*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60
61 #include "psymtab.h"
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71 static void modify_general_field (struct type *, char *, LONGEST, int, int);
72
73 static struct type *desc_base_type (struct type *);
74
75 static struct type *desc_bounds_type (struct type *);
76
77 static struct value *desc_bounds (struct value *);
78
79 static int fat_pntr_bounds_bitpos (struct type *);
80
81 static int fat_pntr_bounds_bitsize (struct type *);
82
83 static struct type *desc_data_target_type (struct type *);
84
85 static struct value *desc_data (struct value *);
86
87 static int fat_pntr_data_bitpos (struct type *);
88
89 static int fat_pntr_data_bitsize (struct type *);
90
91 static struct value *desc_one_bound (struct value *, int, int);
92
93 static int desc_bound_bitpos (struct type *, int, int);
94
95 static int desc_bound_bitsize (struct type *, int, int);
96
97 static struct type *desc_index_type (struct type *, int);
98
99 static int desc_arity (struct type *);
100
101 static int ada_type_match (struct type *, struct type *, int);
102
103 static int ada_args_match (struct symbol *, struct value **, int);
104
105 static struct value *ensure_lval (struct value *,
106 struct gdbarch *, CORE_ADDR *);
107
108 static struct value *make_array_descriptor (struct type *, struct value *,
109 struct gdbarch *, CORE_ADDR *);
110
111 static void ada_add_block_symbols (struct obstack *,
112 struct block *, const char *,
113 domain_enum, struct objfile *, int);
114
115 static int is_nonfunction (struct ada_symbol_info *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct ada_symbol_info *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (struct type *, struct value *);
169
170 static struct type *to_static_fixed_type (struct type *);
171 static struct type *static_unwrap_type (struct type *type);
172
173 static struct value *unwrap_value (struct value *);
174
175 static struct type *constrained_packed_array_type (struct type *, long *);
176
177 static struct type *decode_constrained_packed_array_type (struct type *);
178
179 static long decode_packed_array_bitsize (struct type *);
180
181 static struct value *decode_constrained_packed_array (struct value *);
182
183 static int ada_is_packed_array_type (struct type *);
184
185 static int ada_is_unconstrained_packed_array_type (struct type *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int wild_match (const char *, int, const char *);
204
205 static struct value *ada_coerce_ref (struct value *);
206
207 static LONGEST pos_atr (struct value *);
208
209 static struct value *value_pos_atr (struct type *, struct value *);
210
211 static struct value *value_val_atr (struct type *, struct value *);
212
213 static struct symbol *standard_lookup (const char *, const struct block *,
214 domain_enum);
215
216 static struct value *ada_search_struct_field (char *, struct value *, int,
217 struct type *);
218
219 static struct value *ada_value_primitive_field (struct value *, int, int,
220 struct type *);
221
222 static int find_struct_field (char *, struct type *, int,
223 struct type **, int *, int *, int *, int *);
224
225 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
226 struct value *);
227
228 static int ada_resolve_function (struct ada_symbol_info *, int,
229 struct value **, int, const char *,
230 struct type *);
231
232 static struct value *ada_coerce_to_simple_array (struct value *);
233
234 static int ada_is_direct_array_type (struct type *);
235
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
238
239 static void check_size (const struct type *);
240
241 static struct value *ada_index_struct_field (int, struct value *, int,
242 struct type *);
243
244 static struct value *assign_aggregate (struct value *, struct value *,
245 struct expression *, int *, enum noside);
246
247 static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252 static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258 static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269 static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
271 \f
272
273
274 /* Maximum-sized dynamic type. */
275 static unsigned int varsize_limit;
276
277 /* FIXME: brobecker/2003-09-17: No longer a const because it is
278 returned by a function that does not return a const char *. */
279 static char *ada_completer_word_break_characters =
280 #ifdef VMS
281 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
282 #else
283 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
284 #endif
285
286 /* The name of the symbol to use to get the name of the main subprogram. */
287 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
288 = "__gnat_ada_main_program_name";
289
290 /* Limit on the number of warnings to raise per expression evaluation. */
291 static int warning_limit = 2;
292
293 /* Number of warning messages issued; reset to 0 by cleanups after
294 expression evaluation. */
295 static int warnings_issued = 0;
296
297 static const char *known_runtime_file_name_patterns[] = {
298 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
299 };
300
301 static const char *known_auxiliary_function_name_patterns[] = {
302 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
303 };
304
305 /* Space for allocating results of ada_lookup_symbol_list. */
306 static struct obstack symbol_list_obstack;
307
308 /* Inferior-specific data. */
309
310 /* Per-inferior data for this module. */
311
312 struct ada_inferior_data
313 {
314 /* The ada__tags__type_specific_data type, which is used when decoding
315 tagged types. With older versions of GNAT, this type was directly
316 accessible through a component ("tsd") in the object tag. But this
317 is no longer the case, so we cache it for each inferior. */
318 struct type *tsd_type;
319 };
320
321 /* Our key to this module's inferior data. */
322 static const struct inferior_data *ada_inferior_data;
323
324 /* A cleanup routine for our inferior data. */
325 static void
326 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
327 {
328 struct ada_inferior_data *data;
329
330 data = inferior_data (inf, ada_inferior_data);
331 if (data != NULL)
332 xfree (data);
333 }
334
335 /* Return our inferior data for the given inferior (INF).
336
337 This function always returns a valid pointer to an allocated
338 ada_inferior_data structure. If INF's inferior data has not
339 been previously set, this functions creates a new one with all
340 fields set to zero, sets INF's inferior to it, and then returns
341 a pointer to that newly allocated ada_inferior_data. */
342
343 static struct ada_inferior_data *
344 get_ada_inferior_data (struct inferior *inf)
345 {
346 struct ada_inferior_data *data;
347
348 data = inferior_data (inf, ada_inferior_data);
349 if (data == NULL)
350 {
351 data = XZALLOC (struct ada_inferior_data);
352 set_inferior_data (inf, ada_inferior_data, data);
353 }
354
355 return data;
356 }
357
358 /* Perform all necessary cleanups regarding our module's inferior data
359 that is required after the inferior INF just exited. */
360
361 static void
362 ada_inferior_exit (struct inferior *inf)
363 {
364 ada_inferior_data_cleanup (inf, NULL);
365 set_inferior_data (inf, ada_inferior_data, NULL);
366 }
367
368 /* Utilities */
369
370 /* Given DECODED_NAME a string holding a symbol name in its
371 decoded form (ie using the Ada dotted notation), returns
372 its unqualified name. */
373
374 static const char *
375 ada_unqualified_name (const char *decoded_name)
376 {
377 const char *result = strrchr (decoded_name, '.');
378
379 if (result != NULL)
380 result++; /* Skip the dot... */
381 else
382 result = decoded_name;
383
384 return result;
385 }
386
387 /* Return a string starting with '<', followed by STR, and '>'.
388 The result is good until the next call. */
389
390 static char *
391 add_angle_brackets (const char *str)
392 {
393 static char *result = NULL;
394
395 xfree (result);
396 result = xstrprintf ("<%s>", str);
397 return result;
398 }
399
400 static char *
401 ada_get_gdb_completer_word_break_characters (void)
402 {
403 return ada_completer_word_break_characters;
404 }
405
406 /* Print an array element index using the Ada syntax. */
407
408 static void
409 ada_print_array_index (struct value *index_value, struct ui_file *stream,
410 const struct value_print_options *options)
411 {
412 LA_VALUE_PRINT (index_value, stream, options);
413 fprintf_filtered (stream, " => ");
414 }
415
416 /* Assuming VECT points to an array of *SIZE objects of size
417 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
418 updating *SIZE as necessary and returning the (new) array. */
419
420 void *
421 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
422 {
423 if (*size < min_size)
424 {
425 *size *= 2;
426 if (*size < min_size)
427 *size = min_size;
428 vect = xrealloc (vect, *size * element_size);
429 }
430 return vect;
431 }
432
433 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
434 suffix of FIELD_NAME beginning "___". */
435
436 static int
437 field_name_match (const char *field_name, const char *target)
438 {
439 int len = strlen (target);
440
441 return
442 (strncmp (field_name, target, len) == 0
443 && (field_name[len] == '\0'
444 || (strncmp (field_name + len, "___", 3) == 0
445 && strcmp (field_name + strlen (field_name) - 6,
446 "___XVN") != 0)));
447 }
448
449
450 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
451 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
452 and return its index. This function also handles fields whose name
453 have ___ suffixes because the compiler sometimes alters their name
454 by adding such a suffix to represent fields with certain constraints.
455 If the field could not be found, return a negative number if
456 MAYBE_MISSING is set. Otherwise raise an error. */
457
458 int
459 ada_get_field_index (const struct type *type, const char *field_name,
460 int maybe_missing)
461 {
462 int fieldno;
463 struct type *struct_type = check_typedef ((struct type *) type);
464
465 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
466 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
467 return fieldno;
468
469 if (!maybe_missing)
470 error (_("Unable to find field %s in struct %s. Aborting"),
471 field_name, TYPE_NAME (struct_type));
472
473 return -1;
474 }
475
476 /* The length of the prefix of NAME prior to any "___" suffix. */
477
478 int
479 ada_name_prefix_len (const char *name)
480 {
481 if (name == NULL)
482 return 0;
483 else
484 {
485 const char *p = strstr (name, "___");
486
487 if (p == NULL)
488 return strlen (name);
489 else
490 return p - name;
491 }
492 }
493
494 /* Return non-zero if SUFFIX is a suffix of STR.
495 Return zero if STR is null. */
496
497 static int
498 is_suffix (const char *str, const char *suffix)
499 {
500 int len1, len2;
501
502 if (str == NULL)
503 return 0;
504 len1 = strlen (str);
505 len2 = strlen (suffix);
506 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
507 }
508
509 /* The contents of value VAL, treated as a value of type TYPE. The
510 result is an lval in memory if VAL is. */
511
512 static struct value *
513 coerce_unspec_val_to_type (struct value *val, struct type *type)
514 {
515 type = ada_check_typedef (type);
516 if (value_type (val) == type)
517 return val;
518 else
519 {
520 struct value *result;
521
522 /* Make sure that the object size is not unreasonable before
523 trying to allocate some memory for it. */
524 check_size (type);
525
526 result = allocate_value (type);
527 set_value_component_location (result, val);
528 set_value_bitsize (result, value_bitsize (val));
529 set_value_bitpos (result, value_bitpos (val));
530 set_value_address (result, value_address (val));
531 if (value_lazy (val)
532 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
533 set_value_lazy (result, 1);
534 else
535 memcpy (value_contents_raw (result), value_contents (val),
536 TYPE_LENGTH (type));
537 return result;
538 }
539 }
540
541 static const gdb_byte *
542 cond_offset_host (const gdb_byte *valaddr, long offset)
543 {
544 if (valaddr == NULL)
545 return NULL;
546 else
547 return valaddr + offset;
548 }
549
550 static CORE_ADDR
551 cond_offset_target (CORE_ADDR address, long offset)
552 {
553 if (address == 0)
554 return 0;
555 else
556 return address + offset;
557 }
558
559 /* Issue a warning (as for the definition of warning in utils.c, but
560 with exactly one argument rather than ...), unless the limit on the
561 number of warnings has passed during the evaluation of the current
562 expression. */
563
564 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
565 provided by "complaint". */
566 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
567
568 static void
569 lim_warning (const char *format, ...)
570 {
571 va_list args;
572
573 va_start (args, format);
574 warnings_issued += 1;
575 if (warnings_issued <= warning_limit)
576 vwarning (format, args);
577
578 va_end (args);
579 }
580
581 /* Issue an error if the size of an object of type T is unreasonable,
582 i.e. if it would be a bad idea to allocate a value of this type in
583 GDB. */
584
585 static void
586 check_size (const struct type *type)
587 {
588 if (TYPE_LENGTH (type) > varsize_limit)
589 error (_("object size is larger than varsize-limit"));
590 }
591
592 /* Maximum value of a SIZE-byte signed integer type. */
593 static LONGEST
594 max_of_size (int size)
595 {
596 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
597
598 return top_bit | (top_bit - 1);
599 }
600
601 /* Minimum value of a SIZE-byte signed integer type. */
602 static LONGEST
603 min_of_size (int size)
604 {
605 return -max_of_size (size) - 1;
606 }
607
608 /* Maximum value of a SIZE-byte unsigned integer type. */
609 static ULONGEST
610 umax_of_size (int size)
611 {
612 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
613
614 return top_bit | (top_bit - 1);
615 }
616
617 /* Maximum value of integral type T, as a signed quantity. */
618 static LONGEST
619 max_of_type (struct type *t)
620 {
621 if (TYPE_UNSIGNED (t))
622 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
623 else
624 return max_of_size (TYPE_LENGTH (t));
625 }
626
627 /* Minimum value of integral type T, as a signed quantity. */
628 static LONGEST
629 min_of_type (struct type *t)
630 {
631 if (TYPE_UNSIGNED (t))
632 return 0;
633 else
634 return min_of_size (TYPE_LENGTH (t));
635 }
636
637 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
638 LONGEST
639 ada_discrete_type_high_bound (struct type *type)
640 {
641 switch (TYPE_CODE (type))
642 {
643 case TYPE_CODE_RANGE:
644 return TYPE_HIGH_BOUND (type);
645 case TYPE_CODE_ENUM:
646 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
647 case TYPE_CODE_BOOL:
648 return 1;
649 case TYPE_CODE_CHAR:
650 case TYPE_CODE_INT:
651 return max_of_type (type);
652 default:
653 error (_("Unexpected type in ada_discrete_type_high_bound."));
654 }
655 }
656
657 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
658 LONGEST
659 ada_discrete_type_low_bound (struct type *type)
660 {
661 switch (TYPE_CODE (type))
662 {
663 case TYPE_CODE_RANGE:
664 return TYPE_LOW_BOUND (type);
665 case TYPE_CODE_ENUM:
666 return TYPE_FIELD_BITPOS (type, 0);
667 case TYPE_CODE_BOOL:
668 return 0;
669 case TYPE_CODE_CHAR:
670 case TYPE_CODE_INT:
671 return min_of_type (type);
672 default:
673 error (_("Unexpected type in ada_discrete_type_low_bound."));
674 }
675 }
676
677 /* The identity on non-range types. For range types, the underlying
678 non-range scalar type. */
679
680 static struct type *
681 base_type (struct type *type)
682 {
683 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
684 {
685 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
686 return type;
687 type = TYPE_TARGET_TYPE (type);
688 }
689 return type;
690 }
691 \f
692
693 /* Language Selection */
694
695 /* If the main program is in Ada, return language_ada, otherwise return LANG
696 (the main program is in Ada iif the adainit symbol is found). */
697
698 enum language
699 ada_update_initial_language (enum language lang)
700 {
701 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
702 (struct objfile *) NULL) != NULL)
703 return language_ada;
704
705 return lang;
706 }
707
708 /* If the main procedure is written in Ada, then return its name.
709 The result is good until the next call. Return NULL if the main
710 procedure doesn't appear to be in Ada. */
711
712 char *
713 ada_main_name (void)
714 {
715 struct minimal_symbol *msym;
716 static char *main_program_name = NULL;
717
718 /* For Ada, the name of the main procedure is stored in a specific
719 string constant, generated by the binder. Look for that symbol,
720 extract its address, and then read that string. If we didn't find
721 that string, then most probably the main procedure is not written
722 in Ada. */
723 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
724
725 if (msym != NULL)
726 {
727 CORE_ADDR main_program_name_addr;
728 int err_code;
729
730 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
731 if (main_program_name_addr == 0)
732 error (_("Invalid address for Ada main program name."));
733
734 xfree (main_program_name);
735 target_read_string (main_program_name_addr, &main_program_name,
736 1024, &err_code);
737
738 if (err_code != 0)
739 return NULL;
740 return main_program_name;
741 }
742
743 /* The main procedure doesn't seem to be in Ada. */
744 return NULL;
745 }
746 \f
747 /* Symbols */
748
749 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
750 of NULLs. */
751
752 const struct ada_opname_map ada_opname_table[] = {
753 {"Oadd", "\"+\"", BINOP_ADD},
754 {"Osubtract", "\"-\"", BINOP_SUB},
755 {"Omultiply", "\"*\"", BINOP_MUL},
756 {"Odivide", "\"/\"", BINOP_DIV},
757 {"Omod", "\"mod\"", BINOP_MOD},
758 {"Orem", "\"rem\"", BINOP_REM},
759 {"Oexpon", "\"**\"", BINOP_EXP},
760 {"Olt", "\"<\"", BINOP_LESS},
761 {"Ole", "\"<=\"", BINOP_LEQ},
762 {"Ogt", "\">\"", BINOP_GTR},
763 {"Oge", "\">=\"", BINOP_GEQ},
764 {"Oeq", "\"=\"", BINOP_EQUAL},
765 {"One", "\"/=\"", BINOP_NOTEQUAL},
766 {"Oand", "\"and\"", BINOP_BITWISE_AND},
767 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
768 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
769 {"Oconcat", "\"&\"", BINOP_CONCAT},
770 {"Oabs", "\"abs\"", UNOP_ABS},
771 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
772 {"Oadd", "\"+\"", UNOP_PLUS},
773 {"Osubtract", "\"-\"", UNOP_NEG},
774 {NULL, NULL}
775 };
776
777 /* The "encoded" form of DECODED, according to GNAT conventions.
778 The result is valid until the next call to ada_encode. */
779
780 char *
781 ada_encode (const char *decoded)
782 {
783 static char *encoding_buffer = NULL;
784 static size_t encoding_buffer_size = 0;
785 const char *p;
786 int k;
787
788 if (decoded == NULL)
789 return NULL;
790
791 GROW_VECT (encoding_buffer, encoding_buffer_size,
792 2 * strlen (decoded) + 10);
793
794 k = 0;
795 for (p = decoded; *p != '\0'; p += 1)
796 {
797 if (*p == '.')
798 {
799 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
800 k += 2;
801 }
802 else if (*p == '"')
803 {
804 const struct ada_opname_map *mapping;
805
806 for (mapping = ada_opname_table;
807 mapping->encoded != NULL
808 && strncmp (mapping->decoded, p,
809 strlen (mapping->decoded)) != 0; mapping += 1)
810 ;
811 if (mapping->encoded == NULL)
812 error (_("invalid Ada operator name: %s"), p);
813 strcpy (encoding_buffer + k, mapping->encoded);
814 k += strlen (mapping->encoded);
815 break;
816 }
817 else
818 {
819 encoding_buffer[k] = *p;
820 k += 1;
821 }
822 }
823
824 encoding_buffer[k] = '\0';
825 return encoding_buffer;
826 }
827
828 /* Return NAME folded to lower case, or, if surrounded by single
829 quotes, unfolded, but with the quotes stripped away. Result good
830 to next call. */
831
832 char *
833 ada_fold_name (const char *name)
834 {
835 static char *fold_buffer = NULL;
836 static size_t fold_buffer_size = 0;
837
838 int len = strlen (name);
839 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
840
841 if (name[0] == '\'')
842 {
843 strncpy (fold_buffer, name + 1, len - 2);
844 fold_buffer[len - 2] = '\000';
845 }
846 else
847 {
848 int i;
849
850 for (i = 0; i <= len; i += 1)
851 fold_buffer[i] = tolower (name[i]);
852 }
853
854 return fold_buffer;
855 }
856
857 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
858
859 static int
860 is_lower_alphanum (const char c)
861 {
862 return (isdigit (c) || (isalpha (c) && islower (c)));
863 }
864
865 /* Remove either of these suffixes:
866 . .{DIGIT}+
867 . ${DIGIT}+
868 . ___{DIGIT}+
869 . __{DIGIT}+.
870 These are suffixes introduced by the compiler for entities such as
871 nested subprogram for instance, in order to avoid name clashes.
872 They do not serve any purpose for the debugger. */
873
874 static void
875 ada_remove_trailing_digits (const char *encoded, int *len)
876 {
877 if (*len > 1 && isdigit (encoded[*len - 1]))
878 {
879 int i = *len - 2;
880
881 while (i > 0 && isdigit (encoded[i]))
882 i--;
883 if (i >= 0 && encoded[i] == '.')
884 *len = i;
885 else if (i >= 0 && encoded[i] == '$')
886 *len = i;
887 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
888 *len = i - 2;
889 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
890 *len = i - 1;
891 }
892 }
893
894 /* Remove the suffix introduced by the compiler for protected object
895 subprograms. */
896
897 static void
898 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
899 {
900 /* Remove trailing N. */
901
902 /* Protected entry subprograms are broken into two
903 separate subprograms: The first one is unprotected, and has
904 a 'N' suffix; the second is the protected version, and has
905 the 'P' suffix. The second calls the first one after handling
906 the protection. Since the P subprograms are internally generated,
907 we leave these names undecoded, giving the user a clue that this
908 entity is internal. */
909
910 if (*len > 1
911 && encoded[*len - 1] == 'N'
912 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
913 *len = *len - 1;
914 }
915
916 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
917
918 static void
919 ada_remove_Xbn_suffix (const char *encoded, int *len)
920 {
921 int i = *len - 1;
922
923 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
924 i--;
925
926 if (encoded[i] != 'X')
927 return;
928
929 if (i == 0)
930 return;
931
932 if (isalnum (encoded[i-1]))
933 *len = i;
934 }
935
936 /* If ENCODED follows the GNAT entity encoding conventions, then return
937 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
938 replaced by ENCODED.
939
940 The resulting string is valid until the next call of ada_decode.
941 If the string is unchanged by decoding, the original string pointer
942 is returned. */
943
944 const char *
945 ada_decode (const char *encoded)
946 {
947 int i, j;
948 int len0;
949 const char *p;
950 char *decoded;
951 int at_start_name;
952 static char *decoding_buffer = NULL;
953 static size_t decoding_buffer_size = 0;
954
955 /* The name of the Ada main procedure starts with "_ada_".
956 This prefix is not part of the decoded name, so skip this part
957 if we see this prefix. */
958 if (strncmp (encoded, "_ada_", 5) == 0)
959 encoded += 5;
960
961 /* If the name starts with '_', then it is not a properly encoded
962 name, so do not attempt to decode it. Similarly, if the name
963 starts with '<', the name should not be decoded. */
964 if (encoded[0] == '_' || encoded[0] == '<')
965 goto Suppress;
966
967 len0 = strlen (encoded);
968
969 ada_remove_trailing_digits (encoded, &len0);
970 ada_remove_po_subprogram_suffix (encoded, &len0);
971
972 /* Remove the ___X.* suffix if present. Do not forget to verify that
973 the suffix is located before the current "end" of ENCODED. We want
974 to avoid re-matching parts of ENCODED that have previously been
975 marked as discarded (by decrementing LEN0). */
976 p = strstr (encoded, "___");
977 if (p != NULL && p - encoded < len0 - 3)
978 {
979 if (p[3] == 'X')
980 len0 = p - encoded;
981 else
982 goto Suppress;
983 }
984
985 /* Remove any trailing TKB suffix. It tells us that this symbol
986 is for the body of a task, but that information does not actually
987 appear in the decoded name. */
988
989 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
990 len0 -= 3;
991
992 /* Remove any trailing TB suffix. The TB suffix is slightly different
993 from the TKB suffix because it is used for non-anonymous task
994 bodies. */
995
996 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
997 len0 -= 2;
998
999 /* Remove trailing "B" suffixes. */
1000 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1001
1002 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1003 len0 -= 1;
1004
1005 /* Make decoded big enough for possible expansion by operator name. */
1006
1007 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1008 decoded = decoding_buffer;
1009
1010 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1011
1012 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1013 {
1014 i = len0 - 2;
1015 while ((i >= 0 && isdigit (encoded[i]))
1016 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1017 i -= 1;
1018 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1019 len0 = i - 1;
1020 else if (encoded[i] == '$')
1021 len0 = i;
1022 }
1023
1024 /* The first few characters that are not alphabetic are not part
1025 of any encoding we use, so we can copy them over verbatim. */
1026
1027 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1028 decoded[j] = encoded[i];
1029
1030 at_start_name = 1;
1031 while (i < len0)
1032 {
1033 /* Is this a symbol function? */
1034 if (at_start_name && encoded[i] == 'O')
1035 {
1036 int k;
1037
1038 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1039 {
1040 int op_len = strlen (ada_opname_table[k].encoded);
1041 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1042 op_len - 1) == 0)
1043 && !isalnum (encoded[i + op_len]))
1044 {
1045 strcpy (decoded + j, ada_opname_table[k].decoded);
1046 at_start_name = 0;
1047 i += op_len;
1048 j += strlen (ada_opname_table[k].decoded);
1049 break;
1050 }
1051 }
1052 if (ada_opname_table[k].encoded != NULL)
1053 continue;
1054 }
1055 at_start_name = 0;
1056
1057 /* Replace "TK__" with "__", which will eventually be translated
1058 into "." (just below). */
1059
1060 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1061 i += 2;
1062
1063 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1064 be translated into "." (just below). These are internal names
1065 generated for anonymous blocks inside which our symbol is nested. */
1066
1067 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1068 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1069 && isdigit (encoded [i+4]))
1070 {
1071 int k = i + 5;
1072
1073 while (k < len0 && isdigit (encoded[k]))
1074 k++; /* Skip any extra digit. */
1075
1076 /* Double-check that the "__B_{DIGITS}+" sequence we found
1077 is indeed followed by "__". */
1078 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1079 i = k;
1080 }
1081
1082 /* Remove _E{DIGITS}+[sb] */
1083
1084 /* Just as for protected object subprograms, there are 2 categories
1085 of subprograms created by the compiler for each entry. The first
1086 one implements the actual entry code, and has a suffix following
1087 the convention above; the second one implements the barrier and
1088 uses the same convention as above, except that the 'E' is replaced
1089 by a 'B'.
1090
1091 Just as above, we do not decode the name of barrier functions
1092 to give the user a clue that the code he is debugging has been
1093 internally generated. */
1094
1095 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1096 && isdigit (encoded[i+2]))
1097 {
1098 int k = i + 3;
1099
1100 while (k < len0 && isdigit (encoded[k]))
1101 k++;
1102
1103 if (k < len0
1104 && (encoded[k] == 'b' || encoded[k] == 's'))
1105 {
1106 k++;
1107 /* Just as an extra precaution, make sure that if this
1108 suffix is followed by anything else, it is a '_'.
1109 Otherwise, we matched this sequence by accident. */
1110 if (k == len0
1111 || (k < len0 && encoded[k] == '_'))
1112 i = k;
1113 }
1114 }
1115
1116 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1117 the GNAT front-end in protected object subprograms. */
1118
1119 if (i < len0 + 3
1120 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1121 {
1122 /* Backtrack a bit up until we reach either the begining of
1123 the encoded name, or "__". Make sure that we only find
1124 digits or lowercase characters. */
1125 const char *ptr = encoded + i - 1;
1126
1127 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1128 ptr--;
1129 if (ptr < encoded
1130 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1131 i++;
1132 }
1133
1134 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1135 {
1136 /* This is a X[bn]* sequence not separated from the previous
1137 part of the name with a non-alpha-numeric character (in other
1138 words, immediately following an alpha-numeric character), then
1139 verify that it is placed at the end of the encoded name. If
1140 not, then the encoding is not valid and we should abort the
1141 decoding. Otherwise, just skip it, it is used in body-nested
1142 package names. */
1143 do
1144 i += 1;
1145 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1146 if (i < len0)
1147 goto Suppress;
1148 }
1149 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1150 {
1151 /* Replace '__' by '.'. */
1152 decoded[j] = '.';
1153 at_start_name = 1;
1154 i += 2;
1155 j += 1;
1156 }
1157 else
1158 {
1159 /* It's a character part of the decoded name, so just copy it
1160 over. */
1161 decoded[j] = encoded[i];
1162 i += 1;
1163 j += 1;
1164 }
1165 }
1166 decoded[j] = '\000';
1167
1168 /* Decoded names should never contain any uppercase character.
1169 Double-check this, and abort the decoding if we find one. */
1170
1171 for (i = 0; decoded[i] != '\0'; i += 1)
1172 if (isupper (decoded[i]) || decoded[i] == ' ')
1173 goto Suppress;
1174
1175 if (strcmp (decoded, encoded) == 0)
1176 return encoded;
1177 else
1178 return decoded;
1179
1180 Suppress:
1181 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1182 decoded = decoding_buffer;
1183 if (encoded[0] == '<')
1184 strcpy (decoded, encoded);
1185 else
1186 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1187 return decoded;
1188
1189 }
1190
1191 /* Table for keeping permanent unique copies of decoded names. Once
1192 allocated, names in this table are never released. While this is a
1193 storage leak, it should not be significant unless there are massive
1194 changes in the set of decoded names in successive versions of a
1195 symbol table loaded during a single session. */
1196 static struct htab *decoded_names_store;
1197
1198 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1199 in the language-specific part of GSYMBOL, if it has not been
1200 previously computed. Tries to save the decoded name in the same
1201 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1202 in any case, the decoded symbol has a lifetime at least that of
1203 GSYMBOL).
1204 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1205 const, but nevertheless modified to a semantically equivalent form
1206 when a decoded name is cached in it.
