AArch64: Add MOVPRFX tests and update testsuite
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (expression_up *, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (expression_up *, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int advance_wild_match (const char **, const char *, int);
205
206 static bool wild_match (const char *name, const char *patn);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
220 struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228 static int ada_resolve_function (struct block_symbol *, int,
229 struct value **, int, const char *,
230 struct type *);
231
232 static int ada_is_direct_array_type (struct type *);
233
234 static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
236
237 static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240 static struct value *assign_aggregate (struct value *, struct value *,
241 struct expression *,
242 int *, enum noside);
243
244 static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249 static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255 static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266 static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
268
269 static struct type *ada_find_any_type (const char *name);
270
271 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
272 (const lookup_name_info &lookup_name);
273
274 \f
275
276 /* The result of a symbol lookup to be stored in our symbol cache. */
277
278 struct cache_entry
279 {
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
283 domain_enum domain;
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292 };
293
294 /* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303 #define HASH_SIZE 1009
304
305 struct ada_symbol_cache
306 {
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312 };
313
314 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
315
316 /* Maximum-sized dynamic type. */
317 static unsigned int varsize_limit;
318
319 static const char ada_completer_word_break_characters[] =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Maintenance-related settings for this module. */
346
347 static struct cmd_list_element *maint_set_ada_cmdlist;
348 static struct cmd_list_element *maint_show_ada_cmdlist;
349
350 /* Implement the "maintenance set ada" (prefix) command. */
351
352 static void
353 maint_set_ada_cmd (const char *args, int from_tty)
354 {
355 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
356 gdb_stdout);
357 }
358
359 /* Implement the "maintenance show ada" (prefix) command. */
360
361 static void
362 maint_show_ada_cmd (const char *args, int from_tty)
363 {
364 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
365 }
366
367 /* The "maintenance ada set/show ignore-descriptive-type" value. */
368
369 static int ada_ignore_descriptive_types_p = 0;
370
371 /* Inferior-specific data. */
372
373 /* Per-inferior data for this module. */
374
375 struct ada_inferior_data
376 {
377 /* The ada__tags__type_specific_data type, which is used when decoding
378 tagged types. With older versions of GNAT, this type was directly
379 accessible through a component ("tsd") in the object tag. But this
380 is no longer the case, so we cache it for each inferior. */
381 struct type *tsd_type;
382
383 /* The exception_support_info data. This data is used to determine
384 how to implement support for Ada exception catchpoints in a given
385 inferior. */
386 const struct exception_support_info *exception_info;
387 };
388
389 /* Our key to this module's inferior data. */
390 static const struct inferior_data *ada_inferior_data;
391
392 /* A cleanup routine for our inferior data. */
393 static void
394 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
395 {
396 struct ada_inferior_data *data;
397
398 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
399 if (data != NULL)
400 xfree (data);
401 }
402
403 /* Return our inferior data for the given inferior (INF).
404
405 This function always returns a valid pointer to an allocated
406 ada_inferior_data structure. If INF's inferior data has not
407 been previously set, this functions creates a new one with all
408 fields set to zero, sets INF's inferior to it, and then returns
409 a pointer to that newly allocated ada_inferior_data. */
410
411 static struct ada_inferior_data *
412 get_ada_inferior_data (struct inferior *inf)
413 {
414 struct ada_inferior_data *data;
415
416 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
417 if (data == NULL)
418 {
419 data = XCNEW (struct ada_inferior_data);
420 set_inferior_data (inf, ada_inferior_data, data);
421 }
422
423 return data;
424 }
425
426 /* Perform all necessary cleanups regarding our module's inferior data
427 that is required after the inferior INF just exited. */
428
429 static void
430 ada_inferior_exit (struct inferior *inf)
431 {
432 ada_inferior_data_cleanup (inf, NULL);
433 set_inferior_data (inf, ada_inferior_data, NULL);
434 }
435
436
437 /* program-space-specific data. */
438
439 /* This module's per-program-space data. */
440 struct ada_pspace_data
441 {
442 /* The Ada symbol cache. */
443 struct ada_symbol_cache *sym_cache;
444 };
445
446 /* Key to our per-program-space data. */
447 static const struct program_space_data *ada_pspace_data_handle;
448
449 /* Return this module's data for the given program space (PSPACE).
450 If not is found, add a zero'ed one now.
451
452 This function always returns a valid object. */
453
454 static struct ada_pspace_data *
455 get_ada_pspace_data (struct program_space *pspace)
456 {
457 struct ada_pspace_data *data;
458
459 data = ((struct ada_pspace_data *)
460 program_space_data (pspace, ada_pspace_data_handle));
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468 }
469
470 /* The cleanup callback for this module's per-program-space data. */
471
472 static void
473 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474 {
475 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480 }
481
482 /* Utilities */
483
484 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
485 all typedef layers have been peeled. Otherwise, return TYPE.
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511 static struct type *
512 ada_typedef_target_type (struct type *type)
513 {
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517 }
518
519 /* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523 static const char *
524 ada_unqualified_name (const char *decoded_name)
525 {
526 const char *result;
527
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
533 return decoded_name;
534
535 result = strrchr (decoded_name, '.');
536 if (result != NULL)
537 result++; /* Skip the dot... */
538 else
539 result = decoded_name;
540
541 return result;
542 }
543
544 /* Return a string starting with '<', followed by STR, and '>'. */
545
546 static std::string
547 add_angle_brackets (const char *str)
548 {
549 return string_printf ("<%s>", str);
550 }
551
552 static const char *
553 ada_get_gdb_completer_word_break_characters (void)
554 {
555 return ada_completer_word_break_characters;
556 }
557
558 /* Print an array element index using the Ada syntax. */
559
560 static void
561 ada_print_array_index (struct value *index_value, struct ui_file *stream,
562 const struct value_print_options *options)
563 {
564 LA_VALUE_PRINT (index_value, stream, options);
565 fprintf_filtered (stream, " => ");
566 }
567
568 /* Assuming VECT points to an array of *SIZE objects of size
569 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
570 updating *SIZE as necessary and returning the (new) array. */
571
572 void *
573 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
574 {
575 if (*size < min_size)
576 {
577 *size *= 2;
578 if (*size < min_size)
579 *size = min_size;
580 vect = xrealloc (vect, *size * element_size);
581 }
582 return vect;
583 }
584
585 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
586 suffix of FIELD_NAME beginning "___". */
587
588 static int
589 field_name_match (const char *field_name, const char *target)
590 {
591 int len = strlen (target);
592
593 return
594 (strncmp (field_name, target, len) == 0
595 && (field_name[len] == '\0'
596 || (startswith (field_name + len, "___")
597 && strcmp (field_name + strlen (field_name) - 6,
598 "___XVN") != 0)));
599 }
600
601
602 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
603 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
604 and return its index. This function also handles fields whose name
605 have ___ suffixes because the compiler sometimes alters their name
606 by adding such a suffix to represent fields with certain constraints.
607 If the field could not be found, return a negative number if
608 MAYBE_MISSING is set. Otherwise raise an error. */
609
610 int
611 ada_get_field_index (const struct type *type, const char *field_name,
612 int maybe_missing)
613 {
614 int fieldno;
615 struct type *struct_type = check_typedef ((struct type *) type);
616
617 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
618 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
619 return fieldno;
620
621 if (!maybe_missing)
622 error (_("Unable to find field %s in struct %s. Aborting"),
623 field_name, TYPE_NAME (struct_type));
624
625 return -1;
626 }
627
628 /* The length of the prefix of NAME prior to any "___" suffix. */
629
630 int
631 ada_name_prefix_len (const char *name)
632 {
633 if (name == NULL)
634 return 0;
635 else
636 {
637 const char *p = strstr (name, "___");
638
639 if (p == NULL)
640 return strlen (name);
641 else
642 return p - name;
643 }
644 }
645
646 /* Return non-zero if SUFFIX is a suffix of STR.
647 Return zero if STR is null. */
648
649 static int
650 is_suffix (const char *str, const char *suffix)
651 {
652 int len1, len2;
653
654 if (str == NULL)
655 return 0;
656 len1 = strlen (str);
657 len2 = strlen (suffix);
658 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
659 }
660
661 /* The contents of value VAL, treated as a value of type TYPE. The
662 result is an lval in memory if VAL is. */
663
664 static struct value *
665 coerce_unspec_val_to_type (struct value *val, struct type *type)
666 {
667 type = ada_check_typedef (type);
668 if (value_type (val) == type)
669 return val;
670 else
671 {
672 struct value *result;
673
674 /* Make sure that the object size is not unreasonable before
675 trying to allocate some memory for it. */
676 ada_ensure_varsize_limit (type);
677
678 if (value_lazy (val)
679 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
680 result = allocate_value_lazy (type);
681 else
682 {
683 result = allocate_value (type);
684 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
685 }
686 set_value_component_location (result, val);
687 set_value_bitsize (result, value_bitsize (val));
688 set_value_bitpos (result, value_bitpos (val));
689 set_value_address (result, value_address (val));
690 return result;
691 }
692 }
693
694 static const gdb_byte *
695 cond_offset_host (const gdb_byte *valaddr, long offset)
696 {
697 if (valaddr == NULL)
698 return NULL;
699 else
700 return valaddr + offset;
701 }
702
703 static CORE_ADDR
704 cond_offset_target (CORE_ADDR address, long offset)
705 {
706 if (address == 0)
707 return 0;
708 else
709 return address + offset;
710 }
711
712 /* Issue a warning (as for the definition of warning in utils.c, but
713 with exactly one argument rather than ...), unless the limit on the
714 number of warnings has passed during the evaluation of the current
715 expression. */
716
717 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
718 provided by "complaint". */
719 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
720
721 static void
722 lim_warning (const char *format, ...)
723 {
724 va_list args;
725
726 va_start (args, format);
727 warnings_issued += 1;
728 if (warnings_issued <= warning_limit)
729 vwarning (format, args);
730
731 va_end (args);
732 }
733
734 /* Issue an error if the size of an object of type T is unreasonable,
735 i.e. if it would be a bad idea to allocate a value of this type in
736 GDB. */
737
738 void
739 ada_ensure_varsize_limit (const struct type *type)
740 {
741 if (TYPE_LENGTH (type) > varsize_limit)
742 error (_("object size is larger than varsize-limit"));
743 }
744
745 /* Maximum value of a SIZE-byte signed integer type. */
746 static LONGEST
747 max_of_size (int size)
748 {
749 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
750
751 return top_bit | (top_bit - 1);
752 }
753
754 /* Minimum value of a SIZE-byte signed integer type. */
755 static LONGEST
756 min_of_size (int size)
757 {
758 return -max_of_size (size) - 1;
759 }
760
761 /* Maximum value of a SIZE-byte unsigned integer type. */
762 static ULONGEST
763 umax_of_size (int size)
764 {
765 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
766
767 return top_bit | (top_bit - 1);
768 }
769
770 /* Maximum value of integral type T, as a signed quantity. */
771 static LONGEST
772 max_of_type (struct type *t)
773 {
774 if (TYPE_UNSIGNED (t))
775 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
776 else
777 return max_of_size (TYPE_LENGTH (t));
778 }
779
780 /* Minimum value of integral type T, as a signed quantity. */
781 static LONGEST
782 min_of_type (struct type *t)
783 {
784 if (TYPE_UNSIGNED (t))
785 return 0;
786 else
787 return min_of_size (TYPE_LENGTH (t));
788 }
789
790 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
791 LONGEST
792 ada_discrete_type_high_bound (struct type *type)
793 {
794 type = resolve_dynamic_type (type, NULL, 0);
795 switch (TYPE_CODE (type))
796 {
797 case TYPE_CODE_RANGE:
798 return TYPE_HIGH_BOUND (type);
799 case TYPE_CODE_ENUM:
800 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
801 case TYPE_CODE_BOOL:
802 return 1;
803 case TYPE_CODE_CHAR:
804 case TYPE_CODE_INT:
805 return max_of_type (type);
806 default:
807 error (_("Unexpected type in ada_discrete_type_high_bound."));
808 }
809 }
810
811 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
812 LONGEST
813 ada_discrete_type_low_bound (struct type *type)
814 {
815 type = resolve_dynamic_type (type, NULL, 0);
816 switch (TYPE_CODE (type))
817 {
818 case TYPE_CODE_RANGE:
819 return TYPE_LOW_BOUND (type);
820 case TYPE_CODE_ENUM:
821 return TYPE_FIELD_ENUMVAL (type, 0);
822 case TYPE_CODE_BOOL:
823 return 0;
824 case TYPE_CODE_CHAR:
825 case TYPE_CODE_INT:
826 return min_of_type (type);
827 default:
828 error (_("Unexpected type in ada_discrete_type_low_bound."));
829 }
830 }
831
832 /* The identity on non-range types. For range types, the underlying
833 non-range scalar type. */
834
835 static struct type *
836 get_base_type (struct type *type)
837 {
838 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
839 {
840 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
841 return type;
842 type = TYPE_TARGET_TYPE (type);
843 }
844 return type;
845 }
846
847 /* Return a decoded version of the given VALUE. This means returning
848 a value whose type is obtained by applying all the GNAT-specific
849 encondings, making the resulting type a static but standard description
850 of the initial type. */
851
852 struct value *
853 ada_get_decoded_value (struct value *value)
854 {
855 struct type *type = ada_check_typedef (value_type (value));
856
857 if (ada_is_array_descriptor_type (type)
858 || (ada_is_constrained_packed_array_type (type)
859 && TYPE_CODE (type) != TYPE_CODE_PTR))
860 {
861 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
862 value = ada_coerce_to_simple_array_ptr (value);
863 else
864 value = ada_coerce_to_simple_array (value);
865 }
866 else
867 value = ada_to_fixed_value (value);
868
869 return value;
870 }
871
872 /* Same as ada_get_decoded_value, but with the given TYPE.
873 Because there is no associated actual value for this type,
874 the resulting type might be a best-effort approximation in
875 the case of dynamic types. */
876
877 struct type *
878 ada_get_decoded_type (struct type *type)
879 {
880 type = to_static_fixed_type (type);
881 if (ada_is_constrained_packed_array_type (type))
882 type = ada_coerce_to_simple_array_type (type);
883 return type;
884 }
885
886 \f
887
888 /* Language Selection */
889
890 /* If the main program is in Ada, return language_ada, otherwise return LANG
891 (the main program is in Ada iif the adainit symbol is found). */
892
893 enum language
894 ada_update_initial_language (enum language lang)
895 {
896 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
897 (struct objfile *) NULL).minsym != NULL)
898 return language_ada;
899
900 return lang;
901 }
902
903 /* If the main procedure is written in Ada, then return its name.
904 The result is good until the next call. Return NULL if the main
905 procedure doesn't appear to be in Ada. */
906
907 char *
908 ada_main_name (void)
909 {
910 struct bound_minimal_symbol msym;
911 static gdb::unique_xmalloc_ptr<char> main_program_name;
912
913 /* For Ada, the name of the main procedure is stored in a specific
914 string constant, generated by the binder. Look for that symbol,
915 extract its address, and then read that string. If we didn't find
916 that string, then most probably the main procedure is not written
917 in Ada. */
918 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
919
920 if (msym.minsym != NULL)
921 {
922 CORE_ADDR main_program_name_addr;
923 int err_code;
924
925 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
926 if (main_program_name_addr == 0)
927 error (_("Invalid address for Ada main program name."));
928
929 target_read_string (main_program_name_addr, &main_program_name,
930 1024, &err_code);
931
932 if (err_code != 0)
933 return NULL;
934 return main_program_name.get ();
935 }
936
937 /* The main procedure doesn't seem to be in Ada. */
938 return NULL;
939 }
940 \f
941 /* Symbols */
942
943 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
944 of NULLs. */
945
946 const struct ada_opname_map ada_opname_table[] = {
947 {"Oadd", "\"+\"", BINOP_ADD},
948 {"Osubtract", "\"-\"", BINOP_SUB},
949 {"Omultiply", "\"*\"", BINOP_MUL},
950 {"Odivide", "\"/\"", BINOP_DIV},
951 {"Omod", "\"mod\"", BINOP_MOD},
952 {"Orem", "\"rem\"", BINOP_REM},
953 {"Oexpon", "\"**\"", BINOP_EXP},
954 {"Olt", "\"<\"", BINOP_LESS},
955 {"Ole", "\"<=\"", BINOP_LEQ},
956 {"Ogt", "\">\"", BINOP_GTR},
957 {"Oge", "\">=\"", BINOP_GEQ},
958 {"Oeq", "\"=\"", BINOP_EQUAL},
959 {"One", "\"/=\"", BINOP_NOTEQUAL},
960 {"Oand", "\"and\"", BINOP_BITWISE_AND},
961 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
962 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
963 {"Oconcat", "\"&\"", BINOP_CONCAT},
964 {"Oabs", "\"abs\"", UNOP_ABS},
965 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
966 {"Oadd", "\"+\"", UNOP_PLUS},
967 {"Osubtract", "\"-\"", UNOP_NEG},
968 {NULL, NULL}
969 };
970
971 /* The "encoded" form of DECODED, according to GNAT conventions. The
972 result is valid until the next call to ada_encode. If
973 THROW_ERRORS, throw an error if invalid operator name is found.
974 Otherwise, return NULL in that case. */
975
976 static char *
977 ada_encode_1 (const char *decoded, bool throw_errors)
978 {
979 static char *encoding_buffer = NULL;
980 static size_t encoding_buffer_size = 0;
981 const char *p;
982 int k;
983
984 if (decoded == NULL)
985 return NULL;
986
987 GROW_VECT (encoding_buffer, encoding_buffer_size,
988 2 * strlen (decoded) + 10);
989
990 k = 0;
991 for (p = decoded; *p != '\0'; p += 1)
992 {
993 if (*p == '.')
994 {
995 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
996 k += 2;
997 }
998 else if (*p == '"')
999 {
1000 const struct ada_opname_map *mapping;
1001
1002 for (mapping = ada_opname_table;
1003 mapping->encoded != NULL
1004 && !startswith (p, mapping->decoded); mapping += 1)
1005 ;
1006 if (mapping->encoded == NULL)
1007 {
1008 if (throw_errors)
1009 error (_("invalid Ada operator name: %s"), p);
1010 else
1011 return NULL;
1012 }
1013 strcpy (encoding_buffer + k, mapping->encoded);
1014 k += strlen (mapping->encoded);
1015 break;
1016 }
1017 else
1018 {
1019 encoding_buffer[k] = *p;
1020 k += 1;
1021 }
1022 }
1023
1024 encoding_buffer[k] = '\0';
1025 return encoding_buffer;
1026 }
1027
1028 /* The "encoded" form of DECODED, according to GNAT conventions.
1029 The result is valid until the next call to ada_encode. */
1030
1031 char *
1032 ada_encode (const char *decoded)
1033 {
1034 return ada_encode_1 (decoded, true);
1035 }
1036
1037 /* Return NAME folded to lower case, or, if surrounded by single
1038 quotes, unfolded, but with the quotes stripped away. Result good
1039 to next call. */
1040
1041 char *
1042 ada_fold_name (const char *name)
1043 {
1044 static char *fold_buffer = NULL;
1045 static size_t fold_buffer_size = 0;
1046
1047 int len = strlen (name);
1048 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1049
1050 if (name[0] == '\'')
1051 {
1052 strncpy (fold_buffer, name + 1, len - 2);
1053 fold_buffer[len - 2] = '\000';
1054 }
1055 else
1056 {
1057 int i;
1058
1059 for (i = 0; i <= len; i += 1)
1060 fold_buffer[i] = tolower (name[i]);
1061 }
1062
1063 return fold_buffer;
1064 }
1065
1066 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1067
1068 static int
1069 is_lower_alphanum (const char c)
1070 {
1071 return (isdigit (c) || (isalpha (c) && islower (c)));
1072 }
1073
1074 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1075 This function saves in LEN the length of that same symbol name but
1076 without either of these suffixes:
1077 . .{DIGIT}+
1078 . ${DIGIT}+
1079 . ___{DIGIT}+
1080 . __{DIGIT}+.
1081
1082 These are suffixes introduced by the compiler for entities such as
1083 nested subprogram for instance, in order to avoid name clashes.
1084 They do not serve any purpose for the debugger. */
1085
1086 static void
1087 ada_remove_trailing_digits (const char *encoded, int *len)
1088 {
1089 if (*len > 1 && isdigit (encoded[*len - 1]))
1090 {
1091 int i = *len - 2;
1092
1093 while (i > 0 && isdigit (encoded[i]))
1094 i--;
1095 if (i >= 0 && encoded[i] == '.')
1096 *len = i;
1097 else if (i >= 0 && encoded[i] == '$')
1098 *len = i;
1099 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1100 *len = i - 2;
1101 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1102 *len = i - 1;
1103 }
1104 }
1105
1106 /* Remove the suffix introduced by the compiler for protected object
1107 subprograms. */
1108
1109 static void
1110 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1111 {
1112 /* Remove trailing N. */
1113
1114 /* Protected entry subprograms are broken into two
1115 separate subprograms: The first one is unprotected, and has
1116 a 'N' suffix; the second is the protected version, and has
1117 the 'P' suffix. The second calls the first one after handling
1118 the protection. Since the P subprograms are internally generated,
1119 we leave these names undecoded, giving the user a clue that this
1120 entity is internal. */
1121
1122 if (*len > 1
1123 && encoded[*len - 1] == 'N'
1124 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1125 *len = *len - 1;
1126 }
1127
1128 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1129
1130 static void
1131 ada_remove_Xbn_suffix (const char *encoded, int *len)
1132 {
1133 int i = *len - 1;
1134
1135 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1136 i--;
1137
1138 if (encoded[i] != 'X')
1139 return;
1140
1141 if (i == 0)
1142 return;
1143
1144 if (isalnum (encoded[i-1]))
1145 *len = i;
1146 }
1147
1148 /* If ENCODED follows the GNAT entity encoding conventions, then return
1149 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1150 replaced by ENCODED.
1151
1152 The resulting string is valid until the next call of ada_decode.
1153 If the string is unchanged by decoding, the original string pointer
1154 is returned. */
1155
1156 const char *
1157 ada_decode (const char *encoded)
1158 {
1159 int i, j;
1160 int len0;
1161 const char *p;
1162 char *decoded;
1163 int at_start_name;
1164 static char *decoding_buffer = NULL;
1165 static size_t decoding_buffer_size = 0;
1166
1167 /* With function descriptors on PPC64, the value of a symbol named
1168 ".FN", if it exists, is the entry point of the function "FN". */
1169 if (encoded[0] == '.')
1170 encoded += 1;
1171
1172 /* The name of the Ada main procedure starts with "_ada_".
1173 This prefix is not part of the decoded name, so skip this part
1174 if we see this prefix. */
1175 if (startswith (encoded, "_ada_"))
1176 encoded += 5;
1177
1178 /* If the name starts with '_', then it is not a properly encoded
1179 name, so do not attempt to decode it. Similarly, if the name
1180 starts with '<', the name should not be decoded. */
1181 if (encoded[0] == '_' || encoded[0] == '<')
1182 goto Suppress;
1183
1184 len0 = strlen (encoded);
1185
1186 ada_remove_trailing_digits (encoded, &len0);
1187 ada_remove_po_subprogram_suffix (encoded, &len0);
1188
1189 /* Remove the ___X.* suffix if present. Do not forget to verify that
1190 the suffix is located before the current "end" of ENCODED. We want
1191 to avoid re-matching parts of ENCODED that have previously been
1192 marked as discarded (by decrementing LEN0). */
1193 p = strstr (encoded, "___");
1194 if (p != NULL && p - encoded < len0 - 3)
1195 {
1196 if (p[3] == 'X')
1197 len0 = p - encoded;
1198 else
1199 goto Suppress;
1200 }
1201
1202 /* Remove any trailing TKB suffix. It tells us that this symbol
1203 is for the body of a task, but that information does not actually
1204 appear in the decoded name. */
1205
1206 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1207 len0 -= 3;
1208
1209 /* Remove any trailing TB suffix. The TB suffix is slightly different
1210 from the TKB suffix because it is used for non-anonymous task
1211 bodies. */
1212
1213 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1214 len0 -= 2;
1215
1216 /* Remove trailing "B" suffixes. */
1217 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1218
1219 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1220 len0 -= 1;
1221
1222 /* Make decoded big enough for possible expansion by operator name. */
1223
1224 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1225 decoded = decoding_buffer;
1226
1227 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1228
1229 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1230 {
1231 i = len0 - 2;
1232 while ((i >= 0 && isdigit (encoded[i]))
1233 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1234 i -= 1;
1235 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1236 len0 = i - 1;
1237 else if (encoded[i] == '$')
1238 len0 = i;
1239 }
1240
1241 /* The first few characters that are not alphabetic are not part
1242 of any encoding we use, so we can copy them over verbatim. */
1243
1244 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1245 decoded[j] = encoded[i];
1246
1247 at_start_name = 1;
1248 while (i < len0)
1249 {
1250 /* Is this a symbol function? */
1251 if (at_start_name && encoded[i] == 'O')
1252 {
1253 int k;
1254
1255 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1256 {
1257 int op_len = strlen (ada_opname_table[k].encoded);
1258 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1259 op_len - 1) == 0)
1260 && !isalnum (encoded[i + op_len]))
1261 {
1262 strcpy (decoded + j, ada_opname_table[k].decoded);
1263 at_start_name = 0;
1264 i += op_len;
1265 j += strlen (ada_opname_table[k].decoded);
1266 break;
1267 }
1268 }
1269 if (ada_opname_table[k].encoded != NULL)
1270 continue;
1271 }
1272 at_start_name = 0;
1273
1274 /* Replace "TK__" with "__", which will eventually be translated
1275 into "." (just below). */
1276
1277 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1278 i += 2;
1279
1280 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1281 be translated into "." (just below). These are internal names
1282 generated for anonymous blocks inside which our symbol is nested. */
1283
1284 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1285 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1286 && isdigit (encoded [i+4]))
1287 {
1288 int k = i + 5;
1289
1290 while (k < len0 && isdigit (encoded[k]))
1291 k++; /* Skip any extra digit. */
1292
1293 /* Double-check that the "__B_{DIGITS}+" sequence we found
1294 is indeed followed by "__". */
1295 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1296 i = k;
1297 }
1298
1299 /* Remove _E{DIGITS}+[sb] */
1300
1301 /* Just as for protected object subprograms, there are 2 categories
1302 of subprograms created by the compiler for each entry. The first
1303 one implements the actual entry code, and has a suffix following
1304 the convention above; the second one implements the barrier and
1305 uses the same convention as above, except that the 'E' is replaced
1306 by a 'B'.
1307
1308 Just as above, we do not decode the name of barrier functions
1309 to give the user a clue that the code he is debugging has been
1310 internally generated. */
1311
1312 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1313 && isdigit (encoded[i+2]))
1314 {
1315 int k = i + 3;
1316
1317 while (k < len0 && isdigit (encoded[k]))
1318 k++;
1319
1320 if (k < len0
1321 && (encoded[k] == 'b' || encoded[k] == 's'))
1322 {
1323 k++;
1324 /* Just as an extra precaution, make sure that if this
1325 suffix is followed by anything else, it is a '_'.
1326 Otherwise, we matched this sequence by accident. */
1327 if (k == len0
1328 || (k < len0 && encoded[k] == '_'))
1329 i = k;
1330 }
1331 }
1332
1333 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1334 the GNAT front-end in protected object subprograms. */
1335
1336 if (i < len0 + 3
1337 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1338 {
1339 /* Backtrack a bit up until we reach either the begining of
1340 the encoded name, or "__". Make sure that we only find
1341 digits or lowercase characters. */
1342 const char *ptr = encoded + i - 1;
1343
1344 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1345 ptr--;
1346 if (ptr < encoded
1347 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1348 i++;
1349 }
1350
1351 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1352 {
1353 /* This is a X[bn]* sequence not separated from the previous
1354 part of the name with a non-alpha-numeric character (in other
1355 words, immediately following an alpha-numeric character), then
1356 verify that it is placed at the end of the encoded name. If
1357 not, then the encoding is not valid and we should abort the
1358 decoding. Otherwise, just skip it, it is used in body-nested
1359 package names. */
1360 do
1361 i += 1;
1362 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1363 if (i < len0)
1364 goto Suppress;
1365 }
1366 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1367 {
1368 /* Replace '__' by '.'. */
1369 decoded[j] = '.';
1370 at_start_name = 1;
1371 i += 2;
1372 j += 1;
1373 }
1374 else
1375 {
1376 /* It's a character part of the decoded name, so just copy it
1377 over. */
1378 decoded[j] = encoded[i];
1379 i += 1;
1380 j += 1;
1381 }
1382 }
1383 decoded[j] = '\000';
1384
1385 /* Decoded names should never contain any uppercase character.
1386 Double-check this, and abort the decoding if we find one. */
1387
1388 for (i = 0; decoded[i] != '\0'; i += 1)
1389 if (isupper (decoded[i]) || decoded[i] == ' ')
1390 goto Suppress;
1391
1392 if (strcmp (decoded, encoded) == 0)
1393 return encoded;
1394 else
1395 return decoded;
1396
1397 Suppress:
1398 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1399 decoded = decoding_buffer;
1400 if (encoded[0] == '<')
1401 strcpy (decoded, encoded);
1402 else
1403 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1404 return decoded;
1405
1406 }
1407
1408 /* Table for keeping permanent unique copies of decoded names. Once
1409 allocated, names in this table are never released. While this is a
1410 storage leak, it should not be significant unless there are massive
1411 changes in the set of decoded names in successive versions of a
1412 symbol table loaded during a single session. */
1413 static struct htab *decoded_names_store;
1414
1415 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1416 in the language-specific part of GSYMBOL, if it has not been
1417 previously computed. Tries to save the decoded name in the same
1418 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1419 in any case, the decoded symbol has a lifetime at least that of
1420 GSYMBOL).
1421 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1422 const, but nevertheless modified to a semantically equivalent form
1423 when a decoded name is cached in it. */
1424
1425 const char *
1426 ada_decode_symbol (const struct general_symbol_info *arg)
1427 {
1428 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1429 const char **resultp =
1430 &gsymbol->language_specific.demangled_name;
1431
1432 if (!gsymbol->ada_mangled)
1433 {
1434 const char *decoded = ada_decode (gsymbol->name);
1435 struct obstack *obstack = gsymbol->language_specific.obstack;
1436
1437 gsymbol->ada_mangled = 1;
1438
1439 if (obstack != NULL)
1440 *resultp
1441 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1442 else
1443 {
1444 /* Sometimes, we can't find a corresponding objfile, in
1445 which case, we put the result on the heap. Since we only
1446 decode when needed, we hope this usually does not cause a
1447 significant memory leak (FIXME). */
1448
1449 char **slot = (char **) htab_find_slot (decoded_names_store,
1450 decoded, INSERT);
1451
1452 if (*slot == NULL)
1453 *slot = xstrdup (decoded);
1454 *resultp = *slot;
1455 }
1456 }
1457
1458 return *resultp;
1459 }
1460
1461 static char *
1462 ada_la_decode (const char *encoded, int options)
1463 {
1464 return xstrdup (ada_decode (encoded));
1465 }
1466
1467 /* Implement la_sniff_from_mangled_name for Ada. */
1468
1469 static int
1470 ada_sniff_from_mangled_name (const char *mangled, char **out)
1471 {
1472 const char *demangled = ada_decode (mangled);
1473
1474 *out = NULL;
1475
1476 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1477 {
1478 /* Set the gsymbol language to Ada, but still return 0.
1479 Two reasons for that:
1480
1481 1. For Ada, we prefer computing the symbol's decoded name
1482 on the fly rather than pre-compute it, in order to save
1483 memory (Ada projects are typically very large).
1484
1485 2. There are some areas in the definition of the GNAT
1486 encoding where, with a bit of bad luck, we might be able
1487 to decode a non-Ada symbol, generating an incorrect
1488 demangled name (Eg: names ending with "TB" for instance
1489 are identified as task bodies and so stripped from
1490 the decoded name returned).
1491
1492 Returning 1, here, but not setting *DEMANGLED, helps us get a
1493 little bit of the best of both worlds. Because we're last,
1494 we should not affect any of the other languages that were
1495 able to demangle the symbol before us; we get to correctly
1496 tag Ada symbols as such; and even if we incorrectly tagged a
1497 non-Ada symbol, which should be rare, any routing through the
1498 Ada language should be transparent (Ada tries to behave much
1499 like C/C++ with non-Ada symbols). */
1500 return 1;
1501 }
1502
1503 return 0;
1504 }
1505
1506 \f
1507
1508 /* Arrays */
1509
1510 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1511 generated by the GNAT compiler to describe the index type used
1512 for each dimension of an array, check whether it follows the latest
1513 known encoding. If not, fix it up to conform to the latest encoding.
1514 Otherwise, do nothing. This function also does nothing if
1515 INDEX_DESC_TYPE is NULL.
1516
1517 The GNAT encoding used to describle the array index type evolved a bit.
1518 Initially, the information would be provided through the name of each
1519 field of the structure type only, while the type of these fields was
1520 described as unspecified and irrelevant. The debugger was then expected
1521 to perform a global type lookup using the name of that field in order
1522 to get access to the full index type description. Because these global
1523 lookups can be very expensive, the encoding was later enhanced to make
1524 the global lookup unnecessary by defining the field type as being
1525 the full index type description.
1526
1527 The purpose of this routine is to allow us to support older versions
1528 of the compiler by detecting the use of the older encoding, and by
1529 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1530 we essentially replace each field's meaningless type by the associated
1531 index subtype). */
1532
1533 void
1534 ada_fixup_array_indexes_type (struct type *index_desc_type)
1535 {
1536 int i;
1537
1538 if (index_desc_type == NULL)
1539 return;
1540 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1541
1542 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1543 to check one field only, no need to check them all). If not, return
1544 now.
1545
1546 If our INDEX_DESC_TYPE was generated using the older encoding,
1547 the field type should be a meaningless integer type whose name
1548 is not equal to the field name. */
1549 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1550 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1551 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1552 return;
1553
1554 /* Fixup each field of INDEX_DESC_TYPE. */
1555 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1556 {
1557 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1558 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1559
1560 if (raw_type)
1561 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1562 }
1563 }
1564
1565 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1566
1567 static const char *bound_name[] = {
1568 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1569 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1570 };
1571
1572 /* Maximum number of array dimensions we are prepared to handle. */
1573
1574 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1575
1576
1577 /* The desc_* routines return primitive portions of array descriptors
1578 (fat pointers). */
1579
1580 /* The descriptor or array type, if any, indicated by TYPE; removes
1581 level of indirection, if needed. */
1582
1583 static struct type *
1584 desc_base_type (struct type *type)
1585 {
1586 if (type == NULL)
1587 return NULL;
1588 type = ada_check_typedef (type);
1589 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1590 type = ada_typedef_target_type (type);
1591
1592 if (type != NULL
1593 && (TYPE_CODE (type) == TYPE_CODE_PTR
1594 || TYPE_CODE (type) == TYPE_CODE_REF))
1595 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1596 else
1597 return type;
1598 }
1599
1600 /* True iff TYPE indicates a "thin" array pointer type. */
1601
1602 static int
1603 is_thin_pntr (struct type *type)
1604 {
1605 return
1606 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1607 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1608 }
1609
1610 /* The descriptor type for thin pointer type TYPE. */
1611
1612 static struct type *
1613 thin_descriptor_type (struct type *type)
1614 {
1615 struct type *base_type = desc_base_type (type);
1616
1617 if (base_type == NULL)
1618 return NULL;
1619 if (is_suffix (ada_type_name (base_type), "___XVE"))
1620 return base_type;
1621 else
1622 {
1623 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1624
1625 if (alt_type == NULL)
1626 return base_type;
1627 else
1628 return alt_type;
1629 }
1630 }
1631
1632 /* A pointer to the array data for thin-pointer value VAL. */
1633
1634 static struct value *
1635 thin_data_pntr (struct value *val)
1636 {
1637 struct type *type = ada_check_typedef (value_type (val));
1638 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1639
1640 data_type = lookup_pointer_type (data_type);
1641
1642 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1643 return value_cast (data_type, value_copy (val));
1644 else
1645 return value_from_longest (data_type, value_address (val));
1646 }
1647
1648 /* True iff TYPE indicates a "thick" array pointer type. */
1649
1650 static int
1651 is_thick_pntr (struct type *type)
1652 {
1653 type = desc_base_type (type);
1654 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1655 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1656 }
1657
1658 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1659 pointer to one, the type of its bounds data; otherwise, NULL. */
1660
1661 static struct type *
1662 desc_bounds_type (struct type *type)
1663 {
1664 struct type *r;
1665
1666 type = desc_base_type (type);
1667
1668 if (type == NULL)
1669 return NULL;
1670 else if (is_thin_pntr (type))
1671 {
1672 type = thin_descriptor_type (type);
1673 if (type == NULL)
1674 return NULL;
1675 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1676 if (r != NULL)
1677 return ada_check_typedef (r);
1678 }
1679 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1680 {
1681 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1682 if (r != NULL)
1683 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1684 }
1685 return NULL;
1686 }
1687
1688 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1689 one, a pointer to its bounds data. Otherwise NULL. */
1690
1691 static struct value *
1692 desc_bounds (struct value *arr)
1693 {
1694 struct type *type = ada_check_typedef (value_type (arr));
1695
1696 if (is_thin_pntr (type))
1697 {
1698 struct type *bounds_type =
1699 desc_bounds_type (thin_descriptor_type (type));
1700 LONGEST addr;
1701
1702 if (bounds_type == NULL)
1703 error (_("Bad GNAT array descriptor"));
1704
1705 /* NOTE: The following calculation is not really kosher, but
1706 since desc_type is an XVE-encoded type (and shouldn't be),
1707 the correct calculation is a real pain. FIXME (and fix GCC). */
1708 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1709 addr = value_as_long (arr);
1710 else
1711 addr = value_address (arr);
1712
1713 return
1714 value_from_longest (lookup_pointer_type (bounds_type),
1715 addr - TYPE_LENGTH (bounds_type));
1716 }
1717
1718 else if (is_thick_pntr (type))
1719 {
1720 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1721 _("Bad GNAT array descriptor"));
1722 struct type *p_bounds_type = value_type (p_bounds);
1723
1724 if (p_bounds_type
1725 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1726 {
1727 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1728
1729 if (TYPE_STUB (target_type))
1730 p_bounds = value_cast (lookup_pointer_type
1731 (ada_check_typedef (target_type)),
1732 p_bounds);
1733 }
1734 else
1735 error (_("Bad GNAT array descriptor"));
1736
1737 return p_bounds;
1738 }
1739 else
1740 return NULL;
1741 }
1742
1743 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1744 position of the field containing the address of the bounds data. */
1745
1746 static int
1747 fat_pntr_bounds_bitpos (struct type *type)
1748 {
1749 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1750 }
1751
1752 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1753 size of the field containing the address of the bounds data. */
1754
1755 static int
1756 fat_pntr_bounds_bitsize (struct type *type)
1757 {
1758 type = desc_base_type (type);
1759
1760 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1761 return TYPE_FIELD_BITSIZE (type, 1);
1762 else
1763 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1764 }
1765
1766 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1767 pointer to one, the type of its array data (a array-with-no-bounds type);
1768 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1769 data. */
1770
1771 static struct type *
1772 desc_data_target_type (struct type *type)
1773 {
1774 type = desc_base_type (type);
1775
1776 /* NOTE: The following is bogus; see comment in desc_bounds. */
1777 if (is_thin_pntr (type))
1778 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1779 else if (is_thick_pntr (type))
1780 {
1781 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1782
1783 if (data_type
1784 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1785 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1786 }
1787
1788 return NULL;
1789 }
1790
1791 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1792 its array data. */
1793
1794 static struct value *
1795 desc_data (struct value *arr)
1796 {
1797 struct type *type = value_type (arr);
1798
1799 if (is_thin_pntr (type))
1800 return thin_data_pntr (arr);
1801 else if (is_thick_pntr (type))
1802 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1803 _("Bad GNAT array descriptor"));
1804 else
1805 return NULL;
1806 }
1807
1808
1809 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1810 position of the field containing the address of the data. */
1811
1812 static int
1813 fat_pntr_data_bitpos (struct type *type)
1814 {
1815 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1816 }
1817
1818 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1819 size of the field containing the address of the data. */
1820
1821 static int
1822 fat_pntr_data_bitsize (struct type *type)
1823 {
1824 type = desc_base_type (type);
1825
1826 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1827 return TYPE_FIELD_BITSIZE (type, 0);
1828 else
1829 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1830 }
1831
1832 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1833 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1834 bound, if WHICH is 1. The first bound is I=1. */
1835
1836 static struct value *
1837 desc_one_bound (struct value *bounds, int i, int which)
1838 {
1839 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1840 _("Bad GNAT array descriptor bounds"));
1841 }
1842
1843 /* If BOUNDS is an array-bounds structure type, return the bit position
1844 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1845 bound, if WHICH is 1. The first bound is I=1. */
1846
1847 static int
1848 desc_bound_bitpos (struct type *type, int i, int which)
1849 {
1850 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1851 }
1852
1853 /* If BOUNDS is an array-bounds structure type, return the bit field size
1854 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1855 bound, if WHICH is 1. The first bound is I=1. */
1856
1857 static int
1858 desc_bound_bitsize (struct type *type, int i, int which)
1859 {
1860 type = desc_base_type (type);
1861
1862 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1863 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1864 else
1865 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1866 }
1867
1868 /* If TYPE is the type of an array-bounds structure, the type of its
1869 Ith bound (numbering from 1). Otherwise, NULL. */
1870
1871 static struct type *
1872 desc_index_type (struct type *type, int i)
1873 {
1874 type = desc_base_type (type);
1875
1876 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1877 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1878 else
1879 return NULL;
1880 }
1881
1882 /* The number of index positions in the array-bounds type TYPE.
1883 Return 0 if TYPE is NULL. */
1884
1885 static int
1886 desc_arity (struct type *type)
1887 {
1888 type = desc_base_type (type);
1889
1890 if (type != NULL)
1891 return TYPE_NFIELDS (type) / 2;
1892 return 0;
1893 }
1894
1895 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1896 an array descriptor type (representing an unconstrained array
1897 type). */
1898
1899 static int
1900 ada_is_direct_array_type (struct type *type)
1901 {
1902 if (type == NULL)
1903 return 0;
1904 type = ada_check_typedef (type);
1905 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1906 || ada_is_array_descriptor_type (type));
1907 }
1908
1909 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1910 * to one. */
1911
1912 static int
1913 ada_is_array_type (struct type *type)
1914 {
1915 while (type != NULL
1916 && (TYPE_CODE (type) == TYPE_CODE_PTR
1917 || TYPE_CODE (type) == TYPE_CODE_REF))
1918 type = TYPE_TARGET_TYPE (type);
1919 return ada_is_direct_array_type (type);
1920 }
1921
1922 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1923
1924 int
1925 ada_is_simple_array_type (struct type *type)
1926 {
1927 if (type == NULL)
1928 return 0;
1929 type = ada_check_typedef (type);
1930 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1931 || (TYPE_CODE (type) == TYPE_CODE_PTR
1932 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1933 == TYPE_CODE_ARRAY));
1934 }
1935
1936 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1937
1938 int
1939 ada_is_array_descriptor_type (struct type *type)
1940 {
1941 struct type *data_type = desc_data_target_type (type);
1942
1943 if (type == NULL)
1944 return 0;
1945 type = ada_check_typedef (type);
1946 return (data_type != NULL
1947 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1948 && desc_arity (desc_bounds_type (type)) > 0);
1949 }
1950
1951 /* Non-zero iff type is a partially mal-formed GNAT array
1952 descriptor. FIXME: This is to compensate for some problems with
1953 debugging output from GNAT. Re-examine periodically to see if it
1954 is still needed. */
1955
1956 int
1957 ada_is_bogus_array_descriptor (struct type *type)
1958 {
1959 return
1960 type != NULL
1961 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1962 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1963 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1964 && !ada_is_array_descriptor_type (type);
1965 }
1966
1967
1968 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1969 (fat pointer) returns the type of the array data described---specifically,
1970 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1971 in from the descriptor; otherwise, they are left unspecified. If
1972 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1973 returns NULL. The result is simply the type of ARR if ARR is not
1974 a descriptor. */
1975 struct type *
1976 ada_type_of_array (struct value *arr, int bounds)
1977 {
1978 if (ada_is_constrained_packed_array_type (value_type (arr)))
1979 return decode_constrained_packed_array_type (value_type (arr));
1980
1981 if (!ada_is_array_descriptor_type (value_type (arr)))
1982 return value_type (arr);
1983
1984 if (!bounds)
1985 {
1986 struct type *array_type =
1987 ada_check_typedef (desc_data_target_type (value_type (arr)));
1988
1989 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1990 TYPE_FIELD_BITSIZE (array_type, 0) =
1991 decode_packed_array_bitsize (value_type (arr));
1992
1993 return array_type;
1994 }
1995 else
1996 {
1997 struct type *elt_type;
1998 int arity;
1999 struct value *descriptor;
2000
2001 elt_type = ada_array_element_type (value_type (arr), -1);
2002 arity = ada_array_arity (value_type (arr));
2003
2004 if (elt_type == NULL || arity == 0)
2005 return ada_check_typedef (value_type (arr));
2006
2007 descriptor = desc_bounds (arr);
2008 if (value_as_long (descriptor) == 0)
2009 return NULL;
2010 while (arity > 0)
2011 {
2012 struct type *range_type = alloc_type_copy (value_type (arr));
2013 struct type *array_type = alloc_type_copy (value_type (arr));
2014 struct value *low = desc_one_bound (descriptor, arity, 0);
2015 struct value *high = desc_one_bound (descriptor, arity, 1);
2016
2017 arity -= 1;
2018 create_static_range_type (range_type, value_type (low),
2019 longest_to_int (value_as_long (low)),
2020 longest_to_int (value_as_long (high)));
2021 elt_type = create_array_type (array_type, elt_type, range_type);
2022
2023 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2024 {
2025 /* We need to store the element packed bitsize, as well as
2026 recompute the array size, because it was previously
2027 computed based on the unpacked element size. */
2028 LONGEST lo = value_as_long (low);
2029 LONGEST hi = value_as_long (high);
2030
2031 TYPE_FIELD_BITSIZE (elt_type, 0) =
2032 decode_packed_array_bitsize (value_type (arr));
2033 /* If the array has no element, then the size is already
2034 zero, and does not need to be recomputed. */
2035 if (lo < hi)
2036 {
2037 int array_bitsize =
2038 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2039
2040 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2041 }
2042 }
2043 }
2044
2045 return lookup_pointer_type (elt_type);
2046 }
2047 }
2048
2049 /* If ARR does not represent an array, returns ARR unchanged.
2050 Otherwise, returns either a standard GDB array with bounds set
2051 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2052 GDB array. Returns NULL if ARR is a null fat pointer. */
2053
2054 struct value *
2055 ada_coerce_to_simple_array_ptr (struct value *arr)
2056 {
2057 if (ada_is_array_descriptor_type (value_type (arr)))
2058 {
2059 struct type *arrType = ada_type_of_array (arr, 1);
2060
2061 if (arrType == NULL)
2062 return NULL;
2063 return value_cast (arrType, value_copy (desc_data (arr)));
2064 }
2065 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2066 return decode_constrained_packed_array (arr);
2067 else
2068 return arr;
2069 }
2070
2071 /* If ARR does not represent an array, returns ARR unchanged.
2072 Otherwise, returns a standard GDB array describing ARR (which may
2073 be ARR itself if it already is in the proper form). */
2074
2075 struct value *
2076 ada_coerce_to_simple_array (struct value *arr)
2077 {
2078 if (ada_is_array_descriptor_type (value_type (arr)))
2079 {
2080 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2081
2082 if (arrVal == NULL)
2083 error (_("Bounds unavailable for null array pointer."));
2084 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2085 return value_ind (arrVal);
2086 }
2087 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2088 return decode_constrained_packed_array (arr);
2089 else
2090 return arr;
2091 }
2092
2093 /* If TYPE represents a GNAT array type, return it translated to an
2094 ordinary GDB array type (possibly with BITSIZE fields indicating
2095 packing). For other types, is the identity. */
2096
2097 struct type *
2098 ada_coerce_to_simple_array_type (struct type *type)
2099 {
2100 if (ada_is_constrained_packed_array_type (type))
2101 return decode_constrained_packed_array_type (type);
2102
2103 if (ada_is_array_descriptor_type (type))
2104 return ada_check_typedef (desc_data_target_type (type));
2105
2106 return type;
2107 }
2108
2109 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2110
2111 static int
2112 ada_is_packed_array_type (struct type *type)
2113 {
2114 if (type == NULL)
2115 return 0;
2116 type = desc_base_type (type);
2117 type = ada_check_typedef (type);
2118 return
2119 ada_type_name (type) != NULL
2120 && strstr (ada_type_name (type), "___XP") != NULL;
2121 }
2122
2123 /* Non-zero iff TYPE represents a standard GNAT constrained
2124 packed-array type. */
2125
2126 int
2127 ada_is_constrained_packed_array_type (struct type *type)
2128 {
2129 return ada_is_packed_array_type (type)
2130 && !ada_is_array_descriptor_type (type);
2131 }
2132
2133 /* Non-zero iff TYPE represents an array descriptor for a
2134 unconstrained packed-array type. */
2135
2136 static int
2137 ada_is_unconstrained_packed_array_type (struct type *type)
2138 {
2139 return ada_is_packed_array_type (type)
2140 && ada_is_array_descriptor_type (type);
2141 }
2142
2143 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2144 return the size of its elements in bits. */
2145
2146 static long
2147 decode_packed_array_bitsize (struct type *type)
2148 {
2149 const char *raw_name;
2150 const char *tail;
2151 long bits;
2152
2153 /* Access to arrays implemented as fat pointers are encoded as a typedef
2154 of the fat pointer type. We need the name of the fat pointer type
2155 to do the decoding, so strip the typedef layer. */
2156 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2157 type = ada_typedef_target_type (type);
2158
2159 raw_name = ada_type_name (ada_check_typedef (type));
2160 if (!raw_name)
2161 raw_name = ada_type_name (desc_base_type (type));
2162
2163 if (!raw_name)
2164 return 0;
2165
2166 tail = strstr (raw_name, "___XP");
2167 gdb_assert (tail != NULL);
2168
2169 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2170 {
2171 lim_warning
2172 (_("could not understand bit size information on packed array"));
2173 return 0;
2174 }
2175
2176 return bits;
2177 }
2178
2179 /* Given that TYPE is a standard GDB array type with all bounds filled
2180 in, and that the element size of its ultimate scalar constituents
2181 (that is, either its elements, or, if it is an array of arrays, its
2182 elements' elements, etc.) is *ELT_BITS, return an identical type,
2183 but with the bit sizes of its elements (and those of any
2184 constituent arrays) recorded in the BITSIZE components of its
2185 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2186 in bits.
2187
2188 Note that, for arrays whose index type has an XA encoding where
2189 a bound references a record discriminant, getting that discriminant,
2190 and therefore the actual value of that bound, is not possible
2191 because none of the given parameters gives us access to the record.
