Fix racy tests in gdb.base/setshow.exp
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60
61 #include "psymtab.h"
62 #include "value.h"
63 #include "mi/mi-common.h"
64
65 /* Define whether or not the C operator '/' truncates towards zero for
66 differently signed operands (truncation direction is undefined in C).
67 Copied from valarith.c. */
68
69 #ifndef TRUNCATION_TOWARDS_ZERO
70 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
71 #endif
72
73 static struct type *desc_base_type (struct type *);
74
75 static struct type *desc_bounds_type (struct type *);
76
77 static struct value *desc_bounds (struct value *);
78
79 static int fat_pntr_bounds_bitpos (struct type *);
80
81 static int fat_pntr_bounds_bitsize (struct type *);
82
83 static struct type *desc_data_target_type (struct type *);
84
85 static struct value *desc_data (struct value *);
86
87 static int fat_pntr_data_bitpos (struct type *);
88
89 static int fat_pntr_data_bitsize (struct type *);
90
91 static struct value *desc_one_bound (struct value *, int, int);
92
93 static int desc_bound_bitpos (struct type *, int, int);
94
95 static int desc_bound_bitsize (struct type *, int, int);
96
97 static struct type *desc_index_type (struct type *, int);
98
99 static int desc_arity (struct type *);
100
101 static int ada_type_match (struct type *, struct type *, int);
102
103 static int ada_args_match (struct symbol *, struct value **, int);
104
105 static int full_match (const char *, const char *);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 struct block *, const char *,
111 domain_enum, struct objfile *, int);
112
113 static int is_nonfunction (struct ada_symbol_info *, int);
114
115 static void add_defn_to_vec (struct obstack *, struct symbol *,
116 struct block *);
117
118 static int num_defns_collected (struct obstack *);
119
120 static struct ada_symbol_info *defns_collected (struct obstack *, int);
121
122 static struct value *resolve_subexp (struct expression **, int *, int,
123 struct type *);
124
125 static void replace_operator_with_call (struct expression **, int, int, int,
126 struct symbol *, struct block *);
127
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130 static char *ada_op_name (enum exp_opcode);
131
132 static const char *ada_decoded_op_name (enum exp_opcode);
133
134 static int numeric_type_p (struct type *);
135
136 static int integer_type_p (struct type *);
137
138 static int scalar_type_p (struct type *);
139
140 static int discrete_type_p (struct type *);
141
142 static enum ada_renaming_category parse_old_style_renaming (struct type *,
143 const char **,
144 int *,
145 const char **);
146
147 static struct symbol *find_old_style_renaming_symbol (const char *,
148 struct block *);
149
150 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
151 int, int, int *);
152
153 static struct value *evaluate_subexp_type (struct expression *, int *);
154
155 static struct type *ada_find_parallel_type_with_name (struct type *,
156 const char *);
157
158 static int is_dynamic_field (struct type *, int);
159
160 static struct type *to_fixed_variant_branch_type (struct type *,
161 const gdb_byte *,
162 CORE_ADDR, struct value *);
163
164 static struct type *to_fixed_array_type (struct type *, struct value *, int);
165
166 static struct type *to_fixed_range_type (struct type *, struct value *);
167
168 static struct type *to_static_fixed_type (struct type *);
169 static struct type *static_unwrap_type (struct type *type);
170
171 static struct value *unwrap_value (struct value *);
172
173 static struct type *constrained_packed_array_type (struct type *, long *);
174
175 static struct type *decode_constrained_packed_array_type (struct type *);
176
177 static long decode_packed_array_bitsize (struct type *);
178
179 static struct value *decode_constrained_packed_array (struct value *);
180
181 static int ada_is_packed_array_type (struct type *);
182
183 static int ada_is_unconstrained_packed_array_type (struct type *);
184
185 static struct value *value_subscript_packed (struct value *, int,
186 struct value **);
187
188 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
189
190 static struct value *coerce_unspec_val_to_type (struct value *,
191 struct type *);
192
193 static struct value *get_var_value (char *, char *);
194
195 static int lesseq_defined_than (struct symbol *, struct symbol *);
196
197 static int equiv_types (struct type *, struct type *);
198
199 static int is_name_suffix (const char *);
200
201 static int advance_wild_match (const char **, const char *, int);
202
203 static int wild_match (const char *, const char *);
204
205 static struct value *ada_coerce_ref (struct value *);
206
207 static LONGEST pos_atr (struct value *);
208
209 static struct value *value_pos_atr (struct type *, struct value *);
210
211 static struct value *value_val_atr (struct type *, struct value *);
212
213 static struct symbol *standard_lookup (const char *, const struct block *,
214 domain_enum);
215
216 static struct value *ada_search_struct_field (char *, struct value *, int,
217 struct type *);
218
219 static struct value *ada_value_primitive_field (struct value *, int, int,
220 struct type *);
221
222 static int find_struct_field (char *, struct type *, int,
223 struct type **, int *, int *, int *, int *);
224
225 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
226 struct value *);
227
228 static int ada_resolve_function (struct ada_symbol_info *, int,
229 struct value **, int, const char *,
230 struct type *);
231
232 static int ada_is_direct_array_type (struct type *);
233
234 static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
236
237 static void check_size (const struct type *);
238
239 static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242 static struct value *assign_aggregate (struct value *, struct value *,
243 struct expression *,
244 int *, enum noside);
245
246 static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251 static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257 static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268 static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
270 \f
271
272
273 /* Maximum-sized dynamic type. */
274 static unsigned int varsize_limit;
275
276 /* FIXME: brobecker/2003-09-17: No longer a const because it is
277 returned by a function that does not return a const char *. */
278 static char *ada_completer_word_break_characters =
279 #ifdef VMS
280 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
281 #else
282 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
283 #endif
284
285 /* The name of the symbol to use to get the name of the main subprogram. */
286 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
287 = "__gnat_ada_main_program_name";
288
289 /* Limit on the number of warnings to raise per expression evaluation. */
290 static int warning_limit = 2;
291
292 /* Number of warning messages issued; reset to 0 by cleanups after
293 expression evaluation. */
294 static int warnings_issued = 0;
295
296 static const char *known_runtime_file_name_patterns[] = {
297 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
298 };
299
300 static const char *known_auxiliary_function_name_patterns[] = {
301 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
302 };
303
304 /* Space for allocating results of ada_lookup_symbol_list. */
305 static struct obstack symbol_list_obstack;
306
307 /* Inferior-specific data. */
308
309 /* Per-inferior data for this module. */
310
311 struct ada_inferior_data
312 {
313 /* The ada__tags__type_specific_data type, which is used when decoding
314 tagged types. With older versions of GNAT, this type was directly
315 accessible through a component ("tsd") in the object tag. But this
316 is no longer the case, so we cache it for each inferior. */
317 struct type *tsd_type;
318 };
319
320 /* Our key to this module's inferior data. */
321 static const struct inferior_data *ada_inferior_data;
322
323 /* A cleanup routine for our inferior data. */
324 static void
325 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
326 {
327 struct ada_inferior_data *data;
328
329 data = inferior_data (inf, ada_inferior_data);
330 if (data != NULL)
331 xfree (data);
332 }
333
334 /* Return our inferior data for the given inferior (INF).
335
336 This function always returns a valid pointer to an allocated
337 ada_inferior_data structure. If INF's inferior data has not
338 been previously set, this functions creates a new one with all
339 fields set to zero, sets INF's inferior to it, and then returns
340 a pointer to that newly allocated ada_inferior_data. */
341
342 static struct ada_inferior_data *
343 get_ada_inferior_data (struct inferior *inf)
344 {
345 struct ada_inferior_data *data;
346
347 data = inferior_data (inf, ada_inferior_data);
348 if (data == NULL)
349 {
350 data = XZALLOC (struct ada_inferior_data);
351 set_inferior_data (inf, ada_inferior_data, data);
352 }
353
354 return data;
355 }
356
357 /* Perform all necessary cleanups regarding our module's inferior data
358 that is required after the inferior INF just exited. */
359
360 static void
361 ada_inferior_exit (struct inferior *inf)
362 {
363 ada_inferior_data_cleanup (inf, NULL);
364 set_inferior_data (inf, ada_inferior_data, NULL);
365 }
366
367 /* Utilities */
368
369 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
370 all typedef layers have been peeled. Otherwise, return TYPE.
371
372 Normally, we really expect a typedef type to only have 1 typedef layer.
373 In other words, we really expect the target type of a typedef type to be
374 a non-typedef type. This is particularly true for Ada units, because
375 the language does not have a typedef vs not-typedef distinction.
376 In that respect, the Ada compiler has been trying to eliminate as many
377 typedef definitions in the debugging information, since they generally
378 do not bring any extra information (we still use typedef under certain
379 circumstances related mostly to the GNAT encoding).
380
381 Unfortunately, we have seen situations where the debugging information
382 generated by the compiler leads to such multiple typedef layers. For
383 instance, consider the following example with stabs:
384
385 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
386 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
387
388 This is an error in the debugging information which causes type
389 pck__float_array___XUP to be defined twice, and the second time,
390 it is defined as a typedef of a typedef.
391
392 This is on the fringe of legality as far as debugging information is
393 concerned, and certainly unexpected. But it is easy to handle these
394 situations correctly, so we can afford to be lenient in this case. */
395
396 static struct type *
397 ada_typedef_target_type (struct type *type)
398 {
399 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
400 type = TYPE_TARGET_TYPE (type);
401 return type;
402 }
403
404 /* Given DECODED_NAME a string holding a symbol name in its
405 decoded form (ie using the Ada dotted notation), returns
406 its unqualified name. */
407
408 static const char *
409 ada_unqualified_name (const char *decoded_name)
410 {
411 const char *result = strrchr (decoded_name, '.');
412
413 if (result != NULL)
414 result++; /* Skip the dot... */
415 else
416 result = decoded_name;
417
418 return result;
419 }
420
421 /* Return a string starting with '<', followed by STR, and '>'.
422 The result is good until the next call. */
423
424 static char *
425 add_angle_brackets (const char *str)
426 {
427 static char *result = NULL;
428
429 xfree (result);
430 result = xstrprintf ("<%s>", str);
431 return result;
432 }
433
434 static char *
435 ada_get_gdb_completer_word_break_characters (void)
436 {
437 return ada_completer_word_break_characters;
438 }
439
440 /* Print an array element index using the Ada syntax. */
441
442 static void
443 ada_print_array_index (struct value *index_value, struct ui_file *stream,
444 const struct value_print_options *options)
445 {
446 LA_VALUE_PRINT (index_value, stream, options);
447 fprintf_filtered (stream, " => ");
448 }
449
450 /* Assuming VECT points to an array of *SIZE objects of size
451 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
452 updating *SIZE as necessary and returning the (new) array. */
453
454 void *
455 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
456 {
457 if (*size < min_size)
458 {
459 *size *= 2;
460 if (*size < min_size)
461 *size = min_size;
462 vect = xrealloc (vect, *size * element_size);
463 }
464 return vect;
465 }
466
467 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
468 suffix of FIELD_NAME beginning "___". */
469
470 static int
471 field_name_match (const char *field_name, const char *target)
472 {
473 int len = strlen (target);
474
475 return
476 (strncmp (field_name, target, len) == 0
477 && (field_name[len] == '\0'
478 || (strncmp (field_name + len, "___", 3) == 0
479 && strcmp (field_name + strlen (field_name) - 6,
480 "___XVN") != 0)));
481 }
482
483
484 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
485 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
486 and return its index. This function also handles fields whose name
487 have ___ suffixes because the compiler sometimes alters their name
488 by adding such a suffix to represent fields with certain constraints.
489 If the field could not be found, return a negative number if
490 MAYBE_MISSING is set. Otherwise raise an error. */
491
492 int
493 ada_get_field_index (const struct type *type, const char *field_name,
494 int maybe_missing)
495 {
496 int fieldno;
497 struct type *struct_type = check_typedef ((struct type *) type);
498
499 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
500 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
501 return fieldno;
502
503 if (!maybe_missing)
504 error (_("Unable to find field %s in struct %s. Aborting"),
505 field_name, TYPE_NAME (struct_type));
506
507 return -1;
508 }
509
510 /* The length of the prefix of NAME prior to any "___" suffix. */
511
512 int
513 ada_name_prefix_len (const char *name)
514 {
515 if (name == NULL)
516 return 0;
517 else
518 {
519 const char *p = strstr (name, "___");
520
521 if (p == NULL)
522 return strlen (name);
523 else
524 return p - name;
525 }
526 }
527
528 /* Return non-zero if SUFFIX is a suffix of STR.
529 Return zero if STR is null. */
530
531 static int
532 is_suffix (const char *str, const char *suffix)
533 {
534 int len1, len2;
535
536 if (str == NULL)
537 return 0;
538 len1 = strlen (str);
539 len2 = strlen (suffix);
540 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
541 }
542
543 /* The contents of value VAL, treated as a value of type TYPE. The
544 result is an lval in memory if VAL is. */
545
546 static struct value *
547 coerce_unspec_val_to_type (struct value *val, struct type *type)
548 {
549 type = ada_check_typedef (type);
550 if (value_type (val) == type)
551 return val;
552 else
553 {
554 struct value *result;
555
556 /* Make sure that the object size is not unreasonable before
557 trying to allocate some memory for it. */
558 check_size (type);
559
560 if (value_lazy (val)
561 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
562 result = allocate_value_lazy (type);
563 else
564 {
565 result = allocate_value (type);
566 memcpy (value_contents_raw (result), value_contents (val),
567 TYPE_LENGTH (type));
568 }
569 set_value_component_location (result, val);
570 set_value_bitsize (result, value_bitsize (val));
571 set_value_bitpos (result, value_bitpos (val));
572 set_value_address (result, value_address (val));
573 return result;
574 }
575 }
576
577 static const gdb_byte *
578 cond_offset_host (const gdb_byte *valaddr, long offset)
579 {
580 if (valaddr == NULL)
581 return NULL;
582 else
583 return valaddr + offset;
584 }
585
586 static CORE_ADDR
587 cond_offset_target (CORE_ADDR address, long offset)
588 {
589 if (address == 0)
590 return 0;
591 else
592 return address + offset;
593 }
594
595 /* Issue a warning (as for the definition of warning in utils.c, but
596 with exactly one argument rather than ...), unless the limit on the
597 number of warnings has passed during the evaluation of the current
598 expression. */
599
600 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
601 provided by "complaint". */
602 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
603
604 static void
605 lim_warning (const char *format, ...)
606 {
607 va_list args;
608
609 va_start (args, format);
610 warnings_issued += 1;
611 if (warnings_issued <= warning_limit)
612 vwarning (format, args);
613
614 va_end (args);
615 }
616
617 /* Issue an error if the size of an object of type T is unreasonable,
618 i.e. if it would be a bad idea to allocate a value of this type in
619 GDB. */
620
621 static void
622 check_size (const struct type *type)
623 {
624 if (TYPE_LENGTH (type) > varsize_limit)
625 error (_("object size is larger than varsize-limit"));
626 }
627
628 /* Maximum value of a SIZE-byte signed integer type. */
629 static LONGEST
630 max_of_size (int size)
631 {
632 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
633
634 return top_bit | (top_bit - 1);
635 }
636
637 /* Minimum value of a SIZE-byte signed integer type. */
638 static LONGEST
639 min_of_size (int size)
640 {
641 return -max_of_size (size) - 1;
642 }
643
644 /* Maximum value of a SIZE-byte unsigned integer type. */
645 static ULONGEST
646 umax_of_size (int size)
647 {
648 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
649
650 return top_bit | (top_bit - 1);
651 }
652
653 /* Maximum value of integral type T, as a signed quantity. */
654 static LONGEST
655 max_of_type (struct type *t)
656 {
657 if (TYPE_UNSIGNED (t))
658 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
659 else
660 return max_of_size (TYPE_LENGTH (t));
661 }
662
663 /* Minimum value of integral type T, as a signed quantity. */
664 static LONGEST
665 min_of_type (struct type *t)
666 {
667 if (TYPE_UNSIGNED (t))
668 return 0;
669 else
670 return min_of_size (TYPE_LENGTH (t));
671 }
672
673 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
674 LONGEST
675 ada_discrete_type_high_bound (struct type *type)
676 {
677 switch (TYPE_CODE (type))
678 {
679 case TYPE_CODE_RANGE:
680 return TYPE_HIGH_BOUND (type);
681 case TYPE_CODE_ENUM:
682 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
683 case TYPE_CODE_BOOL:
684 return 1;
685 case TYPE_CODE_CHAR:
686 case TYPE_CODE_INT:
687 return max_of_type (type);
688 default:
689 error (_("Unexpected type in ada_discrete_type_high_bound."));
690 }
691 }
692
693 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
694 LONGEST
695 ada_discrete_type_low_bound (struct type *type)
696 {
697 switch (TYPE_CODE (type))
698 {
699 case TYPE_CODE_RANGE:
700 return TYPE_LOW_BOUND (type);
701 case TYPE_CODE_ENUM:
702 return TYPE_FIELD_BITPOS (type, 0);
703 case TYPE_CODE_BOOL:
704 return 0;
705 case TYPE_CODE_CHAR:
706 case TYPE_CODE_INT:
707 return min_of_type (type);
708 default:
709 error (_("Unexpected type in ada_discrete_type_low_bound."));
710 }
711 }
712
713 /* The identity on non-range types. For range types, the underlying
714 non-range scalar type. */
715
716 static struct type *
717 base_type (struct type *type)
718 {
719 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
720 {
721 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
722 return type;
723 type = TYPE_TARGET_TYPE (type);
724 }
725 return type;
726 }
727 \f
728
729 /* Language Selection */
730
731 /* If the main program is in Ada, return language_ada, otherwise return LANG
732 (the main program is in Ada iif the adainit symbol is found). */
733
734 enum language
735 ada_update_initial_language (enum language lang)
736 {
737 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
738 (struct objfile *) NULL) != NULL)
739 return language_ada;
740
741 return lang;
742 }
743
744 /* If the main procedure is written in Ada, then return its name.
745 The result is good until the next call. Return NULL if the main
746 procedure doesn't appear to be in Ada. */
747
748 char *
749 ada_main_name (void)
750 {
751 struct minimal_symbol *msym;
752 static char *main_program_name = NULL;
753
754 /* For Ada, the name of the main procedure is stored in a specific
755 string constant, generated by the binder. Look for that symbol,
756 extract its address, and then read that string. If we didn't find
757 that string, then most probably the main procedure is not written
758 in Ada. */
759 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
760
761 if (msym != NULL)
762 {
763 CORE_ADDR main_program_name_addr;
764 int err_code;
765
766 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
767 if (main_program_name_addr == 0)
768 error (_("Invalid address for Ada main program name."));
769
770 xfree (main_program_name);
771 target_read_string (main_program_name_addr, &main_program_name,
772 1024, &err_code);
773
774 if (err_code != 0)
775 return NULL;
776 return main_program_name;
777 }
778
779 /* The main procedure doesn't seem to be in Ada. */
780 return NULL;
781 }
782 \f
783 /* Symbols */
784
785 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
786 of NULLs. */
787
788 const struct ada_opname_map ada_opname_table[] = {
789 {"Oadd", "\"+\"", BINOP_ADD},
790 {"Osubtract", "\"-\"", BINOP_SUB},
791 {"Omultiply", "\"*\"", BINOP_MUL},
792 {"Odivide", "\"/\"", BINOP_DIV},
793 {"Omod", "\"mod\"", BINOP_MOD},
794 {"Orem", "\"rem\"", BINOP_REM},
795 {"Oexpon", "\"**\"", BINOP_EXP},
796 {"Olt", "\"<\"", BINOP_LESS},
797 {"Ole", "\"<=\"", BINOP_LEQ},
798 {"Ogt", "\">\"", BINOP_GTR},
799 {"Oge", "\">=\"", BINOP_GEQ},
800 {"Oeq", "\"=\"", BINOP_EQUAL},
801 {"One", "\"/=\"", BINOP_NOTEQUAL},
802 {"Oand", "\"and\"", BINOP_BITWISE_AND},
803 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
804 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
805 {"Oconcat", "\"&\"", BINOP_CONCAT},
806 {"Oabs", "\"abs\"", UNOP_ABS},
807 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
808 {"Oadd", "\"+\"", UNOP_PLUS},
809 {"Osubtract", "\"-\"", UNOP_NEG},
810 {NULL, NULL}
811 };
812
813 /* The "encoded" form of DECODED, according to GNAT conventions.
814 The result is valid until the next call to ada_encode. */
815
816 char *
817 ada_encode (const char *decoded)
818 {
819 static char *encoding_buffer = NULL;
820 static size_t encoding_buffer_size = 0;
821 const char *p;
822 int k;
823
824 if (decoded == NULL)
825 return NULL;
826
827 GROW_VECT (encoding_buffer, encoding_buffer_size,
828 2 * strlen (decoded) + 10);
829
830 k = 0;
831 for (p = decoded; *p != '\0'; p += 1)
832 {
833 if (*p == '.')
834 {
835 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
836 k += 2;
837 }
838 else if (*p == '"')
839 {
840 const struct ada_opname_map *mapping;
841
842 for (mapping = ada_opname_table;
843 mapping->encoded != NULL
844 && strncmp (mapping->decoded, p,
845 strlen (mapping->decoded)) != 0; mapping += 1)
846 ;
847 if (mapping->encoded == NULL)
848 error (_("invalid Ada operator name: %s"), p);
849 strcpy (encoding_buffer + k, mapping->encoded);
850 k += strlen (mapping->encoded);
851 break;
852 }
853 else
854 {
855 encoding_buffer[k] = *p;
856 k += 1;
857 }
858 }
859
860 encoding_buffer[k] = '\0';
861 return encoding_buffer;
862 }
863
864 /* Return NAME folded to lower case, or, if surrounded by single
865 quotes, unfolded, but with the quotes stripped away. Result good
866 to next call. */
867
868 char *
869 ada_fold_name (const char *name)
870 {
871 static char *fold_buffer = NULL;
872 static size_t fold_buffer_size = 0;
873
874 int len = strlen (name);
875 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
876
877 if (name[0] == '\'')
878 {
879 strncpy (fold_buffer, name + 1, len - 2);
880 fold_buffer[len - 2] = '\000';
881 }
882 else
883 {
884 int i;
885
886 for (i = 0; i <= len; i += 1)
887 fold_buffer[i] = tolower (name[i]);
888 }
889
890 return fold_buffer;
891 }
892
893 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
894
895 static int
896 is_lower_alphanum (const char c)
897 {
898 return (isdigit (c) || (isalpha (c) && islower (c)));
899 }
900
901 /* Remove either of these suffixes:
902 . .{DIGIT}+
903 . ${DIGIT}+
904 . ___{DIGIT}+
905 . __{DIGIT}+.
906 These are suffixes introduced by the compiler for entities such as
907 nested subprogram for instance, in order to avoid name clashes.
908 They do not serve any purpose for the debugger. */
909
910 static void
911 ada_remove_trailing_digits (const char *encoded, int *len)
912 {
913 if (*len > 1 && isdigit (encoded[*len - 1]))
914 {
915 int i = *len - 2;
916
917 while (i > 0 && isdigit (encoded[i]))
918 i--;
919 if (i >= 0 && encoded[i] == '.')
920 *len = i;
921 else if (i >= 0 && encoded[i] == '$')
922 *len = i;
923 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
924 *len = i - 2;
925 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
926 *len = i - 1;
927 }
928 }
929
930 /* Remove the suffix introduced by the compiler for protected object
931 subprograms. */
932
933 static void
934 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
935 {
936 /* Remove trailing N. */
937
938 /* Protected entry subprograms are broken into two
939 separate subprograms: The first one is unprotected, and has
940 a 'N' suffix; the second is the protected version, and has
941 the 'P' suffix. The second calls the first one after handling
942 the protection. Since the P subprograms are internally generated,
943 we leave these names undecoded, giving the user a clue that this
944 entity is internal. */
945
946 if (*len > 1
947 && encoded[*len - 1] == 'N'
948 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
949 *len = *len - 1;
950 }
951
952 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
953
954 static void
955 ada_remove_Xbn_suffix (const char *encoded, int *len)
956 {
957 int i = *len - 1;
958
959 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
960 i--;
961
962 if (encoded[i] != 'X')
963 return;
964
965 if (i == 0)
966 return;
967
968 if (isalnum (encoded[i-1]))
969 *len = i;
970 }
971
972 /* If ENCODED follows the GNAT entity encoding conventions, then return
973 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
974 replaced by ENCODED.
975
976 The resulting string is valid until the next call of ada_decode.
977 If the string is unchanged by decoding, the original string pointer
978 is returned. */
979
980 const char *
981 ada_decode (const char *encoded)
982 {
983 int i, j;
984 int len0;
985 const char *p;
986 char *decoded;
987 int at_start_name;
988 static char *decoding_buffer = NULL;
989 static size_t decoding_buffer_size = 0;
990
991 /* The name of the Ada main procedure starts with "_ada_".
992 This prefix is not part of the decoded name, so skip this part
993 if we see this prefix. */
994 if (strncmp (encoded, "_ada_", 5) == 0)
995 encoded += 5;
996
997 /* If the name starts with '_', then it is not a properly encoded
998 name, so do not attempt to decode it. Similarly, if the name
999 starts with '<', the name should not be decoded. */
1000 if (encoded[0] == '_' || encoded[0] == '<')
1001 goto Suppress;
1002
1003 len0 = strlen (encoded);
1004
1005 ada_remove_trailing_digits (encoded, &len0);
1006 ada_remove_po_subprogram_suffix (encoded, &len0);
1007
1008 /* Remove the ___X.* suffix if present. Do not forget to verify that
1009 the suffix is located before the current "end" of ENCODED. We want
1010 to avoid re-matching parts of ENCODED that have previously been
1011 marked as discarded (by decrementing LEN0). */
1012 p = strstr (encoded, "___");
1013 if (p != NULL && p - encoded < len0 - 3)
1014 {
1015 if (p[3] == 'X')
1016 len0 = p - encoded;
1017 else
1018 goto Suppress;
1019 }
1020
1021 /* Remove any trailing TKB suffix. It tells us that this symbol
1022 is for the body of a task, but that information does not actually
1023 appear in the decoded name. */
1024
1025 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1026 len0 -= 3;
1027
1028 /* Remove any trailing TB suffix. The TB suffix is slightly different
1029 from the TKB suffix because it is used for non-anonymous task
1030 bodies. */
1031
1032 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1033 len0 -= 2;
1034
1035 /* Remove trailing "B" suffixes. */
1036 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1037
1038 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1039 len0 -= 1;
1040
1041 /* Make decoded big enough for possible expansion by operator name. */
1042
1043 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1044 decoded = decoding_buffer;
1045
1046 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1047
1048 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1049 {
1050 i = len0 - 2;
1051 while ((i >= 0 && isdigit (encoded[i]))
1052 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1053 i -= 1;
1054 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1055 len0 = i - 1;
1056 else if (encoded[i] == '$')
1057 len0 = i;
1058 }
1059
1060 /* The first few characters that are not alphabetic are not part
1061 of any encoding we use, so we can copy them over verbatim. */
1062
1063 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1064 decoded[j] = encoded[i];
1065
1066 at_start_name = 1;
1067 while (i < len0)
1068 {
1069 /* Is this a symbol function? */
1070 if (at_start_name && encoded[i] == 'O')
1071 {
1072 int k;
1073
1074 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1075 {
1076 int op_len = strlen (ada_opname_table[k].encoded);
1077 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1078 op_len - 1) == 0)
1079 && !isalnum (encoded[i + op_len]))
1080 {
1081 strcpy (decoded + j, ada_opname_table[k].decoded);
1082 at_start_name = 0;
1083 i += op_len;
1084 j += strlen (ada_opname_table[k].decoded);
1085 break;
1086 }
1087 }
1088 if (ada_opname_table[k].encoded != NULL)
1089 continue;
1090 }
1091 at_start_name = 0;
1092
1093 /* Replace "TK__" with "__", which will eventually be translated
1094 into "." (just below). */
1095
1096 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1097 i += 2;
1098
1099 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1100 be translated into "." (just below). These are internal names
1101 generated for anonymous blocks inside which our symbol is nested. */
1102
1103 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1104 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1105 && isdigit (encoded [i+4]))
1106 {
1107 int k = i + 5;
1108
1109 while (k < len0 && isdigit (encoded[k]))
1110 k++; /* Skip any extra digit. */
1111
1112 /* Double-check that the "__B_{DIGITS}+" sequence we found
1113 is indeed followed by "__". */
1114 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1115 i = k;
1116 }
1117
1118 /* Remove _E{DIGITS}+[sb] */
1119
1120 /* Just as for protected object subprograms, there are 2 categories
1121 of subprograms created by the compiler for each entry. The first
1122 one implements the actual entry code, and has a suffix following
1123 the convention above; the second one implements the barrier and
1124 uses the same convention as above, except that the 'E' is replaced
1125 by a 'B'.
1126
1127 Just as above, we do not decode the name of barrier functions
1128 to give the user a clue that the code he is debugging has been
1129 internally generated. */
1130
1131 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1132 && isdigit (encoded[i+2]))
1133 {
1134 int k = i + 3;
1135
1136 while (k < len0 && isdigit (encoded[k]))
1137 k++;
1138
1139 if (k < len0
1140 && (encoded[k] == 'b' || encoded[k] == 's'))
1141 {
1142 k++;
1143 /* Just as an extra precaution, make sure that if this
1144 suffix is followed by anything else, it is a '_'.
1145 Otherwise, we matched this sequence by accident. */
1146 if (k == len0
1147 || (k < len0 && encoded[k] == '_'))
1148 i = k;
1149 }
1150 }
1151
1152 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1153 the GNAT front-end in protected object subprograms. */
1154
1155 if (i < len0 + 3
1156 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1157 {
1158 /* Backtrack a bit up until we reach either the begining of
1159 the encoded name, or "__". Make sure that we only find
1160 digits or lowercase characters. */
1161 const char *ptr = encoded + i - 1;
1162
1163 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1164 ptr--;
1165 if (ptr < encoded
1166 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1167 i++;
1168 }
1169
1170 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1171 {
1172 /* This is a X[bn]* sequence not separated from the previous
1173 part of the name with a non-alpha-numeric character (in other
1174 words, immediately following an alpha-numeric character), then
1175 verify that it is placed at the end of the encoded name. If
1176 not, then the encoding is not valid and we should abort the
1177 decoding. Otherwise, just skip it, it is used in body-nested
1178 package names. */
1179 do
1180 i += 1;
1181 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1182 if (i < len0)
1183 goto Suppress;
1184 }
1185 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1186 {
1187 /* Replace '__' by '.'. */
1188 decoded[j] = '.';
1189 at_start_name = 1;
1190 i += 2;
1191 j += 1;
1192 }
1193 else
1194 {
1195 /* It's a character part of the decoded name, so just copy it
1196 over. */
1197 decoded[j] = encoded[i];
1198 i += 1;
1199 j += 1;
1200 }
1201 }
1202 decoded[j] = '\000';
1203
1204 /* Decoded names should never contain any uppercase character.
1205 Double-check this, and abort the decoding if we find one. */
1206
1207 for (i = 0; decoded[i] != '\0'; i += 1)
1208 if (isupper (decoded[i]) || decoded[i] == ' ')
1209 goto Suppress;
1210
1211 if (strcmp (decoded, encoded) == 0)
1212 return encoded;
1213 else
1214 return decoded;
1215
1216 Suppress:
1217 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1218 decoded = decoding_buffer;
1219 if (encoded[0] == '<')
1220 strcpy (decoded, encoded);
1221 else
1222 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1223 return decoded;
1224
1225 }
1226
1227 /* Table for keeping permanent unique copies of decoded names. Once
1228 allocated, names in this table are never released. While this is a
1229 storage leak, it should not be significant unless there are massive
1230 changes in the set of decoded names in successive versions of a
1231 symbol table loaded during a single session. */
1232 static struct htab *decoded_names_store;
1233
1234 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1235 in the language-specific part of GSYMBOL, if it has not been
1236 previously computed. Tries to save the decoded name in the same
1237 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1238 in any case, the decoded symbol has a lifetime at least that of
1239 GSYMBOL).
1240 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1241 const, but nevertheless modified to a semantically equivalent form
1242 when a decoded name is cached in it. */
1243
1244 char *
1245 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1246 {
1247 char **resultp =
1248 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1249
1250 if (*resultp == NULL)
1251 {
1252 const char *decoded = ada_decode (gsymbol->name);
1253
1254 if (gsymbol->obj_section != NULL)
1255 {
1256 struct objfile *objf = gsymbol->obj_section->objfile;
1257
1258 *resultp = obsavestring (decoded, strlen (decoded),
1259 &objf->objfile_obstack);
1260 }
1261 /* Sometimes, we can't find a corresponding objfile, in which
1262 case, we put the result on the heap. Since we only decode
1263 when needed, we hope this usually does not cause a
1264 significant memory leak (FIXME). */
1265 if (*resultp == NULL)
1266 {
1267 char **slot = (char **) htab_find_slot (decoded_names_store,
1268 decoded, INSERT);
1269
1270 if (*slot == NULL)
1271 *slot = xstrdup (decoded);
1272 *resultp = *slot;
1273 }
1274 }
1275
1276 return *resultp;
1277 }
1278
1279 static char *
1280 ada_la_decode (const char *encoded, int options)
1281 {
1282 return xstrdup (ada_decode (encoded));
1283 }
1284
1285 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1286 suffixes that encode debugging information or leading _ada_ on
1287 SYM_NAME (see is_name_suffix commentary for the debugging
1288 information that is ignored). If WILD, then NAME need only match a
1289 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1290 either argument is NULL. */
1291
1292 static int
1293 match_name (const char *sym_name, const char *name, int wild)
1294 {
1295 if (sym_name == NULL || name == NULL)
1296 return 0;
1297 else if (wild)
1298 return wild_match (sym_name, name) == 0;
1299 else
1300 {
1301 int len_name = strlen (name);
1302
1303 return (strncmp (sym_name, name, len_name) == 0
1304 && is_name_suffix (sym_name + len_name))
1305 || (strncmp (sym_name, "_ada_", 5) == 0
1306 && strncmp (sym_name + 5, name, len_name) == 0
1307 && is_name_suffix (sym_name + len_name + 5));
1308 }
1309 }
1310 \f
1311
1312 /* Arrays */
1313
1314 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1315 generated by the GNAT compiler to describe the index type used
1316 for each dimension of an array, check whether it follows the latest
1317 known encoding. If not, fix it up to conform to the latest encoding.
1318 Otherwise, do nothing. This function also does nothing if
1319 INDEX_DESC_TYPE is NULL.
1320
1321 The GNAT encoding used to describle the array index type evolved a bit.
1322 Initially, the information would be provided through the name of each
1323 field of the structure type only, while the type of these fields was
1324 described as unspecified and irrelevant. The debugger was then expected
1325 to perform a global type lookup using the name of that field in order
1326 to get access to the full index type description. Because these global
1327 lookups can be very expensive, the encoding was later enhanced to make
1328 the global lookup unnecessary by defining the field type as being
1329 the full index type description.
1330
1331 The purpose of this routine is to allow us to support older versions
1332 of the compiler by detecting the use of the older encoding, and by
1333 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1334 we essentially replace each field's meaningless type by the associated
1335 index subtype). */
1336
1337 void
1338 ada_fixup_array_indexes_type (struct type *index_desc_type)
1339 {
1340 int i;
1341
1342 if (index_desc_type == NULL)
1343 return;
1344 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1345
1346 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1347 to check one field only, no need to check them all). If not, return
1348 now.
1349
1350 If our INDEX_DESC_TYPE was generated using the older encoding,
1351 the field type should be a meaningless integer type whose name
1352 is not equal to the field name. */
1353 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1354 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1355 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1356 return;
1357
1358 /* Fixup each field of INDEX_DESC_TYPE. */
1359 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1360 {
1361 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1362 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1363
1364 if (raw_type)
1365 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1366 }
1367 }
1368
1369 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1370
1371 static char *bound_name[] = {
1372 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1373 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1374 };
1375
1376 /* Maximum number of array dimensions we are prepared to handle. */
1377
1378 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1379
1380
1381 /* The desc_* routines return primitive portions of array descriptors
1382 (fat pointers). */
1383
1384 /* The descriptor or array type, if any, indicated by TYPE; removes
1385 level of indirection, if needed. */
1386
1387 static struct type *
1388 desc_base_type (struct type *type)
1389 {
1390 if (type == NULL)
1391 return NULL;
1392 type = ada_check_typedef (type);
1393 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1394 type = ada_typedef_target_type (type);
1395
1396 if (type != NULL
1397 && (TYPE_CODE (type) == TYPE_CODE_PTR
1398 || TYPE_CODE (type) == TYPE_CODE_REF))
1399 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1400 else
1401 return type;
1402 }
1403
1404 /* True iff TYPE indicates a "thin" array pointer type. */
1405
1406 static int
1407 is_thin_pntr (struct type *type)
1408 {
1409 return
1410 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1411 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1412 }
1413
1414 /* The descriptor type for thin pointer type TYPE. */
1415
1416 static struct type *
1417 thin_descriptor_type (struct type *type)
1418 {
1419 struct type *base_type = desc_base_type (type);
1420
1421 if (base_type == NULL)
1422 return NULL;
1423 if (is_suffix (ada_type_name (base_type), "___XVE"))
1424 return base_type;
1425 else
1426 {
1427 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1428
1429 if (alt_type == NULL)
1430 return base_type;
1431 else
1432 return alt_type;
1433 }
1434 }
1435
1436 /* A pointer to the array data for thin-pointer value VAL. */
1437
1438 static struct value *
1439 thin_data_pntr (struct value *val)
1440 {
1441 struct type *type = value_type (val);
1442 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1443
1444 data_type = lookup_pointer_type (data_type);
1445
1446 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1447 return value_cast (data_type, value_copy (val));
1448 else
1449 return value_from_longest (data_type, value_address (val));
1450 }
1451
1452 /* True iff TYPE indicates a "thick" array pointer type. */
1453
1454 static int
1455 is_thick_pntr (struct type *type)
1456 {
1457 type = desc_base_type (type);
1458 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1459 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1460 }
1461
1462 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1463 pointer to one, the type of its bounds data; otherwise, NULL. */
1464
1465 static struct type *
1466 desc_bounds_type (struct type *type)
1467 {
1468 struct type *r;
1469
1470 type = desc_base_type (type);
1471
1472 if (type == NULL)
1473 return NULL;
1474 else if (is_thin_pntr (type))
1475 {
1476 type = thin_descriptor_type (type);
1477 if (type == NULL)
1478 return NULL;
1479 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1480 if (r != NULL)
1481 return ada_check_typedef (r);
1482 }
1483 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1484 {
1485 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1486 if (r != NULL)
1487 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1488 }
1489 return NULL;
1490 }
1491
1492 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1493 one, a pointer to its bounds data. Otherwise NULL. */
1494
1495 static struct value *
1496 desc_bounds (struct value *arr)
1497 {
1498 struct type *type = ada_check_typedef (value_type (arr));
1499
1500 if (is_thin_pntr (type))
1501 {
1502 struct type *bounds_type =
1503 desc_bounds_type (thin_descriptor_type (type));
1504 LONGEST addr;
1505
1506 if (bounds_type == NULL)
1507 error (_("Bad GNAT array descriptor"));
1508
1509 /* NOTE: The following calculation is not really kosher, but
1510 since desc_type is an XVE-encoded type (and shouldn't be),
1511 the correct calculation is a real pain. FIXME (and fix GCC). */
1512 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1513 addr = value_as_long (arr);
1514 else
1515 addr = value_address (arr);
1516
1517 return
1518 value_from_longest (lookup_pointer_type (bounds_type),
1519 addr - TYPE_LENGTH (bounds_type));
1520 }
1521
1522 else if (is_thick_pntr (type))
1523 {
1524 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1525 _("Bad GNAT array descriptor"));
1526 struct type *p_bounds_type = value_type (p_bounds);
1527
1528 if (p_bounds_type
1529 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1530 {
1531 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1532
1533 if (TYPE_STUB (target_type))
1534 p_bounds = value_cast (lookup_pointer_type
1535 (ada_check_typedef (target_type)),
1536 p_bounds);
1537 }
1538 else
1539 error (_("Bad GNAT array descriptor"));
1540
1541 return p_bounds;
1542 }
1543 else
1544 return NULL;
1545 }
1546
1547 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1548 position of the field containing the address of the bounds data. */
1549
1550 static int
1551 fat_pntr_bounds_bitpos (struct type *type)
1552 {
1553 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1554 }
1555
1556 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1557 size of the field containing the address of the bounds data. */
1558
1559 static int
1560 fat_pntr_bounds_bitsize (struct type *type)
1561 {
1562 type = desc_base_type (type);
1563
1564 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1565 return TYPE_FIELD_BITSIZE (type, 1);
1566 else
1567 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1568 }
1569
1570 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1571 pointer to one, the type of its array data (a array-with-no-bounds type);
1572 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1573 data. */
1574
1575 static struct type *
1576 desc_data_target_type (struct type *type)
1577 {
1578 type = desc_base_type (type);
1579
1580 /* NOTE: The following is bogus; see comment in desc_bounds. */
1581 if (is_thin_pntr (type))
1582 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1583 else if (is_thick_pntr (type))
1584 {
1585 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1586
1587 if (data_type
1588 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1589 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1590 }
1591
1592 return NULL;
1593 }
1594
1595 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1596 its array data. */
1597
1598 static struct value *
1599 desc_data (struct value *arr)
1600 {
1601 struct type *type = value_type (arr);
1602
1603 if (is_thin_pntr (type))
1604 return thin_data_pntr (arr);
1605 else if (is_thick_pntr (type))
1606 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1607 _("Bad GNAT array descriptor"));
1608 else
1609 return NULL;
1610 }
1611
1612
1613 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1614 position of the field containing the address of the data. */
1615
1616 static int
1617 fat_pntr_data_bitpos (struct type *type)
1618 {
1619 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1620 }
1621
1622 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1623 size of the field containing the address of the data. */
1624
1625 static int
1626 fat_pntr_data_bitsize (struct type *type)
1627 {
1628 type = desc_base_type (type);
1629
1630 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1631 return TYPE_FIELD_BITSIZE (type, 0);
1632 else
1633 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1634 }
1635
1636 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1637 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1638 bound, if WHICH is 1. The first bound is I=1. */
1639
1640 static struct value *
1641 desc_one_bound (struct value *bounds, int i, int which)
1642 {
1643 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1644 _("Bad GNAT array descriptor bounds"));
1645 }
1646
1647 /* If BOUNDS is an array-bounds structure type, return the bit position
1648 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1649 bound, if WHICH is 1. The first bound is I=1. */
1650
1651 static int
1652 desc_bound_bitpos (struct type *type, int i, int which)
1653 {
1654 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1655 }
1656
1657 /* If BOUNDS is an array-bounds structure type, return the bit field size
1658 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1659 bound, if WHICH is 1. The first bound is I=1. */
1660
1661 static int
1662 desc_bound_bitsize (struct type *type, int i, int which)
1663 {
1664 type = desc_base_type (type);
1665
1666 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1667 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1668 else
1669 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1670 }
1671
1672 /* If TYPE is the type of an array-bounds structure, the type of its
1673 Ith bound (numbering from 1). Otherwise, NULL. */
1674
1675 static struct type *
1676 desc_index_type (struct type *type, int i)
1677 {
1678 type = desc_base_type (type);
1679
1680 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1681 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1682 else
1683 return NULL;
1684 }
1685
1686 /* The number of index positions in the array-bounds type TYPE.
