1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_string.h"
28 #include "gdb_regex.h"
33 #include "expression.h"
34 #include "parser-defs.h"
40 #include "breakpoint.h"
43 #include "gdb_obstack.h"
45 #include "completer.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
71 static void modify_general_field (struct type
*, char *, LONGEST
, int, int);
73 static struct type
*desc_base_type (struct type
*);
75 static struct type
*desc_bounds_type (struct type
*);
77 static struct value
*desc_bounds (struct value
*);
79 static int fat_pntr_bounds_bitpos (struct type
*);
81 static int fat_pntr_bounds_bitsize (struct type
*);
83 static struct type
*desc_data_target_type (struct type
*);
85 static struct value
*desc_data (struct value
*);
87 static int fat_pntr_data_bitpos (struct type
*);
89 static int fat_pntr_data_bitsize (struct type
*);
91 static struct value
*desc_one_bound (struct value
*, int, int);
93 static int desc_bound_bitpos (struct type
*, int, int);
95 static int desc_bound_bitsize (struct type
*, int, int);
97 static struct type
*desc_index_type (struct type
*, int);
99 static int desc_arity (struct type
*);
101 static int ada_type_match (struct type
*, struct type
*, int);
103 static int ada_args_match (struct symbol
*, struct value
**, int);
105 static struct value
*ensure_lval (struct value
*,
106 struct gdbarch
*, CORE_ADDR
*);
108 static struct value
*make_array_descriptor (struct type
*, struct value
*,
109 struct gdbarch
*, CORE_ADDR
*);
111 static void ada_add_block_symbols (struct obstack
*,
112 struct block
*, const char *,
113 domain_enum
, struct objfile
*, int);
115 static int is_nonfunction (struct ada_symbol_info
*, int);
117 static void add_defn_to_vec (struct obstack
*, struct symbol
*,
120 static int num_defns_collected (struct obstack
*);
122 static struct ada_symbol_info
*defns_collected (struct obstack
*, int);
124 static struct value
*resolve_subexp (struct expression
**, int *, int,
127 static void replace_operator_with_call (struct expression
**, int, int, int,
128 struct symbol
*, struct block
*);
130 static int possible_user_operator_p (enum exp_opcode
, struct value
**);
132 static char *ada_op_name (enum exp_opcode
);
134 static const char *ada_decoded_op_name (enum exp_opcode
);
136 static int numeric_type_p (struct type
*);
138 static int integer_type_p (struct type
*);
140 static int scalar_type_p (struct type
*);
142 static int discrete_type_p (struct type
*);
144 static enum ada_renaming_category
parse_old_style_renaming (struct type
*,
149 static struct symbol
*find_old_style_renaming_symbol (const char *,
152 static struct type
*ada_lookup_struct_elt_type (struct type
*, char *,
155 static struct value
*evaluate_subexp_type (struct expression
*, int *);
157 static struct type
*ada_find_parallel_type_with_name (struct type
*,
160 static int is_dynamic_field (struct type
*, int);
162 static struct type
*to_fixed_variant_branch_type (struct type
*,
164 CORE_ADDR
, struct value
*);
166 static struct type
*to_fixed_array_type (struct type
*, struct value
*, int);
168 static struct type
*to_fixed_range_type (struct type
*, struct value
*);
170 static struct type
*to_static_fixed_type (struct type
*);
171 static struct type
*static_unwrap_type (struct type
*type
);
173 static struct value
*unwrap_value (struct value
*);
175 static struct type
*constrained_packed_array_type (struct type
*, long *);
177 static struct type
*decode_constrained_packed_array_type (struct type
*);
179 static long decode_packed_array_bitsize (struct type
*);
181 static struct value
*decode_constrained_packed_array (struct value
*);
183 static int ada_is_packed_array_type (struct type
*);
185 static int ada_is_unconstrained_packed_array_type (struct type
*);
187 static struct value
*value_subscript_packed (struct value
*, int,
190 static void move_bits (gdb_byte
*, int, const gdb_byte
*, int, int, int);
192 static struct value
*coerce_unspec_val_to_type (struct value
*,
195 static struct value
*get_var_value (char *, char *);
197 static int lesseq_defined_than (struct symbol
*, struct symbol
*);
199 static int equiv_types (struct type
*, struct type
*);
201 static int is_name_suffix (const char *);
203 static int wild_match (const char *, int, const char *);
205 static struct value
*ada_coerce_ref (struct value
*);
207 static LONGEST
pos_atr (struct value
*);
209 static struct value
*value_pos_atr (struct type
*, struct value
*);
211 static struct value
*value_val_atr (struct type
*, struct value
*);
213 static struct symbol
*standard_lookup (const char *, const struct block
*,
216 static struct value
*ada_search_struct_field (char *, struct value
*, int,
219 static struct value
*ada_value_primitive_field (struct value
*, int, int,
222 static int find_struct_field (char *, struct type
*, int,
223 struct type
**, int *, int *, int *, int *);
225 static struct value
*ada_to_fixed_value_create (struct type
*, CORE_ADDR
,
228 static int ada_resolve_function (struct ada_symbol_info
*, int,
229 struct value
**, int, const char *,
232 static struct value
*ada_coerce_to_simple_array (struct value
*);
234 static int ada_is_direct_array_type (struct type
*);
236 static void ada_language_arch_info (struct gdbarch
*,
237 struct language_arch_info
*);
239 static void check_size (const struct type
*);
241 static struct value
*ada_index_struct_field (int, struct value
*, int,
244 static struct value
*assign_aggregate (struct value
*, struct value
*,
245 struct expression
*, int *, enum noside
);
247 static void aggregate_assign_from_choices (struct value
*, struct value
*,
249 int *, LONGEST
*, int *,
250 int, LONGEST
, LONGEST
);
252 static void aggregate_assign_positional (struct value
*, struct value
*,
254 int *, LONGEST
*, int *, int,
258 static void aggregate_assign_others (struct value
*, struct value
*,
260 int *, LONGEST
*, int, LONGEST
, LONGEST
);
263 static void add_component_interval (LONGEST
, LONGEST
, LONGEST
*, int *, int);
266 static struct value
*ada_evaluate_subexp (struct type
*, struct expression
*,
269 static void ada_forward_operator_length (struct expression
*, int, int *,
274 /* Maximum-sized dynamic type. */
275 static unsigned int varsize_limit
;
277 /* FIXME: brobecker/2003-09-17: No longer a const because it is
278 returned by a function that does not return a const char *. */
279 static char *ada_completer_word_break_characters
=
281 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
283 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
286 /* The name of the symbol to use to get the name of the main subprogram. */
287 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME
[]
288 = "__gnat_ada_main_program_name";
290 /* Limit on the number of warnings to raise per expression evaluation. */
291 static int warning_limit
= 2;
293 /* Number of warning messages issued; reset to 0 by cleanups after
294 expression evaluation. */
295 static int warnings_issued
= 0;
297 static const char *known_runtime_file_name_patterns
[] = {
298 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
301 static const char *known_auxiliary_function_name_patterns
[] = {
302 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
305 /* Space for allocating results of ada_lookup_symbol_list. */
306 static struct obstack symbol_list_obstack
;
308 /* Inferior-specific data. */
310 /* Per-inferior data for this module. */
312 struct ada_inferior_data
314 /* The ada__tags__type_specific_data type, which is used when decoding
315 tagged types. With older versions of GNAT, this type was directly
316 accessible through a component ("tsd") in the object tag. But this
317 is no longer the case, so we cache it for each inferior. */
318 struct type
*tsd_type
;
321 /* Our key to this module's inferior data. */
322 static const struct inferior_data
*ada_inferior_data
;
324 /* A cleanup routine for our inferior data. */
326 ada_inferior_data_cleanup (struct inferior
*inf
, void *arg
)
328 struct ada_inferior_data
*data
;
330 data
= inferior_data (inf
, ada_inferior_data
);
335 /* Return our inferior data for the given inferior (INF).
337 This function always returns a valid pointer to an allocated
338 ada_inferior_data structure. If INF's inferior data has not
339 been previously set, this functions creates a new one with all
340 fields set to zero, sets INF's inferior to it, and then returns
341 a pointer to that newly allocated ada_inferior_data. */
343 static struct ada_inferior_data
*
344 get_ada_inferior_data (struct inferior
*inf
)
346 struct ada_inferior_data
*data
;
348 data
= inferior_data (inf
, ada_inferior_data
);
351 data
= XZALLOC (struct ada_inferior_data
);
352 set_inferior_data (inf
, ada_inferior_data
, data
);
358 /* Perform all necessary cleanups regarding our module's inferior data
359 that is required after the inferior INF just exited. */
362 ada_inferior_exit (struct inferior
*inf
)
364 ada_inferior_data_cleanup (inf
, NULL
);
365 set_inferior_data (inf
, ada_inferior_data
, NULL
);
370 /* Given DECODED_NAME a string holding a symbol name in its
371 decoded form (ie using the Ada dotted notation), returns
372 its unqualified name. */
375 ada_unqualified_name (const char *decoded_name
)
377 const char *result
= strrchr (decoded_name
, '.');
380 result
++; /* Skip the dot... */
382 result
= decoded_name
;
387 /* Return a string starting with '<', followed by STR, and '>'.
388 The result is good until the next call. */
391 add_angle_brackets (const char *str
)
393 static char *result
= NULL
;
396 result
= xstrprintf ("<%s>", str
);
401 ada_get_gdb_completer_word_break_characters (void)
403 return ada_completer_word_break_characters
;
406 /* Print an array element index using the Ada syntax. */
409 ada_print_array_index (struct value
*index_value
, struct ui_file
*stream
,
410 const struct value_print_options
*options
)
412 LA_VALUE_PRINT (index_value
, stream
, options
);
413 fprintf_filtered (stream
, " => ");
416 /* Assuming VECT points to an array of *SIZE objects of size
417 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
418 updating *SIZE as necessary and returning the (new) array. */
421 grow_vect (void *vect
, size_t *size
, size_t min_size
, int element_size
)
423 if (*size
< min_size
)
426 if (*size
< min_size
)
428 vect
= xrealloc (vect
, *size
* element_size
);
433 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
434 suffix of FIELD_NAME beginning "___". */
437 field_name_match (const char *field_name
, const char *target
)
439 int len
= strlen (target
);
442 (strncmp (field_name
, target
, len
) == 0
443 && (field_name
[len
] == '\0'
444 || (strncmp (field_name
+ len
, "___", 3) == 0
445 && strcmp (field_name
+ strlen (field_name
) - 6,
450 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
451 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
452 and return its index. This function also handles fields whose name
453 have ___ suffixes because the compiler sometimes alters their name
454 by adding such a suffix to represent fields with certain constraints.
455 If the field could not be found, return a negative number if
456 MAYBE_MISSING is set. Otherwise raise an error. */
459 ada_get_field_index (const struct type
*type
, const char *field_name
,
463 struct type
*struct_type
= check_typedef ((struct type
*) type
);
465 for (fieldno
= 0; fieldno
< TYPE_NFIELDS (struct_type
); fieldno
++)
466 if (field_name_match (TYPE_FIELD_NAME (struct_type
, fieldno
), field_name
))
470 error (_("Unable to find field %s in struct %s. Aborting"),
471 field_name
, TYPE_NAME (struct_type
));
476 /* The length of the prefix of NAME prior to any "___" suffix. */
479 ada_name_prefix_len (const char *name
)
485 const char *p
= strstr (name
, "___");
488 return strlen (name
);
494 /* Return non-zero if SUFFIX is a suffix of STR.
495 Return zero if STR is null. */
498 is_suffix (const char *str
, const char *suffix
)
505 len2
= strlen (suffix
);
506 return (len1
>= len2
&& strcmp (str
+ len1
- len2
, suffix
) == 0);
509 /* The contents of value VAL, treated as a value of type TYPE. The
510 result is an lval in memory if VAL is. */
512 static struct value
*
513 coerce_unspec_val_to_type (struct value
*val
, struct type
*type
)
515 type
= ada_check_typedef (type
);
516 if (value_type (val
) == type
)
520 struct value
*result
;
522 /* Make sure that the object size is not unreasonable before
523 trying to allocate some memory for it. */
526 result
= allocate_value (type
);
527 set_value_component_location (result
, val
);
528 set_value_bitsize (result
, value_bitsize (val
));
529 set_value_bitpos (result
, value_bitpos (val
));
530 set_value_address (result
, value_address (val
));
532 || TYPE_LENGTH (type
) > TYPE_LENGTH (value_type (val
)))
533 set_value_lazy (result
, 1);
535 memcpy (value_contents_raw (result
), value_contents (val
),
541 static const gdb_byte
*
542 cond_offset_host (const gdb_byte
*valaddr
, long offset
)
547 return valaddr
+ offset
;
551 cond_offset_target (CORE_ADDR address
, long offset
)
556 return address
+ offset
;
559 /* Issue a warning (as for the definition of warning in utils.c, but
560 with exactly one argument rather than ...), unless the limit on the
561 number of warnings has passed during the evaluation of the current
564 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
565 provided by "complaint". */
566 static void lim_warning (const char *format
, ...) ATTRIBUTE_PRINTF (1, 2);
569 lim_warning (const char *format
, ...)
573 va_start (args
, format
);
574 warnings_issued
+= 1;
575 if (warnings_issued
<= warning_limit
)
576 vwarning (format
, args
);
581 /* Issue an error if the size of an object of type T is unreasonable,
582 i.e. if it would be a bad idea to allocate a value of this type in
586 check_size (const struct type
*type
)
588 if (TYPE_LENGTH (type
) > varsize_limit
)
589 error (_("object size is larger than varsize-limit"));
592 /* Maximum value of a SIZE-byte signed integer type. */
594 max_of_size (int size
)
596 LONGEST top_bit
= (LONGEST
) 1 << (size
* 8 - 2);
598 return top_bit
| (top_bit
- 1);
601 /* Minimum value of a SIZE-byte signed integer type. */
603 min_of_size (int size
)
605 return -max_of_size (size
) - 1;
608 /* Maximum value of a SIZE-byte unsigned integer type. */
610 umax_of_size (int size
)
612 ULONGEST top_bit
= (ULONGEST
) 1 << (size
* 8 - 1);
614 return top_bit
| (top_bit
- 1);
617 /* Maximum value of integral type T, as a signed quantity. */
619 max_of_type (struct type
*t
)
621 if (TYPE_UNSIGNED (t
))
622 return (LONGEST
) umax_of_size (TYPE_LENGTH (t
));
624 return max_of_size (TYPE_LENGTH (t
));
627 /* Minimum value of integral type T, as a signed quantity. */
629 min_of_type (struct type
*t
)
631 if (TYPE_UNSIGNED (t
))
634 return min_of_size (TYPE_LENGTH (t
));
637 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
639 ada_discrete_type_high_bound (struct type
*type
)
641 switch (TYPE_CODE (type
))
643 case TYPE_CODE_RANGE
:
644 return TYPE_HIGH_BOUND (type
);
646 return TYPE_FIELD_BITPOS (type
, TYPE_NFIELDS (type
) - 1);
651 return max_of_type (type
);
653 error (_("Unexpected type in ada_discrete_type_high_bound."));
657 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
659 ada_discrete_type_low_bound (struct type
*type
)
661 switch (TYPE_CODE (type
))
663 case TYPE_CODE_RANGE
:
664 return TYPE_LOW_BOUND (type
);
666 return TYPE_FIELD_BITPOS (type
, 0);
671 return min_of_type (type
);
673 error (_("Unexpected type in ada_discrete_type_low_bound."));
677 /* The identity on non-range types. For range types, the underlying
678 non-range scalar type. */
681 base_type (struct type
*type
)
683 while (type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_RANGE
)
685 if (type
== TYPE_TARGET_TYPE (type
) || TYPE_TARGET_TYPE (type
) == NULL
)
687 type
= TYPE_TARGET_TYPE (type
);
693 /* Language Selection */
695 /* If the main program is in Ada, return language_ada, otherwise return LANG
696 (the main program is in Ada iif the adainit symbol is found). */
699 ada_update_initial_language (enum language lang
)
701 if (lookup_minimal_symbol ("adainit", (const char *) NULL
,
702 (struct objfile
*) NULL
) != NULL
)
708 /* If the main procedure is written in Ada, then return its name.
709 The result is good until the next call. Return NULL if the main
710 procedure doesn't appear to be in Ada. */
715 struct minimal_symbol
*msym
;
716 static char *main_program_name
= NULL
;
718 /* For Ada, the name of the main procedure is stored in a specific
719 string constant, generated by the binder. Look for that symbol,
720 extract its address, and then read that string. If we didn't find
721 that string, then most probably the main procedure is not written
723 msym
= lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME
, NULL
, NULL
);
727 CORE_ADDR main_program_name_addr
;
730 main_program_name_addr
= SYMBOL_VALUE_ADDRESS (msym
);
731 if (main_program_name_addr
== 0)
732 error (_("Invalid address for Ada main program name."));
734 xfree (main_program_name
);
735 target_read_string (main_program_name_addr
, &main_program_name
,
740 return main_program_name
;
743 /* The main procedure doesn't seem to be in Ada. */
749 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
752 const struct ada_opname_map ada_opname_table
[] = {
753 {"Oadd", "\"+\"", BINOP_ADD
},
754 {"Osubtract", "\"-\"", BINOP_SUB
},
755 {"Omultiply", "\"*\"", BINOP_MUL
},
756 {"Odivide", "\"/\"", BINOP_DIV
},
757 {"Omod", "\"mod\"", BINOP_MOD
},
758 {"Orem", "\"rem\"", BINOP_REM
},
759 {"Oexpon", "\"**\"", BINOP_EXP
},
760 {"Olt", "\"<\"", BINOP_LESS
},
761 {"Ole", "\"<=\"", BINOP_LEQ
},
762 {"Ogt", "\">\"", BINOP_GTR
},
763 {"Oge", "\">=\"", BINOP_GEQ
},
764 {"Oeq", "\"=\"", BINOP_EQUAL
},
765 {"One", "\"/=\"", BINOP_NOTEQUAL
},
766 {"Oand", "\"and\"", BINOP_BITWISE_AND
},
767 {"Oor", "\"or\"", BINOP_BITWISE_IOR
},
768 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR
},
769 {"Oconcat", "\"&\"", BINOP_CONCAT
},
770 {"Oabs", "\"abs\"", UNOP_ABS
},
771 {"Onot", "\"not\"", UNOP_LOGICAL_NOT
},
772 {"Oadd", "\"+\"", UNOP_PLUS
},
773 {"Osubtract", "\"-\"", UNOP_NEG
},
777 /* The "encoded" form of DECODED, according to GNAT conventions.
778 The result is valid until the next call to ada_encode. */
781 ada_encode (const char *decoded
)
783 static char *encoding_buffer
= NULL
;
784 static size_t encoding_buffer_size
= 0;
791 GROW_VECT (encoding_buffer
, encoding_buffer_size
,
792 2 * strlen (decoded
) + 10);
795 for (p
= decoded
; *p
!= '\0'; p
+= 1)
799 encoding_buffer
[k
] = encoding_buffer
[k
+ 1] = '_';
804 const struct ada_opname_map
*mapping
;
806 for (mapping
= ada_opname_table
;
807 mapping
->encoded
!= NULL
808 && strncmp (mapping
->decoded
, p
,
809 strlen (mapping
->decoded
)) != 0; mapping
+= 1)
811 if (mapping
->encoded
== NULL
)
812 error (_("invalid Ada operator name: %s"), p
);
813 strcpy (encoding_buffer
+ k
, mapping
->encoded
);
814 k
+= strlen (mapping
->encoded
);
819 encoding_buffer
[k
] = *p
;
824 encoding_buffer
[k
] = '\0';
825 return encoding_buffer
;
828 /* Return NAME folded to lower case, or, if surrounded by single
829 quotes, unfolded, but with the quotes stripped away. Result good
833 ada_fold_name (const char *name
)
835 static char *fold_buffer
= NULL
;
836 static size_t fold_buffer_size
= 0;
838 int len
= strlen (name
);
839 GROW_VECT (fold_buffer
, fold_buffer_size
, len
+ 1);
843 strncpy (fold_buffer
, name
+ 1, len
- 2);
844 fold_buffer
[len
- 2] = '\000';
850 for (i
= 0; i
<= len
; i
+= 1)
851 fold_buffer
[i
] = tolower (name
[i
]);
857 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
860 is_lower_alphanum (const char c
)
862 return (isdigit (c
) || (isalpha (c
) && islower (c
)));
865 /* Remove either of these suffixes:
870 These are suffixes introduced by the compiler for entities such as
871 nested subprogram for instance, in order to avoid name clashes.
872 They do not serve any purpose for the debugger. */
875 ada_remove_trailing_digits (const char *encoded
, int *len
)
877 if (*len
> 1 && isdigit (encoded
[*len
- 1]))
881 while (i
> 0 && isdigit (encoded
[i
]))
883 if (i
>= 0 && encoded
[i
] == '.')
885 else if (i
>= 0 && encoded
[i
] == '$')
887 else if (i
>= 2 && strncmp (encoded
+ i
- 2, "___", 3) == 0)
889 else if (i
>= 1 && strncmp (encoded
+ i
- 1, "__", 2) == 0)
894 /* Remove the suffix introduced by the compiler for protected object
898 ada_remove_po_subprogram_suffix (const char *encoded
, int *len
)
900 /* Remove trailing N. */
902 /* Protected entry subprograms are broken into two
903 separate subprograms: The first one is unprotected, and has
904 a 'N' suffix; the second is the protected version, and has
905 the 'P' suffix. The second calls the first one after handling
906 the protection. Since the P subprograms are internally generated,
907 we leave these names undecoded, giving the user a clue that this
908 entity is internal. */
911 && encoded
[*len
- 1] == 'N'
912 && (isdigit (encoded
[*len
- 2]) || islower (encoded
[*len
- 2])))
916 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
919 ada_remove_Xbn_suffix (const char *encoded
, int *len
)
923 while (i
> 0 && (encoded
[i
] == 'b' || encoded
[i
] == 'n'))
926 if (encoded
[i
] != 'X')
932 if (isalnum (encoded
[i
-1]))
936 /* If ENCODED follows the GNAT entity encoding conventions, then return
937 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
940 The resulting string is valid until the next call of ada_decode.
941 If the string is unchanged by decoding, the original string pointer
945 ada_decode (const char *encoded
)
952 static char *decoding_buffer
= NULL
;
953 static size_t decoding_buffer_size
= 0;
955 /* The name of the Ada main procedure starts with "_ada_".
956 This prefix is not part of the decoded name, so skip this part
957 if we see this prefix. */
958 if (strncmp (encoded
, "_ada_", 5) == 0)
961 /* If the name starts with '_', then it is not a properly encoded
962 name, so do not attempt to decode it. Similarly, if the name
963 starts with '<', the name should not be decoded. */
964 if (encoded
[0] == '_' || encoded
[0] == '<')
967 len0
= strlen (encoded
);
969 ada_remove_trailing_digits (encoded
, &len0
);
970 ada_remove_po_subprogram_suffix (encoded
, &len0
);
972 /* Remove the ___X.* suffix if present. Do not forget to verify that
973 the suffix is located before the current "end" of ENCODED. We want
974 to avoid re-matching parts of ENCODED that have previously been
975 marked as discarded (by decrementing LEN0). */
976 p
= strstr (encoded
, "___");
977 if (p
!= NULL
&& p
- encoded
< len0
- 3)
985 /* Remove any trailing TKB suffix. It tells us that this symbol
986 is for the body of a task, but that information does not actually
987 appear in the decoded name. */
989 if (len0
> 3 && strncmp (encoded
+ len0
- 3, "TKB", 3) == 0)
992 /* Remove any trailing TB suffix. The TB suffix is slightly different
993 from the TKB suffix because it is used for non-anonymous task
996 if (len0
> 2 && strncmp (encoded
+ len0
- 2, "TB", 2) == 0)
999 /* Remove trailing "B" suffixes. */
1000 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1002 if (len0
> 1 && strncmp (encoded
+ len0
- 1, "B", 1) == 0)
1005 /* Make decoded big enough for possible expansion by operator name. */
1007 GROW_VECT (decoding_buffer
, decoding_buffer_size
, 2 * len0
+ 1);
1008 decoded
= decoding_buffer
;
1010 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1012 if (len0
> 1 && isdigit (encoded
[len0
- 1]))
1015 while ((i
>= 0 && isdigit (encoded
[i
]))
1016 || (i
>= 1 && encoded
[i
] == '_' && isdigit (encoded
[i
- 1])))
1018 if (i
> 1 && encoded
[i
] == '_' && encoded
[i
- 1] == '_')
1020 else if (encoded
[i
] == '$')
1024 /* The first few characters that are not alphabetic are not part
1025 of any encoding we use, so we can copy them over verbatim. */
1027 for (i
= 0, j
= 0; i
< len0
&& !isalpha (encoded
[i
]); i
+= 1, j
+= 1)
1028 decoded
[j
] = encoded
[i
];
1033 /* Is this a symbol function? */
1034 if (at_start_name
&& encoded
[i
] == 'O')
1038 for (k
= 0; ada_opname_table
[k
].encoded
!= NULL
; k
+= 1)
1040 int op_len
= strlen (ada_opname_table
[k
].encoded
);
1041 if ((strncmp (ada_opname_table
[k
].encoded
+ 1, encoded
+ i
+ 1,
1043 && !isalnum (encoded
[i
+ op_len
]))
1045 strcpy (decoded
+ j
, ada_opname_table
[k
].decoded
);
1048 j
+= strlen (ada_opname_table
[k
].decoded
);
1052 if (ada_opname_table
[k
].encoded
!= NULL
)
1057 /* Replace "TK__" with "__", which will eventually be translated
1058 into "." (just below). */
1060 if (i
< len0
- 4 && strncmp (encoded
+ i
, "TK__", 4) == 0)
1063 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1064 be translated into "." (just below). These are internal names
1065 generated for anonymous blocks inside which our symbol is nested. */
1067 if (len0
- i
> 5 && encoded
[i
] == '_' && encoded
[i
+1] == '_'
1068 && encoded
[i
+2] == 'B' && encoded
[i
+3] == '_'
1069 && isdigit (encoded
[i
+4]))
1073 while (k
< len0
&& isdigit (encoded
[k
]))
1074 k
++; /* Skip any extra digit. */
1076 /* Double-check that the "__B_{DIGITS}+" sequence we found
1077 is indeed followed by "__". */
1078 if (len0
- k
> 2 && encoded
[k
] == '_' && encoded
[k
+1] == '_')
1082 /* Remove _E{DIGITS}+[sb] */
1084 /* Just as for protected object subprograms, there are 2 categories
1085 of subprograms created by the compiler for each entry. The first
1086 one implements the actual entry code, and has a suffix following
1087 the convention above; the second one implements the barrier and
1088 uses the same convention as above, except that the 'E' is replaced
1091 Just as above, we do not decode the name of barrier functions
1092 to give the user a clue that the code he is debugging has been
1093 internally generated. */
1095 if (len0
- i
> 3 && encoded
[i
] == '_' && encoded
[i
+1] == 'E'
1096 && isdigit (encoded
[i
+2]))
1100 while (k
< len0
&& isdigit (encoded
[k
]))
1104 && (encoded
[k
] == 'b' || encoded
[k
] == 's'))
1107 /* Just as an extra precaution, make sure that if this
1108 suffix is followed by anything else, it is a '_'.
1109 Otherwise, we matched this sequence by accident. */
1111 || (k
< len0
&& encoded
[k
] == '_'))
1116 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1117 the GNAT front-end in protected object subprograms. */
1120 && encoded
[i
] == 'N' && encoded
[i
+1] == '_' && encoded
[i
+2] == '_')
1122 /* Backtrack a bit up until we reach either the begining of
1123 the encoded name, or "__". Make sure that we only find
1124 digits or lowercase characters. */
1125 const char *ptr
= encoded
+ i
- 1;
1127 while (ptr
>= encoded
&& is_lower_alphanum (ptr
[0]))
1130 || (ptr
> encoded
&& ptr
[0] == '_' && ptr
[-1] == '_'))
1134 if (encoded
[i
] == 'X' && i
!= 0 && isalnum (encoded
[i
- 1]))
1136 /* This is a X[bn]* sequence not separated from the previous
1137 part of the name with a non-alpha-numeric character (in other
1138 words, immediately following an alpha-numeric character), then
1139 verify that it is placed at the end of the encoded name. If
1140 not, then the encoding is not valid and we should abort the
1141 decoding. Otherwise, just skip it, it is used in body-nested
1145 while (i
< len0
&& (encoded
[i
] == 'b' || encoded
[i
] == 'n'));
1149 else if (i
< len0
- 2 && encoded
[i
] == '_' && encoded
[i
+ 1] == '_')
1151 /* Replace '__' by '.'. */
1159 /* It's a character part of the decoded name, so just copy it
1161 decoded
[j
] = encoded
[i
];
1166 decoded
[j
] = '\000';
1168 /* Decoded names should never contain any uppercase character.
1169 Double-check this, and abort the decoding if we find one. */
1171 for (i
= 0; decoded
[i
] != '\0'; i
+= 1)
1172 if (isupper (decoded
[i
]) || decoded
[i
] == ' ')
1175 if (strcmp (decoded
, encoded
) == 0)
1181 GROW_VECT (decoding_buffer
, decoding_buffer_size
, strlen (encoded
) + 3);
1182 decoded
= decoding_buffer
;
1183 if (encoded
[0] == '<')
1184 strcpy (decoded
, encoded
);
1186 xsnprintf (decoded
, decoding_buffer_size
, "<%s>", encoded
);
1191 /* Table for keeping permanent unique copies of decoded names. Once
1192 allocated, names in this table are never released. While this is a
1193 storage leak, it should not be significant unless there are massive
1194 changes in the set of decoded names in successive versions of a
1195 symbol table loaded during a single session. */
1196 static struct htab
*decoded_names_store
;
1198 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1199 in the language-specific part of GSYMBOL, if it has not been
1200 previously computed. Tries to save the decoded name in the same
1201 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1202 in any case, the decoded symbol has a lifetime at least that of
1204 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1205 const, but nevertheless modified to a semantically equivalent form
1206 when a decoded name is cached in it.
1210 ada_decode_symbol (const struct general_symbol_info
*gsymbol
)
1213 (char **) &gsymbol
->language_specific
.cplus_specific
.demangled_name
;
1215 if (*resultp
== NULL
)
1217 const char *decoded
= ada_decode (gsymbol
->name
);
1219 if (gsymbol
->obj_section
!= NULL
)
1221 struct objfile
*objf
= gsymbol
->obj_section
->objfile
;
1223 *resultp
= obsavestring (decoded
, strlen (decoded
),
1224 &objf
->objfile_obstack
);
1226 /* Sometimes, we can't find a corresponding objfile, in which
1227 case, we put the result on the heap. Since we only decode
1228 when needed, we hope this usually does not cause a
1229 significant memory leak (FIXME). */
1230 if (*resultp
== NULL
)
1232 char **slot
= (char **) htab_find_slot (decoded_names_store
,
1236 *slot
= xstrdup (decoded
);
1245 ada_la_decode (const char *encoded
, int options
)
1247 return xstrdup (ada_decode (encoded
));
1250 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1251 suffixes that encode debugging information or leading _ada_ on
1252 SYM_NAME (see is_name_suffix commentary for the debugging
1253 information that is ignored). If WILD, then NAME need only match a
1254 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1255 either argument is NULL. */
1258 ada_match_name (const char *sym_name
, const char *name
, int wild
)
1260 if (sym_name
== NULL
|| name
== NULL
)
1263 return wild_match (name
, strlen (name
), sym_name
);
1266 int len_name
= strlen (name
);
1268 return (strncmp (sym_name
, name
, len_name
) == 0
1269 && is_name_suffix (sym_name
+ len_name
))
1270 || (strncmp (sym_name
, "_ada_", 5) == 0
1271 && strncmp (sym_name
+ 5, name
, len_name
) == 0
1272 && is_name_suffix (sym_name
+ len_name
+ 5));
1279 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1280 generated by the GNAT compiler to describe the index type used
1281 for each dimension of an array, check whether it follows the latest
1282 known encoding. If not, fix it up to conform to the latest encoding.
1283 Otherwise, do nothing. This function also does nothing if
1284 INDEX_DESC_TYPE is NULL.
1286 The GNAT encoding used to describle the array index type evolved a bit.
1287 Initially, the information would be provided through the name of each
1288 field of the structure type only, while the type of these fields was
1289 described as unspecified and irrelevant. The debugger was then expected
1290 to perform a global type lookup using the name of that field in order
1291 to get access to the full index type description. Because these global
1292 lookups can be very expensive, the encoding was later enhanced to make
1293 the global lookup unnecessary by defining the field type as being
1294 the full index type description.
1296 The purpose of this routine is to allow us to support older versions
1297 of the compiler by detecting the use of the older encoding, and by
1298 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1299 we essentially replace each field's meaningless type by the associated
1303 ada_fixup_array_indexes_type (struct type
*index_desc_type
)
1307 if (index_desc_type
== NULL
)
1309 gdb_assert (TYPE_NFIELDS (index_desc_type
) > 0);
1311 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1312 to check one field only, no need to check them all). If not, return
1315 If our INDEX_DESC_TYPE was generated using the older encoding,
1316 the field type should be a meaningless integer type whose name
1317 is not equal to the field name. */
1318 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type
, 0)) != NULL
1319 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type
, 0)),
1320 TYPE_FIELD_NAME (index_desc_type
, 0)) == 0)
1323 /* Fixup each field of INDEX_DESC_TYPE. */
1324 for (i
= 0; i
< TYPE_NFIELDS (index_desc_type
); i
++)
1326 char *name
= TYPE_FIELD_NAME (index_desc_type
, i
);
1327 struct type
*raw_type
= ada_check_typedef (ada_find_any_type (name
));
1330 TYPE_FIELD_TYPE (index_desc_type
, i
) = raw_type
;
1334 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1336 static char *bound_name
[] = {
1337 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1338 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1341 /* Maximum number of array dimensions we are prepared to handle. */
1343 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1345 /* Like modify_field, but allows bitpos > wordlength. */
1348 modify_general_field (struct type
*type
, char *addr
,
1349 LONGEST fieldval
, int bitpos
, int bitsize
)
1351 modify_field (type
, addr
+ bitpos
/ 8, fieldval
, bitpos
% 8, bitsize
);
1355 /* The desc_* routines return primitive portions of array descriptors
1358 /* The descriptor or array type, if any, indicated by TYPE; removes
1359 level of indirection, if needed. */
1361 static struct type
*
1362 desc_base_type (struct type
*type
)
1366 type
= ada_check_typedef (type
);
1368 && (TYPE_CODE (type
) == TYPE_CODE_PTR
1369 || TYPE_CODE (type
) == TYPE_CODE_REF
))
1370 return ada_check_typedef (TYPE_TARGET_TYPE (type
));
1375 /* True iff TYPE indicates a "thin" array pointer type. */
1378 is_thin_pntr (struct type
*type
)
1381 is_suffix (ada_type_name (desc_base_type (type
)), "___XUT")
1382 || is_suffix (ada_type_name (desc_base_type (type
)), "___XUT___XVE");
1385 /* The descriptor type for thin pointer type TYPE. */
1387 static struct type
*
1388 thin_descriptor_type (struct type
*type
)
1390 struct type
*base_type
= desc_base_type (type
);
1392 if (base_type
== NULL
)
1394 if (is_suffix (ada_type_name (base_type
), "___XVE"))
1398 struct type
*alt_type
= ada_find_parallel_type (base_type
, "___XVE");
1400 if (alt_type
== NULL
)
1407 /* A pointer to the array data for thin-pointer value VAL. */
1409 static struct value
*
1410 thin_data_pntr (struct value
*val
)
1412 struct type
*type
= value_type (val
);
1413 struct type
*data_type
= desc_data_target_type (thin_descriptor_type (type
));
1415 data_type
= lookup_pointer_type (data_type
);
1417 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
1418 return value_cast (data_type
, value_copy (val
));
1420 return value_from_longest (data_type
, value_address (val
));
1423 /* True iff TYPE indicates a "thick" array pointer type. */
1426 is_thick_pntr (struct type
*type
)
1428 type
= desc_base_type (type
);
1429 return (type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_STRUCT
1430 && lookup_struct_elt_type (type
, "P_BOUNDS", 1) != NULL
);
1433 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1434 pointer to one, the type of its bounds data; otherwise, NULL. */
1436 static struct type
*
1437 desc_bounds_type (struct type
*type
)
1441 type
= desc_base_type (type
);
1445 else if (is_thin_pntr (type
))
1447 type
= thin_descriptor_type (type
);
1450 r
= lookup_struct_elt_type (type
, "BOUNDS", 1);
1452 return ada_check_typedef (r
);
1454 else if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
1456 r
= lookup_struct_elt_type (type
, "P_BOUNDS", 1);
1458 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r
)));
1463 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1464 one, a pointer to its bounds data. Otherwise NULL. */
1466 static struct value
*
1467 desc_bounds (struct value
*arr
)
1469 struct type
*type
= ada_check_typedef (value_type (arr
));
1471 if (is_thin_pntr (type
))
1473 struct type
*bounds_type
=
1474 desc_bounds_type (thin_descriptor_type (type
));
1477 if (bounds_type
== NULL
)
1478 error (_("Bad GNAT array descriptor"));
1480 /* NOTE: The following calculation is not really kosher, but
1481 since desc_type is an XVE-encoded type (and shouldn't be),
1482 the correct calculation is a real pain. FIXME (and fix GCC). */
1483 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
1484 addr
= value_as_long (arr
);
1486 addr
= value_address (arr
);
1489 value_from_longest (lookup_pointer_type (bounds_type
),
1490 addr
- TYPE_LENGTH (bounds_type
));
1493 else if (is_thick_pntr (type
))
1494 return value_struct_elt (&arr
, NULL
, "P_BOUNDS", NULL
,
1495 _("Bad GNAT array descriptor"));
1500 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1501 position of the field containing the address of the bounds data. */
1504 fat_pntr_bounds_bitpos (struct type
*type
)
1506 return TYPE_FIELD_BITPOS (desc_base_type (type
), 1);
1509 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1510 size of the field containing the address of the bounds data. */
1513 fat_pntr_bounds_bitsize (struct type
*type
)
1515 type
= desc_base_type (type
);
1517 if (TYPE_FIELD_BITSIZE (type
, 1) > 0)
1518 return TYPE_FIELD_BITSIZE (type
, 1);
1520 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type
, 1)));
1523 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1524 pointer to one, the type of its array data (a array-with-no-bounds type);
1525 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1528 static struct type
*
1529 desc_data_target_type (struct type
*type
)
1531 type
= desc_base_type (type
);
1533 /* NOTE: The following is bogus; see comment in desc_bounds. */
1534 if (is_thin_pntr (type
))
1535 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type
), 1));
1536 else if (is_thick_pntr (type
))
1538 struct type
*data_type
= lookup_struct_elt_type (type
, "P_ARRAY", 1);
1541 && TYPE_CODE (ada_check_typedef (data_type
)) == TYPE_CODE_PTR
)
1542 return TYPE_TARGET_TYPE (data_type
);
1548 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1551 static struct value
*
1552 desc_data (struct value
*arr
)
1554 struct type
*type
= value_type (arr
);
1556 if (is_thin_pntr (type
))
1557 return thin_data_pntr (arr
);
1558 else if (is_thick_pntr (type
))
1559 return value_struct_elt (&arr
, NULL
, "P_ARRAY", NULL
,
1560 _("Bad GNAT array descriptor"));
1566 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1567 position of the field containing the address of the data. */
1570 fat_pntr_data_bitpos (struct type
*type
)
1572 return TYPE_FIELD_BITPOS (desc_base_type (type
), 0);
1575 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1576 size of the field containing the address of the data. */
1579 fat_pntr_data_bitsize (struct type
*type
)
1581 type
= desc_base_type (type
);
1583 if (TYPE_FIELD_BITSIZE (type
, 0) > 0)
1584 return TYPE_FIELD_BITSIZE (type
, 0);
1586 return TARGET_CHAR_BIT
* TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 0));
1589 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1590 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1591 bound, if WHICH is 1. The first bound is I=1. */
1593 static struct value
*
1594 desc_one_bound (struct value
*bounds
, int i
, int which
)
1596 return value_struct_elt (&bounds
, NULL
, bound_name
[2 * i
+ which
- 2], NULL
,
1597 _("Bad GNAT array descriptor bounds"));
1600 /* If BOUNDS is an array-bounds structure type, return the bit position
1601 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1602 bound, if WHICH is 1. The first bound is I=1. */
1605 desc_bound_bitpos (struct type
*type
, int i
, int which
)
1607 return TYPE_FIELD_BITPOS (desc_base_type (type
), 2 * i
+ which
- 2);
1610 /* If BOUNDS is an array-bounds structure type, return the bit field size
1611 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1612 bound, if WHICH is 1. The first bound is I=1. */
1615 desc_bound_bitsize (struct type
*type
, int i
, int which
)
1617 type
= desc_base_type (type
);
1619 if (TYPE_FIELD_BITSIZE (type
, 2 * i
+ which
- 2) > 0)
1620 return TYPE_FIELD_BITSIZE (type
, 2 * i
+ which
- 2);
1622 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 2 * i
+ which
- 2));
1625 /* If TYPE is the type of an array-bounds structure, the type of its
1626 Ith bound (numbering from 1). Otherwise, NULL. */
1628 static struct type
*
1629 desc_index_type (struct type
*type
, int i
)
1631 type
= desc_base_type (type
);
1633 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
1634 return lookup_struct_elt_type (type
, bound_name
[2 * i
- 2], 1);
1639 /* The number of index positions in the array-bounds type TYPE.
