Fix breakpoint condition that use member variables.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 #ifndef ADA_RETAIN_DOTS
61 #define ADA_RETAIN_DOTS 0
62 #endif
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static void extract_string (CORE_ADDR addr, char *buf);
73
74 static void modify_general_field (char *, LONGEST, int, int);
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *ensure_lval (struct value *, CORE_ADDR *);
109
110 static struct value *convert_actual (struct value *, struct type *,
111 CORE_ADDR *);
112
113 static struct value *make_array_descriptor (struct type *, struct value *,
114 CORE_ADDR *);
115
116 static void ada_add_block_symbols (struct obstack *,
117 struct block *, const char *,
118 domain_enum, struct objfile *,
119 struct symtab *, int);
120
121 static int is_nonfunction (struct ada_symbol_info *, int);
122
123 static void add_defn_to_vec (struct obstack *, struct symbol *,
124 struct block *, struct symtab *);
125
126 static int num_defns_collected (struct obstack *);
127
128 static struct ada_symbol_info *defns_collected (struct obstack *, int);
129
130 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
131 *, const char *, int,
132 domain_enum, int);
133
134 static struct symtab *symtab_for_sym (struct symbol *);
135
136 static struct value *resolve_subexp (struct expression **, int *, int,
137 struct type *);
138
139 static void replace_operator_with_call (struct expression **, int, int, int,
140 struct symbol *, struct block *);
141
142 static int possible_user_operator_p (enum exp_opcode, struct value **);
143
144 static char *ada_op_name (enum exp_opcode);
145
146 static const char *ada_decoded_op_name (enum exp_opcode);
147
148 static int numeric_type_p (struct type *);
149
150 static int integer_type_p (struct type *);
151
152 static int scalar_type_p (struct type *);
153
154 static int discrete_type_p (struct type *);
155
156 static enum ada_renaming_category parse_old_style_renaming (struct type *,
157 const char **,
158 int *,
159 const char **);
160
161 static struct symbol *find_old_style_renaming_symbol (const char *,
162 struct block *);
163
164 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
165 int, int, int *);
166
167 static struct value *evaluate_subexp (struct type *, struct expression *,
168 int *, enum noside);
169
170 static struct value *evaluate_subexp_type (struct expression *, int *);
171
172 static int is_dynamic_field (struct type *, int);
173
174 static struct type *to_fixed_variant_branch_type (struct type *,
175 const gdb_byte *,
176 CORE_ADDR, struct value *);
177
178 static struct type *to_fixed_array_type (struct type *, struct value *, int);
179
180 static struct type *to_fixed_range_type (char *, struct value *,
181 struct objfile *);
182
183 static struct type *to_static_fixed_type (struct type *);
184 static struct type *static_unwrap_type (struct type *type);
185
186 static struct value *unwrap_value (struct value *);
187
188 static struct type *packed_array_type (struct type *, long *);
189
190 static struct type *decode_packed_array_type (struct type *);
191
192 static struct value *decode_packed_array (struct value *);
193
194 static struct value *value_subscript_packed (struct value *, int,
195 struct value **);
196
197 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
198
199 static struct value *coerce_unspec_val_to_type (struct value *,
200 struct type *);
201
202 static struct value *get_var_value (char *, char *);
203
204 static int lesseq_defined_than (struct symbol *, struct symbol *);
205
206 static int equiv_types (struct type *, struct type *);
207
208 static int is_name_suffix (const char *);
209
210 static int wild_match (const char *, int, const char *);
211
212 static struct value *ada_coerce_ref (struct value *);
213
214 static LONGEST pos_atr (struct value *);
215
216 static struct value *value_pos_atr (struct value *);
217
218 static struct value *value_val_atr (struct type *, struct value *);
219
220 static struct symbol *standard_lookup (const char *, const struct block *,
221 domain_enum);
222
223 static struct value *ada_search_struct_field (char *, struct value *, int,
224 struct type *);
225
226 static struct value *ada_value_primitive_field (struct value *, int, int,
227 struct type *);
228
229 static int find_struct_field (char *, struct type *, int,
230 struct type **, int *, int *, int *, int *);
231
232 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
233 struct value *);
234
235 static struct value *ada_to_fixed_value (struct value *);
236
237 static int ada_resolve_function (struct ada_symbol_info *, int,
238 struct value **, int, const char *,
239 struct type *);
240
241 static struct value *ada_coerce_to_simple_array (struct value *);
242
243 static int ada_is_direct_array_type (struct type *);
244
245 static void ada_language_arch_info (struct gdbarch *,
246 struct language_arch_info *);
247
248 static void check_size (const struct type *);
249
250 static struct value *ada_index_struct_field (int, struct value *, int,
251 struct type *);
252
253 static struct value *assign_aggregate (struct value *, struct value *,
254 struct expression *, int *, enum noside);
255
256 static void aggregate_assign_from_choices (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *,
259 int, LONGEST, LONGEST);
260
261 static void aggregate_assign_positional (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int *, int,
264 LONGEST, LONGEST);
265
266
267 static void aggregate_assign_others (struct value *, struct value *,
268 struct expression *,
269 int *, LONGEST *, int, LONGEST, LONGEST);
270
271
272 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
273
274
275 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
276 int *, enum noside);
277
278 static void ada_forward_operator_length (struct expression *, int, int *,
279 int *);
280 \f
281
282
283 /* Maximum-sized dynamic type. */
284 static unsigned int varsize_limit;
285
286 /* FIXME: brobecker/2003-09-17: No longer a const because it is
287 returned by a function that does not return a const char *. */
288 static char *ada_completer_word_break_characters =
289 #ifdef VMS
290 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
291 #else
292 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
293 #endif
294
295 /* The name of the symbol to use to get the name of the main subprogram. */
296 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
297 = "__gnat_ada_main_program_name";
298
299 /* Limit on the number of warnings to raise per expression evaluation. */
300 static int warning_limit = 2;
301
302 /* Number of warning messages issued; reset to 0 by cleanups after
303 expression evaluation. */
304 static int warnings_issued = 0;
305
306 static const char *known_runtime_file_name_patterns[] = {
307 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
308 };
309
310 static const char *known_auxiliary_function_name_patterns[] = {
311 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
312 };
313
314 /* Space for allocating results of ada_lookup_symbol_list. */
315 static struct obstack symbol_list_obstack;
316
317 /* Utilities */
318
319 /* Given DECODED_NAME a string holding a symbol name in its
320 decoded form (ie using the Ada dotted notation), returns
321 its unqualified name. */
322
323 static const char *
324 ada_unqualified_name (const char *decoded_name)
325 {
326 const char *result = strrchr (decoded_name, '.');
327
328 if (result != NULL)
329 result++; /* Skip the dot... */
330 else
331 result = decoded_name;
332
333 return result;
334 }
335
336 /* Return a string starting with '<', followed by STR, and '>'.
337 The result is good until the next call. */
338
339 static char *
340 add_angle_brackets (const char *str)
341 {
342 static char *result = NULL;
343
344 xfree (result);
345 result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char));
346
347 sprintf (result, "<%s>", str);
348 return result;
349 }
350
351 static char *
352 ada_get_gdb_completer_word_break_characters (void)
353 {
354 return ada_completer_word_break_characters;
355 }
356
357 /* Print an array element index using the Ada syntax. */
358
359 static void
360 ada_print_array_index (struct value *index_value, struct ui_file *stream,
361 int format, enum val_prettyprint pretty)
362 {
363 LA_VALUE_PRINT (index_value, stream, format, pretty);
364 fprintf_filtered (stream, " => ");
365 }
366
367 /* Read the string located at ADDR from the inferior and store the
368 result into BUF. */
369
370 static void
371 extract_string (CORE_ADDR addr, char *buf)
372 {
373 int char_index = 0;
374
375 /* Loop, reading one byte at a time, until we reach the '\000'
376 end-of-string marker. */
377 do
378 {
379 target_read_memory (addr + char_index * sizeof (char),
380 buf + char_index * sizeof (char), sizeof (char));
381 char_index++;
382 }
383 while (buf[char_index - 1] != '\000');
384 }
385
386 /* Assuming VECT points to an array of *SIZE objects of size
387 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
388 updating *SIZE as necessary and returning the (new) array. */
389
390 void *
391 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
392 {
393 if (*size < min_size)
394 {
395 *size *= 2;
396 if (*size < min_size)
397 *size = min_size;
398 vect = xrealloc (vect, *size * element_size);
399 }
400 return vect;
401 }
402
403 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
404 suffix of FIELD_NAME beginning "___". */
405
406 static int
407 field_name_match (const char *field_name, const char *target)
408 {
409 int len = strlen (target);
410 return
411 (strncmp (field_name, target, len) == 0
412 && (field_name[len] == '\0'
413 || (strncmp (field_name + len, "___", 3) == 0
414 && strcmp (field_name + strlen (field_name) - 6,
415 "___XVN") != 0)));
416 }
417
418
419 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
420 FIELD_NAME, and return its index. This function also handles fields
421 whose name have ___ suffixes because the compiler sometimes alters
422 their name by adding such a suffix to represent fields with certain
423 constraints. If the field could not be found, return a negative
424 number if MAYBE_MISSING is set. Otherwise raise an error. */
425
426 int
427 ada_get_field_index (const struct type *type, const char *field_name,
428 int maybe_missing)
429 {
430 int fieldno;
431 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
432 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
433 return fieldno;
434
435 if (!maybe_missing)
436 error (_("Unable to find field %s in struct %s. Aborting"),
437 field_name, TYPE_NAME (type));
438
439 return -1;
440 }
441
442 /* The length of the prefix of NAME prior to any "___" suffix. */
443
444 int
445 ada_name_prefix_len (const char *name)
446 {
447 if (name == NULL)
448 return 0;
449 else
450 {
451 const char *p = strstr (name, "___");
452 if (p == NULL)
453 return strlen (name);
454 else
455 return p - name;
456 }
457 }
458
459 /* Return non-zero if SUFFIX is a suffix of STR.
460 Return zero if STR is null. */
461
462 static int
463 is_suffix (const char *str, const char *suffix)
464 {
465 int len1, len2;
466 if (str == NULL)
467 return 0;
468 len1 = strlen (str);
469 len2 = strlen (suffix);
470 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
471 }
472
473 /* Create a value of type TYPE whose contents come from VALADDR, if it
474 is non-null, and whose memory address (in the inferior) is
475 ADDRESS. */
476
477 struct value *
478 value_from_contents_and_address (struct type *type,
479 const gdb_byte *valaddr,
480 CORE_ADDR address)
481 {
482 struct value *v = allocate_value (type);
483 if (valaddr == NULL)
484 set_value_lazy (v, 1);
485 else
486 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
487 VALUE_ADDRESS (v) = address;
488 if (address != 0)
489 VALUE_LVAL (v) = lval_memory;
490 return v;
491 }
492
493 /* The contents of value VAL, treated as a value of type TYPE. The
494 result is an lval in memory if VAL is. */
495
496 static struct value *
497 coerce_unspec_val_to_type (struct value *val, struct type *type)
498 {
499 type = ada_check_typedef (type);
500 if (value_type (val) == type)
501 return val;
502 else
503 {
504 struct value *result;
505
506 /* Make sure that the object size is not unreasonable before
507 trying to allocate some memory for it. */
508 check_size (type);
509
510 result = allocate_value (type);
511 VALUE_LVAL (result) = VALUE_LVAL (val);
512 set_value_bitsize (result, value_bitsize (val));
513 set_value_bitpos (result, value_bitpos (val));
514 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
515 if (value_lazy (val)
516 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
517 set_value_lazy (result, 1);
518 else
519 memcpy (value_contents_raw (result), value_contents (val),
520 TYPE_LENGTH (type));
521 return result;
522 }
523 }
524
525 static const gdb_byte *
526 cond_offset_host (const gdb_byte *valaddr, long offset)
527 {
528 if (valaddr == NULL)
529 return NULL;
530 else
531 return valaddr + offset;
532 }
533
534 static CORE_ADDR
535 cond_offset_target (CORE_ADDR address, long offset)
536 {
537 if (address == 0)
538 return 0;
539 else
540 return address + offset;
541 }
542
543 /* Issue a warning (as for the definition of warning in utils.c, but
544 with exactly one argument rather than ...), unless the limit on the
545 number of warnings has passed during the evaluation of the current
546 expression. */
547
548 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
549 provided by "complaint". */
550 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
551
552 static void
553 lim_warning (const char *format, ...)
554 {
555 va_list args;
556 va_start (args, format);
557
558 warnings_issued += 1;
559 if (warnings_issued <= warning_limit)
560 vwarning (format, args);
561
562 va_end (args);
563 }
564
565 /* Issue an error if the size of an object of type T is unreasonable,
566 i.e. if it would be a bad idea to allocate a value of this type in
567 GDB. */
568
569 static void
570 check_size (const struct type *type)
571 {
572 if (TYPE_LENGTH (type) > varsize_limit)
573 error (_("object size is larger than varsize-limit"));
574 }
575
576
577 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
578 gdbtypes.h, but some of the necessary definitions in that file
579 seem to have gone missing. */
580
581 /* Maximum value of a SIZE-byte signed integer type. */
582 static LONGEST
583 max_of_size (int size)
584 {
585 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
586 return top_bit | (top_bit - 1);
587 }
588
589 /* Minimum value of a SIZE-byte signed integer type. */
590 static LONGEST
591 min_of_size (int size)
592 {
593 return -max_of_size (size) - 1;
594 }
595
596 /* Maximum value of a SIZE-byte unsigned integer type. */
597 static ULONGEST
598 umax_of_size (int size)
599 {
600 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
601 return top_bit | (top_bit - 1);
602 }
603
604 /* Maximum value of integral type T, as a signed quantity. */
605 static LONGEST
606 max_of_type (struct type *t)
607 {
608 if (TYPE_UNSIGNED (t))
609 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
610 else
611 return max_of_size (TYPE_LENGTH (t));
612 }
613
614 /* Minimum value of integral type T, as a signed quantity. */
615 static LONGEST
616 min_of_type (struct type *t)
617 {
618 if (TYPE_UNSIGNED (t))
619 return 0;
620 else
621 return min_of_size (TYPE_LENGTH (t));
622 }
623
624 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
625 static struct value *
626 discrete_type_high_bound (struct type *type)
627 {
628 switch (TYPE_CODE (type))
629 {
630 case TYPE_CODE_RANGE:
631 return value_from_longest (TYPE_TARGET_TYPE (type),
632 TYPE_HIGH_BOUND (type));
633 case TYPE_CODE_ENUM:
634 return
635 value_from_longest (type,
636 TYPE_FIELD_BITPOS (type,
637 TYPE_NFIELDS (type) - 1));
638 case TYPE_CODE_INT:
639 return value_from_longest (type, max_of_type (type));
640 default:
641 error (_("Unexpected type in discrete_type_high_bound."));
642 }
643 }
644
645 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
646 static struct value *
647 discrete_type_low_bound (struct type *type)
648 {
649 switch (TYPE_CODE (type))
650 {
651 case TYPE_CODE_RANGE:
652 return value_from_longest (TYPE_TARGET_TYPE (type),
653 TYPE_LOW_BOUND (type));
654 case TYPE_CODE_ENUM:
655 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
656 case TYPE_CODE_INT:
657 return value_from_longest (type, min_of_type (type));
658 default:
659 error (_("Unexpected type in discrete_type_low_bound."));
660 }
661 }
662
663 /* The identity on non-range types. For range types, the underlying
664 non-range scalar type. */
665
666 static struct type *
667 base_type (struct type *type)
668 {
669 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
670 {
671 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
672 return type;
673 type = TYPE_TARGET_TYPE (type);
674 }
675 return type;
676 }
677 \f
678
679 /* Language Selection */
680
681 /* If the main program is in Ada, return language_ada, otherwise return LANG
682 (the main program is in Ada iif the adainit symbol is found).
683
684 MAIN_PST is not used. */
685
686 enum language
687 ada_update_initial_language (enum language lang,
688 struct partial_symtab *main_pst)
689 {
690 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
691 (struct objfile *) NULL) != NULL)
692 return language_ada;
693
694 return lang;
695 }
696
697 /* If the main procedure is written in Ada, then return its name.
698 The result is good until the next call. Return NULL if the main
699 procedure doesn't appear to be in Ada. */
700
701 char *
702 ada_main_name (void)
703 {
704 struct minimal_symbol *msym;
705 CORE_ADDR main_program_name_addr;
706 static char main_program_name[1024];
707
708 /* For Ada, the name of the main procedure is stored in a specific
709 string constant, generated by the binder. Look for that symbol,
710 extract its address, and then read that string. If we didn't find
711 that string, then most probably the main procedure is not written
712 in Ada. */
713 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
714
715 if (msym != NULL)
716 {
717 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
718 if (main_program_name_addr == 0)
719 error (_("Invalid address for Ada main program name."));
720
721 extract_string (main_program_name_addr, main_program_name);
722 return main_program_name;
723 }
724
725 /* The main procedure doesn't seem to be in Ada. */
726 return NULL;
727 }
728 \f
729 /* Symbols */
730
731 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
732 of NULLs. */
733
734 const struct ada_opname_map ada_opname_table[] = {
735 {"Oadd", "\"+\"", BINOP_ADD},
736 {"Osubtract", "\"-\"", BINOP_SUB},
737 {"Omultiply", "\"*\"", BINOP_MUL},
738 {"Odivide", "\"/\"", BINOP_DIV},
739 {"Omod", "\"mod\"", BINOP_MOD},
740 {"Orem", "\"rem\"", BINOP_REM},
741 {"Oexpon", "\"**\"", BINOP_EXP},
742 {"Olt", "\"<\"", BINOP_LESS},
743 {"Ole", "\"<=\"", BINOP_LEQ},
744 {"Ogt", "\">\"", BINOP_GTR},
745 {"Oge", "\">=\"", BINOP_GEQ},
746 {"Oeq", "\"=\"", BINOP_EQUAL},
747 {"One", "\"/=\"", BINOP_NOTEQUAL},
748 {"Oand", "\"and\"", BINOP_BITWISE_AND},
749 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
750 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
751 {"Oconcat", "\"&\"", BINOP_CONCAT},
752 {"Oabs", "\"abs\"", UNOP_ABS},
753 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
754 {"Oadd", "\"+\"", UNOP_PLUS},
755 {"Osubtract", "\"-\"", UNOP_NEG},
756 {NULL, NULL}
757 };
758
759 /* Return non-zero if STR should be suppressed in info listings. */
760
761 static int
762 is_suppressed_name (const char *str)
763 {
764 if (strncmp (str, "_ada_", 5) == 0)
765 str += 5;
766 if (str[0] == '_' || str[0] == '\000')
767 return 1;
768 else
769 {
770 const char *p;
771 const char *suffix = strstr (str, "___");
772 if (suffix != NULL && suffix[3] != 'X')
773 return 1;
774 if (suffix == NULL)
775 suffix = str + strlen (str);
776 for (p = suffix - 1; p != str; p -= 1)
777 if (isupper (*p))
778 {
779 int i;
780 if (p[0] == 'X' && p[-1] != '_')
781 goto OK;
782 if (*p != 'O')
783 return 1;
784 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
785 if (strncmp (ada_opname_table[i].encoded, p,
786 strlen (ada_opname_table[i].encoded)) == 0)
787 goto OK;
788 return 1;
789 OK:;
790 }
791 return 0;
792 }
793 }
794
795 /* The "encoded" form of DECODED, according to GNAT conventions.
796 The result is valid until the next call to ada_encode. */
797
798 char *
799 ada_encode (const char *decoded)
800 {
801 static char *encoding_buffer = NULL;
802 static size_t encoding_buffer_size = 0;
803 const char *p;
804 int k;
805
806 if (decoded == NULL)
807 return NULL;
808
809 GROW_VECT (encoding_buffer, encoding_buffer_size,
810 2 * strlen (decoded) + 10);
811
812 k = 0;
813 for (p = decoded; *p != '\0'; p += 1)
814 {
815 if (!ADA_RETAIN_DOTS && *p == '.')
816 {
817 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
818 k += 2;
819 }
820 else if (*p == '"')
821 {
822 const struct ada_opname_map *mapping;
823
824 for (mapping = ada_opname_table;
825 mapping->encoded != NULL
826 && strncmp (mapping->decoded, p,
827 strlen (mapping->decoded)) != 0; mapping += 1)
828 ;
829 if (mapping->encoded == NULL)
830 error (_("invalid Ada operator name: %s"), p);
831 strcpy (encoding_buffer + k, mapping->encoded);
832 k += strlen (mapping->encoded);
833 break;
834 }
835 else
836 {
837 encoding_buffer[k] = *p;
838 k += 1;
839 }
840 }
841
842 encoding_buffer[k] = '\0';
843 return encoding_buffer;
844 }
845
846 /* Return NAME folded to lower case, or, if surrounded by single
847 quotes, unfolded, but with the quotes stripped away. Result good
848 to next call. */
849
850 char *
851 ada_fold_name (const char *name)
852 {
853 static char *fold_buffer = NULL;
854 static size_t fold_buffer_size = 0;
855
856 int len = strlen (name);
857 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
858
859 if (name[0] == '\'')
860 {
861 strncpy (fold_buffer, name + 1, len - 2);
862 fold_buffer[len - 2] = '\000';
863 }
864 else
865 {
866 int i;
867 for (i = 0; i <= len; i += 1)
868 fold_buffer[i] = tolower (name[i]);
869 }
870
871 return fold_buffer;
872 }
873
874 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
875
876 static int
877 is_lower_alphanum (const char c)
878 {
879 return (isdigit (c) || (isalpha (c) && islower (c)));
880 }
881
882 /* Remove either of these suffixes:
883 . .{DIGIT}+
884 . ${DIGIT}+
885 . ___{DIGIT}+
886 . __{DIGIT}+.
887 These are suffixes introduced by the compiler for entities such as
888 nested subprogram for instance, in order to avoid name clashes.
889 They do not serve any purpose for the debugger. */
890
891 static void
892 ada_remove_trailing_digits (const char *encoded, int *len)
893 {
894 if (*len > 1 && isdigit (encoded[*len - 1]))
895 {
896 int i = *len - 2;
897 while (i > 0 && isdigit (encoded[i]))
898 i--;
899 if (i >= 0 && encoded[i] == '.')
900 *len = i;
901 else if (i >= 0 && encoded[i] == '$')
902 *len = i;
903 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
904 *len = i - 2;
905 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
906 *len = i - 1;
907 }
908 }
909
910 /* Remove the suffix introduced by the compiler for protected object
911 subprograms. */
912
913 static void
914 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
915 {
916 /* Remove trailing N. */
917
918 /* Protected entry subprograms are broken into two
919 separate subprograms: The first one is unprotected, and has
920 a 'N' suffix; the second is the protected version, and has
921 the 'P' suffix. The second calls the first one after handling
922 the protection. Since the P subprograms are internally generated,
923 we leave these names undecoded, giving the user a clue that this
924 entity is internal. */
925
926 if (*len > 1
927 && encoded[*len - 1] == 'N'
928 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
929 *len = *len - 1;
930 }
931
932 /* If ENCODED follows the GNAT entity encoding conventions, then return
933 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
934 replaced by ENCODED.
935
936 The resulting string is valid until the next call of ada_decode.
937 If the string is unchanged by decoding, the original string pointer
938 is returned. */
939
940 const char *
941 ada_decode (const char *encoded)
942 {
943 int i, j;
944 int len0;
945 const char *p;
946 char *decoded;
947 int at_start_name;
948 static char *decoding_buffer = NULL;
949 static size_t decoding_buffer_size = 0;
950
951 /* The name of the Ada main procedure starts with "_ada_".
952 This prefix is not part of the decoded name, so skip this part
953 if we see this prefix. */
954 if (strncmp (encoded, "_ada_", 5) == 0)
955 encoded += 5;
956
957 /* If the name starts with '_', then it is not a properly encoded
958 name, so do not attempt to decode it. Similarly, if the name
959 starts with '<', the name should not be decoded. */
960 if (encoded[0] == '_' || encoded[0] == '<')
961 goto Suppress;
962
963 len0 = strlen (encoded);
964
965 ada_remove_trailing_digits (encoded, &len0);
966 ada_remove_po_subprogram_suffix (encoded, &len0);
967
968 /* Remove the ___X.* suffix if present. Do not forget to verify that
969 the suffix is located before the current "end" of ENCODED. We want
970 to avoid re-matching parts of ENCODED that have previously been
971 marked as discarded (by decrementing LEN0). */
972 p = strstr (encoded, "___");
973 if (p != NULL && p - encoded < len0 - 3)
974 {
975 if (p[3] == 'X')
976 len0 = p - encoded;
977 else
978 goto Suppress;
979 }
980
981 /* Remove any trailing TKB suffix. It tells us that this symbol
982 is for the body of a task, but that information does not actually
983 appear in the decoded name. */
984
985 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
986 len0 -= 3;
987
988 /* Remove trailing "B" suffixes. */
989 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
990
991 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
992 len0 -= 1;
993
994 /* Make decoded big enough for possible expansion by operator name. */
995
996 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
997 decoded = decoding_buffer;
998
999 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1000
1001 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1002 {
1003 i = len0 - 2;
1004 while ((i >= 0 && isdigit (encoded[i]))
1005 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1006 i -= 1;
1007 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1008 len0 = i - 1;
1009 else if (encoded[i] == '$')
1010 len0 = i;
1011 }
1012
1013 /* The first few characters that are not alphabetic are not part
1014 of any encoding we use, so we can copy them over verbatim. */
1015
1016 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1017 decoded[j] = encoded[i];
1018
1019 at_start_name = 1;
1020 while (i < len0)
1021 {
1022 /* Is this a symbol function? */
1023 if (at_start_name && encoded[i] == 'O')
1024 {
1025 int k;
1026 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1027 {
1028 int op_len = strlen (ada_opname_table[k].encoded);
1029 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1030 op_len - 1) == 0)
1031 && !isalnum (encoded[i + op_len]))
1032 {
1033 strcpy (decoded + j, ada_opname_table[k].decoded);
1034 at_start_name = 0;
1035 i += op_len;
1036 j += strlen (ada_opname_table[k].decoded);
1037 break;
1038 }
1039 }
1040 if (ada_opname_table[k].encoded != NULL)
1041 continue;
1042 }
1043 at_start_name = 0;
1044
1045 /* Replace "TK__" with "__", which will eventually be translated
1046 into "." (just below). */
1047
1048 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1049 i += 2;
1050
1051 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1052 be translated into "." (just below). These are internal names
1053 generated for anonymous blocks inside which our symbol is nested. */
1054
1055 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1056 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1057 && isdigit (encoded [i+4]))
1058 {
1059 int k = i + 5;
1060
1061 while (k < len0 && isdigit (encoded[k]))
1062 k++; /* Skip any extra digit. */
1063
1064 /* Double-check that the "__B_{DIGITS}+" sequence we found
1065 is indeed followed by "__". */
1066 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1067 i = k;
1068 }
1069
1070 /* Remove _E{DIGITS}+[sb] */
1071
1072 /* Just as for protected object subprograms, there are 2 categories
1073 of subprograms created by the compiler for each entry. The first
1074 one implements the actual entry code, and has a suffix following
1075 the convention above; the second one implements the barrier and
1076 uses the same convention as above, except that the 'E' is replaced
1077 by a 'B'.
1078
1079 Just as above, we do not decode the name of barrier functions
1080 to give the user a clue that the code he is debugging has been
1081 internally generated. */
1082
1083 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1084 && isdigit (encoded[i+2]))
1085 {
1086 int k = i + 3;
1087
1088 while (k < len0 && isdigit (encoded[k]))
1089 k++;
1090
1091 if (k < len0
1092 && (encoded[k] == 'b' || encoded[k] == 's'))
1093 {
1094 k++;
1095 /* Just as an extra precaution, make sure that if this
1096 suffix is followed by anything else, it is a '_'.
1097 Otherwise, we matched this sequence by accident. */
1098 if (k == len0
1099 || (k < len0 && encoded[k] == '_'))
1100 i = k;
1101 }
1102 }
1103
1104 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1105 the GNAT front-end in protected object subprograms. */
1106
1107 if (i < len0 + 3
1108 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1109 {
1110 /* Backtrack a bit up until we reach either the begining of
1111 the encoded name, or "__". Make sure that we only find
1112 digits or lowercase characters. */
1113 const char *ptr = encoded + i - 1;
1114
1115 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1116 ptr--;
1117 if (ptr < encoded
1118 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1119 i++;
1120 }
1121
1122 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1123 {
1124 /* This is a X[bn]* sequence not separated from the previous
1125 part of the name with a non-alpha-numeric character (in other
1126 words, immediately following an alpha-numeric character), then
1127 verify that it is placed at the end of the encoded name. If
1128 not, then the encoding is not valid and we should abort the
1129 decoding. Otherwise, just skip it, it is used in body-nested
1130 package names. */
1131 do
1132 i += 1;
1133 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1134 if (i < len0)
1135 goto Suppress;
1136 }
1137 else if (!ADA_RETAIN_DOTS
1138 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1139 {
1140 /* Replace '__' by '.'. */
1141 decoded[j] = '.';
1142 at_start_name = 1;
1143 i += 2;
1144 j += 1;
1145 }
1146 else
1147 {
1148 /* It's a character part of the decoded name, so just copy it
1149 over. */
1150 decoded[j] = encoded[i];
1151 i += 1;
1152 j += 1;
1153 }
1154 }
1155 decoded[j] = '\000';
1156
1157 /* Decoded names should never contain any uppercase character.
1158 Double-check this, and abort the decoding if we find one. */
1159
1160 for (i = 0; decoded[i] != '\0'; i += 1)
1161 if (isupper (decoded[i]) || decoded[i] == ' ')
1162 goto Suppress;
1163
1164 if (strcmp (decoded, encoded) == 0)
1165 return encoded;
1166 else
1167 return decoded;
1168
1169 Suppress:
1170 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1171 decoded = decoding_buffer;
1172 if (encoded[0] == '<')
1173 strcpy (decoded, encoded);
1174 else
1175 sprintf (decoded, "<%s>", encoded);
1176 return decoded;
1177
1178 }
1179
1180 /* Table for keeping permanent unique copies of decoded names. Once
1181 allocated, names in this table are never released. While this is a
1182 storage leak, it should not be significant unless there are massive
1183 changes in the set of decoded names in successive versions of a
1184 symbol table loaded during a single session. */
1185 static struct htab *decoded_names_store;
1186
1187 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1188 in the language-specific part of GSYMBOL, if it has not been
1189 previously computed. Tries to save the decoded name in the same
1190 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1191 in any case, the decoded symbol has a lifetime at least that of
1192 GSYMBOL).
1193 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1194 const, but nevertheless modified to a semantically equivalent form
1195 when a decoded name is cached in it.
1196 */
1197
1198 char *
1199 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1200 {
1201 char **resultp =
1202 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1203 if (*resultp == NULL)
1204 {
1205 const char *decoded = ada_decode (gsymbol->name);
1206 if (gsymbol->bfd_section != NULL)
1207 {
1208 bfd *obfd = gsymbol->bfd_section->owner;
1209 if (obfd != NULL)
1210 {
1211 struct objfile *objf;
1212 ALL_OBJFILES (objf)
1213 {
1214 if (obfd == objf->obfd)
1215 {
1216 *resultp = obsavestring (decoded, strlen (decoded),
1217 &objf->objfile_obstack);
1218 break;
1219 }
1220 }
1221 }
1222 }
1223 /* Sometimes, we can't find a corresponding objfile, in which
1224 case, we put the result on the heap. Since we only decode
1225 when needed, we hope this usually does not cause a
1226 significant memory leak (FIXME). */
1227 if (*resultp == NULL)
1228 {
1229 char **slot = (char **) htab_find_slot (decoded_names_store,
1230 decoded, INSERT);
1231 if (*slot == NULL)
1232 *slot = xstrdup (decoded);
1233 *resultp = *slot;
1234 }
1235 }
1236
1237 return *resultp;
1238 }
1239
1240 char *
1241 ada_la_decode (const char *encoded, int options)
1242 {
1243 return xstrdup (ada_decode (encoded));
1244 }
1245
1246 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1247 suffixes that encode debugging information or leading _ada_ on
1248 SYM_NAME (see is_name_suffix commentary for the debugging
1249 information that is ignored). If WILD, then NAME need only match a
1250 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1251 either argument is NULL. */
1252
1253 int
1254 ada_match_name (const char *sym_name, const char *name, int wild)
1255 {
1256 if (sym_name == NULL || name == NULL)
1257 return 0;
1258 else if (wild)
1259 return wild_match (name, strlen (name), sym_name);
1260 else
1261 {
1262 int len_name = strlen (name);
1263 return (strncmp (sym_name, name, len_name) == 0
1264 && is_name_suffix (sym_name + len_name))
1265 || (strncmp (sym_name, "_ada_", 5) == 0
1266 && strncmp (sym_name + 5, name, len_name) == 0
1267 && is_name_suffix (sym_name + len_name + 5));
1268 }
1269 }
1270
1271 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1272 suppressed in info listings. */
1273
1274 int
1275 ada_suppress_symbol_printing (struct symbol *sym)
1276 {
1277 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1278 return 1;
1279 else
1280 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1281 }
1282 \f
1283
1284 /* Arrays */
1285
1286 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1287
1288 static char *bound_name[] = {
1289 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1290 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1291 };
1292
1293 /* Maximum number of array dimensions we are prepared to handle. */
1294
1295 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1296
1297 /* Like modify_field, but allows bitpos > wordlength. */
1298
1299 static void
1300 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1301 {
1302 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1303 }
1304
1305
1306 /* The desc_* routines return primitive portions of array descriptors
1307 (fat pointers). */
1308
1309 /* The descriptor or array type, if any, indicated by TYPE; removes
1310 level of indirection, if needed. */
1311
1312 static struct type *
1313 desc_base_type (struct type *type)
1314 {
1315 if (type == NULL)
1316 return NULL;
1317 type = ada_check_typedef (type);
1318 if (type != NULL
1319 && (TYPE_CODE (type) == TYPE_CODE_PTR
1320 || TYPE_CODE (type) == TYPE_CODE_REF))
1321 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1322 else
1323 return type;
1324 }
1325
1326 /* True iff TYPE indicates a "thin" array pointer type. */
1327
1328 static int
1329 is_thin_pntr (struct type *type)
1330 {
1331 return
1332 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1333 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1334 }
1335
1336 /* The descriptor type for thin pointer type TYPE. */
1337
1338 static struct type *
1339 thin_descriptor_type (struct type *type)
1340 {
1341 struct type *base_type = desc_base_type (type);
1342 if (base_type == NULL)
1343 return NULL;
1344 if (is_suffix (ada_type_name (base_type), "___XVE"))
1345 return base_type;
1346 else
1347 {
1348 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1349 if (alt_type == NULL)
1350 return base_type;
1351 else
1352 return alt_type;
1353 }
1354 }
1355
1356 /* A pointer to the array data for thin-pointer value VAL. */
1357
1358 static struct value *
1359 thin_data_pntr (struct value *val)
1360 {
1361 struct type *type = value_type (val);
1362 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1363 return value_cast (desc_data_type (thin_descriptor_type (type)),
1364 value_copy (val));
1365 else
1366 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1367 VALUE_ADDRESS (val) + value_offset (val));
1368 }
1369
1370 /* True iff TYPE indicates a "thick" array pointer type. */
1371
1372 static int
1373 is_thick_pntr (struct type *type)
1374 {
1375 type = desc_base_type (type);
1376 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1377 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1378 }
1379
1380 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1381 pointer to one, the type of its bounds data; otherwise, NULL. */
1382
1383 static struct type *
1384 desc_bounds_type (struct type *type)
1385 {
1386 struct type *r;
1387
1388 type = desc_base_type (type);
1389
1390 if (type == NULL)
1391 return NULL;
1392 else if (is_thin_pntr (type))
1393 {
1394 type = thin_descriptor_type (type);
1395 if (type == NULL)
1396 return NULL;
1397 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1398 if (r != NULL)
1399 return ada_check_typedef (r);
1400 }
1401 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1402 {
1403 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1404 if (r != NULL)
1405 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1406 }
1407 return NULL;
1408 }
1409
1410 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1411 one, a pointer to its bounds data. Otherwise NULL. */
1412
1413 static struct value *
1414 desc_bounds (struct value *arr)
1415 {
1416 struct type *type = ada_check_typedef (value_type (arr));
1417 if (is_thin_pntr (type))
1418 {
1419 struct type *bounds_type =
1420 desc_bounds_type (thin_descriptor_type (type));
1421 LONGEST addr;
1422
1423 if (bounds_type == NULL)
1424 error (_("Bad GNAT array descriptor"));
1425
1426 /* NOTE: The following calculation is not really kosher, but
1427 since desc_type is an XVE-encoded type (and shouldn't be),
1428 the correct calculation is a real pain. FIXME (and fix GCC). */
1429 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1430 addr = value_as_long (arr);
1431 else
1432 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1433
1434 return
1435 value_from_longest (lookup_pointer_type (bounds_type),
1436 addr - TYPE_LENGTH (bounds_type));
1437 }
1438
1439 else if (is_thick_pntr (type))
1440 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1441 _("Bad GNAT array descriptor"));
1442 else
1443 return NULL;
1444 }
1445
1446 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1447 position of the field containing the address of the bounds data. */
1448
1449 static int
1450 fat_pntr_bounds_bitpos (struct type *type)
1451 {
1452 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1453 }
1454
1455 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1456 size of the field containing the address of the bounds data. */
1457
1458 static int
1459 fat_pntr_bounds_bitsize (struct type *type)
1460 {
1461 type = desc_base_type (type);
1462
1463 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1464 return TYPE_FIELD_BITSIZE (type, 1);
1465 else
1466 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1467 }
1468
1469 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1470 pointer to one, the type of its array data (a
1471 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1472 ada_type_of_array to get an array type with bounds data. */
1473
1474 static struct type *
1475 desc_data_type (struct type *type)
1476 {
1477 type = desc_base_type (type);
1478
1479 /* NOTE: The following is bogus; see comment in desc_bounds. */
1480 if (is_thin_pntr (type))
1481 return lookup_pointer_type
1482 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1483 else if (is_thick_pntr (type))
1484 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1485 else
1486 return NULL;
1487 }
1488
1489 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1490 its array data. */
1491
1492 static struct value *
1493 desc_data (struct value *arr)
1494 {
1495 struct type *type = value_type (arr);
1496 if (is_thin_pntr (type))
1497 return thin_data_pntr (arr);
1498 else if (is_thick_pntr (type))
1499 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1500 _("Bad GNAT array descriptor"));
1501 else
1502 return NULL;
1503 }
1504
1505
1506 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1507 position of the field containing the address of the data. */
1508
1509 static int
1510 fat_pntr_data_bitpos (struct type *type)
1511 {
1512 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1513 }
1514
1515 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1516 size of the field containing the address of the data. */
1517
1518 static int
1519 fat_pntr_data_bitsize (struct type *type)
1520 {
1521 type = desc_base_type (type);
1522
1523 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1524 return TYPE_FIELD_BITSIZE (type, 0);
1525 else
1526 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1527 }
1528
1529 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1530 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1531 bound, if WHICH is 1. The first bound is I=1. */
1532
1533 static struct value *
1534 desc_one_bound (struct value *bounds, int i, int which)
1535 {
1536 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1537 _("Bad GNAT array descriptor bounds"));
1538 }
1539
1540 /* If BOUNDS is an array-bounds structure type, return the bit position
1541 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1542 bound, if WHICH is 1. The first bound is I=1. */
1543
1544 static int
1545 desc_bound_bitpos (struct type *type, int i, int which)
1546 {
1547 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1548 }
1549
1550 /* If BOUNDS is an array-bounds structure type, return the bit field size
1551 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1552 bound, if WHICH is 1. The first bound is I=1. */
1553
1554 static int
1555 desc_bound_bitsize (struct type *type, int i, int which)
1556 {
1557 type = desc_base_type (type);
1558
1559 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1560 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1561 else
1562 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1563 }
1564
1565 /* If TYPE is the type of an array-bounds structure, the type of its
1566 Ith bound (numbering from 1). Otherwise, NULL. */
1567
1568 static struct type *
1569 desc_index_type (struct type *type, int i)
1570 {
1571 type = desc_base_type (type);
1572
1573 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1574 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1575 else
1576 return NULL;
1577 }
1578
1579 /* The number of index positions in the array-bounds type TYPE.