2192 This function assumes that it is OK in the context where it is being
2193 used to return an array whose bounds are still dynamic and where
2194 the length is arbitrary. */
2195
2196 static struct type *
2197 constrained_packed_array_type (struct type *type, long *elt_bits)
2198 {
2199 struct type *new_elt_type;
2200 struct type *new_type;
2201 struct type *index_type_desc;
2202 struct type *index_type;
2203 LONGEST low_bound, high_bound;
2204
2205 type = ada_check_typedef (type);
2206 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2207 return type;
2208
2209 index_type_desc = ada_find_parallel_type (type, "___XA");
2210 if (index_type_desc)
2211 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2212 NULL);
2213 else
2214 index_type = TYPE_INDEX_TYPE (type);
2215
2216 new_type = alloc_type_copy (type);
2217 new_elt_type =
2218 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2219 elt_bits);
2220 create_array_type (new_type, new_elt_type, index_type);
2221 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2222 TYPE_NAME (new_type) = ada_type_name (type);
2223
2224 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2225 && is_dynamic_type (check_typedef (index_type)))
2226 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2227 low_bound = high_bound = 0;
2228 if (high_bound < low_bound)
2229 *elt_bits = TYPE_LENGTH (new_type) = 0;
2230 else
2231 {
2232 *elt_bits *= (high_bound - low_bound + 1);
2233 TYPE_LENGTH (new_type) =
2234 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2235 }
2236
2237 TYPE_FIXED_INSTANCE (new_type) = 1;
2238 return new_type;
2239 }
2240
2241 /* The array type encoded by TYPE, where
2242 ada_is_constrained_packed_array_type (TYPE). */
2243
2244 static struct type *
2245 decode_constrained_packed_array_type (struct type *type)
2246 {
2247 const char *raw_name = ada_type_name (ada_check_typedef (type));
2248 char *name;
2249 const char *tail;
2250 struct type *shadow_type;
2251 long bits;
2252
2253 if (!raw_name)
2254 raw_name = ada_type_name (desc_base_type (type));
2255
2256 if (!raw_name)
2257 return NULL;
2258
2259 name = (char *) alloca (strlen (raw_name) + 1);
2260 tail = strstr (raw_name, "___XP");
2261 type = desc_base_type (type);
2262
2263 memcpy (name, raw_name, tail - raw_name);
2264 name[tail - raw_name] = '\000';
2265
2266 shadow_type = ada_find_parallel_type_with_name (type, name);
2267
2268 if (shadow_type == NULL)
2269 {
2270 lim_warning (_("could not find bounds information on packed array"));
2271 return NULL;
2272 }
2273 shadow_type = check_typedef (shadow_type);
2274
2275 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2276 {
2277 lim_warning (_("could not understand bounds "
2278 "information on packed array"));
2279 return NULL;
2280 }
2281
2282 bits = decode_packed_array_bitsize (type);
2283 return constrained_packed_array_type (shadow_type, &bits);
2284 }
2285
2286 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2287 array, returns a simple array that denotes that array. Its type is a
2288 standard GDB array type except that the BITSIZEs of the array
2289 target types are set to the number of bits in each element, and the
2290 type length is set appropriately. */
2291
2292 static struct value *
2293 decode_constrained_packed_array (struct value *arr)
2294 {
2295 struct type *type;
2296
2297 /* If our value is a pointer, then dereference it. Likewise if
2298 the value is a reference. Make sure that this operation does not
2299 cause the target type to be fixed, as this would indirectly cause
2300 this array to be decoded. The rest of the routine assumes that
2301 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2302 and "value_ind" routines to perform the dereferencing, as opposed
2303 to using "ada_coerce_ref" or "ada_value_ind". */
2304 arr = coerce_ref (arr);
2305 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2306 arr = value_ind (arr);
2307
2308 type = decode_constrained_packed_array_type (value_type (arr));
2309 if (type == NULL)
2310 {
2311 error (_("can't unpack array"));
2312 return NULL;
2313 }
2314
2315 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2316 && ada_is_modular_type (value_type (arr)))
2317 {
2318 /* This is a (right-justified) modular type representing a packed
2319 array with no wrapper. In order to interpret the value through
2320 the (left-justified) packed array type we just built, we must
2321 first left-justify it. */
2322 int bit_size, bit_pos;
2323 ULONGEST mod;
2324
2325 mod = ada_modulus (value_type (arr)) - 1;
2326 bit_size = 0;
2327 while (mod > 0)
2328 {
2329 bit_size += 1;
2330 mod >>= 1;
2331 }
2332 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2333 arr = ada_value_primitive_packed_val (arr, NULL,
2334 bit_pos / HOST_CHAR_BIT,
2335 bit_pos % HOST_CHAR_BIT,
2336 bit_size,
2337 type);
2338 }
2339
2340 return coerce_unspec_val_to_type (arr, type);
2341 }
2342
2343
2344 /* The value of the element of packed array ARR at the ARITY indices
2345 given in IND. ARR must be a simple array. */
2346
2347 static struct value *
2348 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2349 {
2350 int i;
2351 int bits, elt_off, bit_off;
2352 long elt_total_bit_offset;
2353 struct type *elt_type;
2354 struct value *v;
2355
2356 bits = 0;
2357 elt_total_bit_offset = 0;
2358 elt_type = ada_check_typedef (value_type (arr));
2359 for (i = 0; i < arity; i += 1)
2360 {
2361 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2362 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2363 error
2364 (_("attempt to do packed indexing of "
2365 "something other than a packed array"));
2366 else
2367 {
2368 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2369 LONGEST lowerbound, upperbound;
2370 LONGEST idx;
2371
2372 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2373 {
2374 lim_warning (_("don't know bounds of array"));
2375 lowerbound = upperbound = 0;
2376 }
2377
2378 idx = pos_atr (ind[i]);
2379 if (idx < lowerbound || idx > upperbound)
2380 lim_warning (_("packed array index %ld out of bounds"),
2381 (long) idx);
2382 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2383 elt_total_bit_offset += (idx - lowerbound) * bits;
2384 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2385 }
2386 }
2387 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2388 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2389
2390 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2391 bits, elt_type);
2392 return v;
2393 }
2394
2395 /* Non-zero iff TYPE includes negative integer values. */
2396
2397 static int
2398 has_negatives (struct type *type)
2399 {
2400 switch (TYPE_CODE (type))
2401 {
2402 default:
2403 return 0;
2404 case TYPE_CODE_INT:
2405 return !TYPE_UNSIGNED (type);
2406 case TYPE_CODE_RANGE:
2407 return TYPE_LOW_BOUND (type) < 0;
2408 }
2409 }
2410
2411 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2412 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2413 the unpacked buffer.
2414
2415 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2416 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2417
2418 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2419 zero otherwise.
2420
2421 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2422
2423 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2424
2425 static void
2426 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2427 gdb_byte *unpacked, int unpacked_len,
2428 int is_big_endian, int is_signed_type,
2429 int is_scalar)
2430 {
2431 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2432 int src_idx; /* Index into the source area */
2433 int src_bytes_left; /* Number of source bytes left to process. */
2434 int srcBitsLeft; /* Number of source bits left to move */
2435 int unusedLS; /* Number of bits in next significant
2436 byte of source that are unused */
2437
2438 int unpacked_idx; /* Index into the unpacked buffer */
2439 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2440
2441 unsigned long accum; /* Staging area for bits being transferred */
2442 int accumSize; /* Number of meaningful bits in accum */
2443 unsigned char sign;
2444
2445 /* Transmit bytes from least to most significant; delta is the direction
2446 the indices move. */
2447 int delta = is_big_endian ? -1 : 1;
2448
2449 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2450 bits from SRC. .*/
2451 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2452 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2453 bit_size, unpacked_len);
2454
2455 srcBitsLeft = bit_size;
2456 src_bytes_left = src_len;
2457 unpacked_bytes_left = unpacked_len;
2458 sign = 0;
2459
2460 if (is_big_endian)
2461 {
2462 src_idx = src_len - 1;
2463 if (is_signed_type
2464 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2465 sign = ~0;
2466
2467 unusedLS =
2468 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2469 % HOST_CHAR_BIT;
2470
2471 if (is_scalar)
2472 {
2473 accumSize = 0;
2474 unpacked_idx = unpacked_len - 1;
2475 }
2476 else
2477 {
2478 /* Non-scalar values must be aligned at a byte boundary... */
2479 accumSize =
2480 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2481 /* ... And are placed at the beginning (most-significant) bytes
2482 of the target. */
2483 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2484 unpacked_bytes_left = unpacked_idx + 1;
2485 }
2486 }
2487 else
2488 {
2489 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2490
2491 src_idx = unpacked_idx = 0;
2492 unusedLS = bit_offset;
2493 accumSize = 0;
2494
2495 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2496 sign = ~0;
2497 }
2498
2499 accum = 0;
2500 while (src_bytes_left > 0)
2501 {
2502 /* Mask for removing bits of the next source byte that are not
2503 part of the value. */
2504 unsigned int unusedMSMask =
2505 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2506 1;
2507 /* Sign-extend bits for this byte. */
2508 unsigned int signMask = sign & ~unusedMSMask;
2509
2510 accum |=
2511 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2512 accumSize += HOST_CHAR_BIT - unusedLS;
2513 if (accumSize >= HOST_CHAR_BIT)
2514 {
2515 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2516 accumSize -= HOST_CHAR_BIT;
2517 accum >>= HOST_CHAR_BIT;
2518 unpacked_bytes_left -= 1;
2519 unpacked_idx += delta;
2520 }
2521 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2522 unusedLS = 0;
2523 src_bytes_left -= 1;
2524 src_idx += delta;
2525 }
2526 while (unpacked_bytes_left > 0)
2527 {
2528 accum |= sign << accumSize;
2529 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2530 accumSize -= HOST_CHAR_BIT;
2531 if (accumSize < 0)
2532 accumSize = 0;
2533 accum >>= HOST_CHAR_BIT;
2534 unpacked_bytes_left -= 1;
2535 unpacked_idx += delta;
2536 }
2537 }
2538
2539 /* Create a new value of type TYPE from the contents of OBJ starting
2540 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2541 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2542 assigning through the result will set the field fetched from.
2543 VALADDR is ignored unless OBJ is NULL, in which case,
2544 VALADDR+OFFSET must address the start of storage containing the
2545 packed value. The value returned in this case is never an lval.
2546 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2547
2548 struct value *
2549 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2550 long offset, int bit_offset, int bit_size,
2551 struct type *type)
2552 {
2553 struct value *v;
2554 const gdb_byte *src; /* First byte containing data to unpack */
2555 gdb_byte *unpacked;
2556 const int is_scalar = is_scalar_type (type);
2557 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2558 gdb::byte_vector staging;
2559
2560 type = ada_check_typedef (type);
2561
2562 if (obj == NULL)
2563 src = valaddr + offset;
2564 else
2565 src = value_contents (obj) + offset;
2566
2567 if (is_dynamic_type (type))
2568 {
2569 /* The length of TYPE might by dynamic, so we need to resolve
2570 TYPE in order to know its actual size, which we then use
2571 to create the contents buffer of the value we return.
2572 The difficulty is that the data containing our object is
2573 packed, and therefore maybe not at a byte boundary. So, what
2574 we do, is unpack the data into a byte-aligned buffer, and then
2575 use that buffer as our object's value for resolving the type. */
2576 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2577 staging.resize (staging_len);
2578
2579 ada_unpack_from_contents (src, bit_offset, bit_size,
2580 staging.data (), staging.size (),
2581 is_big_endian, has_negatives (type),
2582 is_scalar);
2583 type = resolve_dynamic_type (type, staging.data (), 0);
2584 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2585 {
2586 /* This happens when the length of the object is dynamic,
2587 and is actually smaller than the space reserved for it.
2588 For instance, in an array of variant records, the bit_size
2589 we're given is the array stride, which is constant and
2590 normally equal to the maximum size of its element.
2591 But, in reality, each element only actually spans a portion
2592 of that stride. */
2593 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2594 }
2595 }
2596
2597 if (obj == NULL)
2598 {
2599 v = allocate_value (type);
2600 src = valaddr + offset;
2601 }
2602 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2603 {
2604 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2605 gdb_byte *buf;
2606
2607 v = value_at (type, value_address (obj) + offset);
2608 buf = (gdb_byte *) alloca (src_len);
2609 read_memory (value_address (v), buf, src_len);
2610 src = buf;
2611 }
2612 else
2613 {
2614 v = allocate_value (type);
2615 src = value_contents (obj) + offset;
2616 }
2617
2618 if (obj != NULL)
2619 {
2620 long new_offset = offset;
2621
2622 set_value_component_location (v, obj);
2623 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2624 set_value_bitsize (v, bit_size);
2625 if (value_bitpos (v) >= HOST_CHAR_BIT)
2626 {
2627 ++new_offset;
2628 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2629 }
2630 set_value_offset (v, new_offset);
2631
2632 /* Also set the parent value. This is needed when trying to
2633 assign a new value (in inferior memory). */
2634 set_value_parent (v, obj);
2635 }
2636 else
2637 set_value_bitsize (v, bit_size);
2638 unpacked = value_contents_writeable (v);
2639
2640 if (bit_size == 0)
2641 {
2642 memset (unpacked, 0, TYPE_LENGTH (type));
2643 return v;
2644 }
2645
2646 if (staging.size () == TYPE_LENGTH (type))
2647 {
2648 /* Small short-cut: If we've unpacked the data into a buffer
2649 of the same size as TYPE's length, then we can reuse that,
2650 instead of doing the unpacking again. */
2651 memcpy (unpacked, staging.data (), staging.size ());
2652 }
2653 else
2654 ada_unpack_from_contents (src, bit_offset, bit_size,
2655 unpacked, TYPE_LENGTH (type),
2656 is_big_endian, has_negatives (type), is_scalar);
2657
2658 return v;
2659 }
2660
2661 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2662 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2663 not overlap. */
2664 static void
2665 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2666 int src_offset, int n, int bits_big_endian_p)
2667 {
2668 unsigned int accum, mask;
2669 int accum_bits, chunk_size;
2670
2671 target += targ_offset / HOST_CHAR_BIT;
2672 targ_offset %= HOST_CHAR_BIT;
2673 source += src_offset / HOST_CHAR_BIT;
2674 src_offset %= HOST_CHAR_BIT;
2675 if (bits_big_endian_p)
2676 {
2677 accum = (unsigned char) *source;
2678 source += 1;
2679 accum_bits = HOST_CHAR_BIT - src_offset;
2680
2681 while (n > 0)
2682 {
2683 int unused_right;
2684
2685 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2686 accum_bits += HOST_CHAR_BIT;
2687 source += 1;
2688 chunk_size = HOST_CHAR_BIT - targ_offset;
2689 if (chunk_size > n)
2690 chunk_size = n;
2691 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2692 mask = ((1 << chunk_size) - 1) << unused_right;
2693 *target =
2694 (*target & ~mask)
2695 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2696 n -= chunk_size;
2697 accum_bits -= chunk_size;
2698 target += 1;
2699 targ_offset = 0;
2700 }
2701 }
2702 else
2703 {
2704 accum = (unsigned char) *source >> src_offset;
2705 source += 1;
2706 accum_bits = HOST_CHAR_BIT - src_offset;
2707
2708 while (n > 0)
2709 {
2710 accum = accum + ((unsigned char) *source << accum_bits);
2711 accum_bits += HOST_CHAR_BIT;
2712 source += 1;
2713 chunk_size = HOST_CHAR_BIT - targ_offset;
2714 if (chunk_size > n)
2715 chunk_size = n;
2716 mask = ((1 << chunk_size) - 1) << targ_offset;
2717 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2718 n -= chunk_size;
2719 accum_bits -= chunk_size;
2720 accum >>= chunk_size;
2721 target += 1;
2722 targ_offset = 0;
2723 }
2724 }
2725 }
2726
2727 /* Store the contents of FROMVAL into the location of TOVAL.
2728 Return a new value with the location of TOVAL and contents of
2729 FROMVAL. Handles assignment into packed fields that have
2730 floating-point or non-scalar types. */
2731
2732 static struct value *
2733 ada_value_assign (struct value *toval, struct value *fromval)
2734 {
2735 struct type *type = value_type (toval);
2736 int bits = value_bitsize (toval);
2737
2738 toval = ada_coerce_ref (toval);
2739 fromval = ada_coerce_ref (fromval);
2740
2741 if (ada_is_direct_array_type (value_type (toval)))
2742 toval = ada_coerce_to_simple_array (toval);
2743 if (ada_is_direct_array_type (value_type (fromval)))
2744 fromval = ada_coerce_to_simple_array (fromval);
2745
2746 if (!deprecated_value_modifiable (toval))
2747 error (_("Left operand of assignment is not a modifiable lvalue."));
2748
2749 if (VALUE_LVAL (toval) == lval_memory
2750 && bits > 0
2751 && (TYPE_CODE (type) == TYPE_CODE_FLT
2752 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2753 {
2754 int len = (value_bitpos (toval)
2755 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2756 int from_size;
2757 gdb_byte *buffer = (gdb_byte *) alloca (len);
2758 struct value *val;
2759 CORE_ADDR to_addr = value_address (toval);
2760
2761 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2762 fromval = value_cast (type, fromval);
2763
2764 read_memory (to_addr, buffer, len);
2765 from_size = value_bitsize (fromval);
2766 if (from_size == 0)
2767 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2768 if (gdbarch_bits_big_endian (get_type_arch (type)))
2769 move_bits (buffer, value_bitpos (toval),
2770 value_contents (fromval), from_size - bits, bits, 1);
2771 else
2772 move_bits (buffer, value_bitpos (toval),
2773 value_contents (fromval), 0, bits, 0);
2774 write_memory_with_notification (to_addr, buffer, len);
2775
2776 val = value_copy (toval);
2777 memcpy (value_contents_raw (val), value_contents (fromval),
2778 TYPE_LENGTH (type));
2779 deprecated_set_value_type (val, type);
2780
2781 return val;
2782 }
2783
2784 return value_assign (toval, fromval);
2785 }
2786
2787
2788 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2789 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2790 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2791 COMPONENT, and not the inferior's memory. The current contents
2792 of COMPONENT are ignored.
2793
2794 Although not part of the initial design, this function also works
2795 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2796 had a null address, and COMPONENT had an address which is equal to
2797 its offset inside CONTAINER. */
2798
2799 static void
2800 value_assign_to_component (struct value *container, struct value *component,
2801 struct value *val)
2802 {
2803 LONGEST offset_in_container =
2804 (LONGEST) (value_address (component) - value_address (container));
2805 int bit_offset_in_container =
2806 value_bitpos (component) - value_bitpos (container);
2807 int bits;
2808
2809 val = value_cast (value_type (component), val);
2810
2811 if (value_bitsize (component) == 0)
2812 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2813 else
2814 bits = value_bitsize (component);
2815
2816 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2817 {
2818 int src_offset;
2819
2820 if (is_scalar_type (check_typedef (value_type (component))))
2821 src_offset
2822 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2823 else
2824 src_offset = 0;
2825 move_bits (value_contents_writeable (container) + offset_in_container,
2826 value_bitpos (container) + bit_offset_in_container,
2827 value_contents (val), src_offset, bits, 1);
2828 }
2829 else
2830 move_bits (value_contents_writeable (container) + offset_in_container,
2831 value_bitpos (container) + bit_offset_in_container,
2832 value_contents (val), 0, bits, 0);
2833 }
2834
2835 /* Determine if TYPE is an access to an unconstrained array. */
2836
2837 bool
2838 ada_is_access_to_unconstrained_array (struct type *type)
2839 {
2840 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2841 && is_thick_pntr (ada_typedef_target_type (type)));
2842 }
2843
2844 /* The value of the element of array ARR at the ARITY indices given in IND.
2845 ARR may be either a simple array, GNAT array descriptor, or pointer
2846 thereto. */
2847
2848 struct value *
2849 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2850 {
2851 int k;
2852 struct value *elt;
2853 struct type *elt_type;
2854
2855 elt = ada_coerce_to_simple_array (arr);
2856
2857 elt_type = ada_check_typedef (value_type (elt));
2858 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2859 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2860 return value_subscript_packed (elt, arity, ind);
2861
2862 for (k = 0; k < arity; k += 1)
2863 {
2864 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2865
2866 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2867 error (_("too many subscripts (%d expected)"), k);
2868
2869 elt = value_subscript (elt, pos_atr (ind[k]));
2870
2871 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2872 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2873 {
2874 /* The element is a typedef to an unconstrained array,
2875 except that the value_subscript call stripped the
2876 typedef layer. The typedef layer is GNAT's way to
2877 specify that the element is, at the source level, an
2878 access to the unconstrained array, rather than the
2879 unconstrained array. So, we need to restore that
2880 typedef layer, which we can do by forcing the element's
2881 type back to its original type. Otherwise, the returned
2882 value is going to be printed as the array, rather
2883 than as an access. Another symptom of the same issue
2884 would be that an expression trying to dereference the
2885 element would also be improperly rejected. */
2886 deprecated_set_value_type (elt, saved_elt_type);
2887 }
2888
2889 elt_type = ada_check_typedef (value_type (elt));
2890 }
2891
2892 return elt;
2893 }
2894
2895 /* Assuming ARR is a pointer to a GDB array, the value of the element
2896 of *ARR at the ARITY indices given in IND.
2897 Does not read the entire array into memory.
2898
2899 Note: Unlike what one would expect, this function is used instead of
2900 ada_value_subscript for basically all non-packed array types. The reason
2901 for this is that a side effect of doing our own pointer arithmetics instead
2902 of relying on value_subscript is that there is no implicit typedef peeling.
2903 This is important for arrays of array accesses, where it allows us to
2904 preserve the fact that the array's element is an array access, where the
2905 access part os encoded in a typedef layer. */
2906
2907 static struct value *
2908 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2909 {
2910 int k;
2911 struct value *array_ind = ada_value_ind (arr);
2912 struct type *type
2913 = check_typedef (value_enclosing_type (array_ind));
2914
2915 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2916 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2917 return value_subscript_packed (array_ind, arity, ind);
2918
2919 for (k = 0; k < arity; k += 1)
2920 {
2921 LONGEST lwb, upb;
2922 struct value *lwb_value;
2923
2924 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2925 error (_("too many subscripts (%d expected)"), k);
2926 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2927 value_copy (arr));
2928 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2929 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2930 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2931 type = TYPE_TARGET_TYPE (type);
2932 }
2933
2934 return value_ind (arr);
2935 }
2936
2937 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2938 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2939 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2940 this array is LOW, as per Ada rules. */
2941 static struct value *
2942 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2943 int low, int high)
2944 {
2945 struct type *type0 = ada_check_typedef (type);
2946 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2947 struct type *index_type
2948 = create_static_range_type (NULL, base_index_type, low, high);
2949 struct type *slice_type = create_array_type_with_stride
2950 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2951 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2952 TYPE_FIELD_BITSIZE (type0, 0));
2953 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2954 LONGEST base_low_pos, low_pos;
2955 CORE_ADDR base;
2956
2957 if (!discrete_position (base_index_type, low, &low_pos)
2958 || !discrete_position (base_index_type, base_low, &base_low_pos))
2959 {
2960 warning (_("unable to get positions in slice, use bounds instead"));
2961 low_pos = low;
2962 base_low_pos = base_low;
2963 }
2964
2965 base = value_as_address (array_ptr)
2966 + ((low_pos - base_low_pos)
2967 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2968 return value_at_lazy (slice_type, base);
2969 }
2970
2971
2972 static struct value *
2973 ada_value_slice (struct value *array, int low, int high)
2974 {
2975 struct type *type = ada_check_typedef (value_type (array));
2976 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2977 struct type *index_type
2978 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2979 struct type *slice_type = create_array_type_with_stride
2980 (NULL, TYPE_TARGET_TYPE (type), index_type,
2981 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2982 TYPE_FIELD_BITSIZE (type, 0));
2983 LONGEST low_pos, high_pos;
2984
2985 if (!discrete_position (base_index_type, low, &low_pos)
2986 || !discrete_position (base_index_type, high, &high_pos))
2987 {
2988 warning (_("unable to get positions in slice, use bounds instead"));
2989 low_pos = low;
2990 high_pos = high;
2991 }
2992
2993 return value_cast (slice_type,
2994 value_slice (array, low, high_pos - low_pos + 1));
2995 }
2996
2997 /* If type is a record type in the form of a standard GNAT array
2998 descriptor, returns the number of dimensions for type. If arr is a
2999 simple array, returns the number of "array of"s that prefix its
3000 type designation. Otherwise, returns 0. */
3001
3002 int
3003 ada_array_arity (struct type *type)
3004 {
3005 int arity;
3006
3007 if (type == NULL)
3008 return 0;
3009
3010 type = desc_base_type (type);
3011
3012 arity = 0;
3013 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
3014 return desc_arity (desc_bounds_type (type));
3015 else
3016 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3017 {
3018 arity += 1;
3019 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
3020 }
3021
3022 return arity;
3023 }
3024
3025 /* If TYPE is a record type in the form of a standard GNAT array
3026 descriptor or a simple array type, returns the element type for
3027 TYPE after indexing by NINDICES indices, or by all indices if
3028 NINDICES is -1. Otherwise, returns NULL. */
3029
3030 struct type *
3031 ada_array_element_type (struct type *type, int nindices)
3032 {
3033 type = desc_base_type (type);
3034
3035 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
3036 {
3037 int k;
3038 struct type *p_array_type;
3039
3040 p_array_type = desc_data_target_type (type);
3041
3042 k = ada_array_arity (type);
3043 if (k == 0)
3044 return NULL;
3045
3046 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3047 if (nindices >= 0 && k > nindices)
3048 k = nindices;
3049 while (k > 0 && p_array_type != NULL)
3050 {
3051 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3052 k -= 1;
3053 }
3054 return p_array_type;
3055 }
3056 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3057 {
3058 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3059 {
3060 type = TYPE_TARGET_TYPE (type);
3061 nindices -= 1;
3062 }
3063 return type;
3064 }
3065
3066 return NULL;
3067 }
3068
3069 /* The type of nth index in arrays of given type (n numbering from 1).
3070 Does not examine memory. Throws an error if N is invalid or TYPE
3071 is not an array type. NAME is the name of the Ada attribute being
3072 evaluated ('range, 'first, 'last, or 'length); it is used in building
3073 the error message. */
3074
3075 static struct type *
3076 ada_index_type (struct type *type, int n, const char *name)
3077 {
3078 struct type *result_type;
3079
3080 type = desc_base_type (type);
3081
3082 if (n < 0 || n > ada_array_arity (type))
3083 error (_("invalid dimension number to '%s"), name);
3084
3085 if (ada_is_simple_array_type (type))
3086 {
3087 int i;
3088
3089 for (i = 1; i < n; i += 1)
3090 type = TYPE_TARGET_TYPE (type);
3091 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3092 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3093 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3094 perhaps stabsread.c would make more sense. */
3095 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3096 result_type = NULL;
3097 }
3098 else
3099 {
3100 result_type = desc_index_type (desc_bounds_type (type), n);
3101 if (result_type == NULL)
3102 error (_("attempt to take bound of something that is not an array"));
3103 }
3104
3105 return result_type;
3106 }
3107
3108 /* Given that arr is an array type, returns the lower bound of the
3109 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3110 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3111 array-descriptor type. It works for other arrays with bounds supplied
3112 by run-time quantities other than discriminants. */
3113
3114 static LONGEST
3115 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3116 {
3117 struct type *type, *index_type_desc, *index_type;
3118 int i;
3119
3120 gdb_assert (which == 0 || which == 1);
3121
3122 if (ada_is_constrained_packed_array_type (arr_type))
3123 arr_type = decode_constrained_packed_array_type (arr_type);
3124
3125 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3126 return (LONGEST) - which;
3127
3128 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3129 type = TYPE_TARGET_TYPE (arr_type);
3130 else
3131 type = arr_type;
3132
3133 if (TYPE_FIXED_INSTANCE (type))
3134 {
3135 /* The array has already been fixed, so we do not need to
3136 check the parallel ___XA type again. That encoding has
3137 already been applied, so ignore it now. */
3138 index_type_desc = NULL;
3139 }
3140 else
3141 {
3142 index_type_desc = ada_find_parallel_type (type, "___XA");
3143 ada_fixup_array_indexes_type (index_type_desc);
3144 }
3145
3146 if (index_type_desc != NULL)
3147 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3148 NULL);
3149 else
3150 {
3151 struct type *elt_type = check_typedef (type);
3152
3153 for (i = 1; i < n; i++)
3154 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3155
3156 index_type = TYPE_INDEX_TYPE (elt_type);
3157 }
3158
3159 return
3160 (LONGEST) (which == 0
3161 ? ada_discrete_type_low_bound (index_type)
3162 : ada_discrete_type_high_bound (index_type));
3163 }
3164
3165 /* Given that arr is an array value, returns the lower bound of the
3166 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3167 WHICH is 1. This routine will also work for arrays with bounds
3168 supplied by run-time quantities other than discriminants. */
3169
3170 static LONGEST
3171 ada_array_bound (struct value *arr, int n, int which)
3172 {
3173 struct type *arr_type;
3174
3175 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3176 arr = value_ind (arr);
3177 arr_type = value_enclosing_type (arr);
3178
3179 if (ada_is_constrained_packed_array_type (arr_type))
3180 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3181 else if (ada_is_simple_array_type (arr_type))
3182 return ada_array_bound_from_type (arr_type, n, which);
3183 else
3184 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3185 }
3186
3187 /* Given that arr is an array value, returns the length of the
3188 nth index. This routine will also work for arrays with bounds
3189 supplied by run-time quantities other than discriminants.
3190 Does not work for arrays indexed by enumeration types with representation
3191 clauses at the moment. */
3192
3193 static LONGEST
3194 ada_array_length (struct value *arr, int n)
3195 {
3196 struct type *arr_type, *index_type;
3197 int low, high;
3198
3199 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3200 arr = value_ind (arr);
3201 arr_type = value_enclosing_type (arr);
3202
3203 if (ada_is_constrained_packed_array_type (arr_type))
3204 return ada_array_length (decode_constrained_packed_array (arr), n);
3205
3206 if (ada_is_simple_array_type (arr_type))
3207 {
3208 low = ada_array_bound_from_type (arr_type, n, 0);
3209 high = ada_array_bound_from_type (arr_type, n, 1);
3210 }
3211 else
3212 {
3213 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3214 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3215 }
3216
3217 arr_type = check_typedef (arr_type);
3218 index_type = ada_index_type (arr_type, n, "length");
3219 if (index_type != NULL)
3220 {
3221 struct type *base_type;
3222 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3223 base_type = TYPE_TARGET_TYPE (index_type);
3224 else
3225 base_type = index_type;
3226
3227 low = pos_atr (value_from_longest (base_type, low));
3228 high = pos_atr (value_from_longest (base_type, high));
3229 }
3230 return high - low + 1;
3231 }
3232
3233 /* An empty array whose type is that of ARR_TYPE (an array type),
3234 with bounds LOW to LOW-1. */
3235
3236 static struct value *
3237 empty_array (struct type *arr_type, int low)
3238 {
3239 struct type *arr_type0 = ada_check_typedef (arr_type);
3240 struct type *index_type
3241 = create_static_range_type
3242 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3243 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3244
3245 return allocate_value (create_array_type (NULL, elt_type, index_type));
3246 }
3247 \f
3248
3249 /* Name resolution */
3250
3251 /* The "decoded" name for the user-definable Ada operator corresponding
3252 to OP. */
3253
3254 static const char *
3255 ada_decoded_op_name (enum exp_opcode op)
3256 {
3257 int i;
3258
3259 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3260 {
3261 if (ada_opname_table[i].op == op)
3262 return ada_opname_table[i].decoded;
3263 }
3264 error (_("Could not find operator name for opcode"));
3265 }
3266
3267
3268 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3269 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3270 undefined namespace) and converts operators that are
3271 user-defined into appropriate function calls. If CONTEXT_TYPE is
3272 non-null, it provides a preferred result type [at the moment, only
3273 type void has any effect---causing procedures to be preferred over
3274 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3275 return type is preferred. May change (expand) *EXP. */
3276
3277 static void
3278 resolve (expression_up *expp, int void_context_p)
3279 {
3280 struct type *context_type = NULL;
3281 int pc = 0;
3282
3283 if (void_context_p)
3284 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3285
3286 resolve_subexp (expp, &pc, 1, context_type);
3287 }
3288
3289 /* Resolve the operator of the subexpression beginning at
3290 position *POS of *EXPP. "Resolving" consists of replacing
3291 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3292 with their resolutions, replacing built-in operators with
3293 function calls to user-defined operators, where appropriate, and,
3294 when DEPROCEDURE_P is non-zero, converting function-valued variables
3295 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3296 are as in ada_resolve, above. */
3297
3298 static struct value *
3299 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3300 struct type *context_type)
3301 {
3302 int pc = *pos;
3303 int i;
3304 struct expression *exp; /* Convenience: == *expp. */
3305 enum exp_opcode op = (*expp)->elts[pc].opcode;
3306 struct value **argvec; /* Vector of operand types (alloca'ed). */
3307 int nargs; /* Number of operands. */
3308 int oplen;
3309
3310 argvec = NULL;
3311 nargs = 0;
3312 exp = expp->get ();
3313
3314 /* Pass one: resolve operands, saving their types and updating *pos,
3315 if needed. */
3316 switch (op)
3317 {
3318 case OP_FUNCALL:
3319 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3320 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3321 *pos += 7;
3322 else
3323 {
3324 *pos += 3;
3325 resolve_subexp (expp, pos, 0, NULL);
3326 }
3327 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3328 break;
3329
3330 case UNOP_ADDR:
3331 *pos += 1;
3332 resolve_subexp (expp, pos, 0, NULL);
3333 break;
3334
3335 case UNOP_QUAL:
3336 *pos += 3;
3337 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3338 break;
3339
3340 case OP_ATR_MODULUS:
3341 case OP_ATR_SIZE:
3342 case OP_ATR_TAG:
3343 case OP_ATR_FIRST:
3344 case OP_ATR_LAST:
3345 case OP_ATR_LENGTH:
3346 case OP_ATR_POS:
3347 case OP_ATR_VAL:
3348 case OP_ATR_MIN:
3349 case OP_ATR_MAX:
3350 case TERNOP_IN_RANGE:
3351 case BINOP_IN_BOUNDS:
3352 case UNOP_IN_RANGE:
3353 case OP_AGGREGATE:
3354 case OP_OTHERS:
3355 case OP_CHOICES:
3356 case OP_POSITIONAL:
3357 case OP_DISCRETE_RANGE:
3358 case OP_NAME:
3359 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3360 *pos += oplen;
3361 break;
3362
3363 case BINOP_ASSIGN:
3364 {
3365 struct value *arg1;
3366
3367 *pos += 1;
3368 arg1 = resolve_subexp (expp, pos, 0, NULL);
3369 if (arg1 == NULL)
3370 resolve_subexp (expp, pos, 1, NULL);
3371 else
3372 resolve_subexp (expp, pos, 1, value_type (arg1));
3373 break;
3374 }
3375
3376 case UNOP_CAST:
3377 *pos += 3;
3378 nargs = 1;
3379 break;
3380
3381 case BINOP_ADD:
3382 case BINOP_SUB:
3383 case BINOP_MUL:
3384 case BINOP_DIV:
3385 case BINOP_REM:
3386 case BINOP_MOD:
3387 case BINOP_EXP:
3388 case BINOP_CONCAT:
3389 case BINOP_LOGICAL_AND:
3390 case BINOP_LOGICAL_OR:
3391 case BINOP_BITWISE_AND:
3392 case BINOP_BITWISE_IOR:
3393 case BINOP_BITWISE_XOR:
3394
3395 case BINOP_EQUAL:
3396 case BINOP_NOTEQUAL:
3397 case BINOP_LESS:
3398 case BINOP_GTR:
3399 case BINOP_LEQ:
3400 case BINOP_GEQ:
3401
3402 case BINOP_REPEAT:
3403 case BINOP_SUBSCRIPT:
3404 case BINOP_COMMA:
3405 *pos += 1;
3406 nargs = 2;
3407 break;
3408
3409 case UNOP_NEG:
3410 case UNOP_PLUS:
3411 case UNOP_LOGICAL_NOT:
3412 case UNOP_ABS:
3413 case UNOP_IND:
3414 *pos += 1;
3415 nargs = 1;
3416 break;
3417
3418 case OP_LONG:
3419 case OP_FLOAT:
3420 case OP_VAR_VALUE:
3421 case OP_VAR_MSYM_VALUE:
3422 *pos += 4;
3423 break;
3424
3425 case OP_TYPE:
3426 case OP_BOOL:
3427 case OP_LAST:
3428 case OP_INTERNALVAR:
3429 *pos += 3;
3430 break;
3431
3432 case UNOP_MEMVAL:
3433 *pos += 3;
3434 nargs = 1;
3435 break;
3436
3437 case OP_REGISTER:
3438 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3439 break;
3440
3441 case STRUCTOP_STRUCT:
3442 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3443 nargs = 1;
3444 break;
3445
3446 case TERNOP_SLICE:
3447 *pos += 1;
3448 nargs = 3;
3449 break;
3450
3451 case OP_STRING:
3452 break;
3453
3454 default:
3455 error (_("Unexpected operator during name resolution"));
3456 }
3457
3458 argvec = XALLOCAVEC (struct value *, nargs + 1);
3459 for (i = 0; i < nargs; i += 1)
3460 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3461 argvec[i] = NULL;
3462 exp = expp->get ();
3463
3464 /* Pass two: perform any resolution on principal operator. */
3465 switch (op)
3466 {
3467 default:
3468 break;
3469
3470 case OP_VAR_VALUE:
3471 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3472 {
3473 std::vector<struct block_symbol> candidates;
3474 int n_candidates;
3475
3476 n_candidates =
3477 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3478 (exp->elts[pc + 2].symbol),
3479 exp->elts[pc + 1].block, VAR_DOMAIN,
3480 &candidates);
3481
3482 if (n_candidates > 1)
3483 {
3484 /* Types tend to get re-introduced locally, so if there
3485 are any local symbols that are not types, first filter
3486 out all types. */
3487 int j;
3488 for (j = 0; j < n_candidates; j += 1)
3489 switch (SYMBOL_CLASS (candidates[j].symbol))
3490 {
3491 case LOC_REGISTER:
3492 case LOC_ARG:
3493 case LOC_REF_ARG:
3494 case LOC_REGPARM_ADDR:
3495 case LOC_LOCAL:
3496 case LOC_COMPUTED:
3497 goto FoundNonType;
3498 default:
3499 break;
3500 }
3501 FoundNonType:
3502 if (j < n_candidates)
3503 {
3504 j = 0;
3505 while (j < n_candidates)
3506 {
3507 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3508 {
3509 candidates[j] = candidates[n_candidates - 1];
3510 n_candidates -= 1;
3511 }
3512 else
3513 j += 1;
3514 }
3515 }
3516 }
3517
3518 if (n_candidates == 0)
3519 error (_("No definition found for %s"),
3520 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3521 else if (n_candidates == 1)
3522 i = 0;
3523 else if (deprocedure_p
3524 && !is_nonfunction (candidates.data (), n_candidates))
3525 {
3526 i = ada_resolve_function
3527 (candidates.data (), n_candidates, NULL, 0,
3528 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3529 context_type);
3530 if (i < 0)
3531 error (_("Could not find a match for %s"),
3532 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3533 }
3534 else
3535 {
3536 printf_filtered (_("Multiple matches for %s\n"),
3537 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3538 user_select_syms (candidates.data (), n_candidates, 1);
3539 i = 0;
3540 }
3541
3542 exp->elts[pc + 1].block = candidates[i].block;
3543 exp->elts[pc + 2].symbol = candidates[i].symbol;
3544 innermost_block.update (candidates[i]);
3545 }
3546
3547 if (deprocedure_p
3548 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3549 == TYPE_CODE_FUNC))
3550 {
3551 replace_operator_with_call (expp, pc, 0, 4,
3552 exp->elts[pc + 2].symbol,
3553 exp->elts[pc + 1].block);
3554 exp = expp->get ();
3555 }
3556 break;
3557
3558 case OP_FUNCALL:
3559 {
3560 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3561 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3562 {
3563 std::vector<struct block_symbol> candidates;
3564 int n_candidates;
3565
3566 n_candidates =
3567 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3568 (exp->elts[pc + 5].symbol),
3569 exp->elts[pc + 4].block, VAR_DOMAIN,
3570 &candidates);
3571
3572 if (n_candidates == 1)
3573 i = 0;
3574 else
3575 {
3576 i = ada_resolve_function
3577 (candidates.data (), n_candidates,
3578 argvec, nargs,
3579 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3580 context_type);
3581 if (i < 0)
3582 error (_("Could not find a match for %s"),
3583 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3584 }
3585
3586 exp->elts[pc + 4].block = candidates[i].block;
3587 exp->elts[pc + 5].symbol = candidates[i].symbol;
3588 innermost_block.update (candidates[i]);
3589 }
3590 }
3591 break;
3592 case BINOP_ADD:
3593 case BINOP_SUB:
3594 case BINOP_MUL:
3595 case BINOP_DIV:
3596 case BINOP_REM:
3597 case BINOP_MOD:
3598 case BINOP_CONCAT:
3599 case BINOP_BITWISE_AND:
3600 case BINOP_BITWISE_IOR:
3601 case BINOP_BITWISE_XOR:
3602 case BINOP_EQUAL:
3603 case BINOP_NOTEQUAL:
3604 case BINOP_LESS:
3605 case BINOP_GTR:
3606 case BINOP_LEQ:
3607 case BINOP_GEQ:
3608 case BINOP_EXP:
3609 case UNOP_NEG:
3610 case UNOP_PLUS:
3611 case UNOP_LOGICAL_NOT:
3612 case UNOP_ABS:
3613 if (possible_user_operator_p (op, argvec))
3614 {
3615 std::vector<struct block_symbol> candidates;
3616 int n_candidates;
3617
3618 n_candidates =
3619 ada_lookup_symbol_list (ada_decoded_op_name (op),
3620 (struct block *) NULL, VAR_DOMAIN,
3621 &candidates);
3622
3623 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3624 nargs, ada_decoded_op_name (op), NULL);
3625 if (i < 0)
3626 break;
3627
3628 replace_operator_with_call (expp, pc, nargs, 1,
3629 candidates[i].symbol,
3630 candidates[i].block);
3631 exp = expp->get ();
3632 }
3633 break;
3634
3635 case OP_TYPE:
3636 case OP_REGISTER:
3637 return NULL;
3638 }
3639
3640 *pos = pc;
3641 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3642 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3643 exp->elts[pc + 1].objfile,
3644 exp->elts[pc + 2].msymbol);
3645 else
3646 return evaluate_subexp_type (exp, pos);
3647 }
3648
3649 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3650 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3651 a non-pointer. */
3652 /* The term "match" here is rather loose. The match is heuristic and
3653 liberal. */
3654
3655 static int
3656 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3657 {
3658 ftype = ada_check_typedef (ftype);
3659 atype = ada_check_typedef (atype);
3660
3661 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3662 ftype = TYPE_TARGET_TYPE (ftype);
3663 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3664 atype = TYPE_TARGET_TYPE (atype);
3665
3666 switch (TYPE_CODE (ftype))
3667 {
3668 default:
3669 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3670 case TYPE_CODE_PTR:
3671 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3672 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3673 TYPE_TARGET_TYPE (atype), 0);
3674 else
3675 return (may_deref
3676 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3677 case TYPE_CODE_INT:
3678 case TYPE_CODE_ENUM:
3679 case TYPE_CODE_RANGE:
3680 switch (TYPE_CODE (atype))
3681 {
3682 case TYPE_CODE_INT:
3683 case TYPE_CODE_ENUM:
3684 case TYPE_CODE_RANGE:
3685 return 1;
3686 default:
3687 return 0;
3688 }
3689
3690 case TYPE_CODE_ARRAY:
3691 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3692 || ada_is_array_descriptor_type (atype));
3693
3694 case TYPE_CODE_STRUCT:
3695 if (ada_is_array_descriptor_type (ftype))
3696 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3697 || ada_is_array_descriptor_type (atype));
3698 else
3699 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3700 && !ada_is_array_descriptor_type (atype));
3701
3702 case TYPE_CODE_UNION:
3703 case TYPE_CODE_FLT:
3704 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3705 }
3706 }
3707
3708 /* Return non-zero if the formals of FUNC "sufficiently match" the
3709 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3710 may also be an enumeral, in which case it is treated as a 0-
3711 argument function. */
3712
3713 static int
3714 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3715 {
3716 int i;
3717 struct type *func_type = SYMBOL_TYPE (func);
3718
3719 if (SYMBOL_CLASS (func) == LOC_CONST
3720 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3721 return (n_actuals == 0);
3722 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3723 return 0;
3724
3725 if (TYPE_NFIELDS (func_type) != n_actuals)
3726 return 0;
3727
3728 for (i = 0; i < n_actuals; i += 1)
3729 {
3730 if (actuals[i] == NULL)
3731 return 0;
3732 else
3733 {
3734 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3735 i));
3736 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3737
3738 if (!ada_type_match (ftype, atype, 1))
3739 return 0;
3740 }
3741 }
3742 return 1;
3743 }
3744
3745 /* False iff function type FUNC_TYPE definitely does not produce a value
3746 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3747 FUNC_TYPE is not a valid function type with a non-null return type
3748 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3749
3750 static int
3751 return_match (struct type *func_type, struct type *context_type)
3752 {
3753 struct type *return_type;
3754
3755 if (func_type == NULL)
3756 return 1;
3757
3758 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3759 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3760 else
3761 return_type = get_base_type (func_type);
3762 if (return_type == NULL)
3763 return 1;
3764
3765 context_type = get_base_type (context_type);
3766
3767 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3768 return context_type == NULL || return_type == context_type;
3769 else if (context_type == NULL)
3770 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3771 else
3772 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3773 }
3774
3775
3776 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3777 function (if any) that matches the types of the NARGS arguments in
3778 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3779 that returns that type, then eliminate matches that don't. If
3780 CONTEXT_TYPE is void and there is at least one match that does not
3781 return void, eliminate all matches that do.
3782
3783 Asks the user if there is more than one match remaining. Returns -1
3784 if there is no such symbol or none is selected. NAME is used
3785 solely for messages. May re-arrange and modify SYMS in
3786 the process; the index returned is for the modified vector. */
3787
3788 static int
3789 ada_resolve_function (struct block_symbol syms[],
3790 int nsyms, struct value **args, int nargs,
3791 const char *name, struct type *context_type)
3792 {
3793 int fallback;
3794 int k;
3795 int m; /* Number of hits */
3796
3797 m = 0;
3798 /* In the first pass of the loop, we only accept functions matching
3799 context_type. If none are found, we add a second pass of the loop
3800 where every function is accepted. */
3801 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3802 {
3803 for (k = 0; k < nsyms; k += 1)
3804 {
3805 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3806
3807 if (ada_args_match (syms[k].symbol, args, nargs)
3808 && (fallback || return_match (type, context_type)))
3809 {
3810 syms[m] = syms[k];
3811 m += 1;
3812 }
3813 }
3814 }
3815
3816 /* If we got multiple matches, ask the user which one to use. Don't do this
3817 interactive thing during completion, though, as the purpose of the
3818 completion is providing a list of all possible matches. Prompting the
3819 user to filter it down would be completely unexpected in this case. */
3820 if (m == 0)
3821 return -1;
3822 else if (m > 1 && !parse_completion)
3823 {
3824 printf_filtered (_("Multiple matches for %s\n"), name);
3825 user_select_syms (syms, m, 1);
3826 return 0;
3827 }
3828 return 0;
3829 }
3830
3831 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3832 in a listing of choices during disambiguation (see sort_choices, below).
3833 The idea is that overloadings of a subprogram name from the
3834 same package should sort in their source order. We settle for ordering
3835 such symbols by their trailing number (__N or $N). */
3836
3837 static int
3838 encoded_ordered_before (const char *N0, const char *N1)
3839 {
3840 if (N1 == NULL)
3841 return 0;
3842 else if (N0 == NULL)
3843 return 1;
3844 else
3845 {
3846 int k0, k1;
3847
3848 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3849 ;
3850 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3851 ;
3852 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3853 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3854 {
3855 int n0, n1;
3856
3857 n0 = k0;
3858 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3859 n0 -= 1;
3860 n1 = k1;
3861 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3862 n1 -= 1;
3863 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3864 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3865 }
3866 return (strcmp (N0, N1) < 0);
3867 }
3868 }
3869
3870 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3871 encoded names. */
3872
3873 static void
3874 sort_choices (struct block_symbol syms[], int nsyms)
3875 {
3876 int i;
3877
3878 for (i = 1; i < nsyms; i += 1)
3879 {
3880 struct block_symbol sym = syms[i];
3881 int j;
3882
3883 for (j = i - 1; j >= 0; j -= 1)
3884 {
3885 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3886 SYMBOL_LINKAGE_NAME (sym.symbol)))
3887 break;
3888 syms[j + 1] = syms[j];
3889 }
3890 syms[j + 1] = sym;
3891 }
3892 }
3893
3894 /* Whether GDB should display formals and return types for functions in the
3895 overloads selection menu. */
3896 static int print_signatures = 1;
3897
3898 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3899 all but functions, the signature is just the name of the symbol. For
3900 functions, this is the name of the function, the list of types for formals
3901 and the return type (if any). */
3902
3903 static void
3904 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3905 const struct type_print_options *flags)
3906 {
3907 struct type *type = SYMBOL_TYPE (sym);
3908
3909 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3910 if (!print_signatures
3911 || type == NULL
3912 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3913 return;
3914
3915 if (TYPE_NFIELDS (type) > 0)
3916 {
3917 int i;
3918
3919 fprintf_filtered (stream, " (");
3920 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3921 {
3922 if (i > 0)
3923 fprintf_filtered (stream, "; ");
3924 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3925 flags);
3926 }
3927 fprintf_filtered (stream, ")");
3928 }
3929 if (TYPE_TARGET_TYPE (type) != NULL
3930 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3931 {
3932 fprintf_filtered (stream, " return ");
3933 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3934 }
3935 }
3936
3937 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3938 by asking the user (if necessary), returning the number selected,
3939 and setting the first elements of SYMS items. Error if no symbols
3940 selected. */
3941
3942 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3943 to be re-integrated one of these days. */
3944
3945 int
3946 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3947 {
3948 int i;
3949 int *chosen = XALLOCAVEC (int , nsyms);
3950 int n_chosen;
3951 int first_choice = (max_results == 1) ? 1 : 2;
3952 const char *select_mode = multiple_symbols_select_mode ();
3953
3954 if (max_results < 1)
3955 error (_("Request to select 0 symbols!"));
3956 if (nsyms <= 1)
3957 return nsyms;
3958
3959 if (select_mode == multiple_symbols_cancel)
3960 error (_("\
3961 canceled because the command is ambiguous\n\
3962 See set/show multiple-symbol."));
3963
3964 /* If select_mode is "all", then return all possible symbols.
3965 Only do that if more than one symbol can be selected, of course.
3966 Otherwise, display the menu as usual. */
3967 if (select_mode == multiple_symbols_all && max_results > 1)
3968 return nsyms;
3969
3970 printf_unfiltered (_("[0] cancel\n"));
3971 if (max_results > 1)
3972 printf_unfiltered (_("[1] all\n"));
3973
3974 sort_choices (syms, nsyms);
3975
3976 for (i = 0; i < nsyms; i += 1)
3977 {
3978 if (syms[i].symbol == NULL)
3979 continue;
3980
3981 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3982 {
3983 struct symtab_and_line sal =
3984 find_function_start_sal (syms[i].symbol, 1);
3985
3986 printf_unfiltered ("[%d] ", i + first_choice);
3987 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3988 &type_print_raw_options);
3989 if (sal.symtab == NULL)
3990 printf_unfiltered (_(" at <no source file available>:%d\n"),
3991 sal.line);
3992 else
3993 printf_unfiltered (_(" at %s:%d\n"),
3994 symtab_to_filename_for_display (sal.symtab),
3995 sal.line);
3996 continue;
3997 }
3998 else
3999 {
4000 int is_enumeral =
4001 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
4002 && SYMBOL_TYPE (syms[i].symbol) != NULL
4003 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
4004 struct symtab *symtab = NULL;
4005
4006 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
4007 symtab = symbol_symtab (syms[i].symbol);
4008
4009 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
4010 {
4011 printf_unfiltered ("[%d] ", i + first_choice);
4012 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4013 &type_print_raw_options);
4014 printf_unfiltered (_(" at %s:%d\n"),
4015 symtab_to_filename_for_display (symtab),
4016 SYMBOL_LINE (syms[i].symbol));
4017 }
4018 else if (is_enumeral
4019 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4020 {
4021 printf_unfiltered (("[%d] "), i + first_choice);
4022 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
4023 gdb_stdout, -1, 0, &type_print_raw_options);
4024 printf_unfiltered (_("'(%s) (enumeral)\n"),
4025 SYMBOL_PRINT_NAME (syms[i].symbol));
4026 }
4027 else
4028 {
4029 printf_unfiltered ("[%d] ", i + first_choice);
4030 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4031 &type_print_raw_options);
4032
4033 if (symtab != NULL)
4034 printf_unfiltered (is_enumeral
4035 ? _(" in %s (enumeral)\n")
4036 : _(" at %s:?\n"),
4037 symtab_to_filename_for_display (symtab));
4038 else
4039 printf_unfiltered (is_enumeral
4040 ? _(" (enumeral)\n")
4041 : _(" at ?\n"));
4042 }
4043 }
4044 }
4045
4046 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4047 "overload-choice");
4048
4049 for (i = 0; i < n_chosen; i += 1)
4050 syms[i] = syms[chosen[i]];
4051
4052 return n_chosen;
4053 }
4054
4055 /* Read and validate a set of numeric choices from the user in the
4056 range 0 .. N_CHOICES-1. Place the results in increasing
4057 order in CHOICES[0 .. N-1], and return N.