1640 Return 0 if TYPE is NULL. */
1643 desc_arity (struct type
*type
)
1645 type
= desc_base_type (type
);
1648 return TYPE_NFIELDS (type
) / 2;
1652 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1653 an array descriptor type (representing an unconstrained array
1657 ada_is_direct_array_type (struct type
*type
)
1661 type
= ada_check_typedef (type
);
1662 return (TYPE_CODE (type
) == TYPE_CODE_ARRAY
1663 || ada_is_array_descriptor_type (type
));
1666 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1670 ada_is_array_type (struct type
*type
)
1673 && (TYPE_CODE (type
) == TYPE_CODE_PTR
1674 || TYPE_CODE (type
) == TYPE_CODE_REF
))
1675 type
= TYPE_TARGET_TYPE (type
);
1676 return ada_is_direct_array_type (type
);
1679 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1682 ada_is_simple_array_type (struct type
*type
)
1686 type
= ada_check_typedef (type
);
1687 return (TYPE_CODE (type
) == TYPE_CODE_ARRAY
1688 || (TYPE_CODE (type
) == TYPE_CODE_PTR
1689 && TYPE_CODE (TYPE_TARGET_TYPE (type
)) == TYPE_CODE_ARRAY
));
1692 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1695 ada_is_array_descriptor_type (struct type
*type
)
1697 struct type
*data_type
= desc_data_target_type (type
);
1701 type
= ada_check_typedef (type
);
1702 return (data_type
!= NULL
1703 && TYPE_CODE (data_type
) == TYPE_CODE_ARRAY
1704 && desc_arity (desc_bounds_type (type
)) > 0);
1707 /* Non-zero iff type is a partially mal-formed GNAT array
1708 descriptor. FIXME: This is to compensate for some problems with
1709 debugging output from GNAT. Re-examine periodically to see if it
1713 ada_is_bogus_array_descriptor (struct type
*type
)
1717 && TYPE_CODE (type
) == TYPE_CODE_STRUCT
1718 && (lookup_struct_elt_type (type
, "P_BOUNDS", 1) != NULL
1719 || lookup_struct_elt_type (type
, "P_ARRAY", 1) != NULL
)
1720 && !ada_is_array_descriptor_type (type
);
1724 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1725 (fat pointer) returns the type of the array data described---specifically,
1726 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1727 in from the descriptor; otherwise, they are left unspecified. If
1728 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1729 returns NULL. The result is simply the type of ARR if ARR is not
1732 ada_type_of_array (struct value
*arr
, int bounds
)
1734 if (ada_is_constrained_packed_array_type (value_type (arr
)))
1735 return decode_constrained_packed_array_type (value_type (arr
));
1737 if (!ada_is_array_descriptor_type (value_type (arr
)))
1738 return value_type (arr
);
1742 struct type
*array_type
=
1743 ada_check_typedef (desc_data_target_type (value_type (arr
)));
1745 if (ada_is_unconstrained_packed_array_type (value_type (arr
)))
1746 TYPE_FIELD_BITSIZE (array_type
, 0) =
1747 decode_packed_array_bitsize (value_type (arr
));
1753 struct type
*elt_type
;
1755 struct value
*descriptor
;
1757 elt_type
= ada_array_element_type (value_type (arr
), -1);
1758 arity
= ada_array_arity (value_type (arr
));
1760 if (elt_type
== NULL
|| arity
== 0)
1761 return ada_check_typedef (value_type (arr
));
1763 descriptor
= desc_bounds (arr
);
1764 if (value_as_long (descriptor
) == 0)
1768 struct type
*range_type
= alloc_type_copy (value_type (arr
));
1769 struct type
*array_type
= alloc_type_copy (value_type (arr
));
1770 struct value
*low
= desc_one_bound (descriptor
, arity
, 0);
1771 struct value
*high
= desc_one_bound (descriptor
, arity
, 1);
1774 create_range_type (range_type
, value_type (low
),
1775 longest_to_int (value_as_long (low
)),
1776 longest_to_int (value_as_long (high
)));
1777 elt_type
= create_array_type (array_type
, elt_type
, range_type
);
1779 if (ada_is_unconstrained_packed_array_type (value_type (arr
)))
1780 TYPE_FIELD_BITSIZE (elt_type
, 0) =
1781 decode_packed_array_bitsize (value_type (arr
));
1784 return lookup_pointer_type (elt_type
);
1788 /* If ARR does not represent an array, returns ARR unchanged.
1789 Otherwise, returns either a standard GDB array with bounds set
1790 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1791 GDB array. Returns NULL if ARR is a null fat pointer. */
1794 ada_coerce_to_simple_array_ptr (struct value
*arr
)
1796 if (ada_is_array_descriptor_type (value_type (arr
)))
1798 struct type
*arrType
= ada_type_of_array (arr
, 1);
1800 if (arrType
== NULL
)
1802 return value_cast (arrType
, value_copy (desc_data (arr
)));
1804 else if (ada_is_constrained_packed_array_type (value_type (arr
)))
1805 return decode_constrained_packed_array (arr
);
1810 /* If ARR does not represent an array, returns ARR unchanged.
1811 Otherwise, returns a standard GDB array describing ARR (which may
1812 be ARR itself if it already is in the proper form). */
1814 static struct value
*
1815 ada_coerce_to_simple_array (struct value
*arr
)
1817 if (ada_is_array_descriptor_type (value_type (arr
)))
1819 struct value
*arrVal
= ada_coerce_to_simple_array_ptr (arr
);
1822 error (_("Bounds unavailable for null array pointer."));
1823 check_size (TYPE_TARGET_TYPE (value_type (arrVal
)));
1824 return value_ind (arrVal
);
1826 else if (ada_is_constrained_packed_array_type (value_type (arr
)))
1827 return decode_constrained_packed_array (arr
);
1832 /* If TYPE represents a GNAT array type, return it translated to an
1833 ordinary GDB array type (possibly with BITSIZE fields indicating
1834 packing). For other types, is the identity. */
1837 ada_coerce_to_simple_array_type (struct type
*type
)
1839 if (ada_is_constrained_packed_array_type (type
))
1840 return decode_constrained_packed_array_type (type
);
1842 if (ada_is_array_descriptor_type (type
))
1843 return ada_check_typedef (desc_data_target_type (type
));
1848 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1851 ada_is_packed_array_type (struct type
*type
)
1855 type
= desc_base_type (type
);
1856 type
= ada_check_typedef (type
);
1858 ada_type_name (type
) != NULL
1859 && strstr (ada_type_name (type
), "___XP") != NULL
;
1862 /* Non-zero iff TYPE represents a standard GNAT constrained
1863 packed-array type. */
1866 ada_is_constrained_packed_array_type (struct type
*type
)
1868 return ada_is_packed_array_type (type
)
1869 && !ada_is_array_descriptor_type (type
);
1872 /* Non-zero iff TYPE represents an array descriptor for a
1873 unconstrained packed-array type. */
1876 ada_is_unconstrained_packed_array_type (struct type
*type
)
1878 return ada_is_packed_array_type (type
)
1879 && ada_is_array_descriptor_type (type
);
1882 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1883 return the size of its elements in bits. */
1886 decode_packed_array_bitsize (struct type
*type
)
1888 char *raw_name
= ada_type_name (ada_check_typedef (type
));
1893 raw_name
= ada_type_name (desc_base_type (type
));
1898 tail
= strstr (raw_name
, "___XP");
1900 if (sscanf (tail
+ sizeof ("___XP") - 1, "%ld", &bits
) != 1)
1903 (_("could not understand bit size information on packed array"));
1910 /* Given that TYPE is a standard GDB array type with all bounds filled
1911 in, and that the element size of its ultimate scalar constituents
1912 (that is, either its elements, or, if it is an array of arrays, its
1913 elements' elements, etc.) is *ELT_BITS, return an identical type,
1914 but with the bit sizes of its elements (and those of any
1915 constituent arrays) recorded in the BITSIZE components of its
1916 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1919 static struct type
*
1920 constrained_packed_array_type (struct type
*type
, long *elt_bits
)
1922 struct type
*new_elt_type
;
1923 struct type
*new_type
;
1924 LONGEST low_bound
, high_bound
;
1926 type
= ada_check_typedef (type
);
1927 if (TYPE_CODE (type
) != TYPE_CODE_ARRAY
)
1930 new_type
= alloc_type_copy (type
);
1932 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type
)),
1934 create_array_type (new_type
, new_elt_type
, TYPE_INDEX_TYPE (type
));
1935 TYPE_FIELD_BITSIZE (new_type
, 0) = *elt_bits
;
1936 TYPE_NAME (new_type
) = ada_type_name (type
);
1938 if (get_discrete_bounds (TYPE_INDEX_TYPE (type
),
1939 &low_bound
, &high_bound
) < 0)
1940 low_bound
= high_bound
= 0;
1941 if (high_bound
< low_bound
)
1942 *elt_bits
= TYPE_LENGTH (new_type
) = 0;
1945 *elt_bits
*= (high_bound
- low_bound
+ 1);
1946 TYPE_LENGTH (new_type
) =
1947 (*elt_bits
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
1950 TYPE_FIXED_INSTANCE (new_type
) = 1;
1954 /* The array type encoded by TYPE, where
1955 ada_is_constrained_packed_array_type (TYPE). */
1957 static struct type
*
1958 decode_constrained_packed_array_type (struct type
*type
)
1960 char *raw_name
= ada_type_name (ada_check_typedef (type
));
1963 struct type
*shadow_type
;
1967 raw_name
= ada_type_name (desc_base_type (type
));
1972 name
= (char *) alloca (strlen (raw_name
) + 1);
1973 tail
= strstr (raw_name
, "___XP");
1974 type
= desc_base_type (type
);
1976 memcpy (name
, raw_name
, tail
- raw_name
);
1977 name
[tail
- raw_name
] = '\000';
1979 shadow_type
= ada_find_parallel_type_with_name (type
, name
);
1981 if (shadow_type
== NULL
)
1983 lim_warning (_("could not find bounds information on packed array"));
1986 CHECK_TYPEDEF (shadow_type
);
1988 if (TYPE_CODE (shadow_type
) != TYPE_CODE_ARRAY
)
1990 lim_warning (_("could not understand bounds information on packed array"));
1994 bits
= decode_packed_array_bitsize (type
);
1995 return constrained_packed_array_type (shadow_type
, &bits
);
1998 /* Given that ARR is a struct value *indicating a GNAT constrained packed
1999 array, returns a simple array that denotes that array. Its type is a
2000 standard GDB array type except that the BITSIZEs of the array
2001 target types are set to the number of bits in each element, and the
2002 type length is set appropriately. */
2004 static struct value
*
2005 decode_constrained_packed_array (struct value
*arr
)
2009 arr
= ada_coerce_ref (arr
);
2011 /* If our value is a pointer, then dererence it. Make sure that
2012 this operation does not cause the target type to be fixed, as
2013 this would indirectly cause this array to be decoded. The rest
2014 of the routine assumes that the array hasn't been decoded yet,
2015 so we use the basic "value_ind" routine to perform the dereferencing,
2016 as opposed to using "ada_value_ind". */
2017 if (TYPE_CODE (value_type (arr
)) == TYPE_CODE_PTR
)
2018 arr
= value_ind (arr
);
2020 type
= decode_constrained_packed_array_type (value_type (arr
));
2023 error (_("can't unpack array"));
2027 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr
)))
2028 && ada_is_modular_type (value_type (arr
)))
2030 /* This is a (right-justified) modular type representing a packed
2031 array with no wrapper. In order to interpret the value through
2032 the (left-justified) packed array type we just built, we must
2033 first left-justify it. */
2034 int bit_size
, bit_pos
;
2037 mod
= ada_modulus (value_type (arr
)) - 1;
2044 bit_pos
= HOST_CHAR_BIT
* TYPE_LENGTH (value_type (arr
)) - bit_size
;
2045 arr
= ada_value_primitive_packed_val (arr
, NULL
,
2046 bit_pos
/ HOST_CHAR_BIT
,
2047 bit_pos
% HOST_CHAR_BIT
,
2052 return coerce_unspec_val_to_type (arr
, type
);
2056 /* The value of the element of packed array ARR at the ARITY indices
2057 given in IND. ARR must be a simple array. */
2059 static struct value
*
2060 value_subscript_packed (struct value
*arr
, int arity
, struct value
**ind
)
2063 int bits
, elt_off
, bit_off
;
2064 long elt_total_bit_offset
;
2065 struct type
*elt_type
;
2069 elt_total_bit_offset
= 0;
2070 elt_type
= ada_check_typedef (value_type (arr
));
2071 for (i
= 0; i
< arity
; i
+= 1)
2073 if (TYPE_CODE (elt_type
) != TYPE_CODE_ARRAY
2074 || TYPE_FIELD_BITSIZE (elt_type
, 0) == 0)
2076 (_("attempt to do packed indexing of something other than a packed array"));
2079 struct type
*range_type
= TYPE_INDEX_TYPE (elt_type
);
2080 LONGEST lowerbound
, upperbound
;
2083 if (get_discrete_bounds (range_type
, &lowerbound
, &upperbound
) < 0)
2085 lim_warning (_("don't know bounds of array"));
2086 lowerbound
= upperbound
= 0;
2089 idx
= pos_atr (ind
[i
]);
2090 if (idx
< lowerbound
|| idx
> upperbound
)
2091 lim_warning (_("packed array index %ld out of bounds"), (long) idx
);
2092 bits
= TYPE_FIELD_BITSIZE (elt_type
, 0);
2093 elt_total_bit_offset
+= (idx
- lowerbound
) * bits
;
2094 elt_type
= ada_check_typedef (TYPE_TARGET_TYPE (elt_type
));
2097 elt_off
= elt_total_bit_offset
/ HOST_CHAR_BIT
;
2098 bit_off
= elt_total_bit_offset
% HOST_CHAR_BIT
;
2100 v
= ada_value_primitive_packed_val (arr
, NULL
, elt_off
, bit_off
,
2105 /* Non-zero iff TYPE includes negative integer values. */
2108 has_negatives (struct type
*type
)
2110 switch (TYPE_CODE (type
))
2115 return !TYPE_UNSIGNED (type
);
2116 case TYPE_CODE_RANGE
:
2117 return TYPE_LOW_BOUND (type
) < 0;
2122 /* Create a new value of type TYPE from the contents of OBJ starting
2123 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2124 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2125 assigning through the result will set the field fetched from.
2126 VALADDR is ignored unless OBJ is NULL, in which case,
2127 VALADDR+OFFSET must address the start of storage containing the
2128 packed value. The value returned in this case is never an lval.
2129 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2132 ada_value_primitive_packed_val (struct value
*obj
, const gdb_byte
*valaddr
,
2133 long offset
, int bit_offset
, int bit_size
,
2137 int src
, /* Index into the source area */
2138 targ
, /* Index into the target area */
2139 srcBitsLeft
, /* Number of source bits left to move */
2140 nsrc
, ntarg
, /* Number of source and target bytes */
2141 unusedLS
, /* Number of bits in next significant
2142 byte of source that are unused */
2143 accumSize
; /* Number of meaningful bits in accum */
2144 unsigned char *bytes
; /* First byte containing data to unpack */
2145 unsigned char *unpacked
;
2146 unsigned long accum
; /* Staging area for bits being transferred */
2148 int len
= (bit_size
+ bit_offset
+ HOST_CHAR_BIT
- 1) / 8;
2149 /* Transmit bytes from least to most significant; delta is the direction
2150 the indices move. */
2151 int delta
= gdbarch_bits_big_endian (get_type_arch (type
)) ? -1 : 1;
2153 type
= ada_check_typedef (type
);
2157 v
= allocate_value (type
);
2158 bytes
= (unsigned char *) (valaddr
+ offset
);
2160 else if (VALUE_LVAL (obj
) == lval_memory
&& value_lazy (obj
))
2163 value_address (obj
) + offset
);
2164 bytes
= (unsigned char *) alloca (len
);
2165 read_memory (value_address (v
), bytes
, len
);
2169 v
= allocate_value (type
);
2170 bytes
= (unsigned char *) value_contents (obj
) + offset
;
2177 set_value_component_location (v
, obj
);
2178 new_addr
= value_address (obj
) + offset
;
2179 set_value_bitpos (v
, bit_offset
+ value_bitpos (obj
));
2180 set_value_bitsize (v
, bit_size
);
2181 if (value_bitpos (v
) >= HOST_CHAR_BIT
)
2184 set_value_bitpos (v
, value_bitpos (v
) - HOST_CHAR_BIT
);
2186 set_value_address (v
, new_addr
);
2189 set_value_bitsize (v
, bit_size
);
2190 unpacked
= (unsigned char *) value_contents (v
);
2192 srcBitsLeft
= bit_size
;
2194 ntarg
= TYPE_LENGTH (type
);
2198 memset (unpacked
, 0, TYPE_LENGTH (type
));
2201 else if (gdbarch_bits_big_endian (get_type_arch (type
)))
2204 if (has_negatives (type
)
2205 && ((bytes
[0] << bit_offset
) & (1 << (HOST_CHAR_BIT
- 1))))
2209 (HOST_CHAR_BIT
- (bit_size
+ bit_offset
) % HOST_CHAR_BIT
)
2212 switch (TYPE_CODE (type
))
2214 case TYPE_CODE_ARRAY
:
2215 case TYPE_CODE_UNION
:
2216 case TYPE_CODE_STRUCT
:
2217 /* Non-scalar values must be aligned at a byte boundary... */
2219 (HOST_CHAR_BIT
- bit_size
% HOST_CHAR_BIT
) % HOST_CHAR_BIT
;
2220 /* ... And are placed at the beginning (most-significant) bytes
2222 targ
= (bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
- 1;
2227 targ
= TYPE_LENGTH (type
) - 1;
2233 int sign_bit_offset
= (bit_size
+ bit_offset
- 1) % 8;
2236 unusedLS
= bit_offset
;
2239 if (has_negatives (type
) && (bytes
[len
- 1] & (1 << sign_bit_offset
)))
2246 /* Mask for removing bits of the next source byte that are not
2247 part of the value. */
2248 unsigned int unusedMSMask
=
2249 (1 << (srcBitsLeft
>= HOST_CHAR_BIT
? HOST_CHAR_BIT
: srcBitsLeft
)) -
2251 /* Sign-extend bits for this byte. */
2252 unsigned int signMask
= sign
& ~unusedMSMask
;
2255 (((bytes
[src
] >> unusedLS
) & unusedMSMask
) | signMask
) << accumSize
;
2256 accumSize
+= HOST_CHAR_BIT
- unusedLS
;
2257 if (accumSize
>= HOST_CHAR_BIT
)
2259 unpacked
[targ
] = accum
& ~(~0L << HOST_CHAR_BIT
);
2260 accumSize
-= HOST_CHAR_BIT
;
2261 accum
>>= HOST_CHAR_BIT
;
2265 srcBitsLeft
-= HOST_CHAR_BIT
- unusedLS
;
2272 accum
|= sign
<< accumSize
;
2273 unpacked
[targ
] = accum
& ~(~0L << HOST_CHAR_BIT
);
2274 accumSize
-= HOST_CHAR_BIT
;
2275 accum
>>= HOST_CHAR_BIT
;
2283 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2284 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2287 move_bits (gdb_byte
*target
, int targ_offset
, const gdb_byte
*source
,
2288 int src_offset
, int n
, int bits_big_endian_p
)
2290 unsigned int accum
, mask
;
2291 int accum_bits
, chunk_size
;
2293 target
+= targ_offset
/ HOST_CHAR_BIT
;
2294 targ_offset
%= HOST_CHAR_BIT
;
2295 source
+= src_offset
/ HOST_CHAR_BIT
;
2296 src_offset
%= HOST_CHAR_BIT
;
2297 if (bits_big_endian_p
)
2299 accum
= (unsigned char) *source
;
2301 accum_bits
= HOST_CHAR_BIT
- src_offset
;
2307 accum
= (accum
<< HOST_CHAR_BIT
) + (unsigned char) *source
;
2308 accum_bits
+= HOST_CHAR_BIT
;
2310 chunk_size
= HOST_CHAR_BIT
- targ_offset
;
2313 unused_right
= HOST_CHAR_BIT
- (chunk_size
+ targ_offset
);
2314 mask
= ((1 << chunk_size
) - 1) << unused_right
;
2317 | ((accum
>> (accum_bits
- chunk_size
- unused_right
)) & mask
);
2319 accum_bits
-= chunk_size
;
2326 accum
= (unsigned char) *source
>> src_offset
;
2328 accum_bits
= HOST_CHAR_BIT
- src_offset
;
2332 accum
= accum
+ ((unsigned char) *source
<< accum_bits
);
2333 accum_bits
+= HOST_CHAR_BIT
;
2335 chunk_size
= HOST_CHAR_BIT
- targ_offset
;
2338 mask
= ((1 << chunk_size
) - 1) << targ_offset
;
2339 *target
= (*target
& ~mask
) | ((accum
<< targ_offset
) & mask
);
2341 accum_bits
-= chunk_size
;
2342 accum
>>= chunk_size
;
2349 /* Store the contents of FROMVAL into the location of TOVAL.
2350 Return a new value with the location of TOVAL and contents of
2351 FROMVAL. Handles assignment into packed fields that have
2352 floating-point or non-scalar types. */
2354 static struct value
*
2355 ada_value_assign (struct value
*toval
, struct value
*fromval
)
2357 struct type
*type
= value_type (toval
);
2358 int bits
= value_bitsize (toval
);
2360 toval
= ada_coerce_ref (toval
);
2361 fromval
= ada_coerce_ref (fromval
);
2363 if (ada_is_direct_array_type (value_type (toval
)))
2364 toval
= ada_coerce_to_simple_array (toval
);
2365 if (ada_is_direct_array_type (value_type (fromval
)))
2366 fromval
= ada_coerce_to_simple_array (fromval
);
2368 if (!deprecated_value_modifiable (toval
))
2369 error (_("Left operand of assignment is not a modifiable lvalue."));
2371 if (VALUE_LVAL (toval
) == lval_memory
2373 && (TYPE_CODE (type
) == TYPE_CODE_FLT
2374 || TYPE_CODE (type
) == TYPE_CODE_STRUCT
))
2376 int len
= (value_bitpos (toval
)
2377 + bits
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2379 char *buffer
= (char *) alloca (len
);
2381 CORE_ADDR to_addr
= value_address (toval
);
2383 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
2384 fromval
= value_cast (type
, fromval
);
2386 read_memory (to_addr
, buffer
, len
);
2387 from_size
= value_bitsize (fromval
);
2389 from_size
= TYPE_LENGTH (value_type (fromval
)) * TARGET_CHAR_BIT
;
2390 if (gdbarch_bits_big_endian (get_type_arch (type
)))
2391 move_bits (buffer
, value_bitpos (toval
),
2392 value_contents (fromval
), from_size
- bits
, bits
, 1);
2394 move_bits (buffer
, value_bitpos (toval
),
2395 value_contents (fromval
), 0, bits
, 0);
2396 write_memory (to_addr
, buffer
, len
);
2397 observer_notify_memory_changed (to_addr
, len
, buffer
);
2399 val
= value_copy (toval
);
2400 memcpy (value_contents_raw (val
), value_contents (fromval
),
2401 TYPE_LENGTH (type
));
2402 deprecated_set_value_type (val
, type
);
2407 return value_assign (toval
, fromval
);
2411 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2412 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2413 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2414 * COMPONENT, and not the inferior's memory. The current contents
2415 * of COMPONENT are ignored. */
2417 value_assign_to_component (struct value
*container
, struct value
*component
,
2420 LONGEST offset_in_container
=
2421 (LONGEST
) (value_address (component
) - value_address (container
));
2422 int bit_offset_in_container
=
2423 value_bitpos (component
) - value_bitpos (container
);
2426 val
= value_cast (value_type (component
), val
);
2428 if (value_bitsize (component
) == 0)
2429 bits
= TARGET_CHAR_BIT
* TYPE_LENGTH (value_type (component
));
2431 bits
= value_bitsize (component
);
2433 if (gdbarch_bits_big_endian (get_type_arch (value_type (container
))))
2434 move_bits (value_contents_writeable (container
) + offset_in_container
,
2435 value_bitpos (container
) + bit_offset_in_container
,
2436 value_contents (val
),
2437 TYPE_LENGTH (value_type (component
)) * TARGET_CHAR_BIT
- bits
,
2440 move_bits (value_contents_writeable (container
) + offset_in_container
,
2441 value_bitpos (container
) + bit_offset_in_container
,
2442 value_contents (val
), 0, bits
, 0);
2445 /* The value of the element of array ARR at the ARITY indices given in IND.
2446 ARR may be either a simple array, GNAT array descriptor, or pointer
2450 ada_value_subscript (struct value
*arr
, int arity
, struct value
**ind
)
2454 struct type
*elt_type
;
2456 elt
= ada_coerce_to_simple_array (arr
);
2458 elt_type
= ada_check_typedef (value_type (elt
));
2459 if (TYPE_CODE (elt_type
) == TYPE_CODE_ARRAY
2460 && TYPE_FIELD_BITSIZE (elt_type
, 0) > 0)
2461 return value_subscript_packed (elt
, arity
, ind
);
2463 for (k
= 0; k
< arity
; k
+= 1)
2465 if (TYPE_CODE (elt_type
) != TYPE_CODE_ARRAY
)
2466 error (_("too many subscripts (%d expected)"), k
);
2467 elt
= value_subscript (elt
, pos_atr (ind
[k
]));
2472 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2473 value of the element of *ARR at the ARITY indices given in
2474 IND. Does not read the entire array into memory. */
2476 static struct value
*
2477 ada_value_ptr_subscript (struct value
*arr
, struct type
*type
, int arity
,
2482 for (k
= 0; k
< arity
; k
+= 1)
2486 if (TYPE_CODE (type
) != TYPE_CODE_ARRAY
)
2487 error (_("too many subscripts (%d expected)"), k
);
2488 arr
= value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type
)),
2490 get_discrete_bounds (TYPE_INDEX_TYPE (type
), &lwb
, &upb
);
2491 arr
= value_ptradd (arr
, pos_atr (ind
[k
]) - lwb
);
2492 type
= TYPE_TARGET_TYPE (type
);
2495 return value_ind (arr
);
2498 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2499 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2500 elements starting at index LOW. The lower bound of this array is LOW, as
2502 static struct value
*
2503 ada_value_slice_from_ptr (struct value
*array_ptr
, struct type
*type
,
2506 CORE_ADDR base
= value_as_address (array_ptr
)
2507 + ((low
- ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type
)))
2508 * TYPE_LENGTH (TYPE_TARGET_TYPE (type
)));
2509 struct type
*index_type
=
2510 create_range_type (NULL
, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type
)),
2512 struct type
*slice_type
=
2513 create_array_type (NULL
, TYPE_TARGET_TYPE (type
), index_type
);
2515 return value_at_lazy (slice_type
, base
);
2519 static struct value
*
2520 ada_value_slice (struct value
*array
, int low
, int high
)
2522 struct type
*type
= value_type (array
);
2523 struct type
*index_type
=
2524 create_range_type (NULL
, TYPE_INDEX_TYPE (type
), low
, high
);
2525 struct type
*slice_type
=
2526 create_array_type (NULL
, TYPE_TARGET_TYPE (type
), index_type
);
2528 return value_cast (slice_type
, value_slice (array
, low
, high
- low
+ 1));
2531 /* If type is a record type in the form of a standard GNAT array
2532 descriptor, returns the number of dimensions for type. If arr is a
2533 simple array, returns the number of "array of"s that prefix its
2534 type designation. Otherwise, returns 0. */
2537 ada_array_arity (struct type
*type
)
2544 type
= desc_base_type (type
);
2547 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
2548 return desc_arity (desc_bounds_type (type
));
2550 while (TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2553 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
2559 /* If TYPE is a record type in the form of a standard GNAT array
2560 descriptor or a simple array type, returns the element type for
2561 TYPE after indexing by NINDICES indices, or by all indices if
2562 NINDICES is -1. Otherwise, returns NULL. */
2565 ada_array_element_type (struct type
*type
, int nindices
)
2567 type
= desc_base_type (type
);
2569 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
2572 struct type
*p_array_type
;
2574 p_array_type
= desc_data_target_type (type
);
2576 k
= ada_array_arity (type
);
2580 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2581 if (nindices
>= 0 && k
> nindices
)
2583 while (k
> 0 && p_array_type
!= NULL
)
2585 p_array_type
= ada_check_typedef (TYPE_TARGET_TYPE (p_array_type
));
2588 return p_array_type
;
2590 else if (TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2592 while (nindices
!= 0 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2594 type
= TYPE_TARGET_TYPE (type
);
2603 /* The type of nth index in arrays of given type (n numbering from 1).
2604 Does not examine memory. Throws an error if N is invalid or TYPE
2605 is not an array type. NAME is the name of the Ada attribute being
2606 evaluated ('range, 'first, 'last, or 'length); it is used in building
2607 the error message. */
2609 static struct type
*
2610 ada_index_type (struct type
*type
, int n
, const char *name
)
2612 struct type
*result_type
;
2614 type
= desc_base_type (type
);
2616 if (n
< 0 || n
> ada_array_arity (type
))
2617 error (_("invalid dimension number to '%s"), name
);
2619 if (ada_is_simple_array_type (type
))
2623 for (i
= 1; i
< n
; i
+= 1)
2624 type
= TYPE_TARGET_TYPE (type
);
2625 result_type
= TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type
));
2626 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2627 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2628 perhaps stabsread.c would make more sense. */
2629 if (result_type
&& TYPE_CODE (result_type
) == TYPE_CODE_UNDEF
)
2634 result_type
= desc_index_type (desc_bounds_type (type
), n
);
2635 if (result_type
== NULL
)
2636 error (_("attempt to take bound of something that is not an array"));
2642 /* Given that arr is an array type, returns the lower bound of the
2643 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2644 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2645 array-descriptor type. It works for other arrays with bounds supplied
2646 by run-time quantities other than discriminants. */
2649 ada_array_bound_from_type (struct type
* arr_type
, int n
, int which
)
2651 struct type
*type
, *elt_type
, *index_type_desc
, *index_type
;
2654 gdb_assert (which
== 0 || which
== 1);
2656 if (ada_is_constrained_packed_array_type (arr_type
))
2657 arr_type
= decode_constrained_packed_array_type (arr_type
);
2659 if (arr_type
== NULL
|| !ada_is_simple_array_type (arr_type
))
2660 return (LONGEST
) - which
;
2662 if (TYPE_CODE (arr_type
) == TYPE_CODE_PTR
)
2663 type
= TYPE_TARGET_TYPE (arr_type
);
2668 for (i
= n
; i
> 1; i
--)
2669 elt_type
= TYPE_TARGET_TYPE (type
);
2671 index_type_desc
= ada_find_parallel_type (type
, "___XA");
2672 ada_fixup_array_indexes_type (index_type_desc
);
2673 if (index_type_desc
!= NULL
)
2674 index_type
= to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc
, n
- 1),
2677 index_type
= TYPE_INDEX_TYPE (elt_type
);
2680 (LONGEST
) (which
== 0
2681 ? ada_discrete_type_low_bound (index_type
)
2682 : ada_discrete_type_high_bound (index_type
));
2685 /* Given that arr is an array value, returns the lower bound of the
2686 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2687 WHICH is 1. This routine will also work for arrays with bounds
2688 supplied by run-time quantities other than discriminants. */
2691 ada_array_bound (struct value
*arr
, int n
, int which
)
2693 struct type
*arr_type
= value_type (arr
);
2695 if (ada_is_constrained_packed_array_type (arr_type
))
2696 return ada_array_bound (decode_constrained_packed_array (arr
), n
, which
);
2697 else if (ada_is_simple_array_type (arr_type
))
2698 return ada_array_bound_from_type (arr_type
, n
, which
);
2700 return value_as_long (desc_one_bound (desc_bounds (arr
), n
, which
));
2703 /* Given that arr is an array value, returns the length of the
2704 nth index. This routine will also work for arrays with bounds
2705 supplied by run-time quantities other than discriminants.
2706 Does not work for arrays indexed by enumeration types with representation
2707 clauses at the moment. */
2710 ada_array_length (struct value
*arr
, int n
)
2712 struct type
*arr_type
= ada_check_typedef (value_type (arr
));
2714 if (ada_is_constrained_packed_array_type (arr_type
))
2715 return ada_array_length (decode_constrained_packed_array (arr
), n
);
2717 if (ada_is_simple_array_type (arr_type
))
2718 return (ada_array_bound_from_type (arr_type
, n
, 1)
2719 - ada_array_bound_from_type (arr_type
, n
, 0) + 1);
2721 return (value_as_long (desc_one_bound (desc_bounds (arr
), n
, 1))
2722 - value_as_long (desc_one_bound (desc_bounds (arr
), n
, 0)) + 1);
2725 /* An empty array whose type is that of ARR_TYPE (an array type),
2726 with bounds LOW to LOW-1. */
2728 static struct value
*
2729 empty_array (struct type
*arr_type
, int low
)
2731 struct type
*index_type
=
2732 create_range_type (NULL
, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type
)),
2734 struct type
*elt_type
= ada_array_element_type (arr_type
, 1);
2736 return allocate_value (create_array_type (NULL
, elt_type
, index_type
));
2740 /* Name resolution */
2742 /* The "decoded" name for the user-definable Ada operator corresponding
2746 ada_decoded_op_name (enum exp_opcode op
)
2750 for (i
= 0; ada_opname_table
[i
].encoded
!= NULL
; i
+= 1)
2752 if (ada_opname_table
[i
].op
== op
)
2753 return ada_opname_table
[i
].decoded
;
2755 error (_("Could not find operator name for opcode"));
2759 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2760 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2761 undefined namespace) and converts operators that are
2762 user-defined into appropriate function calls. If CONTEXT_TYPE is
2763 non-null, it provides a preferred result type [at the moment, only
2764 type void has any effect---causing procedures to be preferred over
2765 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2766 return type is preferred. May change (expand) *EXP. */
2769 resolve (struct expression
**expp
, int void_context_p
)
2771 struct type
*context_type
= NULL
;
2775 context_type
= builtin_type ((*expp
)->gdbarch
)->builtin_void
;
2777 resolve_subexp (expp
, &pc
, 1, context_type
);
2780 /* Resolve the operator of the subexpression beginning at
2781 position *POS of *EXPP. "Resolving" consists of replacing
2782 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2783 with their resolutions, replacing built-in operators with
2784 function calls to user-defined operators, where appropriate, and,
2785 when DEPROCEDURE_P is non-zero, converting function-valued variables
2786 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2787 are as in ada_resolve, above. */
2789 static struct value
*
2790 resolve_subexp (struct expression
**expp
, int *pos
, int deprocedure_p
,
2791 struct type
*context_type
)
2795 struct expression
*exp
; /* Convenience: == *expp. */
2796 enum exp_opcode op
= (*expp
)->elts
[pc
].opcode
;
2797 struct value
**argvec
; /* Vector of operand types (alloca'ed). */
2798 int nargs
; /* Number of operands. */
2805 /* Pass one: resolve operands, saving their types and updating *pos,
2810 if (exp
->elts
[pc
+ 3].opcode
== OP_VAR_VALUE
2811 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
2816 resolve_subexp (expp
, pos
, 0, NULL
);
2818 nargs
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
2823 resolve_subexp (expp
, pos
, 0, NULL
);
2828 resolve_subexp (expp
, pos
, 1, check_typedef (exp
->elts
[pc
+ 1].type
));
2831 case OP_ATR_MODULUS
:
2841 case TERNOP_IN_RANGE
:
2842 case BINOP_IN_BOUNDS
:
2848 case OP_DISCRETE_RANGE
:
2850 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
2859 arg1
= resolve_subexp (expp
, pos
, 0, NULL
);
2861 resolve_subexp (expp
, pos
, 1, NULL
);
2863 resolve_subexp (expp
, pos
, 1, value_type (arg1
));
2880 case BINOP_LOGICAL_AND
:
2881 case BINOP_LOGICAL_OR
:
2882 case BINOP_BITWISE_AND
:
2883 case BINOP_BITWISE_IOR
:
2884 case BINOP_BITWISE_XOR
:
2887 case BINOP_NOTEQUAL
:
2894 case BINOP_SUBSCRIPT
:
2902 case UNOP_LOGICAL_NOT
:
2918 case OP_INTERNALVAR
:
2928 *pos
+= 4 + BYTES_TO_EXP_ELEM (exp
->elts
[pc
+ 1].longconst
+ 1);
2931 case STRUCTOP_STRUCT
:
2932 *pos
+= 4 + BYTES_TO_EXP_ELEM (exp
->elts
[pc
+ 1].longconst
+ 1);
2945 error (_("Unexpected operator during name resolution"));
2948 argvec
= (struct value
* *) alloca (sizeof (struct value
*) * (nargs
+ 1));
2949 for (i
= 0; i
< nargs
; i
+= 1)
2950 argvec
[i
] = resolve_subexp (expp
, pos
, 1, NULL
);
2954 /* Pass two: perform any resolution on principal operator. */
2961 if (SYMBOL_DOMAIN (exp
->elts
[pc
+ 2].symbol
) == UNDEF_DOMAIN
)
2963 struct ada_symbol_info
*candidates
;
2967 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2968 (exp
->elts
[pc
+ 2].symbol
),
2969 exp
->elts
[pc
+ 1].block
, VAR_DOMAIN
,
2972 if (n_candidates
> 1)
2974 /* Types tend to get re-introduced locally, so if there
2975 are any local symbols that are not types, first filter
2978 for (j
= 0; j
< n_candidates
; j
+= 1)
2979 switch (SYMBOL_CLASS (candidates
[j
].sym
))
2984 case LOC_REGPARM_ADDR
:
2992 if (j
< n_candidates
)
2995 while (j
< n_candidates
)
2997 if (SYMBOL_CLASS (candidates
[j
].sym
) == LOC_TYPEDEF
)
2999 candidates
[j
] = candidates
[n_candidates
- 1];
3008 if (n_candidates
== 0)
3009 error (_("No definition found for %s"),
3010 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
3011 else if (n_candidates
== 1)
3013 else if (deprocedure_p
3014 && !is_nonfunction (candidates
, n_candidates
))
3016 i
= ada_resolve_function
3017 (candidates
, n_candidates
, NULL
, 0,
3018 SYMBOL_LINKAGE_NAME (exp
->elts
[pc
+ 2].symbol
),
3021 error (_("Could not find a match for %s"),
3022 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
3026 printf_filtered (_("Multiple matches for %s\n"),
3027 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
3028 user_select_syms (candidates
, n_candidates
, 1);
3032 exp
->elts
[pc
+ 1].block
= candidates
[i
].block
;
3033 exp
->elts
[pc
+ 2].symbol
= candidates
[i
].sym
;
3034 if (innermost_block
== NULL
3035 || contained_in (candidates
[i
].block
, innermost_block
))
3036 innermost_block
= candidates
[i
].block
;
3040 && (TYPE_CODE (SYMBOL_TYPE (exp
->elts
[pc
+ 2].symbol
))
3043 replace_operator_with_call (expp
, pc
, 0, 0,
3044 exp
->elts
[pc
+ 2].symbol
,
3045 exp
->elts
[pc
+ 1].block
);
3052 if (exp
->elts
[pc
+ 3].opcode
== OP_VAR_VALUE
3053 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
3055 struct ada_symbol_info
*candidates
;
3059 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3060 (exp
->elts
[pc
+ 5].symbol
),
3061 exp
->elts
[pc
+ 4].block
, VAR_DOMAIN
,
3063 if (n_candidates
== 1)
3067 i
= ada_resolve_function
3068 (candidates
, n_candidates
,
3070 SYMBOL_LINKAGE_NAME (exp
->elts
[pc
+ 5].symbol
),
3073 error (_("Could not find a match for %s"),
3074 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 5].symbol
));
3077 exp
->elts
[pc
+ 4].block
= candidates
[i
].block
;
3078 exp
->elts
[pc
+ 5].symbol
= candidates
[i
].sym
;
3079 if (innermost_block
== NULL
3080 || contained_in (candidates
[i
].block
, innermost_block
))
3081 innermost_block
= candidates
[i
].block
;
3092 case BINOP_BITWISE_AND
:
3093 case BINOP_BITWISE_IOR
:
3094 case BINOP_BITWISE_XOR
:
3096 case BINOP_NOTEQUAL
:
3104 case UNOP_LOGICAL_NOT
:
3106 if (possible_user_operator_p (op
, argvec
))
3108 struct ada_symbol_info
*candidates
;
3112 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op
)),
3113 (struct block
*) NULL
, VAR_DOMAIN
,
3115 i
= ada_resolve_function (candidates
, n_candidates
, argvec
, nargs
,
3116 ada_decoded_op_name (op
), NULL
);
3120 replace_operator_with_call (expp
, pc
, nargs
, 1,
3121 candidates
[i
].sym
, candidates
[i
].block
);
3132 return evaluate_subexp_type (exp
, pos
);
3135 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3136 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3138 /* The term "match" here is rather loose. The match is heuristic and
3142 ada_type_match (struct type
*ftype
, struct type
*atype
, int may_deref
)
3144 ftype
= ada_check_typedef (ftype
);
3145 atype
= ada_check_typedef (atype
);
3147 if (TYPE_CODE (ftype
) == TYPE_CODE_REF
)
3148 ftype
= TYPE_TARGET_TYPE (ftype
);
3149 if (TYPE_CODE (atype
) == TYPE_CODE_REF
)
3150 atype
= TYPE_TARGET_TYPE (atype
);
3152 switch (TYPE_CODE (ftype
))
3155 return TYPE_CODE (ftype
) == TYPE_CODE (atype
);
3157 if (TYPE_CODE (atype
) == TYPE_CODE_PTR
)
3158 return ada_type_match (TYPE_TARGET_TYPE (ftype
),
3159 TYPE_TARGET_TYPE (atype
), 0);
3162 && ada_type_match (TYPE_TARGET_TYPE (ftype
), atype
, 0));
3164 case TYPE_CODE_ENUM
:
3165 case TYPE_CODE_RANGE
:
3166 switch (TYPE_CODE (atype
))
3169 case TYPE_CODE_ENUM
:
3170 case TYPE_CODE_RANGE
:
3176 case TYPE_CODE_ARRAY
:
3177 return (TYPE_CODE (atype
) == TYPE_CODE_ARRAY
3178 || ada_is_array_descriptor_type (atype
));
3180 case TYPE_CODE_STRUCT
:
3181 if (ada_is_array_descriptor_type (ftype
))
3182 return (TYPE_CODE (atype
) == TYPE_CODE_ARRAY
3183 || ada_is_array_descriptor_type (atype
));
3185 return (TYPE_CODE (atype
) == TYPE_CODE_STRUCT
3186 && !ada_is_array_descriptor_type (atype
));
3188 case TYPE_CODE_UNION
:
3190 return (TYPE_CODE (atype
) == TYPE_CODE (ftype
));
3194 /* Return non-zero if the formals of FUNC "sufficiently match" the
3195 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3196 may also be an enumeral, in which case it is treated as a 0-
3197 argument function. */
3200 ada_args_match (struct symbol
*func
, struct value
**actuals
, int n_actuals
)
3203 struct type
*func_type
= SYMBOL_TYPE (func
);
3205 if (SYMBOL_CLASS (func
) == LOC_CONST
3206 && TYPE_CODE (func_type
) == TYPE_CODE_ENUM
)
3207 return (n_actuals
== 0);
3208 else if (func_type
== NULL
|| TYPE_CODE (func_type
) != TYPE_CODE_FUNC
)
3211 if (TYPE_NFIELDS (func_type
) != n_actuals
)
3214 for (i
= 0; i
< n_actuals
; i
+= 1)
3216 if (actuals
[i
] == NULL
)
3220 struct type
*ftype
= ada_check_typedef (TYPE_FIELD_TYPE (func_type
,
3222 struct type
*atype
= ada_check_typedef (value_type (actuals
[i
]));
3224 if (!ada_type_match (ftype
, atype
, 1))
3231 /* False iff function type FUNC_TYPE definitely does not produce a value
3232 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3233 FUNC_TYPE is not a valid function type with a non-null return type
3234 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3237 return_match (struct type
*func_type
, struct type
*context_type
)
3239 struct type
*return_type
;
3241 if (func_type
== NULL
)
3244 if (TYPE_CODE (func_type
) == TYPE_CODE_FUNC
)
3245 return_type
= base_type (TYPE_TARGET_TYPE (func_type
));
3247 return_type
= base_type (func_type
);
3248 if (return_type
== NULL
)
3251 context_type
= base_type (context_type
);
3253 if (TYPE_CODE (return_type
) == TYPE_CODE_ENUM
)
3254 return context_type
== NULL
|| return_type
== context_type
;
3255 else if (context_type
== NULL
)
3256 return TYPE_CODE (return_type
) != TYPE_CODE_VOID
;
3258 return TYPE_CODE (return_type
) == TYPE_CODE (context_type
);
3262 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3263 function (if any) that matches the types of the NARGS arguments in
3264 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3265 that returns that type, then eliminate matches that don't. If
3266 CONTEXT_TYPE is void and there is at least one match that does not
3267 return void, eliminate all matches that do.