1580 Return 0 if TYPE is NULL. */
1581
1582 static int
1583 desc_arity (struct type *type)
1584 {
1585 type = desc_base_type (type);
1586
1587 if (type != NULL)
1588 return TYPE_NFIELDS (type) / 2;
1589 return 0;
1590 }
1591
1592 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1593 an array descriptor type (representing an unconstrained array
1594 type). */
1595
1596 static int
1597 ada_is_direct_array_type (struct type *type)
1598 {
1599 if (type == NULL)
1600 return 0;
1601 type = ada_check_typedef (type);
1602 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1603 || ada_is_array_descriptor_type (type));
1604 }
1605
1606 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1607 * to one. */
1608
1609 int
1610 ada_is_array_type (struct type *type)
1611 {
1612 while (type != NULL
1613 && (TYPE_CODE (type) == TYPE_CODE_PTR
1614 || TYPE_CODE (type) == TYPE_CODE_REF))
1615 type = TYPE_TARGET_TYPE (type);
1616 return ada_is_direct_array_type (type);
1617 }
1618
1619 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1620
1621 int
1622 ada_is_simple_array_type (struct type *type)
1623 {
1624 if (type == NULL)
1625 return 0;
1626 type = ada_check_typedef (type);
1627 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1628 || (TYPE_CODE (type) == TYPE_CODE_PTR
1629 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1630 }
1631
1632 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1633
1634 int
1635 ada_is_array_descriptor_type (struct type *type)
1636 {
1637 struct type *data_type = desc_data_type (type);
1638
1639 if (type == NULL)
1640 return 0;
1641 type = ada_check_typedef (type);
1642 return
1643 data_type != NULL
1644 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1645 && TYPE_TARGET_TYPE (data_type) != NULL
1646 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1647 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1648 && desc_arity (desc_bounds_type (type)) > 0;
1649 }
1650
1651 /* Non-zero iff type is a partially mal-formed GNAT array
1652 descriptor. FIXME: This is to compensate for some problems with
1653 debugging output from GNAT. Re-examine periodically to see if it
1654 is still needed. */
1655
1656 int
1657 ada_is_bogus_array_descriptor (struct type *type)
1658 {
1659 return
1660 type != NULL
1661 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1662 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1663 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1664 && !ada_is_array_descriptor_type (type);
1665 }
1666
1667
1668 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1669 (fat pointer) returns the type of the array data described---specifically,
1670 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1671 in from the descriptor; otherwise, they are left unspecified. If
1672 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1673 returns NULL. The result is simply the type of ARR if ARR is not
1674 a descriptor. */
1675 struct type *
1676 ada_type_of_array (struct value *arr, int bounds)
1677 {
1678 if (ada_is_packed_array_type (value_type (arr)))
1679 return decode_packed_array_type (value_type (arr));
1680
1681 if (!ada_is_array_descriptor_type (value_type (arr)))
1682 return value_type (arr);
1683
1684 if (!bounds)
1685 return
1686 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1687 else
1688 {
1689 struct type *elt_type;
1690 int arity;
1691 struct value *descriptor;
1692 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1693
1694 elt_type = ada_array_element_type (value_type (arr), -1);
1695 arity = ada_array_arity (value_type (arr));
1696
1697 if (elt_type == NULL || arity == 0)
1698 return ada_check_typedef (value_type (arr));
1699
1700 descriptor = desc_bounds (arr);
1701 if (value_as_long (descriptor) == 0)
1702 return NULL;
1703 while (arity > 0)
1704 {
1705 struct type *range_type = alloc_type (objf);
1706 struct type *array_type = alloc_type (objf);
1707 struct value *low = desc_one_bound (descriptor, arity, 0);
1708 struct value *high = desc_one_bound (descriptor, arity, 1);
1709 arity -= 1;
1710
1711 create_range_type (range_type, value_type (low),
1712 longest_to_int (value_as_long (low)),
1713 longest_to_int (value_as_long (high)));
1714 elt_type = create_array_type (array_type, elt_type, range_type);
1715 }
1716
1717 return lookup_pointer_type (elt_type);
1718 }
1719 }
1720
1721 /* If ARR does not represent an array, returns ARR unchanged.
1722 Otherwise, returns either a standard GDB array with bounds set
1723 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1724 GDB array. Returns NULL if ARR is a null fat pointer. */
1725
1726 struct value *
1727 ada_coerce_to_simple_array_ptr (struct value *arr)
1728 {
1729 if (ada_is_array_descriptor_type (value_type (arr)))
1730 {
1731 struct type *arrType = ada_type_of_array (arr, 1);
1732 if (arrType == NULL)
1733 return NULL;
1734 return value_cast (arrType, value_copy (desc_data (arr)));
1735 }
1736 else if (ada_is_packed_array_type (value_type (arr)))
1737 return decode_packed_array (arr);
1738 else
1739 return arr;
1740 }
1741
1742 /* If ARR does not represent an array, returns ARR unchanged.
1743 Otherwise, returns a standard GDB array describing ARR (which may
1744 be ARR itself if it already is in the proper form). */
1745
1746 static struct value *
1747 ada_coerce_to_simple_array (struct value *arr)
1748 {
1749 if (ada_is_array_descriptor_type (value_type (arr)))
1750 {
1751 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1752 if (arrVal == NULL)
1753 error (_("Bounds unavailable for null array pointer."));
1754 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1755 return value_ind (arrVal);
1756 }
1757 else if (ada_is_packed_array_type (value_type (arr)))
1758 return decode_packed_array (arr);
1759 else
1760 return arr;
1761 }
1762
1763 /* If TYPE represents a GNAT array type, return it translated to an
1764 ordinary GDB array type (possibly with BITSIZE fields indicating
1765 packing). For other types, is the identity. */
1766
1767 struct type *
1768 ada_coerce_to_simple_array_type (struct type *type)
1769 {
1770 struct value *mark = value_mark ();
1771 struct value *dummy = value_from_longest (builtin_type_long, 0);
1772 struct type *result;
1773 deprecated_set_value_type (dummy, type);
1774 result = ada_type_of_array (dummy, 0);
1775 value_free_to_mark (mark);
1776 return result;
1777 }
1778
1779 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1780
1781 int
1782 ada_is_packed_array_type (struct type *type)
1783 {
1784 if (type == NULL)
1785 return 0;
1786 type = desc_base_type (type);
1787 type = ada_check_typedef (type);
1788 return
1789 ada_type_name (type) != NULL
1790 && strstr (ada_type_name (type), "___XP") != NULL;
1791 }
1792
1793 /* Given that TYPE is a standard GDB array type with all bounds filled
1794 in, and that the element size of its ultimate scalar constituents
1795 (that is, either its elements, or, if it is an array of arrays, its
1796 elements' elements, etc.) is *ELT_BITS, return an identical type,
1797 but with the bit sizes of its elements (and those of any
1798 constituent arrays) recorded in the BITSIZE components of its
1799 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1800 in bits. */
1801
1802 static struct type *
1803 packed_array_type (struct type *type, long *elt_bits)
1804 {
1805 struct type *new_elt_type;
1806 struct type *new_type;
1807 LONGEST low_bound, high_bound;
1808
1809 type = ada_check_typedef (type);
1810 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1811 return type;
1812
1813 new_type = alloc_type (TYPE_OBJFILE (type));
1814 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1815 elt_bits);
1816 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1817 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1818 TYPE_NAME (new_type) = ada_type_name (type);
1819
1820 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1821 &low_bound, &high_bound) < 0)
1822 low_bound = high_bound = 0;
1823 if (high_bound < low_bound)
1824 *elt_bits = TYPE_LENGTH (new_type) = 0;
1825 else
1826 {
1827 *elt_bits *= (high_bound - low_bound + 1);
1828 TYPE_LENGTH (new_type) =
1829 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1830 }
1831
1832 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1833 return new_type;
1834 }
1835
1836 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1837
1838 static struct type *
1839 decode_packed_array_type (struct type *type)
1840 {
1841 struct symbol *sym;
1842 struct block **blocks;
1843 char *raw_name = ada_type_name (ada_check_typedef (type));
1844 char *name;
1845 char *tail;
1846 struct type *shadow_type;
1847 long bits;
1848 int i, n;
1849
1850 if (!raw_name)
1851 raw_name = ada_type_name (desc_base_type (type));
1852
1853 if (!raw_name)
1854 return NULL;
1855
1856 name = (char *) alloca (strlen (raw_name) + 1);
1857 tail = strstr (raw_name, "___XP");
1858 type = desc_base_type (type);
1859
1860 memcpy (name, raw_name, tail - raw_name);
1861 name[tail - raw_name] = '\000';
1862
1863 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1864 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1865 {
1866 lim_warning (_("could not find bounds information on packed array"));
1867 return NULL;
1868 }
1869 shadow_type = SYMBOL_TYPE (sym);
1870
1871 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1872 {
1873 lim_warning (_("could not understand bounds information on packed array"));
1874 return NULL;
1875 }
1876
1877 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1878 {
1879 lim_warning
1880 (_("could not understand bit size information on packed array"));
1881 return NULL;
1882 }
1883
1884 return packed_array_type (shadow_type, &bits);
1885 }
1886
1887 /* Given that ARR is a struct value *indicating a GNAT packed array,
1888 returns a simple array that denotes that array. Its type is a
1889 standard GDB array type except that the BITSIZEs of the array
1890 target types are set to the number of bits in each element, and the
1891 type length is set appropriately. */
1892
1893 static struct value *
1894 decode_packed_array (struct value *arr)
1895 {
1896 struct type *type;
1897
1898 arr = ada_coerce_ref (arr);
1899 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1900 arr = ada_value_ind (arr);
1901
1902 type = decode_packed_array_type (value_type (arr));
1903 if (type == NULL)
1904 {
1905 error (_("can't unpack array"));
1906 return NULL;
1907 }
1908
1909 if (gdbarch_bits_big_endian (current_gdbarch)
1910 && ada_is_modular_type (value_type (arr)))
1911 {
1912 /* This is a (right-justified) modular type representing a packed
1913 array with no wrapper. In order to interpret the value through
1914 the (left-justified) packed array type we just built, we must
1915 first left-justify it. */
1916 int bit_size, bit_pos;
1917 ULONGEST mod;
1918
1919 mod = ada_modulus (value_type (arr)) - 1;
1920 bit_size = 0;
1921 while (mod > 0)
1922 {
1923 bit_size += 1;
1924 mod >>= 1;
1925 }
1926 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1927 arr = ada_value_primitive_packed_val (arr, NULL,
1928 bit_pos / HOST_CHAR_BIT,
1929 bit_pos % HOST_CHAR_BIT,
1930 bit_size,
1931 type);
1932 }
1933
1934 return coerce_unspec_val_to_type (arr, type);
1935 }
1936
1937
1938 /* The value of the element of packed array ARR at the ARITY indices
1939 given in IND. ARR must be a simple array. */
1940
1941 static struct value *
1942 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1943 {
1944 int i;
1945 int bits, elt_off, bit_off;
1946 long elt_total_bit_offset;
1947 struct type *elt_type;
1948 struct value *v;
1949
1950 bits = 0;
1951 elt_total_bit_offset = 0;
1952 elt_type = ada_check_typedef (value_type (arr));
1953 for (i = 0; i < arity; i += 1)
1954 {
1955 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1956 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1957 error
1958 (_("attempt to do packed indexing of something other than a packed array"));
1959 else
1960 {
1961 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1962 LONGEST lowerbound, upperbound;
1963 LONGEST idx;
1964
1965 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1966 {
1967 lim_warning (_("don't know bounds of array"));
1968 lowerbound = upperbound = 0;
1969 }
1970
1971 idx = value_as_long (value_pos_atr (ind[i]));
1972 if (idx < lowerbound || idx > upperbound)
1973 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1974 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1975 elt_total_bit_offset += (idx - lowerbound) * bits;
1976 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1977 }
1978 }
1979 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1980 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1981
1982 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1983 bits, elt_type);
1984 return v;
1985 }
1986
1987 /* Non-zero iff TYPE includes negative integer values. */
1988
1989 static int
1990 has_negatives (struct type *type)
1991 {
1992 switch (TYPE_CODE (type))
1993 {
1994 default:
1995 return 0;
1996 case TYPE_CODE_INT:
1997 return !TYPE_UNSIGNED (type);
1998 case TYPE_CODE_RANGE:
1999 return TYPE_LOW_BOUND (type) < 0;
2000 }
2001 }
2002
2003
2004 /* Create a new value of type TYPE from the contents of OBJ starting
2005 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2006 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2007 assigning through the result will set the field fetched from.
2008 VALADDR is ignored unless OBJ is NULL, in which case,
2009 VALADDR+OFFSET must address the start of storage containing the
2010 packed value. The value returned in this case is never an lval.
2011 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2012
2013 struct value *
2014 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2015 long offset, int bit_offset, int bit_size,
2016 struct type *type)
2017 {
2018 struct value *v;
2019 int src, /* Index into the source area */
2020 targ, /* Index into the target area */
2021 srcBitsLeft, /* Number of source bits left to move */
2022 nsrc, ntarg, /* Number of source and target bytes */
2023 unusedLS, /* Number of bits in next significant
2024 byte of source that are unused */
2025 accumSize; /* Number of meaningful bits in accum */
2026 unsigned char *bytes; /* First byte containing data to unpack */
2027 unsigned char *unpacked;
2028 unsigned long accum; /* Staging area for bits being transferred */
2029 unsigned char sign;
2030 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2031 /* Transmit bytes from least to most significant; delta is the direction
2032 the indices move. */
2033 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
2034
2035 type = ada_check_typedef (type);
2036
2037 if (obj == NULL)
2038 {
2039 v = allocate_value (type);
2040 bytes = (unsigned char *) (valaddr + offset);
2041 }
2042 else if (value_lazy (obj))
2043 {
2044 v = value_at (type,
2045 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
2046 bytes = (unsigned char *) alloca (len);
2047 read_memory (VALUE_ADDRESS (v), bytes, len);
2048 }
2049 else
2050 {
2051 v = allocate_value (type);
2052 bytes = (unsigned char *) value_contents (obj) + offset;
2053 }
2054
2055 if (obj != NULL)
2056 {
2057 VALUE_LVAL (v) = VALUE_LVAL (obj);
2058 if (VALUE_LVAL (obj) == lval_internalvar)
2059 VALUE_LVAL (v) = lval_internalvar_component;
2060 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
2061 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2062 set_value_bitsize (v, bit_size);
2063 if (value_bitpos (v) >= HOST_CHAR_BIT)
2064 {
2065 VALUE_ADDRESS (v) += 1;
2066 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2067 }
2068 }
2069 else
2070 set_value_bitsize (v, bit_size);
2071 unpacked = (unsigned char *) value_contents (v);
2072
2073 srcBitsLeft = bit_size;
2074 nsrc = len;
2075 ntarg = TYPE_LENGTH (type);
2076 sign = 0;
2077 if (bit_size == 0)
2078 {
2079 memset (unpacked, 0, TYPE_LENGTH (type));
2080 return v;
2081 }
2082 else if (gdbarch_bits_big_endian (current_gdbarch))
2083 {
2084 src = len - 1;
2085 if (has_negatives (type)
2086 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2087 sign = ~0;
2088
2089 unusedLS =
2090 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2091 % HOST_CHAR_BIT;
2092
2093 switch (TYPE_CODE (type))
2094 {
2095 case TYPE_CODE_ARRAY:
2096 case TYPE_CODE_UNION:
2097 case TYPE_CODE_STRUCT:
2098 /* Non-scalar values must be aligned at a byte boundary... */
2099 accumSize =
2100 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2101 /* ... And are placed at the beginning (most-significant) bytes
2102 of the target. */
2103 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2104 break;
2105 default:
2106 accumSize = 0;
2107 targ = TYPE_LENGTH (type) - 1;
2108 break;
2109 }
2110 }
2111 else
2112 {
2113 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2114
2115 src = targ = 0;
2116 unusedLS = bit_offset;
2117 accumSize = 0;
2118
2119 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2120 sign = ~0;
2121 }
2122
2123 accum = 0;
2124 while (nsrc > 0)
2125 {
2126 /* Mask for removing bits of the next source byte that are not
2127 part of the value. */
2128 unsigned int unusedMSMask =
2129 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2130 1;
2131 /* Sign-extend bits for this byte. */
2132 unsigned int signMask = sign & ~unusedMSMask;
2133 accum |=
2134 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2135 accumSize += HOST_CHAR_BIT - unusedLS;
2136 if (accumSize >= HOST_CHAR_BIT)
2137 {
2138 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2139 accumSize -= HOST_CHAR_BIT;
2140 accum >>= HOST_CHAR_BIT;
2141 ntarg -= 1;
2142 targ += delta;
2143 }
2144 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2145 unusedLS = 0;
2146 nsrc -= 1;
2147 src += delta;
2148 }
2149 while (ntarg > 0)
2150 {
2151 accum |= sign << accumSize;
2152 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2153 accumSize -= HOST_CHAR_BIT;
2154 accum >>= HOST_CHAR_BIT;
2155 ntarg -= 1;
2156 targ += delta;
2157 }
2158
2159 return v;
2160 }
2161
2162 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2163 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2164 not overlap. */
2165 static void
2166 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2167 int src_offset, int n)
2168 {
2169 unsigned int accum, mask;
2170 int accum_bits, chunk_size;
2171
2172 target += targ_offset / HOST_CHAR_BIT;
2173 targ_offset %= HOST_CHAR_BIT;
2174 source += src_offset / HOST_CHAR_BIT;
2175 src_offset %= HOST_CHAR_BIT;
2176 if (gdbarch_bits_big_endian (current_gdbarch))
2177 {
2178 accum = (unsigned char) *source;
2179 source += 1;
2180 accum_bits = HOST_CHAR_BIT - src_offset;
2181
2182 while (n > 0)
2183 {
2184 int unused_right;
2185 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2186 accum_bits += HOST_CHAR_BIT;
2187 source += 1;
2188 chunk_size = HOST_CHAR_BIT - targ_offset;
2189 if (chunk_size > n)
2190 chunk_size = n;
2191 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2192 mask = ((1 << chunk_size) - 1) << unused_right;
2193 *target =
2194 (*target & ~mask)
2195 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2196 n -= chunk_size;
2197 accum_bits -= chunk_size;
2198 target += 1;
2199 targ_offset = 0;
2200 }
2201 }
2202 else
2203 {
2204 accum = (unsigned char) *source >> src_offset;
2205 source += 1;
2206 accum_bits = HOST_CHAR_BIT - src_offset;
2207
2208 while (n > 0)
2209 {
2210 accum = accum + ((unsigned char) *source << accum_bits);
2211 accum_bits += HOST_CHAR_BIT;
2212 source += 1;
2213 chunk_size = HOST_CHAR_BIT - targ_offset;
2214 if (chunk_size > n)
2215 chunk_size = n;
2216 mask = ((1 << chunk_size) - 1) << targ_offset;
2217 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2218 n -= chunk_size;
2219 accum_bits -= chunk_size;
2220 accum >>= chunk_size;
2221 target += 1;
2222 targ_offset = 0;
2223 }
2224 }
2225 }
2226
2227 /* Store the contents of FROMVAL into the location of TOVAL.
2228 Return a new value with the location of TOVAL and contents of
2229 FROMVAL. Handles assignment into packed fields that have
2230 floating-point or non-scalar types. */
2231
2232 static struct value *
2233 ada_value_assign (struct value *toval, struct value *fromval)
2234 {
2235 struct type *type = value_type (toval);
2236 int bits = value_bitsize (toval);
2237
2238 toval = ada_coerce_ref (toval);
2239 fromval = ada_coerce_ref (fromval);
2240
2241 if (ada_is_direct_array_type (value_type (toval)))
2242 toval = ada_coerce_to_simple_array (toval);
2243 if (ada_is_direct_array_type (value_type (fromval)))
2244 fromval = ada_coerce_to_simple_array (fromval);
2245
2246 if (!deprecated_value_modifiable (toval))
2247 error (_("Left operand of assignment is not a modifiable lvalue."));
2248
2249 if (VALUE_LVAL (toval) == lval_memory
2250 && bits > 0
2251 && (TYPE_CODE (type) == TYPE_CODE_FLT
2252 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2253 {
2254 int len = (value_bitpos (toval)
2255 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2256 char *buffer = (char *) alloca (len);
2257 struct value *val;
2258 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2259
2260 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2261 fromval = value_cast (type, fromval);
2262
2263 read_memory (to_addr, buffer, len);
2264 if (gdbarch_bits_big_endian (current_gdbarch))
2265 move_bits (buffer, value_bitpos (toval),
2266 value_contents (fromval),
2267 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2268 bits, bits);
2269 else
2270 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2271 0, bits);
2272 write_memory (to_addr, buffer, len);
2273 if (deprecated_memory_changed_hook)
2274 deprecated_memory_changed_hook (to_addr, len);
2275
2276 val = value_copy (toval);
2277 memcpy (value_contents_raw (val), value_contents (fromval),
2278 TYPE_LENGTH (type));
2279 deprecated_set_value_type (val, type);
2280
2281 return val;
2282 }
2283
2284 return value_assign (toval, fromval);
2285 }
2286
2287
2288 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2289 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2290 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2291 * COMPONENT, and not the inferior's memory. The current contents
2292 * of COMPONENT are ignored. */
2293 static void
2294 value_assign_to_component (struct value *container, struct value *component,
2295 struct value *val)
2296 {
2297 LONGEST offset_in_container =
2298 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2299 - VALUE_ADDRESS (container) - value_offset (container));
2300 int bit_offset_in_container =
2301 value_bitpos (component) - value_bitpos (container);
2302 int bits;
2303
2304 val = value_cast (value_type (component), val);
2305
2306 if (value_bitsize (component) == 0)
2307 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2308 else
2309 bits = value_bitsize (component);
2310
2311 if (gdbarch_bits_big_endian (current_gdbarch))
2312 move_bits (value_contents_writeable (container) + offset_in_container,
2313 value_bitpos (container) + bit_offset_in_container,
2314 value_contents (val),
2315 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2316 bits);
2317 else
2318 move_bits (value_contents_writeable (container) + offset_in_container,
2319 value_bitpos (container) + bit_offset_in_container,
2320 value_contents (val), 0, bits);
2321 }
2322
2323 /* The value of the element of array ARR at the ARITY indices given in IND.
2324 ARR may be either a simple array, GNAT array descriptor, or pointer
2325 thereto. */
2326
2327 struct value *
2328 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2329 {
2330 int k;
2331 struct value *elt;
2332 struct type *elt_type;
2333
2334 elt = ada_coerce_to_simple_array (arr);
2335
2336 elt_type = ada_check_typedef (value_type (elt));
2337 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2338 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2339 return value_subscript_packed (elt, arity, ind);
2340
2341 for (k = 0; k < arity; k += 1)
2342 {
2343 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2344 error (_("too many subscripts (%d expected)"), k);
2345 elt = value_subscript (elt, value_pos_atr (ind[k]));
2346 }
2347 return elt;
2348 }
2349
2350 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2351 value of the element of *ARR at the ARITY indices given in
2352 IND. Does not read the entire array into memory. */
2353
2354 struct value *
2355 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2356 struct value **ind)
2357 {
2358 int k;
2359
2360 for (k = 0; k < arity; k += 1)
2361 {
2362 LONGEST lwb, upb;
2363 struct value *idx;
2364
2365 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2366 error (_("too many subscripts (%d expected)"), k);
2367 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2368 value_copy (arr));
2369 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2370 idx = value_pos_atr (ind[k]);
2371 if (lwb != 0)
2372 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2373 arr = value_add (arr, idx);
2374 type = TYPE_TARGET_TYPE (type);
2375 }
2376
2377 return value_ind (arr);
2378 }
2379
2380 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2381 actual type of ARRAY_PTR is ignored), returns a reference to
2382 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2383 bound of this array is LOW, as per Ada rules. */
2384 static struct value *
2385 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2386 int low, int high)
2387 {
2388 CORE_ADDR base = value_as_address (array_ptr)
2389 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2390 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2391 struct type *index_type =
2392 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2393 low, high);
2394 struct type *slice_type =
2395 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2396 return value_from_pointer (lookup_reference_type (slice_type), base);
2397 }
2398
2399
2400 static struct value *
2401 ada_value_slice (struct value *array, int low, int high)
2402 {
2403 struct type *type = value_type (array);
2404 struct type *index_type =
2405 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2406 struct type *slice_type =
2407 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2408 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2409 }
2410
2411 /* If type is a record type in the form of a standard GNAT array
2412 descriptor, returns the number of dimensions for type. If arr is a
2413 simple array, returns the number of "array of"s that prefix its
2414 type designation. Otherwise, returns 0. */
2415
2416 int
2417 ada_array_arity (struct type *type)
2418 {
2419 int arity;
2420
2421 if (type == NULL)
2422 return 0;
2423
2424 type = desc_base_type (type);
2425
2426 arity = 0;
2427 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2428 return desc_arity (desc_bounds_type (type));
2429 else
2430 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2431 {
2432 arity += 1;
2433 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2434 }
2435
2436 return arity;
2437 }
2438
2439 /* If TYPE is a record type in the form of a standard GNAT array
2440 descriptor or a simple array type, returns the element type for
2441 TYPE after indexing by NINDICES indices, or by all indices if
2442 NINDICES is -1. Otherwise, returns NULL. */
2443
2444 struct type *
2445 ada_array_element_type (struct type *type, int nindices)
2446 {
2447 type = desc_base_type (type);
2448
2449 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2450 {
2451 int k;
2452 struct type *p_array_type;
2453
2454 p_array_type = desc_data_type (type);
2455
2456 k = ada_array_arity (type);
2457 if (k == 0)
2458 return NULL;
2459
2460 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2461 if (nindices >= 0 && k > nindices)
2462 k = nindices;
2463 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2464 while (k > 0 && p_array_type != NULL)
2465 {
2466 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2467 k -= 1;
2468 }
2469 return p_array_type;
2470 }
2471 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2472 {
2473 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2474 {
2475 type = TYPE_TARGET_TYPE (type);
2476 nindices -= 1;
2477 }
2478 return type;
2479 }
2480
2481 return NULL;
2482 }
2483
2484 /* The type of nth index in arrays of given type (n numbering from 1).
2485 Does not examine memory. */
2486
2487 struct type *
2488 ada_index_type (struct type *type, int n)
2489 {
2490 struct type *result_type;
2491
2492 type = desc_base_type (type);
2493
2494 if (n > ada_array_arity (type))
2495 return NULL;
2496
2497 if (ada_is_simple_array_type (type))
2498 {
2499 int i;
2500
2501 for (i = 1; i < n; i += 1)
2502 type = TYPE_TARGET_TYPE (type);
2503 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2504 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2505 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2506 perhaps stabsread.c would make more sense. */
2507 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2508 result_type = builtin_type_int;
2509
2510 return result_type;
2511 }
2512 else
2513 return desc_index_type (desc_bounds_type (type), n);
2514 }
2515
2516 /* Given that arr is an array type, returns the lower bound of the
2517 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2518 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2519 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2520 bounds type. It works for other arrays with bounds supplied by
2521 run-time quantities other than discriminants. */
2522
2523 static LONGEST
2524 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2525 struct type ** typep)
2526 {
2527 struct type *type;
2528 struct type *index_type_desc;
2529
2530 if (ada_is_packed_array_type (arr_type))
2531 arr_type = decode_packed_array_type (arr_type);
2532
2533 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2534 {
2535 if (typep != NULL)
2536 *typep = builtin_type_int;
2537 return (LONGEST) - which;
2538 }
2539
2540 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2541 type = TYPE_TARGET_TYPE (arr_type);
2542 else
2543 type = arr_type;
2544
2545 index_type_desc = ada_find_parallel_type (type, "___XA");
2546 if (index_type_desc == NULL)
2547 {
2548 struct type *index_type;
2549
2550 while (n > 1)
2551 {
2552 type = TYPE_TARGET_TYPE (type);
2553 n -= 1;
2554 }
2555
2556 index_type = TYPE_INDEX_TYPE (type);
2557 if (typep != NULL)
2558 *typep = index_type;
2559
2560 /* The index type is either a range type or an enumerated type.
2561 For the range type, we have some macros that allow us to
2562 extract the value of the low and high bounds. But they
2563 do now work for enumerated types. The expressions used
2564 below work for both range and enum types. */
2565 return
2566 (LONGEST) (which == 0
2567 ? TYPE_FIELD_BITPOS (index_type, 0)
2568 : TYPE_FIELD_BITPOS (index_type,
2569 TYPE_NFIELDS (index_type) - 1));
2570 }
2571 else
2572 {
2573 struct type *index_type =
2574 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2575 NULL, TYPE_OBJFILE (arr_type));
2576
2577 if (typep != NULL)
2578 *typep = index_type;
2579
2580 return
2581 (LONGEST) (which == 0
2582 ? TYPE_LOW_BOUND (index_type)
2583 : TYPE_HIGH_BOUND (index_type));
2584 }
2585 }
2586
2587 /* Given that arr is an array value, returns the lower bound of the
2588 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2589 WHICH is 1. This routine will also work for arrays with bounds
2590 supplied by run-time quantities other than discriminants. */
2591
2592 struct value *
2593 ada_array_bound (struct value *arr, int n, int which)
2594 {
2595 struct type *arr_type = value_type (arr);
2596
2597 if (ada_is_packed_array_type (arr_type))
2598 return ada_array_bound (decode_packed_array (arr), n, which);
2599 else if (ada_is_simple_array_type (arr_type))
2600 {
2601 struct type *type;
2602 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2603 return value_from_longest (type, v);
2604 }
2605 else
2606 return desc_one_bound (desc_bounds (arr), n, which);
2607 }
2608
2609 /* Given that arr is an array value, returns the length of the
2610 nth index. This routine will also work for arrays with bounds
2611 supplied by run-time quantities other than discriminants.
2612 Does not work for arrays indexed by enumeration types with representation
2613 clauses at the moment. */
2614
2615 struct value *
2616 ada_array_length (struct value *arr, int n)
2617 {
2618 struct type *arr_type = ada_check_typedef (value_type (arr));
2619
2620 if (ada_is_packed_array_type (arr_type))
2621 return ada_array_length (decode_packed_array (arr), n);
2622
2623 if (ada_is_simple_array_type (arr_type))
2624 {
2625 struct type *type;
2626 LONGEST v =
2627 ada_array_bound_from_type (arr_type, n, 1, &type) -
2628 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2629 return value_from_longest (type, v);
2630 }
2631 else
2632 return
2633 value_from_longest (builtin_type_int,
2634 value_as_long (desc_one_bound (desc_bounds (arr),
2635 n, 1))
2636 - value_as_long (desc_one_bound (desc_bounds (arr),
2637 n, 0)) + 1);
2638 }
2639
2640 /* An empty array whose type is that of ARR_TYPE (an array type),
2641 with bounds LOW to LOW-1. */
2642
2643 static struct value *
2644 empty_array (struct type *arr_type, int low)
2645 {
2646 struct type *index_type =
2647 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2648 low, low - 1);
2649 struct type *elt_type = ada_array_element_type (arr_type, 1);
2650 return allocate_value (create_array_type (NULL, elt_type, index_type));
2651 }
2652 \f
2653
2654 /* Name resolution */
2655
2656 /* The "decoded" name for the user-definable Ada operator corresponding
2657 to OP. */
2658
2659 static const char *
2660 ada_decoded_op_name (enum exp_opcode op)
2661 {
2662 int i;
2663
2664 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2665 {
2666 if (ada_opname_table[i].op == op)
2667 return ada_opname_table[i].decoded;
2668 }
2669 error (_("Could not find operator name for opcode"));
2670 }
2671
2672
2673 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2674 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2675 undefined namespace) and converts operators that are
2676 user-defined into appropriate function calls. If CONTEXT_TYPE is
2677 non-null, it provides a preferred result type [at the moment, only
2678 type void has any effect---causing procedures to be preferred over
2679 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2680 return type is preferred. May change (expand) *EXP. */
2681
2682 static void
2683 resolve (struct expression **expp, int void_context_p)
2684 {
2685 int pc;
2686 pc = 0;
2687 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2688 }
2689
2690 /* Resolve the operator of the subexpression beginning at
2691 position *POS of *EXPP. "Resolving" consists of replacing
2692 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2693 with their resolutions, replacing built-in operators with
2694 function calls to user-defined operators, where appropriate, and,
2695 when DEPROCEDURE_P is non-zero, converting function-valued variables
2696 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2697 are as in ada_resolve, above. */
2698
2699 static struct value *
2700 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2701 struct type *context_type)
2702 {
2703 int pc = *pos;
2704 int i;
2705 struct expression *exp; /* Convenience: == *expp. */
2706 enum exp_opcode op = (*expp)->elts[pc].opcode;
2707 struct value **argvec; /* Vector of operand types (alloca'ed). */
2708 int nargs; /* Number of operands. */
2709 int oplen;
2710
2711 argvec = NULL;
2712 nargs = 0;
2713 exp = *expp;
2714
2715 /* Pass one: resolve operands, saving their types and updating *pos,
2716 if needed. */
2717 switch (op)
2718 {
2719 case OP_FUNCALL:
2720 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2721 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2722 *pos += 7;
2723 else
2724 {
2725 *pos += 3;
2726 resolve_subexp (expp, pos, 0, NULL);
2727 }
2728 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2729 break;
2730
2731 case UNOP_ADDR:
2732 *pos += 1;
2733 resolve_subexp (expp, pos, 0, NULL);
2734 break;
2735
2736 case UNOP_QUAL:
2737 *pos += 3;
2738 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2739 break;
2740
2741 case OP_ATR_MODULUS:
2742 case OP_ATR_SIZE:
2743 case OP_ATR_TAG:
2744 case OP_ATR_FIRST:
2745 case OP_ATR_LAST:
2746 case OP_ATR_LENGTH:
2747 case OP_ATR_POS:
2748 case OP_ATR_VAL:
2749 case OP_ATR_MIN:
2750 case OP_ATR_MAX:
2751 case TERNOP_IN_RANGE:
2752 case BINOP_IN_BOUNDS:
2753 case UNOP_IN_RANGE:
2754 case OP_AGGREGATE:
2755 case OP_OTHERS:
2756 case OP_CHOICES:
2757 case OP_POSITIONAL:
2758 case OP_DISCRETE_RANGE:
2759 case OP_NAME:
2760 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2761 *pos += oplen;
2762 break;
2763
2764 case BINOP_ASSIGN:
2765 {
2766 struct value *arg1;
2767
2768 *pos += 1;
2769 arg1 = resolve_subexp (expp, pos, 0, NULL);
2770 if (arg1 == NULL)
2771 resolve_subexp (expp, pos, 1, NULL);
2772 else
2773 resolve_subexp (expp, pos, 1, value_type (arg1));
2774 break;
2775 }
2776
2777 case UNOP_CAST:
2778 *pos += 3;
2779 nargs = 1;
2780 break;
2781
2782 case BINOP_ADD:
2783 case BINOP_SUB:
2784 case BINOP_MUL:
2785 case BINOP_DIV:
2786 case BINOP_REM:
2787 case BINOP_MOD:
2788 case BINOP_EXP:
2789 case BINOP_CONCAT:
2790 case BINOP_LOGICAL_AND:
2791 case BINOP_LOGICAL_OR:
2792 case BINOP_BITWISE_AND:
2793 case BINOP_BITWISE_IOR:
2794 case BINOP_BITWISE_XOR:
2795
2796 case BINOP_EQUAL:
2797 case BINOP_NOTEQUAL:
2798 case BINOP_LESS:
2799 case BINOP_GTR:
2800 case BINOP_LEQ:
2801 case BINOP_GEQ:
2802
2803 case BINOP_REPEAT:
2804 case BINOP_SUBSCRIPT:
2805 case BINOP_COMMA:
2806 *pos += 1;
2807 nargs = 2;
2808 break;
2809
2810 case UNOP_NEG:
2811 case UNOP_PLUS:
2812 case UNOP_LOGICAL_NOT:
2813 case UNOP_ABS:
2814 case UNOP_IND:
2815 *pos += 1;
2816 nargs = 1;
2817 break;
2818
2819 case OP_LONG:
2820 case OP_DOUBLE:
2821 case OP_VAR_VALUE:
2822 *pos += 4;
2823 break;
2824
2825 case OP_TYPE:
2826 case OP_BOOL:
2827 case OP_LAST:
2828 case OP_INTERNALVAR:
2829 *pos += 3;
2830 break;
2831
2832 case UNOP_MEMVAL:
2833 *pos += 3;
2834 nargs = 1;
2835 break;
2836
2837 case OP_REGISTER:
2838 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2839 break;
2840
2841 case STRUCTOP_STRUCT:
2842 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2843 nargs = 1;
2844 break;
2845
2846 case TERNOP_SLICE:
2847 *pos += 1;
2848 nargs = 3;
2849 break;
2850
2851 case OP_STRING:
2852 break;
2853
2854 default:
2855 error (_("Unexpected operator during name resolution"));
2856 }
2857
2858 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2859 for (i = 0; i < nargs; i += 1)
2860 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2861 argvec[i] = NULL;
2862 exp = *expp;
2863
2864 /* Pass two: perform any resolution on principal operator. */
2865 switch (op)
2866 {
2867 default:
2868 break;
2869
2870 case OP_VAR_VALUE:
2871 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2872 {
2873 struct ada_symbol_info *candidates;
2874 int n_candidates;
2875
2876 n_candidates =
2877 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2878 (exp->elts[pc + 2].symbol),
2879 exp->elts[pc + 1].block, VAR_DOMAIN,
2880 &candidates);
2881
2882 if (n_candidates > 1)
2883 {
2884 /* Types tend to get re-introduced locally, so if there
2885 are any local symbols that are not types, first filter
2886 out all types. */
2887 int j;
2888 for (j = 0; j < n_candidates; j += 1)
2889 switch (SYMBOL_CLASS (candidates[j].sym))
2890 {
2891 case LOC_REGISTER:
2892 case LOC_ARG:
2893 case LOC_REF_ARG:
2894 case LOC_REGPARM:
2895 case LOC_REGPARM_ADDR:
2896 case LOC_LOCAL:
2897 case LOC_LOCAL_ARG:
2898 case LOC_BASEREG:
2899 case LOC_BASEREG_ARG:
2900 case LOC_COMPUTED:
2901 case LOC_COMPUTED_ARG:
2902 goto FoundNonType;
2903 default:
2904 break;
2905 }
2906 FoundNonType:
2907 if (j < n_candidates)
2908 {
2909 j = 0;
2910 while (j < n_candidates)
2911 {
2912 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2913 {
2914 candidates[j] = candidates[n_candidates - 1];
2915 n_candidates -= 1;
2916 }
2917 else
2918 j += 1;
2919 }
2920 }
2921 }
2922
2923 if (n_candidates == 0)
2924 error (_("No definition found for %s"),
2925 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2926 else if (n_candidates == 1)
2927 i = 0;
2928 else if (deprocedure_p
2929 && !is_nonfunction (candidates, n_candidates))
2930 {
2931 i = ada_resolve_function
2932 (candidates, n_candidates, NULL, 0,
2933 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2934 context_type);
2935 if (i < 0)
2936 error (_("Could not find a match for %s"),
2937 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2938 }
2939 else
2940 {
2941 printf_filtered (_("Multiple matches for %s\n"),
2942 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2943 user_select_syms (candidates, n_candidates, 1);
2944 i = 0;
2945 }
2946
2947 exp->elts[pc + 1].block = candidates[i].block;
2948 exp->elts[pc + 2].symbol = candidates[i].sym;
2949 if (innermost_block == NULL
2950 || contained_in (candidates[i].block, innermost_block))
2951 innermost_block = candidates[i].block;
2952 }
2953
2954 if (deprocedure_p
2955 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2956 == TYPE_CODE_FUNC))
2957 {
2958 replace_operator_with_call (expp, pc, 0, 0,
2959 exp->elts[pc + 2].symbol,
2960 exp->elts[pc + 1].block);
2961 exp = *expp;
2962 }
2963 break;
2964
2965 case OP_FUNCALL:
2966 {
2967 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2968 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2969 {
2970 struct ada_symbol_info *candidates;
2971 int n_candidates;
2972
2973 n_candidates =
2974 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2975 (exp->elts[pc + 5].symbol),
2976 exp->elts[pc + 4].block, VAR_DOMAIN,
2977 &candidates);
2978 if (n_candidates == 1)
2979 i = 0;
2980 else
2981 {
2982 i = ada_resolve_function
2983 (candidates, n_candidates,
2984 argvec, nargs,
2985 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2986 context_type);
2987 if (i < 0)
2988 error (_("Could not find a match for %s"),
2989 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2990 }
2991
2992 exp->elts[pc + 4].block = candidates[i].block;
2993 exp->elts[pc + 5].symbol = candidates[i].sym;
2994 if (innermost_block == NULL
2995 || contained_in (candidates[i].block, innermost_block))
2996 innermost_block = candidates[i].block;
2997 }
2998 }
2999 break;
3000 case BINOP_ADD:
3001 case BINOP_SUB:
3002 case BINOP_MUL:
3003 case BINOP_DIV:
3004 case BINOP_REM:
3005 case BINOP_MOD:
3006 case BINOP_CONCAT:
3007 case BINOP_BITWISE_AND:
3008 case BINOP_BITWISE_IOR:
3009 case BINOP_BITWISE_XOR:
3010 case BINOP_EQUAL:
3011 case BINOP_NOTEQUAL:
3012 case BINOP_LESS:
3013 case BINOP_GTR:
3014 case BINOP_LEQ:
3015 case BINOP_GEQ:
3016 case BINOP_EXP:
3017 case UNOP_NEG:
3018 case UNOP_PLUS:
3019 case UNOP_LOGICAL_NOT:
3020 case UNOP_ABS:
3021 if (possible_user_operator_p (op, argvec))
3022 {
3023 struct ada_symbol_info *candidates;
3024 int n_candidates;
3025
3026 n_candidates =
3027 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3028 (struct block *) NULL, VAR_DOMAIN,
3029 &candidates);
3030 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3031 ada_decoded_op_name (op), NULL);
3032 if (i < 0)
3033 break;
3034
3035 replace_operator_with_call (expp, pc, nargs, 1,
3036 candidates[i].sym, candidates[i].block);
3037 exp = *expp;
3038 }
3039 break;
3040
3041 case OP_TYPE:
3042 case OP_REGISTER:
3043 return NULL;
3044 }
3045
3046 *pos = pc;
3047 return evaluate_subexp_type (exp, pos);
3048 }
3049
3050 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3051 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3052 a non-pointer. A type of 'void' (which is never a valid expression type)
3053 by convention matches anything. */
3054 /* The term "match" here is rather loose. The match is heuristic and
3055 liberal. FIXME: TOO liberal, in fact. */
3056
3057 static int
3058 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3059 {
3060 ftype = ada_check_typedef (ftype);
3061 atype = ada_check_typedef (atype);
3062
3063 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3064 ftype = TYPE_TARGET_TYPE (ftype);
3065 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3066 atype = TYPE_TARGET_TYPE (atype);
3067
3068 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
3069 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3070 return 1;
3071
3072 switch (TYPE_CODE (ftype))
3073 {
3074 default:
3075 return 1;
3076 case TYPE_CODE_PTR:
3077 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3078 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3079 TYPE_TARGET_TYPE (atype), 0);
3080 else
3081 return (may_deref
3082 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3083 case TYPE_CODE_INT:
3084 case TYPE_CODE_ENUM:
3085 case TYPE_CODE_RANGE:
3086 switch (TYPE_CODE (atype))
3087 {
3088 case TYPE_CODE_INT:
3089 case TYPE_CODE_ENUM:
3090 case TYPE_CODE_RANGE:
3091 return 1;
3092 default:
3093 return 0;
3094 }
3095
3096 case TYPE_CODE_ARRAY:
3097 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3098 || ada_is_array_descriptor_type (atype));
3099
3100 case TYPE_CODE_STRUCT:
3101 if (ada_is_array_descriptor_type (ftype))
3102 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3103 || ada_is_array_descriptor_type (atype));
3104 else
3105 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3106 && !ada_is_array_descriptor_type (atype));
3107
3108 case TYPE_CODE_UNION:
3109 case TYPE_CODE_FLT:
3110 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3111 }
3112 }
3113
3114 /* Return non-zero if the formals of FUNC "sufficiently match" the
3115 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3116 may also be an enumeral, in which case it is treated as a 0-
3117 argument function. */
3118
3119 static int
3120 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3121 {
3122 int i;
3123 struct type *func_type = SYMBOL_TYPE (func);
3124
3125 if (SYMBOL_CLASS (func) == LOC_CONST
3126 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3127 return (n_actuals == 0);
3128 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3129 return 0;
3130
3131 if (TYPE_NFIELDS (func_type) != n_actuals)
3132 return 0;
3133
3134 for (i = 0; i < n_actuals; i += 1)
3135 {
3136 if (actuals[i] == NULL)
3137 return 0;
3138 else
3139 {
3140 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3141 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3142
3143 if (!ada_type_match (ftype, atype, 1))
3144 return 0;
3145 }
3146 }
3147 return 1;
3148 }
3149
3150 /* False iff function type FUNC_TYPE definitely does not produce a value
3151 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3152 FUNC_TYPE is not a valid function type with a non-null return type
3153 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3154
3155 static int
3156 return_match (struct type *func_type, struct type *context_type)
3157 {
3158 struct type *return_type;
3159
3160 if (func_type == NULL)
3161 return 1;
3162
3163 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3164 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3165 else
3166 return_type = base_type (func_type);
3167 if (return_type == NULL)
3168 return 1;
3169
3170 context_type = base_type (context_type);
3171
3172 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3173 return context_type == NULL || return_type == context_type;
3174 else if (context_type == NULL)
3175 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3176 else
3177 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3178 }
3179
3180
3181 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3182 function (if any) that matches the types of the NARGS arguments in
3183 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3184 that returns that type, then eliminate matches that don't. If
3185 CONTEXT_TYPE is void and there is at least one match that does not
3186 return void, eliminate all matches that do.
