2005-01-12 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright
2 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004.
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54
55 #ifndef ADA_RETAIN_DOTS
56 #define ADA_RETAIN_DOTS 0
57 #endif
58
59 /* Define whether or not the C operator '/' truncates towards zero for
60 differently signed operands (truncation direction is undefined in C).
61 Copied from valarith.c. */
62
63 #ifndef TRUNCATION_TOWARDS_ZERO
64 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
65 #endif
66
67
68 static void extract_string (CORE_ADDR addr, char *buf);
69
70 static struct type *ada_create_fundamental_type (struct objfile *, int);
71
72 static void modify_general_field (char *, LONGEST, int, int);
73
74 static struct type *desc_base_type (struct type *);
75
76 static struct type *desc_bounds_type (struct type *);
77
78 static struct value *desc_bounds (struct value *);
79
80 static int fat_pntr_bounds_bitpos (struct type *);
81
82 static int fat_pntr_bounds_bitsize (struct type *);
83
84 static struct type *desc_data_type (struct type *);
85
86 static struct value *desc_data (struct value *);
87
88 static int fat_pntr_data_bitpos (struct type *);
89
90 static int fat_pntr_data_bitsize (struct type *);
91
92 static struct value *desc_one_bound (struct value *, int, int);
93
94 static int desc_bound_bitpos (struct type *, int, int);
95
96 static int desc_bound_bitsize (struct type *, int, int);
97
98 static struct type *desc_index_type (struct type *, int);
99
100 static int desc_arity (struct type *);
101
102 static int ada_type_match (struct type *, struct type *, int);
103
104 static int ada_args_match (struct symbol *, struct value **, int);
105
106 static struct value *ensure_lval (struct value *, CORE_ADDR *);
107
108 static struct value *convert_actual (struct value *, struct type *,
109 CORE_ADDR *);
110
111 static struct value *make_array_descriptor (struct type *, struct value *,
112 CORE_ADDR *);
113
114 static void ada_add_block_symbols (struct obstack *,
115 struct block *, const char *,
116 domain_enum, struct objfile *,
117 struct symtab *, int);
118
119 static int is_nonfunction (struct ada_symbol_info *, int);
120
121 static void add_defn_to_vec (struct obstack *, struct symbol *,
122 struct block *, struct symtab *);
123
124 static int num_defns_collected (struct obstack *);
125
126 static struct ada_symbol_info *defns_collected (struct obstack *, int);
127
128 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
129 *, const char *, int,
130 domain_enum, int);
131
132 static struct symtab *symtab_for_sym (struct symbol *);
133
134 static struct value *resolve_subexp (struct expression **, int *, int,
135 struct type *);
136
137 static void replace_operator_with_call (struct expression **, int, int, int,
138 struct symbol *, struct block *);
139
140 static int possible_user_operator_p (enum exp_opcode, struct value **);
141
142 static char *ada_op_name (enum exp_opcode);
143
144 static const char *ada_decoded_op_name (enum exp_opcode);
145
146 static int numeric_type_p (struct type *);
147
148 static int integer_type_p (struct type *);
149
150 static int scalar_type_p (struct type *);
151
152 static int discrete_type_p (struct type *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp (struct type *, struct expression *,
158 int *, enum noside);
159
160 static struct value *evaluate_subexp_type (struct expression *, int *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *, char *,
165 CORE_ADDR, struct value *);
166
167 static struct type *to_fixed_array_type (struct type *, struct value *, int);
168
169 static struct type *to_fixed_range_type (char *, struct value *,
170 struct objfile *);
171
172 static struct type *to_static_fixed_type (struct type *);
173
174 static struct value *unwrap_value (struct value *);
175
176 static struct type *packed_array_type (struct type *, long *);
177
178 static struct type *decode_packed_array_type (struct type *);
179
180 static struct value *decode_packed_array (struct value *);
181
182 static struct value *value_subscript_packed (struct value *, int,
183 struct value **);
184
185 static struct value *coerce_unspec_val_to_type (struct value *,
186 struct type *);
187
188 static struct value *get_var_value (char *, char *);
189
190 static int lesseq_defined_than (struct symbol *, struct symbol *);
191
192 static int equiv_types (struct type *, struct type *);
193
194 static int is_name_suffix (const char *);
195
196 static int wild_match (const char *, int, const char *);
197
198 static struct value *ada_coerce_ref (struct value *);
199
200 static LONGEST pos_atr (struct value *);
201
202 static struct value *value_pos_atr (struct value *);
203
204 static struct value *value_val_atr (struct type *, struct value *);
205
206 static struct symbol *standard_lookup (const char *, const struct block *,
207 domain_enum);
208
209 static struct value *ada_search_struct_field (char *, struct value *, int,
210 struct type *);
211
212 static struct value *ada_value_primitive_field (struct value *, int, int,
213 struct type *);
214
215 static int find_struct_field (char *, struct type *, int,
216 struct type **, int *, int *, int *);
217
218 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
219 struct value *);
220
221 static struct value *ada_to_fixed_value (struct value *);
222
223 static int ada_resolve_function (struct ada_symbol_info *, int,
224 struct value **, int, const char *,
225 struct type *);
226
227 static struct value *ada_coerce_to_simple_array (struct value *);
228
229 static int ada_is_direct_array_type (struct type *);
230
231 static void ada_language_arch_info (struct gdbarch *,
232 struct language_arch_info *);
233
234 static void check_size (const struct type *);
235 \f
236
237
238 /* Maximum-sized dynamic type. */
239 static unsigned int varsize_limit;
240
241 /* FIXME: brobecker/2003-09-17: No longer a const because it is
242 returned by a function that does not return a const char *. */
243 static char *ada_completer_word_break_characters =
244 #ifdef VMS
245 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
246 #else
247 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
248 #endif
249
250 /* The name of the symbol to use to get the name of the main subprogram. */
251 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
252 = "__gnat_ada_main_program_name";
253
254 /* The name of the runtime function called when an exception is raised. */
255 static const char raise_sym_name[] = "__gnat_raise_nodefer_with_msg";
256
257 /* The name of the runtime function called when an unhandled exception
258 is raised. */
259 static const char raise_unhandled_sym_name[] = "__gnat_unhandled_exception";
260
261 /* The name of the runtime function called when an assert failure is
262 raised. */
263 static const char raise_assert_sym_name[] =
264 "system__assertions__raise_assert_failure";
265
266 /* When GDB stops on an unhandled exception, GDB will go up the stack until
267 if finds a frame corresponding to this function, in order to extract the
268 name of the exception that has been raised from one of the parameters. */
269 static const char process_raise_exception_name[] =
270 "ada__exceptions__process_raise_exception";
271
272 /* A string that reflects the longest exception expression rewrite,
273 aside from the exception name. */
274 static const char longest_exception_template[] =
275 "'__gnat_raise_nodefer_with_msg' if long_integer(e) = long_integer(&)";
276
277 /* Limit on the number of warnings to raise per expression evaluation. */
278 static int warning_limit = 2;
279
280 /* Number of warning messages issued; reset to 0 by cleanups after
281 expression evaluation. */
282 static int warnings_issued = 0;
283
284 static const char *known_runtime_file_name_patterns[] = {
285 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
286 };
287
288 static const char *known_auxiliary_function_name_patterns[] = {
289 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
290 };
291
292 /* Space for allocating results of ada_lookup_symbol_list. */
293 static struct obstack symbol_list_obstack;
294
295 /* Utilities */
296
297
298 static char *
299 ada_get_gdb_completer_word_break_characters (void)
300 {
301 return ada_completer_word_break_characters;
302 }
303
304 /* Read the string located at ADDR from the inferior and store the
305 result into BUF. */
306
307 static void
308 extract_string (CORE_ADDR addr, char *buf)
309 {
310 int char_index = 0;
311
312 /* Loop, reading one byte at a time, until we reach the '\000'
313 end-of-string marker. */
314 do
315 {
316 target_read_memory (addr + char_index * sizeof (char),
317 buf + char_index * sizeof (char), sizeof (char));
318 char_index++;
319 }
320 while (buf[char_index - 1] != '\000');
321 }
322
323 /* Assuming VECT points to an array of *SIZE objects of size
324 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
325 updating *SIZE as necessary and returning the (new) array. */
326
327 void *
328 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
329 {
330 if (*size < min_size)
331 {
332 *size *= 2;
333 if (*size < min_size)
334 *size = min_size;
335 vect = xrealloc (vect, *size * element_size);
336 }
337 return vect;
338 }
339
340 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
341 suffix of FIELD_NAME beginning "___". */
342
343 static int
344 field_name_match (const char *field_name, const char *target)
345 {
346 int len = strlen (target);
347 return
348 (strncmp (field_name, target, len) == 0
349 && (field_name[len] == '\0'
350 || (strncmp (field_name + len, "___", 3) == 0
351 && strcmp (field_name + strlen (field_name) - 6,
352 "___XVN") != 0)));
353 }
354
355
356 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
357 FIELD_NAME, and return its index. This function also handles fields
358 whose name have ___ suffixes because the compiler sometimes alters
359 their name by adding such a suffix to represent fields with certain
360 constraints. If the field could not be found, return a negative
361 number if MAYBE_MISSING is set. Otherwise raise an error. */
362
363 int
364 ada_get_field_index (const struct type *type, const char *field_name,
365 int maybe_missing)
366 {
367 int fieldno;
368 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
369 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
370 return fieldno;
371
372 if (!maybe_missing)
373 error (_("Unable to find field %s in struct %s. Aborting"),
374 field_name, TYPE_NAME (type));
375
376 return -1;
377 }
378
379 /* The length of the prefix of NAME prior to any "___" suffix. */
380
381 int
382 ada_name_prefix_len (const char *name)
383 {
384 if (name == NULL)
385 return 0;
386 else
387 {
388 const char *p = strstr (name, "___");
389 if (p == NULL)
390 return strlen (name);
391 else
392 return p - name;
393 }
394 }
395
396 /* Return non-zero if SUFFIX is a suffix of STR.
397 Return zero if STR is null. */
398
399 static int
400 is_suffix (const char *str, const char *suffix)
401 {
402 int len1, len2;
403 if (str == NULL)
404 return 0;
405 len1 = strlen (str);
406 len2 = strlen (suffix);
407 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
408 }
409
410 /* Create a value of type TYPE whose contents come from VALADDR, if it
411 is non-null, and whose memory address (in the inferior) is
412 ADDRESS. */
413
414 struct value *
415 value_from_contents_and_address (struct type *type, char *valaddr,
416 CORE_ADDR address)
417 {
418 struct value *v = allocate_value (type);
419 if (valaddr == NULL)
420 VALUE_LAZY (v) = 1;
421 else
422 memcpy (VALUE_CONTENTS_RAW (v), valaddr, TYPE_LENGTH (type));
423 VALUE_ADDRESS (v) = address;
424 if (address != 0)
425 VALUE_LVAL (v) = lval_memory;
426 return v;
427 }
428
429 /* The contents of value VAL, treated as a value of type TYPE. The
430 result is an lval in memory if VAL is. */
431
432 static struct value *
433 coerce_unspec_val_to_type (struct value *val, struct type *type)
434 {
435 type = ada_check_typedef (type);
436 if (value_type (val) == type)
437 return val;
438 else
439 {
440 struct value *result;
441
442 /* Make sure that the object size is not unreasonable before
443 trying to allocate some memory for it. */
444 check_size (type);
445
446 result = allocate_value (type);
447 VALUE_LVAL (result) = VALUE_LVAL (val);
448 result->bitsize = value_bitsize (val);
449 result->bitpos = value_bitpos (val);
450 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
451 if (VALUE_LAZY (val)
452 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
453 VALUE_LAZY (result) = 1;
454 else
455 memcpy (VALUE_CONTENTS_RAW (result), VALUE_CONTENTS (val),
456 TYPE_LENGTH (type));
457 return result;
458 }
459 }
460
461 static char *
462 cond_offset_host (char *valaddr, long offset)
463 {
464 if (valaddr == NULL)
465 return NULL;
466 else
467 return valaddr + offset;
468 }
469
470 static CORE_ADDR
471 cond_offset_target (CORE_ADDR address, long offset)
472 {
473 if (address == 0)
474 return 0;
475 else
476 return address + offset;
477 }
478
479 /* Issue a warning (as for the definition of warning in utils.c, but
480 with exactly one argument rather than ...), unless the limit on the
481 number of warnings has passed during the evaluation of the current
482 expression. */
483
484 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
485 provided by "complaint". */
486 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
487
488 static void
489 lim_warning (const char *format, ...)
490 {
491 va_list args;
492 va_start (args, format);
493
494 warnings_issued += 1;
495 if (warnings_issued <= warning_limit)
496 vwarning (format, args);
497
498 va_end (args);
499 }
500
501 /* Issue an error if the size of an object of type T is unreasonable,
502 i.e. if it would be a bad idea to allocate a value of this type in
503 GDB. */
504
505 static void
506 check_size (const struct type *type)
507 {
508 if (TYPE_LENGTH (type) > varsize_limit)
509 error (_("object size is larger than varsize-limit"));
510 }
511
512
513 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
514 gdbtypes.h, but some of the necessary definitions in that file
515 seem to have gone missing. */
516
517 /* Maximum value of a SIZE-byte signed integer type. */
518 static LONGEST
519 max_of_size (int size)
520 {
521 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
522 return top_bit | (top_bit - 1);
523 }
524
525 /* Minimum value of a SIZE-byte signed integer type. */
526 static LONGEST
527 min_of_size (int size)
528 {
529 return -max_of_size (size) - 1;
530 }
531
532 /* Maximum value of a SIZE-byte unsigned integer type. */
533 static ULONGEST
534 umax_of_size (int size)
535 {
536 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
537 return top_bit | (top_bit - 1);
538 }
539
540 /* Maximum value of integral type T, as a signed quantity. */
541 static LONGEST
542 max_of_type (struct type *t)
543 {
544 if (TYPE_UNSIGNED (t))
545 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
546 else
547 return max_of_size (TYPE_LENGTH (t));
548 }
549
550 /* Minimum value of integral type T, as a signed quantity. */
551 static LONGEST
552 min_of_type (struct type *t)
553 {
554 if (TYPE_UNSIGNED (t))
555 return 0;
556 else
557 return min_of_size (TYPE_LENGTH (t));
558 }
559
560 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
561 static struct value *
562 discrete_type_high_bound (struct type *type)
563 {
564 switch (TYPE_CODE (type))
565 {
566 case TYPE_CODE_RANGE:
567 return value_from_longest (TYPE_TARGET_TYPE (type),
568 TYPE_HIGH_BOUND (type));
569 case TYPE_CODE_ENUM:
570 return
571 value_from_longest (type,
572 TYPE_FIELD_BITPOS (type,
573 TYPE_NFIELDS (type) - 1));
574 case TYPE_CODE_INT:
575 return value_from_longest (type, max_of_type (type));
576 default:
577 error (_("Unexpected type in discrete_type_high_bound."));
578 }
579 }
580
581 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
582 static struct value *
583 discrete_type_low_bound (struct type *type)
584 {
585 switch (TYPE_CODE (type))
586 {
587 case TYPE_CODE_RANGE:
588 return value_from_longest (TYPE_TARGET_TYPE (type),
589 TYPE_LOW_BOUND (type));
590 case TYPE_CODE_ENUM:
591 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
592 case TYPE_CODE_INT:
593 return value_from_longest (type, min_of_type (type));
594 default:
595 error (_("Unexpected type in discrete_type_low_bound."));
596 }
597 }
598
599 /* The identity on non-range types. For range types, the underlying
600 non-range scalar type. */
601
602 static struct type *
603 base_type (struct type *type)
604 {
605 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
606 {
607 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
608 return type;
609 type = TYPE_TARGET_TYPE (type);
610 }
611 return type;
612 }
613 \f
614
615 /* Language Selection */
616
617 /* If the main program is in Ada, return language_ada, otherwise return LANG
618 (the main program is in Ada iif the adainit symbol is found).
619
620 MAIN_PST is not used. */
621
622 enum language
623 ada_update_initial_language (enum language lang,
624 struct partial_symtab *main_pst)
625 {
626 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
627 (struct objfile *) NULL) != NULL)
628 return language_ada;
629
630 return lang;
631 }
632
633 /* If the main procedure is written in Ada, then return its name.
634 The result is good until the next call. Return NULL if the main
635 procedure doesn't appear to be in Ada. */
636
637 char *
638 ada_main_name (void)
639 {
640 struct minimal_symbol *msym;
641 CORE_ADDR main_program_name_addr;
642 static char main_program_name[1024];
643
644 /* For Ada, the name of the main procedure is stored in a specific
645 string constant, generated by the binder. Look for that symbol,
646 extract its address, and then read that string. If we didn't find
647 that string, then most probably the main procedure is not written
648 in Ada. */
649 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
650
651 if (msym != NULL)
652 {
653 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
654 if (main_program_name_addr == 0)
655 error (_("Invalid address for Ada main program name."));
656
657 extract_string (main_program_name_addr, main_program_name);
658 return main_program_name;
659 }
660
661 /* The main procedure doesn't seem to be in Ada. */
662 return NULL;
663 }
664 \f
665 /* Symbols */
666
667 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
668 of NULLs. */
669
670 const struct ada_opname_map ada_opname_table[] = {
671 {"Oadd", "\"+\"", BINOP_ADD},
672 {"Osubtract", "\"-\"", BINOP_SUB},
673 {"Omultiply", "\"*\"", BINOP_MUL},
674 {"Odivide", "\"/\"", BINOP_DIV},
675 {"Omod", "\"mod\"", BINOP_MOD},
676 {"Orem", "\"rem\"", BINOP_REM},
677 {"Oexpon", "\"**\"", BINOP_EXP},
678 {"Olt", "\"<\"", BINOP_LESS},
679 {"Ole", "\"<=\"", BINOP_LEQ},
680 {"Ogt", "\">\"", BINOP_GTR},
681 {"Oge", "\">=\"", BINOP_GEQ},
682 {"Oeq", "\"=\"", BINOP_EQUAL},
683 {"One", "\"/=\"", BINOP_NOTEQUAL},
684 {"Oand", "\"and\"", BINOP_BITWISE_AND},
685 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
686 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
687 {"Oconcat", "\"&\"", BINOP_CONCAT},
688 {"Oabs", "\"abs\"", UNOP_ABS},
689 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
690 {"Oadd", "\"+\"", UNOP_PLUS},
691 {"Osubtract", "\"-\"", UNOP_NEG},
692 {NULL, NULL}
693 };
694
695 /* Return non-zero if STR should be suppressed in info listings. */
696
697 static int
698 is_suppressed_name (const char *str)
699 {
700 if (strncmp (str, "_ada_", 5) == 0)
701 str += 5;
702 if (str[0] == '_' || str[0] == '\000')
703 return 1;
704 else
705 {
706 const char *p;
707 const char *suffix = strstr (str, "___");
708 if (suffix != NULL && suffix[3] != 'X')
709 return 1;
710 if (suffix == NULL)
711 suffix = str + strlen (str);
712 for (p = suffix - 1; p != str; p -= 1)
713 if (isupper (*p))
714 {
715 int i;
716 if (p[0] == 'X' && p[-1] != '_')
717 goto OK;
718 if (*p != 'O')
719 return 1;
720 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
721 if (strncmp (ada_opname_table[i].encoded, p,
722 strlen (ada_opname_table[i].encoded)) == 0)
723 goto OK;
724 return 1;
725 OK:;
726 }
727 return 0;
728 }
729 }
730
731 /* The "encoded" form of DECODED, according to GNAT conventions.
732 The result is valid until the next call to ada_encode. */
733
734 char *
735 ada_encode (const char *decoded)
736 {
737 static char *encoding_buffer = NULL;
738 static size_t encoding_buffer_size = 0;
739 const char *p;
740 int k;
741
742 if (decoded == NULL)
743 return NULL;
744
745 GROW_VECT (encoding_buffer, encoding_buffer_size,
746 2 * strlen (decoded) + 10);
747
748 k = 0;
749 for (p = decoded; *p != '\0'; p += 1)
750 {
751 if (!ADA_RETAIN_DOTS && *p == '.')
752 {
753 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
754 k += 2;
755 }
756 else if (*p == '"')
757 {
758 const struct ada_opname_map *mapping;
759
760 for (mapping = ada_opname_table;
761 mapping->encoded != NULL
762 && strncmp (mapping->decoded, p,
763 strlen (mapping->decoded)) != 0; mapping += 1)
764 ;
765 if (mapping->encoded == NULL)
766 error (_("invalid Ada operator name: %s"), p);
767 strcpy (encoding_buffer + k, mapping->encoded);
768 k += strlen (mapping->encoded);
769 break;
770 }
771 else
772 {
773 encoding_buffer[k] = *p;
774 k += 1;
775 }
776 }
777
778 encoding_buffer[k] = '\0';
779 return encoding_buffer;
780 }
781
782 /* Return NAME folded to lower case, or, if surrounded by single
783 quotes, unfolded, but with the quotes stripped away. Result good
784 to next call. */
785
786 char *
787 ada_fold_name (const char *name)
788 {
789 static char *fold_buffer = NULL;
790 static size_t fold_buffer_size = 0;
791
792 int len = strlen (name);
793 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
794
795 if (name[0] == '\'')
796 {
797 strncpy (fold_buffer, name + 1, len - 2);
798 fold_buffer[len - 2] = '\000';
799 }
800 else
801 {
802 int i;
803 for (i = 0; i <= len; i += 1)
804 fold_buffer[i] = tolower (name[i]);
805 }
806
807 return fold_buffer;
808 }
809
810 /* decode:
811 0. Discard trailing .{DIGIT}+ or trailing ___{DIGIT}+
812 These are suffixes introduced by GNAT5 to nested subprogram
813 names, and do not serve any purpose for the debugger.
814 1. Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
815 2. Convert other instances of embedded "__" to `.'.
816 3. Discard leading _ada_.
817 4. Convert operator names to the appropriate quoted symbols.
818 5. Remove everything after first ___ if it is followed by
819 'X'.
820 6. Replace TK__ with __, and a trailing B or TKB with nothing.
821 7. Put symbols that should be suppressed in <...> brackets.
822 8. Remove trailing X[bn]* suffix (indicating names in package bodies).
823
824 The resulting string is valid until the next call of ada_decode.
825 If the string is unchanged by demangling, the original string pointer
826 is returned. */
827
828 const char *
829 ada_decode (const char *encoded)
830 {
831 int i, j;
832 int len0;
833 const char *p;
834 char *decoded;
835 int at_start_name;
836 static char *decoding_buffer = NULL;
837 static size_t decoding_buffer_size = 0;
838
839 if (strncmp (encoded, "_ada_", 5) == 0)
840 encoded += 5;
841
842 if (encoded[0] == '_' || encoded[0] == '<')
843 goto Suppress;
844
845 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+. */
846 len0 = strlen (encoded);
847 if (len0 > 1 && isdigit (encoded[len0 - 1]))
848 {
849 i = len0 - 2;
850 while (i > 0 && isdigit (encoded[i]))
851 i--;
852 if (i >= 0 && encoded[i] == '.')
853 len0 = i;
854 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
855 len0 = i - 2;
856 }
857
858 /* Remove the ___X.* suffix if present. Do not forget to verify that
859 the suffix is located before the current "end" of ENCODED. We want
860 to avoid re-matching parts of ENCODED that have previously been
861 marked as discarded (by decrementing LEN0). */
862 p = strstr (encoded, "___");
863 if (p != NULL && p - encoded < len0 - 3)
864 {
865 if (p[3] == 'X')
866 len0 = p - encoded;
867 else
868 goto Suppress;
869 }
870
871 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
872 len0 -= 3;
873
874 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
875 len0 -= 1;
876
877 /* Make decoded big enough for possible expansion by operator name. */
878 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
879 decoded = decoding_buffer;
880
881 if (len0 > 1 && isdigit (encoded[len0 - 1]))
882 {
883 i = len0 - 2;
884 while ((i >= 0 && isdigit (encoded[i]))
885 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
886 i -= 1;
887 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
888 len0 = i - 1;
889 else if (encoded[i] == '$')
890 len0 = i;
891 }
892
893 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
894 decoded[j] = encoded[i];
895
896 at_start_name = 1;
897 while (i < len0)
898 {
899 if (at_start_name && encoded[i] == 'O')
900 {
901 int k;
902 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
903 {
904 int op_len = strlen (ada_opname_table[k].encoded);
905 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
906 op_len - 1) == 0)
907 && !isalnum (encoded[i + op_len]))
908 {
909 strcpy (decoded + j, ada_opname_table[k].decoded);
910 at_start_name = 0;
911 i += op_len;
912 j += strlen (ada_opname_table[k].decoded);
913 break;
914 }
915 }
916 if (ada_opname_table[k].encoded != NULL)
917 continue;
918 }
919 at_start_name = 0;
920
921 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
922 i += 2;
923 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
924 {
925 do
926 i += 1;
927 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
928 if (i < len0)
929 goto Suppress;
930 }
931 else if (!ADA_RETAIN_DOTS
932 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
933 {
934 decoded[j] = '.';
935 at_start_name = 1;
936 i += 2;
937 j += 1;
938 }
939 else
940 {
941 decoded[j] = encoded[i];
942 i += 1;
943 j += 1;
944 }
945 }
946 decoded[j] = '\000';
947
948 for (i = 0; decoded[i] != '\0'; i += 1)
949 if (isupper (decoded[i]) || decoded[i] == ' ')
950 goto Suppress;
951
952 if (strcmp (decoded, encoded) == 0)
953 return encoded;
954 else
955 return decoded;
956
957 Suppress:
958 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
959 decoded = decoding_buffer;
960 if (encoded[0] == '<')
961 strcpy (decoded, encoded);
962 else
963 sprintf (decoded, "<%s>", encoded);
964 return decoded;
965
966 }
967
968 /* Table for keeping permanent unique copies of decoded names. Once
969 allocated, names in this table are never released. While this is a
970 storage leak, it should not be significant unless there are massive
971 changes in the set of decoded names in successive versions of a
972 symbol table loaded during a single session. */
973 static struct htab *decoded_names_store;
974
975 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
976 in the language-specific part of GSYMBOL, if it has not been
977 previously computed. Tries to save the decoded name in the same
978 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
979 in any case, the decoded symbol has a lifetime at least that of
980 GSYMBOL).
981 The GSYMBOL parameter is "mutable" in the C++ sense: logically
982 const, but nevertheless modified to a semantically equivalent form
983 when a decoded name is cached in it.
984 */
985
986 char *
987 ada_decode_symbol (const struct general_symbol_info *gsymbol)
988 {
989 char **resultp =
990 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
991 if (*resultp == NULL)
992 {
993 const char *decoded = ada_decode (gsymbol->name);
994 if (gsymbol->bfd_section != NULL)
995 {
996 bfd *obfd = gsymbol->bfd_section->owner;
997 if (obfd != NULL)
998 {
999 struct objfile *objf;
1000 ALL_OBJFILES (objf)
1001 {
1002 if (obfd == objf->obfd)
1003 {
1004 *resultp = obsavestring (decoded, strlen (decoded),
1005 &objf->objfile_obstack);
1006 break;
1007 }
1008 }
1009 }
1010 }
1011 /* Sometimes, we can't find a corresponding objfile, in which
1012 case, we put the result on the heap. Since we only decode
1013 when needed, we hope this usually does not cause a
1014 significant memory leak (FIXME). */
1015 if (*resultp == NULL)
1016 {
1017 char **slot = (char **) htab_find_slot (decoded_names_store,
1018 decoded, INSERT);
1019 if (*slot == NULL)
1020 *slot = xstrdup (decoded);
1021 *resultp = *slot;
1022 }
1023 }
1024
1025 return *resultp;
1026 }
1027
1028 char *
1029 ada_la_decode (const char *encoded, int options)
1030 {
1031 return xstrdup (ada_decode (encoded));
1032 }
1033
1034 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1035 suffixes that encode debugging information or leading _ada_ on
1036 SYM_NAME (see is_name_suffix commentary for the debugging
1037 information that is ignored). If WILD, then NAME need only match a
1038 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1039 either argument is NULL. */
1040
1041 int
1042 ada_match_name (const char *sym_name, const char *name, int wild)
1043 {
1044 if (sym_name == NULL || name == NULL)
1045 return 0;
1046 else if (wild)
1047 return wild_match (name, strlen (name), sym_name);
1048 else
1049 {
1050 int len_name = strlen (name);
1051 return (strncmp (sym_name, name, len_name) == 0
1052 && is_name_suffix (sym_name + len_name))
1053 || (strncmp (sym_name, "_ada_", 5) == 0
1054 && strncmp (sym_name + 5, name, len_name) == 0
1055 && is_name_suffix (sym_name + len_name + 5));
1056 }
1057 }
1058
1059 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1060 suppressed in info listings. */
1061
1062 int
1063 ada_suppress_symbol_printing (struct symbol *sym)
1064 {
1065 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1066 return 1;
1067 else
1068 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1069 }
1070 \f
1071
1072 /* Arrays */
1073
1074 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1075
1076 static char *bound_name[] = {
1077 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1078 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1079 };
1080
1081 /* Maximum number of array dimensions we are prepared to handle. */
1082
1083 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1084
1085 /* Like modify_field, but allows bitpos > wordlength. */
1086
1087 static void
1088 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1089 {
1090 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1091 }
1092
1093
1094 /* The desc_* routines return primitive portions of array descriptors
1095 (fat pointers). */
1096
1097 /* The descriptor or array type, if any, indicated by TYPE; removes
1098 level of indirection, if needed. */
1099
1100 static struct type *
1101 desc_base_type (struct type *type)
1102 {
1103 if (type == NULL)
1104 return NULL;
1105 type = ada_check_typedef (type);
1106 if (type != NULL
1107 && (TYPE_CODE (type) == TYPE_CODE_PTR
1108 || TYPE_CODE (type) == TYPE_CODE_REF))
1109 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1110 else
1111 return type;
1112 }
1113
1114 /* True iff TYPE indicates a "thin" array pointer type. */
1115
1116 static int
1117 is_thin_pntr (struct type *type)
1118 {
1119 return
1120 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1121 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1122 }
1123
1124 /* The descriptor type for thin pointer type TYPE. */
1125
1126 static struct type *
1127 thin_descriptor_type (struct type *type)
1128 {
1129 struct type *base_type = desc_base_type (type);
1130 if (base_type == NULL)
1131 return NULL;
1132 if (is_suffix (ada_type_name (base_type), "___XVE"))
1133 return base_type;
1134 else
1135 {
1136 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1137 if (alt_type == NULL)
1138 return base_type;
1139 else
1140 return alt_type;
1141 }
1142 }
1143
1144 /* A pointer to the array data for thin-pointer value VAL. */
1145
1146 static struct value *
1147 thin_data_pntr (struct value *val)
1148 {
1149 struct type *type = value_type (val);
1150 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1151 return value_cast (desc_data_type (thin_descriptor_type (type)),
1152 value_copy (val));
1153 else
1154 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1155 VALUE_ADDRESS (val) + value_offset (val));
1156 }
1157
1158 /* True iff TYPE indicates a "thick" array pointer type. */
1159
1160 static int
1161 is_thick_pntr (struct type *type)
1162 {
1163 type = desc_base_type (type);
1164 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1165 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1166 }
1167
1168 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1169 pointer to one, the type of its bounds data; otherwise, NULL. */
1170
1171 static struct type *
1172 desc_bounds_type (struct type *type)
1173 {
1174 struct type *r;
1175
1176 type = desc_base_type (type);
1177
1178 if (type == NULL)
1179 return NULL;
1180 else if (is_thin_pntr (type))
1181 {
1182 type = thin_descriptor_type (type);
1183 if (type == NULL)
1184 return NULL;
1185 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1186 if (r != NULL)
1187 return ada_check_typedef (r);
1188 }
1189 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1190 {
1191 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1192 if (r != NULL)
1193 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1194 }
1195 return NULL;
1196 }
1197
1198 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1199 one, a pointer to its bounds data. Otherwise NULL. */
1200
1201 static struct value *
1202 desc_bounds (struct value *arr)
1203 {
1204 struct type *type = ada_check_typedef (value_type (arr));
1205 if (is_thin_pntr (type))
1206 {
1207 struct type *bounds_type =
1208 desc_bounds_type (thin_descriptor_type (type));
1209 LONGEST addr;
1210
1211 if (desc_bounds_type == NULL)
1212 error (_("Bad GNAT array descriptor"));
1213
1214 /* NOTE: The following calculation is not really kosher, but
1215 since desc_type is an XVE-encoded type (and shouldn't be),
1216 the correct calculation is a real pain. FIXME (and fix GCC). */
1217 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1218 addr = value_as_long (arr);
1219 else
1220 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1221
1222 return
1223 value_from_longest (lookup_pointer_type (bounds_type),
1224 addr - TYPE_LENGTH (bounds_type));
1225 }
1226
1227 else if (is_thick_pntr (type))
1228 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1229 _("Bad GNAT array descriptor"));
1230 else
1231 return NULL;
1232 }
1233
1234 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1235 position of the field containing the address of the bounds data. */
1236
1237 static int
1238 fat_pntr_bounds_bitpos (struct type *type)
1239 {
1240 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1241 }
1242
1243 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1244 size of the field containing the address of the bounds data. */
1245
1246 static int
1247 fat_pntr_bounds_bitsize (struct type *type)
1248 {
1249 type = desc_base_type (type);
1250
1251 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1252 return TYPE_FIELD_BITSIZE (type, 1);
1253 else
1254 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1255 }
1256
1257 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1258 pointer to one, the type of its array data (a
1259 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1260 ada_type_of_array to get an array type with bounds data. */
1261
1262 static struct type *
1263 desc_data_type (struct type *type)
1264 {
1265 type = desc_base_type (type);
1266
1267 /* NOTE: The following is bogus; see comment in desc_bounds. */
1268 if (is_thin_pntr (type))
1269 return lookup_pointer_type
1270 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1271 else if (is_thick_pntr (type))
1272 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1273 else
1274 return NULL;
1275 }
1276
1277 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1278 its array data. */
1279
1280 static struct value *
1281 desc_data (struct value *arr)
1282 {
1283 struct type *type = value_type (arr);
1284 if (is_thin_pntr (type))
1285 return thin_data_pntr (arr);
1286 else if (is_thick_pntr (type))
1287 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1288 _("Bad GNAT array descriptor"));
1289 else
1290 return NULL;
1291 }
1292
1293
1294 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1295 position of the field containing the address of the data. */
1296
1297 static int
1298 fat_pntr_data_bitpos (struct type *type)
1299 {
1300 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1301 }
1302
1303 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1304 size of the field containing the address of the data. */
1305
1306 static int
1307 fat_pntr_data_bitsize (struct type *type)
1308 {
1309 type = desc_base_type (type);
1310
1311 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1312 return TYPE_FIELD_BITSIZE (type, 0);
1313 else
1314 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1315 }
1316
1317 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1318 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1319 bound, if WHICH is 1. The first bound is I=1. */
1320
1321 static struct value *
1322 desc_one_bound (struct value *bounds, int i, int which)
1323 {
1324 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1325 _("Bad GNAT array descriptor bounds"));
1326 }
1327
1328 /* If BOUNDS is an array-bounds structure type, return the bit position
1329 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1330 bound, if WHICH is 1. The first bound is I=1. */
1331
1332 static int
1333 desc_bound_bitpos (struct type *type, int i, int which)
1334 {
1335 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1336 }
1337
1338 /* If BOUNDS is an array-bounds structure type, return the bit field size
1339 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1340 bound, if WHICH is 1. The first bound is I=1. */
1341
1342 static int
1343 desc_bound_bitsize (struct type *type, int i, int which)
1344 {
1345 type = desc_base_type (type);
1346
1347 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1348 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1349 else
1350 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1351 }
1352
1353 /* If TYPE is the type of an array-bounds structure, the type of its
1354 Ith bound (numbering from 1). Otherwise, NULL. */
1355
1356 static struct type *
1357 desc_index_type (struct type *type, int i)
1358 {
1359 type = desc_base_type (type);
1360
1361 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1362 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1363 else
1364 return NULL;
1365 }
1366
1367 /* The number of index positions in the array-bounds type TYPE.