3269 Asks the user if there is more than one match remaining. Returns -1
3270 if there is no such symbol or none is selected. NAME is used
3271 solely for messages. May re-arrange and modify SYMS in
3272 the process; the index returned is for the modified vector. */
3275 ada_resolve_function (struct ada_symbol_info syms
[],
3276 int nsyms
, struct value
**args
, int nargs
,
3277 const char *name
, struct type
*context_type
)
3281 int m
; /* Number of hits */
3284 /* In the first pass of the loop, we only accept functions matching
3285 context_type. If none are found, we add a second pass of the loop
3286 where every function is accepted. */
3287 for (fallback
= 0; m
== 0 && fallback
< 2; fallback
++)
3289 for (k
= 0; k
< nsyms
; k
+= 1)
3291 struct type
*type
= ada_check_typedef (SYMBOL_TYPE (syms
[k
].sym
));
3293 if (ada_args_match (syms
[k
].sym
, args
, nargs
)
3294 && (fallback
|| return_match (type
, context_type
)))
3306 printf_filtered (_("Multiple matches for %s\n"), name
);
3307 user_select_syms (syms
, m
, 1);
3313 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3314 in a listing of choices during disambiguation (see sort_choices, below).
3315 The idea is that overloadings of a subprogram name from the
3316 same package should sort in their source order. We settle for ordering
3317 such symbols by their trailing number (__N or $N). */
3320 encoded_ordered_before (char *N0
, char *N1
)
3324 else if (N0
== NULL
)
3330 for (k0
= strlen (N0
) - 1; k0
> 0 && isdigit (N0
[k0
]); k0
-= 1)
3332 for (k1
= strlen (N1
) - 1; k1
> 0 && isdigit (N1
[k1
]); k1
-= 1)
3334 if ((N0
[k0
] == '_' || N0
[k0
] == '$') && N0
[k0
+ 1] != '\000'
3335 && (N1
[k1
] == '_' || N1
[k1
] == '$') && N1
[k1
+ 1] != '\000')
3340 while (N0
[n0
] == '_' && n0
> 0 && N0
[n0
- 1] == '_')
3343 while (N1
[n1
] == '_' && n1
> 0 && N1
[n1
- 1] == '_')
3345 if (n0
== n1
&& strncmp (N0
, N1
, n0
) == 0)
3346 return (atoi (N0
+ k0
+ 1) < atoi (N1
+ k1
+ 1));
3348 return (strcmp (N0
, N1
) < 0);
3352 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3356 sort_choices (struct ada_symbol_info syms
[], int nsyms
)
3360 for (i
= 1; i
< nsyms
; i
+= 1)
3362 struct ada_symbol_info sym
= syms
[i
];
3365 for (j
= i
- 1; j
>= 0; j
-= 1)
3367 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms
[j
].sym
),
3368 SYMBOL_LINKAGE_NAME (sym
.sym
)))
3370 syms
[j
+ 1] = syms
[j
];
3376 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3377 by asking the user (if necessary), returning the number selected,
3378 and setting the first elements of SYMS items. Error if no symbols
3381 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3382 to be re-integrated one of these days. */
3385 user_select_syms (struct ada_symbol_info
*syms
, int nsyms
, int max_results
)
3388 int *chosen
= (int *) alloca (sizeof (int) * nsyms
);
3390 int first_choice
= (max_results
== 1) ? 1 : 2;
3391 const char *select_mode
= multiple_symbols_select_mode ();
3393 if (max_results
< 1)
3394 error (_("Request to select 0 symbols!"));
3398 if (select_mode
== multiple_symbols_cancel
)
3400 canceled because the command is ambiguous\n\
3401 See set/show multiple-symbol."));
3403 /* If select_mode is "all", then return all possible symbols.
3404 Only do that if more than one symbol can be selected, of course.
3405 Otherwise, display the menu as usual. */
3406 if (select_mode
== multiple_symbols_all
&& max_results
> 1)
3409 printf_unfiltered (_("[0] cancel\n"));
3410 if (max_results
> 1)
3411 printf_unfiltered (_("[1] all\n"));
3413 sort_choices (syms
, nsyms
);
3415 for (i
= 0; i
< nsyms
; i
+= 1)
3417 if (syms
[i
].sym
== NULL
)
3420 if (SYMBOL_CLASS (syms
[i
].sym
) == LOC_BLOCK
)
3422 struct symtab_and_line sal
=
3423 find_function_start_sal (syms
[i
].sym
, 1);
3425 if (sal
.symtab
== NULL
)
3426 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3428 SYMBOL_PRINT_NAME (syms
[i
].sym
),
3431 printf_unfiltered (_("[%d] %s at %s:%d\n"), i
+ first_choice
,
3432 SYMBOL_PRINT_NAME (syms
[i
].sym
),
3433 sal
.symtab
->filename
, sal
.line
);
3439 (SYMBOL_CLASS (syms
[i
].sym
) == LOC_CONST
3440 && SYMBOL_TYPE (syms
[i
].sym
) != NULL
3441 && TYPE_CODE (SYMBOL_TYPE (syms
[i
].sym
)) == TYPE_CODE_ENUM
);
3442 struct symtab
*symtab
= syms
[i
].sym
->symtab
;
3444 if (SYMBOL_LINE (syms
[i
].sym
) != 0 && symtab
!= NULL
)
3445 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3447 SYMBOL_PRINT_NAME (syms
[i
].sym
),
3448 symtab
->filename
, SYMBOL_LINE (syms
[i
].sym
));
3449 else if (is_enumeral
3450 && TYPE_NAME (SYMBOL_TYPE (syms
[i
].sym
)) != NULL
)
3452 printf_unfiltered (("[%d] "), i
+ first_choice
);
3453 ada_print_type (SYMBOL_TYPE (syms
[i
].sym
), NULL
,
3455 printf_unfiltered (_("'(%s) (enumeral)\n"),
3456 SYMBOL_PRINT_NAME (syms
[i
].sym
));
3458 else if (symtab
!= NULL
)
3459 printf_unfiltered (is_enumeral
3460 ? _("[%d] %s in %s (enumeral)\n")
3461 : _("[%d] %s at %s:?\n"),
3463 SYMBOL_PRINT_NAME (syms
[i
].sym
),
3466 printf_unfiltered (is_enumeral
3467 ? _("[%d] %s (enumeral)\n")
3468 : _("[%d] %s at ?\n"),
3470 SYMBOL_PRINT_NAME (syms
[i
].sym
));
3474 n_chosen
= get_selections (chosen
, nsyms
, max_results
, max_results
> 1,
3477 for (i
= 0; i
< n_chosen
; i
+= 1)
3478 syms
[i
] = syms
[chosen
[i
]];
3483 /* Read and validate a set of numeric choices from the user in the
3484 range 0 .. N_CHOICES-1. Place the results in increasing
3485 order in CHOICES[0 .. N-1], and return N.
3487 The user types choices as a sequence of numbers on one line
3488 separated by blanks, encoding them as follows:
3490 + A choice of 0 means to cancel the selection, throwing an error.
3491 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3492 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3494 The user is not allowed to choose more than MAX_RESULTS values.
3496 ANNOTATION_SUFFIX, if present, is used to annotate the input
3497 prompts (for use with the -f switch). */
3500 get_selections (int *choices
, int n_choices
, int max_results
,
3501 int is_all_choice
, char *annotation_suffix
)
3506 int first_choice
= is_all_choice
? 2 : 1;
3508 prompt
= getenv ("PS2");
3512 args
= command_line_input (prompt
, 0, annotation_suffix
);
3515 error_no_arg (_("one or more choice numbers"));
3519 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3520 order, as given in args. Choices are validated. */
3526 while (isspace (*args
))
3528 if (*args
== '\0' && n_chosen
== 0)
3529 error_no_arg (_("one or more choice numbers"));
3530 else if (*args
== '\0')
3533 choice
= strtol (args
, &args2
, 10);
3534 if (args
== args2
|| choice
< 0
3535 || choice
> n_choices
+ first_choice
- 1)
3536 error (_("Argument must be choice number"));
3540 error (_("cancelled"));
3542 if (choice
< first_choice
)
3544 n_chosen
= n_choices
;
3545 for (j
= 0; j
< n_choices
; j
+= 1)
3549 choice
-= first_choice
;
3551 for (j
= n_chosen
- 1; j
>= 0 && choice
< choices
[j
]; j
-= 1)
3555 if (j
< 0 || choice
!= choices
[j
])
3559 for (k
= n_chosen
- 1; k
> j
; k
-= 1)
3560 choices
[k
+ 1] = choices
[k
];
3561 choices
[j
+ 1] = choice
;
3566 if (n_chosen
> max_results
)
3567 error (_("Select no more than %d of the above"), max_results
);
3572 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3573 on the function identified by SYM and BLOCK, and taking NARGS
3574 arguments. Update *EXPP as needed to hold more space. */
3577 replace_operator_with_call (struct expression
**expp
, int pc
, int nargs
,
3578 int oplen
, struct symbol
*sym
,
3579 struct block
*block
)
3581 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3582 symbol, -oplen for operator being replaced). */
3583 struct expression
*newexp
= (struct expression
*)
3584 xmalloc (sizeof (struct expression
)
3585 + EXP_ELEM_TO_BYTES ((*expp
)->nelts
+ 7 - oplen
));
3586 struct expression
*exp
= *expp
;
3588 newexp
->nelts
= exp
->nelts
+ 7 - oplen
;
3589 newexp
->language_defn
= exp
->language_defn
;
3590 memcpy (newexp
->elts
, exp
->elts
, EXP_ELEM_TO_BYTES (pc
));
3591 memcpy (newexp
->elts
+ pc
+ 7, exp
->elts
+ pc
+ oplen
,
3592 EXP_ELEM_TO_BYTES (exp
->nelts
- pc
- oplen
));
3594 newexp
->elts
[pc
].opcode
= newexp
->elts
[pc
+ 2].opcode
= OP_FUNCALL
;
3595 newexp
->elts
[pc
+ 1].longconst
= (LONGEST
) nargs
;
3597 newexp
->elts
[pc
+ 3].opcode
= newexp
->elts
[pc
+ 6].opcode
= OP_VAR_VALUE
;
3598 newexp
->elts
[pc
+ 4].block
= block
;
3599 newexp
->elts
[pc
+ 5].symbol
= sym
;
3605 /* Type-class predicates */
3607 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3611 numeric_type_p (struct type
*type
)
3617 switch (TYPE_CODE (type
))
3622 case TYPE_CODE_RANGE
:
3623 return (type
== TYPE_TARGET_TYPE (type
)
3624 || numeric_type_p (TYPE_TARGET_TYPE (type
)));
3631 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3634 integer_type_p (struct type
*type
)
3640 switch (TYPE_CODE (type
))
3644 case TYPE_CODE_RANGE
:
3645 return (type
== TYPE_TARGET_TYPE (type
)
3646 || integer_type_p (TYPE_TARGET_TYPE (type
)));
3653 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3656 scalar_type_p (struct type
*type
)
3662 switch (TYPE_CODE (type
))
3665 case TYPE_CODE_RANGE
:
3666 case TYPE_CODE_ENUM
:
3675 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3678 discrete_type_p (struct type
*type
)
3684 switch (TYPE_CODE (type
))
3687 case TYPE_CODE_RANGE
:
3688 case TYPE_CODE_ENUM
:
3689 case TYPE_CODE_BOOL
:
3697 /* Returns non-zero if OP with operands in the vector ARGS could be
3698 a user-defined function. Errs on the side of pre-defined operators
3699 (i.e., result 0). */
3702 possible_user_operator_p (enum exp_opcode op
, struct value
*args
[])
3704 struct type
*type0
=
3705 (args
[0] == NULL
) ? NULL
: ada_check_typedef (value_type (args
[0]));
3706 struct type
*type1
=
3707 (args
[1] == NULL
) ? NULL
: ada_check_typedef (value_type (args
[1]));
3721 return (!(numeric_type_p (type0
) && numeric_type_p (type1
)));
3725 case BINOP_BITWISE_AND
:
3726 case BINOP_BITWISE_IOR
:
3727 case BINOP_BITWISE_XOR
:
3728 return (!(integer_type_p (type0
) && integer_type_p (type1
)));
3731 case BINOP_NOTEQUAL
:
3736 return (!(scalar_type_p (type0
) && scalar_type_p (type1
)));
3739 return !ada_is_array_type (type0
) || !ada_is_array_type (type1
);
3742 return (!(numeric_type_p (type0
) && integer_type_p (type1
)));
3746 case UNOP_LOGICAL_NOT
:
3748 return (!numeric_type_p (type0
));
3757 1. In the following, we assume that a renaming type's name may
3758 have an ___XD suffix. It would be nice if this went away at some
3760 2. We handle both the (old) purely type-based representation of
3761 renamings and the (new) variable-based encoding. At some point,
3762 it is devoutly to be hoped that the former goes away
3763 (FIXME: hilfinger-2007-07-09).
3764 3. Subprogram renamings are not implemented, although the XRS
3765 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3767 /* If SYM encodes a renaming,
3769 <renaming> renames <renamed entity>,
3771 sets *LEN to the length of the renamed entity's name,
3772 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3773 the string describing the subcomponent selected from the renamed
3774 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3775 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3776 are undefined). Otherwise, returns a value indicating the category
3777 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3778 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3779 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3780 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3781 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3782 may be NULL, in which case they are not assigned.
3784 [Currently, however, GCC does not generate subprogram renamings.] */
3786 enum ada_renaming_category
3787 ada_parse_renaming (struct symbol
*sym
,
3788 const char **renamed_entity
, int *len
,
3789 const char **renaming_expr
)
3791 enum ada_renaming_category kind
;
3796 return ADA_NOT_RENAMING
;
3797 switch (SYMBOL_CLASS (sym
))
3800 return ADA_NOT_RENAMING
;
3802 return parse_old_style_renaming (SYMBOL_TYPE (sym
),
3803 renamed_entity
, len
, renaming_expr
);
3807 case LOC_OPTIMIZED_OUT
:
3808 info
= strstr (SYMBOL_LINKAGE_NAME (sym
), "___XR");
3810 return ADA_NOT_RENAMING
;
3814 kind
= ADA_OBJECT_RENAMING
;
3818 kind
= ADA_EXCEPTION_RENAMING
;
3822 kind
= ADA_PACKAGE_RENAMING
;
3826 kind
= ADA_SUBPROGRAM_RENAMING
;
3830 return ADA_NOT_RENAMING
;
3834 if (renamed_entity
!= NULL
)
3835 *renamed_entity
= info
;
3836 suffix
= strstr (info
, "___XE");
3837 if (suffix
== NULL
|| suffix
== info
)
3838 return ADA_NOT_RENAMING
;
3840 *len
= strlen (info
) - strlen (suffix
);
3842 if (renaming_expr
!= NULL
)
3843 *renaming_expr
= suffix
;
3847 /* Assuming TYPE encodes a renaming according to the old encoding in
3848 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3849 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3850 ADA_NOT_RENAMING otherwise. */
3851 static enum ada_renaming_category
3852 parse_old_style_renaming (struct type
*type
,
3853 const char **renamed_entity
, int *len
,
3854 const char **renaming_expr
)
3856 enum ada_renaming_category kind
;
3861 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_ENUM
3862 || TYPE_NFIELDS (type
) != 1)
3863 return ADA_NOT_RENAMING
;
3865 name
= type_name_no_tag (type
);
3867 return ADA_NOT_RENAMING
;
3869 name
= strstr (name
, "___XR");
3871 return ADA_NOT_RENAMING
;
3876 kind
= ADA_OBJECT_RENAMING
;
3879 kind
= ADA_EXCEPTION_RENAMING
;
3882 kind
= ADA_PACKAGE_RENAMING
;
3885 kind
= ADA_SUBPROGRAM_RENAMING
;
3888 return ADA_NOT_RENAMING
;
3891 info
= TYPE_FIELD_NAME (type
, 0);
3893 return ADA_NOT_RENAMING
;
3894 if (renamed_entity
!= NULL
)
3895 *renamed_entity
= info
;
3896 suffix
= strstr (info
, "___XE");
3897 if (renaming_expr
!= NULL
)
3898 *renaming_expr
= suffix
+ 5;
3899 if (suffix
== NULL
|| suffix
== info
)
3900 return ADA_NOT_RENAMING
;
3902 *len
= suffix
- info
;
3908 /* Evaluation: Function Calls */
3910 /* Return an lvalue containing the value VAL. This is the identity on
3911 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3912 on the stack, using and updating *SP as the stack pointer, and
3913 returning an lvalue whose value_address points to the copy. */
3915 static struct value
*
3916 ensure_lval (struct value
*val
, struct gdbarch
*gdbarch
, CORE_ADDR
*sp
)
3918 if (! VALUE_LVAL (val
))
3920 int len
= TYPE_LENGTH (ada_check_typedef (value_type (val
)));
3922 /* The following is taken from the structure-return code in
3923 call_function_by_hand. FIXME: Therefore, some refactoring seems
3925 if (gdbarch_inner_than (gdbarch
, 1, 2))
3927 /* Stack grows downward. Align SP and value_address (val) after
3928 reserving sufficient space. */
3930 if (gdbarch_frame_align_p (gdbarch
))
3931 *sp
= gdbarch_frame_align (gdbarch
, *sp
);
3932 set_value_address (val
, *sp
);
3936 /* Stack grows upward. Align the frame, allocate space, and
3937 then again, re-align the frame. */
3938 if (gdbarch_frame_align_p (gdbarch
))
3939 *sp
= gdbarch_frame_align (gdbarch
, *sp
);
3940 set_value_address (val
, *sp
);
3942 if (gdbarch_frame_align_p (gdbarch
))
3943 *sp
= gdbarch_frame_align (gdbarch
, *sp
);
3945 VALUE_LVAL (val
) = lval_memory
;
3947 write_memory (value_address (val
), value_contents (val
), len
);
3953 /* Return the value ACTUAL, converted to be an appropriate value for a
3954 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3955 allocating any necessary descriptors (fat pointers), or copies of
3956 values not residing in memory, updating it as needed. */
3959 ada_convert_actual (struct value
*actual
, struct type
*formal_type0
,
3960 struct gdbarch
*gdbarch
, CORE_ADDR
*sp
)
3962 struct type
*actual_type
= ada_check_typedef (value_type (actual
));
3963 struct type
*formal_type
= ada_check_typedef (formal_type0
);
3964 struct type
*formal_target
=
3965 TYPE_CODE (formal_type
) == TYPE_CODE_PTR
3966 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type
)) : formal_type
;
3967 struct type
*actual_target
=
3968 TYPE_CODE (actual_type
) == TYPE_CODE_PTR
3969 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type
)) : actual_type
;
3971 if (ada_is_array_descriptor_type (formal_target
)
3972 && TYPE_CODE (actual_target
) == TYPE_CODE_ARRAY
)
3973 return make_array_descriptor (formal_type
, actual
, gdbarch
, sp
);
3974 else if (TYPE_CODE (formal_type
) == TYPE_CODE_PTR
3975 || TYPE_CODE (formal_type
) == TYPE_CODE_REF
)
3977 struct value
*result
;
3979 if (TYPE_CODE (formal_target
) == TYPE_CODE_ARRAY
3980 && ada_is_array_descriptor_type (actual_target
))
3981 result
= desc_data (actual
);
3982 else if (TYPE_CODE (actual_type
) != TYPE_CODE_PTR
)
3984 if (VALUE_LVAL (actual
) != lval_memory
)
3988 actual_type
= ada_check_typedef (value_type (actual
));
3989 val
= allocate_value (actual_type
);
3990 memcpy ((char *) value_contents_raw (val
),
3991 (char *) value_contents (actual
),
3992 TYPE_LENGTH (actual_type
));
3993 actual
= ensure_lval (val
, gdbarch
, sp
);
3995 result
= value_addr (actual
);
3999 return value_cast_pointers (formal_type
, result
);
4001 else if (TYPE_CODE (actual_type
) == TYPE_CODE_PTR
)
4002 return ada_value_ind (actual
);
4007 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4008 type TYPE. This is usually an inefficient no-op except on some targets
4009 (such as AVR) where the representation of a pointer and an address
4013 value_pointer (struct value
*value
, struct type
*type
)
4015 struct gdbarch
*gdbarch
= get_type_arch (type
);
4016 unsigned len
= TYPE_LENGTH (type
);
4017 gdb_byte
*buf
= alloca (len
);
4020 addr
= value_address (value
);
4021 gdbarch_address_to_pointer (gdbarch
, type
, buf
, addr
);
4022 addr
= extract_unsigned_integer (buf
, len
, gdbarch_byte_order (gdbarch
));
4027 /* Push a descriptor of type TYPE for array value ARR on the stack at
4028 *SP, updating *SP to reflect the new descriptor. Return either
4029 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4030 to-descriptor type rather than a descriptor type), a struct value *
4031 representing a pointer to this descriptor. */
4033 static struct value
*
4034 make_array_descriptor (struct type
*type
, struct value
*arr
,
4035 struct gdbarch
*gdbarch
, CORE_ADDR
*sp
)
4037 struct type
*bounds_type
= desc_bounds_type (type
);
4038 struct type
*desc_type
= desc_base_type (type
);
4039 struct value
*descriptor
= allocate_value (desc_type
);
4040 struct value
*bounds
= allocate_value (bounds_type
);
4043 for (i
= ada_array_arity (ada_check_typedef (value_type (arr
))); i
> 0; i
-= 1)
4045 modify_general_field (value_type (bounds
),
4046 value_contents_writeable (bounds
),
4047 ada_array_bound (arr
, i
, 0),
4048 desc_bound_bitpos (bounds_type
, i
, 0),
4049 desc_bound_bitsize (bounds_type
, i
, 0));
4050 modify_general_field (value_type (bounds
),
4051 value_contents_writeable (bounds
),
4052 ada_array_bound (arr
, i
, 1),
4053 desc_bound_bitpos (bounds_type
, i
, 1),
4054 desc_bound_bitsize (bounds_type
, i
, 1));
4057 bounds
= ensure_lval (bounds
, gdbarch
, sp
);
4059 modify_general_field (value_type (descriptor
),
4060 value_contents_writeable (descriptor
),
4061 value_pointer (ensure_lval (arr
, gdbarch
, sp
),
4062 TYPE_FIELD_TYPE (desc_type
, 0)),
4063 fat_pntr_data_bitpos (desc_type
),
4064 fat_pntr_data_bitsize (desc_type
));
4066 modify_general_field (value_type (descriptor
),
4067 value_contents_writeable (descriptor
),
4068 value_pointer (bounds
,
4069 TYPE_FIELD_TYPE (desc_type
, 1)),
4070 fat_pntr_bounds_bitpos (desc_type
),
4071 fat_pntr_bounds_bitsize (desc_type
));
4073 descriptor
= ensure_lval (descriptor
, gdbarch
, sp
);
4075 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
4076 return value_addr (descriptor
);
4081 /* Dummy definitions for an experimental caching module that is not
4082 * used in the public sources. */
4085 lookup_cached_symbol (const char *name
, domain_enum
namespace,
4086 struct symbol
**sym
, struct block
**block
)
4092 cache_symbol (const char *name
, domain_enum
namespace, struct symbol
*sym
,
4093 struct block
*block
)
4099 /* Return the result of a standard (literal, C-like) lookup of NAME in
4100 given DOMAIN, visible from lexical block BLOCK. */
4102 static struct symbol
*
4103 standard_lookup (const char *name
, const struct block
*block
,
4108 if (lookup_cached_symbol (name
, domain
, &sym
, NULL
))
4110 sym
= lookup_symbol_in_language (name
, block
, domain
, language_c
, 0);
4111 cache_symbol (name
, domain
, sym
, block_found
);
4116 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4117 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4118 since they contend in overloading in the same way. */
4120 is_nonfunction (struct ada_symbol_info syms
[], int n
)
4124 for (i
= 0; i
< n
; i
+= 1)
4125 if (TYPE_CODE (SYMBOL_TYPE (syms
[i
].sym
)) != TYPE_CODE_FUNC
4126 && (TYPE_CODE (SYMBOL_TYPE (syms
[i
].sym
)) != TYPE_CODE_ENUM
4127 || SYMBOL_CLASS (syms
[i
].sym
) != LOC_CONST
))
4133 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4134 struct types. Otherwise, they may not. */
4137 equiv_types (struct type
*type0
, struct type
*type1
)
4141 if (type0
== NULL
|| type1
== NULL
4142 || TYPE_CODE (type0
) != TYPE_CODE (type1
))
4144 if ((TYPE_CODE (type0
) == TYPE_CODE_STRUCT
4145 || TYPE_CODE (type0
) == TYPE_CODE_ENUM
)
4146 && ada_type_name (type0
) != NULL
&& ada_type_name (type1
) != NULL
4147 && strcmp (ada_type_name (type0
), ada_type_name (type1
)) == 0)
4153 /* True iff SYM0 represents the same entity as SYM1, or one that is
4154 no more defined than that of SYM1. */
4157 lesseq_defined_than (struct symbol
*sym0
, struct symbol
*sym1
)
4161 if (SYMBOL_DOMAIN (sym0
) != SYMBOL_DOMAIN (sym1
)
4162 || SYMBOL_CLASS (sym0
) != SYMBOL_CLASS (sym1
))
4165 switch (SYMBOL_CLASS (sym0
))
4171 struct type
*type0
= SYMBOL_TYPE (sym0
);
4172 struct type
*type1
= SYMBOL_TYPE (sym1
);
4173 char *name0
= SYMBOL_LINKAGE_NAME (sym0
);
4174 char *name1
= SYMBOL_LINKAGE_NAME (sym1
);
4175 int len0
= strlen (name0
);
4178 TYPE_CODE (type0
) == TYPE_CODE (type1
)
4179 && (equiv_types (type0
, type1
)
4180 || (len0
< strlen (name1
) && strncmp (name0
, name1
, len0
) == 0
4181 && strncmp (name1
+ len0
, "___XV", 5) == 0));
4184 return SYMBOL_VALUE (sym0
) == SYMBOL_VALUE (sym1
)
4185 && equiv_types (SYMBOL_TYPE (sym0
), SYMBOL_TYPE (sym1
));
4191 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4192 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4195 add_defn_to_vec (struct obstack
*obstackp
,
4197 struct block
*block
)
4200 struct ada_symbol_info
*prevDefns
= defns_collected (obstackp
, 0);
4202 /* Do not try to complete stub types, as the debugger is probably
4203 already scanning all symbols matching a certain name at the
4204 time when this function is called. Trying to replace the stub
4205 type by its associated full type will cause us to restart a scan
4206 which may lead to an infinite recursion. Instead, the client
4207 collecting the matching symbols will end up collecting several
4208 matches, with at least one of them complete. It can then filter
4209 out the stub ones if needed. */
4211 for (i
= num_defns_collected (obstackp
) - 1; i
>= 0; i
-= 1)
4213 if (lesseq_defined_than (sym
, prevDefns
[i
].sym
))
4215 else if (lesseq_defined_than (prevDefns
[i
].sym
, sym
))
4217 prevDefns
[i
].sym
= sym
;
4218 prevDefns
[i
].block
= block
;
4224 struct ada_symbol_info info
;
4228 obstack_grow (obstackp
, &info
, sizeof (struct ada_symbol_info
));
4232 /* Number of ada_symbol_info structures currently collected in
4233 current vector in *OBSTACKP. */
4236 num_defns_collected (struct obstack
*obstackp
)
4238 return obstack_object_size (obstackp
) / sizeof (struct ada_symbol_info
);
4241 /* Vector of ada_symbol_info structures currently collected in current
4242 vector in *OBSTACKP. If FINISH, close off the vector and return
4243 its final address. */
4245 static struct ada_symbol_info
*
4246 defns_collected (struct obstack
*obstackp
, int finish
)
4249 return obstack_finish (obstackp
);
4251 return (struct ada_symbol_info
*) obstack_base (obstackp
);
4254 /* Return a minimal symbol matching NAME according to Ada decoding
4255 rules. Returns NULL if there is no such minimal symbol. Names
4256 prefixed with "standard__" are handled specially: "standard__" is
4257 first stripped off, and only static and global symbols are searched. */
4259 struct minimal_symbol
*
4260 ada_lookup_simple_minsym (const char *name
)
4262 struct objfile
*objfile
;
4263 struct minimal_symbol
*msymbol
;
4266 if (strncmp (name
, "standard__", sizeof ("standard__") - 1) == 0)
4268 name
+= sizeof ("standard__") - 1;
4272 wild_match
= (strstr (name
, "__") == NULL
);
4274 ALL_MSYMBOLS (objfile
, msymbol
)
4276 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol
), name
, wild_match
)
4277 && MSYMBOL_TYPE (msymbol
) != mst_solib_trampoline
)
4284 /* For all subprograms that statically enclose the subprogram of the
4285 selected frame, add symbols matching identifier NAME in DOMAIN
4286 and their blocks to the list of data in OBSTACKP, as for
4287 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4291 add_symbols_from_enclosing_procs (struct obstack
*obstackp
,
4292 const char *name
, domain_enum
namespace,
4297 /* True if TYPE is definitely an artificial type supplied to a symbol
4298 for which no debugging information was given in the symbol file. */
4301 is_nondebugging_type (struct type
*type
)
4303 char *name
= ada_type_name (type
);
4305 return (name
!= NULL
&& strcmp (name
, "<variable, no debug info>") == 0);
4308 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4309 duplicate other symbols in the list (The only case I know of where
4310 this happens is when object files containing stabs-in-ecoff are
4311 linked with files containing ordinary ecoff debugging symbols (or no
4312 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4313 Returns the number of items in the modified list. */
4316 remove_extra_symbols (struct ada_symbol_info
*syms
, int nsyms
)
4325 /* If two symbols have the same name and one of them is a stub type,
4326 the get rid of the stub. */
4328 if (TYPE_STUB (SYMBOL_TYPE (syms
[i
].sym
))
4329 && SYMBOL_LINKAGE_NAME (syms
[i
].sym
) != NULL
)
4331 for (j
= 0; j
< nsyms
; j
++)
4334 && !TYPE_STUB (SYMBOL_TYPE (syms
[j
].sym
))
4335 && SYMBOL_LINKAGE_NAME (syms
[j
].sym
) != NULL
4336 && strcmp (SYMBOL_LINKAGE_NAME (syms
[i
].sym
),
4337 SYMBOL_LINKAGE_NAME (syms
[j
].sym
)) == 0)
4342 /* Two symbols with the same name, same class and same address
4343 should be identical. */
4345 else if (SYMBOL_LINKAGE_NAME (syms
[i
].sym
) != NULL
4346 && SYMBOL_CLASS (syms
[i
].sym
) == LOC_STATIC
4347 && is_nondebugging_type (SYMBOL_TYPE (syms
[i
].sym
)))
4349 for (j
= 0; j
< nsyms
; j
+= 1)
4352 && SYMBOL_LINKAGE_NAME (syms
[j
].sym
) != NULL
4353 && strcmp (SYMBOL_LINKAGE_NAME (syms
[i
].sym
),
4354 SYMBOL_LINKAGE_NAME (syms
[j
].sym
)) == 0
4355 && SYMBOL_CLASS (syms
[i
].sym
) == SYMBOL_CLASS (syms
[j
].sym
)
4356 && SYMBOL_VALUE_ADDRESS (syms
[i
].sym
)
4357 == SYMBOL_VALUE_ADDRESS (syms
[j
].sym
))
4364 for (j
= i
+ 1; j
< nsyms
; j
+= 1)
4365 syms
[j
- 1] = syms
[j
];
4374 /* Given a type that corresponds to a renaming entity, use the type name
4375 to extract the scope (package name or function name, fully qualified,
4376 and following the GNAT encoding convention) where this renaming has been
4377 defined. The string returned needs to be deallocated after use. */
4380 xget_renaming_scope (struct type
*renaming_type
)
4382 /* The renaming types adhere to the following convention:
4383 <scope>__<rename>___<XR extension>.
4384 So, to extract the scope, we search for the "___XR" extension,
4385 and then backtrack until we find the first "__". */
4387 const char *name
= type_name_no_tag (renaming_type
);
4388 char *suffix
= strstr (name
, "___XR");
4393 /* Now, backtrack a bit until we find the first "__". Start looking
4394 at suffix - 3, as the <rename> part is at least one character long. */
4396 for (last
= suffix
- 3; last
> name
; last
--)
4397 if (last
[0] == '_' && last
[1] == '_')
4400 /* Make a copy of scope and return it. */
4402 scope_len
= last
- name
;
4403 scope
= (char *) xmalloc ((scope_len
+ 1) * sizeof (char));
4405 strncpy (scope
, name
, scope_len
);
4406 scope
[scope_len
] = '\0';
4411 /* Return nonzero if NAME corresponds to a package name. */
4414 is_package_name (const char *name
)
4416 /* Here, We take advantage of the fact that no symbols are generated
4417 for packages, while symbols are generated for each function.
4418 So the condition for NAME represent a package becomes equivalent
4419 to NAME not existing in our list of symbols. There is only one
4420 small complication with library-level functions (see below). */
4424 /* If it is a function that has not been defined at library level,
4425 then we should be able to look it up in the symbols. */
4426 if (standard_lookup (name
, NULL
, VAR_DOMAIN
) != NULL
)
4429 /* Library-level function names start with "_ada_". See if function
4430 "_ada_" followed by NAME can be found. */
4432 /* Do a quick check that NAME does not contain "__", since library-level
4433 functions names cannot contain "__" in them. */
4434 if (strstr (name
, "__") != NULL
)
4437 fun_name
= xstrprintf ("_ada_%s", name
);
4439 return (standard_lookup (fun_name
, NULL
, VAR_DOMAIN
) == NULL
);
4442 /* Return nonzero if SYM corresponds to a renaming entity that is
4443 not visible from FUNCTION_NAME. */
4446 old_renaming_is_invisible (const struct symbol
*sym
, char *function_name
)
4450 if (SYMBOL_CLASS (sym
) != LOC_TYPEDEF
)
4453 scope
= xget_renaming_scope (SYMBOL_TYPE (sym
));
4455 make_cleanup (xfree
, scope
);
4457 /* If the rename has been defined in a package, then it is visible. */
4458 if (is_package_name (scope
))
4461 /* Check that the rename is in the current function scope by checking
4462 that its name starts with SCOPE. */
4464 /* If the function name starts with "_ada_", it means that it is
4465 a library-level function. Strip this prefix before doing the
4466 comparison, as the encoding for the renaming does not contain
4468 if (strncmp (function_name
, "_ada_", 5) == 0)
4471 return (strncmp (function_name
, scope
, strlen (scope
)) != 0);
4474 /* Remove entries from SYMS that corresponds to a renaming entity that
4475 is not visible from the function associated with CURRENT_BLOCK or
4476 that is superfluous due to the presence of more specific renaming
4477 information. Places surviving symbols in the initial entries of
4478 SYMS and returns the number of surviving symbols.
4481 First, in cases where an object renaming is implemented as a
4482 reference variable, GNAT may produce both the actual reference
4483 variable and the renaming encoding. In this case, we discard the
4486 Second, GNAT emits a type following a specified encoding for each renaming
4487 entity. Unfortunately, STABS currently does not support the definition
4488 of types that are local to a given lexical block, so all renamings types
4489 are emitted at library level. As a consequence, if an application
4490 contains two renaming entities using the same name, and a user tries to
4491 print the value of one of these entities, the result of the ada symbol
4492 lookup will also contain the wrong renaming type.