4058
4059 The user types choices as a sequence of numbers on one line
4060 separated by blanks, encoding them as follows:
4061
4062 + A choice of 0 means to cancel the selection, throwing an error.
4063 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4064 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4065
4066 The user is not allowed to choose more than MAX_RESULTS values.
4067
4068 ANNOTATION_SUFFIX, if present, is used to annotate the input
4069 prompts (for use with the -f switch). */
4070
4071 int
4072 get_selections (int *choices, int n_choices, int max_results,
4073 int is_all_choice, const char *annotation_suffix)
4074 {
4075 char *args;
4076 const char *prompt;
4077 int n_chosen;
4078 int first_choice = is_all_choice ? 2 : 1;
4079
4080 prompt = getenv ("PS2");
4081 if (prompt == NULL)
4082 prompt = "> ";
4083
4084 args = command_line_input (prompt, annotation_suffix);
4085
4086 if (args == NULL)
4087 error_no_arg (_("one or more choice numbers"));
4088
4089 n_chosen = 0;
4090
4091 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4092 order, as given in args. Choices are validated. */
4093 while (1)
4094 {
4095 char *args2;
4096 int choice, j;
4097
4098 args = skip_spaces (args);
4099 if (*args == '\0' && n_chosen == 0)
4100 error_no_arg (_("one or more choice numbers"));
4101 else if (*args == '\0')
4102 break;
4103
4104 choice = strtol (args, &args2, 10);
4105 if (args == args2 || choice < 0
4106 || choice > n_choices + first_choice - 1)
4107 error (_("Argument must be choice number"));
4108 args = args2;
4109
4110 if (choice == 0)
4111 error (_("cancelled"));
4112
4113 if (choice < first_choice)
4114 {
4115 n_chosen = n_choices;
4116 for (j = 0; j < n_choices; j += 1)
4117 choices[j] = j;
4118 break;
4119 }
4120 choice -= first_choice;
4121
4122 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4123 {
4124 }
4125
4126 if (j < 0 || choice != choices[j])
4127 {
4128 int k;
4129
4130 for (k = n_chosen - 1; k > j; k -= 1)
4131 choices[k + 1] = choices[k];
4132 choices[j + 1] = choice;
4133 n_chosen += 1;
4134 }
4135 }
4136
4137 if (n_chosen > max_results)
4138 error (_("Select no more than %d of the above"), max_results);
4139
4140 return n_chosen;
4141 }
4142
4143 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4144 on the function identified by SYM and BLOCK, and taking NARGS
4145 arguments. Update *EXPP as needed to hold more space. */
4146
4147 static void
4148 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4149 int oplen, struct symbol *sym,
4150 const struct block *block)
4151 {
4152 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4153 symbol, -oplen for operator being replaced). */
4154 struct expression *newexp = (struct expression *)
4155 xzalloc (sizeof (struct expression)
4156 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4157 struct expression *exp = expp->get ();
4158
4159 newexp->nelts = exp->nelts + 7 - oplen;
4160 newexp->language_defn = exp->language_defn;
4161 newexp->gdbarch = exp->gdbarch;
4162 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4163 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4164 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4165
4166 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4167 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4168
4169 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4170 newexp->elts[pc + 4].block = block;
4171 newexp->elts[pc + 5].symbol = sym;
4172
4173 expp->reset (newexp);
4174 }
4175
4176 /* Type-class predicates */
4177
4178 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4179 or FLOAT). */
4180
4181 static int
4182 numeric_type_p (struct type *type)
4183 {
4184 if (type == NULL)
4185 return 0;
4186 else
4187 {
4188 switch (TYPE_CODE (type))
4189 {
4190 case TYPE_CODE_INT:
4191 case TYPE_CODE_FLT:
4192 return 1;
4193 case TYPE_CODE_RANGE:
4194 return (type == TYPE_TARGET_TYPE (type)
4195 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4196 default:
4197 return 0;
4198 }
4199 }
4200 }
4201
4202 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4203
4204 static int
4205 integer_type_p (struct type *type)
4206 {
4207 if (type == NULL)
4208 return 0;
4209 else
4210 {
4211 switch (TYPE_CODE (type))
4212 {
4213 case TYPE_CODE_INT:
4214 return 1;
4215 case TYPE_CODE_RANGE:
4216 return (type == TYPE_TARGET_TYPE (type)
4217 || integer_type_p (TYPE_TARGET_TYPE (type)));
4218 default:
4219 return 0;
4220 }
4221 }
4222 }
4223
4224 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4225
4226 static int
4227 scalar_type_p (struct type *type)
4228 {
4229 if (type == NULL)
4230 return 0;
4231 else
4232 {
4233 switch (TYPE_CODE (type))
4234 {
4235 case TYPE_CODE_INT:
4236 case TYPE_CODE_RANGE:
4237 case TYPE_CODE_ENUM:
4238 case TYPE_CODE_FLT:
4239 return 1;
4240 default:
4241 return 0;
4242 }
4243 }
4244 }
4245
4246 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4247
4248 static int
4249 discrete_type_p (struct type *type)
4250 {
4251 if (type == NULL)
4252 return 0;
4253 else
4254 {
4255 switch (TYPE_CODE (type))
4256 {
4257 case TYPE_CODE_INT:
4258 case TYPE_CODE_RANGE:
4259 case TYPE_CODE_ENUM:
4260 case TYPE_CODE_BOOL:
4261 return 1;
4262 default:
4263 return 0;
4264 }
4265 }
4266 }
4267
4268 /* Returns non-zero if OP with operands in the vector ARGS could be
4269 a user-defined function. Errs on the side of pre-defined operators
4270 (i.e., result 0). */
4271
4272 static int
4273 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4274 {
4275 struct type *type0 =
4276 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4277 struct type *type1 =
4278 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4279
4280 if (type0 == NULL)
4281 return 0;
4282
4283 switch (op)
4284 {
4285 default:
4286 return 0;
4287
4288 case BINOP_ADD:
4289 case BINOP_SUB:
4290 case BINOP_MUL:
4291 case BINOP_DIV:
4292 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4293
4294 case BINOP_REM:
4295 case BINOP_MOD:
4296 case BINOP_BITWISE_AND:
4297 case BINOP_BITWISE_IOR:
4298 case BINOP_BITWISE_XOR:
4299 return (!(integer_type_p (type0) && integer_type_p (type1)));
4300
4301 case BINOP_EQUAL:
4302 case BINOP_NOTEQUAL:
4303 case BINOP_LESS:
4304 case BINOP_GTR:
4305 case BINOP_LEQ:
4306 case BINOP_GEQ:
4307 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4308
4309 case BINOP_CONCAT:
4310 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4311
4312 case BINOP_EXP:
4313 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4314
4315 case UNOP_NEG:
4316 case UNOP_PLUS:
4317 case UNOP_LOGICAL_NOT:
4318 case UNOP_ABS:
4319 return (!numeric_type_p (type0));
4320
4321 }
4322 }
4323 \f
4324 /* Renaming */
4325
4326 /* NOTES:
4327
4328 1. In the following, we assume that a renaming type's name may
4329 have an ___XD suffix. It would be nice if this went away at some
4330 point.
4331 2. We handle both the (old) purely type-based representation of
4332 renamings and the (new) variable-based encoding. At some point,
4333 it is devoutly to be hoped that the former goes away
4334 (FIXME: hilfinger-2007-07-09).
4335 3. Subprogram renamings are not implemented, although the XRS
4336 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4337
4338 /* If SYM encodes a renaming,
4339
4340 <renaming> renames <renamed entity>,
4341
4342 sets *LEN to the length of the renamed entity's name,
4343 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4344 the string describing the subcomponent selected from the renamed
4345 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4346 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4347 are undefined). Otherwise, returns a value indicating the category
4348 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4349 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4350 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4351 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4352 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4353 may be NULL, in which case they are not assigned.
4354
4355 [Currently, however, GCC does not generate subprogram renamings.] */
4356
4357 enum ada_renaming_category
4358 ada_parse_renaming (struct symbol *sym,
4359 const char **renamed_entity, int *len,
4360 const char **renaming_expr)
4361 {
4362 enum ada_renaming_category kind;
4363 const char *info;
4364 const char *suffix;
4365
4366 if (sym == NULL)
4367 return ADA_NOT_RENAMING;
4368 switch (SYMBOL_CLASS (sym))
4369 {
4370 default:
4371 return ADA_NOT_RENAMING;
4372 case LOC_TYPEDEF:
4373 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4374 renamed_entity, len, renaming_expr);
4375 case LOC_LOCAL:
4376 case LOC_STATIC:
4377 case LOC_COMPUTED:
4378 case LOC_OPTIMIZED_OUT:
4379 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4380 if (info == NULL)
4381 return ADA_NOT_RENAMING;
4382 switch (info[5])
4383 {
4384 case '_':
4385 kind = ADA_OBJECT_RENAMING;
4386 info += 6;
4387 break;
4388 case 'E':
4389 kind = ADA_EXCEPTION_RENAMING;
4390 info += 7;
4391 break;
4392 case 'P':
4393 kind = ADA_PACKAGE_RENAMING;
4394 info += 7;
4395 break;
4396 case 'S':
4397 kind = ADA_SUBPROGRAM_RENAMING;
4398 info += 7;
4399 break;
4400 default:
4401 return ADA_NOT_RENAMING;
4402 }
4403 }
4404
4405 if (renamed_entity != NULL)
4406 *renamed_entity = info;
4407 suffix = strstr (info, "___XE");
4408 if (suffix == NULL || suffix == info)
4409 return ADA_NOT_RENAMING;
4410 if (len != NULL)
4411 *len = strlen (info) - strlen (suffix);
4412 suffix += 5;
4413 if (renaming_expr != NULL)
4414 *renaming_expr = suffix;
4415 return kind;
4416 }
4417
4418 /* Assuming TYPE encodes a renaming according to the old encoding in
4419 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4420 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4421 ADA_NOT_RENAMING otherwise. */
4422 static enum ada_renaming_category
4423 parse_old_style_renaming (struct type *type,
4424 const char **renamed_entity, int *len,
4425 const char **renaming_expr)
4426 {
4427 enum ada_renaming_category kind;
4428 const char *name;
4429 const char *info;
4430 const char *suffix;
4431
4432 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4433 || TYPE_NFIELDS (type) != 1)
4434 return ADA_NOT_RENAMING;
4435
4436 name = TYPE_NAME (type);
4437 if (name == NULL)
4438 return ADA_NOT_RENAMING;
4439
4440 name = strstr (name, "___XR");
4441 if (name == NULL)
4442 return ADA_NOT_RENAMING;
4443 switch (name[5])
4444 {
4445 case '\0':
4446 case '_':
4447 kind = ADA_OBJECT_RENAMING;
4448 break;
4449 case 'E':
4450 kind = ADA_EXCEPTION_RENAMING;
4451 break;
4452 case 'P':
4453 kind = ADA_PACKAGE_RENAMING;
4454 break;
4455 case 'S':
4456 kind = ADA_SUBPROGRAM_RENAMING;
4457 break;
4458 default:
4459 return ADA_NOT_RENAMING;
4460 }
4461
4462 info = TYPE_FIELD_NAME (type, 0);
4463 if (info == NULL)
4464 return ADA_NOT_RENAMING;
4465 if (renamed_entity != NULL)
4466 *renamed_entity = info;
4467 suffix = strstr (info, "___XE");
4468 if (renaming_expr != NULL)
4469 *renaming_expr = suffix + 5;
4470 if (suffix == NULL || suffix == info)
4471 return ADA_NOT_RENAMING;
4472 if (len != NULL)
4473 *len = suffix - info;
4474 return kind;
4475 }
4476
4477 /* Compute the value of the given RENAMING_SYM, which is expected to
4478 be a symbol encoding a renaming expression. BLOCK is the block
4479 used to evaluate the renaming. */
4480
4481 static struct value *
4482 ada_read_renaming_var_value (struct symbol *renaming_sym,
4483 const struct block *block)
4484 {
4485 const char *sym_name;
4486
4487 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4488 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4489 return evaluate_expression (expr.get ());
4490 }
4491 \f
4492
4493 /* Evaluation: Function Calls */
4494
4495 /* Return an lvalue containing the value VAL. This is the identity on
4496 lvalues, and otherwise has the side-effect of allocating memory
4497 in the inferior where a copy of the value contents is copied. */
4498
4499 static struct value *
4500 ensure_lval (struct value *val)
4501 {
4502 if (VALUE_LVAL (val) == not_lval
4503 || VALUE_LVAL (val) == lval_internalvar)
4504 {
4505 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4506 const CORE_ADDR addr =
4507 value_as_long (value_allocate_space_in_inferior (len));
4508
4509 VALUE_LVAL (val) = lval_memory;
4510 set_value_address (val, addr);
4511 write_memory (addr, value_contents (val), len);
4512 }
4513
4514 return val;
4515 }
4516
4517 /* Return the value ACTUAL, converted to be an appropriate value for a
4518 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4519 allocating any necessary descriptors (fat pointers), or copies of
4520 values not residing in memory, updating it as needed. */
4521
4522 struct value *
4523 ada_convert_actual (struct value *actual, struct type *formal_type0)
4524 {
4525 struct type *actual_type = ada_check_typedef (value_type (actual));
4526 struct type *formal_type = ada_check_typedef (formal_type0);
4527 struct type *formal_target =
4528 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4529 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4530 struct type *actual_target =
4531 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4532 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4533
4534 if (ada_is_array_descriptor_type (formal_target)
4535 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4536 return make_array_descriptor (formal_type, actual);
4537 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4538 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4539 {
4540 struct value *result;
4541
4542 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4543 && ada_is_array_descriptor_type (actual_target))
4544 result = desc_data (actual);
4545 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4546 {
4547 if (VALUE_LVAL (actual) != lval_memory)
4548 {
4549 struct value *val;
4550
4551 actual_type = ada_check_typedef (value_type (actual));
4552 val = allocate_value (actual_type);
4553 memcpy ((char *) value_contents_raw (val),
4554 (char *) value_contents (actual),
4555 TYPE_LENGTH (actual_type));
4556 actual = ensure_lval (val);
4557 }
4558 result = value_addr (actual);
4559 }
4560 else
4561 return actual;
4562 return value_cast_pointers (formal_type, result, 0);
4563 }
4564 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4565 return ada_value_ind (actual);
4566 else if (ada_is_aligner_type (formal_type))
4567 {
4568 /* We need to turn this parameter into an aligner type
4569 as well. */
4570 struct value *aligner = allocate_value (formal_type);
4571 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4572
4573 value_assign_to_component (aligner, component, actual);
4574 return aligner;
4575 }
4576
4577 return actual;
4578 }
4579
4580 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4581 type TYPE. This is usually an inefficient no-op except on some targets
4582 (such as AVR) where the representation of a pointer and an address
4583 differs. */
4584
4585 static CORE_ADDR
4586 value_pointer (struct value *value, struct type *type)
4587 {
4588 struct gdbarch *gdbarch = get_type_arch (type);
4589 unsigned len = TYPE_LENGTH (type);
4590 gdb_byte *buf = (gdb_byte *) alloca (len);
4591 CORE_ADDR addr;
4592
4593 addr = value_address (value);
4594 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4595 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4596 return addr;
4597 }
4598
4599
4600 /* Push a descriptor of type TYPE for array value ARR on the stack at
4601 *SP, updating *SP to reflect the new descriptor. Return either
4602 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4603 to-descriptor type rather than a descriptor type), a struct value *
4604 representing a pointer to this descriptor. */
4605
4606 static struct value *
4607 make_array_descriptor (struct type *type, struct value *arr)
4608 {
4609 struct type *bounds_type = desc_bounds_type (type);
4610 struct type *desc_type = desc_base_type (type);
4611 struct value *descriptor = allocate_value (desc_type);
4612 struct value *bounds = allocate_value (bounds_type);
4613 int i;
4614
4615 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4616 i > 0; i -= 1)
4617 {
4618 modify_field (value_type (bounds), value_contents_writeable (bounds),
4619 ada_array_bound (arr, i, 0),
4620 desc_bound_bitpos (bounds_type, i, 0),
4621 desc_bound_bitsize (bounds_type, i, 0));
4622 modify_field (value_type (bounds), value_contents_writeable (bounds),
4623 ada_array_bound (arr, i, 1),
4624 desc_bound_bitpos (bounds_type, i, 1),
4625 desc_bound_bitsize (bounds_type, i, 1));
4626 }
4627
4628 bounds = ensure_lval (bounds);
4629
4630 modify_field (value_type (descriptor),
4631 value_contents_writeable (descriptor),
4632 value_pointer (ensure_lval (arr),
4633 TYPE_FIELD_TYPE (desc_type, 0)),
4634 fat_pntr_data_bitpos (desc_type),
4635 fat_pntr_data_bitsize (desc_type));
4636
4637 modify_field (value_type (descriptor),
4638 value_contents_writeable (descriptor),
4639 value_pointer (bounds,
4640 TYPE_FIELD_TYPE (desc_type, 1)),
4641 fat_pntr_bounds_bitpos (desc_type),
4642 fat_pntr_bounds_bitsize (desc_type));
4643
4644 descriptor = ensure_lval (descriptor);
4645
4646 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4647 return value_addr (descriptor);
4648 else
4649 return descriptor;
4650 }
4651 \f
4652 /* Symbol Cache Module */
4653
4654 /* Performance measurements made as of 2010-01-15 indicate that
4655 this cache does bring some noticeable improvements. Depending
4656 on the type of entity being printed, the cache can make it as much
4657 as an order of magnitude faster than without it.
4658
4659 The descriptive type DWARF extension has significantly reduced
4660 the need for this cache, at least when DWARF is being used. However,
4661 even in this case, some expensive name-based symbol searches are still
4662 sometimes necessary - to find an XVZ variable, mostly. */
4663
4664 /* Initialize the contents of SYM_CACHE. */
4665
4666 static void
4667 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4668 {
4669 obstack_init (&sym_cache->cache_space);
4670 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4671 }
4672
4673 /* Free the memory used by SYM_CACHE. */
4674
4675 static void
4676 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4677 {
4678 obstack_free (&sym_cache->cache_space, NULL);
4679 xfree (sym_cache);
4680 }
4681
4682 /* Return the symbol cache associated to the given program space PSPACE.
4683 If not allocated for this PSPACE yet, allocate and initialize one. */
4684
4685 static struct ada_symbol_cache *
4686 ada_get_symbol_cache (struct program_space *pspace)
4687 {
4688 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4689
4690 if (pspace_data->sym_cache == NULL)
4691 {
4692 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4693 ada_init_symbol_cache (pspace_data->sym_cache);
4694 }
4695
4696 return pspace_data->sym_cache;
4697 }
4698
4699 /* Clear all entries from the symbol cache. */
4700
4701 static void
4702 ada_clear_symbol_cache (void)
4703 {
4704 struct ada_symbol_cache *sym_cache
4705 = ada_get_symbol_cache (current_program_space);
4706
4707 obstack_free (&sym_cache->cache_space, NULL);
4708 ada_init_symbol_cache (sym_cache);
4709 }
4710
4711 /* Search our cache for an entry matching NAME and DOMAIN.
4712 Return it if found, or NULL otherwise. */
4713
4714 static struct cache_entry **
4715 find_entry (const char *name, domain_enum domain)
4716 {
4717 struct ada_symbol_cache *sym_cache
4718 = ada_get_symbol_cache (current_program_space);
4719 int h = msymbol_hash (name) % HASH_SIZE;
4720 struct cache_entry **e;
4721
4722 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4723 {
4724 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4725 return e;
4726 }
4727 return NULL;
4728 }
4729
4730 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4731 Return 1 if found, 0 otherwise.
4732
4733 If an entry was found and SYM is not NULL, set *SYM to the entry's
4734 SYM. Same principle for BLOCK if not NULL. */
4735
4736 static int
4737 lookup_cached_symbol (const char *name, domain_enum domain,
4738 struct symbol **sym, const struct block **block)
4739 {
4740 struct cache_entry **e = find_entry (name, domain);
4741
4742 if (e == NULL)
4743 return 0;
4744 if (sym != NULL)
4745 *sym = (*e)->sym;
4746 if (block != NULL)
4747 *block = (*e)->block;
4748 return 1;
4749 }
4750
4751 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4752 in domain DOMAIN, save this result in our symbol cache. */
4753
4754 static void
4755 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4756 const struct block *block)
4757 {
4758 struct ada_symbol_cache *sym_cache
4759 = ada_get_symbol_cache (current_program_space);
4760 int h;
4761 char *copy;
4762 struct cache_entry *e;
4763
4764 /* Symbols for builtin types don't have a block.
4765 For now don't cache such symbols. */
4766 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4767 return;
4768
4769 /* If the symbol is a local symbol, then do not cache it, as a search
4770 for that symbol depends on the context. To determine whether
4771 the symbol is local or not, we check the block where we found it
4772 against the global and static blocks of its associated symtab. */
4773 if (sym
4774 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4775 GLOBAL_BLOCK) != block
4776 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4777 STATIC_BLOCK) != block)
4778 return;
4779
4780 h = msymbol_hash (name) % HASH_SIZE;
4781 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4782 e->next = sym_cache->root[h];
4783 sym_cache->root[h] = e;
4784 e->name = copy
4785 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4786 strcpy (copy, name);
4787 e->sym = sym;
4788 e->domain = domain;
4789 e->block = block;
4790 }
4791 \f
4792 /* Symbol Lookup */
4793
4794 /* Return the symbol name match type that should be used used when
4795 searching for all symbols matching LOOKUP_NAME.
4796
4797 LOOKUP_NAME is expected to be a symbol name after transformation
4798 for Ada lookups. */
4799
4800 static symbol_name_match_type
4801 name_match_type_from_name (const char *lookup_name)
4802 {
4803 return (strstr (lookup_name, "__") == NULL
4804 ? symbol_name_match_type::WILD
4805 : symbol_name_match_type::FULL);
4806 }
4807
4808 /* Return the result of a standard (literal, C-like) lookup of NAME in
4809 given DOMAIN, visible from lexical block BLOCK. */
4810
4811 static struct symbol *
4812 standard_lookup (const char *name, const struct block *block,
4813 domain_enum domain)
4814 {
4815 /* Initialize it just to avoid a GCC false warning. */
4816 struct block_symbol sym = {NULL, NULL};
4817
4818 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4819 return sym.symbol;
4820 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4821 cache_symbol (name, domain, sym.symbol, sym.block);
4822 return sym.symbol;
4823 }
4824
4825
4826 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4827 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4828 since they contend in overloading in the same way. */
4829 static int
4830 is_nonfunction (struct block_symbol syms[], int n)
4831 {
4832 int i;
4833
4834 for (i = 0; i < n; i += 1)
4835 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4836 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4837 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4838 return 1;
4839
4840 return 0;
4841 }
4842
4843 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4844 struct types. Otherwise, they may not. */
4845
4846 static int
4847 equiv_types (struct type *type0, struct type *type1)
4848 {
4849 if (type0 == type1)
4850 return 1;
4851 if (type0 == NULL || type1 == NULL
4852 || TYPE_CODE (type0) != TYPE_CODE (type1))
4853 return 0;
4854 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4855 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4856 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4857 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4858 return 1;
4859
4860 return 0;
4861 }
4862
4863 /* True iff SYM0 represents the same entity as SYM1, or one that is
4864 no more defined than that of SYM1. */
4865
4866 static int
4867 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4868 {
4869 if (sym0 == sym1)
4870 return 1;
4871 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4872 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4873 return 0;
4874
4875 switch (SYMBOL_CLASS (sym0))
4876 {
4877 case LOC_UNDEF:
4878 return 1;
4879 case LOC_TYPEDEF:
4880 {
4881 struct type *type0 = SYMBOL_TYPE (sym0);
4882 struct type *type1 = SYMBOL_TYPE (sym1);
4883 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4884 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4885 int len0 = strlen (name0);
4886
4887 return
4888 TYPE_CODE (type0) == TYPE_CODE (type1)
4889 && (equiv_types (type0, type1)
4890 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4891 && startswith (name1 + len0, "___XV")));
4892 }
4893 case LOC_CONST:
4894 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4895 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4896 default:
4897 return 0;
4898 }
4899 }
4900
4901 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4902 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4903
4904 static void
4905 add_defn_to_vec (struct obstack *obstackp,
4906 struct symbol *sym,
4907 const struct block *block)
4908 {
4909 int i;
4910 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4911
4912 /* Do not try to complete stub types, as the debugger is probably
4913 already scanning all symbols matching a certain name at the
4914 time when this function is called. Trying to replace the stub
4915 type by its associated full type will cause us to restart a scan
4916 which may lead to an infinite recursion. Instead, the client
4917 collecting the matching symbols will end up collecting several
4918 matches, with at least one of them complete. It can then filter
4919 out the stub ones if needed. */
4920
4921 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4922 {
4923 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4924 return;
4925 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4926 {
4927 prevDefns[i].symbol = sym;
4928 prevDefns[i].block = block;
4929 return;
4930 }
4931 }
4932
4933 {
4934 struct block_symbol info;
4935
4936 info.symbol = sym;
4937 info.block = block;
4938 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4939 }
4940 }
4941
4942 /* Number of block_symbol structures currently collected in current vector in
4943 OBSTACKP. */
4944
4945 static int
4946 num_defns_collected (struct obstack *obstackp)
4947 {
4948 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4949 }
4950
4951 /* Vector of block_symbol structures currently collected in current vector in
4952 OBSTACKP. If FINISH, close off the vector and return its final address. */
4953
4954 static struct block_symbol *
4955 defns_collected (struct obstack *obstackp, int finish)
4956 {
4957 if (finish)
4958 return (struct block_symbol *) obstack_finish (obstackp);
4959 else
4960 return (struct block_symbol *) obstack_base (obstackp);
4961 }
4962
4963 /* Return a bound minimal symbol matching NAME according to Ada
4964 decoding rules. Returns an invalid symbol if there is no such
4965 minimal symbol. Names prefixed with "standard__" are handled
4966 specially: "standard__" is first stripped off, and only static and
4967 global symbols are searched. */
4968
4969 struct bound_minimal_symbol
4970 ada_lookup_simple_minsym (const char *name)
4971 {
4972 struct bound_minimal_symbol result;
4973 struct objfile *objfile;
4974 struct minimal_symbol *msymbol;
4975
4976 memset (&result, 0, sizeof (result));
4977
4978 symbol_name_match_type match_type = name_match_type_from_name (name);
4979 lookup_name_info lookup_name (name, match_type);
4980
4981 symbol_name_matcher_ftype *match_name
4982 = ada_get_symbol_name_matcher (lookup_name);
4983
4984 ALL_MSYMBOLS (objfile, msymbol)
4985 {
4986 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4987 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4988 {
4989 result.minsym = msymbol;
4990 result.objfile = objfile;
4991 break;
4992 }
4993 }
4994
4995 return result;
4996 }
4997
4998 /* For all subprograms that statically enclose the subprogram of the
4999 selected frame, add symbols matching identifier NAME in DOMAIN
5000 and their blocks to the list of data in OBSTACKP, as for
5001 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
5002 with a wildcard prefix. */
5003
5004 static void
5005 add_symbols_from_enclosing_procs (struct obstack *obstackp,
5006 const lookup_name_info &lookup_name,
5007 domain_enum domain)
5008 {
5009 }
5010
5011 /* True if TYPE is definitely an artificial type supplied to a symbol
5012 for which no debugging information was given in the symbol file. */
5013
5014 static int
5015 is_nondebugging_type (struct type *type)
5016 {
5017 const char *name = ada_type_name (type);
5018
5019 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
5020 }
5021
5022 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
5023 that are deemed "identical" for practical purposes.
5024
5025 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
5026 types and that their number of enumerals is identical (in other
5027 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5028
5029 static int
5030 ada_identical_enum_types_p (struct type *type1, struct type *type2)
5031 {
5032 int i;
5033
5034 /* The heuristic we use here is fairly conservative. We consider
5035 that 2 enumerate types are identical if they have the same
5036 number of enumerals and that all enumerals have the same
5037 underlying value and name. */
5038
5039 /* All enums in the type should have an identical underlying value. */
5040 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5041 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5042 return 0;
5043
5044 /* All enumerals should also have the same name (modulo any numerical
5045 suffix). */
5046 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5047 {
5048 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5049 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5050 int len_1 = strlen (name_1);
5051 int len_2 = strlen (name_2);
5052
5053 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5054 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5055 if (len_1 != len_2
5056 || strncmp (TYPE_FIELD_NAME (type1, i),
5057 TYPE_FIELD_NAME (type2, i),
5058 len_1) != 0)
5059 return 0;
5060 }
5061
5062 return 1;
5063 }
5064
5065 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5066 that are deemed "identical" for practical purposes. Sometimes,
5067 enumerals are not strictly identical, but their types are so similar
5068 that they can be considered identical.
5069
5070 For instance, consider the following code:
5071
5072 type Color is (Black, Red, Green, Blue, White);
5073 type RGB_Color is new Color range Red .. Blue;
5074
5075 Type RGB_Color is a subrange of an implicit type which is a copy
5076 of type Color. If we call that implicit type RGB_ColorB ("B" is
5077 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5078 As a result, when an expression references any of the enumeral
5079 by name (Eg. "print green"), the expression is technically
5080 ambiguous and the user should be asked to disambiguate. But
5081 doing so would only hinder the user, since it wouldn't matter
5082 what choice he makes, the outcome would always be the same.
5083 So, for practical purposes, we consider them as the same. */
5084
5085 static int
5086 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5087 {
5088 int i;
5089
5090 /* Before performing a thorough comparison check of each type,
5091 we perform a series of inexpensive checks. We expect that these
5092 checks will quickly fail in the vast majority of cases, and thus
5093 help prevent the unnecessary use of a more expensive comparison.
5094 Said comparison also expects us to make some of these checks
5095 (see ada_identical_enum_types_p). */
5096
5097 /* Quick check: All symbols should have an enum type. */
5098 for (i = 0; i < syms.size (); i++)
5099 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5100 return 0;
5101
5102 /* Quick check: They should all have the same value. */
5103 for (i = 1; i < syms.size (); i++)
5104 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5105 return 0;
5106
5107 /* Quick check: They should all have the same number of enumerals. */
5108 for (i = 1; i < syms.size (); i++)
5109 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5110 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5111 return 0;
5112
5113 /* All the sanity checks passed, so we might have a set of
5114 identical enumeration types. Perform a more complete
5115 comparison of the type of each symbol. */
5116 for (i = 1; i < syms.size (); i++)
5117 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5118 SYMBOL_TYPE (syms[0].symbol)))
5119 return 0;
5120
5121 return 1;
5122 }
5123
5124 /* Remove any non-debugging symbols in SYMS that definitely
5125 duplicate other symbols in the list (The only case I know of where
5126 this happens is when object files containing stabs-in-ecoff are
5127 linked with files containing ordinary ecoff debugging symbols (or no
5128 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5129 Returns the number of items in the modified list. */
5130
5131 static int
5132 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5133 {
5134 int i, j;
5135
5136 /* We should never be called with less than 2 symbols, as there
5137 cannot be any extra symbol in that case. But it's easy to
5138 handle, since we have nothing to do in that case. */
5139 if (syms->size () < 2)
5140 return syms->size ();
5141
5142 i = 0;
5143 while (i < syms->size ())
5144 {
5145 int remove_p = 0;
5146
5147 /* If two symbols have the same name and one of them is a stub type,
5148 the get rid of the stub. */
5149
5150 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5151 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5152 {
5153 for (j = 0; j < syms->size (); j++)
5154 {
5155 if (j != i
5156 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5157 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5158 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5159 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5160 remove_p = 1;
5161 }
5162 }
5163
5164 /* Two symbols with the same name, same class and same address
5165 should be identical. */
5166
5167 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5168 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5169 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5170 {
5171 for (j = 0; j < syms->size (); j += 1)
5172 {
5173 if (i != j
5174 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5175 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5176 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5177 && SYMBOL_CLASS ((*syms)[i].symbol)
5178 == SYMBOL_CLASS ((*syms)[j].symbol)
5179 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5180 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5181 remove_p = 1;
5182 }
5183 }
5184
5185 if (remove_p)
5186 syms->erase (syms->begin () + i);
5187
5188 i += 1;
5189 }
5190
5191 /* If all the remaining symbols are identical enumerals, then
5192 just keep the first one and discard the rest.
5193
5194 Unlike what we did previously, we do not discard any entry
5195 unless they are ALL identical. This is because the symbol
5196 comparison is not a strict comparison, but rather a practical
5197 comparison. If all symbols are considered identical, then
5198 we can just go ahead and use the first one and discard the rest.
5199 But if we cannot reduce the list to a single element, we have
5200 to ask the user to disambiguate anyways. And if we have to
5201 present a multiple-choice menu, it's less confusing if the list
5202 isn't missing some choices that were identical and yet distinct. */
5203 if (symbols_are_identical_enums (*syms))
5204 syms->resize (1);
5205
5206 return syms->size ();
5207 }
5208
5209 /* Given a type that corresponds to a renaming entity, use the type name
5210 to extract the scope (package name or function name, fully qualified,
5211 and following the GNAT encoding convention) where this renaming has been
5212 defined. */
5213
5214 static std::string
5215 xget_renaming_scope (struct type *renaming_type)
5216 {
5217 /* The renaming types adhere to the following convention:
5218 <scope>__<rename>___<XR extension>.
5219 So, to extract the scope, we search for the "___XR" extension,
5220 and then backtrack until we find the first "__". */
5221
5222 const char *name = TYPE_NAME (renaming_type);
5223 const char *suffix = strstr (name, "___XR");
5224 const char *last;
5225
5226 /* Now, backtrack a bit until we find the first "__". Start looking
5227 at suffix - 3, as the <rename> part is at least one character long. */
5228
5229 for (last = suffix - 3; last > name; last--)
5230 if (last[0] == '_' && last[1] == '_')
5231 break;
5232
5233 /* Make a copy of scope and return it. */
5234 return std::string (name, last);
5235 }
5236
5237 /* Return nonzero if NAME corresponds to a package name. */
5238
5239 static int
5240 is_package_name (const char *name)
5241 {
5242 /* Here, We take advantage of the fact that no symbols are generated
5243 for packages, while symbols are generated for each function.
5244 So the condition for NAME represent a package becomes equivalent
5245 to NAME not existing in our list of symbols. There is only one
5246 small complication with library-level functions (see below). */
5247
5248 /* If it is a function that has not been defined at library level,
5249 then we should be able to look it up in the symbols. */
5250 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5251 return 0;
5252
5253 /* Library-level function names start with "_ada_". See if function
5254 "_ada_" followed by NAME can be found. */
5255
5256 /* Do a quick check that NAME does not contain "__", since library-level
5257 functions names cannot contain "__" in them. */
5258 if (strstr (name, "__") != NULL)
5259 return 0;
5260
5261 std::string fun_name = string_printf ("_ada_%s", name);
5262
5263 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5264 }
5265
5266 /* Return nonzero if SYM corresponds to a renaming entity that is
5267 not visible from FUNCTION_NAME. */
5268
5269 static int
5270 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5271 {
5272 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5273 return 0;
5274
5275 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5276
5277 /* If the rename has been defined in a package, then it is visible. */
5278 if (is_package_name (scope.c_str ()))
5279 return 0;
5280
5281 /* Check that the rename is in the current function scope by checking
5282 that its name starts with SCOPE. */
5283
5284 /* If the function name starts with "_ada_", it means that it is
5285 a library-level function. Strip this prefix before doing the
5286 comparison, as the encoding for the renaming does not contain
5287 this prefix. */
5288 if (startswith (function_name, "_ada_"))
5289 function_name += 5;
5290
5291 return !startswith (function_name, scope.c_str ());
5292 }
5293
5294 /* Remove entries from SYMS that corresponds to a renaming entity that
5295 is not visible from the function associated with CURRENT_BLOCK or
5296 that is superfluous due to the presence of more specific renaming
5297 information. Places surviving symbols in the initial entries of
5298 SYMS and returns the number of surviving symbols.
5299
5300 Rationale:
5301 First, in cases where an object renaming is implemented as a
5302 reference variable, GNAT may produce both the actual reference
5303 variable and the renaming encoding. In this case, we discard the
5304 latter.
5305
5306 Second, GNAT emits a type following a specified encoding for each renaming
5307 entity. Unfortunately, STABS currently does not support the definition
5308 of types that are local to a given lexical block, so all renamings types
5309 are emitted at library level. As a consequence, if an application
5310 contains two renaming entities using the same name, and a user tries to
5311 print the value of one of these entities, the result of the ada symbol
5312 lookup will also contain the wrong renaming type.
5313
5314 This function partially covers for this limitation by attempting to
5315 remove from the SYMS list renaming symbols that should be visible
5316 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5317 method with the current information available. The implementation
5318 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5319
5320 - When the user tries to print a rename in a function while there
5321 is another rename entity defined in a package: Normally, the
5322 rename in the function has precedence over the rename in the
5323 package, so the latter should be removed from the list. This is
5324 currently not the case.
5325
5326 - This function will incorrectly remove valid renames if
5327 the CURRENT_BLOCK corresponds to a function which symbol name
5328 has been changed by an "Export" pragma. As a consequence,
5329 the user will be unable to print such rename entities. */
5330
5331 static int
5332 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5333 const struct block *current_block)
5334 {
5335 struct symbol *current_function;
5336 const char *current_function_name;
5337 int i;
5338 int is_new_style_renaming;
5339
5340 /* If there is both a renaming foo___XR... encoded as a variable and
5341 a simple variable foo in the same block, discard the latter.
5342 First, zero out such symbols, then compress. */
5343 is_new_style_renaming = 0;
5344 for (i = 0; i < syms->size (); i += 1)
5345 {
5346 struct symbol *sym = (*syms)[i].symbol;
5347 const struct block *block = (*syms)[i].block;
5348 const char *name;
5349 const char *suffix;
5350
5351 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5352 continue;
5353 name = SYMBOL_LINKAGE_NAME (sym);
5354 suffix = strstr (name, "___XR");
5355
5356 if (suffix != NULL)
5357 {
5358 int name_len = suffix - name;
5359 int j;
5360
5361 is_new_style_renaming = 1;
5362 for (j = 0; j < syms->size (); j += 1)
5363 if (i != j && (*syms)[j].symbol != NULL
5364 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5365 name_len) == 0
5366 && block == (*syms)[j].block)
5367 (*syms)[j].symbol = NULL;
5368 }
5369 }
5370 if (is_new_style_renaming)
5371 {
5372 int j, k;
5373
5374 for (j = k = 0; j < syms->size (); j += 1)
5375 if ((*syms)[j].symbol != NULL)
5376 {
5377 (*syms)[k] = (*syms)[j];
5378 k += 1;
5379 }
5380 return k;
5381 }
5382
5383 /* Extract the function name associated to CURRENT_BLOCK.
5384 Abort if unable to do so. */
5385
5386 if (current_block == NULL)
5387 return syms->size ();
5388
5389 current_function = block_linkage_function (current_block);
5390 if (current_function == NULL)
5391 return syms->size ();
5392
5393 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5394 if (current_function_name == NULL)
5395 return syms->size ();
5396
5397 /* Check each of the symbols, and remove it from the list if it is
5398 a type corresponding to a renaming that is out of the scope of
5399 the current block. */
5400
5401 i = 0;
5402 while (i < syms->size ())
5403 {
5404 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5405 == ADA_OBJECT_RENAMING
5406 && old_renaming_is_invisible ((*syms)[i].symbol,
5407 current_function_name))
5408 syms->erase (syms->begin () + i);
5409 else
5410 i += 1;
5411 }
5412
5413 return syms->size ();
5414 }
5415
5416 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5417 whose name and domain match NAME and DOMAIN respectively.
5418 If no match was found, then extend the search to "enclosing"
5419 routines (in other words, if we're inside a nested function,
5420 search the symbols defined inside the enclosing functions).
5421 If WILD_MATCH_P is nonzero, perform the naming matching in
5422 "wild" mode (see function "wild_match" for more info).
5423
5424 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5425
5426 static void
5427 ada_add_local_symbols (struct obstack *obstackp,
5428 const lookup_name_info &lookup_name,
5429 const struct block *block, domain_enum domain)
5430 {
5431 int block_depth = 0;
5432
5433 while (block != NULL)
5434 {
5435 block_depth += 1;
5436 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5437
5438 /* If we found a non-function match, assume that's the one. */
5439 if (is_nonfunction (defns_collected (obstackp, 0),
5440 num_defns_collected (obstackp)))
5441 return;
5442
5443 block = BLOCK_SUPERBLOCK (block);
5444 }
5445
5446 /* If no luck so far, try to find NAME as a local symbol in some lexically
5447 enclosing subprogram. */
5448 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5449 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5450 }
5451
5452 /* An object of this type is used as the user_data argument when
5453 calling the map_matching_symbols method. */
5454
5455 struct match_data
5456 {
5457 struct objfile *objfile;
5458 struct obstack *obstackp;
5459 struct symbol *arg_sym;
5460 int found_sym;
5461 };
5462
5463 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5464 to a list of symbols. DATA0 is a pointer to a struct match_data *
5465 containing the obstack that collects the symbol list, the file that SYM
5466 must come from, a flag indicating whether a non-argument symbol has
5467 been found in the current block, and the last argument symbol
5468 passed in SYM within the current block (if any). When SYM is null,
5469 marking the end of a block, the argument symbol is added if no
5470 other has been found. */
5471
5472 static int
5473 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5474 {
5475 struct match_data *data = (struct match_data *) data0;
5476
5477 if (sym == NULL)
5478 {
5479 if (!data->found_sym && data->arg_sym != NULL)
5480 add_defn_to_vec (data->obstackp,
5481 fixup_symbol_section (data->arg_sym, data->objfile),
5482 block);
5483 data->found_sym = 0;
5484 data->arg_sym = NULL;
5485 }
5486 else
5487 {
5488 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5489 return 0;
5490 else if (SYMBOL_IS_ARGUMENT (sym))
5491 data->arg_sym = sym;
5492 else
5493 {
5494 data->found_sym = 1;
5495 add_defn_to_vec (data->obstackp,
5496 fixup_symbol_section (sym, data->objfile),
5497 block);
5498 }
5499 }
5500 return 0;
5501 }
5502
5503 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5504 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5505 symbols to OBSTACKP. Return whether we found such symbols. */
5506
5507 static int
5508 ada_add_block_renamings (struct obstack *obstackp,
5509 const struct block *block,
5510 const lookup_name_info &lookup_name,
5511 domain_enum domain)
5512 {
5513 struct using_direct *renaming;
5514 int defns_mark = num_defns_collected (obstackp);
5515
5516 symbol_name_matcher_ftype *name_match
5517 = ada_get_symbol_name_matcher (lookup_name);
5518
5519 for (renaming = block_using (block);
5520 renaming != NULL;
5521 renaming = renaming->next)
5522 {
5523 const char *r_name;
5524
5525 /* Avoid infinite recursions: skip this renaming if we are actually
5526 already traversing it.
5527
5528 Currently, symbol lookup in Ada don't use the namespace machinery from
5529 C++/Fortran support: skip namespace imports that use them. */
5530 if (renaming->searched
5531 || (renaming->import_src != NULL
5532 && renaming->import_src[0] != '\0')
5533 || (renaming->import_dest != NULL
5534 && renaming->import_dest[0] != '\0'))
5535 continue;
5536 renaming->searched = 1;
5537
5538 /* TODO: here, we perform another name-based symbol lookup, which can
5539 pull its own multiple overloads. In theory, we should be able to do
5540 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5541 not a simple name. But in order to do this, we would need to enhance
5542 the DWARF reader to associate a symbol to this renaming, instead of a
5543 name. So, for now, we do something simpler: re-use the C++/Fortran
5544 namespace machinery. */
5545 r_name = (renaming->alias != NULL
5546 ? renaming->alias
5547 : renaming->declaration);
5548 if (name_match (r_name, lookup_name, NULL))
5549 {
5550 lookup_name_info decl_lookup_name (renaming->declaration,
5551 lookup_name.match_type ());
5552 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5553 1, NULL);
5554 }
5555 renaming->searched = 0;
5556 }
5557 return num_defns_collected (obstackp) != defns_mark;
5558 }
5559
5560 /* Implements compare_names, but only applying the comparision using
5561 the given CASING. */
5562
5563 static int
5564 compare_names_with_case (const char *string1, const char *string2,
5565 enum case_sensitivity casing)
5566 {
5567 while (*string1 != '\0' && *string2 != '\0')
5568 {
5569 char c1, c2;
5570
5571 if (isspace (*string1) || isspace (*string2))
5572 return strcmp_iw_ordered (string1, string2);
5573
5574 if (casing == case_sensitive_off)
5575 {
5576 c1 = tolower (*string1);
5577 c2 = tolower (*string2);
5578 }
5579 else
5580 {
5581 c1 = *string1;
5582 c2 = *string2;
5583 }
5584 if (c1 != c2)
5585 break;
5586
5587 string1 += 1;
5588 string2 += 1;
5589 }
5590
5591 switch (*string1)
5592 {
5593 case '(':
5594 return strcmp_iw_ordered (string1, string2);
5595 case '_':
5596 if (*string2 == '\0')
5597 {
5598 if (is_name_suffix (string1))
5599 return 0;
5600 else
5601 return 1;
5602 }
5603 /* FALLTHROUGH */
5604 default:
5605 if (*string2 == '(')
5606 return strcmp_iw_ordered (string1, string2);
5607 else
5608 {
5609 if (casing == case_sensitive_off)
5610 return tolower (*string1) - tolower (*string2);
5611 else
5612 return *string1 - *string2;
5613 }
5614 }
5615 }
5616
5617 /* Compare STRING1 to STRING2, with results as for strcmp.
5618 Compatible with strcmp_iw_ordered in that...
5619
5620 strcmp_iw_ordered (STRING1, STRING2) <= 0
5621
5622 ... implies...
5623
5624 compare_names (STRING1, STRING2) <= 0
5625
5626 (they may differ as to what symbols compare equal). */
5627
5628 static int
5629 compare_names (const char *string1, const char *string2)
5630 {
5631 int result;
5632
5633 /* Similar to what strcmp_iw_ordered does, we need to perform
5634 a case-insensitive comparison first, and only resort to
5635 a second, case-sensitive, comparison if the first one was
5636 not sufficient to differentiate the two strings. */
5637
5638 result = compare_names_with_case (string1, string2, case_sensitive_off);
5639 if (result == 0)
5640 result = compare_names_with_case (string1, string2, case_sensitive_on);
5641
5642 return result;
5643 }
5644
5645 /* Convenience function to get at the Ada encoded lookup name for
5646 LOOKUP_NAME, as a C string. */
5647
5648 static const char *
5649 ada_lookup_name (const lookup_name_info &lookup_name)
5650 {
5651 return lookup_name.ada ().lookup_name ().c_str ();
5652 }
5653
5654 /* Add to OBSTACKP all non-local symbols whose name and domain match
5655 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5656 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5657 symbols otherwise. */
5658
5659 static void
5660 add_nonlocal_symbols (struct obstack *obstackp,
5661 const lookup_name_info &lookup_name,
5662 domain_enum domain, int global)
5663 {
5664 struct objfile *objfile;
5665 struct compunit_symtab *cu;
5666 struct match_data data;
5667
5668 memset (&data, 0, sizeof data);
5669 data.obstackp = obstackp;
5670
5671 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5672
5673 ALL_OBJFILES (objfile)
5674 {
5675 data.objfile = objfile;
5676
5677 if (is_wild_match)
5678 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5679 domain, global,
5680 aux_add_nonlocal_symbols, &data,
5681 symbol_name_match_type::WILD,
5682 NULL);
5683 else
5684 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5685 domain, global,
5686 aux_add_nonlocal_symbols, &data,
5687 symbol_name_match_type::FULL,
5688 compare_names);
5689
5690 ALL_OBJFILE_COMPUNITS (objfile, cu)
5691 {
5692 const struct block *global_block
5693 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5694
5695 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5696 domain))
5697 data.found_sym = 1;
5698 }
5699 }
5700
5701 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5702 {
5703 const char *name = ada_lookup_name (lookup_name);
5704 std::string name1 = std::string ("<_ada_") + name + '>';
5705
5706 ALL_OBJFILES (objfile)
5707 {
5708 data.objfile = objfile;
5709 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5710 domain, global,
5711 aux_add_nonlocal_symbols,
5712 &data,
5713 symbol_name_match_type::FULL,
5714 compare_names);
5715 }
5716 }
5717 }
5718
5719 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5720 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5721 returning the number of matches. Add these to OBSTACKP.
5722
5723 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5724 symbol match within the nest of blocks whose innermost member is BLOCK,
5725 is the one match returned (no other matches in that or
5726 enclosing blocks is returned). If there are any matches in or
5727 surrounding BLOCK, then these alone are returned.
5728
5729 Names prefixed with "standard__" are handled specially:
5730 "standard__" is first stripped off (by the lookup_name
5731 constructor), and only static and global symbols are searched.
5732
5733 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5734 to lookup global symbols. */
5735
5736 static void
5737 ada_add_all_symbols (struct obstack *obstackp,
5738 const struct block *block,
5739 const lookup_name_info &lookup_name,
5740 domain_enum domain,
5741 int full_search,
5742 int *made_global_lookup_p)
5743 {
5744 struct symbol *sym;
5745
5746 if (made_global_lookup_p)
5747 *made_global_lookup_p = 0;
5748
5749 /* Special case: If the user specifies a symbol name inside package
5750 Standard, do a non-wild matching of the symbol name without
5751 the "standard__" prefix. This was primarily introduced in order
5752 to allow the user to specifically access the standard exceptions
5753 using, for instance, Standard.Constraint_Error when Constraint_Error
5754 is ambiguous (due to the user defining its own Constraint_Error
5755 entity inside its program). */
5756 if (lookup_name.ada ().standard_p ())
5757 block = NULL;
5758
5759 /* Check the non-global symbols. If we have ANY match, then we're done. */
5760
5761 if (block != NULL)
5762 {
5763 if (full_search)
5764 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5765 else
5766 {
5767 /* In the !full_search case we're are being called by
5768 ada_iterate_over_symbols, and we don't want to search
5769 superblocks. */
5770 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5771 }
5772 if (num_defns_collected (obstackp) > 0 || !full_search)
5773 return;
5774 }
5775
5776 /* No non-global symbols found. Check our cache to see if we have
5777 already performed this search before. If we have, then return
5778 the same result. */
5779
5780 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5781 domain, &sym, &block))
5782 {
5783 if (sym != NULL)
5784 add_defn_to_vec (obstackp, sym, block);
5785 return;
5786 }
5787
5788 if (made_global_lookup_p)
5789 *made_global_lookup_p = 1;
5790
5791 /* Search symbols from all global blocks. */
5792
5793 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5794
5795 /* Now add symbols from all per-file blocks if we've gotten no hits
5796 (not strictly correct, but perhaps better than an error). */
5797
5798 if (num_defns_collected (obstackp) == 0)
5799 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5800 }
5801
5802 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5803 is non-zero, enclosing scope and in global scopes, returning the number of
5804 matches.
5805 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5806 found and the blocks and symbol tables (if any) in which they were
5807 found.
5808
5809 When full_search is non-zero, any non-function/non-enumeral
5810 symbol match within the nest of blocks whose innermost member is BLOCK,
5811 is the one match returned (no other matches in that or
5812 enclosing blocks is returned). If there are any matches in or
5813 surrounding BLOCK, then these alone are returned.
5814
5815 Names prefixed with "standard__" are handled specially: "standard__"
5816 is first stripped off, and only static and global symbols are searched. */
5817
5818 static int
5819 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5820 const struct block *block,
5821 domain_enum domain,
5822 std::vector<struct block_symbol> *results,
5823 int full_search)
5824 {
5825 int syms_from_global_search;
5826 int ndefns;
5827 auto_obstack obstack;
5828
5829 ada_add_all_symbols (&obstack, block, lookup_name,
5830 domain, full_search, &syms_from_global_search);
5831
5832 ndefns = num_defns_collected (&obstack);
5833
5834 struct block_symbol *base = defns_collected (&obstack, 1);
5835 for (int i = 0; i < ndefns; ++i)
5836 results->push_back (base[i]);
5837
5838 ndefns = remove_extra_symbols (results);
5839
5840 if (ndefns == 0 && full_search && syms_from_global_search)
5841 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5842
5843 if (ndefns == 1 && full_search && syms_from_global_search)
5844 cache_symbol (ada_lookup_name (lookup_name), domain,
5845 (*results)[0].symbol, (*results)[0].block);
5846
5847 ndefns = remove_irrelevant_renamings (results, block);
5848
5849 return ndefns;
5850 }
5851
5852 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5853 in global scopes, returning the number of matches, and filling *RESULTS
5854 with (SYM,BLOCK) tuples.