3187
3188 Asks the user if there is more than one match remaining. Returns -1
3189 if there is no such symbol or none is selected. NAME is used
3190 solely for messages. May re-arrange and modify SYMS in
3191 the process; the index returned is for the modified vector. */
3192
3193 static int
3194 ada_resolve_function (struct ada_symbol_info syms[],
3195 int nsyms, struct value **args, int nargs,
3196 const char *name, struct type *context_type)
3197 {
3198 int k;
3199 int m; /* Number of hits */
3200 struct type *fallback;
3201 struct type *return_type;
3202
3203 return_type = context_type;
3204 if (context_type == NULL)
3205 fallback = builtin_type_void;
3206 else
3207 fallback = NULL;
3208
3209 m = 0;
3210 while (1)
3211 {
3212 for (k = 0; k < nsyms; k += 1)
3213 {
3214 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3215
3216 if (ada_args_match (syms[k].sym, args, nargs)
3217 && return_match (type, return_type))
3218 {
3219 syms[m] = syms[k];
3220 m += 1;
3221 }
3222 }
3223 if (m > 0 || return_type == fallback)
3224 break;
3225 else
3226 return_type = fallback;
3227 }
3228
3229 if (m == 0)
3230 return -1;
3231 else if (m > 1)
3232 {
3233 printf_filtered (_("Multiple matches for %s\n"), name);
3234 user_select_syms (syms, m, 1);
3235 return 0;
3236 }
3237 return 0;
3238 }
3239
3240 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3241 in a listing of choices during disambiguation (see sort_choices, below).
3242 The idea is that overloadings of a subprogram name from the
3243 same package should sort in their source order. We settle for ordering
3244 such symbols by their trailing number (__N or $N). */
3245
3246 static int
3247 encoded_ordered_before (char *N0, char *N1)
3248 {
3249 if (N1 == NULL)
3250 return 0;
3251 else if (N0 == NULL)
3252 return 1;
3253 else
3254 {
3255 int k0, k1;
3256 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3257 ;
3258 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3259 ;
3260 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3261 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3262 {
3263 int n0, n1;
3264 n0 = k0;
3265 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3266 n0 -= 1;
3267 n1 = k1;
3268 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3269 n1 -= 1;
3270 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3271 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3272 }
3273 return (strcmp (N0, N1) < 0);
3274 }
3275 }
3276
3277 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3278 encoded names. */
3279
3280 static void
3281 sort_choices (struct ada_symbol_info syms[], int nsyms)
3282 {
3283 int i;
3284 for (i = 1; i < nsyms; i += 1)
3285 {
3286 struct ada_symbol_info sym = syms[i];
3287 int j;
3288
3289 for (j = i - 1; j >= 0; j -= 1)
3290 {
3291 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3292 SYMBOL_LINKAGE_NAME (sym.sym)))
3293 break;
3294 syms[j + 1] = syms[j];
3295 }
3296 syms[j + 1] = sym;
3297 }
3298 }
3299
3300 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3301 by asking the user (if necessary), returning the number selected,
3302 and setting the first elements of SYMS items. Error if no symbols
3303 selected. */
3304
3305 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3306 to be re-integrated one of these days. */
3307
3308 int
3309 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3310 {
3311 int i;
3312 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3313 int n_chosen;
3314 int first_choice = (max_results == 1) ? 1 : 2;
3315 const char *select_mode = multiple_symbols_select_mode ();
3316
3317 if (max_results < 1)
3318 error (_("Request to select 0 symbols!"));
3319 if (nsyms <= 1)
3320 return nsyms;
3321
3322 if (select_mode == multiple_symbols_cancel)
3323 error (_("\
3324 canceled because the command is ambiguous\n\
3325 See set/show multiple-symbol."));
3326
3327 /* If select_mode is "all", then return all possible symbols.
3328 Only do that if more than one symbol can be selected, of course.
3329 Otherwise, display the menu as usual. */
3330 if (select_mode == multiple_symbols_all && max_results > 1)
3331 return nsyms;
3332
3333 printf_unfiltered (_("[0] cancel\n"));
3334 if (max_results > 1)
3335 printf_unfiltered (_("[1] all\n"));
3336
3337 sort_choices (syms, nsyms);
3338
3339 for (i = 0; i < nsyms; i += 1)
3340 {
3341 if (syms[i].sym == NULL)
3342 continue;
3343
3344 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3345 {
3346 struct symtab_and_line sal =
3347 find_function_start_sal (syms[i].sym, 1);
3348 if (sal.symtab == NULL)
3349 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3350 i + first_choice,
3351 SYMBOL_PRINT_NAME (syms[i].sym),
3352 sal.line);
3353 else
3354 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3355 SYMBOL_PRINT_NAME (syms[i].sym),
3356 sal.symtab->filename, sal.line);
3357 continue;
3358 }
3359 else
3360 {
3361 int is_enumeral =
3362 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3363 && SYMBOL_TYPE (syms[i].sym) != NULL
3364 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3365 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3366
3367 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3368 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3369 i + first_choice,
3370 SYMBOL_PRINT_NAME (syms[i].sym),
3371 symtab->filename, SYMBOL_LINE (syms[i].sym));
3372 else if (is_enumeral
3373 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3374 {
3375 printf_unfiltered (("[%d] "), i + first_choice);
3376 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3377 gdb_stdout, -1, 0);
3378 printf_unfiltered (_("'(%s) (enumeral)\n"),
3379 SYMBOL_PRINT_NAME (syms[i].sym));
3380 }
3381 else if (symtab != NULL)
3382 printf_unfiltered (is_enumeral
3383 ? _("[%d] %s in %s (enumeral)\n")
3384 : _("[%d] %s at %s:?\n"),
3385 i + first_choice,
3386 SYMBOL_PRINT_NAME (syms[i].sym),
3387 symtab->filename);
3388 else
3389 printf_unfiltered (is_enumeral
3390 ? _("[%d] %s (enumeral)\n")
3391 : _("[%d] %s at ?\n"),
3392 i + first_choice,
3393 SYMBOL_PRINT_NAME (syms[i].sym));
3394 }
3395 }
3396
3397 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3398 "overload-choice");
3399
3400 for (i = 0; i < n_chosen; i += 1)
3401 syms[i] = syms[chosen[i]];
3402
3403 return n_chosen;
3404 }
3405
3406 /* Read and validate a set of numeric choices from the user in the
3407 range 0 .. N_CHOICES-1. Place the results in increasing
3408 order in CHOICES[0 .. N-1], and return N.
3409
3410 The user types choices as a sequence of numbers on one line
3411 separated by blanks, encoding them as follows:
3412
3413 + A choice of 0 means to cancel the selection, throwing an error.
3414 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3415 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3416
3417 The user is not allowed to choose more than MAX_RESULTS values.
3418
3419 ANNOTATION_SUFFIX, if present, is used to annotate the input
3420 prompts (for use with the -f switch). */
3421
3422 int
3423 get_selections (int *choices, int n_choices, int max_results,
3424 int is_all_choice, char *annotation_suffix)
3425 {
3426 char *args;
3427 const char *prompt;
3428 int n_chosen;
3429 int first_choice = is_all_choice ? 2 : 1;
3430
3431 prompt = getenv ("PS2");
3432 if (prompt == NULL)
3433 prompt = ">";
3434
3435 printf_unfiltered (("%s "), prompt);
3436 gdb_flush (gdb_stdout);
3437
3438 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3439
3440 if (args == NULL)
3441 error_no_arg (_("one or more choice numbers"));
3442
3443 n_chosen = 0;
3444
3445 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3446 order, as given in args. Choices are validated. */
3447 while (1)
3448 {
3449 char *args2;
3450 int choice, j;
3451
3452 while (isspace (*args))
3453 args += 1;
3454 if (*args == '\0' && n_chosen == 0)
3455 error_no_arg (_("one or more choice numbers"));
3456 else if (*args == '\0')
3457 break;
3458
3459 choice = strtol (args, &args2, 10);
3460 if (args == args2 || choice < 0
3461 || choice > n_choices + first_choice - 1)
3462 error (_("Argument must be choice number"));
3463 args = args2;
3464
3465 if (choice == 0)
3466 error (_("cancelled"));
3467
3468 if (choice < first_choice)
3469 {
3470 n_chosen = n_choices;
3471 for (j = 0; j < n_choices; j += 1)
3472 choices[j] = j;
3473 break;
3474 }
3475 choice -= first_choice;
3476
3477 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3478 {
3479 }
3480
3481 if (j < 0 || choice != choices[j])
3482 {
3483 int k;
3484 for (k = n_chosen - 1; k > j; k -= 1)
3485 choices[k + 1] = choices[k];
3486 choices[j + 1] = choice;
3487 n_chosen += 1;
3488 }
3489 }
3490
3491 if (n_chosen > max_results)
3492 error (_("Select no more than %d of the above"), max_results);
3493
3494 return n_chosen;
3495 }
3496
3497 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3498 on the function identified by SYM and BLOCK, and taking NARGS
3499 arguments. Update *EXPP as needed to hold more space. */
3500
3501 static void
3502 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3503 int oplen, struct symbol *sym,
3504 struct block *block)
3505 {
3506 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3507 symbol, -oplen for operator being replaced). */
3508 struct expression *newexp = (struct expression *)
3509 xmalloc (sizeof (struct expression)
3510 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3511 struct expression *exp = *expp;
3512
3513 newexp->nelts = exp->nelts + 7 - oplen;
3514 newexp->language_defn = exp->language_defn;
3515 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3516 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3517 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3518
3519 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3520 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3521
3522 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3523 newexp->elts[pc + 4].block = block;
3524 newexp->elts[pc + 5].symbol = sym;
3525
3526 *expp = newexp;
3527 xfree (exp);
3528 }
3529
3530 /* Type-class predicates */
3531
3532 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3533 or FLOAT). */
3534
3535 static int
3536 numeric_type_p (struct type *type)
3537 {
3538 if (type == NULL)
3539 return 0;
3540 else
3541 {
3542 switch (TYPE_CODE (type))
3543 {
3544 case TYPE_CODE_INT:
3545 case TYPE_CODE_FLT:
3546 return 1;
3547 case TYPE_CODE_RANGE:
3548 return (type == TYPE_TARGET_TYPE (type)
3549 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3550 default:
3551 return 0;
3552 }
3553 }
3554 }
3555
3556 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3557
3558 static int
3559 integer_type_p (struct type *type)
3560 {
3561 if (type == NULL)
3562 return 0;
3563 else
3564 {
3565 switch (TYPE_CODE (type))
3566 {
3567 case TYPE_CODE_INT:
3568 return 1;
3569 case TYPE_CODE_RANGE:
3570 return (type == TYPE_TARGET_TYPE (type)
3571 || integer_type_p (TYPE_TARGET_TYPE (type)));
3572 default:
3573 return 0;
3574 }
3575 }
3576 }
3577
3578 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3579
3580 static int
3581 scalar_type_p (struct type *type)
3582 {
3583 if (type == NULL)
3584 return 0;
3585 else
3586 {
3587 switch (TYPE_CODE (type))
3588 {
3589 case TYPE_CODE_INT:
3590 case TYPE_CODE_RANGE:
3591 case TYPE_CODE_ENUM:
3592 case TYPE_CODE_FLT:
3593 return 1;
3594 default:
3595 return 0;
3596 }
3597 }
3598 }
3599
3600 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3601
3602 static int
3603 discrete_type_p (struct type *type)
3604 {
3605 if (type == NULL)
3606 return 0;
3607 else
3608 {
3609 switch (TYPE_CODE (type))
3610 {
3611 case TYPE_CODE_INT:
3612 case TYPE_CODE_RANGE:
3613 case TYPE_CODE_ENUM:
3614 return 1;
3615 default:
3616 return 0;
3617 }
3618 }
3619 }
3620
3621 /* Returns non-zero if OP with operands in the vector ARGS could be
3622 a user-defined function. Errs on the side of pre-defined operators
3623 (i.e., result 0). */
3624
3625 static int
3626 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3627 {
3628 struct type *type0 =
3629 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3630 struct type *type1 =
3631 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3632
3633 if (type0 == NULL)
3634 return 0;
3635
3636 switch (op)
3637 {
3638 default:
3639 return 0;
3640
3641 case BINOP_ADD:
3642 case BINOP_SUB:
3643 case BINOP_MUL:
3644 case BINOP_DIV:
3645 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3646
3647 case BINOP_REM:
3648 case BINOP_MOD:
3649 case BINOP_BITWISE_AND:
3650 case BINOP_BITWISE_IOR:
3651 case BINOP_BITWISE_XOR:
3652 return (!(integer_type_p (type0) && integer_type_p (type1)));
3653
3654 case BINOP_EQUAL:
3655 case BINOP_NOTEQUAL:
3656 case BINOP_LESS:
3657 case BINOP_GTR:
3658 case BINOP_LEQ:
3659 case BINOP_GEQ:
3660 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3661
3662 case BINOP_CONCAT:
3663 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3664
3665 case BINOP_EXP:
3666 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3667
3668 case UNOP_NEG:
3669 case UNOP_PLUS:
3670 case UNOP_LOGICAL_NOT:
3671 case UNOP_ABS:
3672 return (!numeric_type_p (type0));
3673
3674 }
3675 }
3676 \f
3677 /* Renaming */
3678
3679 /* NOTES:
3680
3681 1. In the following, we assume that a renaming type's name may
3682 have an ___XD suffix. It would be nice if this went away at some
3683 point.
3684 2. We handle both the (old) purely type-based representation of
3685 renamings and the (new) variable-based encoding. At some point,
3686 it is devoutly to be hoped that the former goes away
3687 (FIXME: hilfinger-2007-07-09).
3688 3. Subprogram renamings are not implemented, although the XRS
3689 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3690
3691 /* If SYM encodes a renaming,
3692
3693 <renaming> renames <renamed entity>,
3694
3695 sets *LEN to the length of the renamed entity's name,
3696 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3697 the string describing the subcomponent selected from the renamed
3698 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3699 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3700 are undefined). Otherwise, returns a value indicating the category
3701 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3702 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3703 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3704 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3705 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3706 may be NULL, in which case they are not assigned.
3707
3708 [Currently, however, GCC does not generate subprogram renamings.] */
3709
3710 enum ada_renaming_category
3711 ada_parse_renaming (struct symbol *sym,
3712 const char **renamed_entity, int *len,
3713 const char **renaming_expr)
3714 {
3715 enum ada_renaming_category kind;
3716 const char *info;
3717 const char *suffix;
3718
3719 if (sym == NULL)
3720 return ADA_NOT_RENAMING;
3721 switch (SYMBOL_CLASS (sym))
3722 {
3723 default:
3724 return ADA_NOT_RENAMING;
3725 case LOC_TYPEDEF:
3726 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3727 renamed_entity, len, renaming_expr);
3728 case LOC_LOCAL:
3729 case LOC_STATIC:
3730 case LOC_COMPUTED:
3731 case LOC_OPTIMIZED_OUT:
3732 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3733 if (info == NULL)
3734 return ADA_NOT_RENAMING;
3735 switch (info[5])
3736 {
3737 case '_':
3738 kind = ADA_OBJECT_RENAMING;
3739 info += 6;
3740 break;
3741 case 'E':
3742 kind = ADA_EXCEPTION_RENAMING;
3743 info += 7;
3744 break;
3745 case 'P':
3746 kind = ADA_PACKAGE_RENAMING;
3747 info += 7;
3748 break;
3749 case 'S':
3750 kind = ADA_SUBPROGRAM_RENAMING;
3751 info += 7;
3752 break;
3753 default:
3754 return ADA_NOT_RENAMING;
3755 }
3756 }
3757
3758 if (renamed_entity != NULL)
3759 *renamed_entity = info;
3760 suffix = strstr (info, "___XE");
3761 if (suffix == NULL || suffix == info)
3762 return ADA_NOT_RENAMING;
3763 if (len != NULL)
3764 *len = strlen (info) - strlen (suffix);
3765 suffix += 5;
3766 if (renaming_expr != NULL)
3767 *renaming_expr = suffix;
3768 return kind;
3769 }
3770
3771 /* Assuming TYPE encodes a renaming according to the old encoding in
3772 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3773 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3774 ADA_NOT_RENAMING otherwise. */
3775 static enum ada_renaming_category
3776 parse_old_style_renaming (struct type *type,
3777 const char **renamed_entity, int *len,
3778 const char **renaming_expr)
3779 {
3780 enum ada_renaming_category kind;
3781 const char *name;
3782 const char *info;
3783 const char *suffix;
3784
3785 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3786 || TYPE_NFIELDS (type) != 1)
3787 return ADA_NOT_RENAMING;
3788
3789 name = type_name_no_tag (type);
3790 if (name == NULL)
3791 return ADA_NOT_RENAMING;
3792
3793 name = strstr (name, "___XR");
3794 if (name == NULL)
3795 return ADA_NOT_RENAMING;
3796 switch (name[5])
3797 {
3798 case '\0':
3799 case '_':
3800 kind = ADA_OBJECT_RENAMING;
3801 break;
3802 case 'E':
3803 kind = ADA_EXCEPTION_RENAMING;
3804 break;
3805 case 'P':
3806 kind = ADA_PACKAGE_RENAMING;
3807 break;
3808 case 'S':
3809 kind = ADA_SUBPROGRAM_RENAMING;
3810 break;
3811 default:
3812 return ADA_NOT_RENAMING;
3813 }
3814
3815 info = TYPE_FIELD_NAME (type, 0);
3816 if (info == NULL)
3817 return ADA_NOT_RENAMING;
3818 if (renamed_entity != NULL)
3819 *renamed_entity = info;
3820 suffix = strstr (info, "___XE");
3821 if (renaming_expr != NULL)
3822 *renaming_expr = suffix + 5;
3823 if (suffix == NULL || suffix == info)
3824 return ADA_NOT_RENAMING;
3825 if (len != NULL)
3826 *len = suffix - info;
3827 return kind;
3828 }
3829
3830 \f
3831
3832 /* Evaluation: Function Calls */
3833
3834 /* Return an lvalue containing the value VAL. This is the identity on
3835 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3836 on the stack, using and updating *SP as the stack pointer, and
3837 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3838
3839 static struct value *
3840 ensure_lval (struct value *val, CORE_ADDR *sp)
3841 {
3842 if (! VALUE_LVAL (val))
3843 {
3844 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3845
3846 /* The following is taken from the structure-return code in
3847 call_function_by_hand. FIXME: Therefore, some refactoring seems
3848 indicated. */
3849 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3850 {
3851 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3852 reserving sufficient space. */
3853 *sp -= len;
3854 if (gdbarch_frame_align_p (current_gdbarch))
3855 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3856 VALUE_ADDRESS (val) = *sp;
3857 }
3858 else
3859 {
3860 /* Stack grows upward. Align the frame, allocate space, and
3861 then again, re-align the frame. */
3862 if (gdbarch_frame_align_p (current_gdbarch))
3863 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3864 VALUE_ADDRESS (val) = *sp;
3865 *sp += len;
3866 if (gdbarch_frame_align_p (current_gdbarch))
3867 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3868 }
3869 VALUE_LVAL (val) = lval_memory;
3870
3871 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3872 }
3873
3874 return val;
3875 }
3876
3877 /* Return the value ACTUAL, converted to be an appropriate value for a
3878 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3879 allocating any necessary descriptors (fat pointers), or copies of
3880 values not residing in memory, updating it as needed. */
3881
3882 struct value *
3883 ada_convert_actual (struct value *actual, struct type *formal_type0,
3884 CORE_ADDR *sp)
3885 {
3886 struct type *actual_type = ada_check_typedef (value_type (actual));
3887 struct type *formal_type = ada_check_typedef (formal_type0);
3888 struct type *formal_target =
3889 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3890 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3891 struct type *actual_target =
3892 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3893 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3894
3895 if (ada_is_array_descriptor_type (formal_target)
3896 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3897 return make_array_descriptor (formal_type, actual, sp);
3898 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3899 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3900 {
3901 struct value *result;
3902 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3903 && ada_is_array_descriptor_type (actual_target))
3904 result = desc_data (actual);
3905 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3906 {
3907 if (VALUE_LVAL (actual) != lval_memory)
3908 {
3909 struct value *val;
3910 actual_type = ada_check_typedef (value_type (actual));
3911 val = allocate_value (actual_type);
3912 memcpy ((char *) value_contents_raw (val),
3913 (char *) value_contents (actual),
3914 TYPE_LENGTH (actual_type));
3915 actual = ensure_lval (val, sp);
3916 }
3917 result = value_addr (actual);
3918 }
3919 else
3920 return actual;
3921 return value_cast_pointers (formal_type, result);
3922 }
3923 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3924 return ada_value_ind (actual);
3925
3926 return actual;
3927 }
3928
3929
3930 /* Push a descriptor of type TYPE for array value ARR on the stack at
3931 *SP, updating *SP to reflect the new descriptor. Return either
3932 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3933 to-descriptor type rather than a descriptor type), a struct value *
3934 representing a pointer to this descriptor. */
3935
3936 static struct value *
3937 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3938 {
3939 struct type *bounds_type = desc_bounds_type (type);
3940 struct type *desc_type = desc_base_type (type);
3941 struct value *descriptor = allocate_value (desc_type);
3942 struct value *bounds = allocate_value (bounds_type);
3943 int i;
3944
3945 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3946 {
3947 modify_general_field (value_contents_writeable (bounds),
3948 value_as_long (ada_array_bound (arr, i, 0)),
3949 desc_bound_bitpos (bounds_type, i, 0),
3950 desc_bound_bitsize (bounds_type, i, 0));
3951 modify_general_field (value_contents_writeable (bounds),
3952 value_as_long (ada_array_bound (arr, i, 1)),
3953 desc_bound_bitpos (bounds_type, i, 1),
3954 desc_bound_bitsize (bounds_type, i, 1));
3955 }
3956
3957 bounds = ensure_lval (bounds, sp);
3958
3959 modify_general_field (value_contents_writeable (descriptor),
3960 VALUE_ADDRESS (ensure_lval (arr, sp)),
3961 fat_pntr_data_bitpos (desc_type),
3962 fat_pntr_data_bitsize (desc_type));
3963
3964 modify_general_field (value_contents_writeable (descriptor),
3965 VALUE_ADDRESS (bounds),
3966 fat_pntr_bounds_bitpos (desc_type),
3967 fat_pntr_bounds_bitsize (desc_type));
3968
3969 descriptor = ensure_lval (descriptor, sp);
3970
3971 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3972 return value_addr (descriptor);
3973 else
3974 return descriptor;
3975 }
3976 \f
3977 /* Dummy definitions for an experimental caching module that is not
3978 * used in the public sources. */
3979
3980 static int
3981 lookup_cached_symbol (const char *name, domain_enum namespace,
3982 struct symbol **sym, struct block **block,
3983 struct symtab **symtab)
3984 {
3985 return 0;
3986 }
3987
3988 static void
3989 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3990 struct block *block, struct symtab *symtab)
3991 {
3992 }
3993 \f
3994 /* Symbol Lookup */
3995
3996 /* Return the result of a standard (literal, C-like) lookup of NAME in
3997 given DOMAIN, visible from lexical block BLOCK. */
3998
3999 static struct symbol *
4000 standard_lookup (const char *name, const struct block *block,
4001 domain_enum domain)
4002 {
4003 struct symbol *sym;
4004 struct symtab *symtab;
4005
4006 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
4007 return sym;
4008 sym =
4009 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
4010 cache_symbol (name, domain, sym, block_found, symtab);
4011 return sym;
4012 }
4013
4014
4015 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4016 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4017 since they contend in overloading in the same way. */
4018 static int
4019 is_nonfunction (struct ada_symbol_info syms[], int n)
4020 {
4021 int i;
4022
4023 for (i = 0; i < n; i += 1)
4024 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4025 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4026 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4027 return 1;
4028
4029 return 0;
4030 }
4031
4032 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4033 struct types. Otherwise, they may not. */
4034
4035 static int
4036 equiv_types (struct type *type0, struct type *type1)
4037 {
4038 if (type0 == type1)
4039 return 1;
4040 if (type0 == NULL || type1 == NULL
4041 || TYPE_CODE (type0) != TYPE_CODE (type1))
4042 return 0;
4043 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4044 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4045 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4046 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4047 return 1;
4048
4049 return 0;
4050 }
4051
4052 /* True iff SYM0 represents the same entity as SYM1, or one that is
4053 no more defined than that of SYM1. */
4054
4055 static int
4056 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4057 {
4058 if (sym0 == sym1)
4059 return 1;
4060 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4061 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4062 return 0;
4063
4064 switch (SYMBOL_CLASS (sym0))
4065 {
4066 case LOC_UNDEF:
4067 return 1;
4068 case LOC_TYPEDEF:
4069 {
4070 struct type *type0 = SYMBOL_TYPE (sym0);
4071 struct type *type1 = SYMBOL_TYPE (sym1);
4072 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4073 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4074 int len0 = strlen (name0);
4075 return
4076 TYPE_CODE (type0) == TYPE_CODE (type1)
4077 && (equiv_types (type0, type1)
4078 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4079 && strncmp (name1 + len0, "___XV", 5) == 0));
4080 }
4081 case LOC_CONST:
4082 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4083 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4084 default:
4085 return 0;
4086 }
4087 }
4088
4089 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4090 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4091
4092 static void
4093 add_defn_to_vec (struct obstack *obstackp,
4094 struct symbol *sym,
4095 struct block *block, struct symtab *symtab)
4096 {
4097 int i;
4098 size_t tmp;
4099 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4100
4101 /* Do not try to complete stub types, as the debugger is probably
4102 already scanning all symbols matching a certain name at the
4103 time when this function is called. Trying to replace the stub
4104 type by its associated full type will cause us to restart a scan
4105 which may lead to an infinite recursion. Instead, the client
4106 collecting the matching symbols will end up collecting several
4107 matches, with at least one of them complete. It can then filter
4108 out the stub ones if needed. */
4109
4110 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4111 {
4112 if (lesseq_defined_than (sym, prevDefns[i].sym))
4113 return;
4114 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4115 {
4116 prevDefns[i].sym = sym;
4117 prevDefns[i].block = block;
4118 prevDefns[i].symtab = symtab;
4119 return;
4120 }
4121 }
4122
4123 {
4124 struct ada_symbol_info info;
4125
4126 info.sym = sym;
4127 info.block = block;
4128 info.symtab = symtab;
4129 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4130 }
4131 }
4132
4133 /* Number of ada_symbol_info structures currently collected in
4134 current vector in *OBSTACKP. */
4135
4136 static int
4137 num_defns_collected (struct obstack *obstackp)
4138 {
4139 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4140 }
4141
4142 /* Vector of ada_symbol_info structures currently collected in current
4143 vector in *OBSTACKP. If FINISH, close off the vector and return
4144 its final address. */
4145
4146 static struct ada_symbol_info *
4147 defns_collected (struct obstack *obstackp, int finish)
4148 {
4149 if (finish)
4150 return obstack_finish (obstackp);
4151 else
4152 return (struct ada_symbol_info *) obstack_base (obstackp);
4153 }
4154
4155 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4156 Check the global symbols if GLOBAL, the static symbols if not.
4157 Do wild-card match if WILD. */
4158
4159 static struct partial_symbol *
4160 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4161 int global, domain_enum namespace, int wild)
4162 {
4163 struct partial_symbol **start;
4164 int name_len = strlen (name);
4165 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4166 int i;
4167
4168 if (length == 0)
4169 {
4170 return (NULL);
4171 }
4172
4173 start = (global ?
4174 pst->objfile->global_psymbols.list + pst->globals_offset :
4175 pst->objfile->static_psymbols.list + pst->statics_offset);
4176
4177 if (wild)
4178 {
4179 for (i = 0; i < length; i += 1)
4180 {
4181 struct partial_symbol *psym = start[i];
4182
4183 if (SYMBOL_DOMAIN (psym) == namespace
4184 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4185 return psym;
4186 }
4187 return NULL;
4188 }
4189 else
4190 {
4191 if (global)
4192 {
4193 int U;
4194 i = 0;
4195 U = length - 1;
4196 while (U - i > 4)
4197 {
4198 int M = (U + i) >> 1;
4199 struct partial_symbol *psym = start[M];
4200 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4201 i = M + 1;
4202 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4203 U = M - 1;
4204 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4205 i = M + 1;
4206 else
4207 U = M;
4208 }
4209 }
4210 else
4211 i = 0;
4212
4213 while (i < length)
4214 {
4215 struct partial_symbol *psym = start[i];
4216
4217 if (SYMBOL_DOMAIN (psym) == namespace)
4218 {
4219 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4220
4221 if (cmp < 0)
4222 {
4223 if (global)
4224 break;
4225 }
4226 else if (cmp == 0
4227 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4228 + name_len))
4229 return psym;
4230 }
4231 i += 1;
4232 }
4233
4234 if (global)
4235 {
4236 int U;
4237 i = 0;
4238 U = length - 1;
4239 while (U - i > 4)
4240 {
4241 int M = (U + i) >> 1;
4242 struct partial_symbol *psym = start[M];
4243 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4244 i = M + 1;
4245 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4246 U = M - 1;
4247 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4248 i = M + 1;
4249 else
4250 U = M;
4251 }
4252 }
4253 else
4254 i = 0;
4255
4256 while (i < length)
4257 {
4258 struct partial_symbol *psym = start[i];
4259
4260 if (SYMBOL_DOMAIN (psym) == namespace)
4261 {
4262 int cmp;
4263
4264 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4265 if (cmp == 0)
4266 {
4267 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4268 if (cmp == 0)
4269 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4270 name_len);
4271 }
4272
4273 if (cmp < 0)
4274 {
4275 if (global)
4276 break;
4277 }
4278 else if (cmp == 0
4279 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4280 + name_len + 5))
4281 return psym;
4282 }
4283 i += 1;
4284 }
4285 }
4286 return NULL;
4287 }
4288
4289 /* Find a symbol table containing symbol SYM or NULL if none. */
4290
4291 static struct symtab *
4292 symtab_for_sym (struct symbol *sym)
4293 {
4294 struct symtab *s;
4295 struct objfile *objfile;
4296 struct block *b;
4297 struct symbol *tmp_sym;
4298 struct dict_iterator iter;
4299 int j;
4300
4301 ALL_PRIMARY_SYMTABS (objfile, s)
4302 {
4303 switch (SYMBOL_CLASS (sym))
4304 {
4305 case LOC_CONST:
4306 case LOC_STATIC:
4307 case LOC_TYPEDEF:
4308 case LOC_REGISTER:
4309 case LOC_LABEL:
4310 case LOC_BLOCK:
4311 case LOC_CONST_BYTES:
4312 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4313 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4314 return s;
4315 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4316 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4317 return s;
4318 break;
4319 default:
4320 break;
4321 }
4322 switch (SYMBOL_CLASS (sym))
4323 {
4324 case LOC_REGISTER:
4325 case LOC_ARG:
4326 case LOC_REF_ARG:
4327 case LOC_REGPARM:
4328 case LOC_REGPARM_ADDR:
4329 case LOC_LOCAL:
4330 case LOC_TYPEDEF:
4331 case LOC_LOCAL_ARG:
4332 case LOC_BASEREG:
4333 case LOC_BASEREG_ARG:
4334 case LOC_COMPUTED:
4335 case LOC_COMPUTED_ARG:
4336 for (j = FIRST_LOCAL_BLOCK;
4337 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4338 {
4339 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4340 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4341 return s;
4342 }
4343 break;
4344 default:
4345 break;
4346 }
4347 }
4348 return NULL;
4349 }
4350
4351 /* Return a minimal symbol matching NAME according to Ada decoding
4352 rules. Returns NULL if there is no such minimal symbol. Names
4353 prefixed with "standard__" are handled specially: "standard__" is
4354 first stripped off, and only static and global symbols are searched. */
4355
4356 struct minimal_symbol *
4357 ada_lookup_simple_minsym (const char *name)
4358 {
4359 struct objfile *objfile;
4360 struct minimal_symbol *msymbol;
4361 int wild_match;
4362
4363 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4364 {
4365 name += sizeof ("standard__") - 1;
4366 wild_match = 0;
4367 }
4368 else
4369 wild_match = (strstr (name, "__") == NULL);
4370
4371 ALL_MSYMBOLS (objfile, msymbol)
4372 {
4373 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4374 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4375 return msymbol;
4376 }
4377
4378 return NULL;
4379 }
4380
4381 /* For all subprograms that statically enclose the subprogram of the
4382 selected frame, add symbols matching identifier NAME in DOMAIN
4383 and their blocks to the list of data in OBSTACKP, as for
4384 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4385 wildcard prefix. */
4386
4387 static void
4388 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4389 const char *name, domain_enum namespace,
4390 int wild_match)
4391 {
4392 }
4393
4394 /* True if TYPE is definitely an artificial type supplied to a symbol
4395 for which no debugging information was given in the symbol file. */
4396
4397 static int
4398 is_nondebugging_type (struct type *type)
4399 {
4400 char *name = ada_type_name (type);
4401 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4402 }
4403
4404 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4405 duplicate other symbols in the list (The only case I know of where
4406 this happens is when object files containing stabs-in-ecoff are
4407 linked with files containing ordinary ecoff debugging symbols (or no
4408 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4409 Returns the number of items in the modified list. */
4410
4411 static int
4412 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4413 {
4414 int i, j;
4415
4416 i = 0;
4417 while (i < nsyms)
4418 {
4419 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4420 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4421 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4422 {
4423 for (j = 0; j < nsyms; j += 1)
4424 {
4425 if (i != j
4426 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4427 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4428 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4429 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4430 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4431 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4432 {
4433 int k;
4434 for (k = i + 1; k < nsyms; k += 1)
4435 syms[k - 1] = syms[k];
4436 nsyms -= 1;
4437 goto NextSymbol;
4438 }
4439 }
4440 }
4441 i += 1;
4442 NextSymbol:
4443 ;
4444 }
4445 return nsyms;
4446 }
4447
4448 /* Given a type that corresponds to a renaming entity, use the type name
4449 to extract the scope (package name or function name, fully qualified,
4450 and following the GNAT encoding convention) where this renaming has been
4451 defined. The string returned needs to be deallocated after use. */
4452
4453 static char *
4454 xget_renaming_scope (struct type *renaming_type)
4455 {
4456 /* The renaming types adhere to the following convention:
4457 <scope>__<rename>___<XR extension>.