1207 */
1208
1209 char *
1210 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1211 {
1212 char **resultp =
1213 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1214
1215 if (*resultp == NULL)
1216 {
1217 const char *decoded = ada_decode (gsymbol->name);
1218
1219 if (gsymbol->obj_section != NULL)
1220 {
1221 struct objfile *objf = gsymbol->obj_section->objfile;
1222
1223 *resultp = obsavestring (decoded, strlen (decoded),
1224 &objf->objfile_obstack);
1225 }
1226 /* Sometimes, we can't find a corresponding objfile, in which
1227 case, we put the result on the heap. Since we only decode
1228 when needed, we hope this usually does not cause a
1229 significant memory leak (FIXME). */
1230 if (*resultp == NULL)
1231 {
1232 char **slot = (char **) htab_find_slot (decoded_names_store,
1233 decoded, INSERT);
1234
1235 if (*slot == NULL)
1236 *slot = xstrdup (decoded);
1237 *resultp = *slot;
1238 }
1239 }
1240
1241 return *resultp;
1242 }
1243
1244 static char *
1245 ada_la_decode (const char *encoded, int options)
1246 {
1247 return xstrdup (ada_decode (encoded));
1248 }
1249
1250 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1251 suffixes that encode debugging information or leading _ada_ on
1252 SYM_NAME (see is_name_suffix commentary for the debugging
1253 information that is ignored). If WILD, then NAME need only match a
1254 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1255 either argument is NULL. */
1256
1257 static int
1258 ada_match_name (const char *sym_name, const char *name, int wild)
1259 {
1260 if (sym_name == NULL || name == NULL)
1261 return 0;
1262 else if (wild)
1263 return wild_match (name, strlen (name), sym_name);
1264 else
1265 {
1266 int len_name = strlen (name);
1267
1268 return (strncmp (sym_name, name, len_name) == 0
1269 && is_name_suffix (sym_name + len_name))
1270 || (strncmp (sym_name, "_ada_", 5) == 0
1271 && strncmp (sym_name + 5, name, len_name) == 0
1272 && is_name_suffix (sym_name + len_name + 5));
1273 }
1274 }
1275 \f
1276
1277 /* Arrays */
1278
1279 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1280 generated by the GNAT compiler to describe the index type used
1281 for each dimension of an array, check whether it follows the latest
1282 known encoding. If not, fix it up to conform to the latest encoding.
1283 Otherwise, do nothing. This function also does nothing if
1284 INDEX_DESC_TYPE is NULL.
1285
1286 The GNAT encoding used to describle the array index type evolved a bit.
1287 Initially, the information would be provided through the name of each
1288 field of the structure type only, while the type of these fields was
1289 described as unspecified and irrelevant. The debugger was then expected
1290 to perform a global type lookup using the name of that field in order
1291 to get access to the full index type description. Because these global
1292 lookups can be very expensive, the encoding was later enhanced to make
1293 the global lookup unnecessary by defining the field type as being
1294 the full index type description.
1295
1296 The purpose of this routine is to allow us to support older versions
1297 of the compiler by detecting the use of the older encoding, and by
1298 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1299 we essentially replace each field's meaningless type by the associated
1300 index subtype). */
1301
1302 void
1303 ada_fixup_array_indexes_type (struct type *index_desc_type)
1304 {
1305 int i;
1306
1307 if (index_desc_type == NULL)
1308 return;
1309 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1310
1311 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1312 to check one field only, no need to check them all). If not, return
1313 now.
1314
1315 If our INDEX_DESC_TYPE was generated using the older encoding,
1316 the field type should be a meaningless integer type whose name
1317 is not equal to the field name. */
1318 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1319 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1320 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1321 return;
1322
1323 /* Fixup each field of INDEX_DESC_TYPE. */
1324 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1325 {
1326 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1327 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1328
1329 if (raw_type)
1330 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1331 }
1332 }
1333
1334 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1335
1336 static char *bound_name[] = {
1337 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1338 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1339 };
1340
1341 /* Maximum number of array dimensions we are prepared to handle. */
1342
1343 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1344
1345 /* Like modify_field, but allows bitpos > wordlength. */
1346
1347 static void
1348 modify_general_field (struct type *type, char *addr,
1349 LONGEST fieldval, int bitpos, int bitsize)
1350 {
1351 modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1352 }
1353
1354
1355 /* The desc_* routines return primitive portions of array descriptors
1356 (fat pointers). */
1357
1358 /* The descriptor or array type, if any, indicated by TYPE; removes
1359 level of indirection, if needed. */
1360
1361 static struct type *
1362 desc_base_type (struct type *type)
1363 {
1364 if (type == NULL)
1365 return NULL;
1366 type = ada_check_typedef (type);
1367 if (type != NULL
1368 && (TYPE_CODE (type) == TYPE_CODE_PTR
1369 || TYPE_CODE (type) == TYPE_CODE_REF))
1370 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1371 else
1372 return type;
1373 }
1374
1375 /* True iff TYPE indicates a "thin" array pointer type. */
1376
1377 static int
1378 is_thin_pntr (struct type *type)
1379 {
1380 return
1381 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1382 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1383 }
1384
1385 /* The descriptor type for thin pointer type TYPE. */
1386
1387 static struct type *
1388 thin_descriptor_type (struct type *type)
1389 {
1390 struct type *base_type = desc_base_type (type);
1391
1392 if (base_type == NULL)
1393 return NULL;
1394 if (is_suffix (ada_type_name (base_type), "___XVE"))
1395 return base_type;
1396 else
1397 {
1398 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1399
1400 if (alt_type == NULL)
1401 return base_type;
1402 else
1403 return alt_type;
1404 }
1405 }
1406
1407 /* A pointer to the array data for thin-pointer value VAL. */
1408
1409 static struct value *
1410 thin_data_pntr (struct value *val)
1411 {
1412 struct type *type = value_type (val);
1413 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1414
1415 data_type = lookup_pointer_type (data_type);
1416
1417 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1418 return value_cast (data_type, value_copy (val));
1419 else
1420 return value_from_longest (data_type, value_address (val));
1421 }
1422
1423 /* True iff TYPE indicates a "thick" array pointer type. */
1424
1425 static int
1426 is_thick_pntr (struct type *type)
1427 {
1428 type = desc_base_type (type);
1429 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1430 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1431 }
1432
1433 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1434 pointer to one, the type of its bounds data; otherwise, NULL. */
1435
1436 static struct type *
1437 desc_bounds_type (struct type *type)
1438 {
1439 struct type *r;
1440
1441 type = desc_base_type (type);
1442
1443 if (type == NULL)
1444 return NULL;
1445 else if (is_thin_pntr (type))
1446 {
1447 type = thin_descriptor_type (type);
1448 if (type == NULL)
1449 return NULL;
1450 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1451 if (r != NULL)
1452 return ada_check_typedef (r);
1453 }
1454 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1455 {
1456 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1457 if (r != NULL)
1458 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1459 }
1460 return NULL;
1461 }
1462
1463 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1464 one, a pointer to its bounds data. Otherwise NULL. */
1465
1466 static struct value *
1467 desc_bounds (struct value *arr)
1468 {
1469 struct type *type = ada_check_typedef (value_type (arr));
1470
1471 if (is_thin_pntr (type))
1472 {
1473 struct type *bounds_type =
1474 desc_bounds_type (thin_descriptor_type (type));
1475 LONGEST addr;
1476
1477 if (bounds_type == NULL)
1478 error (_("Bad GNAT array descriptor"));
1479
1480 /* NOTE: The following calculation is not really kosher, but
1481 since desc_type is an XVE-encoded type (and shouldn't be),
1482 the correct calculation is a real pain. FIXME (and fix GCC). */
1483 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1484 addr = value_as_long (arr);
1485 else
1486 addr = value_address (arr);
1487
1488 return
1489 value_from_longest (lookup_pointer_type (bounds_type),
1490 addr - TYPE_LENGTH (bounds_type));
1491 }
1492
1493 else if (is_thick_pntr (type))
1494 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1495 _("Bad GNAT array descriptor"));
1496 else
1497 return NULL;
1498 }
1499
1500 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1501 position of the field containing the address of the bounds data. */
1502
1503 static int
1504 fat_pntr_bounds_bitpos (struct type *type)
1505 {
1506 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1507 }
1508
1509 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1510 size of the field containing the address of the bounds data. */
1511
1512 static int
1513 fat_pntr_bounds_bitsize (struct type *type)
1514 {
1515 type = desc_base_type (type);
1516
1517 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1518 return TYPE_FIELD_BITSIZE (type, 1);
1519 else
1520 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1521 }
1522
1523 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1524 pointer to one, the type of its array data (a array-with-no-bounds type);
1525 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1526 data. */
1527
1528 static struct type *
1529 desc_data_target_type (struct type *type)
1530 {
1531 type = desc_base_type (type);
1532
1533 /* NOTE: The following is bogus; see comment in desc_bounds. */
1534 if (is_thin_pntr (type))
1535 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1536 else if (is_thick_pntr (type))
1537 {
1538 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1539
1540 if (data_type
1541 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1542 return TYPE_TARGET_TYPE (data_type);
1543 }
1544
1545 return NULL;
1546 }
1547
1548 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1549 its array data. */
1550
1551 static struct value *
1552 desc_data (struct value *arr)
1553 {
1554 struct type *type = value_type (arr);
1555
1556 if (is_thin_pntr (type))
1557 return thin_data_pntr (arr);
1558 else if (is_thick_pntr (type))
1559 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1560 _("Bad GNAT array descriptor"));
1561 else
1562 return NULL;
1563 }
1564
1565
1566 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1567 position of the field containing the address of the data. */
1568
1569 static int
1570 fat_pntr_data_bitpos (struct type *type)
1571 {
1572 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1573 }
1574
1575 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1576 size of the field containing the address of the data. */
1577
1578 static int
1579 fat_pntr_data_bitsize (struct type *type)
1580 {
1581 type = desc_base_type (type);
1582
1583 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1584 return TYPE_FIELD_BITSIZE (type, 0);
1585 else
1586 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1587 }
1588
1589 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1590 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1591 bound, if WHICH is 1. The first bound is I=1. */
1592
1593 static struct value *
1594 desc_one_bound (struct value *bounds, int i, int which)
1595 {
1596 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1597 _("Bad GNAT array descriptor bounds"));
1598 }
1599
1600 /* If BOUNDS is an array-bounds structure type, return the bit position
1601 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1602 bound, if WHICH is 1. The first bound is I=1. */
1603
1604 static int
1605 desc_bound_bitpos (struct type *type, int i, int which)
1606 {
1607 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1608 }
1609
1610 /* If BOUNDS is an array-bounds structure type, return the bit field size
1611 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1612 bound, if WHICH is 1. The first bound is I=1. */
1613
1614 static int
1615 desc_bound_bitsize (struct type *type, int i, int which)
1616 {
1617 type = desc_base_type (type);
1618
1619 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1620 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1621 else
1622 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1623 }
1624
1625 /* If TYPE is the type of an array-bounds structure, the type of its
1626 Ith bound (numbering from 1). Otherwise, NULL. */
1627
1628 static struct type *
1629 desc_index_type (struct type *type, int i)
1630 {
1631 type = desc_base_type (type);
1632
1633 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1634 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1635 else
1636 return NULL;
1637 }
1638
1639 /* The number of index positions in the array-bounds type TYPE.
1640 Return 0 if TYPE is NULL. */
1641
1642 static int
1643 desc_arity (struct type *type)
1644 {
1645 type = desc_base_type (type);
1646
1647 if (type != NULL)
1648 return TYPE_NFIELDS (type) / 2;
1649 return 0;
1650 }
1651
1652 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1653 an array descriptor type (representing an unconstrained array
1654 type). */
1655
1656 static int
1657 ada_is_direct_array_type (struct type *type)
1658 {
1659 if (type == NULL)
1660 return 0;
1661 type = ada_check_typedef (type);
1662 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1663 || ada_is_array_descriptor_type (type));
1664 }
1665
1666 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1667 * to one. */
1668
1669 static int
1670 ada_is_array_type (struct type *type)
1671 {
1672 while (type != NULL
1673 && (TYPE_CODE (type) == TYPE_CODE_PTR
1674 || TYPE_CODE (type) == TYPE_CODE_REF))
1675 type = TYPE_TARGET_TYPE (type);
1676 return ada_is_direct_array_type (type);
1677 }
1678
1679 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1680
1681 int
1682 ada_is_simple_array_type (struct type *type)
1683 {
1684 if (type == NULL)
1685 return 0;
1686 type = ada_check_typedef (type);
1687 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1688 || (TYPE_CODE (type) == TYPE_CODE_PTR
1689 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1690 }
1691
1692 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1693
1694 int
1695 ada_is_array_descriptor_type (struct type *type)
1696 {
1697 struct type *data_type = desc_data_target_type (type);
1698
1699 if (type == NULL)
1700 return 0;
1701 type = ada_check_typedef (type);
1702 return (data_type != NULL
1703 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1704 && desc_arity (desc_bounds_type (type)) > 0);
1705 }
1706
1707 /* Non-zero iff type is a partially mal-formed GNAT array
1708 descriptor. FIXME: This is to compensate for some problems with
1709 debugging output from GNAT. Re-examine periodically to see if it
1710 is still needed. */
1711
1712 int
1713 ada_is_bogus_array_descriptor (struct type *type)
1714 {
1715 return
1716 type != NULL
1717 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1718 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1719 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1720 && !ada_is_array_descriptor_type (type);
1721 }
1722
1723
1724 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1725 (fat pointer) returns the type of the array data described---specifically,
1726 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1727 in from the descriptor; otherwise, they are left unspecified. If
1728 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1729 returns NULL. The result is simply the type of ARR if ARR is not
1730 a descriptor. */
1731 struct type *
1732 ada_type_of_array (struct value *arr, int bounds)
1733 {
1734 if (ada_is_constrained_packed_array_type (value_type (arr)))
1735 return decode_constrained_packed_array_type (value_type (arr));
1736
1737 if (!ada_is_array_descriptor_type (value_type (arr)))
1738 return value_type (arr);
1739
1740 if (!bounds)
1741 {
1742 struct type *array_type =
1743 ada_check_typedef (desc_data_target_type (value_type (arr)));
1744
1745 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1746 TYPE_FIELD_BITSIZE (array_type, 0) =
1747 decode_packed_array_bitsize (value_type (arr));
1748
1749 return array_type;
1750 }
1751 else
1752 {
1753 struct type *elt_type;
1754 int arity;
1755 struct value *descriptor;
1756
1757 elt_type = ada_array_element_type (value_type (arr), -1);
1758 arity = ada_array_arity (value_type (arr));
1759
1760 if (elt_type == NULL || arity == 0)
1761 return ada_check_typedef (value_type (arr));
1762
1763 descriptor = desc_bounds (arr);
1764 if (value_as_long (descriptor) == 0)
1765 return NULL;
1766 while (arity > 0)
1767 {
1768 struct type *range_type = alloc_type_copy (value_type (arr));
1769 struct type *array_type = alloc_type_copy (value_type (arr));
1770 struct value *low = desc_one_bound (descriptor, arity, 0);
1771 struct value *high = desc_one_bound (descriptor, arity, 1);
1772
1773 arity -= 1;
1774 create_range_type (range_type, value_type (low),
1775 longest_to_int (value_as_long (low)),
1776 longest_to_int (value_as_long (high)));
1777 elt_type = create_array_type (array_type, elt_type, range_type);
1778
1779 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1780 TYPE_FIELD_BITSIZE (elt_type, 0) =
1781 decode_packed_array_bitsize (value_type (arr));
1782 }
1783
1784 return lookup_pointer_type (elt_type);
1785 }
1786 }
1787
1788 /* If ARR does not represent an array, returns ARR unchanged.
1789 Otherwise, returns either a standard GDB array with bounds set
1790 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1791 GDB array. Returns NULL if ARR is a null fat pointer. */
1792
1793 struct value *
1794 ada_coerce_to_simple_array_ptr (struct value *arr)
1795 {
1796 if (ada_is_array_descriptor_type (value_type (arr)))
1797 {
1798 struct type *arrType = ada_type_of_array (arr, 1);
1799
1800 if (arrType == NULL)
1801 return NULL;
1802 return value_cast (arrType, value_copy (desc_data (arr)));
1803 }
1804 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1805 return decode_constrained_packed_array (arr);
1806 else
1807 return arr;
1808 }
1809
1810 /* If ARR does not represent an array, returns ARR unchanged.
1811 Otherwise, returns a standard GDB array describing ARR (which may
1812 be ARR itself if it already is in the proper form). */
1813
1814 static struct value *
1815 ada_coerce_to_simple_array (struct value *arr)
1816 {
1817 if (ada_is_array_descriptor_type (value_type (arr)))
1818 {
1819 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1820
1821 if (arrVal == NULL)
1822 error (_("Bounds unavailable for null array pointer."));
1823 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1824 return value_ind (arrVal);
1825 }
1826 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1827 return decode_constrained_packed_array (arr);
1828 else
1829 return arr;
1830 }
1831
1832 /* If TYPE represents a GNAT array type, return it translated to an
1833 ordinary GDB array type (possibly with BITSIZE fields indicating
1834 packing). For other types, is the identity. */
1835
1836 struct type *
1837 ada_coerce_to_simple_array_type (struct type *type)
1838 {
1839 if (ada_is_constrained_packed_array_type (type))
1840 return decode_constrained_packed_array_type (type);
1841
1842 if (ada_is_array_descriptor_type (type))
1843 return ada_check_typedef (desc_data_target_type (type));
1844
1845 return type;
1846 }
1847
1848 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1849
1850 static int
1851 ada_is_packed_array_type (struct type *type)
1852 {
1853 if (type == NULL)
1854 return 0;
1855 type = desc_base_type (type);
1856 type = ada_check_typedef (type);
1857 return
1858 ada_type_name (type) != NULL
1859 && strstr (ada_type_name (type), "___XP") != NULL;
1860 }
1861
1862 /* Non-zero iff TYPE represents a standard GNAT constrained
1863 packed-array type. */
1864
1865 int
1866 ada_is_constrained_packed_array_type (struct type *type)
1867 {
1868 return ada_is_packed_array_type (type)
1869 && !ada_is_array_descriptor_type (type);
1870 }
1871
1872 /* Non-zero iff TYPE represents an array descriptor for a
1873 unconstrained packed-array type. */
1874
1875 static int
1876 ada_is_unconstrained_packed_array_type (struct type *type)
1877 {
1878 return ada_is_packed_array_type (type)
1879 && ada_is_array_descriptor_type (type);
1880 }
1881
1882 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1883 return the size of its elements in bits. */
1884
1885 static long
1886 decode_packed_array_bitsize (struct type *type)
1887 {
1888 char *raw_name = ada_type_name (ada_check_typedef (type));
1889 char *tail;
1890 long bits;
1891
1892 if (!raw_name)
1893 raw_name = ada_type_name (desc_base_type (type));
1894
1895 if (!raw_name)
1896 return 0;
1897
1898 tail = strstr (raw_name, "___XP");
1899
1900 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1901 {
1902 lim_warning
1903 (_("could not understand bit size information on packed array"));
1904 return 0;
1905 }
1906
1907 return bits;
1908 }
1909
1910 /* Given that TYPE is a standard GDB array type with all bounds filled
1911 in, and that the element size of its ultimate scalar constituents
1912 (that is, either its elements, or, if it is an array of arrays, its
1913 elements' elements, etc.) is *ELT_BITS, return an identical type,
1914 but with the bit sizes of its elements (and those of any
1915 constituent arrays) recorded in the BITSIZE components of its
1916 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1917 in bits. */
1918
1919 static struct type *
1920 constrained_packed_array_type (struct type *type, long *elt_bits)
1921 {
1922 struct type *new_elt_type;
1923 struct type *new_type;
1924 LONGEST low_bound, high_bound;
1925
1926 type = ada_check_typedef (type);
1927 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1928 return type;
1929
1930 new_type = alloc_type_copy (type);
1931 new_elt_type =
1932 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1933 elt_bits);
1934 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1935 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1936 TYPE_NAME (new_type) = ada_type_name (type);
1937
1938 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1939 &low_bound, &high_bound) < 0)
1940 low_bound = high_bound = 0;
1941 if (high_bound < low_bound)
1942 *elt_bits = TYPE_LENGTH (new_type) = 0;
1943 else
1944 {
1945 *elt_bits *= (high_bound - low_bound + 1);
1946 TYPE_LENGTH (new_type) =
1947 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1948 }
1949
1950 TYPE_FIXED_INSTANCE (new_type) = 1;
1951 return new_type;
1952 }
1953
1954 /* The array type encoded by TYPE, where
1955 ada_is_constrained_packed_array_type (TYPE). */
1956
1957 static struct type *
1958 decode_constrained_packed_array_type (struct type *type)
1959 {
1960 char *raw_name = ada_type_name (ada_check_typedef (type));
1961 char *name;
1962 char *tail;
1963 struct type *shadow_type;
1964 long bits;
1965
1966 if (!raw_name)
1967 raw_name = ada_type_name (desc_base_type (type));
1968
1969 if (!raw_name)
1970 return NULL;
1971
1972 name = (char *) alloca (strlen (raw_name) + 1);
1973 tail = strstr (raw_name, "___XP");
1974 type = desc_base_type (type);
1975
1976 memcpy (name, raw_name, tail - raw_name);
1977 name[tail - raw_name] = '\000';
1978
1979 shadow_type = ada_find_parallel_type_with_name (type, name);
1980
1981 if (shadow_type == NULL)
1982 {
1983 lim_warning (_("could not find bounds information on packed array"));
1984 return NULL;
1985 }
1986 CHECK_TYPEDEF (shadow_type);
1987
1988 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1989 {
1990 lim_warning (_("could not understand bounds information on packed array"));
1991 return NULL;
1992 }
1993
1994 bits = decode_packed_array_bitsize (type);
1995 return constrained_packed_array_type (shadow_type, &bits);
1996 }
1997
1998 /* Given that ARR is a struct value *indicating a GNAT constrained packed
1999 array, returns a simple array that denotes that array. Its type is a
2000 standard GDB array type except that the BITSIZEs of the array
2001 target types are set to the number of bits in each element, and the
2002 type length is set appropriately. */
2003
2004 static struct value *
2005 decode_constrained_packed_array (struct value *arr)
2006 {
2007 struct type *type;
2008
2009 arr = ada_coerce_ref (arr);
2010
2011 /* If our value is a pointer, then dererence it. Make sure that
2012 this operation does not cause the target type to be fixed, as
2013 this would indirectly cause this array to be decoded. The rest
2014 of the routine assumes that the array hasn't been decoded yet,
2015 so we use the basic "value_ind" routine to perform the dereferencing,
2016 as opposed to using "ada_value_ind". */
2017 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
2018 arr = value_ind (arr);
2019
2020 type = decode_constrained_packed_array_type (value_type (arr));
2021 if (type == NULL)
2022 {
2023 error (_("can't unpack array"));
2024 return NULL;
2025 }
2026
2027 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2028 && ada_is_modular_type (value_type (arr)))
2029 {
2030 /* This is a (right-justified) modular type representing a packed
2031 array with no wrapper. In order to interpret the value through
2032 the (left-justified) packed array type we just built, we must
2033 first left-justify it. */
2034 int bit_size, bit_pos;
2035 ULONGEST mod;
2036
2037 mod = ada_modulus (value_type (arr)) - 1;
2038 bit_size = 0;
2039 while (mod > 0)
2040 {
2041 bit_size += 1;
2042 mod >>= 1;
2043 }
2044 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2045 arr = ada_value_primitive_packed_val (arr, NULL,
2046 bit_pos / HOST_CHAR_BIT,
2047 bit_pos % HOST_CHAR_BIT,
2048 bit_size,
2049 type);
2050 }
2051
2052 return coerce_unspec_val_to_type (arr, type);
2053 }
2054
2055
2056 /* The value of the element of packed array ARR at the ARITY indices
2057 given in IND. ARR must be a simple array. */
2058
2059 static struct value *
2060 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2061 {
2062 int i;
2063 int bits, elt_off, bit_off;
2064 long elt_total_bit_offset;
2065 struct type *elt_type;
2066 struct value *v;
2067
2068 bits = 0;
2069 elt_total_bit_offset = 0;
2070 elt_type = ada_check_typedef (value_type (arr));
2071 for (i = 0; i < arity; i += 1)
2072 {
2073 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2074 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2075 error
2076 (_("attempt to do packed indexing of something other than a packed array"));
2077 else
2078 {
2079 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2080 LONGEST lowerbound, upperbound;
2081 LONGEST idx;
2082
2083 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2084 {
2085 lim_warning (_("don't know bounds of array"));
2086 lowerbound = upperbound = 0;
2087 }
2088
2089 idx = pos_atr (ind[i]);
2090 if (idx < lowerbound || idx > upperbound)
2091 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
2092 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2093 elt_total_bit_offset += (idx - lowerbound) * bits;
2094 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2095 }
2096 }
2097 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2098 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2099
2100 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2101 bits, elt_type);
2102 return v;
2103 }
2104
2105 /* Non-zero iff TYPE includes negative integer values. */
2106
2107 static int
2108 has_negatives (struct type *type)
2109 {
2110 switch (TYPE_CODE (type))
2111 {
2112 default:
2113 return 0;
2114 case TYPE_CODE_INT:
2115 return !TYPE_UNSIGNED (type);
2116 case TYPE_CODE_RANGE:
2117 return TYPE_LOW_BOUND (type) < 0;
2118 }
2119 }
2120
2121
2122 /* Create a new value of type TYPE from the contents of OBJ starting
2123 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2124 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2125 assigning through the result will set the field fetched from.
2126 VALADDR is ignored unless OBJ is NULL, in which case,
2127 VALADDR+OFFSET must address the start of storage containing the
2128 packed value. The value returned in this case is never an lval.
2129 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2130
2131 struct value *
2132 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2133 long offset, int bit_offset, int bit_size,
2134 struct type *type)
2135 {
2136 struct value *v;
2137 int src, /* Index into the source area */
2138 targ, /* Index into the target area */
2139 srcBitsLeft, /* Number of source bits left to move */
2140 nsrc, ntarg, /* Number of source and target bytes */
2141 unusedLS, /* Number of bits in next significant
2142 byte of source that are unused */
2143 accumSize; /* Number of meaningful bits in accum */
2144 unsigned char *bytes; /* First byte containing data to unpack */
2145 unsigned char *unpacked;
2146 unsigned long accum; /* Staging area for bits being transferred */
2147 unsigned char sign;
2148 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2149 /* Transmit bytes from least to most significant; delta is the direction
2150 the indices move. */
2151 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2152
2153 type = ada_check_typedef (type);
2154
2155 if (obj == NULL)
2156 {
2157 v = allocate_value (type);
2158 bytes = (unsigned char *) (valaddr + offset);
2159 }
2160 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2161 {
2162 v = value_at (type,
2163 value_address (obj) + offset);
2164 bytes = (unsigned char *) alloca (len);
2165 read_memory (value_address (v), bytes, len);
2166 }
2167 else
2168 {
2169 v = allocate_value (type);
2170 bytes = (unsigned char *) value_contents (obj) + offset;
2171 }
2172
2173 if (obj != NULL)
2174 {
2175 CORE_ADDR new_addr;
2176
2177 set_value_component_location (v, obj);
2178 new_addr = value_address (obj) + offset;
2179 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2180 set_value_bitsize (v, bit_size);
2181 if (value_bitpos (v) >= HOST_CHAR_BIT)
2182 {
2183 ++new_addr;
2184 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2185 }
2186 set_value_address (v, new_addr);
2187 }
2188 else
2189 set_value_bitsize (v, bit_size);
2190 unpacked = (unsigned char *) value_contents (v);
2191
2192 srcBitsLeft = bit_size;
2193 nsrc = len;
2194 ntarg = TYPE_LENGTH (type);
2195 sign = 0;
2196 if (bit_size == 0)
2197 {
2198 memset (unpacked, 0, TYPE_LENGTH (type));
2199 return v;
2200 }
2201 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2202 {
2203 src = len - 1;
2204 if (has_negatives (type)
2205 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2206 sign = ~0;
2207
2208 unusedLS =
2209 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2210 % HOST_CHAR_BIT;
2211
2212 switch (TYPE_CODE (type))
2213 {
2214 case TYPE_CODE_ARRAY:
2215 case TYPE_CODE_UNION:
2216 case TYPE_CODE_STRUCT:
2217 /* Non-scalar values must be aligned at a byte boundary... */
2218 accumSize =
2219 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2220 /* ... And are placed at the beginning (most-significant) bytes
2221 of the target. */
2222 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2223 ntarg = targ + 1;
2224 break;
2225 default:
2226 accumSize = 0;
2227 targ = TYPE_LENGTH (type) - 1;
2228 break;
2229 }
2230 }
2231 else
2232 {
2233 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2234
2235 src = targ = 0;
2236 unusedLS = bit_offset;
2237 accumSize = 0;
2238
2239 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2240 sign = ~0;
2241 }
2242
2243 accum = 0;
2244 while (nsrc > 0)
2245 {
2246 /* Mask for removing bits of the next source byte that are not
2247 part of the value. */
2248 unsigned int unusedMSMask =
2249 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2250 1;
2251 /* Sign-extend bits for this byte. */
2252 unsigned int signMask = sign & ~unusedMSMask;
2253
2254 accum |=
2255 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2256 accumSize += HOST_CHAR_BIT - unusedLS;
2257 if (accumSize >= HOST_CHAR_BIT)
2258 {
2259 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2260 accumSize -= HOST_CHAR_BIT;
2261 accum >>= HOST_CHAR_BIT;
2262 ntarg -= 1;
2263 targ += delta;
2264 }
2265 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2266 unusedLS = 0;
2267 nsrc -= 1;
2268 src += delta;
2269 }
2270 while (ntarg > 0)
2271 {
2272 accum |= sign << accumSize;
2273 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2274 accumSize -= HOST_CHAR_BIT;
2275 accum >>= HOST_CHAR_BIT;
2276 ntarg -= 1;
2277 targ += delta;
2278 }
2279
2280 return v;
2281 }
2282
2283 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2284 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2285 not overlap. */
2286 static void
2287 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2288 int src_offset, int n, int bits_big_endian_p)
2289 {
2290 unsigned int accum, mask;
2291 int accum_bits, chunk_size;
2292
2293 target += targ_offset / HOST_CHAR_BIT;
2294 targ_offset %= HOST_CHAR_BIT;
2295 source += src_offset / HOST_CHAR_BIT;
2296 src_offset %= HOST_CHAR_BIT;
2297 if (bits_big_endian_p)
2298 {
2299 accum = (unsigned char) *source;
2300 source += 1;
2301 accum_bits = HOST_CHAR_BIT - src_offset;
2302
2303 while (n > 0)
2304 {
2305 int unused_right;
2306
2307 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2308 accum_bits += HOST_CHAR_BIT;
2309 source += 1;
2310 chunk_size = HOST_CHAR_BIT - targ_offset;
2311 if (chunk_size > n)
2312 chunk_size = n;
2313 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2314 mask = ((1 << chunk_size) - 1) << unused_right;
2315 *target =
2316 (*target & ~mask)
2317 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2318 n -= chunk_size;
2319 accum_bits -= chunk_size;
2320 target += 1;
2321 targ_offset = 0;
2322 }
2323 }
2324 else
2325 {
2326 accum = (unsigned char) *source >> src_offset;
2327 source += 1;
2328 accum_bits = HOST_CHAR_BIT - src_offset;
2329
2330 while (n > 0)
2331 {
2332 accum = accum + ((unsigned char) *source << accum_bits);
2333 accum_bits += HOST_CHAR_BIT;
2334 source += 1;
2335 chunk_size = HOST_CHAR_BIT - targ_offset;
2336 if (chunk_size > n)
2337 chunk_size = n;
2338 mask = ((1 << chunk_size) - 1) << targ_offset;
2339 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2340 n -= chunk_size;
2341 accum_bits -= chunk_size;
2342 accum >>= chunk_size;
2343 target += 1;
2344 targ_offset = 0;
2345 }
2346 }
2347 }
2348
2349 /* Store the contents of FROMVAL into the location of TOVAL.