5855
5856 See ada_lookup_symbol_list_worker for further details. */
5857
5858 int
5859 ada_lookup_symbol_list (const char *name, const struct block *block,
5860 domain_enum domain,
5861 std::vector<struct block_symbol> *results)
5862 {
5863 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5864 lookup_name_info lookup_name (name, name_match_type);
5865
5866 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5867 }
5868
5869 /* Implementation of the la_iterate_over_symbols method. */
5870
5871 static void
5872 ada_iterate_over_symbols
5873 (const struct block *block, const lookup_name_info &name,
5874 domain_enum domain,
5875 gdb::function_view<symbol_found_callback_ftype> callback)
5876 {
5877 int ndefs, i;
5878 std::vector<struct block_symbol> results;
5879
5880 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5881
5882 for (i = 0; i < ndefs; ++i)
5883 {
5884 if (!callback (&results[i]))
5885 break;
5886 }
5887 }
5888
5889 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5890 to 1, but choosing the first symbol found if there are multiple
5891 choices.
5892
5893 The result is stored in *INFO, which must be non-NULL.
5894 If no match is found, INFO->SYM is set to NULL. */
5895
5896 void
5897 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5898 domain_enum domain,
5899 struct block_symbol *info)
5900 {
5901 /* Since we already have an encoded name, wrap it in '<>' to force a
5902 verbatim match. Otherwise, if the name happens to not look like
5903 an encoded name (because it doesn't include a "__"),
5904 ada_lookup_name_info would re-encode/fold it again, and that
5905 would e.g., incorrectly lowercase object renaming names like
5906 "R28b" -> "r28b". */
5907 std::string verbatim = std::string ("<") + name + '>';
5908
5909 gdb_assert (info != NULL);
5910 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5911 }
5912
5913 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5914 scope and in global scopes, or NULL if none. NAME is folded and
5915 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5916 choosing the first symbol if there are multiple choices.
5917 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5918
5919 struct block_symbol
5920 ada_lookup_symbol (const char *name, const struct block *block0,
5921 domain_enum domain, int *is_a_field_of_this)
5922 {
5923 if (is_a_field_of_this != NULL)
5924 *is_a_field_of_this = 0;
5925
5926 std::vector<struct block_symbol> candidates;
5927 int n_candidates;
5928
5929 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5930
5931 if (n_candidates == 0)
5932 return {};
5933
5934 block_symbol info = candidates[0];
5935 info.symbol = fixup_symbol_section (info.symbol, NULL);
5936 return info;
5937 }
5938
5939 static struct block_symbol
5940 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5941 const char *name,
5942 const struct block *block,
5943 const domain_enum domain)
5944 {
5945 struct block_symbol sym;
5946
5947 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5948 if (sym.symbol != NULL)
5949 return sym;
5950
5951 /* If we haven't found a match at this point, try the primitive
5952 types. In other languages, this search is performed before
5953 searching for global symbols in order to short-circuit that
5954 global-symbol search if it happens that the name corresponds
5955 to a primitive type. But we cannot do the same in Ada, because
5956 it is perfectly legitimate for a program to declare a type which
5957 has the same name as a standard type. If looking up a type in
5958 that situation, we have traditionally ignored the primitive type
5959 in favor of user-defined types. This is why, unlike most other
5960 languages, we search the primitive types this late and only after
5961 having searched the global symbols without success. */
5962
5963 if (domain == VAR_DOMAIN)
5964 {
5965 struct gdbarch *gdbarch;
5966
5967 if (block == NULL)
5968 gdbarch = target_gdbarch ();
5969 else
5970 gdbarch = block_gdbarch (block);
5971 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5972 if (sym.symbol != NULL)
5973 return sym;
5974 }
5975
5976 return (struct block_symbol) {NULL, NULL};
5977 }
5978
5979
5980 /* True iff STR is a possible encoded suffix of a normal Ada name
5981 that is to be ignored for matching purposes. Suffixes of parallel
5982 names (e.g., XVE) are not included here. Currently, the possible suffixes
5983 are given by any of the regular expressions:
5984
5985 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5986 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5987 TKB [subprogram suffix for task bodies]
5988 _E[0-9]+[bs]$ [protected object entry suffixes]
5989 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5990
5991 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5992 match is performed. This sequence is used to differentiate homonyms,
5993 is an optional part of a valid name suffix. */
5994
5995 static int
5996 is_name_suffix (const char *str)
5997 {
5998 int k;
5999 const char *matching;
6000 const int len = strlen (str);
6001
6002 /* Skip optional leading __[0-9]+. */
6003
6004 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6005 {
6006 str += 3;
6007 while (isdigit (str[0]))
6008 str += 1;
6009 }
6010
6011 /* [.$][0-9]+ */
6012
6013 if (str[0] == '.' || str[0] == '$')
6014 {
6015 matching = str + 1;
6016 while (isdigit (matching[0]))
6017 matching += 1;
6018 if (matching[0] == '\0')
6019 return 1;
6020 }
6021
6022 /* ___[0-9]+ */
6023
6024 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6025 {
6026 matching = str + 3;
6027 while (isdigit (matching[0]))
6028 matching += 1;
6029 if (matching[0] == '\0')
6030 return 1;
6031 }
6032
6033 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6034
6035 if (strcmp (str, "TKB") == 0)
6036 return 1;
6037
6038 #if 0
6039 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6040 with a N at the end. Unfortunately, the compiler uses the same
6041 convention for other internal types it creates. So treating
6042 all entity names that end with an "N" as a name suffix causes
6043 some regressions. For instance, consider the case of an enumerated
6044 type. To support the 'Image attribute, it creates an array whose
6045 name ends with N.
6046 Having a single character like this as a suffix carrying some
6047 information is a bit risky. Perhaps we should change the encoding
6048 to be something like "_N" instead. In the meantime, do not do
6049 the following check. */
6050 /* Protected Object Subprograms */
6051 if (len == 1 && str [0] == 'N')
6052 return 1;
6053 #endif
6054
6055 /* _E[0-9]+[bs]$ */
6056 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6057 {
6058 matching = str + 3;
6059 while (isdigit (matching[0]))
6060 matching += 1;
6061 if ((matching[0] == 'b' || matching[0] == 's')
6062 && matching [1] == '\0')
6063 return 1;
6064 }
6065
6066 /* ??? We should not modify STR directly, as we are doing below. This
6067 is fine in this case, but may become problematic later if we find
6068 that this alternative did not work, and want to try matching
6069 another one from the begining of STR. Since we modified it, we
6070 won't be able to find the begining of the string anymore! */
6071 if (str[0] == 'X')
6072 {
6073 str += 1;
6074 while (str[0] != '_' && str[0] != '\0')
6075 {
6076 if (str[0] != 'n' && str[0] != 'b')
6077 return 0;
6078 str += 1;
6079 }
6080 }
6081
6082 if (str[0] == '\000')
6083 return 1;
6084
6085 if (str[0] == '_')
6086 {
6087 if (str[1] != '_' || str[2] == '\000')
6088 return 0;
6089 if (str[2] == '_')
6090 {
6091 if (strcmp (str + 3, "JM") == 0)
6092 return 1;
6093 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6094 the LJM suffix in favor of the JM one. But we will
6095 still accept LJM as a valid suffix for a reasonable
6096 amount of time, just to allow ourselves to debug programs
6097 compiled using an older version of GNAT. */
6098 if (strcmp (str + 3, "LJM") == 0)
6099 return 1;
6100 if (str[3] != 'X')
6101 return 0;
6102 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6103 || str[4] == 'U' || str[4] == 'P')
6104 return 1;
6105 if (str[4] == 'R' && str[5] != 'T')
6106 return 1;
6107 return 0;
6108 }
6109 if (!isdigit (str[2]))
6110 return 0;
6111 for (k = 3; str[k] != '\0'; k += 1)
6112 if (!isdigit (str[k]) && str[k] != '_')
6113 return 0;
6114 return 1;
6115 }
6116 if (str[0] == '$' && isdigit (str[1]))
6117 {
6118 for (k = 2; str[k] != '\0'; k += 1)
6119 if (!isdigit (str[k]) && str[k] != '_')
6120 return 0;
6121 return 1;
6122 }
6123 return 0;
6124 }
6125
6126 /* Return non-zero if the string starting at NAME and ending before
6127 NAME_END contains no capital letters. */
6128
6129 static int
6130 is_valid_name_for_wild_match (const char *name0)
6131 {
6132 const char *decoded_name = ada_decode (name0);
6133 int i;
6134
6135 /* If the decoded name starts with an angle bracket, it means that
6136 NAME0 does not follow the GNAT encoding format. It should then
6137 not be allowed as a possible wild match. */
6138 if (decoded_name[0] == '<')
6139 return 0;
6140
6141 for (i=0; decoded_name[i] != '\0'; i++)
6142 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6143 return 0;
6144
6145 return 1;
6146 }
6147
6148 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6149 that could start a simple name. Assumes that *NAMEP points into
6150 the string beginning at NAME0. */
6151
6152 static int
6153 advance_wild_match (const char **namep, const char *name0, int target0)
6154 {
6155 const char *name = *namep;
6156
6157 while (1)
6158 {
6159 int t0, t1;
6160
6161 t0 = *name;
6162 if (t0 == '_')
6163 {
6164 t1 = name[1];
6165 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6166 {
6167 name += 1;
6168 if (name == name0 + 5 && startswith (name0, "_ada"))
6169 break;
6170 else
6171 name += 1;
6172 }
6173 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6174 || name[2] == target0))
6175 {
6176 name += 2;
6177 break;
6178 }
6179 else
6180 return 0;
6181 }
6182 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6183 name += 1;
6184 else
6185 return 0;
6186 }
6187
6188 *namep = name;
6189 return 1;
6190 }
6191
6192 /* Return true iff NAME encodes a name of the form prefix.PATN.
6193 Ignores any informational suffixes of NAME (i.e., for which
6194 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6195 simple name. */
6196
6197 static bool
6198 wild_match (const char *name, const char *patn)
6199 {
6200 const char *p;
6201 const char *name0 = name;
6202
6203 while (1)
6204 {
6205 const char *match = name;
6206
6207 if (*name == *patn)
6208 {
6209 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6210 if (*p != *name)
6211 break;
6212 if (*p == '\0' && is_name_suffix (name))
6213 return match == name0 || is_valid_name_for_wild_match (name0);
6214
6215 if (name[-1] == '_')
6216 name -= 1;
6217 }
6218 if (!advance_wild_match (&name, name0, *patn))
6219 return false;
6220 }
6221 }
6222
6223 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6224 any trailing suffixes that encode debugging information or leading
6225 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6226 information that is ignored). */
6227
6228 static bool
6229 full_match (const char *sym_name, const char *search_name)
6230 {
6231 size_t search_name_len = strlen (search_name);
6232
6233 if (strncmp (sym_name, search_name, search_name_len) == 0
6234 && is_name_suffix (sym_name + search_name_len))
6235 return true;
6236
6237 if (startswith (sym_name, "_ada_")
6238 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6239 && is_name_suffix (sym_name + search_name_len + 5))
6240 return true;
6241
6242 return false;
6243 }
6244
6245 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6246 *defn_symbols, updating the list of symbols in OBSTACKP (if
6247 necessary). OBJFILE is the section containing BLOCK. */
6248
6249 static void
6250 ada_add_block_symbols (struct obstack *obstackp,
6251 const struct block *block,
6252 const lookup_name_info &lookup_name,
6253 domain_enum domain, struct objfile *objfile)
6254 {
6255 struct block_iterator iter;
6256 /* A matching argument symbol, if any. */
6257 struct symbol *arg_sym;
6258 /* Set true when we find a matching non-argument symbol. */
6259 int found_sym;
6260 struct symbol *sym;
6261
6262 arg_sym = NULL;
6263 found_sym = 0;
6264 for (sym = block_iter_match_first (block, lookup_name, &iter);
6265 sym != NULL;
6266 sym = block_iter_match_next (lookup_name, &iter))
6267 {
6268 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6269 SYMBOL_DOMAIN (sym), domain))
6270 {
6271 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6272 {
6273 if (SYMBOL_IS_ARGUMENT (sym))
6274 arg_sym = sym;
6275 else
6276 {
6277 found_sym = 1;
6278 add_defn_to_vec (obstackp,
6279 fixup_symbol_section (sym, objfile),
6280 block);
6281 }
6282 }
6283 }
6284 }
6285
6286 /* Handle renamings. */
6287
6288 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6289 found_sym = 1;
6290
6291 if (!found_sym && arg_sym != NULL)
6292 {
6293 add_defn_to_vec (obstackp,
6294 fixup_symbol_section (arg_sym, objfile),
6295 block);
6296 }
6297
6298 if (!lookup_name.ada ().wild_match_p ())
6299 {
6300 arg_sym = NULL;
6301 found_sym = 0;
6302 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6303 const char *name = ada_lookup_name.c_str ();
6304 size_t name_len = ada_lookup_name.size ();
6305
6306 ALL_BLOCK_SYMBOLS (block, iter, sym)
6307 {
6308 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6309 SYMBOL_DOMAIN (sym), domain))
6310 {
6311 int cmp;
6312
6313 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6314 if (cmp == 0)
6315 {
6316 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6317 if (cmp == 0)
6318 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6319 name_len);
6320 }
6321
6322 if (cmp == 0
6323 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6324 {
6325 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6326 {
6327 if (SYMBOL_IS_ARGUMENT (sym))
6328 arg_sym = sym;
6329 else
6330 {
6331 found_sym = 1;
6332 add_defn_to_vec (obstackp,
6333 fixup_symbol_section (sym, objfile),
6334 block);
6335 }
6336 }
6337 }
6338 }
6339 }
6340
6341 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6342 They aren't parameters, right? */
6343 if (!found_sym && arg_sym != NULL)
6344 {
6345 add_defn_to_vec (obstackp,
6346 fixup_symbol_section (arg_sym, objfile),
6347 block);
6348 }
6349 }
6350 }
6351 \f
6352
6353 /* Symbol Completion */
6354
6355 /* See symtab.h. */
6356
6357 bool
6358 ada_lookup_name_info::matches
6359 (const char *sym_name,
6360 symbol_name_match_type match_type,
6361 completion_match_result *comp_match_res) const
6362 {
6363 bool match = false;
6364 const char *text = m_encoded_name.c_str ();
6365 size_t text_len = m_encoded_name.size ();
6366
6367 /* First, test against the fully qualified name of the symbol. */
6368
6369 if (strncmp (sym_name, text, text_len) == 0)
6370 match = true;
6371
6372 if (match && !m_encoded_p)
6373 {
6374 /* One needed check before declaring a positive match is to verify
6375 that iff we are doing a verbatim match, the decoded version
6376 of the symbol name starts with '<'. Otherwise, this symbol name
6377 is not a suitable completion. */
6378 const char *sym_name_copy = sym_name;
6379 bool has_angle_bracket;
6380
6381 sym_name = ada_decode (sym_name);
6382 has_angle_bracket = (sym_name[0] == '<');
6383 match = (has_angle_bracket == m_verbatim_p);
6384 sym_name = sym_name_copy;
6385 }
6386
6387 if (match && !m_verbatim_p)
6388 {
6389 /* When doing non-verbatim match, another check that needs to
6390 be done is to verify that the potentially matching symbol name
6391 does not include capital letters, because the ada-mode would
6392 not be able to understand these symbol names without the
6393 angle bracket notation. */
6394 const char *tmp;
6395
6396 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6397 if (*tmp != '\0')
6398 match = false;
6399 }
6400
6401 /* Second: Try wild matching... */
6402
6403 if (!match && m_wild_match_p)
6404 {
6405 /* Since we are doing wild matching, this means that TEXT
6406 may represent an unqualified symbol name. We therefore must
6407 also compare TEXT against the unqualified name of the symbol. */
6408 sym_name = ada_unqualified_name (ada_decode (sym_name));
6409
6410 if (strncmp (sym_name, text, text_len) == 0)
6411 match = true;
6412 }
6413
6414 /* Finally: If we found a match, prepare the result to return. */
6415
6416 if (!match)
6417 return false;
6418
6419 if (comp_match_res != NULL)
6420 {
6421 std::string &match_str = comp_match_res->match.storage ();
6422
6423 if (!m_encoded_p)
6424 match_str = ada_decode (sym_name);
6425 else
6426 {
6427 if (m_verbatim_p)
6428 match_str = add_angle_brackets (sym_name);
6429 else
6430 match_str = sym_name;
6431
6432 }
6433
6434 comp_match_res->set_match (match_str.c_str ());
6435 }
6436
6437 return true;
6438 }
6439
6440 /* Add the list of possible symbol names completing TEXT to TRACKER.
6441 WORD is the entire command on which completion is made. */
6442
6443 static void
6444 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6445 complete_symbol_mode mode,
6446 symbol_name_match_type name_match_type,
6447 const char *text, const char *word,
6448 enum type_code code)
6449 {
6450 struct symbol *sym;
6451 struct compunit_symtab *s;
6452 struct minimal_symbol *msymbol;
6453 struct objfile *objfile;
6454 const struct block *b, *surrounding_static_block = 0;
6455 struct block_iterator iter;
6456
6457 gdb_assert (code == TYPE_CODE_UNDEF);
6458
6459 lookup_name_info lookup_name (text, name_match_type, true);
6460
6461 /* First, look at the partial symtab symbols. */
6462 expand_symtabs_matching (NULL,
6463 lookup_name,
6464 NULL,
6465 NULL,
6466 ALL_DOMAIN);
6467
6468 /* At this point scan through the misc symbol vectors and add each
6469 symbol you find to the list. Eventually we want to ignore
6470 anything that isn't a text symbol (everything else will be
6471 handled by the psymtab code above). */
6472
6473 ALL_MSYMBOLS (objfile, msymbol)
6474 {
6475 QUIT;
6476
6477 if (completion_skip_symbol (mode, msymbol))
6478 continue;
6479
6480 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6481
6482 /* Ada minimal symbols won't have their language set to Ada. If
6483 we let completion_list_add_name compare using the
6484 default/C-like matcher, then when completing e.g., symbols in a
6485 package named "pck", we'd match internal Ada symbols like
6486 "pckS", which are invalid in an Ada expression, unless you wrap
6487 them in '<' '>' to request a verbatim match.
6488
6489 Unfortunately, some Ada encoded names successfully demangle as
6490 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6491 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6492 with the wrong language set. Paper over that issue here. */
6493 if (symbol_language == language_auto
6494 || symbol_language == language_cplus)
6495 symbol_language = language_ada;
6496
6497 completion_list_add_name (tracker,
6498 symbol_language,
6499 MSYMBOL_LINKAGE_NAME (msymbol),
6500 lookup_name, text, word);
6501 }
6502
6503 /* Search upwards from currently selected frame (so that we can
6504 complete on local vars. */
6505
6506 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6507 {
6508 if (!BLOCK_SUPERBLOCK (b))
6509 surrounding_static_block = b; /* For elmin of dups */
6510
6511 ALL_BLOCK_SYMBOLS (b, iter, sym)
6512 {
6513 if (completion_skip_symbol (mode, sym))
6514 continue;
6515
6516 completion_list_add_name (tracker,
6517 SYMBOL_LANGUAGE (sym),
6518 SYMBOL_LINKAGE_NAME (sym),
6519 lookup_name, text, word);
6520 }
6521 }
6522
6523 /* Go through the symtabs and check the externs and statics for
6524 symbols which match. */
6525
6526 ALL_COMPUNITS (objfile, s)
6527 {
6528 QUIT;
6529 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6530 ALL_BLOCK_SYMBOLS (b, iter, sym)
6531 {
6532 if (completion_skip_symbol (mode, sym))
6533 continue;
6534
6535 completion_list_add_name (tracker,
6536 SYMBOL_LANGUAGE (sym),
6537 SYMBOL_LINKAGE_NAME (sym),
6538 lookup_name, text, word);
6539 }
6540 }
6541
6542 ALL_COMPUNITS (objfile, s)
6543 {
6544 QUIT;
6545 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6546 /* Don't do this block twice. */
6547 if (b == surrounding_static_block)
6548 continue;
6549 ALL_BLOCK_SYMBOLS (b, iter, sym)
6550 {
6551 if (completion_skip_symbol (mode, sym))
6552 continue;
6553
6554 completion_list_add_name (tracker,
6555 SYMBOL_LANGUAGE (sym),
6556 SYMBOL_LINKAGE_NAME (sym),
6557 lookup_name, text, word);
6558 }
6559 }
6560 }
6561
6562 /* Field Access */
6563
6564 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6565 for tagged types. */
6566
6567 static int
6568 ada_is_dispatch_table_ptr_type (struct type *type)
6569 {
6570 const char *name;
6571
6572 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6573 return 0;
6574
6575 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6576 if (name == NULL)
6577 return 0;
6578
6579 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6580 }
6581
6582 /* Return non-zero if TYPE is an interface tag. */
6583
6584 static int
6585 ada_is_interface_tag (struct type *type)
6586 {
6587 const char *name = TYPE_NAME (type);
6588
6589 if (name == NULL)
6590 return 0;
6591
6592 return (strcmp (name, "ada__tags__interface_tag") == 0);
6593 }
6594
6595 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6596 to be invisible to users. */
6597
6598 int
6599 ada_is_ignored_field (struct type *type, int field_num)
6600 {
6601 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6602 return 1;
6603
6604 /* Check the name of that field. */
6605 {
6606 const char *name = TYPE_FIELD_NAME (type, field_num);
6607
6608 /* Anonymous field names should not be printed.
6609 brobecker/2007-02-20: I don't think this can actually happen
6610 but we don't want to print the value of annonymous fields anyway. */
6611 if (name == NULL)
6612 return 1;
6613
6614 /* Normally, fields whose name start with an underscore ("_")
6615 are fields that have been internally generated by the compiler,
6616 and thus should not be printed. The "_parent" field is special,
6617 however: This is a field internally generated by the compiler
6618 for tagged types, and it contains the components inherited from
6619 the parent type. This field should not be printed as is, but
6620 should not be ignored either. */
6621 if (name[0] == '_' && !startswith (name, "_parent"))
6622 return 1;
6623 }
6624
6625 /* If this is the dispatch table of a tagged type or an interface tag,
6626 then ignore. */
6627 if (ada_is_tagged_type (type, 1)
6628 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6629 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6630 return 1;
6631
6632 /* Not a special field, so it should not be ignored. */
6633 return 0;
6634 }
6635
6636 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6637 pointer or reference type whose ultimate target has a tag field. */
6638
6639 int
6640 ada_is_tagged_type (struct type *type, int refok)
6641 {
6642 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6643 }
6644
6645 /* True iff TYPE represents the type of X'Tag */
6646
6647 int
6648 ada_is_tag_type (struct type *type)
6649 {
6650 type = ada_check_typedef (type);
6651
6652 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6653 return 0;
6654 else
6655 {
6656 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6657
6658 return (name != NULL
6659 && strcmp (name, "ada__tags__dispatch_table") == 0);
6660 }
6661 }
6662
6663 /* The type of the tag on VAL. */
6664
6665 struct type *
6666 ada_tag_type (struct value *val)
6667 {
6668 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6669 }
6670
6671 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6672 retired at Ada 05). */
6673
6674 static int
6675 is_ada95_tag (struct value *tag)
6676 {
6677 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6678 }
6679
6680 /* The value of the tag on VAL. */
6681
6682 struct value *
6683 ada_value_tag (struct value *val)
6684 {
6685 return ada_value_struct_elt (val, "_tag", 0);
6686 }
6687
6688 /* The value of the tag on the object of type TYPE whose contents are
6689 saved at VALADDR, if it is non-null, or is at memory address
6690 ADDRESS. */
6691
6692 static struct value *
6693 value_tag_from_contents_and_address (struct type *type,
6694 const gdb_byte *valaddr,
6695 CORE_ADDR address)
6696 {
6697 int tag_byte_offset;
6698 struct type *tag_type;
6699
6700 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6701 NULL, NULL, NULL))
6702 {
6703 const gdb_byte *valaddr1 = ((valaddr == NULL)
6704 ? NULL
6705 : valaddr + tag_byte_offset);
6706 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6707
6708 return value_from_contents_and_address (tag_type, valaddr1, address1);
6709 }
6710 return NULL;
6711 }
6712
6713 static struct type *
6714 type_from_tag (struct value *tag)
6715 {
6716 const char *type_name = ada_tag_name (tag);
6717
6718 if (type_name != NULL)
6719 return ada_find_any_type (ada_encode (type_name));
6720 return NULL;
6721 }
6722
6723 /* Given a value OBJ of a tagged type, return a value of this
6724 type at the base address of the object. The base address, as
6725 defined in Ada.Tags, it is the address of the primary tag of
6726 the object, and therefore where the field values of its full
6727 view can be fetched. */
6728
6729 struct value *
6730 ada_tag_value_at_base_address (struct value *obj)
6731 {
6732 struct value *val;
6733 LONGEST offset_to_top = 0;
6734 struct type *ptr_type, *obj_type;
6735 struct value *tag;
6736 CORE_ADDR base_address;
6737
6738 obj_type = value_type (obj);
6739
6740 /* It is the responsability of the caller to deref pointers. */
6741
6742 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6743 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6744 return obj;
6745
6746 tag = ada_value_tag (obj);
6747 if (!tag)
6748 return obj;
6749
6750 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6751
6752 if (is_ada95_tag (tag))
6753 return obj;
6754
6755 ptr_type = language_lookup_primitive_type
6756 (language_def (language_ada), target_gdbarch(), "storage_offset");
6757 ptr_type = lookup_pointer_type (ptr_type);
6758 val = value_cast (ptr_type, tag);
6759 if (!val)
6760 return obj;
6761
6762 /* It is perfectly possible that an exception be raised while
6763 trying to determine the base address, just like for the tag;
6764 see ada_tag_name for more details. We do not print the error
6765 message for the same reason. */
6766
6767 TRY
6768 {
6769 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6770 }
6771
6772 CATCH (e, RETURN_MASK_ERROR)
6773 {
6774 return obj;
6775 }
6776 END_CATCH
6777
6778 /* If offset is null, nothing to do. */
6779
6780 if (offset_to_top == 0)
6781 return obj;
6782
6783 /* -1 is a special case in Ada.Tags; however, what should be done
6784 is not quite clear from the documentation. So do nothing for
6785 now. */
6786
6787 if (offset_to_top == -1)
6788 return obj;
6789
6790 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6791 from the base address. This was however incompatible with
6792 C++ dispatch table: C++ uses a *negative* value to *add*
6793 to the base address. Ada's convention has therefore been
6794 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6795 use the same convention. Here, we support both cases by
6796 checking the sign of OFFSET_TO_TOP. */
6797
6798 if (offset_to_top > 0)
6799 offset_to_top = -offset_to_top;
6800
6801 base_address = value_address (obj) + offset_to_top;
6802 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6803
6804 /* Make sure that we have a proper tag at the new address.
6805 Otherwise, offset_to_top is bogus (which can happen when
6806 the object is not initialized yet). */
6807
6808 if (!tag)
6809 return obj;
6810
6811 obj_type = type_from_tag (tag);
6812
6813 if (!obj_type)
6814 return obj;
6815
6816 return value_from_contents_and_address (obj_type, NULL, base_address);
6817 }
6818
6819 /* Return the "ada__tags__type_specific_data" type. */
6820
6821 static struct type *
6822 ada_get_tsd_type (struct inferior *inf)
6823 {
6824 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6825
6826 if (data->tsd_type == 0)
6827 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6828 return data->tsd_type;
6829 }
6830
6831 /* Return the TSD (type-specific data) associated to the given TAG.
6832 TAG is assumed to be the tag of a tagged-type entity.
6833
6834 May return NULL if we are unable to get the TSD. */
6835
6836 static struct value *
6837 ada_get_tsd_from_tag (struct value *tag)
6838 {
6839 struct value *val;
6840 struct type *type;
6841
6842 /* First option: The TSD is simply stored as a field of our TAG.
6843 Only older versions of GNAT would use this format, but we have
6844 to test it first, because there are no visible markers for
6845 the current approach except the absence of that field. */
6846
6847 val = ada_value_struct_elt (tag, "tsd", 1);
6848 if (val)
6849 return val;
6850
6851 /* Try the second representation for the dispatch table (in which
6852 there is no explicit 'tsd' field in the referent of the tag pointer,
6853 and instead the tsd pointer is stored just before the dispatch
6854 table. */
6855
6856 type = ada_get_tsd_type (current_inferior());
6857 if (type == NULL)
6858 return NULL;
6859 type = lookup_pointer_type (lookup_pointer_type (type));
6860 val = value_cast (type, tag);
6861 if (val == NULL)
6862 return NULL;
6863 return value_ind (value_ptradd (val, -1));
6864 }
6865
6866 /* Given the TSD of a tag (type-specific data), return a string
6867 containing the name of the associated type.
6868
6869 The returned value is good until the next call. May return NULL
6870 if we are unable to determine the tag name. */
6871
6872 static char *
6873 ada_tag_name_from_tsd (struct value *tsd)
6874 {
6875 static char name[1024];
6876 char *p;
6877 struct value *val;
6878
6879 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6880 if (val == NULL)
6881 return NULL;
6882 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6883 for (p = name; *p != '\0'; p += 1)
6884 if (isalpha (*p))
6885 *p = tolower (*p);
6886 return name;
6887 }
6888
6889 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6890 a C string.
6891
6892 Return NULL if the TAG is not an Ada tag, or if we were unable to
6893 determine the name of that tag. The result is good until the next
6894 call. */
6895
6896 const char *
6897 ada_tag_name (struct value *tag)
6898 {
6899 char *name = NULL;
6900
6901 if (!ada_is_tag_type (value_type (tag)))
6902 return NULL;
6903
6904 /* It is perfectly possible that an exception be raised while trying
6905 to determine the TAG's name, even under normal circumstances:
6906 The associated variable may be uninitialized or corrupted, for
6907 instance. We do not let any exception propagate past this point.
6908 instead we return NULL.
6909
6910 We also do not print the error message either (which often is very
6911 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6912 the caller print a more meaningful message if necessary. */
6913 TRY
6914 {
6915 struct value *tsd = ada_get_tsd_from_tag (tag);
6916
6917 if (tsd != NULL)
6918 name = ada_tag_name_from_tsd (tsd);
6919 }
6920 CATCH (e, RETURN_MASK_ERROR)
6921 {
6922 }
6923 END_CATCH
6924
6925 return name;
6926 }
6927
6928 /* The parent type of TYPE, or NULL if none. */
6929
6930 struct type *
6931 ada_parent_type (struct type *type)
6932 {
6933 int i;
6934
6935 type = ada_check_typedef (type);
6936
6937 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6938 return NULL;
6939
6940 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6941 if (ada_is_parent_field (type, i))
6942 {
6943 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6944
6945 /* If the _parent field is a pointer, then dereference it. */
6946 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6947 parent_type = TYPE_TARGET_TYPE (parent_type);
6948 /* If there is a parallel XVS type, get the actual base type. */
6949 parent_type = ada_get_base_type (parent_type);
6950
6951 return ada_check_typedef (parent_type);
6952 }
6953
6954 return NULL;
6955 }
6956
6957 /* True iff field number FIELD_NUM of structure type TYPE contains the
6958 parent-type (inherited) fields of a derived type. Assumes TYPE is
6959 a structure type with at least FIELD_NUM+1 fields. */
6960
6961 int
6962 ada_is_parent_field (struct type *type, int field_num)
6963 {
6964 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6965
6966 return (name != NULL
6967 && (startswith (name, "PARENT")
6968 || startswith (name, "_parent")));
6969 }
6970
6971 /* True iff field number FIELD_NUM of structure type TYPE is a
6972 transparent wrapper field (which should be silently traversed when doing
6973 field selection and flattened when printing). Assumes TYPE is a
6974 structure type with at least FIELD_NUM+1 fields. Such fields are always
6975 structures. */
6976
6977 int
6978 ada_is_wrapper_field (struct type *type, int field_num)
6979 {
6980 const char *name = TYPE_FIELD_NAME (type, field_num);
6981
6982 if (name != NULL && strcmp (name, "RETVAL") == 0)
6983 {
6984 /* This happens in functions with "out" or "in out" parameters
6985 which are passed by copy. For such functions, GNAT describes
6986 the function's return type as being a struct where the return
6987 value is in a field called RETVAL, and where the other "out"
6988 or "in out" parameters are fields of that struct. This is not
6989 a wrapper. */
6990 return 0;
6991 }
6992
6993 return (name != NULL
6994 && (startswith (name, "PARENT")
6995 || strcmp (name, "REP") == 0
6996 || startswith (name, "_parent")
6997 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6998 }
6999
7000 /* True iff field number FIELD_NUM of structure or union type TYPE
7001 is a variant wrapper. Assumes TYPE is a structure type with at least
7002 FIELD_NUM+1 fields. */
7003
7004 int
7005 ada_is_variant_part (struct type *type, int field_num)
7006 {
7007 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7008
7009 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7010 || (is_dynamic_field (type, field_num)
7011 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7012 == TYPE_CODE_UNION)));
7013 }
7014
7015 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7016 whose discriminants are contained in the record type OUTER_TYPE,
7017 returns the type of the controlling discriminant for the variant.
7018 May return NULL if the type could not be found. */
7019
7020 struct type *
7021 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7022 {
7023 const char *name = ada_variant_discrim_name (var_type);
7024
7025 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
7026 }
7027
7028 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7029 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7030 represents a 'when others' clause; otherwise 0. */
7031
7032 int
7033 ada_is_others_clause (struct type *type, int field_num)
7034 {
7035 const char *name = TYPE_FIELD_NAME (type, field_num);
7036
7037 return (name != NULL && name[0] == 'O');
7038 }
7039
7040 /* Assuming that TYPE0 is the type of the variant part of a record,
7041 returns the name of the discriminant controlling the variant.
7042 The value is valid until the next call to ada_variant_discrim_name. */
7043
7044 const char *
7045 ada_variant_discrim_name (struct type *type0)
7046 {
7047 static char *result = NULL;
7048 static size_t result_len = 0;
7049 struct type *type;
7050 const char *name;
7051 const char *discrim_end;
7052 const char *discrim_start;
7053
7054 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7055 type = TYPE_TARGET_TYPE (type0);
7056 else
7057 type = type0;
7058
7059 name = ada_type_name (type);
7060
7061 if (name == NULL || name[0] == '\000')
7062 return "";
7063
7064 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7065 discrim_end -= 1)
7066 {
7067 if (startswith (discrim_end, "___XVN"))
7068 break;
7069 }
7070 if (discrim_end == name)
7071 return "";
7072
7073 for (discrim_start = discrim_end; discrim_start != name + 3;
7074 discrim_start -= 1)
7075 {
7076 if (discrim_start == name + 1)
7077 return "";
7078 if ((discrim_start > name + 3
7079 && startswith (discrim_start - 3, "___"))
7080 || discrim_start[-1] == '.')
7081 break;
7082 }
7083
7084 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7085 strncpy (result, discrim_start, discrim_end - discrim_start);
7086 result[discrim_end - discrim_start] = '\0';
7087 return result;
7088 }
7089
7090 /* Scan STR for a subtype-encoded number, beginning at position K.
7091 Put the position of the character just past the number scanned in
7092 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7093 Return 1 if there was a valid number at the given position, and 0
7094 otherwise. A "subtype-encoded" number consists of the absolute value
7095 in decimal, followed by the letter 'm' to indicate a negative number.
7096 Assumes 0m does not occur. */
7097
7098 int
7099 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7100 {
7101 ULONGEST RU;
7102
7103 if (!isdigit (str[k]))
7104 return 0;
7105
7106 /* Do it the hard way so as not to make any assumption about
7107 the relationship of unsigned long (%lu scan format code) and
7108 LONGEST. */
7109 RU = 0;
7110 while (isdigit (str[k]))
7111 {
7112 RU = RU * 10 + (str[k] - '0');
7113 k += 1;
7114 }
7115
7116 if (str[k] == 'm')
7117 {
7118 if (R != NULL)
7119 *R = (-(LONGEST) (RU - 1)) - 1;
7120 k += 1;
7121 }
7122 else if (R != NULL)
7123 *R = (LONGEST) RU;
7124
7125 /* NOTE on the above: Technically, C does not say what the results of
7126 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7127 number representable as a LONGEST (although either would probably work
7128 in most implementations). When RU>0, the locution in the then branch
7129 above is always equivalent to the negative of RU. */
7130
7131 if (new_k != NULL)
7132 *new_k = k;
7133 return 1;
7134 }
7135
7136 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7137 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7138 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7139
7140 int
7141 ada_in_variant (LONGEST val, struct type *type, int field_num)
7142 {
7143 const char *name = TYPE_FIELD_NAME (type, field_num);
7144 int p;
7145
7146 p = 0;
7147 while (1)
7148 {
7149 switch (name[p])
7150 {
7151 case '\0':
7152 return 0;
7153 case 'S':
7154 {
7155 LONGEST W;
7156
7157 if (!ada_scan_number (name, p + 1, &W, &p))
7158 return 0;
7159 if (val == W)
7160 return 1;
7161 break;
7162 }
7163 case 'R':
7164 {
7165 LONGEST L, U;
7166
7167 if (!ada_scan_number (name, p + 1, &L, &p)
7168 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7169 return 0;
7170 if (val >= L && val <= U)
7171 return 1;
7172 break;
7173 }
7174 case 'O':
7175 return 1;
7176 default:
7177 return 0;
7178 }
7179 }
7180 }
7181
7182 /* FIXME: Lots of redundancy below. Try to consolidate. */
7183
7184 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7185 ARG_TYPE, extract and return the value of one of its (non-static)
7186 fields. FIELDNO says which field. Differs from value_primitive_field
7187 only in that it can handle packed values of arbitrary type. */
7188
7189 static struct value *
7190 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7191 struct type *arg_type)
7192 {
7193 struct type *type;
7194
7195 arg_type = ada_check_typedef (arg_type);
7196 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7197
7198 /* Handle packed fields. */
7199
7200 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7201 {
7202 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7203 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7204
7205 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7206 offset + bit_pos / 8,
7207 bit_pos % 8, bit_size, type);
7208 }
7209 else
7210 return value_primitive_field (arg1, offset, fieldno, arg_type);
7211 }
7212
7213 /* Find field with name NAME in object of type TYPE. If found,
7214 set the following for each argument that is non-null:
7215 - *FIELD_TYPE_P to the field's type;
7216 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7217 an object of that type;
7218 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7219 - *BIT_SIZE_P to its size in bits if the field is packed, and
7220 0 otherwise;
7221 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7222 fields up to but not including the desired field, or by the total
7223 number of fields if not found. A NULL value of NAME never
7224 matches; the function just counts visible fields in this case.
7225
7226 Notice that we need to handle when a tagged record hierarchy
7227 has some components with the same name, like in this scenario:
7228
7229 type Top_T is tagged record
7230 N : Integer := 1;
7231 U : Integer := 974;
7232 A : Integer := 48;
7233 end record;
7234
7235 type Middle_T is new Top.Top_T with record
7236 N : Character := 'a';
7237 C : Integer := 3;
7238 end record;
7239
7240 type Bottom_T is new Middle.Middle_T with record
7241 N : Float := 4.0;
7242 C : Character := '5';
7243 X : Integer := 6;
7244 A : Character := 'J';
7245 end record;
7246
7247 Let's say we now have a variable declared and initialized as follow:
7248
7249 TC : Top_A := new Bottom_T;
7250
7251 And then we use this variable to call this function
7252
7253 procedure Assign (Obj: in out Top_T; TV : Integer);
7254
7255 as follow:
7256
7257 Assign (Top_T (B), 12);
7258
7259 Now, we're in the debugger, and we're inside that procedure
7260 then and we want to print the value of obj.c:
7261
7262 Usually, the tagged record or one of the parent type owns the
7263 component to print and there's no issue but in this particular
7264 case, what does it mean to ask for Obj.C? Since the actual
7265 type for object is type Bottom_T, it could mean two things: type
7266 component C from the Middle_T view, but also component C from
7267 Bottom_T. So in that "undefined" case, when the component is
7268 not found in the non-resolved type (which includes all the
7269 components of the parent type), then resolve it and see if we
7270 get better luck once expanded.
7271
7272 In the case of homonyms in the derived tagged type, we don't
7273 guaranty anything, and pick the one that's easiest for us
7274 to program.
7275
7276 Returns 1 if found, 0 otherwise. */
7277
7278 static int
7279 find_struct_field (const char *name, struct type *type, int offset,
7280 struct type **field_type_p,
7281 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7282 int *index_p)
7283 {
7284 int i;
7285 int parent_offset = -1;
7286
7287 type = ada_check_typedef (type);
7288
7289 if (field_type_p != NULL)
7290 *field_type_p = NULL;
7291 if (byte_offset_p != NULL)
7292 *byte_offset_p = 0;
7293 if (bit_offset_p != NULL)
7294 *bit_offset_p = 0;
7295 if (bit_size_p != NULL)
7296 *bit_size_p = 0;
7297
7298 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7299 {
7300 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7301 int fld_offset = offset + bit_pos / 8;
7302 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7303
7304 if (t_field_name == NULL)
7305 continue;
7306
7307 else if (ada_is_parent_field (type, i))
7308 {
7309 /* This is a field pointing us to the parent type of a tagged
7310 type. As hinted in this function's documentation, we give
7311 preference to fields in the current record first, so what
7312 we do here is just record the index of this field before
7313 we skip it. If it turns out we couldn't find our field
7314 in the current record, then we'll get back to it and search
7315 inside it whether the field might exist in the parent. */
7316
7317 parent_offset = i;
7318 continue;
7319 }
7320
7321 else if (name != NULL && field_name_match (t_field_name, name))
7322 {
7323 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7324
7325 if (field_type_p != NULL)
7326 *field_type_p = TYPE_FIELD_TYPE (type, i);
7327 if (byte_offset_p != NULL)
7328 *byte_offset_p = fld_offset;
7329 if (bit_offset_p != NULL)
7330 *bit_offset_p = bit_pos % 8;
7331 if (bit_size_p != NULL)
7332 *bit_size_p = bit_size;
7333 return 1;
7334 }
7335 else if (ada_is_wrapper_field (type, i))
7336 {
7337 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7338 field_type_p, byte_offset_p, bit_offset_p,
7339 bit_size_p, index_p))
7340 return 1;
7341 }
7342 else if (ada_is_variant_part (type, i))
7343 {
7344 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7345 fixed type?? */
7346 int j;
7347 struct type *field_type
7348 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7349
7350 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7351 {
7352 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7353 fld_offset
7354 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7355 field_type_p, byte_offset_p,
7356 bit_offset_p, bit_size_p, index_p))
7357 return 1;
7358 }
7359 }
7360 else if (index_p != NULL)
7361 *index_p += 1;
7362 }
7363
7364 /* Field not found so far. If this is a tagged type which
7365 has a parent, try finding that field in the parent now. */
7366
7367 if (parent_offset != -1)
7368 {
7369 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7370 int fld_offset = offset + bit_pos / 8;
7371
7372 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7373 fld_offset, field_type_p, byte_offset_p,
7374 bit_offset_p, bit_size_p, index_p))
7375 return 1;
7376 }
7377
7378 return 0;
7379 }
7380
7381 /* Number of user-visible fields in record type TYPE. */
7382
7383 static int
7384 num_visible_fields (struct type *type)
7385 {
7386 int n;
7387
7388 n = 0;
7389 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7390 return n;
7391 }
7392
7393 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7394 and search in it assuming it has (class) type TYPE.
7395 If found, return value, else return NULL.
7396
7397 Searches recursively through wrapper fields (e.g., '_parent').
7398
7399 In the case of homonyms in the tagged types, please refer to the
7400 long explanation in find_struct_field's function documentation. */
7401
7402 static struct value *
7403 ada_search_struct_field (const char *name, struct value *arg, int offset,
7404 struct type *type)
7405 {
7406 int i;
7407 int parent_offset = -1;
7408
7409 type = ada_check_typedef (type);
7410 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7411 {
7412 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7413
7414 if (t_field_name == NULL)
7415 continue;
7416
7417 else if (ada_is_parent_field (type, i))
7418 {
7419 /* This is a field pointing us to the parent type of a tagged
7420 type. As hinted in this function's documentation, we give
7421 preference to fields in the current record first, so what
7422 we do here is just record the index of this field before
7423 we skip it. If it turns out we couldn't find our field
7424 in the current record, then we'll get back to it and search
7425 inside it whether the field might exist in the parent. */
7426
7427 parent_offset = i;
7428 continue;
7429 }
7430
7431 else if (field_name_match (t_field_name, name))
7432 return ada_value_primitive_field (arg, offset, i, type);
7433
7434 else if (ada_is_wrapper_field (type, i))
7435 {
7436 struct value *v = /* Do not let indent join lines here. */
7437 ada_search_struct_field (name, arg,
7438 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7439 TYPE_FIELD_TYPE (type, i));
7440
7441 if (v != NULL)
7442 return v;
7443 }
7444
7445 else if (ada_is_variant_part (type, i))
7446 {
7447 /* PNH: Do we ever get here? See find_struct_field. */
7448 int j;
7449 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7450 i));
7451 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7452
7453 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7454 {
7455 struct value *v = ada_search_struct_field /* Force line
7456 break. */
7457 (name, arg,
7458 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7459 TYPE_FIELD_TYPE (field_type, j));
7460
7461 if (v != NULL)
7462 return v;
7463 }
7464 }
7465 }
7466
7467 /* Field not found so far. If this is a tagged type which
7468 has a parent, try finding that field in the parent now. */
7469
7470 if (parent_offset != -1)
7471 {
7472 struct value *v = ada_search_struct_field (
7473 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7474 TYPE_FIELD_TYPE (type, parent_offset));
7475
7476 if (v != NULL)
7477 return v;
7478 }
7479
7480 return NULL;
7481 }
7482
7483 static struct value *ada_index_struct_field_1 (int *, struct value *,
7484 int, struct type *);
7485
7486
7487 /* Return field #INDEX in ARG, where the index is that returned by
7488 * find_struct_field through its INDEX_P argument. Adjust the address
7489 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7490 * If found, return value, else return NULL. */
7491
7492 static struct value *
7493 ada_index_struct_field (int index, struct value *arg, int offset,
7494 struct type *type)
7495 {
7496 return ada_index_struct_field_1 (&index, arg, offset, type);
7497 }
7498
7499
7500 /* Auxiliary function for ada_index_struct_field. Like
7501 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7502 * *INDEX_P. */
7503
7504 static struct value *
7505 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7506 struct type *type)
7507 {
7508 int i;
7509 type = ada_check_typedef (type);
7510
7511 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7512 {
7513 if (TYPE_FIELD_NAME (type, i) == NULL)
7514 continue;
7515 else if (ada_is_wrapper_field (type, i))
7516 {
7517 struct value *v = /* Do not let indent join lines here. */
7518 ada_index_struct_field_1 (index_p, arg,
7519 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7520 TYPE_FIELD_TYPE (type, i));
7521
7522 if (v != NULL)
7523 return v;
7524 }
7525
7526 else if (ada_is_variant_part (type, i))
7527 {
7528 /* PNH: Do we ever get here? See ada_search_struct_field,
7529 find_struct_field. */
7530 error (_("Cannot assign this kind of variant record"));
7531 }
7532 else if (*index_p == 0)
7533 return ada_value_primitive_field (arg, offset, i, type);
7534 else
7535 *index_p -= 1;
7536 }
7537 return NULL;
7538 }
7539
7540 /* Given ARG, a value of type (pointer or reference to a)*
7541 structure/union, extract the component named NAME from the ultimate
7542 target structure/union and return it as a value with its
7543 appropriate type.
7544
7545 The routine searches for NAME among all members of the structure itself
7546 and (recursively) among all members of any wrapper members
7547 (e.g., '_parent').
7548
7549 If NO_ERR, then simply return NULL in case of error, rather than
7550 calling error. */
7551
7552 struct value *
7553 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7554 {
7555 struct type *t, *t1;
7556 struct value *v;
7557 int check_tag;
7558
7559 v = NULL;
7560 t1 = t = ada_check_typedef (value_type (arg));
7561 if (TYPE_CODE (t) == TYPE_CODE_REF)
7562 {
7563 t1 = TYPE_TARGET_TYPE (t);
7564 if (t1 == NULL)
7565 goto BadValue;
7566 t1 = ada_check_typedef (t1);
7567 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7568 {
7569 arg = coerce_ref (arg);
7570 t = t1;
7571 }
7572 }
7573
7574 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7575 {
7576 t1 = TYPE_TARGET_TYPE (t);
7577 if (t1 == NULL)
7578 goto BadValue;
7579 t1 = ada_check_typedef (t1);
7580 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7581 {
7582 arg = value_ind (arg);
7583 t = t1;
7584 }
7585 else
7586 break;
7587 }
7588
7589 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7590 goto BadValue;
7591
7592 if (t1 == t)
7593 v = ada_search_struct_field (name, arg, 0, t);
7594 else
7595 {
7596 int bit_offset, bit_size, byte_offset;
7597 struct type *field_type;
7598 CORE_ADDR address;
7599
7600 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7601 address = value_address (ada_value_ind (arg));
7602 else
7603 address = value_address (ada_coerce_ref (arg));
7604
7605 /* Check to see if this is a tagged type. We also need to handle
7606 the case where the type is a reference to a tagged type, but
7607 we have to be careful to exclude pointers to tagged types.
7608 The latter should be shown as usual (as a pointer), whereas
7609 a reference should mostly be transparent to the user. */
7610
7611 if (ada_is_tagged_type (t1, 0)
7612 || (TYPE_CODE (t1) == TYPE_CODE_REF
7613 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7614 {
7615 /* We first try to find the searched field in the current type.
7616 If not found then let's look in the fixed type. */
7617
7618 if (!find_struct_field (name, t1, 0,
7619 &field_type, &byte_offset, &bit_offset,
7620 &bit_size, NULL))
7621 check_tag = 1;
7622 else
7623 check_tag = 0;
7624 }
7625 else
7626 check_tag = 0;
7627
7628 /* Convert to fixed type in all cases, so that we have proper
7629 offsets to each field in unconstrained record types. */
7630 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7631 address, NULL, check_tag);
7632
7633 if (find_struct_field (name, t1, 0,
7634 &field_type, &byte_offset, &bit_offset,
7635 &bit_size, NULL))
7636 {
7637 if (bit_size != 0)
7638 {
7639 if (TYPE_CODE (t) == TYPE_CODE_REF)
7640 arg = ada_coerce_ref (arg);
7641 else
7642 arg = ada_value_ind (arg);
7643 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7644 bit_offset, bit_size,
7645 field_type);
7646 }
7647 else
7648 v = value_at_lazy (field_type, address + byte_offset);
7649 }
7650 }
7651
7652 if (v != NULL || no_err)
7653 return v;
7654 else
7655 error (_("There is no member named %s."), name);
7656
7657 BadValue:
7658 if (no_err)
7659 return NULL;
7660 else
7661 error (_("Attempt to extract a component of "
7662 "a value that is not a record."));
7663 }
7664
7665 /* Return a string representation of type TYPE. */
7666
7667 static std::string
7668 type_as_string (struct type *type)
7669 {
7670 string_file tmp_stream;
7671
7672 type_print (type, "", &tmp_stream, -1);
7673
7674 return std::move (tmp_stream.string ());
7675 }
7676
7677 /* Given a type TYPE, look up the type of the component of type named NAME.
7678 If DISPP is non-null, add its byte displacement from the beginning of a
7679 structure (pointed to by a value) of type TYPE to *DISPP (does not
7680 work for packed fields).
7681
7682 Matches any field whose name has NAME as a prefix, possibly
7683 followed by "___".
7684
7685 TYPE can be either a struct or union. If REFOK, TYPE may also
7686 be a (pointer or reference)+ to a struct or union, and the
7687 ultimate target type will be searched.
7688
7689 Looks recursively into variant clauses and parent types.
7690
7691 In the case of homonyms in the tagged types, please refer to the
7692 long explanation in find_struct_field's function documentation.