4458 So, to extract the scope, we search for the "___XR" extension,
4459 and then backtrack until we find the first "__". */
4460
4461 const char *name = type_name_no_tag (renaming_type);
4462 char *suffix = strstr (name, "___XR");
4463 char *last;
4464 int scope_len;
4465 char *scope;
4466
4467 /* Now, backtrack a bit until we find the first "__". Start looking
4468 at suffix - 3, as the <rename> part is at least one character long. */
4469
4470 for (last = suffix - 3; last > name; last--)
4471 if (last[0] == '_' && last[1] == '_')
4472 break;
4473
4474 /* Make a copy of scope and return it. */
4475
4476 scope_len = last - name;
4477 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4478
4479 strncpy (scope, name, scope_len);
4480 scope[scope_len] = '\0';
4481
4482 return scope;
4483 }
4484
4485 /* Return nonzero if NAME corresponds to a package name. */
4486
4487 static int
4488 is_package_name (const char *name)
4489 {
4490 /* Here, We take advantage of the fact that no symbols are generated
4491 for packages, while symbols are generated for each function.
4492 So the condition for NAME represent a package becomes equivalent
4493 to NAME not existing in our list of symbols. There is only one
4494 small complication with library-level functions (see below). */
4495
4496 char *fun_name;
4497
4498 /* If it is a function that has not been defined at library level,
4499 then we should be able to look it up in the symbols. */
4500 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4501 return 0;
4502
4503 /* Library-level function names start with "_ada_". See if function
4504 "_ada_" followed by NAME can be found. */
4505
4506 /* Do a quick check that NAME does not contain "__", since library-level
4507 functions names cannot contain "__" in them. */
4508 if (strstr (name, "__") != NULL)
4509 return 0;
4510
4511 fun_name = xstrprintf ("_ada_%s", name);
4512
4513 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4514 }
4515
4516 /* Return nonzero if SYM corresponds to a renaming entity that is
4517 not visible from FUNCTION_NAME. */
4518
4519 static int
4520 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4521 {
4522 char *scope;
4523
4524 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4525 return 0;
4526
4527 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4528
4529 make_cleanup (xfree, scope);
4530
4531 /* If the rename has been defined in a package, then it is visible. */
4532 if (is_package_name (scope))
4533 return 0;
4534
4535 /* Check that the rename is in the current function scope by checking
4536 that its name starts with SCOPE. */
4537
4538 /* If the function name starts with "_ada_", it means that it is
4539 a library-level function. Strip this prefix before doing the
4540 comparison, as the encoding for the renaming does not contain
4541 this prefix. */
4542 if (strncmp (function_name, "_ada_", 5) == 0)
4543 function_name += 5;
4544
4545 return (strncmp (function_name, scope, strlen (scope)) != 0);
4546 }
4547
4548 /* Remove entries from SYMS that corresponds to a renaming entity that
4549 is not visible from the function associated with CURRENT_BLOCK or
4550 that is superfluous due to the presence of more specific renaming
4551 information. Places surviving symbols in the initial entries of
4552 SYMS and returns the number of surviving symbols.
4553
4554 Rationale:
4555 First, in cases where an object renaming is implemented as a
4556 reference variable, GNAT may produce both the actual reference
4557 variable and the renaming encoding. In this case, we discard the
4558 latter.
4559
4560 Second, GNAT emits a type following a specified encoding for each renaming
4561 entity. Unfortunately, STABS currently does not support the definition
4562 of types that are local to a given lexical block, so all renamings types
4563 are emitted at library level. As a consequence, if an application
4564 contains two renaming entities using the same name, and a user tries to
4565 print the value of one of these entities, the result of the ada symbol
4566 lookup will also contain the wrong renaming type.
4567
4568 This function partially covers for this limitation by attempting to
4569 remove from the SYMS list renaming symbols that should be visible
4570 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4571 method with the current information available. The implementation
4572 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4573
4574 - When the user tries to print a rename in a function while there
4575 is another rename entity defined in a package: Normally, the
4576 rename in the function has precedence over the rename in the
4577 package, so the latter should be removed from the list. This is
4578 currently not the case.
4579
4580 - This function will incorrectly remove valid renames if
4581 the CURRENT_BLOCK corresponds to a function which symbol name
4582 has been changed by an "Export" pragma. As a consequence,
4583 the user will be unable to print such rename entities. */
4584
4585 static int
4586 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4587 int nsyms, const struct block *current_block)
4588 {
4589 struct symbol *current_function;
4590 char *current_function_name;
4591 int i;
4592 int is_new_style_renaming;
4593
4594 /* If there is both a renaming foo___XR... encoded as a variable and
4595 a simple variable foo in the same block, discard the latter.
4596 First, zero out such symbols, then compress. */
4597 is_new_style_renaming = 0;
4598 for (i = 0; i < nsyms; i += 1)
4599 {
4600 struct symbol *sym = syms[i].sym;
4601 struct block *block = syms[i].block;
4602 const char *name;
4603 const char *suffix;
4604
4605 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4606 continue;
4607 name = SYMBOL_LINKAGE_NAME (sym);
4608 suffix = strstr (name, "___XR");
4609
4610 if (suffix != NULL)
4611 {
4612 int name_len = suffix - name;
4613 int j;
4614 is_new_style_renaming = 1;
4615 for (j = 0; j < nsyms; j += 1)
4616 if (i != j && syms[j].sym != NULL
4617 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4618 name_len) == 0
4619 && block == syms[j].block)
4620 syms[j].sym = NULL;
4621 }
4622 }
4623 if (is_new_style_renaming)
4624 {
4625 int j, k;
4626
4627 for (j = k = 0; j < nsyms; j += 1)
4628 if (syms[j].sym != NULL)
4629 {
4630 syms[k] = syms[j];
4631 k += 1;
4632 }
4633 return k;
4634 }
4635
4636 /* Extract the function name associated to CURRENT_BLOCK.
4637 Abort if unable to do so. */
4638
4639 if (current_block == NULL)
4640 return nsyms;
4641
4642 current_function = block_function (current_block);
4643 if (current_function == NULL)
4644 return nsyms;
4645
4646 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4647 if (current_function_name == NULL)
4648 return nsyms;
4649
4650 /* Check each of the symbols, and remove it from the list if it is
4651 a type corresponding to a renaming that is out of the scope of
4652 the current block. */
4653
4654 i = 0;
4655 while (i < nsyms)
4656 {
4657 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4658 == ADA_OBJECT_RENAMING
4659 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4660 {
4661 int j;
4662 for (j = i + 1; j < nsyms; j += 1)
4663 syms[j - 1] = syms[j];
4664 nsyms -= 1;
4665 }
4666 else
4667 i += 1;
4668 }
4669
4670 return nsyms;
4671 }
4672
4673 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4674 scope and in global scopes, returning the number of matches. Sets
4675 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4676 indicating the symbols found and the blocks and symbol tables (if
4677 any) in which they were found. This vector are transient---good only to
4678 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4679 symbol match within the nest of blocks whose innermost member is BLOCK0,
4680 is the one match returned (no other matches in that or
4681 enclosing blocks is returned). If there are any matches in or
4682 surrounding BLOCK0, then these alone are returned. Otherwise, the
4683 search extends to global and file-scope (static) symbol tables.
4684 Names prefixed with "standard__" are handled specially: "standard__"
4685 is first stripped off, and only static and global symbols are searched. */
4686
4687 int
4688 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4689 domain_enum namespace,
4690 struct ada_symbol_info **results)
4691 {
4692 struct symbol *sym;
4693 struct symtab *s;
4694 struct partial_symtab *ps;
4695 struct blockvector *bv;
4696 struct objfile *objfile;
4697 struct block *block;
4698 const char *name;
4699 struct minimal_symbol *msymbol;
4700 int wild_match;
4701 int cacheIfUnique;
4702 int block_depth;
4703 int ndefns;
4704
4705 obstack_free (&symbol_list_obstack, NULL);
4706 obstack_init (&symbol_list_obstack);
4707
4708 cacheIfUnique = 0;
4709
4710 /* Search specified block and its superiors. */
4711
4712 wild_match = (strstr (name0, "__") == NULL);
4713 name = name0;
4714 block = (struct block *) block0; /* FIXME: No cast ought to be
4715 needed, but adding const will
4716 have a cascade effect. */
4717 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4718 {
4719 wild_match = 0;
4720 block = NULL;
4721 name = name0 + sizeof ("standard__") - 1;
4722 }
4723
4724 block_depth = 0;
4725 while (block != NULL)
4726 {
4727 block_depth += 1;
4728 ada_add_block_symbols (&symbol_list_obstack, block, name,
4729 namespace, NULL, NULL, wild_match);
4730
4731 /* If we found a non-function match, assume that's the one. */
4732 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4733 num_defns_collected (&symbol_list_obstack)))
4734 goto done;
4735
4736 block = BLOCK_SUPERBLOCK (block);
4737 }
4738
4739 /* If no luck so far, try to find NAME as a local symbol in some lexically
4740 enclosing subprogram. */
4741 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4742 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4743 name, namespace, wild_match);
4744
4745 /* If we found ANY matches among non-global symbols, we're done. */
4746
4747 if (num_defns_collected (&symbol_list_obstack) > 0)
4748 goto done;
4749
4750 cacheIfUnique = 1;
4751 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4752 {
4753 if (sym != NULL)
4754 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4755 goto done;
4756 }
4757
4758 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4759 tables, and psymtab's. */
4760
4761 ALL_PRIMARY_SYMTABS (objfile, s)
4762 {
4763 QUIT;
4764 bv = BLOCKVECTOR (s);
4765 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4766 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4767 objfile, s, wild_match);
4768 }
4769
4770 if (namespace == VAR_DOMAIN)
4771 {
4772 ALL_MSYMBOLS (objfile, msymbol)
4773 {
4774 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4775 {
4776 switch (MSYMBOL_TYPE (msymbol))
4777 {
4778 case mst_solib_trampoline:
4779 break;
4780 default:
4781 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4782 if (s != NULL)
4783 {
4784 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4785 QUIT;
4786 bv = BLOCKVECTOR (s);
4787 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4788 ada_add_block_symbols (&symbol_list_obstack, block,
4789 SYMBOL_LINKAGE_NAME (msymbol),
4790 namespace, objfile, s, wild_match);
4791
4792 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4793 {
4794 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4795 ada_add_block_symbols (&symbol_list_obstack, block,
4796 SYMBOL_LINKAGE_NAME (msymbol),
4797 namespace, objfile, s,
4798 wild_match);
4799 }
4800 }
4801 }
4802 }
4803 }
4804 }
4805
4806 ALL_PSYMTABS (objfile, ps)
4807 {
4808 QUIT;
4809 if (!ps->readin
4810 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4811 {
4812 s = PSYMTAB_TO_SYMTAB (ps);
4813 if (!s->primary)
4814 continue;
4815 bv = BLOCKVECTOR (s);
4816 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4817 ada_add_block_symbols (&symbol_list_obstack, block, name,
4818 namespace, objfile, s, wild_match);
4819 }
4820 }
4821
4822 /* Now add symbols from all per-file blocks if we've gotten no hits
4823 (Not strictly correct, but perhaps better than an error).
4824 Do the symtabs first, then check the psymtabs. */
4825
4826 if (num_defns_collected (&symbol_list_obstack) == 0)
4827 {
4828
4829 ALL_PRIMARY_SYMTABS (objfile, s)
4830 {
4831 QUIT;
4832 bv = BLOCKVECTOR (s);
4833 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4834 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4835 objfile, s, wild_match);
4836 }
4837
4838 ALL_PSYMTABS (objfile, ps)
4839 {
4840 QUIT;
4841 if (!ps->readin
4842 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4843 {
4844 s = PSYMTAB_TO_SYMTAB (ps);
4845 bv = BLOCKVECTOR (s);
4846 if (!s->primary)
4847 continue;
4848 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4849 ada_add_block_symbols (&symbol_list_obstack, block, name,
4850 namespace, objfile, s, wild_match);
4851 }
4852 }
4853 }
4854
4855 done:
4856 ndefns = num_defns_collected (&symbol_list_obstack);
4857 *results = defns_collected (&symbol_list_obstack, 1);
4858
4859 ndefns = remove_extra_symbols (*results, ndefns);
4860
4861 if (ndefns == 0)
4862 cache_symbol (name0, namespace, NULL, NULL, NULL);
4863
4864 if (ndefns == 1 && cacheIfUnique)
4865 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4866 (*results)[0].symtab);
4867
4868 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4869
4870 return ndefns;
4871 }
4872
4873 struct symbol *
4874 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4875 domain_enum namespace,
4876 struct block **block_found, struct symtab **symtab)
4877 {
4878 struct ada_symbol_info *candidates;
4879 int n_candidates;
4880
4881 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4882
4883 if (n_candidates == 0)
4884 return NULL;
4885
4886 if (block_found != NULL)
4887 *block_found = candidates[0].block;
4888
4889 if (symtab != NULL)
4890 {
4891 *symtab = candidates[0].symtab;
4892 if (*symtab == NULL && candidates[0].block != NULL)
4893 {
4894 struct objfile *objfile;
4895 struct symtab *s;
4896 struct block *b;
4897 struct blockvector *bv;
4898
4899 /* Search the list of symtabs for one which contains the
4900 address of the start of this block. */
4901 ALL_PRIMARY_SYMTABS (objfile, s)
4902 {
4903 bv = BLOCKVECTOR (s);
4904 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4905 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4906 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4907 {
4908 *symtab = s;
4909 return fixup_symbol_section (candidates[0].sym, objfile);
4910 }
4911 }
4912 /* FIXME: brobecker/2004-11-12: I think that we should never
4913 reach this point. I don't see a reason why we would not
4914 find a symtab for a given block, so I suggest raising an
4915 internal_error exception here. Otherwise, we end up
4916 returning a symbol but no symtab, which certain parts of
4917 the code that rely (indirectly) on this function do not
4918 expect, eventually causing a SEGV. */
4919 return fixup_symbol_section (candidates[0].sym, NULL);
4920 }
4921 }
4922 return candidates[0].sym;
4923 }
4924
4925 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4926 scope and in global scopes, or NULL if none. NAME is folded and
4927 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4928 choosing the first symbol if there are multiple choices.
4929 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4930 table in which the symbol was found (in both cases, these
4931 assignments occur only if the pointers are non-null). */
4932 struct symbol *
4933 ada_lookup_symbol (const char *name, const struct block *block0,
4934 domain_enum namespace, int *is_a_field_of_this,
4935 struct symtab **symtab)
4936 {
4937 if (is_a_field_of_this != NULL)
4938 *is_a_field_of_this = 0;
4939
4940 return
4941 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4942 block0, namespace, NULL, symtab);
4943 }
4944
4945 static struct symbol *
4946 ada_lookup_symbol_nonlocal (const char *name,
4947 const char *linkage_name,
4948 const struct block *block,
4949 const domain_enum domain, struct symtab **symtab)
4950 {
4951 if (linkage_name == NULL)
4952 linkage_name = name;
4953 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4954 NULL, symtab);
4955 }
4956
4957
4958 /* True iff STR is a possible encoded suffix of a normal Ada name
4959 that is to be ignored for matching purposes. Suffixes of parallel
4960 names (e.g., XVE) are not included here. Currently, the possible suffixes
4961 are given by either of the regular expression:
4962
4963 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4964 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4965 _E[0-9]+[bs]$ [protected object entry suffixes]
4966 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4967
4968 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4969 match is performed. This sequence is used to differentiate homonyms,
4970 is an optional part of a valid name suffix. */
4971
4972 static int
4973 is_name_suffix (const char *str)
4974 {
4975 int k;
4976 const char *matching;
4977 const int len = strlen (str);
4978
4979 /* Skip optional leading __[0-9]+. */
4980
4981 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4982 {
4983 str += 3;
4984 while (isdigit (str[0]))
4985 str += 1;
4986 }
4987
4988 /* [.$][0-9]+ */
4989
4990 if (str[0] == '.' || str[0] == '$')
4991 {
4992 matching = str + 1;
4993 while (isdigit (matching[0]))
4994 matching += 1;
4995 if (matching[0] == '\0')
4996 return 1;
4997 }
4998
4999 /* ___[0-9]+ */
5000
5001 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5002 {
5003 matching = str + 3;
5004 while (isdigit (matching[0]))
5005 matching += 1;
5006 if (matching[0] == '\0')
5007 return 1;
5008 }
5009
5010 #if 0
5011 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5012 with a N at the end. Unfortunately, the compiler uses the same
5013 convention for other internal types it creates. So treating
5014 all entity names that end with an "N" as a name suffix causes
5015 some regressions. For instance, consider the case of an enumerated
5016 type. To support the 'Image attribute, it creates an array whose
5017 name ends with N.
5018 Having a single character like this as a suffix carrying some
5019 information is a bit risky. Perhaps we should change the encoding
5020 to be something like "_N" instead. In the meantime, do not do
5021 the following check. */
5022 /* Protected Object Subprograms */
5023 if (len == 1 && str [0] == 'N')
5024 return 1;
5025 #endif
5026
5027 /* _E[0-9]+[bs]$ */
5028 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5029 {
5030 matching = str + 3;
5031 while (isdigit (matching[0]))
5032 matching += 1;
5033 if ((matching[0] == 'b' || matching[0] == 's')
5034 && matching [1] == '\0')
5035 return 1;
5036 }
5037
5038 /* ??? We should not modify STR directly, as we are doing below. This
5039 is fine in this case, but may become problematic later if we find
5040 that this alternative did not work, and want to try matching
5041 another one from the begining of STR. Since we modified it, we
5042 won't be able to find the begining of the string anymore! */
5043 if (str[0] == 'X')
5044 {
5045 str += 1;
5046 while (str[0] != '_' && str[0] != '\0')
5047 {
5048 if (str[0] != 'n' && str[0] != 'b')
5049 return 0;
5050 str += 1;
5051 }
5052 }
5053
5054 if (str[0] == '\000')
5055 return 1;
5056
5057 if (str[0] == '_')
5058 {
5059 if (str[1] != '_' || str[2] == '\000')
5060 return 0;
5061 if (str[2] == '_')
5062 {
5063 if (strcmp (str + 3, "JM") == 0)
5064 return 1;
5065 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5066 the LJM suffix in favor of the JM one. But we will
5067 still accept LJM as a valid suffix for a reasonable
5068 amount of time, just to allow ourselves to debug programs
5069 compiled using an older version of GNAT. */
5070 if (strcmp (str + 3, "LJM") == 0)
5071 return 1;
5072 if (str[3] != 'X')
5073 return 0;
5074 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5075 || str[4] == 'U' || str[4] == 'P')
5076 return 1;
5077 if (str[4] == 'R' && str[5] != 'T')
5078 return 1;
5079 return 0;
5080 }
5081 if (!isdigit (str[2]))
5082 return 0;
5083 for (k = 3; str[k] != '\0'; k += 1)
5084 if (!isdigit (str[k]) && str[k] != '_')
5085 return 0;
5086 return 1;
5087 }
5088 if (str[0] == '$' && isdigit (str[1]))
5089 {
5090 for (k = 2; str[k] != '\0'; k += 1)
5091 if (!isdigit (str[k]) && str[k] != '_')
5092 return 0;
5093 return 1;
5094 }
5095 return 0;
5096 }
5097
5098 /* Return nonzero if the given string starts with a dot ('.')
5099 followed by zero or more digits.
5100
5101 Note: brobecker/2003-11-10: A forward declaration has not been
5102 added at the begining of this file yet, because this function
5103 is only used to work around a problem found during wild matching
5104 when trying to match minimal symbol names against symbol names
5105 obtained from dwarf-2 data. This function is therefore currently
5106 only used in wild_match() and is likely to be deleted when the
5107 problem in dwarf-2 is fixed. */
5108
5109 static int
5110 is_dot_digits_suffix (const char *str)
5111 {
5112 if (str[0] != '.')
5113 return 0;
5114
5115 str++;
5116 while (isdigit (str[0]))
5117 str++;
5118 return (str[0] == '\0');
5119 }
5120
5121 /* Return non-zero if the string starting at NAME and ending before
5122 NAME_END contains no capital letters. */
5123
5124 static int
5125 is_valid_name_for_wild_match (const char *name0)
5126 {
5127 const char *decoded_name = ada_decode (name0);
5128 int i;
5129
5130 for (i=0; decoded_name[i] != '\0'; i++)
5131 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5132 return 0;
5133
5134 return 1;
5135 }
5136
5137 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
5138 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5139 informational suffixes of NAME (i.e., for which is_name_suffix is
5140 true). */
5141
5142 static int
5143 wild_match (const char *patn0, int patn_len, const char *name0)
5144 {
5145 int name_len;
5146 char *name;
5147 char *name_start;
5148 char *patn;
5149
5150 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
5151 stored in the symbol table for nested function names is sometimes
5152 different from the name of the associated entity stored in
5153 the dwarf-2 data: This is the case for nested subprograms, where
5154 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
5155 while the symbol name from the dwarf-2 data does not.
5156
5157 Although the DWARF-2 standard documents that entity names stored
5158 in the dwarf-2 data should be identical to the name as seen in
5159 the source code, GNAT takes a different approach as we already use
5160 a special encoding mechanism to convey the information so that
5161 a C debugger can still use the information generated to debug
5162 Ada programs. A corollary is that the symbol names in the dwarf-2
5163 data should match the names found in the symbol table. I therefore
5164 consider this issue as a compiler defect.
5165
5166 Until the compiler is properly fixed, we work-around the problem
5167 by ignoring such suffixes during the match. We do so by making
5168 a copy of PATN0 and NAME0, and then by stripping such a suffix
5169 if present. We then perform the match on the resulting strings. */
5170 {
5171 char *dot;
5172 name_len = strlen (name0);
5173
5174 name = name_start = (char *) alloca ((name_len + 1) * sizeof (char));
5175 strcpy (name, name0);
5176 dot = strrchr (name, '.');
5177 if (dot != NULL && is_dot_digits_suffix (dot))
5178 *dot = '\0';
5179
5180 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
5181 strncpy (patn, patn0, patn_len);
5182 patn[patn_len] = '\0';
5183 dot = strrchr (patn, '.');
5184 if (dot != NULL && is_dot_digits_suffix (dot))
5185 {
5186 *dot = '\0';
5187 patn_len = dot - patn;
5188 }
5189 }
5190
5191 /* Now perform the wild match. */
5192
5193 name_len = strlen (name);
5194 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
5195 && strncmp (patn, name + 5, patn_len) == 0
5196 && is_name_suffix (name + patn_len + 5))
5197 return 1;
5198
5199 while (name_len >= patn_len)
5200 {
5201 if (strncmp (patn, name, patn_len) == 0
5202 && is_name_suffix (name + patn_len))
5203 return (name == name_start || is_valid_name_for_wild_match (name0));
5204 do
5205 {
5206 name += 1;
5207 name_len -= 1;
5208 }
5209 while (name_len > 0
5210 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
5211 if (name_len <= 0)
5212 return 0;
5213 if (name[0] == '_')
5214 {
5215 if (!islower (name[2]))
5216 return 0;
5217 name += 2;
5218 name_len -= 2;
5219 }
5220 else
5221 {
5222 if (!islower (name[1]))
5223 return 0;
5224 name += 1;
5225 name_len -= 1;
5226 }
5227 }
5228
5229 return 0;
5230 }
5231
5232
5233 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5234 vector *defn_symbols, updating the list of symbols in OBSTACKP
5235 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5236 OBJFILE is the section containing BLOCK.
5237 SYMTAB is recorded with each symbol added. */
5238
5239 static void
5240 ada_add_block_symbols (struct obstack *obstackp,
5241 struct block *block, const char *name,
5242 domain_enum domain, struct objfile *objfile,
5243 struct symtab *symtab, int wild)
5244 {
5245 struct dict_iterator iter;
5246 int name_len = strlen (name);
5247 /* A matching argument symbol, if any. */
5248 struct symbol *arg_sym;
5249 /* Set true when we find a matching non-argument symbol. */
5250 int found_sym;
5251 struct symbol *sym;
5252
5253 arg_sym = NULL;
5254 found_sym = 0;
5255 if (wild)
5256 {
5257 struct symbol *sym;
5258 ALL_BLOCK_SYMBOLS (block, iter, sym)
5259 {
5260 if (SYMBOL_DOMAIN (sym) == domain
5261 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5262 {
5263 switch (SYMBOL_CLASS (sym))
5264 {
5265 case LOC_ARG:
5266 case LOC_LOCAL_ARG:
5267 case LOC_REF_ARG:
5268 case LOC_REGPARM:
5269 case LOC_REGPARM_ADDR:
5270 case LOC_BASEREG_ARG:
5271 case LOC_COMPUTED_ARG:
5272 arg_sym = sym;
5273 break;
5274 case LOC_UNRESOLVED:
5275 continue;
5276 default:
5277 found_sym = 1;
5278 add_defn_to_vec (obstackp,
5279 fixup_symbol_section (sym, objfile),
5280 block, symtab);
5281 break;
5282 }
5283 }
5284 }
5285 }
5286 else
5287 {
5288 ALL_BLOCK_SYMBOLS (block, iter, sym)
5289 {
5290 if (SYMBOL_DOMAIN (sym) == domain)
5291 {
5292 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5293 if (cmp == 0
5294 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5295 {
5296 switch (SYMBOL_CLASS (sym))
5297 {
5298 case LOC_ARG:
5299 case LOC_LOCAL_ARG:
5300 case LOC_REF_ARG:
5301 case LOC_REGPARM:
5302 case LOC_REGPARM_ADDR:
5303 case LOC_BASEREG_ARG:
5304 case LOC_COMPUTED_ARG:
5305 arg_sym = sym;
5306 break;
5307 case LOC_UNRESOLVED:
5308 break;
5309 default:
5310 found_sym = 1;
5311 add_defn_to_vec (obstackp,
5312 fixup_symbol_section (sym, objfile),
5313 block, symtab);
5314 break;
5315 }
5316 }
5317 }
5318 }
5319 }
5320
5321 if (!found_sym && arg_sym != NULL)
5322 {
5323 add_defn_to_vec (obstackp,
5324 fixup_symbol_section (arg_sym, objfile),
5325 block, symtab);
5326 }
5327
5328 if (!wild)
5329 {
5330 arg_sym = NULL;
5331 found_sym = 0;
5332
5333 ALL_BLOCK_SYMBOLS (block, iter, sym)
5334 {
5335 if (SYMBOL_DOMAIN (sym) == domain)
5336 {
5337 int cmp;
5338
5339 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5340 if (cmp == 0)
5341 {
5342 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5343 if (cmp == 0)
5344 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5345 name_len);
5346 }
5347
5348 if (cmp == 0
5349 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5350 {
5351 switch (SYMBOL_CLASS (sym))
5352 {
5353 case LOC_ARG:
5354 case LOC_LOCAL_ARG:
5355 case LOC_REF_ARG:
5356 case LOC_REGPARM:
5357 case LOC_REGPARM_ADDR:
5358 case LOC_BASEREG_ARG:
5359 case LOC_COMPUTED_ARG:
5360 arg_sym = sym;
5361 break;
5362 case LOC_UNRESOLVED:
5363 break;
5364 default:
5365 found_sym = 1;
5366 add_defn_to_vec (obstackp,
5367 fixup_symbol_section (sym, objfile),
5368 block, symtab);
5369 break;
5370 }
5371 }
5372 }
5373 }
5374
5375 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5376 They aren't parameters, right? */
5377 if (!found_sym && arg_sym != NULL)
5378 {
5379 add_defn_to_vec (obstackp,
5380 fixup_symbol_section (arg_sym, objfile),
5381 block, symtab);
5382 }
5383 }
5384 }
5385 \f
5386
5387 /* Symbol Completion */
5388
5389 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5390 name in a form that's appropriate for the completion. The result
5391 does not need to be deallocated, but is only good until the next call.
5392
5393 TEXT_LEN is equal to the length of TEXT.
5394 Perform a wild match if WILD_MATCH is set.
5395 ENCODED should be set if TEXT represents the start of a symbol name
5396 in its encoded form. */
5397
5398 static const char *
5399 symbol_completion_match (const char *sym_name,
5400 const char *text, int text_len,
5401 int wild_match, int encoded)
5402 {
5403 char *result;
5404 const int verbatim_match = (text[0] == '<');
5405 int match = 0;
5406
5407 if (verbatim_match)
5408 {
5409 /* Strip the leading angle bracket. */
5410 text = text + 1;
5411 text_len--;
5412 }
5413
5414 /* First, test against the fully qualified name of the symbol. */
5415
5416 if (strncmp (sym_name, text, text_len) == 0)
5417 match = 1;
5418
5419 if (match && !encoded)
5420 {
5421 /* One needed check before declaring a positive match is to verify
5422 that iff we are doing a verbatim match, the decoded version
5423 of the symbol name starts with '<'. Otherwise, this symbol name
5424 is not a suitable completion. */
5425 const char *sym_name_copy = sym_name;
5426 int has_angle_bracket;
5427
5428 sym_name = ada_decode (sym_name);
5429 has_angle_bracket = (sym_name[0] == '<');
5430 match = (has_angle_bracket == verbatim_match);
5431 sym_name = sym_name_copy;
5432 }
5433
5434 if (match && !verbatim_match)
5435 {
5436 /* When doing non-verbatim match, another check that needs to
5437 be done is to verify that the potentially matching symbol name
5438 does not include capital letters, because the ada-mode would
5439 not be able to understand these symbol names without the
5440 angle bracket notation. */
5441 const char *tmp;
5442
5443 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5444 if (*tmp != '\0')
5445 match = 0;
5446 }
5447
5448 /* Second: Try wild matching... */
5449
5450 if (!match && wild_match)
5451 {
5452 /* Since we are doing wild matching, this means that TEXT
5453 may represent an unqualified symbol name. We therefore must
5454 also compare TEXT against the unqualified name of the symbol. */
5455 sym_name = ada_unqualified_name (ada_decode (sym_name));
5456
5457 if (strncmp (sym_name, text, text_len) == 0)
5458 match = 1;
5459 }
5460
5461 /* Finally: If we found a mach, prepare the result to return. */
5462
5463 if (!match)
5464 return NULL;
5465
5466 if (verbatim_match)
5467 sym_name = add_angle_brackets (sym_name);
5468
5469 if (!encoded)
5470 sym_name = ada_decode (sym_name);
5471
5472 return sym_name;
5473 }
5474
5475 typedef char *char_ptr;
5476 DEF_VEC_P (char_ptr);
5477
5478 /* A companion function to ada_make_symbol_completion_list().
5479 Check if SYM_NAME represents a symbol which name would be suitable
5480 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5481 it is appended at the end of the given string vector SV.
5482
5483 ORIG_TEXT is the string original string from the user command
5484 that needs to be completed. WORD is the entire command on which
5485 completion should be performed. These two parameters are used to
5486 determine which part of the symbol name should be added to the
5487 completion vector.
5488 if WILD_MATCH is set, then wild matching is performed.
5489 ENCODED should be set if TEXT represents a symbol name in its
5490 encoded formed (in which case the completion should also be
5491 encoded). */
5492
5493 static void
5494 symbol_completion_add (VEC(char_ptr) **sv,
5495 const char *sym_name,
5496 const char *text, int text_len,
5497 const char *orig_text, const char *word,
5498 int wild_match, int encoded)
5499 {
5500 const char *match = symbol_completion_match (sym_name, text, text_len,
5501 wild_match, encoded);
5502 char *completion;
5503
5504 if (match == NULL)
5505 return;
5506
5507 /* We found a match, so add the appropriate completion to the given
5508 string vector. */
5509
5510 if (word == orig_text)
5511 {
5512 completion = xmalloc (strlen (match) + 5);
5513 strcpy (completion, match);
5514 }
5515 else if (word > orig_text)
5516 {
5517 /* Return some portion of sym_name. */
5518 completion = xmalloc (strlen (match) + 5);
5519 strcpy (completion, match + (word - orig_text));
5520 }
5521 else
5522 {
5523 /* Return some of ORIG_TEXT plus sym_name. */
5524 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5525 strncpy (completion, word, orig_text - word);
5526 completion[orig_text - word] = '\0';
5527 strcat (completion, match);
5528 }
5529
5530 VEC_safe_push (char_ptr, *sv, completion);
5531 }
5532
5533 /* Return a list of possible symbol names completing TEXT0. The list
5534 is NULL terminated. WORD is the entire command on which completion
5535 is made. */
5536
5537 static char **
5538 ada_make_symbol_completion_list (char *text0, char *word)
5539 {
5540 char *text;
5541 int text_len;
5542 int wild_match;
5543 int encoded;
5544 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5545 struct symbol *sym;
5546 struct symtab *s;
5547 struct partial_symtab *ps;
5548 struct minimal_symbol *msymbol;
5549 struct objfile *objfile;
5550 struct block *b, *surrounding_static_block = 0;
5551 int i;
5552 struct dict_iterator iter;
5553
5554 if (text0[0] == '<')
5555 {
5556 text = xstrdup (text0);
5557 make_cleanup (xfree, text);
5558 text_len = strlen (text);
5559 wild_match = 0;
5560 encoded = 1;
5561 }
5562 else
5563 {
5564 text = xstrdup (ada_encode (text0));
5565 make_cleanup (xfree, text);
5566 text_len = strlen (text);
5567 for (i = 0; i < text_len; i++)
5568 text[i] = tolower (text[i]);
5569
5570 encoded = (strstr (text0, "__") != NULL);
5571 /* If the name contains a ".", then the user is entering a fully
5572 qualified entity name, and the match must not be done in wild
5573 mode. Similarly, if the user wants to complete what looks like
5574 an encoded name, the match must not be done in wild mode. */
5575 wild_match = (strchr (text0, '.') == NULL && !encoded);
5576 }
5577
5578 /* First, look at the partial symtab symbols. */
5579 ALL_PSYMTABS (objfile, ps)
5580 {
5581 struct partial_symbol **psym;
5582
5583 /* If the psymtab's been read in we'll get it when we search
5584 through the blockvector. */
5585 if (ps->readin)
5586 continue;
5587
5588 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5589 psym < (objfile->global_psymbols.list + ps->globals_offset
5590 + ps->n_global_syms); psym++)
5591 {
5592 QUIT;
5593 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5594 text, text_len, text0, word,
5595 wild_match, encoded);
5596 }
5597
5598 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5599 psym < (objfile->static_psymbols.list + ps->statics_offset
5600 + ps->n_static_syms); psym++)
5601 {
5602 QUIT;
5603 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5604 text, text_len, text0, word,
5605 wild_match, encoded);
5606 }
5607 }
5608
5609 /* At this point scan through the misc symbol vectors and add each
5610 symbol you find to the list. Eventually we want to ignore
5611 anything that isn't a text symbol (everything else will be
5612 handled by the psymtab code above). */
5613
5614 ALL_MSYMBOLS (objfile, msymbol)
5615 {
5616 QUIT;
5617 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5618 text, text_len, text0, word, wild_match, encoded);
5619 }
5620
5621 /* Search upwards from currently selected frame (so that we can
5622 complete on local vars. */
5623
5624 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5625 {
5626 if (!BLOCK_SUPERBLOCK (b))
5627 surrounding_static_block = b; /* For elmin of dups */
5628
5629 ALL_BLOCK_SYMBOLS (b, iter, sym)
5630 {
5631 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5632 text, text_len, text0, word,
5633 wild_match, encoded);
5634 }
5635 }
5636
5637 /* Go through the symtabs and check the externs and statics for
5638 symbols which match. */
5639
5640 ALL_SYMTABS (objfile, s)
5641 {
5642 QUIT;
5643 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5644 ALL_BLOCK_SYMBOLS (b, iter, sym)
5645 {
5646 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5647 text, text_len, text0, word,
5648 wild_match, encoded);
5649 }
5650 }
5651
5652 ALL_SYMTABS (objfile, s)
5653 {
5654 QUIT;
5655 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5656 /* Don't do this block twice. */
5657 if (b == surrounding_static_block)
5658 continue;
5659 ALL_BLOCK_SYMBOLS (b, iter, sym)
5660 {
5661 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5662 text, text_len, text0, word,
5663 wild_match, encoded);
5664 }
5665 }
5666
5667 /* Append the closing NULL entry. */
5668 VEC_safe_push (char_ptr, completions, NULL);
5669
5670 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5671 return the copy. It's unfortunate that we have to make a copy
5672 of an array that we're about to destroy, but there is nothing much
5673 we can do about it. Fortunately, it's typically not a very large
5674 array. */
5675 {
5676 const size_t completions_size =
5677 VEC_length (char_ptr, completions) * sizeof (char *);
5678 char **result = malloc (completions_size);
5679
5680 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5681
5682 VEC_free (char_ptr, completions);
5683 return result;
5684 }
5685 }
5686
5687 /* Field Access */
5688
5689 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5690 for tagged types. */
5691
5692 static int
5693 ada_is_dispatch_table_ptr_type (struct type *type)
5694 {
5695 char *name;
5696
5697 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5698 return 0;
5699
5700 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5701 if (name == NULL)
5702 return 0;
5703
5704 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5705 }
5706
5707 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5708 to be invisible to users. */
5709
5710 int
5711 ada_is_ignored_field (struct type *type, int field_num)
5712 {
5713 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5714 return 1;
5715
5716 /* Check the name of that field. */
5717 {
5718 const char *name = TYPE_FIELD_NAME (type, field_num);
5719
5720 /* Anonymous field names should not be printed.