4494 This function partially covers for this limitation by attempting to
4495 remove from the SYMS list renaming symbols that should be visible
4496 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4497 method with the current information available. The implementation
4498 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4500 - When the user tries to print a rename in a function while there
4501 is another rename entity defined in a package: Normally, the
4502 rename in the function has precedence over the rename in the
4503 package, so the latter should be removed from the list. This is
4504 currently not the case.
4506 - This function will incorrectly remove valid renames if
4507 the CURRENT_BLOCK corresponds to a function which symbol name
4508 has been changed by an "Export" pragma. As a consequence,
4509 the user will be unable to print such rename entities. */
4512 remove_irrelevant_renamings (struct ada_symbol_info
*syms
,
4513 int nsyms
, const struct block
*current_block
)
4515 struct symbol
*current_function
;
4516 char *current_function_name
;
4518 int is_new_style_renaming
;
4520 /* If there is both a renaming foo___XR... encoded as a variable and
4521 a simple variable foo in the same block, discard the latter.
4522 First, zero out such symbols, then compress. */
4523 is_new_style_renaming
= 0;
4524 for (i
= 0; i
< nsyms
; i
+= 1)
4526 struct symbol
*sym
= syms
[i
].sym
;
4527 struct block
*block
= syms
[i
].block
;
4531 if (sym
== NULL
|| SYMBOL_CLASS (sym
) == LOC_TYPEDEF
)
4533 name
= SYMBOL_LINKAGE_NAME (sym
);
4534 suffix
= strstr (name
, "___XR");
4538 int name_len
= suffix
- name
;
4541 is_new_style_renaming
= 1;
4542 for (j
= 0; j
< nsyms
; j
+= 1)
4543 if (i
!= j
&& syms
[j
].sym
!= NULL
4544 && strncmp (name
, SYMBOL_LINKAGE_NAME (syms
[j
].sym
),
4546 && block
== syms
[j
].block
)
4550 if (is_new_style_renaming
)
4554 for (j
= k
= 0; j
< nsyms
; j
+= 1)
4555 if (syms
[j
].sym
!= NULL
)
4563 /* Extract the function name associated to CURRENT_BLOCK.
4564 Abort if unable to do so. */
4566 if (current_block
== NULL
)
4569 current_function
= block_linkage_function (current_block
);
4570 if (current_function
== NULL
)
4573 current_function_name
= SYMBOL_LINKAGE_NAME (current_function
);
4574 if (current_function_name
== NULL
)
4577 /* Check each of the symbols, and remove it from the list if it is
4578 a type corresponding to a renaming that is out of the scope of
4579 the current block. */
4584 if (ada_parse_renaming (syms
[i
].sym
, NULL
, NULL
, NULL
)
4585 == ADA_OBJECT_RENAMING
4586 && old_renaming_is_invisible (syms
[i
].sym
, current_function_name
))
4590 for (j
= i
+ 1; j
< nsyms
; j
+= 1)
4591 syms
[j
- 1] = syms
[j
];
4601 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4602 whose name and domain match NAME and DOMAIN respectively.
4603 If no match was found, then extend the search to "enclosing"
4604 routines (in other words, if we're inside a nested function,
4605 search the symbols defined inside the enclosing functions).
4607 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4610 ada_add_local_symbols (struct obstack
*obstackp
, const char *name
,
4611 struct block
*block
, domain_enum domain
,
4614 int block_depth
= 0;
4616 while (block
!= NULL
)
4619 ada_add_block_symbols (obstackp
, block
, name
, domain
, NULL
, wild_match
);
4621 /* If we found a non-function match, assume that's the one. */
4622 if (is_nonfunction (defns_collected (obstackp
, 0),
4623 num_defns_collected (obstackp
)))
4626 block
= BLOCK_SUPERBLOCK (block
);
4629 /* If no luck so far, try to find NAME as a local symbol in some lexically
4630 enclosing subprogram. */
4631 if (num_defns_collected (obstackp
) == 0 && block_depth
> 2)
4632 add_symbols_from_enclosing_procs (obstackp
, name
, domain
, wild_match
);
4635 /* An object of this type is used as the user_data argument when
4636 calling the map_ada_symtabs method. */
4638 struct ada_psym_data
4640 struct obstack
*obstackp
;
4647 /* Callback function for map_ada_symtabs. */
4650 ada_add_psyms (struct objfile
*objfile
, struct symtab
*s
, void *user_data
)
4652 struct ada_psym_data
*data
= user_data
;
4653 const int block_kind
= data
->global
? GLOBAL_BLOCK
: STATIC_BLOCK
;
4655 ada_add_block_symbols (data
->obstackp
,
4656 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s
), block_kind
),
4657 data
->name
, data
->domain
, objfile
, data
->wild_match
);
4660 /* Add to OBSTACKP all non-local symbols whose name and domain match
4661 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4662 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4665 ada_add_non_local_symbols (struct obstack
*obstackp
, const char *name
,
4666 domain_enum domain
, int global
,
4669 struct objfile
*objfile
;
4670 struct ada_psym_data data
;
4672 data
.obstackp
= obstackp
;
4674 data
.domain
= domain
;
4675 data
.global
= global
;
4676 data
.wild_match
= is_wild_match
;
4678 ALL_OBJFILES (objfile
)
4681 objfile
->sf
->qf
->map_ada_symtabs (objfile
, wild_match
, is_name_suffix
,
4682 ada_add_psyms
, name
,
4684 is_wild_match
, &data
);
4688 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4689 scope and in global scopes, returning the number of matches. Sets
4690 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4691 indicating the symbols found and the blocks and symbol tables (if
4692 any) in which they were found. This vector are transient---good only to
4693 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4694 symbol match within the nest of blocks whose innermost member is BLOCK0,
4695 is the one match returned (no other matches in that or
4696 enclosing blocks is returned). If there are any matches in or
4697 surrounding BLOCK0, then these alone are returned. Otherwise, the
4698 search extends to global and file-scope (static) symbol tables.
4699 Names prefixed with "standard__" are handled specially: "standard__"
4700 is first stripped off, and only static and global symbols are searched. */
4703 ada_lookup_symbol_list (const char *name0
, const struct block
*block0
,
4704 domain_enum
namespace,
4705 struct ada_symbol_info
**results
)
4708 struct block
*block
;
4714 obstack_free (&symbol_list_obstack
, NULL
);
4715 obstack_init (&symbol_list_obstack
);
4719 /* Search specified block and its superiors. */
4721 wild_match
= (strstr (name0
, "__") == NULL
);
4723 block
= (struct block
*) block0
; /* FIXME: No cast ought to be
4724 needed, but adding const will
4725 have a cascade effect. */
4727 /* Special case: If the user specifies a symbol name inside package
4728 Standard, do a non-wild matching of the symbol name without
4729 the "standard__" prefix. This was primarily introduced in order
4730 to allow the user to specifically access the standard exceptions
4731 using, for instance, Standard.Constraint_Error when Constraint_Error
4732 is ambiguous (due to the user defining its own Constraint_Error
4733 entity inside its program). */
4734 if (strncmp (name0
, "standard__", sizeof ("standard__") - 1) == 0)
4738 name
= name0
+ sizeof ("standard__") - 1;
4741 /* Check the non-global symbols. If we have ANY match, then we're done. */
4743 ada_add_local_symbols (&symbol_list_obstack
, name
, block
, namespace,
4745 if (num_defns_collected (&symbol_list_obstack
) > 0)
4748 /* No non-global symbols found. Check our cache to see if we have
4749 already performed this search before. If we have, then return
4753 if (lookup_cached_symbol (name0
, namespace, &sym
, &block
))
4756 add_defn_to_vec (&symbol_list_obstack
, sym
, block
);
4760 /* Search symbols from all global blocks. */
4762 ada_add_non_local_symbols (&symbol_list_obstack
, name
, namespace, 1,
4765 /* Now add symbols from all per-file blocks if we've gotten no hits
4766 (not strictly correct, but perhaps better than an error). */
4768 if (num_defns_collected (&symbol_list_obstack
) == 0)
4769 ada_add_non_local_symbols (&symbol_list_obstack
, name
, namespace, 0,
4773 ndefns
= num_defns_collected (&symbol_list_obstack
);
4774 *results
= defns_collected (&symbol_list_obstack
, 1);
4776 ndefns
= remove_extra_symbols (*results
, ndefns
);
4779 cache_symbol (name0
, namespace, NULL
, NULL
);
4781 if (ndefns
== 1 && cacheIfUnique
)
4782 cache_symbol (name0
, namespace, (*results
)[0].sym
, (*results
)[0].block
);
4784 ndefns
= remove_irrelevant_renamings (*results
, ndefns
, block0
);
4790 ada_lookup_encoded_symbol (const char *name
, const struct block
*block0
,
4791 domain_enum
namespace, struct block
**block_found
)
4793 struct ada_symbol_info
*candidates
;
4796 n_candidates
= ada_lookup_symbol_list (name
, block0
, namespace, &candidates
);
4798 if (n_candidates
== 0)
4801 if (block_found
!= NULL
)
4802 *block_found
= candidates
[0].block
;
4804 return fixup_symbol_section (candidates
[0].sym
, NULL
);
4807 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4808 scope and in global scopes, or NULL if none. NAME is folded and
4809 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4810 choosing the first symbol if there are multiple choices.
4811 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4812 table in which the symbol was found (in both cases, these
4813 assignments occur only if the pointers are non-null). */
4815 ada_lookup_symbol (const char *name
, const struct block
*block0
,
4816 domain_enum
namespace, int *is_a_field_of_this
)
4818 if (is_a_field_of_this
!= NULL
)
4819 *is_a_field_of_this
= 0;
4822 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name
)),
4823 block0
, namespace, NULL
);
4826 static struct symbol
*
4827 ada_lookup_symbol_nonlocal (const char *name
,
4828 const struct block
*block
,
4829 const domain_enum domain
)
4831 return ada_lookup_symbol (name
, block_static_block (block
), domain
, NULL
);
4835 /* True iff STR is a possible encoded suffix of a normal Ada name
4836 that is to be ignored for matching purposes. Suffixes of parallel
4837 names (e.g., XVE) are not included here. Currently, the possible suffixes
4838 are given by any of the regular expressions:
4840 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4841 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4842 _E[0-9]+[bs]$ [protected object entry suffixes]
4843 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4845 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4846 match is performed. This sequence is used to differentiate homonyms,
4847 is an optional part of a valid name suffix. */
4850 is_name_suffix (const char *str
)
4853 const char *matching
;
4854 const int len
= strlen (str
);
4856 /* Skip optional leading __[0-9]+. */
4858 if (len
> 3 && str
[0] == '_' && str
[1] == '_' && isdigit (str
[2]))
4861 while (isdigit (str
[0]))
4867 if (str
[0] == '.' || str
[0] == '$')
4870 while (isdigit (matching
[0]))
4872 if (matching
[0] == '\0')
4878 if (len
> 3 && str
[0] == '_' && str
[1] == '_' && str
[2] == '_')
4881 while (isdigit (matching
[0]))
4883 if (matching
[0] == '\0')
4888 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4889 with a N at the end. Unfortunately, the compiler uses the same
4890 convention for other internal types it creates. So treating
4891 all entity names that end with an "N" as a name suffix causes
4892 some regressions. For instance, consider the case of an enumerated
4893 type. To support the 'Image attribute, it creates an array whose
4895 Having a single character like this as a suffix carrying some
4896 information is a bit risky. Perhaps we should change the encoding
4897 to be something like "_N" instead. In the meantime, do not do
4898 the following check. */
4899 /* Protected Object Subprograms */
4900 if (len
== 1 && str
[0] == 'N')
4905 if (len
> 3 && str
[0] == '_' && str
[1] == 'E' && isdigit (str
[2]))
4908 while (isdigit (matching
[0]))
4910 if ((matching
[0] == 'b' || matching
[0] == 's')
4911 && matching
[1] == '\0')
4915 /* ??? We should not modify STR directly, as we are doing below. This
4916 is fine in this case, but may become problematic later if we find
4917 that this alternative did not work, and want to try matching
4918 another one from the begining of STR. Since we modified it, we
4919 won't be able to find the begining of the string anymore! */
4923 while (str
[0] != '_' && str
[0] != '\0')
4925 if (str
[0] != 'n' && str
[0] != 'b')
4931 if (str
[0] == '\000')
4936 if (str
[1] != '_' || str
[2] == '\000')
4940 if (strcmp (str
+ 3, "JM") == 0)
4942 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4943 the LJM suffix in favor of the JM one. But we will
4944 still accept LJM as a valid suffix for a reasonable
4945 amount of time, just to allow ourselves to debug programs
4946 compiled using an older version of GNAT. */
4947 if (strcmp (str
+ 3, "LJM") == 0)
4951 if (str
[4] == 'F' || str
[4] == 'D' || str
[4] == 'B'
4952 || str
[4] == 'U' || str
[4] == 'P')
4954 if (str
[4] == 'R' && str
[5] != 'T')
4958 if (!isdigit (str
[2]))
4960 for (k
= 3; str
[k
] != '\0'; k
+= 1)
4961 if (!isdigit (str
[k
]) && str
[k
] != '_')
4965 if (str
[0] == '$' && isdigit (str
[1]))
4967 for (k
= 2; str
[k
] != '\0'; k
+= 1)
4968 if (!isdigit (str
[k
]) && str
[k
] != '_')
4975 /* Return non-zero if the string starting at NAME and ending before
4976 NAME_END contains no capital letters. */
4979 is_valid_name_for_wild_match (const char *name0
)
4981 const char *decoded_name
= ada_decode (name0
);
4984 /* If the decoded name starts with an angle bracket, it means that
4985 NAME0 does not follow the GNAT encoding format. It should then
4986 not be allowed as a possible wild match. */
4987 if (decoded_name
[0] == '<')
4990 for (i
=0; decoded_name
[i
] != '\0'; i
++)
4991 if (isalpha (decoded_name
[i
]) && !islower (decoded_name
[i
]))
4997 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4998 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4999 informational suffixes of NAME (i.e., for which is_name_suffix is
5003 wild_match (const char *patn0
, int patn_len
, const char *name0
)
5011 match
= strstr (start
, patn0
);
5016 || (match
> name0
+ 1 && match
[-1] == '_' && match
[-2] == '_')
5017 || (match
== name0
+ 5 && strncmp ("_ada_", name0
, 5) == 0))
5018 && is_name_suffix (match
+ patn_len
))
5019 return (match
== name0
|| is_valid_name_for_wild_match (name0
));
5024 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5025 vector *defn_symbols, updating the list of symbols in OBSTACKP
5026 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5027 OBJFILE is the section containing BLOCK.
5028 SYMTAB is recorded with each symbol added. */
5031 ada_add_block_symbols (struct obstack
*obstackp
,
5032 struct block
*block
, const char *name
,
5033 domain_enum domain
, struct objfile
*objfile
,
5036 struct dict_iterator iter
;
5037 int name_len
= strlen (name
);
5038 /* A matching argument symbol, if any. */
5039 struct symbol
*arg_sym
;
5040 /* Set true when we find a matching non-argument symbol. */
5050 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
5052 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym
),
5053 SYMBOL_DOMAIN (sym
), domain
)
5054 && wild_match (name
, name_len
, SYMBOL_LINKAGE_NAME (sym
)))
5056 if (SYMBOL_CLASS (sym
) == LOC_UNRESOLVED
)
5058 else if (SYMBOL_IS_ARGUMENT (sym
))
5063 add_defn_to_vec (obstackp
,
5064 fixup_symbol_section (sym
, objfile
),
5072 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
5074 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym
),
5075 SYMBOL_DOMAIN (sym
), domain
))
5077 int cmp
= strncmp (name
, SYMBOL_LINKAGE_NAME (sym
), name_len
);
5080 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym
) + name_len
))
5082 if (SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
)
5084 if (SYMBOL_IS_ARGUMENT (sym
))
5089 add_defn_to_vec (obstackp
,
5090 fixup_symbol_section (sym
, objfile
),
5099 if (!found_sym
&& arg_sym
!= NULL
)
5101 add_defn_to_vec (obstackp
,
5102 fixup_symbol_section (arg_sym
, objfile
),
5111 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
5113 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym
),
5114 SYMBOL_DOMAIN (sym
), domain
))
5118 cmp
= (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym
)[0];
5121 cmp
= strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym
), 5);
5123 cmp
= strncmp (name
, SYMBOL_LINKAGE_NAME (sym
) + 5,
5128 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym
) + name_len
+ 5))
5130 if (SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
)
5132 if (SYMBOL_IS_ARGUMENT (sym
))
5137 add_defn_to_vec (obstackp
,
5138 fixup_symbol_section (sym
, objfile
),
5146 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5147 They aren't parameters, right? */
5148 if (!found_sym
&& arg_sym
!= NULL
)
5150 add_defn_to_vec (obstackp
,
5151 fixup_symbol_section (arg_sym
, objfile
),
5158 /* Symbol Completion */
5160 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5161 name in a form that's appropriate for the completion. The result
5162 does not need to be deallocated, but is only good until the next call.
5164 TEXT_LEN is equal to the length of TEXT.
5165 Perform a wild match if WILD_MATCH is set.
5166 ENCODED should be set if TEXT represents the start of a symbol name
5167 in its encoded form. */
5170 symbol_completion_match (const char *sym_name
,
5171 const char *text
, int text_len
,
5172 int wild_match
, int encoded
)
5174 const int verbatim_match
= (text
[0] == '<');
5179 /* Strip the leading angle bracket. */
5184 /* First, test against the fully qualified name of the symbol. */
5186 if (strncmp (sym_name
, text
, text_len
) == 0)
5189 if (match
&& !encoded
)
5191 /* One needed check before declaring a positive match is to verify
5192 that iff we are doing a verbatim match, the decoded version
5193 of the symbol name starts with '<'. Otherwise, this symbol name
5194 is not a suitable completion. */
5195 const char *sym_name_copy
= sym_name
;
5196 int has_angle_bracket
;
5198 sym_name
= ada_decode (sym_name
);
5199 has_angle_bracket
= (sym_name
[0] == '<');
5200 match
= (has_angle_bracket
== verbatim_match
);
5201 sym_name
= sym_name_copy
;
5204 if (match
&& !verbatim_match
)
5206 /* When doing non-verbatim match, another check that needs to
5207 be done is to verify that the potentially matching symbol name
5208 does not include capital letters, because the ada-mode would
5209 not be able to understand these symbol names without the
5210 angle bracket notation. */
5213 for (tmp
= sym_name
; *tmp
!= '\0' && !isupper (*tmp
); tmp
++);
5218 /* Second: Try wild matching... */
5220 if (!match
&& wild_match
)
5222 /* Since we are doing wild matching, this means that TEXT
5223 may represent an unqualified symbol name. We therefore must
5224 also compare TEXT against the unqualified name of the symbol. */
5225 sym_name
= ada_unqualified_name (ada_decode (sym_name
));
5227 if (strncmp (sym_name
, text
, text_len
) == 0)
5231 /* Finally: If we found a mach, prepare the result to return. */
5237 sym_name
= add_angle_brackets (sym_name
);
5240 sym_name
= ada_decode (sym_name
);
5245 DEF_VEC_P (char_ptr
);
5247 /* A companion function to ada_make_symbol_completion_list().
5248 Check if SYM_NAME represents a symbol which name would be suitable
5249 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5250 it is appended at the end of the given string vector SV.
5252 ORIG_TEXT is the string original string from the user command
5253 that needs to be completed. WORD is the entire command on which
5254 completion should be performed. These two parameters are used to
5255 determine which part of the symbol name should be added to the
5257 if WILD_MATCH is set, then wild matching is performed.
5258 ENCODED should be set if TEXT represents a symbol name in its
5259 encoded formed (in which case the completion should also be
5263 symbol_completion_add (VEC(char_ptr
) **sv
,
5264 const char *sym_name
,
5265 const char *text
, int text_len
,
5266 const char *orig_text
, const char *word
,
5267 int wild_match
, int encoded
)
5269 const char *match
= symbol_completion_match (sym_name
, text
, text_len
,
5270 wild_match
, encoded
);
5276 /* We found a match, so add the appropriate completion to the given
5279 if (word
== orig_text
)
5281 completion
= xmalloc (strlen (match
) + 5);
5282 strcpy (completion
, match
);
5284 else if (word
> orig_text
)
5286 /* Return some portion of sym_name. */
5287 completion
= xmalloc (strlen (match
) + 5);
5288 strcpy (completion
, match
+ (word
- orig_text
));
5292 /* Return some of ORIG_TEXT plus sym_name. */
5293 completion
= xmalloc (strlen (match
) + (orig_text
- word
) + 5);
5294 strncpy (completion
, word
, orig_text
- word
);
5295 completion
[orig_text
- word
] = '\0';
5296 strcat (completion
, match
);
5299 VEC_safe_push (char_ptr
, *sv
, completion
);
5302 /* An object of this type is passed as the user_data argument to the
5303 map_partial_symbol_names method. */
5304 struct add_partial_datum
5306 VEC(char_ptr
) **completions
;
5315 /* A callback for map_partial_symbol_names. */
5317 ada_add_partial_symbol_completions (const char *name
, void *user_data
)
5319 struct add_partial_datum
*data
= user_data
;
5321 symbol_completion_add (data
->completions
, name
,
5322 data
->text
, data
->text_len
, data
->text0
, data
->word
,
5323 data
->wild_match
, data
->encoded
);
5326 /* Return a list of possible symbol names completing TEXT0. The list
5327 is NULL terminated. WORD is the entire command on which completion
5331 ada_make_symbol_completion_list (char *text0
, char *word
)
5337 VEC(char_ptr
) *completions
= VEC_alloc (char_ptr
, 128);
5340 struct minimal_symbol
*msymbol
;
5341 struct objfile
*objfile
;
5342 struct block
*b
, *surrounding_static_block
= 0;
5344 struct dict_iterator iter
;
5346 if (text0
[0] == '<')
5348 text
= xstrdup (text0
);
5349 make_cleanup (xfree
, text
);
5350 text_len
= strlen (text
);
5356 text
= xstrdup (ada_encode (text0
));
5357 make_cleanup (xfree
, text
);
5358 text_len
= strlen (text
);
5359 for (i
= 0; i
< text_len
; i
++)
5360 text
[i
] = tolower (text
[i
]);
5362 encoded
= (strstr (text0
, "__") != NULL
);
5363 /* If the name contains a ".", then the user is entering a fully
5364 qualified entity name, and the match must not be done in wild
5365 mode. Similarly, if the user wants to complete what looks like
5366 an encoded name, the match must not be done in wild mode. */
5367 wild_match
= (strchr (text0
, '.') == NULL
&& !encoded
);
5370 /* First, look at the partial symtab symbols. */
5372 struct add_partial_datum data
;
5374 data
.completions
= &completions
;
5376 data
.text_len
= text_len
;
5379 data
.wild_match
= wild_match
;
5380 data
.encoded
= encoded
;
5381 map_partial_symbol_names (ada_add_partial_symbol_completions
, &data
);
5384 /* At this point scan through the misc symbol vectors and add each
5385 symbol you find to the list. Eventually we want to ignore
5386 anything that isn't a text symbol (everything else will be
5387 handled by the psymtab code above). */
5389 ALL_MSYMBOLS (objfile
, msymbol
)
5392 symbol_completion_add (&completions
, SYMBOL_LINKAGE_NAME (msymbol
),
5393 text
, text_len
, text0
, word
, wild_match
, encoded
);
5396 /* Search upwards from currently selected frame (so that we can
5397 complete on local vars. */
5399 for (b
= get_selected_block (0); b
!= NULL
; b
= BLOCK_SUPERBLOCK (b
))
5401 if (!BLOCK_SUPERBLOCK (b
))
5402 surrounding_static_block
= b
; /* For elmin of dups */
5404 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
5406 symbol_completion_add (&completions
, SYMBOL_LINKAGE_NAME (sym
),
5407 text
, text_len
, text0
, word
,
5408 wild_match
, encoded
);
5412 /* Go through the symtabs and check the externs and statics for
5413 symbols which match. */
5415 ALL_SYMTABS (objfile
, s
)
5418 b
= BLOCKVECTOR_BLOCK (BLOCKVECTOR (s
), GLOBAL_BLOCK
);
5419 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
5421 symbol_completion_add (&completions
, SYMBOL_LINKAGE_NAME (sym
),
5422 text
, text_len
, text0
, word
,
5423 wild_match
, encoded
);
5427 ALL_SYMTABS (objfile
, s
)
5430 b
= BLOCKVECTOR_BLOCK (BLOCKVECTOR (s
), STATIC_BLOCK
);
5431 /* Don't do this block twice. */
5432 if (b
== surrounding_static_block
)
5434 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
5436 symbol_completion_add (&completions
, SYMBOL_LINKAGE_NAME (sym
),
5437 text
, text_len
, text0
, word
,
5438 wild_match
, encoded
);
5442 /* Append the closing NULL entry. */
5443 VEC_safe_push (char_ptr
, completions
, NULL
);
5445 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5446 return the copy. It's unfortunate that we have to make a copy
5447 of an array that we're about to destroy, but there is nothing much
5448 we can do about it. Fortunately, it's typically not a very large
5451 const size_t completions_size
=
5452 VEC_length (char_ptr
, completions
) * sizeof (char *);
5453 char **result
= malloc (completions_size
);
5455 memcpy (result
, VEC_address (char_ptr
, completions
), completions_size
);
5457 VEC_free (char_ptr
, completions
);
5464 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5465 for tagged types. */
5468 ada_is_dispatch_table_ptr_type (struct type
*type
)
5472 if (TYPE_CODE (type
) != TYPE_CODE_PTR
)
5475 name
= TYPE_NAME (TYPE_TARGET_TYPE (type
));
5479 return (strcmp (name
, "ada__tags__dispatch_table") == 0);
5482 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5483 to be invisible to users. */
5486 ada_is_ignored_field (struct type
*type
, int field_num
)
5488 if (field_num
< 0 || field_num
> TYPE_NFIELDS (type
))
5491 /* Check the name of that field. */
5493 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
5495 /* Anonymous field names should not be printed.
5496 brobecker/2007-02-20: I don't think this can actually happen
5497 but we don't want to print the value of annonymous fields anyway. */
5501 /* A field named "_parent" is internally generated by GNAT for
5502 tagged types, and should not be printed either. */
5503 if (name
[0] == '_' && strncmp (name
, "_parent", 7) != 0)
5507 /* If this is the dispatch table of a tagged type, then ignore. */
5508 if (ada_is_tagged_type (type
, 1)
5509 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type
, field_num
)))
5512 /* Not a special field, so it should not be ignored. */
5516 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5517 pointer or reference type whose ultimate target has a tag field. */
5520 ada_is_tagged_type (struct type
*type
, int refok
)
5522 return (ada_lookup_struct_elt_type (type
, "_tag", refok
, 1, NULL
) != NULL
);
5525 /* True iff TYPE represents the type of X'Tag */
5528 ada_is_tag_type (struct type
*type
)
5530 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_PTR
)
5534 const char *name
= ada_type_name (TYPE_TARGET_TYPE (type
));
5536 return (name
!= NULL
5537 && strcmp (name
, "ada__tags__dispatch_table") == 0);
5541 /* The type of the tag on VAL. */
5544 ada_tag_type (struct value
*val
)
5546 return ada_lookup_struct_elt_type (value_type (val
), "_tag", 1, 0, NULL
);
5549 /* The value of the tag on VAL. */
5552 ada_value_tag (struct value
*val
)
5554 return ada_value_struct_elt (val
, "_tag", 0);
5557 /* The value of the tag on the object of type TYPE whose contents are
5558 saved at VALADDR, if it is non-null, or is at memory address
5561 static struct value
*
5562 value_tag_from_contents_and_address (struct type
*type
,
5563 const gdb_byte
*valaddr
,
5566 int tag_byte_offset
;
5567 struct type
*tag_type
;
5569 if (find_struct_field ("_tag", type
, 0, &tag_type
, &tag_byte_offset
,
5572 const gdb_byte
*valaddr1
= ((valaddr
== NULL
)
5574 : valaddr
+ tag_byte_offset
);
5575 CORE_ADDR address1
= (address
== 0) ? 0 : address
+ tag_byte_offset
;
5577 return value_from_contents_and_address (tag_type
, valaddr1
, address1
);
5582 static struct type
*
5583 type_from_tag (struct value
*tag
)
5585 const char *type_name
= ada_tag_name (tag
);
5587 if (type_name
!= NULL
)
5588 return ada_find_any_type (ada_encode (type_name
));
5599 static int ada_tag_name_1 (void *);
5600 static int ada_tag_name_2 (struct tag_args
*);
5602 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5603 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5604 The value stored in ARGS->name is valid until the next call to
5608 ada_tag_name_1 (void *args0
)
5610 struct tag_args
*args
= (struct tag_args
*) args0
;
5611 static char name
[1024];
5616 val
= ada_value_struct_elt (args
->tag
, "tsd", 1);
5618 return ada_tag_name_2 (args
);
5619 val
= ada_value_struct_elt (val
, "expanded_name", 1);
5622 read_memory_string (value_as_address (val
), name
, sizeof (name
) - 1);
5623 for (p
= name
; *p
!= '\0'; p
+= 1)
5630 /* Return the "ada__tags__type_specific_data" type. */
5632 static struct type
*
5633 ada_get_tsd_type (struct inferior
*inf
)
5635 struct ada_inferior_data
*data
= get_ada_inferior_data (inf
);
5637 if (data
->tsd_type
== 0)
5638 data
->tsd_type
= ada_find_any_type ("ada__tags__type_specific_data");
5639 return data
->tsd_type
;
5642 /* Utility function for ada_tag_name_1 that tries the second
5643 representation for the dispatch table (in which there is no
5644 explicit 'tsd' field in the referent of the tag pointer, and instead
5645 the tsd pointer is stored just before the dispatch table. */
5648 ada_tag_name_2 (struct tag_args
*args
)
5650 struct type
*info_type
;
5651 static char name
[1024];
5653 struct value
*val
, *valp
;
5656 info_type
= ada_get_tsd_type (current_inferior());
5657 if (info_type
== NULL
)
5659 info_type
= lookup_pointer_type (lookup_pointer_type (info_type
));
5660 valp
= value_cast (info_type
, args
->tag
);
5663 val
= value_ind (value_ptradd (valp
, -1));
5666 val
= ada_value_struct_elt (val
, "expanded_name", 1);
5669 read_memory_string (value_as_address (val
), name
, sizeof (name
) - 1);
5670 for (p
= name
; *p
!= '\0'; p
+= 1)
5677 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5681 ada_tag_name (struct value
*tag
)
5683 struct tag_args args
;
5685 if (!ada_is_tag_type (value_type (tag
)))
5689 catch_errors (ada_tag_name_1
, &args
, NULL
, RETURN_MASK_ALL
);
5693 /* The parent type of TYPE, or NULL if none. */
5696 ada_parent_type (struct type
*type
)
5700 type
= ada_check_typedef (type
);
5702 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
)
5705 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
5706 if (ada_is_parent_field (type
, i
))
5708 struct type
*parent_type
= TYPE_FIELD_TYPE (type
, i
);
5710 /* If the _parent field is a pointer, then dereference it. */
5711 if (TYPE_CODE (parent_type
) == TYPE_CODE_PTR
)
5712 parent_type
= TYPE_TARGET_TYPE (parent_type
);
5713 /* If there is a parallel XVS type, get the actual base type. */
5714 parent_type
= ada_get_base_type (parent_type
);
5716 return ada_check_typedef (parent_type
);
5722 /* True iff field number FIELD_NUM of structure type TYPE contains the
5723 parent-type (inherited) fields of a derived type. Assumes TYPE is
5724 a structure type with at least FIELD_NUM+1 fields. */
5727 ada_is_parent_field (struct type
*type
, int field_num
)
5729 const char *name
= TYPE_FIELD_NAME (ada_check_typedef (type
), field_num
);
5731 return (name
!= NULL
5732 && (strncmp (name
, "PARENT", 6) == 0
5733 || strncmp (name
, "_parent", 7) == 0));
5736 /* True iff field number FIELD_NUM of structure type TYPE is a
5737 transparent wrapper field (which should be silently traversed when doing
5738 field selection and flattened when printing). Assumes TYPE is a
5739 structure type with at least FIELD_NUM+1 fields. Such fields are always
5743 ada_is_wrapper_field (struct type
*type
, int field_num
)
5745 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
5747 return (name
!= NULL
5748 && (strncmp (name
, "PARENT", 6) == 0
5749 || strcmp (name
, "REP") == 0
5750 || strncmp (name
, "_parent", 7) == 0
5751 || name
[0] == 'S' || name
[0] == 'R' || name
[0] == 'O'));
5754 /* True iff field number FIELD_NUM of structure or union type TYPE
5755 is a variant wrapper. Assumes TYPE is a structure type with at least
5756 FIELD_NUM+1 fields. */
5759 ada_is_variant_part (struct type
*type
, int field_num
)
5761 struct type
*field_type
= TYPE_FIELD_TYPE (type
, field_num
);
5763 return (TYPE_CODE (field_type
) == TYPE_CODE_UNION
5764 || (is_dynamic_field (type
, field_num
)
5765 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type
))
5766 == TYPE_CODE_UNION
)));
5769 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5770 whose discriminants are contained in the record type OUTER_TYPE,
5771 returns the type of the controlling discriminant for the variant.
5772 May return NULL if the type could not be found. */
5775 ada_variant_discrim_type (struct type
*var_type
, struct type
*outer_type
)
5777 char *name
= ada_variant_discrim_name (var_type
);
5779 return ada_lookup_struct_elt_type (outer_type
, name
, 1, 1, NULL
);
5782 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5783 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5784 represents a 'when others' clause; otherwise 0. */
5787 ada_is_others_clause (struct type
*type
, int field_num
)
5789 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
5791 return (name
!= NULL
&& name
[0] == 'O');
5794 /* Assuming that TYPE0 is the type of the variant part of a record,
5795 returns the name of the discriminant controlling the variant.
5796 The value is valid until the next call to ada_variant_discrim_name. */
5799 ada_variant_discrim_name (struct type
*type0
)
5801 static char *result
= NULL
;
5802 static size_t result_len
= 0;
5805 const char *discrim_end
;
5806 const char *discrim_start
;
5808 if (TYPE_CODE (type0
) == TYPE_CODE_PTR
)
5809 type
= TYPE_TARGET_TYPE (type0
);
5813 name
= ada_type_name (type
);
5815 if (name
== NULL
|| name
[0] == '\000')
5818 for (discrim_end
= name
+ strlen (name
) - 6; discrim_end
!= name
;
5821 if (strncmp (discrim_end
, "___XVN", 6) == 0)
5824 if (discrim_end
== name
)
5827 for (discrim_start
= discrim_end
; discrim_start
!= name
+ 3;
5830 if (discrim_start
== name
+ 1)
5832 if ((discrim_start
> name
+ 3
5833 && strncmp (discrim_start
- 3, "___", 3) == 0)
5834 || discrim_start
[-1] == '.')
5838 GROW_VECT (result
, result_len
, discrim_end
- discrim_start
+ 1);
5839 strncpy (result
, discrim_start
, discrim_end
- discrim_start
);
5840 result
[discrim_end
- discrim_start
] = '\0';
5844 /* Scan STR for a subtype-encoded number, beginning at position K.
5845 Put the position of the character just past the number scanned in
5846 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5847 Return 1 if there was a valid number at the given position, and 0
5848 otherwise. A "subtype-encoded" number consists of the absolute value
5849 in decimal, followed by the letter 'm' to indicate a negative number.
5850 Assumes 0m does not occur. */
5853 ada_scan_number (const char str
[], int k
, LONGEST
* R
, int *new_k
)
5857 if (!isdigit (str
[k
]))
5860 /* Do it the hard way so as not to make any assumption about
5861 the relationship of unsigned long (%lu scan format code) and
5864 while (isdigit (str
[k
]))
5866 RU
= RU
* 10 + (str
[k
] - '0');
5873 *R
= (-(LONGEST
) (RU
- 1)) - 1;
5879 /* NOTE on the above: Technically, C does not say what the results of
5880 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5881 number representable as a LONGEST (although either would probably work
5882 in most implementations). When RU>0, the locution in the then branch
5883 above is always equivalent to the negative of RU. */
5890 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5891 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5892 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5895 ada_in_variant (LONGEST val
, struct type
*type
, int field_num
)
5897 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
5911 if (!ada_scan_number (name
, p
+ 1, &W
, &p
))
5921 if (!ada_scan_number (name
, p
+ 1, &L
, &p
)
5922 || name
[p
] != 'T' || !ada_scan_number (name
, p
+ 1, &U
, &p
))
5924 if (val
>= L
&& val
<= U
)
5936 /* FIXME: Lots of redundancy below. Try to consolidate. */
5938 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5939 ARG_TYPE, extract and return the value of one of its (non-static)
5940 fields. FIELDNO says which field. Differs from value_primitive_field
5941 only in that it can handle packed values of arbitrary type. */
5943 static struct value
*
5944 ada_value_primitive_field (struct value
*arg1
, int offset
, int fieldno
,
5945 struct type
*arg_type
)
5949 arg_type
= ada_check_typedef (arg_type
);
5950 type
= TYPE_FIELD_TYPE (arg_type
, fieldno
);
5952 /* Handle packed fields. */
5954 if (TYPE_FIELD_BITSIZE (arg_type
, fieldno
) != 0)
5956 int bit_pos
= TYPE_FIELD_BITPOS (arg_type
, fieldno
);
5957 int bit_size
= TYPE_FIELD_BITSIZE (arg_type
, fieldno
);
5959 return ada_value_primitive_packed_val (arg1
, value_contents (arg1
),
5960 offset
+ bit_pos
/ 8,
5961 bit_pos
% 8, bit_size
, type
);
5964 return value_primitive_field (arg1
, offset
, fieldno
, arg_type
);
5967 /* Find field with name NAME in object of type TYPE. If found,
5968 set the following for each argument that is non-null:
5969 - *FIELD_TYPE_P to the field's type;
5970 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5971 an object of that type;
5972 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5973 - *BIT_SIZE_P to its size in bits if the field is packed, and
5975 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5976 fields up to but not including the desired field, or by the total
5977 number of fields if not found. A NULL value of NAME never
5978 matches; the function just counts visible fields in this case.
5980 Returns 1 if found, 0 otherwise. */
5983 find_struct_field (char *name
, struct type
*type
, int offset
,
5984 struct type
**field_type_p
,
5985 int *byte_offset_p
, int *bit_offset_p
, int *bit_size_p
,
5990 type
= ada_check_typedef (type
);
5992 if (field_type_p
!= NULL
)
5993 *field_type_p
= NULL
;
5994 if (byte_offset_p
!= NULL
)
5996 if (bit_offset_p
!= NULL
)
5998 if (bit_size_p
!= NULL
)
6001 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
6003 int bit_pos
= TYPE_FIELD_BITPOS (type
, i
);
6004 int fld_offset
= offset
+ bit_pos
/ 8;
6005 char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
6007 if (t_field_name
== NULL
)
6010 else if (name
!= NULL
&& field_name_match (t_field_name
, name
))
6012 int bit_size
= TYPE_FIELD_BITSIZE (type
, i
);
6014 if (field_type_p
!= NULL
)
6015 *field_type_p
= TYPE_FIELD_TYPE (type
, i
);
6016 if (byte_offset_p
!= NULL
)
6017 *byte_offset_p
= fld_offset
;
6018 if (bit_offset_p
!= NULL
)
6019 *bit_offset_p
= bit_pos
% 8;
6020 if (bit_size_p
!= NULL
)
6021 *bit_size_p
= bit_size
;
6024 else if (ada_is_wrapper_field (type
, i
))
6026 if (find_struct_field (name
, TYPE_FIELD_TYPE (type
, i
), fld_offset
,
6027 field_type_p
, byte_offset_p
, bit_offset_p
,
6028 bit_size_p
, index_p
))
6031 else if (ada_is_variant_part (type
, i
))
6033 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6036 struct type
*field_type
6037 = ada_check_typedef (TYPE_FIELD_TYPE (type
, i
));
6039 for (j
= 0; j
< TYPE_NFIELDS (field_type
); j
+= 1)
6041 if (find_struct_field (name
, TYPE_FIELD_TYPE (field_type
, j
),
6043 + TYPE_FIELD_BITPOS (field_type
, j
) / 8,
6044 field_type_p
, byte_offset_p
,
6045 bit_offset_p
, bit_size_p
, index_p
))
6049 else if (index_p
!= NULL
)
6055 /* Number of user-visible fields in record type TYPE. */
6058 num_visible_fields (struct type
*type
)
6063 find_struct_field (NULL
, type
, 0, NULL
, NULL
, NULL
, NULL
, &n
);
6067 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6068 and search in it assuming it has (class) type TYPE.