1687 Return 0 if TYPE is NULL. */
1688
1689 static int
1690 desc_arity (struct type *type)
1691 {
1692 type = desc_base_type (type);
1693
1694 if (type != NULL)
1695 return TYPE_NFIELDS (type) / 2;
1696 return 0;
1697 }
1698
1699 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1700 an array descriptor type (representing an unconstrained array
1701 type). */
1702
1703 static int
1704 ada_is_direct_array_type (struct type *type)
1705 {
1706 if (type == NULL)
1707 return 0;
1708 type = ada_check_typedef (type);
1709 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1710 || ada_is_array_descriptor_type (type));
1711 }
1712
1713 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1714 * to one. */
1715
1716 static int
1717 ada_is_array_type (struct type *type)
1718 {
1719 while (type != NULL
1720 && (TYPE_CODE (type) == TYPE_CODE_PTR
1721 || TYPE_CODE (type) == TYPE_CODE_REF))
1722 type = TYPE_TARGET_TYPE (type);
1723 return ada_is_direct_array_type (type);
1724 }
1725
1726 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1727
1728 int
1729 ada_is_simple_array_type (struct type *type)
1730 {
1731 if (type == NULL)
1732 return 0;
1733 type = ada_check_typedef (type);
1734 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1735 || (TYPE_CODE (type) == TYPE_CODE_PTR
1736 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1737 == TYPE_CODE_ARRAY));
1738 }
1739
1740 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1741
1742 int
1743 ada_is_array_descriptor_type (struct type *type)
1744 {
1745 struct type *data_type = desc_data_target_type (type);
1746
1747 if (type == NULL)
1748 return 0;
1749 type = ada_check_typedef (type);
1750 return (data_type != NULL
1751 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1752 && desc_arity (desc_bounds_type (type)) > 0);
1753 }
1754
1755 /* Non-zero iff type is a partially mal-formed GNAT array
1756 descriptor. FIXME: This is to compensate for some problems with
1757 debugging output from GNAT. Re-examine periodically to see if it
1758 is still needed. */
1759
1760 int
1761 ada_is_bogus_array_descriptor (struct type *type)
1762 {
1763 return
1764 type != NULL
1765 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1766 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1767 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1768 && !ada_is_array_descriptor_type (type);
1769 }
1770
1771
1772 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1773 (fat pointer) returns the type of the array data described---specifically,
1774 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1775 in from the descriptor; otherwise, they are left unspecified. If
1776 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1777 returns NULL. The result is simply the type of ARR if ARR is not
1778 a descriptor. */
1779 struct type *
1780 ada_type_of_array (struct value *arr, int bounds)
1781 {
1782 if (ada_is_constrained_packed_array_type (value_type (arr)))
1783 return decode_constrained_packed_array_type (value_type (arr));
1784
1785 if (!ada_is_array_descriptor_type (value_type (arr)))
1786 return value_type (arr);
1787
1788 if (!bounds)
1789 {
1790 struct type *array_type =
1791 ada_check_typedef (desc_data_target_type (value_type (arr)));
1792
1793 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1794 TYPE_FIELD_BITSIZE (array_type, 0) =
1795 decode_packed_array_bitsize (value_type (arr));
1796
1797 return array_type;
1798 }
1799 else
1800 {
1801 struct type *elt_type;
1802 int arity;
1803 struct value *descriptor;
1804
1805 elt_type = ada_array_element_type (value_type (arr), -1);
1806 arity = ada_array_arity (value_type (arr));
1807
1808 if (elt_type == NULL || arity == 0)
1809 return ada_check_typedef (value_type (arr));
1810
1811 descriptor = desc_bounds (arr);
1812 if (value_as_long (descriptor) == 0)
1813 return NULL;
1814 while (arity > 0)
1815 {
1816 struct type *range_type = alloc_type_copy (value_type (arr));
1817 struct type *array_type = alloc_type_copy (value_type (arr));
1818 struct value *low = desc_one_bound (descriptor, arity, 0);
1819 struct value *high = desc_one_bound (descriptor, arity, 1);
1820
1821 arity -= 1;
1822 create_range_type (range_type, value_type (low),
1823 longest_to_int (value_as_long (low)),
1824 longest_to_int (value_as_long (high)));
1825 elt_type = create_array_type (array_type, elt_type, range_type);
1826
1827 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1828 {
1829 /* We need to store the element packed bitsize, as well as
1830 recompute the array size, because it was previously
1831 computed based on the unpacked element size. */
1832 LONGEST lo = value_as_long (low);
1833 LONGEST hi = value_as_long (high);
1834
1835 TYPE_FIELD_BITSIZE (elt_type, 0) =
1836 decode_packed_array_bitsize (value_type (arr));
1837 /* If the array has no element, then the size is already
1838 zero, and does not need to be recomputed. */
1839 if (lo < hi)
1840 {
1841 int array_bitsize =
1842 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1843
1844 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1845 }
1846 }
1847 }
1848
1849 return lookup_pointer_type (elt_type);
1850 }
1851 }
1852
1853 /* If ARR does not represent an array, returns ARR unchanged.
1854 Otherwise, returns either a standard GDB array with bounds set
1855 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1856 GDB array. Returns NULL if ARR is a null fat pointer. */
1857
1858 struct value *
1859 ada_coerce_to_simple_array_ptr (struct value *arr)
1860 {
1861 if (ada_is_array_descriptor_type (value_type (arr)))
1862 {
1863 struct type *arrType = ada_type_of_array (arr, 1);
1864
1865 if (arrType == NULL)
1866 return NULL;
1867 return value_cast (arrType, value_copy (desc_data (arr)));
1868 }
1869 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1870 return decode_constrained_packed_array (arr);
1871 else
1872 return arr;
1873 }
1874
1875 /* If ARR does not represent an array, returns ARR unchanged.
1876 Otherwise, returns a standard GDB array describing ARR (which may
1877 be ARR itself if it already is in the proper form). */
1878
1879 struct value *
1880 ada_coerce_to_simple_array (struct value *arr)
1881 {
1882 if (ada_is_array_descriptor_type (value_type (arr)))
1883 {
1884 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1885
1886 if (arrVal == NULL)
1887 error (_("Bounds unavailable for null array pointer."));
1888 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1889 return value_ind (arrVal);
1890 }
1891 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1892 return decode_constrained_packed_array (arr);
1893 else
1894 return arr;
1895 }
1896
1897 /* If TYPE represents a GNAT array type, return it translated to an
1898 ordinary GDB array type (possibly with BITSIZE fields indicating
1899 packing). For other types, is the identity. */
1900
1901 struct type *
1902 ada_coerce_to_simple_array_type (struct type *type)
1903 {
1904 if (ada_is_constrained_packed_array_type (type))
1905 return decode_constrained_packed_array_type (type);
1906
1907 if (ada_is_array_descriptor_type (type))
1908 return ada_check_typedef (desc_data_target_type (type));
1909
1910 return type;
1911 }
1912
1913 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1914
1915 static int
1916 ada_is_packed_array_type (struct type *type)
1917 {
1918 if (type == NULL)
1919 return 0;
1920 type = desc_base_type (type);
1921 type = ada_check_typedef (type);
1922 return
1923 ada_type_name (type) != NULL
1924 && strstr (ada_type_name (type), "___XP") != NULL;
1925 }
1926
1927 /* Non-zero iff TYPE represents a standard GNAT constrained
1928 packed-array type. */
1929
1930 int
1931 ada_is_constrained_packed_array_type (struct type *type)
1932 {
1933 return ada_is_packed_array_type (type)
1934 && !ada_is_array_descriptor_type (type);
1935 }
1936
1937 /* Non-zero iff TYPE represents an array descriptor for a
1938 unconstrained packed-array type. */
1939
1940 static int
1941 ada_is_unconstrained_packed_array_type (struct type *type)
1942 {
1943 return ada_is_packed_array_type (type)
1944 && ada_is_array_descriptor_type (type);
1945 }
1946
1947 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1948 return the size of its elements in bits. */
1949
1950 static long
1951 decode_packed_array_bitsize (struct type *type)
1952 {
1953 char *raw_name;
1954 char *tail;
1955 long bits;
1956
1957 /* Access to arrays implemented as fat pointers are encoded as a typedef
1958 of the fat pointer type. We need the name of the fat pointer type
1959 to do the decoding, so strip the typedef layer. */
1960 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1961 type = ada_typedef_target_type (type);
1962
1963 raw_name = ada_type_name (ada_check_typedef (type));
1964 if (!raw_name)
1965 raw_name = ada_type_name (desc_base_type (type));
1966
1967 if (!raw_name)
1968 return 0;
1969
1970 tail = strstr (raw_name, "___XP");
1971 gdb_assert (tail != NULL);
1972
1973 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1974 {
1975 lim_warning
1976 (_("could not understand bit size information on packed array"));
1977 return 0;
1978 }
1979
1980 return bits;
1981 }
1982
1983 /* Given that TYPE is a standard GDB array type with all bounds filled
1984 in, and that the element size of its ultimate scalar constituents
1985 (that is, either its elements, or, if it is an array of arrays, its
1986 elements' elements, etc.) is *ELT_BITS, return an identical type,
1987 but with the bit sizes of its elements (and those of any
1988 constituent arrays) recorded in the BITSIZE components of its
1989 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1990 in bits. */
1991
1992 static struct type *
1993 constrained_packed_array_type (struct type *type, long *elt_bits)
1994 {
1995 struct type *new_elt_type;
1996 struct type *new_type;
1997 LONGEST low_bound, high_bound;
1998
1999 type = ada_check_typedef (type);
2000 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2001 return type;
2002
2003 new_type = alloc_type_copy (type);
2004 new_elt_type =
2005 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2006 elt_bits);
2007 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
2008 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2009 TYPE_NAME (new_type) = ada_type_name (type);
2010
2011 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
2012 &low_bound, &high_bound) < 0)
2013 low_bound = high_bound = 0;
2014 if (high_bound < low_bound)
2015 *elt_bits = TYPE_LENGTH (new_type) = 0;
2016 else
2017 {
2018 *elt_bits *= (high_bound - low_bound + 1);
2019 TYPE_LENGTH (new_type) =
2020 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2021 }
2022
2023 TYPE_FIXED_INSTANCE (new_type) = 1;
2024 return new_type;
2025 }
2026
2027 /* The array type encoded by TYPE, where
2028 ada_is_constrained_packed_array_type (TYPE). */
2029
2030 static struct type *
2031 decode_constrained_packed_array_type (struct type *type)
2032 {
2033 char *raw_name = ada_type_name (ada_check_typedef (type));
2034 char *name;
2035 char *tail;
2036 struct type *shadow_type;
2037 long bits;
2038
2039 if (!raw_name)
2040 raw_name = ada_type_name (desc_base_type (type));
2041
2042 if (!raw_name)
2043 return NULL;
2044
2045 name = (char *) alloca (strlen (raw_name) + 1);
2046 tail = strstr (raw_name, "___XP");
2047 type = desc_base_type (type);
2048
2049 memcpy (name, raw_name, tail - raw_name);
2050 name[tail - raw_name] = '\000';
2051
2052 shadow_type = ada_find_parallel_type_with_name (type, name);
2053
2054 if (shadow_type == NULL)
2055 {
2056 lim_warning (_("could not find bounds information on packed array"));
2057 return NULL;
2058 }
2059 CHECK_TYPEDEF (shadow_type);
2060
2061 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2062 {
2063 lim_warning (_("could not understand bounds "
2064 "information on packed array"));
2065 return NULL;
2066 }
2067
2068 bits = decode_packed_array_bitsize (type);
2069 return constrained_packed_array_type (shadow_type, &bits);
2070 }
2071
2072 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2073 array, returns a simple array that denotes that array. Its type is a
2074 standard GDB array type except that the BITSIZEs of the array
2075 target types are set to the number of bits in each element, and the
2076 type length is set appropriately. */
2077
2078 static struct value *
2079 decode_constrained_packed_array (struct value *arr)
2080 {
2081 struct type *type;
2082
2083 arr = ada_coerce_ref (arr);
2084
2085 /* If our value is a pointer, then dererence it. Make sure that
2086 this operation does not cause the target type to be fixed, as
2087 this would indirectly cause this array to be decoded. The rest
2088 of the routine assumes that the array hasn't been decoded yet,
2089 so we use the basic "value_ind" routine to perform the dereferencing,
2090 as opposed to using "ada_value_ind". */
2091 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
2092 arr = value_ind (arr);
2093
2094 type = decode_constrained_packed_array_type (value_type (arr));
2095 if (type == NULL)
2096 {
2097 error (_("can't unpack array"));
2098 return NULL;
2099 }
2100
2101 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2102 && ada_is_modular_type (value_type (arr)))
2103 {
2104 /* This is a (right-justified) modular type representing a packed
2105 array with no wrapper. In order to interpret the value through
2106 the (left-justified) packed array type we just built, we must
2107 first left-justify it. */
2108 int bit_size, bit_pos;
2109 ULONGEST mod;
2110
2111 mod = ada_modulus (value_type (arr)) - 1;
2112 bit_size = 0;
2113 while (mod > 0)
2114 {
2115 bit_size += 1;
2116 mod >>= 1;
2117 }
2118 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2119 arr = ada_value_primitive_packed_val (arr, NULL,
2120 bit_pos / HOST_CHAR_BIT,
2121 bit_pos % HOST_CHAR_BIT,
2122 bit_size,
2123 type);
2124 }
2125
2126 return coerce_unspec_val_to_type (arr, type);
2127 }
2128
2129
2130 /* The value of the element of packed array ARR at the ARITY indices
2131 given in IND. ARR must be a simple array. */
2132
2133 static struct value *
2134 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2135 {
2136 int i;
2137 int bits, elt_off, bit_off;
2138 long elt_total_bit_offset;
2139 struct type *elt_type;
2140 struct value *v;
2141
2142 bits = 0;
2143 elt_total_bit_offset = 0;
2144 elt_type = ada_check_typedef (value_type (arr));
2145 for (i = 0; i < arity; i += 1)
2146 {
2147 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2148 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2149 error
2150 (_("attempt to do packed indexing of "
2151 "something other than a packed array"));
2152 else
2153 {
2154 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2155 LONGEST lowerbound, upperbound;
2156 LONGEST idx;
2157
2158 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2159 {
2160 lim_warning (_("don't know bounds of array"));
2161 lowerbound = upperbound = 0;
2162 }
2163
2164 idx = pos_atr (ind[i]);
2165 if (idx < lowerbound || idx > upperbound)
2166 lim_warning (_("packed array index %ld out of bounds"),
2167 (long) idx);
2168 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2169 elt_total_bit_offset += (idx - lowerbound) * bits;
2170 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2171 }
2172 }
2173 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2174 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2175
2176 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2177 bits, elt_type);
2178 return v;
2179 }
2180
2181 /* Non-zero iff TYPE includes negative integer values. */
2182
2183 static int
2184 has_negatives (struct type *type)
2185 {
2186 switch (TYPE_CODE (type))
2187 {
2188 default:
2189 return 0;
2190 case TYPE_CODE_INT:
2191 return !TYPE_UNSIGNED (type);
2192 case TYPE_CODE_RANGE:
2193 return TYPE_LOW_BOUND (type) < 0;
2194 }
2195 }
2196
2197
2198 /* Create a new value of type TYPE from the contents of OBJ starting
2199 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2200 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2201 assigning through the result will set the field fetched from.
2202 VALADDR is ignored unless OBJ is NULL, in which case,
2203 VALADDR+OFFSET must address the start of storage containing the
2204 packed value. The value returned in this case is never an lval.
2205 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2206
2207 struct value *
2208 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2209 long offset, int bit_offset, int bit_size,
2210 struct type *type)
2211 {
2212 struct value *v;
2213 int src, /* Index into the source area */
2214 targ, /* Index into the target area */
2215 srcBitsLeft, /* Number of source bits left to move */
2216 nsrc, ntarg, /* Number of source and target bytes */
2217 unusedLS, /* Number of bits in next significant
2218 byte of source that are unused */
2219 accumSize; /* Number of meaningful bits in accum */
2220 unsigned char *bytes; /* First byte containing data to unpack */
2221 unsigned char *unpacked;
2222 unsigned long accum; /* Staging area for bits being transferred */
2223 unsigned char sign;
2224 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2225 /* Transmit bytes from least to most significant; delta is the direction
2226 the indices move. */
2227 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2228
2229 type = ada_check_typedef (type);
2230
2231 if (obj == NULL)
2232 {
2233 v = allocate_value (type);
2234 bytes = (unsigned char *) (valaddr + offset);
2235 }
2236 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2237 {
2238 v = value_at (type,
2239 value_address (obj) + offset);
2240 bytes = (unsigned char *) alloca (len);
2241 read_memory (value_address (v), bytes, len);
2242 }
2243 else
2244 {
2245 v = allocate_value (type);
2246 bytes = (unsigned char *) value_contents (obj) + offset;
2247 }
2248
2249 if (obj != NULL)
2250 {
2251 CORE_ADDR new_addr;
2252
2253 set_value_component_location (v, obj);
2254 new_addr = value_address (obj) + offset;
2255 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2256 set_value_bitsize (v, bit_size);
2257 if (value_bitpos (v) >= HOST_CHAR_BIT)
2258 {
2259 ++new_addr;
2260 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2261 }
2262 set_value_address (v, new_addr);
2263 }
2264 else
2265 set_value_bitsize (v, bit_size);
2266 unpacked = (unsigned char *) value_contents (v);
2267
2268 srcBitsLeft = bit_size;
2269 nsrc = len;
2270 ntarg = TYPE_LENGTH (type);
2271 sign = 0;
2272 if (bit_size == 0)
2273 {
2274 memset (unpacked, 0, TYPE_LENGTH (type));
2275 return v;
2276 }
2277 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2278 {
2279 src = len - 1;
2280 if (has_negatives (type)
2281 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2282 sign = ~0;
2283
2284 unusedLS =
2285 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2286 % HOST_CHAR_BIT;
2287
2288 switch (TYPE_CODE (type))
2289 {
2290 case TYPE_CODE_ARRAY:
2291 case TYPE_CODE_UNION:
2292 case TYPE_CODE_STRUCT:
2293 /* Non-scalar values must be aligned at a byte boundary... */
2294 accumSize =
2295 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2296 /* ... And are placed at the beginning (most-significant) bytes
2297 of the target. */
2298 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2299 ntarg = targ + 1;
2300 break;
2301 default:
2302 accumSize = 0;
2303 targ = TYPE_LENGTH (type) - 1;
2304 break;
2305 }
2306 }
2307 else
2308 {
2309 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2310
2311 src = targ = 0;
2312 unusedLS = bit_offset;
2313 accumSize = 0;
2314
2315 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2316 sign = ~0;
2317 }
2318
2319 accum = 0;
2320 while (nsrc > 0)
2321 {
2322 /* Mask for removing bits of the next source byte that are not
2323 part of the value. */
2324 unsigned int unusedMSMask =
2325 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2326 1;
2327 /* Sign-extend bits for this byte. */
2328 unsigned int signMask = sign & ~unusedMSMask;
2329
2330 accum |=
2331 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2332 accumSize += HOST_CHAR_BIT - unusedLS;
2333 if (accumSize >= HOST_CHAR_BIT)
2334 {
2335 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2336 accumSize -= HOST_CHAR_BIT;
2337 accum >>= HOST_CHAR_BIT;
2338 ntarg -= 1;
2339 targ += delta;
2340 }
2341 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2342 unusedLS = 0;
2343 nsrc -= 1;
2344 src += delta;
2345 }
2346 while (ntarg > 0)
2347 {
2348 accum |= sign << accumSize;
2349 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2350 accumSize -= HOST_CHAR_BIT;
2351 accum >>= HOST_CHAR_BIT;
2352 ntarg -= 1;
2353 targ += delta;
2354 }
2355
2356 return v;
2357 }
2358
2359 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2360 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2361 not overlap. */
2362 static void
2363 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2364 int src_offset, int n, int bits_big_endian_p)
2365 {
2366 unsigned int accum, mask;
2367 int accum_bits, chunk_size;
2368
2369 target += targ_offset / HOST_CHAR_BIT;
2370 targ_offset %= HOST_CHAR_BIT;
2371 source += src_offset / HOST_CHAR_BIT;
2372 src_offset %= HOST_CHAR_BIT;
2373 if (bits_big_endian_p)
2374 {
2375 accum = (unsigned char) *source;
2376 source += 1;
2377 accum_bits = HOST_CHAR_BIT - src_offset;
2378
2379 while (n > 0)
2380 {
2381 int unused_right;
2382
2383 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2384 accum_bits += HOST_CHAR_BIT;
2385 source += 1;
2386 chunk_size = HOST_CHAR_BIT - targ_offset;
2387 if (chunk_size > n)
2388 chunk_size = n;
2389 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2390 mask = ((1 << chunk_size) - 1) << unused_right;
2391 *target =
2392 (*target & ~mask)
2393 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2394 n -= chunk_size;
2395 accum_bits -= chunk_size;
2396 target += 1;
2397 targ_offset = 0;
2398 }
2399 }
2400 else
2401 {
2402 accum = (unsigned char) *source >> src_offset;
2403 source += 1;
2404 accum_bits = HOST_CHAR_BIT - src_offset;
2405
2406 while (n > 0)
2407 {
2408 accum = accum + ((unsigned char) *source << accum_bits);
2409 accum_bits += HOST_CHAR_BIT;
2410 source += 1;
2411 chunk_size = HOST_CHAR_BIT - targ_offset;
2412 if (chunk_size > n)
2413 chunk_size = n;
2414 mask = ((1 << chunk_size) - 1) << targ_offset;
2415 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2416 n -= chunk_size;
2417 accum_bits -= chunk_size;
2418 accum >>= chunk_size;
2419 target += 1;
2420 targ_offset = 0;
2421 }
2422 }
2423 }
2424
2425 /* Store the contents of FROMVAL into the location of TOVAL.
2426 Return a new value with the location of TOVAL and contents of
2427 FROMVAL. Handles assignment into packed fields that have
2428 floating-point or non-scalar types. */
2429
2430 static struct value *
2431 ada_value_assign (struct value *toval, struct value *fromval)
2432 {
2433 struct type *type = value_type (toval);
2434 int bits = value_bitsize (toval);
2435
2436 toval = ada_coerce_ref (toval);
2437 fromval = ada_coerce_ref (fromval);
2438
2439 if (ada_is_direct_array_type (value_type (toval)))
2440 toval = ada_coerce_to_simple_array (toval);
2441 if (ada_is_direct_array_type (value_type (fromval)))
2442 fromval = ada_coerce_to_simple_array (fromval);
2443
2444 if (!deprecated_value_modifiable (toval))
2445 error (_("Left operand of assignment is not a modifiable lvalue."));
2446
2447 if (VALUE_LVAL (toval) == lval_memory
2448 && bits > 0
2449 && (TYPE_CODE (type) == TYPE_CODE_FLT
2450 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2451 {
2452 int len = (value_bitpos (toval)
2453 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2454 int from_size;
2455 char *buffer = (char *) alloca (len);
2456 struct value *val;
2457 CORE_ADDR to_addr = value_address (toval);
2458
2459 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2460 fromval = value_cast (type, fromval);
2461
2462 read_memory (to_addr, buffer, len);
2463 from_size = value_bitsize (fromval);
2464 if (from_size == 0)
2465 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2466 if (gdbarch_bits_big_endian (get_type_arch (type)))
2467 move_bits (buffer, value_bitpos (toval),
2468 value_contents (fromval), from_size - bits, bits, 1);
2469 else
2470 move_bits (buffer, value_bitpos (toval),
2471 value_contents (fromval), 0, bits, 0);
2472 write_memory (to_addr, buffer, len);
2473 observer_notify_memory_changed (to_addr, len, buffer);
2474
2475 val = value_copy (toval);
2476 memcpy (value_contents_raw (val), value_contents (fromval),
2477 TYPE_LENGTH (type));
2478 deprecated_set_value_type (val, type);
2479
2480 return val;
2481 }
2482
2483 return value_assign (toval, fromval);
2484 }
2485
2486
2487 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2488 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2489 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2490 * COMPONENT, and not the inferior's memory. The current contents
2491 * of COMPONENT are ignored. */
2492 static void
2493 value_assign_to_component (struct value *container, struct value *component,
2494 struct value *val)
2495 {
2496 LONGEST offset_in_container =
2497 (LONGEST) (value_address (component) - value_address (container));
2498 int bit_offset_in_container =
2499 value_bitpos (component) - value_bitpos (container);
2500 int bits;
2501
2502 val = value_cast (value_type (component), val);
2503
2504 if (value_bitsize (component) == 0)
2505 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2506 else
2507 bits = value_bitsize (component);
2508
2509 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2510 move_bits (value_contents_writeable (container) + offset_in_container,
2511 value_bitpos (container) + bit_offset_in_container,
2512 value_contents (val),
2513 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2514 bits, 1);
2515 else
2516 move_bits (value_contents_writeable (container) + offset_in_container,
2517 value_bitpos (container) + bit_offset_in_container,
2518 value_contents (val), 0, bits, 0);
2519 }
2520
2521 /* The value of the element of array ARR at the ARITY indices given in IND.
2522 ARR may be either a simple array, GNAT array descriptor, or pointer
2523 thereto. */
2524
2525 struct value *
2526 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2527 {
2528 int k;
2529 struct value *elt;
2530 struct type *elt_type;
2531
2532 elt = ada_coerce_to_simple_array (arr);
2533
2534 elt_type = ada_check_typedef (value_type (elt));
2535 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2536 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2537 return value_subscript_packed (elt, arity, ind);
2538
2539 for (k = 0; k < arity; k += 1)
2540 {
2541 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2542 error (_("too many subscripts (%d expected)"), k);
2543 elt = value_subscript (elt, pos_atr (ind[k]));
2544 }
2545 return elt;
2546 }
2547
2548 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2549 value of the element of *ARR at the ARITY indices given in
2550 IND. Does not read the entire array into memory. */
2551
2552 static struct value *
2553 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2554 struct value **ind)
2555 {
2556 int k;
2557
2558 for (k = 0; k < arity; k += 1)
2559 {
2560 LONGEST lwb, upb;
2561
2562 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2563 error (_("too many subscripts (%d expected)"), k);
2564 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2565 value_copy (arr));
2566 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2567 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2568 type = TYPE_TARGET_TYPE (type);
2569 }
2570
2571 return value_ind (arr);
2572 }
2573
2574 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2575 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2576 elements starting at index LOW. The lower bound of this array is LOW, as
2577 per Ada rules. */
2578 static struct value *
2579 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2580 int low, int high)
2581 {
2582 struct type *type0 = ada_check_typedef (type);
2583 CORE_ADDR base = value_as_address (array_ptr)
2584 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2585 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2586 struct type *index_type =
2587 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2588 low, high);
2589 struct type *slice_type =
2590 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2591
2592 return value_at_lazy (slice_type, base);
2593 }
2594
2595
2596 static struct value *
2597 ada_value_slice (struct value *array, int low, int high)
2598 {
2599 struct type *type = ada_check_typedef (value_type (array));
2600 struct type *index_type =
2601 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2602 struct type *slice_type =
2603 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2604
2605 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2606 }
2607
2608 /* If type is a record type in the form of a standard GNAT array
2609 descriptor, returns the number of dimensions for type. If arr is a
2610 simple array, returns the number of "array of"s that prefix its
2611 type designation. Otherwise, returns 0. */
2612
2613 int
2614 ada_array_arity (struct type *type)
2615 {
2616 int arity;
2617
2618 if (type == NULL)
2619 return 0;
2620
2621 type = desc_base_type (type);
2622
2623 arity = 0;
2624 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2625 return desc_arity (desc_bounds_type (type));
2626 else
2627 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2628 {
2629 arity += 1;
2630 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2631 }
2632
2633 return arity;
2634 }
2635
2636 /* If TYPE is a record type in the form of a standard GNAT array
2637 descriptor or a simple array type, returns the element type for
2638 TYPE after indexing by NINDICES indices, or by all indices if
2639 NINDICES is -1. Otherwise, returns NULL. */
2640
2641 struct type *
2642 ada_array_element_type (struct type *type, int nindices)
2643 {
2644 type = desc_base_type (type);
2645
2646 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2647 {
2648 int k;
2649 struct type *p_array_type;
2650
2651 p_array_type = desc_data_target_type (type);
2652
2653 k = ada_array_arity (type);
2654 if (k == 0)
2655 return NULL;
2656
2657 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2658 if (nindices >= 0 && k > nindices)
2659 k = nindices;
2660 while (k > 0 && p_array_type != NULL)
2661 {
2662 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2663 k -= 1;
2664 }
2665 return p_array_type;
2666 }
2667 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2668 {
2669 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2670 {
2671 type = TYPE_TARGET_TYPE (type);
2672 nindices -= 1;
2673 }
2674 return type;
2675 }
2676
2677 return NULL;
2678 }
2679
2680 /* The type of nth index in arrays of given type (n numbering from 1).
2681 Does not examine memory. Throws an error if N is invalid or TYPE
2682 is not an array type. NAME is the name of the Ada attribute being
2683 evaluated ('range, 'first, 'last, or 'length); it is used in building
2684 the error message. */
2685
2686 static struct type *
2687 ada_index_type (struct type *type, int n, const char *name)
2688 {
2689 struct type *result_type;
2690
2691 type = desc_base_type (type);
2692
2693 if (n < 0 || n > ada_array_arity (type))
2694 error (_("invalid dimension number to '%s"), name);
2695
2696 if (ada_is_simple_array_type (type))
2697 {
2698 int i;
2699
2700 for (i = 1; i < n; i += 1)
2701 type = TYPE_TARGET_TYPE (type);
2702 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2703 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2704 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2705 perhaps stabsread.c would make more sense. */
2706 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2707 result_type = NULL;
2708 }
2709 else
2710 {
2711 result_type = desc_index_type (desc_bounds_type (type), n);
2712 if (result_type == NULL)
2713 error (_("attempt to take bound of something that is not an array"));
2714 }
2715
2716 return result_type;
2717 }
2718
2719 /* Given that arr is an array type, returns the lower bound of the
2720 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2721 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2722 array-descriptor type. It works for other arrays with bounds supplied
2723 by run-time quantities other than discriminants. */
2724
2725 static LONGEST
2726 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2727 {
2728 struct type *type, *elt_type, *index_type_desc, *index_type;
2729 int i;
2730
2731 gdb_assert (which == 0 || which == 1);
2732
2733 if (ada_is_constrained_packed_array_type (arr_type))
2734 arr_type = decode_constrained_packed_array_type (arr_type);
2735
2736 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2737 return (LONGEST) - which;
2738
2739 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2740 type = TYPE_TARGET_TYPE (arr_type);
2741 else
2742 type = arr_type;
2743
2744 elt_type = type;
2745 for (i = n; i > 1; i--)
2746 elt_type = TYPE_TARGET_TYPE (type);
2747
2748 index_type_desc = ada_find_parallel_type (type, "___XA");
2749 ada_fixup_array_indexes_type (index_type_desc);
2750 if (index_type_desc != NULL)
2751 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2752 NULL);
2753 else
2754 index_type = TYPE_INDEX_TYPE (elt_type);
2755
2756 return
2757 (LONGEST) (which == 0
2758 ? ada_discrete_type_low_bound (index_type)
2759 : ada_discrete_type_high_bound (index_type));
2760 }
2761
2762 /* Given that arr is an array value, returns the lower bound of the
2763 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2764 WHICH is 1. This routine will also work for arrays with bounds
2765 supplied by run-time quantities other than discriminants. */
2766
2767 static LONGEST
2768 ada_array_bound (struct value *arr, int n, int which)
2769 {
2770 struct type *arr_type = value_type (arr);
2771
2772 if (ada_is_constrained_packed_array_type (arr_type))
2773 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2774 else if (ada_is_simple_array_type (arr_type))
2775 return ada_array_bound_from_type (arr_type, n, which);
2776 else
2777 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2778 }
2779
2780 /* Given that arr is an array value, returns the length of the
2781 nth index. This routine will also work for arrays with bounds
2782 supplied by run-time quantities other than discriminants.
2783 Does not work for arrays indexed by enumeration types with representation
2784 clauses at the moment. */
2785
2786 static LONGEST
2787 ada_array_length (struct value *arr, int n)
2788 {
2789 struct type *arr_type = ada_check_typedef (value_type (arr));
2790
2791 if (ada_is_constrained_packed_array_type (arr_type))
2792 return ada_array_length (decode_constrained_packed_array (arr), n);
2793
2794 if (ada_is_simple_array_type (arr_type))
2795 return (ada_array_bound_from_type (arr_type, n, 1)
2796 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2797 else
2798 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2799 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2800 }
2801
2802 /* An empty array whose type is that of ARR_TYPE (an array type),
2803 with bounds LOW to LOW-1. */
2804
2805 static struct value *
2806 empty_array (struct type *arr_type, int low)
2807 {
2808 struct type *arr_type0 = ada_check_typedef (arr_type);
2809 struct type *index_type =
2810 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2811 low, low - 1);
2812 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2813
2814 return allocate_value (create_array_type (NULL, elt_type, index_type));
2815 }
2816 \f
2817
2818 /* Name resolution */
2819
2820 /* The "decoded" name for the user-definable Ada operator corresponding
2821 to OP. */
2822
2823 static const char *
2824 ada_decoded_op_name (enum exp_opcode op)
2825 {
2826 int i;
2827
2828 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2829 {
2830 if (ada_opname_table[i].op == op)
2831 return ada_opname_table[i].decoded;
2832 }
2833 error (_("Could not find operator name for opcode"));
2834 }
2835
2836
2837 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2838 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2839 undefined namespace) and converts operators that are
2840 user-defined into appropriate function calls. If CONTEXT_TYPE is
2841 non-null, it provides a preferred result type [at the moment, only
2842 type void has any effect---causing procedures to be preferred over
2843 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2844 return type is preferred. May change (expand) *EXP. */
2845
2846 static void
2847 resolve (struct expression **expp, int void_context_p)
2848 {
2849 struct type *context_type = NULL;
2850 int pc = 0;
2851
2852 if (void_context_p)
2853 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2854
2855 resolve_subexp (expp, &pc, 1, context_type);
2856 }
2857
2858 /* Resolve the operator of the subexpression beginning at
2859 position *POS of *EXPP. "Resolving" consists of replacing
2860 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2861 with their resolutions, replacing built-in operators with
2862 function calls to user-defined operators, where appropriate, and,
2863 when DEPROCEDURE_P is non-zero, converting function-valued variables
2864 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2865 are as in ada_resolve, above. */
2866
2867 static struct value *
2868 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2869 struct type *context_type)
2870 {
2871 int pc = *pos;
2872 int i;
2873 struct expression *exp; /* Convenience: == *expp. */
2874 enum exp_opcode op = (*expp)->elts[pc].opcode;
2875 struct value **argvec; /* Vector of operand types (alloca'ed). */
2876 int nargs; /* Number of operands. */
2877 int oplen;
2878
2879 argvec = NULL;
2880 nargs = 0;
2881 exp = *expp;
2882
2883 /* Pass one: resolve operands, saving their types and updating *pos,
2884 if needed. */
2885 switch (op)
2886 {
2887 case OP_FUNCALL:
2888 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2889 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2890 *pos += 7;
2891 else
2892 {
2893 *pos += 3;
2894 resolve_subexp (expp, pos, 0, NULL);
2895 }
2896 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2897 break;
2898
2899 case UNOP_ADDR:
2900 *pos += 1;
2901 resolve_subexp (expp, pos, 0, NULL);
2902 break;
2903
2904 case UNOP_QUAL:
2905 *pos += 3;
2906 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2907 break;
2908
2909 case OP_ATR_MODULUS:
2910 case OP_ATR_SIZE:
2911 case OP_ATR_TAG:
2912 case OP_ATR_FIRST:
2913 case OP_ATR_LAST:
2914 case OP_ATR_LENGTH:
2915 case OP_ATR_POS:
2916 case OP_ATR_VAL:
2917 case OP_ATR_MIN:
2918 case OP_ATR_MAX:
2919 case TERNOP_IN_RANGE:
2920 case BINOP_IN_BOUNDS:
2921 case UNOP_IN_RANGE:
2922 case OP_AGGREGATE:
2923 case OP_OTHERS:
2924 case OP_CHOICES:
2925 case OP_POSITIONAL:
2926 case OP_DISCRETE_RANGE:
2927 case OP_NAME:
2928 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2929 *pos += oplen;
2930 break;
2931
2932 case BINOP_ASSIGN:
2933 {
2934 struct value *arg1;
2935
2936 *pos += 1;
2937 arg1 = resolve_subexp (expp, pos, 0, NULL);
2938 if (arg1 == NULL)
2939 resolve_subexp (expp, pos, 1, NULL);
2940 else
2941 resolve_subexp (expp, pos, 1, value_type (arg1));
2942 break;
2943 }
2944
2945 case UNOP_CAST:
2946 *pos += 3;
2947 nargs = 1;
2948 break;
2949
2950 case BINOP_ADD:
2951 case BINOP_SUB:
2952 case BINOP_MUL:
2953 case BINOP_DIV:
2954 case BINOP_REM:
2955 case BINOP_MOD:
2956 case BINOP_EXP:
2957 case BINOP_CONCAT:
2958 case BINOP_LOGICAL_AND:
2959 case BINOP_LOGICAL_OR:
2960 case BINOP_BITWISE_AND:
2961 case BINOP_BITWISE_IOR:
2962 case BINOP_BITWISE_XOR:
2963
2964 case BINOP_EQUAL:
2965 case BINOP_NOTEQUAL:
2966 case BINOP_LESS:
2967 case BINOP_GTR:
2968 case BINOP_LEQ:
2969 case BINOP_GEQ:
2970
2971 case BINOP_REPEAT:
2972 case BINOP_SUBSCRIPT:
2973 case BINOP_COMMA:
2974 *pos += 1;
2975 nargs = 2;
2976 break;
2977
2978 case UNOP_NEG:
2979 case UNOP_PLUS:
2980 case UNOP_LOGICAL_NOT:
2981 case UNOP_ABS:
2982 case UNOP_IND:
2983 *pos += 1;
2984 nargs = 1;
2985 break;
2986
2987 case OP_LONG:
2988 case OP_DOUBLE:
2989 case OP_VAR_VALUE:
2990 *pos += 4;
2991 break;
2992
2993 case OP_TYPE:
2994 case OP_BOOL:
2995 case OP_LAST:
2996 case OP_INTERNALVAR:
2997 *pos += 3;
2998 break;
2999
3000 case UNOP_MEMVAL:
3001 *pos += 3;
3002 nargs = 1;
3003 break;
3004
3005 case OP_REGISTER:
3006 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3007 break;
3008
3009 case STRUCTOP_STRUCT:
3010 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3011 nargs = 1;
3012 break;
3013
3014 case TERNOP_SLICE:
3015 *pos += 1;
3016 nargs = 3;
3017 break;
3018
3019 case OP_STRING:
3020 break;
3021
3022 default:
3023 error (_("Unexpected operator during name resolution"));
3024 }
3025
3026 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3027 for (i = 0; i < nargs; i += 1)
3028 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3029 argvec[i] = NULL;
3030 exp = *expp;
3031
3032 /* Pass two: perform any resolution on principal operator. */
3033 switch (op)
3034 {
3035 default:
3036 break;
3037
3038 case OP_VAR_VALUE:
3039 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3040 {
3041 struct ada_symbol_info *candidates;
3042 int n_candidates;
3043
3044 n_candidates =
3045 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3046 (exp->elts[pc + 2].symbol),
3047 exp->elts[pc + 1].block, VAR_DOMAIN,
3048 &candidates);
3049
3050 if (n_candidates > 1)
3051 {
3052 /* Types tend to get re-introduced locally, so if there
3053 are any local symbols that are not types, first filter
3054 out all types. */
3055 int j;
3056 for (j = 0; j < n_candidates; j += 1)
3057 switch (SYMBOL_CLASS (candidates[j].sym))
3058 {
3059 case LOC_REGISTER:
3060 case LOC_ARG:
3061 case LOC_REF_ARG:
3062 case LOC_REGPARM_ADDR:
3063 case LOC_LOCAL:
3064 case LOC_COMPUTED:
3065 goto FoundNonType;
3066 default:
3067 break;
3068 }
3069 FoundNonType:
3070 if (j < n_candidates)
3071 {
3072 j = 0;
3073 while (j < n_candidates)
3074 {
3075 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3076 {
3077 candidates[j] = candidates[n_candidates - 1];
3078 n_candidates -= 1;
3079 }
3080 else
3081 j += 1;
3082 }
3083 }
3084 }
3085
3086 if (n_candidates == 0)
3087 error (_("No definition found for %s"),
3088 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3089 else if (n_candidates == 1)
3090 i = 0;
3091 else if (deprocedure_p
3092 && !is_nonfunction (candidates, n_candidates))
3093 {
3094 i = ada_resolve_function
3095 (candidates, n_candidates, NULL, 0,
3096 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3097 context_type);
3098 if (i < 0)
3099 error (_("Could not find a match for %s"),
3100 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3101 }
3102 else
3103 {
3104 printf_filtered (_("Multiple matches for %s\n"),
3105 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3106 user_select_syms (candidates, n_candidates, 1);
3107 i = 0;
3108 }
3109
3110 exp->elts[pc + 1].block = candidates[i].block;
3111 exp->elts[pc + 2].symbol = candidates[i].sym;
3112 if (innermost_block == NULL
3113 || contained_in (candidates[i].block, innermost_block))
3114 innermost_block = candidates[i].block;
3115 }
3116
3117 if (deprocedure_p
3118 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3119 == TYPE_CODE_FUNC))
3120 {
3121 replace_operator_with_call (expp, pc, 0, 0,
3122 exp->elts[pc + 2].symbol,
3123 exp->elts[pc + 1].block);
3124 exp = *expp;
3125 }
3126 break;
3127
3128 case OP_FUNCALL:
3129 {
3130 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3131 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3132 {
3133 struct ada_symbol_info *candidates;
3134 int n_candidates;
3135
3136 n_candidates =
3137 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3138 (exp->elts[pc + 5].symbol),
3139 exp->elts[pc + 4].block, VAR_DOMAIN,
3140 &candidates);
3141 if (n_candidates == 1)
3142 i = 0;
3143 else
3144 {
3145 i = ada_resolve_function
3146 (candidates, n_candidates,
3147 argvec, nargs,
3148 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3149 context_type);
3150 if (i < 0)
3151 error (_("Could not find a match for %s"),
3152 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3153 }
3154
3155 exp->elts[pc + 4].block = candidates[i].block;
3156 exp->elts[pc + 5].symbol = candidates[i].sym;
3157 if (innermost_block == NULL
3158 || contained_in (candidates[i].block, innermost_block))
3159 innermost_block = candidates[i].block;
3160 }
3161 }
3162 break;
3163 case BINOP_ADD:
3164 case BINOP_SUB:
3165 case BINOP_MUL:
3166 case BINOP_DIV:
3167 case BINOP_REM:
3168 case BINOP_MOD:
3169 case BINOP_CONCAT:
3170 case BINOP_BITWISE_AND:
3171 case BINOP_BITWISE_IOR:
3172 case BINOP_BITWISE_XOR:
3173 case BINOP_EQUAL:
3174 case BINOP_NOTEQUAL:
3175 case BINOP_LESS:
3176 case BINOP_GTR:
3177 case BINOP_LEQ:
3178 case BINOP_GEQ:
3179 case BINOP_EXP:
3180 case UNOP_NEG:
3181 case UNOP_PLUS:
3182 case UNOP_LOGICAL_NOT:
3183 case UNOP_ABS:
3184 if (possible_user_operator_p (op, argvec))
3185 {
3186 struct ada_symbol_info *candidates;
3187 int n_candidates;
3188
3189 n_candidates =
3190 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3191 (struct block *) NULL, VAR_DOMAIN,
3192 &candidates);
3193 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3194 ada_decoded_op_name (op), NULL);
3195 if (i < 0)
3196 break;
3197
3198 replace_operator_with_call (expp, pc, nargs, 1,
3199 candidates[i].sym, candidates[i].block);
3200 exp = *expp;
3201 }
3202 break;
3203
3204 case OP_TYPE:
3205 case OP_REGISTER:
3206 return NULL;
3207 }
3208
3209 *pos = pc;
3210 return evaluate_subexp_type (exp, pos);
3211 }
3212
3213 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3214 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3215 a non-pointer. */
3216 /* The term "match" here is rather loose. The match is heuristic and
3217 liberal. */
3218
3219 static int
3220 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3221 {
3222 ftype = ada_check_typedef (ftype);
3223 atype = ada_check_typedef (atype);
3224
3225 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3226 ftype = TYPE_TARGET_TYPE (ftype);
3227 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3228 atype = TYPE_TARGET_TYPE (atype);
3229
3230 switch (TYPE_CODE (ftype))
3231 {
3232 default:
3233 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3234 case TYPE_CODE_PTR:
3235 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3236 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3237 TYPE_TARGET_TYPE (atype), 0);
3238 else
3239 return (may_deref
3240 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3241 case TYPE_CODE_INT:
3242 case TYPE_CODE_ENUM:
3243 case TYPE_CODE_RANGE:
3244 switch (TYPE_CODE (atype))
3245 {
3246 case TYPE_CODE_INT:
3247 case TYPE_CODE_ENUM:
3248 case TYPE_CODE_RANGE:
3249 return 1;
3250 default:
3251 return 0;
3252 }
3253
3254 case TYPE_CODE_ARRAY:
3255 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3256 || ada_is_array_descriptor_type (atype));
3257
3258 case TYPE_CODE_STRUCT:
3259 if (ada_is_array_descriptor_type (ftype))
3260 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3261 || ada_is_array_descriptor_type (atype));
3262 else
3263 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3264 && !ada_is_array_descriptor_type (atype));
3265
3266 case TYPE_CODE_UNION:
3267 case TYPE_CODE_FLT:
3268 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3269 }
3270 }
3271
3272 /* Return non-zero if the formals of FUNC "sufficiently match" the
3273 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3274 may also be an enumeral, in which case it is treated as a 0-
3275 argument function. */
3276
3277 static int
3278 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3279 {
3280 int i;
3281 struct type *func_type = SYMBOL_TYPE (func);
3282
3283 if (SYMBOL_CLASS (func) == LOC_CONST
3284 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3285 return (n_actuals == 0);
3286 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3287 return 0;
3288
3289 if (TYPE_NFIELDS (func_type) != n_actuals)
3290 return 0;
3291
3292 for (i = 0; i < n_actuals; i += 1)
3293 {
3294 if (actuals[i] == NULL)
3295 return 0;
3296 else
3297 {
3298 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3299 i));
3300 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3301
3302 if (!ada_type_match (ftype, atype, 1))
3303 return 0;
3304 }
3305 }
3306 return 1;
3307 }
3308
3309 /* False iff function type FUNC_TYPE definitely does not produce a value
3310 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3311 FUNC_TYPE is not a valid function type with a non-null return type
3312 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3313
3314 static int
3315 return_match (struct type *func_type, struct type *context_type)
3316 {
3317 struct type *return_type;
3318
3319 if (func_type == NULL)
3320 return 1;
3321
3322 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3323 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3324 else
3325 return_type = base_type (func_type);
3326 if (return_type == NULL)
3327 return 1;
3328
3329 context_type = base_type (context_type);
3330
3331 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3332 return context_type == NULL || return_type == context_type;
3333 else if (context_type == NULL)
3334 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3335 else
3336 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3337 }
3338
3339
3340 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3341 function (if any) that matches the types of the NARGS arguments in
3342 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3343 that returns that type, then eliminate matches that don't. If
3344 CONTEXT_TYPE is void and there is at least one match that does not
3345 return void, eliminate all matches that do.