7693
7694 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7695 TYPE is not a type of the right kind. */
7696
7697 static struct type *
7698 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7699 int noerr)
7700 {
7701 int i;
7702 int parent_offset = -1;
7703
7704 if (name == NULL)
7705 goto BadName;
7706
7707 if (refok && type != NULL)
7708 while (1)
7709 {
7710 type = ada_check_typedef (type);
7711 if (TYPE_CODE (type) != TYPE_CODE_PTR
7712 && TYPE_CODE (type) != TYPE_CODE_REF)
7713 break;
7714 type = TYPE_TARGET_TYPE (type);
7715 }
7716
7717 if (type == NULL
7718 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7719 && TYPE_CODE (type) != TYPE_CODE_UNION))
7720 {
7721 if (noerr)
7722 return NULL;
7723
7724 error (_("Type %s is not a structure or union type"),
7725 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7726 }
7727
7728 type = to_static_fixed_type (type);
7729
7730 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7731 {
7732 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7733 struct type *t;
7734
7735 if (t_field_name == NULL)
7736 continue;
7737
7738 else if (ada_is_parent_field (type, i))
7739 {
7740 /* This is a field pointing us to the parent type of a tagged
7741 type. As hinted in this function's documentation, we give
7742 preference to fields in the current record first, so what
7743 we do here is just record the index of this field before
7744 we skip it. If it turns out we couldn't find our field
7745 in the current record, then we'll get back to it and search
7746 inside it whether the field might exist in the parent. */
7747
7748 parent_offset = i;
7749 continue;
7750 }
7751
7752 else if (field_name_match (t_field_name, name))
7753 return TYPE_FIELD_TYPE (type, i);
7754
7755 else if (ada_is_wrapper_field (type, i))
7756 {
7757 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7758 0, 1);
7759 if (t != NULL)
7760 return t;
7761 }
7762
7763 else if (ada_is_variant_part (type, i))
7764 {
7765 int j;
7766 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7767 i));
7768
7769 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7770 {
7771 /* FIXME pnh 2008/01/26: We check for a field that is
7772 NOT wrapped in a struct, since the compiler sometimes
7773 generates these for unchecked variant types. Revisit
7774 if the compiler changes this practice. */
7775 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7776
7777 if (v_field_name != NULL
7778 && field_name_match (v_field_name, name))
7779 t = TYPE_FIELD_TYPE (field_type, j);
7780 else
7781 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7782 j),
7783 name, 0, 1);
7784
7785 if (t != NULL)
7786 return t;
7787 }
7788 }
7789
7790 }
7791
7792 /* Field not found so far. If this is a tagged type which
7793 has a parent, try finding that field in the parent now. */
7794
7795 if (parent_offset != -1)
7796 {
7797 struct type *t;
7798
7799 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7800 name, 0, 1);
7801 if (t != NULL)
7802 return t;
7803 }
7804
7805 BadName:
7806 if (!noerr)
7807 {
7808 const char *name_str = name != NULL ? name : _("<null>");
7809
7810 error (_("Type %s has no component named %s"),
7811 type_as_string (type).c_str (), name_str);
7812 }
7813
7814 return NULL;
7815 }
7816
7817 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7818 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7819 represents an unchecked union (that is, the variant part of a
7820 record that is named in an Unchecked_Union pragma). */
7821
7822 static int
7823 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7824 {
7825 const char *discrim_name = ada_variant_discrim_name (var_type);
7826
7827 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7828 }
7829
7830
7831 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7832 within a value of type OUTER_TYPE that is stored in GDB at
7833 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7834 numbering from 0) is applicable. Returns -1 if none are. */
7835
7836 int
7837 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7838 const gdb_byte *outer_valaddr)
7839 {
7840 int others_clause;
7841 int i;
7842 const char *discrim_name = ada_variant_discrim_name (var_type);
7843 struct value *outer;
7844 struct value *discrim;
7845 LONGEST discrim_val;
7846
7847 /* Using plain value_from_contents_and_address here causes problems
7848 because we will end up trying to resolve a type that is currently
7849 being constructed. */
7850 outer = value_from_contents_and_address_unresolved (outer_type,
7851 outer_valaddr, 0);
7852 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7853 if (discrim == NULL)
7854 return -1;
7855 discrim_val = value_as_long (discrim);
7856
7857 others_clause = -1;
7858 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7859 {
7860 if (ada_is_others_clause (var_type, i))
7861 others_clause = i;
7862 else if (ada_in_variant (discrim_val, var_type, i))
7863 return i;
7864 }
7865
7866 return others_clause;
7867 }
7868 \f
7869
7870
7871 /* Dynamic-Sized Records */
7872
7873 /* Strategy: The type ostensibly attached to a value with dynamic size
7874 (i.e., a size that is not statically recorded in the debugging
7875 data) does not accurately reflect the size or layout of the value.
7876 Our strategy is to convert these values to values with accurate,
7877 conventional types that are constructed on the fly. */
7878
7879 /* There is a subtle and tricky problem here. In general, we cannot
7880 determine the size of dynamic records without its data. However,
7881 the 'struct value' data structure, which GDB uses to represent
7882 quantities in the inferior process (the target), requires the size
7883 of the type at the time of its allocation in order to reserve space
7884 for GDB's internal copy of the data. That's why the
7885 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7886 rather than struct value*s.
7887
7888 However, GDB's internal history variables ($1, $2, etc.) are
7889 struct value*s containing internal copies of the data that are not, in
7890 general, the same as the data at their corresponding addresses in
7891 the target. Fortunately, the types we give to these values are all
7892 conventional, fixed-size types (as per the strategy described
7893 above), so that we don't usually have to perform the
7894 'to_fixed_xxx_type' conversions to look at their values.
7895 Unfortunately, there is one exception: if one of the internal
7896 history variables is an array whose elements are unconstrained
7897 records, then we will need to create distinct fixed types for each
7898 element selected. */
7899
7900 /* The upshot of all of this is that many routines take a (type, host
7901 address, target address) triple as arguments to represent a value.
7902 The host address, if non-null, is supposed to contain an internal
7903 copy of the relevant data; otherwise, the program is to consult the
7904 target at the target address. */
7905
7906 /* Assuming that VAL0 represents a pointer value, the result of
7907 dereferencing it. Differs from value_ind in its treatment of
7908 dynamic-sized types. */
7909
7910 struct value *
7911 ada_value_ind (struct value *val0)
7912 {
7913 struct value *val = value_ind (val0);
7914
7915 if (ada_is_tagged_type (value_type (val), 0))
7916 val = ada_tag_value_at_base_address (val);
7917
7918 return ada_to_fixed_value (val);
7919 }
7920
7921 /* The value resulting from dereferencing any "reference to"
7922 qualifiers on VAL0. */
7923
7924 static struct value *
7925 ada_coerce_ref (struct value *val0)
7926 {
7927 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7928 {
7929 struct value *val = val0;
7930
7931 val = coerce_ref (val);
7932
7933 if (ada_is_tagged_type (value_type (val), 0))
7934 val = ada_tag_value_at_base_address (val);
7935
7936 return ada_to_fixed_value (val);
7937 }
7938 else
7939 return val0;
7940 }
7941
7942 /* Return OFF rounded upward if necessary to a multiple of
7943 ALIGNMENT (a power of 2). */
7944
7945 static unsigned int
7946 align_value (unsigned int off, unsigned int alignment)
7947 {
7948 return (off + alignment - 1) & ~(alignment - 1);
7949 }
7950
7951 /* Return the bit alignment required for field #F of template type TYPE. */
7952
7953 static unsigned int
7954 field_alignment (struct type *type, int f)
7955 {
7956 const char *name = TYPE_FIELD_NAME (type, f);
7957 int len;
7958 int align_offset;
7959
7960 /* The field name should never be null, unless the debugging information
7961 is somehow malformed. In this case, we assume the field does not
7962 require any alignment. */
7963 if (name == NULL)
7964 return 1;
7965
7966 len = strlen (name);
7967
7968 if (!isdigit (name[len - 1]))
7969 return 1;
7970
7971 if (isdigit (name[len - 2]))
7972 align_offset = len - 2;
7973 else
7974 align_offset = len - 1;
7975
7976 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7977 return TARGET_CHAR_BIT;
7978
7979 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7980 }
7981
7982 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7983
7984 static struct symbol *
7985 ada_find_any_type_symbol (const char *name)
7986 {
7987 struct symbol *sym;
7988
7989 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7990 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7991 return sym;
7992
7993 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7994 return sym;
7995 }
7996
7997 /* Find a type named NAME. Ignores ambiguity. This routine will look
7998 solely for types defined by debug info, it will not search the GDB
7999 primitive types. */
8000
8001 static struct type *
8002 ada_find_any_type (const char *name)
8003 {
8004 struct symbol *sym = ada_find_any_type_symbol (name);
8005
8006 if (sym != NULL)
8007 return SYMBOL_TYPE (sym);
8008
8009 return NULL;
8010 }
8011
8012 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
8013 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
8014 symbol, in which case it is returned. Otherwise, this looks for
8015 symbols whose name is that of NAME_SYM suffixed with "___XR".
8016 Return symbol if found, and NULL otherwise. */
8017
8018 struct symbol *
8019 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
8020 {
8021 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
8022 struct symbol *sym;
8023
8024 if (strstr (name, "___XR") != NULL)
8025 return name_sym;
8026
8027 sym = find_old_style_renaming_symbol (name, block);
8028
8029 if (sym != NULL)
8030 return sym;
8031
8032 /* Not right yet. FIXME pnh 7/20/2007. */
8033 sym = ada_find_any_type_symbol (name);
8034 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8035 return sym;
8036 else
8037 return NULL;
8038 }
8039
8040 static struct symbol *
8041 find_old_style_renaming_symbol (const char *name, const struct block *block)
8042 {
8043 const struct symbol *function_sym = block_linkage_function (block);
8044 char *rename;
8045
8046 if (function_sym != NULL)
8047 {
8048 /* If the symbol is defined inside a function, NAME is not fully
8049 qualified. This means we need to prepend the function name
8050 as well as adding the ``___XR'' suffix to build the name of
8051 the associated renaming symbol. */
8052 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8053 /* Function names sometimes contain suffixes used
8054 for instance to qualify nested subprograms. When building
8055 the XR type name, we need to make sure that this suffix is
8056 not included. So do not include any suffix in the function
8057 name length below. */
8058 int function_name_len = ada_name_prefix_len (function_name);
8059 const int rename_len = function_name_len + 2 /* "__" */
8060 + strlen (name) + 6 /* "___XR\0" */ ;
8061
8062 /* Strip the suffix if necessary. */
8063 ada_remove_trailing_digits (function_name, &function_name_len);
8064 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8065 ada_remove_Xbn_suffix (function_name, &function_name_len);
8066
8067 /* Library-level functions are a special case, as GNAT adds
8068 a ``_ada_'' prefix to the function name to avoid namespace
8069 pollution. However, the renaming symbols themselves do not
8070 have this prefix, so we need to skip this prefix if present. */
8071 if (function_name_len > 5 /* "_ada_" */
8072 && strstr (function_name, "_ada_") == function_name)
8073 {
8074 function_name += 5;
8075 function_name_len -= 5;
8076 }
8077
8078 rename = (char *) alloca (rename_len * sizeof (char));
8079 strncpy (rename, function_name, function_name_len);
8080 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8081 "__%s___XR", name);
8082 }
8083 else
8084 {
8085 const int rename_len = strlen (name) + 6;
8086
8087 rename = (char *) alloca (rename_len * sizeof (char));
8088 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8089 }
8090
8091 return ada_find_any_type_symbol (rename);
8092 }
8093
8094 /* Because of GNAT encoding conventions, several GDB symbols may match a
8095 given type name. If the type denoted by TYPE0 is to be preferred to
8096 that of TYPE1 for purposes of type printing, return non-zero;
8097 otherwise return 0. */
8098
8099 int
8100 ada_prefer_type (struct type *type0, struct type *type1)
8101 {
8102 if (type1 == NULL)
8103 return 1;
8104 else if (type0 == NULL)
8105 return 0;
8106 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8107 return 1;
8108 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8109 return 0;
8110 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8111 return 1;
8112 else if (ada_is_constrained_packed_array_type (type0))
8113 return 1;
8114 else if (ada_is_array_descriptor_type (type0)
8115 && !ada_is_array_descriptor_type (type1))
8116 return 1;
8117 else
8118 {
8119 const char *type0_name = TYPE_NAME (type0);
8120 const char *type1_name = TYPE_NAME (type1);
8121
8122 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8123 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8124 return 1;
8125 }
8126 return 0;
8127 }
8128
8129 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8130 null. */
8131
8132 const char *
8133 ada_type_name (struct type *type)
8134 {
8135 if (type == NULL)
8136 return NULL;
8137 return TYPE_NAME (type);
8138 }
8139
8140 /* Search the list of "descriptive" types associated to TYPE for a type
8141 whose name is NAME. */
8142
8143 static struct type *
8144 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8145 {
8146 struct type *result, *tmp;
8147
8148 if (ada_ignore_descriptive_types_p)
8149 return NULL;
8150
8151 /* If there no descriptive-type info, then there is no parallel type
8152 to be found. */
8153 if (!HAVE_GNAT_AUX_INFO (type))
8154 return NULL;
8155
8156 result = TYPE_DESCRIPTIVE_TYPE (type);
8157 while (result != NULL)
8158 {
8159 const char *result_name = ada_type_name (result);
8160
8161 if (result_name == NULL)
8162 {
8163 warning (_("unexpected null name on descriptive type"));
8164 return NULL;
8165 }
8166
8167 /* If the names match, stop. */
8168 if (strcmp (result_name, name) == 0)
8169 break;
8170
8171 /* Otherwise, look at the next item on the list, if any. */
8172 if (HAVE_GNAT_AUX_INFO (result))
8173 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8174 else
8175 tmp = NULL;
8176
8177 /* If not found either, try after having resolved the typedef. */
8178 if (tmp != NULL)
8179 result = tmp;
8180 else
8181 {
8182 result = check_typedef (result);
8183 if (HAVE_GNAT_AUX_INFO (result))
8184 result = TYPE_DESCRIPTIVE_TYPE (result);
8185 else
8186 result = NULL;
8187 }
8188 }
8189
8190 /* If we didn't find a match, see whether this is a packed array. With
8191 older compilers, the descriptive type information is either absent or
8192 irrelevant when it comes to packed arrays so the above lookup fails.
8193 Fall back to using a parallel lookup by name in this case. */
8194 if (result == NULL && ada_is_constrained_packed_array_type (type))
8195 return ada_find_any_type (name);
8196
8197 return result;
8198 }
8199
8200 /* Find a parallel type to TYPE with the specified NAME, using the
8201 descriptive type taken from the debugging information, if available,
8202 and otherwise using the (slower) name-based method. */
8203
8204 static struct type *
8205 ada_find_parallel_type_with_name (struct type *type, const char *name)
8206 {
8207 struct type *result = NULL;
8208
8209 if (HAVE_GNAT_AUX_INFO (type))
8210 result = find_parallel_type_by_descriptive_type (type, name);
8211 else
8212 result = ada_find_any_type (name);
8213
8214 return result;
8215 }
8216
8217 /* Same as above, but specify the name of the parallel type by appending
8218 SUFFIX to the name of TYPE. */
8219
8220 struct type *
8221 ada_find_parallel_type (struct type *type, const char *suffix)
8222 {
8223 char *name;
8224 const char *type_name = ada_type_name (type);
8225 int len;
8226
8227 if (type_name == NULL)
8228 return NULL;
8229
8230 len = strlen (type_name);
8231
8232 name = (char *) alloca (len + strlen (suffix) + 1);
8233
8234 strcpy (name, type_name);
8235 strcpy (name + len, suffix);
8236
8237 return ada_find_parallel_type_with_name (type, name);
8238 }
8239
8240 /* If TYPE is a variable-size record type, return the corresponding template
8241 type describing its fields. Otherwise, return NULL. */
8242
8243 static struct type *
8244 dynamic_template_type (struct type *type)
8245 {
8246 type = ada_check_typedef (type);
8247
8248 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8249 || ada_type_name (type) == NULL)
8250 return NULL;
8251 else
8252 {
8253 int len = strlen (ada_type_name (type));
8254
8255 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8256 return type;
8257 else
8258 return ada_find_parallel_type (type, "___XVE");
8259 }
8260 }
8261
8262 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8263 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8264
8265 static int
8266 is_dynamic_field (struct type *templ_type, int field_num)
8267 {
8268 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8269
8270 return name != NULL
8271 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8272 && strstr (name, "___XVL") != NULL;
8273 }
8274
8275 /* The index of the variant field of TYPE, or -1 if TYPE does not
8276 represent a variant record type. */
8277
8278 static int
8279 variant_field_index (struct type *type)
8280 {
8281 int f;
8282
8283 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8284 return -1;
8285
8286 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8287 {
8288 if (ada_is_variant_part (type, f))
8289 return f;
8290 }
8291 return -1;
8292 }
8293
8294 /* A record type with no fields. */
8295
8296 static struct type *
8297 empty_record (struct type *templ)
8298 {
8299 struct type *type = alloc_type_copy (templ);
8300
8301 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8302 TYPE_NFIELDS (type) = 0;
8303 TYPE_FIELDS (type) = NULL;
8304 INIT_CPLUS_SPECIFIC (type);
8305 TYPE_NAME (type) = "<empty>";
8306 TYPE_LENGTH (type) = 0;
8307 return type;
8308 }
8309
8310 /* An ordinary record type (with fixed-length fields) that describes
8311 the value of type TYPE at VALADDR or ADDRESS (see comments at
8312 the beginning of this section) VAL according to GNAT conventions.
8313 DVAL0 should describe the (portion of a) record that contains any
8314 necessary discriminants. It should be NULL if value_type (VAL) is
8315 an outer-level type (i.e., as opposed to a branch of a variant.) A
8316 variant field (unless unchecked) is replaced by a particular branch
8317 of the variant.
8318
8319 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8320 length are not statically known are discarded. As a consequence,
8321 VALADDR, ADDRESS and DVAL0 are ignored.
8322
8323 NOTE: Limitations: For now, we assume that dynamic fields and
8324 variants occupy whole numbers of bytes. However, they need not be
8325 byte-aligned. */
8326
8327 struct type *
8328 ada_template_to_fixed_record_type_1 (struct type *type,
8329 const gdb_byte *valaddr,
8330 CORE_ADDR address, struct value *dval0,
8331 int keep_dynamic_fields)
8332 {
8333 struct value *mark = value_mark ();
8334 struct value *dval;
8335 struct type *rtype;
8336 int nfields, bit_len;
8337 int variant_field;
8338 long off;
8339 int fld_bit_len;
8340 int f;
8341
8342 /* Compute the number of fields in this record type that are going
8343 to be processed: unless keep_dynamic_fields, this includes only
8344 fields whose position and length are static will be processed. */
8345 if (keep_dynamic_fields)
8346 nfields = TYPE_NFIELDS (type);
8347 else
8348 {
8349 nfields = 0;
8350 while (nfields < TYPE_NFIELDS (type)
8351 && !ada_is_variant_part (type, nfields)
8352 && !is_dynamic_field (type, nfields))
8353 nfields++;
8354 }
8355
8356 rtype = alloc_type_copy (type);
8357 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8358 INIT_CPLUS_SPECIFIC (rtype);
8359 TYPE_NFIELDS (rtype) = nfields;
8360 TYPE_FIELDS (rtype) = (struct field *)
8361 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8362 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8363 TYPE_NAME (rtype) = ada_type_name (type);
8364 TYPE_FIXED_INSTANCE (rtype) = 1;
8365
8366 off = 0;
8367 bit_len = 0;
8368 variant_field = -1;
8369
8370 for (f = 0; f < nfields; f += 1)
8371 {
8372 off = align_value (off, field_alignment (type, f))
8373 + TYPE_FIELD_BITPOS (type, f);
8374 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8375 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8376
8377 if (ada_is_variant_part (type, f))
8378 {
8379 variant_field = f;
8380 fld_bit_len = 0;
8381 }
8382 else if (is_dynamic_field (type, f))
8383 {
8384 const gdb_byte *field_valaddr = valaddr;
8385 CORE_ADDR field_address = address;
8386 struct type *field_type =
8387 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8388
8389 if (dval0 == NULL)
8390 {
8391 /* rtype's length is computed based on the run-time
8392 value of discriminants. If the discriminants are not
8393 initialized, the type size may be completely bogus and
8394 GDB may fail to allocate a value for it. So check the
8395 size first before creating the value. */
8396 ada_ensure_varsize_limit (rtype);
8397 /* Using plain value_from_contents_and_address here
8398 causes problems because we will end up trying to
8399 resolve a type that is currently being
8400 constructed. */
8401 dval = value_from_contents_and_address_unresolved (rtype,
8402 valaddr,
8403 address);
8404 rtype = value_type (dval);
8405 }
8406 else
8407 dval = dval0;
8408
8409 /* If the type referenced by this field is an aligner type, we need
8410 to unwrap that aligner type, because its size might not be set.
8411 Keeping the aligner type would cause us to compute the wrong
8412 size for this field, impacting the offset of the all the fields
8413 that follow this one. */
8414 if (ada_is_aligner_type (field_type))
8415 {
8416 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8417
8418 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8419 field_address = cond_offset_target (field_address, field_offset);
8420 field_type = ada_aligned_type (field_type);
8421 }
8422
8423 field_valaddr = cond_offset_host (field_valaddr,
8424 off / TARGET_CHAR_BIT);
8425 field_address = cond_offset_target (field_address,
8426 off / TARGET_CHAR_BIT);
8427
8428 /* Get the fixed type of the field. Note that, in this case,
8429 we do not want to get the real type out of the tag: if
8430 the current field is the parent part of a tagged record,
8431 we will get the tag of the object. Clearly wrong: the real
8432 type of the parent is not the real type of the child. We
8433 would end up in an infinite loop. */
8434 field_type = ada_get_base_type (field_type);
8435 field_type = ada_to_fixed_type (field_type, field_valaddr,
8436 field_address, dval, 0);
8437 /* If the field size is already larger than the maximum
8438 object size, then the record itself will necessarily
8439 be larger than the maximum object size. We need to make
8440 this check now, because the size might be so ridiculously
8441 large (due to an uninitialized variable in the inferior)
8442 that it would cause an overflow when adding it to the
8443 record size. */
8444 ada_ensure_varsize_limit (field_type);
8445
8446 TYPE_FIELD_TYPE (rtype, f) = field_type;
8447 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8448 /* The multiplication can potentially overflow. But because
8449 the field length has been size-checked just above, and
8450 assuming that the maximum size is a reasonable value,
8451 an overflow should not happen in practice. So rather than
8452 adding overflow recovery code to this already complex code,
8453 we just assume that it's not going to happen. */
8454 fld_bit_len =
8455 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8456 }
8457 else
8458 {
8459 /* Note: If this field's type is a typedef, it is important
8460 to preserve the typedef layer.
8461
8462 Otherwise, we might be transforming a typedef to a fat
8463 pointer (encoding a pointer to an unconstrained array),
8464 into a basic fat pointer (encoding an unconstrained
8465 array). As both types are implemented using the same
8466 structure, the typedef is the only clue which allows us
8467 to distinguish between the two options. Stripping it
8468 would prevent us from printing this field appropriately. */
8469 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8470 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8471 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8472 fld_bit_len =
8473 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8474 else
8475 {
8476 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8477
8478 /* We need to be careful of typedefs when computing
8479 the length of our field. If this is a typedef,
8480 get the length of the target type, not the length
8481 of the typedef. */
8482 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8483 field_type = ada_typedef_target_type (field_type);
8484
8485 fld_bit_len =
8486 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8487 }
8488 }
8489 if (off + fld_bit_len > bit_len)
8490 bit_len = off + fld_bit_len;
8491 off += fld_bit_len;
8492 TYPE_LENGTH (rtype) =
8493 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8494 }
8495
8496 /* We handle the variant part, if any, at the end because of certain
8497 odd cases in which it is re-ordered so as NOT to be the last field of
8498 the record. This can happen in the presence of representation
8499 clauses. */
8500 if (variant_field >= 0)
8501 {
8502 struct type *branch_type;
8503
8504 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8505
8506 if (dval0 == NULL)
8507 {
8508 /* Using plain value_from_contents_and_address here causes
8509 problems because we will end up trying to resolve a type
8510 that is currently being constructed. */
8511 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8512 address);
8513 rtype = value_type (dval);
8514 }
8515 else
8516 dval = dval0;
8517
8518 branch_type =
8519 to_fixed_variant_branch_type
8520 (TYPE_FIELD_TYPE (type, variant_field),
8521 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8522 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8523 if (branch_type == NULL)
8524 {
8525 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8526 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8527 TYPE_NFIELDS (rtype) -= 1;
8528 }
8529 else
8530 {
8531 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8532 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8533 fld_bit_len =
8534 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8535 TARGET_CHAR_BIT;
8536 if (off + fld_bit_len > bit_len)
8537 bit_len = off + fld_bit_len;
8538 TYPE_LENGTH (rtype) =
8539 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8540 }
8541 }
8542
8543 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8544 should contain the alignment of that record, which should be a strictly
8545 positive value. If null or negative, then something is wrong, most
8546 probably in the debug info. In that case, we don't round up the size
8547 of the resulting type. If this record is not part of another structure,
8548 the current RTYPE length might be good enough for our purposes. */
8549 if (TYPE_LENGTH (type) <= 0)
8550 {
8551 if (TYPE_NAME (rtype))
8552 warning (_("Invalid type size for `%s' detected: %d."),
8553 TYPE_NAME (rtype), TYPE_LENGTH (type));
8554 else
8555 warning (_("Invalid type size for <unnamed> detected: %d."),
8556 TYPE_LENGTH (type));
8557 }
8558 else
8559 {
8560 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8561 TYPE_LENGTH (type));
8562 }
8563
8564 value_free_to_mark (mark);
8565 if (TYPE_LENGTH (rtype) > varsize_limit)
8566 error (_("record type with dynamic size is larger than varsize-limit"));
8567 return rtype;
8568 }
8569
8570 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8571 of 1. */
8572
8573 static struct type *
8574 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8575 CORE_ADDR address, struct value *dval0)
8576 {
8577 return ada_template_to_fixed_record_type_1 (type, valaddr,
8578 address, dval0, 1);
8579 }
8580
8581 /* An ordinary record type in which ___XVL-convention fields and
8582 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8583 static approximations, containing all possible fields. Uses
8584 no runtime values. Useless for use in values, but that's OK,
8585 since the results are used only for type determinations. Works on both
8586 structs and unions. Representation note: to save space, we memorize
8587 the result of this function in the TYPE_TARGET_TYPE of the
8588 template type. */
8589
8590 static struct type *
8591 template_to_static_fixed_type (struct type *type0)
8592 {
8593 struct type *type;
8594 int nfields;
8595 int f;
8596
8597 /* No need no do anything if the input type is already fixed. */
8598 if (TYPE_FIXED_INSTANCE (type0))
8599 return type0;
8600
8601 /* Likewise if we already have computed the static approximation. */
8602 if (TYPE_TARGET_TYPE (type0) != NULL)
8603 return TYPE_TARGET_TYPE (type0);
8604
8605 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8606 type = type0;
8607 nfields = TYPE_NFIELDS (type0);
8608
8609 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8610 recompute all over next time. */
8611 TYPE_TARGET_TYPE (type0) = type;
8612
8613 for (f = 0; f < nfields; f += 1)
8614 {
8615 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8616 struct type *new_type;
8617
8618 if (is_dynamic_field (type0, f))
8619 {
8620 field_type = ada_check_typedef (field_type);
8621 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8622 }
8623 else
8624 new_type = static_unwrap_type (field_type);
8625
8626 if (new_type != field_type)
8627 {
8628 /* Clone TYPE0 only the first time we get a new field type. */
8629 if (type == type0)
8630 {
8631 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8632 TYPE_CODE (type) = TYPE_CODE (type0);
8633 INIT_CPLUS_SPECIFIC (type);
8634 TYPE_NFIELDS (type) = nfields;
8635 TYPE_FIELDS (type) = (struct field *)
8636 TYPE_ALLOC (type, nfields * sizeof (struct field));
8637 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8638 sizeof (struct field) * nfields);
8639 TYPE_NAME (type) = ada_type_name (type0);
8640 TYPE_FIXED_INSTANCE (type) = 1;
8641 TYPE_LENGTH (type) = 0;
8642 }
8643 TYPE_FIELD_TYPE (type, f) = new_type;
8644 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8645 }
8646 }
8647
8648 return type;
8649 }
8650
8651 /* Given an object of type TYPE whose contents are at VALADDR and
8652 whose address in memory is ADDRESS, returns a revision of TYPE,
8653 which should be a non-dynamic-sized record, in which the variant
8654 part, if any, is replaced with the appropriate branch. Looks
8655 for discriminant values in DVAL0, which can be NULL if the record
8656 contains the necessary discriminant values. */
8657
8658 static struct type *
8659 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8660 CORE_ADDR address, struct value *dval0)
8661 {
8662 struct value *mark = value_mark ();
8663 struct value *dval;
8664 struct type *rtype;
8665 struct type *branch_type;
8666 int nfields = TYPE_NFIELDS (type);
8667 int variant_field = variant_field_index (type);
8668
8669 if (variant_field == -1)
8670 return type;
8671
8672 if (dval0 == NULL)
8673 {
8674 dval = value_from_contents_and_address (type, valaddr, address);
8675 type = value_type (dval);
8676 }
8677 else
8678 dval = dval0;
8679
8680 rtype = alloc_type_copy (type);
8681 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8682 INIT_CPLUS_SPECIFIC (rtype);
8683 TYPE_NFIELDS (rtype) = nfields;
8684 TYPE_FIELDS (rtype) =
8685 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8686 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8687 sizeof (struct field) * nfields);
8688 TYPE_NAME (rtype) = ada_type_name (type);
8689 TYPE_FIXED_INSTANCE (rtype) = 1;
8690 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8691
8692 branch_type = to_fixed_variant_branch_type
8693 (TYPE_FIELD_TYPE (type, variant_field),
8694 cond_offset_host (valaddr,
8695 TYPE_FIELD_BITPOS (type, variant_field)
8696 / TARGET_CHAR_BIT),
8697 cond_offset_target (address,
8698 TYPE_FIELD_BITPOS (type, variant_field)
8699 / TARGET_CHAR_BIT), dval);
8700 if (branch_type == NULL)
8701 {
8702 int f;
8703
8704 for (f = variant_field + 1; f < nfields; f += 1)
8705 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8706 TYPE_NFIELDS (rtype) -= 1;
8707 }
8708 else
8709 {
8710 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8711 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8712 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8713 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8714 }
8715 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8716
8717 value_free_to_mark (mark);
8718 return rtype;
8719 }
8720
8721 /* An ordinary record type (with fixed-length fields) that describes
8722 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8723 beginning of this section]. Any necessary discriminants' values
8724 should be in DVAL, a record value; it may be NULL if the object
8725 at ADDR itself contains any necessary discriminant values.
8726 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8727 values from the record are needed. Except in the case that DVAL,
8728 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8729 unchecked) is replaced by a particular branch of the variant.
8730
8731 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8732 is questionable and may be removed. It can arise during the
8733 processing of an unconstrained-array-of-record type where all the
8734 variant branches have exactly the same size. This is because in
8735 such cases, the compiler does not bother to use the XVS convention
8736 when encoding the record. I am currently dubious of this
8737 shortcut and suspect the compiler should be altered. FIXME. */
8738
8739 static struct type *
8740 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8741 CORE_ADDR address, struct value *dval)
8742 {
8743 struct type *templ_type;
8744
8745 if (TYPE_FIXED_INSTANCE (type0))
8746 return type0;
8747
8748 templ_type = dynamic_template_type (type0);
8749
8750 if (templ_type != NULL)
8751 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8752 else if (variant_field_index (type0) >= 0)
8753 {
8754 if (dval == NULL && valaddr == NULL && address == 0)
8755 return type0;
8756 return to_record_with_fixed_variant_part (type0, valaddr, address,
8757 dval);
8758 }
8759 else
8760 {
8761 TYPE_FIXED_INSTANCE (type0) = 1;
8762 return type0;
8763 }
8764
8765 }
8766
8767 /* An ordinary record type (with fixed-length fields) that describes
8768 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8769 union type. Any necessary discriminants' values should be in DVAL,
8770 a record value. That is, this routine selects the appropriate
8771 branch of the union at ADDR according to the discriminant value
8772 indicated in the union's type name. Returns VAR_TYPE0 itself if
8773 it represents a variant subject to a pragma Unchecked_Union. */
8774
8775 static struct type *
8776 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8777 CORE_ADDR address, struct value *dval)
8778 {
8779 int which;
8780 struct type *templ_type;
8781 struct type *var_type;
8782
8783 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8784 var_type = TYPE_TARGET_TYPE (var_type0);
8785 else
8786 var_type = var_type0;
8787
8788 templ_type = ada_find_parallel_type (var_type, "___XVU");
8789
8790 if (templ_type != NULL)
8791 var_type = templ_type;
8792
8793 if (is_unchecked_variant (var_type, value_type (dval)))
8794 return var_type0;
8795 which =
8796 ada_which_variant_applies (var_type,
8797 value_type (dval), value_contents (dval));
8798
8799 if (which < 0)
8800 return empty_record (var_type);
8801 else if (is_dynamic_field (var_type, which))
8802 return to_fixed_record_type
8803 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8804 valaddr, address, dval);
8805 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8806 return
8807 to_fixed_record_type
8808 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8809 else
8810 return TYPE_FIELD_TYPE (var_type, which);
8811 }
8812
8813 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8814 ENCODING_TYPE, a type following the GNAT conventions for discrete
8815 type encodings, only carries redundant information. */
8816
8817 static int
8818 ada_is_redundant_range_encoding (struct type *range_type,
8819 struct type *encoding_type)
8820 {
8821 const char *bounds_str;
8822 int n;
8823 LONGEST lo, hi;
8824
8825 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8826
8827 if (TYPE_CODE (get_base_type (range_type))
8828 != TYPE_CODE (get_base_type (encoding_type)))
8829 {
8830 /* The compiler probably used a simple base type to describe
8831 the range type instead of the range's actual base type,
8832 expecting us to get the real base type from the encoding
8833 anyway. In this situation, the encoding cannot be ignored
8834 as redundant. */
8835 return 0;
8836 }
8837
8838 if (is_dynamic_type (range_type))
8839 return 0;
8840
8841 if (TYPE_NAME (encoding_type) == NULL)
8842 return 0;
8843
8844 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8845 if (bounds_str == NULL)
8846 return 0;
8847
8848 n = 8; /* Skip "___XDLU_". */
8849 if (!ada_scan_number (bounds_str, n, &lo, &n))
8850 return 0;
8851 if (TYPE_LOW_BOUND (range_type) != lo)
8852 return 0;
8853
8854 n += 2; /* Skip the "__" separator between the two bounds. */
8855 if (!ada_scan_number (bounds_str, n, &hi, &n))
8856 return 0;
8857 if (TYPE_HIGH_BOUND (range_type) != hi)
8858 return 0;
8859
8860 return 1;
8861 }
8862
8863 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8864 a type following the GNAT encoding for describing array type
8865 indices, only carries redundant information. */
8866
8867 static int
8868 ada_is_redundant_index_type_desc (struct type *array_type,
8869 struct type *desc_type)
8870 {
8871 struct type *this_layer = check_typedef (array_type);
8872 int i;
8873
8874 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8875 {
8876 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8877 TYPE_FIELD_TYPE (desc_type, i)))
8878 return 0;
8879 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8880 }
8881
8882 return 1;
8883 }
8884
8885 /* Assuming that TYPE0 is an array type describing the type of a value
8886 at ADDR, and that DVAL describes a record containing any
8887 discriminants used in TYPE0, returns a type for the value that
8888 contains no dynamic components (that is, no components whose sizes
8889 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8890 true, gives an error message if the resulting type's size is over
8891 varsize_limit. */
8892
8893 static struct type *
8894 to_fixed_array_type (struct type *type0, struct value *dval,
8895 int ignore_too_big)
8896 {
8897 struct type *index_type_desc;
8898 struct type *result;
8899 int constrained_packed_array_p;
8900 static const char *xa_suffix = "___XA";
8901
8902 type0 = ada_check_typedef (type0);
8903 if (TYPE_FIXED_INSTANCE (type0))
8904 return type0;
8905
8906 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8907 if (constrained_packed_array_p)
8908 type0 = decode_constrained_packed_array_type (type0);
8909
8910 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8911
8912 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8913 encoding suffixed with 'P' may still be generated. If so,
8914 it should be used to find the XA type. */
8915
8916 if (index_type_desc == NULL)
8917 {
8918 const char *type_name = ada_type_name (type0);
8919
8920 if (type_name != NULL)
8921 {
8922 const int len = strlen (type_name);
8923 char *name = (char *) alloca (len + strlen (xa_suffix));
8924
8925 if (type_name[len - 1] == 'P')
8926 {
8927 strcpy (name, type_name);
8928 strcpy (name + len - 1, xa_suffix);
8929 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8930 }
8931 }
8932 }
8933
8934 ada_fixup_array_indexes_type (index_type_desc);
8935 if (index_type_desc != NULL
8936 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8937 {
8938 /* Ignore this ___XA parallel type, as it does not bring any
8939 useful information. This allows us to avoid creating fixed
8940 versions of the array's index types, which would be identical
8941 to the original ones. This, in turn, can also help avoid
8942 the creation of fixed versions of the array itself. */
8943 index_type_desc = NULL;
8944 }
8945
8946 if (index_type_desc == NULL)
8947 {
8948 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8949
8950 /* NOTE: elt_type---the fixed version of elt_type0---should never
8951 depend on the contents of the array in properly constructed
8952 debugging data. */
8953 /* Create a fixed version of the array element type.
8954 We're not providing the address of an element here,
8955 and thus the actual object value cannot be inspected to do
8956 the conversion. This should not be a problem, since arrays of
8957 unconstrained objects are not allowed. In particular, all
8958 the elements of an array of a tagged type should all be of
8959 the same type specified in the debugging info. No need to
8960 consult the object tag. */
8961 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8962
8963 /* Make sure we always create a new array type when dealing with
8964 packed array types, since we're going to fix-up the array
8965 type length and element bitsize a little further down. */
8966 if (elt_type0 == elt_type && !constrained_packed_array_p)
8967 result = type0;
8968 else
8969 result = create_array_type (alloc_type_copy (type0),
8970 elt_type, TYPE_INDEX_TYPE (type0));
8971 }
8972 else
8973 {
8974 int i;
8975 struct type *elt_type0;
8976
8977 elt_type0 = type0;
8978 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8979 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8980
8981 /* NOTE: result---the fixed version of elt_type0---should never
8982 depend on the contents of the array in properly constructed
8983 debugging data. */
8984 /* Create a fixed version of the array element type.
8985 We're not providing the address of an element here,
8986 and thus the actual object value cannot be inspected to do
8987 the conversion. This should not be a problem, since arrays of
8988 unconstrained objects are not allowed. In particular, all
8989 the elements of an array of a tagged type should all be of
8990 the same type specified in the debugging info. No need to
8991 consult the object tag. */
8992 result =
8993 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8994
8995 elt_type0 = type0;
8996 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8997 {
8998 struct type *range_type =
8999 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
9000
9001 result = create_array_type (alloc_type_copy (elt_type0),
9002 result, range_type);
9003 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
9004 }
9005 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
9006 error (_("array type with dynamic size is larger than varsize-limit"));
9007 }
9008
9009 /* We want to preserve the type name. This can be useful when
9010 trying to get the type name of a value that has already been
9011 printed (for instance, if the user did "print VAR; whatis $". */
9012 TYPE_NAME (result) = TYPE_NAME (type0);
9013
9014 if (constrained_packed_array_p)
9015 {
9016 /* So far, the resulting type has been created as if the original
9017 type was a regular (non-packed) array type. As a result, the
9018 bitsize of the array elements needs to be set again, and the array
9019 length needs to be recomputed based on that bitsize. */
9020 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
9021 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
9022
9023 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
9024 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
9025 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
9026 TYPE_LENGTH (result)++;
9027 }
9028
9029 TYPE_FIXED_INSTANCE (result) = 1;
9030 return result;
9031 }
9032
9033
9034 /* A standard type (containing no dynamically sized components)
9035 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9036 DVAL describes a record containing any discriminants used in TYPE0,
9037 and may be NULL if there are none, or if the object of type TYPE at
9038 ADDRESS or in VALADDR contains these discriminants.
9039
9040 If CHECK_TAG is not null, in the case of tagged types, this function
9041 attempts to locate the object's tag and use it to compute the actual
9042 type. However, when ADDRESS is null, we cannot use it to determine the
9043 location of the tag, and therefore compute the tagged type's actual type.
9044 So we return the tagged type without consulting the tag. */
9045
9046 static struct type *
9047 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9048 CORE_ADDR address, struct value *dval, int check_tag)
9049 {
9050 type = ada_check_typedef (type);
9051 switch (TYPE_CODE (type))
9052 {
9053 default:
9054 return type;
9055 case TYPE_CODE_STRUCT:
9056 {
9057 struct type *static_type = to_static_fixed_type (type);
9058 struct type *fixed_record_type =
9059 to_fixed_record_type (type, valaddr, address, NULL);
9060
9061 /* If STATIC_TYPE is a tagged type and we know the object's address,
9062 then we can determine its tag, and compute the object's actual
9063 type from there. Note that we have to use the fixed record
9064 type (the parent part of the record may have dynamic fields
9065 and the way the location of _tag is expressed may depend on
9066 them). */
9067
9068 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9069 {
9070 struct value *tag =
9071 value_tag_from_contents_and_address
9072 (fixed_record_type,
9073 valaddr,
9074 address);
9075 struct type *real_type = type_from_tag (tag);
9076 struct value *obj =
9077 value_from_contents_and_address (fixed_record_type,
9078 valaddr,
9079 address);
9080 fixed_record_type = value_type (obj);
9081 if (real_type != NULL)
9082 return to_fixed_record_type
9083 (real_type, NULL,
9084 value_address (ada_tag_value_at_base_address (obj)), NULL);
9085 }
9086
9087 /* Check to see if there is a parallel ___XVZ variable.
9088 If there is, then it provides the actual size of our type. */
9089 else if (ada_type_name (fixed_record_type) != NULL)
9090 {
9091 const char *name = ada_type_name (fixed_record_type);
9092 char *xvz_name
9093 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9094 bool xvz_found = false;
9095 LONGEST size;
9096
9097 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9098 TRY
9099 {
9100 xvz_found = get_int_var_value (xvz_name, size);
9101 }
9102 CATCH (except, RETURN_MASK_ERROR)
9103 {
9104 /* We found the variable, but somehow failed to read
9105 its value. Rethrow the same error, but with a little
9106 bit more information, to help the user understand
9107 what went wrong (Eg: the variable might have been
9108 optimized out). */
9109 throw_error (except.error,
9110 _("unable to read value of %s (%s)"),
9111 xvz_name, except.message);
9112 }
9113 END_CATCH
9114
9115 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9116 {
9117 fixed_record_type = copy_type (fixed_record_type);
9118 TYPE_LENGTH (fixed_record_type) = size;
9119
9120 /* The FIXED_RECORD_TYPE may have be a stub. We have
9121 observed this when the debugging info is STABS, and
9122 apparently it is something that is hard to fix.
9123
9124 In practice, we don't need the actual type definition
9125 at all, because the presence of the XVZ variable allows us
9126 to assume that there must be a XVS type as well, which we
9127 should be able to use later, when we need the actual type
9128 definition.
9129
9130 In the meantime, pretend that the "fixed" type we are
9131 returning is NOT a stub, because this can cause trouble
9132 when using this type to create new types targeting it.
9133 Indeed, the associated creation routines often check
9134 whether the target type is a stub and will try to replace
9135 it, thus using a type with the wrong size. This, in turn,
9136 might cause the new type to have the wrong size too.
9137 Consider the case of an array, for instance, where the size
9138 of the array is computed from the number of elements in
9139 our array multiplied by the size of its element. */
9140 TYPE_STUB (fixed_record_type) = 0;
9141 }
9142 }
9143 return fixed_record_type;
9144 }
9145 case TYPE_CODE_ARRAY:
9146 return to_fixed_array_type (type, dval, 1);
9147 case TYPE_CODE_UNION:
9148 if (dval == NULL)
9149 return type;
9150 else
9151 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9152 }
9153 }
9154
9155 /* The same as ada_to_fixed_type_1, except that it preserves the type
9156 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9157
9158 The typedef layer needs be preserved in order to differentiate between
9159 arrays and array pointers when both types are implemented using the same
9160 fat pointer. In the array pointer case, the pointer is encoded as
9161 a typedef of the pointer type. For instance, considering:
9162
9163 type String_Access is access String;
9164 S1 : String_Access := null;
9165
9166 To the debugger, S1 is defined as a typedef of type String. But
9167 to the user, it is a pointer. So if the user tries to print S1,
9168 we should not dereference the array, but print the array address
9169 instead.
9170
9171 If we didn't preserve the typedef layer, we would lose the fact that
9172 the type is to be presented as a pointer (needs de-reference before
9173 being printed). And we would also use the source-level type name. */
9174
9175 struct type *
9176 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9177 CORE_ADDR address, struct value *dval, int check_tag)
9178
9179 {
9180 struct type *fixed_type =
9181 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9182
9183 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9184 then preserve the typedef layer.
9185
9186 Implementation note: We can only check the main-type portion of
9187 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9188 from TYPE now returns a type that has the same instance flags
9189 as TYPE. For instance, if TYPE is a "typedef const", and its
9190 target type is a "struct", then the typedef elimination will return
9191 a "const" version of the target type. See check_typedef for more
9192 details about how the typedef layer elimination is done.
9193
9194 brobecker/2010-11-19: It seems to me that the only case where it is
9195 useful to preserve the typedef layer is when dealing with fat pointers.
9196 Perhaps, we could add a check for that and preserve the typedef layer
9197 only in that situation. But this seems unecessary so far, probably
9198 because we call check_typedef/ada_check_typedef pretty much everywhere.
9199 */
9200 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9201 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9202 == TYPE_MAIN_TYPE (fixed_type)))
9203 return type;
9204
9205 return fixed_type;
9206 }
9207
9208 /* A standard (static-sized) type corresponding as well as possible to
9209 TYPE0, but based on no runtime data. */
9210
9211 static struct type *
9212 to_static_fixed_type (struct type *type0)
9213 {
9214 struct type *type;
9215
9216 if (type0 == NULL)
9217 return NULL;
9218
9219 if (TYPE_FIXED_INSTANCE (type0))
9220 return type0;
9221
9222 type0 = ada_check_typedef (type0);
9223
9224 switch (TYPE_CODE (type0))
9225 {
9226 default:
9227 return type0;
9228 case TYPE_CODE_STRUCT:
9229 type = dynamic_template_type (type0);
9230 if (type != NULL)
9231 return template_to_static_fixed_type (type);
9232 else
9233 return template_to_static_fixed_type (type0);
9234 case TYPE_CODE_UNION:
9235 type = ada_find_parallel_type (type0, "___XVU");
9236 if (type != NULL)
9237 return template_to_static_fixed_type (type);
9238 else
9239 return template_to_static_fixed_type (type0);
9240 }
9241 }
9242
9243 /* A static approximation of TYPE with all type wrappers removed. */
9244
9245 static struct type *
9246 static_unwrap_type (struct type *type)
9247 {
9248 if (ada_is_aligner_type (type))
9249 {
9250 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9251 if (ada_type_name (type1) == NULL)
9252 TYPE_NAME (type1) = ada_type_name (type);
9253
9254 return static_unwrap_type (type1);
9255 }
9256 else
9257 {
9258 struct type *raw_real_type = ada_get_base_type (type);
9259
9260 if (raw_real_type == type)
9261 return type;
9262 else
9263 return to_static_fixed_type (raw_real_type);
9264 }
9265 }
9266
9267 /* In some cases, incomplete and private types require
9268 cross-references that are not resolved as records (for example,
9269 type Foo;
9270 type FooP is access Foo;
9271 V: FooP;
9272 type Foo is array ...;
9273 ). In these cases, since there is no mechanism for producing
9274 cross-references to such types, we instead substitute for FooP a
9275 stub enumeration type that is nowhere resolved, and whose tag is
9276 the name of the actual type. Call these types "non-record stubs". */
9277
9278 /* A type equivalent to TYPE that is not a non-record stub, if one
9279 exists, otherwise TYPE. */
9280
9281 struct type *
9282 ada_check_typedef (struct type *type)
9283 {
9284 if (type == NULL)
9285 return NULL;
9286
9287 /* If our type is an access to an unconstrained array, which is encoded
9288 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9289 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9290 what allows us to distinguish between fat pointers that represent
9291 array types, and fat pointers that represent array access types
9292 (in both cases, the compiler implements them as fat pointers). */
9293 if (ada_is_access_to_unconstrained_array (type))
9294 return type;
9295
9296 type = check_typedef (type);
9297 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9298 || !TYPE_STUB (type)
9299 || TYPE_NAME (type) == NULL)
9300 return type;
9301 else
9302 {
9303 const char *name = TYPE_NAME (type);
9304 struct type *type1 = ada_find_any_type (name);
9305
9306 if (type1 == NULL)
9307 return type;
9308
9309 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9310 stubs pointing to arrays, as we don't create symbols for array
9311 types, only for the typedef-to-array types). If that's the case,
9312 strip the typedef layer. */
9313 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9314 type1 = ada_check_typedef (type1);
9315
9316 return type1;
9317 }
9318 }
9319
9320 /* A value representing the data at VALADDR/ADDRESS as described by
9321 type TYPE0, but with a standard (static-sized) type that correctly
9322 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9323 type, then return VAL0 [this feature is simply to avoid redundant
9324 creation of struct values]. */
9325
9326 static struct value *
9327 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9328 struct value *val0)
9329 {
9330 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9331
9332 if (type == type0 && val0 != NULL)
9333 return val0;
9334
9335 if (VALUE_LVAL (val0) != lval_memory)
9336 {
9337 /* Our value does not live in memory; it could be a convenience
9338 variable, for instance. Create a not_lval value using val0's
9339 contents. */
9340 return value_from_contents (type, value_contents (val0));
9341 }
9342
9343 return value_from_contents_and_address (type, 0, address);
9344 }
9345
9346 /* A value representing VAL, but with a standard (static-sized) type
9347 that correctly describes it. Does not necessarily create a new
9348 value. */
9349
9350 struct value *
9351 ada_to_fixed_value (struct value *val)
9352 {
9353 val = unwrap_value (val);
9354 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9355 return val;
9356 }
9357 \f
9358
9359 /* Attributes */
9360
9361 /* Table mapping attribute numbers to names.
9362 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9363
9364 static const char *attribute_names[] = {
9365 "<?>",
9366
9367 "first",
9368 "last",
9369 "length",
9370 "image",
9371 "max",
9372 "min",
9373 "modulus",
9374 "pos",
9375 "size",
9376 "tag",
9377 "val",
9378 0
9379 };
9380
9381 const char *
9382 ada_attribute_name (enum exp_opcode n)
9383 {
9384 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9385 return attribute_names[n - OP_ATR_FIRST + 1];
9386 else
9387 return attribute_names[0];
9388 }
9389
9390 /* Evaluate the 'POS attribute applied to ARG. */
9391
9392 static LONGEST
9393 pos_atr (struct value *arg)
9394 {
9395 struct value *val = coerce_ref (arg);
9396 struct type *type = value_type (val);
9397 LONGEST result;
9398
9399 if (!discrete_type_p (type))
9400 error (_("'POS only defined on discrete types"));
9401
9402 if (!discrete_position (type, value_as_long (val), &result))
9403 error (_("enumeration value is invalid: can't find 'POS"));
9404
9405 return result;
9406 }
9407
9408 static struct value *
9409 value_pos_atr (struct type *type, struct value *arg)
9410 {
9411 return value_from_longest (type, pos_atr (arg));
9412 }
9413
9414 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9415
9416 static struct value *
9417 value_val_atr (struct type *type, struct value *arg)
9418 {
9419 if (!discrete_type_p (type))
9420 error (_("'VAL only defined on discrete types"));
9421 if (!integer_type_p (value_type (arg)))
9422 error (_("'VAL requires integral argument"));
9423
9424 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9425 {
9426 long pos = value_as_long (arg);
9427
9428 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9429 error (_("argument to 'VAL out of range"));
9430 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9431 }
9432 else
9433 return value_from_longest (type, value_as_long (arg));
9434 }
9435 \f
9436
9437 /* Evaluation */
9438
9439 /* True if TYPE appears to be an Ada character type.