6069 If found, return value, else return NULL.
6071 Searches recursively through wrapper fields (e.g., '_parent'). */
6073 static struct value
*
6074 ada_search_struct_field (char *name
, struct value
*arg
, int offset
,
6079 type
= ada_check_typedef (type
);
6080 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
6082 char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
6084 if (t_field_name
== NULL
)
6087 else if (field_name_match (t_field_name
, name
))
6088 return ada_value_primitive_field (arg
, offset
, i
, type
);
6090 else if (ada_is_wrapper_field (type
, i
))
6092 struct value
*v
= /* Do not let indent join lines here. */
6093 ada_search_struct_field (name
, arg
,
6094 offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8,
6095 TYPE_FIELD_TYPE (type
, i
));
6101 else if (ada_is_variant_part (type
, i
))
6103 /* PNH: Do we ever get here? See find_struct_field. */
6105 struct type
*field_type
= ada_check_typedef (TYPE_FIELD_TYPE (type
,
6107 int var_offset
= offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8;
6109 for (j
= 0; j
< TYPE_NFIELDS (field_type
); j
+= 1)
6111 struct value
*v
= ada_search_struct_field
/* Force line break. */
6113 var_offset
+ TYPE_FIELD_BITPOS (field_type
, j
) / 8,
6114 TYPE_FIELD_TYPE (field_type
, j
));
6124 static struct value
*ada_index_struct_field_1 (int *, struct value
*,
6125 int, struct type
*);
6128 /* Return field #INDEX in ARG, where the index is that returned by
6129 * find_struct_field through its INDEX_P argument. Adjust the address
6130 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6131 * If found, return value, else return NULL. */
6133 static struct value
*
6134 ada_index_struct_field (int index
, struct value
*arg
, int offset
,
6137 return ada_index_struct_field_1 (&index
, arg
, offset
, type
);
6141 /* Auxiliary function for ada_index_struct_field. Like
6142 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6145 static struct value
*
6146 ada_index_struct_field_1 (int *index_p
, struct value
*arg
, int offset
,
6150 type
= ada_check_typedef (type
);
6152 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
6154 if (TYPE_FIELD_NAME (type
, i
) == NULL
)
6156 else if (ada_is_wrapper_field (type
, i
))
6158 struct value
*v
= /* Do not let indent join lines here. */
6159 ada_index_struct_field_1 (index_p
, arg
,
6160 offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8,
6161 TYPE_FIELD_TYPE (type
, i
));
6167 else if (ada_is_variant_part (type
, i
))
6169 /* PNH: Do we ever get here? See ada_search_struct_field,
6170 find_struct_field. */
6171 error (_("Cannot assign this kind of variant record"));
6173 else if (*index_p
== 0)
6174 return ada_value_primitive_field (arg
, offset
, i
, type
);
6181 /* Given ARG, a value of type (pointer or reference to a)*
6182 structure/union, extract the component named NAME from the ultimate
6183 target structure/union and return it as a value with its
6186 The routine searches for NAME among all members of the structure itself
6187 and (recursively) among all members of any wrapper members
6190 If NO_ERR, then simply return NULL in case of error, rather than
6194 ada_value_struct_elt (struct value
*arg
, char *name
, int no_err
)
6196 struct type
*t
, *t1
;
6200 t1
= t
= ada_check_typedef (value_type (arg
));
6201 if (TYPE_CODE (t
) == TYPE_CODE_REF
)
6203 t1
= TYPE_TARGET_TYPE (t
);
6206 t1
= ada_check_typedef (t1
);
6207 if (TYPE_CODE (t1
) == TYPE_CODE_PTR
)
6209 arg
= coerce_ref (arg
);
6214 while (TYPE_CODE (t
) == TYPE_CODE_PTR
)
6216 t1
= TYPE_TARGET_TYPE (t
);
6219 t1
= ada_check_typedef (t1
);
6220 if (TYPE_CODE (t1
) == TYPE_CODE_PTR
)
6222 arg
= value_ind (arg
);
6229 if (TYPE_CODE (t1
) != TYPE_CODE_STRUCT
&& TYPE_CODE (t1
) != TYPE_CODE_UNION
)
6233 v
= ada_search_struct_field (name
, arg
, 0, t
);
6236 int bit_offset
, bit_size
, byte_offset
;
6237 struct type
*field_type
;
6240 if (TYPE_CODE (t
) == TYPE_CODE_PTR
)
6241 address
= value_as_address (arg
);
6243 address
= unpack_pointer (t
, value_contents (arg
));
6245 t1
= ada_to_fixed_type (ada_get_base_type (t1
), NULL
, address
, NULL
, 1);
6246 if (find_struct_field (name
, t1
, 0,
6247 &field_type
, &byte_offset
, &bit_offset
,
6252 if (TYPE_CODE (t
) == TYPE_CODE_REF
)
6253 arg
= ada_coerce_ref (arg
);
6255 arg
= ada_value_ind (arg
);
6256 v
= ada_value_primitive_packed_val (arg
, NULL
, byte_offset
,
6257 bit_offset
, bit_size
,
6261 v
= value_at_lazy (field_type
, address
+ byte_offset
);
6265 if (v
!= NULL
|| no_err
)
6268 error (_("There is no member named %s."), name
);
6274 error (_("Attempt to extract a component of a value that is not a record."));
6277 /* Given a type TYPE, look up the type of the component of type named NAME.
6278 If DISPP is non-null, add its byte displacement from the beginning of a
6279 structure (pointed to by a value) of type TYPE to *DISPP (does not
6280 work for packed fields).
6282 Matches any field whose name has NAME as a prefix, possibly
6285 TYPE can be either a struct or union. If REFOK, TYPE may also
6286 be a (pointer or reference)+ to a struct or union, and the
6287 ultimate target type will be searched.
6289 Looks recursively into variant clauses and parent types.
6291 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6292 TYPE is not a type of the right kind. */
6294 static struct type
*
6295 ada_lookup_struct_elt_type (struct type
*type
, char *name
, int refok
,
6296 int noerr
, int *dispp
)
6303 if (refok
&& type
!= NULL
)
6306 type
= ada_check_typedef (type
);
6307 if (TYPE_CODE (type
) != TYPE_CODE_PTR
6308 && TYPE_CODE (type
) != TYPE_CODE_REF
)
6310 type
= TYPE_TARGET_TYPE (type
);
6314 || (TYPE_CODE (type
) != TYPE_CODE_STRUCT
6315 && TYPE_CODE (type
) != TYPE_CODE_UNION
))
6321 target_terminal_ours ();
6322 gdb_flush (gdb_stdout
);
6324 error (_("Type (null) is not a structure or union type"));
6327 /* XXX: type_sprint */
6328 fprintf_unfiltered (gdb_stderr
, _("Type "));
6329 type_print (type
, "", gdb_stderr
, -1);
6330 error (_(" is not a structure or union type"));
6335 type
= to_static_fixed_type (type
);
6337 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
6339 char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
6343 if (t_field_name
== NULL
)
6346 else if (field_name_match (t_field_name
, name
))
6349 *dispp
+= TYPE_FIELD_BITPOS (type
, i
) / 8;
6350 return ada_check_typedef (TYPE_FIELD_TYPE (type
, i
));
6353 else if (ada_is_wrapper_field (type
, i
))
6356 t
= ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type
, i
), name
,
6361 *dispp
+= disp
+ TYPE_FIELD_BITPOS (type
, i
) / 8;
6366 else if (ada_is_variant_part (type
, i
))
6369 struct type
*field_type
= ada_check_typedef (TYPE_FIELD_TYPE (type
,
6372 for (j
= TYPE_NFIELDS (field_type
) - 1; j
>= 0; j
-= 1)
6374 /* FIXME pnh 2008/01/26: We check for a field that is
6375 NOT wrapped in a struct, since the compiler sometimes
6376 generates these for unchecked variant types. Revisit
6377 if the compiler changes this practice. */
6378 char *v_field_name
= TYPE_FIELD_NAME (field_type
, j
);
6380 if (v_field_name
!= NULL
6381 && field_name_match (v_field_name
, name
))
6382 t
= ada_check_typedef (TYPE_FIELD_TYPE (field_type
, j
));
6384 t
= ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type
, j
),
6390 *dispp
+= disp
+ TYPE_FIELD_BITPOS (type
, i
) / 8;
6401 target_terminal_ours ();
6402 gdb_flush (gdb_stdout
);
6405 /* XXX: type_sprint */
6406 fprintf_unfiltered (gdb_stderr
, _("Type "));
6407 type_print (type
, "", gdb_stderr
, -1);
6408 error (_(" has no component named <null>"));
6412 /* XXX: type_sprint */
6413 fprintf_unfiltered (gdb_stderr
, _("Type "));
6414 type_print (type
, "", gdb_stderr
, -1);
6415 error (_(" has no component named %s"), name
);
6422 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6423 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6424 represents an unchecked union (that is, the variant part of a
6425 record that is named in an Unchecked_Union pragma). */
6428 is_unchecked_variant (struct type
*var_type
, struct type
*outer_type
)
6430 char *discrim_name
= ada_variant_discrim_name (var_type
);
6432 return (ada_lookup_struct_elt_type (outer_type
, discrim_name
, 0, 1, NULL
)
6437 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6438 within a value of type OUTER_TYPE that is stored in GDB at
6439 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6440 numbering from 0) is applicable. Returns -1 if none are. */
6443 ada_which_variant_applies (struct type
*var_type
, struct type
*outer_type
,
6444 const gdb_byte
*outer_valaddr
)
6448 char *discrim_name
= ada_variant_discrim_name (var_type
);
6449 struct value
*outer
;
6450 struct value
*discrim
;
6451 LONGEST discrim_val
;
6453 outer
= value_from_contents_and_address (outer_type
, outer_valaddr
, 0);
6454 discrim
= ada_value_struct_elt (outer
, discrim_name
, 1);
6455 if (discrim
== NULL
)
6457 discrim_val
= value_as_long (discrim
);
6460 for (i
= 0; i
< TYPE_NFIELDS (var_type
); i
+= 1)
6462 if (ada_is_others_clause (var_type
, i
))
6464 else if (ada_in_variant (discrim_val
, var_type
, i
))
6468 return others_clause
;
6473 /* Dynamic-Sized Records */
6475 /* Strategy: The type ostensibly attached to a value with dynamic size
6476 (i.e., a size that is not statically recorded in the debugging
6477 data) does not accurately reflect the size or layout of the value.
6478 Our strategy is to convert these values to values with accurate,
6479 conventional types that are constructed on the fly. */
6481 /* There is a subtle and tricky problem here. In general, we cannot
6482 determine the size of dynamic records without its data. However,
6483 the 'struct value' data structure, which GDB uses to represent
6484 quantities in the inferior process (the target), requires the size
6485 of the type at the time of its allocation in order to reserve space
6486 for GDB's internal copy of the data. That's why the
6487 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6488 rather than struct value*s.
6490 However, GDB's internal history variables ($1, $2, etc.) are
6491 struct value*s containing internal copies of the data that are not, in
6492 general, the same as the data at their corresponding addresses in
6493 the target. Fortunately, the types we give to these values are all
6494 conventional, fixed-size types (as per the strategy described
6495 above), so that we don't usually have to perform the
6496 'to_fixed_xxx_type' conversions to look at their values.
6497 Unfortunately, there is one exception: if one of the internal
6498 history variables is an array whose elements are unconstrained
6499 records, then we will need to create distinct fixed types for each
6500 element selected. */
6502 /* The upshot of all of this is that many routines take a (type, host
6503 address, target address) triple as arguments to represent a value.
6504 The host address, if non-null, is supposed to contain an internal
6505 copy of the relevant data; otherwise, the program is to consult the
6506 target at the target address. */
6508 /* Assuming that VAL0 represents a pointer value, the result of
6509 dereferencing it. Differs from value_ind in its treatment of
6510 dynamic-sized types. */
6513 ada_value_ind (struct value
*val0
)
6515 struct value
*val
= unwrap_value (value_ind (val0
));
6517 return ada_to_fixed_value (val
);
6520 /* The value resulting from dereferencing any "reference to"
6521 qualifiers on VAL0. */
6523 static struct value
*
6524 ada_coerce_ref (struct value
*val0
)
6526 if (TYPE_CODE (value_type (val0
)) == TYPE_CODE_REF
)
6528 struct value
*val
= val0
;
6530 val
= coerce_ref (val
);
6531 val
= unwrap_value (val
);
6532 return ada_to_fixed_value (val
);
6538 /* Return OFF rounded upward if necessary to a multiple of
6539 ALIGNMENT (a power of 2). */
6542 align_value (unsigned int off
, unsigned int alignment
)
6544 return (off
+ alignment
- 1) & ~(alignment
- 1);
6547 /* Return the bit alignment required for field #F of template type TYPE. */
6550 field_alignment (struct type
*type
, int f
)
6552 const char *name
= TYPE_FIELD_NAME (type
, f
);
6556 /* The field name should never be null, unless the debugging information
6557 is somehow malformed. In this case, we assume the field does not
6558 require any alignment. */
6562 len
= strlen (name
);
6564 if (!isdigit (name
[len
- 1]))
6567 if (isdigit (name
[len
- 2]))
6568 align_offset
= len
- 2;
6570 align_offset
= len
- 1;
6572 if (align_offset
< 7 || strncmp ("___XV", name
+ align_offset
- 6, 5) != 0)
6573 return TARGET_CHAR_BIT
;
6575 return atoi (name
+ align_offset
) * TARGET_CHAR_BIT
;
6578 /* Find a symbol named NAME. Ignores ambiguity. */
6581 ada_find_any_symbol (const char *name
)
6585 sym
= standard_lookup (name
, get_selected_block (NULL
), VAR_DOMAIN
);
6586 if (sym
!= NULL
&& SYMBOL_CLASS (sym
) == LOC_TYPEDEF
)
6589 sym
= standard_lookup (name
, NULL
, STRUCT_DOMAIN
);
6593 /* Find a type named NAME. Ignores ambiguity. This routine will look
6594 solely for types defined by debug info, it will not search the GDB
6598 ada_find_any_type (const char *name
)
6600 struct symbol
*sym
= ada_find_any_symbol (name
);
6603 return SYMBOL_TYPE (sym
);
6608 /* Given NAME and an associated BLOCK, search all symbols for
6609 NAME suffixed with "___XR", which is the ``renaming'' symbol
6610 associated to NAME. Return this symbol if found, return
6614 ada_find_renaming_symbol (const char *name
, struct block
*block
)
6618 sym
= find_old_style_renaming_symbol (name
, block
);
6623 /* Not right yet. FIXME pnh 7/20/2007. */
6624 sym
= ada_find_any_symbol (name
);
6625 if (sym
!= NULL
&& strstr (SYMBOL_LINKAGE_NAME (sym
), "___XR") != NULL
)
6631 static struct symbol
*
6632 find_old_style_renaming_symbol (const char *name
, struct block
*block
)
6634 const struct symbol
*function_sym
= block_linkage_function (block
);
6637 if (function_sym
!= NULL
)
6639 /* If the symbol is defined inside a function, NAME is not fully
6640 qualified. This means we need to prepend the function name
6641 as well as adding the ``___XR'' suffix to build the name of
6642 the associated renaming symbol. */
6643 char *function_name
= SYMBOL_LINKAGE_NAME (function_sym
);
6644 /* Function names sometimes contain suffixes used
6645 for instance to qualify nested subprograms. When building
6646 the XR type name, we need to make sure that this suffix is
6647 not included. So do not include any suffix in the function
6648 name length below. */
6649 int function_name_len
= ada_name_prefix_len (function_name
);
6650 const int rename_len
= function_name_len
+ 2 /* "__" */
6651 + strlen (name
) + 6 /* "___XR\0" */ ;
6653 /* Strip the suffix if necessary. */
6654 ada_remove_trailing_digits (function_name
, &function_name_len
);
6655 ada_remove_po_subprogram_suffix (function_name
, &function_name_len
);
6656 ada_remove_Xbn_suffix (function_name
, &function_name_len
);
6658 /* Library-level functions are a special case, as GNAT adds
6659 a ``_ada_'' prefix to the function name to avoid namespace
6660 pollution. However, the renaming symbols themselves do not
6661 have this prefix, so we need to skip this prefix if present. */
6662 if (function_name_len
> 5 /* "_ada_" */
6663 && strstr (function_name
, "_ada_") == function_name
)
6666 function_name_len
-= 5;
6669 rename
= (char *) alloca (rename_len
* sizeof (char));
6670 strncpy (rename
, function_name
, function_name_len
);
6671 xsnprintf (rename
+ function_name_len
, rename_len
- function_name_len
,
6676 const int rename_len
= strlen (name
) + 6;
6678 rename
= (char *) alloca (rename_len
* sizeof (char));
6679 xsnprintf (rename
, rename_len
* sizeof (char), "%s___XR", name
);
6682 return ada_find_any_symbol (rename
);
6685 /* Because of GNAT encoding conventions, several GDB symbols may match a
6686 given type name. If the type denoted by TYPE0 is to be preferred to
6687 that of TYPE1 for purposes of type printing, return non-zero;
6688 otherwise return 0. */
6691 ada_prefer_type (struct type
*type0
, struct type
*type1
)
6695 else if (type0
== NULL
)
6697 else if (TYPE_CODE (type1
) == TYPE_CODE_VOID
)
6699 else if (TYPE_CODE (type0
) == TYPE_CODE_VOID
)
6701 else if (TYPE_NAME (type1
) == NULL
&& TYPE_NAME (type0
) != NULL
)
6703 else if (ada_is_constrained_packed_array_type (type0
))
6705 else if (ada_is_array_descriptor_type (type0
)
6706 && !ada_is_array_descriptor_type (type1
))
6710 const char *type0_name
= type_name_no_tag (type0
);
6711 const char *type1_name
= type_name_no_tag (type1
);
6713 if (type0_name
!= NULL
&& strstr (type0_name
, "___XR") != NULL
6714 && (type1_name
== NULL
|| strstr (type1_name
, "___XR") == NULL
))
6720 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6721 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6724 ada_type_name (struct type
*type
)
6728 else if (TYPE_NAME (type
) != NULL
)
6729 return TYPE_NAME (type
);
6731 return TYPE_TAG_NAME (type
);
6734 /* Search the list of "descriptive" types associated to TYPE for a type
6735 whose name is NAME. */
6737 static struct type
*
6738 find_parallel_type_by_descriptive_type (struct type
*type
, const char *name
)
6740 struct type
*result
;
6742 /* If there no descriptive-type info, then there is no parallel type
6744 if (!HAVE_GNAT_AUX_INFO (type
))
6747 result
= TYPE_DESCRIPTIVE_TYPE (type
);
6748 while (result
!= NULL
)
6750 char *result_name
= ada_type_name (result
);
6752 if (result_name
== NULL
)
6754 warning (_("unexpected null name on descriptive type"));
6758 /* If the names match, stop. */
6759 if (strcmp (result_name
, name
) == 0)
6762 /* Otherwise, look at the next item on the list, if any. */
6763 if (HAVE_GNAT_AUX_INFO (result
))
6764 result
= TYPE_DESCRIPTIVE_TYPE (result
);
6769 /* If we didn't find a match, see whether this is a packed array. With
6770 older compilers, the descriptive type information is either absent or
6771 irrelevant when it comes to packed arrays so the above lookup fails.
6772 Fall back to using a parallel lookup by name in this case. */
6773 if (result
== NULL
&& ada_is_constrained_packed_array_type (type
))
6774 return ada_find_any_type (name
);
6779 /* Find a parallel type to TYPE with the specified NAME, using the
6780 descriptive type taken from the debugging information, if available,
6781 and otherwise using the (slower) name-based method. */
6783 static struct type
*
6784 ada_find_parallel_type_with_name (struct type
*type
, const char *name
)
6786 struct type
*result
= NULL
;
6788 if (HAVE_GNAT_AUX_INFO (type
))
6789 result
= find_parallel_type_by_descriptive_type (type
, name
);
6791 result
= ada_find_any_type (name
);
6796 /* Same as above, but specify the name of the parallel type by appending
6797 SUFFIX to the name of TYPE. */
6800 ada_find_parallel_type (struct type
*type
, const char *suffix
)
6802 char *name
, *typename
= ada_type_name (type
);
6805 if (typename
== NULL
)
6808 len
= strlen (typename
);
6810 name
= (char *) alloca (len
+ strlen (suffix
) + 1);
6812 strcpy (name
, typename
);
6813 strcpy (name
+ len
, suffix
);
6815 return ada_find_parallel_type_with_name (type
, name
);
6818 /* If TYPE is a variable-size record type, return the corresponding template
6819 type describing its fields. Otherwise, return NULL. */
6821 static struct type
*
6822 dynamic_template_type (struct type
*type
)
6824 type
= ada_check_typedef (type
);
6826 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
6827 || ada_type_name (type
) == NULL
)
6831 int len
= strlen (ada_type_name (type
));
6833 if (len
> 6 && strcmp (ada_type_name (type
) + len
- 6, "___XVE") == 0)
6836 return ada_find_parallel_type (type
, "___XVE");
6840 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6841 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6844 is_dynamic_field (struct type
*templ_type
, int field_num
)
6846 const char *name
= TYPE_FIELD_NAME (templ_type
, field_num
);
6849 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type
, field_num
)) == TYPE_CODE_PTR
6850 && strstr (name
, "___XVL") != NULL
;
6853 /* The index of the variant field of TYPE, or -1 if TYPE does not
6854 represent a variant record type. */
6857 variant_field_index (struct type
*type
)
6861 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
)
6864 for (f
= 0; f
< TYPE_NFIELDS (type
); f
+= 1)
6866 if (ada_is_variant_part (type
, f
))
6872 /* A record type with no fields. */
6874 static struct type
*
6875 empty_record (struct type
*template)
6877 struct type
*type
= alloc_type_copy (template);
6879 TYPE_CODE (type
) = TYPE_CODE_STRUCT
;
6880 TYPE_NFIELDS (type
) = 0;
6881 TYPE_FIELDS (type
) = NULL
;
6882 INIT_CPLUS_SPECIFIC (type
);
6883 TYPE_NAME (type
) = "<empty>";
6884 TYPE_TAG_NAME (type
) = NULL
;
6885 TYPE_LENGTH (type
) = 0;
6889 /* An ordinary record type (with fixed-length fields) that describes
6890 the value of type TYPE at VALADDR or ADDRESS (see comments at
6891 the beginning of this section) VAL according to GNAT conventions.
6892 DVAL0 should describe the (portion of a) record that contains any
6893 necessary discriminants. It should be NULL if value_type (VAL) is
6894 an outer-level type (i.e., as opposed to a branch of a variant.) A
6895 variant field (unless unchecked) is replaced by a particular branch
6898 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6899 length are not statically known are discarded. As a consequence,
6900 VALADDR, ADDRESS and DVAL0 are ignored.
6902 NOTE: Limitations: For now, we assume that dynamic fields and
6903 variants occupy whole numbers of bytes. However, they need not be
6907 ada_template_to_fixed_record_type_1 (struct type
*type
,
6908 const gdb_byte
*valaddr
,
6909 CORE_ADDR address
, struct value
*dval0
,
6910 int keep_dynamic_fields
)
6912 struct value
*mark
= value_mark ();
6915 int nfields
, bit_len
;
6918 int fld_bit_len
, bit_incr
;
6921 /* Compute the number of fields in this record type that are going
6922 to be processed: unless keep_dynamic_fields, this includes only
6923 fields whose position and length are static will be processed. */
6924 if (keep_dynamic_fields
)
6925 nfields
= TYPE_NFIELDS (type
);
6929 while (nfields
< TYPE_NFIELDS (type
)
6930 && !ada_is_variant_part (type
, nfields
)
6931 && !is_dynamic_field (type
, nfields
))
6935 rtype
= alloc_type_copy (type
);
6936 TYPE_CODE (rtype
) = TYPE_CODE_STRUCT
;
6937 INIT_CPLUS_SPECIFIC (rtype
);
6938 TYPE_NFIELDS (rtype
) = nfields
;
6939 TYPE_FIELDS (rtype
) = (struct field
*)
6940 TYPE_ALLOC (rtype
, nfields
* sizeof (struct field
));
6941 memset (TYPE_FIELDS (rtype
), 0, sizeof (struct field
) * nfields
);
6942 TYPE_NAME (rtype
) = ada_type_name (type
);
6943 TYPE_TAG_NAME (rtype
) = NULL
;
6944 TYPE_FIXED_INSTANCE (rtype
) = 1;
6950 for (f
= 0; f
< nfields
; f
+= 1)
6952 off
= align_value (off
, field_alignment (type
, f
))
6953 + TYPE_FIELD_BITPOS (type
, f
);
6954 TYPE_FIELD_BITPOS (rtype
, f
) = off
;
6955 TYPE_FIELD_BITSIZE (rtype
, f
) = 0;
6957 if (ada_is_variant_part (type
, f
))
6960 fld_bit_len
= bit_incr
= 0;
6962 else if (is_dynamic_field (type
, f
))
6964 const gdb_byte
*field_valaddr
= valaddr
;
6965 CORE_ADDR field_address
= address
;
6966 struct type
*field_type
=
6967 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type
, f
));
6971 /* rtype's length is computed based on the run-time
6972 value of discriminants. If the discriminants are not
6973 initialized, the type size may be completely bogus and
6974 GDB may fail to allocate a value for it. So check the
6975 size first before creating the value. */
6977 dval
= value_from_contents_and_address (rtype
, valaddr
, address
);
6982 /* If the type referenced by this field is an aligner type, we need
6983 to unwrap that aligner type, because its size might not be set.
6984 Keeping the aligner type would cause us to compute the wrong
6985 size for this field, impacting the offset of the all the fields
6986 that follow this one. */
6987 if (ada_is_aligner_type (field_type
))
6989 long field_offset
= TYPE_FIELD_BITPOS (field_type
, f
);
6991 field_valaddr
= cond_offset_host (field_valaddr
, field_offset
);
6992 field_address
= cond_offset_target (field_address
, field_offset
);
6993 field_type
= ada_aligned_type (field_type
);
6996 field_valaddr
= cond_offset_host (field_valaddr
,
6997 off
/ TARGET_CHAR_BIT
);
6998 field_address
= cond_offset_target (field_address
,
6999 off
/ TARGET_CHAR_BIT
);
7001 /* Get the fixed type of the field. Note that, in this case,
7002 we do not want to get the real type out of the tag: if
7003 the current field is the parent part of a tagged record,
7004 we will get the tag of the object. Clearly wrong: the real
7005 type of the parent is not the real type of the child. We
7006 would end up in an infinite loop. */
7007 field_type
= ada_get_base_type (field_type
);
7008 field_type
= ada_to_fixed_type (field_type
, field_valaddr
,
7009 field_address
, dval
, 0);
7011 TYPE_FIELD_TYPE (rtype
, f
) = field_type
;
7012 TYPE_FIELD_NAME (rtype
, f
) = TYPE_FIELD_NAME (type
, f
);
7013 bit_incr
= fld_bit_len
=
7014 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype
, f
)) * TARGET_CHAR_BIT
;
7018 struct type
*field_type
= TYPE_FIELD_TYPE (type
, f
);
7020 TYPE_FIELD_TYPE (rtype
, f
) = field_type
;
7021 TYPE_FIELD_NAME (rtype
, f
) = TYPE_FIELD_NAME (type
, f
);
7022 if (TYPE_FIELD_BITSIZE (type
, f
) > 0)
7023 bit_incr
= fld_bit_len
=
7024 TYPE_FIELD_BITSIZE (rtype
, f
) = TYPE_FIELD_BITSIZE (type
, f
);
7026 bit_incr
= fld_bit_len
=
7027 TYPE_LENGTH (ada_check_typedef (field_type
)) * TARGET_CHAR_BIT
;
7029 if (off
+ fld_bit_len
> bit_len
)
7030 bit_len
= off
+ fld_bit_len
;
7032 TYPE_LENGTH (rtype
) =
7033 align_value (bit_len
, TARGET_CHAR_BIT
) / TARGET_CHAR_BIT
;
7036 /* We handle the variant part, if any, at the end because of certain
7037 odd cases in which it is re-ordered so as NOT to be the last field of
7038 the record. This can happen in the presence of representation
7040 if (variant_field
>= 0)
7042 struct type
*branch_type
;
7044 off
= TYPE_FIELD_BITPOS (rtype
, variant_field
);
7047 dval
= value_from_contents_and_address (rtype
, valaddr
, address
);
7052 to_fixed_variant_branch_type
7053 (TYPE_FIELD_TYPE (type
, variant_field
),
7054 cond_offset_host (valaddr
, off
/ TARGET_CHAR_BIT
),
7055 cond_offset_target (address
, off
/ TARGET_CHAR_BIT
), dval
);
7056 if (branch_type
== NULL
)
7058 for (f
= variant_field
+ 1; f
< TYPE_NFIELDS (rtype
); f
+= 1)
7059 TYPE_FIELDS (rtype
)[f
- 1] = TYPE_FIELDS (rtype
)[f
];
7060 TYPE_NFIELDS (rtype
) -= 1;
7064 TYPE_FIELD_TYPE (rtype
, variant_field
) = branch_type
;
7065 TYPE_FIELD_NAME (rtype
, variant_field
) = "S";
7067 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype
, variant_field
)) *
7069 if (off
+ fld_bit_len
> bit_len
)
7070 bit_len
= off
+ fld_bit_len
;
7071 TYPE_LENGTH (rtype
) =
7072 align_value (bit_len
, TARGET_CHAR_BIT
) / TARGET_CHAR_BIT
;
7076 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7077 should contain the alignment of that record, which should be a strictly
7078 positive value. If null or negative, then something is wrong, most
7079 probably in the debug info. In that case, we don't round up the size
7080 of the resulting type. If this record is not part of another structure,
7081 the current RTYPE length might be good enough for our purposes. */
7082 if (TYPE_LENGTH (type
) <= 0)
7084 if (TYPE_NAME (rtype
))
7085 warning (_("Invalid type size for `%s' detected: %d."),
7086 TYPE_NAME (rtype
), TYPE_LENGTH (type
));
7088 warning (_("Invalid type size for <unnamed> detected: %d."),
7089 TYPE_LENGTH (type
));
7093 TYPE_LENGTH (rtype
) = align_value (TYPE_LENGTH (rtype
),
7094 TYPE_LENGTH (type
));
7097 value_free_to_mark (mark
);
7098 if (TYPE_LENGTH (rtype
) > varsize_limit
)
7099 error (_("record type with dynamic size is larger than varsize-limit"));
7103 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7106 static struct type
*
7107 template_to_fixed_record_type (struct type
*type
, const gdb_byte
*valaddr
,
7108 CORE_ADDR address
, struct value
*dval0
)
7110 return ada_template_to_fixed_record_type_1 (type
, valaddr
,
7114 /* An ordinary record type in which ___XVL-convention fields and
7115 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7116 static approximations, containing all possible fields. Uses
7117 no runtime values. Useless for use in values, but that's OK,
7118 since the results are used only for type determinations. Works on both
7119 structs and unions. Representation note: to save space, we memorize
7120 the result of this function in the TYPE_TARGET_TYPE of the
7123 static struct type
*
7124 template_to_static_fixed_type (struct type
*type0
)
7130 if (TYPE_TARGET_TYPE (type0
) != NULL
)
7131 return TYPE_TARGET_TYPE (type0
);
7133 nfields
= TYPE_NFIELDS (type0
);
7136 for (f
= 0; f
< nfields
; f
+= 1)
7138 struct type
*field_type
= ada_check_typedef (TYPE_FIELD_TYPE (type0
, f
));
7139 struct type
*new_type
;
7141 if (is_dynamic_field (type0
, f
))
7142 new_type
= to_static_fixed_type (TYPE_TARGET_TYPE (field_type
));
7144 new_type
= static_unwrap_type (field_type
);
7145 if (type
== type0
&& new_type
!= field_type
)
7147 TYPE_TARGET_TYPE (type0
) = type
= alloc_type_copy (type0
);
7148 TYPE_CODE (type
) = TYPE_CODE (type0
);
7149 INIT_CPLUS_SPECIFIC (type
);
7150 TYPE_NFIELDS (type
) = nfields
;
7151 TYPE_FIELDS (type
) = (struct field
*)
7152 TYPE_ALLOC (type
, nfields
* sizeof (struct field
));
7153 memcpy (TYPE_FIELDS (type
), TYPE_FIELDS (type0
),
7154 sizeof (struct field
) * nfields
);
7155 TYPE_NAME (type
) = ada_type_name (type0
);
7156 TYPE_TAG_NAME (type
) = NULL
;
7157 TYPE_FIXED_INSTANCE (type
) = 1;
7158 TYPE_LENGTH (type
) = 0;
7160 TYPE_FIELD_TYPE (type
, f
) = new_type
;
7161 TYPE_FIELD_NAME (type
, f
) = TYPE_FIELD_NAME (type0
, f
);
7166 /* Given an object of type TYPE whose contents are at VALADDR and
7167 whose address in memory is ADDRESS, returns a revision of TYPE,
7168 which should be a non-dynamic-sized record, in which the variant
7169 part, if any, is replaced with the appropriate branch. Looks
7170 for discriminant values in DVAL0, which can be NULL if the record
7171 contains the necessary discriminant values. */
7173 static struct type
*
7174 to_record_with_fixed_variant_part (struct type
*type
, const gdb_byte
*valaddr
,
7175 CORE_ADDR address
, struct value
*dval0
)
7177 struct value
*mark
= value_mark ();
7180 struct type
*branch_type
;
7181 int nfields
= TYPE_NFIELDS (type
);
7182 int variant_field
= variant_field_index (type
);
7184 if (variant_field
== -1)
7188 dval
= value_from_contents_and_address (type
, valaddr
, address
);
7192 rtype
= alloc_type_copy (type
);
7193 TYPE_CODE (rtype
) = TYPE_CODE_STRUCT
;
7194 INIT_CPLUS_SPECIFIC (rtype
);
7195 TYPE_NFIELDS (rtype
) = nfields
;
7196 TYPE_FIELDS (rtype
) =
7197 (struct field
*) TYPE_ALLOC (rtype
, nfields
* sizeof (struct field
));
7198 memcpy (TYPE_FIELDS (rtype
), TYPE_FIELDS (type
),
7199 sizeof (struct field
) * nfields
);
7200 TYPE_NAME (rtype
) = ada_type_name (type
);
7201 TYPE_TAG_NAME (rtype
) = NULL
;
7202 TYPE_FIXED_INSTANCE (rtype
) = 1;
7203 TYPE_LENGTH (rtype
) = TYPE_LENGTH (type
);
7205 branch_type
= to_fixed_variant_branch_type
7206 (TYPE_FIELD_TYPE (type
, variant_field
),
7207 cond_offset_host (valaddr
,
7208 TYPE_FIELD_BITPOS (type
, variant_field
)
7210 cond_offset_target (address
,
7211 TYPE_FIELD_BITPOS (type
, variant_field
)
7212 / TARGET_CHAR_BIT
), dval
);
7213 if (branch_type
== NULL
)
7217 for (f
= variant_field
+ 1; f
< nfields
; f
+= 1)
7218 TYPE_FIELDS (rtype
)[f
- 1] = TYPE_FIELDS (rtype
)[f
];
7219 TYPE_NFIELDS (rtype
) -= 1;
7223 TYPE_FIELD_TYPE (rtype
, variant_field
) = branch_type
;
7224 TYPE_FIELD_NAME (rtype
, variant_field
) = "S";
7225 TYPE_FIELD_BITSIZE (rtype
, variant_field
) = 0;
7226 TYPE_LENGTH (rtype
) += TYPE_LENGTH (branch_type
);
7228 TYPE_LENGTH (rtype
) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type
, variant_field
));
7230 value_free_to_mark (mark
);
7234 /* An ordinary record type (with fixed-length fields) that describes
7235 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7236 beginning of this section]. Any necessary discriminants' values
7237 should be in DVAL, a record value; it may be NULL if the object
7238 at ADDR itself contains any necessary discriminant values.
7239 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7240 values from the record are needed. Except in the case that DVAL,
7241 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7242 unchecked) is replaced by a particular branch of the variant.
7244 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7245 is questionable and may be removed. It can arise during the
7246 processing of an unconstrained-array-of-record type where all the
7247 variant branches have exactly the same size. This is because in
7248 such cases, the compiler does not bother to use the XVS convention
7249 when encoding the record. I am currently dubious of this
7250 shortcut and suspect the compiler should be altered. FIXME. */
7252 static struct type
*
7253 to_fixed_record_type (struct type
*type0
, const gdb_byte
*valaddr
,
7254 CORE_ADDR address
, struct value
*dval
)
7256 struct type
*templ_type
;
7258 if (TYPE_FIXED_INSTANCE (type0
))
7261 templ_type
= dynamic_template_type (type0
);
7263 if (templ_type
!= NULL
)
7264 return template_to_fixed_record_type (templ_type
, valaddr
, address
, dval
);
7265 else if (variant_field_index (type0
) >= 0)
7267 if (dval
== NULL
&& valaddr
== NULL
&& address
== 0)
7269 return to_record_with_fixed_variant_part (type0
, valaddr
, address
,
7274 TYPE_FIXED_INSTANCE (type0
) = 1;
7280 /* An ordinary record type (with fixed-length fields) that describes
7281 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7282 union type. Any necessary discriminants' values should be in DVAL,
7283 a record value. That is, this routine selects the appropriate
7284 branch of the union at ADDR according to the discriminant value
7285 indicated in the union's type name. Returns VAR_TYPE0 itself if
7286 it represents a variant subject to a pragma Unchecked_Union. */
7288 static struct type
*
7289 to_fixed_variant_branch_type (struct type
*var_type0
, const gdb_byte
*valaddr
,
7290 CORE_ADDR address
, struct value
*dval
)
7293 struct type
*templ_type
;
7294 struct type
*var_type
;
7296 if (TYPE_CODE (var_type0
) == TYPE_CODE_PTR
)
7297 var_type
= TYPE_TARGET_TYPE (var_type0
);
7299 var_type
= var_type0
;
7301 templ_type
= ada_find_parallel_type (var_type
, "___XVU");
7303 if (templ_type
!= NULL
)
7304 var_type
= templ_type
;
7306 if (is_unchecked_variant (var_type
, value_type (dval
)))
7309 ada_which_variant_applies (var_type
,
7310 value_type (dval
), value_contents (dval
));
7313 return empty_record (var_type
);
7314 else if (is_dynamic_field (var_type
, which
))
7315 return to_fixed_record_type
7316 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type
, which
)),
7317 valaddr
, address
, dval
);
7318 else if (variant_field_index (TYPE_FIELD_TYPE (var_type
, which
)) >= 0)
7320 to_fixed_record_type
7321 (TYPE_FIELD_TYPE (var_type
, which
), valaddr
, address
, dval
);
7323 return TYPE_FIELD_TYPE (var_type
, which
);
7326 /* Assuming that TYPE0 is an array type describing the type of a value
7327 at ADDR, and that DVAL describes a record containing any
7328 discriminants used in TYPE0, returns a type for the value that
7329 contains no dynamic components (that is, no components whose sizes
7330 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7331 true, gives an error message if the resulting type's size is over
7334 static struct type
*
7335 to_fixed_array_type (struct type
*type0
, struct value
*dval
,
7338 struct type
*index_type_desc
;
7339 struct type
*result
;
7340 int constrained_packed_array_p
;
7342 if (TYPE_FIXED_INSTANCE (type0
))
7345 constrained_packed_array_p
= ada_is_constrained_packed_array_type (type0
);
7346 if (constrained_packed_array_p
)
7347 type0
= decode_constrained_packed_array_type (type0
);
7349 index_type_desc
= ada_find_parallel_type (type0
, "___XA");
7350 ada_fixup_array_indexes_type (index_type_desc
);
7351 if (index_type_desc
== NULL
)
7353 struct type
*elt_type0
= ada_check_typedef (TYPE_TARGET_TYPE (type0
));
7355 /* NOTE: elt_type---the fixed version of elt_type0---should never
7356 depend on the contents of the array in properly constructed
7358 /* Create a fixed version of the array element type.