1368 Return 0 if TYPE is NULL. */
1369
1370 static int
1371 desc_arity (struct type *type)
1372 {
1373 type = desc_base_type (type);
1374
1375 if (type != NULL)
1376 return TYPE_NFIELDS (type) / 2;
1377 return 0;
1378 }
1379
1380 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1381 an array descriptor type (representing an unconstrained array
1382 type). */
1383
1384 static int
1385 ada_is_direct_array_type (struct type *type)
1386 {
1387 if (type == NULL)
1388 return 0;
1389 type = ada_check_typedef (type);
1390 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1391 || ada_is_array_descriptor_type (type));
1392 }
1393
1394 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1395
1396 int
1397 ada_is_simple_array_type (struct type *type)
1398 {
1399 if (type == NULL)
1400 return 0;
1401 type = ada_check_typedef (type);
1402 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1403 || (TYPE_CODE (type) == TYPE_CODE_PTR
1404 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1405 }
1406
1407 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1408
1409 int
1410 ada_is_array_descriptor_type (struct type *type)
1411 {
1412 struct type *data_type = desc_data_type (type);
1413
1414 if (type == NULL)
1415 return 0;
1416 type = ada_check_typedef (type);
1417 return
1418 data_type != NULL
1419 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1420 && TYPE_TARGET_TYPE (data_type) != NULL
1421 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1422 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1423 && desc_arity (desc_bounds_type (type)) > 0;
1424 }
1425
1426 /* Non-zero iff type is a partially mal-formed GNAT array
1427 descriptor. FIXME: This is to compensate for some problems with
1428 debugging output from GNAT. Re-examine periodically to see if it
1429 is still needed. */
1430
1431 int
1432 ada_is_bogus_array_descriptor (struct type *type)
1433 {
1434 return
1435 type != NULL
1436 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1437 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1438 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1439 && !ada_is_array_descriptor_type (type);
1440 }
1441
1442
1443 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1444 (fat pointer) returns the type of the array data described---specifically,
1445 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1446 in from the descriptor; otherwise, they are left unspecified. If
1447 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1448 returns NULL. The result is simply the type of ARR if ARR is not
1449 a descriptor. */
1450 struct type *
1451 ada_type_of_array (struct value *arr, int bounds)
1452 {
1453 if (ada_is_packed_array_type (value_type (arr)))
1454 return decode_packed_array_type (value_type (arr));
1455
1456 if (!ada_is_array_descriptor_type (value_type (arr)))
1457 return value_type (arr);
1458
1459 if (!bounds)
1460 return
1461 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1462 else
1463 {
1464 struct type *elt_type;
1465 int arity;
1466 struct value *descriptor;
1467 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1468
1469 elt_type = ada_array_element_type (value_type (arr), -1);
1470 arity = ada_array_arity (value_type (arr));
1471
1472 if (elt_type == NULL || arity == 0)
1473 return ada_check_typedef (value_type (arr));
1474
1475 descriptor = desc_bounds (arr);
1476 if (value_as_long (descriptor) == 0)
1477 return NULL;
1478 while (arity > 0)
1479 {
1480 struct type *range_type = alloc_type (objf);
1481 struct type *array_type = alloc_type (objf);
1482 struct value *low = desc_one_bound (descriptor, arity, 0);
1483 struct value *high = desc_one_bound (descriptor, arity, 1);
1484 arity -= 1;
1485
1486 create_range_type (range_type, value_type (low),
1487 (int) value_as_long (low),
1488 (int) value_as_long (high));
1489 elt_type = create_array_type (array_type, elt_type, range_type);
1490 }
1491
1492 return lookup_pointer_type (elt_type);
1493 }
1494 }
1495
1496 /* If ARR does not represent an array, returns ARR unchanged.
1497 Otherwise, returns either a standard GDB array with bounds set
1498 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1499 GDB array. Returns NULL if ARR is a null fat pointer. */
1500
1501 struct value *
1502 ada_coerce_to_simple_array_ptr (struct value *arr)
1503 {
1504 if (ada_is_array_descriptor_type (value_type (arr)))
1505 {
1506 struct type *arrType = ada_type_of_array (arr, 1);
1507 if (arrType == NULL)
1508 return NULL;
1509 return value_cast (arrType, value_copy (desc_data (arr)));
1510 }
1511 else if (ada_is_packed_array_type (value_type (arr)))
1512 return decode_packed_array (arr);
1513 else
1514 return arr;
1515 }
1516
1517 /* If ARR does not represent an array, returns ARR unchanged.
1518 Otherwise, returns a standard GDB array describing ARR (which may
1519 be ARR itself if it already is in the proper form). */
1520
1521 static struct value *
1522 ada_coerce_to_simple_array (struct value *arr)
1523 {
1524 if (ada_is_array_descriptor_type (value_type (arr)))
1525 {
1526 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1527 if (arrVal == NULL)
1528 error (_("Bounds unavailable for null array pointer."));
1529 return value_ind (arrVal);
1530 }
1531 else if (ada_is_packed_array_type (value_type (arr)))
1532 return decode_packed_array (arr);
1533 else
1534 return arr;
1535 }
1536
1537 /* If TYPE represents a GNAT array type, return it translated to an
1538 ordinary GDB array type (possibly with BITSIZE fields indicating
1539 packing). For other types, is the identity. */
1540
1541 struct type *
1542 ada_coerce_to_simple_array_type (struct type *type)
1543 {
1544 struct value *mark = value_mark ();
1545 struct value *dummy = value_from_longest (builtin_type_long, 0);
1546 struct type *result;
1547 dummy->type = type;
1548 result = ada_type_of_array (dummy, 0);
1549 value_free_to_mark (mark);
1550 return result;
1551 }
1552
1553 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1554
1555 int
1556 ada_is_packed_array_type (struct type *type)
1557 {
1558 if (type == NULL)
1559 return 0;
1560 type = desc_base_type (type);
1561 type = ada_check_typedef (type);
1562 return
1563 ada_type_name (type) != NULL
1564 && strstr (ada_type_name (type), "___XP") != NULL;
1565 }
1566
1567 /* Given that TYPE is a standard GDB array type with all bounds filled
1568 in, and that the element size of its ultimate scalar constituents
1569 (that is, either its elements, or, if it is an array of arrays, its
1570 elements' elements, etc.) is *ELT_BITS, return an identical type,
1571 but with the bit sizes of its elements (and those of any
1572 constituent arrays) recorded in the BITSIZE components of its
1573 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1574 in bits. */
1575
1576 static struct type *
1577 packed_array_type (struct type *type, long *elt_bits)
1578 {
1579 struct type *new_elt_type;
1580 struct type *new_type;
1581 LONGEST low_bound, high_bound;
1582
1583 type = ada_check_typedef (type);
1584 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1585 return type;
1586
1587 new_type = alloc_type (TYPE_OBJFILE (type));
1588 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1589 elt_bits);
1590 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1591 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1592 TYPE_NAME (new_type) = ada_type_name (type);
1593
1594 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1595 &low_bound, &high_bound) < 0)
1596 low_bound = high_bound = 0;
1597 if (high_bound < low_bound)
1598 *elt_bits = TYPE_LENGTH (new_type) = 0;
1599 else
1600 {
1601 *elt_bits *= (high_bound - low_bound + 1);
1602 TYPE_LENGTH (new_type) =
1603 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1604 }
1605
1606 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1607 return new_type;
1608 }
1609
1610 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1611
1612 static struct type *
1613 decode_packed_array_type (struct type *type)
1614 {
1615 struct symbol *sym;
1616 struct block **blocks;
1617 const char *raw_name = ada_type_name (ada_check_typedef (type));
1618 char *name = (char *) alloca (strlen (raw_name) + 1);
1619 char *tail = strstr (raw_name, "___XP");
1620 struct type *shadow_type;
1621 long bits;
1622 int i, n;
1623
1624 type = desc_base_type (type);
1625
1626 memcpy (name, raw_name, tail - raw_name);
1627 name[tail - raw_name] = '\000';
1628
1629 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1630 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1631 {
1632 lim_warning (_("could not find bounds information on packed array"));
1633 return NULL;
1634 }
1635 shadow_type = SYMBOL_TYPE (sym);
1636
1637 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1638 {
1639 lim_warning (_("could not understand bounds information on packed array"));
1640 return NULL;
1641 }
1642
1643 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1644 {
1645 lim_warning
1646 (_("could not understand bit size information on packed array"));
1647 return NULL;
1648 }
1649
1650 return packed_array_type (shadow_type, &bits);
1651 }
1652
1653 /* Given that ARR is a struct value *indicating a GNAT packed array,
1654 returns a simple array that denotes that array. Its type is a
1655 standard GDB array type except that the BITSIZEs of the array
1656 target types are set to the number of bits in each element, and the
1657 type length is set appropriately. */
1658
1659 static struct value *
1660 decode_packed_array (struct value *arr)
1661 {
1662 struct type *type;
1663
1664 arr = ada_coerce_ref (arr);
1665 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1666 arr = ada_value_ind (arr);
1667
1668 type = decode_packed_array_type (value_type (arr));
1669 if (type == NULL)
1670 {
1671 error (_("can't unpack array"));
1672 return NULL;
1673 }
1674
1675 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1676 {
1677 /* This is a (right-justified) modular type representing a packed
1678 array with no wrapper. In order to interpret the value through
1679 the (left-justified) packed array type we just built, we must
1680 first left-justify it. */
1681 int bit_size, bit_pos;
1682 ULONGEST mod;
1683
1684 mod = ada_modulus (value_type (arr)) - 1;
1685 bit_size = 0;
1686 while (mod > 0)
1687 {
1688 bit_size += 1;
1689 mod >>= 1;
1690 }
1691 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1692 arr = ada_value_primitive_packed_val (arr, NULL,
1693 bit_pos / HOST_CHAR_BIT,
1694 bit_pos % HOST_CHAR_BIT,
1695 bit_size,
1696 type);
1697 }
1698
1699 return coerce_unspec_val_to_type (arr, type);
1700 }
1701
1702
1703 /* The value of the element of packed array ARR at the ARITY indices
1704 given in IND. ARR must be a simple array. */
1705
1706 static struct value *
1707 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1708 {
1709 int i;
1710 int bits, elt_off, bit_off;
1711 long elt_total_bit_offset;
1712 struct type *elt_type;
1713 struct value *v;
1714
1715 bits = 0;
1716 elt_total_bit_offset = 0;
1717 elt_type = ada_check_typedef (value_type (arr));
1718 for (i = 0; i < arity; i += 1)
1719 {
1720 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1721 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1722 error
1723 (_("attempt to do packed indexing of something other than a packed array"));
1724 else
1725 {
1726 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1727 LONGEST lowerbound, upperbound;
1728 LONGEST idx;
1729
1730 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1731 {
1732 lim_warning (_("don't know bounds of array"));
1733 lowerbound = upperbound = 0;
1734 }
1735
1736 idx = value_as_long (value_pos_atr (ind[i]));
1737 if (idx < lowerbound || idx > upperbound)
1738 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1739 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1740 elt_total_bit_offset += (idx - lowerbound) * bits;
1741 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1742 }
1743 }
1744 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1745 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1746
1747 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1748 bits, elt_type);
1749 if (VALUE_LVAL (arr) == lval_internalvar)
1750 VALUE_LVAL (v) = lval_internalvar_component;
1751 else
1752 VALUE_LVAL (v) = VALUE_LVAL (arr);
1753 return v;
1754 }
1755
1756 /* Non-zero iff TYPE includes negative integer values. */
1757
1758 static int
1759 has_negatives (struct type *type)
1760 {
1761 switch (TYPE_CODE (type))
1762 {
1763 default:
1764 return 0;
1765 case TYPE_CODE_INT:
1766 return !TYPE_UNSIGNED (type);
1767 case TYPE_CODE_RANGE:
1768 return TYPE_LOW_BOUND (type) < 0;
1769 }
1770 }
1771
1772
1773 /* Create a new value of type TYPE from the contents of OBJ starting
1774 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1775 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1776 assigning through the result will set the field fetched from.
1777 VALADDR is ignored unless OBJ is NULL, in which case,
1778 VALADDR+OFFSET must address the start of storage containing the
1779 packed value. The value returned in this case is never an lval.
1780 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1781
1782 struct value *
1783 ada_value_primitive_packed_val (struct value *obj, char *valaddr, long offset,
1784 int bit_offset, int bit_size,
1785 struct type *type)
1786 {
1787 struct value *v;
1788 int src, /* Index into the source area */
1789 targ, /* Index into the target area */
1790 srcBitsLeft, /* Number of source bits left to move */
1791 nsrc, ntarg, /* Number of source and target bytes */
1792 unusedLS, /* Number of bits in next significant
1793 byte of source that are unused */
1794 accumSize; /* Number of meaningful bits in accum */
1795 unsigned char *bytes; /* First byte containing data to unpack */
1796 unsigned char *unpacked;
1797 unsigned long accum; /* Staging area for bits being transferred */
1798 unsigned char sign;
1799 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1800 /* Transmit bytes from least to most significant; delta is the direction
1801 the indices move. */
1802 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1803
1804 type = ada_check_typedef (type);
1805
1806 if (obj == NULL)
1807 {
1808 v = allocate_value (type);
1809 bytes = (unsigned char *) (valaddr + offset);
1810 }
1811 else if (VALUE_LAZY (obj))
1812 {
1813 v = value_at (type,
1814 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
1815 bytes = (unsigned char *) alloca (len);
1816 read_memory (VALUE_ADDRESS (v), bytes, len);
1817 }
1818 else
1819 {
1820 v = allocate_value (type);
1821 bytes = (unsigned char *) VALUE_CONTENTS (obj) + offset;
1822 }
1823
1824 if (obj != NULL)
1825 {
1826 VALUE_LVAL (v) = VALUE_LVAL (obj);
1827 if (VALUE_LVAL (obj) == lval_internalvar)
1828 VALUE_LVAL (v) = lval_internalvar_component;
1829 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
1830 v->bitpos = bit_offset + value_bitpos (obj);
1831 v->bitsize = bit_size;
1832 if (value_bitpos (v) >= HOST_CHAR_BIT)
1833 {
1834 VALUE_ADDRESS (v) += 1;
1835 v->bitpos -= HOST_CHAR_BIT;
1836 }
1837 }
1838 else
1839 v->bitsize = bit_size;
1840 unpacked = (unsigned char *) VALUE_CONTENTS (v);
1841
1842 srcBitsLeft = bit_size;
1843 nsrc = len;
1844 ntarg = TYPE_LENGTH (type);
1845 sign = 0;
1846 if (bit_size == 0)
1847 {
1848 memset (unpacked, 0, TYPE_LENGTH (type));
1849 return v;
1850 }
1851 else if (BITS_BIG_ENDIAN)
1852 {
1853 src = len - 1;
1854 if (has_negatives (type)
1855 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
1856 sign = ~0;
1857
1858 unusedLS =
1859 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
1860 % HOST_CHAR_BIT;
1861
1862 switch (TYPE_CODE (type))
1863 {
1864 case TYPE_CODE_ARRAY:
1865 case TYPE_CODE_UNION:
1866 case TYPE_CODE_STRUCT:
1867 /* Non-scalar values must be aligned at a byte boundary... */
1868 accumSize =
1869 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
1870 /* ... And are placed at the beginning (most-significant) bytes
1871 of the target. */
1872 targ = src;
1873 break;
1874 default:
1875 accumSize = 0;
1876 targ = TYPE_LENGTH (type) - 1;
1877 break;
1878 }
1879 }
1880 else
1881 {
1882 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
1883
1884 src = targ = 0;
1885 unusedLS = bit_offset;
1886 accumSize = 0;
1887
1888 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
1889 sign = ~0;
1890 }
1891
1892 accum = 0;
1893 while (nsrc > 0)
1894 {
1895 /* Mask for removing bits of the next source byte that are not
1896 part of the value. */
1897 unsigned int unusedMSMask =
1898 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
1899 1;
1900 /* Sign-extend bits for this byte. */
1901 unsigned int signMask = sign & ~unusedMSMask;
1902 accum |=
1903 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
1904 accumSize += HOST_CHAR_BIT - unusedLS;
1905 if (accumSize >= HOST_CHAR_BIT)
1906 {
1907 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
1908 accumSize -= HOST_CHAR_BIT;
1909 accum >>= HOST_CHAR_BIT;
1910 ntarg -= 1;
1911 targ += delta;
1912 }
1913 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
1914 unusedLS = 0;
1915 nsrc -= 1;
1916 src += delta;
1917 }
1918 while (ntarg > 0)
1919 {
1920 accum |= sign << accumSize;
1921 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
1922 accumSize -= HOST_CHAR_BIT;
1923 accum >>= HOST_CHAR_BIT;
1924 ntarg -= 1;
1925 targ += delta;
1926 }
1927
1928 return v;
1929 }
1930
1931 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
1932 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
1933 not overlap. */
1934 static void
1935 move_bits (char *target, int targ_offset, char *source, int src_offset, int n)
1936 {
1937 unsigned int accum, mask;
1938 int accum_bits, chunk_size;
1939
1940 target += targ_offset / HOST_CHAR_BIT;
1941 targ_offset %= HOST_CHAR_BIT;
1942 source += src_offset / HOST_CHAR_BIT;
1943 src_offset %= HOST_CHAR_BIT;
1944 if (BITS_BIG_ENDIAN)
1945 {
1946 accum = (unsigned char) *source;
1947 source += 1;
1948 accum_bits = HOST_CHAR_BIT - src_offset;
1949
1950 while (n > 0)
1951 {
1952 int unused_right;
1953 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
1954 accum_bits += HOST_CHAR_BIT;
1955 source += 1;
1956 chunk_size = HOST_CHAR_BIT - targ_offset;
1957 if (chunk_size > n)
1958 chunk_size = n;
1959 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
1960 mask = ((1 << chunk_size) - 1) << unused_right;
1961 *target =
1962 (*target & ~mask)
1963 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
1964 n -= chunk_size;
1965 accum_bits -= chunk_size;
1966 target += 1;
1967 targ_offset = 0;
1968 }
1969 }
1970 else
1971 {
1972 accum = (unsigned char) *source >> src_offset;
1973 source += 1;
1974 accum_bits = HOST_CHAR_BIT - src_offset;
1975
1976 while (n > 0)
1977 {
1978 accum = accum + ((unsigned char) *source << accum_bits);
1979 accum_bits += HOST_CHAR_BIT;
1980 source += 1;
1981 chunk_size = HOST_CHAR_BIT - targ_offset;
1982 if (chunk_size > n)
1983 chunk_size = n;
1984 mask = ((1 << chunk_size) - 1) << targ_offset;
1985 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
1986 n -= chunk_size;
1987 accum_bits -= chunk_size;
1988 accum >>= chunk_size;
1989 target += 1;
1990 targ_offset = 0;
1991 }
1992 }
1993 }
1994
1995
1996 /* Store the contents of FROMVAL into the location of TOVAL.
1997 Return a new value with the location of TOVAL and contents of
1998 FROMVAL. Handles assignment into packed fields that have
1999 floating-point or non-scalar types. */
2000
2001 static struct value *
2002 ada_value_assign (struct value *toval, struct value *fromval)
2003 {
2004 struct type *type = value_type (toval);
2005 int bits = value_bitsize (toval);
2006
2007 if (!toval->modifiable)
2008 error (_("Left operand of assignment is not a modifiable lvalue."));
2009
2010 toval = coerce_ref (toval);
2011
2012 if (VALUE_LVAL (toval) == lval_memory
2013 && bits > 0
2014 && (TYPE_CODE (type) == TYPE_CODE_FLT
2015 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2016 {
2017 int len = (value_bitpos (toval)
2018 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2019 char *buffer = (char *) alloca (len);
2020 struct value *val;
2021
2022 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2023 fromval = value_cast (type, fromval);
2024
2025 read_memory (VALUE_ADDRESS (toval) + value_offset (toval), buffer, len);
2026 if (BITS_BIG_ENDIAN)
2027 move_bits (buffer, value_bitpos (toval),
2028 VALUE_CONTENTS (fromval),
2029 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2030 bits, bits);
2031 else
2032 move_bits (buffer, value_bitpos (toval), VALUE_CONTENTS (fromval),
2033 0, bits);
2034 write_memory (VALUE_ADDRESS (toval) + value_offset (toval), buffer,
2035 len);
2036
2037 val = value_copy (toval);
2038 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
2039 TYPE_LENGTH (type));
2040 val->type = type;
2041
2042 return val;
2043 }
2044
2045 return value_assign (toval, fromval);
2046 }
2047
2048
2049 /* The value of the element of array ARR at the ARITY indices given in IND.
2050 ARR may be either a simple array, GNAT array descriptor, or pointer
2051 thereto. */
2052
2053 struct value *
2054 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2055 {
2056 int k;
2057 struct value *elt;
2058 struct type *elt_type;
2059
2060 elt = ada_coerce_to_simple_array (arr);
2061
2062 elt_type = ada_check_typedef (value_type (elt));
2063 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2064 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2065 return value_subscript_packed (elt, arity, ind);
2066
2067 for (k = 0; k < arity; k += 1)
2068 {
2069 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2070 error (_("too many subscripts (%d expected)"), k);
2071 elt = value_subscript (elt, value_pos_atr (ind[k]));
2072 }
2073 return elt;
2074 }
2075
2076 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2077 value of the element of *ARR at the ARITY indices given in
2078 IND. Does not read the entire array into memory. */
2079
2080 struct value *
2081 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2082 struct value **ind)
2083 {
2084 int k;
2085
2086 for (k = 0; k < arity; k += 1)
2087 {
2088 LONGEST lwb, upb;
2089 struct value *idx;
2090
2091 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2092 error (_("too many subscripts (%d expected)"), k);
2093 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2094 value_copy (arr));
2095 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2096 idx = value_pos_atr (ind[k]);
2097 if (lwb != 0)
2098 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2099 arr = value_add (arr, idx);
2100 type = TYPE_TARGET_TYPE (type);
2101 }
2102
2103 return value_ind (arr);
2104 }
2105
2106 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2107 actual type of ARRAY_PTR is ignored), returns a reference to
2108 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2109 bound of this array is LOW, as per Ada rules. */
2110 static struct value *
2111 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2112 int low, int high)
2113 {
2114 CORE_ADDR base = value_as_address (array_ptr)
2115 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2116 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2117 struct type *index_type =
2118 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2119 low, high);
2120 struct type *slice_type =
2121 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2122 return value_from_pointer (lookup_reference_type (slice_type), base);
2123 }
2124
2125
2126 static struct value *
2127 ada_value_slice (struct value *array, int low, int high)
2128 {
2129 struct type *type = value_type (array);
2130 struct type *index_type =
2131 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2132 struct type *slice_type =
2133 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2134 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2135 }
2136
2137 /* If type is a record type in the form of a standard GNAT array
2138 descriptor, returns the number of dimensions for type. If arr is a
2139 simple array, returns the number of "array of"s that prefix its
2140 type designation. Otherwise, returns 0. */
2141
2142 int
2143 ada_array_arity (struct type *type)
2144 {
2145 int arity;
2146
2147 if (type == NULL)
2148 return 0;
2149
2150 type = desc_base_type (type);
2151
2152 arity = 0;
2153 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2154 return desc_arity (desc_bounds_type (type));
2155 else
2156 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2157 {
2158 arity += 1;
2159 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2160 }
2161
2162 return arity;
2163 }
2164
2165 /* If TYPE is a record type in the form of a standard GNAT array
2166 descriptor or a simple array type, returns the element type for
2167 TYPE after indexing by NINDICES indices, or by all indices if
2168 NINDICES is -1. Otherwise, returns NULL. */
2169
2170 struct type *
2171 ada_array_element_type (struct type *type, int nindices)
2172 {
2173 type = desc_base_type (type);
2174
2175 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2176 {
2177 int k;
2178 struct type *p_array_type;
2179
2180 p_array_type = desc_data_type (type);
2181
2182 k = ada_array_arity (type);
2183 if (k == 0)
2184 return NULL;
2185
2186 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2187 if (nindices >= 0 && k > nindices)
2188 k = nindices;
2189 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2190 while (k > 0 && p_array_type != NULL)
2191 {
2192 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2193 k -= 1;
2194 }
2195 return p_array_type;
2196 }
2197 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2198 {
2199 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2200 {
2201 type = TYPE_TARGET_TYPE (type);
2202 nindices -= 1;
2203 }
2204 return type;
2205 }
2206
2207 return NULL;
2208 }
2209
2210 /* The type of nth index in arrays of given type (n numbering from 1).
2211 Does not examine memory. */
2212
2213 struct type *
2214 ada_index_type (struct type *type, int n)
2215 {
2216 struct type *result_type;
2217
2218 type = desc_base_type (type);
2219
2220 if (n > ada_array_arity (type))
2221 return NULL;
2222
2223 if (ada_is_simple_array_type (type))
2224 {
2225 int i;
2226
2227 for (i = 1; i < n; i += 1)
2228 type = TYPE_TARGET_TYPE (type);
2229 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2230 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2231 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2232 perhaps stabsread.c would make more sense. */
2233 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2234 result_type = builtin_type_int;
2235
2236 return result_type;
2237 }
2238 else
2239 return desc_index_type (desc_bounds_type (type), n);
2240 }
2241
2242 /* Given that arr is an array type, returns the lower bound of the
2243 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2244 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2245 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2246 bounds type. It works for other arrays with bounds supplied by
2247 run-time quantities other than discriminants. */
2248
2249 LONGEST
2250 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2251 struct type ** typep)
2252 {
2253 struct type *type;
2254 struct type *index_type_desc;
2255
2256 if (ada_is_packed_array_type (arr_type))
2257 arr_type = decode_packed_array_type (arr_type);
2258
2259 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2260 {
2261 if (typep != NULL)
2262 *typep = builtin_type_int;
2263 return (LONGEST) - which;
2264 }
2265
2266 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2267 type = TYPE_TARGET_TYPE (arr_type);
2268 else
2269 type = arr_type;
2270
2271 index_type_desc = ada_find_parallel_type (type, "___XA");
2272 if (index_type_desc == NULL)
2273 {
2274 struct type *range_type;
2275 struct type *index_type;
2276
2277 while (n > 1)
2278 {
2279 type = TYPE_TARGET_TYPE (type);
2280 n -= 1;
2281 }
2282
2283 range_type = TYPE_INDEX_TYPE (type);
2284 index_type = TYPE_TARGET_TYPE (range_type);
2285 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2286 index_type = builtin_type_long;
2287 if (typep != NULL)
2288 *typep = index_type;
2289 return
2290 (LONGEST) (which == 0
2291 ? TYPE_LOW_BOUND (range_type)
2292 : TYPE_HIGH_BOUND (range_type));
2293 }
2294 else
2295 {
2296 struct type *index_type =
2297 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2298 NULL, TYPE_OBJFILE (arr_type));
2299 if (typep != NULL)
2300 *typep = TYPE_TARGET_TYPE (index_type);
2301 return
2302 (LONGEST) (which == 0
2303 ? TYPE_LOW_BOUND (index_type)
2304 : TYPE_HIGH_BOUND (index_type));
2305 }
2306 }
2307
2308 /* Given that arr is an array value, returns the lower bound of the
2309 nth index (numbering from 1) if which is 0, and the upper bound if
2310 which is 1. This routine will also work for arrays with bounds
2311 supplied by run-time quantities other than discriminants. */
2312
2313 struct value *
2314 ada_array_bound (struct value *arr, int n, int which)
2315 {
2316 struct type *arr_type = value_type (arr);
2317
2318 if (ada_is_packed_array_type (arr_type))
2319 return ada_array_bound (decode_packed_array (arr), n, which);
2320 else if (ada_is_simple_array_type (arr_type))
2321 {
2322 struct type *type;
2323 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2324 return value_from_longest (type, v);
2325 }
2326 else
2327 return desc_one_bound (desc_bounds (arr), n, which);
2328 }
2329
2330 /* Given that arr is an array value, returns the length of the
2331 nth index. This routine will also work for arrays with bounds
2332 supplied by run-time quantities other than discriminants.