3346
3347 Asks the user if there is more than one match remaining. Returns -1
3348 if there is no such symbol or none is selected. NAME is used
3349 solely for messages. May re-arrange and modify SYMS in
3350 the process; the index returned is for the modified vector. */
3351
3352 static int
3353 ada_resolve_function (struct ada_symbol_info syms[],
3354 int nsyms, struct value **args, int nargs,
3355 const char *name, struct type *context_type)
3356 {
3357 int fallback;
3358 int k;
3359 int m; /* Number of hits */
3360
3361 m = 0;
3362 /* In the first pass of the loop, we only accept functions matching
3363 context_type. If none are found, we add a second pass of the loop
3364 where every function is accepted. */
3365 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3366 {
3367 for (k = 0; k < nsyms; k += 1)
3368 {
3369 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3370
3371 if (ada_args_match (syms[k].sym, args, nargs)
3372 && (fallback || return_match (type, context_type)))
3373 {
3374 syms[m] = syms[k];
3375 m += 1;
3376 }
3377 }
3378 }
3379
3380 if (m == 0)
3381 return -1;
3382 else if (m > 1)
3383 {
3384 printf_filtered (_("Multiple matches for %s\n"), name);
3385 user_select_syms (syms, m, 1);
3386 return 0;
3387 }
3388 return 0;
3389 }
3390
3391 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3392 in a listing of choices during disambiguation (see sort_choices, below).
3393 The idea is that overloadings of a subprogram name from the
3394 same package should sort in their source order. We settle for ordering
3395 such symbols by their trailing number (__N or $N). */
3396
3397 static int
3398 encoded_ordered_before (char *N0, char *N1)
3399 {
3400 if (N1 == NULL)
3401 return 0;
3402 else if (N0 == NULL)
3403 return 1;
3404 else
3405 {
3406 int k0, k1;
3407
3408 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3409 ;
3410 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3411 ;
3412 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3413 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3414 {
3415 int n0, n1;
3416
3417 n0 = k0;
3418 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3419 n0 -= 1;
3420 n1 = k1;
3421 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3422 n1 -= 1;
3423 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3424 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3425 }
3426 return (strcmp (N0, N1) < 0);
3427 }
3428 }
3429
3430 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3431 encoded names. */
3432
3433 static void
3434 sort_choices (struct ada_symbol_info syms[], int nsyms)
3435 {
3436 int i;
3437
3438 for (i = 1; i < nsyms; i += 1)
3439 {
3440 struct ada_symbol_info sym = syms[i];
3441 int j;
3442
3443 for (j = i - 1; j >= 0; j -= 1)
3444 {
3445 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3446 SYMBOL_LINKAGE_NAME (sym.sym)))
3447 break;
3448 syms[j + 1] = syms[j];
3449 }
3450 syms[j + 1] = sym;
3451 }
3452 }
3453
3454 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3455 by asking the user (if necessary), returning the number selected,
3456 and setting the first elements of SYMS items. Error if no symbols
3457 selected. */
3458
3459 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3460 to be re-integrated one of these days. */
3461
3462 int
3463 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3464 {
3465 int i;
3466 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3467 int n_chosen;
3468 int first_choice = (max_results == 1) ? 1 : 2;
3469 const char *select_mode = multiple_symbols_select_mode ();
3470
3471 if (max_results < 1)
3472 error (_("Request to select 0 symbols!"));
3473 if (nsyms <= 1)
3474 return nsyms;
3475
3476 if (select_mode == multiple_symbols_cancel)
3477 error (_("\
3478 canceled because the command is ambiguous\n\
3479 See set/show multiple-symbol."));
3480
3481 /* If select_mode is "all", then return all possible symbols.
3482 Only do that if more than one symbol can be selected, of course.
3483 Otherwise, display the menu as usual. */
3484 if (select_mode == multiple_symbols_all && max_results > 1)
3485 return nsyms;
3486
3487 printf_unfiltered (_("[0] cancel\n"));
3488 if (max_results > 1)
3489 printf_unfiltered (_("[1] all\n"));
3490
3491 sort_choices (syms, nsyms);
3492
3493 for (i = 0; i < nsyms; i += 1)
3494 {
3495 if (syms[i].sym == NULL)
3496 continue;
3497
3498 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3499 {
3500 struct symtab_and_line sal =
3501 find_function_start_sal (syms[i].sym, 1);
3502
3503 if (sal.symtab == NULL)
3504 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3505 i + first_choice,
3506 SYMBOL_PRINT_NAME (syms[i].sym),
3507 sal.line);
3508 else
3509 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3510 SYMBOL_PRINT_NAME (syms[i].sym),
3511 sal.symtab->filename, sal.line);
3512 continue;
3513 }
3514 else
3515 {
3516 int is_enumeral =
3517 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3518 && SYMBOL_TYPE (syms[i].sym) != NULL
3519 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3520 struct symtab *symtab = syms[i].sym->symtab;
3521
3522 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3523 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3524 i + first_choice,
3525 SYMBOL_PRINT_NAME (syms[i].sym),
3526 symtab->filename, SYMBOL_LINE (syms[i].sym));
3527 else if (is_enumeral
3528 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3529 {
3530 printf_unfiltered (("[%d] "), i + first_choice);
3531 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3532 gdb_stdout, -1, 0);
3533 printf_unfiltered (_("'(%s) (enumeral)\n"),
3534 SYMBOL_PRINT_NAME (syms[i].sym));
3535 }
3536 else if (symtab != NULL)
3537 printf_unfiltered (is_enumeral
3538 ? _("[%d] %s in %s (enumeral)\n")
3539 : _("[%d] %s at %s:?\n"),
3540 i + first_choice,
3541 SYMBOL_PRINT_NAME (syms[i].sym),
3542 symtab->filename);
3543 else
3544 printf_unfiltered (is_enumeral
3545 ? _("[%d] %s (enumeral)\n")
3546 : _("[%d] %s at ?\n"),
3547 i + first_choice,
3548 SYMBOL_PRINT_NAME (syms[i].sym));
3549 }
3550 }
3551
3552 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3553 "overload-choice");
3554
3555 for (i = 0; i < n_chosen; i += 1)
3556 syms[i] = syms[chosen[i]];
3557
3558 return n_chosen;
3559 }
3560
3561 /* Read and validate a set of numeric choices from the user in the
3562 range 0 .. N_CHOICES-1. Place the results in increasing
3563 order in CHOICES[0 .. N-1], and return N.
3564
3565 The user types choices as a sequence of numbers on one line
3566 separated by blanks, encoding them as follows:
3567
3568 + A choice of 0 means to cancel the selection, throwing an error.
3569 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3570 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3571
3572 The user is not allowed to choose more than MAX_RESULTS values.
3573
3574 ANNOTATION_SUFFIX, if present, is used to annotate the input
3575 prompts (for use with the -f switch). */
3576
3577 int
3578 get_selections (int *choices, int n_choices, int max_results,
3579 int is_all_choice, char *annotation_suffix)
3580 {
3581 char *args;
3582 char *prompt;
3583 int n_chosen;
3584 int first_choice = is_all_choice ? 2 : 1;
3585
3586 prompt = getenv ("PS2");
3587 if (prompt == NULL)
3588 prompt = "> ";
3589
3590 args = command_line_input (prompt, 0, annotation_suffix);
3591
3592 if (args == NULL)
3593 error_no_arg (_("one or more choice numbers"));
3594
3595 n_chosen = 0;
3596
3597 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3598 order, as given in args. Choices are validated. */
3599 while (1)
3600 {
3601 char *args2;
3602 int choice, j;
3603
3604 while (isspace (*args))
3605 args += 1;
3606 if (*args == '\0' && n_chosen == 0)
3607 error_no_arg (_("one or more choice numbers"));
3608 else if (*args == '\0')
3609 break;
3610
3611 choice = strtol (args, &args2, 10);
3612 if (args == args2 || choice < 0
3613 || choice > n_choices + first_choice - 1)
3614 error (_("Argument must be choice number"));
3615 args = args2;
3616
3617 if (choice == 0)
3618 error (_("cancelled"));
3619
3620 if (choice < first_choice)
3621 {
3622 n_chosen = n_choices;
3623 for (j = 0; j < n_choices; j += 1)
3624 choices[j] = j;
3625 break;
3626 }
3627 choice -= first_choice;
3628
3629 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3630 {
3631 }
3632
3633 if (j < 0 || choice != choices[j])
3634 {
3635 int k;
3636
3637 for (k = n_chosen - 1; k > j; k -= 1)
3638 choices[k + 1] = choices[k];
3639 choices[j + 1] = choice;
3640 n_chosen += 1;
3641 }
3642 }
3643
3644 if (n_chosen > max_results)
3645 error (_("Select no more than %d of the above"), max_results);
3646
3647 return n_chosen;
3648 }
3649
3650 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3651 on the function identified by SYM and BLOCK, and taking NARGS
3652 arguments. Update *EXPP as needed to hold more space. */
3653
3654 static void
3655 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3656 int oplen, struct symbol *sym,
3657 struct block *block)
3658 {
3659 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3660 symbol, -oplen for operator being replaced). */
3661 struct expression *newexp = (struct expression *)
3662 xzalloc (sizeof (struct expression)
3663 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3664 struct expression *exp = *expp;
3665
3666 newexp->nelts = exp->nelts + 7 - oplen;
3667 newexp->language_defn = exp->language_defn;
3668 newexp->gdbarch = exp->gdbarch;
3669 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3670 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3671 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3672
3673 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3674 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3675
3676 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3677 newexp->elts[pc + 4].block = block;
3678 newexp->elts[pc + 5].symbol = sym;
3679
3680 *expp = newexp;
3681 xfree (exp);
3682 }
3683
3684 /* Type-class predicates */
3685
3686 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3687 or FLOAT). */
3688
3689 static int
3690 numeric_type_p (struct type *type)
3691 {
3692 if (type == NULL)
3693 return 0;
3694 else
3695 {
3696 switch (TYPE_CODE (type))
3697 {
3698 case TYPE_CODE_INT:
3699 case TYPE_CODE_FLT:
3700 return 1;
3701 case TYPE_CODE_RANGE:
3702 return (type == TYPE_TARGET_TYPE (type)
3703 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3704 default:
3705 return 0;
3706 }
3707 }
3708 }
3709
3710 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3711
3712 static int
3713 integer_type_p (struct type *type)
3714 {
3715 if (type == NULL)
3716 return 0;
3717 else
3718 {
3719 switch (TYPE_CODE (type))
3720 {
3721 case TYPE_CODE_INT:
3722 return 1;
3723 case TYPE_CODE_RANGE:
3724 return (type == TYPE_TARGET_TYPE (type)
3725 || integer_type_p (TYPE_TARGET_TYPE (type)));
3726 default:
3727 return 0;
3728 }
3729 }
3730 }
3731
3732 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3733
3734 static int
3735 scalar_type_p (struct type *type)
3736 {
3737 if (type == NULL)
3738 return 0;
3739 else
3740 {
3741 switch (TYPE_CODE (type))
3742 {
3743 case TYPE_CODE_INT:
3744 case TYPE_CODE_RANGE:
3745 case TYPE_CODE_ENUM:
3746 case TYPE_CODE_FLT:
3747 return 1;
3748 default:
3749 return 0;
3750 }
3751 }
3752 }
3753
3754 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3755
3756 static int
3757 discrete_type_p (struct type *type)
3758 {
3759 if (type == NULL)
3760 return 0;
3761 else
3762 {
3763 switch (TYPE_CODE (type))
3764 {
3765 case TYPE_CODE_INT:
3766 case TYPE_CODE_RANGE:
3767 case TYPE_CODE_ENUM:
3768 case TYPE_CODE_BOOL:
3769 return 1;
3770 default:
3771 return 0;
3772 }
3773 }
3774 }
3775
3776 /* Returns non-zero if OP with operands in the vector ARGS could be
3777 a user-defined function. Errs on the side of pre-defined operators
3778 (i.e., result 0). */
3779
3780 static int
3781 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3782 {
3783 struct type *type0 =
3784 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3785 struct type *type1 =
3786 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3787
3788 if (type0 == NULL)
3789 return 0;
3790
3791 switch (op)
3792 {
3793 default:
3794 return 0;
3795
3796 case BINOP_ADD:
3797 case BINOP_SUB:
3798 case BINOP_MUL:
3799 case BINOP_DIV:
3800 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3801
3802 case BINOP_REM:
3803 case BINOP_MOD:
3804 case BINOP_BITWISE_AND:
3805 case BINOP_BITWISE_IOR:
3806 case BINOP_BITWISE_XOR:
3807 return (!(integer_type_p (type0) && integer_type_p (type1)));
3808
3809 case BINOP_EQUAL:
3810 case BINOP_NOTEQUAL:
3811 case BINOP_LESS:
3812 case BINOP_GTR:
3813 case BINOP_LEQ:
3814 case BINOP_GEQ:
3815 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3816
3817 case BINOP_CONCAT:
3818 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3819
3820 case BINOP_EXP:
3821 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3822
3823 case UNOP_NEG:
3824 case UNOP_PLUS:
3825 case UNOP_LOGICAL_NOT:
3826 case UNOP_ABS:
3827 return (!numeric_type_p (type0));
3828
3829 }
3830 }
3831 \f
3832 /* Renaming */
3833
3834 /* NOTES:
3835
3836 1. In the following, we assume that a renaming type's name may
3837 have an ___XD suffix. It would be nice if this went away at some
3838 point.
3839 2. We handle both the (old) purely type-based representation of
3840 renamings and the (new) variable-based encoding. At some point,
3841 it is devoutly to be hoped that the former goes away
3842 (FIXME: hilfinger-2007-07-09).
3843 3. Subprogram renamings are not implemented, although the XRS
3844 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3845
3846 /* If SYM encodes a renaming,
3847
3848 <renaming> renames <renamed entity>,
3849
3850 sets *LEN to the length of the renamed entity's name,
3851 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3852 the string describing the subcomponent selected from the renamed
3853 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3854 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3855 are undefined). Otherwise, returns a value indicating the category
3856 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3857 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3858 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3859 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3860 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3861 may be NULL, in which case they are not assigned.
3862
3863 [Currently, however, GCC does not generate subprogram renamings.] */
3864
3865 enum ada_renaming_category
3866 ada_parse_renaming (struct symbol *sym,
3867 const char **renamed_entity, int *len,
3868 const char **renaming_expr)
3869 {
3870 enum ada_renaming_category kind;
3871 const char *info;
3872 const char *suffix;
3873
3874 if (sym == NULL)
3875 return ADA_NOT_RENAMING;
3876 switch (SYMBOL_CLASS (sym))
3877 {
3878 default:
3879 return ADA_NOT_RENAMING;
3880 case LOC_TYPEDEF:
3881 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3882 renamed_entity, len, renaming_expr);
3883 case LOC_LOCAL:
3884 case LOC_STATIC:
3885 case LOC_COMPUTED:
3886 case LOC_OPTIMIZED_OUT:
3887 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3888 if (info == NULL)
3889 return ADA_NOT_RENAMING;
3890 switch (info[5])
3891 {
3892 case '_':
3893 kind = ADA_OBJECT_RENAMING;
3894 info += 6;
3895 break;
3896 case 'E':
3897 kind = ADA_EXCEPTION_RENAMING;
3898 info += 7;
3899 break;
3900 case 'P':
3901 kind = ADA_PACKAGE_RENAMING;
3902 info += 7;
3903 break;
3904 case 'S':
3905 kind = ADA_SUBPROGRAM_RENAMING;
3906 info += 7;
3907 break;
3908 default:
3909 return ADA_NOT_RENAMING;
3910 }
3911 }
3912
3913 if (renamed_entity != NULL)
3914 *renamed_entity = info;
3915 suffix = strstr (info, "___XE");
3916 if (suffix == NULL || suffix == info)
3917 return ADA_NOT_RENAMING;
3918 if (len != NULL)
3919 *len = strlen (info) - strlen (suffix);
3920 suffix += 5;
3921 if (renaming_expr != NULL)
3922 *renaming_expr = suffix;
3923 return kind;
3924 }
3925
3926 /* Assuming TYPE encodes a renaming according to the old encoding in
3927 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3928 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3929 ADA_NOT_RENAMING otherwise. */
3930 static enum ada_renaming_category
3931 parse_old_style_renaming (struct type *type,
3932 const char **renamed_entity, int *len,
3933 const char **renaming_expr)
3934 {
3935 enum ada_renaming_category kind;
3936 const char *name;
3937 const char *info;
3938 const char *suffix;
3939
3940 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3941 || TYPE_NFIELDS (type) != 1)
3942 return ADA_NOT_RENAMING;
3943
3944 name = type_name_no_tag (type);
3945 if (name == NULL)
3946 return ADA_NOT_RENAMING;
3947
3948 name = strstr (name, "___XR");
3949 if (name == NULL)
3950 return ADA_NOT_RENAMING;
3951 switch (name[5])
3952 {
3953 case '\0':
3954 case '_':
3955 kind = ADA_OBJECT_RENAMING;
3956 break;
3957 case 'E':
3958 kind = ADA_EXCEPTION_RENAMING;
3959 break;
3960 case 'P':
3961 kind = ADA_PACKAGE_RENAMING;
3962 break;
3963 case 'S':
3964 kind = ADA_SUBPROGRAM_RENAMING;
3965 break;
3966 default:
3967 return ADA_NOT_RENAMING;
3968 }
3969
3970 info = TYPE_FIELD_NAME (type, 0);
3971 if (info == NULL)
3972 return ADA_NOT_RENAMING;
3973 if (renamed_entity != NULL)
3974 *renamed_entity = info;
3975 suffix = strstr (info, "___XE");
3976 if (renaming_expr != NULL)
3977 *renaming_expr = suffix + 5;
3978 if (suffix == NULL || suffix == info)
3979 return ADA_NOT_RENAMING;
3980 if (len != NULL)
3981 *len = suffix - info;
3982 return kind;
3983 }
3984
3985 \f
3986
3987 /* Evaluation: Function Calls */
3988
3989 /* Return an lvalue containing the value VAL. This is the identity on
3990 lvalues, and otherwise has the side-effect of allocating memory
3991 in the inferior where a copy of the value contents is copied. */
3992
3993 static struct value *
3994 ensure_lval (struct value *val)
3995 {
3996 if (VALUE_LVAL (val) == not_lval
3997 || VALUE_LVAL (val) == lval_internalvar)
3998 {
3999 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4000 const CORE_ADDR addr =
4001 value_as_long (value_allocate_space_in_inferior (len));
4002
4003 set_value_address (val, addr);
4004 VALUE_LVAL (val) = lval_memory;
4005 write_memory (addr, value_contents (val), len);
4006 }
4007
4008 return val;
4009 }
4010
4011 /* Return the value ACTUAL, converted to be an appropriate value for a
4012 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4013 allocating any necessary descriptors (fat pointers), or copies of
4014 values not residing in memory, updating it as needed. */
4015
4016 struct value *
4017 ada_convert_actual (struct value *actual, struct type *formal_type0)
4018 {
4019 struct type *actual_type = ada_check_typedef (value_type (actual));
4020 struct type *formal_type = ada_check_typedef (formal_type0);
4021 struct type *formal_target =
4022 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4023 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4024 struct type *actual_target =
4025 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4026 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4027
4028 if (ada_is_array_descriptor_type (formal_target)
4029 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4030 return make_array_descriptor (formal_type, actual);
4031 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4032 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4033 {
4034 struct value *result;
4035
4036 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4037 && ada_is_array_descriptor_type (actual_target))
4038 result = desc_data (actual);
4039 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4040 {
4041 if (VALUE_LVAL (actual) != lval_memory)
4042 {
4043 struct value *val;
4044
4045 actual_type = ada_check_typedef (value_type (actual));
4046 val = allocate_value (actual_type);
4047 memcpy ((char *) value_contents_raw (val),
4048 (char *) value_contents (actual),
4049 TYPE_LENGTH (actual_type));
4050 actual = ensure_lval (val);
4051 }
4052 result = value_addr (actual);
4053 }
4054 else
4055 return actual;
4056 return value_cast_pointers (formal_type, result);
4057 }
4058 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4059 return ada_value_ind (actual);
4060
4061 return actual;
4062 }
4063
4064 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4065 type TYPE. This is usually an inefficient no-op except on some targets
4066 (such as AVR) where the representation of a pointer and an address
4067 differs. */
4068
4069 static CORE_ADDR
4070 value_pointer (struct value *value, struct type *type)
4071 {
4072 struct gdbarch *gdbarch = get_type_arch (type);
4073 unsigned len = TYPE_LENGTH (type);
4074 gdb_byte *buf = alloca (len);
4075 CORE_ADDR addr;
4076
4077 addr = value_address (value);
4078 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4079 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4080 return addr;
4081 }
4082
4083
4084 /* Push a descriptor of type TYPE for array value ARR on the stack at
4085 *SP, updating *SP to reflect the new descriptor. Return either
4086 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4087 to-descriptor type rather than a descriptor type), a struct value *
4088 representing a pointer to this descriptor. */
4089
4090 static struct value *
4091 make_array_descriptor (struct type *type, struct value *arr)
4092 {
4093 struct type *bounds_type = desc_bounds_type (type);
4094 struct type *desc_type = desc_base_type (type);
4095 struct value *descriptor = allocate_value (desc_type);
4096 struct value *bounds = allocate_value (bounds_type);
4097 int i;
4098
4099 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4100 i > 0; i -= 1)
4101 {
4102 modify_field (value_type (bounds), value_contents_writeable (bounds),
4103 ada_array_bound (arr, i, 0),
4104 desc_bound_bitpos (bounds_type, i, 0),
4105 desc_bound_bitsize (bounds_type, i, 0));
4106 modify_field (value_type (bounds), value_contents_writeable (bounds),
4107 ada_array_bound (arr, i, 1),
4108 desc_bound_bitpos (bounds_type, i, 1),
4109 desc_bound_bitsize (bounds_type, i, 1));
4110 }
4111
4112 bounds = ensure_lval (bounds);
4113
4114 modify_field (value_type (descriptor),
4115 value_contents_writeable (descriptor),
4116 value_pointer (ensure_lval (arr),
4117 TYPE_FIELD_TYPE (desc_type, 0)),
4118 fat_pntr_data_bitpos (desc_type),
4119 fat_pntr_data_bitsize (desc_type));
4120
4121 modify_field (value_type (descriptor),
4122 value_contents_writeable (descriptor),
4123 value_pointer (bounds,
4124 TYPE_FIELD_TYPE (desc_type, 1)),
4125 fat_pntr_bounds_bitpos (desc_type),
4126 fat_pntr_bounds_bitsize (desc_type));
4127
4128 descriptor = ensure_lval (descriptor);
4129
4130 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4131 return value_addr (descriptor);
4132 else
4133 return descriptor;
4134 }
4135 \f
4136 /* Dummy definitions for an experimental caching module that is not
4137 * used in the public sources. */
4138
4139 static int
4140 lookup_cached_symbol (const char *name, domain_enum namespace,
4141 struct symbol **sym, struct block **block)
4142 {
4143 return 0;
4144 }
4145
4146 static void
4147 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4148 struct block *block)
4149 {
4150 }
4151 \f
4152 /* Symbol Lookup */
4153
4154 /* Return the result of a standard (literal, C-like) lookup of NAME in
4155 given DOMAIN, visible from lexical block BLOCK. */
4156
4157 static struct symbol *
4158 standard_lookup (const char *name, const struct block *block,
4159 domain_enum domain)
4160 {
4161 struct symbol *sym;
4162
4163 if (lookup_cached_symbol (name, domain, &sym, NULL))
4164 return sym;
4165 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4166 cache_symbol (name, domain, sym, block_found);
4167 return sym;
4168 }
4169
4170
4171 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4172 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4173 since they contend in overloading in the same way. */
4174 static int
4175 is_nonfunction (struct ada_symbol_info syms[], int n)
4176 {
4177 int i;
4178
4179 for (i = 0; i < n; i += 1)
4180 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4181 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4182 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4183 return 1;
4184
4185 return 0;
4186 }
4187
4188 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4189 struct types. Otherwise, they may not. */
4190
4191 static int
4192 equiv_types (struct type *type0, struct type *type1)
4193 {
4194 if (type0 == type1)
4195 return 1;
4196 if (type0 == NULL || type1 == NULL
4197 || TYPE_CODE (type0) != TYPE_CODE (type1))
4198 return 0;
4199 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4200 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4201 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4202 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4203 return 1;
4204
4205 return 0;
4206 }
4207
4208 /* True iff SYM0 represents the same entity as SYM1, or one that is
4209 no more defined than that of SYM1. */
4210
4211 static int
4212 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4213 {
4214 if (sym0 == sym1)
4215 return 1;
4216 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4217 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4218 return 0;
4219
4220 switch (SYMBOL_CLASS (sym0))
4221 {
4222 case LOC_UNDEF:
4223 return 1;
4224 case LOC_TYPEDEF:
4225 {
4226 struct type *type0 = SYMBOL_TYPE (sym0);
4227 struct type *type1 = SYMBOL_TYPE (sym1);
4228 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4229 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4230 int len0 = strlen (name0);
4231
4232 return
4233 TYPE_CODE (type0) == TYPE_CODE (type1)
4234 && (equiv_types (type0, type1)
4235 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4236 && strncmp (name1 + len0, "___XV", 5) == 0));
4237 }
4238 case LOC_CONST:
4239 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4240 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4241 default:
4242 return 0;
4243 }
4244 }
4245
4246 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4247 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4248
4249 static void
4250 add_defn_to_vec (struct obstack *obstackp,
4251 struct symbol *sym,
4252 struct block *block)
4253 {
4254 int i;
4255 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4256
4257 /* Do not try to complete stub types, as the debugger is probably
4258 already scanning all symbols matching a certain name at the
4259 time when this function is called. Trying to replace the stub
4260 type by its associated full type will cause us to restart a scan
4261 which may lead to an infinite recursion. Instead, the client
4262 collecting the matching symbols will end up collecting several
4263 matches, with at least one of them complete. It can then filter
4264 out the stub ones if needed. */
4265
4266 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4267 {
4268 if (lesseq_defined_than (sym, prevDefns[i].sym))
4269 return;
4270 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4271 {
4272 prevDefns[i].sym = sym;
4273 prevDefns[i].block = block;
4274 return;
4275 }
4276 }
4277
4278 {
4279 struct ada_symbol_info info;
4280
4281 info.sym = sym;
4282 info.block = block;
4283 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4284 }
4285 }
4286
4287 /* Number of ada_symbol_info structures currently collected in
4288 current vector in *OBSTACKP. */
4289
4290 static int
4291 num_defns_collected (struct obstack *obstackp)
4292 {
4293 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4294 }
4295
4296 /* Vector of ada_symbol_info structures currently collected in current
4297 vector in *OBSTACKP. If FINISH, close off the vector and return
4298 its final address. */
4299
4300 static struct ada_symbol_info *
4301 defns_collected (struct obstack *obstackp, int finish)
4302 {
4303 if (finish)
4304 return obstack_finish (obstackp);
4305 else
4306 return (struct ada_symbol_info *) obstack_base (obstackp);
4307 }
4308
4309 /* Return a minimal symbol matching NAME according to Ada decoding
4310 rules. Returns NULL if there is no such minimal symbol. Names
4311 prefixed with "standard__" are handled specially: "standard__" is
4312 first stripped off, and only static and global symbols are searched. */
4313
4314 struct minimal_symbol *
4315 ada_lookup_simple_minsym (const char *name)
4316 {
4317 struct objfile *objfile;
4318 struct minimal_symbol *msymbol;
4319 int wild_match;
4320
4321 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4322 {
4323 name += sizeof ("standard__") - 1;
4324 wild_match = 0;
4325 }
4326 else
4327 wild_match = (strstr (name, "__") == NULL);
4328
4329 ALL_MSYMBOLS (objfile, msymbol)
4330 {
4331 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4332 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4333 return msymbol;
4334 }
4335
4336 return NULL;
4337 }
4338
4339 /* For all subprograms that statically enclose the subprogram of the
4340 selected frame, add symbols matching identifier NAME in DOMAIN
4341 and their blocks to the list of data in OBSTACKP, as for
4342 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4343 wildcard prefix. */
4344
4345 static void
4346 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4347 const char *name, domain_enum namespace,
4348 int wild_match)
4349 {
4350 }
4351
4352 /* True if TYPE is definitely an artificial type supplied to a symbol
4353 for which no debugging information was given in the symbol file. */
4354
4355 static int
4356 is_nondebugging_type (struct type *type)
4357 {
4358 char *name = ada_type_name (type);
4359
4360 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4361 }
4362
4363 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4364 duplicate other symbols in the list (The only case I know of where
4365 this happens is when object files containing stabs-in-ecoff are
4366 linked with files containing ordinary ecoff debugging symbols (or no
4367 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4368 Returns the number of items in the modified list. */
4369
4370 static int
4371 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4372 {
4373 int i, j;
4374
4375 i = 0;
4376 while (i < nsyms)
4377 {
4378 int remove = 0;
4379
4380 /* If two symbols have the same name and one of them is a stub type,
4381 the get rid of the stub. */
4382
4383 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4384 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4385 {
4386 for (j = 0; j < nsyms; j++)
4387 {
4388 if (j != i
4389 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4390 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4391 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4392 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4393 remove = 1;
4394 }
4395 }
4396
4397 /* Two symbols with the same name, same class and same address
4398 should be identical. */
4399
4400 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4401 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4402 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4403 {
4404 for (j = 0; j < nsyms; j += 1)
4405 {
4406 if (i != j
4407 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4408 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4409 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4410 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4411 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4412 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4413 remove = 1;
4414 }
4415 }
4416
4417 if (remove)
4418 {
4419 for (j = i + 1; j < nsyms; j += 1)
4420 syms[j - 1] = syms[j];
4421 nsyms -= 1;
4422 }
4423
4424 i += 1;
4425 }
4426 return nsyms;
4427 }
4428
4429 /* Given a type that corresponds to a renaming entity, use the type name
4430 to extract the scope (package name or function name, fully qualified,
4431 and following the GNAT encoding convention) where this renaming has been
4432 defined. The string returned needs to be deallocated after use. */
4433
4434 static char *
4435 xget_renaming_scope (struct type *renaming_type)
4436 {
4437 /* The renaming types adhere to the following convention:
4438 <scope>__<rename>___<XR extension>.
4439 So, to extract the scope, we search for the "___XR" extension,
4440 and then backtrack until we find the first "__". */
4441
4442 const char *name = type_name_no_tag (renaming_type);
4443 char *suffix = strstr (name, "___XR");
4444 char *last;
4445 int scope_len;
4446 char *scope;
4447
4448 /* Now, backtrack a bit until we find the first "__". Start looking
4449 at suffix - 3, as the <rename> part is at least one character long. */
4450
4451 for (last = suffix - 3; last > name; last--)
4452 if (last[0] == '_' && last[1] == '_')
4453 break;
4454
4455 /* Make a copy of scope and return it. */
4456
4457 scope_len = last - name;
4458 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4459
4460 strncpy (scope, name, scope_len);
4461 scope[scope_len] = '\0';
4462
4463 return scope;
4464 }
4465
4466 /* Return nonzero if NAME corresponds to a package name. */
4467
4468 static int
4469 is_package_name (const char *name)
4470 {
4471 /* Here, We take advantage of the fact that no symbols are generated
4472 for packages, while symbols are generated for each function.
4473 So the condition for NAME represent a package becomes equivalent
4474 to NAME not existing in our list of symbols. There is only one
4475 small complication with library-level functions (see below). */
4476
4477 char *fun_name;
4478
4479 /* If it is a function that has not been defined at library level,
4480 then we should be able to look it up in the symbols. */
4481 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4482 return 0;
4483
4484 /* Library-level function names start with "_ada_". See if function
4485 "_ada_" followed by NAME can be found. */
4486
4487 /* Do a quick check that NAME does not contain "__", since library-level
4488 functions names cannot contain "__" in them. */
4489 if (strstr (name, "__") != NULL)
4490 return 0;
4491
4492 fun_name = xstrprintf ("_ada_%s", name);
4493
4494 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4495 }
4496
4497 /* Return nonzero if SYM corresponds to a renaming entity that is
4498 not visible from FUNCTION_NAME. */
4499
4500 static int
4501 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4502 {
4503 char *scope;
4504
4505 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4506 return 0;
4507
4508 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4509
4510 make_cleanup (xfree, scope);
4511
4512 /* If the rename has been defined in a package, then it is visible. */
4513 if (is_package_name (scope))
4514 return 0;
4515
4516 /* Check that the rename is in the current function scope by checking
4517 that its name starts with SCOPE. */
4518
4519 /* If the function name starts with "_ada_", it means that it is
4520 a library-level function. Strip this prefix before doing the
4521 comparison, as the encoding for the renaming does not contain
4522 this prefix. */
4523 if (strncmp (function_name, "_ada_", 5) == 0)
4524 function_name += 5;
4525
4526 return (strncmp (function_name, scope, strlen (scope)) != 0);
4527 }
4528
4529 /* Remove entries from SYMS that corresponds to a renaming entity that
4530 is not visible from the function associated with CURRENT_BLOCK or
4531 that is superfluous due to the presence of more specific renaming
4532 information. Places surviving symbols in the initial entries of
4533 SYMS and returns the number of surviving symbols.
4534
4535 Rationale:
4536 First, in cases where an object renaming is implemented as a
4537 reference variable, GNAT may produce both the actual reference
4538 variable and the renaming encoding. In this case, we discard the
4539 latter.
4540
4541 Second, GNAT emits a type following a specified encoding for each renaming
4542 entity. Unfortunately, STABS currently does not support the definition
4543 of types that are local to a given lexical block, so all renamings types
4544 are emitted at library level. As a consequence, if an application
4545 contains two renaming entities using the same name, and a user tries to
4546 print the value of one of these entities, the result of the ada symbol
4547 lookup will also contain the wrong renaming type.
4548
4549 This function partially covers for this limitation by attempting to
4550 remove from the SYMS list renaming symbols that should be visible
4551 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4552 method with the current information available. The implementation
4553 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4554
4555 - When the user tries to print a rename in a function while there
4556 is another rename entity defined in a package: Normally, the
4557 rename in the function has precedence over the rename in the
4558 package, so the latter should be removed from the list. This is
4559 currently not the case.
4560
4561 - This function will incorrectly remove valid renames if
4562 the CURRENT_BLOCK corresponds to a function which symbol name
4563 has been changed by an "Export" pragma. As a consequence,
4564 the user will be unable to print such rename entities. */
4565
4566 static int
4567 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4568 int nsyms, const struct block *current_block)
4569 {
4570 struct symbol *current_function;
4571 char *current_function_name;
4572 int i;
4573 int is_new_style_renaming;
4574
4575 /* If there is both a renaming foo___XR... encoded as a variable and
4576 a simple variable foo in the same block, discard the latter.
4577 First, zero out such symbols, then compress. */
4578 is_new_style_renaming = 0;
4579 for (i = 0; i < nsyms; i += 1)
4580 {
4581 struct symbol *sym = syms[i].sym;
4582 struct block *block = syms[i].block;
4583 const char *name;
4584 const char *suffix;
4585
4586 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4587 continue;
4588 name = SYMBOL_LINKAGE_NAME (sym);
4589 suffix = strstr (name, "___XR");
4590
4591 if (suffix != NULL)
4592 {
4593 int name_len = suffix - name;
4594 int j;
4595
4596 is_new_style_renaming = 1;
4597 for (j = 0; j < nsyms; j += 1)
4598 if (i != j && syms[j].sym != NULL
4599 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4600 name_len) == 0
4601 && block == syms[j].block)
4602 syms[j].sym = NULL;
4603 }
4604 }
4605 if (is_new_style_renaming)
4606 {
4607 int j, k;
4608
4609 for (j = k = 0; j < nsyms; j += 1)
4610 if (syms[j].sym != NULL)
4611 {
4612 syms[k] = syms[j];
4613 k += 1;
4614 }
4615 return k;
4616 }
4617
4618 /* Extract the function name associated to CURRENT_BLOCK.
4619 Abort if unable to do so. */
4620
4621 if (current_block == NULL)
4622 return nsyms;
4623
4624 current_function = block_linkage_function (current_block);
4625 if (current_function == NULL)
4626 return nsyms;
4627
4628 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4629 if (current_function_name == NULL)
4630 return nsyms;
4631
4632 /* Check each of the symbols, and remove it from the list if it is
4633 a type corresponding to a renaming that is out of the scope of
4634 the current block. */
4635
4636 i = 0;
4637 while (i < nsyms)
4638 {
4639 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4640 == ADA_OBJECT_RENAMING
4641 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4642 {
4643 int j;
4644
4645 for (j = i + 1; j < nsyms; j += 1)
4646 syms[j - 1] = syms[j];
4647 nsyms -= 1;
4648 }
4649 else
4650 i += 1;
4651 }
4652
4653 return nsyms;
4654 }
4655
4656 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4657 whose name and domain match NAME and DOMAIN respectively.
4658 If no match was found, then extend the search to "enclosing"
4659 routines (in other words, if we're inside a nested function,
4660 search the symbols defined inside the enclosing functions).