5721 brobecker/2007-02-20: I don't think this can actually happen
5722 but we don't want to print the value of annonymous fields anyway. */
5723 if (name == NULL)
5724 return 1;
5725
5726 /* A field named "_parent" is internally generated by GNAT for
5727 tagged types, and should not be printed either. */
5728 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5729 return 1;
5730 }
5731
5732 /* If this is the dispatch table of a tagged type, then ignore. */
5733 if (ada_is_tagged_type (type, 1)
5734 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5735 return 1;
5736
5737 /* Not a special field, so it should not be ignored. */
5738 return 0;
5739 }
5740
5741 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5742 pointer or reference type whose ultimate target has a tag field. */
5743
5744 int
5745 ada_is_tagged_type (struct type *type, int refok)
5746 {
5747 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5748 }
5749
5750 /* True iff TYPE represents the type of X'Tag */
5751
5752 int
5753 ada_is_tag_type (struct type *type)
5754 {
5755 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5756 return 0;
5757 else
5758 {
5759 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5760 return (name != NULL
5761 && strcmp (name, "ada__tags__dispatch_table") == 0);
5762 }
5763 }
5764
5765 /* The type of the tag on VAL. */
5766
5767 struct type *
5768 ada_tag_type (struct value *val)
5769 {
5770 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5771 }
5772
5773 /* The value of the tag on VAL. */
5774
5775 struct value *
5776 ada_value_tag (struct value *val)
5777 {
5778 return ada_value_struct_elt (val, "_tag", 0);
5779 }
5780
5781 /* The value of the tag on the object of type TYPE whose contents are
5782 saved at VALADDR, if it is non-null, or is at memory address
5783 ADDRESS. */
5784
5785 static struct value *
5786 value_tag_from_contents_and_address (struct type *type,
5787 const gdb_byte *valaddr,
5788 CORE_ADDR address)
5789 {
5790 int tag_byte_offset, dummy1, dummy2;
5791 struct type *tag_type;
5792 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5793 NULL, NULL, NULL))
5794 {
5795 const gdb_byte *valaddr1 = ((valaddr == NULL)
5796 ? NULL
5797 : valaddr + tag_byte_offset);
5798 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5799
5800 return value_from_contents_and_address (tag_type, valaddr1, address1);
5801 }
5802 return NULL;
5803 }
5804
5805 static struct type *
5806 type_from_tag (struct value *tag)
5807 {
5808 const char *type_name = ada_tag_name (tag);
5809 if (type_name != NULL)
5810 return ada_find_any_type (ada_encode (type_name));
5811 return NULL;
5812 }
5813
5814 struct tag_args
5815 {
5816 struct value *tag;
5817 char *name;
5818 };
5819
5820
5821 static int ada_tag_name_1 (void *);
5822 static int ada_tag_name_2 (struct tag_args *);
5823
5824 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5825 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5826 The value stored in ARGS->name is valid until the next call to
5827 ada_tag_name_1. */
5828
5829 static int
5830 ada_tag_name_1 (void *args0)
5831 {
5832 struct tag_args *args = (struct tag_args *) args0;
5833 static char name[1024];
5834 char *p;
5835 struct value *val;
5836 args->name = NULL;
5837 val = ada_value_struct_elt (args->tag, "tsd", 1);
5838 if (val == NULL)
5839 return ada_tag_name_2 (args);
5840 val = ada_value_struct_elt (val, "expanded_name", 1);
5841 if (val == NULL)
5842 return 0;
5843 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5844 for (p = name; *p != '\0'; p += 1)
5845 if (isalpha (*p))
5846 *p = tolower (*p);
5847 args->name = name;
5848 return 0;
5849 }
5850
5851 /* Utility function for ada_tag_name_1 that tries the second
5852 representation for the dispatch table (in which there is no
5853 explicit 'tsd' field in the referent of the tag pointer, and instead
5854 the tsd pointer is stored just before the dispatch table. */
5855
5856 static int
5857 ada_tag_name_2 (struct tag_args *args)
5858 {
5859 struct type *info_type;
5860 static char name[1024];
5861 char *p;
5862 struct value *val, *valp;
5863
5864 args->name = NULL;
5865 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5866 if (info_type == NULL)
5867 return 0;
5868 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5869 valp = value_cast (info_type, args->tag);
5870 if (valp == NULL)
5871 return 0;
5872 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5873 if (val == NULL)
5874 return 0;
5875 val = ada_value_struct_elt (val, "expanded_name", 1);
5876 if (val == NULL)
5877 return 0;
5878 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5879 for (p = name; *p != '\0'; p += 1)
5880 if (isalpha (*p))
5881 *p = tolower (*p);
5882 args->name = name;
5883 return 0;
5884 }
5885
5886 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5887 * a C string. */
5888
5889 const char *
5890 ada_tag_name (struct value *tag)
5891 {
5892 struct tag_args args;
5893 if (!ada_is_tag_type (value_type (tag)))
5894 return NULL;
5895 args.tag = tag;
5896 args.name = NULL;
5897 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5898 return args.name;
5899 }
5900
5901 /* The parent type of TYPE, or NULL if none. */
5902
5903 struct type *
5904 ada_parent_type (struct type *type)
5905 {
5906 int i;
5907
5908 type = ada_check_typedef (type);
5909
5910 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5911 return NULL;
5912
5913 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5914 if (ada_is_parent_field (type, i))
5915 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5916
5917 return NULL;
5918 }
5919
5920 /* True iff field number FIELD_NUM of structure type TYPE contains the
5921 parent-type (inherited) fields of a derived type. Assumes TYPE is
5922 a structure type with at least FIELD_NUM+1 fields. */
5923
5924 int
5925 ada_is_parent_field (struct type *type, int field_num)
5926 {
5927 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5928 return (name != NULL
5929 && (strncmp (name, "PARENT", 6) == 0
5930 || strncmp (name, "_parent", 7) == 0));
5931 }
5932
5933 /* True iff field number FIELD_NUM of structure type TYPE is a
5934 transparent wrapper field (which should be silently traversed when doing
5935 field selection and flattened when printing). Assumes TYPE is a
5936 structure type with at least FIELD_NUM+1 fields. Such fields are always
5937 structures. */
5938
5939 int
5940 ada_is_wrapper_field (struct type *type, int field_num)
5941 {
5942 const char *name = TYPE_FIELD_NAME (type, field_num);
5943 return (name != NULL
5944 && (strncmp (name, "PARENT", 6) == 0
5945 || strcmp (name, "REP") == 0
5946 || strncmp (name, "_parent", 7) == 0
5947 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5948 }
5949
5950 /* True iff field number FIELD_NUM of structure or union type TYPE
5951 is a variant wrapper. Assumes TYPE is a structure type with at least
5952 FIELD_NUM+1 fields. */
5953
5954 int
5955 ada_is_variant_part (struct type *type, int field_num)
5956 {
5957 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5958 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5959 || (is_dynamic_field (type, field_num)
5960 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5961 == TYPE_CODE_UNION)));
5962 }
5963
5964 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5965 whose discriminants are contained in the record type OUTER_TYPE,
5966 returns the type of the controlling discriminant for the variant. */
5967
5968 struct type *
5969 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5970 {
5971 char *name = ada_variant_discrim_name (var_type);
5972 struct type *type =
5973 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5974 if (type == NULL)
5975 return builtin_type_int;
5976 else
5977 return type;
5978 }
5979
5980 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5981 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5982 represents a 'when others' clause; otherwise 0. */
5983
5984 int
5985 ada_is_others_clause (struct type *type, int field_num)
5986 {
5987 const char *name = TYPE_FIELD_NAME (type, field_num);
5988 return (name != NULL && name[0] == 'O');
5989 }
5990
5991 /* Assuming that TYPE0 is the type of the variant part of a record,
5992 returns the name of the discriminant controlling the variant.
5993 The value is valid until the next call to ada_variant_discrim_name. */
5994
5995 char *
5996 ada_variant_discrim_name (struct type *type0)
5997 {
5998 static char *result = NULL;
5999 static size_t result_len = 0;
6000 struct type *type;
6001 const char *name;
6002 const char *discrim_end;
6003 const char *discrim_start;
6004
6005 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6006 type = TYPE_TARGET_TYPE (type0);
6007 else
6008 type = type0;
6009
6010 name = ada_type_name (type);
6011
6012 if (name == NULL || name[0] == '\000')
6013 return "";
6014
6015 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6016 discrim_end -= 1)
6017 {
6018 if (strncmp (discrim_end, "___XVN", 6) == 0)
6019 break;
6020 }
6021 if (discrim_end == name)
6022 return "";
6023
6024 for (discrim_start = discrim_end; discrim_start != name + 3;
6025 discrim_start -= 1)
6026 {
6027 if (discrim_start == name + 1)
6028 return "";
6029 if ((discrim_start > name + 3
6030 && strncmp (discrim_start - 3, "___", 3) == 0)
6031 || discrim_start[-1] == '.')
6032 break;
6033 }
6034
6035 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6036 strncpy (result, discrim_start, discrim_end - discrim_start);
6037 result[discrim_end - discrim_start] = '\0';
6038 return result;
6039 }
6040
6041 /* Scan STR for a subtype-encoded number, beginning at position K.
6042 Put the position of the character just past the number scanned in
6043 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6044 Return 1 if there was a valid number at the given position, and 0
6045 otherwise. A "subtype-encoded" number consists of the absolute value
6046 in decimal, followed by the letter 'm' to indicate a negative number.
6047 Assumes 0m does not occur. */
6048
6049 int
6050 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6051 {
6052 ULONGEST RU;
6053
6054 if (!isdigit (str[k]))
6055 return 0;
6056
6057 /* Do it the hard way so as not to make any assumption about
6058 the relationship of unsigned long (%lu scan format code) and
6059 LONGEST. */
6060 RU = 0;
6061 while (isdigit (str[k]))
6062 {
6063 RU = RU * 10 + (str[k] - '0');
6064 k += 1;
6065 }
6066
6067 if (str[k] == 'm')
6068 {
6069 if (R != NULL)
6070 *R = (-(LONGEST) (RU - 1)) - 1;
6071 k += 1;
6072 }
6073 else if (R != NULL)
6074 *R = (LONGEST) RU;
6075
6076 /* NOTE on the above: Technically, C does not say what the results of
6077 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6078 number representable as a LONGEST (although either would probably work
6079 in most implementations). When RU>0, the locution in the then branch
6080 above is always equivalent to the negative of RU. */
6081
6082 if (new_k != NULL)
6083 *new_k = k;
6084 return 1;
6085 }
6086
6087 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6088 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6089 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6090
6091 int
6092 ada_in_variant (LONGEST val, struct type *type, int field_num)
6093 {
6094 const char *name = TYPE_FIELD_NAME (type, field_num);
6095 int p;
6096
6097 p = 0;
6098 while (1)
6099 {
6100 switch (name[p])
6101 {
6102 case '\0':
6103 return 0;
6104 case 'S':
6105 {
6106 LONGEST W;
6107 if (!ada_scan_number (name, p + 1, &W, &p))
6108 return 0;
6109 if (val == W)
6110 return 1;
6111 break;
6112 }
6113 case 'R':
6114 {
6115 LONGEST L, U;
6116 if (!ada_scan_number (name, p + 1, &L, &p)
6117 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6118 return 0;
6119 if (val >= L && val <= U)
6120 return 1;
6121 break;
6122 }
6123 case 'O':
6124 return 1;
6125 default:
6126 return 0;
6127 }
6128 }
6129 }
6130
6131 /* FIXME: Lots of redundancy below. Try to consolidate. */
6132
6133 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6134 ARG_TYPE, extract and return the value of one of its (non-static)
6135 fields. FIELDNO says which field. Differs from value_primitive_field
6136 only in that it can handle packed values of arbitrary type. */
6137
6138 static struct value *
6139 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6140 struct type *arg_type)
6141 {
6142 struct type *type;
6143
6144 arg_type = ada_check_typedef (arg_type);
6145 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6146
6147 /* Handle packed fields. */
6148
6149 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6150 {
6151 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6152 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6153
6154 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6155 offset + bit_pos / 8,
6156 bit_pos % 8, bit_size, type);
6157 }
6158 else
6159 return value_primitive_field (arg1, offset, fieldno, arg_type);
6160 }
6161
6162 /* Find field with name NAME in object of type TYPE. If found,
6163 set the following for each argument that is non-null:
6164 - *FIELD_TYPE_P to the field's type;
6165 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6166 an object of that type;
6167 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6168 - *BIT_SIZE_P to its size in bits if the field is packed, and
6169 0 otherwise;
6170 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6171 fields up to but not including the desired field, or by the total
6172 number of fields if not found. A NULL value of NAME never
6173 matches; the function just counts visible fields in this case.
6174
6175 Returns 1 if found, 0 otherwise. */
6176
6177 static int
6178 find_struct_field (char *name, struct type *type, int offset,
6179 struct type **field_type_p,
6180 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6181 int *index_p)
6182 {
6183 int i;
6184
6185 type = ada_check_typedef (type);
6186
6187 if (field_type_p != NULL)
6188 *field_type_p = NULL;
6189 if (byte_offset_p != NULL)
6190 *byte_offset_p = 0;
6191 if (bit_offset_p != NULL)
6192 *bit_offset_p = 0;
6193 if (bit_size_p != NULL)
6194 *bit_size_p = 0;
6195
6196 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6197 {
6198 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6199 int fld_offset = offset + bit_pos / 8;
6200 char *t_field_name = TYPE_FIELD_NAME (type, i);
6201
6202 if (t_field_name == NULL)
6203 continue;
6204
6205 else if (name != NULL && field_name_match (t_field_name, name))
6206 {
6207 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6208 if (field_type_p != NULL)
6209 *field_type_p = TYPE_FIELD_TYPE (type, i);
6210 if (byte_offset_p != NULL)
6211 *byte_offset_p = fld_offset;
6212 if (bit_offset_p != NULL)
6213 *bit_offset_p = bit_pos % 8;
6214 if (bit_size_p != NULL)
6215 *bit_size_p = bit_size;
6216 return 1;
6217 }
6218 else if (ada_is_wrapper_field (type, i))
6219 {
6220 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6221 field_type_p, byte_offset_p, bit_offset_p,
6222 bit_size_p, index_p))
6223 return 1;
6224 }
6225 else if (ada_is_variant_part (type, i))
6226 {
6227 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6228 fixed type?? */
6229 int j;
6230 struct type *field_type
6231 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6232
6233 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6234 {
6235 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6236 fld_offset
6237 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6238 field_type_p, byte_offset_p,
6239 bit_offset_p, bit_size_p, index_p))
6240 return 1;
6241 }
6242 }
6243 else if (index_p != NULL)
6244 *index_p += 1;
6245 }
6246 return 0;
6247 }
6248
6249 /* Number of user-visible fields in record type TYPE. */
6250
6251 static int
6252 num_visible_fields (struct type *type)
6253 {
6254 int n;
6255 n = 0;
6256 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6257 return n;
6258 }
6259
6260 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6261 and search in it assuming it has (class) type TYPE.
6262 If found, return value, else return NULL.
6263
6264 Searches recursively through wrapper fields (e.g., '_parent'). */
6265
6266 static struct value *
6267 ada_search_struct_field (char *name, struct value *arg, int offset,
6268 struct type *type)
6269 {
6270 int i;
6271 type = ada_check_typedef (type);
6272
6273 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6274 {
6275 char *t_field_name = TYPE_FIELD_NAME (type, i);
6276
6277 if (t_field_name == NULL)
6278 continue;
6279
6280 else if (field_name_match (t_field_name, name))
6281 return ada_value_primitive_field (arg, offset, i, type);
6282
6283 else if (ada_is_wrapper_field (type, i))
6284 {
6285 struct value *v = /* Do not let indent join lines here. */
6286 ada_search_struct_field (name, arg,
6287 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6288 TYPE_FIELD_TYPE (type, i));
6289 if (v != NULL)
6290 return v;
6291 }
6292
6293 else if (ada_is_variant_part (type, i))
6294 {
6295 /* PNH: Do we ever get here? See find_struct_field. */
6296 int j;
6297 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6298 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6299
6300 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6301 {
6302 struct value *v = ada_search_struct_field /* Force line break. */
6303 (name, arg,
6304 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6305 TYPE_FIELD_TYPE (field_type, j));
6306 if (v != NULL)
6307 return v;
6308 }
6309 }
6310 }
6311 return NULL;
6312 }
6313
6314 static struct value *ada_index_struct_field_1 (int *, struct value *,
6315 int, struct type *);
6316
6317
6318 /* Return field #INDEX in ARG, where the index is that returned by
6319 * find_struct_field through its INDEX_P argument. Adjust the address
6320 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6321 * If found, return value, else return NULL. */
6322
6323 static struct value *
6324 ada_index_struct_field (int index, struct value *arg, int offset,
6325 struct type *type)
6326 {
6327 return ada_index_struct_field_1 (&index, arg, offset, type);
6328 }
6329
6330
6331 /* Auxiliary function for ada_index_struct_field. Like
6332 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6333 * *INDEX_P. */
6334
6335 static struct value *
6336 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6337 struct type *type)
6338 {
6339 int i;
6340 type = ada_check_typedef (type);
6341
6342 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6343 {
6344 if (TYPE_FIELD_NAME (type, i) == NULL)
6345 continue;
6346 else if (ada_is_wrapper_field (type, i))
6347 {
6348 struct value *v = /* Do not let indent join lines here. */
6349 ada_index_struct_field_1 (index_p, arg,
6350 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6351 TYPE_FIELD_TYPE (type, i));
6352 if (v != NULL)
6353 return v;
6354 }
6355
6356 else if (ada_is_variant_part (type, i))
6357 {
6358 /* PNH: Do we ever get here? See ada_search_struct_field,
6359 find_struct_field. */
6360 error (_("Cannot assign this kind of variant record"));
6361 }
6362 else if (*index_p == 0)
6363 return ada_value_primitive_field (arg, offset, i, type);
6364 else
6365 *index_p -= 1;
6366 }
6367 return NULL;
6368 }
6369
6370 /* Given ARG, a value of type (pointer or reference to a)*
6371 structure/union, extract the component named NAME from the ultimate
6372 target structure/union and return it as a value with its
6373 appropriate type. If ARG is a pointer or reference and the field
6374 is not packed, returns a reference to the field, otherwise the
6375 value of the field (an lvalue if ARG is an lvalue).
6376
6377 The routine searches for NAME among all members of the structure itself
6378 and (recursively) among all members of any wrapper members
6379 (e.g., '_parent').
6380
6381 If NO_ERR, then simply return NULL in case of error, rather than
6382 calling error. */
6383
6384 struct value *
6385 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6386 {
6387 struct type *t, *t1;
6388 struct value *v;
6389
6390 v = NULL;
6391 t1 = t = ada_check_typedef (value_type (arg));
6392 if (TYPE_CODE (t) == TYPE_CODE_REF)
6393 {
6394 t1 = TYPE_TARGET_TYPE (t);
6395 if (t1 == NULL)
6396 goto BadValue;
6397 t1 = ada_check_typedef (t1);
6398 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6399 {
6400 arg = coerce_ref (arg);
6401 t = t1;
6402 }
6403 }
6404
6405 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6406 {
6407 t1 = TYPE_TARGET_TYPE (t);
6408 if (t1 == NULL)
6409 goto BadValue;
6410 t1 = ada_check_typedef (t1);
6411 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6412 {
6413 arg = value_ind (arg);
6414 t = t1;
6415 }
6416 else
6417 break;
6418 }
6419
6420 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6421 goto BadValue;
6422
6423 if (t1 == t)
6424 v = ada_search_struct_field (name, arg, 0, t);
6425 else
6426 {
6427 int bit_offset, bit_size, byte_offset;
6428 struct type *field_type;
6429 CORE_ADDR address;
6430
6431 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6432 address = value_as_address (arg);
6433 else
6434 address = unpack_pointer (t, value_contents (arg));
6435
6436 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6437 if (find_struct_field (name, t1, 0,
6438 &field_type, &byte_offset, &bit_offset,
6439 &bit_size, NULL))
6440 {
6441 if (bit_size != 0)
6442 {
6443 if (TYPE_CODE (t) == TYPE_CODE_REF)
6444 arg = ada_coerce_ref (arg);
6445 else
6446 arg = ada_value_ind (arg);
6447 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6448 bit_offset, bit_size,
6449 field_type);
6450 }
6451 else
6452 v = value_from_pointer (lookup_reference_type (field_type),
6453 address + byte_offset);
6454 }
6455 }
6456
6457 if (v != NULL || no_err)
6458 return v;
6459 else
6460 error (_("There is no member named %s."), name);
6461
6462 BadValue:
6463 if (no_err)
6464 return NULL;
6465 else
6466 error (_("Attempt to extract a component of a value that is not a record."));
6467 }
6468
6469 /* Given a type TYPE, look up the type of the component of type named NAME.
6470 If DISPP is non-null, add its byte displacement from the beginning of a
6471 structure (pointed to by a value) of type TYPE to *DISPP (does not
6472 work for packed fields).
6473
6474 Matches any field whose name has NAME as a prefix, possibly
6475 followed by "___".
6476
6477 TYPE can be either a struct or union. If REFOK, TYPE may also
6478 be a (pointer or reference)+ to a struct or union, and the
6479 ultimate target type will be searched.
6480
6481 Looks recursively into variant clauses and parent types.
6482
6483 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6484 TYPE is not a type of the right kind. */
6485
6486 static struct type *
6487 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6488 int noerr, int *dispp)
6489 {
6490 int i;
6491
6492 if (name == NULL)
6493 goto BadName;
6494
6495 if (refok && type != NULL)
6496 while (1)
6497 {
6498 type = ada_check_typedef (type);
6499 if (TYPE_CODE (type) != TYPE_CODE_PTR
6500 && TYPE_CODE (type) != TYPE_CODE_REF)
6501 break;
6502 type = TYPE_TARGET_TYPE (type);
6503 }
6504
6505 if (type == NULL
6506 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6507 && TYPE_CODE (type) != TYPE_CODE_UNION))
6508 {
6509 if (noerr)
6510 return NULL;
6511 else
6512 {
6513 target_terminal_ours ();
6514 gdb_flush (gdb_stdout);
6515 if (type == NULL)
6516 error (_("Type (null) is not a structure or union type"));
6517 else
6518 {
6519 /* XXX: type_sprint */
6520 fprintf_unfiltered (gdb_stderr, _("Type "));
6521 type_print (type, "", gdb_stderr, -1);
6522 error (_(" is not a structure or union type"));
6523 }
6524 }
6525 }
6526
6527 type = to_static_fixed_type (type);
6528
6529 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6530 {
6531 char *t_field_name = TYPE_FIELD_NAME (type, i);
6532 struct type *t;
6533 int disp;
6534
6535 if (t_field_name == NULL)
6536 continue;
6537
6538 else if (field_name_match (t_field_name, name))
6539 {
6540 if (dispp != NULL)
6541 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6542 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6543 }
6544
6545 else if (ada_is_wrapper_field (type, i))
6546 {
6547 disp = 0;
6548 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6549 0, 1, &disp);
6550 if (t != NULL)
6551 {
6552 if (dispp != NULL)
6553 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6554 return t;
6555 }
6556 }
6557
6558 else if (ada_is_variant_part (type, i))
6559 {
6560 int j;
6561 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6562
6563 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6564 {
6565 disp = 0;
6566 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6567 name, 0, 1, &disp);
6568 if (t != NULL)
6569 {
6570 if (dispp != NULL)
6571 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6572 return t;
6573 }
6574 }
6575 }
6576
6577 }
6578
6579 BadName:
6580 if (!noerr)
6581 {
6582 target_terminal_ours ();
6583 gdb_flush (gdb_stdout);
6584 if (name == NULL)
6585 {
6586 /* XXX: type_sprint */
6587 fprintf_unfiltered (gdb_stderr, _("Type "));
6588 type_print (type, "", gdb_stderr, -1);
6589 error (_(" has no component named <null>"));
6590 }
6591 else
6592 {
6593 /* XXX: type_sprint */
6594 fprintf_unfiltered (gdb_stderr, _("Type "));
6595 type_print (type, "", gdb_stderr, -1);
6596 error (_(" has no component named %s"), name);
6597 }
6598 }
6599
6600 return NULL;
6601 }
6602
6603 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6604 within a value of type OUTER_TYPE that is stored in GDB at
6605 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6606 numbering from 0) is applicable. Returns -1 if none are. */
6607
6608 int
6609 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6610 const gdb_byte *outer_valaddr)
6611 {
6612 int others_clause;
6613 int i;
6614 char *discrim_name = ada_variant_discrim_name (var_type);
6615 struct value *outer;
6616 struct value *discrim;
6617 LONGEST discrim_val;
6618
6619 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6620 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6621 if (discrim == NULL)
6622 return -1;
6623 discrim_val = value_as_long (discrim);
6624
6625 others_clause = -1;
6626 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6627 {
6628 if (ada_is_others_clause (var_type, i))
6629 others_clause = i;
6630 else if (ada_in_variant (discrim_val, var_type, i))
6631 return i;
6632 }
6633
6634 return others_clause;
6635 }
6636 \f
6637
6638
6639 /* Dynamic-Sized Records */
6640
6641 /* Strategy: The type ostensibly attached to a value with dynamic size
6642 (i.e., a size that is not statically recorded in the debugging
6643 data) does not accurately reflect the size or layout of the value.
6644 Our strategy is to convert these values to values with accurate,
6645 conventional types that are constructed on the fly. */
6646
6647 /* There is a subtle and tricky problem here. In general, we cannot
6648 determine the size of dynamic records without its data. However,
6649 the 'struct value' data structure, which GDB uses to represent
6650 quantities in the inferior process (the target), requires the size
6651 of the type at the time of its allocation in order to reserve space
6652 for GDB's internal copy of the data. That's why the
6653 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6654 rather than struct value*s.
6655
6656 However, GDB's internal history variables ($1, $2, etc.) are
6657 struct value*s containing internal copies of the data that are not, in
6658 general, the same as the data at their corresponding addresses in
6659 the target. Fortunately, the types we give to these values are all
6660 conventional, fixed-size types (as per the strategy described
6661 above), so that we don't usually have to perform the
6662 'to_fixed_xxx_type' conversions to look at their values.
6663 Unfortunately, there is one exception: if one of the internal
6664 history variables is an array whose elements are unconstrained
6665 records, then we will need to create distinct fixed types for each
6666 element selected. */
6667
6668 /* The upshot of all of this is that many routines take a (type, host
6669 address, target address) triple as arguments to represent a value.
6670 The host address, if non-null, is supposed to contain an internal
6671 copy of the relevant data; otherwise, the program is to consult the
6672 target at the target address. */
6673
6674 /* Assuming that VAL0 represents a pointer value, the result of
6675 dereferencing it. Differs from value_ind in its treatment of
6676 dynamic-sized types. */
6677
6678 struct value *
6679 ada_value_ind (struct value *val0)
6680 {
6681 struct value *val = unwrap_value (value_ind (val0));
6682 return ada_to_fixed_value (val);
6683 }
6684
6685 /* The value resulting from dereferencing any "reference to"
6686 qualifiers on VAL0. */
6687
6688 static struct value *
6689 ada_coerce_ref (struct value *val0)
6690 {
6691 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6692 {
6693 struct value *val = val0;
6694 val = coerce_ref (val);
6695 val = unwrap_value (val);
6696 return ada_to_fixed_value (val);
6697 }
6698 else
6699 return val0;
6700 }
6701
6702 /* Return OFF rounded upward if necessary to a multiple of
6703 ALIGNMENT (a power of 2). */
6704
6705 static unsigned int
6706 align_value (unsigned int off, unsigned int alignment)
6707 {
6708 return (off + alignment - 1) & ~(alignment - 1);
6709 }
6710
6711 /* Return the bit alignment required for field #F of template type TYPE. */
6712
6713 static unsigned int
6714 field_alignment (struct type *type, int f)
6715 {
6716 const char *name = TYPE_FIELD_NAME (type, f);
6717 int len;
6718 int align_offset;
6719
6720 /* The field name should never be null, unless the debugging information
6721 is somehow malformed. In this case, we assume the field does not
6722 require any alignment. */
6723 if (name == NULL)
6724 return 1;
6725
6726 len = strlen (name);
6727
6728 if (!isdigit (name[len - 1]))
6729 return 1;
6730
6731 if (isdigit (name[len - 2]))
6732 align_offset = len - 2;
6733 else
6734 align_offset = len - 1;
6735
6736 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6737 return TARGET_CHAR_BIT;
6738
6739 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6740 }
6741
6742 /* Find a symbol named NAME. Ignores ambiguity. */
6743
6744 struct symbol *
6745 ada_find_any_symbol (const char *name)
6746 {
6747 struct symbol *sym;
6748
6749 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6750 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6751 return sym;
6752
6753 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6754 return sym;
6755 }
6756
6757 /* Find a type named NAME. Ignores ambiguity. */
6758
6759 struct type *
6760 ada_find_any_type (const char *name)
6761 {
6762 struct symbol *sym = ada_find_any_symbol (name);
6763
6764 if (sym != NULL)
6765 return SYMBOL_TYPE (sym);
6766
6767 return NULL;
6768 }
6769
6770 /* Given NAME and an associated BLOCK, search all symbols for
6771 NAME suffixed with "___XR", which is the ``renaming'' symbol
6772 associated to NAME. Return this symbol if found, return
6773 NULL otherwise. */
6774
6775 struct symbol *
6776 ada_find_renaming_symbol (const char *name, struct block *block)
6777 {
6778 struct symbol *sym;
6779
6780 sym = find_old_style_renaming_symbol (name, block);
6781
6782 if (sym != NULL)
6783 return sym;
6784
6785 /* Not right yet. FIXME pnh 7/20/2007. */
6786 sym = ada_find_any_symbol (name);
6787 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6788 return sym;
6789 else
6790 return NULL;
6791 }
6792
6793 static struct symbol *
6794 find_old_style_renaming_symbol (const char *name, struct block *block)
6795 {
6796 const struct symbol *function_sym = block_function (block);
6797 char *rename;
6798
6799 if (function_sym != NULL)
6800 {
6801 /* If the symbol is defined inside a function, NAME is not fully
6802 qualified. This means we need to prepend the function name
6803 as well as adding the ``___XR'' suffix to build the name of
6804 the associated renaming symbol. */
6805 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6806 /* Function names sometimes contain suffixes used
6807 for instance to qualify nested subprograms. When building
6808 the XR type name, we need to make sure that this suffix is
6809 not included. So do not include any suffix in the function
6810 name length below. */
6811 const int function_name_len = ada_name_prefix_len (function_name);
6812 const int rename_len = function_name_len + 2 /* "__" */
6813 + strlen (name) + 6 /* "___XR\0" */ ;
6814
6815 /* Strip the suffix if necessary. */
6816 function_name[function_name_len] = '\0';
6817
6818 /* Library-level functions are a special case, as GNAT adds
6819 a ``_ada_'' prefix to the function name to avoid namespace
6820 pollution. However, the renaming symbols themselves do not
6821 have this prefix, so we need to skip this prefix if present. */
6822 if (function_name_len > 5 /* "_ada_" */
6823 && strstr (function_name, "_ada_") == function_name)
6824 function_name = function_name + 5;
6825
6826 rename = (char *) alloca (rename_len * sizeof (char));
6827 sprintf (rename, "%s__%s___XR", function_name, name);
6828 }
6829 else
6830 {
6831 const int rename_len = strlen (name) + 6;
6832 rename = (char *) alloca (rename_len * sizeof (char));
6833 sprintf (rename, "%s___XR", name);
6834 }
6835
6836 return ada_find_any_symbol (rename);
6837 }
6838
6839 /* Because of GNAT encoding conventions, several GDB symbols may match a
6840 given type name. If the type denoted by TYPE0 is to be preferred to
6841 that of TYPE1 for purposes of type printing, return non-zero;
6842 otherwise return 0. */
6843
6844 int
6845 ada_prefer_type (struct type *type0, struct type *type1)
6846 {
6847 if (type1 == NULL)
6848 return 1;
6849 else if (type0 == NULL)
6850 return 0;
6851 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6852 return 1;
6853 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6854 return 0;
6855 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6856 return 1;
6857 else if (ada_is_packed_array_type (type0))
6858 return 1;
6859 else if (ada_is_array_descriptor_type (type0)
6860 && !ada_is_array_descriptor_type (type1))
6861 return 1;
6862 else
6863 {
6864 const char *type0_name = type_name_no_tag (type0);
6865 const char *type1_name = type_name_no_tag (type1);
6866
6867 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6868 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6869 return 1;
6870 }
6871 return 0;
6872 }
6873
6874 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6875 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6876
6877 char *
6878 ada_type_name (struct type *type)
6879 {
6880 if (type == NULL)
6881 return NULL;
6882 else if (TYPE_NAME (type) != NULL)
6883 return TYPE_NAME (type);
6884 else
6885 return TYPE_TAG_NAME (type);
6886 }
6887
6888 /* Find a parallel type to TYPE whose name is formed by appending
6889 SUFFIX to the name of TYPE. */
6890
6891 struct type *
6892 ada_find_parallel_type (struct type *type, const char *suffix)
6893 {
6894 static char *name;
6895 static size_t name_len = 0;
6896 int len;
6897 char *typename = ada_type_name (type);
6898
6899 if (typename == NULL)
6900 return NULL;
6901
6902 len = strlen (typename);
6903
6904 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6905
6906 strcpy (name, typename);
6907 strcpy (name + len, suffix);
6908
6909 return ada_find_any_type (name);
6910 }
6911
6912
6913 /* If TYPE is a variable-size record type, return the corresponding template
6914 type describing its fields. Otherwise, return NULL. */
6915
6916 static struct type *
6917 dynamic_template_type (struct type *type)
6918 {
6919 type = ada_check_typedef (type);
6920
6921 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6922 || ada_type_name (type) == NULL)
6923 return NULL;
6924 else
6925 {
6926 int len = strlen (ada_type_name (type));
6927 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6928 return type;
6929 else
6930 return ada_find_parallel_type (type, "___XVE");
6931 }
6932 }
6933
6934 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6935 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6936
6937 static int
6938 is_dynamic_field (struct type *templ_type, int field_num)
6939 {
6940 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6941 return name != NULL
6942 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6943 && strstr (name, "___XVL") != NULL;
6944 }
6945
6946 /* The index of the variant field of TYPE, or -1 if TYPE does not
6947 represent a variant record type. */
6948
6949 static int
6950 variant_field_index (struct type *type)
6951 {
6952 int f;
6953
6954 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6955 return -1;
6956
6957 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6958 {
6959 if (ada_is_variant_part (type, f))
6960 return f;
6961 }
6962 return -1;
6963 }
6964
6965 /* A record type with no fields. */
6966
6967 static struct type *
6968 empty_record (struct objfile *objfile)
6969 {
6970 struct type *type = alloc_type (objfile);
6971 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6972 TYPE_NFIELDS (type) = 0;
6973 TYPE_FIELDS (type) = NULL;
6974 TYPE_NAME (type) = "<empty>";
6975 TYPE_TAG_NAME (type) = NULL;
6976 TYPE_FLAGS (type) = 0;
6977 TYPE_LENGTH (type) = 0;
6978 return type;
6979 }
6980
6981 /* An ordinary record type (with fixed-length fields) that describes
6982 the value of type TYPE at VALADDR or ADDRESS (see comments at
6983 the beginning of this section) VAL according to GNAT conventions.
6984 DVAL0 should describe the (portion of a) record that contains any
6985 necessary discriminants. It should be NULL if value_type (VAL) is
6986 an outer-level type (i.e., as opposed to a branch of a variant.) A
6987 variant field (unless unchecked) is replaced by a particular branch
6988 of the variant.