2350 Return a new value with the location of TOVAL and contents of
2351 FROMVAL. Handles assignment into packed fields that have
2352 floating-point or non-scalar types. */
2353
2354 static struct value *
2355 ada_value_assign (struct value *toval, struct value *fromval)
2356 {
2357 struct type *type = value_type (toval);
2358 int bits = value_bitsize (toval);
2359
2360 toval = ada_coerce_ref (toval);
2361 fromval = ada_coerce_ref (fromval);
2362
2363 if (ada_is_direct_array_type (value_type (toval)))
2364 toval = ada_coerce_to_simple_array (toval);
2365 if (ada_is_direct_array_type (value_type (fromval)))
2366 fromval = ada_coerce_to_simple_array (fromval);
2367
2368 if (!deprecated_value_modifiable (toval))
2369 error (_("Left operand of assignment is not a modifiable lvalue."));
2370
2371 if (VALUE_LVAL (toval) == lval_memory
2372 && bits > 0
2373 && (TYPE_CODE (type) == TYPE_CODE_FLT
2374 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2375 {
2376 int len = (value_bitpos (toval)
2377 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2378 int from_size;
2379 char *buffer = (char *) alloca (len);
2380 struct value *val;
2381 CORE_ADDR to_addr = value_address (toval);
2382
2383 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2384 fromval = value_cast (type, fromval);
2385
2386 read_memory (to_addr, buffer, len);
2387 from_size = value_bitsize (fromval);
2388 if (from_size == 0)
2389 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2390 if (gdbarch_bits_big_endian (get_type_arch (type)))
2391 move_bits (buffer, value_bitpos (toval),
2392 value_contents (fromval), from_size - bits, bits, 1);
2393 else
2394 move_bits (buffer, value_bitpos (toval),
2395 value_contents (fromval), 0, bits, 0);
2396 write_memory (to_addr, buffer, len);
2397 observer_notify_memory_changed (to_addr, len, buffer);
2398
2399 val = value_copy (toval);
2400 memcpy (value_contents_raw (val), value_contents (fromval),
2401 TYPE_LENGTH (type));
2402 deprecated_set_value_type (val, type);
2403
2404 return val;
2405 }
2406
2407 return value_assign (toval, fromval);
2408 }
2409
2410
2411 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2412 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2413 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2414 * COMPONENT, and not the inferior's memory. The current contents
2415 * of COMPONENT are ignored. */
2416 static void
2417 value_assign_to_component (struct value *container, struct value *component,
2418 struct value *val)
2419 {
2420 LONGEST offset_in_container =
2421 (LONGEST) (value_address (component) - value_address (container));
2422 int bit_offset_in_container =
2423 value_bitpos (component) - value_bitpos (container);
2424 int bits;
2425
2426 val = value_cast (value_type (component), val);
2427
2428 if (value_bitsize (component) == 0)
2429 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2430 else
2431 bits = value_bitsize (component);
2432
2433 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2434 move_bits (value_contents_writeable (container) + offset_in_container,
2435 value_bitpos (container) + bit_offset_in_container,
2436 value_contents (val),
2437 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2438 bits, 1);
2439 else
2440 move_bits (value_contents_writeable (container) + offset_in_container,
2441 value_bitpos (container) + bit_offset_in_container,
2442 value_contents (val), 0, bits, 0);
2443 }
2444
2445 /* The value of the element of array ARR at the ARITY indices given in IND.
2446 ARR may be either a simple array, GNAT array descriptor, or pointer
2447 thereto. */
2448
2449 struct value *
2450 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2451 {
2452 int k;
2453 struct value *elt;
2454 struct type *elt_type;
2455
2456 elt = ada_coerce_to_simple_array (arr);
2457
2458 elt_type = ada_check_typedef (value_type (elt));
2459 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2460 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2461 return value_subscript_packed (elt, arity, ind);
2462
2463 for (k = 0; k < arity; k += 1)
2464 {
2465 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2466 error (_("too many subscripts (%d expected)"), k);
2467 elt = value_subscript (elt, pos_atr (ind[k]));
2468 }
2469 return elt;
2470 }
2471
2472 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2473 value of the element of *ARR at the ARITY indices given in
2474 IND. Does not read the entire array into memory. */
2475
2476 static struct value *
2477 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2478 struct value **ind)
2479 {
2480 int k;
2481
2482 for (k = 0; k < arity; k += 1)
2483 {
2484 LONGEST lwb, upb;
2485
2486 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2487 error (_("too many subscripts (%d expected)"), k);
2488 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2489 value_copy (arr));
2490 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2491 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2492 type = TYPE_TARGET_TYPE (type);
2493 }
2494
2495 return value_ind (arr);
2496 }
2497
2498 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2499 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2500 elements starting at index LOW. The lower bound of this array is LOW, as
2501 per Ada rules. */
2502 static struct value *
2503 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2504 int low, int high)
2505 {
2506 CORE_ADDR base = value_as_address (array_ptr)
2507 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
2508 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2509 struct type *index_type =
2510 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2511 low, high);
2512 struct type *slice_type =
2513 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2514
2515 return value_at_lazy (slice_type, base);
2516 }
2517
2518
2519 static struct value *
2520 ada_value_slice (struct value *array, int low, int high)
2521 {
2522 struct type *type = value_type (array);
2523 struct type *index_type =
2524 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2525 struct type *slice_type =
2526 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2527
2528 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2529 }
2530
2531 /* If type is a record type in the form of a standard GNAT array
2532 descriptor, returns the number of dimensions for type. If arr is a
2533 simple array, returns the number of "array of"s that prefix its
2534 type designation. Otherwise, returns 0. */
2535
2536 int
2537 ada_array_arity (struct type *type)
2538 {
2539 int arity;
2540
2541 if (type == NULL)
2542 return 0;
2543
2544 type = desc_base_type (type);
2545
2546 arity = 0;
2547 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2548 return desc_arity (desc_bounds_type (type));
2549 else
2550 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2551 {
2552 arity += 1;
2553 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2554 }
2555
2556 return arity;
2557 }
2558
2559 /* If TYPE is a record type in the form of a standard GNAT array
2560 descriptor or a simple array type, returns the element type for
2561 TYPE after indexing by NINDICES indices, or by all indices if
2562 NINDICES is -1. Otherwise, returns NULL. */
2563
2564 struct type *
2565 ada_array_element_type (struct type *type, int nindices)
2566 {
2567 type = desc_base_type (type);
2568
2569 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2570 {
2571 int k;
2572 struct type *p_array_type;
2573
2574 p_array_type = desc_data_target_type (type);
2575
2576 k = ada_array_arity (type);
2577 if (k == 0)
2578 return NULL;
2579
2580 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2581 if (nindices >= 0 && k > nindices)
2582 k = nindices;
2583 while (k > 0 && p_array_type != NULL)
2584 {
2585 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2586 k -= 1;
2587 }
2588 return p_array_type;
2589 }
2590 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2591 {
2592 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2593 {
2594 type = TYPE_TARGET_TYPE (type);
2595 nindices -= 1;
2596 }
2597 return type;
2598 }
2599
2600 return NULL;
2601 }
2602
2603 /* The type of nth index in arrays of given type (n numbering from 1).
2604 Does not examine memory. Throws an error if N is invalid or TYPE
2605 is not an array type. NAME is the name of the Ada attribute being
2606 evaluated ('range, 'first, 'last, or 'length); it is used in building
2607 the error message. */
2608
2609 static struct type *
2610 ada_index_type (struct type *type, int n, const char *name)
2611 {
2612 struct type *result_type;
2613
2614 type = desc_base_type (type);
2615
2616 if (n < 0 || n > ada_array_arity (type))
2617 error (_("invalid dimension number to '%s"), name);
2618
2619 if (ada_is_simple_array_type (type))
2620 {
2621 int i;
2622
2623 for (i = 1; i < n; i += 1)
2624 type = TYPE_TARGET_TYPE (type);
2625 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2626 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2627 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2628 perhaps stabsread.c would make more sense. */
2629 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2630 result_type = NULL;
2631 }
2632 else
2633 {
2634 result_type = desc_index_type (desc_bounds_type (type), n);
2635 if (result_type == NULL)
2636 error (_("attempt to take bound of something that is not an array"));
2637 }
2638
2639 return result_type;
2640 }
2641
2642 /* Given that arr is an array type, returns the lower bound of the
2643 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2644 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2645 array-descriptor type. It works for other arrays with bounds supplied
2646 by run-time quantities other than discriminants. */
2647
2648 static LONGEST
2649 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2650 {
2651 struct type *type, *elt_type, *index_type_desc, *index_type;
2652 int i;
2653
2654 gdb_assert (which == 0 || which == 1);
2655
2656 if (ada_is_constrained_packed_array_type (arr_type))
2657 arr_type = decode_constrained_packed_array_type (arr_type);
2658
2659 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2660 return (LONGEST) - which;
2661
2662 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2663 type = TYPE_TARGET_TYPE (arr_type);
2664 else
2665 type = arr_type;
2666
2667 elt_type = type;
2668 for (i = n; i > 1; i--)
2669 elt_type = TYPE_TARGET_TYPE (type);
2670
2671 index_type_desc = ada_find_parallel_type (type, "___XA");
2672 ada_fixup_array_indexes_type (index_type_desc);
2673 if (index_type_desc != NULL)
2674 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2675 NULL);
2676 else
2677 index_type = TYPE_INDEX_TYPE (elt_type);
2678
2679 return
2680 (LONGEST) (which == 0
2681 ? ada_discrete_type_low_bound (index_type)
2682 : ada_discrete_type_high_bound (index_type));
2683 }
2684
2685 /* Given that arr is an array value, returns the lower bound of the
2686 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2687 WHICH is 1. This routine will also work for arrays with bounds
2688 supplied by run-time quantities other than discriminants. */
2689
2690 static LONGEST
2691 ada_array_bound (struct value *arr, int n, int which)
2692 {
2693 struct type *arr_type = value_type (arr);
2694
2695 if (ada_is_constrained_packed_array_type (arr_type))
2696 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2697 else if (ada_is_simple_array_type (arr_type))
2698 return ada_array_bound_from_type (arr_type, n, which);
2699 else
2700 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2701 }
2702
2703 /* Given that arr is an array value, returns the length of the
2704 nth index. This routine will also work for arrays with bounds
2705 supplied by run-time quantities other than discriminants.
2706 Does not work for arrays indexed by enumeration types with representation
2707 clauses at the moment. */
2708
2709 static LONGEST
2710 ada_array_length (struct value *arr, int n)
2711 {
2712 struct type *arr_type = ada_check_typedef (value_type (arr));
2713
2714 if (ada_is_constrained_packed_array_type (arr_type))
2715 return ada_array_length (decode_constrained_packed_array (arr), n);
2716
2717 if (ada_is_simple_array_type (arr_type))
2718 return (ada_array_bound_from_type (arr_type, n, 1)
2719 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2720 else
2721 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2722 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2723 }
2724
2725 /* An empty array whose type is that of ARR_TYPE (an array type),
2726 with bounds LOW to LOW-1. */
2727
2728 static struct value *
2729 empty_array (struct type *arr_type, int low)
2730 {
2731 struct type *index_type =
2732 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2733 low, low - 1);
2734 struct type *elt_type = ada_array_element_type (arr_type, 1);
2735
2736 return allocate_value (create_array_type (NULL, elt_type, index_type));
2737 }
2738 \f
2739
2740 /* Name resolution */
2741
2742 /* The "decoded" name for the user-definable Ada operator corresponding
2743 to OP. */
2744
2745 static const char *
2746 ada_decoded_op_name (enum exp_opcode op)
2747 {
2748 int i;
2749
2750 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2751 {
2752 if (ada_opname_table[i].op == op)
2753 return ada_opname_table[i].decoded;
2754 }
2755 error (_("Could not find operator name for opcode"));
2756 }
2757
2758
2759 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2760 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2761 undefined namespace) and converts operators that are
2762 user-defined into appropriate function calls. If CONTEXT_TYPE is
2763 non-null, it provides a preferred result type [at the moment, only
2764 type void has any effect---causing procedures to be preferred over
2765 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2766 return type is preferred. May change (expand) *EXP. */
2767
2768 static void
2769 resolve (struct expression **expp, int void_context_p)
2770 {
2771 struct type *context_type = NULL;
2772 int pc = 0;
2773
2774 if (void_context_p)
2775 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2776
2777 resolve_subexp (expp, &pc, 1, context_type);
2778 }
2779
2780 /* Resolve the operator of the subexpression beginning at
2781 position *POS of *EXPP. "Resolving" consists of replacing
2782 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2783 with their resolutions, replacing built-in operators with
2784 function calls to user-defined operators, where appropriate, and,
2785 when DEPROCEDURE_P is non-zero, converting function-valued variables
2786 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2787 are as in ada_resolve, above. */
2788
2789 static struct value *
2790 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2791 struct type *context_type)
2792 {
2793 int pc = *pos;
2794 int i;
2795 struct expression *exp; /* Convenience: == *expp. */
2796 enum exp_opcode op = (*expp)->elts[pc].opcode;
2797 struct value **argvec; /* Vector of operand types (alloca'ed). */
2798 int nargs; /* Number of operands. */
2799 int oplen;
2800
2801 argvec = NULL;
2802 nargs = 0;
2803 exp = *expp;
2804
2805 /* Pass one: resolve operands, saving their types and updating *pos,
2806 if needed. */
2807 switch (op)
2808 {
2809 case OP_FUNCALL:
2810 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2811 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2812 *pos += 7;
2813 else
2814 {
2815 *pos += 3;
2816 resolve_subexp (expp, pos, 0, NULL);
2817 }
2818 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2819 break;
2820
2821 case UNOP_ADDR:
2822 *pos += 1;
2823 resolve_subexp (expp, pos, 0, NULL);
2824 break;
2825
2826 case UNOP_QUAL:
2827 *pos += 3;
2828 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2829 break;
2830
2831 case OP_ATR_MODULUS:
2832 case OP_ATR_SIZE:
2833 case OP_ATR_TAG:
2834 case OP_ATR_FIRST:
2835 case OP_ATR_LAST:
2836 case OP_ATR_LENGTH:
2837 case OP_ATR_POS:
2838 case OP_ATR_VAL:
2839 case OP_ATR_MIN:
2840 case OP_ATR_MAX:
2841 case TERNOP_IN_RANGE:
2842 case BINOP_IN_BOUNDS:
2843 case UNOP_IN_RANGE:
2844 case OP_AGGREGATE:
2845 case OP_OTHERS:
2846 case OP_CHOICES:
2847 case OP_POSITIONAL:
2848 case OP_DISCRETE_RANGE:
2849 case OP_NAME:
2850 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2851 *pos += oplen;
2852 break;
2853
2854 case BINOP_ASSIGN:
2855 {
2856 struct value *arg1;
2857
2858 *pos += 1;
2859 arg1 = resolve_subexp (expp, pos, 0, NULL);
2860 if (arg1 == NULL)
2861 resolve_subexp (expp, pos, 1, NULL);
2862 else
2863 resolve_subexp (expp, pos, 1, value_type (arg1));
2864 break;
2865 }
2866
2867 case UNOP_CAST:
2868 *pos += 3;
2869 nargs = 1;
2870 break;
2871
2872 case BINOP_ADD:
2873 case BINOP_SUB:
2874 case BINOP_MUL:
2875 case BINOP_DIV:
2876 case BINOP_REM:
2877 case BINOP_MOD:
2878 case BINOP_EXP:
2879 case BINOP_CONCAT:
2880 case BINOP_LOGICAL_AND:
2881 case BINOP_LOGICAL_OR:
2882 case BINOP_BITWISE_AND:
2883 case BINOP_BITWISE_IOR:
2884 case BINOP_BITWISE_XOR:
2885
2886 case BINOP_EQUAL:
2887 case BINOP_NOTEQUAL:
2888 case BINOP_LESS:
2889 case BINOP_GTR:
2890 case BINOP_LEQ:
2891 case BINOP_GEQ:
2892
2893 case BINOP_REPEAT:
2894 case BINOP_SUBSCRIPT:
2895 case BINOP_COMMA:
2896 *pos += 1;
2897 nargs = 2;
2898 break;
2899
2900 case UNOP_NEG:
2901 case UNOP_PLUS:
2902 case UNOP_LOGICAL_NOT:
2903 case UNOP_ABS:
2904 case UNOP_IND:
2905 *pos += 1;
2906 nargs = 1;
2907 break;
2908
2909 case OP_LONG:
2910 case OP_DOUBLE:
2911 case OP_VAR_VALUE:
2912 *pos += 4;
2913 break;
2914
2915 case OP_TYPE:
2916 case OP_BOOL:
2917 case OP_LAST:
2918 case OP_INTERNALVAR:
2919 *pos += 3;
2920 break;
2921
2922 case UNOP_MEMVAL:
2923 *pos += 3;
2924 nargs = 1;
2925 break;
2926
2927 case OP_REGISTER:
2928 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2929 break;
2930
2931 case STRUCTOP_STRUCT:
2932 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2933 nargs = 1;
2934 break;
2935
2936 case TERNOP_SLICE:
2937 *pos += 1;
2938 nargs = 3;
2939 break;
2940
2941 case OP_STRING:
2942 break;
2943
2944 default:
2945 error (_("Unexpected operator during name resolution"));
2946 }
2947
2948 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2949 for (i = 0; i < nargs; i += 1)
2950 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2951 argvec[i] = NULL;
2952 exp = *expp;
2953
2954 /* Pass two: perform any resolution on principal operator. */
2955 switch (op)
2956 {
2957 default:
2958 break;
2959
2960 case OP_VAR_VALUE:
2961 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2962 {
2963 struct ada_symbol_info *candidates;
2964 int n_candidates;
2965
2966 n_candidates =
2967 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2968 (exp->elts[pc + 2].symbol),
2969 exp->elts[pc + 1].block, VAR_DOMAIN,
2970 &candidates);
2971
2972 if (n_candidates > 1)
2973 {
2974 /* Types tend to get re-introduced locally, so if there
2975 are any local symbols that are not types, first filter
2976 out all types. */
2977 int j;
2978 for (j = 0; j < n_candidates; j += 1)
2979 switch (SYMBOL_CLASS (candidates[j].sym))
2980 {
2981 case LOC_REGISTER:
2982 case LOC_ARG:
2983 case LOC_REF_ARG:
2984 case LOC_REGPARM_ADDR:
2985 case LOC_LOCAL:
2986 case LOC_COMPUTED:
2987 goto FoundNonType;
2988 default:
2989 break;
2990 }
2991 FoundNonType:
2992 if (j < n_candidates)
2993 {
2994 j = 0;
2995 while (j < n_candidates)
2996 {
2997 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2998 {
2999 candidates[j] = candidates[n_candidates - 1];
3000 n_candidates -= 1;
3001 }
3002 else
3003 j += 1;
3004 }
3005 }
3006 }
3007
3008 if (n_candidates == 0)
3009 error (_("No definition found for %s"),
3010 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3011 else if (n_candidates == 1)
3012 i = 0;
3013 else if (deprocedure_p
3014 && !is_nonfunction (candidates, n_candidates))
3015 {
3016 i = ada_resolve_function
3017 (candidates, n_candidates, NULL, 0,
3018 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3019 context_type);
3020 if (i < 0)
3021 error (_("Could not find a match for %s"),
3022 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3023 }
3024 else
3025 {
3026 printf_filtered (_("Multiple matches for %s\n"),
3027 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3028 user_select_syms (candidates, n_candidates, 1);
3029 i = 0;
3030 }
3031
3032 exp->elts[pc + 1].block = candidates[i].block;
3033 exp->elts[pc + 2].symbol = candidates[i].sym;
3034 if (innermost_block == NULL
3035 || contained_in (candidates[i].block, innermost_block))
3036 innermost_block = candidates[i].block;
3037 }
3038
3039 if (deprocedure_p
3040 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3041 == TYPE_CODE_FUNC))
3042 {
3043 replace_operator_with_call (expp, pc, 0, 0,
3044 exp->elts[pc + 2].symbol,
3045 exp->elts[pc + 1].block);
3046 exp = *expp;
3047 }
3048 break;
3049
3050 case OP_FUNCALL:
3051 {
3052 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3053 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3054 {
3055 struct ada_symbol_info *candidates;
3056 int n_candidates;
3057
3058 n_candidates =
3059 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3060 (exp->elts[pc + 5].symbol),
3061 exp->elts[pc + 4].block, VAR_DOMAIN,
3062 &candidates);
3063 if (n_candidates == 1)
3064 i = 0;
3065 else
3066 {
3067 i = ada_resolve_function
3068 (candidates, n_candidates,
3069 argvec, nargs,
3070 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3071 context_type);
3072 if (i < 0)
3073 error (_("Could not find a match for %s"),
3074 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3075 }
3076
3077 exp->elts[pc + 4].block = candidates[i].block;
3078 exp->elts[pc + 5].symbol = candidates[i].sym;
3079 if (innermost_block == NULL
3080 || contained_in (candidates[i].block, innermost_block))
3081 innermost_block = candidates[i].block;
3082 }
3083 }
3084 break;
3085 case BINOP_ADD:
3086 case BINOP_SUB:
3087 case BINOP_MUL:
3088 case BINOP_DIV:
3089 case BINOP_REM:
3090 case BINOP_MOD:
3091 case BINOP_CONCAT:
3092 case BINOP_BITWISE_AND:
3093 case BINOP_BITWISE_IOR:
3094 case BINOP_BITWISE_XOR:
3095 case BINOP_EQUAL:
3096 case BINOP_NOTEQUAL:
3097 case BINOP_LESS:
3098 case BINOP_GTR:
3099 case BINOP_LEQ:
3100 case BINOP_GEQ:
3101 case BINOP_EXP:
3102 case UNOP_NEG:
3103 case UNOP_PLUS:
3104 case UNOP_LOGICAL_NOT:
3105 case UNOP_ABS:
3106 if (possible_user_operator_p (op, argvec))
3107 {
3108 struct ada_symbol_info *candidates;
3109 int n_candidates;
3110
3111 n_candidates =
3112 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3113 (struct block *) NULL, VAR_DOMAIN,
3114 &candidates);
3115 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3116 ada_decoded_op_name (op), NULL);
3117 if (i < 0)
3118 break;
3119
3120 replace_operator_with_call (expp, pc, nargs, 1,
3121 candidates[i].sym, candidates[i].block);
3122 exp = *expp;
3123 }
3124 break;
3125
3126 case OP_TYPE:
3127 case OP_REGISTER:
3128 return NULL;
3129 }
3130
3131 *pos = pc;
3132 return evaluate_subexp_type (exp, pos);
3133 }
3134
3135 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3136 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3137 a non-pointer. */
3138 /* The term "match" here is rather loose. The match is heuristic and
3139 liberal. */
3140
3141 static int
3142 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3143 {
3144 ftype = ada_check_typedef (ftype);
3145 atype = ada_check_typedef (atype);
3146
3147 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3148 ftype = TYPE_TARGET_TYPE (ftype);
3149 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3150 atype = TYPE_TARGET_TYPE (atype);
3151
3152 switch (TYPE_CODE (ftype))
3153 {
3154 default:
3155 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3156 case TYPE_CODE_PTR:
3157 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3158 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3159 TYPE_TARGET_TYPE (atype), 0);
3160 else
3161 return (may_deref
3162 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3163 case TYPE_CODE_INT:
3164 case TYPE_CODE_ENUM:
3165 case TYPE_CODE_RANGE:
3166 switch (TYPE_CODE (atype))
3167 {
3168 case TYPE_CODE_INT:
3169 case TYPE_CODE_ENUM:
3170 case TYPE_CODE_RANGE:
3171 return 1;
3172 default:
3173 return 0;
3174 }
3175
3176 case TYPE_CODE_ARRAY:
3177 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3178 || ada_is_array_descriptor_type (atype));
3179
3180 case TYPE_CODE_STRUCT:
3181 if (ada_is_array_descriptor_type (ftype))
3182 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3183 || ada_is_array_descriptor_type (atype));
3184 else
3185 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3186 && !ada_is_array_descriptor_type (atype));
3187
3188 case TYPE_CODE_UNION:
3189 case TYPE_CODE_FLT:
3190 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3191 }
3192 }
3193
3194 /* Return non-zero if the formals of FUNC "sufficiently match" the
3195 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3196 may also be an enumeral, in which case it is treated as a 0-
3197 argument function. */
3198
3199 static int
3200 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3201 {
3202 int i;
3203 struct type *func_type = SYMBOL_TYPE (func);
3204
3205 if (SYMBOL_CLASS (func) == LOC_CONST
3206 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3207 return (n_actuals == 0);
3208 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3209 return 0;
3210
3211 if (TYPE_NFIELDS (func_type) != n_actuals)
3212 return 0;
3213
3214 for (i = 0; i < n_actuals; i += 1)
3215 {
3216 if (actuals[i] == NULL)
3217 return 0;
3218 else
3219 {
3220 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3221 i));
3222 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3223
3224 if (!ada_type_match (ftype, atype, 1))
3225 return 0;
3226 }
3227 }
3228 return 1;
3229 }
3230
3231 /* False iff function type FUNC_TYPE definitely does not produce a value
3232 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3233 FUNC_TYPE is not a valid function type with a non-null return type
3234 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3235
3236 static int
3237 return_match (struct type *func_type, struct type *context_type)
3238 {
3239 struct type *return_type;
3240
3241 if (func_type == NULL)
3242 return 1;
3243
3244 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3245 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3246 else
3247 return_type = base_type (func_type);
3248 if (return_type == NULL)
3249 return 1;
3250
3251 context_type = base_type (context_type);
3252
3253 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3254 return context_type == NULL || return_type == context_type;
3255 else if (context_type == NULL)
3256 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3257 else
3258 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3259 }
3260
3261
3262 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3263 function (if any) that matches the types of the NARGS arguments in
3264 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3265 that returns that type, then eliminate matches that don't. If
3266 CONTEXT_TYPE is void and there is at least one match that does not
3267 return void, eliminate all matches that do.
3268
3269 Asks the user if there is more than one match remaining. Returns -1
3270 if there is no such symbol or none is selected. NAME is used
3271 solely for messages. May re-arrange and modify SYMS in
3272 the process; the index returned is for the modified vector. */
3273
3274 static int
3275 ada_resolve_function (struct ada_symbol_info syms[],
3276 int nsyms, struct value **args, int nargs,
3277 const char *name, struct type *context_type)
3278 {
3279 int fallback;
3280 int k;
3281 int m; /* Number of hits */
3282
3283 m = 0;
3284 /* In the first pass of the loop, we only accept functions matching
3285 context_type. If none are found, we add a second pass of the loop
3286 where every function is accepted. */
3287 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3288 {
3289 for (k = 0; k < nsyms; k += 1)
3290 {
3291 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3292
3293 if (ada_args_match (syms[k].sym, args, nargs)
3294 && (fallback || return_match (type, context_type)))
3295 {
3296 syms[m] = syms[k];
3297 m += 1;
3298 }
3299 }
3300 }
3301
3302 if (m == 0)
3303 return -1;
3304 else if (m > 1)
3305 {
3306 printf_filtered (_("Multiple matches for %s\n"), name);
3307 user_select_syms (syms, m, 1);
3308 return 0;
3309 }
3310 return 0;
3311 }
3312
3313 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3314 in a listing of choices during disambiguation (see sort_choices, below).
3315 The idea is that overloadings of a subprogram name from the
3316 same package should sort in their source order. We settle for ordering
3317 such symbols by their trailing number (__N or $N). */
3318
3319 static int
3320 encoded_ordered_before (char *N0, char *N1)
3321 {
3322 if (N1 == NULL)
3323 return 0;
3324 else if (N0 == NULL)
3325 return 1;
3326 else
3327 {
3328 int k0, k1;
3329
3330 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3331 ;
3332 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3333 ;
3334 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3335 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3336 {
3337 int n0, n1;
3338
3339 n0 = k0;
3340 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3341 n0 -= 1;
3342 n1 = k1;
3343 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3344 n1 -= 1;
3345 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3346 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3347 }
3348 return (strcmp (N0, N1) < 0);
3349 }
3350 }
3351
3352 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3353 encoded names. */
3354
3355 static void
3356 sort_choices (struct ada_symbol_info syms[], int nsyms)
3357 {
3358 int i;
3359
3360 for (i = 1; i < nsyms; i += 1)
3361 {
3362 struct ada_symbol_info sym = syms[i];
3363 int j;
3364
3365 for (j = i - 1; j >= 0; j -= 1)
3366 {
3367 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3368 SYMBOL_LINKAGE_NAME (sym.sym)))
3369 break;
3370 syms[j + 1] = syms[j];
3371 }
3372 syms[j + 1] = sym;
3373 }
3374 }
3375
3376 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3377 by asking the user (if necessary), returning the number selected,
3378 and setting the first elements of SYMS items. Error if no symbols
3379 selected. */
3380
3381 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3382 to be re-integrated one of these days. */
3383
3384 int
3385 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3386 {
3387 int i;
3388 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3389 int n_chosen;
3390 int first_choice = (max_results == 1) ? 1 : 2;
3391 const char *select_mode = multiple_symbols_select_mode ();
3392
3393 if (max_results < 1)
3394 error (_("Request to select 0 symbols!"));
3395 if (nsyms <= 1)
3396 return nsyms;
3397
3398 if (select_mode == multiple_symbols_cancel)
3399 error (_("\
3400 canceled because the command is ambiguous\n\
3401 See set/show multiple-symbol."));
3402
3403 /* If select_mode is "all", then return all possible symbols.