4661
4662 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4663
4664 static void
4665 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4666 struct block *block, domain_enum domain,
4667 int wild_match)
4668 {
4669 int block_depth = 0;
4670
4671 while (block != NULL)
4672 {
4673 block_depth += 1;
4674 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4675
4676 /* If we found a non-function match, assume that's the one. */
4677 if (is_nonfunction (defns_collected (obstackp, 0),
4678 num_defns_collected (obstackp)))
4679 return;
4680
4681 block = BLOCK_SUPERBLOCK (block);
4682 }
4683
4684 /* If no luck so far, try to find NAME as a local symbol in some lexically
4685 enclosing subprogram. */
4686 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4687 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4688 }
4689
4690 /* An object of this type is used as the user_data argument when
4691 calling the map_matching_symbols method. */
4692
4693 struct match_data
4694 {
4695 struct objfile *objfile;
4696 struct obstack *obstackp;
4697 struct symbol *arg_sym;
4698 int found_sym;
4699 };
4700
4701 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4702 to a list of symbols. DATA0 is a pointer to a struct match_data *
4703 containing the obstack that collects the symbol list, the file that SYM
4704 must come from, a flag indicating whether a non-argument symbol has
4705 been found in the current block, and the last argument symbol
4706 passed in SYM within the current block (if any). When SYM is null,
4707 marking the end of a block, the argument symbol is added if no
4708 other has been found. */
4709
4710 static int
4711 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4712 {
4713 struct match_data *data = (struct match_data *) data0;
4714
4715 if (sym == NULL)
4716 {
4717 if (!data->found_sym && data->arg_sym != NULL)
4718 add_defn_to_vec (data->obstackp,
4719 fixup_symbol_section (data->arg_sym, data->objfile),
4720 block);
4721 data->found_sym = 0;
4722 data->arg_sym = NULL;
4723 }
4724 else
4725 {
4726 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4727 return 0;
4728 else if (SYMBOL_IS_ARGUMENT (sym))
4729 data->arg_sym = sym;
4730 else
4731 {
4732 data->found_sym = 1;
4733 add_defn_to_vec (data->obstackp,
4734 fixup_symbol_section (sym, data->objfile),
4735 block);
4736 }
4737 }
4738 return 0;
4739 }
4740
4741 /* Compare STRING1 to STRING2, with results as for strcmp.
4742 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4743 implies compare_names (STRING1, STRING2) (they may differ as to
4744 what symbols compare equal). */
4745
4746 static int
4747 compare_names (const char *string1, const char *string2)
4748 {
4749 while (*string1 != '\0' && *string2 != '\0')
4750 {
4751 if (isspace (*string1) || isspace (*string2))
4752 return strcmp_iw_ordered (string1, string2);
4753 if (*string1 != *string2)
4754 break;
4755 string1 += 1;
4756 string2 += 1;
4757 }
4758 switch (*string1)
4759 {
4760 case '(':
4761 return strcmp_iw_ordered (string1, string2);
4762 case '_':
4763 if (*string2 == '\0')
4764 {
4765 if (is_name_suffix (string1))
4766 return 0;
4767 else
4768 return -1;
4769 }
4770 /* FALLTHROUGH */
4771 default:
4772 if (*string2 == '(')
4773 return strcmp_iw_ordered (string1, string2);
4774 else
4775 return *string1 - *string2;
4776 }
4777 }
4778
4779 /* Add to OBSTACKP all non-local symbols whose name and domain match
4780 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4781 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4782
4783 static void
4784 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4785 domain_enum domain, int global,
4786 int is_wild_match)
4787 {
4788 struct objfile *objfile;
4789 struct match_data data;
4790
4791 data.obstackp = obstackp;
4792 data.arg_sym = NULL;
4793
4794 ALL_OBJFILES (objfile)
4795 {
4796 data.objfile = objfile;
4797
4798 if (is_wild_match)
4799 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4800 aux_add_nonlocal_symbols, &data,
4801 wild_match, NULL);
4802 else
4803 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4804 aux_add_nonlocal_symbols, &data,
4805 full_match, compare_names);
4806 }
4807
4808 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4809 {
4810 ALL_OBJFILES (objfile)
4811 {
4812 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4813 strcpy (name1, "_ada_");
4814 strcpy (name1 + sizeof ("_ada_") - 1, name);
4815 data.objfile = objfile;
4816 objfile->sf->qf->map_matching_symbols (name1, domain,
4817 objfile, global,
4818 aux_add_nonlocal_symbols,
4819 &data,
4820 full_match, compare_names);
4821 }
4822 }
4823 }
4824
4825 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4826 scope and in global scopes, returning the number of matches. Sets
4827 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4828 indicating the symbols found and the blocks and symbol tables (if
4829 any) in which they were found. This vector are transient---good only to
4830 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4831 symbol match within the nest of blocks whose innermost member is BLOCK0,
4832 is the one match returned (no other matches in that or
4833 enclosing blocks is returned). If there are any matches in or
4834 surrounding BLOCK0, then these alone are returned. Otherwise, the
4835 search extends to global and file-scope (static) symbol tables.
4836 Names prefixed with "standard__" are handled specially: "standard__"
4837 is first stripped off, and only static and global symbols are searched. */
4838
4839 int
4840 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4841 domain_enum namespace,
4842 struct ada_symbol_info **results)
4843 {
4844 struct symbol *sym;
4845 struct block *block;
4846 const char *name;
4847 int wild_match;
4848 int cacheIfUnique;
4849 int ndefns;
4850
4851 obstack_free (&symbol_list_obstack, NULL);
4852 obstack_init (&symbol_list_obstack);
4853
4854 cacheIfUnique = 0;
4855
4856 /* Search specified block and its superiors. */
4857
4858 wild_match = (strstr (name0, "__") == NULL);
4859 name = name0;
4860 block = (struct block *) block0; /* FIXME: No cast ought to be
4861 needed, but adding const will
4862 have a cascade effect. */
4863
4864 /* Special case: If the user specifies a symbol name inside package
4865 Standard, do a non-wild matching of the symbol name without
4866 the "standard__" prefix. This was primarily introduced in order
4867 to allow the user to specifically access the standard exceptions
4868 using, for instance, Standard.Constraint_Error when Constraint_Error
4869 is ambiguous (due to the user defining its own Constraint_Error
4870 entity inside its program). */
4871 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4872 {
4873 wild_match = 0;
4874 block = NULL;
4875 name = name0 + sizeof ("standard__") - 1;
4876 }
4877
4878 /* Check the non-global symbols. If we have ANY match, then we're done. */
4879
4880 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4881 wild_match);
4882 if (num_defns_collected (&symbol_list_obstack) > 0)
4883 goto done;
4884
4885 /* No non-global symbols found. Check our cache to see if we have
4886 already performed this search before. If we have, then return
4887 the same result. */
4888
4889 cacheIfUnique = 1;
4890 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4891 {
4892 if (sym != NULL)
4893 add_defn_to_vec (&symbol_list_obstack, sym, block);
4894 goto done;
4895 }
4896
4897 /* Search symbols from all global blocks. */
4898
4899 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
4900 wild_match);
4901
4902 /* Now add symbols from all per-file blocks if we've gotten no hits
4903 (not strictly correct, but perhaps better than an error). */
4904
4905 if (num_defns_collected (&symbol_list_obstack) == 0)
4906 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
4907 wild_match);
4908
4909 done:
4910 ndefns = num_defns_collected (&symbol_list_obstack);
4911 *results = defns_collected (&symbol_list_obstack, 1);
4912
4913 ndefns = remove_extra_symbols (*results, ndefns);
4914
4915 if (ndefns == 0)
4916 cache_symbol (name0, namespace, NULL, NULL);
4917
4918 if (ndefns == 1 && cacheIfUnique)
4919 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4920
4921 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4922
4923 return ndefns;
4924 }
4925
4926 struct symbol *
4927 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4928 domain_enum namespace, struct block **block_found)
4929 {
4930 struct ada_symbol_info *candidates;
4931 int n_candidates;
4932
4933 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4934
4935 if (n_candidates == 0)
4936 return NULL;
4937
4938 if (block_found != NULL)
4939 *block_found = candidates[0].block;
4940
4941 return fixup_symbol_section (candidates[0].sym, NULL);
4942 }
4943
4944 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4945 scope and in global scopes, or NULL if none. NAME is folded and
4946 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4947 choosing the first symbol if there are multiple choices.
4948 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4949 table in which the symbol was found (in both cases, these
4950 assignments occur only if the pointers are non-null). */
4951 struct symbol *
4952 ada_lookup_symbol (const char *name, const struct block *block0,
4953 domain_enum namespace, int *is_a_field_of_this)
4954 {
4955 if (is_a_field_of_this != NULL)
4956 *is_a_field_of_this = 0;
4957
4958 return
4959 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4960 block0, namespace, NULL);
4961 }
4962
4963 static struct symbol *
4964 ada_lookup_symbol_nonlocal (const char *name,
4965 const struct block *block,
4966 const domain_enum domain)
4967 {
4968 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
4969 }
4970
4971
4972 /* True iff STR is a possible encoded suffix of a normal Ada name
4973 that is to be ignored for matching purposes. Suffixes of parallel
4974 names (e.g., XVE) are not included here. Currently, the possible suffixes
4975 are given by any of the regular expressions:
4976
4977 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4978 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4979 _E[0-9]+[bs]$ [protected object entry suffixes]
4980 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4981
4982 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4983 match is performed. This sequence is used to differentiate homonyms,
4984 is an optional part of a valid name suffix. */
4985
4986 static int
4987 is_name_suffix (const char *str)
4988 {
4989 int k;
4990 const char *matching;
4991 const int len = strlen (str);
4992
4993 /* Skip optional leading __[0-9]+. */
4994
4995 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4996 {
4997 str += 3;
4998 while (isdigit (str[0]))
4999 str += 1;
5000 }
5001
5002 /* [.$][0-9]+ */
5003
5004 if (str[0] == '.' || str[0] == '$')
5005 {
5006 matching = str + 1;
5007 while (isdigit (matching[0]))
5008 matching += 1;
5009 if (matching[0] == '\0')
5010 return 1;
5011 }
5012
5013 /* ___[0-9]+ */
5014
5015 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5016 {
5017 matching = str + 3;
5018 while (isdigit (matching[0]))
5019 matching += 1;
5020 if (matching[0] == '\0')
5021 return 1;
5022 }
5023
5024 #if 0
5025 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5026 with a N at the end. Unfortunately, the compiler uses the same
5027 convention for other internal types it creates. So treating
5028 all entity names that end with an "N" as a name suffix causes
5029 some regressions. For instance, consider the case of an enumerated
5030 type. To support the 'Image attribute, it creates an array whose
5031 name ends with N.
5032 Having a single character like this as a suffix carrying some
5033 information is a bit risky. Perhaps we should change the encoding
5034 to be something like "_N" instead. In the meantime, do not do
5035 the following check. */
5036 /* Protected Object Subprograms */
5037 if (len == 1 && str [0] == 'N')
5038 return 1;
5039 #endif
5040
5041 /* _E[0-9]+[bs]$ */
5042 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5043 {
5044 matching = str + 3;
5045 while (isdigit (matching[0]))
5046 matching += 1;
5047 if ((matching[0] == 'b' || matching[0] == 's')
5048 && matching [1] == '\0')
5049 return 1;
5050 }
5051
5052 /* ??? We should not modify STR directly, as we are doing below. This
5053 is fine in this case, but may become problematic later if we find
5054 that this alternative did not work, and want to try matching
5055 another one from the begining of STR. Since we modified it, we
5056 won't be able to find the begining of the string anymore! */
5057 if (str[0] == 'X')
5058 {
5059 str += 1;
5060 while (str[0] != '_' && str[0] != '\0')
5061 {
5062 if (str[0] != 'n' && str[0] != 'b')
5063 return 0;
5064 str += 1;
5065 }
5066 }
5067
5068 if (str[0] == '\000')
5069 return 1;
5070
5071 if (str[0] == '_')
5072 {
5073 if (str[1] != '_' || str[2] == '\000')
5074 return 0;
5075 if (str[2] == '_')
5076 {
5077 if (strcmp (str + 3, "JM") == 0)
5078 return 1;
5079 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5080 the LJM suffix in favor of the JM one. But we will
5081 still accept LJM as a valid suffix for a reasonable
5082 amount of time, just to allow ourselves to debug programs
5083 compiled using an older version of GNAT. */
5084 if (strcmp (str + 3, "LJM") == 0)
5085 return 1;
5086 if (str[3] != 'X')
5087 return 0;
5088 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5089 || str[4] == 'U' || str[4] == 'P')
5090 return 1;
5091 if (str[4] == 'R' && str[5] != 'T')
5092 return 1;
5093 return 0;
5094 }
5095 if (!isdigit (str[2]))
5096 return 0;
5097 for (k = 3; str[k] != '\0'; k += 1)
5098 if (!isdigit (str[k]) && str[k] != '_')
5099 return 0;
5100 return 1;
5101 }
5102 if (str[0] == '$' && isdigit (str[1]))
5103 {
5104 for (k = 2; str[k] != '\0'; k += 1)
5105 if (!isdigit (str[k]) && str[k] != '_')
5106 return 0;
5107 return 1;
5108 }
5109 return 0;
5110 }
5111
5112 /* Return non-zero if the string starting at NAME and ending before
5113 NAME_END contains no capital letters. */
5114
5115 static int
5116 is_valid_name_for_wild_match (const char *name0)
5117 {
5118 const char *decoded_name = ada_decode (name0);
5119 int i;
5120
5121 /* If the decoded name starts with an angle bracket, it means that
5122 NAME0 does not follow the GNAT encoding format. It should then
5123 not be allowed as a possible wild match. */
5124 if (decoded_name[0] == '<')
5125 return 0;
5126
5127 for (i=0; decoded_name[i] != '\0'; i++)
5128 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5129 return 0;
5130
5131 return 1;
5132 }
5133
5134 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5135 that could start a simple name. Assumes that *NAMEP points into
5136 the string beginning at NAME0. */
5137
5138 static int
5139 advance_wild_match (const char **namep, const char *name0, int target0)
5140 {
5141 const char *name = *namep;
5142
5143 while (1)
5144 {
5145 int t0, t1;
5146
5147 t0 = *name;
5148 if (t0 == '_')
5149 {
5150 t1 = name[1];
5151 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5152 {
5153 name += 1;
5154 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5155 break;
5156 else
5157 name += 1;
5158 }
5159 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5160 || name[2] == target0))
5161 {
5162 name += 2;
5163 break;
5164 }
5165 else
5166 return 0;
5167 }
5168 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5169 name += 1;
5170 else
5171 return 0;
5172 }
5173
5174 *namep = name;
5175 return 1;
5176 }
5177
5178 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5179 informational suffixes of NAME (i.e., for which is_name_suffix is
5180 true). Assumes that PATN is a lower-cased Ada simple name. */
5181
5182 static int
5183 wild_match (const char *name, const char *patn)
5184 {
5185 const char *p, *n;
5186 const char *name0 = name;
5187
5188 while (1)
5189 {
5190 const char *match = name;
5191
5192 if (*name == *patn)
5193 {
5194 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5195 if (*p != *name)
5196 break;
5197 if (*p == '\0' && is_name_suffix (name))
5198 return match != name0 && !is_valid_name_for_wild_match (name0);
5199
5200 if (name[-1] == '_')
5201 name -= 1;
5202 }
5203 if (!advance_wild_match (&name, name0, *patn))
5204 return 1;
5205 }
5206 }
5207
5208 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5209 informational suffix. */
5210
5211 static int
5212 full_match (const char *sym_name, const char *search_name)
5213 {
5214 return !match_name (sym_name, search_name, 0);
5215 }
5216
5217
5218 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5219 vector *defn_symbols, updating the list of symbols in OBSTACKP
5220 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5221 OBJFILE is the section containing BLOCK.
5222 SYMTAB is recorded with each symbol added. */
5223
5224 static void
5225 ada_add_block_symbols (struct obstack *obstackp,
5226 struct block *block, const char *name,
5227 domain_enum domain, struct objfile *objfile,
5228 int wild)
5229 {
5230 struct dict_iterator iter;
5231 int name_len = strlen (name);
5232 /* A matching argument symbol, if any. */
5233 struct symbol *arg_sym;
5234 /* Set true when we find a matching non-argument symbol. */
5235 int found_sym;
5236 struct symbol *sym;
5237
5238 arg_sym = NULL;
5239 found_sym = 0;
5240 if (wild)
5241 {
5242 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5243 wild_match, &iter);
5244 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5245 {
5246 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5247 SYMBOL_DOMAIN (sym), domain)
5248 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5249 {
5250 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5251 continue;
5252 else if (SYMBOL_IS_ARGUMENT (sym))
5253 arg_sym = sym;
5254 else
5255 {
5256 found_sym = 1;
5257 add_defn_to_vec (obstackp,
5258 fixup_symbol_section (sym, objfile),
5259 block);
5260 }
5261 }
5262 }
5263 }
5264 else
5265 {
5266 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5267 full_match, &iter);
5268 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5269 {
5270 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5271 SYMBOL_DOMAIN (sym), domain))
5272 {
5273 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5274 {
5275 if (SYMBOL_IS_ARGUMENT (sym))
5276 arg_sym = sym;
5277 else
5278 {
5279 found_sym = 1;
5280 add_defn_to_vec (obstackp,
5281 fixup_symbol_section (sym, objfile),
5282 block);
5283 }
5284 }
5285 }
5286 }
5287 }
5288
5289 if (!found_sym && arg_sym != NULL)
5290 {
5291 add_defn_to_vec (obstackp,
5292 fixup_symbol_section (arg_sym, objfile),
5293 block);
5294 }
5295
5296 if (!wild)
5297 {
5298 arg_sym = NULL;
5299 found_sym = 0;
5300
5301 ALL_BLOCK_SYMBOLS (block, iter, sym)
5302 {
5303 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5304 SYMBOL_DOMAIN (sym), domain))
5305 {
5306 int cmp;
5307
5308 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5309 if (cmp == 0)
5310 {
5311 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5312 if (cmp == 0)
5313 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5314 name_len);
5315 }
5316
5317 if (cmp == 0
5318 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5319 {
5320 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5321 {
5322 if (SYMBOL_IS_ARGUMENT (sym))
5323 arg_sym = sym;
5324 else
5325 {
5326 found_sym = 1;
5327 add_defn_to_vec (obstackp,
5328 fixup_symbol_section (sym, objfile),
5329 block);
5330 }
5331 }
5332 }
5333 }
5334 }
5335
5336 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5337 They aren't parameters, right? */
5338 if (!found_sym && arg_sym != NULL)
5339 {
5340 add_defn_to_vec (obstackp,
5341 fixup_symbol_section (arg_sym, objfile),
5342 block);
5343 }
5344 }
5345 }
5346 \f
5347
5348 /* Symbol Completion */
5349
5350 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5351 name in a form that's appropriate for the completion. The result
5352 does not need to be deallocated, but is only good until the next call.
5353
5354 TEXT_LEN is equal to the length of TEXT.
5355 Perform a wild match if WILD_MATCH is set.
5356 ENCODED should be set if TEXT represents the start of a symbol name
5357 in its encoded form. */
5358
5359 static const char *
5360 symbol_completion_match (const char *sym_name,
5361 const char *text, int text_len,
5362 int wild_match, int encoded)
5363 {
5364 const int verbatim_match = (text[0] == '<');
5365 int match = 0;
5366
5367 if (verbatim_match)
5368 {
5369 /* Strip the leading angle bracket. */
5370 text = text + 1;
5371 text_len--;
5372 }
5373
5374 /* First, test against the fully qualified name of the symbol. */
5375
5376 if (strncmp (sym_name, text, text_len) == 0)
5377 match = 1;
5378
5379 if (match && !encoded)
5380 {
5381 /* One needed check before declaring a positive match is to verify
5382 that iff we are doing a verbatim match, the decoded version
5383 of the symbol name starts with '<'. Otherwise, this symbol name
5384 is not a suitable completion. */
5385 const char *sym_name_copy = sym_name;
5386 int has_angle_bracket;
5387
5388 sym_name = ada_decode (sym_name);
5389 has_angle_bracket = (sym_name[0] == '<');
5390 match = (has_angle_bracket == verbatim_match);
5391 sym_name = sym_name_copy;
5392 }
5393
5394 if (match && !verbatim_match)
5395 {
5396 /* When doing non-verbatim match, another check that needs to
5397 be done is to verify that the potentially matching symbol name
5398 does not include capital letters, because the ada-mode would
5399 not be able to understand these symbol names without the
5400 angle bracket notation. */
5401 const char *tmp;
5402
5403 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5404 if (*tmp != '\0')
5405 match = 0;
5406 }
5407
5408 /* Second: Try wild matching... */
5409
5410 if (!match && wild_match)
5411 {
5412 /* Since we are doing wild matching, this means that TEXT
5413 may represent an unqualified symbol name. We therefore must
5414 also compare TEXT against the unqualified name of the symbol. */
5415 sym_name = ada_unqualified_name (ada_decode (sym_name));
5416
5417 if (strncmp (sym_name, text, text_len) == 0)
5418 match = 1;
5419 }
5420
5421 /* Finally: If we found a mach, prepare the result to return. */
5422
5423 if (!match)
5424 return NULL;
5425
5426 if (verbatim_match)
5427 sym_name = add_angle_brackets (sym_name);
5428
5429 if (!encoded)
5430 sym_name = ada_decode (sym_name);
5431
5432 return sym_name;
5433 }
5434
5435 DEF_VEC_P (char_ptr);
5436
5437 /* A companion function to ada_make_symbol_completion_list().
5438 Check if SYM_NAME represents a symbol which name would be suitable
5439 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5440 it is appended at the end of the given string vector SV.
5441
5442 ORIG_TEXT is the string original string from the user command
5443 that needs to be completed. WORD is the entire command on which
5444 completion should be performed. These two parameters are used to
5445 determine which part of the symbol name should be added to the
5446 completion vector.
5447 if WILD_MATCH is set, then wild matching is performed.
5448 ENCODED should be set if TEXT represents a symbol name in its
5449 encoded formed (in which case the completion should also be
5450 encoded). */
5451
5452 static void
5453 symbol_completion_add (VEC(char_ptr) **sv,
5454 const char *sym_name,
5455 const char *text, int text_len,
5456 const char *orig_text, const char *word,
5457 int wild_match, int encoded)
5458 {
5459 const char *match = symbol_completion_match (sym_name, text, text_len,
5460 wild_match, encoded);
5461 char *completion;
5462
5463 if (match == NULL)
5464 return;
5465
5466 /* We found a match, so add the appropriate completion to the given
5467 string vector. */
5468
5469 if (word == orig_text)
5470 {
5471 completion = xmalloc (strlen (match) + 5);
5472 strcpy (completion, match);
5473 }
5474 else if (word > orig_text)
5475 {
5476 /* Return some portion of sym_name. */
5477 completion = xmalloc (strlen (match) + 5);
5478 strcpy (completion, match + (word - orig_text));
5479 }
5480 else
5481 {
5482 /* Return some of ORIG_TEXT plus sym_name. */
5483 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5484 strncpy (completion, word, orig_text - word);
5485 completion[orig_text - word] = '\0';
5486 strcat (completion, match);
5487 }
5488
5489 VEC_safe_push (char_ptr, *sv, completion);
5490 }
5491
5492 /* An object of this type is passed as the user_data argument to the
5493 map_partial_symbol_names method. */
5494 struct add_partial_datum
5495 {
5496 VEC(char_ptr) **completions;
5497 char *text;
5498 int text_len;
5499 char *text0;
5500 char *word;
5501 int wild_match;
5502 int encoded;
5503 };
5504
5505 /* A callback for map_partial_symbol_names. */
5506 static void
5507 ada_add_partial_symbol_completions (const char *name, void *user_data)
5508 {
5509 struct add_partial_datum *data = user_data;
5510
5511 symbol_completion_add (data->completions, name,
5512 data->text, data->text_len, data->text0, data->word,
5513 data->wild_match, data->encoded);
5514 }
5515
5516 /* Return a list of possible symbol names completing TEXT0. The list
5517 is NULL terminated. WORD is the entire command on which completion
5518 is made. */
5519
5520 static char **
5521 ada_make_symbol_completion_list (char *text0, char *word)
5522 {
5523 char *text;
5524 int text_len;
5525 int wild_match;
5526 int encoded;
5527 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5528 struct symbol *sym;
5529 struct symtab *s;
5530 struct minimal_symbol *msymbol;
5531 struct objfile *objfile;
5532 struct block *b, *surrounding_static_block = 0;
5533 int i;
5534 struct dict_iterator iter;
5535
5536 if (text0[0] == '<')
5537 {
5538 text = xstrdup (text0);
5539 make_cleanup (xfree, text);
5540 text_len = strlen (text);
5541 wild_match = 0;
5542 encoded = 1;
5543 }
5544 else
5545 {
5546 text = xstrdup (ada_encode (text0));
5547 make_cleanup (xfree, text);
5548 text_len = strlen (text);
5549 for (i = 0; i < text_len; i++)
5550 text[i] = tolower (text[i]);
5551
5552 encoded = (strstr (text0, "__") != NULL);
5553 /* If the name contains a ".", then the user is entering a fully
5554 qualified entity name, and the match must not be done in wild
5555 mode. Similarly, if the user wants to complete what looks like
5556 an encoded name, the match must not be done in wild mode. */
5557 wild_match = (strchr (text0, '.') == NULL && !encoded);
5558 }
5559
5560 /* First, look at the partial symtab symbols. */
5561 {
5562 struct add_partial_datum data;
5563
5564 data.completions = &completions;
5565 data.text = text;
5566 data.text_len = text_len;
5567 data.text0 = text0;
5568 data.word = word;
5569 data.wild_match = wild_match;
5570 data.encoded = encoded;
5571 map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
5572 }
5573
5574 /* At this point scan through the misc symbol vectors and add each
5575 symbol you find to the list. Eventually we want to ignore
5576 anything that isn't a text symbol (everything else will be
5577 handled by the psymtab code above). */
5578
5579 ALL_MSYMBOLS (objfile, msymbol)
5580 {
5581 QUIT;
5582 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5583 text, text_len, text0, word, wild_match, encoded);
5584 }
5585
5586 /* Search upwards from currently selected frame (so that we can
5587 complete on local vars. */
5588
5589 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5590 {
5591 if (!BLOCK_SUPERBLOCK (b))
5592 surrounding_static_block = b; /* For elmin of dups */
5593
5594 ALL_BLOCK_SYMBOLS (b, iter, sym)
5595 {
5596 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5597 text, text_len, text0, word,
5598 wild_match, encoded);
5599 }
5600 }
5601
5602 /* Go through the symtabs and check the externs and statics for
5603 symbols which match. */
5604
5605 ALL_SYMTABS (objfile, s)
5606 {
5607 QUIT;
5608 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5609 ALL_BLOCK_SYMBOLS (b, iter, sym)
5610 {
5611 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5612 text, text_len, text0, word,
5613 wild_match, encoded);
5614 }
5615 }
5616
5617 ALL_SYMTABS (objfile, s)
5618 {
5619 QUIT;
5620 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5621 /* Don't do this block twice. */
5622 if (b == surrounding_static_block)
5623 continue;
5624 ALL_BLOCK_SYMBOLS (b, iter, sym)
5625 {
5626 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5627 text, text_len, text0, word,
5628 wild_match, encoded);
5629 }
5630 }
5631
5632 /* Append the closing NULL entry. */
5633 VEC_safe_push (char_ptr, completions, NULL);
5634
5635 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5636 return the copy. It's unfortunate that we have to make a copy
5637 of an array that we're about to destroy, but there is nothing much
5638 we can do about it. Fortunately, it's typically not a very large
5639 array. */
5640 {
5641 const size_t completions_size =
5642 VEC_length (char_ptr, completions) * sizeof (char *);
5643 char **result = xmalloc (completions_size);
5644
5645 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5646
5647 VEC_free (char_ptr, completions);
5648 return result;
5649 }
5650 }
5651
5652 /* Field Access */
5653
5654 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5655 for tagged types. */
5656
5657 static int
5658 ada_is_dispatch_table_ptr_type (struct type *type)
5659 {
5660 char *name;
5661
5662 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5663 return 0;
5664
5665 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5666 if (name == NULL)
5667 return 0;
5668
5669 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5670 }
5671
5672 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5673 to be invisible to users. */
5674
5675 int
5676 ada_is_ignored_field (struct type *type, int field_num)
5677 {
5678 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5679 return 1;
5680
5681 /* Check the name of that field. */
5682 {
5683 const char *name = TYPE_FIELD_NAME (type, field_num);
5684
5685 /* Anonymous field names should not be printed.
5686 brobecker/2007-02-20: I don't think this can actually happen
5687 but we don't want to print the value of annonymous fields anyway. */
5688 if (name == NULL)
5689 return 1;
5690
5691 /* A field named "_parent" is internally generated by GNAT for
5692 tagged types, and should not be printed either. */
5693 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5694 return 1;
5695 }
5696
5697 /* If this is the dispatch table of a tagged type, then ignore. */
5698 if (ada_is_tagged_type (type, 1)
5699 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5700 return 1;
5701
5702 /* Not a special field, so it should not be ignored. */
5703 return 0;
5704 }
5705
5706 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5707 pointer or reference type whose ultimate target has a tag field. */
5708
5709 int
5710 ada_is_tagged_type (struct type *type, int refok)
5711 {
5712 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5713 }
5714
5715 /* True iff TYPE represents the type of X'Tag */
5716
5717 int
5718 ada_is_tag_type (struct type *type)
5719 {
5720 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5721 return 0;
5722 else
5723 {
5724 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5725
5726 return (name != NULL
5727 && strcmp (name, "ada__tags__dispatch_table") == 0);
5728 }
5729 }
5730
5731 /* The type of the tag on VAL. */
5732
5733 struct type *
5734 ada_tag_type (struct value *val)
5735 {
5736 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5737 }
5738
5739 /* The value of the tag on VAL. */
5740
5741 struct value *
5742 ada_value_tag (struct value *val)
5743 {
5744 return ada_value_struct_elt (val, "_tag", 0);
5745 }
5746
5747 /* The value of the tag on the object of type TYPE whose contents are
5748 saved at VALADDR, if it is non-null, or is at memory address
5749 ADDRESS. */
5750
5751 static struct value *
5752 value_tag_from_contents_and_address (struct type *type,
5753 const gdb_byte *valaddr,
5754 CORE_ADDR address)
5755 {
5756 int tag_byte_offset;
5757 struct type *tag_type;
5758
5759 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5760 NULL, NULL, NULL))
5761 {
5762 const gdb_byte *valaddr1 = ((valaddr == NULL)
5763 ? NULL
5764 : valaddr + tag_byte_offset);
5765 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5766
5767 return value_from_contents_and_address (tag_type, valaddr1, address1);
5768 }
5769 return NULL;
5770 }
5771
5772 static struct type *
5773 type_from_tag (struct value *tag)
5774 {
5775 const char *type_name = ada_tag_name (tag);
5776
5777 if (type_name != NULL)
5778 return ada_find_any_type (ada_encode (type_name));
5779 return NULL;
5780 }
5781
5782 struct tag_args
5783 {
5784 struct value *tag;
5785 char *name;
5786 };
5787
5788
5789 static int ada_tag_name_1 (void *);
5790 static int ada_tag_name_2 (struct tag_args *);
5791
5792 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5793 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5794 The value stored in ARGS->name is valid until the next call to
5795 ada_tag_name_1. */
5796
5797 static int
5798 ada_tag_name_1 (void *args0)
5799 {
5800 struct tag_args *args = (struct tag_args *) args0;
5801 static char name[1024];
5802 char *p;
5803 struct value *val;
5804
5805 args->name = NULL;
5806 val = ada_value_struct_elt (args->tag, "tsd", 1);
5807 if (val == NULL)
5808 return ada_tag_name_2 (args);
5809 val = ada_value_struct_elt (val, "expanded_name", 1);
5810 if (val == NULL)
5811 return 0;
5812 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5813 for (p = name; *p != '\0'; p += 1)
5814 if (isalpha (*p))
5815 *p = tolower (*p);
5816 args->name = name;
5817 return 0;
5818 }
5819
5820 /* Return the "ada__tags__type_specific_data" type. */
5821
5822 static struct type *
5823 ada_get_tsd_type (struct inferior *inf)
5824 {
5825 struct ada_inferior_data *data = get_ada_inferior_data (inf);
5826
5827 if (data->tsd_type == 0)
5828 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
5829 return data->tsd_type;
5830 }
5831
5832 /* Utility function for ada_tag_name_1 that tries the second
5833 representation for the dispatch table (in which there is no
5834 explicit 'tsd' field in the referent of the tag pointer, and instead
5835 the tsd pointer is stored just before the dispatch table. */
5836
5837 static int
5838 ada_tag_name_2 (struct tag_args *args)
5839 {
5840 struct type *info_type;
5841 static char name[1024];
5842 char *p;
5843 struct value *val, *valp;
5844
5845 args->name = NULL;
5846 info_type = ada_get_tsd_type (current_inferior());
5847 if (info_type == NULL)
5848 return 0;
5849 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5850 valp = value_cast (info_type, args->tag);
5851 if (valp == NULL)
5852 return 0;
5853 val = value_ind (value_ptradd (valp, -1));
5854 if (val == NULL)
5855 return 0;
5856 val = ada_value_struct_elt (val, "expanded_name", 1);
5857 if (val == NULL)
5858 return 0;
5859 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5860 for (p = name; *p != '\0'; p += 1)
5861 if (isalpha (*p))
5862 *p = tolower (*p);
5863 args->name = name;
5864 return 0;
5865 }
5866
5867 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5868 a C string. */
5869
5870 const char *
5871 ada_tag_name (struct value *tag)
5872 {
5873 struct tag_args args;
5874
5875 if (!ada_is_tag_type (value_type (tag)))
5876 return NULL;
5877 args.tag = tag;
5878 args.name = NULL;
5879 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5880 return args.name;
5881 }
5882
5883 /* The parent type of TYPE, or NULL if none. */
5884
5885 struct type *
5886 ada_parent_type (struct type *type)
5887 {
5888 int i;
5889
5890 type = ada_check_typedef (type);
5891
5892 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5893 return NULL;
5894
5895 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5896 if (ada_is_parent_field (type, i))
5897 {
5898 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5899
5900 /* If the _parent field is a pointer, then dereference it. */
5901 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5902 parent_type = TYPE_TARGET_TYPE (parent_type);
5903 /* If there is a parallel XVS type, get the actual base type. */
5904 parent_type = ada_get_base_type (parent_type);
5905
5906 return ada_check_typedef (parent_type);
5907 }
5908
5909 return NULL;
5910 }
5911
5912 /* True iff field number FIELD_NUM of structure type TYPE contains the
5913 parent-type (inherited) fields of a derived type. Assumes TYPE is
5914 a structure type with at least FIELD_NUM+1 fields. */
5915
5916 int
5917 ada_is_parent_field (struct type *type, int field_num)
5918 {
5919 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5920
5921 return (name != NULL
5922 && (strncmp (name, "PARENT", 6) == 0
5923 || strncmp (name, "_parent", 7) == 0));
5924 }
5925
5926 /* True iff field number FIELD_NUM of structure type TYPE is a
5927 transparent wrapper field (which should be silently traversed when doing
5928 field selection and flattened when printing). Assumes TYPE is a
5929 structure type with at least FIELD_NUM+1 fields. Such fields are always
5930 structures. */
5931
5932 int
5933 ada_is_wrapper_field (struct type *type, int field_num)
5934 {
5935 const char *name = TYPE_FIELD_NAME (type, field_num);
5936
5937 return (name != NULL
5938 && (strncmp (name, "PARENT", 6) == 0
5939 || strcmp (name, "REP") == 0
5940 || strncmp (name, "_parent", 7) == 0
5941 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5942 }
5943
5944 /* True iff field number FIELD_NUM of structure or union type TYPE
5945 is a variant wrapper. Assumes TYPE is a structure type with at least
5946 FIELD_NUM+1 fields. */
5947
5948 int
5949 ada_is_variant_part (struct type *type, int field_num)
5950 {
5951 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5952
5953 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5954 || (is_dynamic_field (type, field_num)
5955 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5956 == TYPE_CODE_UNION)));
5957 }
5958
5959 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5960 whose discriminants are contained in the record type OUTER_TYPE,
5961 returns the type of the controlling discriminant for the variant.
5962 May return NULL if the type could not be found. */
5963
5964 struct type *
5965 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5966 {
5967 char *name = ada_variant_discrim_name (var_type);
5968
5969 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5970 }
5971
5972 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5973 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5974 represents a 'when others' clause; otherwise 0. */
5975
5976 int
5977 ada_is_others_clause (struct type *type, int field_num)
5978 {
5979 const char *name = TYPE_FIELD_NAME (type, field_num);
5980
5981 return (name != NULL && name[0] == 'O');
5982 }
5983
5984 /* Assuming that TYPE0 is the type of the variant part of a record,
5985 returns the name of the discriminant controlling the variant.
5986 The value is valid until the next call to ada_variant_discrim_name. */
5987
5988 char *
5989 ada_variant_discrim_name (struct type *type0)
5990 {
5991 static char *result = NULL;
5992 static size_t result_len = 0;
5993 struct type *type;
5994 const char *name;
5995 const char *discrim_end;
5996 const char *discrim_start;
5997
5998 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5999 type = TYPE_TARGET_TYPE (type0);
6000 else
6001 type = type0;
6002
6003 name = ada_type_name (type);
6004
6005 if (name == NULL || name[0] == '\000')
6006 return "";
6007
6008 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6009 discrim_end -= 1)
6010 {
6011 if (strncmp (discrim_end, "___XVN", 6) == 0)
6012 break;
6013 }
6014 if (discrim_end == name)
6015 return "";
6016
6017 for (discrim_start = discrim_end; discrim_start != name + 3;
6018 discrim_start -= 1)
6019 {
6020 if (discrim_start == name + 1)
6021 return "";
6022 if ((discrim_start > name + 3
6023 && strncmp (discrim_start - 3, "___", 3) == 0)
6024 || discrim_start[-1] == '.')
6025 break;
6026 }
6027
6028 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6029 strncpy (result, discrim_start, discrim_end - discrim_start);
6030 result[discrim_end - discrim_start] = '\0';
6031 return result;
6032 }
6033
6034 /* Scan STR for a subtype-encoded number, beginning at position K.
6035 Put the position of the character just past the number scanned in
6036 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6037 Return 1 if there was a valid number at the given position, and 0
6038 otherwise. A "subtype-encoded" number consists of the absolute value
6039 in decimal, followed by the letter 'm' to indicate a negative number.
6040 Assumes 0m does not occur. */
6041
6042 int
6043 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6044 {
6045 ULONGEST RU;
6046
6047 if (!isdigit (str[k]))
6048 return 0;
6049
6050 /* Do it the hard way so as not to make any assumption about
6051 the relationship of unsigned long (%lu scan format code) and
6052 LONGEST. */
6053 RU = 0;
6054 while (isdigit (str[k]))
6055 {
6056 RU = RU * 10 + (str[k] - '0');
6057 k += 1;
6058 }
6059
6060 if (str[k] == 'm')
6061 {
6062 if (R != NULL)
6063 *R = (-(LONGEST) (RU - 1)) - 1;
6064 k += 1;
6065 }
6066 else if (R != NULL)
6067 *R = (LONGEST) RU;
6068
6069 /* NOTE on the above: Technically, C does not say what the results of
6070 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6071 number representable as a LONGEST (although either would probably work
6072 in most implementations). When RU>0, the locution in the then branch
6073 above is always equivalent to the negative of RU. */
6074
6075 if (new_k != NULL)
6076 *new_k = k;
6077 return 1;
6078 }
6079
6080 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6081 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6082 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6083
6084 int
6085 ada_in_variant (LONGEST val, struct type *type, int field_num)
6086 {
6087 const char *name = TYPE_FIELD_NAME (type, field_num);
6088 int p;
6089
6090 p = 0;
6091 while (1)
6092 {
6093 switch (name[p])
6094 {
6095 case '\0':
6096 return 0;
6097 case 'S':
6098 {
6099 LONGEST W;
6100
6101 if (!ada_scan_number (name, p + 1, &W, &p))
6102 return 0;
6103 if (val == W)
6104 return 1;
6105 break;
6106 }
6107 case 'R':
6108 {
6109 LONGEST L, U;
6110
6111 if (!ada_scan_number (name, p + 1, &L, &p)
6112 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6113 return 0;
6114 if (val >= L && val <= U)
6115 return 1;
6116 break;
6117 }
6118 case 'O':
6119 return 1;
6120 default:
6121 return 0;
6122 }
6123 }
6124 }
6125
6126 /* FIXME: Lots of redundancy below. Try to consolidate. */
6127
6128 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6129 ARG_TYPE, extract and return the value of one of its (non-static)
6130 fields. FIELDNO says which field. Differs from value_primitive_field
6131 only in that it can handle packed values of arbitrary type. */
6132
6133 static struct value *
6134 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6135 struct type *arg_type)
6136 {
6137 struct type *type;
6138
6139 arg_type = ada_check_typedef (arg_type);
6140 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6141
6142 /* Handle packed fields. */
6143
6144 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6145 {
6146 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6147 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6148
6149 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6150 offset + bit_pos / 8,
6151 bit_pos % 8, bit_size, type);
6152 }
6153 else
6154 return value_primitive_field (arg1, offset, fieldno, arg_type);
6155 }
6156
6157 /* Find field with name NAME in object of type TYPE. If found,
6158 set the following for each argument that is non-null:
6159 - *FIELD_TYPE_P to the field's type;
6160 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6161 an object of that type;
6162 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6163 - *BIT_SIZE_P to its size in bits if the field is packed, and
6164 0 otherwise;
6165 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6166 fields up to but not including the desired field, or by the total
6167 number of fields if not found. A NULL value of NAME never
6168 matches; the function just counts visible fields in this case.
6169
6170 Returns 1 if found, 0 otherwise. */
6171
6172 static int
6173 find_struct_field (char *name, struct type *type, int offset,
6174 struct type **field_type_p,
6175 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6176 int *index_p)
6177 {
6178 int i;
6179
6180 type = ada_check_typedef (type);
6181
6182 if (field_type_p != NULL)
6183 *field_type_p = NULL;
6184 if (byte_offset_p != NULL)
6185 *byte_offset_p = 0;
6186 if (bit_offset_p != NULL)
6187 *bit_offset_p = 0;
6188 if (bit_size_p != NULL)
6189 *bit_size_p = 0;
6190
6191 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6192 {
6193 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6194 int fld_offset = offset + bit_pos / 8;
6195 char *t_field_name = TYPE_FIELD_NAME (type, i);
6196
6197 if (t_field_name == NULL)
6198 continue;
6199
6200 else if (name != NULL && field_name_match (t_field_name, name))
6201 {
6202 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6203
6204 if (field_type_p != NULL)
6205 *field_type_p = TYPE_FIELD_TYPE (type, i);
6206 if (byte_offset_p != NULL)
6207 *byte_offset_p = fld_offset;
6208 if (bit_offset_p != NULL)
6209 *bit_offset_p = bit_pos % 8;
6210 if (bit_size_p != NULL)
6211 *bit_size_p = bit_size;
6212 return 1;
6213 }
6214 else if (ada_is_wrapper_field (type, i))
6215 {
6216 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6217 field_type_p, byte_offset_p, bit_offset_p,
6218 bit_size_p, index_p))
6219 return 1;
6220 }
6221 else if (ada_is_variant_part (type, i))
6222 {
6223 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6224 fixed type?? */
6225 int j;
6226 struct type *field_type
6227 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6228
6229 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6230 {
6231 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6232 fld_offset
6233 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6234 field_type_p, byte_offset_p,
6235 bit_offset_p, bit_size_p, index_p))
6236 return 1;
6237 }
6238 }
6239 else if (index_p != NULL)
6240 *index_p += 1;
6241 }
6242 return 0;
6243 }
6244
6245 /* Number of user-visible fields in record type TYPE. */
6246
6247 static int
6248 num_visible_fields (struct type *type)
6249 {
6250 int n;
6251
6252 n = 0;
6253 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6254 return n;
6255 }
6256
6257 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6258 and search in it assuming it has (class) type TYPE.