6989
6990 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6991 length are not statically known are discarded. As a consequence,
6992 VALADDR, ADDRESS and DVAL0 are ignored.
6993
6994 NOTE: Limitations: For now, we assume that dynamic fields and
6995 variants occupy whole numbers of bytes. However, they need not be
6996 byte-aligned. */
6997
6998 struct type *
6999 ada_template_to_fixed_record_type_1 (struct type *type,
7000 const gdb_byte *valaddr,
7001 CORE_ADDR address, struct value *dval0,
7002 int keep_dynamic_fields)
7003 {
7004 struct value *mark = value_mark ();
7005 struct value *dval;
7006 struct type *rtype;
7007 int nfields, bit_len;
7008 int variant_field;
7009 long off;
7010 int fld_bit_len, bit_incr;
7011 int f;
7012
7013 /* Compute the number of fields in this record type that are going
7014 to be processed: unless keep_dynamic_fields, this includes only
7015 fields whose position and length are static will be processed. */
7016 if (keep_dynamic_fields)
7017 nfields = TYPE_NFIELDS (type);
7018 else
7019 {
7020 nfields = 0;
7021 while (nfields < TYPE_NFIELDS (type)
7022 && !ada_is_variant_part (type, nfields)
7023 && !is_dynamic_field (type, nfields))
7024 nfields++;
7025 }
7026
7027 rtype = alloc_type (TYPE_OBJFILE (type));
7028 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7029 INIT_CPLUS_SPECIFIC (rtype);
7030 TYPE_NFIELDS (rtype) = nfields;
7031 TYPE_FIELDS (rtype) = (struct field *)
7032 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7033 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7034 TYPE_NAME (rtype) = ada_type_name (type);
7035 TYPE_TAG_NAME (rtype) = NULL;
7036 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
7037
7038 off = 0;
7039 bit_len = 0;
7040 variant_field = -1;
7041
7042 for (f = 0; f < nfields; f += 1)
7043 {
7044 off = align_value (off, field_alignment (type, f))
7045 + TYPE_FIELD_BITPOS (type, f);
7046 TYPE_FIELD_BITPOS (rtype, f) = off;
7047 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7048
7049 if (ada_is_variant_part (type, f))
7050 {
7051 variant_field = f;
7052 fld_bit_len = bit_incr = 0;
7053 }
7054 else if (is_dynamic_field (type, f))
7055 {
7056 if (dval0 == NULL)
7057 dval = value_from_contents_and_address (rtype, valaddr, address);
7058 else
7059 dval = dval0;
7060
7061 /* Get the fixed type of the field. Note that, in this case, we
7062 do not want to get the real type out of the tag: if the current
7063 field is the parent part of a tagged record, we will get the
7064 tag of the object. Clearly wrong: the real type of the parent
7065 is not the real type of the child. We would end up in an infinite
7066 loop. */
7067 TYPE_FIELD_TYPE (rtype, f) =
7068 ada_to_fixed_type
7069 (ada_get_base_type
7070 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
7071 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7072 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
7073 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7074 bit_incr = fld_bit_len =
7075 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7076 }
7077 else
7078 {
7079 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7080 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7081 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7082 bit_incr = fld_bit_len =
7083 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7084 else
7085 bit_incr = fld_bit_len =
7086 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
7087 }
7088 if (off + fld_bit_len > bit_len)
7089 bit_len = off + fld_bit_len;
7090 off += bit_incr;
7091 TYPE_LENGTH (rtype) =
7092 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7093 }
7094
7095 /* We handle the variant part, if any, at the end because of certain
7096 odd cases in which it is re-ordered so as NOT the last field of
7097 the record. This can happen in the presence of representation
7098 clauses. */
7099 if (variant_field >= 0)
7100 {
7101 struct type *branch_type;
7102
7103 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7104
7105 if (dval0 == NULL)
7106 dval = value_from_contents_and_address (rtype, valaddr, address);
7107 else
7108 dval = dval0;
7109
7110 branch_type =
7111 to_fixed_variant_branch_type
7112 (TYPE_FIELD_TYPE (type, variant_field),
7113 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7114 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7115 if (branch_type == NULL)
7116 {
7117 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7118 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7119 TYPE_NFIELDS (rtype) -= 1;
7120 }
7121 else
7122 {
7123 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7124 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7125 fld_bit_len =
7126 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7127 TARGET_CHAR_BIT;
7128 if (off + fld_bit_len > bit_len)
7129 bit_len = off + fld_bit_len;
7130 TYPE_LENGTH (rtype) =
7131 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7132 }
7133 }
7134
7135 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7136 should contain the alignment of that record, which should be a strictly
7137 positive value. If null or negative, then something is wrong, most
7138 probably in the debug info. In that case, we don't round up the size
7139 of the resulting type. If this record is not part of another structure,
7140 the current RTYPE length might be good enough for our purposes. */
7141 if (TYPE_LENGTH (type) <= 0)
7142 {
7143 if (TYPE_NAME (rtype))
7144 warning (_("Invalid type size for `%s' detected: %d."),
7145 TYPE_NAME (rtype), TYPE_LENGTH (type));
7146 else
7147 warning (_("Invalid type size for <unnamed> detected: %d."),
7148 TYPE_LENGTH (type));
7149 }
7150 else
7151 {
7152 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7153 TYPE_LENGTH (type));
7154 }
7155
7156 value_free_to_mark (mark);
7157 if (TYPE_LENGTH (rtype) > varsize_limit)
7158 error (_("record type with dynamic size is larger than varsize-limit"));
7159 return rtype;
7160 }
7161
7162 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7163 of 1. */
7164
7165 static struct type *
7166 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7167 CORE_ADDR address, struct value *dval0)
7168 {
7169 return ada_template_to_fixed_record_type_1 (type, valaddr,
7170 address, dval0, 1);
7171 }
7172
7173 /* An ordinary record type in which ___XVL-convention fields and
7174 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7175 static approximations, containing all possible fields. Uses
7176 no runtime values. Useless for use in values, but that's OK,
7177 since the results are used only for type determinations. Works on both
7178 structs and unions. Representation note: to save space, we memorize
7179 the result of this function in the TYPE_TARGET_TYPE of the
7180 template type. */
7181
7182 static struct type *
7183 template_to_static_fixed_type (struct type *type0)
7184 {
7185 struct type *type;
7186 int nfields;
7187 int f;
7188
7189 if (TYPE_TARGET_TYPE (type0) != NULL)
7190 return TYPE_TARGET_TYPE (type0);
7191
7192 nfields = TYPE_NFIELDS (type0);
7193 type = type0;
7194
7195 for (f = 0; f < nfields; f += 1)
7196 {
7197 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7198 struct type *new_type;
7199
7200 if (is_dynamic_field (type0, f))
7201 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7202 else
7203 new_type = static_unwrap_type (field_type);
7204 if (type == type0 && new_type != field_type)
7205 {
7206 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
7207 TYPE_CODE (type) = TYPE_CODE (type0);
7208 INIT_CPLUS_SPECIFIC (type);
7209 TYPE_NFIELDS (type) = nfields;
7210 TYPE_FIELDS (type) = (struct field *)
7211 TYPE_ALLOC (type, nfields * sizeof (struct field));
7212 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7213 sizeof (struct field) * nfields);
7214 TYPE_NAME (type) = ada_type_name (type0);
7215 TYPE_TAG_NAME (type) = NULL;
7216 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
7217 TYPE_LENGTH (type) = 0;
7218 }
7219 TYPE_FIELD_TYPE (type, f) = new_type;
7220 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7221 }
7222 return type;
7223 }
7224
7225 /* Given an object of type TYPE whose contents are at VALADDR and
7226 whose address in memory is ADDRESS, returns a revision of TYPE --
7227 a non-dynamic-sized record with a variant part -- in which
7228 the variant part is replaced with the appropriate branch. Looks
7229 for discriminant values in DVAL0, which can be NULL if the record
7230 contains the necessary discriminant values. */
7231
7232 static struct type *
7233 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7234 CORE_ADDR address, struct value *dval0)
7235 {
7236 struct value *mark = value_mark ();
7237 struct value *dval;
7238 struct type *rtype;
7239 struct type *branch_type;
7240 int nfields = TYPE_NFIELDS (type);
7241 int variant_field = variant_field_index (type);
7242
7243 if (variant_field == -1)
7244 return type;
7245
7246 if (dval0 == NULL)
7247 dval = value_from_contents_and_address (type, valaddr, address);
7248 else
7249 dval = dval0;
7250
7251 rtype = alloc_type (TYPE_OBJFILE (type));
7252 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7253 INIT_CPLUS_SPECIFIC (rtype);
7254 TYPE_NFIELDS (rtype) = nfields;
7255 TYPE_FIELDS (rtype) =
7256 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7257 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7258 sizeof (struct field) * nfields);
7259 TYPE_NAME (rtype) = ada_type_name (type);
7260 TYPE_TAG_NAME (rtype) = NULL;
7261 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
7262 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7263
7264 branch_type = to_fixed_variant_branch_type
7265 (TYPE_FIELD_TYPE (type, variant_field),
7266 cond_offset_host (valaddr,
7267 TYPE_FIELD_BITPOS (type, variant_field)
7268 / TARGET_CHAR_BIT),
7269 cond_offset_target (address,
7270 TYPE_FIELD_BITPOS (type, variant_field)
7271 / TARGET_CHAR_BIT), dval);
7272 if (branch_type == NULL)
7273 {
7274 int f;
7275 for (f = variant_field + 1; f < nfields; f += 1)
7276 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7277 TYPE_NFIELDS (rtype) -= 1;
7278 }
7279 else
7280 {
7281 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7282 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7283 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7284 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7285 }
7286 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7287
7288 value_free_to_mark (mark);
7289 return rtype;
7290 }
7291
7292 /* An ordinary record type (with fixed-length fields) that describes
7293 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7294 beginning of this section]. Any necessary discriminants' values
7295 should be in DVAL, a record value; it may be NULL if the object
7296 at ADDR itself contains any necessary discriminant values.
7297 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7298 values from the record are needed. Except in the case that DVAL,
7299 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7300 unchecked) is replaced by a particular branch of the variant.
7301
7302 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7303 is questionable and may be removed. It can arise during the
7304 processing of an unconstrained-array-of-record type where all the
7305 variant branches have exactly the same size. This is because in
7306 such cases, the compiler does not bother to use the XVS convention
7307 when encoding the record. I am currently dubious of this
7308 shortcut and suspect the compiler should be altered. FIXME. */
7309
7310 static struct type *
7311 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7312 CORE_ADDR address, struct value *dval)
7313 {
7314 struct type *templ_type;
7315
7316 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7317 return type0;
7318
7319 templ_type = dynamic_template_type (type0);
7320
7321 if (templ_type != NULL)
7322 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7323 else if (variant_field_index (type0) >= 0)
7324 {
7325 if (dval == NULL && valaddr == NULL && address == 0)
7326 return type0;
7327 return to_record_with_fixed_variant_part (type0, valaddr, address,
7328 dval);
7329 }
7330 else
7331 {
7332 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
7333 return type0;
7334 }
7335
7336 }
7337
7338 /* An ordinary record type (with fixed-length fields) that describes
7339 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7340 union type. Any necessary discriminants' values should be in DVAL,
7341 a record value. That is, this routine selects the appropriate
7342 branch of the union at ADDR according to the discriminant value
7343 indicated in the union's type name. */
7344
7345 static struct type *
7346 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7347 CORE_ADDR address, struct value *dval)
7348 {
7349 int which;
7350 struct type *templ_type;
7351 struct type *var_type;
7352
7353 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7354 var_type = TYPE_TARGET_TYPE (var_type0);
7355 else
7356 var_type = var_type0;
7357
7358 templ_type = ada_find_parallel_type (var_type, "___XVU");
7359
7360 if (templ_type != NULL)
7361 var_type = templ_type;
7362
7363 which =
7364 ada_which_variant_applies (var_type,
7365 value_type (dval), value_contents (dval));
7366
7367 if (which < 0)
7368 return empty_record (TYPE_OBJFILE (var_type));
7369 else if (is_dynamic_field (var_type, which))
7370 return to_fixed_record_type
7371 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7372 valaddr, address, dval);
7373 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7374 return
7375 to_fixed_record_type
7376 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7377 else
7378 return TYPE_FIELD_TYPE (var_type, which);
7379 }
7380
7381 /* Assuming that TYPE0 is an array type describing the type of a value
7382 at ADDR, and that DVAL describes a record containing any
7383 discriminants used in TYPE0, returns a type for the value that
7384 contains no dynamic components (that is, no components whose sizes
7385 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7386 true, gives an error message if the resulting type's size is over
7387 varsize_limit. */
7388
7389 static struct type *
7390 to_fixed_array_type (struct type *type0, struct value *dval,
7391 int ignore_too_big)
7392 {
7393 struct type *index_type_desc;
7394 struct type *result;
7395
7396 if (ada_is_packed_array_type (type0) /* revisit? */
7397 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
7398 return type0;
7399
7400 index_type_desc = ada_find_parallel_type (type0, "___XA");
7401 if (index_type_desc == NULL)
7402 {
7403 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7404 /* NOTE: elt_type---the fixed version of elt_type0---should never
7405 depend on the contents of the array in properly constructed
7406 debugging data. */
7407 /* Create a fixed version of the array element type.
7408 We're not providing the address of an element here,
7409 and thus the actual object value cannot be inspected to do
7410 the conversion. This should not be a problem, since arrays of
7411 unconstrained objects are not allowed. In particular, all
7412 the elements of an array of a tagged type should all be of
7413 the same type specified in the debugging info. No need to
7414 consult the object tag. */
7415 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7416
7417 if (elt_type0 == elt_type)
7418 result = type0;
7419 else
7420 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7421 elt_type, TYPE_INDEX_TYPE (type0));
7422 }
7423 else
7424 {
7425 int i;
7426 struct type *elt_type0;
7427
7428 elt_type0 = type0;
7429 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7430 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7431
7432 /* NOTE: result---the fixed version of elt_type0---should never
7433 depend on the contents of the array in properly constructed
7434 debugging data. */
7435 /* Create a fixed version of the array element type.
7436 We're not providing the address of an element here,
7437 and thus the actual object value cannot be inspected to do
7438 the conversion. This should not be a problem, since arrays of
7439 unconstrained objects are not allowed. In particular, all
7440 the elements of an array of a tagged type should all be of
7441 the same type specified in the debugging info. No need to
7442 consult the object tag. */
7443 result =
7444 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7445 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7446 {
7447 struct type *range_type =
7448 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7449 dval, TYPE_OBJFILE (type0));
7450 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7451 result, range_type);
7452 }
7453 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7454 error (_("array type with dynamic size is larger than varsize-limit"));
7455 }
7456
7457 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
7458 return result;
7459 }
7460
7461
7462 /* A standard type (containing no dynamically sized components)
7463 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7464 DVAL describes a record containing any discriminants used in TYPE0,
7465 and may be NULL if there are none, or if the object of type TYPE at
7466 ADDRESS or in VALADDR contains these discriminants.
7467
7468 If CHECK_TAG is not null, in the case of tagged types, this function
7469 attempts to locate the object's tag and use it to compute the actual
7470 type. However, when ADDRESS is null, we cannot use it to determine the
7471 location of the tag, and therefore compute the tagged type's actual type.
7472 So we return the tagged type without consulting the tag. */
7473
7474 static struct type *
7475 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7476 CORE_ADDR address, struct value *dval, int check_tag)
7477 {
7478 type = ada_check_typedef (type);
7479 switch (TYPE_CODE (type))
7480 {
7481 default:
7482 return type;
7483 case TYPE_CODE_STRUCT:
7484 {
7485 struct type *static_type = to_static_fixed_type (type);
7486 struct type *fixed_record_type =
7487 to_fixed_record_type (type, valaddr, address, NULL);
7488 /* If STATIC_TYPE is a tagged type and we know the object's address,
7489 then we can determine its tag, and compute the object's actual
7490 type from there. Note that we have to use the fixed record
7491 type (the parent part of the record may have dynamic fields
7492 and the way the location of _tag is expressed may depend on
7493 them). */
7494
7495 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7496 {
7497 struct type *real_type =
7498 type_from_tag (value_tag_from_contents_and_address
7499 (fixed_record_type,
7500 valaddr,
7501 address));
7502 if (real_type != NULL)
7503 return to_fixed_record_type (real_type, valaddr, address, NULL);
7504 }
7505 return fixed_record_type;
7506 }
7507 case TYPE_CODE_ARRAY:
7508 return to_fixed_array_type (type, dval, 1);
7509 case TYPE_CODE_UNION:
7510 if (dval == NULL)
7511 return type;
7512 else
7513 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7514 }
7515 }
7516
7517 /* The same as ada_to_fixed_type_1, except that it preserves the type
7518 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7519 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7520
7521 struct type *
7522 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7523 CORE_ADDR address, struct value *dval, int check_tag)
7524
7525 {
7526 struct type *fixed_type =
7527 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7528
7529 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7530 && TYPE_TARGET_TYPE (type) == fixed_type)
7531 return type;
7532
7533 return fixed_type;
7534 }
7535
7536 /* A standard (static-sized) type corresponding as well as possible to
7537 TYPE0, but based on no runtime data. */
7538
7539 static struct type *
7540 to_static_fixed_type (struct type *type0)
7541 {
7542 struct type *type;
7543
7544 if (type0 == NULL)
7545 return NULL;
7546
7547 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7548 return type0;
7549
7550 type0 = ada_check_typedef (type0);
7551
7552 switch (TYPE_CODE (type0))
7553 {
7554 default:
7555 return type0;
7556 case TYPE_CODE_STRUCT:
7557 type = dynamic_template_type (type0);
7558 if (type != NULL)
7559 return template_to_static_fixed_type (type);
7560 else
7561 return template_to_static_fixed_type (type0);
7562 case TYPE_CODE_UNION:
7563 type = ada_find_parallel_type (type0, "___XVU");
7564 if (type != NULL)
7565 return template_to_static_fixed_type (type);
7566 else
7567 return template_to_static_fixed_type (type0);
7568 }
7569 }
7570
7571 /* A static approximation of TYPE with all type wrappers removed. */
7572
7573 static struct type *
7574 static_unwrap_type (struct type *type)
7575 {
7576 if (ada_is_aligner_type (type))
7577 {
7578 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7579 if (ada_type_name (type1) == NULL)
7580 TYPE_NAME (type1) = ada_type_name (type);
7581
7582 return static_unwrap_type (type1);
7583 }
7584 else
7585 {
7586 struct type *raw_real_type = ada_get_base_type (type);
7587 if (raw_real_type == type)
7588 return type;
7589 else
7590 return to_static_fixed_type (raw_real_type);
7591 }
7592 }
7593
7594 /* In some cases, incomplete and private types require
7595 cross-references that are not resolved as records (for example,
7596 type Foo;
7597 type FooP is access Foo;
7598 V: FooP;
7599 type Foo is array ...;
7600 ). In these cases, since there is no mechanism for producing
7601 cross-references to such types, we instead substitute for FooP a
7602 stub enumeration type that is nowhere resolved, and whose tag is
7603 the name of the actual type. Call these types "non-record stubs". */
7604
7605 /* A type equivalent to TYPE that is not a non-record stub, if one
7606 exists, otherwise TYPE. */
7607
7608 struct type *
7609 ada_check_typedef (struct type *type)
7610 {
7611 if (type == NULL)
7612 return NULL;
7613
7614 CHECK_TYPEDEF (type);
7615 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7616 || !TYPE_STUB (type)
7617 || TYPE_TAG_NAME (type) == NULL)
7618 return type;
7619 else
7620 {
7621 char *name = TYPE_TAG_NAME (type);
7622 struct type *type1 = ada_find_any_type (name);
7623 return (type1 == NULL) ? type : type1;
7624 }
7625 }
7626
7627 /* A value representing the data at VALADDR/ADDRESS as described by
7628 type TYPE0, but with a standard (static-sized) type that correctly
7629 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7630 type, then return VAL0 [this feature is simply to avoid redundant
7631 creation of struct values]. */
7632
7633 static struct value *
7634 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7635 struct value *val0)
7636 {
7637 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7638 if (type == type0 && val0 != NULL)
7639 return val0;
7640 else
7641 return value_from_contents_and_address (type, 0, address);
7642 }
7643
7644 /* A value representing VAL, but with a standard (static-sized) type
7645 that correctly describes it. Does not necessarily create a new
7646 value. */
7647
7648 static struct value *
7649 ada_to_fixed_value (struct value *val)
7650 {
7651 return ada_to_fixed_value_create (value_type (val),
7652 VALUE_ADDRESS (val) + value_offset (val),
7653 val);
7654 }
7655
7656 /* A value representing VAL, but with a standard (static-sized) type
7657 chosen to approximate the real type of VAL as well as possible, but
7658 without consulting any runtime values. For Ada dynamic-sized
7659 types, therefore, the type of the result is likely to be inaccurate. */
7660
7661 struct value *
7662 ada_to_static_fixed_value (struct value *val)
7663 {
7664 struct type *type =
7665 to_static_fixed_type (static_unwrap_type (value_type (val)));
7666 if (type == value_type (val))
7667 return val;
7668 else
7669 return coerce_unspec_val_to_type (val, type);
7670 }
7671 \f
7672
7673 /* Attributes */
7674
7675 /* Table mapping attribute numbers to names.
7676 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7677
7678 static const char *attribute_names[] = {
7679 "<?>",
7680
7681 "first",
7682 "last",
7683 "length",
7684 "image",
7685 "max",
7686 "min",
7687 "modulus",
7688 "pos",
7689 "size",
7690 "tag",
7691 "val",
7692 0
7693 };
7694
7695 const char *
7696 ada_attribute_name (enum exp_opcode n)
7697 {
7698 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7699 return attribute_names[n - OP_ATR_FIRST + 1];
7700 else
7701 return attribute_names[0];
7702 }
7703
7704 /* Evaluate the 'POS attribute applied to ARG. */
7705
7706 static LONGEST
7707 pos_atr (struct value *arg)
7708 {
7709 struct type *type = value_type (arg);
7710
7711 if (!discrete_type_p (type))
7712 error (_("'POS only defined on discrete types"));
7713
7714 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7715 {
7716 int i;
7717 LONGEST v = value_as_long (arg);
7718
7719 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7720 {
7721 if (v == TYPE_FIELD_BITPOS (type, i))
7722 return i;
7723 }
7724 error (_("enumeration value is invalid: can't find 'POS"));
7725 }
7726 else
7727 return value_as_long (arg);
7728 }
7729
7730 static struct value *
7731 value_pos_atr (struct value *arg)
7732 {
7733 return value_from_longest (builtin_type_int, pos_atr (arg));
7734 }
7735
7736 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7737
7738 static struct value *
7739 value_val_atr (struct type *type, struct value *arg)
7740 {
7741 if (!discrete_type_p (type))
7742 error (_("'VAL only defined on discrete types"));
7743 if (!integer_type_p (value_type (arg)))
7744 error (_("'VAL requires integral argument"));
7745
7746 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7747 {
7748 long pos = value_as_long (arg);
7749 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7750 error (_("argument to 'VAL out of range"));
7751 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7752 }
7753 else
7754 return value_from_longest (type, value_as_long (arg));
7755 }
7756 \f
7757
7758 /* Evaluation */
7759
7760 /* True if TYPE appears to be an Ada character type.
7761 [At the moment, this is true only for Character and Wide_Character;
7762 It is a heuristic test that could stand improvement]. */
7763
7764 int
7765 ada_is_character_type (struct type *type)
7766 {
7767 const char *name;
7768
7769 /* If the type code says it's a character, then assume it really is,
7770 and don't check any further. */
7771 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7772 return 1;
7773
7774 /* Otherwise, assume it's a character type iff it is a discrete type
7775 with a known character type name. */
7776 name = ada_type_name (type);
7777 return (name != NULL
7778 && (TYPE_CODE (type) == TYPE_CODE_INT
7779 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7780 && (strcmp (name, "character") == 0
7781 || strcmp (name, "wide_character") == 0
7782 || strcmp (name, "wide_wide_character") == 0
7783 || strcmp (name, "unsigned char") == 0));
7784 }
7785
7786 /* True if TYPE appears to be an Ada string type. */
7787
7788 int
7789 ada_is_string_type (struct type *type)
7790 {
7791 type = ada_check_typedef (type);
7792 if (type != NULL
7793 && TYPE_CODE (type) != TYPE_CODE_PTR
7794 && (ada_is_simple_array_type (type)
7795 || ada_is_array_descriptor_type (type))
7796 && ada_array_arity (type) == 1)
7797 {
7798 struct type *elttype = ada_array_element_type (type, 1);
7799
7800 return ada_is_character_type (elttype);
7801 }
7802 else
7803 return 0;
7804 }
7805
7806
7807 /* True if TYPE is a struct type introduced by the compiler to force the
7808 alignment of a value. Such types have a single field with a
7809 distinctive name. */
7810
7811 int
7812 ada_is_aligner_type (struct type *type)
7813 {
7814 type = ada_check_typedef (type);
7815
7816 /* If we can find a parallel XVS type, then the XVS type should
7817 be used instead of this type. And hence, this is not an aligner
7818 type. */
7819 if (ada_find_parallel_type (type, "___XVS") != NULL)
7820 return 0;
7821
7822 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7823 && TYPE_NFIELDS (type) == 1
7824 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7825 }
7826
7827 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7828 the parallel type. */
7829
7830 struct type *
7831 ada_get_base_type (struct type *raw_type)
7832 {
7833 struct type *real_type_namer;
7834 struct type *raw_real_type;
7835
7836 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7837 return raw_type;
7838
7839 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7840 if (real_type_namer == NULL
7841 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7842 || TYPE_NFIELDS (real_type_namer) != 1)
7843 return raw_type;
7844
7845 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7846 if (raw_real_type == NULL)
7847 return raw_type;
7848 else
7849 return raw_real_type;
7850 }
7851
7852 /* The type of value designated by TYPE, with all aligners removed. */
7853
7854 struct type *
7855 ada_aligned_type (struct type *type)
7856 {
7857 if (ada_is_aligner_type (type))
7858 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7859 else
7860 return ada_get_base_type (type);
7861 }
7862
7863
7864 /* The address of the aligned value in an object at address VALADDR
7865 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7866
7867 const gdb_byte *
7868 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7869 {
7870 if (ada_is_aligner_type (type))
7871 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7872 valaddr +
7873 TYPE_FIELD_BITPOS (type,
7874 0) / TARGET_CHAR_BIT);
7875 else
7876 return valaddr;
7877 }
7878
7879
7880
7881 /* The printed representation of an enumeration literal with encoded
7882 name NAME. The value is good to the next call of ada_enum_name. */
7883 const char *
7884 ada_enum_name (const char *name)
7885 {
7886 static char *result;
7887 static size_t result_len = 0;
7888 char *tmp;
7889
7890 /* First, unqualify the enumeration name:
7891 1. Search for the last '.' character. If we find one, then skip
7892 all the preceeding characters, the unqualified name starts
7893 right after that dot.
7894 2. Otherwise, we may be debugging on a target where the compiler
7895 translates dots into "__". Search forward for double underscores,
7896 but stop searching when we hit an overloading suffix, which is
7897 of the form "__" followed by digits. */
7898
7899 tmp = strrchr (name, '.');
7900 if (tmp != NULL)
7901 name = tmp + 1;
7902 else
7903 {
7904 while ((tmp = strstr (name, "__")) != NULL)
7905 {
7906 if (isdigit (tmp[2]))
7907 break;
7908 else
7909 name = tmp + 2;
7910 }
7911 }
7912
7913 if (name[0] == 'Q')
7914 {
7915 int v;
7916 if (name[1] == 'U' || name[1] == 'W')
7917 {
7918 if (sscanf (name + 2, "%x", &v) != 1)
7919 return name;
7920 }
7921 else
7922 return name;
7923
7924 GROW_VECT (result, result_len, 16);
7925 if (isascii (v) && isprint (v))
7926 sprintf (result, "'%c'", v);
7927 else if (name[1] == 'U')
7928 sprintf (result, "[\"%02x\"]", v);
7929 else
7930 sprintf (result, "[\"%04x\"]", v);
7931
7932 return result;
7933 }
7934 else
7935 {
7936 tmp = strstr (name, "__");
7937 if (tmp == NULL)
7938 tmp = strstr (name, "$");
7939 if (tmp != NULL)
7940 {
7941 GROW_VECT (result, result_len, tmp - name + 1);
7942 strncpy (result, name, tmp - name);
7943 result[tmp - name] = '\0';
7944 return result;
7945 }
7946
7947 return name;
7948 }
7949 }
7950
7951 static struct value *
7952 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7953 enum noside noside)
7954 {
7955 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7956 (expect_type, exp, pos, noside);
7957 }
7958
7959 /* Evaluate the subexpression of EXP starting at *POS as for
7960 evaluate_type, updating *POS to point just past the evaluated
7961 expression. */
7962
7963 static struct value *
7964 evaluate_subexp_type (struct expression *exp, int *pos)
7965 {
7966 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7967 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7968 }
7969
7970 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7971 value it wraps. */
7972
7973 static struct value *
7974 unwrap_value (struct value *val)
7975 {
7976 struct type *type = ada_check_typedef (value_type (val));
7977 if (ada_is_aligner_type (type))
7978 {
7979 struct value *v = value_struct_elt (&val, NULL, "F",
7980 NULL, "internal structure");
7981 struct type *val_type = ada_check_typedef (value_type (v));
7982 if (ada_type_name (val_type) == NULL)
7983 TYPE_NAME (val_type) = ada_type_name (type);
7984
7985 return unwrap_value (v);
7986 }
7987 else
7988 {
7989 struct type *raw_real_type =
7990 ada_check_typedef (ada_get_base_type (type));
7991
7992 if (type == raw_real_type)
7993 return val;
7994
7995 return
7996 coerce_unspec_val_to_type
7997 (val, ada_to_fixed_type (raw_real_type, 0,
7998 VALUE_ADDRESS (val) + value_offset (val),
7999 NULL, 1));
8000 }
8001 }
8002
8003 static struct value *
8004 cast_to_fixed (struct type *type, struct value *arg)
8005 {
8006 LONGEST val;
8007
8008 if (type == value_type (arg))
8009 return arg;
8010 else if (ada_is_fixed_point_type (value_type (arg)))
8011 val = ada_float_to_fixed (type,
8012 ada_fixed_to_float (value_type (arg),
8013 value_as_long (arg)));
8014 else
8015 {
8016 DOUBLEST argd =
8017 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
8018 val = ada_float_to_fixed (type, argd);
8019 }
8020
8021 return value_from_longest (type, val);
8022 }
8023
8024 static struct value *
8025 cast_from_fixed_to_double (struct value *arg)
8026 {
8027 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8028 value_as_long (arg));
8029 return value_from_double (builtin_type_double, val);
8030 }
8031
8032 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8033 return the converted value. */
8034
8035 static struct value *
8036 coerce_for_assign (struct type *type, struct value *val)
8037 {
8038 struct type *type2 = value_type (val);
8039 if (type == type2)
8040 return val;
8041
8042 type2 = ada_check_typedef (type2);
8043 type = ada_check_typedef (type);
8044
8045 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8046 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8047 {
8048 val = ada_value_ind (val);
8049 type2 = value_type (val);
8050 }
8051
8052 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8053 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8054 {
8055 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8056 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8057 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8058 error (_("Incompatible types in assignment"));
8059 deprecated_set_value_type (val, type);
8060 }
8061 return val;
8062 }
8063
8064 static struct value *
8065 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8066 {
8067 struct value *val;
8068 struct type *type1, *type2;
8069 LONGEST v, v1, v2;
8070
8071 arg1 = coerce_ref (arg1);
8072 arg2 = coerce_ref (arg2);
8073 type1 = base_type (ada_check_typedef (value_type (arg1)));
8074 type2 = base_type (ada_check_typedef (value_type (arg2)));
8075
8076 if (TYPE_CODE (type1) != TYPE_CODE_INT
8077 || TYPE_CODE (type2) != TYPE_CODE_INT)
8078 return value_binop (arg1, arg2, op);
8079
8080 switch (op)
8081 {
8082 case BINOP_MOD:
8083 case BINOP_DIV:
8084 case BINOP_REM:
8085 break;
8086 default:
8087 return value_binop (arg1, arg2, op);
8088 }
8089
8090 v2 = value_as_long (arg2);
8091 if (v2 == 0)
8092 error (_("second operand of %s must not be zero."), op_string (op));
8093
8094 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8095 return value_binop (arg1, arg2, op);
8096
8097 v1 = value_as_long (arg1);
8098 switch (op)
8099 {
8100 case BINOP_DIV:
8101 v = v1 / v2;
8102 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8103 v += v > 0 ? -1 : 1;
8104 break;
8105 case BINOP_REM:
8106 v = v1 % v2;
8107 if (v * v1 < 0)
8108 v -= v2;
8109 break;
8110 default:
8111 /* Should not reach this point. */
8112 v = 0;
8113 }
8114
8115 val = allocate_value (type1);
8116 store_unsigned_integer (value_contents_raw (val),
8117 TYPE_LENGTH (value_type (val)), v);
8118 return val;
8119 }
8120
8121 static int
8122 ada_value_equal (struct value *arg1, struct value *arg2)
8123 {
8124 if (ada_is_direct_array_type (value_type (arg1))
8125 || ada_is_direct_array_type (value_type (arg2)))
8126 {
8127 /* Automatically dereference any array reference before
8128 we attempt to perform the comparison. */
8129 arg1 = ada_coerce_ref (arg1);
8130 arg2 = ada_coerce_ref (arg2);
8131
8132 arg1 = ada_coerce_to_simple_array (arg1);
8133 arg2 = ada_coerce_to_simple_array (arg2);
8134 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8135 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8136 error (_("Attempt to compare array with non-array"));
8137 /* FIXME: The following works only for types whose
8138 representations use all bits (no padding or undefined bits)
8139 and do not have user-defined equality. */
8140 return
8141 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8142 && memcmp (value_contents (arg1), value_contents (arg2),
8143 TYPE_LENGTH (value_type (arg1))) == 0;
8144 }
8145 return value_equal (arg1, arg2);
8146 }
8147
8148 /* Total number of component associations in the aggregate starting at
8149 index PC in EXP. Assumes that index PC is the start of an
8150 OP_AGGREGATE. */
8151
8152 static int
8153 num_component_specs (struct expression *exp, int pc)
8154 {
8155 int n, m, i;
8156 m = exp->elts[pc + 1].longconst;
8157 pc += 3;
8158 n = 0;
8159 for (i = 0; i < m; i += 1)
8160 {
8161 switch (exp->elts[pc].opcode)
8162 {
8163 default:
8164 n += 1;
8165 break;
8166 case OP_CHOICES:
8167 n += exp->elts[pc + 1].longconst;
8168 break;
8169 }
8170 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8171 }
8172 return n;
8173 }
8174
8175 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8176 component of LHS (a simple array or a record), updating *POS past
8177 the expression, assuming that LHS is contained in CONTAINER. Does
8178 not modify the inferior's memory, nor does it modify LHS (unless
8179 LHS == CONTAINER). */
8180
8181 static void
8182 assign_component (struct value *container, struct value *lhs, LONGEST index,
8183 struct expression *exp, int *pos)
8184 {
8185 struct value *mark = value_mark ();
8186 struct value *elt;
8187 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8188 {
8189 struct value *index_val = value_from_longest (builtin_type_int, index);
8190 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8191 }
8192 else
8193 {
8194 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8195 elt = ada_to_fixed_value (unwrap_value (elt));
8196 }
8197
8198 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8199 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8200 else
8201 value_assign_to_component (container, elt,
8202 ada_evaluate_subexp (NULL, exp, pos,
8203 EVAL_NORMAL));
8204
8205 value_free_to_mark (mark);
8206 }
8207
8208 /* Assuming that LHS represents an lvalue having a record or array
8209 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8210 of that aggregate's value to LHS, advancing *POS past the
8211 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8212 lvalue containing LHS (possibly LHS itself). Does not modify
8213 the inferior's memory, nor does it modify the contents of
8214 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8215
8216 static struct value *
8217 assign_aggregate (struct value *container,
8218 struct value *lhs, struct expression *exp,
8219 int *pos, enum noside noside)
8220 {
8221 struct type *lhs_type;
8222 int n = exp->elts[*pos+1].longconst;
8223 LONGEST low_index, high_index;
8224 int num_specs;
8225 LONGEST *indices;
8226 int max_indices, num_indices;
8227 int is_array_aggregate;
8228 int i;
8229 struct value *mark = value_mark ();
8230
8231 *pos += 3;
8232 if (noside != EVAL_NORMAL)
8233 {
8234 int i;
8235 for (i = 0; i < n; i += 1)
8236 ada_evaluate_subexp (NULL, exp, pos, noside);
8237 return container;
8238 }
8239
8240 container = ada_coerce_ref (container);
8241 if (ada_is_direct_array_type (value_type (container)))
8242 container = ada_coerce_to_simple_array (container);
8243 lhs = ada_coerce_ref (lhs);
8244 if (!deprecated_value_modifiable (lhs))
8245 error (_("Left operand of assignment is not a modifiable lvalue."));
8246
8247 lhs_type = value_type (lhs);
8248 if (ada_is_direct_array_type (lhs_type))
8249 {
8250 lhs = ada_coerce_to_simple_array (lhs);
8251 lhs_type = value_type (lhs);
8252 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8253 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8254 is_array_aggregate = 1;
8255 }
8256 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8257 {
8258 low_index = 0;
8259 high_index = num_visible_fields (lhs_type) - 1;
8260 is_array_aggregate = 0;
8261 }
8262 else
8263 error (_("Left-hand side must be array or record."));
8264
8265 num_specs = num_component_specs (exp, *pos - 3);
8266 max_indices = 4 * num_specs + 4;
8267 indices = alloca (max_indices * sizeof (indices[0]));
8268 indices[0] = indices[1] = low_index - 1;
8269 indices[2] = indices[3] = high_index + 1;
8270 num_indices = 4;
8271
8272 for (i = 0; i < n; i += 1)
8273 {
8274 switch (exp->elts[*pos].opcode)
8275 {
8276 case OP_CHOICES:
8277 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8278 &num_indices, max_indices,
8279 low_index, high_index);
8280 break;
8281 case OP_POSITIONAL:
8282 aggregate_assign_positional (container, lhs, exp, pos, indices,
8283 &num_indices, max_indices,
8284 low_index, high_index);
8285 break;
8286 case OP_OTHERS:
8287 if (i != n-1)
8288 error (_("Misplaced 'others' clause"));
8289 aggregate_assign_others (container, lhs, exp, pos, indices,
8290 num_indices, low_index, high_index);
8291 break;
8292 default:
8293 error (_("Internal error: bad aggregate clause"));
8294 }
8295 }
8296
8297 return container;
8298 }
8299
8300 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8301 construct at *POS, updating *POS past the construct, given that
8302 the positions are relative to lower bound LOW, where HIGH is the
8303 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8304 updating *NUM_INDICES as needed. CONTAINER is as for
8305 assign_aggregate. */
8306 static void
8307 aggregate_assign_positional (struct value *container,
8308 struct value *lhs, struct expression *exp,
8309 int *pos, LONGEST *indices, int *num_indices,
8310 int max_indices, LONGEST low, LONGEST high)
8311 {
8312 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8313
8314 if (ind - 1 == high)
8315 warning (_("Extra components in aggregate ignored."));
8316 if (ind <= high)
8317 {
8318 add_component_interval (ind, ind, indices, num_indices, max_indices);
8319 *pos += 3;
8320 assign_component (container, lhs, ind, exp, pos);
8321 }
8322 else
8323 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8324 }
8325
8326 /* Assign into the components of LHS indexed by the OP_CHOICES
8327 construct at *POS, updating *POS past the construct, given that
8328 the allowable indices are LOW..HIGH. Record the indices assigned
8329 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8330 needed. CONTAINER is as for assign_aggregate. */
8331 static void
8332 aggregate_assign_from_choices (struct value *container,
8333 struct value *lhs, struct expression *exp,
8334 int *pos, LONGEST *indices, int *num_indices,
8335 int max_indices, LONGEST low, LONGEST high)
8336 {
8337 int j;
8338 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8339 int choice_pos, expr_pc;
8340 int is_array = ada_is_direct_array_type (value_type (lhs));
8341
8342 choice_pos = *pos += 3;
8343
8344 for (j = 0; j < n_choices; j += 1)
8345 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8346 expr_pc = *pos;
8347 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8348
8349 for (j = 0; j < n_choices; j += 1)
8350 {
8351 LONGEST lower, upper;
8352 enum exp_opcode op = exp->elts[choice_pos].opcode;
8353 if (op == OP_DISCRETE_RANGE)
8354 {
8355 choice_pos += 1;
8356 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8357 EVAL_NORMAL));
8358 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8359 EVAL_NORMAL));
8360 }
8361 else if (is_array)
8362 {
8363 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8364 EVAL_NORMAL));
8365 upper = lower;
8366 }
8367 else
8368 {
8369 int ind;
8370 char *name;
8371 switch (op)
8372 {
8373 case OP_NAME:
8374 name = &exp->elts[choice_pos + 2].string;
8375 break;
8376 case OP_VAR_VALUE:
8377 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8378 break;
8379 default:
8380 error (_("Invalid record component association."));
8381 }
8382 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8383 ind = 0;
8384 if (! find_struct_field (name, value_type (lhs), 0,
8385 NULL, NULL, NULL, NULL, &ind))
8386 error (_("Unknown component name: %s."), name);
8387 lower = upper = ind;
8388 }
8389
8390 if (lower <= upper && (lower < low || upper > high))
8391 error (_("Index in component association out of bounds."));
8392
8393 add_component_interval (lower, upper, indices, num_indices,
8394 max_indices);
8395 while (lower <= upper)
8396 {
8397 int pos1;
8398 pos1 = expr_pc;
8399 assign_component (container, lhs, lower, exp, &pos1);
8400 lower += 1;
8401 }
8402 }
8403 }
8404
8405 /* Assign the value of the expression in the OP_OTHERS construct in
8406 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8407 have not been previously assigned. The index intervals already assigned
8408 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8409 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8410 static void
8411 aggregate_assign_others (struct value *container,
8412 struct value *lhs, struct expression *exp,
8413 int *pos, LONGEST *indices, int num_indices,
8414 LONGEST low, LONGEST high)
8415 {
8416 int i;
8417 int expr_pc = *pos+1;
8418
8419 for (i = 0; i < num_indices - 2; i += 2)
8420 {
8421 LONGEST ind;
8422 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8423 {
8424 int pos;
8425 pos = expr_pc;
8426 assign_component (container, lhs, ind, exp, &pos);
8427 }
8428 }
8429 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8430 }
8431
8432 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8433 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8434 modifying *SIZE as needed. It is an error if *SIZE exceeds
8435 MAX_SIZE. The resulting intervals do not overlap. */
8436 static void
8437 add_component_interval (LONGEST low, LONGEST high,
8438 LONGEST* indices, int *size, int max_size)
8439 {
8440 int i, j;
8441 for (i = 0; i < *size; i += 2) {
8442 if (high >= indices[i] && low <= indices[i + 1])
8443 {
8444 int kh;
8445 for (kh = i + 2; kh < *size; kh += 2)
8446 if (high < indices[kh])
8447 break;
8448 if (low < indices[i])
8449 indices[i] = low;
8450 indices[i + 1] = indices[kh - 1];
8451 if (high > indices[i + 1])
8452 indices[i + 1] = high;
8453 memcpy (indices + i + 2, indices + kh, *size - kh);
8454 *size -= kh - i - 2;
8455 return;
8456 }
8457 else if (high < indices[i])
8458 break;
8459 }
8460
8461 if (*size == max_size)
8462 error (_("Internal error: miscounted aggregate components."));
8463 *size += 2;
8464 for (j = *size-1; j >= i+2; j -= 1)
8465 indices[j] = indices[j - 2];
8466 indices[i] = low;
8467 indices[i + 1] = high;
8468 }
8469
8470 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8471 is different. */
8472
8473 static struct value *
8474 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8475 {
8476 if (type == ada_check_typedef (value_type (arg2)))
8477 return arg2;
8478
8479 if (ada_is_fixed_point_type (type))
8480 return (cast_to_fixed (type, arg2));
8481
8482 if (ada_is_fixed_point_type (value_type (arg2)))
8483 return value_cast (type, cast_from_fixed_to_double (arg2));
8484
8485 return value_cast (type, arg2);
8486 }
8487
8488 static struct value *
8489 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8490 int *pos, enum noside noside)
8491 {
8492 enum exp_opcode op;
8493 int tem, tem2, tem3;
8494 int pc;
8495 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8496 struct type *type;
8497 int nargs, oplen;
8498 struct value **argvec;
8499
8500 pc = *pos;
8501 *pos += 1;
8502 op = exp->elts[pc].opcode;
8503
8504 switch (op)
8505 {
8506 default:
8507 *pos -= 1;
8508 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8509 arg1 = unwrap_value (arg1);
8510
8511 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8512 then we need to perform the conversion manually, because
8513 evaluate_subexp_standard doesn't do it. This conversion is
8514 necessary in Ada because the different kinds of float/fixed
8515 types in Ada have different representations.