3404 Only do that if more than one symbol can be selected, of course.
3405 Otherwise, display the menu as usual. */
3406 if (select_mode == multiple_symbols_all && max_results > 1)
3407 return nsyms;
3408
3409 printf_unfiltered (_("[0] cancel\n"));
3410 if (max_results > 1)
3411 printf_unfiltered (_("[1] all\n"));
3412
3413 sort_choices (syms, nsyms);
3414
3415 for (i = 0; i < nsyms; i += 1)
3416 {
3417 if (syms[i].sym == NULL)
3418 continue;
3419
3420 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3421 {
3422 struct symtab_and_line sal =
3423 find_function_start_sal (syms[i].sym, 1);
3424
3425 if (sal.symtab == NULL)
3426 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3427 i + first_choice,
3428 SYMBOL_PRINT_NAME (syms[i].sym),
3429 sal.line);
3430 else
3431 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3432 SYMBOL_PRINT_NAME (syms[i].sym),
3433 sal.symtab->filename, sal.line);
3434 continue;
3435 }
3436 else
3437 {
3438 int is_enumeral =
3439 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3440 && SYMBOL_TYPE (syms[i].sym) != NULL
3441 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3442 struct symtab *symtab = syms[i].sym->symtab;
3443
3444 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3445 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3446 i + first_choice,
3447 SYMBOL_PRINT_NAME (syms[i].sym),
3448 symtab->filename, SYMBOL_LINE (syms[i].sym));
3449 else if (is_enumeral
3450 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3451 {
3452 printf_unfiltered (("[%d] "), i + first_choice);
3453 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3454 gdb_stdout, -1, 0);
3455 printf_unfiltered (_("'(%s) (enumeral)\n"),
3456 SYMBOL_PRINT_NAME (syms[i].sym));
3457 }
3458 else if (symtab != NULL)
3459 printf_unfiltered (is_enumeral
3460 ? _("[%d] %s in %s (enumeral)\n")
3461 : _("[%d] %s at %s:?\n"),
3462 i + first_choice,
3463 SYMBOL_PRINT_NAME (syms[i].sym),
3464 symtab->filename);
3465 else
3466 printf_unfiltered (is_enumeral
3467 ? _("[%d] %s (enumeral)\n")
3468 : _("[%d] %s at ?\n"),
3469 i + first_choice,
3470 SYMBOL_PRINT_NAME (syms[i].sym));
3471 }
3472 }
3473
3474 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3475 "overload-choice");
3476
3477 for (i = 0; i < n_chosen; i += 1)
3478 syms[i] = syms[chosen[i]];
3479
3480 return n_chosen;
3481 }
3482
3483 /* Read and validate a set of numeric choices from the user in the
3484 range 0 .. N_CHOICES-1. Place the results in increasing
3485 order in CHOICES[0 .. N-1], and return N.
3486
3487 The user types choices as a sequence of numbers on one line
3488 separated by blanks, encoding them as follows:
3489
3490 + A choice of 0 means to cancel the selection, throwing an error.
3491 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3492 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3493
3494 The user is not allowed to choose more than MAX_RESULTS values.
3495
3496 ANNOTATION_SUFFIX, if present, is used to annotate the input
3497 prompts (for use with the -f switch). */
3498
3499 int
3500 get_selections (int *choices, int n_choices, int max_results,
3501 int is_all_choice, char *annotation_suffix)
3502 {
3503 char *args;
3504 char *prompt;
3505 int n_chosen;
3506 int first_choice = is_all_choice ? 2 : 1;
3507
3508 prompt = getenv ("PS2");
3509 if (prompt == NULL)
3510 prompt = "> ";
3511
3512 args = command_line_input (prompt, 0, annotation_suffix);
3513
3514 if (args == NULL)
3515 error_no_arg (_("one or more choice numbers"));
3516
3517 n_chosen = 0;
3518
3519 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3520 order, as given in args. Choices are validated. */
3521 while (1)
3522 {
3523 char *args2;
3524 int choice, j;
3525
3526 while (isspace (*args))
3527 args += 1;
3528 if (*args == '\0' && n_chosen == 0)
3529 error_no_arg (_("one or more choice numbers"));
3530 else if (*args == '\0')
3531 break;
3532
3533 choice = strtol (args, &args2, 10);
3534 if (args == args2 || choice < 0
3535 || choice > n_choices + first_choice - 1)
3536 error (_("Argument must be choice number"));
3537 args = args2;
3538
3539 if (choice == 0)
3540 error (_("cancelled"));
3541
3542 if (choice < first_choice)
3543 {
3544 n_chosen = n_choices;
3545 for (j = 0; j < n_choices; j += 1)
3546 choices[j] = j;
3547 break;
3548 }
3549 choice -= first_choice;
3550
3551 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3552 {
3553 }
3554
3555 if (j < 0 || choice != choices[j])
3556 {
3557 int k;
3558
3559 for (k = n_chosen - 1; k > j; k -= 1)
3560 choices[k + 1] = choices[k];
3561 choices[j + 1] = choice;
3562 n_chosen += 1;
3563 }
3564 }
3565
3566 if (n_chosen > max_results)
3567 error (_("Select no more than %d of the above"), max_results);
3568
3569 return n_chosen;
3570 }
3571
3572 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3573 on the function identified by SYM and BLOCK, and taking NARGS
3574 arguments. Update *EXPP as needed to hold more space. */
3575
3576 static void
3577 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3578 int oplen, struct symbol *sym,
3579 struct block *block)
3580 {
3581 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3582 symbol, -oplen for operator being replaced). */
3583 struct expression *newexp = (struct expression *)
3584 xmalloc (sizeof (struct expression)
3585 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3586 struct expression *exp = *expp;
3587
3588 newexp->nelts = exp->nelts + 7 - oplen;
3589 newexp->language_defn = exp->language_defn;
3590 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3591 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3592 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3593
3594 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3595 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3596
3597 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3598 newexp->elts[pc + 4].block = block;
3599 newexp->elts[pc + 5].symbol = sym;
3600
3601 *expp = newexp;
3602 xfree (exp);
3603 }
3604
3605 /* Type-class predicates */
3606
3607 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3608 or FLOAT). */
3609
3610 static int
3611 numeric_type_p (struct type *type)
3612 {
3613 if (type == NULL)
3614 return 0;
3615 else
3616 {
3617 switch (TYPE_CODE (type))
3618 {
3619 case TYPE_CODE_INT:
3620 case TYPE_CODE_FLT:
3621 return 1;
3622 case TYPE_CODE_RANGE:
3623 return (type == TYPE_TARGET_TYPE (type)
3624 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3625 default:
3626 return 0;
3627 }
3628 }
3629 }
3630
3631 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3632
3633 static int
3634 integer_type_p (struct type *type)
3635 {
3636 if (type == NULL)
3637 return 0;
3638 else
3639 {
3640 switch (TYPE_CODE (type))
3641 {
3642 case TYPE_CODE_INT:
3643 return 1;
3644 case TYPE_CODE_RANGE:
3645 return (type == TYPE_TARGET_TYPE (type)
3646 || integer_type_p (TYPE_TARGET_TYPE (type)));
3647 default:
3648 return 0;
3649 }
3650 }
3651 }
3652
3653 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3654
3655 static int
3656 scalar_type_p (struct type *type)
3657 {
3658 if (type == NULL)
3659 return 0;
3660 else
3661 {
3662 switch (TYPE_CODE (type))
3663 {
3664 case TYPE_CODE_INT:
3665 case TYPE_CODE_RANGE:
3666 case TYPE_CODE_ENUM:
3667 case TYPE_CODE_FLT:
3668 return 1;
3669 default:
3670 return 0;
3671 }
3672 }
3673 }
3674
3675 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3676
3677 static int
3678 discrete_type_p (struct type *type)
3679 {
3680 if (type == NULL)
3681 return 0;
3682 else
3683 {
3684 switch (TYPE_CODE (type))
3685 {
3686 case TYPE_CODE_INT:
3687 case TYPE_CODE_RANGE:
3688 case TYPE_CODE_ENUM:
3689 case TYPE_CODE_BOOL:
3690 return 1;
3691 default:
3692 return 0;
3693 }
3694 }
3695 }
3696
3697 /* Returns non-zero if OP with operands in the vector ARGS could be
3698 a user-defined function. Errs on the side of pre-defined operators
3699 (i.e., result 0). */
3700
3701 static int
3702 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3703 {
3704 struct type *type0 =
3705 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3706 struct type *type1 =
3707 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3708
3709 if (type0 == NULL)
3710 return 0;
3711
3712 switch (op)
3713 {
3714 default:
3715 return 0;
3716
3717 case BINOP_ADD:
3718 case BINOP_SUB:
3719 case BINOP_MUL:
3720 case BINOP_DIV:
3721 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3722
3723 case BINOP_REM:
3724 case BINOP_MOD:
3725 case BINOP_BITWISE_AND:
3726 case BINOP_BITWISE_IOR:
3727 case BINOP_BITWISE_XOR:
3728 return (!(integer_type_p (type0) && integer_type_p (type1)));
3729
3730 case BINOP_EQUAL:
3731 case BINOP_NOTEQUAL:
3732 case BINOP_LESS:
3733 case BINOP_GTR:
3734 case BINOP_LEQ:
3735 case BINOP_GEQ:
3736 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3737
3738 case BINOP_CONCAT:
3739 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3740
3741 case BINOP_EXP:
3742 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3743
3744 case UNOP_NEG:
3745 case UNOP_PLUS:
3746 case UNOP_LOGICAL_NOT:
3747 case UNOP_ABS:
3748 return (!numeric_type_p (type0));
3749
3750 }
3751 }
3752 \f
3753 /* Renaming */
3754
3755 /* NOTES:
3756
3757 1. In the following, we assume that a renaming type's name may
3758 have an ___XD suffix. It would be nice if this went away at some
3759 point.
3760 2. We handle both the (old) purely type-based representation of
3761 renamings and the (new) variable-based encoding. At some point,
3762 it is devoutly to be hoped that the former goes away
3763 (FIXME: hilfinger-2007-07-09).
3764 3. Subprogram renamings are not implemented, although the XRS
3765 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3766
3767 /* If SYM encodes a renaming,
3768
3769 <renaming> renames <renamed entity>,
3770
3771 sets *LEN to the length of the renamed entity's name,
3772 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3773 the string describing the subcomponent selected from the renamed
3774 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3775 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3776 are undefined). Otherwise, returns a value indicating the category
3777 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3778 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3779 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3780 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3781 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3782 may be NULL, in which case they are not assigned.
3783
3784 [Currently, however, GCC does not generate subprogram renamings.] */
3785
3786 enum ada_renaming_category
3787 ada_parse_renaming (struct symbol *sym,
3788 const char **renamed_entity, int *len,
3789 const char **renaming_expr)
3790 {
3791 enum ada_renaming_category kind;
3792 const char *info;
3793 const char *suffix;
3794
3795 if (sym == NULL)
3796 return ADA_NOT_RENAMING;
3797 switch (SYMBOL_CLASS (sym))
3798 {
3799 default:
3800 return ADA_NOT_RENAMING;
3801 case LOC_TYPEDEF:
3802 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3803 renamed_entity, len, renaming_expr);
3804 case LOC_LOCAL:
3805 case LOC_STATIC:
3806 case LOC_COMPUTED:
3807 case LOC_OPTIMIZED_OUT:
3808 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3809 if (info == NULL)
3810 return ADA_NOT_RENAMING;
3811 switch (info[5])
3812 {
3813 case '_':
3814 kind = ADA_OBJECT_RENAMING;
3815 info += 6;
3816 break;
3817 case 'E':
3818 kind = ADA_EXCEPTION_RENAMING;
3819 info += 7;
3820 break;
3821 case 'P':
3822 kind = ADA_PACKAGE_RENAMING;
3823 info += 7;
3824 break;
3825 case 'S':
3826 kind = ADA_SUBPROGRAM_RENAMING;
3827 info += 7;
3828 break;
3829 default:
3830 return ADA_NOT_RENAMING;
3831 }
3832 }
3833
3834 if (renamed_entity != NULL)
3835 *renamed_entity = info;
3836 suffix = strstr (info, "___XE");
3837 if (suffix == NULL || suffix == info)
3838 return ADA_NOT_RENAMING;
3839 if (len != NULL)
3840 *len = strlen (info) - strlen (suffix);
3841 suffix += 5;
3842 if (renaming_expr != NULL)
3843 *renaming_expr = suffix;
3844 return kind;
3845 }
3846
3847 /* Assuming TYPE encodes a renaming according to the old encoding in
3848 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3849 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3850 ADA_NOT_RENAMING otherwise. */
3851 static enum ada_renaming_category
3852 parse_old_style_renaming (struct type *type,
3853 const char **renamed_entity, int *len,
3854 const char **renaming_expr)
3855 {
3856 enum ada_renaming_category kind;
3857 const char *name;
3858 const char *info;
3859 const char *suffix;
3860
3861 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3862 || TYPE_NFIELDS (type) != 1)
3863 return ADA_NOT_RENAMING;
3864
3865 name = type_name_no_tag (type);
3866 if (name == NULL)
3867 return ADA_NOT_RENAMING;
3868
3869 name = strstr (name, "___XR");
3870 if (name == NULL)
3871 return ADA_NOT_RENAMING;
3872 switch (name[5])
3873 {
3874 case '\0':
3875 case '_':
3876 kind = ADA_OBJECT_RENAMING;
3877 break;
3878 case 'E':
3879 kind = ADA_EXCEPTION_RENAMING;
3880 break;
3881 case 'P':
3882 kind = ADA_PACKAGE_RENAMING;
3883 break;
3884 case 'S':
3885 kind = ADA_SUBPROGRAM_RENAMING;
3886 break;
3887 default:
3888 return ADA_NOT_RENAMING;
3889 }
3890
3891 info = TYPE_FIELD_NAME (type, 0);
3892 if (info == NULL)
3893 return ADA_NOT_RENAMING;
3894 if (renamed_entity != NULL)
3895 *renamed_entity = info;
3896 suffix = strstr (info, "___XE");
3897 if (renaming_expr != NULL)
3898 *renaming_expr = suffix + 5;
3899 if (suffix == NULL || suffix == info)
3900 return ADA_NOT_RENAMING;
3901 if (len != NULL)
3902 *len = suffix - info;
3903 return kind;
3904 }
3905
3906 \f
3907
3908 /* Evaluation: Function Calls */
3909
3910 /* Return an lvalue containing the value VAL. This is the identity on
3911 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3912 on the stack, using and updating *SP as the stack pointer, and
3913 returning an lvalue whose value_address points to the copy. */
3914
3915 static struct value *
3916 ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
3917 {
3918 if (! VALUE_LVAL (val))
3919 {
3920 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3921
3922 /* The following is taken from the structure-return code in
3923 call_function_by_hand. FIXME: Therefore, some refactoring seems
3924 indicated. */
3925 if (gdbarch_inner_than (gdbarch, 1, 2))
3926 {
3927 /* Stack grows downward. Align SP and value_address (val) after
3928 reserving sufficient space. */
3929 *sp -= len;
3930 if (gdbarch_frame_align_p (gdbarch))
3931 *sp = gdbarch_frame_align (gdbarch, *sp);
3932 set_value_address (val, *sp);
3933 }
3934 else
3935 {
3936 /* Stack grows upward. Align the frame, allocate space, and
3937 then again, re-align the frame. */
3938 if (gdbarch_frame_align_p (gdbarch))
3939 *sp = gdbarch_frame_align (gdbarch, *sp);
3940 set_value_address (val, *sp);
3941 *sp += len;
3942 if (gdbarch_frame_align_p (gdbarch))
3943 *sp = gdbarch_frame_align (gdbarch, *sp);
3944 }
3945 VALUE_LVAL (val) = lval_memory;
3946
3947 write_memory (value_address (val), value_contents (val), len);
3948 }
3949
3950 return val;
3951 }
3952
3953 /* Return the value ACTUAL, converted to be an appropriate value for a
3954 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3955 allocating any necessary descriptors (fat pointers), or copies of
3956 values not residing in memory, updating it as needed. */
3957
3958 struct value *
3959 ada_convert_actual (struct value *actual, struct type *formal_type0,
3960 struct gdbarch *gdbarch, CORE_ADDR *sp)
3961 {
3962 struct type *actual_type = ada_check_typedef (value_type (actual));
3963 struct type *formal_type = ada_check_typedef (formal_type0);
3964 struct type *formal_target =
3965 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3966 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3967 struct type *actual_target =
3968 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3969 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3970
3971 if (ada_is_array_descriptor_type (formal_target)
3972 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3973 return make_array_descriptor (formal_type, actual, gdbarch, sp);
3974 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3975 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3976 {
3977 struct value *result;
3978
3979 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3980 && ada_is_array_descriptor_type (actual_target))
3981 result = desc_data (actual);
3982 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3983 {
3984 if (VALUE_LVAL (actual) != lval_memory)
3985 {
3986 struct value *val;
3987
3988 actual_type = ada_check_typedef (value_type (actual));
3989 val = allocate_value (actual_type);
3990 memcpy ((char *) value_contents_raw (val),
3991 (char *) value_contents (actual),
3992 TYPE_LENGTH (actual_type));
3993 actual = ensure_lval (val, gdbarch, sp);
3994 }
3995 result = value_addr (actual);
3996 }
3997 else
3998 return actual;
3999 return value_cast_pointers (formal_type, result);
4000 }
4001 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4002 return ada_value_ind (actual);
4003
4004 return actual;
4005 }
4006
4007 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4008 type TYPE. This is usually an inefficient no-op except on some targets
4009 (such as AVR) where the representation of a pointer and an address
4010 differs. */
4011
4012 static CORE_ADDR
4013 value_pointer (struct value *value, struct type *type)
4014 {
4015 struct gdbarch *gdbarch = get_type_arch (type);
4016 unsigned len = TYPE_LENGTH (type);
4017 gdb_byte *buf = alloca (len);
4018 CORE_ADDR addr;
4019
4020 addr = value_address (value);
4021 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4022 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4023 return addr;
4024 }
4025
4026
4027 /* Push a descriptor of type TYPE for array value ARR on the stack at
4028 *SP, updating *SP to reflect the new descriptor. Return either
4029 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4030 to-descriptor type rather than a descriptor type), a struct value *
4031 representing a pointer to this descriptor. */
4032
4033 static struct value *
4034 make_array_descriptor (struct type *type, struct value *arr,
4035 struct gdbarch *gdbarch, CORE_ADDR *sp)
4036 {
4037 struct type *bounds_type = desc_bounds_type (type);
4038 struct type *desc_type = desc_base_type (type);
4039 struct value *descriptor = allocate_value (desc_type);
4040 struct value *bounds = allocate_value (bounds_type);
4041 int i;
4042
4043 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
4044 {
4045 modify_general_field (value_type (bounds),
4046 value_contents_writeable (bounds),
4047 ada_array_bound (arr, i, 0),
4048 desc_bound_bitpos (bounds_type, i, 0),
4049 desc_bound_bitsize (bounds_type, i, 0));
4050 modify_general_field (value_type (bounds),
4051 value_contents_writeable (bounds),
4052 ada_array_bound (arr, i, 1),
4053 desc_bound_bitpos (bounds_type, i, 1),
4054 desc_bound_bitsize (bounds_type, i, 1));
4055 }
4056
4057 bounds = ensure_lval (bounds, gdbarch, sp);
4058
4059 modify_general_field (value_type (descriptor),
4060 value_contents_writeable (descriptor),
4061 value_pointer (ensure_lval (arr, gdbarch, sp),
4062 TYPE_FIELD_TYPE (desc_type, 0)),
4063 fat_pntr_data_bitpos (desc_type),
4064 fat_pntr_data_bitsize (desc_type));
4065
4066 modify_general_field (value_type (descriptor),
4067 value_contents_writeable (descriptor),
4068 value_pointer (bounds,
4069 TYPE_FIELD_TYPE (desc_type, 1)),
4070 fat_pntr_bounds_bitpos (desc_type),
4071 fat_pntr_bounds_bitsize (desc_type));
4072
4073 descriptor = ensure_lval (descriptor, gdbarch, sp);
4074
4075 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4076 return value_addr (descriptor);
4077 else
4078 return descriptor;
4079 }
4080 \f
4081 /* Dummy definitions for an experimental caching module that is not
4082 * used in the public sources. */
4083
4084 static int
4085 lookup_cached_symbol (const char *name, domain_enum namespace,
4086 struct symbol **sym, struct block **block)
4087 {
4088 return 0;
4089 }
4090
4091 static void
4092 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4093 struct block *block)
4094 {
4095 }
4096 \f
4097 /* Symbol Lookup */
4098
4099 /* Return the result of a standard (literal, C-like) lookup of NAME in
4100 given DOMAIN, visible from lexical block BLOCK. */
4101
4102 static struct symbol *
4103 standard_lookup (const char *name, const struct block *block,
4104 domain_enum domain)
4105 {
4106 struct symbol *sym;
4107
4108 if (lookup_cached_symbol (name, domain, &sym, NULL))
4109 return sym;
4110 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4111 cache_symbol (name, domain, sym, block_found);
4112 return sym;
4113 }
4114
4115
4116 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4117 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4118 since they contend in overloading in the same way. */
4119 static int
4120 is_nonfunction (struct ada_symbol_info syms[], int n)
4121 {
4122 int i;
4123
4124 for (i = 0; i < n; i += 1)
4125 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4126 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4127 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4128 return 1;
4129
4130 return 0;
4131 }
4132
4133 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4134 struct types. Otherwise, they may not. */
4135
4136 static int
4137 equiv_types (struct type *type0, struct type *type1)
4138 {
4139 if (type0 == type1)
4140 return 1;
4141 if (type0 == NULL || type1 == NULL
4142 || TYPE_CODE (type0) != TYPE_CODE (type1))
4143 return 0;
4144 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4145 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4146 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4147 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4148 return 1;
4149
4150 return 0;
4151 }
4152
4153 /* True iff SYM0 represents the same entity as SYM1, or one that is
4154 no more defined than that of SYM1. */
4155
4156 static int
4157 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4158 {
4159 if (sym0 == sym1)
4160 return 1;
4161 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4162 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4163 return 0;
4164
4165 switch (SYMBOL_CLASS (sym0))
4166 {
4167 case LOC_UNDEF:
4168 return 1;
4169 case LOC_TYPEDEF:
4170 {
4171 struct type *type0 = SYMBOL_TYPE (sym0);
4172 struct type *type1 = SYMBOL_TYPE (sym1);
4173 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4174 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4175 int len0 = strlen (name0);
4176
4177 return
4178 TYPE_CODE (type0) == TYPE_CODE (type1)
4179 && (equiv_types (type0, type1)
4180 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4181 && strncmp (name1 + len0, "___XV", 5) == 0));
4182 }
4183 case LOC_CONST:
4184 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4185 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4186 default:
4187 return 0;
4188 }
4189 }
4190
4191 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4192 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4193
4194 static void
4195 add_defn_to_vec (struct obstack *obstackp,
4196 struct symbol *sym,
4197 struct block *block)
4198 {
4199 int i;
4200 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4201
4202 /* Do not try to complete stub types, as the debugger is probably
4203 already scanning all symbols matching a certain name at the
4204 time when this function is called. Trying to replace the stub
4205 type by its associated full type will cause us to restart a scan
4206 which may lead to an infinite recursion. Instead, the client
4207 collecting the matching symbols will end up collecting several
4208 matches, with at least one of them complete. It can then filter
4209 out the stub ones if needed. */
4210
4211 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4212 {
4213 if (lesseq_defined_than (sym, prevDefns[i].sym))
4214 return;
4215 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4216 {
4217 prevDefns[i].sym = sym;
4218 prevDefns[i].block = block;
4219 return;
4220 }
4221 }
4222
4223 {
4224 struct ada_symbol_info info;
4225
4226 info.sym = sym;
4227 info.block = block;
4228 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4229 }
4230 }
4231
4232 /* Number of ada_symbol_info structures currently collected in
4233 current vector in *OBSTACKP. */
4234
4235 static int
4236 num_defns_collected (struct obstack *obstackp)
4237 {
4238 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4239 }
4240
4241 /* Vector of ada_symbol_info structures currently collected in current
4242 vector in *OBSTACKP. If FINISH, close off the vector and return
4243 its final address. */
4244
4245 static struct ada_symbol_info *
4246 defns_collected (struct obstack *obstackp, int finish)
4247 {
4248 if (finish)
4249 return obstack_finish (obstackp);
4250 else
4251 return (struct ada_symbol_info *) obstack_base (obstackp);
4252 }
4253
4254 /* Return a minimal symbol matching NAME according to Ada decoding
4255 rules. Returns NULL if there is no such minimal symbol. Names
4256 prefixed with "standard__" are handled specially: "standard__" is
4257 first stripped off, and only static and global symbols are searched. */
4258
4259 struct minimal_symbol *
4260 ada_lookup_simple_minsym (const char *name)
4261 {
4262 struct objfile *objfile;
4263 struct minimal_symbol *msymbol;
4264 int wild_match;
4265
4266 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4267 {
4268 name += sizeof ("standard__") - 1;
4269 wild_match = 0;
4270 }
4271 else
4272 wild_match = (strstr (name, "__") == NULL);
4273
4274 ALL_MSYMBOLS (objfile, msymbol)
4275 {
4276 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4277 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4278 return msymbol;
4279 }
4280
4281 return NULL;
4282 }
4283
4284 /* For all subprograms that statically enclose the subprogram of the
4285 selected frame, add symbols matching identifier NAME in DOMAIN
4286 and their blocks to the list of data in OBSTACKP, as for
4287 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4288 wildcard prefix. */
4289
4290 static void
4291 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4292 const char *name, domain_enum namespace,
4293 int wild_match)
4294 {
4295 }
4296
4297 /* True if TYPE is definitely an artificial type supplied to a symbol
4298 for which no debugging information was given in the symbol file. */
4299
4300 static int
4301 is_nondebugging_type (struct type *type)
4302 {
4303 char *name = ada_type_name (type);
4304
4305 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4306 }
4307
4308 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4309 duplicate other symbols in the list (The only case I know of where
4310 this happens is when object files containing stabs-in-ecoff are
4311 linked with files containing ordinary ecoff debugging symbols (or no
4312 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4313 Returns the number of items in the modified list. */
4314
4315 static int
4316 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4317 {
4318 int i, j;
4319
4320 i = 0;
4321 while (i < nsyms)
4322 {
4323 int remove = 0;
4324
4325 /* If two symbols have the same name and one of them is a stub type,
4326 the get rid of the stub. */
4327
4328 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4329 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4330 {
4331 for (j = 0; j < nsyms; j++)
4332 {
4333 if (j != i
4334 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4335 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4336 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4337 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4338 remove = 1;
4339 }
4340 }
4341
4342 /* Two symbols with the same name, same class and same address
4343 should be identical. */
4344
4345 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4346 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4347 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4348 {
4349 for (j = 0; j < nsyms; j += 1)
4350 {
4351 if (i != j
4352 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4353 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4354 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4355 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4356 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4357 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4358 remove = 1;
4359 }
4360 }
4361
4362 if (remove)
4363 {
4364 for (j = i + 1; j < nsyms; j += 1)
4365 syms[j - 1] = syms[j];
4366 nsyms -= 1;
4367 }
4368
4369 i += 1;
4370 }
4371 return nsyms;
4372 }
4373
4374 /* Given a type that corresponds to a renaming entity, use the type name
4375 to extract the scope (package name or function name, fully qualified,
4376 and following the GNAT encoding convention) where this renaming has been
4377 defined. The string returned needs to be deallocated after use. */
4378
4379 static char *
4380 xget_renaming_scope (struct type *renaming_type)
4381 {
4382 /* The renaming types adhere to the following convention:
4383 <scope>__<rename>___<XR extension>.
4384 So, to extract the scope, we search for the "___XR" extension,
4385 and then backtrack until we find the first "__". */
4386
4387 const char *name = type_name_no_tag (renaming_type);
4388 char *suffix = strstr (name, "___XR");
4389 char *last;
4390 int scope_len;
4391 char *scope;
4392
4393 /* Now, backtrack a bit until we find the first "__". Start looking
4394 at suffix - 3, as the <rename> part is at least one character long. */
4395
4396 for (last = suffix - 3; last > name; last--)
4397 if (last[0] == '_' && last[1] == '_')
4398 break;
4399
4400 /* Make a copy of scope and return it. */
4401
4402 scope_len = last - name;
4403 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4404
4405 strncpy (scope, name, scope_len);
4406 scope[scope_len] = '\0';
4407
4408 return scope;
4409 }
4410
4411 /* Return nonzero if NAME corresponds to a package name. */
4412
4413 static int
4414 is_package_name (const char *name)
4415 {
4416 /* Here, We take advantage of the fact that no symbols are generated
4417 for packages, while symbols are generated for each function.