7359 We're not providing the address of an element here,
7360 and thus the actual object value cannot be inspected to do
7361 the conversion. This should not be a problem, since arrays of
7362 unconstrained objects are not allowed. In particular, all
7363 the elements of an array of a tagged type should all be of
7364 the same type specified in the debugging info. No need to
7365 consult the object tag. */
7366 struct type
*elt_type
= ada_to_fixed_type (elt_type0
, 0, 0, dval
, 1);
7368 /* Make sure we always create a new array type when dealing with
7369 packed array types, since we're going to fix-up the array
7370 type length and element bitsize a little further down. */
7371 if (elt_type0
== elt_type
&& !constrained_packed_array_p
)
7374 result
= create_array_type (alloc_type_copy (type0
),
7375 elt_type
, TYPE_INDEX_TYPE (type0
));
7380 struct type
*elt_type0
;
7383 for (i
= TYPE_NFIELDS (index_type_desc
); i
> 0; i
-= 1)
7384 elt_type0
= TYPE_TARGET_TYPE (elt_type0
);
7386 /* NOTE: result---the fixed version of elt_type0---should never
7387 depend on the contents of the array in properly constructed
7389 /* Create a fixed version of the array element type.
7390 We're not providing the address of an element here,
7391 and thus the actual object value cannot be inspected to do
7392 the conversion. This should not be a problem, since arrays of
7393 unconstrained objects are not allowed. In particular, all
7394 the elements of an array of a tagged type should all be of
7395 the same type specified in the debugging info. No need to
7396 consult the object tag. */
7398 ada_to_fixed_type (ada_check_typedef (elt_type0
), 0, 0, dval
, 1);
7401 for (i
= TYPE_NFIELDS (index_type_desc
) - 1; i
>= 0; i
-= 1)
7403 struct type
*range_type
=
7404 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc
, i
), dval
);
7406 result
= create_array_type (alloc_type_copy (elt_type0
),
7407 result
, range_type
);
7408 elt_type0
= TYPE_TARGET_TYPE (elt_type0
);
7410 if (!ignore_too_big
&& TYPE_LENGTH (result
) > varsize_limit
)
7411 error (_("array type with dynamic size is larger than varsize-limit"));
7414 if (constrained_packed_array_p
)
7416 /* So far, the resulting type has been created as if the original
7417 type was a regular (non-packed) array type. As a result, the
7418 bitsize of the array elements needs to be set again, and the array
7419 length needs to be recomputed based on that bitsize. */
7420 int len
= TYPE_LENGTH (result
) / TYPE_LENGTH (TYPE_TARGET_TYPE (result
));
7421 int elt_bitsize
= TYPE_FIELD_BITSIZE (type0
, 0);
7423 TYPE_FIELD_BITSIZE (result
, 0) = TYPE_FIELD_BITSIZE (type0
, 0);
7424 TYPE_LENGTH (result
) = len
* elt_bitsize
/ HOST_CHAR_BIT
;
7425 if (TYPE_LENGTH (result
) * HOST_CHAR_BIT
< len
* elt_bitsize
)
7426 TYPE_LENGTH (result
)++;
7429 TYPE_FIXED_INSTANCE (result
) = 1;
7434 /* A standard type (containing no dynamically sized components)
7435 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7436 DVAL describes a record containing any discriminants used in TYPE0,
7437 and may be NULL if there are none, or if the object of type TYPE at
7438 ADDRESS or in VALADDR contains these discriminants.
7440 If CHECK_TAG is not null, in the case of tagged types, this function
7441 attempts to locate the object's tag and use it to compute the actual
7442 type. However, when ADDRESS is null, we cannot use it to determine the
7443 location of the tag, and therefore compute the tagged type's actual type.
7444 So we return the tagged type without consulting the tag. */
7446 static struct type
*
7447 ada_to_fixed_type_1 (struct type
*type
, const gdb_byte
*valaddr
,
7448 CORE_ADDR address
, struct value
*dval
, int check_tag
)
7450 type
= ada_check_typedef (type
);
7451 switch (TYPE_CODE (type
))
7455 case TYPE_CODE_STRUCT
:
7457 struct type
*static_type
= to_static_fixed_type (type
);
7458 struct type
*fixed_record_type
=
7459 to_fixed_record_type (type
, valaddr
, address
, NULL
);
7461 /* If STATIC_TYPE is a tagged type and we know the object's address,
7462 then we can determine its tag, and compute the object's actual
7463 type from there. Note that we have to use the fixed record
7464 type (the parent part of the record may have dynamic fields
7465 and the way the location of _tag is expressed may depend on
7468 if (check_tag
&& address
!= 0 && ada_is_tagged_type (static_type
, 0))
7470 struct type
*real_type
=
7471 type_from_tag (value_tag_from_contents_and_address
7476 if (real_type
!= NULL
)
7477 return to_fixed_record_type (real_type
, valaddr
, address
, NULL
);
7480 /* Check to see if there is a parallel ___XVZ variable.
7481 If there is, then it provides the actual size of our type. */
7482 else if (ada_type_name (fixed_record_type
) != NULL
)
7484 char *name
= ada_type_name (fixed_record_type
);
7485 char *xvz_name
= alloca (strlen (name
) + 7 /* "___XVZ\0" */);
7489 xsnprintf (xvz_name
, strlen (name
) + 7, "%s___XVZ", name
);
7490 size
= get_int_var_value (xvz_name
, &xvz_found
);
7491 if (xvz_found
&& TYPE_LENGTH (fixed_record_type
) != size
)
7493 fixed_record_type
= copy_type (fixed_record_type
);
7494 TYPE_LENGTH (fixed_record_type
) = size
;
7496 /* The FIXED_RECORD_TYPE may have be a stub. We have
7497 observed this when the debugging info is STABS, and
7498 apparently it is something that is hard to fix.
7500 In practice, we don't need the actual type definition
7501 at all, because the presence of the XVZ variable allows us
7502 to assume that there must be a XVS type as well, which we
7503 should be able to use later, when we need the actual type
7506 In the meantime, pretend that the "fixed" type we are
7507 returning is NOT a stub, because this can cause trouble
7508 when using this type to create new types targeting it.
7509 Indeed, the associated creation routines often check
7510 whether the target type is a stub and will try to replace
7511 it, thus using a type with the wrong size. This, in turn,
7512 might cause the new type to have the wrong size too.
7513 Consider the case of an array, for instance, where the size
7514 of the array is computed from the number of elements in
7515 our array multiplied by the size of its element. */
7516 TYPE_STUB (fixed_record_type
) = 0;
7519 return fixed_record_type
;
7521 case TYPE_CODE_ARRAY
:
7522 return to_fixed_array_type (type
, dval
, 1);
7523 case TYPE_CODE_UNION
:
7527 return to_fixed_variant_branch_type (type
, valaddr
, address
, dval
);
7531 /* The same as ada_to_fixed_type_1, except that it preserves the type
7532 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7533 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7536 ada_to_fixed_type (struct type
*type
, const gdb_byte
*valaddr
,
7537 CORE_ADDR address
, struct value
*dval
, int check_tag
)
7540 struct type
*fixed_type
=
7541 ada_to_fixed_type_1 (type
, valaddr
, address
, dval
, check_tag
);
7543 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
7544 && TYPE_TARGET_TYPE (type
) == fixed_type
)
7550 /* A standard (static-sized) type corresponding as well as possible to
7551 TYPE0, but based on no runtime data. */
7553 static struct type
*
7554 to_static_fixed_type (struct type
*type0
)
7561 if (TYPE_FIXED_INSTANCE (type0
))
7564 type0
= ada_check_typedef (type0
);
7566 switch (TYPE_CODE (type0
))
7570 case TYPE_CODE_STRUCT
:
7571 type
= dynamic_template_type (type0
);
7573 return template_to_static_fixed_type (type
);
7575 return template_to_static_fixed_type (type0
);
7576 case TYPE_CODE_UNION
:
7577 type
= ada_find_parallel_type (type0
, "___XVU");
7579 return template_to_static_fixed_type (type
);
7581 return template_to_static_fixed_type (type0
);
7585 /* A static approximation of TYPE with all type wrappers removed. */
7587 static struct type
*
7588 static_unwrap_type (struct type
*type
)
7590 if (ada_is_aligner_type (type
))
7592 struct type
*type1
= TYPE_FIELD_TYPE (ada_check_typedef (type
), 0);
7593 if (ada_type_name (type1
) == NULL
)
7594 TYPE_NAME (type1
) = ada_type_name (type
);
7596 return static_unwrap_type (type1
);
7600 struct type
*raw_real_type
= ada_get_base_type (type
);
7602 if (raw_real_type
== type
)
7605 return to_static_fixed_type (raw_real_type
);
7609 /* In some cases, incomplete and private types require
7610 cross-references that are not resolved as records (for example,
7612 type FooP is access Foo;
7614 type Foo is array ...;
7615 ). In these cases, since there is no mechanism for producing
7616 cross-references to such types, we instead substitute for FooP a
7617 stub enumeration type that is nowhere resolved, and whose tag is
7618 the name of the actual type. Call these types "non-record stubs". */
7620 /* A type equivalent to TYPE that is not a non-record stub, if one
7621 exists, otherwise TYPE. */
7624 ada_check_typedef (struct type
*type
)
7629 CHECK_TYPEDEF (type
);
7630 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_ENUM
7631 || !TYPE_STUB (type
)
7632 || TYPE_TAG_NAME (type
) == NULL
)
7636 char *name
= TYPE_TAG_NAME (type
);
7637 struct type
*type1
= ada_find_any_type (name
);
7639 return (type1
== NULL
) ? type
: type1
;
7643 /* A value representing the data at VALADDR/ADDRESS as described by
7644 type TYPE0, but with a standard (static-sized) type that correctly
7645 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7646 type, then return VAL0 [this feature is simply to avoid redundant
7647 creation of struct values]. */
7649 static struct value
*
7650 ada_to_fixed_value_create (struct type
*type0
, CORE_ADDR address
,
7653 struct type
*type
= ada_to_fixed_type (type0
, 0, address
, NULL
, 1);
7655 if (type
== type0
&& val0
!= NULL
)
7658 return value_from_contents_and_address (type
, 0, address
);
7661 /* A value representing VAL, but with a standard (static-sized) type
7662 that correctly describes it. Does not necessarily create a new
7666 ada_to_fixed_value (struct value
*val
)
7668 return ada_to_fixed_value_create (value_type (val
),
7669 value_address (val
),
7676 /* Table mapping attribute numbers to names.
7677 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7679 static const char *attribute_names
[] = {
7697 ada_attribute_name (enum exp_opcode n
)
7699 if (n
>= OP_ATR_FIRST
&& n
<= (int) OP_ATR_VAL
)
7700 return attribute_names
[n
- OP_ATR_FIRST
+ 1];
7702 return attribute_names
[0];
7705 /* Evaluate the 'POS attribute applied to ARG. */
7708 pos_atr (struct value
*arg
)
7710 struct value
*val
= coerce_ref (arg
);
7711 struct type
*type
= value_type (val
);
7713 if (!discrete_type_p (type
))
7714 error (_("'POS only defined on discrete types"));
7716 if (TYPE_CODE (type
) == TYPE_CODE_ENUM
)
7719 LONGEST v
= value_as_long (val
);
7721 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
7723 if (v
== TYPE_FIELD_BITPOS (type
, i
))
7726 error (_("enumeration value is invalid: can't find 'POS"));
7729 return value_as_long (val
);
7732 static struct value
*
7733 value_pos_atr (struct type
*type
, struct value
*arg
)
7735 return value_from_longest (type
, pos_atr (arg
));
7738 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7740 static struct value
*
7741 value_val_atr (struct type
*type
, struct value
*arg
)
7743 if (!discrete_type_p (type
))
7744 error (_("'VAL only defined on discrete types"));
7745 if (!integer_type_p (value_type (arg
)))
7746 error (_("'VAL requires integral argument"));
7748 if (TYPE_CODE (type
) == TYPE_CODE_ENUM
)
7750 long pos
= value_as_long (arg
);
7752 if (pos
< 0 || pos
>= TYPE_NFIELDS (type
))
7753 error (_("argument to 'VAL out of range"));
7754 return value_from_longest (type
, TYPE_FIELD_BITPOS (type
, pos
));
7757 return value_from_longest (type
, value_as_long (arg
));
7763 /* True if TYPE appears to be an Ada character type.
7764 [At the moment, this is true only for Character and Wide_Character;
7765 It is a heuristic test that could stand improvement]. */
7768 ada_is_character_type (struct type
*type
)
7772 /* If the type code says it's a character, then assume it really is,
7773 and don't check any further. */
7774 if (TYPE_CODE (type
) == TYPE_CODE_CHAR
)
7777 /* Otherwise, assume it's a character type iff it is a discrete type
7778 with a known character type name. */
7779 name
= ada_type_name (type
);
7780 return (name
!= NULL
7781 && (TYPE_CODE (type
) == TYPE_CODE_INT
7782 || TYPE_CODE (type
) == TYPE_CODE_RANGE
)
7783 && (strcmp (name
, "character") == 0
7784 || strcmp (name
, "wide_character") == 0
7785 || strcmp (name
, "wide_wide_character") == 0
7786 || strcmp (name
, "unsigned char") == 0));
7789 /* True if TYPE appears to be an Ada string type. */
7792 ada_is_string_type (struct type
*type
)
7794 type
= ada_check_typedef (type
);
7796 && TYPE_CODE (type
) != TYPE_CODE_PTR
7797 && (ada_is_simple_array_type (type
)
7798 || ada_is_array_descriptor_type (type
))
7799 && ada_array_arity (type
) == 1)
7801 struct type
*elttype
= ada_array_element_type (type
, 1);
7803 return ada_is_character_type (elttype
);
7809 /* The compiler sometimes provides a parallel XVS type for a given
7810 PAD type. Normally, it is safe to follow the PAD type directly,
7811 but older versions of the compiler have a bug that causes the offset
7812 of its "F" field to be wrong. Following that field in that case
7813 would lead to incorrect results, but this can be worked around
7814 by ignoring the PAD type and using the associated XVS type instead.
7816 Set to True if the debugger should trust the contents of PAD types.
7817 Otherwise, ignore the PAD type if there is a parallel XVS type. */
7818 static int trust_pad_over_xvs
= 1;
7820 /* True if TYPE is a struct type introduced by the compiler to force the
7821 alignment of a value. Such types have a single field with a
7822 distinctive name. */
7825 ada_is_aligner_type (struct type
*type
)
7827 type
= ada_check_typedef (type
);
7829 if (!trust_pad_over_xvs
&& ada_find_parallel_type (type
, "___XVS") != NULL
)
7832 return (TYPE_CODE (type
) == TYPE_CODE_STRUCT
7833 && TYPE_NFIELDS (type
) == 1
7834 && strcmp (TYPE_FIELD_NAME (type
, 0), "F") == 0);
7837 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7838 the parallel type. */
7841 ada_get_base_type (struct type
*raw_type
)
7843 struct type
*real_type_namer
;
7844 struct type
*raw_real_type
;
7846 if (raw_type
== NULL
|| TYPE_CODE (raw_type
) != TYPE_CODE_STRUCT
)
7849 if (ada_is_aligner_type (raw_type
))
7850 /* The encoding specifies that we should always use the aligner type.
7851 So, even if this aligner type has an associated XVS type, we should
7854 According to the compiler gurus, an XVS type parallel to an aligner
7855 type may exist because of a stabs limitation. In stabs, aligner
7856 types are empty because the field has a variable-sized type, and
7857 thus cannot actually be used as an aligner type. As a result,
7858 we need the associated parallel XVS type to decode the type.
7859 Since the policy in the compiler is to not change the internal
7860 representation based on the debugging info format, we sometimes
7861 end up having a redundant XVS type parallel to the aligner type. */
7864 real_type_namer
= ada_find_parallel_type (raw_type
, "___XVS");
7865 if (real_type_namer
== NULL
7866 || TYPE_CODE (real_type_namer
) != TYPE_CODE_STRUCT
7867 || TYPE_NFIELDS (real_type_namer
) != 1)
7870 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer
, 0)) != TYPE_CODE_REF
)
7872 /* This is an older encoding form where the base type needs to be
7873 looked up by name. We prefer the newer enconding because it is
7875 raw_real_type
= ada_find_any_type (TYPE_FIELD_NAME (real_type_namer
, 0));
7876 if (raw_real_type
== NULL
)
7879 return raw_real_type
;
7882 /* The field in our XVS type is a reference to the base type. */
7883 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer
, 0));
7886 /* The type of value designated by TYPE, with all aligners removed. */
7889 ada_aligned_type (struct type
*type
)
7891 if (ada_is_aligner_type (type
))
7892 return ada_aligned_type (TYPE_FIELD_TYPE (type
, 0));
7894 return ada_get_base_type (type
);
7898 /* The address of the aligned value in an object at address VALADDR
7899 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7902 ada_aligned_value_addr (struct type
*type
, const gdb_byte
*valaddr
)
7904 if (ada_is_aligner_type (type
))
7905 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type
, 0),
7907 TYPE_FIELD_BITPOS (type
,
7908 0) / TARGET_CHAR_BIT
);
7915 /* The printed representation of an enumeration literal with encoded
7916 name NAME. The value is good to the next call of ada_enum_name. */
7918 ada_enum_name (const char *name
)
7920 static char *result
;
7921 static size_t result_len
= 0;
7924 /* First, unqualify the enumeration name:
7925 1. Search for the last '.' character. If we find one, then skip
7926 all the preceeding characters, the unqualified name starts
7927 right after that dot.
7928 2. Otherwise, we may be debugging on a target where the compiler
7929 translates dots into "__". Search forward for double underscores,
7930 but stop searching when we hit an overloading suffix, which is
7931 of the form "__" followed by digits. */
7933 tmp
= strrchr (name
, '.');
7938 while ((tmp
= strstr (name
, "__")) != NULL
)
7940 if (isdigit (tmp
[2]))
7951 if (name
[1] == 'U' || name
[1] == 'W')
7953 if (sscanf (name
+ 2, "%x", &v
) != 1)
7959 GROW_VECT (result
, result_len
, 16);
7960 if (isascii (v
) && isprint (v
))
7961 xsnprintf (result
, result_len
, "'%c'", v
);
7962 else if (name
[1] == 'U')
7963 xsnprintf (result
, result_len
, "[\"%02x\"]", v
);
7965 xsnprintf (result
, result_len
, "[\"%04x\"]", v
);
7971 tmp
= strstr (name
, "__");
7973 tmp
= strstr (name
, "$");
7976 GROW_VECT (result
, result_len
, tmp
- name
+ 1);
7977 strncpy (result
, name
, tmp
- name
);
7978 result
[tmp
- name
] = '\0';
7986 /* Evaluate the subexpression of EXP starting at *POS as for
7987 evaluate_type, updating *POS to point just past the evaluated
7990 static struct value
*
7991 evaluate_subexp_type (struct expression
*exp
, int *pos
)
7993 return evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_AVOID_SIDE_EFFECTS
);
7996 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7999 static struct value
*
8000 unwrap_value (struct value
*val
)
8002 struct type
*type
= ada_check_typedef (value_type (val
));
8004 if (ada_is_aligner_type (type
))
8006 struct value
*v
= ada_value_struct_elt (val
, "F", 0);
8007 struct type
*val_type
= ada_check_typedef (value_type (v
));
8009 if (ada_type_name (val_type
) == NULL
)
8010 TYPE_NAME (val_type
) = ada_type_name (type
);
8012 return unwrap_value (v
);
8016 struct type
*raw_real_type
=
8017 ada_check_typedef (ada_get_base_type (type
));
8019 /* If there is no parallel XVS or XVE type, then the value is
8020 already unwrapped. Return it without further modification. */
8021 if ((type
== raw_real_type
)
8022 && ada_find_parallel_type (type
, "___XVE") == NULL
)
8026 coerce_unspec_val_to_type
8027 (val
, ada_to_fixed_type (raw_real_type
, 0,
8028 value_address (val
),
8033 static struct value
*
8034 cast_to_fixed (struct type
*type
, struct value
*arg
)
8038 if (type
== value_type (arg
))
8040 else if (ada_is_fixed_point_type (value_type (arg
)))
8041 val
= ada_float_to_fixed (type
,
8042 ada_fixed_to_float (value_type (arg
),
8043 value_as_long (arg
)));
8046 DOUBLEST argd
= value_as_double (arg
);
8048 val
= ada_float_to_fixed (type
, argd
);
8051 return value_from_longest (type
, val
);
8054 static struct value
*
8055 cast_from_fixed (struct type
*type
, struct value
*arg
)
8057 DOUBLEST val
= ada_fixed_to_float (value_type (arg
),
8058 value_as_long (arg
));
8060 return value_from_double (type
, val
);
8063 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8064 return the converted value. */
8066 static struct value
*
8067 coerce_for_assign (struct type
*type
, struct value
*val
)
8069 struct type
*type2
= value_type (val
);
8074 type2
= ada_check_typedef (type2
);
8075 type
= ada_check_typedef (type
);
8077 if (TYPE_CODE (type2
) == TYPE_CODE_PTR
8078 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
8080 val
= ada_value_ind (val
);
8081 type2
= value_type (val
);
8084 if (TYPE_CODE (type2
) == TYPE_CODE_ARRAY
8085 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
8087 if (TYPE_LENGTH (type2
) != TYPE_LENGTH (type
)
8088 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2
))
8089 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2
)))
8090 error (_("Incompatible types in assignment"));
8091 deprecated_set_value_type (val
, type
);
8096 static struct value
*
8097 ada_value_binop (struct value
*arg1
, struct value
*arg2
, enum exp_opcode op
)
8100 struct type
*type1
, *type2
;
8103 arg1
= coerce_ref (arg1
);
8104 arg2
= coerce_ref (arg2
);
8105 type1
= base_type (ada_check_typedef (value_type (arg1
)));
8106 type2
= base_type (ada_check_typedef (value_type (arg2
)));
8108 if (TYPE_CODE (type1
) != TYPE_CODE_INT
8109 || TYPE_CODE (type2
) != TYPE_CODE_INT
)
8110 return value_binop (arg1
, arg2
, op
);
8119 return value_binop (arg1
, arg2
, op
);
8122 v2
= value_as_long (arg2
);
8124 error (_("second operand of %s must not be zero."), op_string (op
));
8126 if (TYPE_UNSIGNED (type1
) || op
== BINOP_MOD
)
8127 return value_binop (arg1
, arg2
, op
);
8129 v1
= value_as_long (arg1
);
8134 if (!TRUNCATION_TOWARDS_ZERO
&& v1
* (v1
% v2
) < 0)
8135 v
+= v
> 0 ? -1 : 1;
8143 /* Should not reach this point. */
8147 val
= allocate_value (type1
);
8148 store_unsigned_integer (value_contents_raw (val
),
8149 TYPE_LENGTH (value_type (val
)),
8150 gdbarch_byte_order (get_type_arch (type1
)), v
);
8155 ada_value_equal (struct value
*arg1
, struct value
*arg2
)
8157 if (ada_is_direct_array_type (value_type (arg1
))
8158 || ada_is_direct_array_type (value_type (arg2
)))
8160 /* Automatically dereference any array reference before
8161 we attempt to perform the comparison. */
8162 arg1
= ada_coerce_ref (arg1
);
8163 arg2
= ada_coerce_ref (arg2
);
8165 arg1
= ada_coerce_to_simple_array (arg1
);
8166 arg2
= ada_coerce_to_simple_array (arg2
);
8167 if (TYPE_CODE (value_type (arg1
)) != TYPE_CODE_ARRAY
8168 || TYPE_CODE (value_type (arg2
)) != TYPE_CODE_ARRAY
)
8169 error (_("Attempt to compare array with non-array"));
8170 /* FIXME: The following works only for types whose
8171 representations use all bits (no padding or undefined bits)
8172 and do not have user-defined equality. */
8174 TYPE_LENGTH (value_type (arg1
)) == TYPE_LENGTH (value_type (arg2
))
8175 && memcmp (value_contents (arg1
), value_contents (arg2
),
8176 TYPE_LENGTH (value_type (arg1
))) == 0;
8178 return value_equal (arg1
, arg2
);
8181 /* Total number of component associations in the aggregate starting at
8182 index PC in EXP. Assumes that index PC is the start of an
8186 num_component_specs (struct expression
*exp
, int pc
)
8190 m
= exp
->elts
[pc
+ 1].longconst
;
8193 for (i
= 0; i
< m
; i
+= 1)
8195 switch (exp
->elts
[pc
].opcode
)
8201 n
+= exp
->elts
[pc
+ 1].longconst
;
8204 ada_evaluate_subexp (NULL
, exp
, &pc
, EVAL_SKIP
);
8209 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8210 component of LHS (a simple array or a record), updating *POS past
8211 the expression, assuming that LHS is contained in CONTAINER. Does
8212 not modify the inferior's memory, nor does it modify LHS (unless
8213 LHS == CONTAINER). */
8216 assign_component (struct value
*container
, struct value
*lhs
, LONGEST index
,
8217 struct expression
*exp
, int *pos
)
8219 struct value
*mark
= value_mark ();
8222 if (TYPE_CODE (value_type (lhs
)) == TYPE_CODE_ARRAY
)
8224 struct type
*index_type
= builtin_type (exp
->gdbarch
)->builtin_int
;
8225 struct value
*index_val
= value_from_longest (index_type
, index
);
8227 elt
= unwrap_value (ada_value_subscript (lhs
, 1, &index_val
));
8231 elt
= ada_index_struct_field (index
, lhs
, 0, value_type (lhs
));
8232 elt
= ada_to_fixed_value (unwrap_value (elt
));
8235 if (exp
->elts
[*pos
].opcode
== OP_AGGREGATE
)
8236 assign_aggregate (container
, elt
, exp
, pos
, EVAL_NORMAL
);
8238 value_assign_to_component (container
, elt
,
8239 ada_evaluate_subexp (NULL
, exp
, pos
,
8242 value_free_to_mark (mark
);
8245 /* Assuming that LHS represents an lvalue having a record or array
8246 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8247 of that aggregate's value to LHS, advancing *POS past the
8248 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8249 lvalue containing LHS (possibly LHS itself). Does not modify
8250 the inferior's memory, nor does it modify the contents of
8251 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8253 static struct value
*
8254 assign_aggregate (struct value
*container
,
8255 struct value
*lhs
, struct expression
*exp
,
8256 int *pos
, enum noside noside
)
8258 struct type
*lhs_type
;
8259 int n
= exp
->elts
[*pos
+1].longconst
;
8260 LONGEST low_index
, high_index
;
8263 int max_indices
, num_indices
;
8264 int is_array_aggregate
;
8268 if (noside
!= EVAL_NORMAL
)
8272 for (i
= 0; i
< n
; i
+= 1)
8273 ada_evaluate_subexp (NULL
, exp
, pos
, noside
);
8277 container
= ada_coerce_ref (container
);
8278 if (ada_is_direct_array_type (value_type (container
)))
8279 container
= ada_coerce_to_simple_array (container
);
8280 lhs
= ada_coerce_ref (lhs
);
8281 if (!deprecated_value_modifiable (lhs
))
8282 error (_("Left operand of assignment is not a modifiable lvalue."));
8284 lhs_type
= value_type (lhs
);
8285 if (ada_is_direct_array_type (lhs_type
))
8287 lhs
= ada_coerce_to_simple_array (lhs
);
8288 lhs_type
= value_type (lhs
);
8289 low_index
= TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type
);
8290 high_index
= TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type
);
8291 is_array_aggregate
= 1;
8293 else if (TYPE_CODE (lhs_type
) == TYPE_CODE_STRUCT
)
8296 high_index
= num_visible_fields (lhs_type
) - 1;
8297 is_array_aggregate
= 0;
8300 error (_("Left-hand side must be array or record."));
8302 num_specs
= num_component_specs (exp
, *pos
- 3);
8303 max_indices
= 4 * num_specs
+ 4;
8304 indices
= alloca (max_indices
* sizeof (indices
[0]));
8305 indices
[0] = indices
[1] = low_index
- 1;
8306 indices
[2] = indices
[3] = high_index
+ 1;
8309 for (i
= 0; i
< n
; i
+= 1)
8311 switch (exp
->elts
[*pos
].opcode
)
8314 aggregate_assign_from_choices (container
, lhs
, exp
, pos
, indices
,
8315 &num_indices
, max_indices
,
8316 low_index
, high_index
);
8319 aggregate_assign_positional (container
, lhs
, exp
, pos
, indices
,
8320 &num_indices
, max_indices
,
8321 low_index
, high_index
);
8325 error (_("Misplaced 'others' clause"));
8326 aggregate_assign_others (container
, lhs
, exp
, pos
, indices
,
8327 num_indices
, low_index
, high_index
);
8330 error (_("Internal error: bad aggregate clause"));
8337 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8338 construct at *POS, updating *POS past the construct, given that
8339 the positions are relative to lower bound LOW, where HIGH is the
8340 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8341 updating *NUM_INDICES as needed. CONTAINER is as for
8342 assign_aggregate. */
8344 aggregate_assign_positional (struct value
*container
,
8345 struct value
*lhs
, struct expression
*exp
,
8346 int *pos
, LONGEST
*indices
, int *num_indices
,
8347 int max_indices
, LONGEST low
, LONGEST high
)
8349 LONGEST ind
= longest_to_int (exp
->elts
[*pos
+ 1].longconst
) + low
;
8351 if (ind
- 1 == high
)
8352 warning (_("Extra components in aggregate ignored."));
8355 add_component_interval (ind
, ind
, indices
, num_indices
, max_indices
);
8357 assign_component (container
, lhs
, ind
, exp
, pos
);
8360 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
8363 /* Assign into the components of LHS indexed by the OP_CHOICES
8364 construct at *POS, updating *POS past the construct, given that
8365 the allowable indices are LOW..HIGH. Record the indices assigned
8366 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8367 needed. CONTAINER is as for assign_aggregate. */
8369 aggregate_assign_from_choices (struct value
*container
,
8370 struct value
*lhs
, struct expression
*exp
,
8371 int *pos
, LONGEST
*indices
, int *num_indices
,
8372 int max_indices
, LONGEST low
, LONGEST high
)
8375 int n_choices
= longest_to_int (exp
->elts
[*pos
+1].longconst
);
8376 int choice_pos
, expr_pc
;
8377 int is_array
= ada_is_direct_array_type (value_type (lhs
));
8379 choice_pos
= *pos
+= 3;
8381 for (j
= 0; j
< n_choices
; j
+= 1)
8382 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
8384 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
8386 for (j
= 0; j
< n_choices
; j
+= 1)
8388 LONGEST lower
, upper
;
8389 enum exp_opcode op
= exp
->elts
[choice_pos
].opcode
;
8391 if (op
== OP_DISCRETE_RANGE
)
8394 lower
= value_as_long (ada_evaluate_subexp (NULL
, exp
, pos
,
8396 upper
= value_as_long (ada_evaluate_subexp (NULL
, exp
, pos
,
8401 lower
= value_as_long (ada_evaluate_subexp (NULL
, exp
, &choice_pos
,
8413 name
= &exp
->elts
[choice_pos
+ 2].string
;
8416 name
= SYMBOL_NATURAL_NAME (exp
->elts
[choice_pos
+ 2].symbol
);
8419 error (_("Invalid record component association."));
8421 ada_evaluate_subexp (NULL
, exp
, &choice_pos
, EVAL_SKIP
);
8423 if (! find_struct_field (name
, value_type (lhs
), 0,
8424 NULL
, NULL
, NULL
, NULL
, &ind
))
8425 error (_("Unknown component name: %s."), name
);
8426 lower
= upper
= ind
;
8429 if (lower
<= upper
&& (lower
< low
|| upper
> high
))
8430 error (_("Index in component association out of bounds."));
8432 add_component_interval (lower
, upper
, indices
, num_indices
,
8434 while (lower
<= upper
)
8439 assign_component (container
, lhs
, lower
, exp
, &pos1
);
8445 /* Assign the value of the expression in the OP_OTHERS construct in
8446 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8447 have not been previously assigned. The index intervals already assigned
8448 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8449 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8451 aggregate_assign_others (struct value
*container
,
8452 struct value
*lhs
, struct expression
*exp
,
8453 int *pos
, LONGEST
*indices
, int num_indices
,
8454 LONGEST low
, LONGEST high
)
8457 int expr_pc
= *pos
+1;
8459 for (i
= 0; i
< num_indices
- 2; i
+= 2)
8463 for (ind
= indices
[i
+ 1] + 1; ind
< indices
[i
+ 2]; ind
+= 1)
8468 assign_component (container
, lhs
, ind
, exp
, &pos
);
8471 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
8474 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8475 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8476 modifying *SIZE as needed. It is an error if *SIZE exceeds
8477 MAX_SIZE. The resulting intervals do not overlap. */
8479 add_component_interval (LONGEST low
, LONGEST high
,
8480 LONGEST
* indices
, int *size
, int max_size
)
8484 for (i
= 0; i
< *size
; i
+= 2) {
8485 if (high
>= indices
[i
] && low
<= indices
[i
+ 1])
8489 for (kh
= i
+ 2; kh
< *size
; kh
+= 2)
8490 if (high
< indices
[kh
])
8492 if (low
< indices
[i
])
8494 indices
[i
+ 1] = indices
[kh
- 1];
8495 if (high
> indices
[i
+ 1])
8496 indices
[i
+ 1] = high
;
8497 memcpy (indices
+ i
+ 2, indices
+ kh
, *size
- kh
);
8498 *size
-= kh
- i
- 2;
8501 else if (high
< indices
[i
])
8505 if (*size
== max_size
)
8506 error (_("Internal error: miscounted aggregate components."));
8508 for (j
= *size
-1; j
>= i
+2; j
-= 1)
8509 indices
[j
] = indices
[j
- 2];
8511 indices
[i
+ 1] = high
;
8514 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8517 static struct value
*
8518 ada_value_cast (struct type
*type
, struct value
*arg2
, enum noside noside
)
8520 if (type
== ada_check_typedef (value_type (arg2
)))
8523 if (ada_is_fixed_point_type (type
))
8524 return (cast_to_fixed (type
, arg2
));
8526 if (ada_is_fixed_point_type (value_type (arg2
)))
8527 return cast_from_fixed (type
, arg2
);
8529 return value_cast (type
, arg2
);
8532 /* Evaluating Ada expressions, and printing their result.
8533 ------------------------------------------------------
8538 We usually evaluate an Ada expression in order to print its value.
8539 We also evaluate an expression in order to print its type, which
8540 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8541 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8542 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8543 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8546 Evaluating expressions is a little more complicated for Ada entities
8547 than it is for entities in languages such as C. The main reason for
8548 this is that Ada provides types whose definition might be dynamic.
8549 One example of such types is variant records. Or another example
8550 would be an array whose bounds can only be known at run time.
8552 The following description is a general guide as to what should be
8553 done (and what should NOT be done) in order to evaluate an expression
8554 involving such types, and when. This does not cover how the semantic
8555 information is encoded by GNAT as this is covered separatly. For the
8556 document used as the reference for the GNAT encoding, see exp_dbug.ads
8557 in the GNAT sources.
8559 Ideally, we should embed each part of this description next to its
8560 associated code. Unfortunately, the amount of code is so vast right
8561 now that it's hard to see whether the code handling a particular
8562 situation might be duplicated or not. One day, when the code is
8563 cleaned up, this guide might become redundant with the comments
8564 inserted in the code, and we might want to remove it.
8566 2. ``Fixing'' an Entity, the Simple Case:
8567 -----------------------------------------
8569 When evaluating Ada expressions, the tricky issue is that they may
8570 reference entities whose type contents and size are not statically
8571 known. Consider for instance a variant record:
8573 type Rec (Empty : Boolean := True) is record
8576 when False => Value : Integer;
8579 Yes : Rec := (Empty => False, Value => 1);
8580 No : Rec := (empty => True);
8582 The size and contents of that record depends on the value of the
8583 descriminant (Rec.Empty). At this point, neither the debugging
8584 information nor the associated type structure in GDB are able to
8585 express such dynamic types. So what the debugger does is to create
8586 "fixed" versions of the type that applies to the specific object.
8587 We also informally refer to this opperation as "fixing" an object,
8588 which means creating its associated fixed type.
8590 Example: when printing the value of variable "Yes" above, its fixed
8591 type would look like this:
8598 On the other hand, if we printed the value of "No", its fixed type
8605 Things become a little more complicated when trying to fix an entity
8606 with a dynamic type that directly contains another dynamic type,
8607 such as an array of variant records, for instance. There are
8608 two possible cases: Arrays, and records.
8610 3. ``Fixing'' Arrays:
8611 ---------------------
8613 The type structure in GDB describes an array in terms of its bounds,
8614 and the type of its elements. By design, all elements in the array
8615 have the same type and we cannot represent an array of variant elements
8616 using the current type structure in GDB. When fixing an array,
8617 we cannot fix the array element, as we would potentially need one
8618 fixed type per element of the array. As a result, the best we can do
8619 when fixing an array is to produce an array whose bounds and size
8620 are correct (allowing us to read it from memory), but without having
8621 touched its element type. Fixing each element will be done later,
8622 when (if) necessary.
8624 Arrays are a little simpler to handle than records, because the same
8625 amount of memory is allocated for each element of the array, even if
8626 the amount of space actually used by each element differs from element
8627 to element. Consider for instance the following array of type Rec:
8629 type Rec_Array is array (1 .. 2) of Rec;
8631 The actual amount of memory occupied by each element might be different
8632 from element to element, depending on the value of their discriminant.
8633 But the amount of space reserved for each element in the array remains
8634 fixed regardless. So we simply need to compute that size using
8635 the debugging information available, from which we can then determine
8636 the array size (we multiply the number of elements of the array by
8637 the size of each element).
8639 The simplest case is when we have an array of a constrained element
8640 type. For instance, consider the following type declarations:
8642 type Bounded_String (Max_Size : Integer) is
8644 Buffer : String (1 .. Max_Size);
8646 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8648 In this case, the compiler describes the array as an array of
8649 variable-size elements (identified by its XVS suffix) for which
8650 the size can be read in the parallel XVZ variable.
8652 In the case of an array of an unconstrained element type, the compiler
8653 wraps the array element inside a private PAD type. This type should not
8654 be shown to the user, and must be "unwrap"'ed before printing. Note
8655 that we also use the adjective "aligner" in our code to designate
8656 these wrapper types.
8658 In some cases, the size allocated for each element is statically
8659 known. In that case, the PAD type already has the correct size,
8660 and the array element should remain unfixed.
8662 But there are cases when this size is not statically known.
8663 For instance, assuming that "Five" is an integer variable:
8665 type Dynamic is array (1 .. Five) of Integer;
8666 type Wrapper (Has_Length : Boolean := False) is record
8669 when True => Length : Integer;
8673 type Wrapper_Array is array (1 .. 2) of Wrapper;
8675 Hello : Wrapper_Array := (others => (Has_Length => True,
8676 Data => (others => 17),
8680 The debugging info would describe variable Hello as being an
8681 array of a PAD type. The size of that PAD type is not statically
8682 known, but can be determined using a parallel XVZ variable.
8683 In that case, a copy of the PAD type with the correct size should
8684 be used for the fixed array.
8686 3. ``Fixing'' record type objects:
8687 ----------------------------------
8689 Things are slightly different from arrays in the case of dynamic
8690 record types. In this case, in order to compute the associated
8691 fixed type, we need to determine the size and offset of each of
8692 its components. This, in turn, requires us to compute the fixed
8693 type of each of these components.
8695 Consider for instance the example:
8697 type Bounded_String (Max_Size : Natural) is record
8698 Str : String (1 .. Max_Size);
8701 My_String : Bounded_String (Max_Size => 10);
8703 In that case, the position of field "Length" depends on the size
8704 of field Str, which itself depends on the value of the Max_Size
8705 discriminant. In order to fix the type of variable My_String,
8706 we need to fix the type of field Str. Therefore, fixing a variant
8707 record requires us to fix each of its components.
8709 However, if a component does not have a dynamic size, the component
8710 should not be fixed. In particular, fields that use a PAD type
8711 should not fixed. Here is an example where this might happen
8712 (assuming type Rec above):
8714 type Container (Big : Boolean) is record
8718 when True => Another : Integer;
8722 My_Container : Container := (Big => False,
8723 First => (Empty => True),
8726 In that example, the compiler creates a PAD type for component First,
8727 whose size is constant, and then positions the component After just
8728 right after it. The offset of component After is therefore constant
8731 The debugger computes the position of each field based on an algorithm
8732 that uses, among other things, the actual position and size of the field
8733 preceding it. Let's now imagine that the user is trying to print
8734 the value of My_Container. If the type fixing was recursive, we would
8735 end up computing the offset of field After based on the size of the
8736 fixed version of field First. And since in our example First has
8737 only one actual field, the size of the fixed type is actually smaller
8738 than the amount of space allocated to that field, and thus we would
8739 compute the wrong offset of field After.