6259 If found, return value, else return NULL.
6260
6261 Searches recursively through wrapper fields (e.g., '_parent'). */
6262
6263 static struct value *
6264 ada_search_struct_field (char *name, struct value *arg, int offset,
6265 struct type *type)
6266 {
6267 int i;
6268
6269 type = ada_check_typedef (type);
6270 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6271 {
6272 char *t_field_name = TYPE_FIELD_NAME (type, i);
6273
6274 if (t_field_name == NULL)
6275 continue;
6276
6277 else if (field_name_match (t_field_name, name))
6278 return ada_value_primitive_field (arg, offset, i, type);
6279
6280 else if (ada_is_wrapper_field (type, i))
6281 {
6282 struct value *v = /* Do not let indent join lines here. */
6283 ada_search_struct_field (name, arg,
6284 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6285 TYPE_FIELD_TYPE (type, i));
6286
6287 if (v != NULL)
6288 return v;
6289 }
6290
6291 else if (ada_is_variant_part (type, i))
6292 {
6293 /* PNH: Do we ever get here? See find_struct_field. */
6294 int j;
6295 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6296 i));
6297 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6298
6299 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6300 {
6301 struct value *v = ada_search_struct_field /* Force line
6302 break. */
6303 (name, arg,
6304 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6305 TYPE_FIELD_TYPE (field_type, j));
6306
6307 if (v != NULL)
6308 return v;
6309 }
6310 }
6311 }
6312 return NULL;
6313 }
6314
6315 static struct value *ada_index_struct_field_1 (int *, struct value *,
6316 int, struct type *);
6317
6318
6319 /* Return field #INDEX in ARG, where the index is that returned by
6320 * find_struct_field through its INDEX_P argument. Adjust the address
6321 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6322 * If found, return value, else return NULL. */
6323
6324 static struct value *
6325 ada_index_struct_field (int index, struct value *arg, int offset,
6326 struct type *type)
6327 {
6328 return ada_index_struct_field_1 (&index, arg, offset, type);
6329 }
6330
6331
6332 /* Auxiliary function for ada_index_struct_field. Like
6333 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6334 * *INDEX_P. */
6335
6336 static struct value *
6337 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6338 struct type *type)
6339 {
6340 int i;
6341 type = ada_check_typedef (type);
6342
6343 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6344 {
6345 if (TYPE_FIELD_NAME (type, i) == NULL)
6346 continue;
6347 else if (ada_is_wrapper_field (type, i))
6348 {
6349 struct value *v = /* Do not let indent join lines here. */
6350 ada_index_struct_field_1 (index_p, arg,
6351 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6352 TYPE_FIELD_TYPE (type, i));
6353
6354 if (v != NULL)
6355 return v;
6356 }
6357
6358 else if (ada_is_variant_part (type, i))
6359 {
6360 /* PNH: Do we ever get here? See ada_search_struct_field,
6361 find_struct_field. */
6362 error (_("Cannot assign this kind of variant record"));
6363 }
6364 else if (*index_p == 0)
6365 return ada_value_primitive_field (arg, offset, i, type);
6366 else
6367 *index_p -= 1;
6368 }
6369 return NULL;
6370 }
6371
6372 /* Given ARG, a value of type (pointer or reference to a)*
6373 structure/union, extract the component named NAME from the ultimate
6374 target structure/union and return it as a value with its
6375 appropriate type.
6376
6377 The routine searches for NAME among all members of the structure itself
6378 and (recursively) among all members of any wrapper members
6379 (e.g., '_parent').
6380
6381 If NO_ERR, then simply return NULL in case of error, rather than
6382 calling error. */
6383
6384 struct value *
6385 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6386 {
6387 struct type *t, *t1;
6388 struct value *v;
6389
6390 v = NULL;
6391 t1 = t = ada_check_typedef (value_type (arg));
6392 if (TYPE_CODE (t) == TYPE_CODE_REF)
6393 {
6394 t1 = TYPE_TARGET_TYPE (t);
6395 if (t1 == NULL)
6396 goto BadValue;
6397 t1 = ada_check_typedef (t1);
6398 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6399 {
6400 arg = coerce_ref (arg);
6401 t = t1;
6402 }
6403 }
6404
6405 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6406 {
6407 t1 = TYPE_TARGET_TYPE (t);
6408 if (t1 == NULL)
6409 goto BadValue;
6410 t1 = ada_check_typedef (t1);
6411 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6412 {
6413 arg = value_ind (arg);
6414 t = t1;
6415 }
6416 else
6417 break;
6418 }
6419
6420 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6421 goto BadValue;
6422
6423 if (t1 == t)
6424 v = ada_search_struct_field (name, arg, 0, t);
6425 else
6426 {
6427 int bit_offset, bit_size, byte_offset;
6428 struct type *field_type;
6429 CORE_ADDR address;
6430
6431 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6432 address = value_as_address (arg);
6433 else
6434 address = unpack_pointer (t, value_contents (arg));
6435
6436 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6437 if (find_struct_field (name, t1, 0,
6438 &field_type, &byte_offset, &bit_offset,
6439 &bit_size, NULL))
6440 {
6441 if (bit_size != 0)
6442 {
6443 if (TYPE_CODE (t) == TYPE_CODE_REF)
6444 arg = ada_coerce_ref (arg);
6445 else
6446 arg = ada_value_ind (arg);
6447 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6448 bit_offset, bit_size,
6449 field_type);
6450 }
6451 else
6452 v = value_at_lazy (field_type, address + byte_offset);
6453 }
6454 }
6455
6456 if (v != NULL || no_err)
6457 return v;
6458 else
6459 error (_("There is no member named %s."), name);
6460
6461 BadValue:
6462 if (no_err)
6463 return NULL;
6464 else
6465 error (_("Attempt to extract a component of "
6466 "a value that is not a record."));
6467 }
6468
6469 /* Given a type TYPE, look up the type of the component of type named NAME.
6470 If DISPP is non-null, add its byte displacement from the beginning of a
6471 structure (pointed to by a value) of type TYPE to *DISPP (does not
6472 work for packed fields).
6473
6474 Matches any field whose name has NAME as a prefix, possibly
6475 followed by "___".
6476
6477 TYPE can be either a struct or union. If REFOK, TYPE may also
6478 be a (pointer or reference)+ to a struct or union, and the
6479 ultimate target type will be searched.
6480
6481 Looks recursively into variant clauses and parent types.
6482
6483 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6484 TYPE is not a type of the right kind. */
6485
6486 static struct type *
6487 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6488 int noerr, int *dispp)
6489 {
6490 int i;
6491
6492 if (name == NULL)
6493 goto BadName;
6494
6495 if (refok && type != NULL)
6496 while (1)
6497 {
6498 type = ada_check_typedef (type);
6499 if (TYPE_CODE (type) != TYPE_CODE_PTR
6500 && TYPE_CODE (type) != TYPE_CODE_REF)
6501 break;
6502 type = TYPE_TARGET_TYPE (type);
6503 }
6504
6505 if (type == NULL
6506 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6507 && TYPE_CODE (type) != TYPE_CODE_UNION))
6508 {
6509 if (noerr)
6510 return NULL;
6511 else
6512 {
6513 target_terminal_ours ();
6514 gdb_flush (gdb_stdout);
6515 if (type == NULL)
6516 error (_("Type (null) is not a structure or union type"));
6517 else
6518 {
6519 /* XXX: type_sprint */
6520 fprintf_unfiltered (gdb_stderr, _("Type "));
6521 type_print (type, "", gdb_stderr, -1);
6522 error (_(" is not a structure or union type"));
6523 }
6524 }
6525 }
6526
6527 type = to_static_fixed_type (type);
6528
6529 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6530 {
6531 char *t_field_name = TYPE_FIELD_NAME (type, i);
6532 struct type *t;
6533 int disp;
6534
6535 if (t_field_name == NULL)
6536 continue;
6537
6538 else if (field_name_match (t_field_name, name))
6539 {
6540 if (dispp != NULL)
6541 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6542 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6543 }
6544
6545 else if (ada_is_wrapper_field (type, i))
6546 {
6547 disp = 0;
6548 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6549 0, 1, &disp);
6550 if (t != NULL)
6551 {
6552 if (dispp != NULL)
6553 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6554 return t;
6555 }
6556 }
6557
6558 else if (ada_is_variant_part (type, i))
6559 {
6560 int j;
6561 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6562 i));
6563
6564 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6565 {
6566 /* FIXME pnh 2008/01/26: We check for a field that is
6567 NOT wrapped in a struct, since the compiler sometimes
6568 generates these for unchecked variant types. Revisit
6569 if the compiler changes this practice. */
6570 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6571 disp = 0;
6572 if (v_field_name != NULL
6573 && field_name_match (v_field_name, name))
6574 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6575 else
6576 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6577 j),
6578 name, 0, 1, &disp);
6579
6580 if (t != NULL)
6581 {
6582 if (dispp != NULL)
6583 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6584 return t;
6585 }
6586 }
6587 }
6588
6589 }
6590
6591 BadName:
6592 if (!noerr)
6593 {
6594 target_terminal_ours ();
6595 gdb_flush (gdb_stdout);
6596 if (name == NULL)
6597 {
6598 /* XXX: type_sprint */
6599 fprintf_unfiltered (gdb_stderr, _("Type "));
6600 type_print (type, "", gdb_stderr, -1);
6601 error (_(" has no component named <null>"));
6602 }
6603 else
6604 {
6605 /* XXX: type_sprint */
6606 fprintf_unfiltered (gdb_stderr, _("Type "));
6607 type_print (type, "", gdb_stderr, -1);
6608 error (_(" has no component named %s"), name);
6609 }
6610 }
6611
6612 return NULL;
6613 }
6614
6615 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6616 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6617 represents an unchecked union (that is, the variant part of a
6618 record that is named in an Unchecked_Union pragma). */
6619
6620 static int
6621 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6622 {
6623 char *discrim_name = ada_variant_discrim_name (var_type);
6624
6625 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6626 == NULL);
6627 }
6628
6629
6630 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6631 within a value of type OUTER_TYPE that is stored in GDB at
6632 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6633 numbering from 0) is applicable. Returns -1 if none are. */
6634
6635 int
6636 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6637 const gdb_byte *outer_valaddr)
6638 {
6639 int others_clause;
6640 int i;
6641 char *discrim_name = ada_variant_discrim_name (var_type);
6642 struct value *outer;
6643 struct value *discrim;
6644 LONGEST discrim_val;
6645
6646 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6647 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6648 if (discrim == NULL)
6649 return -1;
6650 discrim_val = value_as_long (discrim);
6651
6652 others_clause = -1;
6653 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6654 {
6655 if (ada_is_others_clause (var_type, i))
6656 others_clause = i;
6657 else if (ada_in_variant (discrim_val, var_type, i))
6658 return i;
6659 }
6660
6661 return others_clause;
6662 }
6663 \f
6664
6665
6666 /* Dynamic-Sized Records */
6667
6668 /* Strategy: The type ostensibly attached to a value with dynamic size
6669 (i.e., a size that is not statically recorded in the debugging
6670 data) does not accurately reflect the size or layout of the value.
6671 Our strategy is to convert these values to values with accurate,
6672 conventional types that are constructed on the fly. */
6673
6674 /* There is a subtle and tricky problem here. In general, we cannot
6675 determine the size of dynamic records without its data. However,
6676 the 'struct value' data structure, which GDB uses to represent
6677 quantities in the inferior process (the target), requires the size
6678 of the type at the time of its allocation in order to reserve space
6679 for GDB's internal copy of the data. That's why the
6680 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6681 rather than struct value*s.
6682
6683 However, GDB's internal history variables ($1, $2, etc.) are
6684 struct value*s containing internal copies of the data that are not, in
6685 general, the same as the data at their corresponding addresses in
6686 the target. Fortunately, the types we give to these values are all
6687 conventional, fixed-size types (as per the strategy described
6688 above), so that we don't usually have to perform the
6689 'to_fixed_xxx_type' conversions to look at their values.
6690 Unfortunately, there is one exception: if one of the internal
6691 history variables is an array whose elements are unconstrained
6692 records, then we will need to create distinct fixed types for each
6693 element selected. */
6694
6695 /* The upshot of all of this is that many routines take a (type, host
6696 address, target address) triple as arguments to represent a value.
6697 The host address, if non-null, is supposed to contain an internal
6698 copy of the relevant data; otherwise, the program is to consult the
6699 target at the target address. */
6700
6701 /* Assuming that VAL0 represents a pointer value, the result of
6702 dereferencing it. Differs from value_ind in its treatment of
6703 dynamic-sized types. */
6704
6705 struct value *
6706 ada_value_ind (struct value *val0)
6707 {
6708 struct value *val = unwrap_value (value_ind (val0));
6709
6710 return ada_to_fixed_value (val);
6711 }
6712
6713 /* The value resulting from dereferencing any "reference to"
6714 qualifiers on VAL0. */
6715
6716 static struct value *
6717 ada_coerce_ref (struct value *val0)
6718 {
6719 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6720 {
6721 struct value *val = val0;
6722
6723 val = coerce_ref (val);
6724 val = unwrap_value (val);
6725 return ada_to_fixed_value (val);
6726 }
6727 else
6728 return val0;
6729 }
6730
6731 /* Return OFF rounded upward if necessary to a multiple of
6732 ALIGNMENT (a power of 2). */
6733
6734 static unsigned int
6735 align_value (unsigned int off, unsigned int alignment)
6736 {
6737 return (off + alignment - 1) & ~(alignment - 1);
6738 }
6739
6740 /* Return the bit alignment required for field #F of template type TYPE. */
6741
6742 static unsigned int
6743 field_alignment (struct type *type, int f)
6744 {
6745 const char *name = TYPE_FIELD_NAME (type, f);
6746 int len;
6747 int align_offset;
6748
6749 /* The field name should never be null, unless the debugging information
6750 is somehow malformed. In this case, we assume the field does not
6751 require any alignment. */
6752 if (name == NULL)
6753 return 1;
6754
6755 len = strlen (name);
6756
6757 if (!isdigit (name[len - 1]))
6758 return 1;
6759
6760 if (isdigit (name[len - 2]))
6761 align_offset = len - 2;
6762 else
6763 align_offset = len - 1;
6764
6765 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6766 return TARGET_CHAR_BIT;
6767
6768 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6769 }
6770
6771 /* Find a symbol named NAME. Ignores ambiguity. */
6772
6773 struct symbol *
6774 ada_find_any_symbol (const char *name)
6775 {
6776 struct symbol *sym;
6777
6778 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6779 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6780 return sym;
6781
6782 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6783 return sym;
6784 }
6785
6786 /* Find a type named NAME. Ignores ambiguity. This routine will look
6787 solely for types defined by debug info, it will not search the GDB
6788 primitive types. */
6789
6790 struct type *
6791 ada_find_any_type (const char *name)
6792 {
6793 struct symbol *sym = ada_find_any_symbol (name);
6794
6795 if (sym != NULL)
6796 return SYMBOL_TYPE (sym);
6797
6798 return NULL;
6799 }
6800
6801 /* Given NAME and an associated BLOCK, search all symbols for
6802 NAME suffixed with "___XR", which is the ``renaming'' symbol
6803 associated to NAME. Return this symbol if found, return
6804 NULL otherwise. */
6805
6806 struct symbol *
6807 ada_find_renaming_symbol (const char *name, struct block *block)
6808 {
6809 struct symbol *sym;
6810
6811 sym = find_old_style_renaming_symbol (name, block);
6812
6813 if (sym != NULL)
6814 return sym;
6815
6816 /* Not right yet. FIXME pnh 7/20/2007. */
6817 sym = ada_find_any_symbol (name);
6818 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6819 return sym;
6820 else
6821 return NULL;
6822 }
6823
6824 static struct symbol *
6825 find_old_style_renaming_symbol (const char *name, struct block *block)
6826 {
6827 const struct symbol *function_sym = block_linkage_function (block);
6828 char *rename;
6829
6830 if (function_sym != NULL)
6831 {
6832 /* If the symbol is defined inside a function, NAME is not fully
6833 qualified. This means we need to prepend the function name
6834 as well as adding the ``___XR'' suffix to build the name of
6835 the associated renaming symbol. */
6836 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6837 /* Function names sometimes contain suffixes used
6838 for instance to qualify nested subprograms. When building
6839 the XR type name, we need to make sure that this suffix is
6840 not included. So do not include any suffix in the function
6841 name length below. */
6842 int function_name_len = ada_name_prefix_len (function_name);
6843 const int rename_len = function_name_len + 2 /* "__" */
6844 + strlen (name) + 6 /* "___XR\0" */ ;
6845
6846 /* Strip the suffix if necessary. */
6847 ada_remove_trailing_digits (function_name, &function_name_len);
6848 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6849 ada_remove_Xbn_suffix (function_name, &function_name_len);
6850
6851 /* Library-level functions are a special case, as GNAT adds
6852 a ``_ada_'' prefix to the function name to avoid namespace
6853 pollution. However, the renaming symbols themselves do not
6854 have this prefix, so we need to skip this prefix if present. */
6855 if (function_name_len > 5 /* "_ada_" */
6856 && strstr (function_name, "_ada_") == function_name)
6857 {
6858 function_name += 5;
6859 function_name_len -= 5;
6860 }
6861
6862 rename = (char *) alloca (rename_len * sizeof (char));
6863 strncpy (rename, function_name, function_name_len);
6864 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6865 "__%s___XR", name);
6866 }
6867 else
6868 {
6869 const int rename_len = strlen (name) + 6;
6870
6871 rename = (char *) alloca (rename_len * sizeof (char));
6872 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6873 }
6874
6875 return ada_find_any_symbol (rename);
6876 }
6877
6878 /* Because of GNAT encoding conventions, several GDB symbols may match a
6879 given type name. If the type denoted by TYPE0 is to be preferred to
6880 that of TYPE1 for purposes of type printing, return non-zero;
6881 otherwise return 0. */
6882
6883 int
6884 ada_prefer_type (struct type *type0, struct type *type1)
6885 {
6886 if (type1 == NULL)
6887 return 1;
6888 else if (type0 == NULL)
6889 return 0;
6890 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6891 return 1;
6892 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6893 return 0;
6894 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6895 return 1;
6896 else if (ada_is_constrained_packed_array_type (type0))
6897 return 1;
6898 else if (ada_is_array_descriptor_type (type0)
6899 && !ada_is_array_descriptor_type (type1))
6900 return 1;
6901 else
6902 {
6903 const char *type0_name = type_name_no_tag (type0);
6904 const char *type1_name = type_name_no_tag (type1);
6905
6906 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6907 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6908 return 1;
6909 }
6910 return 0;
6911 }
6912
6913 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6914 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6915
6916 char *
6917 ada_type_name (struct type *type)
6918 {
6919 if (type == NULL)
6920 return NULL;
6921 else if (TYPE_NAME (type) != NULL)
6922 return TYPE_NAME (type);
6923 else
6924 return TYPE_TAG_NAME (type);
6925 }
6926
6927 /* Search the list of "descriptive" types associated to TYPE for a type
6928 whose name is NAME. */
6929
6930 static struct type *
6931 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6932 {
6933 struct type *result;
6934
6935 /* If there no descriptive-type info, then there is no parallel type
6936 to be found. */
6937 if (!HAVE_GNAT_AUX_INFO (type))
6938 return NULL;
6939
6940 result = TYPE_DESCRIPTIVE_TYPE (type);
6941 while (result != NULL)
6942 {
6943 char *result_name = ada_type_name (result);
6944
6945 if (result_name == NULL)
6946 {
6947 warning (_("unexpected null name on descriptive type"));
6948 return NULL;
6949 }
6950
6951 /* If the names match, stop. */
6952 if (strcmp (result_name, name) == 0)
6953 break;
6954
6955 /* Otherwise, look at the next item on the list, if any. */
6956 if (HAVE_GNAT_AUX_INFO (result))
6957 result = TYPE_DESCRIPTIVE_TYPE (result);
6958 else
6959 result = NULL;
6960 }
6961
6962 /* If we didn't find a match, see whether this is a packed array. With
6963 older compilers, the descriptive type information is either absent or
6964 irrelevant when it comes to packed arrays so the above lookup fails.
6965 Fall back to using a parallel lookup by name in this case. */
6966 if (result == NULL && ada_is_constrained_packed_array_type (type))
6967 return ada_find_any_type (name);
6968
6969 return result;
6970 }
6971
6972 /* Find a parallel type to TYPE with the specified NAME, using the
6973 descriptive type taken from the debugging information, if available,
6974 and otherwise using the (slower) name-based method. */
6975
6976 static struct type *
6977 ada_find_parallel_type_with_name (struct type *type, const char *name)
6978 {
6979 struct type *result = NULL;
6980
6981 if (HAVE_GNAT_AUX_INFO (type))
6982 result = find_parallel_type_by_descriptive_type (type, name);
6983 else
6984 result = ada_find_any_type (name);
6985
6986 return result;
6987 }
6988
6989 /* Same as above, but specify the name of the parallel type by appending
6990 SUFFIX to the name of TYPE. */
6991
6992 struct type *
6993 ada_find_parallel_type (struct type *type, const char *suffix)
6994 {
6995 char *name, *typename = ada_type_name (type);
6996 int len;
6997
6998 if (typename == NULL)
6999 return NULL;
7000
7001 len = strlen (typename);
7002
7003 name = (char *) alloca (len + strlen (suffix) + 1);
7004
7005 strcpy (name, typename);
7006 strcpy (name + len, suffix);
7007
7008 return ada_find_parallel_type_with_name (type, name);
7009 }
7010
7011 /* If TYPE is a variable-size record type, return the corresponding template
7012 type describing its fields. Otherwise, return NULL. */
7013
7014 static struct type *
7015 dynamic_template_type (struct type *type)
7016 {
7017 type = ada_check_typedef (type);
7018
7019 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7020 || ada_type_name (type) == NULL)
7021 return NULL;
7022 else
7023 {
7024 int len = strlen (ada_type_name (type));
7025
7026 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7027 return type;
7028 else
7029 return ada_find_parallel_type (type, "___XVE");
7030 }
7031 }
7032
7033 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7034 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7035
7036 static int
7037 is_dynamic_field (struct type *templ_type, int field_num)
7038 {
7039 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7040
7041 return name != NULL
7042 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7043 && strstr (name, "___XVL") != NULL;
7044 }
7045
7046 /* The index of the variant field of TYPE, or -1 if TYPE does not
7047 represent a variant record type. */
7048
7049 static int
7050 variant_field_index (struct type *type)
7051 {
7052 int f;
7053
7054 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7055 return -1;
7056
7057 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7058 {
7059 if (ada_is_variant_part (type, f))
7060 return f;
7061 }
7062 return -1;
7063 }
7064
7065 /* A record type with no fields. */
7066
7067 static struct type *
7068 empty_record (struct type *template)
7069 {
7070 struct type *type = alloc_type_copy (template);
7071
7072 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7073 TYPE_NFIELDS (type) = 0;
7074 TYPE_FIELDS (type) = NULL;
7075 INIT_CPLUS_SPECIFIC (type);
7076 TYPE_NAME (type) = "<empty>";
7077 TYPE_TAG_NAME (type) = NULL;
7078 TYPE_LENGTH (type) = 0;
7079 return type;
7080 }
7081
7082 /* An ordinary record type (with fixed-length fields) that describes
7083 the value of type TYPE at VALADDR or ADDRESS (see comments at
7084 the beginning of this section) VAL according to GNAT conventions.
7085 DVAL0 should describe the (portion of a) record that contains any
7086 necessary discriminants. It should be NULL if value_type (VAL) is
7087 an outer-level type (i.e., as opposed to a branch of a variant.) A
7088 variant field (unless unchecked) is replaced by a particular branch
7089 of the variant.
7090
7091 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7092 length are not statically known are discarded. As a consequence,
7093 VALADDR, ADDRESS and DVAL0 are ignored.
7094
7095 NOTE: Limitations: For now, we assume that dynamic fields and
7096 variants occupy whole numbers of bytes. However, they need not be
7097 byte-aligned. */
7098
7099 struct type *
7100 ada_template_to_fixed_record_type_1 (struct type *type,
7101 const gdb_byte *valaddr,
7102 CORE_ADDR address, struct value *dval0,
7103 int keep_dynamic_fields)
7104 {
7105 struct value *mark = value_mark ();
7106 struct value *dval;
7107 struct type *rtype;
7108 int nfields, bit_len;
7109 int variant_field;
7110 long off;
7111 int fld_bit_len;
7112 int f;
7113
7114 /* Compute the number of fields in this record type that are going
7115 to be processed: unless keep_dynamic_fields, this includes only
7116 fields whose position and length are static will be processed. */
7117 if (keep_dynamic_fields)
7118 nfields = TYPE_NFIELDS (type);
7119 else
7120 {
7121 nfields = 0;
7122 while (nfields < TYPE_NFIELDS (type)
7123 && !ada_is_variant_part (type, nfields)
7124 && !is_dynamic_field (type, nfields))
7125 nfields++;
7126 }
7127
7128 rtype = alloc_type_copy (type);
7129 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7130 INIT_CPLUS_SPECIFIC (rtype);
7131 TYPE_NFIELDS (rtype) = nfields;
7132 TYPE_FIELDS (rtype) = (struct field *)
7133 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7134 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7135 TYPE_NAME (rtype) = ada_type_name (type);
7136 TYPE_TAG_NAME (rtype) = NULL;
7137 TYPE_FIXED_INSTANCE (rtype) = 1;
7138
7139 off = 0;
7140 bit_len = 0;
7141 variant_field = -1;
7142
7143 for (f = 0; f < nfields; f += 1)
7144 {
7145 off = align_value (off, field_alignment (type, f))
7146 + TYPE_FIELD_BITPOS (type, f);
7147 TYPE_FIELD_BITPOS (rtype, f) = off;
7148 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7149
7150 if (ada_is_variant_part (type, f))
7151 {
7152 variant_field = f;
7153 fld_bit_len = 0;
7154 }
7155 else if (is_dynamic_field (type, f))
7156 {
7157 const gdb_byte *field_valaddr = valaddr;
7158 CORE_ADDR field_address = address;
7159 struct type *field_type =
7160 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7161
7162 if (dval0 == NULL)
7163 {
7164 /* rtype's length is computed based on the run-time
7165 value of discriminants. If the discriminants are not
7166 initialized, the type size may be completely bogus and
7167 GDB may fail to allocate a value for it. So check the
7168 size first before creating the value. */
7169 check_size (rtype);
7170 dval = value_from_contents_and_address (rtype, valaddr, address);
7171 }
7172 else
7173 dval = dval0;
7174
7175 /* If the type referenced by this field is an aligner type, we need
7176 to unwrap that aligner type, because its size might not be set.
7177 Keeping the aligner type would cause us to compute the wrong
7178 size for this field, impacting the offset of the all the fields
7179 that follow this one. */
7180 if (ada_is_aligner_type (field_type))
7181 {
7182 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7183
7184 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7185 field_address = cond_offset_target (field_address, field_offset);
7186 field_type = ada_aligned_type (field_type);
7187 }
7188
7189 field_valaddr = cond_offset_host (field_valaddr,
7190 off / TARGET_CHAR_BIT);
7191 field_address = cond_offset_target (field_address,
7192 off / TARGET_CHAR_BIT);
7193
7194 /* Get the fixed type of the field. Note that, in this case,
7195 we do not want to get the real type out of the tag: if
7196 the current field is the parent part of a tagged record,
7197 we will get the tag of the object. Clearly wrong: the real
7198 type of the parent is not the real type of the child. We
7199 would end up in an infinite loop. */
7200 field_type = ada_get_base_type (field_type);
7201 field_type = ada_to_fixed_type (field_type, field_valaddr,
7202 field_address, dval, 0);
7203 /* If the field size is already larger than the maximum
7204 object size, then the record itself will necessarily
7205 be larger than the maximum object size. We need to make
7206 this check now, because the size might be so ridiculously
7207 large (due to an uninitialized variable in the inferior)
7208 that it would cause an overflow when adding it to the
7209 record size. */
7210 check_size (field_type);
7211
7212 TYPE_FIELD_TYPE (rtype, f) = field_type;
7213 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7214 /* The multiplication can potentially overflow. But because
7215 the field length has been size-checked just above, and
7216 assuming that the maximum size is a reasonable value,
7217 an overflow should not happen in practice. So rather than
7218 adding overflow recovery code to this already complex code,
7219 we just assume that it's not going to happen. */
7220 fld_bit_len =
7221 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7222 }
7223 else
7224 {
7225 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7226
7227 /* If our field is a typedef type (most likely a typedef of
7228 a fat pointer, encoding an array access), then we need to
7229 look at its target type to determine its characteristics.
7230 In particular, we would miscompute the field size if we took
7231 the size of the typedef (zero), instead of the size of
7232 the target type. */
7233 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7234 field_type = ada_typedef_target_type (field_type);
7235
7236 TYPE_FIELD_TYPE (rtype, f) = field_type;
7237 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7238 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7239 fld_bit_len =
7240 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7241 else
7242 fld_bit_len =
7243 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7244 }
7245 if (off + fld_bit_len > bit_len)
7246 bit_len = off + fld_bit_len;
7247 off += fld_bit_len;
7248 TYPE_LENGTH (rtype) =
7249 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7250 }
7251
7252 /* We handle the variant part, if any, at the end because of certain
7253 odd cases in which it is re-ordered so as NOT to be the last field of
7254 the record. This can happen in the presence of representation
7255 clauses. */
7256 if (variant_field >= 0)
7257 {
7258 struct type *branch_type;
7259
7260 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7261
7262 if (dval0 == NULL)
7263 dval = value_from_contents_and_address (rtype, valaddr, address);
7264 else
7265 dval = dval0;
7266
7267 branch_type =
7268 to_fixed_variant_branch_type
7269 (TYPE_FIELD_TYPE (type, variant_field),
7270 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7271 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7272 if (branch_type == NULL)
7273 {
7274 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7275 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7276 TYPE_NFIELDS (rtype) -= 1;
7277 }
7278 else
7279 {
7280 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7281 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7282 fld_bit_len =
7283 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7284 TARGET_CHAR_BIT;
7285 if (off + fld_bit_len > bit_len)
7286 bit_len = off + fld_bit_len;
7287 TYPE_LENGTH (rtype) =
7288 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7289 }
7290 }
7291
7292 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7293 should contain the alignment of that record, which should be a strictly
7294 positive value. If null or negative, then something is wrong, most
7295 probably in the debug info. In that case, we don't round up the size
7296 of the resulting type. If this record is not part of another structure,
7297 the current RTYPE length might be good enough for our purposes. */
7298 if (TYPE_LENGTH (type) <= 0)
7299 {
7300 if (TYPE_NAME (rtype))
7301 warning (_("Invalid type size for `%s' detected: %d."),
7302 TYPE_NAME (rtype), TYPE_LENGTH (type));
7303 else
7304 warning (_("Invalid type size for <unnamed> detected: %d."),
7305 TYPE_LENGTH (type));
7306 }
7307 else
7308 {
7309 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7310 TYPE_LENGTH (type));
7311 }
7312
7313 value_free_to_mark (mark);
7314 if (TYPE_LENGTH (rtype) > varsize_limit)
7315 error (_("record type with dynamic size is larger than varsize-limit"));
7316 return rtype;
7317 }
7318
7319 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7320 of 1. */
7321
7322 static struct type *
7323 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7324 CORE_ADDR address, struct value *dval0)
7325 {
7326 return ada_template_to_fixed_record_type_1 (type, valaddr,
7327 address, dval0, 1);
7328 }
7329
7330 /* An ordinary record type in which ___XVL-convention fields and
7331 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7332 static approximations, containing all possible fields. Uses
7333 no runtime values. Useless for use in values, but that's OK,
7334 since the results are used only for type determinations. Works on both
7335 structs and unions. Representation note: to save space, we memorize
7336 the result of this function in the TYPE_TARGET_TYPE of the
7337 template type. */
7338
7339 static struct type *
7340 template_to_static_fixed_type (struct type *type0)
7341 {
7342 struct type *type;
7343 int nfields;
7344 int f;
7345
7346 if (TYPE_TARGET_TYPE (type0) != NULL)
7347 return TYPE_TARGET_TYPE (type0);
7348
7349 nfields = TYPE_NFIELDS (type0);
7350 type = type0;
7351
7352 for (f = 0; f < nfields; f += 1)
7353 {
7354 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7355 struct type *new_type;
7356
7357 if (is_dynamic_field (type0, f))
7358 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7359 else
7360 new_type = static_unwrap_type (field_type);
7361 if (type == type0 && new_type != field_type)
7362 {
7363 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7364 TYPE_CODE (type) = TYPE_CODE (type0);
7365 INIT_CPLUS_SPECIFIC (type);
7366 TYPE_NFIELDS (type) = nfields;
7367 TYPE_FIELDS (type) = (struct field *)
7368 TYPE_ALLOC (type, nfields * sizeof (struct field));
7369 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7370 sizeof (struct field) * nfields);
7371 TYPE_NAME (type) = ada_type_name (type0);
7372 TYPE_TAG_NAME (type) = NULL;
7373 TYPE_FIXED_INSTANCE (type) = 1;
7374 TYPE_LENGTH (type) = 0;
7375 }
7376 TYPE_FIELD_TYPE (type, f) = new_type;
7377 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7378 }
7379 return type;
7380 }
7381
7382 /* Given an object of type TYPE whose contents are at VALADDR and
7383 whose address in memory is ADDRESS, returns a revision of TYPE,
7384 which should be a non-dynamic-sized record, in which the variant
7385 part, if any, is replaced with the appropriate branch. Looks
7386 for discriminant values in DVAL0, which can be NULL if the record
7387 contains the necessary discriminant values. */
7388
7389 static struct type *
7390 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7391 CORE_ADDR address, struct value *dval0)
7392 {
7393 struct value *mark = value_mark ();
7394 struct value *dval;
7395 struct type *rtype;
7396 struct type *branch_type;
7397 int nfields = TYPE_NFIELDS (type);
7398 int variant_field = variant_field_index (type);
7399
7400 if (variant_field == -1)
7401 return type;
7402
7403 if (dval0 == NULL)
7404 dval = value_from_contents_and_address (type, valaddr, address);
7405 else
7406 dval = dval0;
7407
7408 rtype = alloc_type_copy (type);
7409 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7410 INIT_CPLUS_SPECIFIC (rtype);
7411 TYPE_NFIELDS (rtype) = nfields;
7412 TYPE_FIELDS (rtype) =
7413 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7414 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7415 sizeof (struct field) * nfields);
7416 TYPE_NAME (rtype) = ada_type_name (type);
7417 TYPE_TAG_NAME (rtype) = NULL;
7418 TYPE_FIXED_INSTANCE (rtype) = 1;
7419 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7420
7421 branch_type = to_fixed_variant_branch_type
7422 (TYPE_FIELD_TYPE (type, variant_field),
7423 cond_offset_host (valaddr,
7424 TYPE_FIELD_BITPOS (type, variant_field)
7425 / TARGET_CHAR_BIT),
7426 cond_offset_target (address,
7427 TYPE_FIELD_BITPOS (type, variant_field)
7428 / TARGET_CHAR_BIT), dval);
7429 if (branch_type == NULL)
7430 {
7431 int f;
7432
7433 for (f = variant_field + 1; f < nfields; f += 1)
7434 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7435 TYPE_NFIELDS (rtype) -= 1;
7436 }
7437 else
7438 {
7439 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7440 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7441 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7442 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7443 }
7444 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7445
7446 value_free_to_mark (mark);
7447 return rtype;
7448 }
7449
7450 /* An ordinary record type (with fixed-length fields) that describes
7451 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7452 beginning of this section]. Any necessary discriminants' values
7453 should be in DVAL, a record value; it may be NULL if the object
7454 at ADDR itself contains any necessary discriminant values.
7455 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7456 values from the record are needed. Except in the case that DVAL,
7457 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7458 unchecked) is replaced by a particular branch of the variant.
7459
7460 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7461 is questionable and may be removed. It can arise during the
7462 processing of an unconstrained-array-of-record type where all the
7463 variant branches have exactly the same size. This is because in
7464 such cases, the compiler does not bother to use the XVS convention
7465 when encoding the record. I am currently dubious of this
7466 shortcut and suspect the compiler should be altered. FIXME. */
7467
7468 static struct type *
7469 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7470 CORE_ADDR address, struct value *dval)
7471 {
7472 struct type *templ_type;
7473
7474 if (TYPE_FIXED_INSTANCE (type0))
7475 return type0;
7476
7477 templ_type = dynamic_template_type (type0);
7478
7479 if (templ_type != NULL)
7480 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7481 else if (variant_field_index (type0) >= 0)
7482 {
7483 if (dval == NULL && valaddr == NULL && address == 0)
7484 return type0;
7485 return to_record_with_fixed_variant_part (type0, valaddr, address,
7486 dval);
7487 }
7488 else
7489 {
7490 TYPE_FIXED_INSTANCE (type0) = 1;
7491 return type0;
7492 }
7493
7494 }
7495
7496 /* An ordinary record type (with fixed-length fields) that describes
7497 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7498 union type. Any necessary discriminants' values should be in DVAL,
7499 a record value. That is, this routine selects the appropriate
7500 branch of the union at ADDR according to the discriminant value
7501 indicated in the union's type name. Returns VAR_TYPE0 itself if
7502 it represents a variant subject to a pragma Unchecked_Union. */
7503
7504 static struct type *
7505 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7506 CORE_ADDR address, struct value *dval)
7507 {
7508 int which;
7509 struct type *templ_type;
7510 struct type *var_type;
7511
7512 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7513 var_type = TYPE_TARGET_TYPE (var_type0);
7514 else
7515 var_type = var_type0;
7516
7517 templ_type = ada_find_parallel_type (var_type, "___XVU");
7518
7519 if (templ_type != NULL)
7520 var_type = templ_type;
7521
7522 if (is_unchecked_variant (var_type, value_type (dval)))
7523 return var_type0;
7524 which =
7525 ada_which_variant_applies (var_type,
7526 value_type (dval), value_contents (dval));
7527
7528 if (which < 0)
7529 return empty_record (var_type);
7530 else if (is_dynamic_field (var_type, which))
7531 return to_fixed_record_type
7532 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7533 valaddr, address, dval);
7534 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7535 return
7536 to_fixed_record_type
7537 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7538 else
7539 return TYPE_FIELD_TYPE (var_type, which);
7540 }
7541
7542 /* Assuming that TYPE0 is an array type describing the type of a value
7543 at ADDR, and that DVAL describes a record containing any
7544 discriminants used in TYPE0, returns a type for the value that
7545 contains no dynamic components (that is, no components whose sizes
7546 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7547 true, gives an error message if the resulting type's size is over
7548 varsize_limit. */
7549
7550 static struct type *
7551 to_fixed_array_type (struct type *type0, struct value *dval,
7552 int ignore_too_big)
7553 {
7554 struct type *index_type_desc;
7555 struct type *result;
7556 int constrained_packed_array_p;
7557
7558 type0 = ada_check_typedef (type0);
7559 if (TYPE_FIXED_INSTANCE (type0))
7560 return type0;
7561
7562 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7563 if (constrained_packed_array_p)
7564 type0 = decode_constrained_packed_array_type (type0);
7565
7566 index_type_desc = ada_find_parallel_type (type0, "___XA");
7567 ada_fixup_array_indexes_type (index_type_desc);
7568 if (index_type_desc == NULL)
7569 {
7570 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7571
7572 /* NOTE: elt_type---the fixed version of elt_type0---should never
7573 depend on the contents of the array in properly constructed
7574 debugging data. */
7575 /* Create a fixed version of the array element type.
7576 We're not providing the address of an element here,
7577 and thus the actual object value cannot be inspected to do
7578 the conversion. This should not be a problem, since arrays of
7579 unconstrained objects are not allowed. In particular, all
7580 the elements of an array of a tagged type should all be of
7581 the same type specified in the debugging info. No need to
7582 consult the object tag. */
7583 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7584
7585 /* Make sure we always create a new array type when dealing with
7586 packed array types, since we're going to fix-up the array
7587 type length and element bitsize a little further down. */
7588 if (elt_type0 == elt_type && !constrained_packed_array_p)
7589 result = type0;
7590 else
7591 result = create_array_type (alloc_type_copy (type0),
7592 elt_type, TYPE_INDEX_TYPE (type0));
7593 }
7594 else
7595 {
7596 int i;
7597 struct type *elt_type0;
7598
7599 elt_type0 = type0;
7600 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7601 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7602
7603 /* NOTE: result---the fixed version of elt_type0---should never
7604 depend on the contents of the array in properly constructed
7605 debugging data. */
7606 /* Create a fixed version of the array element type.
7607 We're not providing the address of an element here,
7608 and thus the actual object value cannot be inspected to do
7609 the conversion. This should not be a problem, since arrays of
7610 unconstrained objects are not allowed. In particular, all
7611 the elements of an array of a tagged type should all be of
7612 the same type specified in the debugging info. No need to
7613 consult the object tag. */
7614 result =
7615 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7616
7617 elt_type0 = type0;
7618 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7619 {
7620 struct type *range_type =
7621 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7622
7623 result = create_array_type (alloc_type_copy (elt_type0),
7624 result, range_type);
7625 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7626 }
7627 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7628 error (_("array type with dynamic size is larger than varsize-limit"));
7629 }
7630
7631 if (constrained_packed_array_p)
7632 {
7633 /* So far, the resulting type has been created as if the original
7634 type was a regular (non-packed) array type. As a result, the
7635 bitsize of the array elements needs to be set again, and the array
7636 length needs to be recomputed based on that bitsize. */
7637 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7638 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7639
7640 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7641 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7642 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7643 TYPE_LENGTH (result)++;
7644 }
7645
7646 TYPE_FIXED_INSTANCE (result) = 1;
7647 return result;
7648 }
7649
7650
7651 /* A standard type (containing no dynamically sized components)
7652 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7653 DVAL describes a record containing any discriminants used in TYPE0,
7654 and may be NULL if there are none, or if the object of type TYPE at
7655 ADDRESS or in VALADDR contains these discriminants.
7656
7657 If CHECK_TAG is not null, in the case of tagged types, this function
7658 attempts to locate the object's tag and use it to compute the actual
7659 type. However, when ADDRESS is null, we cannot use it to determine the
7660 location of the tag, and therefore compute the tagged type's actual type.
7661 So we return the tagged type without consulting the tag. */
7662
7663 static struct type *
7664 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7665 CORE_ADDR address, struct value *dval, int check_tag)
7666 {
7667 type = ada_check_typedef (type);
7668 switch (TYPE_CODE (type))
7669 {
7670 default:
7671 return type;
7672 case TYPE_CODE_STRUCT:
7673 {
7674 struct type *static_type = to_static_fixed_type (type);
7675 struct type *fixed_record_type =
7676 to_fixed_record_type (type, valaddr, address, NULL);
7677
7678 /* If STATIC_TYPE is a tagged type and we know the object's address,
7679 then we can determine its tag, and compute the object's actual
7680 type from there. Note that we have to use the fixed record
7681 type (the parent part of the record may have dynamic fields
7682 and the way the location of _tag is expressed may depend on
7683 them). */
7684
7685 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7686 {
7687 struct type *real_type =
7688 type_from_tag (value_tag_from_contents_and_address
7689 (fixed_record_type,
7690 valaddr,
7691 address));
7692
7693 if (real_type != NULL)
7694 return to_fixed_record_type (real_type, valaddr, address, NULL);
7695 }
7696
7697 /* Check to see if there is a parallel ___XVZ variable.