2333 Does not work for arrays indexed by enumeration types with representation
2334 clauses at the moment. */
2335
2336 struct value *
2337 ada_array_length (struct value *arr, int n)
2338 {
2339 struct type *arr_type = ada_check_typedef (value_type (arr));
2340
2341 if (ada_is_packed_array_type (arr_type))
2342 return ada_array_length (decode_packed_array (arr), n);
2343
2344 if (ada_is_simple_array_type (arr_type))
2345 {
2346 struct type *type;
2347 LONGEST v =
2348 ada_array_bound_from_type (arr_type, n, 1, &type) -
2349 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2350 return value_from_longest (type, v);
2351 }
2352 else
2353 return
2354 value_from_longest (builtin_type_int,
2355 value_as_long (desc_one_bound (desc_bounds (arr),
2356 n, 1))
2357 - value_as_long (desc_one_bound (desc_bounds (arr),
2358 n, 0)) + 1);
2359 }
2360
2361 /* An empty array whose type is that of ARR_TYPE (an array type),
2362 with bounds LOW to LOW-1. */
2363
2364 static struct value *
2365 empty_array (struct type *arr_type, int low)
2366 {
2367 struct type *index_type =
2368 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2369 low, low - 1);
2370 struct type *elt_type = ada_array_element_type (arr_type, 1);
2371 return allocate_value (create_array_type (NULL, elt_type, index_type));
2372 }
2373 \f
2374
2375 /* Name resolution */
2376
2377 /* The "decoded" name for the user-definable Ada operator corresponding
2378 to OP. */
2379
2380 static const char *
2381 ada_decoded_op_name (enum exp_opcode op)
2382 {
2383 int i;
2384
2385 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2386 {
2387 if (ada_opname_table[i].op == op)
2388 return ada_opname_table[i].decoded;
2389 }
2390 error (_("Could not find operator name for opcode"));
2391 }
2392
2393
2394 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2395 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2396 undefined namespace) and converts operators that are
2397 user-defined into appropriate function calls. If CONTEXT_TYPE is
2398 non-null, it provides a preferred result type [at the moment, only
2399 type void has any effect---causing procedures to be preferred over
2400 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2401 return type is preferred. May change (expand) *EXP. */
2402
2403 static void
2404 resolve (struct expression **expp, int void_context_p)
2405 {
2406 int pc;
2407 pc = 0;
2408 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2409 }
2410
2411 /* Resolve the operator of the subexpression beginning at
2412 position *POS of *EXPP. "Resolving" consists of replacing
2413 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2414 with their resolutions, replacing built-in operators with
2415 function calls to user-defined operators, where appropriate, and,
2416 when DEPROCEDURE_P is non-zero, converting function-valued variables
2417 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2418 are as in ada_resolve, above. */
2419
2420 static struct value *
2421 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2422 struct type *context_type)
2423 {
2424 int pc = *pos;
2425 int i;
2426 struct expression *exp; /* Convenience: == *expp. */
2427 enum exp_opcode op = (*expp)->elts[pc].opcode;
2428 struct value **argvec; /* Vector of operand types (alloca'ed). */
2429 int nargs; /* Number of operands. */
2430
2431 argvec = NULL;
2432 nargs = 0;
2433 exp = *expp;
2434
2435 /* Pass one: resolve operands, saving their types and updating *pos. */
2436 switch (op)
2437 {
2438 case OP_FUNCALL:
2439 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2440 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2441 *pos += 7;
2442 else
2443 {
2444 *pos += 3;
2445 resolve_subexp (expp, pos, 0, NULL);
2446 }
2447 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2448 break;
2449
2450 case UNOP_QUAL:
2451 *pos += 3;
2452 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2453 break;
2454
2455 case UNOP_ADDR:
2456 *pos += 1;
2457 resolve_subexp (expp, pos, 0, NULL);
2458 break;
2459
2460 case OP_ATR_MODULUS:
2461 *pos += 4;
2462 break;
2463
2464 case OP_ATR_SIZE:
2465 case OP_ATR_TAG:
2466 *pos += 1;
2467 nargs = 1;
2468 break;
2469
2470 case OP_ATR_FIRST:
2471 case OP_ATR_LAST:
2472 case OP_ATR_LENGTH:
2473 case OP_ATR_POS:
2474 case OP_ATR_VAL:
2475 *pos += 1;
2476 nargs = 2;
2477 break;
2478
2479 case OP_ATR_MIN:
2480 case OP_ATR_MAX:
2481 *pos += 1;
2482 nargs = 3;
2483 break;
2484
2485 case BINOP_ASSIGN:
2486 {
2487 struct value *arg1;
2488
2489 *pos += 1;
2490 arg1 = resolve_subexp (expp, pos, 0, NULL);
2491 if (arg1 == NULL)
2492 resolve_subexp (expp, pos, 1, NULL);
2493 else
2494 resolve_subexp (expp, pos, 1, value_type (arg1));
2495 break;
2496 }
2497
2498 case UNOP_CAST:
2499 case UNOP_IN_RANGE:
2500 *pos += 3;
2501 nargs = 1;
2502 break;
2503
2504 case BINOP_ADD:
2505 case BINOP_SUB:
2506 case BINOP_MUL:
2507 case BINOP_DIV:
2508 case BINOP_REM:
2509 case BINOP_MOD:
2510 case BINOP_EXP:
2511 case BINOP_CONCAT:
2512 case BINOP_LOGICAL_AND:
2513 case BINOP_LOGICAL_OR:
2514 case BINOP_BITWISE_AND:
2515 case BINOP_BITWISE_IOR:
2516 case BINOP_BITWISE_XOR:
2517
2518 case BINOP_EQUAL:
2519 case BINOP_NOTEQUAL:
2520 case BINOP_LESS:
2521 case BINOP_GTR:
2522 case BINOP_LEQ:
2523 case BINOP_GEQ:
2524
2525 case BINOP_REPEAT:
2526 case BINOP_SUBSCRIPT:
2527 case BINOP_COMMA:
2528 *pos += 1;
2529 nargs = 2;
2530 break;
2531
2532 case UNOP_NEG:
2533 case UNOP_PLUS:
2534 case UNOP_LOGICAL_NOT:
2535 case UNOP_ABS:
2536 case UNOP_IND:
2537 *pos += 1;
2538 nargs = 1;
2539 break;
2540
2541 case OP_LONG:
2542 case OP_DOUBLE:
2543 case OP_VAR_VALUE:
2544 *pos += 4;
2545 break;
2546
2547 case OP_TYPE:
2548 case OP_BOOL:
2549 case OP_LAST:
2550 case OP_REGISTER:
2551 case OP_INTERNALVAR:
2552 *pos += 3;
2553 break;
2554
2555 case UNOP_MEMVAL:
2556 *pos += 3;
2557 nargs = 1;
2558 break;
2559
2560 case STRUCTOP_STRUCT:
2561 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2562 nargs = 1;
2563 break;
2564
2565 case OP_STRING:
2566 (*pos) += 3
2567 + BYTES_TO_EXP_ELEM (longest_to_int (exp->elts[pc + 1].longconst)
2568 + 1);
2569 break;
2570
2571 case TERNOP_SLICE:
2572 case TERNOP_IN_RANGE:
2573 *pos += 1;
2574 nargs = 3;
2575 break;
2576
2577 case BINOP_IN_BOUNDS:
2578 *pos += 3;
2579 nargs = 2;
2580 break;
2581
2582 default:
2583 error (_("Unexpected operator during name resolution"));
2584 }
2585
2586 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2587 for (i = 0; i < nargs; i += 1)
2588 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2589 argvec[i] = NULL;
2590 exp = *expp;
2591
2592 /* Pass two: perform any resolution on principal operator. */
2593 switch (op)
2594 {
2595 default:
2596 break;
2597
2598 case OP_VAR_VALUE:
2599 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2600 {
2601 struct ada_symbol_info *candidates;
2602 int n_candidates;
2603
2604 n_candidates =
2605 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2606 (exp->elts[pc + 2].symbol),
2607 exp->elts[pc + 1].block, VAR_DOMAIN,
2608 &candidates);
2609
2610 if (n_candidates > 1)
2611 {
2612 /* Types tend to get re-introduced locally, so if there
2613 are any local symbols that are not types, first filter
2614 out all types. */
2615 int j;
2616 for (j = 0; j < n_candidates; j += 1)
2617 switch (SYMBOL_CLASS (candidates[j].sym))
2618 {
2619 case LOC_REGISTER:
2620 case LOC_ARG:
2621 case LOC_REF_ARG:
2622 case LOC_REGPARM:
2623 case LOC_REGPARM_ADDR:
2624 case LOC_LOCAL:
2625 case LOC_LOCAL_ARG:
2626 case LOC_BASEREG:
2627 case LOC_BASEREG_ARG:
2628 case LOC_COMPUTED:
2629 case LOC_COMPUTED_ARG:
2630 goto FoundNonType;
2631 default:
2632 break;
2633 }
2634 FoundNonType:
2635 if (j < n_candidates)
2636 {
2637 j = 0;
2638 while (j < n_candidates)
2639 {
2640 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2641 {
2642 candidates[j] = candidates[n_candidates - 1];
2643 n_candidates -= 1;
2644 }
2645 else
2646 j += 1;
2647 }
2648 }
2649 }
2650
2651 if (n_candidates == 0)
2652 error (_("No definition found for %s"),
2653 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2654 else if (n_candidates == 1)
2655 i = 0;
2656 else if (deprocedure_p
2657 && !is_nonfunction (candidates, n_candidates))
2658 {
2659 i = ada_resolve_function
2660 (candidates, n_candidates, NULL, 0,
2661 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2662 context_type);
2663 if (i < 0)
2664 error (_("Could not find a match for %s"),
2665 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2666 }
2667 else
2668 {
2669 printf_filtered (_("Multiple matches for %s\n"),
2670 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2671 user_select_syms (candidates, n_candidates, 1);
2672 i = 0;
2673 }
2674
2675 exp->elts[pc + 1].block = candidates[i].block;
2676 exp->elts[pc + 2].symbol = candidates[i].sym;
2677 if (innermost_block == NULL
2678 || contained_in (candidates[i].block, innermost_block))
2679 innermost_block = candidates[i].block;
2680 }
2681
2682 if (deprocedure_p
2683 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2684 == TYPE_CODE_FUNC))
2685 {
2686 replace_operator_with_call (expp, pc, 0, 0,
2687 exp->elts[pc + 2].symbol,
2688 exp->elts[pc + 1].block);
2689 exp = *expp;
2690 }
2691 break;
2692
2693 case OP_FUNCALL:
2694 {
2695 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2696 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2697 {
2698 struct ada_symbol_info *candidates;
2699 int n_candidates;
2700
2701 n_candidates =
2702 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2703 (exp->elts[pc + 5].symbol),
2704 exp->elts[pc + 4].block, VAR_DOMAIN,
2705 &candidates);
2706 if (n_candidates == 1)
2707 i = 0;
2708 else
2709 {
2710 i = ada_resolve_function
2711 (candidates, n_candidates,
2712 argvec, nargs,
2713 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2714 context_type);
2715 if (i < 0)
2716 error (_("Could not find a match for %s"),
2717 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2718 }
2719
2720 exp->elts[pc + 4].block = candidates[i].block;
2721 exp->elts[pc + 5].symbol = candidates[i].sym;
2722 if (innermost_block == NULL
2723 || contained_in (candidates[i].block, innermost_block))
2724 innermost_block = candidates[i].block;
2725 }
2726 }
2727 break;
2728 case BINOP_ADD:
2729 case BINOP_SUB:
2730 case BINOP_MUL:
2731 case BINOP_DIV:
2732 case BINOP_REM:
2733 case BINOP_MOD:
2734 case BINOP_CONCAT:
2735 case BINOP_BITWISE_AND:
2736 case BINOP_BITWISE_IOR:
2737 case BINOP_BITWISE_XOR:
2738 case BINOP_EQUAL:
2739 case BINOP_NOTEQUAL:
2740 case BINOP_LESS:
2741 case BINOP_GTR:
2742 case BINOP_LEQ:
2743 case BINOP_GEQ:
2744 case BINOP_EXP:
2745 case UNOP_NEG:
2746 case UNOP_PLUS:
2747 case UNOP_LOGICAL_NOT:
2748 case UNOP_ABS:
2749 if (possible_user_operator_p (op, argvec))
2750 {
2751 struct ada_symbol_info *candidates;
2752 int n_candidates;
2753
2754 n_candidates =
2755 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2756 (struct block *) NULL, VAR_DOMAIN,
2757 &candidates);
2758 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2759 ada_decoded_op_name (op), NULL);
2760 if (i < 0)
2761 break;
2762
2763 replace_operator_with_call (expp, pc, nargs, 1,
2764 candidates[i].sym, candidates[i].block);
2765 exp = *expp;
2766 }
2767 break;
2768
2769 case OP_TYPE:
2770 return NULL;
2771 }
2772
2773 *pos = pc;
2774 return evaluate_subexp_type (exp, pos);
2775 }
2776
2777 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2778 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2779 a non-pointer. A type of 'void' (which is never a valid expression type)
2780 by convention matches anything. */
2781 /* The term "match" here is rather loose. The match is heuristic and
2782 liberal. FIXME: TOO liberal, in fact. */
2783
2784 static int
2785 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2786 {
2787 ftype = ada_check_typedef (ftype);
2788 atype = ada_check_typedef (atype);
2789
2790 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2791 ftype = TYPE_TARGET_TYPE (ftype);
2792 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2793 atype = TYPE_TARGET_TYPE (atype);
2794
2795 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2796 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2797 return 1;
2798
2799 switch (TYPE_CODE (ftype))
2800 {
2801 default:
2802 return 1;
2803 case TYPE_CODE_PTR:
2804 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2805 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2806 TYPE_TARGET_TYPE (atype), 0);
2807 else
2808 return (may_deref
2809 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2810 case TYPE_CODE_INT:
2811 case TYPE_CODE_ENUM:
2812 case TYPE_CODE_RANGE:
2813 switch (TYPE_CODE (atype))
2814 {
2815 case TYPE_CODE_INT:
2816 case TYPE_CODE_ENUM:
2817 case TYPE_CODE_RANGE:
2818 return 1;
2819 default:
2820 return 0;
2821 }
2822
2823 case TYPE_CODE_ARRAY:
2824 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2825 || ada_is_array_descriptor_type (atype));
2826
2827 case TYPE_CODE_STRUCT:
2828 if (ada_is_array_descriptor_type (ftype))
2829 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2830 || ada_is_array_descriptor_type (atype));
2831 else
2832 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
2833 && !ada_is_array_descriptor_type (atype));
2834
2835 case TYPE_CODE_UNION:
2836 case TYPE_CODE_FLT:
2837 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
2838 }
2839 }
2840
2841 /* Return non-zero if the formals of FUNC "sufficiently match" the
2842 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
2843 may also be an enumeral, in which case it is treated as a 0-
2844 argument function. */
2845
2846 static int
2847 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
2848 {
2849 int i;
2850 struct type *func_type = SYMBOL_TYPE (func);
2851
2852 if (SYMBOL_CLASS (func) == LOC_CONST
2853 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
2854 return (n_actuals == 0);
2855 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
2856 return 0;
2857
2858 if (TYPE_NFIELDS (func_type) != n_actuals)
2859 return 0;
2860
2861 for (i = 0; i < n_actuals; i += 1)
2862 {
2863 if (actuals[i] == NULL)
2864 return 0;
2865 else
2866 {
2867 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
2868 struct type *atype = ada_check_typedef (value_type (actuals[i]));
2869
2870 if (!ada_type_match (ftype, atype, 1))
2871 return 0;
2872 }
2873 }
2874 return 1;
2875 }
2876
2877 /* False iff function type FUNC_TYPE definitely does not produce a value
2878 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
2879 FUNC_TYPE is not a valid function type with a non-null return type
2880 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
2881
2882 static int
2883 return_match (struct type *func_type, struct type *context_type)
2884 {
2885 struct type *return_type;
2886
2887 if (func_type == NULL)
2888 return 1;
2889
2890 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
2891 return_type = base_type (TYPE_TARGET_TYPE (func_type));
2892 else
2893 return_type = base_type (func_type);
2894 if (return_type == NULL)
2895 return 1;
2896
2897 context_type = base_type (context_type);
2898
2899 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
2900 return context_type == NULL || return_type == context_type;
2901 else if (context_type == NULL)
2902 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
2903 else
2904 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
2905 }
2906
2907
2908 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
2909 function (if any) that matches the types of the NARGS arguments in
2910 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
2911 that returns that type, then eliminate matches that don't. If
2912 CONTEXT_TYPE is void and there is at least one match that does not
2913 return void, eliminate all matches that do.
2914
2915 Asks the user if there is more than one match remaining. Returns -1
2916 if there is no such symbol or none is selected. NAME is used
2917 solely for messages. May re-arrange and modify SYMS in
2918 the process; the index returned is for the modified vector. */
2919
2920 static int
2921 ada_resolve_function (struct ada_symbol_info syms[],
2922 int nsyms, struct value **args, int nargs,
2923 const char *name, struct type *context_type)
2924 {
2925 int k;
2926 int m; /* Number of hits */
2927 struct type *fallback;
2928 struct type *return_type;
2929
2930 return_type = context_type;
2931 if (context_type == NULL)
2932 fallback = builtin_type_void;
2933 else
2934 fallback = NULL;
2935
2936 m = 0;
2937 while (1)
2938 {
2939 for (k = 0; k < nsyms; k += 1)
2940 {
2941 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
2942
2943 if (ada_args_match (syms[k].sym, args, nargs)
2944 && return_match (type, return_type))
2945 {
2946 syms[m] = syms[k];
2947 m += 1;
2948 }
2949 }
2950 if (m > 0 || return_type == fallback)
2951 break;
2952 else
2953 return_type = fallback;
2954 }
2955
2956 if (m == 0)
2957 return -1;
2958 else if (m > 1)
2959 {
2960 printf_filtered (_("Multiple matches for %s\n"), name);
2961 user_select_syms (syms, m, 1);
2962 return 0;
2963 }
2964 return 0;
2965 }
2966
2967 /* Returns true (non-zero) iff decoded name N0 should appear before N1
2968 in a listing of choices during disambiguation (see sort_choices, below).
2969 The idea is that overloadings of a subprogram name from the
2970 same package should sort in their source order. We settle for ordering
2971 such symbols by their trailing number (__N or $N). */
2972
2973 static int
2974 encoded_ordered_before (char *N0, char *N1)
2975 {
2976 if (N1 == NULL)
2977 return 0;
2978 else if (N0 == NULL)
2979 return 1;
2980 else
2981 {
2982 int k0, k1;
2983 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
2984 ;
2985 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
2986 ;
2987 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
2988 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
2989 {
2990 int n0, n1;
2991 n0 = k0;
2992 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
2993 n0 -= 1;
2994 n1 = k1;
2995 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
2996 n1 -= 1;
2997 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
2998 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
2999 }
3000 return (strcmp (N0, N1) < 0);
3001 }
3002 }
3003
3004 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3005 encoded names. */
3006
3007 static void
3008 sort_choices (struct ada_symbol_info syms[], int nsyms)
3009 {
3010 int i;
3011 for (i = 1; i < nsyms; i += 1)
3012 {
3013 struct ada_symbol_info sym = syms[i];
3014 int j;
3015
3016 for (j = i - 1; j >= 0; j -= 1)
3017 {
3018 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3019 SYMBOL_LINKAGE_NAME (sym.sym)))
3020 break;
3021 syms[j + 1] = syms[j];
3022 }
3023 syms[j + 1] = sym;
3024 }
3025 }
3026
3027 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3028 by asking the user (if necessary), returning the number selected,
3029 and setting the first elements of SYMS items. Error if no symbols
3030 selected. */
3031
3032 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3033 to be re-integrated one of these days. */
3034
3035 int
3036 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3037 {
3038 int i;
3039 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3040 int n_chosen;
3041 int first_choice = (max_results == 1) ? 1 : 2;
3042
3043 if (max_results < 1)
3044 error (_("Request to select 0 symbols!"));
3045 if (nsyms <= 1)
3046 return nsyms;
3047
3048 printf_unfiltered (_("[0] cancel\n"));
3049 if (max_results > 1)
3050 printf_unfiltered (_("[1] all\n"));
3051
3052 sort_choices (syms, nsyms);
3053
3054 for (i = 0; i < nsyms; i += 1)
3055 {
3056 if (syms[i].sym == NULL)
3057 continue;
3058
3059 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3060 {
3061 struct symtab_and_line sal =
3062 find_function_start_sal (syms[i].sym, 1);
3063 if (sal.symtab == NULL)
3064 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3065 i + first_choice,
3066 SYMBOL_PRINT_NAME (syms[i].sym),
3067 sal.line);
3068 else
3069 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3070 SYMBOL_PRINT_NAME (syms[i].sym),
3071 sal.symtab->filename, sal.line);
3072 continue;
3073 }
3074 else
3075 {
3076 int is_enumeral =
3077 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3078 && SYMBOL_TYPE (syms[i].sym) != NULL
3079 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3080 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3081
3082 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3083 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3084 i + first_choice,
3085 SYMBOL_PRINT_NAME (syms[i].sym),
3086 symtab->filename, SYMBOL_LINE (syms[i].sym));
3087 else if (is_enumeral
3088 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3089 {
3090 printf_unfiltered ("[%d] ", i + first_choice);
3091 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3092 gdb_stdout, -1, 0);
3093 printf_unfiltered (_("'(%s) (enumeral)\n"),
3094 SYMBOL_PRINT_NAME (syms[i].sym));
3095 }
3096 else if (symtab != NULL)
3097 printf_unfiltered (is_enumeral
3098 ? _("[%d] %s in %s (enumeral)\n")
3099 : _("[%d] %s at %s:?\n"),
3100 i + first_choice,
3101 SYMBOL_PRINT_NAME (syms[i].sym),
3102 symtab->filename);
3103 else
3104 printf_unfiltered (is_enumeral
3105 ? _("[%d] %s (enumeral)\n")
3106 : _("[%d] %s at ?\n"),
3107 i + first_choice,
3108 SYMBOL_PRINT_NAME (syms[i].sym));
3109 }
3110 }
3111
3112 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3113 "overload-choice");
3114
3115 for (i = 0; i < n_chosen; i += 1)
3116 syms[i] = syms[chosen[i]];
3117
3118 return n_chosen;
3119 }
3120
3121 /* Read and validate a set of numeric choices from the user in the
3122 range 0 .. N_CHOICES-1. Place the results in increasing
3123 order in CHOICES[0 .. N-1], and return N.
3124
3125 The user types choices as a sequence of numbers on one line
3126 separated by blanks, encoding them as follows:
3127
3128 + A choice of 0 means to cancel the selection, throwing an error.
3129 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3130 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3131