4418 So the condition for NAME represent a package becomes equivalent
4419 to NAME not existing in our list of symbols. There is only one
4420 small complication with library-level functions (see below). */
4421
4422 char *fun_name;
4423
4424 /* If it is a function that has not been defined at library level,
4425 then we should be able to look it up in the symbols. */
4426 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4427 return 0;
4428
4429 /* Library-level function names start with "_ada_". See if function
4430 "_ada_" followed by NAME can be found. */
4431
4432 /* Do a quick check that NAME does not contain "__", since library-level
4433 functions names cannot contain "__" in them. */
4434 if (strstr (name, "__") != NULL)
4435 return 0;
4436
4437 fun_name = xstrprintf ("_ada_%s", name);
4438
4439 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4440 }
4441
4442 /* Return nonzero if SYM corresponds to a renaming entity that is
4443 not visible from FUNCTION_NAME. */
4444
4445 static int
4446 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4447 {
4448 char *scope;
4449
4450 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4451 return 0;
4452
4453 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4454
4455 make_cleanup (xfree, scope);
4456
4457 /* If the rename has been defined in a package, then it is visible. */
4458 if (is_package_name (scope))
4459 return 0;
4460
4461 /* Check that the rename is in the current function scope by checking
4462 that its name starts with SCOPE. */
4463
4464 /* If the function name starts with "_ada_", it means that it is
4465 a library-level function. Strip this prefix before doing the
4466 comparison, as the encoding for the renaming does not contain
4467 this prefix. */
4468 if (strncmp (function_name, "_ada_", 5) == 0)
4469 function_name += 5;
4470
4471 return (strncmp (function_name, scope, strlen (scope)) != 0);
4472 }
4473
4474 /* Remove entries from SYMS that corresponds to a renaming entity that
4475 is not visible from the function associated with CURRENT_BLOCK or
4476 that is superfluous due to the presence of more specific renaming
4477 information. Places surviving symbols in the initial entries of
4478 SYMS and returns the number of surviving symbols.
4479
4480 Rationale:
4481 First, in cases where an object renaming is implemented as a
4482 reference variable, GNAT may produce both the actual reference
4483 variable and the renaming encoding. In this case, we discard the
4484 latter.
4485
4486 Second, GNAT emits a type following a specified encoding for each renaming
4487 entity. Unfortunately, STABS currently does not support the definition
4488 of types that are local to a given lexical block, so all renamings types
4489 are emitted at library level. As a consequence, if an application
4490 contains two renaming entities using the same name, and a user tries to
4491 print the value of one of these entities, the result of the ada symbol
4492 lookup will also contain the wrong renaming type.
4493
4494 This function partially covers for this limitation by attempting to
4495 remove from the SYMS list renaming symbols that should be visible
4496 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4497 method with the current information available. The implementation
4498 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4499
4500 - When the user tries to print a rename in a function while there
4501 is another rename entity defined in a package: Normally, the
4502 rename in the function has precedence over the rename in the
4503 package, so the latter should be removed from the list. This is
4504 currently not the case.
4505
4506 - This function will incorrectly remove valid renames if
4507 the CURRENT_BLOCK corresponds to a function which symbol name
4508 has been changed by an "Export" pragma. As a consequence,
4509 the user will be unable to print such rename entities. */
4510
4511 static int
4512 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4513 int nsyms, const struct block *current_block)
4514 {
4515 struct symbol *current_function;
4516 char *current_function_name;
4517 int i;
4518 int is_new_style_renaming;
4519
4520 /* If there is both a renaming foo___XR... encoded as a variable and
4521 a simple variable foo in the same block, discard the latter.
4522 First, zero out such symbols, then compress. */
4523 is_new_style_renaming = 0;
4524 for (i = 0; i < nsyms; i += 1)
4525 {
4526 struct symbol *sym = syms[i].sym;
4527 struct block *block = syms[i].block;
4528 const char *name;
4529 const char *suffix;
4530
4531 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4532 continue;
4533 name = SYMBOL_LINKAGE_NAME (sym);
4534 suffix = strstr (name, "___XR");
4535
4536 if (suffix != NULL)
4537 {
4538 int name_len = suffix - name;
4539 int j;
4540
4541 is_new_style_renaming = 1;
4542 for (j = 0; j < nsyms; j += 1)
4543 if (i != j && syms[j].sym != NULL
4544 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4545 name_len) == 0
4546 && block == syms[j].block)
4547 syms[j].sym = NULL;
4548 }
4549 }
4550 if (is_new_style_renaming)
4551 {
4552 int j, k;
4553
4554 for (j = k = 0; j < nsyms; j += 1)
4555 if (syms[j].sym != NULL)
4556 {
4557 syms[k] = syms[j];
4558 k += 1;
4559 }
4560 return k;
4561 }
4562
4563 /* Extract the function name associated to CURRENT_BLOCK.
4564 Abort if unable to do so. */
4565
4566 if (current_block == NULL)
4567 return nsyms;
4568
4569 current_function = block_linkage_function (current_block);
4570 if (current_function == NULL)
4571 return nsyms;
4572
4573 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4574 if (current_function_name == NULL)
4575 return nsyms;
4576
4577 /* Check each of the symbols, and remove it from the list if it is
4578 a type corresponding to a renaming that is out of the scope of
4579 the current block. */
4580
4581 i = 0;
4582 while (i < nsyms)
4583 {
4584 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4585 == ADA_OBJECT_RENAMING
4586 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4587 {
4588 int j;
4589
4590 for (j = i + 1; j < nsyms; j += 1)
4591 syms[j - 1] = syms[j];
4592 nsyms -= 1;
4593 }
4594 else
4595 i += 1;
4596 }
4597
4598 return nsyms;
4599 }
4600
4601 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4602 whose name and domain match NAME and DOMAIN respectively.
4603 If no match was found, then extend the search to "enclosing"
4604 routines (in other words, if we're inside a nested function,
4605 search the symbols defined inside the enclosing functions).
4606
4607 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4608
4609 static void
4610 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4611 struct block *block, domain_enum domain,
4612 int wild_match)
4613 {
4614 int block_depth = 0;
4615
4616 while (block != NULL)
4617 {
4618 block_depth += 1;
4619 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4620
4621 /* If we found a non-function match, assume that's the one. */
4622 if (is_nonfunction (defns_collected (obstackp, 0),
4623 num_defns_collected (obstackp)))
4624 return;
4625
4626 block = BLOCK_SUPERBLOCK (block);
4627 }
4628
4629 /* If no luck so far, try to find NAME as a local symbol in some lexically
4630 enclosing subprogram. */
4631 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4632 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4633 }
4634
4635 /* An object of this type is used as the user_data argument when
4636 calling the map_ada_symtabs method. */
4637
4638 struct ada_psym_data
4639 {
4640 struct obstack *obstackp;
4641 const char *name;
4642 domain_enum domain;
4643 int global;
4644 int wild_match;
4645 };
4646
4647 /* Callback function for map_ada_symtabs. */
4648
4649 static void
4650 ada_add_psyms (struct objfile *objfile, struct symtab *s, void *user_data)
4651 {
4652 struct ada_psym_data *data = user_data;
4653 const int block_kind = data->global ? GLOBAL_BLOCK : STATIC_BLOCK;
4654
4655 ada_add_block_symbols (data->obstackp,
4656 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4657 data->name, data->domain, objfile, data->wild_match);
4658 }
4659
4660 /* Add to OBSTACKP all non-local symbols whose name and domain match
4661 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4662 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4663
4664 static void
4665 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4666 domain_enum domain, int global,
4667 int is_wild_match)
4668 {
4669 struct objfile *objfile;
4670 struct ada_psym_data data;
4671
4672 data.obstackp = obstackp;
4673 data.name = name;
4674 data.domain = domain;
4675 data.global = global;
4676 data.wild_match = is_wild_match;
4677
4678 ALL_OBJFILES (objfile)
4679 {
4680 if (objfile->sf)
4681 objfile->sf->qf->map_ada_symtabs (objfile, wild_match, is_name_suffix,
4682 ada_add_psyms, name,
4683 global, domain,
4684 is_wild_match, &data);
4685 }
4686 }
4687
4688 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4689 scope and in global scopes, returning the number of matches. Sets
4690 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4691 indicating the symbols found and the blocks and symbol tables (if
4692 any) in which they were found. This vector are transient---good only to
4693 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4694 symbol match within the nest of blocks whose innermost member is BLOCK0,
4695 is the one match returned (no other matches in that or
4696 enclosing blocks is returned). If there are any matches in or
4697 surrounding BLOCK0, then these alone are returned. Otherwise, the
4698 search extends to global and file-scope (static) symbol tables.
4699 Names prefixed with "standard__" are handled specially: "standard__"
4700 is first stripped off, and only static and global symbols are searched. */
4701
4702 int
4703 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4704 domain_enum namespace,
4705 struct ada_symbol_info **results)
4706 {
4707 struct symbol *sym;
4708 struct block *block;
4709 const char *name;
4710 int wild_match;
4711 int cacheIfUnique;
4712 int ndefns;
4713
4714 obstack_free (&symbol_list_obstack, NULL);
4715 obstack_init (&symbol_list_obstack);
4716
4717 cacheIfUnique = 0;
4718
4719 /* Search specified block and its superiors. */
4720
4721 wild_match = (strstr (name0, "__") == NULL);
4722 name = name0;
4723 block = (struct block *) block0; /* FIXME: No cast ought to be
4724 needed, but adding const will
4725 have a cascade effect. */
4726
4727 /* Special case: If the user specifies a symbol name inside package
4728 Standard, do a non-wild matching of the symbol name without
4729 the "standard__" prefix. This was primarily introduced in order
4730 to allow the user to specifically access the standard exceptions
4731 using, for instance, Standard.Constraint_Error when Constraint_Error
4732 is ambiguous (due to the user defining its own Constraint_Error
4733 entity inside its program). */
4734 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4735 {
4736 wild_match = 0;
4737 block = NULL;
4738 name = name0 + sizeof ("standard__") - 1;
4739 }
4740
4741 /* Check the non-global symbols. If we have ANY match, then we're done. */
4742
4743 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4744 wild_match);
4745 if (num_defns_collected (&symbol_list_obstack) > 0)
4746 goto done;
4747
4748 /* No non-global symbols found. Check our cache to see if we have
4749 already performed this search before. If we have, then return
4750 the same result. */
4751
4752 cacheIfUnique = 1;
4753 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4754 {
4755 if (sym != NULL)
4756 add_defn_to_vec (&symbol_list_obstack, sym, block);
4757 goto done;
4758 }
4759
4760 /* Search symbols from all global blocks. */
4761
4762 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4763 wild_match);
4764
4765 /* Now add symbols from all per-file blocks if we've gotten no hits
4766 (not strictly correct, but perhaps better than an error). */
4767
4768 if (num_defns_collected (&symbol_list_obstack) == 0)
4769 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4770 wild_match);
4771
4772 done:
4773 ndefns = num_defns_collected (&symbol_list_obstack);
4774 *results = defns_collected (&symbol_list_obstack, 1);
4775
4776 ndefns = remove_extra_symbols (*results, ndefns);
4777
4778 if (ndefns == 0)
4779 cache_symbol (name0, namespace, NULL, NULL);
4780
4781 if (ndefns == 1 && cacheIfUnique)
4782 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4783
4784 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4785
4786 return ndefns;
4787 }
4788
4789 struct symbol *
4790 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4791 domain_enum namespace, struct block **block_found)
4792 {
4793 struct ada_symbol_info *candidates;
4794 int n_candidates;
4795
4796 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4797
4798 if (n_candidates == 0)
4799 return NULL;
4800
4801 if (block_found != NULL)
4802 *block_found = candidates[0].block;
4803
4804 return fixup_symbol_section (candidates[0].sym, NULL);
4805 }
4806
4807 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4808 scope and in global scopes, or NULL if none. NAME is folded and
4809 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4810 choosing the first symbol if there are multiple choices.
4811 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4812 table in which the symbol was found (in both cases, these
4813 assignments occur only if the pointers are non-null). */
4814 struct symbol *
4815 ada_lookup_symbol (const char *name, const struct block *block0,
4816 domain_enum namespace, int *is_a_field_of_this)
4817 {
4818 if (is_a_field_of_this != NULL)
4819 *is_a_field_of_this = 0;
4820
4821 return
4822 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4823 block0, namespace, NULL);
4824 }
4825
4826 static struct symbol *
4827 ada_lookup_symbol_nonlocal (const char *name,
4828 const struct block *block,
4829 const domain_enum domain)
4830 {
4831 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
4832 }
4833
4834
4835 /* True iff STR is a possible encoded suffix of a normal Ada name
4836 that is to be ignored for matching purposes. Suffixes of parallel
4837 names (e.g., XVE) are not included here. Currently, the possible suffixes
4838 are given by any of the regular expressions:
4839
4840 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4841 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4842 _E[0-9]+[bs]$ [protected object entry suffixes]
4843 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4844
4845 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4846 match is performed. This sequence is used to differentiate homonyms,
4847 is an optional part of a valid name suffix. */
4848
4849 static int
4850 is_name_suffix (const char *str)
4851 {
4852 int k;
4853 const char *matching;
4854 const int len = strlen (str);
4855
4856 /* Skip optional leading __[0-9]+. */
4857
4858 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4859 {
4860 str += 3;
4861 while (isdigit (str[0]))
4862 str += 1;
4863 }
4864
4865 /* [.$][0-9]+ */
4866
4867 if (str[0] == '.' || str[0] == '$')
4868 {
4869 matching = str + 1;
4870 while (isdigit (matching[0]))
4871 matching += 1;
4872 if (matching[0] == '\0')
4873 return 1;
4874 }
4875
4876 /* ___[0-9]+ */
4877
4878 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4879 {
4880 matching = str + 3;
4881 while (isdigit (matching[0]))
4882 matching += 1;
4883 if (matching[0] == '\0')
4884 return 1;
4885 }
4886
4887 #if 0
4888 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4889 with a N at the end. Unfortunately, the compiler uses the same
4890 convention for other internal types it creates. So treating
4891 all entity names that end with an "N" as a name suffix causes
4892 some regressions. For instance, consider the case of an enumerated
4893 type. To support the 'Image attribute, it creates an array whose
4894 name ends with N.
4895 Having a single character like this as a suffix carrying some
4896 information is a bit risky. Perhaps we should change the encoding
4897 to be something like "_N" instead. In the meantime, do not do
4898 the following check. */
4899 /* Protected Object Subprograms */
4900 if (len == 1 && str [0] == 'N')
4901 return 1;
4902 #endif
4903
4904 /* _E[0-9]+[bs]$ */
4905 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4906 {
4907 matching = str + 3;
4908 while (isdigit (matching[0]))
4909 matching += 1;
4910 if ((matching[0] == 'b' || matching[0] == 's')
4911 && matching [1] == '\0')
4912 return 1;
4913 }
4914
4915 /* ??? We should not modify STR directly, as we are doing below. This
4916 is fine in this case, but may become problematic later if we find
4917 that this alternative did not work, and want to try matching
4918 another one from the begining of STR. Since we modified it, we
4919 won't be able to find the begining of the string anymore! */
4920 if (str[0] == 'X')
4921 {
4922 str += 1;
4923 while (str[0] != '_' && str[0] != '\0')
4924 {
4925 if (str[0] != 'n' && str[0] != 'b')
4926 return 0;
4927 str += 1;
4928 }
4929 }
4930
4931 if (str[0] == '\000')
4932 return 1;
4933
4934 if (str[0] == '_')
4935 {
4936 if (str[1] != '_' || str[2] == '\000')
4937 return 0;
4938 if (str[2] == '_')
4939 {
4940 if (strcmp (str + 3, "JM") == 0)
4941 return 1;
4942 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4943 the LJM suffix in favor of the JM one. But we will
4944 still accept LJM as a valid suffix for a reasonable
4945 amount of time, just to allow ourselves to debug programs
4946 compiled using an older version of GNAT. */
4947 if (strcmp (str + 3, "LJM") == 0)
4948 return 1;
4949 if (str[3] != 'X')
4950 return 0;
4951 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4952 || str[4] == 'U' || str[4] == 'P')
4953 return 1;
4954 if (str[4] == 'R' && str[5] != 'T')
4955 return 1;
4956 return 0;
4957 }
4958 if (!isdigit (str[2]))
4959 return 0;
4960 for (k = 3; str[k] != '\0'; k += 1)
4961 if (!isdigit (str[k]) && str[k] != '_')
4962 return 0;
4963 return 1;
4964 }
4965 if (str[0] == '$' && isdigit (str[1]))
4966 {
4967 for (k = 2; str[k] != '\0'; k += 1)
4968 if (!isdigit (str[k]) && str[k] != '_')
4969 return 0;
4970 return 1;
4971 }
4972 return 0;
4973 }
4974
4975 /* Return non-zero if the string starting at NAME and ending before
4976 NAME_END contains no capital letters. */
4977
4978 static int
4979 is_valid_name_for_wild_match (const char *name0)
4980 {
4981 const char *decoded_name = ada_decode (name0);
4982 int i;
4983
4984 /* If the decoded name starts with an angle bracket, it means that
4985 NAME0 does not follow the GNAT encoding format. It should then
4986 not be allowed as a possible wild match. */
4987 if (decoded_name[0] == '<')
4988 return 0;
4989
4990 for (i=0; decoded_name[i] != '\0'; i++)
4991 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4992 return 0;
4993
4994 return 1;
4995 }
4996
4997 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4998 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4999 informational suffixes of NAME (i.e., for which is_name_suffix is
5000 true). */
5001
5002 static int
5003 wild_match (const char *patn0, int patn_len, const char *name0)
5004 {
5005 char* match;
5006 const char* start;
5007
5008 start = name0;
5009 while (1)
5010 {
5011 match = strstr (start, patn0);
5012 if (match == NULL)
5013 return 0;
5014 if ((match == name0
5015 || match[-1] == '.'
5016 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
5017 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
5018 && is_name_suffix (match + patn_len))
5019 return (match == name0 || is_valid_name_for_wild_match (name0));
5020 start = match + 1;
5021 }
5022 }
5023
5024 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5025 vector *defn_symbols, updating the list of symbols in OBSTACKP
5026 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5027 OBJFILE is the section containing BLOCK.
5028 SYMTAB is recorded with each symbol added. */
5029
5030 static void
5031 ada_add_block_symbols (struct obstack *obstackp,
5032 struct block *block, const char *name,
5033 domain_enum domain, struct objfile *objfile,
5034 int wild)
5035 {
5036 struct dict_iterator iter;
5037 int name_len = strlen (name);
5038 /* A matching argument symbol, if any. */
5039 struct symbol *arg_sym;
5040 /* Set true when we find a matching non-argument symbol. */
5041 int found_sym;
5042 struct symbol *sym;
5043
5044 arg_sym = NULL;
5045 found_sym = 0;
5046 if (wild)
5047 {
5048 struct symbol *sym;
5049
5050 ALL_BLOCK_SYMBOLS (block, iter, sym)
5051 {
5052 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5053 SYMBOL_DOMAIN (sym), domain)
5054 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5055 {
5056 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5057 continue;
5058 else if (SYMBOL_IS_ARGUMENT (sym))
5059 arg_sym = sym;
5060 else
5061 {
5062 found_sym = 1;
5063 add_defn_to_vec (obstackp,
5064 fixup_symbol_section (sym, objfile),
5065 block);
5066 }
5067 }
5068 }
5069 }
5070 else
5071 {
5072 ALL_BLOCK_SYMBOLS (block, iter, sym)
5073 {
5074 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5075 SYMBOL_DOMAIN (sym), domain))
5076 {
5077 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5078
5079 if (cmp == 0
5080 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5081 {
5082 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5083 {
5084 if (SYMBOL_IS_ARGUMENT (sym))
5085 arg_sym = sym;
5086 else
5087 {
5088 found_sym = 1;
5089 add_defn_to_vec (obstackp,
5090 fixup_symbol_section (sym, objfile),
5091 block);
5092 }
5093 }
5094 }
5095 }
5096 }
5097 }
5098
5099 if (!found_sym && arg_sym != NULL)
5100 {
5101 add_defn_to_vec (obstackp,
5102 fixup_symbol_section (arg_sym, objfile),
5103 block);
5104 }
5105
5106 if (!wild)
5107 {
5108 arg_sym = NULL;
5109 found_sym = 0;
5110
5111 ALL_BLOCK_SYMBOLS (block, iter, sym)
5112 {
5113 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5114 SYMBOL_DOMAIN (sym), domain))
5115 {
5116 int cmp;
5117
5118 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5119 if (cmp == 0)
5120 {
5121 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5122 if (cmp == 0)
5123 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5124 name_len);
5125 }
5126
5127 if (cmp == 0
5128 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5129 {
5130 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5131 {
5132 if (SYMBOL_IS_ARGUMENT (sym))
5133 arg_sym = sym;
5134 else
5135 {
5136 found_sym = 1;
5137 add_defn_to_vec (obstackp,
5138 fixup_symbol_section (sym, objfile),
5139 block);
5140 }
5141 }
5142 }
5143 }
5144 }
5145
5146 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5147 They aren't parameters, right? */
5148 if (!found_sym && arg_sym != NULL)
5149 {
5150 add_defn_to_vec (obstackp,
5151 fixup_symbol_section (arg_sym, objfile),
5152 block);
5153 }
5154 }
5155 }
5156 \f
5157
5158 /* Symbol Completion */
5159
5160 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5161 name in a form that's appropriate for the completion. The result
5162 does not need to be deallocated, but is only good until the next call.
5163
5164 TEXT_LEN is equal to the length of TEXT.
5165 Perform a wild match if WILD_MATCH is set.
5166 ENCODED should be set if TEXT represents the start of a symbol name
5167 in its encoded form. */
5168
5169 static const char *
5170 symbol_completion_match (const char *sym_name,
5171 const char *text, int text_len,
5172 int wild_match, int encoded)
5173 {
5174 const int verbatim_match = (text[0] == '<');
5175 int match = 0;
5176
5177 if (verbatim_match)
5178 {
5179 /* Strip the leading angle bracket. */
5180 text = text + 1;
5181 text_len--;
5182 }
5183
5184 /* First, test against the fully qualified name of the symbol. */
5185
5186 if (strncmp (sym_name, text, text_len) == 0)
5187 match = 1;
5188
5189 if (match && !encoded)
5190 {
5191 /* One needed check before declaring a positive match is to verify
5192 that iff we are doing a verbatim match, the decoded version
5193 of the symbol name starts with '<'. Otherwise, this symbol name
5194 is not a suitable completion. */
5195 const char *sym_name_copy = sym_name;
5196 int has_angle_bracket;
5197
5198 sym_name = ada_decode (sym_name);
5199 has_angle_bracket = (sym_name[0] == '<');
5200 match = (has_angle_bracket == verbatim_match);
5201 sym_name = sym_name_copy;
5202 }
5203
5204 if (match && !verbatim_match)
5205 {
5206 /* When doing non-verbatim match, another check that needs to
5207 be done is to verify that the potentially matching symbol name
5208 does not include capital letters, because the ada-mode would
5209 not be able to understand these symbol names without the
5210 angle bracket notation. */
5211 const char *tmp;
5212
5213 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5214 if (*tmp != '\0')
5215 match = 0;
5216 }
5217
5218 /* Second: Try wild matching... */
5219
5220 if (!match && wild_match)
5221 {
5222 /* Since we are doing wild matching, this means that TEXT
5223 may represent an unqualified symbol name. We therefore must
5224 also compare TEXT against the unqualified name of the symbol. */
5225 sym_name = ada_unqualified_name (ada_decode (sym_name));
5226
5227 if (strncmp (sym_name, text, text_len) == 0)
5228 match = 1;
5229 }
5230
5231 /* Finally: If we found a mach, prepare the result to return. */
5232
5233 if (!match)
5234 return NULL;
5235
5236 if (verbatim_match)
5237 sym_name = add_angle_brackets (sym_name);
5238
5239 if (!encoded)
5240 sym_name = ada_decode (sym_name);
5241
5242 return sym_name;
5243 }
5244
5245 DEF_VEC_P (char_ptr);
5246
5247 /* A companion function to ada_make_symbol_completion_list().
5248 Check if SYM_NAME represents a symbol which name would be suitable
5249 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5250 it is appended at the end of the given string vector SV.
5251
5252 ORIG_TEXT is the string original string from the user command
5253 that needs to be completed. WORD is the entire command on which
5254 completion should be performed. These two parameters are used to
5255 determine which part of the symbol name should be added to the
5256 completion vector.
5257 if WILD_MATCH is set, then wild matching is performed.
5258 ENCODED should be set if TEXT represents a symbol name in its
5259 encoded formed (in which case the completion should also be
5260 encoded). */
5261
5262 static void
5263 symbol_completion_add (VEC(char_ptr) **sv,
5264 const char *sym_name,
5265 const char *text, int text_len,
5266 const char *orig_text, const char *word,
5267 int wild_match, int encoded)
5268 {
5269 const char *match = symbol_completion_match (sym_name, text, text_len,
5270 wild_match, encoded);
5271 char *completion;
5272
5273 if (match == NULL)
5274 return;
5275
5276 /* We found a match, so add the appropriate completion to the given
5277 string vector. */
5278
5279 if (word == orig_text)
5280 {
5281 completion = xmalloc (strlen (match) + 5);
5282 strcpy (completion, match);
5283 }
5284 else if (word > orig_text)
5285 {
5286 /* Return some portion of sym_name. */
5287 completion = xmalloc (strlen (match) + 5);
5288 strcpy (completion, match + (word - orig_text));
5289 }
5290 else
5291 {
5292 /* Return some of ORIG_TEXT plus sym_name. */
5293 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5294 strncpy (completion, word, orig_text - word);
5295 completion[orig_text - word] = '\0';
5296 strcat (completion, match);
5297 }
5298
5299 VEC_safe_push (char_ptr, *sv, completion);
5300 }
5301
5302 /* An object of this type is passed as the user_data argument to the
5303 map_partial_symbol_names method. */
5304 struct add_partial_datum
5305 {
5306 VEC(char_ptr) **completions;
5307 char *text;
5308 int text_len;
5309 char *text0;
5310 char *word;
5311 int wild_match;
5312 int encoded;
5313 };
5314
5315 /* A callback for map_partial_symbol_names. */
5316 static void
5317 ada_add_partial_symbol_completions (const char *name, void *user_data)
5318 {
5319 struct add_partial_datum *data = user_data;
5320
5321 symbol_completion_add (data->completions, name,
5322 data->text, data->text_len, data->text0, data->word,
5323 data->wild_match, data->encoded);
5324 }
5325
5326 /* Return a list of possible symbol names completing TEXT0. The list
5327 is NULL terminated. WORD is the entire command on which completion
5328 is made. */
5329
5330 static char **
5331 ada_make_symbol_completion_list (char *text0, char *word)
5332 {
5333 char *text;
5334 int text_len;
5335 int wild_match;
5336 int encoded;
5337 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5338 struct symbol *sym;
5339 struct symtab *s;
5340 struct minimal_symbol *msymbol;
5341 struct objfile *objfile;
5342 struct block *b, *surrounding_static_block = 0;
5343 int i;
5344 struct dict_iterator iter;
5345
5346 if (text0[0] == '<')
5347 {
5348 text = xstrdup (text0);
5349 make_cleanup (xfree, text);
5350 text_len = strlen (text);
5351 wild_match = 0;
5352 encoded = 1;
5353 }
5354 else
5355 {
5356 text = xstrdup (ada_encode (text0));
5357 make_cleanup (xfree, text);
5358 text_len = strlen (text);
5359 for (i = 0; i < text_len; i++)
5360 text[i] = tolower (text[i]);
5361
5362 encoded = (strstr (text0, "__") != NULL);
5363 /* If the name contains a ".", then the user is entering a fully
5364 qualified entity name, and the match must not be done in wild
5365 mode. Similarly, if the user wants to complete what looks like
5366 an encoded name, the match must not be done in wild mode. */
5367 wild_match = (strchr (text0, '.') == NULL && !encoded);
5368 }
5369
5370 /* First, look at the partial symtab symbols. */
5371 {
5372 struct add_partial_datum data;
5373
5374 data.completions = &completions;
5375 data.text = text;
5376 data.text_len = text_len;
5377 data.text0 = text0;
5378 data.word = word;
5379 data.wild_match = wild_match;
5380 data.encoded = encoded;
5381 map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
5382 }
5383
5384 /* At this point scan through the misc symbol vectors and add each
5385 symbol you find to the list. Eventually we want to ignore
5386 anything that isn't a text symbol (everything else will be
5387 handled by the psymtab code above). */
5388
5389 ALL_MSYMBOLS (objfile, msymbol)
5390 {
5391 QUIT;
5392 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5393 text, text_len, text0, word, wild_match, encoded);
5394 }
5395
5396 /* Search upwards from currently selected frame (so that we can
5397 complete on local vars. */
5398
5399 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5400 {
5401 if (!BLOCK_SUPERBLOCK (b))
5402 surrounding_static_block = b; /* For elmin of dups */
5403
5404 ALL_BLOCK_SYMBOLS (b, iter, sym)
5405 {
5406 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5407 text, text_len, text0, word,
5408 wild_match, encoded);
5409 }
5410 }
5411
5412 /* Go through the symtabs and check the externs and statics for
5413 symbols which match. */
5414
5415 ALL_SYMTABS (objfile, s)
5416 {
5417 QUIT;
5418 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5419 ALL_BLOCK_SYMBOLS (b, iter, sym)
5420 {
5421 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5422 text, text_len, text0, word,
5423 wild_match, encoded);
5424 }
5425 }
5426
5427 ALL_SYMTABS (objfile, s)
5428 {
5429 QUIT;
5430 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5431 /* Don't do this block twice. */
5432 if (b == surrounding_static_block)
5433 continue;
5434 ALL_BLOCK_SYMBOLS (b, iter, sym)
5435 {
5436 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5437 text, text_len, text0, word,
5438 wild_match, encoded);
5439 }
5440 }
5441
5442 /* Append the closing NULL entry. */
5443 VEC_safe_push (char_ptr, completions, NULL);
5444
5445 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5446 return the copy. It's unfortunate that we have to make a copy
5447 of an array that we're about to destroy, but there is nothing much
5448 we can do about it. Fortunately, it's typically not a very large
5449 array. */
5450 {
5451 const size_t completions_size =
5452 VEC_length (char_ptr, completions) * sizeof (char *);
5453 char **result = malloc (completions_size);
5454
5455 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5456
5457 VEC_free (char_ptr, completions);
5458 return result;
5459 }
5460 }
5461
5462 /* Field Access */
5463
5464 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5465 for tagged types. */
5466
5467 static int
5468 ada_is_dispatch_table_ptr_type (struct type *type)
5469 {
5470 char *name;
5471
5472 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5473 return 0;
5474
5475 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5476 if (name == NULL)
5477 return 0;
5478
5479 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5480 }
5481
5482 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5483 to be invisible to users. */
5484
5485 int
5486 ada_is_ignored_field (struct type *type, int field_num)
5487 {
5488 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5489 return 1;
5490
5491 /* Check the name of that field. */
5492 {
5493 const char *name = TYPE_FIELD_NAME (type, field_num);
5494
5495 /* Anonymous field names should not be printed.