8741 To make things more complicated, we need to watch out for dynamic
8742 components of variant records (identified by the ___XVL suffix in
8743 the component name). Even if the target type is a PAD type, the size
8744 of that type might not be statically known. So the PAD type needs
8745 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8746 we might end up with the wrong size for our component. This can be
8747 observed with the following type declarations:
8749 type Octal is new Integer range 0 .. 7;
8750 type Octal_Array is array (Positive range <>) of Octal;
8751 pragma Pack (Octal_Array);
8753 type Octal_Buffer (Size : Positive) is record
8754 Buffer : Octal_Array (1 .. Size);
8758 In that case, Buffer is a PAD type whose size is unset and needs
8759 to be computed by fixing the unwrapped type.
8761 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8762 ----------------------------------------------------------
8764 Lastly, when should the sub-elements of an entity that remained unfixed
8765 thus far, be actually fixed?
8767 The answer is: Only when referencing that element. For instance
8768 when selecting one component of a record, this specific component
8769 should be fixed at that point in time. Or when printing the value
8770 of a record, each component should be fixed before its value gets
8771 printed. Similarly for arrays, the element of the array should be
8772 fixed when printing each element of the array, or when extracting
8773 one element out of that array. On the other hand, fixing should
8774 not be performed on the elements when taking a slice of an array!
8776 Note that one of the side-effects of miscomputing the offset and
8777 size of each field is that we end up also miscomputing the size
8778 of the containing type. This can have adverse results when computing
8779 the value of an entity. GDB fetches the value of an entity based
8780 on the size of its type, and thus a wrong size causes GDB to fetch
8781 the wrong amount of memory. In the case where the computed size is
8782 too small, GDB fetches too little data to print the value of our
8783 entiry. Results in this case as unpredicatble, as we usually read
8784 past the buffer containing the data =:-o. */
8786 /* Implement the evaluate_exp routine in the exp_descriptor structure
8787 for the Ada language. */
8789 static struct value
*
8790 ada_evaluate_subexp (struct type
*expect_type
, struct expression
*exp
,
8791 int *pos
, enum noside noside
)
8796 struct value
*arg1
= NULL
, *arg2
= NULL
, *arg3
;
8799 struct value
**argvec
;
8803 op
= exp
->elts
[pc
].opcode
;
8809 arg1
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
8810 arg1
= unwrap_value (arg1
);
8812 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8813 then we need to perform the conversion manually, because
8814 evaluate_subexp_standard doesn't do it. This conversion is
8815 necessary in Ada because the different kinds of float/fixed
8816 types in Ada have different representations.
8818 Similarly, we need to perform the conversion from OP_LONG
8820 if ((op
== OP_DOUBLE
|| op
== OP_LONG
) && expect_type
!= NULL
)
8821 arg1
= ada_value_cast (expect_type
, arg1
, noside
);
8827 struct value
*result
;
8830 result
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
8831 /* The result type will have code OP_STRING, bashed there from
8832 OP_ARRAY. Bash it back. */
8833 if (TYPE_CODE (value_type (result
)) == TYPE_CODE_STRING
)
8834 TYPE_CODE (value_type (result
)) = TYPE_CODE_ARRAY
;
8840 type
= exp
->elts
[pc
+ 1].type
;
8841 arg1
= evaluate_subexp (type
, exp
, pos
, noside
);
8842 if (noside
== EVAL_SKIP
)
8844 arg1
= ada_value_cast (type
, arg1
, noside
);
8849 type
= exp
->elts
[pc
+ 1].type
;
8850 return ada_evaluate_subexp (type
, exp
, pos
, noside
);
8853 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8854 if (exp
->elts
[*pos
].opcode
== OP_AGGREGATE
)
8856 arg1
= assign_aggregate (arg1
, arg1
, exp
, pos
, noside
);
8857 if (noside
== EVAL_SKIP
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
8859 return ada_value_assign (arg1
, arg1
);
8861 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8862 except if the lhs of our assignment is a convenience variable.
8863 In the case of assigning to a convenience variable, the lhs
8864 should be exactly the result of the evaluation of the rhs. */
8865 type
= value_type (arg1
);
8866 if (VALUE_LVAL (arg1
) == lval_internalvar
)
8868 arg2
= evaluate_subexp (type
, exp
, pos
, noside
);
8869 if (noside
== EVAL_SKIP
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
8871 if (ada_is_fixed_point_type (value_type (arg1
)))
8872 arg2
= cast_to_fixed (value_type (arg1
), arg2
);
8873 else if (ada_is_fixed_point_type (value_type (arg2
)))
8875 (_("Fixed-point values must be assigned to fixed-point variables"));
8877 arg2
= coerce_for_assign (value_type (arg1
), arg2
);
8878 return ada_value_assign (arg1
, arg2
);
8881 arg1
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
8882 arg2
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
8883 if (noside
== EVAL_SKIP
)
8885 if (TYPE_CODE (value_type (arg1
)) == TYPE_CODE_PTR
)
8886 return (value_from_longest
8888 value_as_long (arg1
) + value_as_long (arg2
)));
8889 if ((ada_is_fixed_point_type (value_type (arg1
))
8890 || ada_is_fixed_point_type (value_type (arg2
)))
8891 && value_type (arg1
) != value_type (arg2
))
8892 error (_("Operands of fixed-point addition must have the same type"));
8893 /* Do the addition, and cast the result to the type of the first
8894 argument. We cannot cast the result to a reference type, so if
8895 ARG1 is a reference type, find its underlying type. */
8896 type
= value_type (arg1
);
8897 while (TYPE_CODE (type
) == TYPE_CODE_REF
)
8898 type
= TYPE_TARGET_TYPE (type
);
8899 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
8900 return value_cast (type
, value_binop (arg1
, arg2
, BINOP_ADD
));
8903 arg1
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
8904 arg2
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
8905 if (noside
== EVAL_SKIP
)
8907 if (TYPE_CODE (value_type (arg1
)) == TYPE_CODE_PTR
)
8908 return (value_from_longest
8910 value_as_long (arg1
) - value_as_long (arg2
)));
8911 if ((ada_is_fixed_point_type (value_type (arg1
))
8912 || ada_is_fixed_point_type (value_type (arg2
)))
8913 && value_type (arg1
) != value_type (arg2
))
8914 error (_("Operands of fixed-point subtraction must have the same type"));
8915 /* Do the substraction, and cast the result to the type of the first
8916 argument. We cannot cast the result to a reference type, so if
8917 ARG1 is a reference type, find its underlying type. */
8918 type
= value_type (arg1
);
8919 while (TYPE_CODE (type
) == TYPE_CODE_REF
)
8920 type
= TYPE_TARGET_TYPE (type
);
8921 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
8922 return value_cast (type
, value_binop (arg1
, arg2
, BINOP_SUB
));
8928 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8929 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8930 if (noside
== EVAL_SKIP
)
8932 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8934 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
8935 return value_zero (value_type (arg1
), not_lval
);
8939 type
= builtin_type (exp
->gdbarch
)->builtin_double
;
8940 if (ada_is_fixed_point_type (value_type (arg1
)))
8941 arg1
= cast_from_fixed (type
, arg1
);
8942 if (ada_is_fixed_point_type (value_type (arg2
)))
8943 arg2
= cast_from_fixed (type
, arg2
);
8944 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
8945 return ada_value_binop (arg1
, arg2
, op
);
8949 case BINOP_NOTEQUAL
:
8950 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8951 arg2
= evaluate_subexp (value_type (arg1
), exp
, pos
, noside
);
8952 if (noside
== EVAL_SKIP
)
8954 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8958 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
8959 tem
= ada_value_equal (arg1
, arg2
);
8961 if (op
== BINOP_NOTEQUAL
)
8963 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
8964 return value_from_longest (type
, (LONGEST
) tem
);
8967 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
8968 if (noside
== EVAL_SKIP
)
8970 else if (ada_is_fixed_point_type (value_type (arg1
)))
8971 return value_cast (value_type (arg1
), value_neg (arg1
));
8974 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
8975 return value_neg (arg1
);
8978 case BINOP_LOGICAL_AND
:
8979 case BINOP_LOGICAL_OR
:
8980 case UNOP_LOGICAL_NOT
:
8985 val
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
8986 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
8987 return value_cast (type
, val
);
8990 case BINOP_BITWISE_AND
:
8991 case BINOP_BITWISE_IOR
:
8992 case BINOP_BITWISE_XOR
:
8996 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_AVOID_SIDE_EFFECTS
);
8998 val
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
9000 return value_cast (value_type (arg1
), val
);
9006 if (noside
== EVAL_SKIP
)
9011 else if (SYMBOL_DOMAIN (exp
->elts
[pc
+ 2].symbol
) == UNDEF_DOMAIN
)
9012 /* Only encountered when an unresolved symbol occurs in a
9013 context other than a function call, in which case, it is
9015 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9016 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
9017 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9019 type
= static_unwrap_type (SYMBOL_TYPE (exp
->elts
[pc
+ 2].symbol
));
9020 /* Check to see if this is a tagged type. We also need to handle
9021 the case where the type is a reference to a tagged type, but
9022 we have to be careful to exclude pointers to tagged types.
9023 The latter should be shown as usual (as a pointer), whereas
9024 a reference should mostly be transparent to the user. */
9025 if (ada_is_tagged_type (type
, 0)
9026 || (TYPE_CODE(type
) == TYPE_CODE_REF
9027 && ada_is_tagged_type (TYPE_TARGET_TYPE (type
), 0)))
9029 /* Tagged types are a little special in the fact that the real
9030 type is dynamic and can only be determined by inspecting the
9031 object's tag. This means that we need to get the object's
9032 value first (EVAL_NORMAL) and then extract the actual object
9035 Note that we cannot skip the final step where we extract
9036 the object type from its tag, because the EVAL_NORMAL phase
9037 results in dynamic components being resolved into fixed ones.
9038 This can cause problems when trying to print the type
9039 description of tagged types whose parent has a dynamic size:
9040 We use the type name of the "_parent" component in order
9041 to print the name of the ancestor type in the type description.
9042 If that component had a dynamic size, the resolution into
9043 a fixed type would result in the loss of that type name,
9044 thus preventing us from printing the name of the ancestor
9045 type in the type description. */
9046 struct type
*actual_type
;
9048 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_NORMAL
);
9049 actual_type
= type_from_tag (ada_value_tag (arg1
));
9050 if (actual_type
== NULL
)
9051 /* If, for some reason, we were unable to determine
9052 the actual type from the tag, then use the static
9053 approximation that we just computed as a fallback.
9054 This can happen if the debugging information is
9055 incomplete, for instance. */
9058 return value_zero (actual_type
, not_lval
);
9063 (to_static_fixed_type
9064 (static_unwrap_type (SYMBOL_TYPE (exp
->elts
[pc
+ 2].symbol
))),
9069 arg1
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
9070 arg1
= unwrap_value (arg1
);
9071 return ada_to_fixed_value (arg1
);
9077 /* Allocate arg vector, including space for the function to be
9078 called in argvec[0] and a terminating NULL. */
9079 nargs
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
9081 (struct value
**) alloca (sizeof (struct value
*) * (nargs
+ 2));
9083 if (exp
->elts
[*pos
].opcode
== OP_VAR_VALUE
9084 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
9085 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9086 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 5].symbol
));
9089 for (tem
= 0; tem
<= nargs
; tem
+= 1)
9090 argvec
[tem
] = evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9093 if (noside
== EVAL_SKIP
)
9097 if (ada_is_constrained_packed_array_type
9098 (desc_base_type (value_type (argvec
[0]))))
9099 argvec
[0] = ada_coerce_to_simple_array (argvec
[0]);
9100 else if (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_ARRAY
9101 && TYPE_FIELD_BITSIZE (value_type (argvec
[0]), 0) != 0)
9102 /* This is a packed array that has already been fixed, and
9103 therefore already coerced to a simple array. Nothing further
9106 else if (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_REF
9107 || (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_ARRAY
9108 && VALUE_LVAL (argvec
[0]) == lval_memory
))
9109 argvec
[0] = value_addr (argvec
[0]);
9111 type
= ada_check_typedef (value_type (argvec
[0]));
9112 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
9114 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type
))))
9116 case TYPE_CODE_FUNC
:
9117 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
9119 case TYPE_CODE_ARRAY
:
9121 case TYPE_CODE_STRUCT
:
9122 if (noside
!= EVAL_AVOID_SIDE_EFFECTS
)
9123 argvec
[0] = ada_value_ind (argvec
[0]);
9124 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
9127 error (_("cannot subscript or call something of type `%s'"),
9128 ada_type_name (value_type (argvec
[0])));
9133 switch (TYPE_CODE (type
))
9135 case TYPE_CODE_FUNC
:
9136 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9137 return allocate_value (TYPE_TARGET_TYPE (type
));
9138 return call_function_by_hand (argvec
[0], nargs
, argvec
+ 1);
9139 case TYPE_CODE_STRUCT
:
9143 arity
= ada_array_arity (type
);
9144 type
= ada_array_element_type (type
, nargs
);
9146 error (_("cannot subscript or call a record"));
9148 error (_("wrong number of subscripts; expecting %d"), arity
);
9149 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9150 return value_zero (ada_aligned_type (type
), lval_memory
);
9152 unwrap_value (ada_value_subscript
9153 (argvec
[0], nargs
, argvec
+ 1));
9155 case TYPE_CODE_ARRAY
:
9156 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9158 type
= ada_array_element_type (type
, nargs
);
9160 error (_("element type of array unknown"));
9162 return value_zero (ada_aligned_type (type
), lval_memory
);
9165 unwrap_value (ada_value_subscript
9166 (ada_coerce_to_simple_array (argvec
[0]),
9167 nargs
, argvec
+ 1));
9168 case TYPE_CODE_PTR
: /* Pointer to array */
9169 type
= to_fixed_array_type (TYPE_TARGET_TYPE (type
), NULL
, 1);
9170 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9172 type
= ada_array_element_type (type
, nargs
);
9174 error (_("element type of array unknown"));
9176 return value_zero (ada_aligned_type (type
), lval_memory
);
9179 unwrap_value (ada_value_ptr_subscript (argvec
[0], type
,
9180 nargs
, argvec
+ 1));
9183 error (_("Attempt to index or call something other than an "
9184 "array or function"));
9189 struct value
*array
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9190 struct value
*low_bound_val
=
9191 evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9192 struct value
*high_bound_val
=
9193 evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9197 low_bound_val
= coerce_ref (low_bound_val
);
9198 high_bound_val
= coerce_ref (high_bound_val
);
9199 low_bound
= pos_atr (low_bound_val
);
9200 high_bound
= pos_atr (high_bound_val
);
9202 if (noside
== EVAL_SKIP
)
9205 /* If this is a reference to an aligner type, then remove all
9207 if (TYPE_CODE (value_type (array
)) == TYPE_CODE_REF
9208 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array
))))
9209 TYPE_TARGET_TYPE (value_type (array
)) =
9210 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array
)));
9212 if (ada_is_constrained_packed_array_type (value_type (array
)))
9213 error (_("cannot slice a packed array"));
9215 /* If this is a reference to an array or an array lvalue,
9216 convert to a pointer. */
9217 if (TYPE_CODE (value_type (array
)) == TYPE_CODE_REF
9218 || (TYPE_CODE (value_type (array
)) == TYPE_CODE_ARRAY
9219 && VALUE_LVAL (array
) == lval_memory
))
9220 array
= value_addr (array
);
9222 if (noside
== EVAL_AVOID_SIDE_EFFECTS
9223 && ada_is_array_descriptor_type (ada_check_typedef
9224 (value_type (array
))))
9225 return empty_array (ada_type_of_array (array
, 0), low_bound
);
9227 array
= ada_coerce_to_simple_array_ptr (array
);
9229 /* If we have more than one level of pointer indirection,
9230 dereference the value until we get only one level. */
9231 while (TYPE_CODE (value_type (array
)) == TYPE_CODE_PTR
9232 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array
)))
9234 array
= value_ind (array
);
9236 /* Make sure we really do have an array type before going further,
9237 to avoid a SEGV when trying to get the index type or the target
9238 type later down the road if the debug info generated by
9239 the compiler is incorrect or incomplete. */
9240 if (!ada_is_simple_array_type (value_type (array
)))
9241 error (_("cannot take slice of non-array"));
9243 if (TYPE_CODE (value_type (array
)) == TYPE_CODE_PTR
)
9245 if (high_bound
< low_bound
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
9246 return empty_array (TYPE_TARGET_TYPE (value_type (array
)),
9250 struct type
*arr_type0
=
9251 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array
)),
9254 return ada_value_slice_from_ptr (array
, arr_type0
,
9255 longest_to_int (low_bound
),
9256 longest_to_int (high_bound
));
9259 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9261 else if (high_bound
< low_bound
)
9262 return empty_array (value_type (array
), low_bound
);
9264 return ada_value_slice (array
, longest_to_int (low_bound
),
9265 longest_to_int (high_bound
));
9270 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9271 type
= check_typedef (exp
->elts
[pc
+ 1].type
);
9273 if (noside
== EVAL_SKIP
)
9276 switch (TYPE_CODE (type
))
9279 lim_warning (_("Membership test incompletely implemented; "
9280 "always returns true"));
9281 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
9282 return value_from_longest (type
, (LONGEST
) 1);
9284 case TYPE_CODE_RANGE
:
9285 arg2
= value_from_longest (type
, TYPE_LOW_BOUND (type
));
9286 arg3
= value_from_longest (type
, TYPE_HIGH_BOUND (type
));
9287 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
9288 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
9289 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
9291 value_from_longest (type
,
9292 (value_less (arg1
, arg3
)
9293 || value_equal (arg1
, arg3
))
9294 && (value_less (arg2
, arg1
)
9295 || value_equal (arg2
, arg1
)));
9298 case BINOP_IN_BOUNDS
:
9300 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9301 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9303 if (noside
== EVAL_SKIP
)
9306 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9308 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
9309 return value_zero (type
, not_lval
);
9312 tem
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
9314 type
= ada_index_type (value_type (arg2
), tem
, "range");
9316 type
= value_type (arg1
);
9318 arg3
= value_from_longest (type
, ada_array_bound (arg2
, tem
, 1));
9319 arg2
= value_from_longest (type
, ada_array_bound (arg2
, tem
, 0));
9321 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
9322 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
9323 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
9325 value_from_longest (type
,
9326 (value_less (arg1
, arg3
)
9327 || value_equal (arg1
, arg3
))
9328 && (value_less (arg2
, arg1
)
9329 || value_equal (arg2
, arg1
)));
9331 case TERNOP_IN_RANGE
:
9332 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9333 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9334 arg3
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9336 if (noside
== EVAL_SKIP
)
9339 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
9340 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
9341 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
9343 value_from_longest (type
,
9344 (value_less (arg1
, arg3
)
9345 || value_equal (arg1
, arg3
))
9346 && (value_less (arg2
, arg1
)
9347 || value_equal (arg2
, arg1
)));
9353 struct type
*type_arg
;
9355 if (exp
->elts
[*pos
].opcode
== OP_TYPE
)
9357 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
9359 type_arg
= check_typedef (exp
->elts
[pc
+ 2].type
);
9363 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9367 if (exp
->elts
[*pos
].opcode
!= OP_LONG
)
9368 error (_("Invalid operand to '%s"), ada_attribute_name (op
));
9369 tem
= longest_to_int (exp
->elts
[*pos
+ 2].longconst
);
9372 if (noside
== EVAL_SKIP
)
9375 if (type_arg
== NULL
)
9377 arg1
= ada_coerce_ref (arg1
);
9379 if (ada_is_constrained_packed_array_type (value_type (arg1
)))
9380 arg1
= ada_coerce_to_simple_array (arg1
);
9382 type
= ada_index_type (value_type (arg1
), tem
,
9383 ada_attribute_name (op
));
9385 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
9387 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9388 return allocate_value (type
);
9392 default: /* Should never happen. */
9393 error (_("unexpected attribute encountered"));
9395 return value_from_longest
9396 (type
, ada_array_bound (arg1
, tem
, 0));
9398 return value_from_longest
9399 (type
, ada_array_bound (arg1
, tem
, 1));
9401 return value_from_longest
9402 (type
, ada_array_length (arg1
, tem
));
9405 else if (discrete_type_p (type_arg
))
9407 struct type
*range_type
;
9408 char *name
= ada_type_name (type_arg
);
9411 if (name
!= NULL
&& TYPE_CODE (type_arg
) != TYPE_CODE_ENUM
)
9412 range_type
= to_fixed_range_type (type_arg
, NULL
);
9413 if (range_type
== NULL
)
9414 range_type
= type_arg
;
9418 error (_("unexpected attribute encountered"));
9420 return value_from_longest
9421 (range_type
, ada_discrete_type_low_bound (range_type
));
9423 return value_from_longest
9424 (range_type
, ada_discrete_type_high_bound (range_type
));
9426 error (_("the 'length attribute applies only to array types"));
9429 else if (TYPE_CODE (type_arg
) == TYPE_CODE_FLT
)
9430 error (_("unimplemented type attribute"));
9435 if (ada_is_constrained_packed_array_type (type_arg
))
9436 type_arg
= decode_constrained_packed_array_type (type_arg
);
9438 type
= ada_index_type (type_arg
, tem
, ada_attribute_name (op
));
9440 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
9442 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9443 return allocate_value (type
);
9448 error (_("unexpected attribute encountered"));
9450 low
= ada_array_bound_from_type (type_arg
, tem
, 0);
9451 return value_from_longest (type
, low
);
9453 high
= ada_array_bound_from_type (type_arg
, tem
, 1);
9454 return value_from_longest (type
, high
);
9456 low
= ada_array_bound_from_type (type_arg
, tem
, 0);
9457 high
= ada_array_bound_from_type (type_arg
, tem
, 1);
9458 return value_from_longest (type
, high
- low
+ 1);
9464 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9465 if (noside
== EVAL_SKIP
)
9468 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9469 return value_zero (ada_tag_type (arg1
), not_lval
);
9471 return ada_value_tag (arg1
);
9475 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
9476 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9477 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9478 if (noside
== EVAL_SKIP
)
9480 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9481 return value_zero (value_type (arg1
), not_lval
);
9484 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
9485 return value_binop (arg1
, arg2
,
9486 op
== OP_ATR_MIN
? BINOP_MIN
: BINOP_MAX
);
9489 case OP_ATR_MODULUS
:
9491 struct type
*type_arg
= check_typedef (exp
->elts
[pc
+ 2].type
);
9493 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
9494 if (noside
== EVAL_SKIP
)
9497 if (!ada_is_modular_type (type_arg
))
9498 error (_("'modulus must be applied to modular type"));
9500 return value_from_longest (TYPE_TARGET_TYPE (type_arg
),
9501 ada_modulus (type_arg
));
9506 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
9507 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9508 if (noside
== EVAL_SKIP
)
9510 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
9511 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9512 return value_zero (type
, not_lval
);
9514 return value_pos_atr (type
, arg1
);
9517 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9518 type
= value_type (arg1
);
9520 /* If the argument is a reference, then dereference its type, since
9521 the user is really asking for the size of the actual object,
9522 not the size of the pointer. */
9523 if (TYPE_CODE (type
) == TYPE_CODE_REF
)
9524 type
= TYPE_TARGET_TYPE (type
);
9526 if (noside
== EVAL_SKIP
)
9528 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9529 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
, not_lval
);
9531 return value_from_longest (builtin_type (exp
->gdbarch
)->builtin_int
,
9532 TARGET_CHAR_BIT
* TYPE_LENGTH (type
));
9535 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
9536 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9537 type
= exp
->elts
[pc
+ 2].type
;
9538 if (noside
== EVAL_SKIP
)
9540 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9541 return value_zero (type
, not_lval
);
9543 return value_val_atr (type
, arg1
);
9546 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9547 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9548 if (noside
== EVAL_SKIP
)
9550 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9551 return value_zero (value_type (arg1
), not_lval
);
9554 /* For integer exponentiation operations,
9555 only promote the first argument. */
9556 if (is_integral_type (value_type (arg2
)))
9557 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
9559 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
9561 return value_binop (arg1
, arg2
, op
);
9565 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9566 if (noside
== EVAL_SKIP
)
9572 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9573 if (noside
== EVAL_SKIP
)
9575 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
9576 if (value_less (arg1
, value_zero (value_type (arg1
), not_lval
)))
9577 return value_neg (arg1
);
9582 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9583 if (noside
== EVAL_SKIP
)
9585 type
= ada_check_typedef (value_type (arg1
));
9586 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9588 if (ada_is_array_descriptor_type (type
))
9589 /* GDB allows dereferencing GNAT array descriptors. */
9591 struct type
*arrType
= ada_type_of_array (arg1
, 0);
9593 if (arrType
== NULL
)
9594 error (_("Attempt to dereference null array pointer."));
9595 return value_at_lazy (arrType
, 0);
9597 else if (TYPE_CODE (type
) == TYPE_CODE_PTR
9598 || TYPE_CODE (type
) == TYPE_CODE_REF
9599 /* In C you can dereference an array to get the 1st elt. */
9600 || TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
9602 type
= to_static_fixed_type
9604 (ada_check_typedef (TYPE_TARGET_TYPE (type
))));
9606 return value_zero (type
, lval_memory
);
9608 else if (TYPE_CODE (type
) == TYPE_CODE_INT
)
9610 /* GDB allows dereferencing an int. */
9611 if (expect_type
== NULL
)
9612 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
,
9617 to_static_fixed_type (ada_aligned_type (expect_type
));
9618 return value_zero (expect_type
, lval_memory
);
9622 error (_("Attempt to take contents of a non-pointer value."));
9624 arg1
= ada_coerce_ref (arg1
); /* FIXME: What is this for?? */
9625 type
= ada_check_typedef (value_type (arg1
));
9627 if (TYPE_CODE (type
) == TYPE_CODE_INT
)
9628 /* GDB allows dereferencing an int. If we were given
9629 the expect_type, then use that as the target type.
9630 Otherwise, assume that the target type is an int. */
9632 if (expect_type
!= NULL
)
9633 return ada_value_ind (value_cast (lookup_pointer_type (expect_type
),
9636 return value_at_lazy (builtin_type (exp
->gdbarch
)->builtin_int
,
9637 (CORE_ADDR
) value_as_address (arg1
));
9640 if (ada_is_array_descriptor_type (type
))
9641 /* GDB allows dereferencing GNAT array descriptors. */
9642 return ada_coerce_to_simple_array (arg1
);
9644 return ada_value_ind (arg1
);
9646 case STRUCTOP_STRUCT
:
9647 tem
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
9648 (*pos
) += 3 + BYTES_TO_EXP_ELEM (tem
+ 1);
9649 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9650 if (noside
== EVAL_SKIP
)
9652 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9654 struct type
*type1
= value_type (arg1
);
9656 if (ada_is_tagged_type (type1
, 1))
9658 type
= ada_lookup_struct_elt_type (type1
,
9659 &exp
->elts
[pc
+ 2].string
,
9662 /* In this case, we assume that the field COULD exist
9663 in some extension of the type. Return an object of
9664 "type" void, which will match any formal
9665 (see ada_type_match). */
9666 return value_zero (builtin_type (exp
->gdbarch
)->builtin_void
,
9671 ada_lookup_struct_elt_type (type1
, &exp
->elts
[pc
+ 2].string
, 1,
9674 return value_zero (ada_aligned_type (type
), lval_memory
);
9677 arg1
= ada_value_struct_elt (arg1
, &exp
->elts
[pc
+ 2].string
, 0);
9678 arg1
= unwrap_value (arg1
);
9679 return ada_to_fixed_value (arg1
);
9682 /* The value is not supposed to be used. This is here to make it
9683 easier to accommodate expressions that contain types. */
9685 if (noside
== EVAL_SKIP
)
9687 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9688 return allocate_value (exp
->elts
[pc
+ 1].type
);
9690 error (_("Attempt to use a type name as an expression"));
9695 case OP_DISCRETE_RANGE
:
9698 if (noside
== EVAL_NORMAL
)
9702 error (_("Undefined name, ambiguous name, or renaming used in "
9703 "component association: %s."), &exp
->elts
[pc
+2].string
);
9705 error (_("Aggregates only allowed on the right of an assignment"));
9707 internal_error (__FILE__
, __LINE__
, _("aggregate apparently mangled"));
9710 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
9712 for (tem
= 0; tem
< nargs
; tem
+= 1)
9713 ada_evaluate_subexp (NULL
, exp
, pos
, noside
);
9718 return value_from_longest (builtin_type (exp
->gdbarch
)->builtin_int
, 1);
9724 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9725 type name that encodes the 'small and 'delta information.
9726 Otherwise, return NULL. */
9729 fixed_type_info (struct type
*type
)
9731 const char *name
= ada_type_name (type
);
9732 enum type_code code
= (type
== NULL
) ? TYPE_CODE_UNDEF
: TYPE_CODE (type
);
9734 if ((code
== TYPE_CODE_INT
|| code
== TYPE_CODE_RANGE
) && name
!= NULL
)
9736 const char *tail
= strstr (name
, "___XF_");
9743 else if (code
== TYPE_CODE_RANGE
&& TYPE_TARGET_TYPE (type
) != type
)
9744 return fixed_type_info (TYPE_TARGET_TYPE (type
));
9749 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9752 ada_is_fixed_point_type (struct type
*type
)
9754 return fixed_type_info (type
) != NULL
;
9757 /* Return non-zero iff TYPE represents a System.Address type. */
9760 ada_is_system_address_type (struct type
*type
)
9762 return (TYPE_NAME (type
)
9763 && strcmp (TYPE_NAME (type
), "system__address") == 0);
9766 /* Assuming that TYPE is the representation of an Ada fixed-point
9767 type, return its delta, or -1 if the type is malformed and the
9768 delta cannot be determined. */
9771 ada_delta (struct type
*type
)
9773 const char *encoding
= fixed_type_info (type
);
9776 /* Strictly speaking, num and den are encoded as integer. However,
9777 they may not fit into a long, and they will have to be converted
9778 to DOUBLEST anyway. So scan them as DOUBLEST. */
9779 if (sscanf (encoding
, "_%" DOUBLEST_SCAN_FORMAT
"_%" DOUBLEST_SCAN_FORMAT
,
9786 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9787 factor ('SMALL value) associated with the type. */
9790 scaling_factor (struct type
*type
)
9792 const char *encoding
= fixed_type_info (type
);
9793 DOUBLEST num0
, den0
, num1
, den1
;
9796 /* Strictly speaking, num's and den's are encoded as integer. However,
9797 they may not fit into a long, and they will have to be converted
9798 to DOUBLEST anyway. So scan them as DOUBLEST. */
9799 n
= sscanf (encoding
,
9800 "_%" DOUBLEST_SCAN_FORMAT
"_%" DOUBLEST_SCAN_FORMAT
9801 "_%" DOUBLEST_SCAN_FORMAT
"_%" DOUBLEST_SCAN_FORMAT
,
9802 &num0
, &den0
, &num1
, &den1
);
9813 /* Assuming that X is the representation of a value of fixed-point
9814 type TYPE, return its floating-point equivalent. */
9817 ada_fixed_to_float (struct type
*type
, LONGEST x
)
9819 return (DOUBLEST
) x
*scaling_factor (type
);
9822 /* The representation of a fixed-point value of type TYPE
9823 corresponding to the value X. */
9826 ada_float_to_fixed (struct type
*type
, DOUBLEST x
)
9828 return (LONGEST
) (x
/ scaling_factor (type
) + 0.5);
9835 /* Scan STR beginning at position K for a discriminant name, and
9836 return the value of that discriminant field of DVAL in *PX. If
9837 PNEW_K is not null, put the position of the character beyond the
9838 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9839 not alter *PX and *PNEW_K if unsuccessful. */
9842 scan_discrim_bound (char *str
, int k
, struct value
*dval
, LONGEST
* px
,
9845 static char *bound_buffer
= NULL
;
9846 static size_t bound_buffer_len
= 0;
9849 struct value
*bound_val
;
9851 if (dval
== NULL
|| str
== NULL
|| str
[k
] == '\0')
9854 pend
= strstr (str
+ k
, "__");
9858 k
+= strlen (bound
);
9862 GROW_VECT (bound_buffer
, bound_buffer_len
, pend
- (str
+ k
) + 1);
9863 bound
= bound_buffer
;
9864 strncpy (bound_buffer
, str
+ k
, pend
- (str
+ k
));
9865 bound
[pend
- (str
+ k
)] = '\0';
9869 bound_val
= ada_search_struct_field (bound
, dval
, 0, value_type (dval
));
9870 if (bound_val
== NULL
)
9873 *px
= value_as_long (bound_val
);
9879 /* Value of variable named NAME in the current environment. If
9880 no such variable found, then if ERR_MSG is null, returns 0, and
9881 otherwise causes an error with message ERR_MSG. */
9883 static struct value
*
9884 get_var_value (char *name
, char *err_msg
)
9886 struct ada_symbol_info
*syms
;
9889 nsyms
= ada_lookup_symbol_list (name
, get_selected_block (0), VAR_DOMAIN
,
9894 if (err_msg
== NULL
)
9897 error (("%s"), err_msg
);
9900 return value_of_variable (syms
[0].sym
, syms
[0].block
);
9903 /* Value of integer variable named NAME in the current environment. If
9904 no such variable found, returns 0, and sets *FLAG to 0. If
9905 successful, sets *FLAG to 1. */
9908 get_int_var_value (char *name
, int *flag
)
9910 struct value
*var_val
= get_var_value (name
, 0);
9922 return value_as_long (var_val
);
9927 /* Return a range type whose base type is that of the range type named
9928 NAME in the current environment, and whose bounds are calculated
9929 from NAME according to the GNAT range encoding conventions.
9930 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9931 corresponding range type from debug information; fall back to using it
9932 if symbol lookup fails. If a new type must be created, allocate it
9933 like ORIG_TYPE was. The bounds information, in general, is encoded
9934 in NAME, the base type given in the named range type. */
9936 static struct type
*
9937 to_fixed_range_type (struct type
*raw_type
, struct value
*dval
)
9940 struct type
*base_type
;
9943 gdb_assert (raw_type
!= NULL
);
9944 gdb_assert (TYPE_NAME (raw_type
) != NULL
);
9946 if (TYPE_CODE (raw_type
) == TYPE_CODE_RANGE
)
9947 base_type
= TYPE_TARGET_TYPE (raw_type
);
9949 base_type
= raw_type
;
9951 name
= TYPE_NAME (raw_type
);
9952 subtype_info
= strstr (name
, "___XD");
9953 if (subtype_info
== NULL
)
9955 LONGEST L
= ada_discrete_type_low_bound (raw_type
);
9956 LONGEST U
= ada_discrete_type_high_bound (raw_type
);
9958 if (L
< INT_MIN
|| U
> INT_MAX
)
9961 return create_range_type (alloc_type_copy (raw_type
), raw_type
,
9962 ada_discrete_type_low_bound (raw_type
),
9963 ada_discrete_type_high_bound (raw_type
));
9967 static char *name_buf
= NULL
;
9968 static size_t name_len
= 0;
9969 int prefix_len
= subtype_info
- name
;
9975 GROW_VECT (name_buf
, name_len
, prefix_len
+ 5);
9976 strncpy (name_buf
, name
, prefix_len
);
9977 name_buf
[prefix_len
] = '\0';
9980 bounds_str
= strchr (subtype_info
, '_');
9983 if (*subtype_info
== 'L')
9985 if (!ada_scan_number (bounds_str
, n
, &L
, &n
)
9986 && !scan_discrim_bound (bounds_str
, n
, dval
, &L
, &n
))
9988 if (bounds_str
[n
] == '_')
9990 else if (bounds_str
[n
] == '.') /* FIXME? SGI Workshop kludge. */
9998 strcpy (name_buf
+ prefix_len
, "___L");
9999 L
= get_int_var_value (name_buf
, &ok
);
10002 lim_warning (_("Unknown lower bound, using 1."));
10007 if (*subtype_info
== 'U')
10009 if (!ada_scan_number (bounds_str
, n
, &U
, &n
)
10010 && !scan_discrim_bound (bounds_str
, n
, dval
, &U
, &n
))
10017 strcpy (name_buf
+ prefix_len
, "___U");
10018 U
= get_int_var_value (name_buf
, &ok
);
10021 lim_warning (_("Unknown upper bound, using %ld."), (long) L
);
10026 type
= create_range_type (alloc_type_copy (raw_type
), base_type
, L
, U
);
10027 TYPE_NAME (type
) = name
;
10032 /* True iff NAME is the name of a range type. */
10035 ada_is_range_type_name (const char *name
)
10037 return (name
!= NULL
&& strstr (name
, "___XD"));
10041 /* Modular types */
10043 /* True iff TYPE is an Ada modular type. */
10046 ada_is_modular_type (struct type
*type
)
10048 struct type
*subranged_type
= base_type (type
);
10050 return (subranged_type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_RANGE
10051 && TYPE_CODE (subranged_type
) == TYPE_CODE_INT
10052 && TYPE_UNSIGNED (subranged_type
));
10055 /* Try to determine the lower and upper bounds of the given modular type
10056 using the type name only. Return non-zero and set L and U as the lower
10057 and upper bounds (respectively) if successful. */
10060 ada_modulus_from_name (struct type
*type
, ULONGEST
*modulus
)
10062 char *name
= ada_type_name (type
);
10070 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10071 we are looking for static bounds, which means an __XDLU suffix.
10072 Moreover, we know that the lower bound of modular types is always
10073 zero, so the actual suffix should start with "__XDLU_0__", and
10074 then be followed by the upper bound value. */
10075 suffix
= strstr (name
, "__XDLU_0__");
10076 if (suffix
== NULL
)
10079 if (!ada_scan_number (suffix
, k
, &U
, NULL
))
10082 *modulus
= (ULONGEST
) U
+ 1;
10086 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10089 ada_modulus (struct type
*type
)
10091 return (ULONGEST
) TYPE_HIGH_BOUND (type
) + 1;
10095 /* Ada exception catchpoint support:
10096 ---------------------------------
10098 We support 3 kinds of exception catchpoints:
10099 . catchpoints on Ada exceptions
10100 . catchpoints on unhandled Ada exceptions
10101 . catchpoints on failed assertions
10103 Exceptions raised during failed assertions, or unhandled exceptions
10104 could perfectly be caught with the general catchpoint on Ada exceptions.
10105 However, we can easily differentiate these two special cases, and having
10106 the option to distinguish these two cases from the rest can be useful
10107 to zero-in on certain situations.
10109 Exception catchpoints are a specialized form of breakpoint,
10110 since they rely on inserting breakpoints inside known routines
10111 of the GNAT runtime. The implementation therefore uses a standard
10112 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10115 Support in the runtime for exception catchpoints have been changed
10116 a few times already, and these changes affect the implementation
10117 of these catchpoints. In order to be able to support several
10118 variants of the runtime, we use a sniffer that will determine
10119 the runtime variant used by the program being debugged.
10121 At this time, we do not support the use of conditions on Ada exception
10122 catchpoints. The COND and COND_STRING fields are therefore set
10123 to NULL (most of the time, see below).
10125 Conditions where EXP_STRING, COND, and COND_STRING are used:
10127 When a user specifies the name of a specific exception in the case
10128 of catchpoints on Ada exceptions, we store the name of that exception
10129 in the EXP_STRING. We then translate this request into an actual
10130 condition stored in COND_STRING, and then parse it into an expression
10133 /* The different types of catchpoints that we introduced for catching
10136 enum exception_catchpoint_kind
10138 ex_catch_exception
,
10139 ex_catch_exception_unhandled
,
10143 /* Ada's standard exceptions. */
10145 static char *standard_exc
[] = {
10146 "constraint_error",
10152 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype
) (void);
10154 /* A structure that describes how to support exception catchpoints
10155 for a given executable. */
10157 struct exception_support_info
10159 /* The name of the symbol to break on in order to insert
10160 a catchpoint on exceptions. */
10161 const char *catch_exception_sym
;
10163 /* The name of the symbol to break on in order to insert
10164 a catchpoint on unhandled exceptions. */
10165 const char *catch_exception_unhandled_sym
;
10167 /* The name of the symbol to break on in order to insert
10168 a catchpoint on failed assertions. */
10169 const char *catch_assert_sym
;
10171 /* Assuming that the inferior just triggered an unhandled exception
10172 catchpoint, this function is responsible for returning the address
10173 in inferior memory where the name of that exception is stored.