3132 The user is not allowed to choose more than MAX_RESULTS values.
3133
3134 ANNOTATION_SUFFIX, if present, is used to annotate the input
3135 prompts (for use with the -f switch). */
3136
3137 int
3138 get_selections (int *choices, int n_choices, int max_results,
3139 int is_all_choice, char *annotation_suffix)
3140 {
3141 char *args;
3142 const char *prompt;
3143 int n_chosen;
3144 int first_choice = is_all_choice ? 2 : 1;
3145
3146 prompt = getenv ("PS2");
3147 if (prompt == NULL)
3148 prompt = ">";
3149
3150 printf_unfiltered ("%s ", prompt);
3151 gdb_flush (gdb_stdout);
3152
3153 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3154
3155 if (args == NULL)
3156 error_no_arg (_("one or more choice numbers"));
3157
3158 n_chosen = 0;
3159
3160 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3161 order, as given in args. Choices are validated. */
3162 while (1)
3163 {
3164 char *args2;
3165 int choice, j;
3166
3167 while (isspace (*args))
3168 args += 1;
3169 if (*args == '\0' && n_chosen == 0)
3170 error_no_arg (_("one or more choice numbers"));
3171 else if (*args == '\0')
3172 break;
3173
3174 choice = strtol (args, &args2, 10);
3175 if (args == args2 || choice < 0
3176 || choice > n_choices + first_choice - 1)
3177 error (_("Argument must be choice number"));
3178 args = args2;
3179
3180 if (choice == 0)
3181 error (_("cancelled"));
3182
3183 if (choice < first_choice)
3184 {
3185 n_chosen = n_choices;
3186 for (j = 0; j < n_choices; j += 1)
3187 choices[j] = j;
3188 break;
3189 }
3190 choice -= first_choice;
3191
3192 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3193 {
3194 }
3195
3196 if (j < 0 || choice != choices[j])
3197 {
3198 int k;
3199 for (k = n_chosen - 1; k > j; k -= 1)
3200 choices[k + 1] = choices[k];
3201 choices[j + 1] = choice;
3202 n_chosen += 1;
3203 }
3204 }
3205
3206 if (n_chosen > max_results)
3207 error (_("Select no more than %d of the above"), max_results);
3208
3209 return n_chosen;
3210 }
3211
3212 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3213 on the function identified by SYM and BLOCK, and taking NARGS
3214 arguments. Update *EXPP as needed to hold more space. */
3215
3216 static void
3217 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3218 int oplen, struct symbol *sym,
3219 struct block *block)
3220 {
3221 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3222 symbol, -oplen for operator being replaced). */
3223 struct expression *newexp = (struct expression *)
3224 xmalloc (sizeof (struct expression)
3225 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3226 struct expression *exp = *expp;
3227
3228 newexp->nelts = exp->nelts + 7 - oplen;
3229 newexp->language_defn = exp->language_defn;
3230 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3231 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3232 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3233
3234 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3235 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3236
3237 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3238 newexp->elts[pc + 4].block = block;
3239 newexp->elts[pc + 5].symbol = sym;
3240
3241 *expp = newexp;
3242 xfree (exp);
3243 }
3244
3245 /* Type-class predicates */
3246
3247 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3248 or FLOAT). */
3249
3250 static int
3251 numeric_type_p (struct type *type)
3252 {
3253 if (type == NULL)
3254 return 0;
3255 else
3256 {
3257 switch (TYPE_CODE (type))
3258 {
3259 case TYPE_CODE_INT:
3260 case TYPE_CODE_FLT:
3261 return 1;
3262 case TYPE_CODE_RANGE:
3263 return (type == TYPE_TARGET_TYPE (type)
3264 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3265 default:
3266 return 0;
3267 }
3268 }
3269 }
3270
3271 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3272
3273 static int
3274 integer_type_p (struct type *type)
3275 {
3276 if (type == NULL)
3277 return 0;
3278 else
3279 {
3280 switch (TYPE_CODE (type))
3281 {
3282 case TYPE_CODE_INT:
3283 return 1;
3284 case TYPE_CODE_RANGE:
3285 return (type == TYPE_TARGET_TYPE (type)
3286 || integer_type_p (TYPE_TARGET_TYPE (type)));
3287 default:
3288 return 0;
3289 }
3290 }
3291 }
3292
3293 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3294
3295 static int
3296 scalar_type_p (struct type *type)
3297 {
3298 if (type == NULL)
3299 return 0;
3300 else
3301 {
3302 switch (TYPE_CODE (type))
3303 {
3304 case TYPE_CODE_INT:
3305 case TYPE_CODE_RANGE:
3306 case TYPE_CODE_ENUM:
3307 case TYPE_CODE_FLT:
3308 return 1;
3309 default:
3310 return 0;
3311 }
3312 }
3313 }
3314
3315 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3316
3317 static int
3318 discrete_type_p (struct type *type)
3319 {
3320 if (type == NULL)
3321 return 0;
3322 else
3323 {
3324 switch (TYPE_CODE (type))
3325 {
3326 case TYPE_CODE_INT:
3327 case TYPE_CODE_RANGE:
3328 case TYPE_CODE_ENUM:
3329 return 1;
3330 default:
3331 return 0;
3332 }
3333 }
3334 }
3335
3336 /* Returns non-zero if OP with operands in the vector ARGS could be
3337 a user-defined function. Errs on the side of pre-defined operators
3338 (i.e., result 0). */
3339
3340 static int
3341 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3342 {
3343 struct type *type0 =
3344 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3345 struct type *type1 =
3346 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3347
3348 if (type0 == NULL)
3349 return 0;
3350
3351 switch (op)
3352 {
3353 default:
3354 return 0;
3355
3356 case BINOP_ADD:
3357 case BINOP_SUB:
3358 case BINOP_MUL:
3359 case BINOP_DIV:
3360 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3361
3362 case BINOP_REM:
3363 case BINOP_MOD:
3364 case BINOP_BITWISE_AND:
3365 case BINOP_BITWISE_IOR:
3366 case BINOP_BITWISE_XOR:
3367 return (!(integer_type_p (type0) && integer_type_p (type1)));
3368
3369 case BINOP_EQUAL:
3370 case BINOP_NOTEQUAL:
3371 case BINOP_LESS:
3372 case BINOP_GTR:
3373 case BINOP_LEQ:
3374 case BINOP_GEQ:
3375 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3376
3377 case BINOP_CONCAT:
3378 return
3379 ((TYPE_CODE (type0) != TYPE_CODE_ARRAY
3380 && (TYPE_CODE (type0) != TYPE_CODE_PTR
3381 || TYPE_CODE (TYPE_TARGET_TYPE (type0)) != TYPE_CODE_ARRAY))
3382 || (TYPE_CODE (type1) != TYPE_CODE_ARRAY
3383 && (TYPE_CODE (type1) != TYPE_CODE_PTR
3384 || (TYPE_CODE (TYPE_TARGET_TYPE (type1))
3385 != TYPE_CODE_ARRAY))));
3386
3387 case BINOP_EXP:
3388 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3389
3390 case UNOP_NEG:
3391 case UNOP_PLUS:
3392 case UNOP_LOGICAL_NOT:
3393 case UNOP_ABS:
3394 return (!numeric_type_p (type0));
3395
3396 }
3397 }
3398 \f
3399 /* Renaming */
3400
3401 /* NOTE: In the following, we assume that a renaming type's name may
3402 have an ___XD suffix. It would be nice if this went away at some
3403 point. */
3404
3405 /* If TYPE encodes a renaming, returns the renaming suffix, which
3406 is XR for an object renaming, XRP for a procedure renaming, XRE for
3407 an exception renaming, and XRS for a subprogram renaming. Returns
3408 NULL if NAME encodes none of these. */
3409
3410 const char *
3411 ada_renaming_type (struct type *type)
3412 {
3413 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
3414 {
3415 const char *name = type_name_no_tag (type);
3416 const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
3417 if (suffix == NULL
3418 || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
3419 return NULL;
3420 else
3421 return suffix + 3;
3422 }
3423 else
3424 return NULL;
3425 }
3426
3427 /* Return non-zero iff SYM encodes an object renaming. */
3428
3429 int
3430 ada_is_object_renaming (struct symbol *sym)
3431 {
3432 const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
3433 return renaming_type != NULL
3434 && (renaming_type[2] == '\0' || renaming_type[2] == '_');
3435 }
3436
3437 /* Assuming that SYM encodes a non-object renaming, returns the original
3438 name of the renamed entity. The name is good until the end of
3439 parsing. */
3440
3441 char *
3442 ada_simple_renamed_entity (struct symbol *sym)
3443 {
3444 struct type *type;
3445 const char *raw_name;
3446 int len;
3447 char *result;
3448
3449 type = SYMBOL_TYPE (sym);
3450 if (type == NULL || TYPE_NFIELDS (type) < 1)
3451 error (_("Improperly encoded renaming."));
3452
3453 raw_name = TYPE_FIELD_NAME (type, 0);
3454 len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
3455 if (len <= 0)
3456 error (_("Improperly encoded renaming."));
3457
3458 result = xmalloc (len + 1);
3459 strncpy (result, raw_name, len);
3460 result[len] = '\000';
3461 return result;
3462 }
3463 \f
3464
3465 /* Evaluation: Function Calls */
3466
3467 /* Return an lvalue containing the value VAL. This is the identity on
3468 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3469 on the stack, using and updating *SP as the stack pointer, and
3470 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3471
3472 static struct value *
3473 ensure_lval (struct value *val, CORE_ADDR *sp)
3474 {
3475 if (! VALUE_LVAL (val))
3476 {
3477 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3478
3479 /* The following is taken from the structure-return code in
3480 call_function_by_hand. FIXME: Therefore, some refactoring seems
3481 indicated. */
3482 if (INNER_THAN (1, 2))
3483 {
3484 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3485 reserving sufficient space. */
3486 *sp -= len;
3487 if (gdbarch_frame_align_p (current_gdbarch))
3488 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3489 VALUE_ADDRESS (val) = *sp;
3490 }
3491 else
3492 {
3493 /* Stack grows upward. Align the frame, allocate space, and
3494 then again, re-align the frame. */
3495 if (gdbarch_frame_align_p (current_gdbarch))
3496 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3497 VALUE_ADDRESS (val) = *sp;
3498 *sp += len;
3499 if (gdbarch_frame_align_p (current_gdbarch))
3500 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3501 }
3502
3503 write_memory (VALUE_ADDRESS (val), VALUE_CONTENTS_RAW (val), len);
3504 }
3505
3506 return val;
3507 }
3508
3509 /* Return the value ACTUAL, converted to be an appropriate value for a
3510 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3511 allocating any necessary descriptors (fat pointers), or copies of
3512 values not residing in memory, updating it as needed. */
3513
3514 static struct value *
3515 convert_actual (struct value *actual, struct type *formal_type0,
3516 CORE_ADDR *sp)
3517 {
3518 struct type *actual_type = ada_check_typedef (value_type (actual));
3519 struct type *formal_type = ada_check_typedef (formal_type0);
3520 struct type *formal_target =
3521 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3522 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3523 struct type *actual_target =
3524 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3525 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3526
3527 if (ada_is_array_descriptor_type (formal_target)
3528 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3529 return make_array_descriptor (formal_type, actual, sp);
3530 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3531 {
3532 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3533 && ada_is_array_descriptor_type (actual_target))
3534 return desc_data (actual);
3535 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3536 {
3537 if (VALUE_LVAL (actual) != lval_memory)
3538 {
3539 struct value *val;
3540 actual_type = ada_check_typedef (value_type (actual));
3541 val = allocate_value (actual_type);
3542 memcpy ((char *) VALUE_CONTENTS_RAW (val),
3543 (char *) VALUE_CONTENTS (actual),
3544 TYPE_LENGTH (actual_type));
3545 actual = ensure_lval (val, sp);
3546 }
3547 return value_addr (actual);
3548 }
3549 }
3550 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3551 return ada_value_ind (actual);
3552
3553 return actual;
3554 }
3555
3556
3557 /* Push a descriptor of type TYPE for array value ARR on the stack at
3558 *SP, updating *SP to reflect the new descriptor. Return either
3559 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3560 to-descriptor type rather than a descriptor type), a struct value *
3561 representing a pointer to this descriptor. */
3562
3563 static struct value *
3564 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3565 {
3566 struct type *bounds_type = desc_bounds_type (type);
3567 struct type *desc_type = desc_base_type (type);
3568 struct value *descriptor = allocate_value (desc_type);
3569 struct value *bounds = allocate_value (bounds_type);
3570 int i;
3571
3572 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3573 {
3574 modify_general_field (VALUE_CONTENTS (bounds),
3575 value_as_long (ada_array_bound (arr, i, 0)),
3576 desc_bound_bitpos (bounds_type, i, 0),
3577 desc_bound_bitsize (bounds_type, i, 0));
3578 modify_general_field (VALUE_CONTENTS (bounds),
3579 value_as_long (ada_array_bound (arr, i, 1)),
3580 desc_bound_bitpos (bounds_type, i, 1),
3581 desc_bound_bitsize (bounds_type, i, 1));
3582 }
3583
3584 bounds = ensure_lval (bounds, sp);
3585
3586 modify_general_field (VALUE_CONTENTS (descriptor),
3587 VALUE_ADDRESS (ensure_lval (arr, sp)),
3588 fat_pntr_data_bitpos (desc_type),
3589 fat_pntr_data_bitsize (desc_type));
3590
3591 modify_general_field (VALUE_CONTENTS (descriptor),
3592 VALUE_ADDRESS (bounds),
3593 fat_pntr_bounds_bitpos (desc_type),
3594 fat_pntr_bounds_bitsize (desc_type));
3595
3596 descriptor = ensure_lval (descriptor, sp);
3597
3598 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3599 return value_addr (descriptor);
3600 else
3601 return descriptor;
3602 }
3603
3604
3605 /* Assuming a dummy frame has been established on the target, perform any
3606 conversions needed for calling function FUNC on the NARGS actual
3607 parameters in ARGS, other than standard C conversions. Does
3608 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3609 does not match the number of arguments expected. Use *SP as a
3610 stack pointer for additional data that must be pushed, updating its
3611 value as needed. */
3612
3613 void
3614 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3615 CORE_ADDR *sp)
3616 {
3617 int i;
3618
3619 if (TYPE_NFIELDS (value_type (func)) == 0
3620 || nargs != TYPE_NFIELDS (value_type (func)))
3621 return;
3622
3623 for (i = 0; i < nargs; i += 1)
3624 args[i] =
3625 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3626 }
3627 \f
3628 /* Dummy definitions for an experimental caching module that is not
3629 * used in the public sources. */
3630
3631 static int
3632 lookup_cached_symbol (const char *name, domain_enum namespace,
3633 struct symbol **sym, struct block **block,
3634 struct symtab **symtab)
3635 {
3636 return 0;
3637 }
3638
3639 static void
3640 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3641 struct block *block, struct symtab *symtab)
3642 {
3643 }
3644 \f
3645 /* Symbol Lookup */
3646
3647 /* Return the result of a standard (literal, C-like) lookup of NAME in
3648 given DOMAIN, visible from lexical block BLOCK. */
3649
3650 static struct symbol *
3651 standard_lookup (const char *name, const struct block *block,
3652 domain_enum domain)
3653 {
3654 struct symbol *sym;
3655 struct symtab *symtab;
3656
3657 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3658 return sym;
3659 sym =
3660 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3661 cache_symbol (name, domain, sym, block_found, symtab);
3662 return sym;
3663 }
3664
3665
3666 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3667 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3668 since they contend in overloading in the same way. */
3669 static int
3670 is_nonfunction (struct ada_symbol_info syms[], int n)
3671 {
3672 int i;
3673
3674 for (i = 0; i < n; i += 1)
3675 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3676 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3677 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3678 return 1;
3679
3680 return 0;
3681 }
3682
3683 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3684 struct types. Otherwise, they may not. */
3685
3686 static int
3687 equiv_types (struct type *type0, struct type *type1)
3688 {
3689 if (type0 == type1)
3690 return 1;
3691 if (type0 == NULL || type1 == NULL
3692 || TYPE_CODE (type0) != TYPE_CODE (type1))
3693 return 0;
3694 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3695 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3696 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3697 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3698 return 1;
3699
3700 return 0;
3701 }
3702
3703 /* True iff SYM0 represents the same entity as SYM1, or one that is
3704 no more defined than that of SYM1. */
3705
3706 static int
3707 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3708 {
3709 if (sym0 == sym1)
3710 return 1;
3711 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3712 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3713 return 0;
3714
3715 switch (SYMBOL_CLASS (sym0))
3716 {
3717 case LOC_UNDEF:
3718 return 1;
3719 case LOC_TYPEDEF:
3720 {
3721 struct type *type0 = SYMBOL_TYPE (sym0);
3722 struct type *type1 = SYMBOL_TYPE (sym1);
3723 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3724 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3725 int len0 = strlen (name0);
3726 return
3727 TYPE_CODE (type0) == TYPE_CODE (type1)
3728 && (equiv_types (type0, type1)
3729 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3730 && strncmp (name1 + len0, "___XV", 5) == 0));
3731 }
3732 case LOC_CONST:
3733 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3734 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3735 default:
3736 return 0;
3737 }
3738 }
3739
3740 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3741 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3742
3743 static void
3744 add_defn_to_vec (struct obstack *obstackp,
3745 struct symbol *sym,
3746 struct block *block, struct symtab *symtab)
3747 {
3748 int i;
3749 size_t tmp;
3750 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3751
3752 if (SYMBOL_TYPE (sym) != NULL)
3753 SYMBOL_TYPE (sym) = ada_check_typedef (SYMBOL_TYPE (sym));
3754 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3755 {
3756 if (lesseq_defined_than (sym, prevDefns[i].sym))
3757 return;
3758 else if (lesseq_defined_than (prevDefns[i].sym, sym))
3759 {
3760 prevDefns[i].sym = sym;
3761 prevDefns[i].block = block;
3762 prevDefns[i].symtab = symtab;
3763 return;
3764 }
3765 }
3766
3767 {
3768 struct ada_symbol_info info;
3769
3770 info.sym = sym;
3771 info.block = block;
3772 info.symtab = symtab;
3773 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
3774 }
3775 }
3776
3777 /* Number of ada_symbol_info structures currently collected in
3778 current vector in *OBSTACKP. */
3779
3780 static int
3781 num_defns_collected (struct obstack *obstackp)
3782 {
3783 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
3784 }
3785
3786 /* Vector of ada_symbol_info structures currently collected in current
3787 vector in *OBSTACKP. If FINISH, close off the vector and return
3788 its final address. */
3789
3790 static struct ada_symbol_info *
3791 defns_collected (struct obstack *obstackp, int finish)
3792 {
3793 if (finish)
3794 return obstack_finish (obstackp);
3795 else
3796 return (struct ada_symbol_info *) obstack_base (obstackp);
3797 }
3798
3799 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
3800 Check the global symbols if GLOBAL, the static symbols if not.
3801 Do wild-card match if WILD. */
3802
3803 static struct partial_symbol *
3804 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
3805 int global, domain_enum namespace, int wild)
3806 {
3807 struct partial_symbol **start;
3808 int name_len = strlen (name);
3809 int length = (global ? pst->n_global_syms : pst->n_static_syms);
3810 int i;
3811
3812 if (length == 0)
3813 {
3814 return (NULL);
3815 }
3816
3817 start = (global ?
3818 pst->objfile->global_psymbols.list + pst->globals_offset :
3819 pst->objfile->static_psymbols.list + pst->statics_offset);
3820
3821 if (wild)
3822 {
3823 for (i = 0; i < length; i += 1)
3824 {
3825 struct partial_symbol *psym = start[i];
3826
3827 if (SYMBOL_DOMAIN (psym) == namespace
3828 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
3829 return psym;
3830 }
3831 return NULL;
3832 }
3833 else
3834 {
3835 if (global)
3836 {
3837 int U;
3838 i = 0;
3839 U = length - 1;
3840 while (U - i > 4)
3841 {
3842 int M = (U + i) >> 1;
3843 struct partial_symbol *psym = start[M];
3844 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
3845 i = M + 1;
3846 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
3847 U = M - 1;
3848 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
3849 i = M + 1;
3850 else
3851 U = M;
3852 }
3853 }
3854 else
3855 i = 0;
3856
3857 while (i < length)
3858 {
3859 struct partial_symbol *psym = start[i];
3860
3861 if (SYMBOL_DOMAIN (psym) == namespace)
3862 {
3863 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
3864
3865 if (cmp < 0)
3866 {
3867 if (global)
3868 break;
3869 }
3870 else if (cmp == 0
3871 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
3872 + name_len))
3873 return psym;
3874 }
3875 i += 1;
3876 }
3877
3878 if (global)
3879 {
3880 int U;
3881 i = 0;
3882 U = length - 1;
3883 while (U - i > 4)
3884 {
3885 int M = (U + i) >> 1;
3886 struct partial_symbol *psym = start[M];
3887 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
3888 i = M + 1;
3889 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
3890 U = M - 1;
3891 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
3892 i = M + 1;
3893 else
3894 U = M;
3895 }
3896 }
3897 else
3898 i = 0;
3899
3900 while (i < length)
3901 {
3902 struct partial_symbol *psym = start[i];
3903
3904 if (SYMBOL_DOMAIN (psym) == namespace)
3905 {
3906 int cmp;
3907
3908 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
3909 if (cmp == 0)
3910 {
3911 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
3912 if (cmp == 0)
3913 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
3914 name_len);
3915 }
3916
3917 if (cmp < 0)
3918 {
3919 if (global)
3920 break;
3921 }
3922 else if (cmp == 0
3923 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
3924 + name_len + 5))
3925 return psym;
3926 }
3927 i += 1;
3928 }
3929 }
3930 return NULL;
3931 }
3932
3933 /* Find a symbol table containing symbol SYM or NULL if none. */
3934
3935 static struct symtab *
3936 symtab_for_sym (struct symbol *sym)
3937 {
3938 struct symtab *s;
3939 struct objfile *objfile;
3940 struct block *b;
3941 struct symbol *tmp_sym;
3942 struct dict_iterator iter;
3943 int j;
3944
3945 ALL_SYMTABS (objfile, s)
3946 {
3947 switch (SYMBOL_CLASS (sym))
3948 {
3949 case LOC_CONST:
3950 case LOC_STATIC:
3951 case LOC_TYPEDEF:
3952 case LOC_REGISTER:
3953 case LOC_LABEL:
3954 case LOC_BLOCK:
3955 case LOC_CONST_BYTES:
3956 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3957 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
3958 return s;
3959 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3960 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
3961 return s;
3962 break;
3963 default:
3964 break;
3965 }
3966 switch (SYMBOL_CLASS (sym))
3967 {
3968 case LOC_REGISTER:
3969 case LOC_ARG:
3970 case LOC_REF_ARG:
3971 case LOC_REGPARM:
3972 case LOC_REGPARM_ADDR:
3973 case LOC_LOCAL:
3974 case LOC_TYPEDEF:
3975 case LOC_LOCAL_ARG:
3976 case LOC_BASEREG:
3977 case LOC_BASEREG_ARG:
3978 case LOC_COMPUTED:
3979 case LOC_COMPUTED_ARG:
3980 for (j = FIRST_LOCAL_BLOCK;
3981 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
3982 {
3983 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
3984 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
3985 return s;
3986 }
3987 break;
3988 default:
3989 break;
3990 }
3991 }
3992 return NULL;
3993 }
3994
3995 /* Return a minimal symbol matching NAME according to Ada decoding
3996 rules. Returns NULL if there is no such minimal symbol. Names
3997 prefixed with "standard__" are handled specially: "standard__" is
3998 first stripped off, and only static and global symbols are searched. */
3999
4000 struct minimal_symbol *
4001 ada_lookup_simple_minsym (const char *name)
4002 {
4003 struct objfile *objfile;
4004 struct minimal_symbol *msymbol;
4005 int wild_match;
4006
4007 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4008 {
4009 name += sizeof ("standard__") - 1;
4010 wild_match = 0;
4011 }
4012 else
4013 wild_match = (strstr (name, "__") == NULL);
4014
4015 ALL_MSYMBOLS (objfile, msymbol)
4016 {
4017 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4018 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4019 return msymbol;
4020 }
4021
4022 return NULL;
4023 }
4024
4025 /* For all subprograms that statically enclose the subprogram of the
4026 selected frame, add symbols matching identifier NAME in DOMAIN
4027 and their blocks to the list of data in OBSTACKP, as for
4028 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4029 wildcard prefix. */
4030
4031 static void
4032 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4033 const char *name, domain_enum namespace,
4034 int wild_match)
4035 {
4036 }
4037
4038 /* FIXME: The next two routines belong in symtab.c */
4039
4040 static void
4041 restore_language (void *lang)
4042 {
4043 set_language ((enum language) lang);
4044 }
4045
4046 /* As for lookup_symbol, but performed as if the current language
4047 were LANG. */
4048
4049 struct symbol *
4050 lookup_symbol_in_language (const char *name, const struct block *block,
4051 domain_enum domain, enum language lang,
4052 int *is_a_field_of_this, struct symtab **symtab)
4053 {
4054 struct cleanup *old_chain
4055 = make_cleanup (restore_language, (void *) current_language->la_language);
4056 struct symbol *result;
4057 set_language (lang);
4058 result = lookup_symbol (name, block, domain, is_a_field_of_this, symtab);
4059 do_cleanups (old_chain);
4060 return result;
4061 }
4062
4063 /* True if TYPE is definitely an artificial type supplied to a symbol
4064 for which no debugging information was given in the symbol file. */
4065
4066 static int
4067 is_nondebugging_type (struct type *type)
4068 {
4069 char *name = ada_type_name (type);
4070 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4071 }
4072
4073 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4074 duplicate other symbols in the list (The only case I know of where
4075 this happens is when object files containing stabs-in-ecoff are
4076 linked with files containing ordinary ecoff debugging symbols (or no
4077 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4078 Returns the number of items in the modified list. */
4079
4080 static int
4081 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4082 {
4083 int i, j;
4084
4085 i = 0;
4086 while (i < nsyms)
4087 {
4088 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4089 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4090 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4091 {
4092 for (j = 0; j < nsyms; j += 1)
4093 {
4094 if (i != j
4095 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4096 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4097 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4098 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4099 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4100 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4101 {
4102 int k;
4103 for (k = i + 1; k < nsyms; k += 1)
4104 syms[k - 1] = syms[k];
4105 nsyms -= 1;
4106 goto NextSymbol;
4107 }
4108 }
4109 }
4110 i += 1;
4111 NextSymbol:
4112 ;
4113 }
4114 return nsyms;
4115 }
4116
4117 /* Given a type that corresponds to a renaming entity, use the type name
4118 to extract the scope (package name or function name, fully qualified,
4119 and following the GNAT encoding convention) where this renaming has been
4120 defined. The string returned needs to be deallocated after use. */
4121
4122 static char *
4123 xget_renaming_scope (struct type *renaming_type)
4124 {
4125 /* The renaming types adhere to the following convention:
4126 <scope>__<rename>___<XR extension>.
4127 So, to extract the scope, we search for the "___XR" extension,
4128 and then backtrack until we find the first "__". */
4129
4130 const char *name = type_name_no_tag (renaming_type);
4131 char *suffix = strstr (name, "___XR");
4132 char *last;
4133 int scope_len;
4134 char *scope;
4135
4136 /* Now, backtrack a bit until we find the first "__". Start looking
4137 at suffix - 3, as the <rename> part is at least one character long. */
4138
4139 for (last = suffix - 3; last > name; last--)
4140 if (last[0] == '_' && last[1] == '_')
4141 break;
4142
4143 /* Make a copy of scope and return it. */
4144
4145 scope_len = last - name;
4146 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4147
4148 strncpy (scope, name, scope_len);
4149 scope[scope_len] = '\0';
4150
4151 return scope;
4152 }
4153
4154 /* Return nonzero if NAME corresponds to a package name. */
4155
4156 static int
4157 is_package_name (const char *name)
4158 {
4159 /* Here, We take advantage of the fact that no symbols are generated
4160 for packages, while symbols are generated for each function.
4161 So the condition for NAME represent a package becomes equivalent
4162 to NAME not existing in our list of symbols. There is only one
4163 small complication with library-level functions (see below). */
4164
4165 char *fun_name;
4166
4167 /* If it is a function that has not been defined at library level,
4168 then we should be able to look it up in the symbols. */
4169 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4170 return 0;
4171
4172 /* Library-level function names start with "_ada_". See if function
4173 "_ada_" followed by NAME can be found. */
4174
4175 /* Do a quick check that NAME does not contain "__", since library-level
4176 functions names can not contain "__" in them. */
4177 if (strstr (name, "__") != NULL)
4178 return 0;
4179
4180 fun_name = xstrprintf ("_ada_%s", name);
4181
4182 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4183 }
4184
4185 /* Return nonzero if SYM corresponds to a renaming entity that is
4186 visible from FUNCTION_NAME. */
4187
4188 static int
4189 renaming_is_visible (const struct symbol *sym, char *function_name)
4190 {
4191 char *scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4192
4193 make_cleanup (xfree, scope);
4194
4195 /* If the rename has been defined in a package, then it is visible. */
4196 if (is_package_name (scope))
4197 return 1;
4198
4199 /* Check that the rename is in the current function scope by checking
4200 that its name starts with SCOPE. */
4201
4202 /* If the function name starts with "_ada_", it means that it is
4203 a library-level function. Strip this prefix before doing the
4204 comparison, as the encoding for the renaming does not contain
4205 this prefix. */
4206 if (strncmp (function_name, "_ada_", 5) == 0)
4207 function_name += 5;
4208
4209 return (strncmp (function_name, scope, strlen (scope)) == 0);
4210 }
4211
4212 /* Iterates over the SYMS list and remove any entry that corresponds to
4213 a renaming entity that is not visible from the function associated
4214 with CURRENT_BLOCK.
4215
4216 Rationale:
4217 GNAT emits a type following a specified encoding for each renaming
4218 entity. Unfortunately, STABS currently does not support the definition
4219 of types that are local to a given lexical block, so all renamings types
4220 are emitted at library level. As a consequence, if an application
4221 contains two renaming entities using the same name, and a user tries to
4222 print the value of one of these entities, the result of the ada symbol
4223 lookup will also contain the wrong renaming type.
4224
4225 This function partially covers for this limitation by attempting to
4226 remove from the SYMS list renaming symbols that should be visible
4227 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4228 method with the current information available. The implementation
4229 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4230
4231 - When the user tries to print a rename in a function while there
4232 is another rename entity defined in a package: Normally, the
4233 rename in the function has precedence over the rename in the
4234 package, so the latter should be removed from the list. This is
4235 currently not the case.
4236
4237 - This function will incorrectly remove valid renames if
4238 the CURRENT_BLOCK corresponds to a function which symbol name
4239 has been changed by an "Export" pragma. As a consequence,
4240 the user will be unable to print such rename entities. */
4241
4242 static int
4243 remove_out_of_scope_renamings (struct ada_symbol_info *syms,
4244 int nsyms, struct block *current_block)
4245 {
4246 struct symbol *current_function;
4247 char *current_function_name;
4248 int i;
4249
4250 /* Extract the function name associated to CURRENT_BLOCK.
4251 Abort if unable to do so. */
4252
4253 if (current_block == NULL)
4254 return nsyms;
4255
4256 current_function = block_function (current_block);
4257 if (current_function == NULL)
4258 return nsyms;
4259
4260 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4261 if (current_function_name == NULL)
4262 return nsyms;
4263
4264 /* Check each of the symbols, and remove it from the list if it is
4265 a type corresponding to a renaming that is out of the scope of
4266 the current block. */
4267
4268 i = 0;
4269 while (i < nsyms)
4270 {
4271 if (ada_is_object_renaming (syms[i].sym)
4272 && !renaming_is_visible (syms[i].sym, current_function_name))
4273 {
4274 int j;
4275 for (j = i + 1; j < nsyms; j++)
4276 syms[j - 1] = syms[j];
4277 nsyms -= 1;
4278 }
4279 else
4280 i += 1;
4281 }
4282
4283 return nsyms;
4284 }
4285
4286 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4287 scope and in global scopes, returning the number of matches. Sets
4288 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4289 indicating the symbols found and the blocks and symbol tables (if
4290 any) in which they were found. This vector are transient---good only to
4291 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4292 symbol match within the nest of blocks whose innermost member is BLOCK0,
4293 is the one match returned (no other matches in that or
4294 enclosing blocks is returned). If there are any matches in or
4295 surrounding BLOCK0, then these alone are returned. Otherwise, the
4296 search extends to global and file-scope (static) symbol tables.
4297 Names prefixed with "standard__" are handled specially: "standard__"
4298 is first stripped off, and only static and global symbols are searched. */
4299
4300 int
4301 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4302 domain_enum namespace,
4303 struct ada_symbol_info **results)
4304 {
4305 struct symbol *sym;
4306 struct symtab *s;
4307 struct partial_symtab *ps;
4308 struct blockvector *bv;
4309 struct objfile *objfile;
4310 struct block *block;
4311 const char *name;
4312 struct minimal_symbol *msymbol;
4313 int wild_match;
4314 int cacheIfUnique;
4315 int block_depth;
4316 int ndefns;
4317
4318 obstack_free (&symbol_list_obstack, NULL);
4319 obstack_init (&symbol_list_obstack);
4320
4321 cacheIfUnique = 0;
4322
4323 /* Search specified block and its superiors. */
4324
4325 wild_match = (strstr (name0, "__") == NULL);
4326 name = name0;
4327 block = (struct block *) block0; /* FIXME: No cast ought to be
4328 needed, but adding const will
4329 have a cascade effect. */
4330 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4331 {
4332 wild_match = 0;
4333 block = NULL;
4334 name = name0 + sizeof ("standard__") - 1;
4335 }
4336
4337 block_depth = 0;
4338 while (block != NULL)
4339 {
4340 block_depth += 1;
4341 ada_add_block_symbols (&symbol_list_obstack, block, name,
4342 namespace, NULL, NULL, wild_match);
4343
4344 /* If we found a non-function match, assume that's the one. */
4345 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4346 num_defns_collected (&symbol_list_obstack)))
4347 goto done;
4348
4349 block = BLOCK_SUPERBLOCK (block);
4350 }
4351
4352 /* If no luck so far, try to find NAME as a local symbol in some lexically
4353 enclosing subprogram. */
4354 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4355 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4356 name, namespace, wild_match);
4357
4358 /* If we found ANY matches among non-global symbols, we're done. */
4359
4360 if (num_defns_collected (&symbol_list_obstack) > 0)
4361 goto done;
4362
4363 cacheIfUnique = 1;
4364 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4365 {
4366 if (sym != NULL)
4367 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4368 goto done;
4369 }
4370
4371 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4372 tables, and psymtab's. */
4373
4374 ALL_SYMTABS (objfile, s)
4375 {
4376 QUIT;
4377 if (!s->primary)
4378 continue;
4379 bv = BLOCKVECTOR (s);
4380 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4381 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4382 objfile, s, wild_match);
4383 }
4384
4385 if (namespace == VAR_DOMAIN)
4386 {
4387 ALL_MSYMBOLS (objfile, msymbol)
4388 {
4389 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4390 {
4391 switch (MSYMBOL_TYPE (msymbol))
4392 {
4393 case mst_solib_trampoline:
4394 break;
4395 default:
4396 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4397 if (s != NULL)
4398 {
4399 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4400 QUIT;
4401 bv = BLOCKVECTOR (s);
4402 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4403 ada_add_block_symbols (&symbol_list_obstack, block,
4404 SYMBOL_LINKAGE_NAME (msymbol),
4405 namespace, objfile, s, wild_match);
4406
4407 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4408 {
4409 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4410 ada_add_block_symbols (&symbol_list_obstack, block,
4411 SYMBOL_LINKAGE_NAME (msymbol),
4412 namespace, objfile, s,
4413 wild_match);
4414 }
4415 }
4416 }
4417 }
4418 }
4419 }
4420
4421 ALL_PSYMTABS (objfile, ps)
4422 {
4423 QUIT;
4424 if (!ps->readin
4425 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4426 {
4427 s = PSYMTAB_TO_SYMTAB (ps);
4428 if (!s->primary)
4429 continue;
4430 bv = BLOCKVECTOR (s);
4431 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4432 ada_add_block_symbols (&symbol_list_obstack, block, name,
4433 namespace, objfile, s, wild_match);
4434 }
4435 }
4436
4437 /* Now add symbols from all per-file blocks if we've gotten no hits
4438 (Not strictly correct, but perhaps better than an error).
4439 Do the symtabs first, then check the psymtabs. */
4440
4441 if (num_defns_collected (&symbol_list_obstack) == 0)
4442 {
4443
4444 ALL_SYMTABS (objfile, s)
4445 {
4446 QUIT;
4447 if (!s->primary)
4448 continue;
4449 bv = BLOCKVECTOR (s);
4450 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4451 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4452 objfile, s, wild_match);
4453 }
4454
4455 ALL_PSYMTABS (objfile, ps)
4456 {
4457 QUIT;
4458 if (!ps->readin
4459 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4460 {
4461 s = PSYMTAB_TO_SYMTAB (ps);
4462 bv = BLOCKVECTOR (s);
4463 if (!s->primary)
4464 continue;
4465 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4466 ada_add_block_symbols (&symbol_list_obstack, block, name,
4467 namespace, objfile, s, wild_match);
4468 }
4469 }
4470 }
4471
4472 done:
4473 ndefns = num_defns_collected (&symbol_list_obstack);
4474 *results = defns_collected (&symbol_list_obstack, 1);
4475
4476 ndefns = remove_extra_symbols (*results, ndefns);
4477
4478 if (ndefns == 0)
4479 cache_symbol (name0, namespace, NULL, NULL, NULL);
4480
4481 if (ndefns == 1 && cacheIfUnique)
4482 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4483 (*results)[0].symtab);
4484
4485 ndefns = remove_out_of_scope_renamings (*results, ndefns,
4486 (struct block *) block0);
4487
4488 return ndefns;
4489 }
4490
4491 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4492 scope and in global scopes, or NULL if none. NAME is folded and
4493 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4494 choosing the first symbol if there are multiple choices.
4495 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4496 table in which the symbol was found (in both cases, these
4497 assignments occur only if the pointers are non-null). */
4498
4499 struct symbol *
4500 ada_lookup_symbol (const char *name, const struct block *block0,
4501 domain_enum namespace, int *is_a_field_of_this,
4502 struct symtab **symtab)
4503 {
4504 struct ada_symbol_info *candidates;
4505 int n_candidates;
4506
4507 n_candidates = ada_lookup_symbol_list (ada_encode (ada_fold_name (name)),
4508 block0, namespace, &candidates);
4509
4510 if (n_candidates == 0)
4511 return NULL;
4512
4513 if (is_a_field_of_this != NULL)
4514 *is_a_field_of_this = 0;
4515
4516 if (symtab != NULL)
4517 {
4518 *symtab = candidates[0].symtab;
4519 if (*symtab == NULL && candidates[0].block != NULL)
4520 {
4521 struct objfile *objfile;
4522 struct symtab *s;
4523 struct block *b;
4524 struct blockvector *bv;
4525
4526 /* Search the list of symtabs for one which contains the
4527 address of the start of this block. */
4528 ALL_SYMTABS (objfile, s)
4529 {
4530 bv = BLOCKVECTOR (s);
4531 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4532 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4533 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4534 {
4535 *symtab = s;
4536 return fixup_symbol_section (candidates[0].sym, objfile);
4537 }
4538 return fixup_symbol_section (candidates[0].sym, NULL);
4539 }
4540 }
4541 }
4542 return candidates[0].sym;
4543 }
4544
4545 static struct symbol *
4546 ada_lookup_symbol_nonlocal (const char *name,
4547 const char *linkage_name,
4548 const struct block *block,
4549 const domain_enum domain, struct symtab **symtab)
4550 {
4551 if (linkage_name == NULL)
4552 linkage_name = name;
4553 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4554 NULL, symtab);
4555 }
4556
4557
4558 /* True iff STR is a possible encoded suffix of a normal Ada name
4559 that is to be ignored for matching purposes. Suffixes of parallel
4560 names (e.g., XVE) are not included here. Currently, the possible suffixes
4561 are given by either of the regular expression:
4562
4563 (__[0-9]+)?\.[0-9]+ [nested subprogram suffix, on platforms such
4564 as GNU/Linux]
4565 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4566 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4567 */
4568
4569 static int
4570 is_name_suffix (const char *str)
4571 {
4572 int k;
4573 const char *matching;
4574 const int len = strlen (str);
4575
4576 /* (__[0-9]+)?\.[0-9]+ */
4577 matching = str;
4578 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4579 {
4580 matching += 3;
4581 while (isdigit (matching[0]))
4582 matching += 1;
4583 if (matching[0] == '\0')
4584 return 1;
4585 }
4586
4587 if (matching[0] == '.')