8516
8517 Similarly, we need to perform the conversion from OP_LONG
8518 ourselves. */
8519 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8520 arg1 = ada_value_cast (expect_type, arg1, noside);
8521
8522 return arg1;
8523
8524 case OP_STRING:
8525 {
8526 struct value *result;
8527 *pos -= 1;
8528 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8529 /* The result type will have code OP_STRING, bashed there from
8530 OP_ARRAY. Bash it back. */
8531 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8532 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8533 return result;
8534 }
8535
8536 case UNOP_CAST:
8537 (*pos) += 2;
8538 type = exp->elts[pc + 1].type;
8539 arg1 = evaluate_subexp (type, exp, pos, noside);
8540 if (noside == EVAL_SKIP)
8541 goto nosideret;
8542 arg1 = ada_value_cast (type, arg1, noside);
8543 return arg1;
8544
8545 case UNOP_QUAL:
8546 (*pos) += 2;
8547 type = exp->elts[pc + 1].type;
8548 return ada_evaluate_subexp (type, exp, pos, noside);
8549
8550 case BINOP_ASSIGN:
8551 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8552 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8553 {
8554 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8555 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8556 return arg1;
8557 return ada_value_assign (arg1, arg1);
8558 }
8559 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8560 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8561 return arg1;
8562 if (ada_is_fixed_point_type (value_type (arg1)))
8563 arg2 = cast_to_fixed (value_type (arg1), arg2);
8564 else if (ada_is_fixed_point_type (value_type (arg2)))
8565 error
8566 (_("Fixed-point values must be assigned to fixed-point variables"));
8567 else
8568 arg2 = coerce_for_assign (value_type (arg1), arg2);
8569 return ada_value_assign (arg1, arg2);
8570
8571 case BINOP_ADD:
8572 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8573 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8574 if (noside == EVAL_SKIP)
8575 goto nosideret;
8576 if ((ada_is_fixed_point_type (value_type (arg1))
8577 || ada_is_fixed_point_type (value_type (arg2)))
8578 && value_type (arg1) != value_type (arg2))
8579 error (_("Operands of fixed-point addition must have the same type"));
8580 /* Do the addition, and cast the result to the type of the first
8581 argument. We cannot cast the result to a reference type, so if
8582 ARG1 is a reference type, find its underlying type. */
8583 type = value_type (arg1);
8584 while (TYPE_CODE (type) == TYPE_CODE_REF)
8585 type = TYPE_TARGET_TYPE (type);
8586 return value_cast (type, value_add (arg1, arg2));
8587
8588 case BINOP_SUB:
8589 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8590 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8591 if (noside == EVAL_SKIP)
8592 goto nosideret;
8593 if ((ada_is_fixed_point_type (value_type (arg1))
8594 || ada_is_fixed_point_type (value_type (arg2)))
8595 && value_type (arg1) != value_type (arg2))
8596 error (_("Operands of fixed-point subtraction must have the same type"));
8597 /* Do the substraction, and cast the result to the type of the first
8598 argument. We cannot cast the result to a reference type, so if
8599 ARG1 is a reference type, find its underlying type. */
8600 type = value_type (arg1);
8601 while (TYPE_CODE (type) == TYPE_CODE_REF)
8602 type = TYPE_TARGET_TYPE (type);
8603 return value_cast (type, value_sub (arg1, arg2));
8604
8605 case BINOP_MUL:
8606 case BINOP_DIV:
8607 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8608 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8609 if (noside == EVAL_SKIP)
8610 goto nosideret;
8611 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8612 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8613 return value_zero (value_type (arg1), not_lval);
8614 else
8615 {
8616 if (ada_is_fixed_point_type (value_type (arg1)))
8617 arg1 = cast_from_fixed_to_double (arg1);
8618 if (ada_is_fixed_point_type (value_type (arg2)))
8619 arg2 = cast_from_fixed_to_double (arg2);
8620 return ada_value_binop (arg1, arg2, op);
8621 }
8622
8623 case BINOP_REM:
8624 case BINOP_MOD:
8625 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8626 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8627 if (noside == EVAL_SKIP)
8628 goto nosideret;
8629 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8630 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8631 return value_zero (value_type (arg1), not_lval);
8632 else
8633 return ada_value_binop (arg1, arg2, op);
8634
8635 case BINOP_EQUAL:
8636 case BINOP_NOTEQUAL:
8637 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8638 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8639 if (noside == EVAL_SKIP)
8640 goto nosideret;
8641 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8642 tem = 0;
8643 else
8644 tem = ada_value_equal (arg1, arg2);
8645 if (op == BINOP_NOTEQUAL)
8646 tem = !tem;
8647 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
8648
8649 case UNOP_NEG:
8650 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8651 if (noside == EVAL_SKIP)
8652 goto nosideret;
8653 else if (ada_is_fixed_point_type (value_type (arg1)))
8654 return value_cast (value_type (arg1), value_neg (arg1));
8655 else
8656 return value_neg (arg1);
8657
8658 case BINOP_LOGICAL_AND:
8659 case BINOP_LOGICAL_OR:
8660 case UNOP_LOGICAL_NOT:
8661 {
8662 struct value *val;
8663
8664 *pos -= 1;
8665 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8666 return value_cast (LA_BOOL_TYPE, val);
8667 }
8668
8669 case BINOP_BITWISE_AND:
8670 case BINOP_BITWISE_IOR:
8671 case BINOP_BITWISE_XOR:
8672 {
8673 struct value *val;
8674
8675 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8676 *pos = pc;
8677 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8678
8679 return value_cast (value_type (arg1), val);
8680 }
8681
8682 case OP_VAR_VALUE:
8683 *pos -= 1;
8684
8685 /* Tagged types are a little special in the fact that the real type
8686 is dynamic and can only be determined by inspecting the object
8687 value. So even if we're support to do an EVAL_AVOID_SIDE_EFFECTS
8688 evaluation, we force an EVAL_NORMAL evaluation for tagged types. */
8689 if (noside == EVAL_AVOID_SIDE_EFFECTS
8690 && ada_is_tagged_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol), 1))
8691 noside = EVAL_NORMAL;
8692
8693 if (noside == EVAL_SKIP)
8694 {
8695 *pos += 4;
8696 goto nosideret;
8697 }
8698 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8699 /* Only encountered when an unresolved symbol occurs in a
8700 context other than a function call, in which case, it is
8701 invalid. */
8702 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8703 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8704 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8705 {
8706 *pos += 4;
8707 return value_zero
8708 (to_static_fixed_type
8709 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8710 not_lval);
8711 }
8712 else
8713 {
8714 arg1 =
8715 unwrap_value (evaluate_subexp_standard
8716 (expect_type, exp, pos, noside));
8717 return ada_to_fixed_value (arg1);
8718 }
8719
8720 case OP_FUNCALL:
8721 (*pos) += 2;
8722
8723 /* Allocate arg vector, including space for the function to be
8724 called in argvec[0] and a terminating NULL. */
8725 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8726 argvec =
8727 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8728
8729 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8730 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8731 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8732 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8733 else
8734 {
8735 for (tem = 0; tem <= nargs; tem += 1)
8736 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8737 argvec[tem] = 0;
8738
8739 if (noside == EVAL_SKIP)
8740 goto nosideret;
8741 }
8742
8743 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8744 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8745 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8746 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8747 && VALUE_LVAL (argvec[0]) == lval_memory))
8748 argvec[0] = value_addr (argvec[0]);
8749
8750 type = ada_check_typedef (value_type (argvec[0]));
8751 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8752 {
8753 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8754 {
8755 case TYPE_CODE_FUNC:
8756 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8757 break;
8758 case TYPE_CODE_ARRAY:
8759 break;
8760 case TYPE_CODE_STRUCT:
8761 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8762 argvec[0] = ada_value_ind (argvec[0]);
8763 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8764 break;
8765 default:
8766 error (_("cannot subscript or call something of type `%s'"),
8767 ada_type_name (value_type (argvec[0])));
8768 break;
8769 }
8770 }
8771
8772 switch (TYPE_CODE (type))
8773 {
8774 case TYPE_CODE_FUNC:
8775 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8776 return allocate_value (TYPE_TARGET_TYPE (type));
8777 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8778 case TYPE_CODE_STRUCT:
8779 {
8780 int arity;
8781
8782 arity = ada_array_arity (type);
8783 type = ada_array_element_type (type, nargs);
8784 if (type == NULL)
8785 error (_("cannot subscript or call a record"));
8786 if (arity != nargs)
8787 error (_("wrong number of subscripts; expecting %d"), arity);
8788 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8789 return value_zero (ada_aligned_type (type), lval_memory);
8790 return
8791 unwrap_value (ada_value_subscript
8792 (argvec[0], nargs, argvec + 1));
8793 }
8794 case TYPE_CODE_ARRAY:
8795 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8796 {
8797 type = ada_array_element_type (type, nargs);
8798 if (type == NULL)
8799 error (_("element type of array unknown"));
8800 else
8801 return value_zero (ada_aligned_type (type), lval_memory);
8802 }
8803 return
8804 unwrap_value (ada_value_subscript
8805 (ada_coerce_to_simple_array (argvec[0]),
8806 nargs, argvec + 1));
8807 case TYPE_CODE_PTR: /* Pointer to array */
8808 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8809 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8810 {
8811 type = ada_array_element_type (type, nargs);
8812 if (type == NULL)
8813 error (_("element type of array unknown"));
8814 else
8815 return value_zero (ada_aligned_type (type), lval_memory);
8816 }
8817 return
8818 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8819 nargs, argvec + 1));
8820
8821 default:
8822 error (_("Attempt to index or call something other than an "
8823 "array or function"));
8824 }
8825
8826 case TERNOP_SLICE:
8827 {
8828 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8829 struct value *low_bound_val =
8830 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8831 struct value *high_bound_val =
8832 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8833 LONGEST low_bound;
8834 LONGEST high_bound;
8835 low_bound_val = coerce_ref (low_bound_val);
8836 high_bound_val = coerce_ref (high_bound_val);
8837 low_bound = pos_atr (low_bound_val);
8838 high_bound = pos_atr (high_bound_val);
8839
8840 if (noside == EVAL_SKIP)
8841 goto nosideret;
8842
8843 /* If this is a reference to an aligner type, then remove all
8844 the aligners. */
8845 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8846 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8847 TYPE_TARGET_TYPE (value_type (array)) =
8848 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8849
8850 if (ada_is_packed_array_type (value_type (array)))
8851 error (_("cannot slice a packed array"));
8852
8853 /* If this is a reference to an array or an array lvalue,
8854 convert to a pointer. */
8855 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8856 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8857 && VALUE_LVAL (array) == lval_memory))
8858 array = value_addr (array);
8859
8860 if (noside == EVAL_AVOID_SIDE_EFFECTS
8861 && ada_is_array_descriptor_type (ada_check_typedef
8862 (value_type (array))))
8863 return empty_array (ada_type_of_array (array, 0), low_bound);
8864
8865 array = ada_coerce_to_simple_array_ptr (array);
8866
8867 /* If we have more than one level of pointer indirection,
8868 dereference the value until we get only one level. */
8869 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8870 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8871 == TYPE_CODE_PTR))
8872 array = value_ind (array);
8873
8874 /* Make sure we really do have an array type before going further,
8875 to avoid a SEGV when trying to get the index type or the target
8876 type later down the road if the debug info generated by
8877 the compiler is incorrect or incomplete. */
8878 if (!ada_is_simple_array_type (value_type (array)))
8879 error (_("cannot take slice of non-array"));
8880
8881 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8882 {
8883 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8884 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8885 low_bound);
8886 else
8887 {
8888 struct type *arr_type0 =
8889 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8890 NULL, 1);
8891 return ada_value_slice_ptr (array, arr_type0,
8892 longest_to_int (low_bound),
8893 longest_to_int (high_bound));
8894 }
8895 }
8896 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8897 return array;
8898 else if (high_bound < low_bound)
8899 return empty_array (value_type (array), low_bound);
8900 else
8901 return ada_value_slice (array, longest_to_int (low_bound),
8902 longest_to_int (high_bound));
8903 }
8904
8905 case UNOP_IN_RANGE:
8906 (*pos) += 2;
8907 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8908 type = exp->elts[pc + 1].type;
8909
8910 if (noside == EVAL_SKIP)
8911 goto nosideret;
8912
8913 switch (TYPE_CODE (type))
8914 {
8915 default:
8916 lim_warning (_("Membership test incompletely implemented; "
8917 "always returns true"));
8918 return value_from_longest (builtin_type_int, (LONGEST) 1);
8919
8920 case TYPE_CODE_RANGE:
8921 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8922 arg3 = value_from_longest (builtin_type_int,
8923 TYPE_HIGH_BOUND (type));
8924 return
8925 value_from_longest (builtin_type_int,
8926 (value_less (arg1, arg3)
8927 || value_equal (arg1, arg3))
8928 && (value_less (arg2, arg1)
8929 || value_equal (arg2, arg1)));
8930 }
8931
8932 case BINOP_IN_BOUNDS:
8933 (*pos) += 2;
8934 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8935 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8936
8937 if (noside == EVAL_SKIP)
8938 goto nosideret;
8939
8940 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8941 return value_zero (builtin_type_int, not_lval);
8942
8943 tem = longest_to_int (exp->elts[pc + 1].longconst);
8944
8945 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8946 error (_("invalid dimension number to 'range"));
8947
8948 arg3 = ada_array_bound (arg2, tem, 1);
8949 arg2 = ada_array_bound (arg2, tem, 0);
8950
8951 return
8952 value_from_longest (builtin_type_int,
8953 (value_less (arg1, arg3)
8954 || value_equal (arg1, arg3))
8955 && (value_less (arg2, arg1)
8956 || value_equal (arg2, arg1)));
8957
8958 case TERNOP_IN_RANGE:
8959 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8960 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8961 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8962
8963 if (noside == EVAL_SKIP)
8964 goto nosideret;
8965
8966 return
8967 value_from_longest (builtin_type_int,
8968 (value_less (arg1, arg3)
8969 || value_equal (arg1, arg3))
8970 && (value_less (arg2, arg1)
8971 || value_equal (arg2, arg1)));
8972
8973 case OP_ATR_FIRST:
8974 case OP_ATR_LAST:
8975 case OP_ATR_LENGTH:
8976 {
8977 struct type *type_arg;
8978 if (exp->elts[*pos].opcode == OP_TYPE)
8979 {
8980 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8981 arg1 = NULL;
8982 type_arg = exp->elts[pc + 2].type;
8983 }
8984 else
8985 {
8986 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8987 type_arg = NULL;
8988 }
8989
8990 if (exp->elts[*pos].opcode != OP_LONG)
8991 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8992 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8993 *pos += 4;
8994
8995 if (noside == EVAL_SKIP)
8996 goto nosideret;
8997
8998 if (type_arg == NULL)
8999 {
9000 arg1 = ada_coerce_ref (arg1);
9001
9002 if (ada_is_packed_array_type (value_type (arg1)))
9003 arg1 = ada_coerce_to_simple_array (arg1);
9004
9005 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
9006 error (_("invalid dimension number to '%s"),
9007 ada_attribute_name (op));
9008
9009 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9010 {
9011 type = ada_index_type (value_type (arg1), tem);
9012 if (type == NULL)
9013 error
9014 (_("attempt to take bound of something that is not an array"));
9015 return allocate_value (type);
9016 }
9017
9018 switch (op)
9019 {
9020 default: /* Should never happen. */
9021 error (_("unexpected attribute encountered"));
9022 case OP_ATR_FIRST:
9023 return ada_array_bound (arg1, tem, 0);
9024 case OP_ATR_LAST:
9025 return ada_array_bound (arg1, tem, 1);
9026 case OP_ATR_LENGTH:
9027 return ada_array_length (arg1, tem);
9028 }
9029 }
9030 else if (discrete_type_p (type_arg))
9031 {
9032 struct type *range_type;
9033 char *name = ada_type_name (type_arg);
9034 range_type = NULL;
9035 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9036 range_type =
9037 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
9038 if (range_type == NULL)
9039 range_type = type_arg;
9040 switch (op)
9041 {
9042 default:
9043 error (_("unexpected attribute encountered"));
9044 case OP_ATR_FIRST:
9045 return discrete_type_low_bound (range_type);
9046 case OP_ATR_LAST:
9047 return discrete_type_high_bound (range_type);
9048 case OP_ATR_LENGTH:
9049 error (_("the 'length attribute applies only to array types"));
9050 }
9051 }
9052 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9053 error (_("unimplemented type attribute"));
9054 else
9055 {
9056 LONGEST low, high;
9057
9058 if (ada_is_packed_array_type (type_arg))
9059 type_arg = decode_packed_array_type (type_arg);
9060
9061 if (tem < 1 || tem > ada_array_arity (type_arg))
9062 error (_("invalid dimension number to '%s"),
9063 ada_attribute_name (op));
9064
9065 type = ada_index_type (type_arg, tem);
9066 if (type == NULL)
9067 error
9068 (_("attempt to take bound of something that is not an array"));
9069 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9070 return allocate_value (type);
9071
9072 switch (op)
9073 {
9074 default:
9075 error (_("unexpected attribute encountered"));
9076 case OP_ATR_FIRST:
9077 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9078 return value_from_longest (type, low);
9079 case OP_ATR_LAST:
9080 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
9081 return value_from_longest (type, high);
9082 case OP_ATR_LENGTH:
9083 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9084 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
9085 return value_from_longest (type, high - low + 1);
9086 }
9087 }
9088 }
9089
9090 case OP_ATR_TAG:
9091 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9092 if (noside == EVAL_SKIP)
9093 goto nosideret;
9094
9095 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9096 return value_zero (ada_tag_type (arg1), not_lval);
9097
9098 return ada_value_tag (arg1);
9099
9100 case OP_ATR_MIN:
9101 case OP_ATR_MAX:
9102 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9103 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9104 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9105 if (noside == EVAL_SKIP)
9106 goto nosideret;
9107 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9108 return value_zero (value_type (arg1), not_lval);
9109 else
9110 return value_binop (arg1, arg2,
9111 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9112
9113 case OP_ATR_MODULUS:
9114 {
9115 struct type *type_arg = exp->elts[pc + 2].type;
9116 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9117
9118 if (noside == EVAL_SKIP)
9119 goto nosideret;
9120
9121 if (!ada_is_modular_type (type_arg))
9122 error (_("'modulus must be applied to modular type"));
9123
9124 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9125 ada_modulus (type_arg));
9126 }
9127
9128
9129 case OP_ATR_POS:
9130 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9131 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9132 if (noside == EVAL_SKIP)
9133 goto nosideret;
9134 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9135 return value_zero (builtin_type_int, not_lval);
9136 else
9137 return value_pos_atr (arg1);
9138
9139 case OP_ATR_SIZE:
9140 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9141 if (noside == EVAL_SKIP)
9142 goto nosideret;
9143 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9144 return value_zero (builtin_type_int, not_lval);
9145 else
9146 return value_from_longest (builtin_type_int,
9147 TARGET_CHAR_BIT
9148 * TYPE_LENGTH (value_type (arg1)));
9149
9150 case OP_ATR_VAL:
9151 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9152 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9153 type = exp->elts[pc + 2].type;
9154 if (noside == EVAL_SKIP)
9155 goto nosideret;
9156 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9157 return value_zero (type, not_lval);
9158 else
9159 return value_val_atr (type, arg1);
9160
9161 case BINOP_EXP:
9162 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9163 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9164 if (noside == EVAL_SKIP)
9165 goto nosideret;
9166 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9167 return value_zero (value_type (arg1), not_lval);
9168 else
9169 return value_binop (arg1, arg2, op);
9170
9171 case UNOP_PLUS:
9172 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9173 if (noside == EVAL_SKIP)
9174 goto nosideret;
9175 else
9176 return arg1;
9177
9178 case UNOP_ABS:
9179 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9180 if (noside == EVAL_SKIP)
9181 goto nosideret;
9182 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9183 return value_neg (arg1);
9184 else
9185 return arg1;
9186
9187 case UNOP_IND:
9188 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
9189 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
9190 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
9191 if (noside == EVAL_SKIP)
9192 goto nosideret;
9193 type = ada_check_typedef (value_type (arg1));
9194 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9195 {
9196 if (ada_is_array_descriptor_type (type))
9197 /* GDB allows dereferencing GNAT array descriptors. */
9198 {
9199 struct type *arrType = ada_type_of_array (arg1, 0);
9200 if (arrType == NULL)
9201 error (_("Attempt to dereference null array pointer."));
9202 return value_at_lazy (arrType, 0);
9203 }
9204 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9205 || TYPE_CODE (type) == TYPE_CODE_REF
9206 /* In C you can dereference an array to get the 1st elt. */
9207 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9208 {
9209 type = to_static_fixed_type
9210 (ada_aligned_type
9211 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9212 check_size (type);
9213 return value_zero (type, lval_memory);
9214 }
9215 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9216 /* GDB allows dereferencing an int. */
9217 return value_zero (builtin_type_int, lval_memory);
9218 else
9219 error (_("Attempt to take contents of a non-pointer value."));
9220 }
9221 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9222 type = ada_check_typedef (value_type (arg1));
9223
9224 if (ada_is_array_descriptor_type (type))
9225 /* GDB allows dereferencing GNAT array descriptors. */
9226 return ada_coerce_to_simple_array (arg1);
9227 else
9228 return ada_value_ind (arg1);
9229
9230 case STRUCTOP_STRUCT:
9231 tem = longest_to_int (exp->elts[pc + 1].longconst);
9232 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9233 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9234 if (noside == EVAL_SKIP)
9235 goto nosideret;
9236 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9237 {
9238 struct type *type1 = value_type (arg1);
9239 if (ada_is_tagged_type (type1, 1))
9240 {
9241 type = ada_lookup_struct_elt_type (type1,
9242 &exp->elts[pc + 2].string,
9243 1, 1, NULL);
9244 if (type == NULL)
9245 /* In this case, we assume that the field COULD exist
9246 in some extension of the type. Return an object of
9247 "type" void, which will match any formal
9248 (see ada_type_match). */
9249 return value_zero (builtin_type_void, lval_memory);
9250 }
9251 else
9252 type =
9253 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9254 0, NULL);
9255
9256 return value_zero (ada_aligned_type (type), lval_memory);
9257 }
9258 else
9259 return
9260 ada_to_fixed_value (unwrap_value
9261 (ada_value_struct_elt
9262 (arg1, &exp->elts[pc + 2].string, 0)));
9263 case OP_TYPE:
9264 /* The value is not supposed to be used. This is here to make it
9265 easier to accommodate expressions that contain types. */
9266 (*pos) += 2;
9267 if (noside == EVAL_SKIP)
9268 goto nosideret;
9269 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9270 return allocate_value (exp->elts[pc + 1].type);
9271 else
9272 error (_("Attempt to use a type name as an expression"));
9273
9274 case OP_AGGREGATE:
9275 case OP_CHOICES:
9276 case OP_OTHERS:
9277 case OP_DISCRETE_RANGE:
9278 case OP_POSITIONAL:
9279 case OP_NAME:
9280 if (noside == EVAL_NORMAL)
9281 switch (op)
9282 {
9283 case OP_NAME:
9284 error (_("Undefined name, ambiguous name, or renaming used in "
9285 "component association: %s."), &exp->elts[pc+2].string);
9286 case OP_AGGREGATE:
9287 error (_("Aggregates only allowed on the right of an assignment"));
9288 default:
9289 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9290 }
9291
9292 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9293 *pos += oplen - 1;
9294 for (tem = 0; tem < nargs; tem += 1)
9295 ada_evaluate_subexp (NULL, exp, pos, noside);
9296 goto nosideret;
9297 }
9298
9299 nosideret:
9300 return value_from_longest (builtin_type_long, (LONGEST) 1);
9301 }
9302 \f
9303
9304 /* Fixed point */
9305
9306 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9307 type name that encodes the 'small and 'delta information.
9308 Otherwise, return NULL. */
9309
9310 static const char *
9311 fixed_type_info (struct type *type)
9312 {
9313 const char *name = ada_type_name (type);
9314 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9315
9316 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9317 {
9318 const char *tail = strstr (name, "___XF_");
9319 if (tail == NULL)
9320 return NULL;
9321 else
9322 return tail + 5;
9323 }
9324 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9325 return fixed_type_info (TYPE_TARGET_TYPE (type));
9326 else
9327 return NULL;
9328 }
9329
9330 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9331
9332 int
9333 ada_is_fixed_point_type (struct type *type)
9334 {
9335 return fixed_type_info (type) != NULL;
9336 }
9337
9338 /* Return non-zero iff TYPE represents a System.Address type. */
9339
9340 int
9341 ada_is_system_address_type (struct type *type)
9342 {
9343 return (TYPE_NAME (type)
9344 && strcmp (TYPE_NAME (type), "system__address") == 0);
9345 }
9346
9347 /* Assuming that TYPE is the representation of an Ada fixed-point
9348 type, return its delta, or -1 if the type is malformed and the
9349 delta cannot be determined. */
9350
9351 DOUBLEST
9352 ada_delta (struct type *type)
9353 {
9354 const char *encoding = fixed_type_info (type);
9355 long num, den;
9356
9357 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9358 return -1.0;
9359 else
9360 return (DOUBLEST) num / (DOUBLEST) den;
9361 }
9362
9363 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9364 factor ('SMALL value) associated with the type. */
9365
9366 static DOUBLEST
9367 scaling_factor (struct type *type)
9368 {
9369 const char *encoding = fixed_type_info (type);
9370 unsigned long num0, den0, num1, den1;
9371 int n;
9372
9373 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9374
9375 if (n < 2)
9376 return 1.0;
9377 else if (n == 4)
9378 return (DOUBLEST) num1 / (DOUBLEST) den1;
9379 else
9380 return (DOUBLEST) num0 / (DOUBLEST) den0;
9381 }
9382
9383
9384 /* Assuming that X is the representation of a value of fixed-point
9385 type TYPE, return its floating-point equivalent. */
9386
9387 DOUBLEST
9388 ada_fixed_to_float (struct type *type, LONGEST x)
9389 {
9390 return (DOUBLEST) x *scaling_factor (type);
9391 }
9392
9393 /* The representation of a fixed-point value of type TYPE
9394 corresponding to the value X. */
9395
9396 LONGEST
9397 ada_float_to_fixed (struct type *type, DOUBLEST x)
9398 {
9399 return (LONGEST) (x / scaling_factor (type) + 0.5);
9400 }
9401
9402
9403 /* VAX floating formats */
9404
9405 /* Non-zero iff TYPE represents one of the special VAX floating-point
9406 types. */
9407
9408 int
9409 ada_is_vax_floating_type (struct type *type)
9410 {
9411 int name_len =
9412 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9413 return
9414 name_len > 6
9415 && (TYPE_CODE (type) == TYPE_CODE_INT
9416 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9417 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9418 }
9419
9420 /* The type of special VAX floating-point type this is, assuming
9421 ada_is_vax_floating_point. */
9422
9423 int
9424 ada_vax_float_type_suffix (struct type *type)
9425 {
9426 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9427 }
9428
9429 /* A value representing the special debugging function that outputs
9430 VAX floating-point values of the type represented by TYPE. Assumes
9431 ada_is_vax_floating_type (TYPE). */
9432
9433 struct value *
9434 ada_vax_float_print_function (struct type *type)
9435 {
9436 switch (ada_vax_float_type_suffix (type))
9437 {
9438 case 'F':
9439 return get_var_value ("DEBUG_STRING_F", 0);
9440 case 'D':
9441 return get_var_value ("DEBUG_STRING_D", 0);
9442 case 'G':
9443 return get_var_value ("DEBUG_STRING_G", 0);
9444 default:
9445 error (_("invalid VAX floating-point type"));
9446 }
9447 }
9448 \f
9449
9450 /* Range types */
9451
9452 /* Scan STR beginning at position K for a discriminant name, and
9453 return the value of that discriminant field of DVAL in *PX. If
9454 PNEW_K is not null, put the position of the character beyond the
9455 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9456 not alter *PX and *PNEW_K if unsuccessful. */
9457
9458 static int
9459 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9460 int *pnew_k)
9461 {
9462 static char *bound_buffer = NULL;
9463 static size_t bound_buffer_len = 0;
9464 char *bound;
9465 char *pend;
9466 struct value *bound_val;
9467
9468 if (dval == NULL || str == NULL || str[k] == '\0')
9469 return 0;
9470
9471 pend = strstr (str + k, "__");
9472 if (pend == NULL)
9473 {
9474 bound = str + k;
9475 k += strlen (bound);
9476 }
9477 else
9478 {
9479 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9480 bound = bound_buffer;
9481 strncpy (bound_buffer, str + k, pend - (str + k));
9482 bound[pend - (str + k)] = '\0';
9483 k = pend - str;
9484 }
9485
9486 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9487 if (bound_val == NULL)
9488 return 0;
9489
9490 *px = value_as_long (bound_val);
9491 if (pnew_k != NULL)
9492 *pnew_k = k;
9493 return 1;
9494 }
9495
9496 /* Value of variable named NAME in the current environment. If
9497 no such variable found, then if ERR_MSG is null, returns 0, and
9498 otherwise causes an error with message ERR_MSG. */
9499
9500 static struct value *
9501 get_var_value (char *name, char *err_msg)
9502 {
9503 struct ada_symbol_info *syms;
9504 int nsyms;
9505
9506 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9507 &syms);
9508
9509 if (nsyms != 1)
9510 {
9511 if (err_msg == NULL)
9512 return 0;
9513 else
9514 error (("%s"), err_msg);
9515 }
9516
9517 return value_of_variable (syms[0].sym, syms[0].block);
9518 }
9519
9520 /* Value of integer variable named NAME in the current environment. If
9521 no such variable found, returns 0, and sets *FLAG to 0. If
9522 successful, sets *FLAG to 1. */
9523
9524 LONGEST
9525 get_int_var_value (char *name, int *flag)
9526 {
9527 struct value *var_val = get_var_value (name, 0);
9528
9529 if (var_val == 0)
9530 {
9531 if (flag != NULL)
9532 *flag = 0;
9533 return 0;
9534 }
9535 else
9536 {
9537 if (flag != NULL)
9538 *flag = 1;
9539 return value_as_long (var_val);
9540 }
9541 }
9542
9543
9544 /* Return a range type whose base type is that of the range type named
9545 NAME in the current environment, and whose bounds are calculated
9546 from NAME according to the GNAT range encoding conventions.
9547 Extract discriminant values, if needed, from DVAL. If a new type
9548 must be created, allocate in OBJFILE's space. The bounds
9549 information, in general, is encoded in NAME, the base type given in
9550 the named range type. */
9551
9552 static struct type *
9553 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9554 {
9555 struct type *raw_type = ada_find_any_type (name);
9556 struct type *base_type;
9557 char *subtype_info;
9558
9559 if (raw_type == NULL)
9560 base_type = builtin_type_int;
9561 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9562 base_type = TYPE_TARGET_TYPE (raw_type);
9563 else
9564 base_type = raw_type;
9565
9566 subtype_info = strstr (name, "___XD");
9567 if (subtype_info == NULL)
9568 return raw_type;
9569 else
9570 {
9571 static char *name_buf = NULL;
9572 static size_t name_len = 0;
9573 int prefix_len = subtype_info - name;
9574 LONGEST L, U;
9575 struct type *type;
9576 char *bounds_str;
9577 int n;
9578
9579 GROW_VECT (name_buf, name_len, prefix_len + 5);
9580 strncpy (name_buf, name, prefix_len);
9581 name_buf[prefix_len] = '\0';
9582
9583 subtype_info += 5;
9584 bounds_str = strchr (subtype_info, '_');
9585 n = 1;
9586
9587 if (*subtype_info == 'L')
9588 {
9589 if (!ada_scan_number (bounds_str, n, &L, &n)
9590 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9591 return raw_type;
9592 if (bounds_str[n] == '_')
9593 n += 2;
9594 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9595 n += 1;
9596 subtype_info += 1;
9597 }
9598 else
9599 {
9600 int ok;
9601 strcpy (name_buf + prefix_len, "___L");
9602 L = get_int_var_value (name_buf, &ok);
9603 if (!ok)
9604 {
9605 lim_warning (_("Unknown lower bound, using 1."));
9606 L = 1;
9607 }
9608 }
9609
9610 if (*subtype_info == 'U')
9611 {
9612 if (!ada_scan_number (bounds_str, n, &U, &n)
9613 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9614 return raw_type;
9615 }
9616 else
9617 {
9618 int ok;
9619 strcpy (name_buf + prefix_len, "___U");
9620 U = get_int_var_value (name_buf, &ok);
9621 if (!ok)
9622 {
9623 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9624 U = L;
9625 }
9626 }
9627
9628 if (objfile == NULL)
9629 objfile = TYPE_OBJFILE (base_type);
9630 type = create_range_type (alloc_type (objfile), base_type, L, U);
9631 TYPE_NAME (type) = name;
9632 return type;
9633 }
9634 }
9635
9636 /* True iff NAME is the name of a range type. */
9637
9638 int
9639 ada_is_range_type_name (const char *name)
9640 {
9641 return (name != NULL && strstr (name, "___XD"));
9642 }
9643 \f
9644
9645 /* Modular types */
9646
9647 /* True iff TYPE is an Ada modular type. */
9648
9649 int
9650 ada_is_modular_type (struct type *type)
9651 {
9652 struct type *subranged_type = base_type (type);
9653
9654 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9655 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
9656 && TYPE_UNSIGNED (subranged_type));
9657 }
9658
9659 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9660
9661 ULONGEST
9662 ada_modulus (struct type * type)
9663 {
9664 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9665 }
9666 \f
9667
9668 /* Ada exception catchpoint support:
9669 ---------------------------------
9670
9671 We support 3 kinds of exception catchpoints:
9672 . catchpoints on Ada exceptions
9673 . catchpoints on unhandled Ada exceptions
9674 . catchpoints on failed assertions
9675
9676 Exceptions raised during failed assertions, or unhandled exceptions
9677 could perfectly be caught with the general catchpoint on Ada exceptions.
9678 However, we can easily differentiate these two special cases, and having
9679 the option to distinguish these two cases from the rest can be useful
9680 to zero-in on certain situations.
9681
9682 Exception catchpoints are a specialized form of breakpoint,
9683 since they rely on inserting breakpoints inside known routines
9684 of the GNAT runtime. The implementation therefore uses a standard
9685 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9686 of breakpoint_ops.
9687
9688 Support in the runtime for exception catchpoints have been changed
9689 a few times already, and these changes affect the implementation
9690 of these catchpoints. In order to be able to support several
9691 variants of the runtime, we use a sniffer that will determine
9692 the runtime variant used by the program being debugged.
9693
9694 At this time, we do not support the use of conditions on Ada exception
9695 catchpoints. The COND and COND_STRING fields are therefore set
9696 to NULL (most of the time, see below).
9697
9698 Conditions where EXP_STRING, COND, and COND_STRING are used:
9699
9700 When a user specifies the name of a specific exception in the case
9701 of catchpoints on Ada exceptions, we store the name of that exception
9702 in the EXP_STRING. We then translate this request into an actual
9703 condition stored in COND_STRING, and then parse it into an expression
9704 stored in COND. */
9705
9706 /* The different types of catchpoints that we introduced for catching
9707 Ada exceptions. */
9708
9709 enum exception_catchpoint_kind
9710 {
9711 ex_catch_exception,
9712 ex_catch_exception_unhandled,
9713 ex_catch_assert
9714 };
9715
9716 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9717
9718 /* A structure that describes how to support exception catchpoints
9719 for a given executable. */
9720
9721 struct exception_support_info
9722 {
9723 /* The name of the symbol to break on in order to insert
9724 a catchpoint on exceptions. */
9725 const char *catch_exception_sym;
9726
9727 /* The name of the symbol to break on in order to insert
9728 a catchpoint on unhandled exceptions. */
9729 const char *catch_exception_unhandled_sym;
9730
9731 /* The name of the symbol to break on in order to insert
9732 a catchpoint on failed assertions. */
9733 const char *catch_assert_sym;
9734
9735 /* Assuming that the inferior just triggered an unhandled exception
9736 catchpoint, this function is responsible for returning the address
9737 in inferior memory where the name of that exception is stored.
