?>", objfile);
8547 warning (_("internal error: no Ada fundamental type %d"), typeid);
8548 break;
8549 case FT_VOID:
8550 type = init_type (TYPE_CODE_VOID,
8551 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8552 0, "void", objfile);
8553 break;
8554 case FT_CHAR:
8555 type = init_type (TYPE_CODE_INT,
8556 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8557 0, "character", objfile);
8558 break;
8559 case FT_SIGNED_CHAR:
8560 type = init_type (TYPE_CODE_INT,
8561 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8562 0, "signed char", objfile);
8563 break;
8564 case FT_UNSIGNED_CHAR:
8565 type = init_type (TYPE_CODE_INT,
8566 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8567 TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
8568 break;
8569 case FT_SHORT:
8570 type = init_type (TYPE_CODE_INT,
8571 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
8572 0, "short_integer", objfile);
8573 break;
8574 case FT_SIGNED_SHORT:
8575 type = init_type (TYPE_CODE_INT,
8576 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
8577 0, "short_integer", objfile);
8578 break;
8579 case FT_UNSIGNED_SHORT:
8580 type = init_type (TYPE_CODE_INT,
8581 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
8582 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
8583 break;
8584 case FT_INTEGER:
8585 type = init_type (TYPE_CODE_INT,
8586 TARGET_INT_BIT / TARGET_CHAR_BIT,
8587 0, "integer", objfile);
8588 break;
8589 case FT_SIGNED_INTEGER:
8590 type = init_type (TYPE_CODE_INT, TARGET_INT_BIT /
8591 TARGET_CHAR_BIT,
8592 0, "integer", objfile); /* FIXME -fnf */
8593 break;
8594 case FT_UNSIGNED_INTEGER:
8595 type = init_type (TYPE_CODE_INT,
8596 TARGET_INT_BIT / TARGET_CHAR_BIT,
8597 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
8598 break;
8599 case FT_LONG:
8600 type = init_type (TYPE_CODE_INT,
8601 TARGET_LONG_BIT / TARGET_CHAR_BIT,
8602 0, "long_integer", objfile);
8603 break;
8604 case FT_SIGNED_LONG:
8605 type = init_type (TYPE_CODE_INT,
8606 TARGET_LONG_BIT / TARGET_CHAR_BIT,
8607 0, "long_integer", objfile);
8608 break;
8609 case FT_UNSIGNED_LONG:
8610 type = init_type (TYPE_CODE_INT,
8611 TARGET_LONG_BIT / TARGET_CHAR_BIT,
8612 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
8613 break;
8614 case FT_LONG_LONG:
8615 type = init_type (TYPE_CODE_INT,
8616 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
8617 0, "long_long_integer", objfile);
8618 break;
8619 case FT_SIGNED_LONG_LONG:
8620 type = init_type (TYPE_CODE_INT,
8621 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
8622 0, "long_long_integer", objfile);
8623 break;
8624 case FT_UNSIGNED_LONG_LONG:
8625 type = init_type (TYPE_CODE_INT,
8626 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
8627 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
8628 break;
8629 case FT_FLOAT:
8630 type = init_type (TYPE_CODE_FLT,
8631 TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
8632 0, "float", objfile);
8633 break;
8634 case FT_DBL_PREC_FLOAT:
8635 type = init_type (TYPE_CODE_FLT,
8636 TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
8637 0, "long_float", objfile);
8638 break;
8639 case FT_EXT_PREC_FLOAT:
8640 type = init_type (TYPE_CODE_FLT,
8641 TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
8642 0, "long_long_float", objfile);
8643 break;
8644 }
8645 return (type);
8646 }
8647
8648 enum ada_primitive_types {
8649 ada_primitive_type_int,
8650 ada_primitive_type_long,
8651 ada_primitive_type_short,
8652 ada_primitive_type_char,
8653 ada_primitive_type_float,
8654 ada_primitive_type_double,
8655 ada_primitive_type_void,
8656 ada_primitive_type_long_long,
8657 ada_primitive_type_long_double,
8658 ada_primitive_type_natural,
8659 ada_primitive_type_positive,
8660 ada_primitive_type_system_address,
8661 nr_ada_primitive_types
8662 };
8663
8664 static void
8665 ada_language_arch_info (struct gdbarch *current_gdbarch,
8666 struct language_arch_info *lai)
8667 {
8668 const struct builtin_type *builtin = builtin_type (current_gdbarch);
8669 lai->primitive_type_vector
8670 = GDBARCH_OBSTACK_CALLOC (current_gdbarch, nr_ada_primitive_types + 1,
8671 struct type *);
8672 lai->primitive_type_vector [ada_primitive_type_int] =
8673 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