4588 {
4589 matching += 1;
4590 while (isdigit (matching[0]))
4591 matching += 1;
4592 if (matching[0] == '\0')
4593 return 1;
4594 }
4595
4596 /* ___[0-9]+ */
4597 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4598 {
4599 matching = str + 3;
4600 while (isdigit (matching[0]))
4601 matching += 1;
4602 if (matching[0] == '\0')
4603 return 1;
4604 }
4605
4606 /* ??? We should not modify STR directly, as we are doing below. This
4607 is fine in this case, but may become problematic later if we find
4608 that this alternative did not work, and want to try matching
4609 another one from the begining of STR. Since we modified it, we
4610 won't be able to find the begining of the string anymore! */
4611 if (str[0] == 'X')
4612 {
4613 str += 1;
4614 while (str[0] != '_' && str[0] != '\0')
4615 {
4616 if (str[0] != 'n' && str[0] != 'b')
4617 return 0;
4618 str += 1;
4619 }
4620 }
4621 if (str[0] == '\000')
4622 return 1;
4623 if (str[0] == '_')
4624 {
4625 if (str[1] != '_' || str[2] == '\000')
4626 return 0;
4627 if (str[2] == '_')
4628 {
4629 if (strcmp (str + 3, "JM") == 0)
4630 return 1;
4631 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4632 the LJM suffix in favor of the JM one. But we will
4633 still accept LJM as a valid suffix for a reasonable
4634 amount of time, just to allow ourselves to debug programs
4635 compiled using an older version of GNAT. */
4636 if (strcmp (str + 3, "LJM") == 0)
4637 return 1;
4638 if (str[3] != 'X')
4639 return 0;
4640 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4641 || str[4] == 'U' || str[4] == 'P')
4642 return 1;
4643 if (str[4] == 'R' && str[5] != 'T')
4644 return 1;
4645 return 0;
4646 }
4647 if (!isdigit (str[2]))
4648 return 0;
4649 for (k = 3; str[k] != '\0'; k += 1)
4650 if (!isdigit (str[k]) && str[k] != '_')
4651 return 0;
4652 return 1;
4653 }
4654 if (str[0] == '$' && isdigit (str[1]))
4655 {
4656 for (k = 2; str[k] != '\0'; k += 1)
4657 if (!isdigit (str[k]) && str[k] != '_')
4658 return 0;
4659 return 1;
4660 }
4661 return 0;
4662 }
4663
4664 /* Return nonzero if the given string starts with a dot ('.')
4665 followed by zero or more digits.
4666
4667 Note: brobecker/2003-11-10: A forward declaration has not been
4668 added at the begining of this file yet, because this function
4669 is only used to work around a problem found during wild matching
4670 when trying to match minimal symbol names against symbol names
4671 obtained from dwarf-2 data. This function is therefore currently
4672 only used in wild_match() and is likely to be deleted when the
4673 problem in dwarf-2 is fixed. */
4674
4675 static int
4676 is_dot_digits_suffix (const char *str)
4677 {
4678 if (str[0] != '.')
4679 return 0;
4680
4681 str++;
4682 while (isdigit (str[0]))
4683 str++;
4684 return (str[0] == '\0');
4685 }
4686
4687 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4688 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4689 informational suffixes of NAME (i.e., for which is_name_suffix is
4690 true). */
4691
4692 static int
4693 wild_match (const char *patn0, int patn_len, const char *name0)
4694 {
4695 int name_len;
4696 char *name;
4697 char *patn;
4698
4699 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
4700 stored in the symbol table for nested function names is sometimes
4701 different from the name of the associated entity stored in
4702 the dwarf-2 data: This is the case for nested subprograms, where
4703 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
4704 while the symbol name from the dwarf-2 data does not.
4705
4706 Although the DWARF-2 standard documents that entity names stored
4707 in the dwarf-2 data should be identical to the name as seen in
4708 the source code, GNAT takes a different approach as we already use
4709 a special encoding mechanism to convey the information so that
4710 a C debugger can still use the information generated to debug
4711 Ada programs. A corollary is that the symbol names in the dwarf-2
4712 data should match the names found in the symbol table. I therefore
4713 consider this issue as a compiler defect.
4714
4715 Until the compiler is properly fixed, we work-around the problem
4716 by ignoring such suffixes during the match. We do so by making
4717 a copy of PATN0 and NAME0, and then by stripping such a suffix
4718 if present. We then perform the match on the resulting strings. */
4719 {
4720 char *dot;
4721 name_len = strlen (name0);
4722
4723 name = (char *) alloca ((name_len + 1) * sizeof (char));
4724 strcpy (name, name0);
4725 dot = strrchr (name, '.');
4726 if (dot != NULL && is_dot_digits_suffix (dot))
4727 *dot = '\0';
4728
4729 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
4730 strncpy (patn, patn0, patn_len);
4731 patn[patn_len] = '\0';
4732 dot = strrchr (patn, '.');
4733 if (dot != NULL && is_dot_digits_suffix (dot))
4734 {
4735 *dot = '\0';
4736 patn_len = dot - patn;
4737 }
4738 }
4739
4740 /* Now perform the wild match. */
4741
4742 name_len = strlen (name);
4743 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
4744 && strncmp (patn, name + 5, patn_len) == 0
4745 && is_name_suffix (name + patn_len + 5))
4746 return 1;
4747
4748 while (name_len >= patn_len)
4749 {
4750 if (strncmp (patn, name, patn_len) == 0
4751 && is_name_suffix (name + patn_len))
4752 return 1;
4753 do
4754 {
4755 name += 1;
4756 name_len -= 1;
4757 }
4758 while (name_len > 0
4759 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
4760 if (name_len <= 0)
4761 return 0;
4762 if (name[0] == '_')
4763 {
4764 if (!islower (name[2]))
4765 return 0;
4766 name += 2;
4767 name_len -= 2;
4768 }
4769 else
4770 {
4771 if (!islower (name[1]))
4772 return 0;
4773 name += 1;
4774 name_len -= 1;
4775 }
4776 }
4777
4778 return 0;
4779 }
4780
4781
4782 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4783 vector *defn_symbols, updating the list of symbols in OBSTACKP
4784 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4785 OBJFILE is the section containing BLOCK.
4786 SYMTAB is recorded with each symbol added. */
4787
4788 static void
4789 ada_add_block_symbols (struct obstack *obstackp,
4790 struct block *block, const char *name,
4791 domain_enum domain, struct objfile *objfile,
4792 struct symtab *symtab, int wild)
4793 {
4794 struct dict_iterator iter;
4795 int name_len = strlen (name);
4796 /* A matching argument symbol, if any. */
4797 struct symbol *arg_sym;
4798 /* Set true when we find a matching non-argument symbol. */
4799 int found_sym;
4800 struct symbol *sym;
4801
4802 arg_sym = NULL;
4803 found_sym = 0;
4804 if (wild)
4805 {
4806 struct symbol *sym;
4807 ALL_BLOCK_SYMBOLS (block, iter, sym)
4808 {
4809 if (SYMBOL_DOMAIN (sym) == domain
4810 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4811 {
4812 switch (SYMBOL_CLASS (sym))
4813 {
4814 case LOC_ARG:
4815 case LOC_LOCAL_ARG:
4816 case LOC_REF_ARG:
4817 case LOC_REGPARM:
4818 case LOC_REGPARM_ADDR:
4819 case LOC_BASEREG_ARG:
4820 case LOC_COMPUTED_ARG:
4821 arg_sym = sym;
4822 break;
4823 case LOC_UNRESOLVED:
4824 continue;
4825 default:
4826 found_sym = 1;
4827 add_defn_to_vec (obstackp,
4828 fixup_symbol_section (sym, objfile),
4829 block, symtab);
4830 break;
4831 }
4832 }
4833 }
4834 }
4835 else
4836 {
4837 ALL_BLOCK_SYMBOLS (block, iter, sym)
4838 {
4839 if (SYMBOL_DOMAIN (sym) == domain)
4840 {
4841 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
4842 if (cmp == 0
4843 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
4844 {
4845 switch (SYMBOL_CLASS (sym))
4846 {
4847 case LOC_ARG:
4848 case LOC_LOCAL_ARG:
4849 case LOC_REF_ARG:
4850 case LOC_REGPARM:
4851 case LOC_REGPARM_ADDR:
4852 case LOC_BASEREG_ARG:
4853 case LOC_COMPUTED_ARG:
4854 arg_sym = sym;
4855 break;
4856 case LOC_UNRESOLVED:
4857 break;
4858 default:
4859 found_sym = 1;
4860 add_defn_to_vec (obstackp,
4861 fixup_symbol_section (sym, objfile),
4862 block, symtab);
4863 break;
4864 }
4865 }
4866 }
4867 }
4868 }
4869
4870 if (!found_sym && arg_sym != NULL)
4871 {
4872 add_defn_to_vec (obstackp,
4873 fixup_symbol_section (arg_sym, objfile),
4874 block, symtab);
4875 }
4876
4877 if (!wild)
4878 {
4879 arg_sym = NULL;
4880 found_sym = 0;
4881
4882 ALL_BLOCK_SYMBOLS (block, iter, sym)
4883 {
4884 if (SYMBOL_DOMAIN (sym) == domain)
4885 {
4886 int cmp;
4887
4888 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
4889 if (cmp == 0)
4890 {
4891 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
4892 if (cmp == 0)
4893 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
4894 name_len);
4895 }
4896
4897 if (cmp == 0
4898 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
4899 {
4900 switch (SYMBOL_CLASS (sym))
4901 {
4902 case LOC_ARG:
4903 case LOC_LOCAL_ARG:
4904 case LOC_REF_ARG:
4905 case LOC_REGPARM:
4906 case LOC_REGPARM_ADDR:
4907 case LOC_BASEREG_ARG:
4908 case LOC_COMPUTED_ARG:
4909 arg_sym = sym;
4910 break;
4911 case LOC_UNRESOLVED:
4912 break;
4913 default:
4914 found_sym = 1;
4915 add_defn_to_vec (obstackp,
4916 fixup_symbol_section (sym, objfile),
4917 block, symtab);
4918 break;
4919 }
4920 }
4921 }
4922 }
4923
4924 /* NOTE: This really shouldn't be needed for _ada_ symbols.
4925 They aren't parameters, right? */
4926 if (!found_sym && arg_sym != NULL)
4927 {
4928 add_defn_to_vec (obstackp,
4929 fixup_symbol_section (arg_sym, objfile),
4930 block, symtab);
4931 }
4932 }
4933 }
4934 \f
4935 /* Field Access */
4936
4937 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
4938 to be invisible to users. */
4939
4940 int
4941 ada_is_ignored_field (struct type *type, int field_num)
4942 {
4943 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
4944 return 1;
4945 else
4946 {
4947 const char *name = TYPE_FIELD_NAME (type, field_num);
4948 return (name == NULL
4949 || (name[0] == '_' && strncmp (name, "_parent", 7) != 0));
4950 }
4951 }
4952
4953 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
4954 pointer or reference type whose ultimate target has a tag field. */
4955
4956 int
4957 ada_is_tagged_type (struct type *type, int refok)
4958 {
4959 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
4960 }
4961
4962 /* True iff TYPE represents the type of X'Tag */
4963
4964 int
4965 ada_is_tag_type (struct type *type)
4966 {
4967 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
4968 return 0;
4969 else
4970 {
4971 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
4972 return (name != NULL
4973 && strcmp (name, "ada__tags__dispatch_table") == 0);
4974 }
4975 }
4976
4977 /* The type of the tag on VAL. */
4978
4979 struct type *
4980 ada_tag_type (struct value *val)
4981 {
4982 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
4983 }
4984
4985 /* The value of the tag on VAL. */
4986
4987 struct value *
4988 ada_value_tag (struct value *val)
4989 {
4990 return ada_value_struct_elt (val, "_tag", "record");
4991 }
4992
4993 /* The value of the tag on the object of type TYPE whose contents are
4994 saved at VALADDR, if it is non-null, or is at memory address
4995 ADDRESS. */
4996
4997 static struct value *
4998 value_tag_from_contents_and_address (struct type *type, char *valaddr,
4999 CORE_ADDR address)
5000 {
5001 int tag_byte_offset, dummy1, dummy2;
5002 struct type *tag_type;
5003 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5004 &dummy1, &dummy2))
5005 {
5006 char *valaddr1 = (valaddr == NULL) ? NULL : valaddr + tag_byte_offset;
5007 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5008
5009 return value_from_contents_and_address (tag_type, valaddr1, address1);
5010 }
5011 return NULL;
5012 }
5013
5014 static struct type *
5015 type_from_tag (struct value *tag)
5016 {
5017 const char *type_name = ada_tag_name (tag);
5018 if (type_name != NULL)
5019 return ada_find_any_type (ada_encode (type_name));
5020 return NULL;
5021 }
5022
5023 struct tag_args
5024 {
5025 struct value *tag;
5026 char *name;
5027 };
5028
5029 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5030 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5031 The value stored in ARGS->name is valid until the next call to
5032 ada_tag_name_1. */
5033
5034 static int
5035 ada_tag_name_1 (void *args0)
5036 {
5037 struct tag_args *args = (struct tag_args *) args0;
5038 static char name[1024];
5039 char *p;
5040 struct value *val;
5041 args->name = NULL;
5042 val = ada_value_struct_elt (args->tag, "tsd", NULL);
5043 if (val == NULL)
5044 return 0;
5045 val = ada_value_struct_elt (val, "expanded_name", NULL);
5046 if (val == NULL)
5047 return 0;
5048 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5049 for (p = name; *p != '\0'; p += 1)
5050 if (isalpha (*p))
5051 *p = tolower (*p);
5052 args->name = name;
5053 return 0;
5054 }
5055
5056 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5057 * a C string. */
5058
5059 const char *
5060 ada_tag_name (struct value *tag)
5061 {
5062 struct tag_args args;
5063 if (!ada_is_tag_type (value_type (tag)))
5064 return NULL;
5065 args.tag = tag;
5066 args.name = NULL;
5067 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5068 return args.name;
5069 }
5070
5071 /* The parent type of TYPE, or NULL if none. */
5072
5073 struct type *
5074 ada_parent_type (struct type *type)
5075 {
5076 int i;
5077
5078 type = ada_check_typedef (type);
5079
5080 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5081 return NULL;
5082
5083 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5084 if (ada_is_parent_field (type, i))
5085 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5086
5087 return NULL;
5088 }
5089
5090 /* True iff field number FIELD_NUM of structure type TYPE contains the
5091 parent-type (inherited) fields of a derived type. Assumes TYPE is
5092 a structure type with at least FIELD_NUM+1 fields. */
5093
5094 int
5095 ada_is_parent_field (struct type *type, int field_num)
5096 {
5097 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5098 return (name != NULL
5099 && (strncmp (name, "PARENT", 6) == 0
5100 || strncmp (name, "_parent", 7) == 0));
5101 }
5102
5103 /* True iff field number FIELD_NUM of structure type TYPE is a
5104 transparent wrapper field (which should be silently traversed when doing
5105 field selection and flattened when printing). Assumes TYPE is a
5106 structure type with at least FIELD_NUM+1 fields. Such fields are always
5107 structures. */
5108
5109 int
5110 ada_is_wrapper_field (struct type *type, int field_num)
5111 {
5112 const char *name = TYPE_FIELD_NAME (type, field_num);
5113 return (name != NULL
5114 && (strncmp (name, "PARENT", 6) == 0
5115 || strcmp (name, "REP") == 0
5116 || strncmp (name, "_parent", 7) == 0
5117 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5118 }
5119
5120 /* True iff field number FIELD_NUM of structure or union type TYPE
5121 is a variant wrapper. Assumes TYPE is a structure type with at least
5122 FIELD_NUM+1 fields. */
5123
5124 int
5125 ada_is_variant_part (struct type *type, int field_num)
5126 {
5127 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5128 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5129 || (is_dynamic_field (type, field_num)
5130 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5131 == TYPE_CODE_UNION)));
5132 }
5133
5134 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5135 whose discriminants are contained in the record type OUTER_TYPE,
5136 returns the type of the controlling discriminant for the variant. */
5137
5138 struct type *
5139 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5140 {
5141 char *name = ada_variant_discrim_name (var_type);
5142 struct type *type =
5143 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5144 if (type == NULL)
5145 return builtin_type_int;
5146 else
5147 return type;
5148 }
5149
5150 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5151 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5152 represents a 'when others' clause; otherwise 0. */
5153
5154 int
5155 ada_is_others_clause (struct type *type, int field_num)
5156 {
5157 const char *name = TYPE_FIELD_NAME (type, field_num);
5158 return (name != NULL && name[0] == 'O');
5159 }
5160
5161 /* Assuming that TYPE0 is the type of the variant part of a record,
5162 returns the name of the discriminant controlling the variant.
5163 The value is valid until the next call to ada_variant_discrim_name. */
5164
5165 char *
5166 ada_variant_discrim_name (struct type *type0)
5167 {
5168 static char *result = NULL;
5169 static size_t result_len = 0;
5170 struct type *type;
5171 const char *name;
5172 const char *discrim_end;
5173 const char *discrim_start;
5174
5175 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5176 type = TYPE_TARGET_TYPE (type0);
5177 else
5178 type = type0;
5179
5180 name = ada_type_name (type);
5181
5182 if (name == NULL || name[0] == '\000')
5183 return "";
5184
5185 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5186 discrim_end -= 1)
5187 {
5188 if (strncmp (discrim_end, "___XVN", 6) == 0)
5189 break;
5190 }
5191 if (discrim_end == name)
5192 return "";
5193
5194 for (discrim_start = discrim_end; discrim_start != name + 3;
5195 discrim_start -= 1)
5196 {
5197 if (discrim_start == name + 1)
5198 return "";
5199 if ((discrim_start > name + 3
5200 && strncmp (discrim_start - 3, "___", 3) == 0)
5201 || discrim_start[-1] == '.')
5202 break;
5203 }
5204
5205 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5206 strncpy (result, discrim_start, discrim_end - discrim_start);
5207 result[discrim_end - discrim_start] = '\0';
5208 return result;
5209 }
5210
5211 /* Scan STR for a subtype-encoded number, beginning at position K.
5212 Put the position of the character just past the number scanned in
5213 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5214 Return 1 if there was a valid number at the given position, and 0
5215 otherwise. A "subtype-encoded" number consists of the absolute value
5216 in decimal, followed by the letter 'm' to indicate a negative number.
5217 Assumes 0m does not occur. */
5218
5219 int
5220 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5221 {
5222 ULONGEST RU;
5223
5224 if (!isdigit (str[k]))
5225 return 0;
5226
5227 /* Do it the hard way so as not to make any assumption about
5228 the relationship of unsigned long (%lu scan format code) and
5229 LONGEST. */
5230 RU = 0;
5231 while (isdigit (str[k]))
5232 {
5233 RU = RU * 10 + (str[k] - '0');
5234 k += 1;
5235 }
5236
5237 if (str[k] == 'm')
5238 {
5239 if (R != NULL)
5240 *R = (-(LONGEST) (RU - 1)) - 1;
5241 k += 1;
5242 }
5243 else if (R != NULL)
5244 *R = (LONGEST) RU;
5245
5246 /* NOTE on the above: Technically, C does not say what the results of
5247 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5248 number representable as a LONGEST (although either would probably work
5249 in most implementations). When RU>0, the locution in the then branch
5250 above is always equivalent to the negative of RU. */
5251
5252 if (new_k != NULL)
5253 *new_k = k;
5254 return 1;
5255 }
5256
5257 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5258 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5259 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5260
5261 int
5262 ada_in_variant (LONGEST val, struct type *type, int field_num)
5263 {
5264 const char *name = TYPE_FIELD_NAME (type, field_num);
5265 int p;
5266
5267 p = 0;
5268 while (1)
5269 {
5270 switch (name[p])
5271 {
5272 case '\0':
5273 return 0;
5274 case 'S':
5275 {
5276 LONGEST W;
5277 if (!ada_scan_number (name, p + 1, &W, &p))
5278 return 0;
5279 if (val == W)
5280 return 1;
5281 break;
5282 }
5283 case 'R':
5284 {
5285 LONGEST L, U;
5286 if (!ada_scan_number (name, p + 1, &L, &p)
5287 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5288 return 0;
5289 if (val >= L && val <= U)
5290 return 1;
5291 break;
5292 }
5293 case 'O':
5294 return 1;
5295 default:
5296 return 0;
5297 }
5298 }
5299 }
5300
5301 /* FIXME: Lots of redundancy below. Try to consolidate. */
5302
5303 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5304 ARG_TYPE, extract and return the value of one of its (non-static)
5305 fields. FIELDNO says which field. Differs from value_primitive_field
5306 only in that it can handle packed values of arbitrary type. */
5307
5308 static struct value *
5309 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5310 struct type *arg_type)
5311 {
5312 struct type *type;
5313
5314 arg_type = ada_check_typedef (arg_type);
5315 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5316
5317 /* Handle packed fields. */
5318
5319 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5320 {
5321 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5322 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5323
5324 return ada_value_primitive_packed_val (arg1, VALUE_CONTENTS (arg1),
5325 offset + bit_pos / 8,
5326 bit_pos % 8, bit_size, type);
5327 }
5328 else
5329 return value_primitive_field (arg1, offset, fieldno, arg_type);
5330 }
5331
5332 /* Find field with name NAME in object of type TYPE. If found, return 1
5333 after setting *FIELD_TYPE_P to the field's type, *BYTE_OFFSET_P to
5334 OFFSET + the byte offset of the field within an object of that type,
5335 *BIT_OFFSET_P to the bit offset modulo byte size of the field, and
5336 *BIT_SIZE_P to its size in bits if the field is packed, and 0 otherwise.
5337 Looks inside wrappers for the field. Returns 0 if field not
5338 found. */
5339 static int
5340 find_struct_field (char *name, struct type *type, int offset,
5341 struct type **field_type_p,
5342 int *byte_offset_p, int *bit_offset_p, int *bit_size_p)
5343 {
5344 int i;
5345
5346 type = ada_check_typedef (type);
5347 *field_type_p = NULL;
5348 *byte_offset_p = *bit_offset_p = *bit_size_p = 0;
5349
5350 for (i = TYPE_NFIELDS (type) - 1; i >= 0; i -= 1)
5351 {
5352 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5353 int fld_offset = offset + bit_pos / 8;
5354 char *t_field_name = TYPE_FIELD_NAME (type, i);
5355
5356 if (t_field_name == NULL)
5357 continue;
5358
5359 else if (field_name_match (t_field_name, name))
5360 {
5361 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5362 *field_type_p = TYPE_FIELD_TYPE (type, i);
5363 *byte_offset_p = fld_offset;
5364 *bit_offset_p = bit_pos % 8;
5365 *bit_size_p = bit_size;
5366 return 1;
5367 }
5368 else if (ada_is_wrapper_field (type, i))
5369 {
5370 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5371 field_type_p, byte_offset_p, bit_offset_p,
5372 bit_size_p))
5373 return 1;
5374 }
5375 else if (ada_is_variant_part (type, i))
5376 {
5377 int j;
5378 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5379
5380 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
5381 {
5382 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5383 fld_offset
5384 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5385 field_type_p, byte_offset_p,
5386 bit_offset_p, bit_size_p))
5387 return 1;
5388 }
5389 }
5390 }
5391 return 0;
5392 }
5393
5394
5395
5396 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5397 and search in it assuming it has (class) type TYPE.
5398 If found, return value, else return NULL.
5399
5400 Searches recursively through wrapper fields (e.g., '_parent'). */
5401
5402 static struct value *
5403 ada_search_struct_field (char *name, struct value *arg, int offset,
5404 struct type *type)
5405 {
5406 int i;
5407 type = ada_check_typedef (type);
5408
5409 for (i = TYPE_NFIELDS (type) - 1; i >= 0; i -= 1)
5410 {
5411 char *t_field_name = TYPE_FIELD_NAME (type, i);
5412
5413 if (t_field_name == NULL)
5414 continue;
5415
5416 else if (field_name_match (t_field_name, name))
5417 return ada_value_primitive_field (arg, offset, i, type);
5418
5419 else if (ada_is_wrapper_field (type, i))
5420 {
5421 struct value *v = /* Do not let indent join lines here. */
5422 ada_search_struct_field (name, arg,
5423 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5424 TYPE_FIELD_TYPE (type, i));
5425 if (v != NULL)
5426 return v;
5427 }
5428
5429 else if (ada_is_variant_part (type, i))
5430 {
5431 int j;
5432 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5433 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5434
5435 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
5436 {
5437 struct value *v = ada_search_struct_field /* Force line break. */
5438 (name, arg,
5439 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5440 TYPE_FIELD_TYPE (field_type, j));
5441 if (v != NULL)
5442 return v;
5443 }
5444 }
5445 }
5446 return NULL;
5447 }
5448
5449 /* Given ARG, a value of type (pointer or reference to a)*
5450 structure/union, extract the component named NAME from the ultimate
5451 target structure/union and return it as a value with its
5452 appropriate type. If ARG is a pointer or reference and the field
5453 is not packed, returns a reference to the field, otherwise the
5454 value of the field (an lvalue if ARG is an lvalue).
5455
5456 The routine searches for NAME among all members of the structure itself
5457 and (recursively) among all members of any wrapper members
5458 (e.g., '_parent').
5459
5460 ERR is a name (for use in error messages) that identifies the class
5461 of entity that ARG is supposed to be. ERR may be null, indicating
5462 that on error, the function simply returns NULL, and does not
5463 throw an error. (FIXME: True only if ARG is a pointer or reference
5464 at the moment). */
5465
5466 struct value *
5467 ada_value_struct_elt (struct value *arg, char *name, char *err)
5468 {
5469 struct type *t, *t1;
5470 struct value *v;
5471
5472 v = NULL;
5473 t1 = t = ada_check_typedef (value_type (arg));
5474 if (TYPE_CODE (t) == TYPE_CODE_REF)
5475 {
5476 t1 = TYPE_TARGET_TYPE (t);
5477 if (t1 == NULL)
5478 {
5479 if (err == NULL)
5480 return NULL;
5481 else
5482 error (_("Bad value type in a %s."), err);
5483 }
5484 t1 = ada_check_typedef (t1);
5485 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5486 {
5487 arg = coerce_ref (arg);
5488 t = t1;
5489 }
5490 }
5491
5492 while (TYPE_CODE (t) == TYPE_CODE_PTR)
5493 {
5494 t1 = TYPE_TARGET_TYPE (t);
5495 if (t1 == NULL)
5496 {
5497 if (err == NULL)
5498 return NULL;
5499 else
5500 error (_("Bad value type in a %s."), err);
5501 }
5502 t1 = ada_check_typedef (t1);
5503 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5504 {
5505 arg = value_ind (arg);
5506 t = t1;
5507 }
5508 else
5509 break;
5510 }
5511
5512 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
5513 {
5514 if (err == NULL)
5515 return NULL;
5516 else
5517 error (_("Attempt to extract a component of a value that is not a %s."),
5518 err);
5519 }
5520
5521 if (t1 == t)
5522 v = ada_search_struct_field (name, arg, 0, t);
5523 else
5524 {
5525 int bit_offset, bit_size, byte_offset;
5526 struct type *field_type;
5527 CORE_ADDR address;
5528
5529 if (TYPE_CODE (t) == TYPE_CODE_PTR)
5530 address = value_as_address (arg);
5531 else
5532 address = unpack_pointer (t, VALUE_CONTENTS (arg));
5533
5534 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
5535 if (find_struct_field (name, t1, 0,
5536 &field_type, &byte_offset, &bit_offset,
5537 &bit_size))
5538 {
5539 if (bit_size != 0)
5540 {
5541 if (TYPE_CODE (t) == TYPE_CODE_REF)
5542 arg = ada_coerce_ref (arg);
5543 else
5544 arg = ada_value_ind (arg);
5545 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
5546 bit_offset, bit_size,
5547 field_type);
5548 }
5549 else
5550 v = value_from_pointer (lookup_reference_type (field_type),
5551 address + byte_offset);
5552 }
5553 }
5554
5555 if (v == NULL && err != NULL)
5556 error (_("There is no member named %s."), name);
5557
5558 return v;
5559 }
5560
5561 /* Given a type TYPE, look up the type of the component of type named NAME.
5562 If DISPP is non-null, add its byte displacement from the beginning of a
5563 structure (pointed to by a value) of type TYPE to *DISPP (does not
5564 work for packed fields).
5565
5566 Matches any field whose name has NAME as a prefix, possibly
5567 followed by "___".
5568
5569 TYPE can be either a struct or union. If REFOK, TYPE may also
5570 be a (pointer or reference)+ to a struct or union, and the
5571 ultimate target type will be searched.
5572
5573 Looks recursively into variant clauses and parent types.
5574
5575 If NOERR is nonzero, return NULL if NAME is not suitably defined or
5576 TYPE is not a type of the right kind. */
5577
5578 static struct type *
5579 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
5580 int noerr, int *dispp)
5581 {
5582 int i;
5583
5584 if (name == NULL)
5585 goto BadName;
5586
5587 if (refok && type != NULL)
5588 while (1)
5589 {
5590 type = ada_check_typedef (type);
5591 if (TYPE_CODE (type) != TYPE_CODE_PTR
5592 && TYPE_CODE (type) != TYPE_CODE_REF)
5593 break;
5594 type = TYPE_TARGET_TYPE (type);
5595 }
5596
5597 if (type == NULL
5598 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
5599 && TYPE_CODE (type) != TYPE_CODE_UNION))
5600 {
5601 if (noerr)
5602 return NULL;
5603 else
5604 {
5605 target_terminal_ours ();
5606 gdb_flush (gdb_stdout);
5607 if (type == NULL)
5608 error (_("Type (null) is not a structure or union type"));
5609 else
5610 {
5611 /* XXX: type_sprint */
5612 fprintf_unfiltered (gdb_stderr, _("Type "));
5613 type_print (type, "", gdb_stderr, -1);
5614 error (_(" is not a structure or union type"));
5615 }
5616 }
5617 }
5618
5619 type = to_static_fixed_type (type);
5620
5621 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5622 {
5623 char *t_field_name = TYPE_FIELD_NAME (type, i);
5624 struct type *t;
5625 int disp;
5626
5627 if (t_field_name == NULL)
5628 continue;
5629
5630 else if (field_name_match (t_field_name, name))
5631 {
5632 if (dispp != NULL)
5633 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
5634 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5635 }
5636
5637 else if (ada_is_wrapper_field (type, i))
5638 {
5639 disp = 0;
5640 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
5641 0, 1, &disp);
5642 if (t != NULL)
5643 {
5644 if (dispp != NULL)
5645 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5646 return t;
5647 }
5648 }
5649
5650 else if (ada_is_variant_part (type, i))
5651 {
5652 int j;
5653 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5654
5655 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
5656 {
5657 disp = 0;
5658 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
5659 name, 0, 1, &disp);
5660 if (t != NULL)
5661 {
5662 if (dispp != NULL)
5663 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5664 return t;
5665 }
5666 }
5667 }
5668
5669 }
5670
5671 BadName:
5672 if (!noerr)
5673 {
5674 target_terminal_ours ();
5675 gdb_flush (gdb_stdout);
5676 if (name == NULL)
5677 {
5678 /* XXX: type_sprint */
5679 fprintf_unfiltered (gdb_stderr, _("Type "));
5680 type_print (type, "", gdb_stderr, -1);
5681 error (_(" has no component named <null>"));
5682 }
5683 else
5684 {
5685 /* XXX: type_sprint */
5686 fprintf_unfiltered (gdb_stderr, _("Type "));
5687 type_print (type, "", gdb_stderr, -1);
5688 error (_(" has no component named %s"), name);
5689 }
5690 }
5691
5692 return NULL;
5693 }
5694
5695 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
5696 within a value of type OUTER_TYPE that is stored in GDB at
5697 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
5698 numbering from 0) is applicable. Returns -1 if none are. */
5699
5700 int
5701 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
5702 char *outer_valaddr)
5703 {
5704 int others_clause;
5705 int i;
5706 int disp;
5707 struct type *discrim_type;
5708 char *discrim_name = ada_variant_discrim_name (var_type);
5709 LONGEST discrim_val;
5710
5711 disp = 0;
5712 discrim_type =
5713 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
5714 if (discrim_type == NULL)
5715 return -1;
5716 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
5717
5718 others_clause = -1;
5719 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
5720 {
5721 if (ada_is_others_clause (var_type, i))
5722 others_clause = i;
5723 else if (ada_in_variant (discrim_val, var_type, i))
5724 return i;
5725 }
5726
5727 return others_clause;
5728 }
5729 \f
5730
5731
5732 /* Dynamic-Sized Records */
5733
5734 /* Strategy: The type ostensibly attached to a value with dynamic size
5735 (i.e., a size that is not statically recorded in the debugging
5736 data) does not accurately reflect the size or layout of the value.