9440 [At the moment, this is true only for Character and Wide_Character;
9441 It is a heuristic test that could stand improvement]. */
9442
9443 int
9444 ada_is_character_type (struct type *type)
9445 {
9446 const char *name;
9447
9448 /* If the type code says it's a character, then assume it really is,
9449 and don't check any further. */
9450 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9451 return 1;
9452
9453 /* Otherwise, assume it's a character type iff it is a discrete type
9454 with a known character type name. */
9455 name = ada_type_name (type);
9456 return (name != NULL
9457 && (TYPE_CODE (type) == TYPE_CODE_INT
9458 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9459 && (strcmp (name, "character") == 0
9460 || strcmp (name, "wide_character") == 0
9461 || strcmp (name, "wide_wide_character") == 0
9462 || strcmp (name, "unsigned char") == 0));
9463 }
9464
9465 /* True if TYPE appears to be an Ada string type. */
9466
9467 int
9468 ada_is_string_type (struct type *type)
9469 {
9470 type = ada_check_typedef (type);
9471 if (type != NULL
9472 && TYPE_CODE (type) != TYPE_CODE_PTR
9473 && (ada_is_simple_array_type (type)
9474 || ada_is_array_descriptor_type (type))
9475 && ada_array_arity (type) == 1)
9476 {
9477 struct type *elttype = ada_array_element_type (type, 1);
9478
9479 return ada_is_character_type (elttype);
9480 }
9481 else
9482 return 0;
9483 }
9484
9485 /* The compiler sometimes provides a parallel XVS type for a given
9486 PAD type. Normally, it is safe to follow the PAD type directly,
9487 but older versions of the compiler have a bug that causes the offset
9488 of its "F" field to be wrong. Following that field in that case
9489 would lead to incorrect results, but this can be worked around
9490 by ignoring the PAD type and using the associated XVS type instead.
9491
9492 Set to True if the debugger should trust the contents of PAD types.
9493 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9494 static int trust_pad_over_xvs = 1;
9495
9496 /* True if TYPE is a struct type introduced by the compiler to force the
9497 alignment of a value. Such types have a single field with a
9498 distinctive name. */
9499
9500 int
9501 ada_is_aligner_type (struct type *type)
9502 {
9503 type = ada_check_typedef (type);
9504
9505 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9506 return 0;
9507
9508 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9509 && TYPE_NFIELDS (type) == 1
9510 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9511 }
9512
9513 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9514 the parallel type. */
9515
9516 struct type *
9517 ada_get_base_type (struct type *raw_type)
9518 {
9519 struct type *real_type_namer;
9520 struct type *raw_real_type;
9521
9522 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9523 return raw_type;
9524
9525 if (ada_is_aligner_type (raw_type))
9526 /* The encoding specifies that we should always use the aligner type.
9527 So, even if this aligner type has an associated XVS type, we should
9528 simply ignore it.
9529
9530 According to the compiler gurus, an XVS type parallel to an aligner
9531 type may exist because of a stabs limitation. In stabs, aligner
9532 types are empty because the field has a variable-sized type, and
9533 thus cannot actually be used as an aligner type. As a result,
9534 we need the associated parallel XVS type to decode the type.
9535 Since the policy in the compiler is to not change the internal
9536 representation based on the debugging info format, we sometimes
9537 end up having a redundant XVS type parallel to the aligner type. */
9538 return raw_type;
9539
9540 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9541 if (real_type_namer == NULL
9542 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9543 || TYPE_NFIELDS (real_type_namer) != 1)
9544 return raw_type;
9545
9546 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9547 {
9548 /* This is an older encoding form where the base type needs to be
9549 looked up by name. We prefer the newer enconding because it is
9550 more efficient. */
9551 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9552 if (raw_real_type == NULL)
9553 return raw_type;
9554 else
9555 return raw_real_type;
9556 }
9557
9558 /* The field in our XVS type is a reference to the base type. */
9559 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9560 }
9561
9562 /* The type of value designated by TYPE, with all aligners removed. */
9563
9564 struct type *
9565 ada_aligned_type (struct type *type)
9566 {
9567 if (ada_is_aligner_type (type))
9568 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9569 else
9570 return ada_get_base_type (type);
9571 }
9572
9573
9574 /* The address of the aligned value in an object at address VALADDR
9575 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9576
9577 const gdb_byte *
9578 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9579 {
9580 if (ada_is_aligner_type (type))
9581 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9582 valaddr +
9583 TYPE_FIELD_BITPOS (type,
9584 0) / TARGET_CHAR_BIT);
9585 else
9586 return valaddr;
9587 }
9588
9589
9590
9591 /* The printed representation of an enumeration literal with encoded
9592 name NAME. The value is good to the next call of ada_enum_name. */
9593 const char *
9594 ada_enum_name (const char *name)
9595 {
9596 static char *result;
9597 static size_t result_len = 0;
9598 const char *tmp;
9599
9600 /* First, unqualify the enumeration name:
9601 1. Search for the last '.' character. If we find one, then skip
9602 all the preceding characters, the unqualified name starts
9603 right after that dot.
9604 2. Otherwise, we may be debugging on a target where the compiler
9605 translates dots into "__". Search forward for double underscores,
9606 but stop searching when we hit an overloading suffix, which is
9607 of the form "__" followed by digits. */
9608
9609 tmp = strrchr (name, '.');
9610 if (tmp != NULL)
9611 name = tmp + 1;
9612 else
9613 {
9614 while ((tmp = strstr (name, "__")) != NULL)
9615 {
9616 if (isdigit (tmp[2]))
9617 break;
9618 else
9619 name = tmp + 2;
9620 }
9621 }
9622
9623 if (name[0] == 'Q')
9624 {
9625 int v;
9626
9627 if (name[1] == 'U' || name[1] == 'W')
9628 {
9629 if (sscanf (name + 2, "%x", &v) != 1)
9630 return name;
9631 }
9632 else
9633 return name;
9634
9635 GROW_VECT (result, result_len, 16);
9636 if (isascii (v) && isprint (v))
9637 xsnprintf (result, result_len, "'%c'", v);
9638 else if (name[1] == 'U')
9639 xsnprintf (result, result_len, "[\"%02x\"]", v);
9640 else
9641 xsnprintf (result, result_len, "[\"%04x\"]", v);
9642
9643 return result;
9644 }
9645 else
9646 {
9647 tmp = strstr (name, "__");
9648 if (tmp == NULL)
9649 tmp = strstr (name, "$");
9650 if (tmp != NULL)
9651 {
9652 GROW_VECT (result, result_len, tmp - name + 1);
9653 strncpy (result, name, tmp - name);
9654 result[tmp - name] = '\0';
9655 return result;
9656 }
9657
9658 return name;
9659 }
9660 }
9661
9662 /* Evaluate the subexpression of EXP starting at *POS as for
9663 evaluate_type, updating *POS to point just past the evaluated
9664 expression. */
9665
9666 static struct value *
9667 evaluate_subexp_type (struct expression *exp, int *pos)
9668 {
9669 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9670 }
9671
9672 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9673 value it wraps. */
9674
9675 static struct value *
9676 unwrap_value (struct value *val)
9677 {
9678 struct type *type = ada_check_typedef (value_type (val));
9679
9680 if (ada_is_aligner_type (type))
9681 {
9682 struct value *v = ada_value_struct_elt (val, "F", 0);
9683 struct type *val_type = ada_check_typedef (value_type (v));
9684
9685 if (ada_type_name (val_type) == NULL)
9686 TYPE_NAME (val_type) = ada_type_name (type);
9687
9688 return unwrap_value (v);
9689 }
9690 else
9691 {
9692 struct type *raw_real_type =
9693 ada_check_typedef (ada_get_base_type (type));
9694
9695 /* If there is no parallel XVS or XVE type, then the value is
9696 already unwrapped. Return it without further modification. */
9697 if ((type == raw_real_type)
9698 && ada_find_parallel_type (type, "___XVE") == NULL)
9699 return val;
9700
9701 return
9702 coerce_unspec_val_to_type
9703 (val, ada_to_fixed_type (raw_real_type, 0,
9704 value_address (val),
9705 NULL, 1));
9706 }
9707 }
9708
9709 static struct value *
9710 cast_from_fixed (struct type *type, struct value *arg)
9711 {
9712 struct value *scale = ada_scaling_factor (value_type (arg));
9713 arg = value_cast (value_type (scale), arg);
9714
9715 arg = value_binop (arg, scale, BINOP_MUL);
9716 return value_cast (type, arg);
9717 }
9718
9719 static struct value *
9720 cast_to_fixed (struct type *type, struct value *arg)
9721 {
9722 if (type == value_type (arg))
9723 return arg;
9724
9725 struct value *scale = ada_scaling_factor (type);
9726 if (ada_is_fixed_point_type (value_type (arg)))
9727 arg = cast_from_fixed (value_type (scale), arg);
9728 else
9729 arg = value_cast (value_type (scale), arg);
9730
9731 arg = value_binop (arg, scale, BINOP_DIV);
9732 return value_cast (type, arg);
9733 }
9734
9735 /* Given two array types T1 and T2, return nonzero iff both arrays
9736 contain the same number of elements. */
9737
9738 static int
9739 ada_same_array_size_p (struct type *t1, struct type *t2)
9740 {
9741 LONGEST lo1, hi1, lo2, hi2;
9742
9743 /* Get the array bounds in order to verify that the size of
9744 the two arrays match. */
9745 if (!get_array_bounds (t1, &lo1, &hi1)
9746 || !get_array_bounds (t2, &lo2, &hi2))
9747 error (_("unable to determine array bounds"));
9748
9749 /* To make things easier for size comparison, normalize a bit
9750 the case of empty arrays by making sure that the difference
9751 between upper bound and lower bound is always -1. */
9752 if (lo1 > hi1)
9753 hi1 = lo1 - 1;
9754 if (lo2 > hi2)
9755 hi2 = lo2 - 1;
9756
9757 return (hi1 - lo1 == hi2 - lo2);
9758 }
9759
9760 /* Assuming that VAL is an array of integrals, and TYPE represents
9761 an array with the same number of elements, but with wider integral
9762 elements, return an array "casted" to TYPE. In practice, this
9763 means that the returned array is built by casting each element
9764 of the original array into TYPE's (wider) element type. */
9765
9766 static struct value *
9767 ada_promote_array_of_integrals (struct type *type, struct value *val)
9768 {
9769 struct type *elt_type = TYPE_TARGET_TYPE (type);
9770 LONGEST lo, hi;
9771 struct value *res;
9772 LONGEST i;
9773
9774 /* Verify that both val and type are arrays of scalars, and
9775 that the size of val's elements is smaller than the size
9776 of type's element. */
9777 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9778 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9779 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9780 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9781 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9782 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9783
9784 if (!get_array_bounds (type, &lo, &hi))
9785 error (_("unable to determine array bounds"));
9786
9787 res = allocate_value (type);
9788
9789 /* Promote each array element. */
9790 for (i = 0; i < hi - lo + 1; i++)
9791 {
9792 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9793
9794 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9795 value_contents_all (elt), TYPE_LENGTH (elt_type));
9796 }
9797
9798 return res;
9799 }
9800
9801 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9802 return the converted value. */
9803
9804 static struct value *
9805 coerce_for_assign (struct type *type, struct value *val)
9806 {
9807 struct type *type2 = value_type (val);
9808
9809 if (type == type2)
9810 return val;
9811
9812 type2 = ada_check_typedef (type2);
9813 type = ada_check_typedef (type);
9814
9815 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9816 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9817 {
9818 val = ada_value_ind (val);
9819 type2 = value_type (val);
9820 }
9821
9822 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9823 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9824 {
9825 if (!ada_same_array_size_p (type, type2))
9826 error (_("cannot assign arrays of different length"));
9827
9828 if (is_integral_type (TYPE_TARGET_TYPE (type))
9829 && is_integral_type (TYPE_TARGET_TYPE (type2))
9830 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9831 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9832 {
9833 /* Allow implicit promotion of the array elements to
9834 a wider type. */
9835 return ada_promote_array_of_integrals (type, val);
9836 }
9837
9838 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9839 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9840 error (_("Incompatible types in assignment"));
9841 deprecated_set_value_type (val, type);
9842 }
9843 return val;
9844 }
9845
9846 static struct value *
9847 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9848 {
9849 struct value *val;
9850 struct type *type1, *type2;
9851 LONGEST v, v1, v2;
9852
9853 arg1 = coerce_ref (arg1);
9854 arg2 = coerce_ref (arg2);
9855 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9856 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9857
9858 if (TYPE_CODE (type1) != TYPE_CODE_INT
9859 || TYPE_CODE (type2) != TYPE_CODE_INT)
9860 return value_binop (arg1, arg2, op);
9861
9862 switch (op)
9863 {
9864 case BINOP_MOD:
9865 case BINOP_DIV:
9866 case BINOP_REM:
9867 break;
9868 default:
9869 return value_binop (arg1, arg2, op);
9870 }
9871
9872 v2 = value_as_long (arg2);
9873 if (v2 == 0)
9874 error (_("second operand of %s must not be zero."), op_string (op));
9875
9876 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9877 return value_binop (arg1, arg2, op);
9878
9879 v1 = value_as_long (arg1);
9880 switch (op)
9881 {
9882 case BINOP_DIV:
9883 v = v1 / v2;
9884 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9885 v += v > 0 ? -1 : 1;
9886 break;
9887 case BINOP_REM:
9888 v = v1 % v2;
9889 if (v * v1 < 0)
9890 v -= v2;
9891 break;
9892 default:
9893 /* Should not reach this point. */
9894 v = 0;
9895 }
9896
9897 val = allocate_value (type1);
9898 store_unsigned_integer (value_contents_raw (val),
9899 TYPE_LENGTH (value_type (val)),
9900 gdbarch_byte_order (get_type_arch (type1)), v);
9901 return val;
9902 }
9903
9904 static int
9905 ada_value_equal (struct value *arg1, struct value *arg2)
9906 {
9907 if (ada_is_direct_array_type (value_type (arg1))
9908 || ada_is_direct_array_type (value_type (arg2)))
9909 {
9910 struct type *arg1_type, *arg2_type;
9911
9912 /* Automatically dereference any array reference before
9913 we attempt to perform the comparison. */
9914 arg1 = ada_coerce_ref (arg1);
9915 arg2 = ada_coerce_ref (arg2);
9916
9917 arg1 = ada_coerce_to_simple_array (arg1);
9918 arg2 = ada_coerce_to_simple_array (arg2);
9919
9920 arg1_type = ada_check_typedef (value_type (arg1));
9921 arg2_type = ada_check_typedef (value_type (arg2));
9922
9923 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9924 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9925 error (_("Attempt to compare array with non-array"));
9926 /* FIXME: The following works only for types whose
9927 representations use all bits (no padding or undefined bits)
9928 and do not have user-defined equality. */
9929 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9930 && memcmp (value_contents (arg1), value_contents (arg2),
9931 TYPE_LENGTH (arg1_type)) == 0);
9932 }
9933 return value_equal (arg1, arg2);
9934 }
9935
9936 /* Total number of component associations in the aggregate starting at
9937 index PC in EXP. Assumes that index PC is the start of an
9938 OP_AGGREGATE. */
9939
9940 static int
9941 num_component_specs (struct expression *exp, int pc)
9942 {
9943 int n, m, i;
9944
9945 m = exp->elts[pc + 1].longconst;
9946 pc += 3;
9947 n = 0;
9948 for (i = 0; i < m; i += 1)
9949 {
9950 switch (exp->elts[pc].opcode)
9951 {
9952 default:
9953 n += 1;
9954 break;
9955 case OP_CHOICES:
9956 n += exp->elts[pc + 1].longconst;
9957 break;
9958 }
9959 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9960 }
9961 return n;
9962 }
9963
9964 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9965 component of LHS (a simple array or a record), updating *POS past
9966 the expression, assuming that LHS is contained in CONTAINER. Does
9967 not modify the inferior's memory, nor does it modify LHS (unless
9968 LHS == CONTAINER). */
9969
9970 static void
9971 assign_component (struct value *container, struct value *lhs, LONGEST index,
9972 struct expression *exp, int *pos)
9973 {
9974 struct value *mark = value_mark ();
9975 struct value *elt;
9976 struct type *lhs_type = check_typedef (value_type (lhs));
9977
9978 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9979 {
9980 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9981 struct value *index_val = value_from_longest (index_type, index);
9982
9983 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9984 }
9985 else
9986 {
9987 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9988 elt = ada_to_fixed_value (elt);
9989 }
9990
9991 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9992 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9993 else
9994 value_assign_to_component (container, elt,
9995 ada_evaluate_subexp (NULL, exp, pos,
9996 EVAL_NORMAL));
9997
9998 value_free_to_mark (mark);
9999 }
10000
10001 /* Assuming that LHS represents an lvalue having a record or array
10002 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
10003 of that aggregate's value to LHS, advancing *POS past the
10004 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
10005 lvalue containing LHS (possibly LHS itself). Does not modify
10006 the inferior's memory, nor does it modify the contents of
10007 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
10008
10009 static struct value *
10010 assign_aggregate (struct value *container,
10011 struct value *lhs, struct expression *exp,
10012 int *pos, enum noside noside)
10013 {
10014 struct type *lhs_type;
10015 int n = exp->elts[*pos+1].longconst;
10016 LONGEST low_index, high_index;
10017 int num_specs;
10018 LONGEST *indices;
10019 int max_indices, num_indices;
10020 int i;
10021
10022 *pos += 3;
10023 if (noside != EVAL_NORMAL)
10024 {
10025 for (i = 0; i < n; i += 1)
10026 ada_evaluate_subexp (NULL, exp, pos, noside);
10027 return container;
10028 }
10029
10030 container = ada_coerce_ref (container);
10031 if (ada_is_direct_array_type (value_type (container)))
10032 container = ada_coerce_to_simple_array (container);
10033 lhs = ada_coerce_ref (lhs);
10034 if (!deprecated_value_modifiable (lhs))
10035 error (_("Left operand of assignment is not a modifiable lvalue."));
10036
10037 lhs_type = check_typedef (value_type (lhs));
10038 if (ada_is_direct_array_type (lhs_type))
10039 {
10040 lhs = ada_coerce_to_simple_array (lhs);
10041 lhs_type = check_typedef (value_type (lhs));
10042 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10043 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
10044 }
10045 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10046 {
10047 low_index = 0;
10048 high_index = num_visible_fields (lhs_type) - 1;
10049 }
10050 else
10051 error (_("Left-hand side must be array or record."));
10052
10053 num_specs = num_component_specs (exp, *pos - 3);
10054 max_indices = 4 * num_specs + 4;
10055 indices = XALLOCAVEC (LONGEST, max_indices);
10056 indices[0] = indices[1] = low_index - 1;
10057 indices[2] = indices[3] = high_index + 1;
10058 num_indices = 4;
10059
10060 for (i = 0; i < n; i += 1)
10061 {
10062 switch (exp->elts[*pos].opcode)
10063 {
10064 case OP_CHOICES:
10065 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10066 &num_indices, max_indices,
10067 low_index, high_index);
10068 break;
10069 case OP_POSITIONAL:
10070 aggregate_assign_positional (container, lhs, exp, pos, indices,
10071 &num_indices, max_indices,
10072 low_index, high_index);
10073 break;
10074 case OP_OTHERS:
10075 if (i != n-1)
10076 error (_("Misplaced 'others' clause"));
10077 aggregate_assign_others (container, lhs, exp, pos, indices,
10078 num_indices, low_index, high_index);
10079 break;
10080 default:
10081 error (_("Internal error: bad aggregate clause"));
10082 }
10083 }
10084
10085 return container;
10086 }
10087
10088 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10089 construct at *POS, updating *POS past the construct, given that
10090 the positions are relative to lower bound LOW, where HIGH is the
10091 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10092 updating *NUM_INDICES as needed. CONTAINER is as for
10093 assign_aggregate. */
10094 static void
10095 aggregate_assign_positional (struct value *container,
10096 struct value *lhs, struct expression *exp,
10097 int *pos, LONGEST *indices, int *num_indices,
10098 int max_indices, LONGEST low, LONGEST high)
10099 {
10100 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10101
10102 if (ind - 1 == high)
10103 warning (_("Extra components in aggregate ignored."));
10104 if (ind <= high)
10105 {
10106 add_component_interval (ind, ind, indices, num_indices, max_indices);
10107 *pos += 3;
10108 assign_component (container, lhs, ind, exp, pos);
10109 }
10110 else
10111 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10112 }
10113
10114 /* Assign into the components of LHS indexed by the OP_CHOICES
10115 construct at *POS, updating *POS past the construct, given that
10116 the allowable indices are LOW..HIGH. Record the indices assigned
10117 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10118 needed. CONTAINER is as for assign_aggregate. */
10119 static void
10120 aggregate_assign_from_choices (struct value *container,
10121 struct value *lhs, struct expression *exp,
10122 int *pos, LONGEST *indices, int *num_indices,
10123 int max_indices, LONGEST low, LONGEST high)
10124 {
10125 int j;
10126 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10127 int choice_pos, expr_pc;
10128 int is_array = ada_is_direct_array_type (value_type (lhs));
10129
10130 choice_pos = *pos += 3;
10131
10132 for (j = 0; j < n_choices; j += 1)
10133 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10134 expr_pc = *pos;
10135 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10136
10137 for (j = 0; j < n_choices; j += 1)
10138 {
10139 LONGEST lower, upper;
10140 enum exp_opcode op = exp->elts[choice_pos].opcode;
10141
10142 if (op == OP_DISCRETE_RANGE)
10143 {
10144 choice_pos += 1;
10145 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10146 EVAL_NORMAL));
10147 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10148 EVAL_NORMAL));
10149 }
10150 else if (is_array)
10151 {
10152 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10153 EVAL_NORMAL));
10154 upper = lower;
10155 }
10156 else
10157 {
10158 int ind;
10159 const char *name;
10160
10161 switch (op)
10162 {
10163 case OP_NAME:
10164 name = &exp->elts[choice_pos + 2].string;
10165 break;
10166 case OP_VAR_VALUE:
10167 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10168 break;
10169 default:
10170 error (_("Invalid record component association."));
10171 }
10172 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10173 ind = 0;
10174 if (! find_struct_field (name, value_type (lhs), 0,
10175 NULL, NULL, NULL, NULL, &ind))
10176 error (_("Unknown component name: %s."), name);
10177 lower = upper = ind;
10178 }
10179
10180 if (lower <= upper && (lower < low || upper > high))
10181 error (_("Index in component association out of bounds."));
10182
10183 add_component_interval (lower, upper, indices, num_indices,
10184 max_indices);
10185 while (lower <= upper)
10186 {
10187 int pos1;
10188
10189 pos1 = expr_pc;
10190 assign_component (container, lhs, lower, exp, &pos1);
10191 lower += 1;
10192 }
10193 }
10194 }
10195
10196 /* Assign the value of the expression in the OP_OTHERS construct in
10197 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10198 have not been previously assigned. The index intervals already assigned
10199 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10200 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10201 static void
10202 aggregate_assign_others (struct value *container,
10203 struct value *lhs, struct expression *exp,
10204 int *pos, LONGEST *indices, int num_indices,
10205 LONGEST low, LONGEST high)
10206 {
10207 int i;
10208 int expr_pc = *pos + 1;
10209
10210 for (i = 0; i < num_indices - 2; i += 2)
10211 {
10212 LONGEST ind;
10213
10214 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10215 {
10216 int localpos;
10217
10218 localpos = expr_pc;
10219 assign_component (container, lhs, ind, exp, &localpos);
10220 }
10221 }
10222 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10223 }
10224
10225 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10226 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10227 modifying *SIZE as needed. It is an error if *SIZE exceeds
10228 MAX_SIZE. The resulting intervals do not overlap. */
10229 static void
10230 add_component_interval (LONGEST low, LONGEST high,
10231 LONGEST* indices, int *size, int max_size)
10232 {
10233 int i, j;
10234
10235 for (i = 0; i < *size; i += 2) {
10236 if (high >= indices[i] && low <= indices[i + 1])
10237 {
10238 int kh;
10239
10240 for (kh = i + 2; kh < *size; kh += 2)
10241 if (high < indices[kh])
10242 break;
10243 if (low < indices[i])
10244 indices[i] = low;
10245 indices[i + 1] = indices[kh - 1];
10246 if (high > indices[i + 1])
10247 indices[i + 1] = high;
10248 memcpy (indices + i + 2, indices + kh, *size - kh);
10249 *size -= kh - i - 2;
10250 return;
10251 }
10252 else if (high < indices[i])
10253 break;
10254 }
10255
10256 if (*size == max_size)
10257 error (_("Internal error: miscounted aggregate components."));
10258 *size += 2;
10259 for (j = *size-1; j >= i+2; j -= 1)
10260 indices[j] = indices[j - 2];
10261 indices[i] = low;
10262 indices[i + 1] = high;
10263 }
10264
10265 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10266 is different. */
10267
10268 static struct value *
10269 ada_value_cast (struct type *type, struct value *arg2)
10270 {
10271 if (type == ada_check_typedef (value_type (arg2)))
10272 return arg2;
10273
10274 if (ada_is_fixed_point_type (type))
10275 return cast_to_fixed (type, arg2);
10276
10277 if (ada_is_fixed_point_type (value_type (arg2)))
10278 return cast_from_fixed (type, arg2);
10279
10280 return value_cast (type, arg2);
10281 }
10282
10283 /* Evaluating Ada expressions, and printing their result.
10284 ------------------------------------------------------
10285
10286 1. Introduction:
10287 ----------------
10288
10289 We usually evaluate an Ada expression in order to print its value.
10290 We also evaluate an expression in order to print its type, which
10291 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10292 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10293 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10294 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10295 similar.
10296
10297 Evaluating expressions is a little more complicated for Ada entities
10298 than it is for entities in languages such as C. The main reason for
10299 this is that Ada provides types whose definition might be dynamic.
10300 One example of such types is variant records. Or another example
10301 would be an array whose bounds can only be known at run time.
10302
10303 The following description is a general guide as to what should be
10304 done (and what should NOT be done) in order to evaluate an expression
10305 involving such types, and when. This does not cover how the semantic
10306 information is encoded by GNAT as this is covered separatly. For the
10307 document used as the reference for the GNAT encoding, see exp_dbug.ads
10308 in the GNAT sources.
10309
10310 Ideally, we should embed each part of this description next to its
10311 associated code. Unfortunately, the amount of code is so vast right
10312 now that it's hard to see whether the code handling a particular
10313 situation might be duplicated or not. One day, when the code is
10314 cleaned up, this guide might become redundant with the comments
10315 inserted in the code, and we might want to remove it.
10316
10317 2. ``Fixing'' an Entity, the Simple Case:
10318 -----------------------------------------
10319
10320 When evaluating Ada expressions, the tricky issue is that they may
10321 reference entities whose type contents and size are not statically
10322 known. Consider for instance a variant record:
10323
10324 type Rec (Empty : Boolean := True) is record
10325 case Empty is
10326 when True => null;
10327 when False => Value : Integer;
10328 end case;
10329 end record;
10330 Yes : Rec := (Empty => False, Value => 1);
10331 No : Rec := (empty => True);
10332
10333 The size and contents of that record depends on the value of the
10334 descriminant (Rec.Empty). At this point, neither the debugging
10335 information nor the associated type structure in GDB are able to
10336 express such dynamic types. So what the debugger does is to create
10337 "fixed" versions of the type that applies to the specific object.
10338 We also informally refer to this opperation as "fixing" an object,
10339 which means creating its associated fixed type.
10340
10341 Example: when printing the value of variable "Yes" above, its fixed
10342 type would look like this:
10343
10344 type Rec is record
10345 Empty : Boolean;
10346 Value : Integer;
10347 end record;
10348
10349 On the other hand, if we printed the value of "No", its fixed type
10350 would become:
10351
10352 type Rec is record
10353 Empty : Boolean;
10354 end record;
10355
10356 Things become a little more complicated when trying to fix an entity
10357 with a dynamic type that directly contains another dynamic type,
10358 such as an array of variant records, for instance. There are
10359 two possible cases: Arrays, and records.
10360
10361 3. ``Fixing'' Arrays:
10362 ---------------------
10363
10364 The type structure in GDB describes an array in terms of its bounds,
10365 and the type of its elements. By design, all elements in the array
10366 have the same type and we cannot represent an array of variant elements
10367 using the current type structure in GDB. When fixing an array,
10368 we cannot fix the array element, as we would potentially need one
10369 fixed type per element of the array. As a result, the best we can do
10370 when fixing an array is to produce an array whose bounds and size
10371 are correct (allowing us to read it from memory), but without having
10372 touched its element type. Fixing each element will be done later,
10373 when (if) necessary.
10374
10375 Arrays are a little simpler to handle than records, because the same
10376 amount of memory is allocated for each element of the array, even if
10377 the amount of space actually used by each element differs from element
10378 to element. Consider for instance the following array of type Rec:
10379
10380 type Rec_Array is array (1 .. 2) of Rec;
10381
10382 The actual amount of memory occupied by each element might be different
10383 from element to element, depending on the value of their discriminant.
10384 But the amount of space reserved for each element in the array remains
10385 fixed regardless. So we simply need to compute that size using
10386 the debugging information available, from which we can then determine
10387 the array size (we multiply the number of elements of the array by
10388 the size of each element).
10389
10390 The simplest case is when we have an array of a constrained element
10391 type. For instance, consider the following type declarations:
10392
10393 type Bounded_String (Max_Size : Integer) is
10394 Length : Integer;
10395 Buffer : String (1 .. Max_Size);
10396 end record;
10397 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10398
10399 In this case, the compiler describes the array as an array of
10400 variable-size elements (identified by its XVS suffix) for which
10401 the size can be read in the parallel XVZ variable.
10402
10403 In the case of an array of an unconstrained element type, the compiler
10404 wraps the array element inside a private PAD type. This type should not
10405 be shown to the user, and must be "unwrap"'ed before printing. Note
10406 that we also use the adjective "aligner" in our code to designate
10407 these wrapper types.
10408
10409 In some cases, the size allocated for each element is statically
10410 known. In that case, the PAD type already has the correct size,
10411 and the array element should remain unfixed.
10412
10413 But there are cases when this size is not statically known.
10414 For instance, assuming that "Five" is an integer variable:
10415
10416 type Dynamic is array (1 .. Five) of Integer;
10417 type Wrapper (Has_Length : Boolean := False) is record
10418 Data : Dynamic;
10419 case Has_Length is
10420 when True => Length : Integer;
10421 when False => null;
10422 end case;
10423 end record;
10424 type Wrapper_Array is array (1 .. 2) of Wrapper;
10425
10426 Hello : Wrapper_Array := (others => (Has_Length => True,
10427 Data => (others => 17),
10428 Length => 1));
10429
10430
10431 The debugging info would describe variable Hello as being an
10432 array of a PAD type. The size of that PAD type is not statically
10433 known, but can be determined using a parallel XVZ variable.
10434 In that case, a copy of the PAD type with the correct size should
10435 be used for the fixed array.
10436
10437 3. ``Fixing'' record type objects:
10438 ----------------------------------
10439
10440 Things are slightly different from arrays in the case of dynamic
10441 record types. In this case, in order to compute the associated
10442 fixed type, we need to determine the size and offset of each of
10443 its components. This, in turn, requires us to compute the fixed
10444 type of each of these components.
10445
10446 Consider for instance the example:
10447
10448 type Bounded_String (Max_Size : Natural) is record
10449 Str : String (1 .. Max_Size);
10450 Length : Natural;
10451 end record;
10452 My_String : Bounded_String (Max_Size => 10);
10453
10454 In that case, the position of field "Length" depends on the size
10455 of field Str, which itself depends on the value of the Max_Size
10456 discriminant. In order to fix the type of variable My_String,
10457 we need to fix the type of field Str. Therefore, fixing a variant
10458 record requires us to fix each of its components.
10459
10460 However, if a component does not have a dynamic size, the component
10461 should not be fixed. In particular, fields that use a PAD type
10462 should not fixed. Here is an example where this might happen
10463 (assuming type Rec above):
10464
10465 type Container (Big : Boolean) is record
10466 First : Rec;
10467 After : Integer;
10468 case Big is
10469 when True => Another : Integer;
10470 when False => null;
10471 end case;
10472 end record;
10473 My_Container : Container := (Big => False,
10474 First => (Empty => True),
10475 After => 42);
10476
10477 In that example, the compiler creates a PAD type for component First,
10478 whose size is constant, and then positions the component After just
10479 right after it. The offset of component After is therefore constant
10480 in this case.
10481
10482 The debugger computes the position of each field based on an algorithm
10483 that uses, among other things, the actual position and size of the field
10484 preceding it. Let's now imagine that the user is trying to print
10485 the value of My_Container. If the type fixing was recursive, we would
10486 end up computing the offset of field After based on the size of the
10487 fixed version of field First. And since in our example First has
10488 only one actual field, the size of the fixed type is actually smaller
10489 than the amount of space allocated to that field, and thus we would
10490 compute the wrong offset of field After.
10491
10492 To make things more complicated, we need to watch out for dynamic
10493 components of variant records (identified by the ___XVL suffix in
10494 the component name). Even if the target type is a PAD type, the size
10495 of that type might not be statically known. So the PAD type needs
10496 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10497 we might end up with the wrong size for our component. This can be
10498 observed with the following type declarations:
10499
10500 type Octal is new Integer range 0 .. 7;
10501 type Octal_Array is array (Positive range <>) of Octal;
10502 pragma Pack (Octal_Array);
10503
10504 type Octal_Buffer (Size : Positive) is record
10505 Buffer : Octal_Array (1 .. Size);
10506 Length : Integer;
10507 end record;
10508
10509 In that case, Buffer is a PAD type whose size is unset and needs
10510 to be computed by fixing the unwrapped type.
10511
10512 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10513 ----------------------------------------------------------
10514
10515 Lastly, when should the sub-elements of an entity that remained unfixed
10516 thus far, be actually fixed?
10517
10518 The answer is: Only when referencing that element. For instance
10519 when selecting one component of a record, this specific component
10520 should be fixed at that point in time. Or when printing the value
10521 of a record, each component should be fixed before its value gets
10522 printed. Similarly for arrays, the element of the array should be
10523 fixed when printing each element of the array, or when extracting
10524 one element out of that array. On the other hand, fixing should
10525 not be performed on the elements when taking a slice of an array!
10526
10527 Note that one of the side effects of miscomputing the offset and
10528 size of each field is that we end up also miscomputing the size
10529 of the containing type. This can have adverse results when computing
10530 the value of an entity. GDB fetches the value of an entity based
10531 on the size of its type, and thus a wrong size causes GDB to fetch
10532 the wrong amount of memory. In the case where the computed size is
10533 too small, GDB fetches too little data to print the value of our
10534 entity. Results in this case are unpredictable, as we usually read
10535 past the buffer containing the data =:-o. */
10536
10537 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10538 for that subexpression cast to TO_TYPE. Advance *POS over the
10539 subexpression. */
10540
10541 static value *
10542 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10543 enum noside noside, struct type *to_type)
10544 {
10545 int pc = *pos;
10546
10547 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10548 || exp->elts[pc].opcode == OP_VAR_VALUE)
10549 {
10550 (*pos) += 4;
10551
10552 value *val;
10553 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10554 {
10555 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10556 return value_zero (to_type, not_lval);
10557
10558 val = evaluate_var_msym_value (noside,
10559 exp->elts[pc + 1].objfile,
10560 exp->elts[pc + 2].msymbol);
10561 }
10562 else
10563 val = evaluate_var_value (noside,
10564 exp->elts[pc + 1].block,
10565 exp->elts[pc + 2].symbol);
10566
10567 if (noside == EVAL_SKIP)
10568 return eval_skip_value (exp);
10569
10570 val = ada_value_cast (to_type, val);
10571
10572 /* Follow the Ada language semantics that do not allow taking
10573 an address of the result of a cast (view conversion in Ada). */
10574 if (VALUE_LVAL (val) == lval_memory)
10575 {
10576 if (value_lazy (val))
10577 value_fetch_lazy (val);
10578 VALUE_LVAL (val) = not_lval;
10579 }
10580 return val;
10581 }
10582
10583 value *val = evaluate_subexp (to_type, exp, pos, noside);
10584 if (noside == EVAL_SKIP)
10585 return eval_skip_value (exp);
10586 return ada_value_cast (to_type, val);
10587 }
10588
10589 /* Implement the evaluate_exp routine in the exp_descriptor structure
10590 for the Ada language. */
10591
10592 static struct value *
10593 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10594 int *pos, enum noside noside)
10595 {
10596 enum exp_opcode op;
10597 int tem;
10598 int pc;
10599 int preeval_pos;
10600 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10601 struct type *type;
10602 int nargs, oplen;
10603 struct value **argvec;
10604
10605 pc = *pos;
10606 *pos += 1;
10607 op = exp->elts[pc].opcode;
10608
10609 switch (op)
10610 {
10611 default:
10612 *pos -= 1;
10613 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10614
10615 if (noside == EVAL_NORMAL)
10616 arg1 = unwrap_value (arg1);
10617
10618 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10619 then we need to perform the conversion manually, because
10620 evaluate_subexp_standard doesn't do it. This conversion is
10621 necessary in Ada because the different kinds of float/fixed
10622 types in Ada have different representations.
10623
10624 Similarly, we need to perform the conversion from OP_LONG
10625 ourselves. */
10626 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10627 arg1 = ada_value_cast (expect_type, arg1);
10628
10629 return arg1;
10630
10631 case OP_STRING:
10632 {
10633 struct value *result;
10634
10635 *pos -= 1;
10636 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10637 /* The result type will have code OP_STRING, bashed there from
10638 OP_ARRAY. Bash it back. */
10639 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10640 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10641 return result;
10642 }
10643
10644 case UNOP_CAST:
10645 (*pos) += 2;
10646 type = exp->elts[pc + 1].type;
10647 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10648
10649 case UNOP_QUAL:
10650 (*pos) += 2;
10651 type = exp->elts[pc + 1].type;
10652 return ada_evaluate_subexp (type, exp, pos, noside);
10653
10654 case BINOP_ASSIGN:
10655 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10656 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10657 {
10658 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10659 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10660 return arg1;
10661 return ada_value_assign (arg1, arg1);
10662 }
10663 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10664 except if the lhs of our assignment is a convenience variable.
10665 In the case of assigning to a convenience variable, the lhs
10666 should be exactly the result of the evaluation of the rhs. */
10667 type = value_type (arg1);
10668 if (VALUE_LVAL (arg1) == lval_internalvar)
10669 type = NULL;
10670 arg2 = evaluate_subexp (type, exp, pos, noside);
10671 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10672 return arg1;
10673 if (ada_is_fixed_point_type (value_type (arg1)))
10674 arg2 = cast_to_fixed (value_type (arg1), arg2);
10675 else if (ada_is_fixed_point_type (value_type (arg2)))
10676 error
10677 (_("Fixed-point values must be assigned to fixed-point variables"));
10678 else
10679 arg2 = coerce_for_assign (value_type (arg1), arg2);
10680 return ada_value_assign (arg1, arg2);
10681
10682 case BINOP_ADD:
10683 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10684 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10685 if (noside == EVAL_SKIP)
10686 goto nosideret;
10687 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10688 return (value_from_longest
10689 (value_type (arg1),
10690 value_as_long (arg1) + value_as_long (arg2)));
10691 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10692 return (value_from_longest
10693 (value_type (arg2),
10694 value_as_long (arg1) + value_as_long (arg2)));
10695 if ((ada_is_fixed_point_type (value_type (arg1))
10696 || ada_is_fixed_point_type (value_type (arg2)))
10697 && value_type (arg1) != value_type (arg2))
10698 error (_("Operands of fixed-point addition must have the same type"));
10699 /* Do the addition, and cast the result to the type of the first
10700 argument. We cannot cast the result to a reference type, so if
10701 ARG1 is a reference type, find its underlying type. */
10702 type = value_type (arg1);
10703 while (TYPE_CODE (type) == TYPE_CODE_REF)
10704 type = TYPE_TARGET_TYPE (type);
10705 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10706 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10707
10708 case BINOP_SUB:
10709 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10710 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10711 if (noside == EVAL_SKIP)
10712 goto nosideret;
10713 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10714 return (value_from_longest
10715 (value_type (arg1),
10716 value_as_long (arg1) - value_as_long (arg2)));
10717 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10718 return (value_from_longest
10719 (value_type (arg2),
10720 value_as_long (arg1) - value_as_long (arg2)));
10721 if ((ada_is_fixed_point_type (value_type (arg1))
10722 || ada_is_fixed_point_type (value_type (arg2)))
10723 && value_type (arg1) != value_type (arg2))
10724 error (_("Operands of fixed-point subtraction "
10725 "must have the same type"));
10726 /* Do the substraction, and cast the result to the type of the first
10727 argument. We cannot cast the result to a reference type, so if
10728 ARG1 is a reference type, find its underlying type. */
10729 type = value_type (arg1);
10730 while (TYPE_CODE (type) == TYPE_CODE_REF)
10731 type = TYPE_TARGET_TYPE (type);
10732 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10733 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10734
10735 case BINOP_MUL:
10736 case BINOP_DIV:
10737 case BINOP_REM:
10738 case BINOP_MOD:
10739 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10740 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10741 if (noside == EVAL_SKIP)
10742 goto nosideret;
10743 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10744 {
10745 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10746 return value_zero (value_type (arg1), not_lval);
10747 }
10748 else
10749 {
10750 type = builtin_type (exp->gdbarch)->builtin_double;
10751 if (ada_is_fixed_point_type (value_type (arg1)))
10752 arg1 = cast_from_fixed (type, arg1);
10753 if (ada_is_fixed_point_type (value_type (arg2)))
10754 arg2 = cast_from_fixed (type, arg2);
10755 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10756 return ada_value_binop (arg1, arg2, op);
10757 }
10758
10759 case BINOP_EQUAL:
10760 case BINOP_NOTEQUAL:
10761 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10762 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10763 if (noside == EVAL_SKIP)
10764 goto nosideret;
10765 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10766 tem = 0;
10767 else
10768 {
10769 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10770 tem = ada_value_equal (arg1, arg2);
10771 }
10772 if (op == BINOP_NOTEQUAL)
10773 tem = !tem;
10774 type = language_bool_type (exp->language_defn, exp->gdbarch);
10775 return value_from_longest (type, (LONGEST) tem);
10776
10777 case UNOP_NEG:
10778 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10779 if (noside == EVAL_SKIP)
10780 goto nosideret;
10781 else if (ada_is_fixed_point_type (value_type (arg1)))
10782 return value_cast (value_type (arg1), value_neg (arg1));
10783 else
10784 {
10785 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10786 return value_neg (arg1);
10787 }
10788
10789 case BINOP_LOGICAL_AND:
10790 case BINOP_LOGICAL_OR:
10791 case UNOP_LOGICAL_NOT:
10792 {
10793 struct value *val;
10794
10795 *pos -= 1;
10796 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10797 type = language_bool_type (exp->language_defn, exp->gdbarch);
10798 return value_cast (type, val);
10799 }
10800
10801 case BINOP_BITWISE_AND:
10802 case BINOP_BITWISE_IOR:
10803 case BINOP_BITWISE_XOR:
10804 {
10805 struct value *val;
10806
10807 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10808 *pos = pc;
10809 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10810
10811 return value_cast (value_type (arg1), val);
10812 }
10813
10814 case OP_VAR_VALUE:
10815 *pos -= 1;
10816
10817 if (noside == EVAL_SKIP)
10818 {
10819 *pos += 4;
10820 goto nosideret;
10821 }
10822
10823 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10824 /* Only encountered when an unresolved symbol occurs in a
10825 context other than a function call, in which case, it is
10826 invalid. */
10827 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10828 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10829
10830 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10831 {
10832 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10833 /* Check to see if this is a tagged type. We also need to handle
10834 the case where the type is a reference to a tagged type, but
10835 we have to be careful to exclude pointers to tagged types.
10836 The latter should be shown as usual (as a pointer), whereas
10837 a reference should mostly be transparent to the user. */
10838 if (ada_is_tagged_type (type, 0)
10839 || (TYPE_CODE (type) == TYPE_CODE_REF
10840 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10841 {
10842 /* Tagged types are a little special in the fact that the real
10843 type is dynamic and can only be determined by inspecting the
10844 object's tag. This means that we need to get the object's
10845 value first (EVAL_NORMAL) and then extract the actual object
10846 type from its tag.
10847
10848 Note that we cannot skip the final step where we extract
10849 the object type from its tag, because the EVAL_NORMAL phase
10850 results in dynamic components being resolved into fixed ones.
10851 This can cause problems when trying to print the type
10852 description of tagged types whose parent has a dynamic size:
10853 We use the type name of the "_parent" component in order
10854 to print the name of the ancestor type in the type description.
10855 If that component had a dynamic size, the resolution into
10856 a fixed type would result in the loss of that type name,
10857 thus preventing us from printing the name of the ancestor
10858 type in the type description. */
10859 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10860
10861 if (TYPE_CODE (type) != TYPE_CODE_REF)
10862 {
10863 struct type *actual_type;
10864
10865 actual_type = type_from_tag (ada_value_tag (arg1));
10866 if (actual_type == NULL)
10867 /* If, for some reason, we were unable to determine
10868 the actual type from the tag, then use the static
10869 approximation that we just computed as a fallback.
10870 This can happen if the debugging information is
10871 incomplete, for instance. */
10872 actual_type = type;
10873 return value_zero (actual_type, not_lval);
10874 }
10875 else
10876 {
10877 /* In the case of a ref, ada_coerce_ref takes care
10878 of determining the actual type. But the evaluation
10879 should return a ref as it should be valid to ask
10880 for its address; so rebuild a ref after coerce. */
10881 arg1 = ada_coerce_ref (arg1);
10882 return value_ref (arg1, TYPE_CODE_REF);
10883 }
10884 }
10885
10886 /* Records and unions for which GNAT encodings have been
10887 generated need to be statically fixed as well.
10888 Otherwise, non-static fixing produces a type where
10889 all dynamic properties are removed, which prevents "ptype"
10890 from being able to completely describe the type.