5496 brobecker/2007-02-20: I don't think this can actually happen
5497 but we don't want to print the value of annonymous fields anyway. */
5498 if (name == NULL)
5499 return 1;
5500
5501 /* A field named "_parent" is internally generated by GNAT for
5502 tagged types, and should not be printed either. */
5503 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5504 return 1;
5505 }
5506
5507 /* If this is the dispatch table of a tagged type, then ignore. */
5508 if (ada_is_tagged_type (type, 1)
5509 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5510 return 1;
5511
5512 /* Not a special field, so it should not be ignored. */
5513 return 0;
5514 }
5515
5516 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5517 pointer or reference type whose ultimate target has a tag field. */
5518
5519 int
5520 ada_is_tagged_type (struct type *type, int refok)
5521 {
5522 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5523 }
5524
5525 /* True iff TYPE represents the type of X'Tag */
5526
5527 int
5528 ada_is_tag_type (struct type *type)
5529 {
5530 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5531 return 0;
5532 else
5533 {
5534 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5535
5536 return (name != NULL
5537 && strcmp (name, "ada__tags__dispatch_table") == 0);
5538 }
5539 }
5540
5541 /* The type of the tag on VAL. */
5542
5543 struct type *
5544 ada_tag_type (struct value *val)
5545 {
5546 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5547 }
5548
5549 /* The value of the tag on VAL. */
5550
5551 struct value *
5552 ada_value_tag (struct value *val)
5553 {
5554 return ada_value_struct_elt (val, "_tag", 0);
5555 }
5556
5557 /* The value of the tag on the object of type TYPE whose contents are
5558 saved at VALADDR, if it is non-null, or is at memory address
5559 ADDRESS. */
5560
5561 static struct value *
5562 value_tag_from_contents_and_address (struct type *type,
5563 const gdb_byte *valaddr,
5564 CORE_ADDR address)
5565 {
5566 int tag_byte_offset;
5567 struct type *tag_type;
5568
5569 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5570 NULL, NULL, NULL))
5571 {
5572 const gdb_byte *valaddr1 = ((valaddr == NULL)
5573 ? NULL
5574 : valaddr + tag_byte_offset);
5575 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5576
5577 return value_from_contents_and_address (tag_type, valaddr1, address1);
5578 }
5579 return NULL;
5580 }
5581
5582 static struct type *
5583 type_from_tag (struct value *tag)
5584 {
5585 const char *type_name = ada_tag_name (tag);
5586
5587 if (type_name != NULL)
5588 return ada_find_any_type (ada_encode (type_name));
5589 return NULL;
5590 }
5591
5592 struct tag_args
5593 {
5594 struct value *tag;
5595 char *name;
5596 };
5597
5598
5599 static int ada_tag_name_1 (void *);
5600 static int ada_tag_name_2 (struct tag_args *);
5601
5602 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5603 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5604 The value stored in ARGS->name is valid until the next call to
5605 ada_tag_name_1. */
5606
5607 static int
5608 ada_tag_name_1 (void *args0)
5609 {
5610 struct tag_args *args = (struct tag_args *) args0;
5611 static char name[1024];
5612 char *p;
5613 struct value *val;
5614
5615 args->name = NULL;
5616 val = ada_value_struct_elt (args->tag, "tsd", 1);
5617 if (val == NULL)
5618 return ada_tag_name_2 (args);
5619 val = ada_value_struct_elt (val, "expanded_name", 1);
5620 if (val == NULL)
5621 return 0;
5622 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5623 for (p = name; *p != '\0'; p += 1)
5624 if (isalpha (*p))
5625 *p = tolower (*p);
5626 args->name = name;
5627 return 0;
5628 }
5629
5630 /* Return the "ada__tags__type_specific_data" type. */
5631
5632 static struct type *
5633 ada_get_tsd_type (struct inferior *inf)
5634 {
5635 struct ada_inferior_data *data = get_ada_inferior_data (inf);
5636
5637 if (data->tsd_type == 0)
5638 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
5639 return data->tsd_type;
5640 }
5641
5642 /* Utility function for ada_tag_name_1 that tries the second
5643 representation for the dispatch table (in which there is no
5644 explicit 'tsd' field in the referent of the tag pointer, and instead
5645 the tsd pointer is stored just before the dispatch table. */
5646
5647 static int
5648 ada_tag_name_2 (struct tag_args *args)
5649 {
5650 struct type *info_type;
5651 static char name[1024];
5652 char *p;
5653 struct value *val, *valp;
5654
5655 args->name = NULL;
5656 info_type = ada_get_tsd_type (current_inferior());
5657 if (info_type == NULL)
5658 return 0;
5659 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5660 valp = value_cast (info_type, args->tag);
5661 if (valp == NULL)
5662 return 0;
5663 val = value_ind (value_ptradd (valp, -1));
5664 if (val == NULL)
5665 return 0;
5666 val = ada_value_struct_elt (val, "expanded_name", 1);
5667 if (val == NULL)
5668 return 0;
5669 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5670 for (p = name; *p != '\0'; p += 1)
5671 if (isalpha (*p))
5672 *p = tolower (*p);
5673 args->name = name;
5674 return 0;
5675 }
5676
5677 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5678 a C string. */
5679
5680 const char *
5681 ada_tag_name (struct value *tag)
5682 {
5683 struct tag_args args;
5684
5685 if (!ada_is_tag_type (value_type (tag)))
5686 return NULL;
5687 args.tag = tag;
5688 args.name = NULL;
5689 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5690 return args.name;
5691 }
5692
5693 /* The parent type of TYPE, or NULL if none. */
5694
5695 struct type *
5696 ada_parent_type (struct type *type)
5697 {
5698 int i;
5699
5700 type = ada_check_typedef (type);
5701
5702 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5703 return NULL;
5704
5705 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5706 if (ada_is_parent_field (type, i))
5707 {
5708 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5709
5710 /* If the _parent field is a pointer, then dereference it. */
5711 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5712 parent_type = TYPE_TARGET_TYPE (parent_type);
5713 /* If there is a parallel XVS type, get the actual base type. */
5714 parent_type = ada_get_base_type (parent_type);
5715
5716 return ada_check_typedef (parent_type);
5717 }
5718
5719 return NULL;
5720 }
5721
5722 /* True iff field number FIELD_NUM of structure type TYPE contains the
5723 parent-type (inherited) fields of a derived type. Assumes TYPE is
5724 a structure type with at least FIELD_NUM+1 fields. */
5725
5726 int
5727 ada_is_parent_field (struct type *type, int field_num)
5728 {
5729 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5730
5731 return (name != NULL
5732 && (strncmp (name, "PARENT", 6) == 0
5733 || strncmp (name, "_parent", 7) == 0));
5734 }
5735
5736 /* True iff field number FIELD_NUM of structure type TYPE is a
5737 transparent wrapper field (which should be silently traversed when doing
5738 field selection and flattened when printing). Assumes TYPE is a
5739 structure type with at least FIELD_NUM+1 fields. Such fields are always
5740 structures. */
5741
5742 int
5743 ada_is_wrapper_field (struct type *type, int field_num)
5744 {
5745 const char *name = TYPE_FIELD_NAME (type, field_num);
5746
5747 return (name != NULL
5748 && (strncmp (name, "PARENT", 6) == 0
5749 || strcmp (name, "REP") == 0
5750 || strncmp (name, "_parent", 7) == 0
5751 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5752 }
5753
5754 /* True iff field number FIELD_NUM of structure or union type TYPE
5755 is a variant wrapper. Assumes TYPE is a structure type with at least
5756 FIELD_NUM+1 fields. */
5757
5758 int
5759 ada_is_variant_part (struct type *type, int field_num)
5760 {
5761 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5762
5763 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5764 || (is_dynamic_field (type, field_num)
5765 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5766 == TYPE_CODE_UNION)));
5767 }
5768
5769 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5770 whose discriminants are contained in the record type OUTER_TYPE,
5771 returns the type of the controlling discriminant for the variant.
5772 May return NULL if the type could not be found. */
5773
5774 struct type *
5775 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5776 {
5777 char *name = ada_variant_discrim_name (var_type);
5778
5779 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5780 }
5781
5782 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5783 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5784 represents a 'when others' clause; otherwise 0. */
5785
5786 int
5787 ada_is_others_clause (struct type *type, int field_num)
5788 {
5789 const char *name = TYPE_FIELD_NAME (type, field_num);
5790
5791 return (name != NULL && name[0] == 'O');
5792 }
5793
5794 /* Assuming that TYPE0 is the type of the variant part of a record,
5795 returns the name of the discriminant controlling the variant.
5796 The value is valid until the next call to ada_variant_discrim_name. */
5797
5798 char *
5799 ada_variant_discrim_name (struct type *type0)
5800 {
5801 static char *result = NULL;
5802 static size_t result_len = 0;
5803 struct type *type;
5804 const char *name;
5805 const char *discrim_end;
5806 const char *discrim_start;
5807
5808 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5809 type = TYPE_TARGET_TYPE (type0);
5810 else
5811 type = type0;
5812
5813 name = ada_type_name (type);
5814
5815 if (name == NULL || name[0] == '\000')
5816 return "";
5817
5818 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5819 discrim_end -= 1)
5820 {
5821 if (strncmp (discrim_end, "___XVN", 6) == 0)
5822 break;
5823 }
5824 if (discrim_end == name)
5825 return "";
5826
5827 for (discrim_start = discrim_end; discrim_start != name + 3;
5828 discrim_start -= 1)
5829 {
5830 if (discrim_start == name + 1)
5831 return "";
5832 if ((discrim_start > name + 3
5833 && strncmp (discrim_start - 3, "___", 3) == 0)
5834 || discrim_start[-1] == '.')
5835 break;
5836 }
5837
5838 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5839 strncpy (result, discrim_start, discrim_end - discrim_start);
5840 result[discrim_end - discrim_start] = '\0';
5841 return result;
5842 }
5843
5844 /* Scan STR for a subtype-encoded number, beginning at position K.
5845 Put the position of the character just past the number scanned in
5846 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5847 Return 1 if there was a valid number at the given position, and 0
5848 otherwise. A "subtype-encoded" number consists of the absolute value
5849 in decimal, followed by the letter 'm' to indicate a negative number.
5850 Assumes 0m does not occur. */
5851
5852 int
5853 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5854 {
5855 ULONGEST RU;
5856
5857 if (!isdigit (str[k]))
5858 return 0;
5859
5860 /* Do it the hard way so as not to make any assumption about
5861 the relationship of unsigned long (%lu scan format code) and
5862 LONGEST. */
5863 RU = 0;
5864 while (isdigit (str[k]))
5865 {
5866 RU = RU * 10 + (str[k] - '0');
5867 k += 1;
5868 }
5869
5870 if (str[k] == 'm')
5871 {
5872 if (R != NULL)
5873 *R = (-(LONGEST) (RU - 1)) - 1;
5874 k += 1;
5875 }
5876 else if (R != NULL)
5877 *R = (LONGEST) RU;
5878
5879 /* NOTE on the above: Technically, C does not say what the results of
5880 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5881 number representable as a LONGEST (although either would probably work
5882 in most implementations). When RU>0, the locution in the then branch
5883 above is always equivalent to the negative of RU. */
5884
5885 if (new_k != NULL)
5886 *new_k = k;
5887 return 1;
5888 }
5889
5890 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5891 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5892 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5893
5894 int
5895 ada_in_variant (LONGEST val, struct type *type, int field_num)
5896 {
5897 const char *name = TYPE_FIELD_NAME (type, field_num);
5898 int p;
5899
5900 p = 0;
5901 while (1)
5902 {
5903 switch (name[p])
5904 {
5905 case '\0':
5906 return 0;
5907 case 'S':
5908 {
5909 LONGEST W;
5910
5911 if (!ada_scan_number (name, p + 1, &W, &p))
5912 return 0;
5913 if (val == W)
5914 return 1;
5915 break;
5916 }
5917 case 'R':
5918 {
5919 LONGEST L, U;
5920
5921 if (!ada_scan_number (name, p + 1, &L, &p)
5922 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5923 return 0;
5924 if (val >= L && val <= U)
5925 return 1;
5926 break;
5927 }
5928 case 'O':
5929 return 1;
5930 default:
5931 return 0;
5932 }
5933 }
5934 }
5935
5936 /* FIXME: Lots of redundancy below. Try to consolidate. */
5937
5938 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5939 ARG_TYPE, extract and return the value of one of its (non-static)
5940 fields. FIELDNO says which field. Differs from value_primitive_field
5941 only in that it can handle packed values of arbitrary type. */
5942
5943 static struct value *
5944 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5945 struct type *arg_type)
5946 {
5947 struct type *type;
5948
5949 arg_type = ada_check_typedef (arg_type);
5950 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5951
5952 /* Handle packed fields. */
5953
5954 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5955 {
5956 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5957 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5958
5959 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5960 offset + bit_pos / 8,
5961 bit_pos % 8, bit_size, type);
5962 }
5963 else
5964 return value_primitive_field (arg1, offset, fieldno, arg_type);
5965 }
5966
5967 /* Find field with name NAME in object of type TYPE. If found,
5968 set the following for each argument that is non-null:
5969 - *FIELD_TYPE_P to the field's type;
5970 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5971 an object of that type;
5972 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5973 - *BIT_SIZE_P to its size in bits if the field is packed, and
5974 0 otherwise;
5975 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5976 fields up to but not including the desired field, or by the total
5977 number of fields if not found. A NULL value of NAME never
5978 matches; the function just counts visible fields in this case.
5979
5980 Returns 1 if found, 0 otherwise. */
5981
5982 static int
5983 find_struct_field (char *name, struct type *type, int offset,
5984 struct type **field_type_p,
5985 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5986 int *index_p)
5987 {
5988 int i;
5989
5990 type = ada_check_typedef (type);
5991
5992 if (field_type_p != NULL)
5993 *field_type_p = NULL;
5994 if (byte_offset_p != NULL)
5995 *byte_offset_p = 0;
5996 if (bit_offset_p != NULL)
5997 *bit_offset_p = 0;
5998 if (bit_size_p != NULL)
5999 *bit_size_p = 0;
6000
6001 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6002 {
6003 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6004 int fld_offset = offset + bit_pos / 8;
6005 char *t_field_name = TYPE_FIELD_NAME (type, i);
6006
6007 if (t_field_name == NULL)
6008 continue;
6009
6010 else if (name != NULL && field_name_match (t_field_name, name))
6011 {
6012 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6013
6014 if (field_type_p != NULL)
6015 *field_type_p = TYPE_FIELD_TYPE (type, i);
6016 if (byte_offset_p != NULL)
6017 *byte_offset_p = fld_offset;
6018 if (bit_offset_p != NULL)
6019 *bit_offset_p = bit_pos % 8;
6020 if (bit_size_p != NULL)
6021 *bit_size_p = bit_size;
6022 return 1;
6023 }
6024 else if (ada_is_wrapper_field (type, i))
6025 {
6026 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6027 field_type_p, byte_offset_p, bit_offset_p,
6028 bit_size_p, index_p))
6029 return 1;
6030 }
6031 else if (ada_is_variant_part (type, i))
6032 {
6033 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6034 fixed type?? */
6035 int j;
6036 struct type *field_type
6037 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6038
6039 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6040 {
6041 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6042 fld_offset
6043 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6044 field_type_p, byte_offset_p,
6045 bit_offset_p, bit_size_p, index_p))
6046 return 1;
6047 }
6048 }
6049 else if (index_p != NULL)
6050 *index_p += 1;
6051 }
6052 return 0;
6053 }
6054
6055 /* Number of user-visible fields in record type TYPE. */
6056
6057 static int
6058 num_visible_fields (struct type *type)
6059 {
6060 int n;
6061
6062 n = 0;
6063 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6064 return n;
6065 }
6066
6067 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6068 and search in it assuming it has (class) type TYPE.
6069 If found, return value, else return NULL.
6070
6071 Searches recursively through wrapper fields (e.g., '_parent'). */
6072
6073 static struct value *
6074 ada_search_struct_field (char *name, struct value *arg, int offset,
6075 struct type *type)
6076 {
6077 int i;
6078
6079 type = ada_check_typedef (type);
6080 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6081 {
6082 char *t_field_name = TYPE_FIELD_NAME (type, i);
6083
6084 if (t_field_name == NULL)
6085 continue;
6086
6087 else if (field_name_match (t_field_name, name))
6088 return ada_value_primitive_field (arg, offset, i, type);
6089
6090 else if (ada_is_wrapper_field (type, i))
6091 {
6092 struct value *v = /* Do not let indent join lines here. */
6093 ada_search_struct_field (name, arg,
6094 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6095 TYPE_FIELD_TYPE (type, i));
6096
6097 if (v != NULL)
6098 return v;
6099 }
6100
6101 else if (ada_is_variant_part (type, i))
6102 {
6103 /* PNH: Do we ever get here? See find_struct_field. */
6104 int j;
6105 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6106 i));
6107 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6108
6109 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6110 {
6111 struct value *v = ada_search_struct_field /* Force line break. */
6112 (name, arg,
6113 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6114 TYPE_FIELD_TYPE (field_type, j));
6115
6116 if (v != NULL)
6117 return v;
6118 }
6119 }
6120 }
6121 return NULL;
6122 }
6123
6124 static struct value *ada_index_struct_field_1 (int *, struct value *,
6125 int, struct type *);
6126
6127
6128 /* Return field #INDEX in ARG, where the index is that returned by
6129 * find_struct_field through its INDEX_P argument. Adjust the address
6130 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6131 * If found, return value, else return NULL. */
6132
6133 static struct value *
6134 ada_index_struct_field (int index, struct value *arg, int offset,
6135 struct type *type)
6136 {
6137 return ada_index_struct_field_1 (&index, arg, offset, type);
6138 }
6139
6140
6141 /* Auxiliary function for ada_index_struct_field. Like
6142 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6143 * *INDEX_P. */
6144
6145 static struct value *
6146 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6147 struct type *type)
6148 {
6149 int i;
6150 type = ada_check_typedef (type);
6151
6152 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6153 {
6154 if (TYPE_FIELD_NAME (type, i) == NULL)
6155 continue;
6156 else if (ada_is_wrapper_field (type, i))
6157 {
6158 struct value *v = /* Do not let indent join lines here. */
6159 ada_index_struct_field_1 (index_p, arg,
6160 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6161 TYPE_FIELD_TYPE (type, i));
6162
6163 if (v != NULL)
6164 return v;
6165 }
6166
6167 else if (ada_is_variant_part (type, i))
6168 {
6169 /* PNH: Do we ever get here? See ada_search_struct_field,
6170 find_struct_field. */
6171 error (_("Cannot assign this kind of variant record"));
6172 }
6173 else if (*index_p == 0)
6174 return ada_value_primitive_field (arg, offset, i, type);
6175 else
6176 *index_p -= 1;
6177 }
6178 return NULL;
6179 }
6180
6181 /* Given ARG, a value of type (pointer or reference to a)*
6182 structure/union, extract the component named NAME from the ultimate
6183 target structure/union and return it as a value with its
6184 appropriate type.
6185
6186 The routine searches for NAME among all members of the structure itself
6187 and (recursively) among all members of any wrapper members
6188 (e.g., '_parent').
6189
6190 If NO_ERR, then simply return NULL in case of error, rather than
6191 calling error. */
6192
6193 struct value *
6194 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6195 {
6196 struct type *t, *t1;
6197 struct value *v;
6198
6199 v = NULL;
6200 t1 = t = ada_check_typedef (value_type (arg));
6201 if (TYPE_CODE (t) == TYPE_CODE_REF)
6202 {
6203 t1 = TYPE_TARGET_TYPE (t);
6204 if (t1 == NULL)
6205 goto BadValue;
6206 t1 = ada_check_typedef (t1);
6207 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6208 {
6209 arg = coerce_ref (arg);
6210 t = t1;
6211 }
6212 }
6213
6214 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6215 {
6216 t1 = TYPE_TARGET_TYPE (t);
6217 if (t1 == NULL)
6218 goto BadValue;
6219 t1 = ada_check_typedef (t1);
6220 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6221 {
6222 arg = value_ind (arg);
6223 t = t1;
6224 }
6225 else
6226 break;
6227 }
6228
6229 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6230 goto BadValue;
6231
6232 if (t1 == t)
6233 v = ada_search_struct_field (name, arg, 0, t);
6234 else
6235 {
6236 int bit_offset, bit_size, byte_offset;
6237 struct type *field_type;
6238 CORE_ADDR address;
6239
6240 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6241 address = value_as_address (arg);
6242 else
6243 address = unpack_pointer (t, value_contents (arg));
6244
6245 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6246 if (find_struct_field (name, t1, 0,
6247 &field_type, &byte_offset, &bit_offset,
6248 &bit_size, NULL))
6249 {
6250 if (bit_size != 0)
6251 {
6252 if (TYPE_CODE (t) == TYPE_CODE_REF)
6253 arg = ada_coerce_ref (arg);
6254 else
6255 arg = ada_value_ind (arg);
6256 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6257 bit_offset, bit_size,
6258 field_type);
6259 }
6260 else
6261 v = value_at_lazy (field_type, address + byte_offset);
6262 }
6263 }
6264
6265 if (v != NULL || no_err)
6266 return v;
6267 else
6268 error (_("There is no member named %s."), name);
6269
6270 BadValue:
6271 if (no_err)
6272 return NULL;
6273 else
6274 error (_("Attempt to extract a component of a value that is not a record."));
6275 }
6276
6277 /* Given a type TYPE, look up the type of the component of type named NAME.
6278 If DISPP is non-null, add its byte displacement from the beginning of a
6279 structure (pointed to by a value) of type TYPE to *DISPP (does not
6280 work for packed fields).
6281
6282 Matches any field whose name has NAME as a prefix, possibly
6283 followed by "___".
6284
6285 TYPE can be either a struct or union. If REFOK, TYPE may also
6286 be a (pointer or reference)+ to a struct or union, and the
6287 ultimate target type will be searched.
6288
6289 Looks recursively into variant clauses and parent types.
6290
6291 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6292 TYPE is not a type of the right kind. */
6293
6294 static struct type *
6295 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6296 int noerr, int *dispp)
6297 {
6298 int i;
6299
6300 if (name == NULL)
6301 goto BadName;
6302
6303 if (refok && type != NULL)
6304 while (1)
6305 {
6306 type = ada_check_typedef (type);
6307 if (TYPE_CODE (type) != TYPE_CODE_PTR
6308 && TYPE_CODE (type) != TYPE_CODE_REF)
6309 break;
6310 type = TYPE_TARGET_TYPE (type);
6311 }
6312
6313 if (type == NULL
6314 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6315 && TYPE_CODE (type) != TYPE_CODE_UNION))
6316 {
6317 if (noerr)
6318 return NULL;
6319 else
6320 {
6321 target_terminal_ours ();
6322 gdb_flush (gdb_stdout);
6323 if (type == NULL)
6324 error (_("Type (null) is not a structure or union type"));
6325 else
6326 {
6327 /* XXX: type_sprint */
6328 fprintf_unfiltered (gdb_stderr, _("Type "));
6329 type_print (type, "", gdb_stderr, -1);
6330 error (_(" is not a structure or union type"));
6331 }
6332 }
6333 }
6334
6335 type = to_static_fixed_type (type);
6336
6337 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6338 {
6339 char *t_field_name = TYPE_FIELD_NAME (type, i);
6340 struct type *t;
6341 int disp;
6342
6343 if (t_field_name == NULL)
6344 continue;
6345
6346 else if (field_name_match (t_field_name, name))
6347 {
6348 if (dispp != NULL)
6349 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6350 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6351 }
6352
6353 else if (ada_is_wrapper_field (type, i))
6354 {
6355 disp = 0;
6356 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6357 0, 1, &disp);
6358 if (t != NULL)
6359 {
6360 if (dispp != NULL)
6361 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6362 return t;
6363 }
6364 }
6365
6366 else if (ada_is_variant_part (type, i))
6367 {
6368 int j;
6369 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6370 i));
6371
6372 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6373 {
6374 /* FIXME pnh 2008/01/26: We check for a field that is
6375 NOT wrapped in a struct, since the compiler sometimes
6376 generates these for unchecked variant types. Revisit
6377 if the compiler changes this practice. */
6378 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6379 disp = 0;
6380 if (v_field_name != NULL
6381 && field_name_match (v_field_name, name))
6382 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6383 else
6384 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6385 name, 0, 1, &disp);
6386
6387 if (t != NULL)
6388 {
6389 if (dispp != NULL)
6390 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6391 return t;
6392 }
6393 }
6394 }
6395
6396 }
6397
6398 BadName:
6399 if (!noerr)
6400 {
6401 target_terminal_ours ();
6402 gdb_flush (gdb_stdout);
6403 if (name == NULL)
6404 {
6405 /* XXX: type_sprint */
6406 fprintf_unfiltered (gdb_stderr, _("Type "));
6407 type_print (type, "", gdb_stderr, -1);
6408 error (_(" has no component named <null>"));
6409 }
6410 else
6411 {
6412 /* XXX: type_sprint */
6413 fprintf_unfiltered (gdb_stderr, _("Type "));
6414 type_print (type, "", gdb_stderr, -1);
6415 error (_(" has no component named %s"), name);
6416 }
6417 }
6418
6419 return NULL;
6420 }
6421
6422 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6423 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6424 represents an unchecked union (that is, the variant part of a
6425 record that is named in an Unchecked_Union pragma). */
6426
6427 static int
6428 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6429 {
6430 char *discrim_name = ada_variant_discrim_name (var_type);
6431
6432 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6433 == NULL);
6434 }
6435
6436
6437 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6438 within a value of type OUTER_TYPE that is stored in GDB at
6439 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6440 numbering from 0) is applicable. Returns -1 if none are. */
6441
6442 int
6443 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6444 const gdb_byte *outer_valaddr)
6445 {
6446 int others_clause;
6447 int i;
6448 char *discrim_name = ada_variant_discrim_name (var_type);
6449 struct value *outer;
6450 struct value *discrim;
6451 LONGEST discrim_val;
6452
6453 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6454 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6455 if (discrim == NULL)
6456 return -1;
6457 discrim_val = value_as_long (discrim);
6458
6459 others_clause = -1;
6460 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6461 {
6462 if (ada_is_others_clause (var_type, i))
6463 others_clause = i;
6464 else if (ada_in_variant (discrim_val, var_type, i))
6465 return i;
6466 }
6467
6468 return others_clause;
6469 }
6470 \f
6471
6472
6473 /* Dynamic-Sized Records */
6474
6475 /* Strategy: The type ostensibly attached to a value with dynamic size
6476 (i.e., a size that is not statically recorded in the debugging
6477 data) does not accurately reflect the size or layout of the value.
6478 Our strategy is to convert these values to values with accurate,
6479 conventional types that are constructed on the fly. */
6480
6481 /* There is a subtle and tricky problem here. In general, we cannot
6482 determine the size of dynamic records without its data. However,
6483 the 'struct value' data structure, which GDB uses to represent
6484 quantities in the inferior process (the target), requires the size
6485 of the type at the time of its allocation in order to reserve space
6486 for GDB's internal copy of the data. That's why the
6487 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6488 rather than struct value*s.
6489
6490 However, GDB's internal history variables ($1, $2, etc.) are
6491 struct value*s containing internal copies of the data that are not, in
6492 general, the same as the data at their corresponding addresses in
6493 the target. Fortunately, the types we give to these values are all
6494 conventional, fixed-size types (as per the strategy described
6495 above), so that we don't usually have to perform the
6496 'to_fixed_xxx_type' conversions to look at their values.
6497 Unfortunately, there is one exception: if one of the internal
6498 history variables is an array whose elements are unconstrained
6499 records, then we will need to create distinct fixed types for each
6500 element selected. */
6501
6502 /* The upshot of all of this is that many routines take a (type, host
6503 address, target address) triple as arguments to represent a value.