5737 Our strategy is to convert these values to values with accurate,
5738 conventional types that are constructed on the fly. */
5739
5740 /* There is a subtle and tricky problem here. In general, we cannot
5741 determine the size of dynamic records without its data. However,
5742 the 'struct value' data structure, which GDB uses to represent
5743 quantities in the inferior process (the target), requires the size
5744 of the type at the time of its allocation in order to reserve space
5745 for GDB's internal copy of the data. That's why the
5746 'to_fixed_xxx_type' routines take (target) addresses as parameters,
5747 rather than struct value*s.
5748
5749 However, GDB's internal history variables ($1, $2, etc.) are
5750 struct value*s containing internal copies of the data that are not, in
5751 general, the same as the data at their corresponding addresses in
5752 the target. Fortunately, the types we give to these values are all
5753 conventional, fixed-size types (as per the strategy described
5754 above), so that we don't usually have to perform the
5755 'to_fixed_xxx_type' conversions to look at their values.
5756 Unfortunately, there is one exception: if one of the internal
5757 history variables is an array whose elements are unconstrained
5758 records, then we will need to create distinct fixed types for each
5759 element selected. */
5760
5761 /* The upshot of all of this is that many routines take a (type, host
5762 address, target address) triple as arguments to represent a value.
5763 The host address, if non-null, is supposed to contain an internal
5764 copy of the relevant data; otherwise, the program is to consult the
5765 target at the target address. */
5766
5767 /* Assuming that VAL0 represents a pointer value, the result of
5768 dereferencing it. Differs from value_ind in its treatment of
5769 dynamic-sized types. */
5770
5771 struct value *
5772 ada_value_ind (struct value *val0)
5773 {
5774 struct value *val = unwrap_value (value_ind (val0));
5775 return ada_to_fixed_value (val);
5776 }
5777
5778 /* The value resulting from dereferencing any "reference to"
5779 qualifiers on VAL0. */
5780
5781 static struct value *
5782 ada_coerce_ref (struct value *val0)
5783 {
5784 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
5785 {
5786 struct value *val = val0;
5787 val = coerce_ref (val);
5788 val = unwrap_value (val);
5789 return ada_to_fixed_value (val);
5790 }
5791 else
5792 return val0;
5793 }
5794
5795 /* Return OFF rounded upward if necessary to a multiple of
5796 ALIGNMENT (a power of 2). */
5797
5798 static unsigned int
5799 align_value (unsigned int off, unsigned int alignment)
5800 {
5801 return (off + alignment - 1) & ~(alignment - 1);
5802 }
5803
5804 /* Return the bit alignment required for field #F of template type TYPE. */
5805
5806 static unsigned int
5807 field_alignment (struct type *type, int f)
5808 {
5809 const char *name = TYPE_FIELD_NAME (type, f);
5810 int len = (name == NULL) ? 0 : strlen (name);
5811 int align_offset;
5812
5813 if (!isdigit (name[len - 1]))
5814 return 1;
5815
5816 if (isdigit (name[len - 2]))
5817 align_offset = len - 2;
5818 else
5819 align_offset = len - 1;
5820
5821 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
5822 return TARGET_CHAR_BIT;
5823
5824 return atoi (name + align_offset) * TARGET_CHAR_BIT;
5825 }
5826
5827 /* Find a symbol named NAME. Ignores ambiguity. */
5828
5829 struct symbol *
5830 ada_find_any_symbol (const char *name)
5831 {
5832 struct symbol *sym;
5833
5834 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
5835 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5836 return sym;
5837
5838 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
5839 return sym;
5840 }
5841
5842 /* Find a type named NAME. Ignores ambiguity. */
5843
5844 struct type *
5845 ada_find_any_type (const char *name)
5846 {
5847 struct symbol *sym = ada_find_any_symbol (name);
5848
5849 if (sym != NULL)
5850 return SYMBOL_TYPE (sym);
5851
5852 return NULL;
5853 }
5854
5855 /* Given a symbol NAME and its associated BLOCK, search all symbols
5856 for its ___XR counterpart, which is the ``renaming'' symbol
5857 associated to NAME. Return this symbol if found, return
5858 NULL otherwise. */
5859
5860 struct symbol *
5861 ada_find_renaming_symbol (const char *name, struct block *block)
5862 {
5863 const struct symbol *function_sym = block_function (block);
5864 char *rename;
5865
5866 if (function_sym != NULL)
5867 {
5868 /* If the symbol is defined inside a function, NAME is not fully
5869 qualified. This means we need to prepend the function name
5870 as well as adding the ``___XR'' suffix to build the name of
5871 the associated renaming symbol. */
5872 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
5873 const int function_name_len = strlen (function_name);
5874 const int rename_len = function_name_len + 2 /* "__" */
5875 + strlen (name) + 6 /* "___XR\0" */ ;
5876
5877 /* Library-level functions are a special case, as GNAT adds
5878 a ``_ada_'' prefix to the function name to avoid namespace
5879 pollution. However, the renaming symbol themselves do not
5880 have this prefix, so we need to skip this prefix if present. */
5881 if (function_name_len > 5 /* "_ada_" */
5882 && strstr (function_name, "_ada_") == function_name)
5883 function_name = function_name + 5;
5884
5885 rename = (char *) alloca (rename_len * sizeof (char));
5886 sprintf (rename, "%s__%s___XR", function_name, name);
5887 }
5888 else
5889 {
5890 const int rename_len = strlen (name) + 6;
5891 rename = (char *) alloca (rename_len * sizeof (char));
5892 sprintf (rename, "%s___XR", name);
5893 }
5894
5895 return ada_find_any_symbol (rename);
5896 }
5897
5898 /* Because of GNAT encoding conventions, several GDB symbols may match a
5899 given type name. If the type denoted by TYPE0 is to be preferred to
5900 that of TYPE1 for purposes of type printing, return non-zero;
5901 otherwise return 0. */
5902
5903 int
5904 ada_prefer_type (struct type *type0, struct type *type1)
5905 {
5906 if (type1 == NULL)
5907 return 1;
5908 else if (type0 == NULL)
5909 return 0;
5910 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
5911 return 1;
5912 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
5913 return 0;
5914 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
5915 return 1;
5916 else if (ada_is_packed_array_type (type0))
5917 return 1;
5918 else if (ada_is_array_descriptor_type (type0)
5919 && !ada_is_array_descriptor_type (type1))
5920 return 1;
5921 else if (ada_renaming_type (type0) != NULL
5922 && ada_renaming_type (type1) == NULL)
5923 return 1;
5924 return 0;
5925 }
5926
5927 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
5928 null, its TYPE_TAG_NAME. Null if TYPE is null. */
5929
5930 char *
5931 ada_type_name (struct type *type)
5932 {
5933 if (type == NULL)
5934 return NULL;
5935 else if (TYPE_NAME (type) != NULL)
5936 return TYPE_NAME (type);
5937 else
5938 return TYPE_TAG_NAME (type);
5939 }
5940
5941 /* Find a parallel type to TYPE whose name is formed by appending
5942 SUFFIX to the name of TYPE. */
5943
5944 struct type *
5945 ada_find_parallel_type (struct type *type, const char *suffix)
5946 {
5947 static char *name;
5948 static size_t name_len = 0;
5949 int len;
5950 char *typename = ada_type_name (type);
5951
5952 if (typename == NULL)
5953 return NULL;
5954
5955 len = strlen (typename);
5956
5957 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
5958
5959 strcpy (name, typename);
5960 strcpy (name + len, suffix);
5961
5962 return ada_find_any_type (name);
5963 }
5964
5965
5966 /* If TYPE is a variable-size record type, return the corresponding template
5967 type describing its fields. Otherwise, return NULL. */
5968
5969 static struct type *
5970 dynamic_template_type (struct type *type)
5971 {
5972 type = ada_check_typedef (type);
5973
5974 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
5975 || ada_type_name (type) == NULL)
5976 return NULL;
5977 else
5978 {
5979 int len = strlen (ada_type_name (type));
5980 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
5981 return type;
5982 else
5983 return ada_find_parallel_type (type, "___XVE");
5984 }
5985 }
5986
5987 /* Assuming that TEMPL_TYPE is a union or struct type, returns
5988 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
5989
5990 static int
5991 is_dynamic_field (struct type *templ_type, int field_num)
5992 {
5993 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5994 return name != NULL
5995 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
5996 && strstr (name, "___XVL") != NULL;
5997 }
5998
5999 /* The index of the variant field of TYPE, or -1 if TYPE does not
6000 represent a variant record type. */
6001
6002 static int
6003 variant_field_index (struct type *type)
6004 {
6005 int f;
6006
6007 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6008 return -1;
6009
6010 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6011 {
6012 if (ada_is_variant_part (type, f))
6013 return f;
6014 }
6015 return -1;
6016 }
6017
6018 /* A record type with no fields. */
6019
6020 static struct type *
6021 empty_record (struct objfile *objfile)
6022 {
6023 struct type *type = alloc_type (objfile);
6024 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6025 TYPE_NFIELDS (type) = 0;
6026 TYPE_FIELDS (type) = NULL;
6027 TYPE_NAME (type) = "<empty>";
6028 TYPE_TAG_NAME (type) = NULL;
6029 TYPE_FLAGS (type) = 0;
6030 TYPE_LENGTH (type) = 0;
6031 return type;
6032 }
6033
6034 /* An ordinary record type (with fixed-length fields) that describes
6035 the value of type TYPE at VALADDR or ADDRESS (see comments at
6036 the beginning of this section) VAL according to GNAT conventions.
6037 DVAL0 should describe the (portion of a) record that contains any
6038 necessary discriminants. It should be NULL if value_type (VAL) is
6039 an outer-level type (i.e., as opposed to a branch of a variant.) A
6040 variant field (unless unchecked) is replaced by a particular branch
6041 of the variant.
6042
6043 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6044 length are not statically known are discarded. As a consequence,
6045 VALADDR, ADDRESS and DVAL0 are ignored.
6046
6047 NOTE: Limitations: For now, we assume that dynamic fields and
6048 variants occupy whole numbers of bytes. However, they need not be
6049 byte-aligned. */
6050
6051 struct type *
6052 ada_template_to_fixed_record_type_1 (struct type *type, char *valaddr,
6053 CORE_ADDR address, struct value *dval0,
6054 int keep_dynamic_fields)
6055 {
6056 struct value *mark = value_mark ();
6057 struct value *dval;
6058 struct type *rtype;
6059 int nfields, bit_len;
6060 int variant_field;
6061 long off;
6062 int fld_bit_len, bit_incr;
6063 int f;
6064
6065 /* Compute the number of fields in this record type that are going
6066 to be processed: unless keep_dynamic_fields, this includes only
6067 fields whose position and length are static will be processed. */
6068 if (keep_dynamic_fields)
6069 nfields = TYPE_NFIELDS (type);
6070 else
6071 {
6072 nfields = 0;
6073 while (nfields < TYPE_NFIELDS (type)
6074 && !ada_is_variant_part (type, nfields)
6075 && !is_dynamic_field (type, nfields))
6076 nfields++;
6077 }
6078
6079 rtype = alloc_type (TYPE_OBJFILE (type));
6080 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6081 INIT_CPLUS_SPECIFIC (rtype);
6082 TYPE_NFIELDS (rtype) = nfields;
6083 TYPE_FIELDS (rtype) = (struct field *)
6084 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6085 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6086 TYPE_NAME (rtype) = ada_type_name (type);
6087 TYPE_TAG_NAME (rtype) = NULL;
6088 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6089
6090 off = 0;
6091 bit_len = 0;
6092 variant_field = -1;
6093
6094 for (f = 0; f < nfields; f += 1)
6095 {
6096 off = align_value (off, field_alignment (type, f))
6097 + TYPE_FIELD_BITPOS (type, f);
6098 TYPE_FIELD_BITPOS (rtype, f) = off;
6099 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6100
6101 if (ada_is_variant_part (type, f))
6102 {
6103 variant_field = f;
6104 fld_bit_len = bit_incr = 0;
6105 }
6106 else if (is_dynamic_field (type, f))
6107 {
6108 if (dval0 == NULL)
6109 dval = value_from_contents_and_address (rtype, valaddr, address);
6110 else
6111 dval = dval0;
6112
6113 TYPE_FIELD_TYPE (rtype, f) =
6114 ada_to_fixed_type
6115 (ada_get_base_type
6116 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6117 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6118 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6119 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6120 bit_incr = fld_bit_len =
6121 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6122 }
6123 else
6124 {
6125 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6126 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6127 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6128 bit_incr = fld_bit_len =
6129 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6130 else
6131 bit_incr = fld_bit_len =
6132 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6133 }
6134 if (off + fld_bit_len > bit_len)
6135 bit_len = off + fld_bit_len;
6136 off += bit_incr;
6137 TYPE_LENGTH (rtype) =
6138 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6139 }
6140
6141 /* We handle the variant part, if any, at the end because of certain
6142 odd cases in which it is re-ordered so as NOT the last field of
6143 the record. This can happen in the presence of representation
6144 clauses. */
6145 if (variant_field >= 0)
6146 {
6147 struct type *branch_type;
6148
6149 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6150
6151 if (dval0 == NULL)
6152 dval = value_from_contents_and_address (rtype, valaddr, address);
6153 else
6154 dval = dval0;
6155
6156 branch_type =
6157 to_fixed_variant_branch_type
6158 (TYPE_FIELD_TYPE (type, variant_field),
6159 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6160 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6161 if (branch_type == NULL)
6162 {
6163 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6164 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6165 TYPE_NFIELDS (rtype) -= 1;
6166 }
6167 else
6168 {
6169 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6170 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6171 fld_bit_len =
6172 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6173 TARGET_CHAR_BIT;
6174 if (off + fld_bit_len > bit_len)
6175 bit_len = off + fld_bit_len;
6176 TYPE_LENGTH (rtype) =
6177 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6178 }
6179 }
6180
6181 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6182 should contain the alignment of that record, which should be a strictly
6183 positive value. If null or negative, then something is wrong, most
6184 probably in the debug info. In that case, we don't round up the size
6185 of the resulting type. If this record is not part of another structure,
6186 the current RTYPE length might be good enough for our purposes. */
6187 if (TYPE_LENGTH (type) <= 0)
6188 {
6189 if (TYPE_NAME (rtype))
6190 warning (_("Invalid type size for `%s' detected: %d."),
6191 TYPE_NAME (rtype), TYPE_LENGTH (type));
6192 else
6193 warning (_("Invalid type size for <unnamed> detected: %d."),
6194 TYPE_LENGTH (type));
6195 }
6196 else
6197 {
6198 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6199 TYPE_LENGTH (type));
6200 }
6201
6202 value_free_to_mark (mark);
6203 if (TYPE_LENGTH (rtype) > varsize_limit)
6204 error (_("record type with dynamic size is larger than varsize-limit"));
6205 return rtype;
6206 }
6207
6208 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6209 of 1. */
6210
6211 static struct type *
6212 template_to_fixed_record_type (struct type *type, char *valaddr,
6213 CORE_ADDR address, struct value *dval0)
6214 {
6215 return ada_template_to_fixed_record_type_1 (type, valaddr,
6216 address, dval0, 1);
6217 }
6218
6219 /* An ordinary record type in which ___XVL-convention fields and
6220 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6221 static approximations, containing all possible fields. Uses
6222 no runtime values. Useless for use in values, but that's OK,
6223 since the results are used only for type determinations. Works on both
6224 structs and unions. Representation note: to save space, we memorize
6225 the result of this function in the TYPE_TARGET_TYPE of the
6226 template type. */
6227
6228 static struct type *
6229 template_to_static_fixed_type (struct type *type0)
6230 {
6231 struct type *type;
6232 int nfields;
6233 int f;
6234
6235 if (TYPE_TARGET_TYPE (type0) != NULL)
6236 return TYPE_TARGET_TYPE (type0);
6237
6238 nfields = TYPE_NFIELDS (type0);
6239 type = type0;
6240
6241 for (f = 0; f < nfields; f += 1)
6242 {
6243 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6244 struct type *new_type;
6245
6246 if (is_dynamic_field (type0, f))
6247 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6248 else
6249 new_type = to_static_fixed_type (field_type);
6250 if (type == type0 && new_type != field_type)
6251 {
6252 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6253 TYPE_CODE (type) = TYPE_CODE (type0);
6254 INIT_CPLUS_SPECIFIC (type);
6255 TYPE_NFIELDS (type) = nfields;
6256 TYPE_FIELDS (type) = (struct field *)
6257 TYPE_ALLOC (type, nfields * sizeof (struct field));
6258 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6259 sizeof (struct field) * nfields);
6260 TYPE_NAME (type) = ada_type_name (type0);
6261 TYPE_TAG_NAME (type) = NULL;
6262 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6263 TYPE_LENGTH (type) = 0;
6264 }
6265 TYPE_FIELD_TYPE (type, f) = new_type;
6266 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6267 }
6268 return type;
6269 }
6270
6271 /* Given an object of type TYPE whose contents are at VALADDR and
6272 whose address in memory is ADDRESS, returns a revision of TYPE --
6273 a non-dynamic-sized record with a variant part -- in which
6274 the variant part is replaced with the appropriate branch. Looks
6275 for discriminant values in DVAL0, which can be NULL if the record
6276 contains the necessary discriminant values. */
6277
6278 static struct type *
6279 to_record_with_fixed_variant_part (struct type *type, char *valaddr,
6280 CORE_ADDR address, struct value *dval0)
6281 {
6282 struct value *mark = value_mark ();
6283 struct value *dval;
6284 struct type *rtype;
6285 struct type *branch_type;
6286 int nfields = TYPE_NFIELDS (type);
6287 int variant_field = variant_field_index (type);
6288
6289 if (variant_field == -1)
6290 return type;
6291
6292 if (dval0 == NULL)
6293 dval = value_from_contents_and_address (type, valaddr, address);
6294 else
6295 dval = dval0;
6296
6297 rtype = alloc_type (TYPE_OBJFILE (type));
6298 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6299 INIT_CPLUS_SPECIFIC (rtype);
6300 TYPE_NFIELDS (rtype) = nfields;
6301 TYPE_FIELDS (rtype) =
6302 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6303 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6304 sizeof (struct field) * nfields);
6305 TYPE_NAME (rtype) = ada_type_name (type);
6306 TYPE_TAG_NAME (rtype) = NULL;
6307 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6308 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6309
6310 branch_type = to_fixed_variant_branch_type
6311 (TYPE_FIELD_TYPE (type, variant_field),
6312 cond_offset_host (valaddr,
6313 TYPE_FIELD_BITPOS (type, variant_field)
6314 / TARGET_CHAR_BIT),
6315 cond_offset_target (address,
6316 TYPE_FIELD_BITPOS (type, variant_field)
6317 / TARGET_CHAR_BIT), dval);
6318 if (branch_type == NULL)
6319 {
6320 int f;
6321 for (f = variant_field + 1; f < nfields; f += 1)
6322 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6323 TYPE_NFIELDS (rtype) -= 1;
6324 }
6325 else
6326 {
6327 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6328 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6329 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6330 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6331 }
6332 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6333
6334 value_free_to_mark (mark);
6335 return rtype;
6336 }
6337
6338 /* An ordinary record type (with fixed-length fields) that describes
6339 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6340 beginning of this section]. Any necessary discriminants' values
6341 should be in DVAL, a record value; it may be NULL if the object
6342 at ADDR itself contains any necessary discriminant values.
6343 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6344 values from the record are needed. Except in the case that DVAL,
6345 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6346 unchecked) is replaced by a particular branch of the variant.
6347
6348 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6349 is questionable and may be removed. It can arise during the
6350 processing of an unconstrained-array-of-record type where all the
6351 variant branches have exactly the same size. This is because in
6352 such cases, the compiler does not bother to use the XVS convention
6353 when encoding the record. I am currently dubious of this
6354 shortcut and suspect the compiler should be altered. FIXME. */
6355
6356 static struct type *
6357 to_fixed_record_type (struct type *type0, char *valaddr,
6358 CORE_ADDR address, struct value *dval)
6359 {
6360 struct type *templ_type;
6361
6362 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6363 return type0;
6364
6365 templ_type = dynamic_template_type (type0);
6366
6367 if (templ_type != NULL)
6368 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6369 else if (variant_field_index (type0) >= 0)
6370 {
6371 if (dval == NULL && valaddr == NULL && address == 0)
6372 return type0;
6373 return to_record_with_fixed_variant_part (type0, valaddr, address,
6374 dval);
6375 }
6376 else
6377 {
6378 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6379 return type0;
6380 }
6381
6382 }
6383
6384 /* An ordinary record type (with fixed-length fields) that describes
6385 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6386 union type. Any necessary discriminants' values should be in DVAL,
6387 a record value. That is, this routine selects the appropriate
6388 branch of the union at ADDR according to the discriminant value
6389 indicated in the union's type name. */
6390
6391 static struct type *
6392 to_fixed_variant_branch_type (struct type *var_type0, char *valaddr,
6393 CORE_ADDR address, struct value *dval)
6394 {
6395 int which;
6396 struct type *templ_type;
6397 struct type *var_type;
6398
6399 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
6400 var_type = TYPE_TARGET_TYPE (var_type0);
6401 else
6402 var_type = var_type0;
6403
6404 templ_type = ada_find_parallel_type (var_type, "___XVU");
6405
6406 if (templ_type != NULL)
6407 var_type = templ_type;
6408
6409 which =
6410 ada_which_variant_applies (var_type,
6411 value_type (dval), VALUE_CONTENTS (dval));
6412
6413 if (which < 0)
6414 return empty_record (TYPE_OBJFILE (var_type));
6415 else if (is_dynamic_field (var_type, which))
6416 return to_fixed_record_type
6417 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
6418 valaddr, address, dval);
6419 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
6420 return
6421 to_fixed_record_type
6422 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
6423 else
6424 return TYPE_FIELD_TYPE (var_type, which);
6425 }
6426
6427 /* Assuming that TYPE0 is an array type describing the type of a value
6428 at ADDR, and that DVAL describes a record containing any
6429 discriminants used in TYPE0, returns a type for the value that
6430 contains no dynamic components (that is, no components whose sizes
6431 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6432 true, gives an error message if the resulting type's size is over
6433 varsize_limit. */
6434
6435 static struct type *
6436 to_fixed_array_type (struct type *type0, struct value *dval,
6437 int ignore_too_big)
6438 {
6439 struct type *index_type_desc;
6440 struct type *result;
6441
6442 if (ada_is_packed_array_type (type0) /* revisit? */
6443 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
6444 return type0;
6445
6446 index_type_desc = ada_find_parallel_type (type0, "___XA");
6447 if (index_type_desc == NULL)
6448 {
6449 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
6450 /* NOTE: elt_type---the fixed version of elt_type0---should never
6451 depend on the contents of the array in properly constructed
6452 debugging data. */
6453 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
6454
6455 if (elt_type0 == elt_type)
6456 result = type0;
6457 else
6458 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6459 elt_type, TYPE_INDEX_TYPE (type0));
6460 }
6461 else
6462 {
6463 int i;
6464 struct type *elt_type0;
6465
6466 elt_type0 = type0;
6467 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
6468 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
6469
6470 /* NOTE: result---the fixed version of elt_type0---should never
6471 depend on the contents of the array in properly constructed
6472 debugging data. */
6473 result = ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval);
6474 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
6475 {
6476 struct type *range_type =
6477 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
6478 dval, TYPE_OBJFILE (type0));
6479 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6480 result, range_type);
6481 }
6482 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
6483 error (_("array type with dynamic size is larger than varsize-limit"));
6484 }
6485
6486 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
6487 return result;
6488 }
6489
6490
6491 /* A standard type (containing no dynamically sized components)
6492 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
6493 DVAL describes a record containing any discriminants used in TYPE0,
6494 and may be NULL if there are none, or if the object of type TYPE at
6495 ADDRESS or in VALADDR contains these discriminants. */
6496
6497 struct type *
6498 ada_to_fixed_type (struct type *type, char *valaddr,
6499 CORE_ADDR address, struct value *dval)
6500 {
6501 type = ada_check_typedef (type);
6502 switch (TYPE_CODE (type))
6503 {
6504 default:
6505 return type;
6506 case TYPE_CODE_STRUCT:
6507 {
6508 struct type *static_type = to_static_fixed_type (type);
6509 if (ada_is_tagged_type (static_type, 0))
6510 {
6511 struct type *real_type =
6512 type_from_tag (value_tag_from_contents_and_address (static_type,
6513 valaddr,
6514 address));
6515 if (real_type != NULL)
6516 type = real_type;
6517 }
6518 return to_fixed_record_type (type, valaddr, address, NULL);
6519 }
6520 case TYPE_CODE_ARRAY:
6521 return to_fixed_array_type (type, dval, 1);
6522 case TYPE_CODE_UNION:
6523 if (dval == NULL)
6524 return type;
6525 else
6526 return to_fixed_variant_branch_type (type, valaddr, address, dval);
6527 }
6528 }
6529
6530 /* A standard (static-sized) type corresponding as well as possible to
6531 TYPE0, but based on no runtime data. */
6532
6533 static struct type *
6534 to_static_fixed_type (struct type *type0)
6535 {
6536 struct type *type;
6537
6538 if (type0 == NULL)
6539 return NULL;
6540
6541 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6542 return type0;
6543
6544 type0 = ada_check_typedef (type0);
6545
6546 switch (TYPE_CODE (type0))
6547 {
6548 default:
6549 return type0;
6550 case TYPE_CODE_STRUCT:
6551 type = dynamic_template_type (type0);
6552 if (type != NULL)
6553 return template_to_static_fixed_type (type);
6554 else
6555 return template_to_static_fixed_type (type0);
6556 case TYPE_CODE_UNION:
6557 type = ada_find_parallel_type (type0, "___XVU");
6558 if (type != NULL)
6559 return template_to_static_fixed_type (type);
6560 else
6561 return template_to_static_fixed_type (type0);
6562 }
6563 }
6564
6565 /* A static approximation of TYPE with all type wrappers removed. */
6566
6567 static struct type *
6568 static_unwrap_type (struct type *type)
6569 {
6570 if (ada_is_aligner_type (type))
6571 {
6572 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
6573 if (ada_type_name (type1) == NULL)
6574 TYPE_NAME (type1) = ada_type_name (type);
6575
6576 return static_unwrap_type (type1);
6577 }
6578 else
6579 {
6580 struct type *raw_real_type = ada_get_base_type (type);
6581 if (raw_real_type == type)
6582 return type;
6583 else
6584 return to_static_fixed_type (raw_real_type);
6585 }
6586 }
6587
6588 /* In some cases, incomplete and private types require
6589 cross-references that are not resolved as records (for example,
6590 type Foo;
6591 type FooP is access Foo;
6592 V: FooP;
6593 type Foo is array ...;
6594 ). In these cases, since there is no mechanism for producing
6595 cross-references to such types, we instead substitute for FooP a
6596 stub enumeration type that is nowhere resolved, and whose tag is
6597 the name of the actual type. Call these types "non-record stubs". */
6598
6599 /* A type equivalent to TYPE that is not a non-record stub, if one
6600 exists, otherwise TYPE. */
6601
6602 struct type *
6603 ada_check_typedef (struct type *type)
6604 {
6605 CHECK_TYPEDEF (type);
6606 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
6607 || (TYPE_FLAGS (type) & TYPE_FLAG_STUB) == 0
6608 || TYPE_TAG_NAME (type) == NULL)
6609 return type;
6610 else
6611 {
6612 char *name = TYPE_TAG_NAME (type);
6613 struct type *type1 = ada_find_any_type (name);
6614 return (type1 == NULL) ? type : type1;
6615 }
6616 }
6617
6618 /* A value representing the data at VALADDR/ADDRESS as described by
6619 type TYPE0, but with a standard (static-sized) type that correctly
6620 describes it. If VAL0 is not NULL and TYPE0 already is a standard
6621 type, then return VAL0 [this feature is simply to avoid redundant
6622 creation of struct values]. */
6623
6624 static struct value *
6625 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
6626 struct value *val0)
6627 {
6628 struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
6629 if (type == type0 && val0 != NULL)
6630 return val0;
6631 else
6632 return value_from_contents_and_address (type, 0, address);
6633 }
6634
6635 /* A value representing VAL, but with a standard (static-sized) type
6636 that correctly describes it. Does not necessarily create a new
6637 value. */
6638
6639 static struct value *
6640 ada_to_fixed_value (struct value *val)
6641 {
6642 return ada_to_fixed_value_create (value_type (val),
6643 VALUE_ADDRESS (val) + value_offset (val),
6644 val);
6645 }
6646
6647 /* A value representing VAL, but with a standard (static-sized) type
6648 chosen to approximate the real type of VAL as well as possible, but
6649 without consulting any runtime values. For Ada dynamic-sized
6650 types, therefore, the type of the result is likely to be inaccurate. */
6651
6652 struct value *
6653 ada_to_static_fixed_value (struct value *val)
6654 {
6655 struct type *type =
6656 to_static_fixed_type (static_unwrap_type (value_type (val)));
6657 if (type == value_type (val))
6658 return val;
6659 else
6660 return coerce_unspec_val_to_type (val, type);
6661 }
6662 \f
6663
6664 /* Attributes */
6665
6666 /* Table mapping attribute numbers to names.
6667 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
6668
6669 static const char *attribute_names[] = {
6670 "<?>",
6671
6672 "first",
6673 "last",
6674 "length",
6675 "image",
6676 "max",
6677 "min",
6678 "modulus",
6679 "pos",
6680 "size",
6681 "tag",
6682 "val",
6683 0
6684 };
6685
6686 const char *
6687 ada_attribute_name (enum exp_opcode n)
6688 {
6689 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
6690 return attribute_names[n - OP_ATR_FIRST + 1];
6691 else
6692 return attribute_names[0];
6693 }
6694
6695 /* Evaluate the 'POS attribute applied to ARG. */
6696
6697 static LONGEST
6698 pos_atr (struct value *arg)
6699 {
6700 struct type *type = value_type (arg);
6701
6702 if (!discrete_type_p (type))
6703 error (_("'POS only defined on discrete types"));
6704
6705 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
6706 {
6707 int i;
6708 LONGEST v = value_as_long (arg);
6709
6710 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6711 {
6712 if (v == TYPE_FIELD_BITPOS (type, i))
6713 return i;
6714 }
6715 error (_("enumeration value is invalid: can't find 'POS"));
6716 }
6717 else
6718 return value_as_long (arg);
6719 }
6720
6721 static struct value *
6722 value_pos_atr (struct value *arg)
6723 {
6724 return value_from_longest (builtin_type_int, pos_atr (arg));
6725 }
6726
6727 /* Evaluate the TYPE'VAL attribute applied to ARG. */
6728
6729 static struct value *
6730 value_val_atr (struct type *type, struct value *arg)
6731 {
6732 if (!discrete_type_p (type))
6733 error (_("'VAL only defined on discrete types"));
6734 if (!integer_type_p (value_type (arg)))
6735 error (_("'VAL requires integral argument"));
6736
6737 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
6738 {
6739 long pos = value_as_long (arg);
6740 if (pos < 0 || pos >= TYPE_NFIELDS (type))
6741 error (_("argument to 'VAL out of range"));
6742 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
6743 }
6744 else
6745 return value_from_longest (type, value_as_long (arg));
6746 }
6747 \f
6748
6749 /* Evaluation */
6750
6751 /* True if TYPE appears to be an Ada character type.