10891 For instance, a case statement in a variant record would be
10892 replaced by the relevant components based on the actual
10893 value of the discriminants. */
10894 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10895 && dynamic_template_type (type) != NULL)
10896 || (TYPE_CODE (type) == TYPE_CODE_UNION
10897 && ada_find_parallel_type (type, "___XVU") != NULL))
10898 {
10899 *pos += 4;
10900 return value_zero (to_static_fixed_type (type), not_lval);
10901 }
10902 }
10903
10904 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10905 return ada_to_fixed_value (arg1);
10906
10907 case OP_FUNCALL:
10908 (*pos) += 2;
10909
10910 /* Allocate arg vector, including space for the function to be
10911 called in argvec[0] and a terminating NULL. */
10912 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10913 argvec = XALLOCAVEC (struct value *, nargs + 2);
10914
10915 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10916 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10917 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10918 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10919 else
10920 {
10921 for (tem = 0; tem <= nargs; tem += 1)
10922 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10923 argvec[tem] = 0;
10924
10925 if (noside == EVAL_SKIP)
10926 goto nosideret;
10927 }
10928
10929 if (ada_is_constrained_packed_array_type
10930 (desc_base_type (value_type (argvec[0]))))
10931 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10932 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10933 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10934 /* This is a packed array that has already been fixed, and
10935 therefore already coerced to a simple array. Nothing further
10936 to do. */
10937 ;
10938 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10939 {
10940 /* Make sure we dereference references so that all the code below
10941 feels like it's really handling the referenced value. Wrapping
10942 types (for alignment) may be there, so make sure we strip them as
10943 well. */
10944 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10945 }
10946 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10947 && VALUE_LVAL (argvec[0]) == lval_memory)
10948 argvec[0] = value_addr (argvec[0]);
10949
10950 type = ada_check_typedef (value_type (argvec[0]));
10951
10952 /* Ada allows us to implicitly dereference arrays when subscripting
10953 them. So, if this is an array typedef (encoding use for array
10954 access types encoded as fat pointers), strip it now. */
10955 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10956 type = ada_typedef_target_type (type);
10957
10958 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10959 {
10960 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10961 {
10962 case TYPE_CODE_FUNC:
10963 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10964 break;
10965 case TYPE_CODE_ARRAY:
10966 break;
10967 case TYPE_CODE_STRUCT:
10968 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10969 argvec[0] = ada_value_ind (argvec[0]);
10970 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10971 break;
10972 default:
10973 error (_("cannot subscript or call something of type `%s'"),
10974 ada_type_name (value_type (argvec[0])));
10975 break;
10976 }
10977 }
10978
10979 switch (TYPE_CODE (type))
10980 {
10981 case TYPE_CODE_FUNC:
10982 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10983 {
10984 if (TYPE_TARGET_TYPE (type) == NULL)
10985 error_call_unknown_return_type (NULL);
10986 return allocate_value (TYPE_TARGET_TYPE (type));
10987 }
10988 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10989 case TYPE_CODE_INTERNAL_FUNCTION:
10990 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10991 /* We don't know anything about what the internal
10992 function might return, but we have to return
10993 something. */
10994 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10995 not_lval);
10996 else
10997 return call_internal_function (exp->gdbarch, exp->language_defn,
10998 argvec[0], nargs, argvec + 1);
10999
11000 case TYPE_CODE_STRUCT:
11001 {
11002 int arity;
11003
11004 arity = ada_array_arity (type);
11005 type = ada_array_element_type (type, nargs);
11006 if (type == NULL)
11007 error (_("cannot subscript or call a record"));
11008 if (arity != nargs)
11009 error (_("wrong number of subscripts; expecting %d"), arity);
11010 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11011 return value_zero (ada_aligned_type (type), lval_memory);
11012 return
11013 unwrap_value (ada_value_subscript
11014 (argvec[0], nargs, argvec + 1));
11015 }
11016 case TYPE_CODE_ARRAY:
11017 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11018 {
11019 type = ada_array_element_type (type, nargs);
11020 if (type == NULL)
11021 error (_("element type of array unknown"));
11022 else
11023 return value_zero (ada_aligned_type (type), lval_memory);
11024 }
11025 return
11026 unwrap_value (ada_value_subscript
11027 (ada_coerce_to_simple_array (argvec[0]),
11028 nargs, argvec + 1));
11029 case TYPE_CODE_PTR: /* Pointer to array */
11030 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11031 {
11032 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
11033 type = ada_array_element_type (type, nargs);
11034 if (type == NULL)
11035 error (_("element type of array unknown"));
11036 else
11037 return value_zero (ada_aligned_type (type), lval_memory);
11038 }
11039 return
11040 unwrap_value (ada_value_ptr_subscript (argvec[0],
11041 nargs, argvec + 1));
11042
11043 default:
11044 error (_("Attempt to index or call something other than an "
11045 "array or function"));
11046 }
11047
11048 case TERNOP_SLICE:
11049 {
11050 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11051 struct value *low_bound_val =
11052 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11053 struct value *high_bound_val =
11054 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11055 LONGEST low_bound;
11056 LONGEST high_bound;
11057
11058 low_bound_val = coerce_ref (low_bound_val);
11059 high_bound_val = coerce_ref (high_bound_val);
11060 low_bound = value_as_long (low_bound_val);
11061 high_bound = value_as_long (high_bound_val);
11062
11063 if (noside == EVAL_SKIP)
11064 goto nosideret;
11065
11066 /* If this is a reference to an aligner type, then remove all
11067 the aligners. */
11068 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11069 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11070 TYPE_TARGET_TYPE (value_type (array)) =
11071 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11072
11073 if (ada_is_constrained_packed_array_type (value_type (array)))
11074 error (_("cannot slice a packed array"));
11075
11076 /* If this is a reference to an array or an array lvalue,
11077 convert to a pointer. */
11078 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11079 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11080 && VALUE_LVAL (array) == lval_memory))
11081 array = value_addr (array);
11082
11083 if (noside == EVAL_AVOID_SIDE_EFFECTS
11084 && ada_is_array_descriptor_type (ada_check_typedef
11085 (value_type (array))))
11086 return empty_array (ada_type_of_array (array, 0), low_bound);
11087
11088 array = ada_coerce_to_simple_array_ptr (array);
11089
11090 /* If we have more than one level of pointer indirection,
11091 dereference the value until we get only one level. */
11092 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11093 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11094 == TYPE_CODE_PTR))
11095 array = value_ind (array);
11096
11097 /* Make sure we really do have an array type before going further,
11098 to avoid a SEGV when trying to get the index type or the target
11099 type later down the road if the debug info generated by
11100 the compiler is incorrect or incomplete. */
11101 if (!ada_is_simple_array_type (value_type (array)))
11102 error (_("cannot take slice of non-array"));
11103
11104 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11105 == TYPE_CODE_PTR)
11106 {
11107 struct type *type0 = ada_check_typedef (value_type (array));
11108
11109 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11110 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11111 else
11112 {
11113 struct type *arr_type0 =
11114 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11115
11116 return ada_value_slice_from_ptr (array, arr_type0,
11117 longest_to_int (low_bound),
11118 longest_to_int (high_bound));
11119 }
11120 }
11121 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11122 return array;
11123 else if (high_bound < low_bound)
11124 return empty_array (value_type (array), low_bound);
11125 else
11126 return ada_value_slice (array, longest_to_int (low_bound),
11127 longest_to_int (high_bound));
11128 }
11129
11130 case UNOP_IN_RANGE:
11131 (*pos) += 2;
11132 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11133 type = check_typedef (exp->elts[pc + 1].type);
11134
11135 if (noside == EVAL_SKIP)
11136 goto nosideret;
11137
11138 switch (TYPE_CODE (type))
11139 {
11140 default:
11141 lim_warning (_("Membership test incompletely implemented; "
11142 "always returns true"));
11143 type = language_bool_type (exp->language_defn, exp->gdbarch);
11144 return value_from_longest (type, (LONGEST) 1);
11145
11146 case TYPE_CODE_RANGE:
11147 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11148 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11149 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11150 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11151 type = language_bool_type (exp->language_defn, exp->gdbarch);
11152 return
11153 value_from_longest (type,
11154 (value_less (arg1, arg3)
11155 || value_equal (arg1, arg3))
11156 && (value_less (arg2, arg1)
11157 || value_equal (arg2, arg1)));
11158 }
11159
11160 case BINOP_IN_BOUNDS:
11161 (*pos) += 2;
11162 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11163 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11164
11165 if (noside == EVAL_SKIP)
11166 goto nosideret;
11167
11168 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11169 {
11170 type = language_bool_type (exp->language_defn, exp->gdbarch);
11171 return value_zero (type, not_lval);
11172 }
11173
11174 tem = longest_to_int (exp->elts[pc + 1].longconst);
11175
11176 type = ada_index_type (value_type (arg2), tem, "range");
11177 if (!type)
11178 type = value_type (arg1);
11179
11180 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11181 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11182
11183 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11184 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11185 type = language_bool_type (exp->language_defn, exp->gdbarch);
11186 return
11187 value_from_longest (type,
11188 (value_less (arg1, arg3)
11189 || value_equal (arg1, arg3))
11190 && (value_less (arg2, arg1)
11191 || value_equal (arg2, arg1)));
11192
11193 case TERNOP_IN_RANGE:
11194 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11195 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11196 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11197
11198 if (noside == EVAL_SKIP)
11199 goto nosideret;
11200
11201 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11202 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11203 type = language_bool_type (exp->language_defn, exp->gdbarch);
11204 return
11205 value_from_longest (type,
11206 (value_less (arg1, arg3)
11207 || value_equal (arg1, arg3))
11208 && (value_less (arg2, arg1)
11209 || value_equal (arg2, arg1)));
11210
11211 case OP_ATR_FIRST:
11212 case OP_ATR_LAST:
11213 case OP_ATR_LENGTH:
11214 {
11215 struct type *type_arg;
11216
11217 if (exp->elts[*pos].opcode == OP_TYPE)
11218 {
11219 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11220 arg1 = NULL;
11221 type_arg = check_typedef (exp->elts[pc + 2].type);
11222 }
11223 else
11224 {
11225 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11226 type_arg = NULL;
11227 }
11228
11229 if (exp->elts[*pos].opcode != OP_LONG)
11230 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11231 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11232 *pos += 4;
11233
11234 if (noside == EVAL_SKIP)
11235 goto nosideret;
11236
11237 if (type_arg == NULL)
11238 {
11239 arg1 = ada_coerce_ref (arg1);
11240
11241 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11242 arg1 = ada_coerce_to_simple_array (arg1);
11243
11244 if (op == OP_ATR_LENGTH)
11245 type = builtin_type (exp->gdbarch)->builtin_int;
11246 else
11247 {
11248 type = ada_index_type (value_type (arg1), tem,
11249 ada_attribute_name (op));
11250 if (type == NULL)
11251 type = builtin_type (exp->gdbarch)->builtin_int;
11252 }
11253
11254 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11255 return allocate_value (type);
11256
11257 switch (op)
11258 {
11259 default: /* Should never happen. */
11260 error (_("unexpected attribute encountered"));
11261 case OP_ATR_FIRST:
11262 return value_from_longest
11263 (type, ada_array_bound (arg1, tem, 0));
11264 case OP_ATR_LAST:
11265 return value_from_longest
11266 (type, ada_array_bound (arg1, tem, 1));
11267 case OP_ATR_LENGTH:
11268 return value_from_longest
11269 (type, ada_array_length (arg1, tem));
11270 }
11271 }
11272 else if (discrete_type_p (type_arg))
11273 {
11274 struct type *range_type;
11275 const char *name = ada_type_name (type_arg);
11276
11277 range_type = NULL;
11278 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11279 range_type = to_fixed_range_type (type_arg, NULL);
11280 if (range_type == NULL)
11281 range_type = type_arg;
11282 switch (op)
11283 {
11284 default:
11285 error (_("unexpected attribute encountered"));
11286 case OP_ATR_FIRST:
11287 return value_from_longest
11288 (range_type, ada_discrete_type_low_bound (range_type));
11289 case OP_ATR_LAST:
11290 return value_from_longest
11291 (range_type, ada_discrete_type_high_bound (range_type));
11292 case OP_ATR_LENGTH:
11293 error (_("the 'length attribute applies only to array types"));
11294 }
11295 }
11296 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11297 error (_("unimplemented type attribute"));
11298 else
11299 {
11300 LONGEST low, high;
11301
11302 if (ada_is_constrained_packed_array_type (type_arg))
11303 type_arg = decode_constrained_packed_array_type (type_arg);
11304
11305 if (op == OP_ATR_LENGTH)
11306 type = builtin_type (exp->gdbarch)->builtin_int;
11307 else
11308 {
11309 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11310 if (type == NULL)
11311 type = builtin_type (exp->gdbarch)->builtin_int;
11312 }
11313
11314 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11315 return allocate_value (type);
11316
11317 switch (op)
11318 {
11319 default:
11320 error (_("unexpected attribute encountered"));
11321 case OP_ATR_FIRST:
11322 low = ada_array_bound_from_type (type_arg, tem, 0);
11323 return value_from_longest (type, low);
11324 case OP_ATR_LAST:
11325 high = ada_array_bound_from_type (type_arg, tem, 1);
11326 return value_from_longest (type, high);
11327 case OP_ATR_LENGTH:
11328 low = ada_array_bound_from_type (type_arg, tem, 0);
11329 high = ada_array_bound_from_type (type_arg, tem, 1);
11330 return value_from_longest (type, high - low + 1);
11331 }
11332 }
11333 }
11334
11335 case OP_ATR_TAG:
11336 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11337 if (noside == EVAL_SKIP)
11338 goto nosideret;
11339
11340 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11341 return value_zero (ada_tag_type (arg1), not_lval);
11342
11343 return ada_value_tag (arg1);
11344
11345 case OP_ATR_MIN:
11346 case OP_ATR_MAX:
11347 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11348 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11349 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11350 if (noside == EVAL_SKIP)
11351 goto nosideret;
11352 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11353 return value_zero (value_type (arg1), not_lval);
11354 else
11355 {
11356 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11357 return value_binop (arg1, arg2,
11358 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11359 }
11360
11361 case OP_ATR_MODULUS:
11362 {
11363 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11364
11365 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11366 if (noside == EVAL_SKIP)
11367 goto nosideret;
11368
11369 if (!ada_is_modular_type (type_arg))
11370 error (_("'modulus must be applied to modular type"));
11371
11372 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11373 ada_modulus (type_arg));
11374 }
11375
11376
11377 case OP_ATR_POS:
11378 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11379 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11380 if (noside == EVAL_SKIP)
11381 goto nosideret;
11382 type = builtin_type (exp->gdbarch)->builtin_int;
11383 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11384 return value_zero (type, not_lval);
11385 else
11386 return value_pos_atr (type, arg1);
11387
11388 case OP_ATR_SIZE:
11389 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11390 type = value_type (arg1);
11391
11392 /* If the argument is a reference, then dereference its type, since
11393 the user is really asking for the size of the actual object,
11394 not the size of the pointer. */
11395 if (TYPE_CODE (type) == TYPE_CODE_REF)
11396 type = TYPE_TARGET_TYPE (type);
11397
11398 if (noside == EVAL_SKIP)
11399 goto nosideret;
11400 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11401 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11402 else
11403 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11404 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11405
11406 case OP_ATR_VAL:
11407 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11408 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11409 type = exp->elts[pc + 2].type;
11410 if (noside == EVAL_SKIP)
11411 goto nosideret;
11412 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11413 return value_zero (type, not_lval);
11414 else
11415 return value_val_atr (type, arg1);
11416
11417 case BINOP_EXP:
11418 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11419 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11420 if (noside == EVAL_SKIP)
11421 goto nosideret;
11422 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11423 return value_zero (value_type (arg1), not_lval);
11424 else
11425 {
11426 /* For integer exponentiation operations,
11427 only promote the first argument. */
11428 if (is_integral_type (value_type (arg2)))
11429 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11430 else
11431 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11432
11433 return value_binop (arg1, arg2, op);
11434 }
11435
11436 case UNOP_PLUS:
11437 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11438 if (noside == EVAL_SKIP)
11439 goto nosideret;
11440 else
11441 return arg1;
11442
11443 case UNOP_ABS:
11444 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11445 if (noside == EVAL_SKIP)
11446 goto nosideret;
11447 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11448 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11449 return value_neg (arg1);
11450 else
11451 return arg1;
11452
11453 case UNOP_IND:
11454 preeval_pos = *pos;
11455 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11456 if (noside == EVAL_SKIP)
11457 goto nosideret;
11458 type = ada_check_typedef (value_type (arg1));
11459 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11460 {
11461 if (ada_is_array_descriptor_type (type))
11462 /* GDB allows dereferencing GNAT array descriptors. */
11463 {
11464 struct type *arrType = ada_type_of_array (arg1, 0);
11465
11466 if (arrType == NULL)
11467 error (_("Attempt to dereference null array pointer."));
11468 return value_at_lazy (arrType, 0);
11469 }
11470 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11471 || TYPE_CODE (type) == TYPE_CODE_REF
11472 /* In C you can dereference an array to get the 1st elt. */
11473 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11474 {
11475 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11476 only be determined by inspecting the object's tag.
11477 This means that we need to evaluate completely the
11478 expression in order to get its type. */
11479
11480 if ((TYPE_CODE (type) == TYPE_CODE_REF
11481 || TYPE_CODE (type) == TYPE_CODE_PTR)
11482 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11483 {
11484 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11485 EVAL_NORMAL);
11486 type = value_type (ada_value_ind (arg1));
11487 }
11488 else
11489 {
11490 type = to_static_fixed_type
11491 (ada_aligned_type
11492 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11493 }
11494 ada_ensure_varsize_limit (type);
11495 return value_zero (type, lval_memory);
11496 }
11497 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11498 {
11499 /* GDB allows dereferencing an int. */
11500 if (expect_type == NULL)
11501 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11502 lval_memory);
11503 else
11504 {
11505 expect_type =
11506 to_static_fixed_type (ada_aligned_type (expect_type));
11507 return value_zero (expect_type, lval_memory);
11508 }
11509 }
11510 else
11511 error (_("Attempt to take contents of a non-pointer value."));
11512 }
11513 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11514 type = ada_check_typedef (value_type (arg1));
11515
11516 if (TYPE_CODE (type) == TYPE_CODE_INT)
11517 /* GDB allows dereferencing an int. If we were given
11518 the expect_type, then use that as the target type.
11519 Otherwise, assume that the target type is an int. */
11520 {
11521 if (expect_type != NULL)
11522 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11523 arg1));
11524 else
11525 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11526 (CORE_ADDR) value_as_address (arg1));
11527 }
11528
11529 if (ada_is_array_descriptor_type (type))
11530 /* GDB allows dereferencing GNAT array descriptors. */
11531 return ada_coerce_to_simple_array (arg1);
11532 else
11533 return ada_value_ind (arg1);
11534
11535 case STRUCTOP_STRUCT:
11536 tem = longest_to_int (exp->elts[pc + 1].longconst);
11537 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11538 preeval_pos = *pos;
11539 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11540 if (noside == EVAL_SKIP)
11541 goto nosideret;
11542 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11543 {
11544 struct type *type1 = value_type (arg1);
11545
11546 if (ada_is_tagged_type (type1, 1))
11547 {
11548 type = ada_lookup_struct_elt_type (type1,
11549 &exp->elts[pc + 2].string,
11550 1, 1);
11551
11552 /* If the field is not found, check if it exists in the
11553 extension of this object's type. This means that we
11554 need to evaluate completely the expression. */
11555
11556 if (type == NULL)
11557 {
11558 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11559 EVAL_NORMAL);
11560 arg1 = ada_value_struct_elt (arg1,
11561 &exp->elts[pc + 2].string,
11562 0);
11563 arg1 = unwrap_value (arg1);
11564 type = value_type (ada_to_fixed_value (arg1));
11565 }
11566 }
11567 else
11568 type =
11569 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11570 0);
11571
11572 return value_zero (ada_aligned_type (type), lval_memory);
11573 }
11574 else
11575 {
11576 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11577 arg1 = unwrap_value (arg1);
11578 return ada_to_fixed_value (arg1);
11579 }
11580
11581 case OP_TYPE:
11582 /* The value is not supposed to be used. This is here to make it
11583 easier to accommodate expressions that contain types. */
11584 (*pos) += 2;
11585 if (noside == EVAL_SKIP)
11586 goto nosideret;
11587 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11588 return allocate_value (exp->elts[pc + 1].type);
11589 else
11590 error (_("Attempt to use a type name as an expression"));
11591
11592 case OP_AGGREGATE:
11593 case OP_CHOICES:
11594 case OP_OTHERS:
11595 case OP_DISCRETE_RANGE:
11596 case OP_POSITIONAL:
11597 case OP_NAME:
11598 if (noside == EVAL_NORMAL)
11599 switch (op)
11600 {
11601 case OP_NAME:
11602 error (_("Undefined name, ambiguous name, or renaming used in "
11603 "component association: %s."), &exp->elts[pc+2].string);
11604 case OP_AGGREGATE:
11605 error (_("Aggregates only allowed on the right of an assignment"));
11606 default:
11607 internal_error (__FILE__, __LINE__,
11608 _("aggregate apparently mangled"));
11609 }
11610
11611 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11612 *pos += oplen - 1;
11613 for (tem = 0; tem < nargs; tem += 1)
11614 ada_evaluate_subexp (NULL, exp, pos, noside);
11615 goto nosideret;
11616 }
11617
11618 nosideret:
11619 return eval_skip_value (exp);
11620 }
11621 \f
11622
11623 /* Fixed point */
11624
11625 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11626 type name that encodes the 'small and 'delta information.
11627 Otherwise, return NULL. */
11628
11629 static const char *
11630 fixed_type_info (struct type *type)
11631 {
11632 const char *name = ada_type_name (type);
11633 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11634
11635 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11636 {
11637 const char *tail = strstr (name, "___XF_");
11638
11639 if (tail == NULL)
11640 return NULL;
11641 else
11642 return tail + 5;
11643 }
11644 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11645 return fixed_type_info (TYPE_TARGET_TYPE (type));
11646 else
11647 return NULL;
11648 }
11649
11650 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11651
11652 int
11653 ada_is_fixed_point_type (struct type *type)
11654 {
11655 return fixed_type_info (type) != NULL;
11656 }
11657
11658 /* Return non-zero iff TYPE represents a System.Address type. */
11659
11660 int
11661 ada_is_system_address_type (struct type *type)
11662 {
11663 return (TYPE_NAME (type)
11664 && strcmp (TYPE_NAME (type), "system__address") == 0);
11665 }
11666
11667 /* Assuming that TYPE is the representation of an Ada fixed-point
11668 type, return the target floating-point type to be used to represent
11669 of this type during internal computation. */
11670
11671 static struct type *
11672 ada_scaling_type (struct type *type)
11673 {
11674 return builtin_type (get_type_arch (type))->builtin_long_double;
11675 }
11676
11677 /* Assuming that TYPE is the representation of an Ada fixed-point
11678 type, return its delta, or NULL if the type is malformed and the
11679 delta cannot be determined. */
11680
11681 struct value *
11682 ada_delta (struct type *type)
11683 {
11684 const char *encoding = fixed_type_info (type);
11685 struct type *scale_type = ada_scaling_type (type);
11686
11687 long long num, den;
11688
11689 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11690 return nullptr;
11691 else
11692 return value_binop (value_from_longest (scale_type, num),
11693 value_from_longest (scale_type, den), BINOP_DIV);
11694 }
11695
11696 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11697 factor ('SMALL value) associated with the type. */
11698
11699 struct value *
11700 ada_scaling_factor (struct type *type)
11701 {
11702 const char *encoding = fixed_type_info (type);
11703 struct type *scale_type = ada_scaling_type (type);
11704
11705 long long num0, den0, num1, den1;
11706 int n;
11707
11708 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11709 &num0, &den0, &num1, &den1);
11710
11711 if (n < 2)
11712 return value_from_longest (scale_type, 1);
11713 else if (n == 4)
11714 return value_binop (value_from_longest (scale_type, num1),
11715 value_from_longest (scale_type, den1), BINOP_DIV);
11716 else
11717 return value_binop (value_from_longest (scale_type, num0),
11718 value_from_longest (scale_type, den0), BINOP_DIV);
11719 }
11720
11721 \f
11722
11723 /* Range types */
11724
11725 /* Scan STR beginning at position K for a discriminant name, and
11726 return the value of that discriminant field of DVAL in *PX. If
11727 PNEW_K is not null, put the position of the character beyond the
11728 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11729 not alter *PX and *PNEW_K if unsuccessful. */
11730
11731 static int
11732 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11733 int *pnew_k)
11734 {
11735 static char *bound_buffer = NULL;
11736 static size_t bound_buffer_len = 0;
11737 const char *pstart, *pend, *bound;
11738 struct value *bound_val;
11739
11740 if (dval == NULL || str == NULL || str[k] == '\0')
11741 return 0;
11742
11743 pstart = str + k;
11744 pend = strstr (pstart, "__");
11745 if (pend == NULL)
11746 {
11747 bound = pstart;
11748 k += strlen (bound);
11749 }
11750 else
11751 {
11752 int len = pend - pstart;
11753
11754 /* Strip __ and beyond. */
11755 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11756 strncpy (bound_buffer, pstart, len);
11757 bound_buffer[len] = '\0';
11758
11759 bound = bound_buffer;
11760 k = pend - str;
11761 }
11762
11763 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11764 if (bound_val == NULL)
11765 return 0;
11766
11767 *px = value_as_long (bound_val);
11768 if (pnew_k != NULL)
11769 *pnew_k = k;
11770 return 1;
11771 }
11772
11773 /* Value of variable named NAME in the current environment. If
11774 no such variable found, then if ERR_MSG is null, returns 0, and
11775 otherwise causes an error with message ERR_MSG. */
11776
11777 static struct value *
11778 get_var_value (const char *name, const char *err_msg)
11779 {
11780 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11781
11782 std::vector<struct block_symbol> syms;
11783 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11784 get_selected_block (0),
11785 VAR_DOMAIN, &syms, 1);
11786
11787 if (nsyms != 1)
11788 {
11789 if (err_msg == NULL)
11790 return 0;
11791 else
11792 error (("%s"), err_msg);
11793 }
11794
11795 return value_of_variable (syms[0].symbol, syms[0].block);
11796 }
11797
11798 /* Value of integer variable named NAME in the current environment.
11799 If no such variable is found, returns false. Otherwise, sets VALUE
11800 to the variable's value and returns true. */
11801
11802 bool
11803 get_int_var_value (const char *name, LONGEST &value)
11804 {
11805 struct value *var_val = get_var_value (name, 0);
11806
11807 if (var_val == 0)
11808 return false;
11809
11810 value = value_as_long (var_val);
11811 return true;
11812 }
11813
11814
11815 /* Return a range type whose base type is that of the range type named
11816 NAME in the current environment, and whose bounds are calculated
11817 from NAME according to the GNAT range encoding conventions.
11818 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11819 corresponding range type from debug information; fall back to using it
11820 if symbol lookup fails. If a new type must be created, allocate it
11821 like ORIG_TYPE was. The bounds information, in general, is encoded
11822 in NAME, the base type given in the named range type. */
11823
11824 static struct type *
11825 to_fixed_range_type (struct type *raw_type, struct value *dval)
11826 {
11827 const char *name;
11828 struct type *base_type;
11829 const char *subtype_info;
11830
11831 gdb_assert (raw_type != NULL);
11832 gdb_assert (TYPE_NAME (raw_type) != NULL);
11833
11834 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11835 base_type = TYPE_TARGET_TYPE (raw_type);
11836 else
11837 base_type = raw_type;
11838
11839 name = TYPE_NAME (raw_type);
11840 subtype_info = strstr (name, "___XD");
11841 if (subtype_info == NULL)
11842 {
11843 LONGEST L = ada_discrete_type_low_bound (raw_type);
11844 LONGEST U = ada_discrete_type_high_bound (raw_type);
11845
11846 if (L < INT_MIN || U > INT_MAX)
11847 return raw_type;
11848 else
11849 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11850 L, U);
11851 }
11852 else
11853 {
11854 static char *name_buf = NULL;
11855 static size_t name_len = 0;
11856 int prefix_len = subtype_info - name;
11857 LONGEST L, U;
11858 struct type *type;
11859 const char *bounds_str;
11860 int n;
11861
11862 GROW_VECT (name_buf, name_len, prefix_len + 5);
11863 strncpy (name_buf, name, prefix_len);
11864 name_buf[prefix_len] = '\0';
11865
11866 subtype_info += 5;
11867 bounds_str = strchr (subtype_info, '_');
11868 n = 1;
11869
11870 if (*subtype_info == 'L')
11871 {
11872 if (!ada_scan_number (bounds_str, n, &L, &n)
11873 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11874 return raw_type;
11875 if (bounds_str[n] == '_')
11876 n += 2;
11877 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11878 n += 1;
11879 subtype_info += 1;
11880 }
11881 else
11882 {
11883 strcpy (name_buf + prefix_len, "___L");
11884 if (!get_int_var_value (name_buf, L))
11885 {
11886 lim_warning (_("Unknown lower bound, using 1."));
11887 L = 1;
11888 }
11889 }
11890
11891 if (*subtype_info == 'U')
11892 {
11893 if (!ada_scan_number (bounds_str, n, &U, &n)
11894 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11895 return raw_type;
11896 }
11897 else
11898 {
11899 strcpy (name_buf + prefix_len, "___U");
11900 if (!get_int_var_value (name_buf, U))
11901 {
11902 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11903 U = L;
11904 }
11905 }
11906
11907 type = create_static_range_type (alloc_type_copy (raw_type),
11908 base_type, L, U);
11909 /* create_static_range_type alters the resulting type's length
11910 to match the size of the base_type, which is not what we want.
11911 Set it back to the original range type's length. */
11912 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11913 TYPE_NAME (type) = name;
11914 return type;
11915 }
11916 }
11917
11918 /* True iff NAME is the name of a range type. */
11919
11920 int
11921 ada_is_range_type_name (const char *name)
11922 {
11923 return (name != NULL && strstr (name, "___XD"));
11924 }
11925 \f
11926
11927 /* Modular types */
11928
11929 /* True iff TYPE is an Ada modular type. */
11930
11931 int
11932 ada_is_modular_type (struct type *type)
11933 {
11934 struct type *subranged_type = get_base_type (type);
11935
11936 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11937 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11938 && TYPE_UNSIGNED (subranged_type));
11939 }
11940
11941 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11942
11943 ULONGEST
11944 ada_modulus (struct type *type)
11945 {
11946 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11947 }
11948 \f
11949
11950 /* Ada exception catchpoint support:
11951 ---------------------------------
11952
11953 We support 3 kinds of exception catchpoints:
11954 . catchpoints on Ada exceptions
11955 . catchpoints on unhandled Ada exceptions
11956 . catchpoints on failed assertions
11957
11958 Exceptions raised during failed assertions, or unhandled exceptions
11959 could perfectly be caught with the general catchpoint on Ada exceptions.
11960 However, we can easily differentiate these two special cases, and having
11961 the option to distinguish these two cases from the rest can be useful
11962 to zero-in on certain situations.
11963
11964 Exception catchpoints are a specialized form of breakpoint,
11965 since they rely on inserting breakpoints inside known routines
11966 of the GNAT runtime. The implementation therefore uses a standard
11967 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11968 of breakpoint_ops.
11969
11970 Support in the runtime for exception catchpoints have been changed
11971 a few times already, and these changes affect the implementation
11972 of these catchpoints. In order to be able to support several
11973 variants of the runtime, we use a sniffer that will determine
11974 the runtime variant used by the program being debugged. */
11975
11976 /* Ada's standard exceptions.
11977
11978 The Ada 83 standard also defined Numeric_Error. But there so many
11979 situations where it was unclear from the Ada 83 Reference Manual
11980 (RM) whether Constraint_Error or Numeric_Error should be raised,
11981 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11982 Interpretation saying that anytime the RM says that Numeric_Error
11983 should be raised, the implementation may raise Constraint_Error.
11984 Ada 95 went one step further and pretty much removed Numeric_Error
11985 from the list of standard exceptions (it made it a renaming of
11986 Constraint_Error, to help preserve compatibility when compiling
11987 an Ada83 compiler). As such, we do not include Numeric_Error from
11988 this list of standard exceptions. */
11989
11990 static const char *standard_exc[] = {
11991 "constraint_error",
11992 "program_error",
11993 "storage_error",
11994 "tasking_error"
11995 };
11996
11997 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11998
11999 /* A structure that describes how to support exception catchpoints
12000 for a given executable. */
12001
12002 struct exception_support_info
12003 {
12004 /* The name of the symbol to break on in order to insert
12005 a catchpoint on exceptions. */
12006 const char *catch_exception_sym;
12007
12008 /* The name of the symbol to break on in order to insert
12009 a catchpoint on unhandled exceptions. */
12010 const char *catch_exception_unhandled_sym;
12011
12012 /* The name of the symbol to break on in order to insert
12013 a catchpoint on failed assertions. */
12014 const char *catch_assert_sym;
12015
12016 /* The name of the symbol to break on in order to insert
12017 a catchpoint on exception handling. */
12018 const char *catch_handlers_sym;
12019
12020 /* Assuming that the inferior just triggered an unhandled exception
12021 catchpoint, this function is responsible for returning the address
12022 in inferior memory where the name of that exception is stored.
12023 Return zero if the address could not be computed. */
12024 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12025 };
12026
12027 static CORE_ADDR ada_unhandled_exception_name_addr (void);
12028 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12029
12030 /* The following exception support info structure describes how to
12031 implement exception catchpoints with the latest version of the
12032 Ada runtime (as of 2007-03-06). */
12033
12034 static const struct exception_support_info default_exception_support_info =
12035 {
12036 "__gnat_debug_raise_exception", /* catch_exception_sym */
12037 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12038 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
12039 "__gnat_begin_handler", /* catch_handlers_sym */
12040 ada_unhandled_exception_name_addr
12041 };
12042
12043 /* The following exception support info structure describes how to
12044 implement exception catchpoints with a slightly older version
12045 of the Ada runtime. */
12046
12047 static const struct exception_support_info exception_support_info_fallback =
12048 {
12049 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12050 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12051 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12052 "__gnat_begin_handler", /* catch_handlers_sym */
12053 ada_unhandled_exception_name_addr_from_raise
12054 };
12055
12056 /* Return nonzero if we can detect the exception support routines
12057 described in EINFO.
12058
12059 This function errors out if an abnormal situation is detected
12060 (for instance, if we find the exception support routines, but
12061 that support is found to be incomplete). */
12062
12063 static int
12064 ada_has_this_exception_support (const struct exception_support_info *einfo)
12065 {
12066 struct symbol *sym;
12067
12068 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12069 that should be compiled with debugging information. As a result, we
12070 expect to find that symbol in the symtabs. */
12071
12072 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12073 if (sym == NULL)
12074 {
12075 /* Perhaps we did not find our symbol because the Ada runtime was
12076 compiled without debugging info, or simply stripped of it.
12077 It happens on some GNU/Linux distributions for instance, where
12078 users have to install a separate debug package in order to get
12079 the runtime's debugging info. In that situation, let the user
12080 know why we cannot insert an Ada exception catchpoint.
12081
12082 Note: Just for the purpose of inserting our Ada exception
12083 catchpoint, we could rely purely on the associated minimal symbol.
12084 But we would be operating in degraded mode anyway, since we are
12085 still lacking the debugging info needed later on to extract
12086 the name of the exception being raised (this name is printed in
12087 the catchpoint message, and is also used when trying to catch
12088 a specific exception). We do not handle this case for now. */
12089 struct bound_minimal_symbol msym
12090 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12091
12092 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12093 error (_("Your Ada runtime appears to be missing some debugging "
12094 "information.\nCannot insert Ada exception catchpoint "
12095 "in this configuration."));
12096
12097 return 0;
12098 }
12099
12100 /* Make sure that the symbol we found corresponds to a function. */
12101
12102 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12103 error (_("Symbol \"%s\" is not a function (class = %d)"),
12104 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12105
12106 return 1;
12107 }
12108
12109 /* Inspect the Ada runtime and determine which exception info structure
12110 should be used to provide support for exception catchpoints.
12111
12112 This function will always set the per-inferior exception_info,
12113 or raise an error. */
12114
12115 static void
12116 ada_exception_support_info_sniffer (void)
12117 {
12118 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12119
12120 /* If the exception info is already known, then no need to recompute it. */
12121 if (data->exception_info != NULL)
12122 return;
12123
12124 /* Check the latest (default) exception support info. */
12125 if (ada_has_this_exception_support (&default_exception_support_info))
12126 {
12127 data->exception_info = &default_exception_support_info;
12128 return;
12129 }
12130
12131 /* Try our fallback exception suport info. */
12132 if (ada_has_this_exception_support (&exception_support_info_fallback))
12133 {
12134 data->exception_info = &exception_support_info_fallback;
12135 return;
12136 }
12137
12138 /* Sometimes, it is normal for us to not be able to find the routine
12139 we are looking for. This happens when the program is linked with
12140 the shared version of the GNAT runtime, and the program has not been
12141 started yet. Inform the user of these two possible causes if
12142 applicable. */
12143
12144 if (ada_update_initial_language (language_unknown) != language_ada)
12145 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12146
12147 /* If the symbol does not exist, then check that the program is
12148 already started, to make sure that shared libraries have been
12149 loaded. If it is not started, this may mean that the symbol is
12150 in a shared library. */
12151
12152 if (inferior_ptid.pid () == 0)
12153 error (_("Unable to insert catchpoint. Try to start the program first."));
12154
12155 /* At this point, we know that we are debugging an Ada program and
12156 that the inferior has been started, but we still are not able to
12157 find the run-time symbols. That can mean that we are in
12158 configurable run time mode, or that a-except as been optimized
12159 out by the linker... In any case, at this point it is not worth
12160 supporting this feature. */
12161
12162 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12163 }
12164
12165 /* True iff FRAME is very likely to be that of a function that is
12166 part of the runtime system. This is all very heuristic, but is
12167 intended to be used as advice as to what frames are uninteresting
12168 to most users. */
12169
12170 static int
12171 is_known_support_routine (struct frame_info *frame)
12172 {
12173 enum language func_lang;
12174 int i;
12175 const char *fullname;
12176
12177 /* If this code does not have any debugging information (no symtab),
12178 This cannot be any user code. */
12179
12180 symtab_and_line sal = find_frame_sal (frame);
12181 if (sal.symtab == NULL)
12182 return 1;
12183
12184 /* If there is a symtab, but the associated source file cannot be
12185 located, then assume this is not user code: Selecting a frame
12186 for which we cannot display the code would not be very helpful
12187 for the user. This should also take care of case such as VxWorks
12188 where the kernel has some debugging info provided for a few units. */
12189
12190 fullname = symtab_to_fullname (sal.symtab);
12191 if (access (fullname, R_OK) != 0)
12192 return 1;
12193
12194 /* Check the unit filename againt the Ada runtime file naming.
12195 We also check the name of the objfile against the name of some
12196 known system libraries that sometimes come with debugging info
12197 too. */
12198
12199 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12200 {
12201 re_comp (known_runtime_file_name_patterns[i]);
12202 if (re_exec (lbasename (sal.symtab->filename)))
12203 return 1;
12204 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12205 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12206 return 1;
12207 }
12208
12209 /* Check whether the function is a GNAT-generated entity. */
12210
12211 gdb::unique_xmalloc_ptr<char> func_name
12212 = find_frame_funname (frame, &func_lang, NULL);
12213 if (func_name == NULL)
12214 return 1;
12215
12216 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12217 {
12218 re_comp (known_auxiliary_function_name_patterns[i]);
12219 if (re_exec (func_name.get ()))
12220 return 1;
12221 }
12222
12223 return 0;
12224 }
12225
12226 /* Find the first frame that contains debugging information and that is not
12227 part of the Ada run-time, starting from FI and moving upward. */
12228
12229 void
12230 ada_find_printable_frame (struct frame_info *fi)
12231 {
12232 for (; fi != NULL; fi = get_prev_frame (fi))
12233 {
12234 if (!is_known_support_routine (fi))
12235 {
12236 select_frame (fi);
12237 break;
12238 }
12239 }
12240
12241 }
12242
12243 /* Assuming that the inferior just triggered an unhandled exception
12244 catchpoint, return the address in inferior memory where the name
12245 of the exception is stored.
12246
12247 Return zero if the address could not be computed. */
12248
12249 static CORE_ADDR
12250 ada_unhandled_exception_name_addr (void)
12251 {
12252 return parse_and_eval_address ("e.full_name");
12253 }
12254
12255 /* Same as ada_unhandled_exception_name_addr, except that this function
12256 should be used when the inferior uses an older version of the runtime,
12257 where the exception name needs to be extracted from a specific frame
12258 several frames up in the callstack. */
12259
12260 static CORE_ADDR
12261 ada_unhandled_exception_name_addr_from_raise (void)
12262 {
12263 int frame_level;
12264 struct frame_info *fi;
12265 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12266
12267 /* To determine the name of this exception, we need to select
12268 the frame corresponding to RAISE_SYM_NAME. This frame is
12269 at least 3 levels up, so we simply skip the first 3 frames
12270 without checking the name of their associated function. */
12271 fi = get_current_frame ();
12272 for (frame_level = 0; frame_level < 3; frame_level += 1)
12273 if (fi != NULL)
12274 fi = get_prev_frame (fi);
12275
12276 while (fi != NULL)
12277 {
12278 enum language func_lang;
12279
12280 gdb::unique_xmalloc_ptr<char> func_name
12281 = find_frame_funname (fi, &func_lang, NULL);
12282 if (func_name != NULL)
12283 {
12284 if (strcmp (func_name.get (),
12285 data->exception_info->catch_exception_sym) == 0)
12286 break; /* We found the frame we were looking for... */
12287 }
12288 fi = get_prev_frame (fi);
12289 }
12290
12291 if (fi == NULL)
12292 return 0;
12293
12294 select_frame (fi);
12295 return parse_and_eval_address ("id.full_name");
12296 }
12297
12298 /* Assuming the inferior just triggered an Ada exception catchpoint
12299 (of any type), return the address in inferior memory where the name
12300 of the exception is stored, if applicable.
12301
12302 Assumes the selected frame is the current frame.
12303
12304 Return zero if the address could not be computed, or if not relevant. */
12305
12306 static CORE_ADDR
12307 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12308 struct breakpoint *b)
12309 {
12310 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12311
12312 switch (ex)
12313 {
12314 case ada_catch_exception:
12315 return (parse_and_eval_address ("e.full_name"));
12316 break;
12317
12318 case ada_catch_exception_unhandled:
12319 return data->exception_info->unhandled_exception_name_addr ();
12320 break;
12321
12322 case ada_catch_handlers:
12323 return 0; /* The runtimes does not provide access to the exception
12324 name. */
12325 break;
12326
12327 case ada_catch_assert:
12328 return 0; /* Exception name is not relevant in this case. */
12329 break;
12330
12331 default:
12332 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12333 break;
12334 }
12335
12336 return 0; /* Should never be reached. */
12337 }
12338
12339 /* Assuming the inferior is stopped at an exception catchpoint,
12340 return the message which was associated to the exception, if
12341 available. Return NULL if the message could not be retrieved.
12342
12343 Note: The exception message can be associated to an exception
12344 either through the use of the Raise_Exception function, or
12345 more simply (Ada 2005 and later), via:
12346
12347 raise Exception_Name with "exception message";
12348
12349 */
12350
12351 static gdb::unique_xmalloc_ptr<char>
12352 ada_exception_message_1 (void)
12353 {
12354 struct value *e_msg_val;
12355 int e_msg_len;
12356
12357 /* For runtimes that support this feature, the exception message
12358 is passed as an unbounded string argument called "message". */
12359 e_msg_val = parse_and_eval ("message");
12360 if (e_msg_val == NULL)
12361 return NULL; /* Exception message not supported. */
12362
12363 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12364 gdb_assert (e_msg_val != NULL);
12365 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12366
12367 /* If the message string is empty, then treat it as if there was
12368 no exception message. */
12369 if (e_msg_len <= 0)
12370 return NULL;
12371
12372 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12373 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12374 e_msg.get ()[e_msg_len] = '\0';
12375
12376 return e_msg;
12377 }
12378
12379 /* Same as ada_exception_message_1, except that all exceptions are
12380 contained here (returning NULL instead). */
12381
12382 static gdb::unique_xmalloc_ptr<char>
12383 ada_exception_message (void)
12384 {
12385 gdb::unique_xmalloc_ptr<char> e_msg;
12386
12387 TRY
12388 {
12389 e_msg = ada_exception_message_1 ();
12390 }
12391 CATCH (e, RETURN_MASK_ERROR)
12392 {
12393 e_msg.reset (nullptr);
12394 }
12395 END_CATCH
12396
12397 return e_msg;
12398 }
12399
12400 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12401 any error that ada_exception_name_addr_1 might cause to be thrown.
12402 When an error is intercepted, a warning with the error message is printed,
12403 and zero is returned. */
12404
12405 static CORE_ADDR
12406 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12407 struct breakpoint *b)
12408 {
12409 CORE_ADDR result = 0;
12410
12411 TRY
12412 {
12413 result = ada_exception_name_addr_1 (ex, b);
12414 }
12415
12416 CATCH (e, RETURN_MASK_ERROR)
12417 {
12418 warning (_("failed to get exception name: %s"), e.message);
12419 return 0;
12420 }
12421 END_CATCH
12422
12423 return result;
12424 }
12425
12426 static std::string ada_exception_catchpoint_cond_string
12427 (const char *excep_string,
12428 enum ada_exception_catchpoint_kind ex);
12429
12430 /* Ada catchpoints.
12431
12432 In the case of catchpoints on Ada exceptions, the catchpoint will
12433 stop the target on every exception the program throws. When a user
12434 specifies the name of a specific exception, we translate this
12435 request into a condition expression (in text form), and then parse
12436 it into an expression stored in each of the catchpoint's locations.
12437 We then use this condition to check whether the exception that was
12438 raised is the one the user is interested in. If not, then the
12439 target is resumed again. We store the name of the requested
12440 exception, in order to be able to re-set the condition expression
12441 when symbols change. */
12442
12443 /* An instance of this type is used to represent an Ada catchpoint
12444 breakpoint location. */
12445
12446 class ada_catchpoint_location : public bp_location
12447 {
12448 public:
12449 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12450 : bp_location (ops, owner)
12451 {}
12452
12453 /* The condition that checks whether the exception that was raised
12454 is the specific exception the user specified on catchpoint
12455 creation. */
12456 expression_up excep_cond_expr;
12457 };
12458
12459 /* Implement the DTOR method in the bp_location_ops structure for all
12460 Ada exception catchpoint kinds. */
12461
12462 static void
12463 ada_catchpoint_location_dtor (struct bp_location *bl)
12464 {
12465 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12466
12467 al->excep_cond_expr.reset ();
12468 }
12469
12470 /* The vtable to be used in Ada catchpoint locations. */
12471
12472 static const struct bp_location_ops ada_catchpoint_location_ops =
12473 {
12474 ada_catchpoint_location_dtor
12475 };
12476
12477 /* An instance of this type is used to represent an Ada catchpoint. */
12478
12479 struct ada_catchpoint : public breakpoint
12480 {
12481 /* The name of the specific exception the user specified. */
12482 std::string excep_string;
12483 };
12484
12485 /* Parse the exception condition string in the context of each of the
12486 catchpoint's locations, and store them for later evaluation. */
12487
12488 static void
12489 create_excep_cond_exprs (struct ada_catchpoint *c,
12490 enum ada_exception_catchpoint_kind ex)
12491 {
12492 struct bp_location *bl;
12493
12494 /* Nothing to do if there's no specific exception to catch. */
12495 if (c->excep_string.empty ())
12496 return;
12497
12498 /* Same if there are no locations... */
12499 if (c->loc == NULL)
12500 return;
12501
12502 /* Compute the condition expression in text form, from the specific
12503 expection we want to catch. */
12504 std::string cond_string
12505 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12506
12507 /* Iterate over all the catchpoint's locations, and parse an
12508 expression for each. */
12509 for (bl = c->loc; bl != NULL; bl = bl->next)
12510 {
12511 struct ada_catchpoint_location *ada_loc
12512 = (struct ada_catchpoint_location *) bl;
12513 expression_up exp;
12514
12515 if (!bl->shlib_disabled)
12516 {
12517 const char *s;
12518
12519 s = cond_string.c_str ();
12520 TRY
12521 {
12522 exp = parse_exp_1 (&s, bl->address,
12523 block_for_pc (bl->address),
12524 0);
12525 }
12526 CATCH (e, RETURN_MASK_ERROR)
12527 {
12528 warning (_("failed to reevaluate internal exception condition "
12529 "for catchpoint %d: %s"),
12530 c->number, e.message);
12531 }
12532 END_CATCH
12533 }
12534
12535 ada_loc->excep_cond_expr = std::move (exp);
12536 }
12537 }
12538
12539 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12540 structure for all exception catchpoint kinds. */
12541
12542 static struct bp_location *
12543 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12544 struct breakpoint *self)
12545 {
12546 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12547 }
12548
12549 /* Implement the RE_SET method in the breakpoint_ops structure for all
12550 exception catchpoint kinds. */
12551
12552 static void
12553 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12554 {
12555 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12556
12557 /* Call the base class's method. This updates the catchpoint's
12558 locations. */
12559 bkpt_breakpoint_ops.re_set (b);
12560
12561 /* Reparse the exception conditional expressions. One for each
12562 location. */
12563 create_excep_cond_exprs (c, ex);
12564 }
12565
12566 /* Returns true if we should stop for this breakpoint hit. If the
12567 user specified a specific exception, we only want to cause a stop
12568 if the program thrown that exception. */
12569
12570 static int
12571 should_stop_exception (const struct bp_location *bl)
12572 {
12573 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12574 const struct ada_catchpoint_location *ada_loc
12575 = (const struct ada_catchpoint_location *) bl;
12576 int stop;
12577
12578 /* With no specific exception, should always stop. */
12579 if (c->excep_string.empty ())
12580 return 1;
12581
12582 if (ada_loc->excep_cond_expr == NULL)
12583 {
12584 /* We will have a NULL expression if back when we were creating
12585 the expressions, this location's had failed to parse. */
12586 return 1;
12587 }
12588
12589 stop = 1;
12590 TRY
12591 {
12592 struct value *mark;
12593
12594 mark = value_mark ();
12595 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12596 value_free_to_mark (mark);
12597 }
12598 CATCH (ex, RETURN_MASK_ALL)
12599 {
12600 exception_fprintf (gdb_stderr, ex,
12601 _("Error in testing exception condition:\n"));
12602 }
12603 END_CATCH
12604
12605 return stop;
12606 }
12607
12608 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12609 for all exception catchpoint kinds. */
12610
12611 static void
12612 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12613 {
12614 bs->stop = should_stop_exception (bs->bp_location_at);
12615 }
12616
12617 /* Implement the PRINT_IT method in the breakpoint_ops structure
12618 for all exception catchpoint kinds. */
12619
12620 static enum print_stop_action
12621 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12622 {
12623 struct ui_out *uiout = current_uiout;
12624 struct breakpoint *b = bs->breakpoint_at;
12625
12626 annotate_catchpoint (b->number);
12627
12628 if (uiout->is_mi_like_p ())
12629 {
12630 uiout->field_string ("reason",
12631 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12632 uiout->field_string ("disp", bpdisp_text (b->disposition));
12633 }
12634
12635 uiout->text (b->disposition == disp_del
12636 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12637 uiout->field_int ("bkptno", b->number);
12638 uiout->text (", ");
12639
12640 /* ada_exception_name_addr relies on the selected frame being the
12641 current frame. Need to do this here because this function may be
12642 called more than once when printing a stop, and below, we'll
12643 select the first frame past the Ada run-time (see
12644 ada_find_printable_frame). */
12645 select_frame (get_current_frame ());
12646
12647 switch (ex)
12648 {
12649 case ada_catch_exception:
12650 case ada_catch_exception_unhandled:
12651 case ada_catch_handlers:
12652 {
12653 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12654 char exception_name[256];
12655
12656 if (addr != 0)
12657 {
12658 read_memory (addr, (gdb_byte *) exception_name,
12659 sizeof (exception_name) - 1);
12660 exception_name [sizeof (exception_name) - 1] = '\0';
12661 }
12662 else
12663 {
12664 /* For some reason, we were unable to read the exception
12665 name. This could happen if the Runtime was compiled
12666 without debugging info, for instance. In that case,
12667 just replace the exception name by the generic string
12668 "exception" - it will read as "an exception" in the
12669 notification we are about to print. */
12670 memcpy (exception_name, "exception", sizeof ("exception"));
12671 }
12672 /* In the case of unhandled exception breakpoints, we print
12673 the exception name as "unhandled EXCEPTION_NAME", to make
12674 it clearer to the user which kind of catchpoint just got
12675 hit. We used ui_out_text to make sure that this extra
12676 info does not pollute the exception name in the MI case. */
12677 if (ex == ada_catch_exception_unhandled)
12678 uiout->text ("unhandled ");
12679 uiout->field_string ("exception-name", exception_name);
12680 }
12681 break;
12682 case ada_catch_assert:
12683 /* In this case, the name of the exception is not really
12684 important. Just print "failed assertion" to make it clearer
12685 that his program just hit an assertion-failure catchpoint.
12686 We used ui_out_text because this info does not belong in
12687 the MI output. */
12688 uiout->text ("failed assertion");
12689 break;
12690 }
12691
12692 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12693 if (exception_message != NULL)
12694 {
12695 uiout->text (" (");
12696 uiout->field_string ("exception-message", exception_message.get ());
12697 uiout->text (")");
12698 }
12699
12700 uiout->text (" at ");
12701 ada_find_printable_frame (get_current_frame ());
12702
12703 return PRINT_SRC_AND_LOC;
12704 }
12705
12706 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12707 for all exception catchpoint kinds. */
12708
12709 static void
12710 print_one_exception (enum ada_exception_catchpoint_kind ex,
12711 struct breakpoint *b, struct bp_location **last_loc)
12712 {
12713 struct ui_out *uiout = current_uiout;
12714 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12715 struct value_print_options opts;
12716
12717 get_user_print_options (&opts);
12718 if (opts.addressprint)
12719 {
12720 annotate_field (4);
12721 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12722 }
12723
12724 annotate_field (5);
12725 *last_loc = b->loc;
12726 switch (ex)
12727 {
12728 case ada_catch_exception:
12729 if (!c->excep_string.empty ())
12730 {
12731 std::string msg = string_printf (_("`%s' Ada exception"),
12732 c->excep_string.c_str ());
12733
12734 uiout->field_string ("what", msg);
12735 }
12736 else
12737 uiout->field_string ("what", "all Ada exceptions");
12738
12739 break;
12740
12741 case ada_catch_exception_unhandled:
12742 uiout->field_string ("what", "unhandled Ada exceptions");
12743 break;
12744
12745 case ada_catch_handlers:
12746 if (!c->excep_string.empty ())
12747 {
12748 uiout->field_fmt ("what",
12749 _("`%s' Ada exception handlers"),
12750 c->excep_string.c_str ());
12751 }
12752 else
12753 uiout->field_string ("what", "all Ada exceptions handlers");
12754 break;
12755
12756 case ada_catch_assert:
12757 uiout->field_string ("what", "failed Ada assertions");
12758 break;
12759
12760 default:
12761 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12762 break;
12763 }
12764 }
12765
12766 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12767 for all exception catchpoint kinds. */
12768
12769 static void
12770 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12771 struct breakpoint *b)
12772 {
12773 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12774 struct ui_out *uiout = current_uiout;
12775
12776 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12777 : _("Catchpoint "));
12778 uiout->field_int ("bkptno", b->number);
12779 uiout->text (": ");
12780
12781 switch (ex)
12782 {
12783 case ada_catch_exception:
12784 if (!c->excep_string.empty ())
12785 {
12786 std::string info = string_printf (_("`%s' Ada exception"),
12787 c->excep_string.c_str ());
12788 uiout->text (info.c_str ());
12789 }
12790 else
12791 uiout->text (_("all Ada exceptions"));
12792 break;
12793
12794 case ada_catch_exception_unhandled:
12795 uiout->text (_("unhandled Ada exceptions"));
12796 break;
12797
12798 case ada_catch_handlers:
12799 if (!c->excep_string.empty ())
12800 {
12801 std::string info
12802 = string_printf (_("`%s' Ada exception handlers"),
12803 c->excep_string.c_str ());
12804 uiout->text (info.c_str ());
12805 }
12806 else
12807 uiout->text (_("all Ada exceptions handlers"));
12808 break;
12809
12810 case ada_catch_assert:
12811 uiout->text (_("failed Ada assertions"));
12812 break;
12813
12814 default:
12815 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12816 break;
12817 }
12818 }
12819
12820 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12821 for all exception catchpoint kinds. */
12822
12823 static void
12824 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12825 struct breakpoint *b, struct ui_file *fp)
12826 {
12827 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12828
12829 switch (ex)
12830 {
12831 case ada_catch_exception:
12832 fprintf_filtered (fp, "catch exception");
12833 if (!c->excep_string.empty ())
12834 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12835 break;
12836
12837 case ada_catch_exception_unhandled:
12838 fprintf_filtered (fp, "catch exception unhandled");
12839 break;
12840
12841 case ada_catch_handlers:
12842 fprintf_filtered (fp, "catch handlers");
12843 break;
12844
12845 case ada_catch_assert:
12846 fprintf_filtered (fp, "catch assert");
12847 break;
12848
12849 default:
12850 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12851 }
12852 print_recreate_thread (b, fp);
12853 }
12854
12855 /* Virtual table for "catch exception" breakpoints. */
12856
12857 static struct bp_location *
12858 allocate_location_catch_exception (struct breakpoint *self)
12859 {
12860 return allocate_location_exception (ada_catch_exception, self);
12861 }
12862
12863 static void
12864 re_set_catch_exception (struct breakpoint *b)
12865 {
12866 re_set_exception (ada_catch_exception, b);
12867 }
12868
12869 static void
12870 check_status_catch_exception (bpstat bs)
12871 {
12872 check_status_exception (ada_catch_exception, bs);
12873 }
12874
12875 static enum print_stop_action
12876 print_it_catch_exception (bpstat bs)
12877 {
12878 return print_it_exception (ada_catch_exception, bs);
12879 }
12880
12881 static void
12882 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12883 {
12884 print_one_exception (ada_catch_exception, b, last_loc);
12885 }
12886
12887 static void
12888 print_mention_catch_exception (struct breakpoint *b)
12889 {
12890 print_mention_exception (ada_catch_exception, b);
12891 }
12892
12893 static void
12894 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12895 {
12896 print_recreate_exception (ada_catch_exception, b, fp);
12897 }
12898
12899 static struct breakpoint_ops catch_exception_breakpoint_ops;
12900
12901 /* Virtual table for "catch exception unhandled" breakpoints. */
12902
12903 static struct bp_location *
12904 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12905 {
12906 return allocate_location_exception (ada_catch_exception_unhandled, self);
12907 }
12908
12909 static void
12910 re_set_catch_exception_unhandled (struct breakpoint *b)
12911 {
12912 re_set_exception (ada_catch_exception_unhandled, b);
12913 }
12914
12915 static void
12916 check_status_catch_exception_unhandled (bpstat bs)
12917 {
12918 check_status_exception (ada_catch_exception_unhandled, bs);
12919 }
12920
12921 static enum print_stop_action
12922 print_it_catch_exception_unhandled (bpstat bs)
12923 {
12924 return print_it_exception (ada_catch_exception_unhandled, bs);
12925 }
12926
12927 static void
12928 print_one_catch_exception_unhandled (struct breakpoint *b,
12929 struct bp_location **last_loc)
12930 {
12931 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12932 }
12933
12934 static void
12935 print_mention_catch_exception_unhandled (struct breakpoint *b)
12936 {
12937 print_mention_exception (ada_catch_exception_unhandled, b);
12938 }
12939
12940 static void
12941 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12942 struct ui_file *fp)
12943 {
12944 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12945 }
12946
12947 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12948
12949 /* Virtual table for "catch assert" breakpoints. */
12950
12951 static struct bp_location *
12952 allocate_location_catch_assert (struct breakpoint *self)
12953 {
12954 return allocate_location_exception (ada_catch_assert, self);
12955 }
12956
12957 static void
12958 re_set_catch_assert (struct breakpoint *b)
12959 {
12960 re_set_exception (ada_catch_assert, b);
12961 }
12962
12963 static void
12964 check_status_catch_assert (bpstat bs)
12965 {
12966 check_status_exception (ada_catch_assert, bs);
12967 }
12968
12969 static enum print_stop_action
12970 print_it_catch_assert (bpstat bs)
12971 {
12972 return print_it_exception (ada_catch_assert, bs);
12973 }
12974
12975 static void
12976 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12977 {
12978 print_one_exception (ada_catch_assert, b, last_loc);
12979 }
12980
12981 static void
12982 print_mention_catch_assert (struct breakpoint *b)
12983 {
12984 print_mention_exception (ada_catch_assert, b);
12985 }
12986
12987 static void
12988 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12989 {
12990 print_recreate_exception (ada_catch_assert, b, fp);
12991 }
12992
12993 static struct breakpoint_ops catch_assert_breakpoint_ops;
12994
12995 /* Virtual table for "catch handlers" breakpoints. */
12996
12997 static struct bp_location *
12998 allocate_location_catch_handlers (struct breakpoint *self)
12999 {
13000 return allocate_location_exception (ada_catch_handlers, self);
13001 }
13002
13003 static void
13004 re_set_catch_handlers (struct breakpoint *b)
13005 {
13006 re_set_exception (ada_catch_handlers, b);
13007 }
13008
13009 static void
13010 check_status_catch_handlers (bpstat bs)
13011 {
13012 check_status_exception (ada_catch_handlers, bs);
13013 }
13014
13015 static enum print_stop_action
13016 print_it_catch_handlers (bpstat bs)
13017 {
13018 return print_it_exception (ada_catch_handlers, bs);
13019 }
13020
13021 static void
13022 print_one_catch_handlers (struct breakpoint *b,
13023 struct bp_location **last_loc)
13024 {
13025 print_one_exception (ada_catch_handlers, b, last_loc);
13026 }
13027
13028 static void
13029 print_mention_catch_handlers (struct breakpoint *b)
13030 {
13031 print_mention_exception (ada_catch_handlers, b);
13032 }
13033
13034 static void
13035 print_recreate_catch_handlers (struct breakpoint *b,
13036 struct ui_file *fp)
13037 {
13038 print_recreate_exception (ada_catch_handlers, b, fp);
13039 }
13040
13041 static struct breakpoint_ops catch_handlers_breakpoint_ops;
13042
13043 /* Split the arguments specified in a "catch exception" command.