6504 The host address, if non-null, is supposed to contain an internal
6505 copy of the relevant data; otherwise, the program is to consult the
6506 target at the target address. */
6507
6508 /* Assuming that VAL0 represents a pointer value, the result of
6509 dereferencing it. Differs from value_ind in its treatment of
6510 dynamic-sized types. */
6511
6512 struct value *
6513 ada_value_ind (struct value *val0)
6514 {
6515 struct value *val = unwrap_value (value_ind (val0));
6516
6517 return ada_to_fixed_value (val);
6518 }
6519
6520 /* The value resulting from dereferencing any "reference to"
6521 qualifiers on VAL0. */
6522
6523 static struct value *
6524 ada_coerce_ref (struct value *val0)
6525 {
6526 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6527 {
6528 struct value *val = val0;
6529
6530 val = coerce_ref (val);
6531 val = unwrap_value (val);
6532 return ada_to_fixed_value (val);
6533 }
6534 else
6535 return val0;
6536 }
6537
6538 /* Return OFF rounded upward if necessary to a multiple of
6539 ALIGNMENT (a power of 2). */
6540
6541 static unsigned int
6542 align_value (unsigned int off, unsigned int alignment)
6543 {
6544 return (off + alignment - 1) & ~(alignment - 1);
6545 }
6546
6547 /* Return the bit alignment required for field #F of template type TYPE. */
6548
6549 static unsigned int
6550 field_alignment (struct type *type, int f)
6551 {
6552 const char *name = TYPE_FIELD_NAME (type, f);
6553 int len;
6554 int align_offset;
6555
6556 /* The field name should never be null, unless the debugging information
6557 is somehow malformed. In this case, we assume the field does not
6558 require any alignment. */
6559 if (name == NULL)
6560 return 1;
6561
6562 len = strlen (name);
6563
6564 if (!isdigit (name[len - 1]))
6565 return 1;
6566
6567 if (isdigit (name[len - 2]))
6568 align_offset = len - 2;
6569 else
6570 align_offset = len - 1;
6571
6572 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6573 return TARGET_CHAR_BIT;
6574
6575 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6576 }
6577
6578 /* Find a symbol named NAME. Ignores ambiguity. */
6579
6580 struct symbol *
6581 ada_find_any_symbol (const char *name)
6582 {
6583 struct symbol *sym;
6584
6585 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6586 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6587 return sym;
6588
6589 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6590 return sym;
6591 }
6592
6593 /* Find a type named NAME. Ignores ambiguity. This routine will look
6594 solely for types defined by debug info, it will not search the GDB
6595 primitive types. */
6596
6597 struct type *
6598 ada_find_any_type (const char *name)
6599 {
6600 struct symbol *sym = ada_find_any_symbol (name);
6601
6602 if (sym != NULL)
6603 return SYMBOL_TYPE (sym);
6604
6605 return NULL;
6606 }
6607
6608 /* Given NAME and an associated BLOCK, search all symbols for
6609 NAME suffixed with "___XR", which is the ``renaming'' symbol
6610 associated to NAME. Return this symbol if found, return
6611 NULL otherwise. */
6612
6613 struct symbol *
6614 ada_find_renaming_symbol (const char *name, struct block *block)
6615 {
6616 struct symbol *sym;
6617
6618 sym = find_old_style_renaming_symbol (name, block);
6619
6620 if (sym != NULL)
6621 return sym;
6622
6623 /* Not right yet. FIXME pnh 7/20/2007. */
6624 sym = ada_find_any_symbol (name);
6625 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6626 return sym;
6627 else
6628 return NULL;
6629 }
6630
6631 static struct symbol *
6632 find_old_style_renaming_symbol (const char *name, struct block *block)
6633 {
6634 const struct symbol *function_sym = block_linkage_function (block);
6635 char *rename;
6636
6637 if (function_sym != NULL)
6638 {
6639 /* If the symbol is defined inside a function, NAME is not fully
6640 qualified. This means we need to prepend the function name
6641 as well as adding the ``___XR'' suffix to build the name of
6642 the associated renaming symbol. */
6643 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6644 /* Function names sometimes contain suffixes used
6645 for instance to qualify nested subprograms. When building
6646 the XR type name, we need to make sure that this suffix is
6647 not included. So do not include any suffix in the function
6648 name length below. */
6649 int function_name_len = ada_name_prefix_len (function_name);
6650 const int rename_len = function_name_len + 2 /* "__" */
6651 + strlen (name) + 6 /* "___XR\0" */ ;
6652
6653 /* Strip the suffix if necessary. */
6654 ada_remove_trailing_digits (function_name, &function_name_len);
6655 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6656 ada_remove_Xbn_suffix (function_name, &function_name_len);
6657
6658 /* Library-level functions are a special case, as GNAT adds
6659 a ``_ada_'' prefix to the function name to avoid namespace
6660 pollution. However, the renaming symbols themselves do not
6661 have this prefix, so we need to skip this prefix if present. */
6662 if (function_name_len > 5 /* "_ada_" */
6663 && strstr (function_name, "_ada_") == function_name)
6664 {
6665 function_name += 5;
6666 function_name_len -= 5;
6667 }
6668
6669 rename = (char *) alloca (rename_len * sizeof (char));
6670 strncpy (rename, function_name, function_name_len);
6671 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6672 "__%s___XR", name);
6673 }
6674 else
6675 {
6676 const int rename_len = strlen (name) + 6;
6677
6678 rename = (char *) alloca (rename_len * sizeof (char));
6679 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6680 }
6681
6682 return ada_find_any_symbol (rename);
6683 }
6684
6685 /* Because of GNAT encoding conventions, several GDB symbols may match a
6686 given type name. If the type denoted by TYPE0 is to be preferred to
6687 that of TYPE1 for purposes of type printing, return non-zero;
6688 otherwise return 0. */
6689
6690 int
6691 ada_prefer_type (struct type *type0, struct type *type1)
6692 {
6693 if (type1 == NULL)
6694 return 1;
6695 else if (type0 == NULL)
6696 return 0;
6697 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6698 return 1;
6699 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6700 return 0;
6701 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6702 return 1;
6703 else if (ada_is_constrained_packed_array_type (type0))
6704 return 1;
6705 else if (ada_is_array_descriptor_type (type0)
6706 && !ada_is_array_descriptor_type (type1))
6707 return 1;
6708 else
6709 {
6710 const char *type0_name = type_name_no_tag (type0);
6711 const char *type1_name = type_name_no_tag (type1);
6712
6713 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6714 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6715 return 1;
6716 }
6717 return 0;
6718 }
6719
6720 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6721 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6722
6723 char *
6724 ada_type_name (struct type *type)
6725 {
6726 if (type == NULL)
6727 return NULL;
6728 else if (TYPE_NAME (type) != NULL)
6729 return TYPE_NAME (type);
6730 else
6731 return TYPE_TAG_NAME (type);
6732 }
6733
6734 /* Search the list of "descriptive" types associated to TYPE for a type
6735 whose name is NAME. */
6736
6737 static struct type *
6738 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6739 {
6740 struct type *result;
6741
6742 /* If there no descriptive-type info, then there is no parallel type
6743 to be found. */
6744 if (!HAVE_GNAT_AUX_INFO (type))
6745 return NULL;
6746
6747 result = TYPE_DESCRIPTIVE_TYPE (type);
6748 while (result != NULL)
6749 {
6750 char *result_name = ada_type_name (result);
6751
6752 if (result_name == NULL)
6753 {
6754 warning (_("unexpected null name on descriptive type"));
6755 return NULL;
6756 }
6757
6758 /* If the names match, stop. */
6759 if (strcmp (result_name, name) == 0)
6760 break;
6761
6762 /* Otherwise, look at the next item on the list, if any. */
6763 if (HAVE_GNAT_AUX_INFO (result))
6764 result = TYPE_DESCRIPTIVE_TYPE (result);
6765 else
6766 result = NULL;
6767 }
6768
6769 /* If we didn't find a match, see whether this is a packed array. With
6770 older compilers, the descriptive type information is either absent or
6771 irrelevant when it comes to packed arrays so the above lookup fails.
6772 Fall back to using a parallel lookup by name in this case. */
6773 if (result == NULL && ada_is_constrained_packed_array_type (type))
6774 return ada_find_any_type (name);
6775
6776 return result;
6777 }
6778
6779 /* Find a parallel type to TYPE with the specified NAME, using the
6780 descriptive type taken from the debugging information, if available,
6781 and otherwise using the (slower) name-based method. */
6782
6783 static struct type *
6784 ada_find_parallel_type_with_name (struct type *type, const char *name)
6785 {
6786 struct type *result = NULL;
6787
6788 if (HAVE_GNAT_AUX_INFO (type))
6789 result = find_parallel_type_by_descriptive_type (type, name);
6790 else
6791 result = ada_find_any_type (name);
6792
6793 return result;
6794 }
6795
6796 /* Same as above, but specify the name of the parallel type by appending
6797 SUFFIX to the name of TYPE. */
6798
6799 struct type *
6800 ada_find_parallel_type (struct type *type, const char *suffix)
6801 {
6802 char *name, *typename = ada_type_name (type);
6803 int len;
6804
6805 if (typename == NULL)
6806 return NULL;
6807
6808 len = strlen (typename);
6809
6810 name = (char *) alloca (len + strlen (suffix) + 1);
6811
6812 strcpy (name, typename);
6813 strcpy (name + len, suffix);
6814
6815 return ada_find_parallel_type_with_name (type, name);
6816 }
6817
6818 /* If TYPE is a variable-size record type, return the corresponding template
6819 type describing its fields. Otherwise, return NULL. */
6820
6821 static struct type *
6822 dynamic_template_type (struct type *type)
6823 {
6824 type = ada_check_typedef (type);
6825
6826 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6827 || ada_type_name (type) == NULL)
6828 return NULL;
6829 else
6830 {
6831 int len = strlen (ada_type_name (type));
6832
6833 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6834 return type;
6835 else
6836 return ada_find_parallel_type (type, "___XVE");
6837 }
6838 }
6839
6840 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6841 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6842
6843 static int
6844 is_dynamic_field (struct type *templ_type, int field_num)
6845 {
6846 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6847
6848 return name != NULL
6849 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6850 && strstr (name, "___XVL") != NULL;
6851 }
6852
6853 /* The index of the variant field of TYPE, or -1 if TYPE does not
6854 represent a variant record type. */
6855
6856 static int
6857 variant_field_index (struct type *type)
6858 {
6859 int f;
6860
6861 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6862 return -1;
6863
6864 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6865 {
6866 if (ada_is_variant_part (type, f))
6867 return f;
6868 }
6869 return -1;
6870 }
6871
6872 /* A record type with no fields. */
6873
6874 static struct type *
6875 empty_record (struct type *template)
6876 {
6877 struct type *type = alloc_type_copy (template);
6878
6879 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6880 TYPE_NFIELDS (type) = 0;
6881 TYPE_FIELDS (type) = NULL;
6882 INIT_CPLUS_SPECIFIC (type);
6883 TYPE_NAME (type) = "<empty>";
6884 TYPE_TAG_NAME (type) = NULL;
6885 TYPE_LENGTH (type) = 0;
6886 return type;
6887 }
6888
6889 /* An ordinary record type (with fixed-length fields) that describes
6890 the value of type TYPE at VALADDR or ADDRESS (see comments at
6891 the beginning of this section) VAL according to GNAT conventions.
6892 DVAL0 should describe the (portion of a) record that contains any
6893 necessary discriminants. It should be NULL if value_type (VAL) is
6894 an outer-level type (i.e., as opposed to a branch of a variant.) A
6895 variant field (unless unchecked) is replaced by a particular branch
6896 of the variant.
6897
6898 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6899 length are not statically known are discarded. As a consequence,
6900 VALADDR, ADDRESS and DVAL0 are ignored.
6901
6902 NOTE: Limitations: For now, we assume that dynamic fields and
6903 variants occupy whole numbers of bytes. However, they need not be
6904 byte-aligned. */
6905
6906 struct type *
6907 ada_template_to_fixed_record_type_1 (struct type *type,
6908 const gdb_byte *valaddr,
6909 CORE_ADDR address, struct value *dval0,
6910 int keep_dynamic_fields)
6911 {
6912 struct value *mark = value_mark ();
6913 struct value *dval;
6914 struct type *rtype;
6915 int nfields, bit_len;
6916 int variant_field;
6917 long off;
6918 int fld_bit_len, bit_incr;
6919 int f;
6920
6921 /* Compute the number of fields in this record type that are going
6922 to be processed: unless keep_dynamic_fields, this includes only
6923 fields whose position and length are static will be processed. */
6924 if (keep_dynamic_fields)
6925 nfields = TYPE_NFIELDS (type);
6926 else
6927 {
6928 nfields = 0;
6929 while (nfields < TYPE_NFIELDS (type)
6930 && !ada_is_variant_part (type, nfields)
6931 && !is_dynamic_field (type, nfields))
6932 nfields++;
6933 }
6934
6935 rtype = alloc_type_copy (type);
6936 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6937 INIT_CPLUS_SPECIFIC (rtype);
6938 TYPE_NFIELDS (rtype) = nfields;
6939 TYPE_FIELDS (rtype) = (struct field *)
6940 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6941 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6942 TYPE_NAME (rtype) = ada_type_name (type);
6943 TYPE_TAG_NAME (rtype) = NULL;
6944 TYPE_FIXED_INSTANCE (rtype) = 1;
6945
6946 off = 0;
6947 bit_len = 0;
6948 variant_field = -1;
6949
6950 for (f = 0; f < nfields; f += 1)
6951 {
6952 off = align_value (off, field_alignment (type, f))
6953 + TYPE_FIELD_BITPOS (type, f);
6954 TYPE_FIELD_BITPOS (rtype, f) = off;
6955 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6956
6957 if (ada_is_variant_part (type, f))
6958 {
6959 variant_field = f;
6960 fld_bit_len = bit_incr = 0;
6961 }
6962 else if (is_dynamic_field (type, f))
6963 {
6964 const gdb_byte *field_valaddr = valaddr;
6965 CORE_ADDR field_address = address;
6966 struct type *field_type =
6967 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6968
6969 if (dval0 == NULL)
6970 {
6971 /* rtype's length is computed based on the run-time
6972 value of discriminants. If the discriminants are not
6973 initialized, the type size may be completely bogus and
6974 GDB may fail to allocate a value for it. So check the
6975 size first before creating the value. */
6976 check_size (rtype);
6977 dval = value_from_contents_and_address (rtype, valaddr, address);
6978 }
6979 else
6980 dval = dval0;
6981
6982 /* If the type referenced by this field is an aligner type, we need
6983 to unwrap that aligner type, because its size might not be set.
6984 Keeping the aligner type would cause us to compute the wrong
6985 size for this field, impacting the offset of the all the fields
6986 that follow this one. */
6987 if (ada_is_aligner_type (field_type))
6988 {
6989 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6990
6991 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6992 field_address = cond_offset_target (field_address, field_offset);
6993 field_type = ada_aligned_type (field_type);
6994 }
6995
6996 field_valaddr = cond_offset_host (field_valaddr,
6997 off / TARGET_CHAR_BIT);
6998 field_address = cond_offset_target (field_address,
6999 off / TARGET_CHAR_BIT);
7000
7001 /* Get the fixed type of the field. Note that, in this case,
7002 we do not want to get the real type out of the tag: if
7003 the current field is the parent part of a tagged record,
7004 we will get the tag of the object. Clearly wrong: the real
7005 type of the parent is not the real type of the child. We
7006 would end up in an infinite loop. */
7007 field_type = ada_get_base_type (field_type);
7008 field_type = ada_to_fixed_type (field_type, field_valaddr,
7009 field_address, dval, 0);
7010
7011 TYPE_FIELD_TYPE (rtype, f) = field_type;
7012 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7013 bit_incr = fld_bit_len =
7014 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7015 }
7016 else
7017 {
7018 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7019
7020 TYPE_FIELD_TYPE (rtype, f) = field_type;
7021 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7022 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7023 bit_incr = fld_bit_len =
7024 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7025 else
7026 bit_incr = fld_bit_len =
7027 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7028 }
7029 if (off + fld_bit_len > bit_len)
7030 bit_len = off + fld_bit_len;
7031 off += bit_incr;
7032 TYPE_LENGTH (rtype) =
7033 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7034 }
7035
7036 /* We handle the variant part, if any, at the end because of certain
7037 odd cases in which it is re-ordered so as NOT to be the last field of
7038 the record. This can happen in the presence of representation
7039 clauses. */
7040 if (variant_field >= 0)
7041 {
7042 struct type *branch_type;
7043
7044 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7045
7046 if (dval0 == NULL)
7047 dval = value_from_contents_and_address (rtype, valaddr, address);
7048 else
7049 dval = dval0;
7050
7051 branch_type =
7052 to_fixed_variant_branch_type
7053 (TYPE_FIELD_TYPE (type, variant_field),
7054 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7055 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7056 if (branch_type == NULL)
7057 {
7058 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7059 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7060 TYPE_NFIELDS (rtype) -= 1;
7061 }
7062 else
7063 {
7064 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7065 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7066 fld_bit_len =
7067 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7068 TARGET_CHAR_BIT;
7069 if (off + fld_bit_len > bit_len)
7070 bit_len = off + fld_bit_len;
7071 TYPE_LENGTH (rtype) =
7072 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7073 }
7074 }
7075
7076 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7077 should contain the alignment of that record, which should be a strictly
7078 positive value. If null or negative, then something is wrong, most
7079 probably in the debug info. In that case, we don't round up the size
7080 of the resulting type. If this record is not part of another structure,
7081 the current RTYPE length might be good enough for our purposes. */
7082 if (TYPE_LENGTH (type) <= 0)
7083 {
7084 if (TYPE_NAME (rtype))
7085 warning (_("Invalid type size for `%s' detected: %d."),
7086 TYPE_NAME (rtype), TYPE_LENGTH (type));
7087 else
7088 warning (_("Invalid type size for <unnamed> detected: %d."),
7089 TYPE_LENGTH (type));
7090 }
7091 else
7092 {
7093 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7094 TYPE_LENGTH (type));
7095 }
7096
7097 value_free_to_mark (mark);
7098 if (TYPE_LENGTH (rtype) > varsize_limit)
7099 error (_("record type with dynamic size is larger than varsize-limit"));
7100 return rtype;
7101 }
7102
7103 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7104 of 1. */
7105
7106 static struct type *
7107 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7108 CORE_ADDR address, struct value *dval0)
7109 {
7110 return ada_template_to_fixed_record_type_1 (type, valaddr,
7111 address, dval0, 1);
7112 }
7113
7114 /* An ordinary record type in which ___XVL-convention fields and
7115 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7116 static approximations, containing all possible fields. Uses
7117 no runtime values. Useless for use in values, but that's OK,
7118 since the results are used only for type determinations. Works on both
7119 structs and unions. Representation note: to save space, we memorize
7120 the result of this function in the TYPE_TARGET_TYPE of the
7121 template type. */
7122
7123 static struct type *
7124 template_to_static_fixed_type (struct type *type0)
7125 {
7126 struct type *type;
7127 int nfields;
7128 int f;
7129
7130 if (TYPE_TARGET_TYPE (type0) != NULL)
7131 return TYPE_TARGET_TYPE (type0);
7132
7133 nfields = TYPE_NFIELDS (type0);
7134 type = type0;
7135
7136 for (f = 0; f < nfields; f += 1)
7137 {
7138 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7139 struct type *new_type;
7140
7141 if (is_dynamic_field (type0, f))
7142 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7143 else
7144 new_type = static_unwrap_type (field_type);
7145 if (type == type0 && new_type != field_type)
7146 {
7147 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7148 TYPE_CODE (type) = TYPE_CODE (type0);
7149 INIT_CPLUS_SPECIFIC (type);
7150 TYPE_NFIELDS (type) = nfields;
7151 TYPE_FIELDS (type) = (struct field *)
7152 TYPE_ALLOC (type, nfields * sizeof (struct field));
7153 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7154 sizeof (struct field) * nfields);
7155 TYPE_NAME (type) = ada_type_name (type0);
7156 TYPE_TAG_NAME (type) = NULL;
7157 TYPE_FIXED_INSTANCE (type) = 1;
7158 TYPE_LENGTH (type) = 0;
7159 }
7160 TYPE_FIELD_TYPE (type, f) = new_type;
7161 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7162 }
7163 return type;
7164 }
7165
7166 /* Given an object of type TYPE whose contents are at VALADDR and
7167 whose address in memory is ADDRESS, returns a revision of TYPE,
7168 which should be a non-dynamic-sized record, in which the variant
7169 part, if any, is replaced with the appropriate branch. Looks
7170 for discriminant values in DVAL0, which can be NULL if the record
7171 contains the necessary discriminant values. */
7172
7173 static struct type *
7174 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7175 CORE_ADDR address, struct value *dval0)
7176 {
7177 struct value *mark = value_mark ();
7178 struct value *dval;
7179 struct type *rtype;
7180 struct type *branch_type;
7181 int nfields = TYPE_NFIELDS (type);
7182 int variant_field = variant_field_index (type);
7183
7184 if (variant_field == -1)
7185 return type;
7186
7187 if (dval0 == NULL)
7188 dval = value_from_contents_and_address (type, valaddr, address);
7189 else
7190 dval = dval0;
7191
7192 rtype = alloc_type_copy (type);
7193 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7194 INIT_CPLUS_SPECIFIC (rtype);
7195 TYPE_NFIELDS (rtype) = nfields;
7196 TYPE_FIELDS (rtype) =
7197 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7198 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7199 sizeof (struct field) * nfields);
7200 TYPE_NAME (rtype) = ada_type_name (type);
7201 TYPE_TAG_NAME (rtype) = NULL;
7202 TYPE_FIXED_INSTANCE (rtype) = 1;
7203 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7204
7205 branch_type = to_fixed_variant_branch_type
7206 (TYPE_FIELD_TYPE (type, variant_field),
7207 cond_offset_host (valaddr,
7208 TYPE_FIELD_BITPOS (type, variant_field)
7209 / TARGET_CHAR_BIT),
7210 cond_offset_target (address,
7211 TYPE_FIELD_BITPOS (type, variant_field)
7212 / TARGET_CHAR_BIT), dval);
7213 if (branch_type == NULL)
7214 {
7215 int f;
7216
7217 for (f = variant_field + 1; f < nfields; f += 1)
7218 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7219 TYPE_NFIELDS (rtype) -= 1;
7220 }
7221 else
7222 {
7223 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7224 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7225 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7226 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7227 }
7228 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7229
7230 value_free_to_mark (mark);
7231 return rtype;
7232 }
7233
7234 /* An ordinary record type (with fixed-length fields) that describes
7235 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7236 beginning of this section]. Any necessary discriminants' values
7237 should be in DVAL, a record value; it may be NULL if the object
7238 at ADDR itself contains any necessary discriminant values.
7239 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7240 values from the record are needed. Except in the case that DVAL,
7241 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7242 unchecked) is replaced by a particular branch of the variant.
7243
7244 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7245 is questionable and may be removed. It can arise during the
7246 processing of an unconstrained-array-of-record type where all the
7247 variant branches have exactly the same size. This is because in
7248 such cases, the compiler does not bother to use the XVS convention
7249 when encoding the record. I am currently dubious of this
7250 shortcut and suspect the compiler should be altered. FIXME. */
7251
7252 static struct type *
7253 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7254 CORE_ADDR address, struct value *dval)
7255 {
7256 struct type *templ_type;
7257
7258 if (TYPE_FIXED_INSTANCE (type0))
7259 return type0;
7260
7261 templ_type = dynamic_template_type (type0);
7262
7263 if (templ_type != NULL)
7264 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7265 else if (variant_field_index (type0) >= 0)
7266 {
7267 if (dval == NULL && valaddr == NULL && address == 0)
7268 return type0;
7269 return to_record_with_fixed_variant_part (type0, valaddr, address,
7270 dval);
7271 }
7272 else
7273 {
7274 TYPE_FIXED_INSTANCE (type0) = 1;
7275 return type0;
7276 }
7277
7278 }
7279
7280 /* An ordinary record type (with fixed-length fields) that describes
7281 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7282 union type. Any necessary discriminants' values should be in DVAL,
7283 a record value. That is, this routine selects the appropriate
7284 branch of the union at ADDR according to the discriminant value
7285 indicated in the union's type name. Returns VAR_TYPE0 itself if
7286 it represents a variant subject to a pragma Unchecked_Union. */
7287
7288 static struct type *
7289 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7290 CORE_ADDR address, struct value *dval)
7291 {
7292 int which;
7293 struct type *templ_type;
7294 struct type *var_type;
7295
7296 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7297 var_type = TYPE_TARGET_TYPE (var_type0);
7298 else
7299 var_type = var_type0;
7300
7301 templ_type = ada_find_parallel_type (var_type, "___XVU");
7302
7303 if (templ_type != NULL)
7304 var_type = templ_type;
7305
7306 if (is_unchecked_variant (var_type, value_type (dval)))
7307 return var_type0;
7308 which =
7309 ada_which_variant_applies (var_type,
7310 value_type (dval), value_contents (dval));
7311
7312 if (which < 0)
7313 return empty_record (var_type);
7314 else if (is_dynamic_field (var_type, which))
7315 return to_fixed_record_type
7316 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7317 valaddr, address, dval);
7318 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7319 return
7320 to_fixed_record_type
7321 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7322 else
7323 return TYPE_FIELD_TYPE (var_type, which);
7324 }
7325
7326 /* Assuming that TYPE0 is an array type describing the type of a value
7327 at ADDR, and that DVAL describes a record containing any
7328 discriminants used in TYPE0, returns a type for the value that
7329 contains no dynamic components (that is, no components whose sizes
7330 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7331 true, gives an error message if the resulting type's size is over
7332 varsize_limit. */
7333
7334 static struct type *
7335 to_fixed_array_type (struct type *type0, struct value *dval,
7336 int ignore_too_big)
7337 {
7338 struct type *index_type_desc;
7339 struct type *result;
7340 int constrained_packed_array_p;
7341
7342 if (TYPE_FIXED_INSTANCE (type0))
7343 return type0;
7344
7345 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7346 if (constrained_packed_array_p)
7347 type0 = decode_constrained_packed_array_type (type0);
7348
7349 index_type_desc = ada_find_parallel_type (type0, "___XA");
7350 ada_fixup_array_indexes_type (index_type_desc);
7351 if (index_type_desc == NULL)
7352 {
7353 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7354
7355 /* NOTE: elt_type---the fixed version of elt_type0---should never
7356 depend on the contents of the array in properly constructed
7357 debugging data. */
7358 /* Create a fixed version of the array element type.
7359 We're not providing the address of an element here,
7360 and thus the actual object value cannot be inspected to do
7361 the conversion. This should not be a problem, since arrays of
7362 unconstrained objects are not allowed. In particular, all
7363 the elements of an array of a tagged type should all be of
7364 the same type specified in the debugging info. No need to
7365 consult the object tag. */
7366 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7367
7368 /* Make sure we always create a new array type when dealing with
7369 packed array types, since we're going to fix-up the array
7370 type length and element bitsize a little further down. */
7371 if (elt_type0 == elt_type && !constrained_packed_array_p)
7372 result = type0;
7373 else
7374 result = create_array_type (alloc_type_copy (type0),
7375 elt_type, TYPE_INDEX_TYPE (type0));
7376 }
7377 else
7378 {
7379 int i;
7380 struct type *elt_type0;
7381
7382 elt_type0 = type0;
7383 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7384 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7385
7386 /* NOTE: result---the fixed version of elt_type0---should never
7387 depend on the contents of the array in properly constructed
7388 debugging data. */
7389 /* Create a fixed version of the array element type.
7390 We're not providing the address of an element here,
7391 and thus the actual object value cannot be inspected to do
7392 the conversion. This should not be a problem, since arrays of
7393 unconstrained objects are not allowed. In particular, all
7394 the elements of an array of a tagged type should all be of
7395 the same type specified in the debugging info. No need to
7396 consult the object tag. */
7397 result =
7398 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7399
7400 elt_type0 = type0;
7401 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7402 {
7403 struct type *range_type =
7404 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7405
7406 result = create_array_type (alloc_type_copy (elt_type0),
7407 result, range_type);
7408 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7409 }
7410 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7411 error (_("array type with dynamic size is larger than varsize-limit"));
7412 }
7413
7414 if (constrained_packed_array_p)
7415 {
7416 /* So far, the resulting type has been created as if the original
7417 type was a regular (non-packed) array type. As a result, the
7418 bitsize of the array elements needs to be set again, and the array
7419 length needs to be recomputed based on that bitsize. */
7420 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7421 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7422
7423 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7424 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7425 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7426 TYPE_LENGTH (result)++;
7427 }
7428
7429 TYPE_FIXED_INSTANCE (result) = 1;
7430 return result;
7431 }
7432
7433
7434 /* A standard type (containing no dynamically sized components)
7435 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7436 DVAL describes a record containing any discriminants used in TYPE0,
7437 and may be NULL if there are none, or if the object of type TYPE at
7438 ADDRESS or in VALADDR contains these discriminants.
7439
7440 If CHECK_TAG is not null, in the case of tagged types, this function
7441 attempts to locate the object's tag and use it to compute the actual
7442 type. However, when ADDRESS is null, we cannot use it to determine the
7443 location of the tag, and therefore compute the tagged type's actual type.
7444 So we return the tagged type without consulting the tag. */
7445
7446 static struct type *
7447 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7448 CORE_ADDR address, struct value *dval, int check_tag)
7449 {
7450 type = ada_check_typedef (type);
7451 switch (TYPE_CODE (type))
7452 {
7453 default:
7454 return type;
7455 case TYPE_CODE_STRUCT:
7456 {
7457 struct type *static_type = to_static_fixed_type (type);
7458 struct type *fixed_record_type =
7459 to_fixed_record_type (type, valaddr, address, NULL);
7460
7461 /* If STATIC_TYPE is a tagged type and we know the object's address,
7462 then we can determine its tag, and compute the object's actual
7463 type from there. Note that we have to use the fixed record
7464 type (the parent part of the record may have dynamic fields
7465 and the way the location of _tag is expressed may depend on
7466 them). */
7467
7468 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7469 {
7470 struct type *real_type =
7471 type_from_tag (value_tag_from_contents_and_address
7472 (fixed_record_type,
7473 valaddr,
7474 address));
7475
7476 if (real_type != NULL)
7477 return to_fixed_record_type (real_type, valaddr, address, NULL);
7478 }
7479
7480 /* Check to see if there is a parallel ___XVZ variable.
7481 If there is, then it provides the actual size of our type. */
7482 else if (ada_type_name (fixed_record_type) != NULL)
7483 {
7484 char *name = ada_type_name (fixed_record_type);
7485 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7486 int xvz_found = 0;
7487 LONGEST size;
7488
7489 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7490 size = get_int_var_value (xvz_name, &xvz_found);
7491 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7492 {
7493 fixed_record_type = copy_type (fixed_record_type);
7494 TYPE_LENGTH (fixed_record_type) = size;
7495
7496 /* The FIXED_RECORD_TYPE may have be a stub. We have
7497 observed this when the debugging info is STABS, and
7498 apparently it is something that is hard to fix.
7499
7500 In practice, we don't need the actual type definition
7501 at all, because the presence of the XVZ variable allows us
7502 to assume that there must be a XVS type as well, which we
7503 should be able to use later, when we need the actual type
7504 definition.