6752 [At the moment, this is true only for Character and Wide_Character;
6753 It is a heuristic test that could stand improvement]. */
6754
6755 int
6756 ada_is_character_type (struct type *type)
6757 {
6758 const char *name = ada_type_name (type);
6759 return
6760 name != NULL
6761 && (TYPE_CODE (type) == TYPE_CODE_CHAR
6762 || TYPE_CODE (type) == TYPE_CODE_INT
6763 || TYPE_CODE (type) == TYPE_CODE_RANGE)
6764 && (strcmp (name, "character") == 0
6765 || strcmp (name, "wide_character") == 0
6766 || strcmp (name, "unsigned char") == 0);
6767 }
6768
6769 /* True if TYPE appears to be an Ada string type. */
6770
6771 int
6772 ada_is_string_type (struct type *type)
6773 {
6774 type = ada_check_typedef (type);
6775 if (type != NULL
6776 && TYPE_CODE (type) != TYPE_CODE_PTR
6777 && (ada_is_simple_array_type (type)
6778 || ada_is_array_descriptor_type (type))
6779 && ada_array_arity (type) == 1)
6780 {
6781 struct type *elttype = ada_array_element_type (type, 1);
6782
6783 return ada_is_character_type (elttype);
6784 }
6785 else
6786 return 0;
6787 }
6788
6789
6790 /* True if TYPE is a struct type introduced by the compiler to force the
6791 alignment of a value. Such types have a single field with a
6792 distinctive name. */
6793
6794 int
6795 ada_is_aligner_type (struct type *type)
6796 {
6797 type = ada_check_typedef (type);
6798
6799 /* If we can find a parallel XVS type, then the XVS type should
6800 be used instead of this type. And hence, this is not an aligner
6801 type. */
6802 if (ada_find_parallel_type (type, "___XVS") != NULL)
6803 return 0;
6804
6805 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
6806 && TYPE_NFIELDS (type) == 1
6807 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
6808 }
6809
6810 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
6811 the parallel type. */
6812
6813 struct type *
6814 ada_get_base_type (struct type *raw_type)
6815 {
6816 struct type *real_type_namer;
6817 struct type *raw_real_type;
6818
6819 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
6820 return raw_type;
6821
6822 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
6823 if (real_type_namer == NULL
6824 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
6825 || TYPE_NFIELDS (real_type_namer) != 1)
6826 return raw_type;
6827
6828 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
6829 if (raw_real_type == NULL)
6830 return raw_type;
6831 else
6832 return raw_real_type;
6833 }
6834
6835 /* The type of value designated by TYPE, with all aligners removed. */
6836
6837 struct type *
6838 ada_aligned_type (struct type *type)
6839 {
6840 if (ada_is_aligner_type (type))
6841 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
6842 else
6843 return ada_get_base_type (type);
6844 }
6845
6846
6847 /* The address of the aligned value in an object at address VALADDR
6848 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
6849
6850 char *
6851 ada_aligned_value_addr (struct type *type, char *valaddr)
6852 {
6853 if (ada_is_aligner_type (type))
6854 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
6855 valaddr +
6856 TYPE_FIELD_BITPOS (type,
6857 0) / TARGET_CHAR_BIT);
6858 else
6859 return valaddr;
6860 }
6861
6862
6863
6864 /* The printed representation of an enumeration literal with encoded
6865 name NAME. The value is good to the next call of ada_enum_name. */
6866 const char *
6867 ada_enum_name (const char *name)
6868 {
6869 static char *result;
6870 static size_t result_len = 0;
6871 char *tmp;
6872
6873 /* First, unqualify the enumeration name:
6874 1. Search for the last '.' character. If we find one, then skip
6875 all the preceeding characters, the unqualified name starts
6876 right after that dot.
6877 2. Otherwise, we may be debugging on a target where the compiler
6878 translates dots into "__". Search forward for double underscores,
6879 but stop searching when we hit an overloading suffix, which is
6880 of the form "__" followed by digits. */
6881
6882 tmp = strrchr (name, '.');
6883 if (tmp != NULL)
6884 name = tmp + 1;
6885 else
6886 {
6887 while ((tmp = strstr (name, "__")) != NULL)
6888 {
6889 if (isdigit (tmp[2]))
6890 break;
6891 else
6892 name = tmp + 2;
6893 }
6894 }
6895
6896 if (name[0] == 'Q')
6897 {
6898 int v;
6899 if (name[1] == 'U' || name[1] == 'W')
6900 {
6901 if (sscanf (name + 2, "%x", &v) != 1)
6902 return name;
6903 }
6904 else
6905 return name;
6906
6907 GROW_VECT (result, result_len, 16);
6908 if (isascii (v) && isprint (v))
6909 sprintf (result, "'%c'", v);
6910 else if (name[1] == 'U')
6911 sprintf (result, "[\"%02x\"]", v);
6912 else
6913 sprintf (result, "[\"%04x\"]", v);
6914
6915 return result;
6916 }
6917 else
6918 {
6919 tmp = strstr (name, "__");
6920 if (tmp == NULL)
6921 tmp = strstr (name, "$");
6922 if (tmp != NULL)
6923 {
6924 GROW_VECT (result, result_len, tmp - name + 1);
6925 strncpy (result, name, tmp - name);
6926 result[tmp - name] = '\0';
6927 return result;
6928 }
6929
6930 return name;
6931 }
6932 }
6933
6934 static struct value *
6935 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
6936 enum noside noside)
6937 {
6938 return (*exp->language_defn->la_exp_desc->evaluate_exp)
6939 (expect_type, exp, pos, noside);
6940 }
6941
6942 /* Evaluate the subexpression of EXP starting at *POS as for
6943 evaluate_type, updating *POS to point just past the evaluated
6944 expression. */
6945
6946 static struct value *
6947 evaluate_subexp_type (struct expression *exp, int *pos)
6948 {
6949 return (*exp->language_defn->la_exp_desc->evaluate_exp)
6950 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
6951 }
6952
6953 /* If VAL is wrapped in an aligner or subtype wrapper, return the
6954 value it wraps. */
6955
6956 static struct value *
6957 unwrap_value (struct value *val)
6958 {
6959 struct type *type = ada_check_typedef (value_type (val));
6960 if (ada_is_aligner_type (type))
6961 {
6962 struct value *v = value_struct_elt (&val, NULL, "F",
6963 NULL, "internal structure");
6964 struct type *val_type = ada_check_typedef (value_type (v));
6965 if (ada_type_name (val_type) == NULL)
6966 TYPE_NAME (val_type) = ada_type_name (type);
6967
6968 return unwrap_value (v);
6969 }
6970 else
6971 {
6972 struct type *raw_real_type =
6973 ada_check_typedef (ada_get_base_type (type));
6974
6975 if (type == raw_real_type)
6976 return val;
6977
6978 return
6979 coerce_unspec_val_to_type
6980 (val, ada_to_fixed_type (raw_real_type, 0,
6981 VALUE_ADDRESS (val) + value_offset (val),
6982 NULL));
6983 }
6984 }
6985
6986 static struct value *
6987 cast_to_fixed (struct type *type, struct value *arg)
6988 {
6989 LONGEST val;
6990
6991 if (type == value_type (arg))
6992 return arg;
6993 else if (ada_is_fixed_point_type (value_type (arg)))
6994 val = ada_float_to_fixed (type,
6995 ada_fixed_to_float (value_type (arg),
6996 value_as_long (arg)));
6997 else
6998 {
6999 DOUBLEST argd =
7000 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7001 val = ada_float_to_fixed (type, argd);
7002 }
7003
7004 return value_from_longest (type, val);
7005 }
7006
7007 static struct value *
7008 cast_from_fixed_to_double (struct value *arg)
7009 {
7010 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7011 value_as_long (arg));
7012 return value_from_double (builtin_type_double, val);
7013 }
7014
7015 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7016 return the converted value. */
7017
7018 static struct value *
7019 coerce_for_assign (struct type *type, struct value *val)
7020 {
7021 struct type *type2 = value_type (val);
7022 if (type == type2)
7023 return val;
7024
7025 type2 = ada_check_typedef (type2);
7026 type = ada_check_typedef (type);
7027
7028 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7029 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7030 {
7031 val = ada_value_ind (val);
7032 type2 = value_type (val);
7033 }
7034
7035 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7036 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7037 {
7038 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7039 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7040 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7041 error (_("Incompatible types in assignment"));
7042 val->type = type;
7043 }
7044 return val;
7045 }
7046
7047 static struct value *
7048 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7049 {
7050 struct value *val;
7051 struct type *type1, *type2;
7052 LONGEST v, v1, v2;
7053
7054 arg1 = coerce_ref (arg1);
7055 arg2 = coerce_ref (arg2);
7056 type1 = base_type (ada_check_typedef (value_type (arg1)));
7057 type2 = base_type (ada_check_typedef (value_type (arg2)));
7058
7059 if (TYPE_CODE (type1) != TYPE_CODE_INT
7060 || TYPE_CODE (type2) != TYPE_CODE_INT)
7061 return value_binop (arg1, arg2, op);
7062
7063 switch (op)
7064 {
7065 case BINOP_MOD:
7066 case BINOP_DIV:
7067 case BINOP_REM:
7068 break;
7069 default:
7070 return value_binop (arg1, arg2, op);
7071 }
7072
7073 v2 = value_as_long (arg2);
7074 if (v2 == 0)
7075 error (_("second operand of %s must not be zero."), op_string (op));
7076
7077 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7078 return value_binop (arg1, arg2, op);
7079
7080 v1 = value_as_long (arg1);
7081 switch (op)
7082 {
7083 case BINOP_DIV:
7084 v = v1 / v2;
7085 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7086 v += v > 0 ? -1 : 1;
7087 break;
7088 case BINOP_REM:
7089 v = v1 % v2;
7090 if (v * v1 < 0)
7091 v -= v2;
7092 break;
7093 default:
7094 /* Should not reach this point. */
7095 v = 0;
7096 }
7097
7098 val = allocate_value (type1);
7099 store_unsigned_integer (VALUE_CONTENTS_RAW (val),
7100 TYPE_LENGTH (value_type (val)), v);
7101 return val;
7102 }
7103
7104 static int
7105 ada_value_equal (struct value *arg1, struct value *arg2)
7106 {
7107 if (ada_is_direct_array_type (value_type (arg1))
7108 || ada_is_direct_array_type (value_type (arg2)))
7109 {
7110 arg1 = ada_coerce_to_simple_array (arg1);
7111 arg2 = ada_coerce_to_simple_array (arg2);
7112 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7113 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7114 error (_("Attempt to compare array with non-array"));
7115 /* FIXME: The following works only for types whose
7116 representations use all bits (no padding or undefined bits)
7117 and do not have user-defined equality. */
7118 return
7119 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7120 && memcmp (VALUE_CONTENTS (arg1), VALUE_CONTENTS (arg2),
7121 TYPE_LENGTH (value_type (arg1))) == 0;
7122 }
7123 return value_equal (arg1, arg2);
7124 }
7125
7126 struct value *
7127 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
7128 int *pos, enum noside noside)
7129 {
7130 enum exp_opcode op;
7131 int tem, tem2, tem3;
7132 int pc;
7133 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
7134 struct type *type;
7135 int nargs;
7136 struct value **argvec;
7137
7138 pc = *pos;
7139 *pos += 1;
7140 op = exp->elts[pc].opcode;
7141
7142 switch (op)
7143 {
7144 default:
7145 *pos -= 1;
7146 return
7147 unwrap_value (evaluate_subexp_standard
7148 (expect_type, exp, pos, noside));
7149
7150 case OP_STRING:
7151 {
7152 struct value *result;
7153 *pos -= 1;
7154 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
7155 /* The result type will have code OP_STRING, bashed there from
7156 OP_ARRAY. Bash it back. */
7157 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
7158 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
7159 return result;
7160 }
7161
7162 case UNOP_CAST:
7163 (*pos) += 2;
7164 type = exp->elts[pc + 1].type;
7165 arg1 = evaluate_subexp (type, exp, pos, noside);
7166 if (noside == EVAL_SKIP)
7167 goto nosideret;
7168 if (type != ada_check_typedef (value_type (arg1)))
7169 {
7170 if (ada_is_fixed_point_type (type))
7171 arg1 = cast_to_fixed (type, arg1);
7172 else if (ada_is_fixed_point_type (value_type (arg1)))
7173 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
7174 else if (VALUE_LVAL (arg1) == lval_memory)
7175 {
7176 /* This is in case of the really obscure (and undocumented,
7177 but apparently expected) case of (Foo) Bar.all, where Bar
7178 is an integer constant and Foo is a dynamic-sized type.
7179 If we don't do this, ARG1 will simply be relabeled with
7180 TYPE. */
7181 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7182 return value_zero (to_static_fixed_type (type), not_lval);
7183 arg1 =
7184 ada_to_fixed_value_create
7185 (type, VALUE_ADDRESS (arg1) + value_offset (arg1), 0);
7186 }
7187 else
7188 arg1 = value_cast (type, arg1);
7189 }
7190 return arg1;
7191
7192 case UNOP_QUAL:
7193 (*pos) += 2;
7194 type = exp->elts[pc + 1].type;
7195 return ada_evaluate_subexp (type, exp, pos, noside);
7196
7197 case BINOP_ASSIGN:
7198 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7199 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7200 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7201 return arg1;
7202 if (ada_is_fixed_point_type (value_type (arg1)))
7203 arg2 = cast_to_fixed (value_type (arg1), arg2);
7204 else if (ada_is_fixed_point_type (value_type (arg2)))
7205 error
7206 (_("Fixed-point values must be assigned to fixed-point variables"));
7207 else
7208 arg2 = coerce_for_assign (value_type (arg1), arg2);
7209 return ada_value_assign (arg1, arg2);
7210
7211 case BINOP_ADD:
7212 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7213 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7214 if (noside == EVAL_SKIP)
7215 goto nosideret;
7216 if ((ada_is_fixed_point_type (value_type (arg1))
7217 || ada_is_fixed_point_type (value_type (arg2)))
7218 && value_type (arg1) != value_type (arg2))
7219 error (_("Operands of fixed-point addition must have the same type"));
7220 return value_cast (value_type (arg1), value_add (arg1, arg2));
7221
7222 case BINOP_SUB:
7223 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7224 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7225 if (noside == EVAL_SKIP)
7226 goto nosideret;
7227 if ((ada_is_fixed_point_type (value_type (arg1))
7228 || ada_is_fixed_point_type (value_type (arg2)))
7229 && value_type (arg1) != value_type (arg2))
7230 error (_("Operands of fixed-point subtraction must have the same type"));
7231 return value_cast (value_type (arg1), value_sub (arg1, arg2));
7232
7233 case BINOP_MUL:
7234 case BINOP_DIV:
7235 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7236 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7237 if (noside == EVAL_SKIP)
7238 goto nosideret;
7239 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7240 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7241 return value_zero (value_type (arg1), not_lval);
7242 else
7243 {
7244 if (ada_is_fixed_point_type (value_type (arg1)))
7245 arg1 = cast_from_fixed_to_double (arg1);
7246 if (ada_is_fixed_point_type (value_type (arg2)))
7247 arg2 = cast_from_fixed_to_double (arg2);
7248 return ada_value_binop (arg1, arg2, op);
7249 }
7250
7251 case BINOP_REM:
7252 case BINOP_MOD:
7253 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7254 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7255 if (noside == EVAL_SKIP)
7256 goto nosideret;
7257 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7258 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7259 return value_zero (value_type (arg1), not_lval);
7260 else
7261 return ada_value_binop (arg1, arg2, op);
7262
7263 case BINOP_EQUAL:
7264 case BINOP_NOTEQUAL:
7265 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7266 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7267 if (noside == EVAL_SKIP)
7268 goto nosideret;
7269 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7270 tem = 0;
7271 else
7272 tem = ada_value_equal (arg1, arg2);
7273 if (op == BINOP_NOTEQUAL)
7274 tem = !tem;
7275 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
7276
7277 case UNOP_NEG:
7278 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7279 if (noside == EVAL_SKIP)
7280 goto nosideret;
7281 else if (ada_is_fixed_point_type (value_type (arg1)))
7282 return value_cast (value_type (arg1), value_neg (arg1));
7283 else
7284 return value_neg (arg1);
7285
7286 case OP_VAR_VALUE:
7287 *pos -= 1;
7288 if (noside == EVAL_SKIP)
7289 {
7290 *pos += 4;
7291 goto nosideret;
7292 }
7293 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
7294 /* Only encountered when an unresolved symbol occurs in a
7295 context other than a function call, in which case, it is
7296 illegal. */
7297 error (_("Unexpected unresolved symbol, %s, during evaluation"),
7298 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
7299 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7300 {
7301 *pos += 4;
7302 return value_zero
7303 (to_static_fixed_type
7304 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
7305 not_lval);
7306 }
7307 else
7308 {
7309 arg1 =
7310 unwrap_value (evaluate_subexp_standard
7311 (expect_type, exp, pos, noside));
7312 return ada_to_fixed_value (arg1);
7313 }
7314
7315 case OP_FUNCALL:
7316 (*pos) += 2;
7317
7318 /* Allocate arg vector, including space for the function to be
7319 called in argvec[0] and a terminating NULL. */
7320 nargs = longest_to_int (exp->elts[pc + 1].longconst);
7321 argvec =
7322 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
7323
7324 if (exp->elts[*pos].opcode == OP_VAR_VALUE
7325 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
7326 error (_("Unexpected unresolved symbol, %s, during evaluation"),
7327 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
7328 else
7329 {
7330 for (tem = 0; tem <= nargs; tem += 1)
7331 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7332 argvec[tem] = 0;
7333
7334 if (noside == EVAL_SKIP)
7335 goto nosideret;
7336 }
7337
7338 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
7339 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
7340 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
7341 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
7342 && VALUE_LVAL (argvec[0]) == lval_memory))
7343 argvec[0] = value_addr (argvec[0]);
7344
7345 type = ada_check_typedef (value_type (argvec[0]));
7346 if (TYPE_CODE (type) == TYPE_CODE_PTR)
7347 {
7348 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
7349 {
7350 case TYPE_CODE_FUNC:
7351 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
7352 break;
7353 case TYPE_CODE_ARRAY:
7354 break;
7355 case TYPE_CODE_STRUCT:
7356 if (noside != EVAL_AVOID_SIDE_EFFECTS)
7357 argvec[0] = ada_value_ind (argvec[0]);
7358 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
7359 break;
7360 default:
7361 error (_("cannot subscript or call something of type `%s'"),
7362 ada_type_name (value_type (argvec[0])));
7363 break;
7364 }
7365 }
7366
7367 switch (TYPE_CODE (type))
7368 {
7369 case TYPE_CODE_FUNC:
7370 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7371 return allocate_value (TYPE_TARGET_TYPE (type));
7372 return call_function_by_hand (argvec[0], nargs, argvec + 1);
7373 case TYPE_CODE_STRUCT:
7374 {
7375 int arity;
7376
7377 arity = ada_array_arity (type);
7378 type = ada_array_element_type (type, nargs);
7379 if (type == NULL)
7380 error (_("cannot subscript or call a record"));
7381 if (arity != nargs)
7382 error (_("wrong number of subscripts; expecting %d"), arity);
7383 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7384 return allocate_value (ada_aligned_type (type));
7385 return
7386 unwrap_value (ada_value_subscript
7387 (argvec[0], nargs, argvec + 1));
7388 }
7389 case TYPE_CODE_ARRAY:
7390 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7391 {
7392 type = ada_array_element_type (type, nargs);
7393 if (type == NULL)
7394 error (_("element type of array unknown"));
7395 else
7396 return allocate_value (ada_aligned_type (type));
7397 }
7398 return
7399 unwrap_value (ada_value_subscript
7400 (ada_coerce_to_simple_array (argvec[0]),
7401 nargs, argvec + 1));
7402 case TYPE_CODE_PTR: /* Pointer to array */
7403 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
7404 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7405 {
7406 type = ada_array_element_type (type, nargs);
7407 if (type == NULL)
7408 error (_("element type of array unknown"));
7409 else
7410 return allocate_value (ada_aligned_type (type));
7411 }
7412 return
7413 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
7414 nargs, argvec + 1));
7415
7416 default:
7417 error (_("Attempt to index or call something other than an \
7418 array or function"));
7419 }
7420
7421 case TERNOP_SLICE:
7422 {
7423 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7424 struct value *low_bound_val =
7425 evaluate_subexp (NULL_TYPE, exp, pos, noside);
7426 struct value *high_bound_val =
7427 evaluate_subexp (NULL_TYPE, exp, pos, noside);
7428 LONGEST low_bound;
7429 LONGEST high_bound;
7430 low_bound_val = coerce_ref (low_bound_val);
7431 high_bound_val = coerce_ref (high_bound_val);
7432 low_bound = pos_atr (low_bound_val);
7433 high_bound = pos_atr (high_bound_val);
7434
7435 if (noside == EVAL_SKIP)
7436 goto nosideret;
7437
7438 /* If this is a reference to an aligner type, then remove all
7439 the aligners. */
7440 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
7441 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
7442 TYPE_TARGET_TYPE (value_type (array)) =
7443 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
7444
7445 if (ada_is_packed_array_type (value_type (array)))
7446 error (_("cannot slice a packed array"));
7447
7448 /* If this is a reference to an array or an array lvalue,
7449 convert to a pointer. */
7450 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
7451 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
7452 && VALUE_LVAL (array) == lval_memory))
7453 array = value_addr (array);
7454
7455 if (noside == EVAL_AVOID_SIDE_EFFECTS
7456 && ada_is_array_descriptor_type (ada_check_typedef
7457 (value_type (array))))
7458 return empty_array (ada_type_of_array (array, 0), low_bound);
7459
7460 array = ada_coerce_to_simple_array_ptr (array);
7461
7462 /* If we have more than one level of pointer indirection,
7463 dereference the value until we get only one level. */
7464 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
7465 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
7466 == TYPE_CODE_PTR))
7467 array = value_ind (array);
7468
7469 /* Make sure we really do have an array type before going further,
7470 to avoid a SEGV when trying to get the index type or the target
7471 type later down the road if the debug info generated by
7472 the compiler is incorrect or incomplete. */
7473 if (!ada_is_simple_array_type (value_type (array)))
7474 error (_("cannot take slice of non-array"));
7475
7476 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
7477 {
7478 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
7479 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
7480 low_bound);
7481 else
7482 {
7483 struct type *arr_type0 =
7484 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
7485 NULL, 1);
7486 return ada_value_slice_ptr (array, arr_type0,
7487 (int) low_bound,
7488 (int) high_bound);
7489 }
7490 }
7491 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7492 return array;
7493 else if (high_bound < low_bound)
7494 return empty_array (value_type (array), low_bound);
7495 else
7496 return ada_value_slice (array, (int) low_bound, (int) high_bound);
7497 }
7498
7499 case UNOP_IN_RANGE:
7500 (*pos) += 2;
7501 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7502 type = exp->elts[pc + 1].type;
7503
7504 if (noside == EVAL_SKIP)
7505 goto nosideret;
7506
7507 switch (TYPE_CODE (type))
7508 {
7509 default:
7510 lim_warning (_("Membership test incompletely implemented; \
7511 always returns true"));
7512 return value_from_longest (builtin_type_int, (LONGEST) 1);
7513
7514 case TYPE_CODE_RANGE:
7515 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
7516 arg3 = value_from_longest (builtin_type_int,
7517 TYPE_HIGH_BOUND (type));
7518 return
7519 value_from_longest (builtin_type_int,
7520 (value_less (arg1, arg3)
7521 || value_equal (arg1, arg3))
7522 && (value_less (arg2, arg1)
7523 || value_equal (arg2, arg1)));
7524 }
7525
7526 case BINOP_IN_BOUNDS:
7527 (*pos) += 2;
7528 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7529 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7530
7531 if (noside == EVAL_SKIP)
7532 goto nosideret;
7533
7534 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7535 return value_zero (builtin_type_int, not_lval);
7536
7537 tem = longest_to_int (exp->elts[pc + 1].longconst);
7538
7539 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
7540 error (_("invalid dimension number to 'range"));
7541
7542 arg3 = ada_array_bound (arg2, tem, 1);
7543 arg2 = ada_array_bound (arg2, tem, 0);
7544
7545 return
7546 value_from_longest (builtin_type_int,
7547 (value_less (arg1, arg3)
7548 || value_equal (arg1, arg3))
7549 && (value_less (arg2, arg1)
7550 || value_equal (arg2, arg1)));
7551
7552 case TERNOP_IN_RANGE:
7553 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7554 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7555 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7556
7557 if (noside == EVAL_SKIP)
7558 goto nosideret;
7559
7560 return
7561 value_from_longest (builtin_type_int,
7562 (value_less (arg1, arg3)
7563 || value_equal (arg1, arg3))
7564 && (value_less (arg2, arg1)
7565 || value_equal (arg2, arg1)));
7566
7567 case OP_ATR_FIRST:
7568 case OP_ATR_LAST:
7569 case OP_ATR_LENGTH:
7570 {
7571 struct type *type_arg;
7572 if (exp->elts[*pos].opcode == OP_TYPE)
7573 {
7574 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7575 arg1 = NULL;
7576 type_arg = exp->elts[pc + 2].type;
7577 }
7578 else
7579 {
7580 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7581 type_arg = NULL;
7582 }
7583
7584 if (exp->elts[*pos].opcode != OP_LONG)
7585 error (_("Invalid operand to '%s"), ada_attribute_name (op));
7586 tem = longest_to_int (exp->elts[*pos + 2].longconst);
7587 *pos += 4;
7588
7589 if (noside == EVAL_SKIP)
7590 goto nosideret;
7591
7592 if (type_arg == NULL)
7593 {
7594 arg1 = ada_coerce_ref (arg1);
7595
7596 if (ada_is_packed_array_type (value_type (arg1)))
7597 arg1 = ada_coerce_to_simple_array (arg1);
7598
7599 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
7600 error (_("invalid dimension number to '%s"),
7601 ada_attribute_name (op));
7602
7603 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7604 {
7605 type = ada_index_type (value_type (arg1), tem);
7606 if (type == NULL)
7607 error
7608 (_("attempt to take bound of something that is not an array"));
7609 return allocate_value (type);
7610 }
7611
7612 switch (op)
7613 {
7614 default: /* Should never happen. */
7615 error (_("unexpected attribute encountered"));
7616 case OP_ATR_FIRST:
7617 return ada_array_bound (arg1, tem, 0);
7618 case OP_ATR_LAST:
7619 return ada_array_bound (arg1, tem, 1);
7620 case OP_ATR_LENGTH:
7621 return ada_array_length (arg1, tem);
7622 }
7623 }
7624 else if (discrete_type_p (type_arg))
7625 {
7626 struct type *range_type;
7627 char *name = ada_type_name (type_arg);
7628 range_type = NULL;
7629 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
7630 range_type =
7631 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
7632 if (range_type == NULL)
7633 range_type = type_arg;
7634 switch (op)
7635 {
7636 default:
7637 error (_("unexpected attribute encountered"));
7638 case OP_ATR_FIRST:
7639 return discrete_type_low_bound (range_type);
7640 case OP_ATR_LAST:
7641 return discrete_type_high_bound (range_type);
7642 case OP_ATR_LENGTH:
7643 error (_("the 'length attribute applies only to array types"));
7644 }
7645 }
7646 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
7647 error (_("unimplemented type attribute"));
7648 else
7649 {
7650 LONGEST low, high;
7651
7652 if (ada_is_packed_array_type (type_arg))
7653 type_arg = decode_packed_array_type (type_arg);
7654
7655 if (tem < 1 || tem > ada_array_arity (type_arg))
7656 error (_("invalid dimension number to '%s"),
7657 ada_attribute_name (op));
7658
7659 type = ada_index_type (type_arg, tem);
7660 if (type == NULL)
7661 error
7662 (_("attempt to take bound of something that is not an array"));
7663 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7664 return allocate_value (type);
7665
7666 switch (op)
7667 {
7668 default:
7669 error (_("unexpected attribute encountered"));
7670 case OP_ATR_FIRST:
7671 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
7672 return value_from_longest (type, low);
7673 case OP_ATR_LAST:
7674 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
7675 return value_from_longest (type, high);
7676 case OP_ATR_LENGTH:
7677 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
7678 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
7679 return value_from_longest (type, high - low + 1);
7680 }
7681 }
7682 }
7683
7684 case OP_ATR_TAG:
7685 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7686 if (noside == EVAL_SKIP)
7687 goto nosideret;
7688
7689 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7690 return value_zero (ada_tag_type (arg1), not_lval);
7691
7692 return ada_value_tag (arg1);
7693
7694 case OP_ATR_MIN:
7695 case OP_ATR_MAX:
7696 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7697 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7698 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7699 if (noside == EVAL_SKIP)
7700 goto nosideret;
7701 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7702 return value_zero (value_type (arg1), not_lval);
7703 else
7704 return value_binop (arg1, arg2,
7705 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
7706
7707 case OP_ATR_MODULUS:
7708 {
7709 struct type *type_arg = exp->elts[pc + 2].type;
7710 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7711
7712 if (noside == EVAL_SKIP)
7713 goto nosideret;
7714
7715 if (!ada_is_modular_type (type_arg))
7716 error (_("'modulus must be applied to modular type"));
7717
7718 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
7719 ada_modulus (type_arg));
7720 }
7721
7722
7723 case OP_ATR_POS:
7724 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7725 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7726 if (noside == EVAL_SKIP)
7727 goto nosideret;
7728 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7729 return value_zero (builtin_type_int, not_lval);
7730 else
7731 return value_pos_atr (arg1);
7732
7733 case OP_ATR_SIZE:
7734 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7735 if (noside == EVAL_SKIP)
7736 goto nosideret;
7737 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7738 return value_zero (builtin_type_int, not_lval);
7739 else
7740 return value_from_longest (builtin_type_int,
7741 TARGET_CHAR_BIT
7742 * TYPE_LENGTH (value_type (arg1)));
7743
7744 case OP_ATR_VAL:
7745 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7746 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7747 type = exp->elts[pc + 2].type;
7748 if (noside == EVAL_SKIP)
7749 goto nosideret;
7750 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7751 return value_zero (type, not_lval);
7752 else
7753 return value_val_atr (type, arg1);
7754
7755 case BINOP_EXP:
7756 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7757 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7758 if (noside == EVAL_SKIP)
7759 goto nosideret;
7760 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7761 return value_zero (value_type (arg1), not_lval);
7762 else
7763 return value_binop (arg1, arg2, op);
7764
7765 case UNOP_PLUS:
7766 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7767 if (noside == EVAL_SKIP)
7768 goto nosideret;
7769 else
7770 return arg1;
7771
7772 case UNOP_ABS:
7773 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7774 if (noside == EVAL_SKIP)
7775 goto nosideret;
7776 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
7777 return value_neg (arg1);
7778 else
7779 return arg1;
7780
7781 case UNOP_IND:
7782 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
7783 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
7784 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
7785 if (noside == EVAL_SKIP)
7786 goto nosideret;
7787 type = ada_check_typedef (value_type (arg1));
7788 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7789 {
7790 if (ada_is_array_descriptor_type (type))
7791 /* GDB allows dereferencing GNAT array descriptors. */
7792 {
7793 struct type *arrType = ada_type_of_array (arg1, 0);
7794 if (arrType == NULL)
7795 error (_("Attempt to dereference null array pointer."));
7796 return value_at_lazy (arrType, 0);
7797 }
7798 else if (TYPE_CODE (type) == TYPE_CODE_PTR
7799 || TYPE_CODE (type) == TYPE_CODE_REF
7800 /* In C you can dereference an array to get the 1st elt. */
7801 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
7802 {
7803 type = to_static_fixed_type
7804 (ada_aligned_type
7805 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
7806 check_size (type);
7807 return value_zero (type, lval_memory);
7808 }
7809 else if (TYPE_CODE (type) == TYPE_CODE_INT)
7810 /* GDB allows dereferencing an int. */
7811 return value_zero (builtin_type_int, lval_memory);
7812 else
7813 error (_("Attempt to take contents of a non-pointer value."));
7814 }
7815 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
7816 type = ada_check_typedef (value_type (arg1));
7817
7818 if (ada_is_array_descriptor_type (type))
7819 /* GDB allows dereferencing GNAT array descriptors. */
7820 return ada_coerce_to_simple_array (arg1);
7821 else
7822 return ada_value_ind (arg1);
7823
7824 case STRUCTOP_STRUCT:
7825 tem = longest_to_int (exp->elts[pc + 1].longconst);
7826 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
7827 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7828 if (noside == EVAL_SKIP)
7829 goto nosideret;
7830 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7831 {
7832 struct type *type1 = value_type (arg1);
7833 if (ada_is_tagged_type (type1, 1))
7834 {
7835 type = ada_lookup_struct_elt_type (type1,
7836 &exp->elts[pc + 2].string,
7837 1, 1, NULL);
7838 if (type == NULL)
7839 /* In this case, we assume that the field COULD exist
7840 in some extension of the type. Return an object of
7841 "type" void, which will match any formal
7842 (see ada_type_match). */
7843 return value_zero (builtin_type_void, lval_memory);
7844 }
7845 else
7846 type =
7847 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
7848 0, NULL);
7849
7850 return value_zero (ada_aligned_type (type), lval_memory);
7851 }
7852 else
7853 return
7854 ada_to_fixed_value (unwrap_value
7855 (ada_value_struct_elt
7856 (arg1, &exp->elts[pc + 2].string, "record")));
7857 case OP_TYPE:
7858 /* The value is not supposed to be used. This is here to make it
7859 easier to accommodate expressions that contain types. */
7860 (*pos) += 2;
7861 if (noside == EVAL_SKIP)
7862 goto nosideret;
7863 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7864 return allocate_value (builtin_type_void);
7865 else
7866 error (_("Attempt to use a type name as an expression"));
7867 }
7868
7869 nosideret:
7870 return value_from_longest (builtin_type_long, (LONGEST) 1);
7871 }
7872 \f
7873
7874 /* Fixed point */
7875
7876 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
7877 type name that encodes the 'small and 'delta information.