8674 0, "integer", (struct objfile *) NULL);
8675 lai->primitive_type_vector [ada_primitive_type_long] =
8676 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
8677 0, "long_integer", (struct objfile *) NULL);
8678 lai->primitive_type_vector [ada_primitive_type_short] =
8679 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
8680 0, "short_integer", (struct objfile *) NULL);
8681 lai->string_char_type =
8682 lai->primitive_type_vector [ada_primitive_type_char] =
8683 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8684 0, "character", (struct objfile *) NULL);
8685 lai->primitive_type_vector [ada_primitive_type_float] =
8686 init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
8687 0, "float", (struct objfile *) NULL);
8688 lai->primitive_type_vector [ada_primitive_type_double] =
8689 init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
8690 0, "long_float", (struct objfile *) NULL);
8691 lai->primitive_type_vector [ada_primitive_type_long_long] =
8692 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
8693 0, "long_long_integer", (struct objfile *) NULL);
8694 lai->primitive_type_vector [ada_primitive_type_long_double] =
8695 init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
8696 0, "long_long_float", (struct objfile *) NULL);
8697 lai->primitive_type_vector [ada_primitive_type_natural] =
8698 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
8699 0, "natural", (struct objfile *) NULL);
8700 lai->primitive_type_vector [ada_primitive_type_positive] =
8701 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
8702 0, "positive", (struct objfile *) NULL);
8703 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
8704
8705 lai->primitive_type_vector [ada_primitive_type_system_address] =
8706 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
8707 (struct objfile *) NULL));
8708 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
8709 = "system__address";
8710 }
8711 \f
8712 /* Language vector */
8713
8714 /* Not really used, but needed in the ada_language_defn. */
8715
8716 static void
8717 emit_char (int c, struct ui_file *stream, int quoter)
8718 {
8719 ada_emit_char (c, stream, quoter, 1);
8720 }
8721
8722 static int
8723 parse (void)
8724 {
8725 warnings_issued = 0;
8726 return ada_parse ();
8727 }
8728
8729 static const struct exp_descriptor ada_exp_descriptor = {
8730 ada_print_subexp,
8731 ada_operator_length,
8732 ada_op_name,
8733 ada_dump_subexp_body,
8734 ada_evaluate_subexp
8735 };
8736
8737 const struct language_defn ada_language_defn = {
8738 "ada", /* Language name */
8739 language_ada,
8740 NULL,
8741 range_check_off,
8742 type_check_off,
8743 case_sensitive_on, /* Yes, Ada is case-insensitive, but
8744 that's not quite what this means. */
8745 array_row_major,
8746 &ada_exp_descriptor,
8747 parse,
8748 ada_error,
8749 resolve,
8750 ada_printchar, /* Print a character constant */
8751 ada_printstr, /* Function to print string constant */
8752 emit_char, /* Function to print single char (not used) */
8753 ada_create_fundamental_type, /* Create fundamental type in this language */
8754 ada_print_type, /* Print a type using appropriate syntax */
8755 ada_val_print, /* Print a value using appropriate syntax */
8756 ada_value_print, /* Print a top-level value */
8757 NULL, /* Language specific skip_trampoline */
8758 NULL, /* value_of_this */
8759 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
8760 basic_lookup_transparent_type, /* lookup_transparent_type */
8761 ada_la_decode, /* Language specific symbol demangler */
8762 NULL, /* Language specific class_name_from_physname */
8763 ada_op_print_tab, /* expression operators for printing */
8764 0, /* c-style arrays */
8765 1, /* String lower bound */
8766 NULL,
8767 ada_get_gdb_completer_word_break_characters,
8768 ada_language_arch_info,
8769 LANG_MAGIC
8770 };
8771
8772 void
8773 _initialize_ada_language (void)
8774 {
8775 add_language (&ada_language_defn);
8776
8777 varsize_limit = 65536;
8778
8779 obstack_init (&symbol_list_obstack);
8780
8781 decoded_names_store = htab_create_alloc
8782 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
8783 NULL, xcalloc, xfree);
8784 }
This page took 0.216405 seconds and 4 git commands to generate.