7698 If there is, then it provides the actual size of our type. */
7699 else if (ada_type_name (fixed_record_type) != NULL)
7700 {
7701 char *name = ada_type_name (fixed_record_type);
7702 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7703 int xvz_found = 0;
7704 LONGEST size;
7705
7706 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7707 size = get_int_var_value (xvz_name, &xvz_found);
7708 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7709 {
7710 fixed_record_type = copy_type (fixed_record_type);
7711 TYPE_LENGTH (fixed_record_type) = size;
7712
7713 /* The FIXED_RECORD_TYPE may have be a stub. We have
7714 observed this when the debugging info is STABS, and
7715 apparently it is something that is hard to fix.
7716
7717 In practice, we don't need the actual type definition
7718 at all, because the presence of the XVZ variable allows us
7719 to assume that there must be a XVS type as well, which we
7720 should be able to use later, when we need the actual type
7721 definition.
7722
7723 In the meantime, pretend that the "fixed" type we are
7724 returning is NOT a stub, because this can cause trouble
7725 when using this type to create new types targeting it.
7726 Indeed, the associated creation routines often check
7727 whether the target type is a stub and will try to replace
7728 it, thus using a type with the wrong size. This, in turn,
7729 might cause the new type to have the wrong size too.
7730 Consider the case of an array, for instance, where the size
7731 of the array is computed from the number of elements in
7732 our array multiplied by the size of its element. */
7733 TYPE_STUB (fixed_record_type) = 0;
7734 }
7735 }
7736 return fixed_record_type;
7737 }
7738 case TYPE_CODE_ARRAY:
7739 return to_fixed_array_type (type, dval, 1);
7740 case TYPE_CODE_UNION:
7741 if (dval == NULL)
7742 return type;
7743 else
7744 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7745 }
7746 }
7747
7748 /* The same as ada_to_fixed_type_1, except that it preserves the type
7749 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7750
7751 The typedef layer needs be preserved in order to differentiate between
7752 arrays and array pointers when both types are implemented using the same
7753 fat pointer. In the array pointer case, the pointer is encoded as
7754 a typedef of the pointer type. For instance, considering:
7755
7756 type String_Access is access String;
7757 S1 : String_Access := null;
7758
7759 To the debugger, S1 is defined as a typedef of type String. But
7760 to the user, it is a pointer. So if the user tries to print S1,
7761 we should not dereference the array, but print the array address
7762 instead.
7763
7764 If we didn't preserve the typedef layer, we would lose the fact that
7765 the type is to be presented as a pointer (needs de-reference before
7766 being printed). And we would also use the source-level type name. */
7767
7768 struct type *
7769 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7770 CORE_ADDR address, struct value *dval, int check_tag)
7771
7772 {
7773 struct type *fixed_type =
7774 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7775
7776 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7777 then preserve the typedef layer.
7778
7779 Implementation note: We can only check the main-type portion of
7780 the TYPE and FIXED_TYPE, because eliminating the typedef layer
7781 from TYPE now returns a type that has the same instance flags
7782 as TYPE. For instance, if TYPE is a "typedef const", and its
7783 target type is a "struct", then the typedef elimination will return
7784 a "const" version of the target type. See check_typedef for more
7785 details about how the typedef layer elimination is done.
7786
7787 brobecker/2010-11-19: It seems to me that the only case where it is
7788 useful to preserve the typedef layer is when dealing with fat pointers.
7789 Perhaps, we could add a check for that and preserve the typedef layer
7790 only in that situation. But this seems unecessary so far, probably
7791 because we call check_typedef/ada_check_typedef pretty much everywhere.
7792 */
7793 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7794 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
7795 == TYPE_MAIN_TYPE (fixed_type)))
7796 return type;
7797
7798 return fixed_type;
7799 }
7800
7801 /* A standard (static-sized) type corresponding as well as possible to
7802 TYPE0, but based on no runtime data. */
7803
7804 static struct type *
7805 to_static_fixed_type (struct type *type0)
7806 {
7807 struct type *type;
7808
7809 if (type0 == NULL)
7810 return NULL;
7811
7812 if (TYPE_FIXED_INSTANCE (type0))
7813 return type0;
7814
7815 type0 = ada_check_typedef (type0);
7816
7817 switch (TYPE_CODE (type0))
7818 {
7819 default:
7820 return type0;
7821 case TYPE_CODE_STRUCT:
7822 type = dynamic_template_type (type0);
7823 if (type != NULL)
7824 return template_to_static_fixed_type (type);
7825 else
7826 return template_to_static_fixed_type (type0);
7827 case TYPE_CODE_UNION:
7828 type = ada_find_parallel_type (type0, "___XVU");
7829 if (type != NULL)
7830 return template_to_static_fixed_type (type);
7831 else
7832 return template_to_static_fixed_type (type0);
7833 }
7834 }
7835
7836 /* A static approximation of TYPE with all type wrappers removed. */
7837
7838 static struct type *
7839 static_unwrap_type (struct type *type)
7840 {
7841 if (ada_is_aligner_type (type))
7842 {
7843 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7844 if (ada_type_name (type1) == NULL)
7845 TYPE_NAME (type1) = ada_type_name (type);
7846
7847 return static_unwrap_type (type1);
7848 }
7849 else
7850 {
7851 struct type *raw_real_type = ada_get_base_type (type);
7852
7853 if (raw_real_type == type)
7854 return type;
7855 else
7856 return to_static_fixed_type (raw_real_type);
7857 }
7858 }
7859
7860 /* In some cases, incomplete and private types require
7861 cross-references that are not resolved as records (for example,
7862 type Foo;
7863 type FooP is access Foo;
7864 V: FooP;
7865 type Foo is array ...;
7866 ). In these cases, since there is no mechanism for producing
7867 cross-references to such types, we instead substitute for FooP a
7868 stub enumeration type that is nowhere resolved, and whose tag is
7869 the name of the actual type. Call these types "non-record stubs". */
7870
7871 /* A type equivalent to TYPE that is not a non-record stub, if one
7872 exists, otherwise TYPE. */
7873
7874 struct type *
7875 ada_check_typedef (struct type *type)
7876 {
7877 if (type == NULL)
7878 return NULL;
7879
7880 /* If our type is a typedef type of a fat pointer, then we're done.
7881 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
7882 what allows us to distinguish between fat pointers that represent
7883 array types, and fat pointers that represent array access types
7884 (in both cases, the compiler implements them as fat pointers). */
7885 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7886 && is_thick_pntr (ada_typedef_target_type (type)))
7887 return type;
7888
7889 CHECK_TYPEDEF (type);
7890 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7891 || !TYPE_STUB (type)
7892 || TYPE_TAG_NAME (type) == NULL)
7893 return type;
7894 else
7895 {
7896 char *name = TYPE_TAG_NAME (type);
7897 struct type *type1 = ada_find_any_type (name);
7898
7899 if (type1 == NULL)
7900 return type;
7901
7902 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
7903 stubs pointing to arrays, as we don't create symbols for array
7904 types, only for the typedef-to-array types). If that's the case,
7905 strip the typedef layer. */
7906 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
7907 type1 = ada_check_typedef (type1);
7908
7909 return type1;
7910 }
7911 }
7912
7913 /* A value representing the data at VALADDR/ADDRESS as described by
7914 type TYPE0, but with a standard (static-sized) type that correctly
7915 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7916 type, then return VAL0 [this feature is simply to avoid redundant
7917 creation of struct values]. */
7918
7919 static struct value *
7920 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7921 struct value *val0)
7922 {
7923 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7924
7925 if (type == type0 && val0 != NULL)
7926 return val0;
7927 else
7928 return value_from_contents_and_address (type, 0, address);
7929 }
7930
7931 /* A value representing VAL, but with a standard (static-sized) type
7932 that correctly describes it. Does not necessarily create a new
7933 value. */
7934
7935 struct value *
7936 ada_to_fixed_value (struct value *val)
7937 {
7938 return ada_to_fixed_value_create (value_type (val),
7939 value_address (val),
7940 val);
7941 }
7942 \f
7943
7944 /* Attributes */
7945
7946 /* Table mapping attribute numbers to names.
7947 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7948
7949 static const char *attribute_names[] = {
7950 "<?>",
7951
7952 "first",
7953 "last",
7954 "length",
7955 "image",
7956 "max",
7957 "min",
7958 "modulus",
7959 "pos",
7960 "size",
7961 "tag",
7962 "val",
7963 0
7964 };
7965
7966 const char *
7967 ada_attribute_name (enum exp_opcode n)
7968 {
7969 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7970 return attribute_names[n - OP_ATR_FIRST + 1];
7971 else
7972 return attribute_names[0];
7973 }
7974
7975 /* Evaluate the 'POS attribute applied to ARG. */
7976
7977 static LONGEST
7978 pos_atr (struct value *arg)
7979 {
7980 struct value *val = coerce_ref (arg);
7981 struct type *type = value_type (val);
7982
7983 if (!discrete_type_p (type))
7984 error (_("'POS only defined on discrete types"));
7985
7986 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7987 {
7988 int i;
7989 LONGEST v = value_as_long (val);
7990
7991 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7992 {
7993 if (v == TYPE_FIELD_BITPOS (type, i))
7994 return i;
7995 }
7996 error (_("enumeration value is invalid: can't find 'POS"));
7997 }
7998 else
7999 return value_as_long (val);
8000 }
8001
8002 static struct value *
8003 value_pos_atr (struct type *type, struct value *arg)
8004 {
8005 return value_from_longest (type, pos_atr (arg));
8006 }
8007
8008 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8009
8010 static struct value *
8011 value_val_atr (struct type *type, struct value *arg)
8012 {
8013 if (!discrete_type_p (type))
8014 error (_("'VAL only defined on discrete types"));
8015 if (!integer_type_p (value_type (arg)))
8016 error (_("'VAL requires integral argument"));
8017
8018 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8019 {
8020 long pos = value_as_long (arg);
8021
8022 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8023 error (_("argument to 'VAL out of range"));
8024 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
8025 }
8026 else
8027 return value_from_longest (type, value_as_long (arg));
8028 }
8029 \f
8030
8031 /* Evaluation */
8032
8033 /* True if TYPE appears to be an Ada character type.
8034 [At the moment, this is true only for Character and Wide_Character;
8035 It is a heuristic test that could stand improvement]. */
8036
8037 int
8038 ada_is_character_type (struct type *type)
8039 {
8040 const char *name;
8041
8042 /* If the type code says it's a character, then assume it really is,
8043 and don't check any further. */
8044 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8045 return 1;
8046
8047 /* Otherwise, assume it's a character type iff it is a discrete type
8048 with a known character type name. */
8049 name = ada_type_name (type);
8050 return (name != NULL
8051 && (TYPE_CODE (type) == TYPE_CODE_INT
8052 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8053 && (strcmp (name, "character") == 0
8054 || strcmp (name, "wide_character") == 0
8055 || strcmp (name, "wide_wide_character") == 0
8056 || strcmp (name, "unsigned char") == 0));
8057 }
8058
8059 /* True if TYPE appears to be an Ada string type. */
8060
8061 int
8062 ada_is_string_type (struct type *type)
8063 {
8064 type = ada_check_typedef (type);
8065 if (type != NULL
8066 && TYPE_CODE (type) != TYPE_CODE_PTR
8067 && (ada_is_simple_array_type (type)
8068 || ada_is_array_descriptor_type (type))
8069 && ada_array_arity (type) == 1)
8070 {
8071 struct type *elttype = ada_array_element_type (type, 1);
8072
8073 return ada_is_character_type (elttype);
8074 }
8075 else
8076 return 0;
8077 }
8078
8079 /* The compiler sometimes provides a parallel XVS type for a given
8080 PAD type. Normally, it is safe to follow the PAD type directly,
8081 but older versions of the compiler have a bug that causes the offset
8082 of its "F" field to be wrong. Following that field in that case
8083 would lead to incorrect results, but this can be worked around
8084 by ignoring the PAD type and using the associated XVS type instead.
8085
8086 Set to True if the debugger should trust the contents of PAD types.
8087 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8088 static int trust_pad_over_xvs = 1;
8089
8090 /* True if TYPE is a struct type introduced by the compiler to force the
8091 alignment of a value. Such types have a single field with a
8092 distinctive name. */
8093
8094 int
8095 ada_is_aligner_type (struct type *type)
8096 {
8097 type = ada_check_typedef (type);
8098
8099 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8100 return 0;
8101
8102 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8103 && TYPE_NFIELDS (type) == 1
8104 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8105 }
8106
8107 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8108 the parallel type. */
8109
8110 struct type *
8111 ada_get_base_type (struct type *raw_type)
8112 {
8113 struct type *real_type_namer;
8114 struct type *raw_real_type;
8115
8116 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8117 return raw_type;
8118
8119 if (ada_is_aligner_type (raw_type))
8120 /* The encoding specifies that we should always use the aligner type.
8121 So, even if this aligner type has an associated XVS type, we should
8122 simply ignore it.
8123
8124 According to the compiler gurus, an XVS type parallel to an aligner
8125 type may exist because of a stabs limitation. In stabs, aligner
8126 types are empty because the field has a variable-sized type, and
8127 thus cannot actually be used as an aligner type. As a result,
8128 we need the associated parallel XVS type to decode the type.
8129 Since the policy in the compiler is to not change the internal
8130 representation based on the debugging info format, we sometimes
8131 end up having a redundant XVS type parallel to the aligner type. */
8132 return raw_type;
8133
8134 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8135 if (real_type_namer == NULL
8136 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8137 || TYPE_NFIELDS (real_type_namer) != 1)
8138 return raw_type;
8139
8140 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8141 {
8142 /* This is an older encoding form where the base type needs to be
8143 looked up by name. We prefer the newer enconding because it is
8144 more efficient. */
8145 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8146 if (raw_real_type == NULL)
8147 return raw_type;
8148 else
8149 return raw_real_type;
8150 }
8151
8152 /* The field in our XVS type is a reference to the base type. */
8153 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8154 }
8155
8156 /* The type of value designated by TYPE, with all aligners removed. */
8157
8158 struct type *
8159 ada_aligned_type (struct type *type)
8160 {
8161 if (ada_is_aligner_type (type))
8162 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8163 else
8164 return ada_get_base_type (type);
8165 }
8166
8167
8168 /* The address of the aligned value in an object at address VALADDR
8169 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8170
8171 const gdb_byte *
8172 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8173 {
8174 if (ada_is_aligner_type (type))
8175 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8176 valaddr +
8177 TYPE_FIELD_BITPOS (type,
8178 0) / TARGET_CHAR_BIT);
8179 else
8180 return valaddr;
8181 }
8182
8183
8184
8185 /* The printed representation of an enumeration literal with encoded
8186 name NAME. The value is good to the next call of ada_enum_name. */
8187 const char *
8188 ada_enum_name (const char *name)
8189 {
8190 static char *result;
8191 static size_t result_len = 0;
8192 char *tmp;
8193
8194 /* First, unqualify the enumeration name:
8195 1. Search for the last '.' character. If we find one, then skip
8196 all the preceeding characters, the unqualified name starts
8197 right after that dot.
8198 2. Otherwise, we may be debugging on a target where the compiler
8199 translates dots into "__". Search forward for double underscores,
8200 but stop searching when we hit an overloading suffix, which is
8201 of the form "__" followed by digits. */
8202
8203 tmp = strrchr (name, '.');
8204 if (tmp != NULL)
8205 name = tmp + 1;
8206 else
8207 {
8208 while ((tmp = strstr (name, "__")) != NULL)
8209 {
8210 if (isdigit (tmp[2]))
8211 break;
8212 else
8213 name = tmp + 2;
8214 }
8215 }
8216
8217 if (name[0] == 'Q')
8218 {
8219 int v;
8220
8221 if (name[1] == 'U' || name[1] == 'W')
8222 {
8223 if (sscanf (name + 2, "%x", &v) != 1)
8224 return name;
8225 }
8226 else
8227 return name;
8228
8229 GROW_VECT (result, result_len, 16);
8230 if (isascii (v) && isprint (v))
8231 xsnprintf (result, result_len, "'%c'", v);
8232 else if (name[1] == 'U')
8233 xsnprintf (result, result_len, "[\"%02x\"]", v);
8234 else
8235 xsnprintf (result, result_len, "[\"%04x\"]", v);
8236
8237 return result;
8238 }
8239 else
8240 {
8241 tmp = strstr (name, "__");
8242 if (tmp == NULL)
8243 tmp = strstr (name, "$");
8244 if (tmp != NULL)
8245 {
8246 GROW_VECT (result, result_len, tmp - name + 1);
8247 strncpy (result, name, tmp - name);
8248 result[tmp - name] = '\0';
8249 return result;
8250 }
8251
8252 return name;
8253 }
8254 }
8255
8256 /* Evaluate the subexpression of EXP starting at *POS as for
8257 evaluate_type, updating *POS to point just past the evaluated
8258 expression. */
8259
8260 static struct value *
8261 evaluate_subexp_type (struct expression *exp, int *pos)
8262 {
8263 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8264 }
8265
8266 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8267 value it wraps. */
8268
8269 static struct value *
8270 unwrap_value (struct value *val)
8271 {
8272 struct type *type = ada_check_typedef (value_type (val));
8273
8274 if (ada_is_aligner_type (type))
8275 {
8276 struct value *v = ada_value_struct_elt (val, "F", 0);
8277 struct type *val_type = ada_check_typedef (value_type (v));
8278
8279 if (ada_type_name (val_type) == NULL)
8280 TYPE_NAME (val_type) = ada_type_name (type);
8281
8282 return unwrap_value (v);
8283 }
8284 else
8285 {
8286 struct type *raw_real_type =
8287 ada_check_typedef (ada_get_base_type (type));
8288
8289 /* If there is no parallel XVS or XVE type, then the value is
8290 already unwrapped. Return it without further modification. */
8291 if ((type == raw_real_type)
8292 && ada_find_parallel_type (type, "___XVE") == NULL)
8293 return val;
8294
8295 return
8296 coerce_unspec_val_to_type
8297 (val, ada_to_fixed_type (raw_real_type, 0,
8298 value_address (val),
8299 NULL, 1));
8300 }
8301 }
8302
8303 static struct value *
8304 cast_to_fixed (struct type *type, struct value *arg)
8305 {
8306 LONGEST val;
8307
8308 if (type == value_type (arg))
8309 return arg;
8310 else if (ada_is_fixed_point_type (value_type (arg)))
8311 val = ada_float_to_fixed (type,
8312 ada_fixed_to_float (value_type (arg),
8313 value_as_long (arg)));
8314 else
8315 {
8316 DOUBLEST argd = value_as_double (arg);
8317
8318 val = ada_float_to_fixed (type, argd);
8319 }
8320
8321 return value_from_longest (type, val);
8322 }
8323
8324 static struct value *
8325 cast_from_fixed (struct type *type, struct value *arg)
8326 {
8327 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8328 value_as_long (arg));
8329
8330 return value_from_double (type, val);
8331 }
8332
8333 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8334 return the converted value. */
8335
8336 static struct value *
8337 coerce_for_assign (struct type *type, struct value *val)
8338 {
8339 struct type *type2 = value_type (val);
8340
8341 if (type == type2)
8342 return val;
8343
8344 type2 = ada_check_typedef (type2);
8345 type = ada_check_typedef (type);
8346
8347 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8348 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8349 {
8350 val = ada_value_ind (val);
8351 type2 = value_type (val);
8352 }
8353
8354 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8355 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8356 {
8357 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8358 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8359 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8360 error (_("Incompatible types in assignment"));
8361 deprecated_set_value_type (val, type);
8362 }
8363 return val;
8364 }
8365
8366 static struct value *
8367 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8368 {
8369 struct value *val;
8370 struct type *type1, *type2;
8371 LONGEST v, v1, v2;
8372
8373 arg1 = coerce_ref (arg1);
8374 arg2 = coerce_ref (arg2);
8375 type1 = base_type (ada_check_typedef (value_type (arg1)));
8376 type2 = base_type (ada_check_typedef (value_type (arg2)));
8377
8378 if (TYPE_CODE (type1) != TYPE_CODE_INT
8379 || TYPE_CODE (type2) != TYPE_CODE_INT)
8380 return value_binop (arg1, arg2, op);
8381
8382 switch (op)
8383 {
8384 case BINOP_MOD:
8385 case BINOP_DIV:
8386 case BINOP_REM:
8387 break;
8388 default:
8389 return value_binop (arg1, arg2, op);
8390 }
8391
8392 v2 = value_as_long (arg2);
8393 if (v2 == 0)
8394 error (_("second operand of %s must not be zero."), op_string (op));
8395
8396 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8397 return value_binop (arg1, arg2, op);
8398
8399 v1 = value_as_long (arg1);
8400 switch (op)
8401 {
8402 case BINOP_DIV:
8403 v = v1 / v2;
8404 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8405 v += v > 0 ? -1 : 1;
8406 break;
8407 case BINOP_REM:
8408 v = v1 % v2;
8409 if (v * v1 < 0)
8410 v -= v2;
8411 break;
8412 default:
8413 /* Should not reach this point. */
8414 v = 0;
8415 }
8416
8417 val = allocate_value (type1);
8418 store_unsigned_integer (value_contents_raw (val),
8419 TYPE_LENGTH (value_type (val)),
8420 gdbarch_byte_order (get_type_arch (type1)), v);
8421 return val;
8422 }
8423
8424 static int
8425 ada_value_equal (struct value *arg1, struct value *arg2)
8426 {
8427 if (ada_is_direct_array_type (value_type (arg1))
8428 || ada_is_direct_array_type (value_type (arg2)))
8429 {
8430 /* Automatically dereference any array reference before
8431 we attempt to perform the comparison. */
8432 arg1 = ada_coerce_ref (arg1);
8433 arg2 = ada_coerce_ref (arg2);
8434
8435 arg1 = ada_coerce_to_simple_array (arg1);
8436 arg2 = ada_coerce_to_simple_array (arg2);
8437 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8438 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8439 error (_("Attempt to compare array with non-array"));
8440 /* FIXME: The following works only for types whose
8441 representations use all bits (no padding or undefined bits)
8442 and do not have user-defined equality. */
8443 return
8444 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8445 && memcmp (value_contents (arg1), value_contents (arg2),
8446 TYPE_LENGTH (value_type (arg1))) == 0;
8447 }
8448 return value_equal (arg1, arg2);
8449 }
8450
8451 /* Total number of component associations in the aggregate starting at
8452 index PC in EXP. Assumes that index PC is the start of an
8453 OP_AGGREGATE. */
8454
8455 static int
8456 num_component_specs (struct expression *exp, int pc)
8457 {
8458 int n, m, i;
8459
8460 m = exp->elts[pc + 1].longconst;
8461 pc += 3;
8462 n = 0;
8463 for (i = 0; i < m; i += 1)
8464 {
8465 switch (exp->elts[pc].opcode)
8466 {
8467 default:
8468 n += 1;
8469 break;
8470 case OP_CHOICES:
8471 n += exp->elts[pc + 1].longconst;
8472 break;
8473 }
8474 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8475 }
8476 return n;
8477 }
8478
8479 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8480 component of LHS (a simple array or a record), updating *POS past
8481 the expression, assuming that LHS is contained in CONTAINER. Does
8482 not modify the inferior's memory, nor does it modify LHS (unless
8483 LHS == CONTAINER). */
8484
8485 static void
8486 assign_component (struct value *container, struct value *lhs, LONGEST index,
8487 struct expression *exp, int *pos)
8488 {
8489 struct value *mark = value_mark ();
8490 struct value *elt;
8491
8492 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8493 {
8494 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8495 struct value *index_val = value_from_longest (index_type, index);
8496
8497 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8498 }
8499 else
8500 {
8501 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8502 elt = ada_to_fixed_value (unwrap_value (elt));
8503 }
8504
8505 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8506 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8507 else
8508 value_assign_to_component (container, elt,
8509 ada_evaluate_subexp (NULL, exp, pos,
8510 EVAL_NORMAL));
8511
8512 value_free_to_mark (mark);
8513 }
8514
8515 /* Assuming that LHS represents an lvalue having a record or array
8516 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8517 of that aggregate's value to LHS, advancing *POS past the
8518 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8519 lvalue containing LHS (possibly LHS itself). Does not modify
8520 the inferior's memory, nor does it modify the contents of
8521 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8522
8523 static struct value *
8524 assign_aggregate (struct value *container,
8525 struct value *lhs, struct expression *exp,
8526 int *pos, enum noside noside)
8527 {
8528 struct type *lhs_type;
8529 int n = exp->elts[*pos+1].longconst;
8530 LONGEST low_index, high_index;
8531 int num_specs;
8532 LONGEST *indices;
8533 int max_indices, num_indices;
8534 int is_array_aggregate;
8535 int i;
8536
8537 *pos += 3;
8538 if (noside != EVAL_NORMAL)
8539 {
8540 int i;
8541
8542 for (i = 0; i < n; i += 1)
8543 ada_evaluate_subexp (NULL, exp, pos, noside);
8544 return container;
8545 }
8546
8547 container = ada_coerce_ref (container);
8548 if (ada_is_direct_array_type (value_type (container)))
8549 container = ada_coerce_to_simple_array (container);
8550 lhs = ada_coerce_ref (lhs);
8551 if (!deprecated_value_modifiable (lhs))
8552 error (_("Left operand of assignment is not a modifiable lvalue."));
8553
8554 lhs_type = value_type (lhs);
8555 if (ada_is_direct_array_type (lhs_type))
8556 {
8557 lhs = ada_coerce_to_simple_array (lhs);
8558 lhs_type = value_type (lhs);
8559 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8560 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8561 is_array_aggregate = 1;
8562 }
8563 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8564 {
8565 low_index = 0;
8566 high_index = num_visible_fields (lhs_type) - 1;
8567 is_array_aggregate = 0;
8568 }
8569 else
8570 error (_("Left-hand side must be array or record."));
8571
8572 num_specs = num_component_specs (exp, *pos - 3);
8573 max_indices = 4 * num_specs + 4;
8574 indices = alloca (max_indices * sizeof (indices[0]));
8575 indices[0] = indices[1] = low_index - 1;
8576 indices[2] = indices[3] = high_index + 1;
8577 num_indices = 4;
8578
8579 for (i = 0; i < n; i += 1)
8580 {
8581 switch (exp->elts[*pos].opcode)
8582 {
8583 case OP_CHOICES:
8584 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8585 &num_indices, max_indices,
8586 low_index, high_index);
8587 break;
8588 case OP_POSITIONAL:
8589 aggregate_assign_positional (container, lhs, exp, pos, indices,
8590 &num_indices, max_indices,
8591 low_index, high_index);
8592 break;
8593 case OP_OTHERS:
8594 if (i != n-1)
8595 error (_("Misplaced 'others' clause"));
8596 aggregate_assign_others (container, lhs, exp, pos, indices,
8597 num_indices, low_index, high_index);
8598 break;
8599 default:
8600 error (_("Internal error: bad aggregate clause"));
8601 }
8602 }
8603
8604 return container;
8605 }
8606
8607 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8608 construct at *POS, updating *POS past the construct, given that
8609 the positions are relative to lower bound LOW, where HIGH is the
8610 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8611 updating *NUM_INDICES as needed. CONTAINER is as for
8612 assign_aggregate. */
8613 static void
8614 aggregate_assign_positional (struct value *container,
8615 struct value *lhs, struct expression *exp,
8616 int *pos, LONGEST *indices, int *num_indices,
8617 int max_indices, LONGEST low, LONGEST high)
8618 {
8619 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8620
8621 if (ind - 1 == high)
8622 warning (_("Extra components in aggregate ignored."));
8623 if (ind <= high)
8624 {
8625 add_component_interval (ind, ind, indices, num_indices, max_indices);
8626 *pos += 3;
8627 assign_component (container, lhs, ind, exp, pos);
8628 }
8629 else
8630 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8631 }
8632
8633 /* Assign into the components of LHS indexed by the OP_CHOICES
8634 construct at *POS, updating *POS past the construct, given that
8635 the allowable indices are LOW..HIGH. Record the indices assigned
8636 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8637 needed. CONTAINER is as for assign_aggregate. */
8638 static void
8639 aggregate_assign_from_choices (struct value *container,
8640 struct value *lhs, struct expression *exp,
8641 int *pos, LONGEST *indices, int *num_indices,
8642 int max_indices, LONGEST low, LONGEST high)
8643 {
8644 int j;
8645 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8646 int choice_pos, expr_pc;
8647 int is_array = ada_is_direct_array_type (value_type (lhs));
8648
8649 choice_pos = *pos += 3;
8650
8651 for (j = 0; j < n_choices; j += 1)
8652 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8653 expr_pc = *pos;
8654 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8655
8656 for (j = 0; j < n_choices; j += 1)
8657 {
8658 LONGEST lower, upper;
8659 enum exp_opcode op = exp->elts[choice_pos].opcode;
8660
8661 if (op == OP_DISCRETE_RANGE)
8662 {
8663 choice_pos += 1;
8664 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8665 EVAL_NORMAL));
8666 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8667 EVAL_NORMAL));
8668 }
8669 else if (is_array)
8670 {
8671 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8672 EVAL_NORMAL));
8673 upper = lower;
8674 }
8675 else
8676 {
8677 int ind;
8678 char *name;
8679
8680 switch (op)
8681 {
8682 case OP_NAME:
8683 name = &exp->elts[choice_pos + 2].string;
8684 break;
8685 case OP_VAR_VALUE:
8686 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8687 break;
8688 default:
8689 error (_("Invalid record component association."));
8690 }
8691 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8692 ind = 0;
8693 if (! find_struct_field (name, value_type (lhs), 0,
8694 NULL, NULL, NULL, NULL, &ind))
8695 error (_("Unknown component name: %s."), name);
8696 lower = upper = ind;
8697 }
8698
8699 if (lower <= upper && (lower < low || upper > high))
8700 error (_("Index in component association out of bounds."));
8701
8702 add_component_interval (lower, upper, indices, num_indices,
8703 max_indices);
8704 while (lower <= upper)
8705 {
8706 int pos1;
8707
8708 pos1 = expr_pc;
8709 assign_component (container, lhs, lower, exp, &pos1);
8710 lower += 1;
8711 }
8712 }
8713 }
8714
8715 /* Assign the value of the expression in the OP_OTHERS construct in
8716 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8717 have not been previously assigned. The index intervals already assigned
8718 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8719 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
8720 static void
8721 aggregate_assign_others (struct value *container,
8722 struct value *lhs, struct expression *exp,
8723 int *pos, LONGEST *indices, int num_indices,
8724 LONGEST low, LONGEST high)
8725 {
8726 int i;
8727 int expr_pc = *pos + 1;
8728
8729 for (i = 0; i < num_indices - 2; i += 2)
8730 {
8731 LONGEST ind;
8732
8733 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8734 {
8735 int localpos;
8736
8737 localpos = expr_pc;
8738 assign_component (container, lhs, ind, exp, &localpos);
8739 }
8740 }
8741 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8742 }
8743
8744 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8745 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8746 modifying *SIZE as needed. It is an error if *SIZE exceeds
8747 MAX_SIZE. The resulting intervals do not overlap. */
8748 static void
8749 add_component_interval (LONGEST low, LONGEST high,
8750 LONGEST* indices, int *size, int max_size)
8751 {
8752 int i, j;
8753
8754 for (i = 0; i < *size; i += 2) {
8755 if (high >= indices[i] && low <= indices[i + 1])
8756 {
8757 int kh;
8758
8759 for (kh = i + 2; kh < *size; kh += 2)
8760 if (high < indices[kh])
8761 break;
8762 if (low < indices[i])
8763 indices[i] = low;
8764 indices[i + 1] = indices[kh - 1];
8765 if (high > indices[i + 1])
8766 indices[i + 1] = high;
8767 memcpy (indices + i + 2, indices + kh, *size - kh);
8768 *size -= kh - i - 2;
8769 return;
8770 }
8771 else if (high < indices[i])
8772 break;
8773 }
8774
8775 if (*size == max_size)
8776 error (_("Internal error: miscounted aggregate components."));
8777 *size += 2;
8778 for (j = *size-1; j >= i+2; j -= 1)
8779 indices[j] = indices[j - 2];
8780 indices[i] = low;
8781 indices[i + 1] = high;
8782 }
8783
8784 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8785 is different. */
8786
8787 static struct value *
8788 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8789 {
8790 if (type == ada_check_typedef (value_type (arg2)))
8791 return arg2;
8792
8793 if (ada_is_fixed_point_type (type))
8794 return (cast_to_fixed (type, arg2));
8795
8796 if (ada_is_fixed_point_type (value_type (arg2)))
8797 return cast_from_fixed (type, arg2);
8798
8799 return value_cast (type, arg2);
8800 }
8801
8802 /* Evaluating Ada expressions, and printing their result.
8803 ------------------------------------------------------
8804
8805 1. Introduction:
8806 ----------------
8807
8808 We usually evaluate an Ada expression in order to print its value.
8809 We also evaluate an expression in order to print its type, which
8810 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8811 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8812 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8813 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8814 similar.
8815
8816 Evaluating expressions is a little more complicated for Ada entities
8817 than it is for entities in languages such as C. The main reason for
8818 this is that Ada provides types whose definition might be dynamic.
8819 One example of such types is variant records. Or another example
8820 would be an array whose bounds can only be known at run time.
8821
8822 The following description is a general guide as to what should be
8823 done (and what should NOT be done) in order to evaluate an expression
8824 involving such types, and when. This does not cover how the semantic
8825 information is encoded by GNAT as this is covered separatly. For the
8826 document used as the reference for the GNAT encoding, see exp_dbug.ads
8827 in the GNAT sources.
8828
8829 Ideally, we should embed each part of this description next to its
8830 associated code. Unfortunately, the amount of code is so vast right
8831 now that it's hard to see whether the code handling a particular
8832 situation might be duplicated or not. One day, when the code is
8833 cleaned up, this guide might become redundant with the comments
8834 inserted in the code, and we might want to remove it.
8835
8836 2. ``Fixing'' an Entity, the Simple Case:
8837 -----------------------------------------
8838
8839 When evaluating Ada expressions, the tricky issue is that they may
8840 reference entities whose type contents and size are not statically
8841 known. Consider for instance a variant record:
8842
8843 type Rec (Empty : Boolean := True) is record
8844 case Empty is
8845 when True => null;
8846 when False => Value : Integer;
8847 end case;
8848 end record;
8849 Yes : Rec := (Empty => False, Value => 1);
8850 No : Rec := (empty => True);
8851
8852 The size and contents of that record depends on the value of the
8853 descriminant (Rec.Empty). At this point, neither the debugging
8854 information nor the associated type structure in GDB are able to
8855 express such dynamic types. So what the debugger does is to create
8856 "fixed" versions of the type that applies to the specific object.
8857 We also informally refer to this opperation as "fixing" an object,
8858 which means creating its associated fixed type.
8859
8860 Example: when printing the value of variable "Yes" above, its fixed
8861 type would look like this:
8862
8863 type Rec is record
8864 Empty : Boolean;
8865 Value : Integer;
8866 end record;
8867
8868 On the other hand, if we printed the value of "No", its fixed type
8869 would become:
8870
8871 type Rec is record
8872 Empty : Boolean;
8873 end record;
8874
8875 Things become a little more complicated when trying to fix an entity
8876 with a dynamic type that directly contains another dynamic type,
8877 such as an array of variant records, for instance. There are
8878 two possible cases: Arrays, and records.
8879
8880 3. ``Fixing'' Arrays:
8881 ---------------------
8882
8883 The type structure in GDB describes an array in terms of its bounds,
8884 and the type of its elements. By design, all elements in the array
8885 have the same type and we cannot represent an array of variant elements
8886 using the current type structure in GDB. When fixing an array,
8887 we cannot fix the array element, as we would potentially need one
8888 fixed type per element of the array. As a result, the best we can do
8889 when fixing an array is to produce an array whose bounds and size
8890 are correct (allowing us to read it from memory), but without having
8891 touched its element type. Fixing each element will be done later,
8892 when (if) necessary.
8893
8894 Arrays are a little simpler to handle than records, because the same
8895 amount of memory is allocated for each element of the array, even if
8896 the amount of space actually used by each element differs from element
8897 to element. Consider for instance the following array of type Rec:
8898
8899 type Rec_Array is array (1 .. 2) of Rec;
8900
8901 The actual amount of memory occupied by each element might be different
8902 from element to element, depending on the value of their discriminant.
8903 But the amount of space reserved for each element in the array remains
8904 fixed regardless. So we simply need to compute that size using
8905 the debugging information available, from which we can then determine
8906 the array size (we multiply the number of elements of the array by
8907 the size of each element).
8908
8909 The simplest case is when we have an array of a constrained element
8910 type. For instance, consider the following type declarations:
8911
8912 type Bounded_String (Max_Size : Integer) is
8913 Length : Integer;
8914 Buffer : String (1 .. Max_Size);
8915 end record;
8916 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8917
8918 In this case, the compiler describes the array as an array of
8919 variable-size elements (identified by its XVS suffix) for which
8920 the size can be read in the parallel XVZ variable.
8921
8922 In the case of an array of an unconstrained element type, the compiler
8923 wraps the array element inside a private PAD type. This type should not
8924 be shown to the user, and must be "unwrap"'ed before printing. Note
8925 that we also use the adjective "aligner" in our code to designate
8926 these wrapper types.
8927
8928 In some cases, the size allocated for each element is statically
8929 known. In that case, the PAD type already has the correct size,
8930 and the array element should remain unfixed.
8931
8932 But there are cases when this size is not statically known.
8933 For instance, assuming that "Five" is an integer variable:
8934
8935 type Dynamic is array (1 .. Five) of Integer;
8936 type Wrapper (Has_Length : Boolean := False) is record
8937 Data : Dynamic;
8938 case Has_Length is
8939 when True => Length : Integer;
8940 when False => null;
8941 end case;
8942 end record;
8943 type Wrapper_Array is array (1 .. 2) of Wrapper;
8944
8945 Hello : Wrapper_Array := (others => (Has_Length => True,
8946 Data => (others => 17),
8947 Length => 1));
8948
8949
8950 The debugging info would describe variable Hello as being an
8951 array of a PAD type. The size of that PAD type is not statically
8952 known, but can be determined using a parallel XVZ variable.
8953 In that case, a copy of the PAD type with the correct size should
8954 be used for the fixed array.
8955
8956 3. ``Fixing'' record type objects:
8957 ----------------------------------
8958
8959 Things are slightly different from arrays in the case of dynamic
8960 record types. In this case, in order to compute the associated
8961 fixed type, we need to determine the size and offset of each of
8962 its components. This, in turn, requires us to compute the fixed
8963 type of each of these components.
8964
8965 Consider for instance the example:
8966
8967 type Bounded_String (Max_Size : Natural) is record
8968 Str : String (1 .. Max_Size);
8969 Length : Natural;
8970 end record;
8971 My_String : Bounded_String (Max_Size => 10);
8972
8973 In that case, the position of field "Length" depends on the size
8974 of field Str, which itself depends on the value of the Max_Size
8975 discriminant. In order to fix the type of variable My_String,
8976 we need to fix the type of field Str. Therefore, fixing a variant
8977 record requires us to fix each of its components.
8978
8979 However, if a component does not have a dynamic size, the component
8980 should not be fixed. In particular, fields that use a PAD type
8981 should not fixed. Here is an example where this might happen
8982 (assuming type Rec above):
8983
8984 type Container (Big : Boolean) is record
8985 First : Rec;
8986 After : Integer;
8987 case Big is
8988 when True => Another : Integer;
8989 when False => null;
8990 end case;
8991 end record;
8992 My_Container : Container := (Big => False,
8993 First => (Empty => True),
8994 After => 42);
8995
8996 In that example, the compiler creates a PAD type for component First,
8997 whose size is constant, and then positions the component After just
8998 right after it. The offset of component After is therefore constant
8999 in this case.
9000
9001 The debugger computes the position of each field based on an algorithm
9002 that uses, among other things, the actual position and size of the field
9003 preceding it. Let's now imagine that the user is trying to print
9004 the value of My_Container. If the type fixing was recursive, we would
9005 end up computing the offset of field After based on the size of the
9006 fixed version of field First. And since in our example First has
9007 only one actual field, the size of the fixed type is actually smaller
9008 than the amount of space allocated to that field, and thus we would
9009 compute the wrong offset of field After.
9010
9011 To make things more complicated, we need to watch out for dynamic
9012 components of variant records (identified by the ___XVL suffix in
9013 the component name). Even if the target type is a PAD type, the size
9014 of that type might not be statically known. So the PAD type needs
9015 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9016 we might end up with the wrong size for our component. This can be
9017 observed with the following type declarations:
9018
9019 type Octal is new Integer range 0 .. 7;
9020 type Octal_Array is array (Positive range <>) of Octal;
9021 pragma Pack (Octal_Array);
9022
9023 type Octal_Buffer (Size : Positive) is record
9024 Buffer : Octal_Array (1 .. Size);
9025 Length : Integer;
9026 end record;
9027
9028 In that case, Buffer is a PAD type whose size is unset and needs
9029 to be computed by fixing the unwrapped type.
9030
9031 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9032 ----------------------------------------------------------
9033
9034 Lastly, when should the sub-elements of an entity that remained unfixed
9035 thus far, be actually fixed?
9036
9037 The answer is: Only when referencing that element. For instance
9038 when selecting one component of a record, this specific component
9039 should be fixed at that point in time. Or when printing the value
9040 of a record, each component should be fixed before its value gets
9041 printed. Similarly for arrays, the element of the array should be
9042 fixed when printing each element of the array, or when extracting
9043 one element out of that array. On the other hand, fixing should
9044 not be performed on the elements when taking a slice of an array!
9045
9046 Note that one of the side-effects of miscomputing the offset and
9047 size of each field is that we end up also miscomputing the size
9048 of the containing type. This can have adverse results when computing
9049 the value of an entity. GDB fetches the value of an entity based
9050 on the size of its type, and thus a wrong size causes GDB to fetch
9051 the wrong amount of memory. In the case where the computed size is
9052 too small, GDB fetches too little data to print the value of our
9053 entiry. Results in this case as unpredicatble, as we usually read
9054 past the buffer containing the data =:-o. */
9055
9056 /* Implement the evaluate_exp routine in the exp_descriptor structure
9057 for the Ada language. */
9058
9059 static struct value *
9060 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9061 int *pos, enum noside noside)
9062 {
9063 enum exp_opcode op;
9064 int tem;
9065 int pc;
9066 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9067 struct type *type;
9068 int nargs, oplen;
9069 struct value **argvec;
9070
9071 pc = *pos;
9072 *pos += 1;
9073 op = exp->elts[pc].opcode;
9074
9075 switch (op)
9076 {
9077 default:
9078 *pos -= 1;
9079 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9080 arg1 = unwrap_value (arg1);
9081
9082 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9083 then we need to perform the conversion manually, because
9084 evaluate_subexp_standard doesn't do it. This conversion is
9085 necessary in Ada because the different kinds of float/fixed
9086 types in Ada have different representations.