10174 Return zero if the address could not be computed. */
10175 ada_unhandled_exception_name_addr_ftype
*unhandled_exception_name_addr
;
10178 static CORE_ADDR
ada_unhandled_exception_name_addr (void);
10179 static CORE_ADDR
ada_unhandled_exception_name_addr_from_raise (void);
10181 /* The following exception support info structure describes how to
10182 implement exception catchpoints with the latest version of the
10183 Ada runtime (as of 2007-03-06). */
10185 static const struct exception_support_info default_exception_support_info
=
10187 "__gnat_debug_raise_exception", /* catch_exception_sym */
10188 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10189 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10190 ada_unhandled_exception_name_addr
10193 /* The following exception support info structure describes how to
10194 implement exception catchpoints with a slightly older version
10195 of the Ada runtime. */
10197 static const struct exception_support_info exception_support_info_fallback
=
10199 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10200 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10201 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10202 ada_unhandled_exception_name_addr_from_raise
10205 /* For each executable, we sniff which exception info structure to use
10206 and cache it in the following global variable. */
10208 static const struct exception_support_info
*exception_info
= NULL
;
10210 /* Inspect the Ada runtime and determine which exception info structure
10211 should be used to provide support for exception catchpoints.
10213 This function will always set exception_info, or raise an error. */
10216 ada_exception_support_info_sniffer (void)
10218 struct symbol
*sym
;
10220 /* If the exception info is already known, then no need to recompute it. */
10221 if (exception_info
!= NULL
)
10224 /* Check the latest (default) exception support info. */
10225 sym
= standard_lookup (default_exception_support_info
.catch_exception_sym
,
10229 exception_info
= &default_exception_support_info
;
10233 /* Try our fallback exception suport info. */
10234 sym
= standard_lookup (exception_support_info_fallback
.catch_exception_sym
,
10238 exception_info
= &exception_support_info_fallback
;
10242 /* Sometimes, it is normal for us to not be able to find the routine
10243 we are looking for. This happens when the program is linked with
10244 the shared version of the GNAT runtime, and the program has not been
10245 started yet. Inform the user of these two possible causes if
10248 if (ada_update_initial_language (language_unknown
) != language_ada
)
10249 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10251 /* If the symbol does not exist, then check that the program is
10252 already started, to make sure that shared libraries have been
10253 loaded. If it is not started, this may mean that the symbol is
10254 in a shared library. */
10256 if (ptid_get_pid (inferior_ptid
) == 0)
10257 error (_("Unable to insert catchpoint. Try to start the program first."));
10259 /* At this point, we know that we are debugging an Ada program and
10260 that the inferior has been started, but we still are not able to
10261 find the run-time symbols. That can mean that we are in
10262 configurable run time mode, or that a-except as been optimized
10263 out by the linker... In any case, at this point it is not worth
10264 supporting this feature. */
10266 error (_("Cannot insert catchpoints in this configuration."));
10269 /* An observer of "executable_changed" events.
10270 Its role is to clear certain cached values that need to be recomputed
10271 each time a new executable is loaded by GDB. */
10274 ada_executable_changed_observer (void)
10276 /* If the executable changed, then it is possible that the Ada runtime
10277 is different. So we need to invalidate the exception support info
10279 exception_info
= NULL
;
10282 /* True iff FRAME is very likely to be that of a function that is
10283 part of the runtime system. This is all very heuristic, but is
10284 intended to be used as advice as to what frames are uninteresting
10288 is_known_support_routine (struct frame_info
*frame
)
10290 struct symtab_and_line sal
;
10292 enum language func_lang
;
10295 /* If this code does not have any debugging information (no symtab),
10296 This cannot be any user code. */
10298 find_frame_sal (frame
, &sal
);
10299 if (sal
.symtab
== NULL
)
10302 /* If there is a symtab, but the associated source file cannot be
10303 located, then assume this is not user code: Selecting a frame
10304 for which we cannot display the code would not be very helpful
10305 for the user. This should also take care of case such as VxWorks
10306 where the kernel has some debugging info provided for a few units. */
10308 if (symtab_to_fullname (sal
.symtab
) == NULL
)
10311 /* Check the unit filename againt the Ada runtime file naming.
10312 We also check the name of the objfile against the name of some
10313 known system libraries that sometimes come with debugging info
10316 for (i
= 0; known_runtime_file_name_patterns
[i
] != NULL
; i
+= 1)
10318 re_comp (known_runtime_file_name_patterns
[i
]);
10319 if (re_exec (sal
.symtab
->filename
))
10321 if (sal
.symtab
->objfile
!= NULL
10322 && re_exec (sal
.symtab
->objfile
->name
))
10326 /* Check whether the function is a GNAT-generated entity. */
10328 find_frame_funname (frame
, &func_name
, &func_lang
);
10329 if (func_name
== NULL
)
10332 for (i
= 0; known_auxiliary_function_name_patterns
[i
] != NULL
; i
+= 1)
10334 re_comp (known_auxiliary_function_name_patterns
[i
]);
10335 if (re_exec (func_name
))
10342 /* Find the first frame that contains debugging information and that is not
10343 part of the Ada run-time, starting from FI and moving upward. */
10346 ada_find_printable_frame (struct frame_info
*fi
)
10348 for (; fi
!= NULL
; fi
= get_prev_frame (fi
))
10350 if (!is_known_support_routine (fi
))
10359 /* Assuming that the inferior just triggered an unhandled exception
10360 catchpoint, return the address in inferior memory where the name
10361 of the exception is stored.
10363 Return zero if the address could not be computed. */
10366 ada_unhandled_exception_name_addr (void)
10368 return parse_and_eval_address ("e.full_name");
10371 /* Same as ada_unhandled_exception_name_addr, except that this function
10372 should be used when the inferior uses an older version of the runtime,
10373 where the exception name needs to be extracted from a specific frame
10374 several frames up in the callstack. */
10377 ada_unhandled_exception_name_addr_from_raise (void)
10380 struct frame_info
*fi
;
10382 /* To determine the name of this exception, we need to select
10383 the frame corresponding to RAISE_SYM_NAME. This frame is
10384 at least 3 levels up, so we simply skip the first 3 frames
10385 without checking the name of their associated function. */
10386 fi
= get_current_frame ();
10387 for (frame_level
= 0; frame_level
< 3; frame_level
+= 1)
10389 fi
= get_prev_frame (fi
);
10394 enum language func_lang
;
10396 find_frame_funname (fi
, &func_name
, &func_lang
);
10397 if (func_name
!= NULL
10398 && strcmp (func_name
, exception_info
->catch_exception_sym
) == 0)
10399 break; /* We found the frame we were looking for... */
10400 fi
= get_prev_frame (fi
);
10407 return parse_and_eval_address ("id.full_name");
10410 /* Assuming the inferior just triggered an Ada exception catchpoint
10411 (of any type), return the address in inferior memory where the name
10412 of the exception is stored, if applicable.
10414 Return zero if the address could not be computed, or if not relevant. */
10417 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex
,
10418 struct breakpoint
*b
)
10422 case ex_catch_exception
:
10423 return (parse_and_eval_address ("e.full_name"));
10426 case ex_catch_exception_unhandled
:
10427 return exception_info
->unhandled_exception_name_addr ();
10430 case ex_catch_assert
:
10431 return 0; /* Exception name is not relevant in this case. */
10435 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
10439 return 0; /* Should never be reached. */
10442 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10443 any error that ada_exception_name_addr_1 might cause to be thrown.
10444 When an error is intercepted, a warning with the error message is printed,
10445 and zero is returned. */
10448 ada_exception_name_addr (enum exception_catchpoint_kind ex
,
10449 struct breakpoint
*b
)
10451 struct gdb_exception e
;
10452 CORE_ADDR result
= 0;
10454 TRY_CATCH (e
, RETURN_MASK_ERROR
)
10456 result
= ada_exception_name_addr_1 (ex
, b
);
10461 warning (_("failed to get exception name: %s"), e
.message
);
10468 /* Implement the PRINT_IT method in the breakpoint_ops structure
10469 for all exception catchpoint kinds. */
10471 static enum print_stop_action
10472 print_it_exception (enum exception_catchpoint_kind ex
, struct breakpoint
*b
)
10474 const CORE_ADDR addr
= ada_exception_name_addr (ex
, b
);
10475 char exception_name
[256];
10479 read_memory (addr
, exception_name
, sizeof (exception_name
) - 1);
10480 exception_name
[sizeof (exception_name
) - 1] = '\0';
10483 ada_find_printable_frame (get_current_frame ());
10485 annotate_catchpoint (b
->number
);
10488 case ex_catch_exception
:
10490 printf_filtered (_("\nCatchpoint %d, %s at "),
10491 b
->number
, exception_name
);
10493 printf_filtered (_("\nCatchpoint %d, exception at "), b
->number
);
10495 case ex_catch_exception_unhandled
:
10497 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10498 b
->number
, exception_name
);
10500 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10503 case ex_catch_assert
:
10504 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10509 return PRINT_SRC_AND_LOC
;
10512 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10513 for all exception catchpoint kinds. */
10516 print_one_exception (enum exception_catchpoint_kind ex
,
10517 struct breakpoint
*b
, struct bp_location
**last_loc
)
10519 struct value_print_options opts
;
10521 get_user_print_options (&opts
);
10522 if (opts
.addressprint
)
10524 annotate_field (4);
10525 ui_out_field_core_addr (uiout
, "addr", b
->loc
->gdbarch
, b
->loc
->address
);
10528 annotate_field (5);
10529 *last_loc
= b
->loc
;
10532 case ex_catch_exception
:
10533 if (b
->exp_string
!= NULL
)
10535 char *msg
= xstrprintf (_("`%s' Ada exception"), b
->exp_string
);
10537 ui_out_field_string (uiout
, "what", msg
);
10541 ui_out_field_string (uiout
, "what", "all Ada exceptions");
10545 case ex_catch_exception_unhandled
:
10546 ui_out_field_string (uiout
, "what", "unhandled Ada exceptions");
10549 case ex_catch_assert
:
10550 ui_out_field_string (uiout
, "what", "failed Ada assertions");
10554 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
10559 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10560 for all exception catchpoint kinds. */
10563 print_mention_exception (enum exception_catchpoint_kind ex
,
10564 struct breakpoint
*b
)
10568 case ex_catch_exception
:
10569 if (b
->exp_string
!= NULL
)
10570 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10571 b
->number
, b
->exp_string
);
10573 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b
->number
);
10577 case ex_catch_exception_unhandled
:
10578 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10582 case ex_catch_assert
:
10583 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b
->number
);
10587 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
10592 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10593 for all exception catchpoint kinds. */
10596 print_recreate_exception (enum exception_catchpoint_kind ex
,
10597 struct breakpoint
*b
, struct ui_file
*fp
)
10601 case ex_catch_exception
:
10602 fprintf_filtered (fp
, "catch exception");
10603 if (b
->exp_string
!= NULL
)
10604 fprintf_filtered (fp
, " %s", b
->exp_string
);
10607 case ex_catch_exception_unhandled
:
10608 fprintf_filtered (fp
, "catch exception unhandled");
10611 case ex_catch_assert
:
10612 fprintf_filtered (fp
, "catch assert");
10616 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
10620 /* Virtual table for "catch exception" breakpoints. */
10622 static enum print_stop_action
10623 print_it_catch_exception (struct breakpoint
*b
)
10625 return print_it_exception (ex_catch_exception
, b
);
10629 print_one_catch_exception (struct breakpoint
*b
, struct bp_location
**last_loc
)
10631 print_one_exception (ex_catch_exception
, b
, last_loc
);
10635 print_mention_catch_exception (struct breakpoint
*b
)
10637 print_mention_exception (ex_catch_exception
, b
);
10641 print_recreate_catch_exception (struct breakpoint
*b
, struct ui_file
*fp
)
10643 print_recreate_exception (ex_catch_exception
, b
, fp
);
10646 static struct breakpoint_ops catch_exception_breakpoint_ops
=
10650 NULL
, /* breakpoint_hit */
10651 print_it_catch_exception
,
10652 print_one_catch_exception
,
10653 print_mention_catch_exception
,
10654 print_recreate_catch_exception
10657 /* Virtual table for "catch exception unhandled" breakpoints. */
10659 static enum print_stop_action
10660 print_it_catch_exception_unhandled (struct breakpoint
*b
)
10662 return print_it_exception (ex_catch_exception_unhandled
, b
);
10666 print_one_catch_exception_unhandled (struct breakpoint
*b
,
10667 struct bp_location
**last_loc
)
10669 print_one_exception (ex_catch_exception_unhandled
, b
, last_loc
);
10673 print_mention_catch_exception_unhandled (struct breakpoint
*b
)
10675 print_mention_exception (ex_catch_exception_unhandled
, b
);
10679 print_recreate_catch_exception_unhandled (struct breakpoint
*b
,
10680 struct ui_file
*fp
)
10682 print_recreate_exception (ex_catch_exception_unhandled
, b
, fp
);
10685 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops
= {
10688 NULL
, /* breakpoint_hit */
10689 print_it_catch_exception_unhandled
,
10690 print_one_catch_exception_unhandled
,
10691 print_mention_catch_exception_unhandled
,
10692 print_recreate_catch_exception_unhandled
10695 /* Virtual table for "catch assert" breakpoints. */
10697 static enum print_stop_action
10698 print_it_catch_assert (struct breakpoint
*b
)
10700 return print_it_exception (ex_catch_assert
, b
);
10704 print_one_catch_assert (struct breakpoint
*b
, struct bp_location
**last_loc
)
10706 print_one_exception (ex_catch_assert
, b
, last_loc
);
10710 print_mention_catch_assert (struct breakpoint
*b
)
10712 print_mention_exception (ex_catch_assert
, b
);
10716 print_recreate_catch_assert (struct breakpoint
*b
, struct ui_file
*fp
)
10718 print_recreate_exception (ex_catch_assert
, b
, fp
);
10721 static struct breakpoint_ops catch_assert_breakpoint_ops
= {
10724 NULL
, /* breakpoint_hit */
10725 print_it_catch_assert
,
10726 print_one_catch_assert
,
10727 print_mention_catch_assert
,
10728 print_recreate_catch_assert
10731 /* Return non-zero if B is an Ada exception catchpoint. */
10734 ada_exception_catchpoint_p (struct breakpoint
*b
)
10736 return (b
->ops
== &catch_exception_breakpoint_ops
10737 || b
->ops
== &catch_exception_unhandled_breakpoint_ops
10738 || b
->ops
== &catch_assert_breakpoint_ops
);
10741 /* Return a newly allocated copy of the first space-separated token
10742 in ARGSP, and then adjust ARGSP to point immediately after that
10745 Return NULL if ARGPS does not contain any more tokens. */
10748 ada_get_next_arg (char **argsp
)
10750 char *args
= *argsp
;
10754 /* Skip any leading white space. */
10756 while (isspace (*args
))
10759 if (args
[0] == '\0')
10760 return NULL
; /* No more arguments. */
10762 /* Find the end of the current argument. */
10765 while (*end
!= '\0' && !isspace (*end
))
10768 /* Adjust ARGSP to point to the start of the next argument. */
10772 /* Make a copy of the current argument and return it. */
10774 result
= xmalloc (end
- args
+ 1);
10775 strncpy (result
, args
, end
- args
);
10776 result
[end
- args
] = '\0';
10781 /* Split the arguments specified in a "catch exception" command.
10782 Set EX to the appropriate catchpoint type.
10783 Set EXP_STRING to the name of the specific exception if
10784 specified by the user. */
10787 catch_ada_exception_command_split (char *args
,
10788 enum exception_catchpoint_kind
*ex
,
10791 struct cleanup
*old_chain
= make_cleanup (null_cleanup
, NULL
);
10792 char *exception_name
;
10794 exception_name
= ada_get_next_arg (&args
);
10795 make_cleanup (xfree
, exception_name
);
10797 /* Check that we do not have any more arguments. Anything else
10800 while (isspace (*args
))
10803 if (args
[0] != '\0')
10804 error (_("Junk at end of expression"));
10806 discard_cleanups (old_chain
);
10808 if (exception_name
== NULL
)
10810 /* Catch all exceptions. */
10811 *ex
= ex_catch_exception
;
10812 *exp_string
= NULL
;
10814 else if (strcmp (exception_name
, "unhandled") == 0)
10816 /* Catch unhandled exceptions. */
10817 *ex
= ex_catch_exception_unhandled
;
10818 *exp_string
= NULL
;
10822 /* Catch a specific exception. */
10823 *ex
= ex_catch_exception
;
10824 *exp_string
= exception_name
;
10828 /* Return the name of the symbol on which we should break in order to
10829 implement a catchpoint of the EX kind. */
10831 static const char *
10832 ada_exception_sym_name (enum exception_catchpoint_kind ex
)
10834 gdb_assert (exception_info
!= NULL
);
10838 case ex_catch_exception
:
10839 return (exception_info
->catch_exception_sym
);
10841 case ex_catch_exception_unhandled
:
10842 return (exception_info
->catch_exception_unhandled_sym
);
10844 case ex_catch_assert
:
10845 return (exception_info
->catch_assert_sym
);
10848 internal_error (__FILE__
, __LINE__
,
10849 _("unexpected catchpoint kind (%d)"), ex
);
10853 /* Return the breakpoint ops "virtual table" used for catchpoints
10856 static struct breakpoint_ops
*
10857 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex
)
10861 case ex_catch_exception
:
10862 return (&catch_exception_breakpoint_ops
);
10864 case ex_catch_exception_unhandled
:
10865 return (&catch_exception_unhandled_breakpoint_ops
);
10867 case ex_catch_assert
:
10868 return (&catch_assert_breakpoint_ops
);
10871 internal_error (__FILE__
, __LINE__
,
10872 _("unexpected catchpoint kind (%d)"), ex
);
10876 /* Return the condition that will be used to match the current exception
10877 being raised with the exception that the user wants to catch. This
10878 assumes that this condition is used when the inferior just triggered
10879 an exception catchpoint.
10881 The string returned is a newly allocated string that needs to be
10882 deallocated later. */
10885 ada_exception_catchpoint_cond_string (const char *exp_string
)
10889 /* The standard exceptions are a special case. They are defined in
10890 runtime units that have been compiled without debugging info; if
10891 EXP_STRING is the not-fully-qualified name of a standard
10892 exception (e.g. "constraint_error") then, during the evaluation
10893 of the condition expression, the symbol lookup on this name would
10894 *not* return this standard exception. The catchpoint condition
10895 may then be set only on user-defined exceptions which have the
10896 same not-fully-qualified name (e.g. my_package.constraint_error).
10898 To avoid this unexcepted behavior, these standard exceptions are
10899 systematically prefixed by "standard". This means that "catch
10900 exception constraint_error" is rewritten into "catch exception
10901 standard.constraint_error".
10903 If an exception named contraint_error is defined in another package of
10904 the inferior program, then the only way to specify this exception as a
10905 breakpoint condition is to use its fully-qualified named:
10906 e.g. my_package.constraint_error. */
10908 for (i
= 0; i
< sizeof (standard_exc
) / sizeof (char *); i
++)
10910 if (strcmp (standard_exc
[i
], exp_string
) == 0)
10912 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10916 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string
);
10919 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10921 static struct expression
*
10922 ada_parse_catchpoint_condition (char *cond_string
,
10923 struct symtab_and_line sal
)
10925 return (parse_exp_1 (&cond_string
, block_for_pc (sal
.pc
), 0));
10928 /* Return the symtab_and_line that should be used to insert an exception
10929 catchpoint of the TYPE kind.
10931 EX_STRING should contain the name of a specific exception
10932 that the catchpoint should catch, or NULL otherwise.
10934 The idea behind all the remaining parameters is that their names match
10935 the name of certain fields in the breakpoint structure that are used to
10936 handle exception catchpoints. This function returns the value to which
10937 these fields should be set, depending on the type of catchpoint we need
10940 If COND and COND_STRING are both non-NULL, any value they might
10941 hold will be free'ed, and then replaced by newly allocated ones.
10942 These parameters are left untouched otherwise. */
10944 static struct symtab_and_line
10945 ada_exception_sal (enum exception_catchpoint_kind ex
, char *exp_string
,
10946 char **addr_string
, char **cond_string
,
10947 struct expression
**cond
, struct breakpoint_ops
**ops
)
10949 const char *sym_name
;
10950 struct symbol
*sym
;
10951 struct symtab_and_line sal
;
10953 /* First, find out which exception support info to use. */
10954 ada_exception_support_info_sniffer ();
10956 /* Then lookup the function on which we will break in order to catch
10957 the Ada exceptions requested by the user. */
10959 sym_name
= ada_exception_sym_name (ex
);
10960 sym
= standard_lookup (sym_name
, NULL
, VAR_DOMAIN
);
10962 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10963 that should be compiled with debugging information. As a result, we
10964 expect to find that symbol in the symtabs. If we don't find it, then
10965 the target most likely does not support Ada exceptions, or we cannot
10966 insert exception breakpoints yet, because the GNAT runtime hasn't been
10969 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10970 in such a way that no debugging information is produced for the symbol
10971 we are looking for. In this case, we could search the minimal symbols
10972 as a fall-back mechanism. This would still be operating in degraded
10973 mode, however, as we would still be missing the debugging information
10974 that is needed in order to extract the name of the exception being
10975 raised (this name is printed in the catchpoint message, and is also
10976 used when trying to catch a specific exception). We do not handle
10977 this case for now. */
10980 error (_("Unable to break on '%s' in this configuration."), sym_name
);
10982 /* Make sure that the symbol we found corresponds to a function. */
10983 if (SYMBOL_CLASS (sym
) != LOC_BLOCK
)
10984 error (_("Symbol \"%s\" is not a function (class = %d)"),
10985 sym_name
, SYMBOL_CLASS (sym
));
10987 sal
= find_function_start_sal (sym
, 1);
10989 /* Set ADDR_STRING. */
10991 *addr_string
= xstrdup (sym_name
);
10993 /* Set the COND and COND_STRING (if not NULL). */
10995 if (cond_string
!= NULL
&& cond
!= NULL
)
10997 if (*cond_string
!= NULL
)
10999 xfree (*cond_string
);
11000 *cond_string
= NULL
;
11007 if (exp_string
!= NULL
)
11009 *cond_string
= ada_exception_catchpoint_cond_string (exp_string
);
11010 *cond
= ada_parse_catchpoint_condition (*cond_string
, sal
);
11015 *ops
= ada_exception_breakpoint_ops (ex
);
11020 /* Parse the arguments (ARGS) of the "catch exception" command.
11022 Set TYPE to the appropriate exception catchpoint type.
11023 If the user asked the catchpoint to catch only a specific
11024 exception, then save the exception name in ADDR_STRING.
11026 See ada_exception_sal for a description of all the remaining
11027 function arguments of this function. */
11029 struct symtab_and_line
11030 ada_decode_exception_location (char *args
, char **addr_string
,
11031 char **exp_string
, char **cond_string
,
11032 struct expression
**cond
,
11033 struct breakpoint_ops
**ops
)
11035 enum exception_catchpoint_kind ex
;
11037 catch_ada_exception_command_split (args
, &ex
, exp_string
);
11038 return ada_exception_sal (ex
, *exp_string
, addr_string
, cond_string
,
11042 struct symtab_and_line
11043 ada_decode_assert_location (char *args
, char **addr_string
,
11044 struct breakpoint_ops
**ops
)
11046 /* Check that no argument where provided at the end of the command. */
11050 while (isspace (*args
))
11053 error (_("Junk at end of arguments."));
11056 return ada_exception_sal (ex_catch_assert
, NULL
, addr_string
, NULL
, NULL
,
11061 /* Information about operators given special treatment in functions
11063 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11065 #define ADA_OPERATORS \
11066 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11067 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11068 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11069 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11070 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11071 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11072 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11073 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11074 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11075 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11076 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11077 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11078 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11079 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11080 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11081 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11082 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11083 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11084 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11087 ada_operator_length (const struct expression
*exp
, int pc
, int *oplenp
,
11090 switch (exp
->elts
[pc
- 1].opcode
)
11093 operator_length_standard (exp
, pc
, oplenp
, argsp
);
11096 #define OP_DEFN(op, len, args, binop) \
11097 case op: *oplenp = len; *argsp = args; break;
11103 *argsp
= longest_to_int (exp
->elts
[pc
- 2].longconst
);
11108 *argsp
= longest_to_int (exp
->elts
[pc
- 2].longconst
) + 1;
11113 /* Implementation of the exp_descriptor method operator_check. */
11116 ada_operator_check (struct expression
*exp
, int pos
,
11117 int (*objfile_func
) (struct objfile
*objfile
, void *data
),
11120 const union exp_element
*const elts
= exp
->elts
;
11121 struct type
*type
= NULL
;
11123 switch (elts
[pos
].opcode
)
11125 case UNOP_IN_RANGE
:
11127 type
= elts
[pos
+ 1].type
;
11131 return operator_check_standard (exp
, pos
, objfile_func
, data
);
11134 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11136 if (type
&& TYPE_OBJFILE (type
)
11137 && (*objfile_func
) (TYPE_OBJFILE (type
), data
))
11144 ada_op_name (enum exp_opcode opcode
)
11149 return op_name_standard (opcode
);
11151 #define OP_DEFN(op, len, args, binop) case op: return #op;
11156 return "OP_AGGREGATE";
11158 return "OP_CHOICES";
11164 /* As for operator_length, but assumes PC is pointing at the first
11165 element of the operator, and gives meaningful results only for the
11166 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
11169 ada_forward_operator_length (struct expression
*exp
, int pc
,
11170 int *oplenp
, int *argsp
)
11172 switch (exp
->elts
[pc
].opcode
)
11175 *oplenp
= *argsp
= 0;
11178 #define OP_DEFN(op, len, args, binop) \
11179 case op: *oplenp = len; *argsp = args; break;
11185 *argsp
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
11190 *argsp
= longest_to_int (exp
->elts
[pc
+ 1].longconst
) + 1;
11196 int len
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
11198 *oplenp
= 4 + BYTES_TO_EXP_ELEM (len
+ 1);
11206 ada_dump_subexp_body (struct expression
*exp
, struct ui_file
*stream
, int elt
)
11208 enum exp_opcode op
= exp
->elts
[elt
].opcode
;
11213 ada_forward_operator_length (exp
, elt
, &oplen
, &nargs
);
11217 /* Ada attributes ('Foo). */
11220 case OP_ATR_LENGTH
:
11224 case OP_ATR_MODULUS
:
11231 case UNOP_IN_RANGE
:
11233 /* XXX: gdb_sprint_host_address, type_sprint */
11234 fprintf_filtered (stream
, _("Type @"));
11235 gdb_print_host_address (exp
->elts
[pc
+ 1].type
, stream
);
11236 fprintf_filtered (stream
, " (");
11237 type_print (exp
->elts
[pc
+ 1].type
, NULL
, stream
, 0);
11238 fprintf_filtered (stream
, ")");
11240 case BINOP_IN_BOUNDS
:
11241 fprintf_filtered (stream
, " (%d)",
11242 longest_to_int (exp
->elts
[pc
+ 2].longconst
));
11244 case TERNOP_IN_RANGE
:
11249 case OP_DISCRETE_RANGE
:
11250 case OP_POSITIONAL
:
11257 char *name
= &exp
->elts
[elt
+ 2].string
;
11258 int len
= longest_to_int (exp
->elts
[elt
+ 1].longconst
);
11260 fprintf_filtered (stream
, "Text: `%.*s'", len
, name
);
11265 return dump_subexp_body_standard (exp
, stream
, elt
);
11269 for (i
= 0; i
< nargs
; i
+= 1)
11270 elt
= dump_subexp (exp
, stream
, elt
);
11275 /* The Ada extension of print_subexp (q.v.). */
11278 ada_print_subexp (struct expression
*exp
, int *pos
,
11279 struct ui_file
*stream
, enum precedence prec
)
11281 int oplen
, nargs
, i
;
11283 enum exp_opcode op
= exp
->elts
[pc
].opcode
;
11285 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
11292 print_subexp_standard (exp
, pos
, stream
, prec
);
11296 fputs_filtered (SYMBOL_NATURAL_NAME (exp
->elts
[pc
+ 2].symbol
), stream
);
11299 case BINOP_IN_BOUNDS
:
11300 /* XXX: sprint_subexp */
11301 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11302 fputs_filtered (" in ", stream
);
11303 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11304 fputs_filtered ("'range", stream
);
11305 if (exp
->elts
[pc
+ 1].longconst
> 1)
11306 fprintf_filtered (stream
, "(%ld)",
11307 (long) exp
->elts
[pc
+ 1].longconst
);
11310 case TERNOP_IN_RANGE
:
11311 if (prec
>= PREC_EQUAL
)
11312 fputs_filtered ("(", stream
);
11313 /* XXX: sprint_subexp */
11314 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11315 fputs_filtered (" in ", stream
);
11316 print_subexp (exp
, pos
, stream
, PREC_EQUAL
);
11317 fputs_filtered (" .. ", stream
);
11318 print_subexp (exp
, pos
, stream
, PREC_EQUAL
);
11319 if (prec
>= PREC_EQUAL
)
11320 fputs_filtered (")", stream
);
11325 case OP_ATR_LENGTH
:
11329 case OP_ATR_MODULUS
:
11334 if (exp
->elts
[*pos
].opcode
== OP_TYPE
)
11336 if (TYPE_CODE (exp
->elts
[*pos
+ 1].type
) != TYPE_CODE_VOID
)
11337 LA_PRINT_TYPE (exp
->elts
[*pos
+ 1].type
, "", stream
, 0, 0);
11341 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11342 fprintf_filtered (stream
, "'%s", ada_attribute_name (op
));
11347 for (tem
= 1; tem
< nargs
; tem
+= 1)
11349 fputs_filtered ((tem
== 1) ? " (" : ", ", stream
);
11350 print_subexp (exp
, pos
, stream
, PREC_ABOVE_COMMA
);
11352 fputs_filtered (")", stream
);
11357 type_print (exp
->elts
[pc
+ 1].type
, "", stream
, 0);
11358 fputs_filtered ("'(", stream
);
11359 print_subexp (exp
, pos
, stream
, PREC_PREFIX
);
11360 fputs_filtered (")", stream
);
11363 case UNOP_IN_RANGE
:
11364 /* XXX: sprint_subexp */
11365 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11366 fputs_filtered (" in ", stream
);
11367 LA_PRINT_TYPE (exp
->elts
[pc
+ 1].type
, "", stream
, 1, 0);
11370 case OP_DISCRETE_RANGE
:
11371 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11372 fputs_filtered ("..", stream
);
11373 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11377 fputs_filtered ("others => ", stream
);
11378 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11382 for (i
= 0; i
< nargs
-1; i
+= 1)
11385 fputs_filtered ("|", stream
);
11386 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11388 fputs_filtered (" => ", stream
);
11389 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11392 case OP_POSITIONAL
:
11393 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11397 fputs_filtered ("(", stream
);
11398 for (i
= 0; i
< nargs
; i
+= 1)
11401 fputs_filtered (", ", stream
);
11402 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
11404 fputs_filtered (")", stream
);
11409 /* Table mapping opcodes into strings for printing operators
11410 and precedences of the operators. */
11412 static const struct op_print ada_op_print_tab
[] = {
11413 {":=", BINOP_ASSIGN
, PREC_ASSIGN
, 1},
11414 {"or else", BINOP_LOGICAL_OR
, PREC_LOGICAL_OR
, 0},
11415 {"and then", BINOP_LOGICAL_AND
, PREC_LOGICAL_AND
, 0},
11416 {"or", BINOP_BITWISE_IOR
, PREC_BITWISE_IOR
, 0},
11417 {"xor", BINOP_BITWISE_XOR
, PREC_BITWISE_XOR
, 0},
11418 {"and", BINOP_BITWISE_AND
, PREC_BITWISE_AND
, 0},
11419 {"=", BINOP_EQUAL
, PREC_EQUAL
, 0},
11420 {"/=", BINOP_NOTEQUAL
, PREC_EQUAL
, 0},
11421 {"<=", BINOP_LEQ
, PREC_ORDER
, 0},
11422 {">=", BINOP_GEQ
, PREC_ORDER
, 0},
11423 {">", BINOP_GTR
, PREC_ORDER
, 0},
11424 {"<", BINOP_LESS
, PREC_ORDER
, 0},
11425 {">>", BINOP_RSH
, PREC_SHIFT
, 0},
11426 {"<<", BINOP_LSH
, PREC_SHIFT
, 0},
11427 {"+", BINOP_ADD
, PREC_ADD
, 0},
11428 {"-", BINOP_SUB
, PREC_ADD
, 0},
11429 {"&", BINOP_CONCAT
, PREC_ADD
, 0},
11430 {"*", BINOP_MUL
, PREC_MUL
, 0},
11431 {"/", BINOP_DIV
, PREC_MUL
, 0},
11432 {"rem", BINOP_REM
, PREC_MUL
, 0},
11433 {"mod", BINOP_MOD
, PREC_MUL
, 0},
11434 {"**", BINOP_EXP
, PREC_REPEAT
, 0},
11435 {"@", BINOP_REPEAT
, PREC_REPEAT
, 0},
11436 {"-", UNOP_NEG
, PREC_PREFIX
, 0},
11437 {"+", UNOP_PLUS
, PREC_PREFIX
, 0},
11438 {"not ", UNOP_LOGICAL_NOT
, PREC_PREFIX
, 0},
11439 {"not ", UNOP_COMPLEMENT
, PREC_PREFIX
, 0},
11440 {"abs ", UNOP_ABS
, PREC_PREFIX
, 0},
11441 {".all", UNOP_IND
, PREC_SUFFIX
, 1},
11442 {"'access", UNOP_ADDR
, PREC_SUFFIX
, 1},
11443 {"'size", OP_ATR_SIZE
, PREC_SUFFIX
, 1},
11447 enum ada_primitive_types
{
11448 ada_primitive_type_int
,
11449 ada_primitive_type_long
,
11450 ada_primitive_type_short
,
11451 ada_primitive_type_char
,
11452 ada_primitive_type_float
,
11453 ada_primitive_type_double
,
11454 ada_primitive_type_void
,
11455 ada_primitive_type_long_long
,
11456 ada_primitive_type_long_double
,
11457 ada_primitive_type_natural
,
11458 ada_primitive_type_positive
,
11459 ada_primitive_type_system_address
,
11460 nr_ada_primitive_types
11464 ada_language_arch_info (struct gdbarch
*gdbarch
,
11465 struct language_arch_info
*lai
)
11467 const struct builtin_type
*builtin
= builtin_type (gdbarch
);
11469 lai
->primitive_type_vector
11470 = GDBARCH_OBSTACK_CALLOC (gdbarch
, nr_ada_primitive_types
+ 1,
11473 lai
->primitive_type_vector
[ada_primitive_type_int
]
11474 = arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
11476 lai
->primitive_type_vector
[ada_primitive_type_long
]
11477 = arch_integer_type (gdbarch
, gdbarch_long_bit (gdbarch
),
11478 0, "long_integer");
11479 lai
->primitive_type_vector
[ada_primitive_type_short
]
11480 = arch_integer_type (gdbarch
, gdbarch_short_bit (gdbarch
),
11481 0, "short_integer");
11482 lai
->string_char_type
11483 = lai
->primitive_type_vector
[ada_primitive_type_char
]
11484 = arch_integer_type (gdbarch
, TARGET_CHAR_BIT
, 0, "character");
11485 lai
->primitive_type_vector
[ada_primitive_type_float
]
11486 = arch_float_type (gdbarch
, gdbarch_float_bit (gdbarch
),
11488 lai
->primitive_type_vector
[ada_primitive_type_double
]
11489 = arch_float_type (gdbarch
, gdbarch_double_bit (gdbarch
),
11490 "long_float", NULL
);
11491 lai
->primitive_type_vector
[ada_primitive_type_long_long
]
11492 = arch_integer_type (gdbarch
, gdbarch_long_long_bit (gdbarch
),
11493 0, "long_long_integer");
11494 lai
->primitive_type_vector
[ada_primitive_type_long_double
]
11495 = arch_float_type (gdbarch
, gdbarch_double_bit (gdbarch
),
11496 "long_long_float", NULL
);
11497 lai
->primitive_type_vector
[ada_primitive_type_natural
]
11498 = arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
11500 lai
->primitive_type_vector
[ada_primitive_type_positive
]
11501 = arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
11503 lai
->primitive_type_vector
[ada_primitive_type_void
]
11504 = builtin
->builtin_void
;
11506 lai
->primitive_type_vector
[ada_primitive_type_system_address
]
11507 = lookup_pointer_type (arch_type (gdbarch
, TYPE_CODE_VOID
, 1, "void"));
11508 TYPE_NAME (lai
->primitive_type_vector
[ada_primitive_type_system_address
])
11509 = "system__address";
11511 lai
->bool_type_symbol
= NULL
;
11512 lai
->bool_type_default
= builtin
->builtin_bool
;
11515 /* Language vector */
11517 /* Not really used, but needed in the ada_language_defn. */
11520 emit_char (int c
, struct type
*type
, struct ui_file
*stream
, int quoter
)
11522 ada_emit_char (c
, type
, stream
, quoter
, 1);
11528 warnings_issued
= 0;
11529 return ada_parse ();
11532 static const struct exp_descriptor ada_exp_descriptor
= {
11534 ada_operator_length
,
11535 ada_operator_check
,
11537 ada_dump_subexp_body
,
11538 ada_evaluate_subexp
11541 const struct language_defn ada_language_defn
= {
11542 "ada", /* Language name */
11546 case_sensitive_on
, /* Yes, Ada is case-insensitive, but
11547 that's not quite what this means. */
11549 macro_expansion_no
,
11550 &ada_exp_descriptor
,
11554 ada_printchar
, /* Print a character constant */
11555 ada_printstr
, /* Function to print string constant */
11556 emit_char
, /* Function to print single char (not used) */
11557 ada_print_type
, /* Print a type using appropriate syntax */
11558 ada_print_typedef
, /* Print a typedef using appropriate syntax */
11559 ada_val_print
, /* Print a value using appropriate syntax */
11560 ada_value_print
, /* Print a top-level value */
11561 NULL
, /* Language specific skip_trampoline */
11562 NULL
, /* name_of_this */
11563 ada_lookup_symbol_nonlocal
, /* Looking up non-local symbols. */
11564 basic_lookup_transparent_type
, /* lookup_transparent_type */
11565 ada_la_decode
, /* Language specific symbol demangler */
11566 NULL
, /* Language specific class_name_from_physname */
11567 ada_op_print_tab
, /* expression operators for printing */
11568 0, /* c-style arrays */
11569 1, /* String lower bound */
11570 ada_get_gdb_completer_word_break_characters
,
11571 ada_make_symbol_completion_list
,
11572 ada_language_arch_info
,
11573 ada_print_array_index
,
11574 default_pass_by_reference
,
11579 /* Provide a prototype to silence -Wmissing-prototypes. */
11580 extern initialize_file_ftype _initialize_ada_language
;
11582 /* Command-list for the "set/show ada" prefix command. */
11583 static struct cmd_list_element
*set_ada_list
;
11584 static struct cmd_list_element
*show_ada_list
;
11586 /* Implement the "set ada" prefix command. */
11589 set_ada_command (char *arg
, int from_tty
)
11591 printf_unfiltered (_(\
11592 "\"set ada\" must be followed by the name of a setting.\n"));
11593 help_list (set_ada_list
, "set ada ", -1, gdb_stdout
);
11596 /* Implement the "show ada" prefix command. */
11599 show_ada_command (char *args
, int from_tty
)
11601 cmd_show_list (show_ada_list
, from_tty
, "");
11605 _initialize_ada_language (void)
11607 add_language (&ada_language_defn
);
11609 add_prefix_cmd ("ada", no_class
, set_ada_command
,
11610 _("Prefix command for changing Ada-specfic settings"),
11611 &set_ada_list
, "set ada ", 0, &setlist
);
11613 add_prefix_cmd ("ada", no_class
, show_ada_command
,
11614 _("Generic command for showing Ada-specific settings."),
11615 &show_ada_list
, "show ada ", 0, &showlist
);
11617 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure
,
11618 &trust_pad_over_xvs
, _("\
11619 Enable or disable an optimization trusting PAD types over XVS types"), _("\
11620 Show whether an optimization trusting PAD types over XVS types is activated"),
11622 This is related to the encoding used by the GNAT compiler. The debugger\n\
11623 should normally trust the contents of PAD types, but certain older versions\n\
11624 of GNAT have a bug that sometimes causes the information in the PAD type\n\
11625 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11626 work around this bug. It is always safe to turn this option \"off\", but\n\
11627 this incurs a slight performance penalty, so it is recommended to NOT change\n\
11628 this option to \"off\" unless necessary."),
11629 NULL
, NULL
, &set_ada_list
, &show_ada_list
);
11631 varsize_limit
= 65536;
11633 obstack_init (&symbol_list_obstack
);
11635 decoded_names_store
= htab_create_alloc
11636 (256, htab_hash_string
, (int (*)(const void *, const void *)) streq
,
11637 NULL
, xcalloc
, xfree
);
11639 observer_attach_executable_changed (ada_executable_changed_observer
);
11641 /* Setup per-inferior data. */
11642 observer_attach_inferior_exit (ada_inferior_exit
);
11644 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup
);