9738 Return zero if the address could not be computed. */
9739 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9740 };
9741
9742 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9743 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9744
9745 /* The following exception support info structure describes how to
9746 implement exception catchpoints with the latest version of the
9747 Ada runtime (as of 2007-03-06). */
9748
9749 static const struct exception_support_info default_exception_support_info =
9750 {
9751 "__gnat_debug_raise_exception", /* catch_exception_sym */
9752 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9753 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9754 ada_unhandled_exception_name_addr
9755 };
9756
9757 /* The following exception support info structure describes how to
9758 implement exception catchpoints with a slightly older version
9759 of the Ada runtime. */
9760
9761 static const struct exception_support_info exception_support_info_fallback =
9762 {
9763 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9764 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9765 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9766 ada_unhandled_exception_name_addr_from_raise
9767 };
9768
9769 /* For each executable, we sniff which exception info structure to use
9770 and cache it in the following global variable. */
9771
9772 static const struct exception_support_info *exception_info = NULL;
9773
9774 /* Inspect the Ada runtime and determine which exception info structure
9775 should be used to provide support for exception catchpoints.
9776
9777 This function will always set exception_info, or raise an error. */
9778
9779 static void
9780 ada_exception_support_info_sniffer (void)
9781 {
9782 struct symbol *sym;
9783
9784 /* If the exception info is already known, then no need to recompute it. */
9785 if (exception_info != NULL)
9786 return;
9787
9788 /* Check the latest (default) exception support info. */
9789 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9790 NULL, VAR_DOMAIN);
9791 if (sym != NULL)
9792 {
9793 exception_info = &default_exception_support_info;
9794 return;
9795 }
9796
9797 /* Try our fallback exception suport info. */
9798 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9799 NULL, VAR_DOMAIN);
9800 if (sym != NULL)
9801 {
9802 exception_info = &exception_support_info_fallback;
9803 return;
9804 }
9805
9806 /* Sometimes, it is normal for us to not be able to find the routine
9807 we are looking for. This happens when the program is linked with
9808 the shared version of the GNAT runtime, and the program has not been
9809 started yet. Inform the user of these two possible causes if
9810 applicable. */
9811
9812 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9813 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9814
9815 /* If the symbol does not exist, then check that the program is
9816 already started, to make sure that shared libraries have been
9817 loaded. If it is not started, this may mean that the symbol is
9818 in a shared library. */
9819
9820 if (ptid_get_pid (inferior_ptid) == 0)
9821 error (_("Unable to insert catchpoint. Try to start the program first."));
9822
9823 /* At this point, we know that we are debugging an Ada program and
9824 that the inferior has been started, but we still are not able to
9825 find the run-time symbols. That can mean that we are in
9826 configurable run time mode, or that a-except as been optimized
9827 out by the linker... In any case, at this point it is not worth
9828 supporting this feature. */
9829
9830 error (_("Cannot insert catchpoints in this configuration."));
9831 }
9832
9833 /* An observer of "executable_changed" events.
9834 Its role is to clear certain cached values that need to be recomputed
9835 each time a new executable is loaded by GDB. */
9836
9837 static void
9838 ada_executable_changed_observer (void *unused)
9839 {
9840 /* If the executable changed, then it is possible that the Ada runtime
9841 is different. So we need to invalidate the exception support info
9842 cache. */
9843 exception_info = NULL;
9844 }
9845
9846 /* Return the name of the function at PC, NULL if could not find it.
9847 This function only checks the debugging information, not the symbol
9848 table. */
9849
9850 static char *
9851 function_name_from_pc (CORE_ADDR pc)
9852 {
9853 char *func_name;
9854
9855 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9856 return NULL;
9857
9858 return func_name;
9859 }
9860
9861 /* True iff FRAME is very likely to be that of a function that is
9862 part of the runtime system. This is all very heuristic, but is
9863 intended to be used as advice as to what frames are uninteresting
9864 to most users. */
9865
9866 static int
9867 is_known_support_routine (struct frame_info *frame)
9868 {
9869 struct symtab_and_line sal;
9870 char *func_name;
9871 int i;
9872
9873 /* If this code does not have any debugging information (no symtab),
9874 This cannot be any user code. */
9875
9876 find_frame_sal (frame, &sal);
9877 if (sal.symtab == NULL)
9878 return 1;
9879
9880 /* If there is a symtab, but the associated source file cannot be
9881 located, then assume this is not user code: Selecting a frame
9882 for which we cannot display the code would not be very helpful
9883 for the user. This should also take care of case such as VxWorks
9884 where the kernel has some debugging info provided for a few units. */
9885
9886 if (symtab_to_fullname (sal.symtab) == NULL)
9887 return 1;
9888
9889 /* Check the unit filename againt the Ada runtime file naming.
9890 We also check the name of the objfile against the name of some
9891 known system libraries that sometimes come with debugging info
9892 too. */
9893
9894 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9895 {
9896 re_comp (known_runtime_file_name_patterns[i]);
9897 if (re_exec (sal.symtab->filename))
9898 return 1;
9899 if (sal.symtab->objfile != NULL
9900 && re_exec (sal.symtab->objfile->name))
9901 return 1;
9902 }
9903
9904 /* Check whether the function is a GNAT-generated entity. */
9905
9906 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9907 if (func_name == NULL)
9908 return 1;
9909
9910 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9911 {
9912 re_comp (known_auxiliary_function_name_patterns[i]);
9913 if (re_exec (func_name))
9914 return 1;
9915 }
9916
9917 return 0;
9918 }
9919
9920 /* Find the first frame that contains debugging information and that is not
9921 part of the Ada run-time, starting from FI and moving upward. */
9922
9923 static void
9924 ada_find_printable_frame (struct frame_info *fi)
9925 {
9926 for (; fi != NULL; fi = get_prev_frame (fi))
9927 {
9928 if (!is_known_support_routine (fi))
9929 {
9930 select_frame (fi);
9931 break;
9932 }
9933 }
9934
9935 }
9936
9937 /* Assuming that the inferior just triggered an unhandled exception
9938 catchpoint, return the address in inferior memory where the name
9939 of the exception is stored.
9940
9941 Return zero if the address could not be computed. */
9942
9943 static CORE_ADDR
9944 ada_unhandled_exception_name_addr (void)
9945 {
9946 return parse_and_eval_address ("e.full_name");
9947 }
9948
9949 /* Same as ada_unhandled_exception_name_addr, except that this function
9950 should be used when the inferior uses an older version of the runtime,
9951 where the exception name needs to be extracted from a specific frame
9952 several frames up in the callstack. */
9953
9954 static CORE_ADDR
9955 ada_unhandled_exception_name_addr_from_raise (void)
9956 {
9957 int frame_level;
9958 struct frame_info *fi;
9959
9960 /* To determine the name of this exception, we need to select
9961 the frame corresponding to RAISE_SYM_NAME. This frame is
9962 at least 3 levels up, so we simply skip the first 3 frames
9963 without checking the name of their associated function. */
9964 fi = get_current_frame ();
9965 for (frame_level = 0; frame_level < 3; frame_level += 1)
9966 if (fi != NULL)
9967 fi = get_prev_frame (fi);
9968
9969 while (fi != NULL)
9970 {
9971 const char *func_name =
9972 function_name_from_pc (get_frame_address_in_block (fi));
9973 if (func_name != NULL
9974 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9975 break; /* We found the frame we were looking for... */
9976 fi = get_prev_frame (fi);
9977 }
9978
9979 if (fi == NULL)
9980 return 0;
9981
9982 select_frame (fi);
9983 return parse_and_eval_address ("id.full_name");
9984 }
9985
9986 /* Assuming the inferior just triggered an Ada exception catchpoint
9987 (of any type), return the address in inferior memory where the name
9988 of the exception is stored, if applicable.
9989
9990 Return zero if the address could not be computed, or if not relevant. */
9991
9992 static CORE_ADDR
9993 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9994 struct breakpoint *b)
9995 {
9996 switch (ex)
9997 {
9998 case ex_catch_exception:
9999 return (parse_and_eval_address ("e.full_name"));
10000 break;
10001
10002 case ex_catch_exception_unhandled:
10003 return exception_info->unhandled_exception_name_addr ();
10004 break;
10005
10006 case ex_catch_assert:
10007 return 0; /* Exception name is not relevant in this case. */
10008 break;
10009
10010 default:
10011 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10012 break;
10013 }
10014
10015 return 0; /* Should never be reached. */
10016 }
10017
10018 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10019 any error that ada_exception_name_addr_1 might cause to be thrown.
10020 When an error is intercepted, a warning with the error message is printed,
10021 and zero is returned. */
10022
10023 static CORE_ADDR
10024 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10025 struct breakpoint *b)
10026 {
10027 struct gdb_exception e;
10028 CORE_ADDR result = 0;
10029
10030 TRY_CATCH (e, RETURN_MASK_ERROR)
10031 {
10032 result = ada_exception_name_addr_1 (ex, b);
10033 }
10034
10035 if (e.reason < 0)
10036 {
10037 warning (_("failed to get exception name: %s"), e.message);
10038 return 0;
10039 }
10040
10041 return result;
10042 }
10043
10044 /* Implement the PRINT_IT method in the breakpoint_ops structure
10045 for all exception catchpoint kinds. */
10046
10047 static enum print_stop_action
10048 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10049 {
10050 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10051 char exception_name[256];
10052
10053 if (addr != 0)
10054 {
10055 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10056 exception_name [sizeof (exception_name) - 1] = '\0';
10057 }
10058
10059 ada_find_printable_frame (get_current_frame ());
10060
10061 annotate_catchpoint (b->number);
10062 switch (ex)
10063 {
10064 case ex_catch_exception:
10065 if (addr != 0)
10066 printf_filtered (_("\nCatchpoint %d, %s at "),
10067 b->number, exception_name);
10068 else
10069 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10070 break;
10071 case ex_catch_exception_unhandled:
10072 if (addr != 0)
10073 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10074 b->number, exception_name);
10075 else
10076 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10077 b->number);
10078 break;
10079 case ex_catch_assert:
10080 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10081 b->number);
10082 break;
10083 }
10084
10085 return PRINT_SRC_AND_LOC;
10086 }
10087
10088 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10089 for all exception catchpoint kinds. */
10090
10091 static void
10092 print_one_exception (enum exception_catchpoint_kind ex,
10093 struct breakpoint *b, CORE_ADDR *last_addr)
10094 {
10095 if (addressprint)
10096 {
10097 annotate_field (4);
10098 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10099 }
10100
10101 annotate_field (5);
10102 *last_addr = b->loc->address;
10103 switch (ex)
10104 {
10105 case ex_catch_exception:
10106 if (b->exp_string != NULL)
10107 {
10108 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10109
10110 ui_out_field_string (uiout, "what", msg);
10111 xfree (msg);
10112 }
10113 else
10114 ui_out_field_string (uiout, "what", "all Ada exceptions");
10115
10116 break;
10117
10118 case ex_catch_exception_unhandled:
10119 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10120 break;
10121
10122 case ex_catch_assert:
10123 ui_out_field_string (uiout, "what", "failed Ada assertions");
10124 break;
10125
10126 default:
10127 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10128 break;
10129 }
10130 }
10131
10132 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10133 for all exception catchpoint kinds. */
10134
10135 static void
10136 print_mention_exception (enum exception_catchpoint_kind ex,
10137 struct breakpoint *b)
10138 {
10139 switch (ex)
10140 {
10141 case ex_catch_exception:
10142 if (b->exp_string != NULL)
10143 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10144 b->number, b->exp_string);
10145 else
10146 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10147
10148 break;
10149
10150 case ex_catch_exception_unhandled:
10151 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10152 b->number);
10153 break;
10154
10155 case ex_catch_assert:
10156 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10157 break;
10158
10159 default:
10160 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10161 break;
10162 }
10163 }
10164
10165 /* Virtual table for "catch exception" breakpoints. */
10166
10167 static enum print_stop_action
10168 print_it_catch_exception (struct breakpoint *b)
10169 {
10170 return print_it_exception (ex_catch_exception, b);
10171 }
10172
10173 static void
10174 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10175 {
10176 print_one_exception (ex_catch_exception, b, last_addr);
10177 }
10178
10179 static void
10180 print_mention_catch_exception (struct breakpoint *b)
10181 {
10182 print_mention_exception (ex_catch_exception, b);
10183 }
10184
10185 static struct breakpoint_ops catch_exception_breakpoint_ops =
10186 {
10187 print_it_catch_exception,
10188 print_one_catch_exception,
10189 print_mention_catch_exception
10190 };
10191
10192 /* Virtual table for "catch exception unhandled" breakpoints. */
10193
10194 static enum print_stop_action
10195 print_it_catch_exception_unhandled (struct breakpoint *b)
10196 {
10197 return print_it_exception (ex_catch_exception_unhandled, b);
10198 }
10199
10200 static void
10201 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10202 {
10203 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10204 }
10205
10206 static void
10207 print_mention_catch_exception_unhandled (struct breakpoint *b)
10208 {
10209 print_mention_exception (ex_catch_exception_unhandled, b);
10210 }
10211
10212 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10213 print_it_catch_exception_unhandled,
10214 print_one_catch_exception_unhandled,
10215 print_mention_catch_exception_unhandled
10216 };
10217
10218 /* Virtual table for "catch assert" breakpoints. */
10219
10220 static enum print_stop_action
10221 print_it_catch_assert (struct breakpoint *b)
10222 {
10223 return print_it_exception (ex_catch_assert, b);
10224 }
10225
10226 static void
10227 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10228 {
10229 print_one_exception (ex_catch_assert, b, last_addr);
10230 }
10231
10232 static void
10233 print_mention_catch_assert (struct breakpoint *b)
10234 {
10235 print_mention_exception (ex_catch_assert, b);
10236 }
10237
10238 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10239 print_it_catch_assert,
10240 print_one_catch_assert,
10241 print_mention_catch_assert
10242 };
10243
10244 /* Return non-zero if B is an Ada exception catchpoint. */
10245
10246 int
10247 ada_exception_catchpoint_p (struct breakpoint *b)
10248 {
10249 return (b->ops == &catch_exception_breakpoint_ops
10250 || b->ops == &catch_exception_unhandled_breakpoint_ops
10251 || b->ops == &catch_assert_breakpoint_ops);
10252 }
10253
10254 /* Return a newly allocated copy of the first space-separated token
10255 in ARGSP, and then adjust ARGSP to point immediately after that
10256 token.
10257
10258 Return NULL if ARGPS does not contain any more tokens. */
10259
10260 static char *
10261 ada_get_next_arg (char **argsp)
10262 {
10263 char *args = *argsp;
10264 char *end;
10265 char *result;
10266
10267 /* Skip any leading white space. */
10268
10269 while (isspace (*args))
10270 args++;
10271
10272 if (args[0] == '\0')
10273 return NULL; /* No more arguments. */
10274
10275 /* Find the end of the current argument. */
10276
10277 end = args;
10278 while (*end != '\0' && !isspace (*end))
10279 end++;
10280
10281 /* Adjust ARGSP to point to the start of the next argument. */
10282
10283 *argsp = end;
10284
10285 /* Make a copy of the current argument and return it. */
10286
10287 result = xmalloc (end - args + 1);
10288 strncpy (result, args, end - args);
10289 result[end - args] = '\0';
10290
10291 return result;
10292 }
10293
10294 /* Split the arguments specified in a "catch exception" command.
10295 Set EX to the appropriate catchpoint type.
10296 Set EXP_STRING to the name of the specific exception if
10297 specified by the user. */
10298
10299 static void
10300 catch_ada_exception_command_split (char *args,
10301 enum exception_catchpoint_kind *ex,
10302 char **exp_string)
10303 {
10304 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10305 char *exception_name;
10306
10307 exception_name = ada_get_next_arg (&args);
10308 make_cleanup (xfree, exception_name);
10309
10310 /* Check that we do not have any more arguments. Anything else
10311 is unexpected. */
10312
10313 while (isspace (*args))
10314 args++;
10315
10316 if (args[0] != '\0')
10317 error (_("Junk at end of expression"));
10318
10319 discard_cleanups (old_chain);
10320
10321 if (exception_name == NULL)
10322 {
10323 /* Catch all exceptions. */
10324 *ex = ex_catch_exception;
10325 *exp_string = NULL;
10326 }
10327 else if (strcmp (exception_name, "unhandled") == 0)
10328 {
10329 /* Catch unhandled exceptions. */
10330 *ex = ex_catch_exception_unhandled;
10331 *exp_string = NULL;
10332 }
10333 else
10334 {
10335 /* Catch a specific exception. */
10336 *ex = ex_catch_exception;
10337 *exp_string = exception_name;
10338 }
10339 }
10340
10341 /* Return the name of the symbol on which we should break in order to
10342 implement a catchpoint of the EX kind. */
10343
10344 static const char *
10345 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10346 {
10347 gdb_assert (exception_info != NULL);
10348
10349 switch (ex)
10350 {
10351 case ex_catch_exception:
10352 return (exception_info->catch_exception_sym);
10353 break;
10354 case ex_catch_exception_unhandled:
10355 return (exception_info->catch_exception_unhandled_sym);
10356 break;
10357 case ex_catch_assert:
10358 return (exception_info->catch_assert_sym);
10359 break;
10360 default:
10361 internal_error (__FILE__, __LINE__,
10362 _("unexpected catchpoint kind (%d)"), ex);
10363 }
10364 }
10365
10366 /* Return the breakpoint ops "virtual table" used for catchpoints
10367 of the EX kind. */
10368
10369 static struct breakpoint_ops *
10370 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10371 {
10372 switch (ex)
10373 {
10374 case ex_catch_exception:
10375 return (&catch_exception_breakpoint_ops);
10376 break;
10377 case ex_catch_exception_unhandled:
10378 return (&catch_exception_unhandled_breakpoint_ops);
10379 break;
10380 case ex_catch_assert:
10381 return (&catch_assert_breakpoint_ops);
10382 break;
10383 default:
10384 internal_error (__FILE__, __LINE__,
10385 _("unexpected catchpoint kind (%d)"), ex);
10386 }
10387 }
10388
10389 /* Return the condition that will be used to match the current exception
10390 being raised with the exception that the user wants to catch. This
10391 assumes that this condition is used when the inferior just triggered
10392 an exception catchpoint.
10393
10394 The string returned is a newly allocated string that needs to be
10395 deallocated later. */
10396
10397 static char *
10398 ada_exception_catchpoint_cond_string (const char *exp_string)
10399 {
10400 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10401 }
10402
10403 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10404
10405 static struct expression *
10406 ada_parse_catchpoint_condition (char *cond_string,
10407 struct symtab_and_line sal)
10408 {
10409 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10410 }
10411
10412 /* Return the symtab_and_line that should be used to insert an exception
10413 catchpoint of the TYPE kind.
10414
10415 EX_STRING should contain the name of a specific exception
10416 that the catchpoint should catch, or NULL otherwise.
10417
10418 The idea behind all the remaining parameters is that their names match
10419 the name of certain fields in the breakpoint structure that are used to
10420 handle exception catchpoints. This function returns the value to which
10421 these fields should be set, depending on the type of catchpoint we need
10422 to create.
10423
10424 If COND and COND_STRING are both non-NULL, any value they might
10425 hold will be free'ed, and then replaced by newly allocated ones.
10426 These parameters are left untouched otherwise. */
10427
10428 static struct symtab_and_line
10429 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10430 char **addr_string, char **cond_string,
10431 struct expression **cond, struct breakpoint_ops **ops)
10432 {
10433 const char *sym_name;
10434 struct symbol *sym;
10435 struct symtab_and_line sal;
10436
10437 /* First, find out which exception support info to use. */
10438 ada_exception_support_info_sniffer ();
10439
10440 /* Then lookup the function on which we will break in order to catch
10441 the Ada exceptions requested by the user. */
10442
10443 sym_name = ada_exception_sym_name (ex);
10444 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10445
10446 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10447 that should be compiled with debugging information. As a result, we
10448 expect to find that symbol in the symtabs. If we don't find it, then
10449 the target most likely does not support Ada exceptions, or we cannot
10450 insert exception breakpoints yet, because the GNAT runtime hasn't been
10451 loaded yet. */
10452
10453 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10454 in such a way that no debugging information is produced for the symbol
10455 we are looking for. In this case, we could search the minimal symbols
10456 as a fall-back mechanism. This would still be operating in degraded
10457 mode, however, as we would still be missing the debugging information
10458 that is needed in order to extract the name of the exception being
10459 raised (this name is printed in the catchpoint message, and is also
10460 used when trying to catch a specific exception). We do not handle
10461 this case for now. */
10462
10463 if (sym == NULL)
10464 error (_("Unable to break on '%s' in this configuration."), sym_name);
10465
10466 /* Make sure that the symbol we found corresponds to a function. */
10467 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10468 error (_("Symbol \"%s\" is not a function (class = %d)"),
10469 sym_name, SYMBOL_CLASS (sym));
10470
10471 sal = find_function_start_sal (sym, 1);
10472
10473 /* Set ADDR_STRING. */
10474
10475 *addr_string = xstrdup (sym_name);
10476
10477 /* Set the COND and COND_STRING (if not NULL). */
10478
10479 if (cond_string != NULL && cond != NULL)
10480 {
10481 if (*cond_string != NULL)
10482 {
10483 xfree (*cond_string);
10484 *cond_string = NULL;
10485 }
10486 if (*cond != NULL)
10487 {
10488 xfree (*cond);
10489 *cond = NULL;
10490 }
10491 if (exp_string != NULL)
10492 {
10493 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10494 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10495 }
10496 }
10497
10498 /* Set OPS. */
10499 *ops = ada_exception_breakpoint_ops (ex);
10500
10501 return sal;
10502 }
10503
10504 /* Parse the arguments (ARGS) of the "catch exception" command.
10505
10506 Set TYPE to the appropriate exception catchpoint type.
10507 If the user asked the catchpoint to catch only a specific
10508 exception, then save the exception name in ADDR_STRING.
10509
10510 See ada_exception_sal for a description of all the remaining
10511 function arguments of this function. */
10512
10513 struct symtab_and_line
10514 ada_decode_exception_location (char *args, char **addr_string,
10515 char **exp_string, char **cond_string,
10516 struct expression **cond,
10517 struct breakpoint_ops **ops)
10518 {
10519 enum exception_catchpoint_kind ex;
10520
10521 catch_ada_exception_command_split (args, &ex, exp_string);
10522 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10523 cond, ops);
10524 }
10525
10526 struct symtab_and_line
10527 ada_decode_assert_location (char *args, char **addr_string,
10528 struct breakpoint_ops **ops)
10529 {
10530 /* Check that no argument where provided at the end of the command. */
10531
10532 if (args != NULL)
10533 {
10534 while (isspace (*args))
10535 args++;
10536 if (*args != '\0')
10537 error (_("Junk at end of arguments."));
10538 }
10539
10540 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10541 ops);
10542 }
10543
10544 /* Operators */
10545 /* Information about operators given special treatment in functions
10546 below. */
10547 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10548
10549 #define ADA_OPERATORS \
10550 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10551 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10552 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10553 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10554 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10555 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10556 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10557 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10558 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10559 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10560 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10561 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10562 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10563 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10564 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10565 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10566 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10567 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10568 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10569
10570 static void
10571 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10572 {
10573 switch (exp->elts[pc - 1].opcode)
10574 {
10575 default:
10576 operator_length_standard (exp, pc, oplenp, argsp);
10577 break;
10578
10579 #define OP_DEFN(op, len, args, binop) \
10580 case op: *oplenp = len; *argsp = args; break;
10581 ADA_OPERATORS;
10582 #undef OP_DEFN
10583
10584 case OP_AGGREGATE:
10585 *oplenp = 3;
10586 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10587 break;
10588
10589 case OP_CHOICES:
10590 *oplenp = 3;
10591 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10592 break;
10593 }
10594 }
10595
10596 static char *
10597 ada_op_name (enum exp_opcode opcode)
10598 {
10599 switch (opcode)
10600 {
10601 default:
10602 return op_name_standard (opcode);
10603
10604 #define OP_DEFN(op, len, args, binop) case op: return #op;
10605 ADA_OPERATORS;
10606 #undef OP_DEFN
10607
10608 case OP_AGGREGATE:
10609 return "OP_AGGREGATE";
10610 case OP_CHOICES:
10611 return "OP_CHOICES";
10612 case OP_NAME:
10613 return "OP_NAME";
10614 }
10615 }
10616
10617 /* As for operator_length, but assumes PC is pointing at the first
10618 element of the operator, and gives meaningful results only for the
10619 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10620
10621 static void
10622 ada_forward_operator_length (struct expression *exp, int pc,
10623 int *oplenp, int *argsp)
10624 {
10625 switch (exp->elts[pc].opcode)
10626 {
10627 default:
10628 *oplenp = *argsp = 0;
10629 break;
10630
10631 #define OP_DEFN(op, len, args, binop) \
10632 case op: *oplenp = len; *argsp = args; break;
10633 ADA_OPERATORS;
10634 #undef OP_DEFN
10635
10636 case OP_AGGREGATE:
10637 *oplenp = 3;
10638 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10639 break;
10640
10641 case OP_CHOICES:
10642 *oplenp = 3;
10643 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10644 break;
10645
10646 case OP_STRING:
10647 case OP_NAME:
10648 {
10649 int len = longest_to_int (exp->elts[pc + 1].longconst);
10650 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10651 *argsp = 0;
10652 break;
10653 }
10654 }
10655 }
10656
10657 static int
10658 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10659 {
10660 enum exp_opcode op = exp->elts[elt].opcode;
10661 int oplen, nargs;
10662 int pc = elt;
10663 int i;
10664
10665 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10666
10667 switch (op)
10668 {
10669 /* Ada attributes ('Foo). */
10670 case OP_ATR_FIRST:
10671 case OP_ATR_LAST:
10672 case OP_ATR_LENGTH:
10673 case OP_ATR_IMAGE:
10674 case OP_ATR_MAX:
10675 case OP_ATR_MIN:
10676 case OP_ATR_MODULUS:
10677 case OP_ATR_POS:
10678 case OP_ATR_SIZE:
10679 case OP_ATR_TAG:
10680 case OP_ATR_VAL:
10681 break;
10682
10683 case UNOP_IN_RANGE:
10684 case UNOP_QUAL:
10685 /* XXX: gdb_sprint_host_address, type_sprint */
10686 fprintf_filtered (stream, _("Type @"));
10687 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10688 fprintf_filtered (stream, " (");
10689 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10690 fprintf_filtered (stream, ")");
10691 break;
10692 case BINOP_IN_BOUNDS:
10693 fprintf_filtered (stream, " (%d)",
10694 longest_to_int (exp->elts[pc + 2].longconst));
10695 break;
10696 case TERNOP_IN_RANGE:
10697 break;
10698
10699 case OP_AGGREGATE:
10700 case OP_OTHERS:
10701 case OP_DISCRETE_RANGE:
10702 case OP_POSITIONAL:
10703 case OP_CHOICES:
10704 break;
10705
10706 case OP_NAME:
10707 case OP_STRING:
10708 {
10709 char *name = &exp->elts[elt + 2].string;
10710 int len = longest_to_int (exp->elts[elt + 1].longconst);
10711 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10712 break;
10713 }
10714
10715 default:
10716 return dump_subexp_body_standard (exp, stream, elt);
10717 }
10718
10719 elt += oplen;
10720 for (i = 0; i < nargs; i += 1)
10721 elt = dump_subexp (exp, stream, elt);
10722
10723 return elt;
10724 }
10725
10726 /* The Ada extension of print_subexp (q.v.). */
10727
10728 static void
10729 ada_print_subexp (struct expression *exp, int *pos,
10730 struct ui_file *stream, enum precedence prec)
10731 {
10732 int oplen, nargs, i;
10733 int pc = *pos;
10734 enum exp_opcode op = exp->elts[pc].opcode;
10735
10736 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10737
10738 *pos += oplen;
10739 switch (op)
10740 {
10741 default:
10742 *pos -= oplen;
10743 print_subexp_standard (exp, pos, stream, prec);
10744 return;
10745
10746 case OP_VAR_VALUE:
10747 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10748 return;
10749
10750 case BINOP_IN_BOUNDS:
10751 /* XXX: sprint_subexp */
10752 print_subexp (exp, pos, stream, PREC_SUFFIX);
10753 fputs_filtered (" in ", stream);
10754 print_subexp (exp, pos, stream, PREC_SUFFIX);
10755 fputs_filtered ("'range", stream);
10756 if (exp->elts[pc + 1].longconst > 1)
10757 fprintf_filtered (stream, "(%ld)",
10758 (long) exp->elts[pc + 1].longconst);
10759 return;
10760
10761 case TERNOP_IN_RANGE:
10762 if (prec >= PREC_EQUAL)
10763 fputs_filtered ("(", stream);
10764 /* XXX: sprint_subexp */
10765 print_subexp (exp, pos, stream, PREC_SUFFIX);
10766 fputs_filtered (" in ", stream);
10767 print_subexp (exp, pos, stream, PREC_EQUAL);
10768 fputs_filtered (" .. ", stream);
10769 print_subexp (exp, pos, stream, PREC_EQUAL);
10770 if (prec >= PREC_EQUAL)
10771 fputs_filtered (")", stream);
10772 return;
10773
10774 case OP_ATR_FIRST:
10775 case OP_ATR_LAST:
10776 case OP_ATR_LENGTH:
10777 case OP_ATR_IMAGE:
10778 case OP_ATR_MAX:
10779 case OP_ATR_MIN:
10780 case OP_ATR_MODULUS:
10781 case OP_ATR_POS:
10782 case OP_ATR_SIZE:
10783 case OP_ATR_TAG:
10784 case OP_ATR_VAL:
10785 if (exp->elts[*pos].opcode == OP_TYPE)
10786 {
10787 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10788 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10789 *pos += 3;
10790 }
10791 else
10792 print_subexp (exp, pos, stream, PREC_SUFFIX);
10793 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10794 if (nargs > 1)
10795 {
10796 int tem;
10797 for (tem = 1; tem < nargs; tem += 1)
10798 {
10799 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10800 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10801 }
10802 fputs_filtered (")", stream);
10803 }
10804 return;
10805
10806 case UNOP_QUAL:
10807 type_print (exp->elts[pc + 1].type, "", stream, 0);
10808 fputs_filtered ("'(", stream);
10809 print_subexp (exp, pos, stream, PREC_PREFIX);
10810 fputs_filtered (")", stream);
10811 return;
10812
10813 case UNOP_IN_RANGE:
10814 /* XXX: sprint_subexp */
10815 print_subexp (exp, pos, stream, PREC_SUFFIX);
10816 fputs_filtered (" in ", stream);
10817 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10818 return;
10819
10820 case OP_DISCRETE_RANGE:
10821 print_subexp (exp, pos, stream, PREC_SUFFIX);
10822 fputs_filtered ("..", stream);
10823 print_subexp (exp, pos, stream, PREC_SUFFIX);
10824 return;
10825
10826 case OP_OTHERS:
10827 fputs_filtered ("others => ", stream);
10828 print_subexp (exp, pos, stream, PREC_SUFFIX);
10829 return;
10830
10831 case OP_CHOICES:
10832 for (i = 0; i < nargs-1; i += 1)
10833 {
10834 if (i > 0)
10835 fputs_filtered ("|", stream);
10836 print_subexp (exp, pos, stream, PREC_SUFFIX);
10837 }
10838 fputs_filtered (" => ", stream);
10839 print_subexp (exp, pos, stream, PREC_SUFFIX);
10840 return;
10841
10842 case OP_POSITIONAL:
10843 print_subexp (exp, pos, stream, PREC_SUFFIX);
10844 return;
10845
10846 case OP_AGGREGATE:
10847 fputs_filtered ("(", stream);
10848 for (i = 0; i < nargs; i += 1)
10849 {
10850 if (i > 0)
10851 fputs_filtered (", ", stream);
10852 print_subexp (exp, pos, stream, PREC_SUFFIX);
10853 }
10854 fputs_filtered (")", stream);
10855 return;
10856 }
10857 }
10858
10859 /* Table mapping opcodes into strings for printing operators
10860 and precedences of the operators. */
10861
10862 static const struct op_print ada_op_print_tab[] = {
10863 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10864 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10865 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10866 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10867 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10868 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10869 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10870 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10871 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10872 {">=", BINOP_GEQ, PREC_ORDER, 0},
10873 {">", BINOP_GTR, PREC_ORDER, 0},
10874 {"<", BINOP_LESS, PREC_ORDER, 0},
10875 {">>", BINOP_RSH, PREC_SHIFT, 0},
10876 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10877 {"+", BINOP_ADD, PREC_ADD, 0},
10878 {"-", BINOP_SUB, PREC_ADD, 0},
10879 {"&", BINOP_CONCAT, PREC_ADD, 0},
10880 {"*", BINOP_MUL, PREC_MUL, 0},
10881 {"/", BINOP_DIV, PREC_MUL, 0},
10882 {"rem", BINOP_REM, PREC_MUL, 0},
10883 {"mod", BINOP_MOD, PREC_MUL, 0},
10884 {"**", BINOP_EXP, PREC_REPEAT, 0},
10885 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10886 {"-", UNOP_NEG, PREC_PREFIX, 0},
10887 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10888 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10889 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10890 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10891 {".all", UNOP_IND, PREC_SUFFIX, 1},
10892 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10893 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10894 {NULL, 0, 0, 0}
10895 };
10896 \f
10897 enum ada_primitive_types {
10898 ada_primitive_type_int,
10899 ada_primitive_type_long,
10900 ada_primitive_type_short,
10901 ada_primitive_type_char,
10902 ada_primitive_type_float,
10903 ada_primitive_type_double,
10904 ada_primitive_type_void,
10905 ada_primitive_type_long_long,
10906 ada_primitive_type_long_double,
10907 ada_primitive_type_natural,
10908 ada_primitive_type_positive,
10909 ada_primitive_type_system_address,
10910 nr_ada_primitive_types
10911 };
10912
10913 static void
10914 ada_language_arch_info (struct gdbarch *gdbarch,
10915 struct language_arch_info *lai)
10916 {
10917 const struct builtin_type *builtin = builtin_type (gdbarch);
10918 lai->primitive_type_vector
10919 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10920 struct type *);
10921 lai->primitive_type_vector [ada_primitive_type_int] =
10922 init_type (TYPE_CODE_INT,
10923 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10924 0, "integer", (struct objfile *) NULL);
10925 lai->primitive_type_vector [ada_primitive_type_long] =
10926 init_type (TYPE_CODE_INT,
10927 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10928 0, "long_integer", (struct objfile *) NULL);
10929 lai->primitive_type_vector [ada_primitive_type_short] =
10930 init_type (TYPE_CODE_INT,
10931 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10932 0, "short_integer", (struct objfile *) NULL);
10933 lai->string_char_type =
10934 lai->primitive_type_vector [ada_primitive_type_char] =
10935 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10936 0, "character", (struct objfile *) NULL);
10937 lai->primitive_type_vector [ada_primitive_type_float] =
10938 init_type (TYPE_CODE_FLT,
10939 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10940 0, "float", (struct objfile *) NULL);
10941 lai->primitive_type_vector [ada_primitive_type_double] =
10942 init_type (TYPE_CODE_FLT,
10943 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10944 0, "long_float", (struct objfile *) NULL);
10945 lai->primitive_type_vector [ada_primitive_type_long_long] =
10946 init_type (TYPE_CODE_INT,
10947 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10948 0, "long_long_integer", (struct objfile *) NULL);
10949 lai->primitive_type_vector [ada_primitive_type_long_double] =
10950 init_type (TYPE_CODE_FLT,
10951 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10952 0, "long_long_float", (struct objfile *) NULL);
10953 lai->primitive_type_vector [ada_primitive_type_natural] =
10954 init_type (TYPE_CODE_INT,
10955 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10956 0, "natural", (struct objfile *) NULL);
10957 lai->primitive_type_vector [ada_primitive_type_positive] =
10958 init_type (TYPE_CODE_INT,
10959 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10960 0, "positive", (struct objfile *) NULL);
10961 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10962
10963 lai->primitive_type_vector [ada_primitive_type_system_address] =
10964 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10965 (struct objfile *) NULL));
10966 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10967 = "system__address";
10968 }
10969 \f
10970 /* Language vector */
10971
10972 /* Not really used, but needed in the ada_language_defn. */
10973
10974 static void
10975 emit_char (int c, struct ui_file *stream, int quoter)
10976 {
10977 ada_emit_char (c, stream, quoter, 1);
10978 }
10979
10980 static int
10981 parse (void)
10982 {
10983 warnings_issued = 0;
10984 return ada_parse ();
10985 }
10986
10987 static const struct exp_descriptor ada_exp_descriptor = {
10988 ada_print_subexp,
10989 ada_operator_length,
10990 ada_op_name,
10991 ada_dump_subexp_body,
10992 ada_evaluate_subexp
10993 };
10994
10995 const struct language_defn ada_language_defn = {
10996 "ada", /* Language name */
10997 language_ada,
10998 range_check_off,
10999 type_check_off,
11000 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11001 that's not quite what this means. */
11002 array_row_major,
11003 &ada_exp_descriptor,
11004 parse,
11005 ada_error,
11006 resolve,
11007 ada_printchar, /* Print a character constant */
11008 ada_printstr, /* Function to print string constant */
11009 emit_char, /* Function to print single char (not used) */
11010 ada_print_type, /* Print a type using appropriate syntax */
11011 ada_val_print, /* Print a value using appropriate syntax */
11012 ada_value_print, /* Print a top-level value */
11013 NULL, /* Language specific skip_trampoline */
11014 NULL, /* name_of_this */
11015 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11016 basic_lookup_transparent_type, /* lookup_transparent_type */
11017 ada_la_decode, /* Language specific symbol demangler */
11018 NULL, /* Language specific class_name_from_physname */
11019 ada_op_print_tab, /* expression operators for printing */
11020 0, /* c-style arrays */
11021 1, /* String lower bound */
11022 ada_get_gdb_completer_word_break_characters,
11023 ada_make_symbol_completion_list,
11024 ada_language_arch_info,
11025 ada_print_array_index,
11026 default_pass_by_reference,
11027 LANG_MAGIC
11028 };
11029
11030 void
11031 _initialize_ada_language (void)
11032 {
11033 add_language (&ada_language_defn);
11034
11035 varsize_limit = 65536;
11036
11037 obstack_init (&symbol_list_obstack);
11038
11039 decoded_names_store = htab_create_alloc
11040 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11041 NULL, xcalloc, xfree);
11042
11043 observer_attach_executable_changed (ada_executable_changed_observer);
11044 }
This page took 0.891267 seconds and 4 git commands to generate.