9087
9088 Similarly, we need to perform the conversion from OP_LONG
9089 ourselves. */
9090 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9091 arg1 = ada_value_cast (expect_type, arg1, noside);
9092
9093 return arg1;
9094
9095 case OP_STRING:
9096 {
9097 struct value *result;
9098
9099 *pos -= 1;
9100 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9101 /* The result type will have code OP_STRING, bashed there from
9102 OP_ARRAY. Bash it back. */
9103 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9104 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9105 return result;
9106 }
9107
9108 case UNOP_CAST:
9109 (*pos) += 2;
9110 type = exp->elts[pc + 1].type;
9111 arg1 = evaluate_subexp (type, exp, pos, noside);
9112 if (noside == EVAL_SKIP)
9113 goto nosideret;
9114 arg1 = ada_value_cast (type, arg1, noside);
9115 return arg1;
9116
9117 case UNOP_QUAL:
9118 (*pos) += 2;
9119 type = exp->elts[pc + 1].type;
9120 return ada_evaluate_subexp (type, exp, pos, noside);
9121
9122 case BINOP_ASSIGN:
9123 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9124 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9125 {
9126 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9127 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9128 return arg1;
9129 return ada_value_assign (arg1, arg1);
9130 }
9131 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9132 except if the lhs of our assignment is a convenience variable.
9133 In the case of assigning to a convenience variable, the lhs
9134 should be exactly the result of the evaluation of the rhs. */
9135 type = value_type (arg1);
9136 if (VALUE_LVAL (arg1) == lval_internalvar)
9137 type = NULL;
9138 arg2 = evaluate_subexp (type, exp, pos, noside);
9139 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9140 return arg1;
9141 if (ada_is_fixed_point_type (value_type (arg1)))
9142 arg2 = cast_to_fixed (value_type (arg1), arg2);
9143 else if (ada_is_fixed_point_type (value_type (arg2)))
9144 error
9145 (_("Fixed-point values must be assigned to fixed-point variables"));
9146 else
9147 arg2 = coerce_for_assign (value_type (arg1), arg2);
9148 return ada_value_assign (arg1, arg2);
9149
9150 case BINOP_ADD:
9151 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9152 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9153 if (noside == EVAL_SKIP)
9154 goto nosideret;
9155 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9156 return (value_from_longest
9157 (value_type (arg1),
9158 value_as_long (arg1) + value_as_long (arg2)));
9159 if ((ada_is_fixed_point_type (value_type (arg1))
9160 || ada_is_fixed_point_type (value_type (arg2)))
9161 && value_type (arg1) != value_type (arg2))
9162 error (_("Operands of fixed-point addition must have the same type"));
9163 /* Do the addition, and cast the result to the type of the first
9164 argument. We cannot cast the result to a reference type, so if
9165 ARG1 is a reference type, find its underlying type. */
9166 type = value_type (arg1);
9167 while (TYPE_CODE (type) == TYPE_CODE_REF)
9168 type = TYPE_TARGET_TYPE (type);
9169 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9170 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9171
9172 case BINOP_SUB:
9173 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9174 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9175 if (noside == EVAL_SKIP)
9176 goto nosideret;
9177 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9178 return (value_from_longest
9179 (value_type (arg1),
9180 value_as_long (arg1) - value_as_long (arg2)));
9181 if ((ada_is_fixed_point_type (value_type (arg1))
9182 || ada_is_fixed_point_type (value_type (arg2)))
9183 && value_type (arg1) != value_type (arg2))
9184 error (_("Operands of fixed-point subtraction "
9185 "must have the same type"));
9186 /* Do the substraction, and cast the result to the type of the first
9187 argument. We cannot cast the result to a reference type, so if
9188 ARG1 is a reference type, find its underlying type. */
9189 type = value_type (arg1);
9190 while (TYPE_CODE (type) == TYPE_CODE_REF)
9191 type = TYPE_TARGET_TYPE (type);
9192 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9193 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9194
9195 case BINOP_MUL:
9196 case BINOP_DIV:
9197 case BINOP_REM:
9198 case BINOP_MOD:
9199 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9200 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9201 if (noside == EVAL_SKIP)
9202 goto nosideret;
9203 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9204 {
9205 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9206 return value_zero (value_type (arg1), not_lval);
9207 }
9208 else
9209 {
9210 type = builtin_type (exp->gdbarch)->builtin_double;
9211 if (ada_is_fixed_point_type (value_type (arg1)))
9212 arg1 = cast_from_fixed (type, arg1);
9213 if (ada_is_fixed_point_type (value_type (arg2)))
9214 arg2 = cast_from_fixed (type, arg2);
9215 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9216 return ada_value_binop (arg1, arg2, op);
9217 }
9218
9219 case BINOP_EQUAL:
9220 case BINOP_NOTEQUAL:
9221 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9222 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9223 if (noside == EVAL_SKIP)
9224 goto nosideret;
9225 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9226 tem = 0;
9227 else
9228 {
9229 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9230 tem = ada_value_equal (arg1, arg2);
9231 }
9232 if (op == BINOP_NOTEQUAL)
9233 tem = !tem;
9234 type = language_bool_type (exp->language_defn, exp->gdbarch);
9235 return value_from_longest (type, (LONGEST) tem);
9236
9237 case UNOP_NEG:
9238 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9239 if (noside == EVAL_SKIP)
9240 goto nosideret;
9241 else if (ada_is_fixed_point_type (value_type (arg1)))
9242 return value_cast (value_type (arg1), value_neg (arg1));
9243 else
9244 {
9245 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9246 return value_neg (arg1);
9247 }
9248
9249 case BINOP_LOGICAL_AND:
9250 case BINOP_LOGICAL_OR:
9251 case UNOP_LOGICAL_NOT:
9252 {
9253 struct value *val;
9254
9255 *pos -= 1;
9256 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9257 type = language_bool_type (exp->language_defn, exp->gdbarch);
9258 return value_cast (type, val);
9259 }
9260
9261 case BINOP_BITWISE_AND:
9262 case BINOP_BITWISE_IOR:
9263 case BINOP_BITWISE_XOR:
9264 {
9265 struct value *val;
9266
9267 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9268 *pos = pc;
9269 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9270
9271 return value_cast (value_type (arg1), val);
9272 }
9273
9274 case OP_VAR_VALUE:
9275 *pos -= 1;
9276
9277 if (noside == EVAL_SKIP)
9278 {
9279 *pos += 4;
9280 goto nosideret;
9281 }
9282 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9283 /* Only encountered when an unresolved symbol occurs in a
9284 context other than a function call, in which case, it is
9285 invalid. */
9286 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9287 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9288 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9289 {
9290 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9291 /* Check to see if this is a tagged type. We also need to handle
9292 the case where the type is a reference to a tagged type, but
9293 we have to be careful to exclude pointers to tagged types.
9294 The latter should be shown as usual (as a pointer), whereas
9295 a reference should mostly be transparent to the user. */
9296 if (ada_is_tagged_type (type, 0)
9297 || (TYPE_CODE(type) == TYPE_CODE_REF
9298 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9299 {
9300 /* Tagged types are a little special in the fact that the real
9301 type is dynamic and can only be determined by inspecting the
9302 object's tag. This means that we need to get the object's
9303 value first (EVAL_NORMAL) and then extract the actual object
9304 type from its tag.
9305
9306 Note that we cannot skip the final step where we extract
9307 the object type from its tag, because the EVAL_NORMAL phase
9308 results in dynamic components being resolved into fixed ones.
9309 This can cause problems when trying to print the type
9310 description of tagged types whose parent has a dynamic size:
9311 We use the type name of the "_parent" component in order
9312 to print the name of the ancestor type in the type description.
9313 If that component had a dynamic size, the resolution into
9314 a fixed type would result in the loss of that type name,
9315 thus preventing us from printing the name of the ancestor
9316 type in the type description. */
9317 struct type *actual_type;
9318
9319 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9320 actual_type = type_from_tag (ada_value_tag (arg1));
9321 if (actual_type == NULL)
9322 /* If, for some reason, we were unable to determine
9323 the actual type from the tag, then use the static
9324 approximation that we just computed as a fallback.
9325 This can happen if the debugging information is
9326 incomplete, for instance. */
9327 actual_type = type;
9328
9329 return value_zero (actual_type, not_lval);
9330 }
9331
9332 *pos += 4;
9333 return value_zero
9334 (to_static_fixed_type
9335 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9336 not_lval);
9337 }
9338 else
9339 {
9340 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9341 arg1 = unwrap_value (arg1);
9342 return ada_to_fixed_value (arg1);
9343 }
9344
9345 case OP_FUNCALL:
9346 (*pos) += 2;
9347
9348 /* Allocate arg vector, including space for the function to be
9349 called in argvec[0] and a terminating NULL. */
9350 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9351 argvec =
9352 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9353
9354 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9355 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9356 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9357 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9358 else
9359 {
9360 for (tem = 0; tem <= nargs; tem += 1)
9361 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9362 argvec[tem] = 0;
9363
9364 if (noside == EVAL_SKIP)
9365 goto nosideret;
9366 }
9367
9368 if (ada_is_constrained_packed_array_type
9369 (desc_base_type (value_type (argvec[0]))))
9370 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9371 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9372 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9373 /* This is a packed array that has already been fixed, and
9374 therefore already coerced to a simple array. Nothing further
9375 to do. */
9376 ;
9377 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9378 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9379 && VALUE_LVAL (argvec[0]) == lval_memory))
9380 argvec[0] = value_addr (argvec[0]);
9381
9382 type = ada_check_typedef (value_type (argvec[0]));
9383
9384 /* Ada allows us to implicitly dereference arrays when subscripting
9385 them. So, if this is an typedef (encoding use for array access
9386 types encoded as fat pointers), strip it now. */
9387 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9388 type = ada_typedef_target_type (type);
9389
9390 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9391 {
9392 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9393 {
9394 case TYPE_CODE_FUNC:
9395 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9396 break;
9397 case TYPE_CODE_ARRAY:
9398 break;
9399 case TYPE_CODE_STRUCT:
9400 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9401 argvec[0] = ada_value_ind (argvec[0]);
9402 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9403 break;
9404 default:
9405 error (_("cannot subscript or call something of type `%s'"),
9406 ada_type_name (value_type (argvec[0])));
9407 break;
9408 }
9409 }
9410
9411 switch (TYPE_CODE (type))
9412 {
9413 case TYPE_CODE_FUNC:
9414 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9415 return allocate_value (TYPE_TARGET_TYPE (type));
9416 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9417 case TYPE_CODE_STRUCT:
9418 {
9419 int arity;
9420
9421 arity = ada_array_arity (type);
9422 type = ada_array_element_type (type, nargs);
9423 if (type == NULL)
9424 error (_("cannot subscript or call a record"));
9425 if (arity != nargs)
9426 error (_("wrong number of subscripts; expecting %d"), arity);
9427 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9428 return value_zero (ada_aligned_type (type), lval_memory);
9429 return
9430 unwrap_value (ada_value_subscript
9431 (argvec[0], nargs, argvec + 1));
9432 }
9433 case TYPE_CODE_ARRAY:
9434 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9435 {
9436 type = ada_array_element_type (type, nargs);
9437 if (type == NULL)
9438 error (_("element type of array unknown"));
9439 else
9440 return value_zero (ada_aligned_type (type), lval_memory);
9441 }
9442 return
9443 unwrap_value (ada_value_subscript
9444 (ada_coerce_to_simple_array (argvec[0]),
9445 nargs, argvec + 1));
9446 case TYPE_CODE_PTR: /* Pointer to array */
9447 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9448 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9449 {
9450 type = ada_array_element_type (type, nargs);
9451 if (type == NULL)
9452 error (_("element type of array unknown"));
9453 else
9454 return value_zero (ada_aligned_type (type), lval_memory);
9455 }
9456 return
9457 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9458 nargs, argvec + 1));
9459
9460 default:
9461 error (_("Attempt to index or call something other than an "
9462 "array or function"));
9463 }
9464
9465 case TERNOP_SLICE:
9466 {
9467 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9468 struct value *low_bound_val =
9469 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9470 struct value *high_bound_val =
9471 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9472 LONGEST low_bound;
9473 LONGEST high_bound;
9474
9475 low_bound_val = coerce_ref (low_bound_val);
9476 high_bound_val = coerce_ref (high_bound_val);
9477 low_bound = pos_atr (low_bound_val);
9478 high_bound = pos_atr (high_bound_val);
9479
9480 if (noside == EVAL_SKIP)
9481 goto nosideret;
9482
9483 /* If this is a reference to an aligner type, then remove all
9484 the aligners. */
9485 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9486 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9487 TYPE_TARGET_TYPE (value_type (array)) =
9488 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9489
9490 if (ada_is_constrained_packed_array_type (value_type (array)))
9491 error (_("cannot slice a packed array"));
9492
9493 /* If this is a reference to an array or an array lvalue,
9494 convert to a pointer. */
9495 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9496 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9497 && VALUE_LVAL (array) == lval_memory))
9498 array = value_addr (array);
9499
9500 if (noside == EVAL_AVOID_SIDE_EFFECTS
9501 && ada_is_array_descriptor_type (ada_check_typedef
9502 (value_type (array))))
9503 return empty_array (ada_type_of_array (array, 0), low_bound);
9504
9505 array = ada_coerce_to_simple_array_ptr (array);
9506
9507 /* If we have more than one level of pointer indirection,
9508 dereference the value until we get only one level. */
9509 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9510 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9511 == TYPE_CODE_PTR))
9512 array = value_ind (array);
9513
9514 /* Make sure we really do have an array type before going further,
9515 to avoid a SEGV when trying to get the index type or the target
9516 type later down the road if the debug info generated by
9517 the compiler is incorrect or incomplete. */
9518 if (!ada_is_simple_array_type (value_type (array)))
9519 error (_("cannot take slice of non-array"));
9520
9521 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9522 {
9523 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9524 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9525 low_bound);
9526 else
9527 {
9528 struct type *arr_type0 =
9529 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9530 NULL, 1);
9531
9532 return ada_value_slice_from_ptr (array, arr_type0,
9533 longest_to_int (low_bound),
9534 longest_to_int (high_bound));
9535 }
9536 }
9537 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9538 return array;
9539 else if (high_bound < low_bound)
9540 return empty_array (value_type (array), low_bound);
9541 else
9542 return ada_value_slice (array, longest_to_int (low_bound),
9543 longest_to_int (high_bound));
9544 }
9545
9546 case UNOP_IN_RANGE:
9547 (*pos) += 2;
9548 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9549 type = check_typedef (exp->elts[pc + 1].type);
9550
9551 if (noside == EVAL_SKIP)
9552 goto nosideret;
9553
9554 switch (TYPE_CODE (type))
9555 {
9556 default:
9557 lim_warning (_("Membership test incompletely implemented; "
9558 "always returns true"));
9559 type = language_bool_type (exp->language_defn, exp->gdbarch);
9560 return value_from_longest (type, (LONGEST) 1);
9561
9562 case TYPE_CODE_RANGE:
9563 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9564 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9565 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9566 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9567 type = language_bool_type (exp->language_defn, exp->gdbarch);
9568 return
9569 value_from_longest (type,
9570 (value_less (arg1, arg3)
9571 || value_equal (arg1, arg3))
9572 && (value_less (arg2, arg1)
9573 || value_equal (arg2, arg1)));
9574 }
9575
9576 case BINOP_IN_BOUNDS:
9577 (*pos) += 2;
9578 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9579 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9580
9581 if (noside == EVAL_SKIP)
9582 goto nosideret;
9583
9584 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9585 {
9586 type = language_bool_type (exp->language_defn, exp->gdbarch);
9587 return value_zero (type, not_lval);
9588 }
9589
9590 tem = longest_to_int (exp->elts[pc + 1].longconst);
9591
9592 type = ada_index_type (value_type (arg2), tem, "range");
9593 if (!type)
9594 type = value_type (arg1);
9595
9596 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9597 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9598
9599 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9600 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9601 type = language_bool_type (exp->language_defn, exp->gdbarch);
9602 return
9603 value_from_longest (type,
9604 (value_less (arg1, arg3)
9605 || value_equal (arg1, arg3))
9606 && (value_less (arg2, arg1)
9607 || value_equal (arg2, arg1)));
9608
9609 case TERNOP_IN_RANGE:
9610 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9611 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9612 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9613
9614 if (noside == EVAL_SKIP)
9615 goto nosideret;
9616
9617 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9618 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9619 type = language_bool_type (exp->language_defn, exp->gdbarch);
9620 return
9621 value_from_longest (type,
9622 (value_less (arg1, arg3)
9623 || value_equal (arg1, arg3))
9624 && (value_less (arg2, arg1)
9625 || value_equal (arg2, arg1)));
9626
9627 case OP_ATR_FIRST:
9628 case OP_ATR_LAST:
9629 case OP_ATR_LENGTH:
9630 {
9631 struct type *type_arg;
9632
9633 if (exp->elts[*pos].opcode == OP_TYPE)
9634 {
9635 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9636 arg1 = NULL;
9637 type_arg = check_typedef (exp->elts[pc + 2].type);
9638 }
9639 else
9640 {
9641 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9642 type_arg = NULL;
9643 }
9644
9645 if (exp->elts[*pos].opcode != OP_LONG)
9646 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9647 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9648 *pos += 4;
9649
9650 if (noside == EVAL_SKIP)
9651 goto nosideret;
9652
9653 if (type_arg == NULL)
9654 {
9655 arg1 = ada_coerce_ref (arg1);
9656
9657 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9658 arg1 = ada_coerce_to_simple_array (arg1);
9659
9660 type = ada_index_type (value_type (arg1), tem,
9661 ada_attribute_name (op));
9662 if (type == NULL)
9663 type = builtin_type (exp->gdbarch)->builtin_int;
9664
9665 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9666 return allocate_value (type);
9667
9668 switch (op)
9669 {
9670 default: /* Should never happen. */
9671 error (_("unexpected attribute encountered"));
9672 case OP_ATR_FIRST:
9673 return value_from_longest
9674 (type, ada_array_bound (arg1, tem, 0));
9675 case OP_ATR_LAST:
9676 return value_from_longest
9677 (type, ada_array_bound (arg1, tem, 1));
9678 case OP_ATR_LENGTH:
9679 return value_from_longest
9680 (type, ada_array_length (arg1, tem));
9681 }
9682 }
9683 else if (discrete_type_p (type_arg))
9684 {
9685 struct type *range_type;
9686 char *name = ada_type_name (type_arg);
9687
9688 range_type = NULL;
9689 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9690 range_type = to_fixed_range_type (type_arg, NULL);
9691 if (range_type == NULL)
9692 range_type = type_arg;
9693 switch (op)
9694 {
9695 default:
9696 error (_("unexpected attribute encountered"));
9697 case OP_ATR_FIRST:
9698 return value_from_longest
9699 (range_type, ada_discrete_type_low_bound (range_type));
9700 case OP_ATR_LAST:
9701 return value_from_longest
9702 (range_type, ada_discrete_type_high_bound (range_type));
9703 case OP_ATR_LENGTH:
9704 error (_("the 'length attribute applies only to array types"));
9705 }
9706 }
9707 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9708 error (_("unimplemented type attribute"));
9709 else
9710 {
9711 LONGEST low, high;
9712
9713 if (ada_is_constrained_packed_array_type (type_arg))
9714 type_arg = decode_constrained_packed_array_type (type_arg);
9715
9716 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9717 if (type == NULL)
9718 type = builtin_type (exp->gdbarch)->builtin_int;
9719
9720 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9721 return allocate_value (type);
9722
9723 switch (op)
9724 {
9725 default:
9726 error (_("unexpected attribute encountered"));
9727 case OP_ATR_FIRST:
9728 low = ada_array_bound_from_type (type_arg, tem, 0);
9729 return value_from_longest (type, low);
9730 case OP_ATR_LAST:
9731 high = ada_array_bound_from_type (type_arg, tem, 1);
9732 return value_from_longest (type, high);
9733 case OP_ATR_LENGTH:
9734 low = ada_array_bound_from_type (type_arg, tem, 0);
9735 high = ada_array_bound_from_type (type_arg, tem, 1);
9736 return value_from_longest (type, high - low + 1);
9737 }
9738 }
9739 }
9740
9741 case OP_ATR_TAG:
9742 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9743 if (noside == EVAL_SKIP)
9744 goto nosideret;
9745
9746 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9747 return value_zero (ada_tag_type (arg1), not_lval);
9748
9749 return ada_value_tag (arg1);
9750
9751 case OP_ATR_MIN:
9752 case OP_ATR_MAX:
9753 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9754 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9755 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9756 if (noside == EVAL_SKIP)
9757 goto nosideret;
9758 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9759 return value_zero (value_type (arg1), not_lval);
9760 else
9761 {
9762 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9763 return value_binop (arg1, arg2,
9764 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9765 }
9766
9767 case OP_ATR_MODULUS:
9768 {
9769 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9770
9771 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9772 if (noside == EVAL_SKIP)
9773 goto nosideret;
9774
9775 if (!ada_is_modular_type (type_arg))
9776 error (_("'modulus must be applied to modular type"));
9777
9778 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9779 ada_modulus (type_arg));
9780 }
9781
9782
9783 case OP_ATR_POS:
9784 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9785 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9786 if (noside == EVAL_SKIP)
9787 goto nosideret;
9788 type = builtin_type (exp->gdbarch)->builtin_int;
9789 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9790 return value_zero (type, not_lval);
9791 else
9792 return value_pos_atr (type, arg1);
9793
9794 case OP_ATR_SIZE:
9795 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9796 type = value_type (arg1);
9797
9798 /* If the argument is a reference, then dereference its type, since
9799 the user is really asking for the size of the actual object,
9800 not the size of the pointer. */
9801 if (TYPE_CODE (type) == TYPE_CODE_REF)
9802 type = TYPE_TARGET_TYPE (type);
9803
9804 if (noside == EVAL_SKIP)
9805 goto nosideret;
9806 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9807 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9808 else
9809 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9810 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9811
9812 case OP_ATR_VAL:
9813 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9814 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9815 type = exp->elts[pc + 2].type;
9816 if (noside == EVAL_SKIP)
9817 goto nosideret;
9818 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9819 return value_zero (type, not_lval);
9820 else
9821 return value_val_atr (type, arg1);
9822
9823 case BINOP_EXP:
9824 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9825 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9826 if (noside == EVAL_SKIP)
9827 goto nosideret;
9828 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9829 return value_zero (value_type (arg1), not_lval);
9830 else
9831 {
9832 /* For integer exponentiation operations,
9833 only promote the first argument. */
9834 if (is_integral_type (value_type (arg2)))
9835 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9836 else
9837 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9838
9839 return value_binop (arg1, arg2, op);
9840 }
9841
9842 case UNOP_PLUS:
9843 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9844 if (noside == EVAL_SKIP)
9845 goto nosideret;
9846 else
9847 return arg1;
9848
9849 case UNOP_ABS:
9850 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9851 if (noside == EVAL_SKIP)
9852 goto nosideret;
9853 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9854 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9855 return value_neg (arg1);
9856 else
9857 return arg1;
9858
9859 case UNOP_IND:
9860 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9861 if (noside == EVAL_SKIP)
9862 goto nosideret;
9863 type = ada_check_typedef (value_type (arg1));
9864 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9865 {
9866 if (ada_is_array_descriptor_type (type))
9867 /* GDB allows dereferencing GNAT array descriptors. */
9868 {
9869 struct type *arrType = ada_type_of_array (arg1, 0);
9870
9871 if (arrType == NULL)
9872 error (_("Attempt to dereference null array pointer."));
9873 return value_at_lazy (arrType, 0);
9874 }
9875 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9876 || TYPE_CODE (type) == TYPE_CODE_REF
9877 /* In C you can dereference an array to get the 1st elt. */
9878 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9879 {
9880 type = to_static_fixed_type
9881 (ada_aligned_type
9882 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9883 check_size (type);
9884 return value_zero (type, lval_memory);
9885 }
9886 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9887 {
9888 /* GDB allows dereferencing an int. */
9889 if (expect_type == NULL)
9890 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9891 lval_memory);
9892 else
9893 {
9894 expect_type =
9895 to_static_fixed_type (ada_aligned_type (expect_type));
9896 return value_zero (expect_type, lval_memory);
9897 }
9898 }
9899 else
9900 error (_("Attempt to take contents of a non-pointer value."));
9901 }
9902 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9903 type = ada_check_typedef (value_type (arg1));
9904
9905 if (TYPE_CODE (type) == TYPE_CODE_INT)
9906 /* GDB allows dereferencing an int. If we were given
9907 the expect_type, then use that as the target type.
9908 Otherwise, assume that the target type is an int. */
9909 {
9910 if (expect_type != NULL)
9911 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9912 arg1));
9913 else
9914 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9915 (CORE_ADDR) value_as_address (arg1));
9916 }
9917
9918 if (ada_is_array_descriptor_type (type))
9919 /* GDB allows dereferencing GNAT array descriptors. */
9920 return ada_coerce_to_simple_array (arg1);
9921 else
9922 return ada_value_ind (arg1);
9923
9924 case STRUCTOP_STRUCT:
9925 tem = longest_to_int (exp->elts[pc + 1].longconst);
9926 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9927 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9928 if (noside == EVAL_SKIP)
9929 goto nosideret;
9930 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9931 {
9932 struct type *type1 = value_type (arg1);
9933
9934 if (ada_is_tagged_type (type1, 1))
9935 {
9936 type = ada_lookup_struct_elt_type (type1,
9937 &exp->elts[pc + 2].string,
9938 1, 1, NULL);
9939 if (type == NULL)
9940 /* In this case, we assume that the field COULD exist
9941 in some extension of the type. Return an object of
9942 "type" void, which will match any formal
9943 (see ada_type_match). */
9944 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9945 lval_memory);
9946 }
9947 else
9948 type =
9949 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9950 0, NULL);
9951
9952 return value_zero (ada_aligned_type (type), lval_memory);
9953 }
9954 else
9955 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9956 arg1 = unwrap_value (arg1);
9957 return ada_to_fixed_value (arg1);
9958
9959 case OP_TYPE:
9960 /* The value is not supposed to be used. This is here to make it
9961 easier to accommodate expressions that contain types. */
9962 (*pos) += 2;
9963 if (noside == EVAL_SKIP)
9964 goto nosideret;
9965 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9966 return allocate_value (exp->elts[pc + 1].type);
9967 else
9968 error (_("Attempt to use a type name as an expression"));
9969
9970 case OP_AGGREGATE:
9971 case OP_CHOICES:
9972 case OP_OTHERS:
9973 case OP_DISCRETE_RANGE:
9974 case OP_POSITIONAL:
9975 case OP_NAME:
9976 if (noside == EVAL_NORMAL)
9977 switch (op)
9978 {
9979 case OP_NAME:
9980 error (_("Undefined name, ambiguous name, or renaming used in "
9981 "component association: %s."), &exp->elts[pc+2].string);
9982 case OP_AGGREGATE:
9983 error (_("Aggregates only allowed on the right of an assignment"));
9984 default:
9985 internal_error (__FILE__, __LINE__,
9986 _("aggregate apparently mangled"));
9987 }
9988
9989 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9990 *pos += oplen - 1;
9991 for (tem = 0; tem < nargs; tem += 1)
9992 ada_evaluate_subexp (NULL, exp, pos, noside);
9993 goto nosideret;
9994 }
9995
9996 nosideret:
9997 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9998 }
9999 \f
10000
10001 /* Fixed point */
10002
10003 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10004 type name that encodes the 'small and 'delta information.
10005 Otherwise, return NULL. */
10006
10007 static const char *
10008 fixed_type_info (struct type *type)
10009 {
10010 const char *name = ada_type_name (type);
10011 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10012
10013 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10014 {
10015 const char *tail = strstr (name, "___XF_");
10016
10017 if (tail == NULL)
10018 return NULL;
10019 else
10020 return tail + 5;
10021 }
10022 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10023 return fixed_type_info (TYPE_TARGET_TYPE (type));
10024 else
10025 return NULL;
10026 }
10027
10028 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10029
10030 int
10031 ada_is_fixed_point_type (struct type *type)
10032 {
10033 return fixed_type_info (type) != NULL;
10034 }
10035
10036 /* Return non-zero iff TYPE represents a System.Address type. */
10037
10038 int
10039 ada_is_system_address_type (struct type *type)
10040 {
10041 return (TYPE_NAME (type)
10042 && strcmp (TYPE_NAME (type), "system__address") == 0);
10043 }
10044
10045 /* Assuming that TYPE is the representation of an Ada fixed-point
10046 type, return its delta, or -1 if the type is malformed and the
10047 delta cannot be determined. */
10048
10049 DOUBLEST
10050 ada_delta (struct type *type)
10051 {
10052 const char *encoding = fixed_type_info (type);
10053 DOUBLEST num, den;
10054
10055 /* Strictly speaking, num and den are encoded as integer. However,
10056 they may not fit into a long, and they will have to be converted
10057 to DOUBLEST anyway. So scan them as DOUBLEST. */
10058 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10059 &num, &den) < 2)
10060 return -1.0;
10061 else
10062 return num / den;
10063 }
10064
10065 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10066 factor ('SMALL value) associated with the type. */
10067
10068 static DOUBLEST
10069 scaling_factor (struct type *type)
10070 {
10071 const char *encoding = fixed_type_info (type);
10072 DOUBLEST num0, den0, num1, den1;
10073 int n;
10074
10075 /* Strictly speaking, num's and den's are encoded as integer. However,
10076 they may not fit into a long, and they will have to be converted
10077 to DOUBLEST anyway. So scan them as DOUBLEST. */
10078 n = sscanf (encoding,
10079 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10080 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10081 &num0, &den0, &num1, &den1);
10082
10083 if (n < 2)
10084 return 1.0;
10085 else if (n == 4)
10086 return num1 / den1;
10087 else
10088 return num0 / den0;
10089 }
10090
10091
10092 /* Assuming that X is the representation of a value of fixed-point
10093 type TYPE, return its floating-point equivalent. */
10094
10095 DOUBLEST
10096 ada_fixed_to_float (struct type *type, LONGEST x)
10097 {
10098 return (DOUBLEST) x *scaling_factor (type);
10099 }
10100
10101 /* The representation of a fixed-point value of type TYPE
10102 corresponding to the value X. */
10103
10104 LONGEST
10105 ada_float_to_fixed (struct type *type, DOUBLEST x)
10106 {
10107 return (LONGEST) (x / scaling_factor (type) + 0.5);
10108 }
10109
10110 \f
10111
10112 /* Range types */
10113
10114 /* Scan STR beginning at position K for a discriminant name, and
10115 return the value of that discriminant field of DVAL in *PX. If
10116 PNEW_K is not null, put the position of the character beyond the
10117 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10118 not alter *PX and *PNEW_K if unsuccessful. */
10119
10120 static int
10121 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10122 int *pnew_k)
10123 {
10124 static char *bound_buffer = NULL;
10125 static size_t bound_buffer_len = 0;
10126 char *bound;
10127 char *pend;
10128 struct value *bound_val;
10129
10130 if (dval == NULL || str == NULL || str[k] == '\0')
10131 return 0;
10132
10133 pend = strstr (str + k, "__");
10134 if (pend == NULL)
10135 {
10136 bound = str + k;
10137 k += strlen (bound);
10138 }
10139 else
10140 {
10141 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10142 bound = bound_buffer;
10143 strncpy (bound_buffer, str + k, pend - (str + k));
10144 bound[pend - (str + k)] = '\0';
10145 k = pend - str;
10146 }
10147
10148 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10149 if (bound_val == NULL)
10150 return 0;
10151
10152 *px = value_as_long (bound_val);
10153 if (pnew_k != NULL)
10154 *pnew_k = k;
10155 return 1;
10156 }
10157
10158 /* Value of variable named NAME in the current environment. If
10159 no such variable found, then if ERR_MSG is null, returns 0, and
10160 otherwise causes an error with message ERR_MSG. */
10161
10162 static struct value *
10163 get_var_value (char *name, char *err_msg)
10164 {
10165 struct ada_symbol_info *syms;
10166 int nsyms;
10167
10168 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10169 &syms);
10170
10171 if (nsyms != 1)
10172 {
10173 if (err_msg == NULL)
10174 return 0;
10175 else
10176 error (("%s"), err_msg);
10177 }
10178
10179 return value_of_variable (syms[0].sym, syms[0].block);
10180 }
10181
10182 /* Value of integer variable named NAME in the current environment. If
10183 no such variable found, returns 0, and sets *FLAG to 0. If
10184 successful, sets *FLAG to 1. */
10185
10186 LONGEST
10187 get_int_var_value (char *name, int *flag)
10188 {
10189 struct value *var_val = get_var_value (name, 0);
10190
10191 if (var_val == 0)
10192 {
10193 if (flag != NULL)
10194 *flag = 0;
10195 return 0;
10196 }
10197 else
10198 {
10199 if (flag != NULL)
10200 *flag = 1;
10201 return value_as_long (var_val);
10202 }
10203 }
10204
10205
10206 /* Return a range type whose base type is that of the range type named
10207 NAME in the current environment, and whose bounds are calculated
10208 from NAME according to the GNAT range encoding conventions.
10209 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10210 corresponding range type from debug information; fall back to using it
10211 if symbol lookup fails. If a new type must be created, allocate it
10212 like ORIG_TYPE was. The bounds information, in general, is encoded
10213 in NAME, the base type given in the named range type. */
10214
10215 static struct type *
10216 to_fixed_range_type (struct type *raw_type, struct value *dval)
10217 {
10218 char *name;
10219 struct type *base_type;
10220 char *subtype_info;
10221
10222 gdb_assert (raw_type != NULL);
10223 gdb_assert (TYPE_NAME (raw_type) != NULL);
10224
10225 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10226 base_type = TYPE_TARGET_TYPE (raw_type);
10227 else
10228 base_type = raw_type;
10229
10230 name = TYPE_NAME (raw_type);
10231 subtype_info = strstr (name, "___XD");
10232 if (subtype_info == NULL)
10233 {
10234 LONGEST L = ada_discrete_type_low_bound (raw_type);
10235 LONGEST U = ada_discrete_type_high_bound (raw_type);
10236
10237 if (L < INT_MIN || U > INT_MAX)
10238 return raw_type;
10239 else
10240 return create_range_type (alloc_type_copy (raw_type), raw_type,
10241 ada_discrete_type_low_bound (raw_type),
10242 ada_discrete_type_high_bound (raw_type));
10243 }
10244 else
10245 {
10246 static char *name_buf = NULL;
10247 static size_t name_len = 0;
10248 int prefix_len = subtype_info - name;
10249 LONGEST L, U;
10250 struct type *type;
10251 char *bounds_str;
10252 int n;
10253
10254 GROW_VECT (name_buf, name_len, prefix_len + 5);
10255 strncpy (name_buf, name, prefix_len);
10256 name_buf[prefix_len] = '\0';
10257
10258 subtype_info += 5;
10259 bounds_str = strchr (subtype_info, '_');
10260 n = 1;
10261
10262 if (*subtype_info == 'L')
10263 {
10264 if (!ada_scan_number (bounds_str, n, &L, &n)
10265 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10266 return raw_type;
10267 if (bounds_str[n] == '_')
10268 n += 2;
10269 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10270 n += 1;
10271 subtype_info += 1;
10272 }
10273 else
10274 {
10275 int ok;
10276
10277 strcpy (name_buf + prefix_len, "___L");
10278 L = get_int_var_value (name_buf, &ok);
10279 if (!ok)
10280 {
10281 lim_warning (_("Unknown lower bound, using 1."));
10282 L = 1;
10283 }
10284 }
10285
10286 if (*subtype_info == 'U')
10287 {
10288 if (!ada_scan_number (bounds_str, n, &U, &n)
10289 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10290 return raw_type;
10291 }
10292 else
10293 {
10294 int ok;
10295
10296 strcpy (name_buf + prefix_len, "___U");
10297 U = get_int_var_value (name_buf, &ok);
10298 if (!ok)
10299 {
10300 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10301 U = L;
10302 }
10303 }
10304
10305 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10306 TYPE_NAME (type) = name;
10307 return type;
10308 }
10309 }
10310
10311 /* True iff NAME is the name of a range type. */
10312
10313 int
10314 ada_is_range_type_name (const char *name)
10315 {
10316 return (name != NULL && strstr (name, "___XD"));
10317 }
10318 \f
10319
10320 /* Modular types */
10321
10322 /* True iff TYPE is an Ada modular type. */
10323
10324 int
10325 ada_is_modular_type (struct type *type)
10326 {
10327 struct type *subranged_type = base_type (type);
10328
10329 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10330 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10331 && TYPE_UNSIGNED (subranged_type));
10332 }
10333
10334 /* Try to determine the lower and upper bounds of the given modular type
10335 using the type name only. Return non-zero and set L and U as the lower
10336 and upper bounds (respectively) if successful. */
10337
10338 int
10339 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10340 {
10341 char *name = ada_type_name (type);
10342 char *suffix;
10343 int k;
10344 LONGEST U;
10345
10346 if (name == NULL)
10347 return 0;
10348
10349 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10350 we are looking for static bounds, which means an __XDLU suffix.
10351 Moreover, we know that the lower bound of modular types is always
10352 zero, so the actual suffix should start with "__XDLU_0__", and
10353 then be followed by the upper bound value. */
10354 suffix = strstr (name, "__XDLU_0__");
10355 if (suffix == NULL)
10356 return 0;
10357 k = 10;
10358 if (!ada_scan_number (suffix, k, &U, NULL))
10359 return 0;
10360
10361 *modulus = (ULONGEST) U + 1;
10362 return 1;
10363 }
10364
10365 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10366
10367 ULONGEST
10368 ada_modulus (struct type *type)
10369 {
10370 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10371 }
10372 \f
10373
10374 /* Ada exception catchpoint support:
10375 ---------------------------------
10376
10377 We support 3 kinds of exception catchpoints:
10378 . catchpoints on Ada exceptions
10379 . catchpoints on unhandled Ada exceptions
10380 . catchpoints on failed assertions
10381
10382 Exceptions raised during failed assertions, or unhandled exceptions
10383 could perfectly be caught with the general catchpoint on Ada exceptions.
10384 However, we can easily differentiate these two special cases, and having
10385 the option to distinguish these two cases from the rest can be useful
10386 to zero-in on certain situations.
10387
10388 Exception catchpoints are a specialized form of breakpoint,
10389 since they rely on inserting breakpoints inside known routines
10390 of the GNAT runtime. The implementation therefore uses a standard
10391 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10392 of breakpoint_ops.
10393
10394 Support in the runtime for exception catchpoints have been changed
10395 a few times already, and these changes affect the implementation
10396 of these catchpoints. In order to be able to support several
10397 variants of the runtime, we use a sniffer that will determine
10398 the runtime variant used by the program being debugged.
10399
10400 At this time, we do not support the use of conditions on Ada exception
10401 catchpoints. The COND and COND_STRING fields are therefore set
10402 to NULL (most of the time, see below).
10403
10404 Conditions where EXP_STRING, COND, and COND_STRING are used:
10405
10406 When a user specifies the name of a specific exception in the case
10407 of catchpoints on Ada exceptions, we store the name of that exception
10408 in the EXP_STRING. We then translate this request into an actual
10409 condition stored in COND_STRING, and then parse it into an expression
10410 stored in COND. */
10411
10412 /* The different types of catchpoints that we introduced for catching
10413 Ada exceptions. */
10414
10415 enum exception_catchpoint_kind
10416 {
10417 ex_catch_exception,
10418 ex_catch_exception_unhandled,
10419 ex_catch_assert
10420 };
10421
10422 /* Ada's standard exceptions. */
10423
10424 static char *standard_exc[] = {
10425 "constraint_error",
10426 "program_error",
10427 "storage_error",
10428 "tasking_error"
10429 };
10430
10431 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10432
10433 /* A structure that describes how to support exception catchpoints
10434 for a given executable. */
10435
10436 struct exception_support_info
10437 {
10438 /* The name of the symbol to break on in order to insert
10439 a catchpoint on exceptions. */
10440 const char *catch_exception_sym;
10441
10442 /* The name of the symbol to break on in order to insert
10443 a catchpoint on unhandled exceptions. */
10444 const char *catch_exception_unhandled_sym;
10445
10446 /* The name of the symbol to break on in order to insert
10447 a catchpoint on failed assertions. */
10448 const char *catch_assert_sym;
10449
10450 /* Assuming that the inferior just triggered an unhandled exception
10451 catchpoint, this function is responsible for returning the address
10452 in inferior memory where the name of that exception is stored.
10453 Return zero if the address could not be computed. */
10454 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10455 };
10456
10457 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10458 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10459
10460 /* The following exception support info structure describes how to
10461 implement exception catchpoints with the latest version of the
10462 Ada runtime (as of 2007-03-06). */
10463
10464 static const struct exception_support_info default_exception_support_info =
10465 {
10466 "__gnat_debug_raise_exception", /* catch_exception_sym */
10467 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10468 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10469 ada_unhandled_exception_name_addr
10470 };
10471
10472 /* The following exception support info structure describes how to
10473 implement exception catchpoints with a slightly older version
10474 of the Ada runtime. */
10475
10476 static const struct exception_support_info exception_support_info_fallback =
10477 {
10478 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10479 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10480 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10481 ada_unhandled_exception_name_addr_from_raise
10482 };
10483
10484 /* For each executable, we sniff which exception info structure to use
10485 and cache it in the following global variable. */
10486
10487 static const struct exception_support_info *exception_info = NULL;
10488
10489 /* Inspect the Ada runtime and determine which exception info structure
10490 should be used to provide support for exception catchpoints.
10491
10492 This function will always set exception_info, or raise an error. */
10493
10494 static void
10495 ada_exception_support_info_sniffer (void)
10496 {
10497 struct symbol *sym;
10498
10499 /* If the exception info is already known, then no need to recompute it. */
10500 if (exception_info != NULL)
10501 return;
10502
10503 /* Check the latest (default) exception support info. */
10504 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10505 NULL, VAR_DOMAIN);
10506 if (sym != NULL)
10507 {
10508 exception_info = &default_exception_support_info;
10509 return;
10510 }
10511
10512 /* Try our fallback exception suport info. */
10513 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10514 NULL, VAR_DOMAIN);
10515 if (sym != NULL)
10516 {
10517 exception_info = &exception_support_info_fallback;
10518 return;
10519 }
10520
10521 /* Sometimes, it is normal for us to not be able to find the routine
10522 we are looking for. This happens when the program is linked with
10523 the shared version of the GNAT runtime, and the program has not been
10524 started yet. Inform the user of these two possible causes if
10525 applicable. */
10526
10527 if (ada_update_initial_language (language_unknown) != language_ada)
10528 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10529
10530 /* If the symbol does not exist, then check that the program is
10531 already started, to make sure that shared libraries have been
10532 loaded. If it is not started, this may mean that the symbol is
10533 in a shared library. */
10534
10535 if (ptid_get_pid (inferior_ptid) == 0)
10536 error (_("Unable to insert catchpoint. Try to start the program first."));
10537
10538 /* At this point, we know that we are debugging an Ada program and
10539 that the inferior has been started, but we still are not able to
10540 find the run-time symbols. That can mean that we are in
10541 configurable run time mode, or that a-except as been optimized
10542 out by the linker... In any case, at this point it is not worth
10543 supporting this feature. */
10544
10545 error (_("Cannot insert catchpoints in this configuration."));
10546 }
10547
10548 /* An observer of "executable_changed" events.