13044 Set EX to the appropriate catchpoint type.
13045 Set EXCEP_STRING to the name of the specific exception if
13046 specified by the user.
13047 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13048 "catch handlers" command. False otherwise.
13049 If a condition is found at the end of the arguments, the condition
13050 expression is stored in COND_STRING (memory must be deallocated
13051 after use). Otherwise COND_STRING is set to NULL. */
13052
13053 static void
13054 catch_ada_exception_command_split (const char *args,
13055 bool is_catch_handlers_cmd,
13056 enum ada_exception_catchpoint_kind *ex,
13057 std::string *excep_string,
13058 std::string *cond_string)
13059 {
13060 std::string exception_name;
13061
13062 exception_name = extract_arg (&args);
13063 if (exception_name == "if")
13064 {
13065 /* This is not an exception name; this is the start of a condition
13066 expression for a catchpoint on all exceptions. So, "un-get"
13067 this token, and set exception_name to NULL. */
13068 exception_name.clear ();
13069 args -= 2;
13070 }
13071
13072 /* Check to see if we have a condition. */
13073
13074 args = skip_spaces (args);
13075 if (startswith (args, "if")
13076 && (isspace (args[2]) || args[2] == '\0'))
13077 {
13078 args += 2;
13079 args = skip_spaces (args);
13080
13081 if (args[0] == '\0')
13082 error (_("Condition missing after `if' keyword"));
13083 *cond_string = args;
13084
13085 args += strlen (args);
13086 }
13087
13088 /* Check that we do not have any more arguments. Anything else
13089 is unexpected. */
13090
13091 if (args[0] != '\0')
13092 error (_("Junk at end of expression"));
13093
13094 if (is_catch_handlers_cmd)
13095 {
13096 /* Catch handling of exceptions. */
13097 *ex = ada_catch_handlers;
13098 *excep_string = exception_name;
13099 }
13100 else if (exception_name.empty ())
13101 {
13102 /* Catch all exceptions. */
13103 *ex = ada_catch_exception;
13104 excep_string->clear ();
13105 }
13106 else if (exception_name == "unhandled")
13107 {
13108 /* Catch unhandled exceptions. */
13109 *ex = ada_catch_exception_unhandled;
13110 excep_string->clear ();
13111 }
13112 else
13113 {
13114 /* Catch a specific exception. */
13115 *ex = ada_catch_exception;
13116 *excep_string = exception_name;
13117 }
13118 }
13119
13120 /* Return the name of the symbol on which we should break in order to
13121 implement a catchpoint of the EX kind. */
13122
13123 static const char *
13124 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13125 {
13126 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13127
13128 gdb_assert (data->exception_info != NULL);
13129
13130 switch (ex)
13131 {
13132 case ada_catch_exception:
13133 return (data->exception_info->catch_exception_sym);
13134 break;
13135 case ada_catch_exception_unhandled:
13136 return (data->exception_info->catch_exception_unhandled_sym);
13137 break;
13138 case ada_catch_assert:
13139 return (data->exception_info->catch_assert_sym);
13140 break;
13141 case ada_catch_handlers:
13142 return (data->exception_info->catch_handlers_sym);
13143 break;
13144 default:
13145 internal_error (__FILE__, __LINE__,
13146 _("unexpected catchpoint kind (%d)"), ex);
13147 }
13148 }
13149
13150 /* Return the breakpoint ops "virtual table" used for catchpoints
13151 of the EX kind. */
13152
13153 static const struct breakpoint_ops *
13154 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13155 {
13156 switch (ex)
13157 {
13158 case ada_catch_exception:
13159 return (&catch_exception_breakpoint_ops);
13160 break;
13161 case ada_catch_exception_unhandled:
13162 return (&catch_exception_unhandled_breakpoint_ops);
13163 break;
13164 case ada_catch_assert:
13165 return (&catch_assert_breakpoint_ops);
13166 break;
13167 case ada_catch_handlers:
13168 return (&catch_handlers_breakpoint_ops);
13169 break;
13170 default:
13171 internal_error (__FILE__, __LINE__,
13172 _("unexpected catchpoint kind (%d)"), ex);
13173 }
13174 }
13175
13176 /* Return the condition that will be used to match the current exception
13177 being raised with the exception that the user wants to catch. This
13178 assumes that this condition is used when the inferior just triggered
13179 an exception catchpoint.
13180 EX: the type of catchpoints used for catching Ada exceptions. */
13181
13182 static std::string
13183 ada_exception_catchpoint_cond_string (const char *excep_string,
13184 enum ada_exception_catchpoint_kind ex)
13185 {
13186 int i;
13187 bool is_standard_exc = false;
13188 std::string result;
13189
13190 if (ex == ada_catch_handlers)
13191 {
13192 /* For exception handlers catchpoints, the condition string does
13193 not use the same parameter as for the other exceptions. */
13194 result = ("long_integer (GNAT_GCC_exception_Access"
13195 "(gcc_exception).all.occurrence.id)");
13196 }
13197 else
13198 result = "long_integer (e)";
13199
13200 /* The standard exceptions are a special case. They are defined in
13201 runtime units that have been compiled without debugging info; if
13202 EXCEP_STRING is the not-fully-qualified name of a standard
13203 exception (e.g. "constraint_error") then, during the evaluation
13204 of the condition expression, the symbol lookup on this name would
13205 *not* return this standard exception. The catchpoint condition
13206 may then be set only on user-defined exceptions which have the
13207 same not-fully-qualified name (e.g. my_package.constraint_error).
13208
13209 To avoid this unexcepted behavior, these standard exceptions are
13210 systematically prefixed by "standard". This means that "catch
13211 exception constraint_error" is rewritten into "catch exception
13212 standard.constraint_error".
13213
13214 If an exception named contraint_error is defined in another package of
13215 the inferior program, then the only way to specify this exception as a
13216 breakpoint condition is to use its fully-qualified named:
13217 e.g. my_package.constraint_error. */
13218
13219 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13220 {
13221 if (strcmp (standard_exc [i], excep_string) == 0)
13222 {
13223 is_standard_exc = true;
13224 break;
13225 }
13226 }
13227
13228 result += " = ";
13229
13230 if (is_standard_exc)
13231 string_appendf (result, "long_integer (&standard.%s)", excep_string);
13232 else
13233 string_appendf (result, "long_integer (&%s)", excep_string);
13234
13235 return result;
13236 }
13237
13238 /* Return the symtab_and_line that should be used to insert an exception
13239 catchpoint of the TYPE kind.
13240
13241 ADDR_STRING returns the name of the function where the real
13242 breakpoint that implements the catchpoints is set, depending on the
13243 type of catchpoint we need to create. */
13244
13245 static struct symtab_and_line
13246 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13247 const char **addr_string, const struct breakpoint_ops **ops)
13248 {
13249 const char *sym_name;
13250 struct symbol *sym;
13251
13252 /* First, find out which exception support info to use. */
13253 ada_exception_support_info_sniffer ();
13254
13255 /* Then lookup the function on which we will break in order to catch
13256 the Ada exceptions requested by the user. */
13257 sym_name = ada_exception_sym_name (ex);
13258 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13259
13260 if (sym == NULL)
13261 error (_("Catchpoint symbol not found: %s"), sym_name);
13262
13263 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13264 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13265
13266 /* Set ADDR_STRING. */
13267 *addr_string = xstrdup (sym_name);
13268
13269 /* Set OPS. */
13270 *ops = ada_exception_breakpoint_ops (ex);
13271
13272 return find_function_start_sal (sym, 1);
13273 }
13274
13275 /* Create an Ada exception catchpoint.
13276
13277 EX_KIND is the kind of exception catchpoint to be created.
13278
13279 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13280 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13281 of the exception to which this catchpoint applies.
13282
13283 COND_STRING, if not empty, is the catchpoint condition.
13284
13285 TEMPFLAG, if nonzero, means that the underlying breakpoint
13286 should be temporary.
13287
13288 FROM_TTY is the usual argument passed to all commands implementations. */
13289
13290 void
13291 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13292 enum ada_exception_catchpoint_kind ex_kind,
13293 const std::string &excep_string,
13294 const std::string &cond_string,
13295 int tempflag,
13296 int disabled,
13297 int from_tty)
13298 {
13299 const char *addr_string = NULL;
13300 const struct breakpoint_ops *ops = NULL;
13301 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13302
13303 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13304 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13305 ops, tempflag, disabled, from_tty);
13306 c->excep_string = excep_string;
13307 create_excep_cond_exprs (c.get (), ex_kind);
13308 if (!cond_string.empty ())
13309 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13310 install_breakpoint (0, std::move (c), 1);
13311 }
13312
13313 /* Implement the "catch exception" command. */
13314
13315 static void
13316 catch_ada_exception_command (const char *arg_entry, int from_tty,
13317 struct cmd_list_element *command)
13318 {
13319 const char *arg = arg_entry;
13320 struct gdbarch *gdbarch = get_current_arch ();
13321 int tempflag;
13322 enum ada_exception_catchpoint_kind ex_kind;
13323 std::string excep_string;
13324 std::string cond_string;
13325
13326 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13327
13328 if (!arg)
13329 arg = "";
13330 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13331 &cond_string);
13332 create_ada_exception_catchpoint (gdbarch, ex_kind,
13333 excep_string, cond_string,
13334 tempflag, 1 /* enabled */,
13335 from_tty);
13336 }
13337
13338 /* Implement the "catch handlers" command. */
13339
13340 static void
13341 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13342 struct cmd_list_element *command)
13343 {
13344 const char *arg = arg_entry;
13345 struct gdbarch *gdbarch = get_current_arch ();
13346 int tempflag;
13347 enum ada_exception_catchpoint_kind ex_kind;
13348 std::string excep_string;
13349 std::string cond_string;
13350
13351 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13352
13353 if (!arg)
13354 arg = "";
13355 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13356 &cond_string);
13357 create_ada_exception_catchpoint (gdbarch, ex_kind,
13358 excep_string, cond_string,
13359 tempflag, 1 /* enabled */,
13360 from_tty);
13361 }
13362
13363 /* Split the arguments specified in a "catch assert" command.
13364
13365 ARGS contains the command's arguments (or the empty string if
13366 no arguments were passed).
13367
13368 If ARGS contains a condition, set COND_STRING to that condition
13369 (the memory needs to be deallocated after use). */
13370
13371 static void
13372 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13373 {
13374 args = skip_spaces (args);
13375
13376 /* Check whether a condition was provided. */
13377 if (startswith (args, "if")
13378 && (isspace (args[2]) || args[2] == '\0'))
13379 {
13380 args += 2;
13381 args = skip_spaces (args);
13382 if (args[0] == '\0')
13383 error (_("condition missing after `if' keyword"));
13384 cond_string.assign (args);
13385 }
13386
13387 /* Otherwise, there should be no other argument at the end of
13388 the command. */
13389 else if (args[0] != '\0')
13390 error (_("Junk at end of arguments."));
13391 }
13392
13393 /* Implement the "catch assert" command. */
13394
13395 static void
13396 catch_assert_command (const char *arg_entry, int from_tty,
13397 struct cmd_list_element *command)
13398 {
13399 const char *arg = arg_entry;
13400 struct gdbarch *gdbarch = get_current_arch ();
13401 int tempflag;
13402 std::string cond_string;
13403
13404 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13405
13406 if (!arg)
13407 arg = "";
13408 catch_ada_assert_command_split (arg, cond_string);
13409 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13410 "", cond_string,
13411 tempflag, 1 /* enabled */,
13412 from_tty);
13413 }
13414
13415 /* Return non-zero if the symbol SYM is an Ada exception object. */
13416
13417 static int
13418 ada_is_exception_sym (struct symbol *sym)
13419 {
13420 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13421
13422 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13423 && SYMBOL_CLASS (sym) != LOC_BLOCK
13424 && SYMBOL_CLASS (sym) != LOC_CONST
13425 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13426 && type_name != NULL && strcmp (type_name, "exception") == 0);
13427 }
13428
13429 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13430 Ada exception object. This matches all exceptions except the ones
13431 defined by the Ada language. */
13432
13433 static int
13434 ada_is_non_standard_exception_sym (struct symbol *sym)
13435 {
13436 int i;
13437
13438 if (!ada_is_exception_sym (sym))
13439 return 0;
13440
13441 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13442 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13443 return 0; /* A standard exception. */
13444
13445 /* Numeric_Error is also a standard exception, so exclude it.
13446 See the STANDARD_EXC description for more details as to why
13447 this exception is not listed in that array. */
13448 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13449 return 0;
13450
13451 return 1;
13452 }
13453
13454 /* A helper function for std::sort, comparing two struct ada_exc_info
13455 objects.
13456
13457 The comparison is determined first by exception name, and then
13458 by exception address. */
13459
13460 bool
13461 ada_exc_info::operator< (const ada_exc_info &other) const
13462 {
13463 int result;
13464
13465 result = strcmp (name, other.name);
13466 if (result < 0)
13467 return true;
13468 if (result == 0 && addr < other.addr)
13469 return true;
13470 return false;
13471 }
13472
13473 bool
13474 ada_exc_info::operator== (const ada_exc_info &other) const
13475 {
13476 return addr == other.addr && strcmp (name, other.name) == 0;
13477 }
13478
13479 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13480 routine, but keeping the first SKIP elements untouched.
13481
13482 All duplicates are also removed. */
13483
13484 static void
13485 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13486 int skip)
13487 {
13488 std::sort (exceptions->begin () + skip, exceptions->end ());
13489 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13490 exceptions->end ());
13491 }
13492
13493 /* Add all exceptions defined by the Ada standard whose name match
13494 a regular expression.
13495
13496 If PREG is not NULL, then this regexp_t object is used to
13497 perform the symbol name matching. Otherwise, no name-based
13498 filtering is performed.
13499
13500 EXCEPTIONS is a vector of exceptions to which matching exceptions
13501 gets pushed. */
13502
13503 static void
13504 ada_add_standard_exceptions (compiled_regex *preg,
13505 std::vector<ada_exc_info> *exceptions)
13506 {
13507 int i;
13508
13509 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13510 {
13511 if (preg == NULL
13512 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13513 {
13514 struct bound_minimal_symbol msymbol
13515 = ada_lookup_simple_minsym (standard_exc[i]);
13516
13517 if (msymbol.minsym != NULL)
13518 {
13519 struct ada_exc_info info
13520 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13521
13522 exceptions->push_back (info);
13523 }
13524 }
13525 }
13526 }
13527
13528 /* Add all Ada exceptions defined locally and accessible from the given
13529 FRAME.
13530
13531 If PREG is not NULL, then this regexp_t object is used to
13532 perform the symbol name matching. Otherwise, no name-based
13533 filtering is performed.
13534
13535 EXCEPTIONS is a vector of exceptions to which matching exceptions
13536 gets pushed. */
13537
13538 static void
13539 ada_add_exceptions_from_frame (compiled_regex *preg,
13540 struct frame_info *frame,
13541 std::vector<ada_exc_info> *exceptions)
13542 {
13543 const struct block *block = get_frame_block (frame, 0);
13544
13545 while (block != 0)
13546 {
13547 struct block_iterator iter;
13548 struct symbol *sym;
13549
13550 ALL_BLOCK_SYMBOLS (block, iter, sym)
13551 {
13552 switch (SYMBOL_CLASS (sym))
13553 {
13554 case LOC_TYPEDEF:
13555 case LOC_BLOCK:
13556 case LOC_CONST:
13557 break;
13558 default:
13559 if (ada_is_exception_sym (sym))
13560 {
13561 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13562 SYMBOL_VALUE_ADDRESS (sym)};
13563
13564 exceptions->push_back (info);
13565 }
13566 }
13567 }
13568 if (BLOCK_FUNCTION (block) != NULL)
13569 break;
13570 block = BLOCK_SUPERBLOCK (block);
13571 }
13572 }
13573
13574 /* Return true if NAME matches PREG or if PREG is NULL. */
13575
13576 static bool
13577 name_matches_regex (const char *name, compiled_regex *preg)
13578 {
13579 return (preg == NULL
13580 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13581 }
13582
13583 /* Add all exceptions defined globally whose name name match
13584 a regular expression, excluding standard exceptions.
13585
13586 The reason we exclude standard exceptions is that they need
13587 to be handled separately: Standard exceptions are defined inside
13588 a runtime unit which is normally not compiled with debugging info,
13589 and thus usually do not show up in our symbol search. However,
13590 if the unit was in fact built with debugging info, we need to
13591 exclude them because they would duplicate the entry we found
13592 during the special loop that specifically searches for those
13593 standard exceptions.
13594
13595 If PREG is not NULL, then this regexp_t object is used to
13596 perform the symbol name matching. Otherwise, no name-based
13597 filtering is performed.
13598
13599 EXCEPTIONS is a vector of exceptions to which matching exceptions
13600 gets pushed. */
13601
13602 static void
13603 ada_add_global_exceptions (compiled_regex *preg,
13604 std::vector<ada_exc_info> *exceptions)
13605 {
13606 struct objfile *objfile;
13607 struct compunit_symtab *s;
13608
13609 /* In Ada, the symbol "search name" is a linkage name, whereas the
13610 regular expression used to do the matching refers to the natural
13611 name. So match against the decoded name. */
13612 expand_symtabs_matching (NULL,
13613 lookup_name_info::match_any (),
13614 [&] (const char *search_name)
13615 {
13616 const char *decoded = ada_decode (search_name);
13617 return name_matches_regex (decoded, preg);
13618 },
13619 NULL,
13620 VARIABLES_DOMAIN);
13621
13622 ALL_COMPUNITS (objfile, s)
13623 {
13624 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13625 int i;
13626
13627 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13628 {
13629 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13630 struct block_iterator iter;
13631 struct symbol *sym;
13632
13633 ALL_BLOCK_SYMBOLS (b, iter, sym)
13634 if (ada_is_non_standard_exception_sym (sym)
13635 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13636 {
13637 struct ada_exc_info info
13638 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13639
13640 exceptions->push_back (info);
13641 }
13642 }
13643 }
13644 }
13645
13646 /* Implements ada_exceptions_list with the regular expression passed
13647 as a regex_t, rather than a string.
13648
13649 If not NULL, PREG is used to filter out exceptions whose names
13650 do not match. Otherwise, all exceptions are listed. */
13651
13652 static std::vector<ada_exc_info>
13653 ada_exceptions_list_1 (compiled_regex *preg)
13654 {
13655 std::vector<ada_exc_info> result;
13656 int prev_len;
13657
13658 /* First, list the known standard exceptions. These exceptions
13659 need to be handled separately, as they are usually defined in
13660 runtime units that have been compiled without debugging info. */
13661
13662 ada_add_standard_exceptions (preg, &result);
13663
13664 /* Next, find all exceptions whose scope is local and accessible
13665 from the currently selected frame. */
13666
13667 if (has_stack_frames ())
13668 {
13669 prev_len = result.size ();
13670 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13671 &result);
13672 if (result.size () > prev_len)
13673 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13674 }
13675
13676 /* Add all exceptions whose scope is global. */
13677
13678 prev_len = result.size ();
13679 ada_add_global_exceptions (preg, &result);
13680 if (result.size () > prev_len)
13681 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13682
13683 return result;
13684 }
13685
13686 /* Return a vector of ada_exc_info.
13687
13688 If REGEXP is NULL, all exceptions are included in the result.
13689 Otherwise, it should contain a valid regular expression,
13690 and only the exceptions whose names match that regular expression
13691 are included in the result.
13692
13693 The exceptions are sorted in the following order:
13694 - Standard exceptions (defined by the Ada language), in
13695 alphabetical order;
13696 - Exceptions only visible from the current frame, in
13697 alphabetical order;
13698 - Exceptions whose scope is global, in alphabetical order. */
13699
13700 std::vector<ada_exc_info>
13701 ada_exceptions_list (const char *regexp)
13702 {
13703 if (regexp == NULL)
13704 return ada_exceptions_list_1 (NULL);
13705
13706 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13707 return ada_exceptions_list_1 (&reg);
13708 }
13709
13710 /* Implement the "info exceptions" command. */
13711
13712 static void
13713 info_exceptions_command (const char *regexp, int from_tty)
13714 {
13715 struct gdbarch *gdbarch = get_current_arch ();
13716
13717 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13718
13719 if (regexp != NULL)
13720 printf_filtered
13721 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13722 else
13723 printf_filtered (_("All defined Ada exceptions:\n"));
13724
13725 for (const ada_exc_info &info : exceptions)
13726 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13727 }
13728
13729 /* Operators */
13730 /* Information about operators given special treatment in functions
13731 below. */
13732 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13733
13734 #define ADA_OPERATORS \
13735 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13736 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13737 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13738 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13739 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13740 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13741 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13742 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13743 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13744 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13745 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13746 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13747 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13748 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13749 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13750 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13751 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13752 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13753 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13754
13755 static void
13756 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13757 int *argsp)
13758 {
13759 switch (exp->elts[pc - 1].opcode)
13760 {
13761 default:
13762 operator_length_standard (exp, pc, oplenp, argsp);
13763 break;
13764
13765 #define OP_DEFN(op, len, args, binop) \
13766 case op: *oplenp = len; *argsp = args; break;
13767 ADA_OPERATORS;
13768 #undef OP_DEFN
13769
13770 case OP_AGGREGATE:
13771 *oplenp = 3;
13772 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13773 break;
13774
13775 case OP_CHOICES:
13776 *oplenp = 3;
13777 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13778 break;
13779 }
13780 }
13781
13782 /* Implementation of the exp_descriptor method operator_check. */
13783
13784 static int
13785 ada_operator_check (struct expression *exp, int pos,
13786 int (*objfile_func) (struct objfile *objfile, void *data),
13787 void *data)
13788 {
13789 const union exp_element *const elts = exp->elts;
13790 struct type *type = NULL;
13791
13792 switch (elts[pos].opcode)
13793 {
13794 case UNOP_IN_RANGE:
13795 case UNOP_QUAL:
13796 type = elts[pos + 1].type;
13797 break;
13798
13799 default:
13800 return operator_check_standard (exp, pos, objfile_func, data);
13801 }
13802
13803 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13804
13805 if (type && TYPE_OBJFILE (type)
13806 && (*objfile_func) (TYPE_OBJFILE (type), data))
13807 return 1;
13808
13809 return 0;
13810 }
13811
13812 static const char *
13813 ada_op_name (enum exp_opcode opcode)
13814 {
13815 switch (opcode)
13816 {
13817 default:
13818 return op_name_standard (opcode);
13819
13820 #define OP_DEFN(op, len, args, binop) case op: return #op;
13821 ADA_OPERATORS;
13822 #undef OP_DEFN
13823
13824 case OP_AGGREGATE:
13825 return "OP_AGGREGATE";
13826 case OP_CHOICES:
13827 return "OP_CHOICES";
13828 case OP_NAME:
13829 return "OP_NAME";
13830 }
13831 }
13832
13833 /* As for operator_length, but assumes PC is pointing at the first
13834 element of the operator, and gives meaningful results only for the
13835 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13836
13837 static void
13838 ada_forward_operator_length (struct expression *exp, int pc,
13839 int *oplenp, int *argsp)
13840 {
13841 switch (exp->elts[pc].opcode)
13842 {
13843 default:
13844 *oplenp = *argsp = 0;
13845 break;
13846
13847 #define OP_DEFN(op, len, args, binop) \
13848 case op: *oplenp = len; *argsp = args; break;
13849 ADA_OPERATORS;
13850 #undef OP_DEFN
13851
13852 case OP_AGGREGATE:
13853 *oplenp = 3;
13854 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13855 break;
13856
13857 case OP_CHOICES:
13858 *oplenp = 3;
13859 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13860 break;
13861
13862 case OP_STRING:
13863 case OP_NAME:
13864 {
13865 int len = longest_to_int (exp->elts[pc + 1].longconst);
13866
13867 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13868 *argsp = 0;
13869 break;
13870 }
13871 }
13872 }
13873
13874 static int
13875 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13876 {
13877 enum exp_opcode op = exp->elts[elt].opcode;
13878 int oplen, nargs;
13879 int pc = elt;
13880 int i;
13881
13882 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13883
13884 switch (op)
13885 {
13886 /* Ada attributes ('Foo). */
13887 case OP_ATR_FIRST:
13888 case OP_ATR_LAST:
13889 case OP_ATR_LENGTH:
13890 case OP_ATR_IMAGE:
13891 case OP_ATR_MAX:
13892 case OP_ATR_MIN:
13893 case OP_ATR_MODULUS:
13894 case OP_ATR_POS:
13895 case OP_ATR_SIZE:
13896 case OP_ATR_TAG:
13897 case OP_ATR_VAL:
13898 break;
13899
13900 case UNOP_IN_RANGE:
13901 case UNOP_QUAL:
13902 /* XXX: gdb_sprint_host_address, type_sprint */
13903 fprintf_filtered (stream, _("Type @"));
13904 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13905 fprintf_filtered (stream, " (");
13906 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13907 fprintf_filtered (stream, ")");
13908 break;
13909 case BINOP_IN_BOUNDS:
13910 fprintf_filtered (stream, " (%d)",
13911 longest_to_int (exp->elts[pc + 2].longconst));
13912 break;
13913 case TERNOP_IN_RANGE:
13914 break;
13915
13916 case OP_AGGREGATE:
13917 case OP_OTHERS:
13918 case OP_DISCRETE_RANGE:
13919 case OP_POSITIONAL:
13920 case OP_CHOICES:
13921 break;
13922
13923 case OP_NAME:
13924 case OP_STRING:
13925 {
13926 char *name = &exp->elts[elt + 2].string;
13927 int len = longest_to_int (exp->elts[elt + 1].longconst);
13928
13929 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13930 break;
13931 }
13932
13933 default:
13934 return dump_subexp_body_standard (exp, stream, elt);
13935 }
13936
13937 elt += oplen;
13938 for (i = 0; i < nargs; i += 1)
13939 elt = dump_subexp (exp, stream, elt);
13940
13941 return elt;
13942 }
13943
13944 /* The Ada extension of print_subexp (q.v.). */
13945
13946 static void
13947 ada_print_subexp (struct expression *exp, int *pos,
13948 struct ui_file *stream, enum precedence prec)
13949 {
13950 int oplen, nargs, i;
13951 int pc = *pos;
13952 enum exp_opcode op = exp->elts[pc].opcode;
13953
13954 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13955
13956 *pos += oplen;
13957 switch (op)
13958 {
13959 default:
13960 *pos -= oplen;
13961 print_subexp_standard (exp, pos, stream, prec);
13962 return;
13963
13964 case OP_VAR_VALUE:
13965 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13966 return;
13967
13968 case BINOP_IN_BOUNDS:
13969 /* XXX: sprint_subexp */
13970 print_subexp (exp, pos, stream, PREC_SUFFIX);
13971 fputs_filtered (" in ", stream);
13972 print_subexp (exp, pos, stream, PREC_SUFFIX);
13973 fputs_filtered ("'range", stream);
13974 if (exp->elts[pc + 1].longconst > 1)
13975 fprintf_filtered (stream, "(%ld)",
13976 (long) exp->elts[pc + 1].longconst);
13977 return;
13978
13979 case TERNOP_IN_RANGE:
13980 if (prec >= PREC_EQUAL)
13981 fputs_filtered ("(", stream);
13982 /* XXX: sprint_subexp */
13983 print_subexp (exp, pos, stream, PREC_SUFFIX);
13984 fputs_filtered (" in ", stream);
13985 print_subexp (exp, pos, stream, PREC_EQUAL);
13986 fputs_filtered (" .. ", stream);
13987 print_subexp (exp, pos, stream, PREC_EQUAL);
13988 if (prec >= PREC_EQUAL)
13989 fputs_filtered (")", stream);
13990 return;
13991
13992 case OP_ATR_FIRST:
13993 case OP_ATR_LAST:
13994 case OP_ATR_LENGTH:
13995 case OP_ATR_IMAGE:
13996 case OP_ATR_MAX:
13997 case OP_ATR_MIN:
13998 case OP_ATR_MODULUS:
13999 case OP_ATR_POS:
14000 case OP_ATR_SIZE:
14001 case OP_ATR_TAG:
14002 case OP_ATR_VAL:
14003 if (exp->elts[*pos].opcode == OP_TYPE)
14004 {
14005 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
14006 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
14007 &type_print_raw_options);
14008 *pos += 3;
14009 }
14010 else
14011 print_subexp (exp, pos, stream, PREC_SUFFIX);
14012 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
14013 if (nargs > 1)
14014 {
14015 int tem;
14016
14017 for (tem = 1; tem < nargs; tem += 1)
14018 {
14019 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
14020 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
14021 }
14022 fputs_filtered (")", stream);
14023 }
14024 return;
14025
14026 case UNOP_QUAL:
14027 type_print (exp->elts[pc + 1].type, "", stream, 0);
14028 fputs_filtered ("'(", stream);
14029 print_subexp (exp, pos, stream, PREC_PREFIX);
14030 fputs_filtered (")", stream);
14031 return;
14032
14033 case UNOP_IN_RANGE:
14034 /* XXX: sprint_subexp */
14035 print_subexp (exp, pos, stream, PREC_SUFFIX);
14036 fputs_filtered (" in ", stream);
14037 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14038 &type_print_raw_options);
14039 return;
14040
14041 case OP_DISCRETE_RANGE:
14042 print_subexp (exp, pos, stream, PREC_SUFFIX);
14043 fputs_filtered ("..", stream);
14044 print_subexp (exp, pos, stream, PREC_SUFFIX);
14045 return;
14046
14047 case OP_OTHERS:
14048 fputs_filtered ("others => ", stream);
14049 print_subexp (exp, pos, stream, PREC_SUFFIX);
14050 return;
14051
14052 case OP_CHOICES:
14053 for (i = 0; i < nargs-1; i += 1)
14054 {
14055 if (i > 0)
14056 fputs_filtered ("|", stream);
14057 print_subexp (exp, pos, stream, PREC_SUFFIX);
14058 }
14059 fputs_filtered (" => ", stream);
14060 print_subexp (exp, pos, stream, PREC_SUFFIX);
14061 return;
14062
14063 case OP_POSITIONAL:
14064 print_subexp (exp, pos, stream, PREC_SUFFIX);
14065 return;
14066
14067 case OP_AGGREGATE:
14068 fputs_filtered ("(", stream);
14069 for (i = 0; i < nargs; i += 1)
14070 {
14071 if (i > 0)
14072 fputs_filtered (", ", stream);
14073 print_subexp (exp, pos, stream, PREC_SUFFIX);
14074 }
14075 fputs_filtered (")", stream);
14076 return;
14077 }
14078 }
14079
14080 /* Table mapping opcodes into strings for printing operators
14081 and precedences of the operators. */
14082
14083 static const struct op_print ada_op_print_tab[] = {
14084 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14085 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14086 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14087 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14088 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14089 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14090 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14091 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14092 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14093 {">=", BINOP_GEQ, PREC_ORDER, 0},
14094 {">", BINOP_GTR, PREC_ORDER, 0},
14095 {"<", BINOP_LESS, PREC_ORDER, 0},
14096 {">>", BINOP_RSH, PREC_SHIFT, 0},
14097 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14098 {"+", BINOP_ADD, PREC_ADD, 0},
14099 {"-", BINOP_SUB, PREC_ADD, 0},
14100 {"&", BINOP_CONCAT, PREC_ADD, 0},
14101 {"*", BINOP_MUL, PREC_MUL, 0},
14102 {"/", BINOP_DIV, PREC_MUL, 0},
14103 {"rem", BINOP_REM, PREC_MUL, 0},
14104 {"mod", BINOP_MOD, PREC_MUL, 0},
14105 {"**", BINOP_EXP, PREC_REPEAT, 0},
14106 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14107 {"-", UNOP_NEG, PREC_PREFIX, 0},
14108 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14109 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14110 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14111 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14112 {".all", UNOP_IND, PREC_SUFFIX, 1},
14113 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14114 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14115 {NULL, OP_NULL, PREC_SUFFIX, 0}
14116 };
14117 \f
14118 enum ada_primitive_types {
14119 ada_primitive_type_int,
14120 ada_primitive_type_long,
14121 ada_primitive_type_short,
14122 ada_primitive_type_char,
14123 ada_primitive_type_float,
14124 ada_primitive_type_double,
14125 ada_primitive_type_void,
14126 ada_primitive_type_long_long,
14127 ada_primitive_type_long_double,
14128 ada_primitive_type_natural,
14129 ada_primitive_type_positive,
14130 ada_primitive_type_system_address,
14131 ada_primitive_type_storage_offset,
14132 nr_ada_primitive_types
14133 };
14134
14135 static void
14136 ada_language_arch_info (struct gdbarch *gdbarch,
14137 struct language_arch_info *lai)
14138 {
14139 const struct builtin_type *builtin = builtin_type (gdbarch);
14140
14141 lai->primitive_type_vector
14142 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14143 struct type *);
14144
14145 lai->primitive_type_vector [ada_primitive_type_int]
14146 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14147 0, "integer");
14148 lai->primitive_type_vector [ada_primitive_type_long]
14149 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14150 0, "long_integer");
14151 lai->primitive_type_vector [ada_primitive_type_short]
14152 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14153 0, "short_integer");
14154 lai->string_char_type
14155 = lai->primitive_type_vector [ada_primitive_type_char]
14156 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14157 lai->primitive_type_vector [ada_primitive_type_float]
14158 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14159 "float", gdbarch_float_format (gdbarch));
14160 lai->primitive_type_vector [ada_primitive_type_double]
14161 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14162 "long_float", gdbarch_double_format (gdbarch));
14163 lai->primitive_type_vector [ada_primitive_type_long_long]
14164 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14165 0, "long_long_integer");
14166 lai->primitive_type_vector [ada_primitive_type_long_double]
14167 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14168 "long_long_float", gdbarch_long_double_format (gdbarch));
14169 lai->primitive_type_vector [ada_primitive_type_natural]
14170 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14171 0, "natural");
14172 lai->primitive_type_vector [ada_primitive_type_positive]
14173 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14174 0, "positive");
14175 lai->primitive_type_vector [ada_primitive_type_void]
14176 = builtin->builtin_void;
14177
14178 lai->primitive_type_vector [ada_primitive_type_system_address]
14179 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14180 "void"));
14181 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14182 = "system__address";
14183
14184 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14185 type. This is a signed integral type whose size is the same as
14186 the size of addresses. */
14187 {
14188 unsigned int addr_length = TYPE_LENGTH
14189 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14190
14191 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14192 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14193 "storage_offset");
14194 }
14195
14196 lai->bool_type_symbol = NULL;
14197 lai->bool_type_default = builtin->builtin_bool;
14198 }
14199 \f
14200 /* Language vector */
14201
14202 /* Not really used, but needed in the ada_language_defn. */
14203
14204 static void
14205 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14206 {
14207 ada_emit_char (c, type, stream, quoter, 1);
14208 }
14209
14210 static int
14211 parse (struct parser_state *ps)
14212 {
14213 warnings_issued = 0;
14214 return ada_parse (ps);
14215 }
14216
14217 static const struct exp_descriptor ada_exp_descriptor = {
14218 ada_print_subexp,
14219 ada_operator_length,
14220 ada_operator_check,
14221 ada_op_name,
14222 ada_dump_subexp_body,
14223 ada_evaluate_subexp
14224 };
14225
14226 /* symbol_name_matcher_ftype adapter for wild_match. */
14227
14228 static bool
14229 do_wild_match (const char *symbol_search_name,
14230 const lookup_name_info &lookup_name,
14231 completion_match_result *comp_match_res)
14232 {
14233 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14234 }
14235
14236 /* symbol_name_matcher_ftype adapter for full_match. */
14237
14238 static bool
14239 do_full_match (const char *symbol_search_name,
14240 const lookup_name_info &lookup_name,
14241 completion_match_result *comp_match_res)
14242 {
14243 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14244 }
14245
14246 /* Build the Ada lookup name for LOOKUP_NAME. */
14247
14248 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14249 {
14250 const std::string &user_name = lookup_name.name ();
14251
14252 if (user_name[0] == '<')
14253 {
14254 if (user_name.back () == '>')
14255 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14256 else
14257 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14258 m_encoded_p = true;
14259 m_verbatim_p = true;
14260 m_wild_match_p = false;
14261 m_standard_p = false;
14262 }
14263 else
14264 {
14265 m_verbatim_p = false;
14266
14267 m_encoded_p = user_name.find ("__") != std::string::npos;
14268
14269 if (!m_encoded_p)
14270 {
14271 const char *folded = ada_fold_name (user_name.c_str ());
14272 const char *encoded = ada_encode_1 (folded, false);
14273 if (encoded != NULL)
14274 m_encoded_name = encoded;
14275 else
14276 m_encoded_name = user_name;
14277 }
14278 else
14279 m_encoded_name = user_name;
14280
14281 /* Handle the 'package Standard' special case. See description
14282 of m_standard_p. */
14283 if (startswith (m_encoded_name.c_str (), "standard__"))
14284 {
14285 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14286 m_standard_p = true;
14287 }
14288 else
14289 m_standard_p = false;
14290
14291 /* If the name contains a ".", then the user is entering a fully
14292 qualified entity name, and the match must not be done in wild
14293 mode. Similarly, if the user wants to complete what looks
14294 like an encoded name, the match must not be done in wild
14295 mode. Also, in the standard__ special case always do
14296 non-wild matching. */
14297 m_wild_match_p
14298 = (lookup_name.match_type () != symbol_name_match_type::FULL
14299 && !m_encoded_p
14300 && !m_standard_p
14301 && user_name.find ('.') == std::string::npos);
14302 }
14303 }
14304
14305 /* symbol_name_matcher_ftype method for Ada. This only handles
14306 completion mode. */
14307
14308 static bool
14309 ada_symbol_name_matches (const char *symbol_search_name,
14310 const lookup_name_info &lookup_name,
14311 completion_match_result *comp_match_res)
14312 {
14313 return lookup_name.ada ().matches (symbol_search_name,
14314 lookup_name.match_type (),
14315 comp_match_res);
14316 }
14317
14318 /* A name matcher that matches the symbol name exactly, with
14319 strcmp. */
14320
14321 static bool
14322 literal_symbol_name_matcher (const char *symbol_search_name,
14323 const lookup_name_info &lookup_name,
14324 completion_match_result *comp_match_res)
14325 {
14326 const std::string &name = lookup_name.name ();
14327
14328 int cmp = (lookup_name.completion_mode ()
14329 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14330 : strcmp (symbol_search_name, name.c_str ()));
14331 if (cmp == 0)
14332 {
14333 if (comp_match_res != NULL)
14334 comp_match_res->set_match (symbol_search_name);
14335 return true;
14336 }
14337 else
14338 return false;
14339 }
14340
14341 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14342 Ada. */
14343
14344 static symbol_name_matcher_ftype *
14345 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14346 {
14347 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14348 return literal_symbol_name_matcher;
14349
14350 if (lookup_name.completion_mode ())
14351 return ada_symbol_name_matches;
14352 else
14353 {
14354 if (lookup_name.ada ().wild_match_p ())
14355 return do_wild_match;
14356 else
14357 return do_full_match;
14358 }
14359 }
14360
14361 /* Implement the "la_read_var_value" language_defn method for Ada. */
14362
14363 static struct value *
14364 ada_read_var_value (struct symbol *var, const struct block *var_block,
14365 struct frame_info *frame)
14366 {
14367 const struct block *frame_block = NULL;
14368 struct symbol *renaming_sym = NULL;
14369
14370 /* The only case where default_read_var_value is not sufficient
14371 is when VAR is a renaming... */
14372 if (frame)
14373 frame_block = get_frame_block (frame, NULL);
14374 if (frame_block)
14375 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14376 if (renaming_sym != NULL)
14377 return ada_read_renaming_var_value (renaming_sym, frame_block);
14378
14379 /* This is a typical case where we expect the default_read_var_value
14380 function to work. */
14381 return default_read_var_value (var, var_block, frame);
14382 }
14383
14384 static const char *ada_extensions[] =
14385 {
14386 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14387 };
14388
14389 extern const struct language_defn ada_language_defn = {
14390 "ada", /* Language name */
14391 "Ada",
14392 language_ada,
14393 range_check_off,
14394 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14395 that's not quite what this means. */
14396 array_row_major,
14397 macro_expansion_no,
14398 ada_extensions,
14399 &ada_exp_descriptor,
14400 parse,
14401 resolve,
14402 ada_printchar, /* Print a character constant */
14403 ada_printstr, /* Function to print string constant */
14404 emit_char, /* Function to print single char (not used) */
14405 ada_print_type, /* Print a type using appropriate syntax */
14406 ada_print_typedef, /* Print a typedef using appropriate syntax */
14407 ada_val_print, /* Print a value using appropriate syntax */
14408 ada_value_print, /* Print a top-level value */
14409 ada_read_var_value, /* la_read_var_value */
14410 NULL, /* Language specific skip_trampoline */
14411 NULL, /* name_of_this */
14412 true, /* la_store_sym_names_in_linkage_form_p */
14413 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14414 basic_lookup_transparent_type, /* lookup_transparent_type */
14415 ada_la_decode, /* Language specific symbol demangler */
14416 ada_sniff_from_mangled_name,
14417 NULL, /* Language specific
14418 class_name_from_physname */
14419 ada_op_print_tab, /* expression operators for printing */
14420 0, /* c-style arrays */
14421 1, /* String lower bound */
14422 ada_get_gdb_completer_word_break_characters,
14423 ada_collect_symbol_completion_matches,
14424 ada_language_arch_info,
14425 ada_print_array_index,
14426 default_pass_by_reference,
14427 c_get_string,
14428 c_watch_location_expression,
14429 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14430 ada_iterate_over_symbols,
14431 default_search_name_hash,
14432 &ada_varobj_ops,
14433 NULL,
14434 NULL,
14435 LANG_MAGIC
14436 };
14437
14438 /* Command-list for the "set/show ada" prefix command. */
14439 static struct cmd_list_element *set_ada_list;
14440 static struct cmd_list_element *show_ada_list;
14441
14442 /* Implement the "set ada" prefix command. */
14443
14444 static void
14445 set_ada_command (const char *arg, int from_tty)
14446 {
14447 printf_unfiltered (_(\
14448 "\"set ada\" must be followed by the name of a setting.\n"));
14449 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14450 }
14451
14452 /* Implement the "show ada" prefix command. */
14453
14454 static void
14455 show_ada_command (const char *args, int from_tty)
14456 {
14457 cmd_show_list (show_ada_list, from_tty, "");
14458 }
14459
14460 static void
14461 initialize_ada_catchpoint_ops (void)
14462 {
14463 struct breakpoint_ops *ops;
14464
14465 initialize_breakpoint_ops ();
14466
14467 ops = &catch_exception_breakpoint_ops;
14468 *ops = bkpt_breakpoint_ops;
14469 ops->allocate_location = allocate_location_catch_exception;
14470 ops->re_set = re_set_catch_exception;
14471 ops->check_status = check_status_catch_exception;
14472 ops->print_it = print_it_catch_exception;
14473 ops->print_one = print_one_catch_exception;
14474 ops->print_mention = print_mention_catch_exception;
14475 ops->print_recreate = print_recreate_catch_exception;
14476
14477 ops = &catch_exception_unhandled_breakpoint_ops;
14478 *ops = bkpt_breakpoint_ops;
14479 ops->allocate_location = allocate_location_catch_exception_unhandled;
14480 ops->re_set = re_set_catch_exception_unhandled;
14481 ops->check_status = check_status_catch_exception_unhandled;
14482 ops->print_it = print_it_catch_exception_unhandled;
14483 ops->print_one = print_one_catch_exception_unhandled;
14484 ops->print_mention = print_mention_catch_exception_unhandled;
14485 ops->print_recreate = print_recreate_catch_exception_unhandled;
14486
14487 ops = &catch_assert_breakpoint_ops;
14488 *ops = bkpt_breakpoint_ops;
14489 ops->allocate_location = allocate_location_catch_assert;
14490 ops->re_set = re_set_catch_assert;
14491 ops->check_status = check_status_catch_assert;
14492 ops->print_it = print_it_catch_assert;
14493 ops->print_one = print_one_catch_assert;
14494 ops->print_mention = print_mention_catch_assert;
14495 ops->print_recreate = print_recreate_catch_assert;
14496
14497 ops = &catch_handlers_breakpoint_ops;
14498 *ops = bkpt_breakpoint_ops;
14499 ops->allocate_location = allocate_location_catch_handlers;
14500 ops->re_set = re_set_catch_handlers;
14501 ops->check_status = check_status_catch_handlers;
14502 ops->print_it = print_it_catch_handlers;
14503 ops->print_one = print_one_catch_handlers;
14504 ops->print_mention = print_mention_catch_handlers;
14505 ops->print_recreate = print_recreate_catch_handlers;
14506 }
14507
14508 /* This module's 'new_objfile' observer. */
14509
14510 static void
14511 ada_new_objfile_observer (struct objfile *objfile)
14512 {
14513 ada_clear_symbol_cache ();
14514 }
14515
14516 /* This module's 'free_objfile' observer. */
14517
14518 static void
14519 ada_free_objfile_observer (struct objfile *objfile)
14520 {
14521 ada_clear_symbol_cache ();
14522 }
14523
14524 void
14525 _initialize_ada_language (void)
14526 {
14527 initialize_ada_catchpoint_ops ();
14528
14529 add_prefix_cmd ("ada", no_class, set_ada_command,
14530 _("Prefix command for changing Ada-specfic settings"),
14531 &set_ada_list, "set ada ", 0, &setlist);
14532
14533 add_prefix_cmd ("ada", no_class, show_ada_command,
14534 _("Generic command for showing Ada-specific settings."),
14535 &show_ada_list, "show ada ", 0, &showlist);
14536
14537 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14538 &trust_pad_over_xvs, _("\
14539 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14540 Show whether an optimization trusting PAD types over XVS types is activated"),
14541 _("\
14542 This is related to the encoding used by the GNAT compiler. The debugger\n\
14543 should normally trust the contents of PAD types, but certain older versions\n\
14544 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14545 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14546 work around this bug. It is always safe to turn this option \"off\", but\n\
14547 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14548 this option to \"off\" unless necessary."),
14549 NULL, NULL, &set_ada_list, &show_ada_list);
14550
14551 add_setshow_boolean_cmd ("print-signatures", class_vars,
14552 &print_signatures, _("\
14553 Enable or disable the output of formal and return types for functions in the \
14554 overloads selection menu"), _("\
14555 Show whether the output of formal and return types for functions in the \
14556 overloads selection menu is activated"),
14557 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14558
14559 add_catch_command ("exception", _("\
14560 Catch Ada exceptions, when raised.\n\
14561 With an argument, catch only exceptions with the given name."),
14562 catch_ada_exception_command,
14563 NULL,
14564 CATCH_PERMANENT,
14565 CATCH_TEMPORARY);
14566
14567 add_catch_command ("handlers", _("\
14568 Catch Ada exceptions, when handled.\n\
14569 With an argument, catch only exceptions with the given name."),
14570 catch_ada_handlers_command,
14571 NULL,
14572 CATCH_PERMANENT,
14573 CATCH_TEMPORARY);
14574 add_catch_command ("assert", _("\
14575 Catch failed Ada assertions, when raised.\n\
14576 With an argument, catch only exceptions with the given name."),
14577 catch_assert_command,
14578 NULL,
14579 CATCH_PERMANENT,
14580 CATCH_TEMPORARY);
14581
14582 varsize_limit = 65536;
14583 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14584 &varsize_limit, _("\
14585 Set the maximum number of bytes allowed in a variable-size object."), _("\
14586 Show the maximum number of bytes allowed in a variable-size object."), _("\
14587 Attempts to access an object whose size is not a compile-time constant\n\
14588 and exceeds this limit will cause an error."),
14589 NULL, NULL, &setlist, &showlist);
14590
14591 add_info ("exceptions", info_exceptions_command,
14592 _("\
14593 List all Ada exception names.\n\
14594 If a regular expression is passed as an argument, only those matching\n\
14595 the regular expression are listed."));
14596
14597 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14598 _("Set Ada maintenance-related variables."),
14599 &maint_set_ada_cmdlist, "maintenance set ada ",
14600 0/*allow-unknown*/, &maintenance_set_cmdlist);
14601
14602 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14603 _("Show Ada maintenance-related variables"),
14604 &maint_show_ada_cmdlist, "maintenance show ada ",
14605 0/*allow-unknown*/, &maintenance_show_cmdlist);
14606
14607 add_setshow_boolean_cmd
14608 ("ignore-descriptive-types", class_maintenance,
14609 &ada_ignore_descriptive_types_p,
14610 _("Set whether descriptive types generated by GNAT should be ignored."),
14611 _("Show whether descriptive types generated by GNAT should be ignored."),
14612 _("\
14613 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14614 DWARF attribute."),
14615 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14616
14617 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14618 NULL, xcalloc, xfree);
14619
14620 /* The ada-lang observers. */
14621 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14622 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14623 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14624
14625 /* Setup various context-specific data. */
14626 ada_inferior_data
14627 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14628 ada_pspace_data_handle
14629 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14630 }
This page took 0.39491 seconds and 4 git commands to generate.