7878 Otherwise, return NULL. */
7879
7880 static const char *
7881 fixed_type_info (struct type *type)
7882 {
7883 const char *name = ada_type_name (type);
7884 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
7885
7886 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
7887 {
7888 const char *tail = strstr (name, "___XF_");
7889 if (tail == NULL)
7890 return NULL;
7891 else
7892 return tail + 5;
7893 }
7894 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
7895 return fixed_type_info (TYPE_TARGET_TYPE (type));
7896 else
7897 return NULL;
7898 }
7899
7900 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
7901
7902 int
7903 ada_is_fixed_point_type (struct type *type)
7904 {
7905 return fixed_type_info (type) != NULL;
7906 }
7907
7908 /* Return non-zero iff TYPE represents a System.Address type. */
7909
7910 int
7911 ada_is_system_address_type (struct type *type)
7912 {
7913 return (TYPE_NAME (type)
7914 && strcmp (TYPE_NAME (type), "system__address") == 0);
7915 }
7916
7917 /* Assuming that TYPE is the representation of an Ada fixed-point
7918 type, return its delta, or -1 if the type is malformed and the
7919 delta cannot be determined. */
7920
7921 DOUBLEST
7922 ada_delta (struct type *type)
7923 {
7924 const char *encoding = fixed_type_info (type);
7925 long num, den;
7926
7927 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
7928 return -1.0;
7929 else
7930 return (DOUBLEST) num / (DOUBLEST) den;
7931 }
7932
7933 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
7934 factor ('SMALL value) associated with the type. */
7935
7936 static DOUBLEST
7937 scaling_factor (struct type *type)
7938 {
7939 const char *encoding = fixed_type_info (type);
7940 unsigned long num0, den0, num1, den1;
7941 int n;
7942
7943 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
7944
7945 if (n < 2)
7946 return 1.0;
7947 else if (n == 4)
7948 return (DOUBLEST) num1 / (DOUBLEST) den1;
7949 else
7950 return (DOUBLEST) num0 / (DOUBLEST) den0;
7951 }
7952
7953
7954 /* Assuming that X is the representation of a value of fixed-point
7955 type TYPE, return its floating-point equivalent. */
7956
7957 DOUBLEST
7958 ada_fixed_to_float (struct type *type, LONGEST x)
7959 {
7960 return (DOUBLEST) x *scaling_factor (type);
7961 }
7962
7963 /* The representation of a fixed-point value of type TYPE
7964 corresponding to the value X. */
7965
7966 LONGEST
7967 ada_float_to_fixed (struct type *type, DOUBLEST x)
7968 {
7969 return (LONGEST) (x / scaling_factor (type) + 0.5);
7970 }
7971
7972
7973 /* VAX floating formats */
7974
7975 /* Non-zero iff TYPE represents one of the special VAX floating-point
7976 types. */
7977
7978 int
7979 ada_is_vax_floating_type (struct type *type)
7980 {
7981 int name_len =
7982 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
7983 return
7984 name_len > 6
7985 && (TYPE_CODE (type) == TYPE_CODE_INT
7986 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7987 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
7988 }
7989
7990 /* The type of special VAX floating-point type this is, assuming
7991 ada_is_vax_floating_point. */
7992
7993 int
7994 ada_vax_float_type_suffix (struct type *type)
7995 {
7996 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
7997 }
7998
7999 /* A value representing the special debugging function that outputs
8000 VAX floating-point values of the type represented by TYPE. Assumes
8001 ada_is_vax_floating_type (TYPE). */
8002
8003 struct value *
8004 ada_vax_float_print_function (struct type *type)
8005 {
8006 switch (ada_vax_float_type_suffix (type))
8007 {
8008 case 'F':
8009 return get_var_value ("DEBUG_STRING_F", 0);
8010 case 'D':
8011 return get_var_value ("DEBUG_STRING_D", 0);
8012 case 'G':
8013 return get_var_value ("DEBUG_STRING_G", 0);
8014 default:
8015 error (_("invalid VAX floating-point type"));
8016 }
8017 }
8018 \f
8019
8020 /* Range types */
8021
8022 /* Scan STR beginning at position K for a discriminant name, and
8023 return the value of that discriminant field of DVAL in *PX. If
8024 PNEW_K is not null, put the position of the character beyond the
8025 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
8026 not alter *PX and *PNEW_K if unsuccessful. */
8027
8028 static int
8029 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
8030 int *pnew_k)
8031 {
8032 static char *bound_buffer = NULL;
8033 static size_t bound_buffer_len = 0;
8034 char *bound;
8035 char *pend;
8036 struct value *bound_val;
8037
8038 if (dval == NULL || str == NULL || str[k] == '\0')
8039 return 0;
8040
8041 pend = strstr (str + k, "__");
8042 if (pend == NULL)
8043 {
8044 bound = str + k;
8045 k += strlen (bound);
8046 }
8047 else
8048 {
8049 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
8050 bound = bound_buffer;
8051 strncpy (bound_buffer, str + k, pend - (str + k));
8052 bound[pend - (str + k)] = '\0';
8053 k = pend - str;
8054 }
8055
8056 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
8057 if (bound_val == NULL)
8058 return 0;
8059
8060 *px = value_as_long (bound_val);
8061 if (pnew_k != NULL)
8062 *pnew_k = k;
8063 return 1;
8064 }
8065
8066 /* Value of variable named NAME in the current environment. If
8067 no such variable found, then if ERR_MSG is null, returns 0, and
8068 otherwise causes an error with message ERR_MSG. */
8069
8070 static struct value *
8071 get_var_value (char *name, char *err_msg)
8072 {
8073 struct ada_symbol_info *syms;
8074 int nsyms;
8075
8076 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
8077 &syms);
8078
8079 if (nsyms != 1)
8080 {
8081 if (err_msg == NULL)
8082 return 0;
8083 else
8084 error ("%s", err_msg);
8085 }
8086
8087 return value_of_variable (syms[0].sym, syms[0].block);
8088 }
8089
8090 /* Value of integer variable named NAME in the current environment. If
8091 no such variable found, returns 0, and sets *FLAG to 0. If
8092 successful, sets *FLAG to 1. */
8093
8094 LONGEST
8095 get_int_var_value (char *name, int *flag)
8096 {
8097 struct value *var_val = get_var_value (name, 0);
8098
8099 if (var_val == 0)
8100 {
8101 if (flag != NULL)
8102 *flag = 0;
8103 return 0;
8104 }
8105 else
8106 {
8107 if (flag != NULL)
8108 *flag = 1;
8109 return value_as_long (var_val);
8110 }
8111 }
8112
8113
8114 /* Return a range type whose base type is that of the range type named
8115 NAME in the current environment, and whose bounds are calculated
8116 from NAME according to the GNAT range encoding conventions.
8117 Extract discriminant values, if needed, from DVAL. If a new type
8118 must be created, allocate in OBJFILE's space. The bounds
8119 information, in general, is encoded in NAME, the base type given in
8120 the named range type. */
8121
8122 static struct type *
8123 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
8124 {
8125 struct type *raw_type = ada_find_any_type (name);
8126 struct type *base_type;
8127 char *subtype_info;
8128
8129 if (raw_type == NULL)
8130 base_type = builtin_type_int;
8131 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
8132 base_type = TYPE_TARGET_TYPE (raw_type);
8133 else
8134 base_type = raw_type;
8135
8136 subtype_info = strstr (name, "___XD");
8137 if (subtype_info == NULL)
8138 return raw_type;
8139 else
8140 {
8141 static char *name_buf = NULL;
8142 static size_t name_len = 0;
8143 int prefix_len = subtype_info - name;
8144 LONGEST L, U;
8145 struct type *type;
8146 char *bounds_str;
8147 int n;
8148
8149 GROW_VECT (name_buf, name_len, prefix_len + 5);
8150 strncpy (name_buf, name, prefix_len);
8151 name_buf[prefix_len] = '\0';
8152
8153 subtype_info += 5;
8154 bounds_str = strchr (subtype_info, '_');
8155 n = 1;
8156
8157 if (*subtype_info == 'L')
8158 {
8159 if (!ada_scan_number (bounds_str, n, &L, &n)
8160 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
8161 return raw_type;
8162 if (bounds_str[n] == '_')
8163 n += 2;
8164 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
8165 n += 1;
8166 subtype_info += 1;
8167 }
8168 else
8169 {
8170 int ok;
8171 strcpy (name_buf + prefix_len, "___L");
8172 L = get_int_var_value (name_buf, &ok);
8173 if (!ok)
8174 {
8175 lim_warning (_("Unknown lower bound, using 1."));
8176 L = 1;
8177 }
8178 }
8179
8180 if (*subtype_info == 'U')
8181 {
8182 if (!ada_scan_number (bounds_str, n, &U, &n)
8183 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
8184 return raw_type;
8185 }
8186 else
8187 {
8188 int ok;
8189 strcpy (name_buf + prefix_len, "___U");
8190 U = get_int_var_value (name_buf, &ok);
8191 if (!ok)
8192 {
8193 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
8194 U = L;
8195 }
8196 }
8197
8198 if (objfile == NULL)
8199 objfile = TYPE_OBJFILE (base_type);
8200 type = create_range_type (alloc_type (objfile), base_type, L, U);
8201 TYPE_NAME (type) = name;
8202 return type;
8203 }
8204 }
8205
8206 /* True iff NAME is the name of a range type. */
8207
8208 int
8209 ada_is_range_type_name (const char *name)
8210 {
8211 return (name != NULL && strstr (name, "___XD"));
8212 }
8213 \f
8214
8215 /* Modular types */
8216
8217 /* True iff TYPE is an Ada modular type. */
8218
8219 int
8220 ada_is_modular_type (struct type *type)
8221 {
8222 struct type *subranged_type = base_type (type);
8223
8224 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
8225 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
8226 && TYPE_UNSIGNED (subranged_type));
8227 }
8228
8229 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
8230
8231 ULONGEST
8232 ada_modulus (struct type * type)
8233 {
8234 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
8235 }
8236 \f
8237 /* Operators */
8238 /* Information about operators given special treatment in functions
8239 below. */
8240 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
8241
8242 #define ADA_OPERATORS \
8243 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
8244 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
8245 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
8246 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
8247 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
8248 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
8249 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
8250 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
8251 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
8252 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
8253 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
8254 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
8255 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
8256 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
8257 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
8258 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0)
8259
8260 static void
8261 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
8262 {
8263 switch (exp->elts[pc - 1].opcode)
8264 {
8265 default:
8266 operator_length_standard (exp, pc, oplenp, argsp);
8267 break;
8268
8269 #define OP_DEFN(op, len, args, binop) \
8270 case op: *oplenp = len; *argsp = args; break;
8271 ADA_OPERATORS;
8272 #undef OP_DEFN
8273 }
8274 }
8275
8276 static char *
8277 ada_op_name (enum exp_opcode opcode)
8278 {
8279 switch (opcode)
8280 {
8281 default:
8282 return op_name_standard (opcode);
8283 #define OP_DEFN(op, len, args, binop) case op: return #op;
8284 ADA_OPERATORS;
8285 #undef OP_DEFN
8286 }
8287 }
8288
8289 /* As for operator_length, but assumes PC is pointing at the first
8290 element of the operator, and gives meaningful results only for the
8291 Ada-specific operators. */
8292
8293 static void
8294 ada_forward_operator_length (struct expression *exp, int pc,
8295 int *oplenp, int *argsp)
8296 {
8297 switch (exp->elts[pc].opcode)
8298 {
8299 default:
8300 *oplenp = *argsp = 0;
8301 break;
8302 #define OP_DEFN(op, len, args, binop) \
8303 case op: *oplenp = len; *argsp = args; break;
8304 ADA_OPERATORS;
8305 #undef OP_DEFN
8306 }
8307 }
8308
8309 static int
8310 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
8311 {
8312 enum exp_opcode op = exp->elts[elt].opcode;
8313 int oplen, nargs;
8314 int pc = elt;
8315 int i;
8316
8317 ada_forward_operator_length (exp, elt, &oplen, &nargs);
8318
8319 switch (op)
8320 {
8321 /* Ada attributes ('Foo). */
8322 case OP_ATR_FIRST:
8323 case OP_ATR_LAST:
8324 case OP_ATR_LENGTH:
8325 case OP_ATR_IMAGE:
8326 case OP_ATR_MAX:
8327 case OP_ATR_MIN:
8328 case OP_ATR_MODULUS:
8329 case OP_ATR_POS:
8330 case OP_ATR_SIZE:
8331 case OP_ATR_TAG:
8332 case OP_ATR_VAL:
8333 break;
8334
8335 case UNOP_IN_RANGE:
8336 case UNOP_QUAL:
8337 /* XXX: gdb_sprint_host_address, type_sprint */
8338 fprintf_filtered (stream, _("Type @"));
8339 gdb_print_host_address (exp->elts[pc + 1].type, stream);
8340 fprintf_filtered (stream, " (");
8341 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
8342 fprintf_filtered (stream, ")");
8343 break;
8344 case BINOP_IN_BOUNDS:
8345 fprintf_filtered (stream, " (%d)", (int) exp->elts[pc + 2].longconst);
8346 break;
8347 case TERNOP_IN_RANGE:
8348 break;
8349
8350 default:
8351 return dump_subexp_body_standard (exp, stream, elt);
8352 }
8353
8354 elt += oplen;
8355 for (i = 0; i < nargs; i += 1)
8356 elt = dump_subexp (exp, stream, elt);
8357
8358 return elt;
8359 }
8360
8361 /* The Ada extension of print_subexp (q.v.). */
8362
8363 static void
8364 ada_print_subexp (struct expression *exp, int *pos,
8365 struct ui_file *stream, enum precedence prec)
8366 {
8367 int oplen, nargs;
8368 int pc = *pos;
8369 enum exp_opcode op = exp->elts[pc].opcode;
8370
8371 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8372
8373 switch (op)
8374 {
8375 default:
8376 print_subexp_standard (exp, pos, stream, prec);
8377 return;
8378
8379 case OP_VAR_VALUE:
8380 *pos += oplen;
8381 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
8382 return;
8383
8384 case BINOP_IN_BOUNDS:
8385 /* XXX: sprint_subexp */
8386 *pos += oplen;
8387 print_subexp (exp, pos, stream, PREC_SUFFIX);
8388 fputs_filtered (" in ", stream);
8389 print_subexp (exp, pos, stream, PREC_SUFFIX);
8390 fputs_filtered ("'range", stream);
8391 if (exp->elts[pc + 1].longconst > 1)
8392 fprintf_filtered (stream, "(%ld)",
8393 (long) exp->elts[pc + 1].longconst);
8394 return;
8395
8396 case TERNOP_IN_RANGE:
8397 *pos += oplen;
8398 if (prec >= PREC_EQUAL)
8399 fputs_filtered ("(", stream);
8400 /* XXX: sprint_subexp */
8401 print_subexp (exp, pos, stream, PREC_SUFFIX);
8402 fputs_filtered (" in ", stream);
8403 print_subexp (exp, pos, stream, PREC_EQUAL);
8404 fputs_filtered (" .. ", stream);
8405 print_subexp (exp, pos, stream, PREC_EQUAL);
8406 if (prec >= PREC_EQUAL)
8407 fputs_filtered (")", stream);
8408 return;
8409
8410 case OP_ATR_FIRST:
8411 case OP_ATR_LAST:
8412 case OP_ATR_LENGTH:
8413 case OP_ATR_IMAGE:
8414 case OP_ATR_MAX:
8415 case OP_ATR_MIN:
8416 case OP_ATR_MODULUS:
8417 case OP_ATR_POS:
8418 case OP_ATR_SIZE:
8419 case OP_ATR_TAG:
8420 case OP_ATR_VAL:
8421 *pos += oplen;
8422 if (exp->elts[*pos].opcode == OP_TYPE)
8423 {
8424 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
8425 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
8426 *pos += 3;
8427 }
8428 else
8429 print_subexp (exp, pos, stream, PREC_SUFFIX);
8430 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
8431 if (nargs > 1)
8432 {
8433 int tem;
8434 for (tem = 1; tem < nargs; tem += 1)
8435 {
8436 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
8437 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
8438 }
8439 fputs_filtered (")", stream);
8440 }
8441 return;
8442
8443 case UNOP_QUAL:
8444 *pos += oplen;
8445 type_print (exp->elts[pc + 1].type, "", stream, 0);
8446 fputs_filtered ("'(", stream);
8447 print_subexp (exp, pos, stream, PREC_PREFIX);
8448 fputs_filtered (")", stream);
8449 return;
8450
8451 case UNOP_IN_RANGE:
8452 *pos += oplen;
8453 /* XXX: sprint_subexp */
8454 print_subexp (exp, pos, stream, PREC_SUFFIX);
8455 fputs_filtered (" in ", stream);
8456 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
8457 return;
8458 }
8459 }
8460
8461 /* Table mapping opcodes into strings for printing operators
8462 and precedences of the operators. */
8463
8464 static const struct op_print ada_op_print_tab[] = {
8465 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
8466 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
8467 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
8468 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
8469 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
8470 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
8471 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
8472 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
8473 {"<=", BINOP_LEQ, PREC_ORDER, 0},
8474 {">=", BINOP_GEQ, PREC_ORDER, 0},
8475 {">", BINOP_GTR, PREC_ORDER, 0},
8476 {"<", BINOP_LESS, PREC_ORDER, 0},
8477 {">>", BINOP_RSH, PREC_SHIFT, 0},
8478 {"<<", BINOP_LSH, PREC_SHIFT, 0},
8479 {"+", BINOP_ADD, PREC_ADD, 0},
8480 {"-", BINOP_SUB, PREC_ADD, 0},
8481 {"&", BINOP_CONCAT, PREC_ADD, 0},
8482 {"*", BINOP_MUL, PREC_MUL, 0},
8483 {"/", BINOP_DIV, PREC_MUL, 0},
8484 {"rem", BINOP_REM, PREC_MUL, 0},
8485 {"mod", BINOP_MOD, PREC_MUL, 0},
8486 {"**", BINOP_EXP, PREC_REPEAT, 0},
8487 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
8488 {"-", UNOP_NEG, PREC_PREFIX, 0},
8489 {"+", UNOP_PLUS, PREC_PREFIX, 0},
8490 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
8491 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
8492 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
8493 {".all", UNOP_IND, PREC_SUFFIX, 1},
8494 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
8495 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
8496 {NULL, 0, 0, 0}
8497 };
8498 \f
8499 /* Fundamental Ada Types */
8500
8501 /* Create a fundamental Ada type using default reasonable for the current
8502 target machine.
8503
8504 Some object/debugging file formats (DWARF version 1, COFF, etc) do not
8505 define fundamental types such as "int" or "double". Others (stabs or
8506 DWARF version 2, etc) do define fundamental types. For the formats which
8507 don't provide fundamental types, gdb can create such types using this
8508 function.
8509
8510 FIXME: Some compilers distinguish explicitly signed integral types
8511 (signed short, signed int, signed long) from "regular" integral types
8512 (short, int, long) in the debugging information. There is some dis-
8513 agreement as to how useful this feature is. In particular, gcc does
8514 not support this. Also, only some debugging formats allow the
8515 distinction to be passed on to a debugger. For now, we always just
8516 use "short", "int", or "long" as the type name, for both the implicit
8517 and explicitly signed types. This also makes life easier for the
8518 gdb test suite since we don't have to account for the differences
8519 in output depending upon what the compiler and debugging format
8520 support. We will probably have to re-examine the issue when gdb
8521 starts taking it's fundamental type information directly from the
8522 debugging information supplied by the compiler. fnf@cygnus.com */
8523
8524 static struct type *
8525 ada_create_fundamental_type (struct objfile *objfile, int typeid)
8526 {
8527 struct type *type = NULL;
8528
8529 switch (typeid)
8530 {
8531 default:
8532 /* FIXME: For now, if we are asked to produce a type not in this
8533 language, create the equivalent of a C integer type with the
8534 name "<?type?>". When all the dust settles from the type
8535 reconstruction work, this should probably become an error. */
8536 type = init_type (TYPE_CODE_INT,
8537 TARGET_INT_BIT / TARGET_CHAR_BIT,
8538 0, "<?type?>", objfile);
8539 warning (_("internal error: no Ada fundamental type %d"), typeid);
8540 break;
8541 case FT_VOID:
8542 type = init_type (TYPE_CODE_VOID,
8543 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8544 0, "void", objfile);
8545 break;
8546 case FT_CHAR:
8547 type = init_type (TYPE_CODE_INT,
8548 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8549 0, "character", objfile);
8550 break;
8551 case FT_SIGNED_CHAR:
8552 type = init_type (TYPE_CODE_INT,
8553 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8554 0, "signed char", objfile);
8555 break;
8556 case FT_UNSIGNED_CHAR:
8557 type = init_type (TYPE_CODE_INT,
8558 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8559 TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
8560 break;
8561 case FT_SHORT:
8562 type = init_type (TYPE_CODE_INT,
8563 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
8564 0, "short_integer", objfile);
8565 break;
8566 case FT_SIGNED_SHORT:
8567 type = init_type (TYPE_CODE_INT,
8568 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
8569 0, "short_integer", objfile);
8570 break;
8571 case FT_UNSIGNED_SHORT:
8572 type = init_type (TYPE_CODE_INT,
8573 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
8574 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
8575 break;
8576 case FT_INTEGER:
8577 type = init_type (TYPE_CODE_INT,
8578 TARGET_INT_BIT / TARGET_CHAR_BIT,
8579 0, "integer", objfile);
8580 break;
8581 case FT_SIGNED_INTEGER:
8582 type = init_type (TYPE_CODE_INT, TARGET_INT_BIT /
8583 TARGET_CHAR_BIT,
8584 0, "integer", objfile); /* FIXME -fnf */
8585 break;
8586 case FT_UNSIGNED_INTEGER:
8587 type = init_type (TYPE_CODE_INT,
8588 TARGET_INT_BIT / TARGET_CHAR_BIT,
8589 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
8590 break;
8591 case FT_LONG:
8592 type = init_type (TYPE_CODE_INT,
8593 TARGET_LONG_BIT / TARGET_CHAR_BIT,
8594 0, "long_integer", objfile);
8595 break;
8596 case FT_SIGNED_LONG:
8597 type = init_type (TYPE_CODE_INT,
8598 TARGET_LONG_BIT / TARGET_CHAR_BIT,
8599 0, "long_integer", objfile);
8600 break;
8601 case FT_UNSIGNED_LONG:
8602 type = init_type (TYPE_CODE_INT,
8603 TARGET_LONG_BIT / TARGET_CHAR_BIT,
8604 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
8605 break;
8606 case FT_LONG_LONG:
8607 type = init_type (TYPE_CODE_INT,
8608 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
8609 0, "long_long_integer", objfile);
8610 break;
8611 case FT_SIGNED_LONG_LONG:
8612 type = init_type (TYPE_CODE_INT,
8613 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
8614 0, "long_long_integer", objfile);
8615 break;
8616 case FT_UNSIGNED_LONG_LONG:
8617 type = init_type (TYPE_CODE_INT,
8618 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
8619 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
8620 break;
8621 case FT_FLOAT:
8622 type = init_type (TYPE_CODE_FLT,
8623 TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
8624 0, "float", objfile);
8625 break;
8626 case FT_DBL_PREC_FLOAT:
8627 type = init_type (TYPE_CODE_FLT,
8628 TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
8629 0, "long_float", objfile);
8630 break;
8631 case FT_EXT_PREC_FLOAT:
8632 type = init_type (TYPE_CODE_FLT,
8633 TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
8634 0, "long_long_float", objfile);
8635 break;
8636 }
8637 return (type);
8638 }
8639
8640 enum ada_primitive_types {
8641 ada_primitive_type_int,
8642 ada_primitive_type_long,
8643 ada_primitive_type_short,
8644 ada_primitive_type_char,
8645 ada_primitive_type_float,
8646 ada_primitive_type_double,
8647 ada_primitive_type_void,
8648 ada_primitive_type_long_long,
8649 ada_primitive_type_long_double,
8650 ada_primitive_type_natural,
8651 ada_primitive_type_positive,
8652 ada_primitive_type_system_address,
8653 nr_ada_primitive_types
8654 };
8655
8656 static void
8657 ada_language_arch_info (struct gdbarch *current_gdbarch,
8658 struct language_arch_info *lai)
8659 {
8660 const struct builtin_type *builtin = builtin_type (current_gdbarch);
8661 lai->primitive_type_vector
8662 = GDBARCH_OBSTACK_CALLOC (current_gdbarch, nr_ada_primitive_types + 1,
8663 struct type *);
8664 lai->primitive_type_vector [ada_primitive_type_int] =
8665 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
8666 0, "integer", (struct objfile *) NULL);
8667 lai->primitive_type_vector [ada_primitive_type_long] =
8668 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
8669 0, "long_integer", (struct objfile *) NULL);
8670 lai->primitive_type_vector [ada_primitive_type_short] =
8671 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
8672 0, "short_integer", (struct objfile *) NULL);
8673 lai->string_char_type =
8674 lai->primitive_type_vector [ada_primitive_type_char] =
8675 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8676 0, "character", (struct objfile *) NULL);
8677 lai->primitive_type_vector [ada_primitive_type_float] =
8678 init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
8679 0, "float", (struct objfile *) NULL);
8680 lai->primitive_type_vector [ada_primitive_type_double] =
8681 init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
8682 0, "long_float", (struct objfile *) NULL);
8683 lai->primitive_type_vector [ada_primitive_type_long_long] =
8684 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
8685 0, "long_long_integer", (struct objfile *) NULL);
8686 lai->primitive_type_vector [ada_primitive_type_long_double] =
8687 init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
8688 0, "long_long_float", (struct objfile *) NULL);
8689 lai->primitive_type_vector [ada_primitive_type_natural] =
8690 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
8691 0, "natural", (struct objfile *) NULL);
8692 lai->primitive_type_vector [ada_primitive_type_positive] =
8693 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
8694 0, "positive", (struct objfile *) NULL);
8695 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
8696
8697 lai->primitive_type_vector [ada_primitive_type_system_address] =
8698 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
8699 (struct objfile *) NULL));
8700 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
8701 = "system__address";
8702 }
8703 \f
8704 /* Language vector */
8705
8706 /* Not really used, but needed in the ada_language_defn. */
8707
8708 static void
8709 emit_char (int c, struct ui_file *stream, int quoter)
8710 {
8711 ada_emit_char (c, stream, quoter, 1);
8712 }
8713
8714 static int
8715 parse (void)
8716 {
8717 warnings_issued = 0;
8718 return ada_parse ();
8719 }
8720
8721 static const struct exp_descriptor ada_exp_descriptor = {
8722 ada_print_subexp,
8723 ada_operator_length,
8724 ada_op_name,
8725 ada_dump_subexp_body,
8726 ada_evaluate_subexp
8727 };
8728
8729 const struct language_defn ada_language_defn = {
8730 "ada", /* Language name */
8731 language_ada,
8732 NULL,
8733 range_check_off,
8734 type_check_off,
8735 case_sensitive_on, /* Yes, Ada is case-insensitive, but
8736 that's not quite what this means. */
8737 array_row_major,
8738 &ada_exp_descriptor,
8739 parse,
8740 ada_error,
8741 resolve,
8742 ada_printchar, /* Print a character constant */
8743 ada_printstr, /* Function to print string constant */
8744 emit_char, /* Function to print single char (not used) */
8745 ada_create_fundamental_type, /* Create fundamental type in this language */
8746 ada_print_type, /* Print a type using appropriate syntax */
8747 ada_val_print, /* Print a value using appropriate syntax */
8748 ada_value_print, /* Print a top-level value */
8749 NULL, /* Language specific skip_trampoline */
8750 NULL, /* value_of_this */
8751 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
8752 basic_lookup_transparent_type, /* lookup_transparent_type */
8753 ada_la_decode, /* Language specific symbol demangler */
8754 NULL, /* Language specific class_name_from_physname */
8755 ada_op_print_tab, /* expression operators for printing */
8756 0, /* c-style arrays */
8757 1, /* String lower bound */
8758 NULL,
8759 ada_get_gdb_completer_word_break_characters,
8760 ada_language_arch_info,
8761 LANG_MAGIC
8762 };
8763
8764 void
8765 _initialize_ada_language (void)
8766 {
8767 add_language (&ada_language_defn);
8768
8769 varsize_limit = 65536;
8770
8771 obstack_init (&symbol_list_obstack);
8772
8773 decoded_names_store = htab_create_alloc
8774 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
8775 NULL, xcalloc, xfree);
8776 }
This page took 0.238762 seconds and 4 git commands to generate.