10549 Its role is to clear certain cached values that need to be recomputed
10550 each time a new executable is loaded by GDB. */
10551
10552 static void
10553 ada_executable_changed_observer (void)
10554 {
10555 /* If the executable changed, then it is possible that the Ada runtime
10556 is different. So we need to invalidate the exception support info
10557 cache. */
10558 exception_info = NULL;
10559 }
10560
10561 /* True iff FRAME is very likely to be that of a function that is
10562 part of the runtime system. This is all very heuristic, but is
10563 intended to be used as advice as to what frames are uninteresting
10564 to most users. */
10565
10566 static int
10567 is_known_support_routine (struct frame_info *frame)
10568 {
10569 struct symtab_and_line sal;
10570 char *func_name;
10571 enum language func_lang;
10572 int i;
10573
10574 /* If this code does not have any debugging information (no symtab),
10575 This cannot be any user code. */
10576
10577 find_frame_sal (frame, &sal);
10578 if (sal.symtab == NULL)
10579 return 1;
10580
10581 /* If there is a symtab, but the associated source file cannot be
10582 located, then assume this is not user code: Selecting a frame
10583 for which we cannot display the code would not be very helpful
10584 for the user. This should also take care of case such as VxWorks
10585 where the kernel has some debugging info provided for a few units. */
10586
10587 if (symtab_to_fullname (sal.symtab) == NULL)
10588 return 1;
10589
10590 /* Check the unit filename againt the Ada runtime file naming.
10591 We also check the name of the objfile against the name of some
10592 known system libraries that sometimes come with debugging info
10593 too. */
10594
10595 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10596 {
10597 re_comp (known_runtime_file_name_patterns[i]);
10598 if (re_exec (sal.symtab->filename))
10599 return 1;
10600 if (sal.symtab->objfile != NULL
10601 && re_exec (sal.symtab->objfile->name))
10602 return 1;
10603 }
10604
10605 /* Check whether the function is a GNAT-generated entity. */
10606
10607 find_frame_funname (frame, &func_name, &func_lang, NULL);
10608 if (func_name == NULL)
10609 return 1;
10610
10611 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10612 {
10613 re_comp (known_auxiliary_function_name_patterns[i]);
10614 if (re_exec (func_name))
10615 return 1;
10616 }
10617
10618 return 0;
10619 }
10620
10621 /* Find the first frame that contains debugging information and that is not
10622 part of the Ada run-time, starting from FI and moving upward. */
10623
10624 void
10625 ada_find_printable_frame (struct frame_info *fi)
10626 {
10627 for (; fi != NULL; fi = get_prev_frame (fi))
10628 {
10629 if (!is_known_support_routine (fi))
10630 {
10631 select_frame (fi);
10632 break;
10633 }
10634 }
10635
10636 }
10637
10638 /* Assuming that the inferior just triggered an unhandled exception
10639 catchpoint, return the address in inferior memory where the name
10640 of the exception is stored.
10641
10642 Return zero if the address could not be computed. */
10643
10644 static CORE_ADDR
10645 ada_unhandled_exception_name_addr (void)
10646 {
10647 return parse_and_eval_address ("e.full_name");
10648 }
10649
10650 /* Same as ada_unhandled_exception_name_addr, except that this function
10651 should be used when the inferior uses an older version of the runtime,
10652 where the exception name needs to be extracted from a specific frame
10653 several frames up in the callstack. */
10654
10655 static CORE_ADDR
10656 ada_unhandled_exception_name_addr_from_raise (void)
10657 {
10658 int frame_level;
10659 struct frame_info *fi;
10660
10661 /* To determine the name of this exception, we need to select
10662 the frame corresponding to RAISE_SYM_NAME. This frame is
10663 at least 3 levels up, so we simply skip the first 3 frames
10664 without checking the name of their associated function. */
10665 fi = get_current_frame ();
10666 for (frame_level = 0; frame_level < 3; frame_level += 1)
10667 if (fi != NULL)
10668 fi = get_prev_frame (fi);
10669
10670 while (fi != NULL)
10671 {
10672 char *func_name;
10673 enum language func_lang;
10674
10675 find_frame_funname (fi, &func_name, &func_lang, NULL);
10676 if (func_name != NULL
10677 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10678 break; /* We found the frame we were looking for... */
10679 fi = get_prev_frame (fi);
10680 }
10681
10682 if (fi == NULL)
10683 return 0;
10684
10685 select_frame (fi);
10686 return parse_and_eval_address ("id.full_name");
10687 }
10688
10689 /* Assuming the inferior just triggered an Ada exception catchpoint
10690 (of any type), return the address in inferior memory where the name
10691 of the exception is stored, if applicable.
10692
10693 Return zero if the address could not be computed, or if not relevant. */
10694
10695 static CORE_ADDR
10696 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10697 struct breakpoint *b)
10698 {
10699 switch (ex)
10700 {
10701 case ex_catch_exception:
10702 return (parse_and_eval_address ("e.full_name"));
10703 break;
10704
10705 case ex_catch_exception_unhandled:
10706 return exception_info->unhandled_exception_name_addr ();
10707 break;
10708
10709 case ex_catch_assert:
10710 return 0; /* Exception name is not relevant in this case. */
10711 break;
10712
10713 default:
10714 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10715 break;
10716 }
10717
10718 return 0; /* Should never be reached. */
10719 }
10720
10721 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10722 any error that ada_exception_name_addr_1 might cause to be thrown.
10723 When an error is intercepted, a warning with the error message is printed,
10724 and zero is returned. */
10725
10726 static CORE_ADDR
10727 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10728 struct breakpoint *b)
10729 {
10730 struct gdb_exception e;
10731 CORE_ADDR result = 0;
10732
10733 TRY_CATCH (e, RETURN_MASK_ERROR)
10734 {
10735 result = ada_exception_name_addr_1 (ex, b);
10736 }
10737
10738 if (e.reason < 0)
10739 {
10740 warning (_("failed to get exception name: %s"), e.message);
10741 return 0;
10742 }
10743
10744 return result;
10745 }
10746
10747 /* Implement the PRINT_IT method in the breakpoint_ops structure
10748 for all exception catchpoint kinds. */
10749
10750 static enum print_stop_action
10751 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10752 {
10753 annotate_catchpoint (b->number);
10754
10755 if (ui_out_is_mi_like_p (uiout))
10756 {
10757 ui_out_field_string (uiout, "reason",
10758 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10759 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10760 }
10761
10762 ui_out_text (uiout, "\nCatchpoint ");
10763 ui_out_field_int (uiout, "bkptno", b->number);
10764 ui_out_text (uiout, ", ");
10765
10766 switch (ex)
10767 {
10768 case ex_catch_exception:
10769 case ex_catch_exception_unhandled:
10770 {
10771 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10772 char exception_name[256];
10773
10774 if (addr != 0)
10775 {
10776 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10777 exception_name [sizeof (exception_name) - 1] = '\0';
10778 }
10779 else
10780 {
10781 /* For some reason, we were unable to read the exception
10782 name. This could happen if the Runtime was compiled
10783 without debugging info, for instance. In that case,
10784 just replace the exception name by the generic string
10785 "exception" - it will read as "an exception" in the
10786 notification we are about to print. */
10787 sprintf (exception_name, "exception");
10788 }
10789 /* In the case of unhandled exception breakpoints, we print
10790 the exception name as "unhandled EXCEPTION_NAME", to make
10791 it clearer to the user which kind of catchpoint just got
10792 hit. We used ui_out_text to make sure that this extra
10793 info does not pollute the exception name in the MI case. */
10794 if (ex == ex_catch_exception_unhandled)
10795 ui_out_text (uiout, "unhandled ");
10796 ui_out_field_string (uiout, "exception-name", exception_name);
10797 }
10798 break;
10799 case ex_catch_assert:
10800 /* In this case, the name of the exception is not really
10801 important. Just print "failed assertion" to make it clearer
10802 that his program just hit an assertion-failure catchpoint.
10803 We used ui_out_text because this info does not belong in
10804 the MI output. */
10805 ui_out_text (uiout, "failed assertion");
10806 break;
10807 }
10808 ui_out_text (uiout, " at ");
10809 ada_find_printable_frame (get_current_frame ());
10810
10811 return PRINT_SRC_AND_LOC;
10812 }
10813
10814 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10815 for all exception catchpoint kinds. */
10816
10817 static void
10818 print_one_exception (enum exception_catchpoint_kind ex,
10819 struct breakpoint *b, struct bp_location **last_loc)
10820 {
10821 struct value_print_options opts;
10822
10823 get_user_print_options (&opts);
10824 if (opts.addressprint)
10825 {
10826 annotate_field (4);
10827 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10828 }
10829
10830 annotate_field (5);
10831 *last_loc = b->loc;
10832 switch (ex)
10833 {
10834 case ex_catch_exception:
10835 if (b->exp_string != NULL)
10836 {
10837 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10838
10839 ui_out_field_string (uiout, "what", msg);
10840 xfree (msg);
10841 }
10842 else
10843 ui_out_field_string (uiout, "what", "all Ada exceptions");
10844
10845 break;
10846
10847 case ex_catch_exception_unhandled:
10848 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10849 break;
10850
10851 case ex_catch_assert:
10852 ui_out_field_string (uiout, "what", "failed Ada assertions");
10853 break;
10854
10855 default:
10856 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10857 break;
10858 }
10859 }
10860
10861 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10862 for all exception catchpoint kinds. */
10863
10864 static void
10865 print_mention_exception (enum exception_catchpoint_kind ex,
10866 struct breakpoint *b)
10867 {
10868 switch (ex)
10869 {
10870 case ex_catch_exception:
10871 if (b->exp_string != NULL)
10872 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10873 b->number, b->exp_string);
10874 else
10875 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10876
10877 break;
10878
10879 case ex_catch_exception_unhandled:
10880 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10881 b->number);
10882 break;
10883
10884 case ex_catch_assert:
10885 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10886 break;
10887
10888 default:
10889 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10890 break;
10891 }
10892 }
10893
10894 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10895 for all exception catchpoint kinds. */
10896
10897 static void
10898 print_recreate_exception (enum exception_catchpoint_kind ex,
10899 struct breakpoint *b, struct ui_file *fp)
10900 {
10901 switch (ex)
10902 {
10903 case ex_catch_exception:
10904 fprintf_filtered (fp, "catch exception");
10905 if (b->exp_string != NULL)
10906 fprintf_filtered (fp, " %s", b->exp_string);
10907 break;
10908
10909 case ex_catch_exception_unhandled:
10910 fprintf_filtered (fp, "catch exception unhandled");
10911 break;
10912
10913 case ex_catch_assert:
10914 fprintf_filtered (fp, "catch assert");
10915 break;
10916
10917 default:
10918 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10919 }
10920 }
10921
10922 /* Virtual table for "catch exception" breakpoints. */
10923
10924 static enum print_stop_action
10925 print_it_catch_exception (struct breakpoint *b)
10926 {
10927 return print_it_exception (ex_catch_exception, b);
10928 }
10929
10930 static void
10931 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10932 {
10933 print_one_exception (ex_catch_exception, b, last_loc);
10934 }
10935
10936 static void
10937 print_mention_catch_exception (struct breakpoint *b)
10938 {
10939 print_mention_exception (ex_catch_exception, b);
10940 }
10941
10942 static void
10943 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10944 {
10945 print_recreate_exception (ex_catch_exception, b, fp);
10946 }
10947
10948 static struct breakpoint_ops catch_exception_breakpoint_ops =
10949 {
10950 NULL, /* insert */
10951 NULL, /* remove */
10952 NULL, /* breakpoint_hit */
10953 NULL, /* resources_needed */
10954 print_it_catch_exception,
10955 print_one_catch_exception,
10956 NULL, /* print_one_detail */
10957 print_mention_catch_exception,
10958 print_recreate_catch_exception
10959 };
10960
10961 /* Virtual table for "catch exception unhandled" breakpoints. */
10962
10963 static enum print_stop_action
10964 print_it_catch_exception_unhandled (struct breakpoint *b)
10965 {
10966 return print_it_exception (ex_catch_exception_unhandled, b);
10967 }
10968
10969 static void
10970 print_one_catch_exception_unhandled (struct breakpoint *b,
10971 struct bp_location **last_loc)
10972 {
10973 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10974 }
10975
10976 static void
10977 print_mention_catch_exception_unhandled (struct breakpoint *b)
10978 {
10979 print_mention_exception (ex_catch_exception_unhandled, b);
10980 }
10981
10982 static void
10983 print_recreate_catch_exception_unhandled (struct breakpoint *b,
10984 struct ui_file *fp)
10985 {
10986 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10987 }
10988
10989 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10990 NULL, /* insert */
10991 NULL, /* remove */
10992 NULL, /* breakpoint_hit */
10993 NULL, /* resources_needed */
10994 print_it_catch_exception_unhandled,
10995 print_one_catch_exception_unhandled,
10996 NULL, /* print_one_detail */
10997 print_mention_catch_exception_unhandled,
10998 print_recreate_catch_exception_unhandled
10999 };
11000
11001 /* Virtual table for "catch assert" breakpoints. */
11002
11003 static enum print_stop_action
11004 print_it_catch_assert (struct breakpoint *b)
11005 {
11006 return print_it_exception (ex_catch_assert, b);
11007 }
11008
11009 static void
11010 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11011 {
11012 print_one_exception (ex_catch_assert, b, last_loc);
11013 }
11014
11015 static void
11016 print_mention_catch_assert (struct breakpoint *b)
11017 {
11018 print_mention_exception (ex_catch_assert, b);
11019 }
11020
11021 static void
11022 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11023 {
11024 print_recreate_exception (ex_catch_assert, b, fp);
11025 }
11026
11027 static struct breakpoint_ops catch_assert_breakpoint_ops = {
11028 NULL, /* insert */
11029 NULL, /* remove */
11030 NULL, /* breakpoint_hit */
11031 NULL, /* resources_needed */
11032 print_it_catch_assert,
11033 print_one_catch_assert,
11034 NULL, /* print_one_detail */
11035 print_mention_catch_assert,
11036 print_recreate_catch_assert
11037 };
11038
11039 /* Return non-zero if B is an Ada exception catchpoint. */
11040
11041 int
11042 ada_exception_catchpoint_p (struct breakpoint *b)
11043 {
11044 return (b->ops == &catch_exception_breakpoint_ops
11045 || b->ops == &catch_exception_unhandled_breakpoint_ops
11046 || b->ops == &catch_assert_breakpoint_ops);
11047 }
11048
11049 /* Return a newly allocated copy of the first space-separated token
11050 in ARGSP, and then adjust ARGSP to point immediately after that
11051 token.
11052
11053 Return NULL if ARGPS does not contain any more tokens. */
11054
11055 static char *
11056 ada_get_next_arg (char **argsp)
11057 {
11058 char *args = *argsp;
11059 char *end;
11060 char *result;
11061
11062 /* Skip any leading white space. */
11063
11064 while (isspace (*args))
11065 args++;
11066
11067 if (args[0] == '\0')
11068 return NULL; /* No more arguments. */
11069
11070 /* Find the end of the current argument. */
11071
11072 end = args;
11073 while (*end != '\0' && !isspace (*end))
11074 end++;
11075
11076 /* Adjust ARGSP to point to the start of the next argument. */
11077
11078 *argsp = end;
11079
11080 /* Make a copy of the current argument and return it. */
11081
11082 result = xmalloc (end - args + 1);
11083 strncpy (result, args, end - args);
11084 result[end - args] = '\0';
11085
11086 return result;
11087 }
11088
11089 /* Split the arguments specified in a "catch exception" command.
11090 Set EX to the appropriate catchpoint type.
11091 Set EXP_STRING to the name of the specific exception if
11092 specified by the user. */
11093
11094 static void
11095 catch_ada_exception_command_split (char *args,
11096 enum exception_catchpoint_kind *ex,
11097 char **exp_string)
11098 {
11099 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11100 char *exception_name;
11101
11102 exception_name = ada_get_next_arg (&args);
11103 make_cleanup (xfree, exception_name);
11104
11105 /* Check that we do not have any more arguments. Anything else
11106 is unexpected. */
11107
11108 while (isspace (*args))
11109 args++;
11110
11111 if (args[0] != '\0')
11112 error (_("Junk at end of expression"));
11113
11114 discard_cleanups (old_chain);
11115
11116 if (exception_name == NULL)
11117 {
11118 /* Catch all exceptions. */
11119 *ex = ex_catch_exception;
11120 *exp_string = NULL;
11121 }
11122 else if (strcmp (exception_name, "unhandled") == 0)
11123 {
11124 /* Catch unhandled exceptions. */
11125 *ex = ex_catch_exception_unhandled;
11126 *exp_string = NULL;
11127 }
11128 else
11129 {
11130 /* Catch a specific exception. */
11131 *ex = ex_catch_exception;
11132 *exp_string = exception_name;
11133 }
11134 }
11135
11136 /* Return the name of the symbol on which we should break in order to
11137 implement a catchpoint of the EX kind. */
11138
11139 static const char *
11140 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11141 {
11142 gdb_assert (exception_info != NULL);
11143
11144 switch (ex)
11145 {
11146 case ex_catch_exception:
11147 return (exception_info->catch_exception_sym);
11148 break;
11149 case ex_catch_exception_unhandled:
11150 return (exception_info->catch_exception_unhandled_sym);
11151 break;
11152 case ex_catch_assert:
11153 return (exception_info->catch_assert_sym);
11154 break;
11155 default:
11156 internal_error (__FILE__, __LINE__,
11157 _("unexpected catchpoint kind (%d)"), ex);
11158 }
11159 }
11160
11161 /* Return the breakpoint ops "virtual table" used for catchpoints
11162 of the EX kind. */
11163
11164 static struct breakpoint_ops *
11165 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11166 {
11167 switch (ex)
11168 {
11169 case ex_catch_exception:
11170 return (&catch_exception_breakpoint_ops);
11171 break;
11172 case ex_catch_exception_unhandled:
11173 return (&catch_exception_unhandled_breakpoint_ops);
11174 break;
11175 case ex_catch_assert:
11176 return (&catch_assert_breakpoint_ops);
11177 break;
11178 default:
11179 internal_error (__FILE__, __LINE__,
11180 _("unexpected catchpoint kind (%d)"), ex);
11181 }
11182 }
11183
11184 /* Return the condition that will be used to match the current exception
11185 being raised with the exception that the user wants to catch. This
11186 assumes that this condition is used when the inferior just triggered
11187 an exception catchpoint.
11188
11189 The string returned is a newly allocated string that needs to be
11190 deallocated later. */
11191
11192 static char *
11193 ada_exception_catchpoint_cond_string (const char *exp_string)
11194 {
11195 int i;
11196
11197 /* The standard exceptions are a special case. They are defined in
11198 runtime units that have been compiled without debugging info; if
11199 EXP_STRING is the not-fully-qualified name of a standard
11200 exception (e.g. "constraint_error") then, during the evaluation
11201 of the condition expression, the symbol lookup on this name would
11202 *not* return this standard exception. The catchpoint condition
11203 may then be set only on user-defined exceptions which have the
11204 same not-fully-qualified name (e.g. my_package.constraint_error).
11205
11206 To avoid this unexcepted behavior, these standard exceptions are
11207 systematically prefixed by "standard". This means that "catch
11208 exception constraint_error" is rewritten into "catch exception
11209 standard.constraint_error".
11210
11211 If an exception named contraint_error is defined in another package of
11212 the inferior program, then the only way to specify this exception as a
11213 breakpoint condition is to use its fully-qualified named:
11214 e.g. my_package.constraint_error. */
11215
11216 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11217 {
11218 if (strcmp (standard_exc [i], exp_string) == 0)
11219 {
11220 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11221 exp_string);
11222 }
11223 }
11224 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
11225 }
11226
11227 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
11228
11229 static struct expression *
11230 ada_parse_catchpoint_condition (char *cond_string,
11231 struct symtab_and_line sal)
11232 {
11233 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
11234 }
11235
11236 /* Return the symtab_and_line that should be used to insert an exception
11237 catchpoint of the TYPE kind.
11238
11239 EX_STRING should contain the name of a specific exception
11240 that the catchpoint should catch, or NULL otherwise.
11241
11242 The idea behind all the remaining parameters is that their names match
11243 the name of certain fields in the breakpoint structure that are used to
11244 handle exception catchpoints. This function returns the value to which
11245 these fields should be set, depending on the type of catchpoint we need
11246 to create.
11247
11248 If COND and COND_STRING are both non-NULL, any value they might
11249 hold will be free'ed, and then replaced by newly allocated ones.
11250 These parameters are left untouched otherwise. */
11251
11252 static struct symtab_and_line
11253 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
11254 char **addr_string, char **cond_string,
11255 struct expression **cond, struct breakpoint_ops **ops)
11256 {
11257 const char *sym_name;
11258 struct symbol *sym;
11259 struct symtab_and_line sal;
11260
11261 /* First, find out which exception support info to use. */
11262 ada_exception_support_info_sniffer ();
11263
11264 /* Then lookup the function on which we will break in order to catch
11265 the Ada exceptions requested by the user. */
11266
11267 sym_name = ada_exception_sym_name (ex);
11268 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11269
11270 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11271 that should be compiled with debugging information. As a result, we
11272 expect to find that symbol in the symtabs. If we don't find it, then
11273 the target most likely does not support Ada exceptions, or we cannot
11274 insert exception breakpoints yet, because the GNAT runtime hasn't been
11275 loaded yet. */
11276
11277 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
11278 in such a way that no debugging information is produced for the symbol
11279 we are looking for. In this case, we could search the minimal symbols
11280 as a fall-back mechanism. This would still be operating in degraded
11281 mode, however, as we would still be missing the debugging information
11282 that is needed in order to extract the name of the exception being
11283 raised (this name is printed in the catchpoint message, and is also
11284 used when trying to catch a specific exception). We do not handle
11285 this case for now. */
11286
11287 if (sym == NULL)
11288 error (_("Unable to break on '%s' in this configuration."), sym_name);
11289
11290 /* Make sure that the symbol we found corresponds to a function. */
11291 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11292 error (_("Symbol \"%s\" is not a function (class = %d)"),
11293 sym_name, SYMBOL_CLASS (sym));
11294
11295 sal = find_function_start_sal (sym, 1);
11296
11297 /* Set ADDR_STRING. */
11298
11299 *addr_string = xstrdup (sym_name);
11300
11301 /* Set the COND and COND_STRING (if not NULL). */
11302
11303 if (cond_string != NULL && cond != NULL)
11304 {
11305 if (*cond_string != NULL)
11306 {
11307 xfree (*cond_string);
11308 *cond_string = NULL;
11309 }
11310 if (*cond != NULL)
11311 {
11312 xfree (*cond);
11313 *cond = NULL;
11314 }
11315 if (exp_string != NULL)
11316 {
11317 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
11318 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
11319 }
11320 }
11321
11322 /* Set OPS. */
11323 *ops = ada_exception_breakpoint_ops (ex);
11324
11325 return sal;
11326 }
11327
11328 /* Parse the arguments (ARGS) of the "catch exception" command.
11329
11330 Set TYPE to the appropriate exception catchpoint type.
11331 If the user asked the catchpoint to catch only a specific
11332 exception, then save the exception name in ADDR_STRING.
11333
11334 See ada_exception_sal for a description of all the remaining
11335 function arguments of this function. */
11336
11337 struct symtab_and_line
11338 ada_decode_exception_location (char *args, char **addr_string,
11339 char **exp_string, char **cond_string,
11340 struct expression **cond,
11341 struct breakpoint_ops **ops)
11342 {
11343 enum exception_catchpoint_kind ex;
11344
11345 catch_ada_exception_command_split (args, &ex, exp_string);
11346 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
11347 cond, ops);
11348 }
11349
11350 struct symtab_and_line
11351 ada_decode_assert_location (char *args, char **addr_string,
11352 struct breakpoint_ops **ops)
11353 {
11354 /* Check that no argument where provided at the end of the command. */
11355
11356 if (args != NULL)
11357 {
11358 while (isspace (*args))
11359 args++;
11360 if (*args != '\0')
11361 error (_("Junk at end of arguments."));
11362 }
11363
11364 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
11365 ops);
11366 }
11367
11368 /* Operators */
11369 /* Information about operators given special treatment in functions
11370 below. */
11371 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11372
11373 #define ADA_OPERATORS \
11374 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11375 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11376 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11377 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11378 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11379 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11380 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11381 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11382 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11383 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11384 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11385 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11386 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11387 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11388 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11389 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11390 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11391 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11392 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11393
11394 static void
11395 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11396 int *argsp)
11397 {
11398 switch (exp->elts[pc - 1].opcode)
11399 {
11400 default:
11401 operator_length_standard (exp, pc, oplenp, argsp);
11402 break;
11403
11404 #define OP_DEFN(op, len, args, binop) \
11405 case op: *oplenp = len; *argsp = args; break;
11406 ADA_OPERATORS;
11407 #undef OP_DEFN
11408
11409 case OP_AGGREGATE:
11410 *oplenp = 3;
11411 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11412 break;
11413
11414 case OP_CHOICES:
11415 *oplenp = 3;
11416 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11417 break;
11418 }
11419 }
11420
11421 /* Implementation of the exp_descriptor method operator_check. */
11422
11423 static int
11424 ada_operator_check (struct expression *exp, int pos,
11425 int (*objfile_func) (struct objfile *objfile, void *data),
11426 void *data)
11427 {
11428 const union exp_element *const elts = exp->elts;
11429 struct type *type = NULL;
11430
11431 switch (elts[pos].opcode)
11432 {
11433 case UNOP_IN_RANGE:
11434 case UNOP_QUAL:
11435 type = elts[pos + 1].type;
11436 break;
11437
11438 default:
11439 return operator_check_standard (exp, pos, objfile_func, data);
11440 }
11441
11442 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11443
11444 if (type && TYPE_OBJFILE (type)
11445 && (*objfile_func) (TYPE_OBJFILE (type), data))
11446 return 1;
11447
11448 return 0;
11449 }
11450
11451 static char *
11452 ada_op_name (enum exp_opcode opcode)
11453 {
11454 switch (opcode)
11455 {
11456 default:
11457 return op_name_standard (opcode);
11458
11459 #define OP_DEFN(op, len, args, binop) case op: return #op;
11460 ADA_OPERATORS;
11461 #undef OP_DEFN
11462
11463 case OP_AGGREGATE:
11464 return "OP_AGGREGATE";
11465 case OP_CHOICES:
11466 return "OP_CHOICES";
11467 case OP_NAME:
11468 return "OP_NAME";
11469 }
11470 }
11471
11472 /* As for operator_length, but assumes PC is pointing at the first
11473 element of the operator, and gives meaningful results only for the
11474 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
11475
11476 static void
11477 ada_forward_operator_length (struct expression *exp, int pc,
11478 int *oplenp, int *argsp)
11479 {
11480 switch (exp->elts[pc].opcode)
11481 {
11482 default:
11483 *oplenp = *argsp = 0;
11484 break;
11485
11486 #define OP_DEFN(op, len, args, binop) \
11487 case op: *oplenp = len; *argsp = args; break;
11488 ADA_OPERATORS;
11489 #undef OP_DEFN
11490
11491 case OP_AGGREGATE:
11492 *oplenp = 3;
11493 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11494 break;
11495
11496 case OP_CHOICES:
11497 *oplenp = 3;
11498 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11499 break;
11500
11501 case OP_STRING:
11502 case OP_NAME:
11503 {
11504 int len = longest_to_int (exp->elts[pc + 1].longconst);
11505
11506 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11507 *argsp = 0;
11508 break;
11509 }
11510 }
11511 }
11512
11513 static int
11514 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11515 {
11516 enum exp_opcode op = exp->elts[elt].opcode;
11517 int oplen, nargs;
11518 int pc = elt;
11519 int i;
11520
11521 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11522
11523 switch (op)
11524 {
11525 /* Ada attributes ('Foo). */
11526 case OP_ATR_FIRST:
11527 case OP_ATR_LAST:
11528 case OP_ATR_LENGTH:
11529 case OP_ATR_IMAGE:
11530 case OP_ATR_MAX:
11531 case OP_ATR_MIN:
11532 case OP_ATR_MODULUS:
11533 case OP_ATR_POS:
11534 case OP_ATR_SIZE:
11535 case OP_ATR_TAG:
11536 case OP_ATR_VAL:
11537 break;
11538
11539 case UNOP_IN_RANGE:
11540 case UNOP_QUAL:
11541 /* XXX: gdb_sprint_host_address, type_sprint */
11542 fprintf_filtered (stream, _("Type @"));
11543 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11544 fprintf_filtered (stream, " (");
11545 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11546 fprintf_filtered (stream, ")");
11547 break;
11548 case BINOP_IN_BOUNDS:
11549 fprintf_filtered (stream, " (%d)",
11550 longest_to_int (exp->elts[pc + 2].longconst));
11551 break;
11552 case TERNOP_IN_RANGE:
11553 break;
11554
11555 case OP_AGGREGATE:
11556 case OP_OTHERS:
11557 case OP_DISCRETE_RANGE:
11558 case OP_POSITIONAL:
11559 case OP_CHOICES:
11560 break;
11561
11562 case OP_NAME:
11563 case OP_STRING:
11564 {
11565 char *name = &exp->elts[elt + 2].string;
11566 int len = longest_to_int (exp->elts[elt + 1].longconst);
11567
11568 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11569 break;
11570 }
11571
11572 default:
11573 return dump_subexp_body_standard (exp, stream, elt);
11574 }
11575
11576 elt += oplen;
11577 for (i = 0; i < nargs; i += 1)
11578 elt = dump_subexp (exp, stream, elt);
11579
11580 return elt;
11581 }
11582
11583 /* The Ada extension of print_subexp (q.v.). */
11584
11585 static void
11586 ada_print_subexp (struct expression *exp, int *pos,
11587 struct ui_file *stream, enum precedence prec)
11588 {
11589 int oplen, nargs, i;
11590 int pc = *pos;
11591 enum exp_opcode op = exp->elts[pc].opcode;
11592
11593 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11594
11595 *pos += oplen;
11596 switch (op)
11597 {
11598 default:
11599 *pos -= oplen;
11600 print_subexp_standard (exp, pos, stream, prec);
11601 return;
11602
11603 case OP_VAR_VALUE:
11604 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11605 return;
11606
11607 case BINOP_IN_BOUNDS:
11608 /* XXX: sprint_subexp */
11609 print_subexp (exp, pos, stream, PREC_SUFFIX);
11610 fputs_filtered (" in ", stream);
11611 print_subexp (exp, pos, stream, PREC_SUFFIX);
11612 fputs_filtered ("'range", stream);
11613 if (exp->elts[pc + 1].longconst > 1)
11614 fprintf_filtered (stream, "(%ld)",
11615 (long) exp->elts[pc + 1].longconst);
11616 return;
11617
11618 case TERNOP_IN_RANGE:
11619 if (prec >= PREC_EQUAL)
11620 fputs_filtered ("(", stream);
11621 /* XXX: sprint_subexp */
11622 print_subexp (exp, pos, stream, PREC_SUFFIX);
11623 fputs_filtered (" in ", stream);
11624 print_subexp (exp, pos, stream, PREC_EQUAL);
11625 fputs_filtered (" .. ", stream);
11626 print_subexp (exp, pos, stream, PREC_EQUAL);
11627 if (prec >= PREC_EQUAL)
11628 fputs_filtered (")", stream);
11629 return;
11630
11631 case OP_ATR_FIRST:
11632 case OP_ATR_LAST:
11633 case OP_ATR_LENGTH:
11634 case OP_ATR_IMAGE:
11635 case OP_ATR_MAX:
11636 case OP_ATR_MIN:
11637 case OP_ATR_MODULUS:
11638 case OP_ATR_POS:
11639 case OP_ATR_SIZE:
11640 case OP_ATR_TAG:
11641 case OP_ATR_VAL:
11642 if (exp->elts[*pos].opcode == OP_TYPE)
11643 {
11644 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11645 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11646 *pos += 3;
11647 }
11648 else
11649 print_subexp (exp, pos, stream, PREC_SUFFIX);
11650 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11651 if (nargs > 1)
11652 {
11653 int tem;
11654
11655 for (tem = 1; tem < nargs; tem += 1)
11656 {
11657 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11658 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11659 }
11660 fputs_filtered (")", stream);
11661 }
11662 return;
11663
11664 case UNOP_QUAL:
11665 type_print (exp->elts[pc + 1].type, "", stream, 0);
11666 fputs_filtered ("'(", stream);
11667 print_subexp (exp, pos, stream, PREC_PREFIX);
11668 fputs_filtered (")", stream);
11669 return;
11670
11671 case UNOP_IN_RANGE:
11672 /* XXX: sprint_subexp */
11673 print_subexp (exp, pos, stream, PREC_SUFFIX);
11674 fputs_filtered (" in ", stream);
11675 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11676 return;
11677
11678 case OP_DISCRETE_RANGE:
11679 print_subexp (exp, pos, stream, PREC_SUFFIX);
11680 fputs_filtered ("..", stream);
11681 print_subexp (exp, pos, stream, PREC_SUFFIX);
11682 return;
11683
11684 case OP_OTHERS:
11685 fputs_filtered ("others => ", stream);
11686 print_subexp (exp, pos, stream, PREC_SUFFIX);
11687 return;
11688
11689 case OP_CHOICES:
11690 for (i = 0; i < nargs-1; i += 1)
11691 {
11692 if (i > 0)
11693 fputs_filtered ("|", stream);
11694 print_subexp (exp, pos, stream, PREC_SUFFIX);
11695 }
11696 fputs_filtered (" => ", stream);
11697 print_subexp (exp, pos, stream, PREC_SUFFIX);
11698 return;
11699
11700 case OP_POSITIONAL:
11701 print_subexp (exp, pos, stream, PREC_SUFFIX);
11702 return;
11703
11704 case OP_AGGREGATE:
11705 fputs_filtered ("(", stream);
11706 for (i = 0; i < nargs; i += 1)
11707 {
11708 if (i > 0)
11709 fputs_filtered (", ", stream);
11710 print_subexp (exp, pos, stream, PREC_SUFFIX);
11711 }
11712 fputs_filtered (")", stream);
11713 return;
11714 }
11715 }
11716
11717 /* Table mapping opcodes into strings for printing operators
11718 and precedences of the operators. */
11719
11720 static const struct op_print ada_op_print_tab[] = {
11721 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11722 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11723 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11724 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11725 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11726 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11727 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11728 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11729 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11730 {">=", BINOP_GEQ, PREC_ORDER, 0},
11731 {">", BINOP_GTR, PREC_ORDER, 0},
11732 {"<", BINOP_LESS, PREC_ORDER, 0},
11733 {">>", BINOP_RSH, PREC_SHIFT, 0},
11734 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11735 {"+", BINOP_ADD, PREC_ADD, 0},
11736 {"-", BINOP_SUB, PREC_ADD, 0},
11737 {"&", BINOP_CONCAT, PREC_ADD, 0},
11738 {"*", BINOP_MUL, PREC_MUL, 0},
11739 {"/", BINOP_DIV, PREC_MUL, 0},
11740 {"rem", BINOP_REM, PREC_MUL, 0},
11741 {"mod", BINOP_MOD, PREC_MUL, 0},
11742 {"**", BINOP_EXP, PREC_REPEAT, 0},
11743 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11744 {"-", UNOP_NEG, PREC_PREFIX, 0},
11745 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11746 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11747 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11748 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11749 {".all", UNOP_IND, PREC_SUFFIX, 1},
11750 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11751 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11752 {NULL, 0, 0, 0}
11753 };
11754 \f
11755 enum ada_primitive_types {
11756 ada_primitive_type_int,
11757 ada_primitive_type_long,
11758 ada_primitive_type_short,
11759 ada_primitive_type_char,
11760 ada_primitive_type_float,
11761 ada_primitive_type_double,
11762 ada_primitive_type_void,
11763 ada_primitive_type_long_long,
11764 ada_primitive_type_long_double,
11765 ada_primitive_type_natural,
11766 ada_primitive_type_positive,
11767 ada_primitive_type_system_address,
11768 nr_ada_primitive_types
11769 };
11770
11771 static void
11772 ada_language_arch_info (struct gdbarch *gdbarch,
11773 struct language_arch_info *lai)
11774 {
11775 const struct builtin_type *builtin = builtin_type (gdbarch);
11776
11777 lai->primitive_type_vector
11778 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11779 struct type *);
11780
11781 lai->primitive_type_vector [ada_primitive_type_int]
11782 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11783 0, "integer");
11784 lai->primitive_type_vector [ada_primitive_type_long]
11785 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11786 0, "long_integer");
11787 lai->primitive_type_vector [ada_primitive_type_short]
11788 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11789 0, "short_integer");
11790 lai->string_char_type
11791 = lai->primitive_type_vector [ada_primitive_type_char]
11792 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11793 lai->primitive_type_vector [ada_primitive_type_float]
11794 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11795 "float", NULL);
11796 lai->primitive_type_vector [ada_primitive_type_double]
11797 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11798 "long_float", NULL);
11799 lai->primitive_type_vector [ada_primitive_type_long_long]
11800 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11801 0, "long_long_integer");
11802 lai->primitive_type_vector [ada_primitive_type_long_double]
11803 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11804 "long_long_float", NULL);
11805 lai->primitive_type_vector [ada_primitive_type_natural]
11806 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11807 0, "natural");
11808 lai->primitive_type_vector [ada_primitive_type_positive]
11809 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11810 0, "positive");
11811 lai->primitive_type_vector [ada_primitive_type_void]
11812 = builtin->builtin_void;
11813
11814 lai->primitive_type_vector [ada_primitive_type_system_address]
11815 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11816 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11817 = "system__address";
11818
11819 lai->bool_type_symbol = NULL;
11820 lai->bool_type_default = builtin->builtin_bool;
11821 }
11822 \f
11823 /* Language vector */
11824
11825 /* Not really used, but needed in the ada_language_defn. */
11826
11827 static void
11828 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11829 {
11830 ada_emit_char (c, type, stream, quoter, 1);
11831 }
11832
11833 static int
11834 parse (void)
11835 {
11836 warnings_issued = 0;
11837 return ada_parse ();
11838 }
11839
11840 static const struct exp_descriptor ada_exp_descriptor = {
11841 ada_print_subexp,
11842 ada_operator_length,
11843 ada_operator_check,
11844 ada_op_name,
11845 ada_dump_subexp_body,
11846 ada_evaluate_subexp
11847 };
11848
11849 const struct language_defn ada_language_defn = {
11850 "ada", /* Language name */
11851 language_ada,
11852 range_check_off,
11853 type_check_off,
11854 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11855 that's not quite what this means. */
11856 array_row_major,
11857 macro_expansion_no,
11858 &ada_exp_descriptor,
11859 parse,
11860 ada_error,
11861 resolve,
11862 ada_printchar, /* Print a character constant */
11863 ada_printstr, /* Function to print string constant */
11864 emit_char, /* Function to print single char (not used) */
11865 ada_print_type, /* Print a type using appropriate syntax */
11866 ada_print_typedef, /* Print a typedef using appropriate syntax */
11867 ada_val_print, /* Print a value using appropriate syntax */
11868 ada_value_print, /* Print a top-level value */
11869 NULL, /* Language specific skip_trampoline */
11870 NULL, /* name_of_this */
11871 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11872 basic_lookup_transparent_type, /* lookup_transparent_type */
11873 ada_la_decode, /* Language specific symbol demangler */
11874 NULL, /* Language specific
11875 class_name_from_physname */
11876 ada_op_print_tab, /* expression operators for printing */
11877 0, /* c-style arrays */
11878 1, /* String lower bound */
11879 ada_get_gdb_completer_word_break_characters,
11880 ada_make_symbol_completion_list,
11881 ada_language_arch_info,
11882 ada_print_array_index,
11883 default_pass_by_reference,
11884 c_get_string,
11885 LANG_MAGIC
11886 };
11887
11888 /* Provide a prototype to silence -Wmissing-prototypes. */
11889 extern initialize_file_ftype _initialize_ada_language;
11890
11891 /* Command-list for the "set/show ada" prefix command. */
11892 static struct cmd_list_element *set_ada_list;
11893 static struct cmd_list_element *show_ada_list;
11894
11895 /* Implement the "set ada" prefix command. */
11896
11897 static void
11898 set_ada_command (char *arg, int from_tty)
11899 {
11900 printf_unfiltered (_(\
11901 "\"set ada\" must be followed by the name of a setting.\n"));
11902 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11903 }
11904
11905 /* Implement the "show ada" prefix command. */
11906
11907 static void
11908 show_ada_command (char *args, int from_tty)
11909 {
11910 cmd_show_list (show_ada_list, from_tty, "");
11911 }
11912
11913 void
11914 _initialize_ada_language (void)
11915 {
11916 add_language (&ada_language_defn);
11917
11918 add_prefix_cmd ("ada", no_class, set_ada_command,
11919 _("Prefix command for changing Ada-specfic settings"),
11920 &set_ada_list, "set ada ", 0, &setlist);
11921
11922 add_prefix_cmd ("ada", no_class, show_ada_command,
11923 _("Generic command for showing Ada-specific settings."),
11924 &show_ada_list, "show ada ", 0, &showlist);
11925
11926 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11927 &trust_pad_over_xvs, _("\
11928 Enable or disable an optimization trusting PAD types over XVS types"), _("\
11929 Show whether an optimization trusting PAD types over XVS types is activated"),
11930 _("\
11931 This is related to the encoding used by the GNAT compiler. The debugger\n\
11932 should normally trust the contents of PAD types, but certain older versions\n\
11933 of GNAT have a bug that sometimes causes the information in the PAD type\n\
11934 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11935 work around this bug. It is always safe to turn this option \"off\", but\n\
11936 this incurs a slight performance penalty, so it is recommended to NOT change\n\
11937 this option to \"off\" unless necessary."),
11938 NULL, NULL, &set_ada_list, &show_ada_list);
11939
11940 varsize_limit = 65536;
11941
11942 obstack_init (&symbol_list_obstack);
11943
11944 decoded_names_store = htab_create_alloc
11945 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11946 NULL, xcalloc, xfree);
11947
11948 observer_attach_executable_changed (ada_executable_changed_observer);
11949
11950 /* Setup per-inferior data. */
11951 observer_attach_inferior_exit (ada_inferior_exit);
11952 ada_inferior_data
11953 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
11954 }
This page took 0.44129 seconds and 4 git commands to generate.