7505
7506 In the meantime, pretend that the "fixed" type we are
7507 returning is NOT a stub, because this can cause trouble
7508 when using this type to create new types targeting it.
7509 Indeed, the associated creation routines often check
7510 whether the target type is a stub and will try to replace
7511 it, thus using a type with the wrong size. This, in turn,
7512 might cause the new type to have the wrong size too.
7513 Consider the case of an array, for instance, where the size
7514 of the array is computed from the number of elements in
7515 our array multiplied by the size of its element. */
7516 TYPE_STUB (fixed_record_type) = 0;
7517 }
7518 }
7519 return fixed_record_type;
7520 }
7521 case TYPE_CODE_ARRAY:
7522 return to_fixed_array_type (type, dval, 1);
7523 case TYPE_CODE_UNION:
7524 if (dval == NULL)
7525 return type;
7526 else
7527 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7528 }
7529 }
7530
7531 /* The same as ada_to_fixed_type_1, except that it preserves the type
7532 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7533 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7534
7535 struct type *
7536 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7537 CORE_ADDR address, struct value *dval, int check_tag)
7538
7539 {
7540 struct type *fixed_type =
7541 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7542
7543 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7544 && TYPE_TARGET_TYPE (type) == fixed_type)
7545 return type;
7546
7547 return fixed_type;
7548 }
7549
7550 /* A standard (static-sized) type corresponding as well as possible to
7551 TYPE0, but based on no runtime data. */
7552
7553 static struct type *
7554 to_static_fixed_type (struct type *type0)
7555 {
7556 struct type *type;
7557
7558 if (type0 == NULL)
7559 return NULL;
7560
7561 if (TYPE_FIXED_INSTANCE (type0))
7562 return type0;
7563
7564 type0 = ada_check_typedef (type0);
7565
7566 switch (TYPE_CODE (type0))
7567 {
7568 default:
7569 return type0;
7570 case TYPE_CODE_STRUCT:
7571 type = dynamic_template_type (type0);
7572 if (type != NULL)
7573 return template_to_static_fixed_type (type);
7574 else
7575 return template_to_static_fixed_type (type0);
7576 case TYPE_CODE_UNION:
7577 type = ada_find_parallel_type (type0, "___XVU");
7578 if (type != NULL)
7579 return template_to_static_fixed_type (type);
7580 else
7581 return template_to_static_fixed_type (type0);
7582 }
7583 }
7584
7585 /* A static approximation of TYPE with all type wrappers removed. */
7586
7587 static struct type *
7588 static_unwrap_type (struct type *type)
7589 {
7590 if (ada_is_aligner_type (type))
7591 {
7592 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7593 if (ada_type_name (type1) == NULL)
7594 TYPE_NAME (type1) = ada_type_name (type);
7595
7596 return static_unwrap_type (type1);
7597 }
7598 else
7599 {
7600 struct type *raw_real_type = ada_get_base_type (type);
7601
7602 if (raw_real_type == type)
7603 return type;
7604 else
7605 return to_static_fixed_type (raw_real_type);
7606 }
7607 }
7608
7609 /* In some cases, incomplete and private types require
7610 cross-references that are not resolved as records (for example,
7611 type Foo;
7612 type FooP is access Foo;
7613 V: FooP;
7614 type Foo is array ...;
7615 ). In these cases, since there is no mechanism for producing
7616 cross-references to such types, we instead substitute for FooP a
7617 stub enumeration type that is nowhere resolved, and whose tag is
7618 the name of the actual type. Call these types "non-record stubs". */
7619
7620 /* A type equivalent to TYPE that is not a non-record stub, if one
7621 exists, otherwise TYPE. */
7622
7623 struct type *
7624 ada_check_typedef (struct type *type)
7625 {
7626 if (type == NULL)
7627 return NULL;
7628
7629 CHECK_TYPEDEF (type);
7630 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7631 || !TYPE_STUB (type)
7632 || TYPE_TAG_NAME (type) == NULL)
7633 return type;
7634 else
7635 {
7636 char *name = TYPE_TAG_NAME (type);
7637 struct type *type1 = ada_find_any_type (name);
7638
7639 return (type1 == NULL) ? type : type1;
7640 }
7641 }
7642
7643 /* A value representing the data at VALADDR/ADDRESS as described by
7644 type TYPE0, but with a standard (static-sized) type that correctly
7645 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7646 type, then return VAL0 [this feature is simply to avoid redundant
7647 creation of struct values]. */
7648
7649 static struct value *
7650 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7651 struct value *val0)
7652 {
7653 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7654
7655 if (type == type0 && val0 != NULL)
7656 return val0;
7657 else
7658 return value_from_contents_and_address (type, 0, address);
7659 }
7660
7661 /* A value representing VAL, but with a standard (static-sized) type
7662 that correctly describes it. Does not necessarily create a new
7663 value. */
7664
7665 struct value *
7666 ada_to_fixed_value (struct value *val)
7667 {
7668 return ada_to_fixed_value_create (value_type (val),
7669 value_address (val),
7670 val);
7671 }
7672 \f
7673
7674 /* Attributes */
7675
7676 /* Table mapping attribute numbers to names.
7677 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7678
7679 static const char *attribute_names[] = {
7680 "<?>",
7681
7682 "first",
7683 "last",
7684 "length",
7685 "image",
7686 "max",
7687 "min",
7688 "modulus",
7689 "pos",
7690 "size",
7691 "tag",
7692 "val",
7693 0
7694 };
7695
7696 const char *
7697 ada_attribute_name (enum exp_opcode n)
7698 {
7699 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7700 return attribute_names[n - OP_ATR_FIRST + 1];
7701 else
7702 return attribute_names[0];
7703 }
7704
7705 /* Evaluate the 'POS attribute applied to ARG. */
7706
7707 static LONGEST
7708 pos_atr (struct value *arg)
7709 {
7710 struct value *val = coerce_ref (arg);
7711 struct type *type = value_type (val);
7712
7713 if (!discrete_type_p (type))
7714 error (_("'POS only defined on discrete types"));
7715
7716 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7717 {
7718 int i;
7719 LONGEST v = value_as_long (val);
7720
7721 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7722 {
7723 if (v == TYPE_FIELD_BITPOS (type, i))
7724 return i;
7725 }
7726 error (_("enumeration value is invalid: can't find 'POS"));
7727 }
7728 else
7729 return value_as_long (val);
7730 }
7731
7732 static struct value *
7733 value_pos_atr (struct type *type, struct value *arg)
7734 {
7735 return value_from_longest (type, pos_atr (arg));
7736 }
7737
7738 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7739
7740 static struct value *
7741 value_val_atr (struct type *type, struct value *arg)
7742 {
7743 if (!discrete_type_p (type))
7744 error (_("'VAL only defined on discrete types"));
7745 if (!integer_type_p (value_type (arg)))
7746 error (_("'VAL requires integral argument"));
7747
7748 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7749 {
7750 long pos = value_as_long (arg);
7751
7752 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7753 error (_("argument to 'VAL out of range"));
7754 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7755 }
7756 else
7757 return value_from_longest (type, value_as_long (arg));
7758 }
7759 \f
7760
7761 /* Evaluation */
7762
7763 /* True if TYPE appears to be an Ada character type.
7764 [At the moment, this is true only for Character and Wide_Character;
7765 It is a heuristic test that could stand improvement]. */
7766
7767 int
7768 ada_is_character_type (struct type *type)
7769 {
7770 const char *name;
7771
7772 /* If the type code says it's a character, then assume it really is,
7773 and don't check any further. */
7774 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7775 return 1;
7776
7777 /* Otherwise, assume it's a character type iff it is a discrete type
7778 with a known character type name. */
7779 name = ada_type_name (type);
7780 return (name != NULL
7781 && (TYPE_CODE (type) == TYPE_CODE_INT
7782 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7783 && (strcmp (name, "character") == 0
7784 || strcmp (name, "wide_character") == 0
7785 || strcmp (name, "wide_wide_character") == 0
7786 || strcmp (name, "unsigned char") == 0));
7787 }
7788
7789 /* True if TYPE appears to be an Ada string type. */
7790
7791 int
7792 ada_is_string_type (struct type *type)
7793 {
7794 type = ada_check_typedef (type);
7795 if (type != NULL
7796 && TYPE_CODE (type) != TYPE_CODE_PTR
7797 && (ada_is_simple_array_type (type)
7798 || ada_is_array_descriptor_type (type))
7799 && ada_array_arity (type) == 1)
7800 {
7801 struct type *elttype = ada_array_element_type (type, 1);
7802
7803 return ada_is_character_type (elttype);
7804 }
7805 else
7806 return 0;
7807 }
7808
7809 /* The compiler sometimes provides a parallel XVS type for a given
7810 PAD type. Normally, it is safe to follow the PAD type directly,
7811 but older versions of the compiler have a bug that causes the offset
7812 of its "F" field to be wrong. Following that field in that case
7813 would lead to incorrect results, but this can be worked around
7814 by ignoring the PAD type and using the associated XVS type instead.
7815
7816 Set to True if the debugger should trust the contents of PAD types.
7817 Otherwise, ignore the PAD type if there is a parallel XVS type. */
7818 static int trust_pad_over_xvs = 1;
7819
7820 /* True if TYPE is a struct type introduced by the compiler to force the
7821 alignment of a value. Such types have a single field with a
7822 distinctive name. */
7823
7824 int
7825 ada_is_aligner_type (struct type *type)
7826 {
7827 type = ada_check_typedef (type);
7828
7829 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
7830 return 0;
7831
7832 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7833 && TYPE_NFIELDS (type) == 1
7834 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7835 }
7836
7837 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7838 the parallel type. */
7839
7840 struct type *
7841 ada_get_base_type (struct type *raw_type)
7842 {
7843 struct type *real_type_namer;
7844 struct type *raw_real_type;
7845
7846 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7847 return raw_type;
7848
7849 if (ada_is_aligner_type (raw_type))
7850 /* The encoding specifies that we should always use the aligner type.
7851 So, even if this aligner type has an associated XVS type, we should
7852 simply ignore it.
7853
7854 According to the compiler gurus, an XVS type parallel to an aligner
7855 type may exist because of a stabs limitation. In stabs, aligner
7856 types are empty because the field has a variable-sized type, and
7857 thus cannot actually be used as an aligner type. As a result,
7858 we need the associated parallel XVS type to decode the type.
7859 Since the policy in the compiler is to not change the internal
7860 representation based on the debugging info format, we sometimes
7861 end up having a redundant XVS type parallel to the aligner type. */
7862 return raw_type;
7863
7864 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7865 if (real_type_namer == NULL
7866 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7867 || TYPE_NFIELDS (real_type_namer) != 1)
7868 return raw_type;
7869
7870 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
7871 {
7872 /* This is an older encoding form where the base type needs to be
7873 looked up by name. We prefer the newer enconding because it is
7874 more efficient. */
7875 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7876 if (raw_real_type == NULL)
7877 return raw_type;
7878 else
7879 return raw_real_type;
7880 }
7881
7882 /* The field in our XVS type is a reference to the base type. */
7883 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
7884 }
7885
7886 /* The type of value designated by TYPE, with all aligners removed. */
7887
7888 struct type *
7889 ada_aligned_type (struct type *type)
7890 {
7891 if (ada_is_aligner_type (type))
7892 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7893 else
7894 return ada_get_base_type (type);
7895 }
7896
7897
7898 /* The address of the aligned value in an object at address VALADDR
7899 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7900
7901 const gdb_byte *
7902 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7903 {
7904 if (ada_is_aligner_type (type))
7905 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7906 valaddr +
7907 TYPE_FIELD_BITPOS (type,
7908 0) / TARGET_CHAR_BIT);
7909 else
7910 return valaddr;
7911 }
7912
7913
7914
7915 /* The printed representation of an enumeration literal with encoded
7916 name NAME. The value is good to the next call of ada_enum_name. */
7917 const char *
7918 ada_enum_name (const char *name)
7919 {
7920 static char *result;
7921 static size_t result_len = 0;
7922 char *tmp;
7923
7924 /* First, unqualify the enumeration name:
7925 1. Search for the last '.' character. If we find one, then skip
7926 all the preceeding characters, the unqualified name starts
7927 right after that dot.
7928 2. Otherwise, we may be debugging on a target where the compiler
7929 translates dots into "__". Search forward for double underscores,
7930 but stop searching when we hit an overloading suffix, which is
7931 of the form "__" followed by digits. */
7932
7933 tmp = strrchr (name, '.');
7934 if (tmp != NULL)
7935 name = tmp + 1;
7936 else
7937 {
7938 while ((tmp = strstr (name, "__")) != NULL)
7939 {
7940 if (isdigit (tmp[2]))
7941 break;
7942 else
7943 name = tmp + 2;
7944 }
7945 }
7946
7947 if (name[0] == 'Q')
7948 {
7949 int v;
7950
7951 if (name[1] == 'U' || name[1] == 'W')
7952 {
7953 if (sscanf (name + 2, "%x", &v) != 1)
7954 return name;
7955 }
7956 else
7957 return name;
7958
7959 GROW_VECT (result, result_len, 16);
7960 if (isascii (v) && isprint (v))
7961 xsnprintf (result, result_len, "'%c'", v);
7962 else if (name[1] == 'U')
7963 xsnprintf (result, result_len, "[\"%02x\"]", v);
7964 else
7965 xsnprintf (result, result_len, "[\"%04x\"]", v);
7966
7967 return result;
7968 }
7969 else
7970 {
7971 tmp = strstr (name, "__");
7972 if (tmp == NULL)
7973 tmp = strstr (name, "$");
7974 if (tmp != NULL)
7975 {
7976 GROW_VECT (result, result_len, tmp - name + 1);
7977 strncpy (result, name, tmp - name);
7978 result[tmp - name] = '\0';
7979 return result;
7980 }
7981
7982 return name;
7983 }
7984 }
7985
7986 /* Evaluate the subexpression of EXP starting at *POS as for
7987 evaluate_type, updating *POS to point just past the evaluated
7988 expression. */
7989
7990 static struct value *
7991 evaluate_subexp_type (struct expression *exp, int *pos)
7992 {
7993 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7994 }
7995
7996 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7997 value it wraps. */
7998
7999 static struct value *
8000 unwrap_value (struct value *val)
8001 {
8002 struct type *type = ada_check_typedef (value_type (val));
8003
8004 if (ada_is_aligner_type (type))
8005 {
8006 struct value *v = ada_value_struct_elt (val, "F", 0);
8007 struct type *val_type = ada_check_typedef (value_type (v));
8008
8009 if (ada_type_name (val_type) == NULL)
8010 TYPE_NAME (val_type) = ada_type_name (type);
8011
8012 return unwrap_value (v);
8013 }
8014 else
8015 {
8016 struct type *raw_real_type =
8017 ada_check_typedef (ada_get_base_type (type));
8018
8019 /* If there is no parallel XVS or XVE type, then the value is
8020 already unwrapped. Return it without further modification. */
8021 if ((type == raw_real_type)
8022 && ada_find_parallel_type (type, "___XVE") == NULL)
8023 return val;
8024
8025 return
8026 coerce_unspec_val_to_type
8027 (val, ada_to_fixed_type (raw_real_type, 0,
8028 value_address (val),
8029 NULL, 1));
8030 }
8031 }
8032
8033 static struct value *
8034 cast_to_fixed (struct type *type, struct value *arg)
8035 {
8036 LONGEST val;
8037
8038 if (type == value_type (arg))
8039 return arg;
8040 else if (ada_is_fixed_point_type (value_type (arg)))
8041 val = ada_float_to_fixed (type,
8042 ada_fixed_to_float (value_type (arg),
8043 value_as_long (arg)));
8044 else
8045 {
8046 DOUBLEST argd = value_as_double (arg);
8047
8048 val = ada_float_to_fixed (type, argd);
8049 }
8050
8051 return value_from_longest (type, val);
8052 }
8053
8054 static struct value *
8055 cast_from_fixed (struct type *type, struct value *arg)
8056 {
8057 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8058 value_as_long (arg));
8059
8060 return value_from_double (type, val);
8061 }
8062
8063 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8064 return the converted value. */
8065
8066 static struct value *
8067 coerce_for_assign (struct type *type, struct value *val)
8068 {
8069 struct type *type2 = value_type (val);
8070
8071 if (type == type2)
8072 return val;
8073
8074 type2 = ada_check_typedef (type2);
8075 type = ada_check_typedef (type);
8076
8077 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8078 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8079 {
8080 val = ada_value_ind (val);
8081 type2 = value_type (val);
8082 }
8083
8084 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8085 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8086 {
8087 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8088 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8089 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8090 error (_("Incompatible types in assignment"));
8091 deprecated_set_value_type (val, type);
8092 }
8093 return val;
8094 }
8095
8096 static struct value *
8097 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8098 {
8099 struct value *val;
8100 struct type *type1, *type2;
8101 LONGEST v, v1, v2;
8102
8103 arg1 = coerce_ref (arg1);
8104 arg2 = coerce_ref (arg2);
8105 type1 = base_type (ada_check_typedef (value_type (arg1)));
8106 type2 = base_type (ada_check_typedef (value_type (arg2)));
8107
8108 if (TYPE_CODE (type1) != TYPE_CODE_INT
8109 || TYPE_CODE (type2) != TYPE_CODE_INT)
8110 return value_binop (arg1, arg2, op);
8111
8112 switch (op)
8113 {
8114 case BINOP_MOD:
8115 case BINOP_DIV:
8116 case BINOP_REM:
8117 break;
8118 default:
8119 return value_binop (arg1, arg2, op);
8120 }
8121
8122 v2 = value_as_long (arg2);
8123 if (v2 == 0)
8124 error (_("second operand of %s must not be zero."), op_string (op));
8125
8126 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8127 return value_binop (arg1, arg2, op);
8128
8129 v1 = value_as_long (arg1);
8130 switch (op)
8131 {
8132 case BINOP_DIV:
8133 v = v1 / v2;
8134 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8135 v += v > 0 ? -1 : 1;
8136 break;
8137 case BINOP_REM:
8138 v = v1 % v2;
8139 if (v * v1 < 0)
8140 v -= v2;
8141 break;
8142 default:
8143 /* Should not reach this point. */
8144 v = 0;
8145 }
8146
8147 val = allocate_value (type1);
8148 store_unsigned_integer (value_contents_raw (val),
8149 TYPE_LENGTH (value_type (val)),
8150 gdbarch_byte_order (get_type_arch (type1)), v);
8151 return val;
8152 }
8153
8154 static int
8155 ada_value_equal (struct value *arg1, struct value *arg2)
8156 {
8157 if (ada_is_direct_array_type (value_type (arg1))
8158 || ada_is_direct_array_type (value_type (arg2)))
8159 {
8160 /* Automatically dereference any array reference before
8161 we attempt to perform the comparison. */
8162 arg1 = ada_coerce_ref (arg1);
8163 arg2 = ada_coerce_ref (arg2);
8164
8165 arg1 = ada_coerce_to_simple_array (arg1);
8166 arg2 = ada_coerce_to_simple_array (arg2);
8167 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8168 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8169 error (_("Attempt to compare array with non-array"));
8170 /* FIXME: The following works only for types whose
8171 representations use all bits (no padding or undefined bits)
8172 and do not have user-defined equality. */
8173 return
8174 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8175 && memcmp (value_contents (arg1), value_contents (arg2),
8176 TYPE_LENGTH (value_type (arg1))) == 0;
8177 }
8178 return value_equal (arg1, arg2);
8179 }
8180
8181 /* Total number of component associations in the aggregate starting at
8182 index PC in EXP. Assumes that index PC is the start of an
8183 OP_AGGREGATE. */
8184
8185 static int
8186 num_component_specs (struct expression *exp, int pc)
8187 {
8188 int n, m, i;
8189
8190 m = exp->elts[pc + 1].longconst;
8191 pc += 3;
8192 n = 0;
8193 for (i = 0; i < m; i += 1)
8194 {
8195 switch (exp->elts[pc].opcode)
8196 {
8197 default:
8198 n += 1;
8199 break;
8200 case OP_CHOICES:
8201 n += exp->elts[pc + 1].longconst;
8202 break;
8203 }
8204 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8205 }
8206 return n;
8207 }
8208
8209 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8210 component of LHS (a simple array or a record), updating *POS past
8211 the expression, assuming that LHS is contained in CONTAINER. Does
8212 not modify the inferior's memory, nor does it modify LHS (unless
8213 LHS == CONTAINER). */
8214
8215 static void
8216 assign_component (struct value *container, struct value *lhs, LONGEST index,
8217 struct expression *exp, int *pos)
8218 {
8219 struct value *mark = value_mark ();
8220 struct value *elt;
8221
8222 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8223 {
8224 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8225 struct value *index_val = value_from_longest (index_type, index);
8226
8227 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8228 }
8229 else
8230 {
8231 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8232 elt = ada_to_fixed_value (unwrap_value (elt));
8233 }
8234
8235 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8236 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8237 else
8238 value_assign_to_component (container, elt,
8239 ada_evaluate_subexp (NULL, exp, pos,
8240 EVAL_NORMAL));
8241
8242 value_free_to_mark (mark);
8243 }
8244
8245 /* Assuming that LHS represents an lvalue having a record or array
8246 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8247 of that aggregate's value to LHS, advancing *POS past the
8248 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8249 lvalue containing LHS (possibly LHS itself). Does not modify
8250 the inferior's memory, nor does it modify the contents of
8251 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8252
8253 static struct value *
8254 assign_aggregate (struct value *container,
8255 struct value *lhs, struct expression *exp,
8256 int *pos, enum noside noside)
8257 {
8258 struct type *lhs_type;
8259 int n = exp->elts[*pos+1].longconst;
8260 LONGEST low_index, high_index;
8261 int num_specs;
8262 LONGEST *indices;
8263 int max_indices, num_indices;
8264 int is_array_aggregate;
8265 int i;
8266
8267 *pos += 3;
8268 if (noside != EVAL_NORMAL)
8269 {
8270 int i;
8271
8272 for (i = 0; i < n; i += 1)
8273 ada_evaluate_subexp (NULL, exp, pos, noside);
8274 return container;
8275 }
8276
8277 container = ada_coerce_ref (container);
8278 if (ada_is_direct_array_type (value_type (container)))
8279 container = ada_coerce_to_simple_array (container);
8280 lhs = ada_coerce_ref (lhs);
8281 if (!deprecated_value_modifiable (lhs))
8282 error (_("Left operand of assignment is not a modifiable lvalue."));
8283
8284 lhs_type = value_type (lhs);
8285 if (ada_is_direct_array_type (lhs_type))
8286 {
8287 lhs = ada_coerce_to_simple_array (lhs);
8288 lhs_type = value_type (lhs);
8289 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8290 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8291 is_array_aggregate = 1;
8292 }
8293 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8294 {
8295 low_index = 0;
8296 high_index = num_visible_fields (lhs_type) - 1;
8297 is_array_aggregate = 0;
8298 }
8299 else
8300 error (_("Left-hand side must be array or record."));
8301
8302 num_specs = num_component_specs (exp, *pos - 3);
8303 max_indices = 4 * num_specs + 4;
8304 indices = alloca (max_indices * sizeof (indices[0]));
8305 indices[0] = indices[1] = low_index - 1;
8306 indices[2] = indices[3] = high_index + 1;
8307 num_indices = 4;
8308
8309 for (i = 0; i < n; i += 1)
8310 {
8311 switch (exp->elts[*pos].opcode)
8312 {
8313 case OP_CHOICES:
8314 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8315 &num_indices, max_indices,
8316 low_index, high_index);
8317 break;
8318 case OP_POSITIONAL:
8319 aggregate_assign_positional (container, lhs, exp, pos, indices,
8320 &num_indices, max_indices,
8321 low_index, high_index);
8322 break;
8323 case OP_OTHERS:
8324 if (i != n-1)
8325 error (_("Misplaced 'others' clause"));
8326 aggregate_assign_others (container, lhs, exp, pos, indices,
8327 num_indices, low_index, high_index);
8328 break;
8329 default:
8330 error (_("Internal error: bad aggregate clause"));
8331 }
8332 }
8333
8334 return container;
8335 }
8336
8337 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8338 construct at *POS, updating *POS past the construct, given that
8339 the positions are relative to lower bound LOW, where HIGH is the
8340 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8341 updating *NUM_INDICES as needed. CONTAINER is as for
8342 assign_aggregate. */
8343 static void
8344 aggregate_assign_positional (struct value *container,
8345 struct value *lhs, struct expression *exp,
8346 int *pos, LONGEST *indices, int *num_indices,
8347 int max_indices, LONGEST low, LONGEST high)
8348 {
8349 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8350
8351 if (ind - 1 == high)
8352 warning (_("Extra components in aggregate ignored."));
8353 if (ind <= high)
8354 {
8355 add_component_interval (ind, ind, indices, num_indices, max_indices);
8356 *pos += 3;
8357 assign_component (container, lhs, ind, exp, pos);
8358 }
8359 else
8360 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8361 }
8362
8363 /* Assign into the components of LHS indexed by the OP_CHOICES
8364 construct at *POS, updating *POS past the construct, given that
8365 the allowable indices are LOW..HIGH. Record the indices assigned
8366 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8367 needed. CONTAINER is as for assign_aggregate. */
8368 static void
8369 aggregate_assign_from_choices (struct value *container,
8370 struct value *lhs, struct expression *exp,
8371 int *pos, LONGEST *indices, int *num_indices,
8372 int max_indices, LONGEST low, LONGEST high)
8373 {
8374 int j;
8375 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8376 int choice_pos, expr_pc;
8377 int is_array = ada_is_direct_array_type (value_type (lhs));
8378
8379 choice_pos = *pos += 3;
8380
8381 for (j = 0; j < n_choices; j += 1)
8382 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8383 expr_pc = *pos;
8384 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8385
8386 for (j = 0; j < n_choices; j += 1)
8387 {
8388 LONGEST lower, upper;
8389 enum exp_opcode op = exp->elts[choice_pos].opcode;
8390
8391 if (op == OP_DISCRETE_RANGE)
8392 {
8393 choice_pos += 1;
8394 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8395 EVAL_NORMAL));
8396 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8397 EVAL_NORMAL));
8398 }
8399 else if (is_array)
8400 {
8401 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8402 EVAL_NORMAL));
8403 upper = lower;
8404 }
8405 else
8406 {
8407 int ind;
8408 char *name;
8409
8410 switch (op)
8411 {
8412 case OP_NAME:
8413 name = &exp->elts[choice_pos + 2].string;
8414 break;
8415 case OP_VAR_VALUE:
8416 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8417 break;
8418 default:
8419 error (_("Invalid record component association."));
8420 }
8421 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8422 ind = 0;
8423 if (! find_struct_field (name, value_type (lhs), 0,
8424 NULL, NULL, NULL, NULL, &ind))
8425 error (_("Unknown component name: %s."), name);
8426 lower = upper = ind;
8427 }
8428
8429 if (lower <= upper && (lower < low || upper > high))
8430 error (_("Index in component association out of bounds."));
8431
8432 add_component_interval (lower, upper, indices, num_indices,
8433 max_indices);
8434 while (lower <= upper)
8435 {
8436 int pos1;
8437
8438 pos1 = expr_pc;
8439 assign_component (container, lhs, lower, exp, &pos1);
8440 lower += 1;
8441 }
8442 }
8443 }
8444
8445 /* Assign the value of the expression in the OP_OTHERS construct in
8446 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8447 have not been previously assigned. The index intervals already assigned
8448 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8449 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8450 static void
8451 aggregate_assign_others (struct value *container,
8452 struct value *lhs, struct expression *exp,
8453 int *pos, LONGEST *indices, int num_indices,
8454 LONGEST low, LONGEST high)
8455 {
8456 int i;
8457 int expr_pc = *pos+1;
8458
8459 for (i = 0; i < num_indices - 2; i += 2)
8460 {
8461 LONGEST ind;
8462
8463 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8464 {
8465 int pos;
8466
8467 pos = expr_pc;
8468 assign_component (container, lhs, ind, exp, &pos);
8469 }
8470 }
8471 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8472 }
8473
8474 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8475 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8476 modifying *SIZE as needed. It is an error if *SIZE exceeds
8477 MAX_SIZE. The resulting intervals do not overlap. */
8478 static void
8479 add_component_interval (LONGEST low, LONGEST high,
8480 LONGEST* indices, int *size, int max_size)
8481 {
8482 int i, j;
8483
8484 for (i = 0; i < *size; i += 2) {
8485 if (high >= indices[i] && low <= indices[i + 1])
8486 {
8487 int kh;
8488
8489 for (kh = i + 2; kh < *size; kh += 2)
8490 if (high < indices[kh])
8491 break;
8492 if (low < indices[i])
8493 indices[i] = low;
8494 indices[i + 1] = indices[kh - 1];
8495 if (high > indices[i + 1])
8496 indices[i + 1] = high;
8497 memcpy (indices + i + 2, indices + kh, *size - kh);
8498 *size -= kh - i - 2;
8499 return;
8500 }
8501 else if (high < indices[i])
8502 break;
8503 }
8504
8505 if (*size == max_size)
8506 error (_("Internal error: miscounted aggregate components."));
8507 *size += 2;
8508 for (j = *size-1; j >= i+2; j -= 1)
8509 indices[j] = indices[j - 2];
8510 indices[i] = low;
8511 indices[i + 1] = high;
8512 }
8513
8514 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8515 is different. */
8516
8517 static struct value *
8518 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8519 {
8520 if (type == ada_check_typedef (value_type (arg2)))
8521 return arg2;
8522
8523 if (ada_is_fixed_point_type (type))
8524 return (cast_to_fixed (type, arg2));
8525
8526 if (ada_is_fixed_point_type (value_type (arg2)))
8527 return cast_from_fixed (type, arg2);
8528
8529 return value_cast (type, arg2);
8530 }
8531
8532 /* Evaluating Ada expressions, and printing their result.
8533 ------------------------------------------------------
8534
8535 1. Introduction:
8536 ----------------
8537
8538 We usually evaluate an Ada expression in order to print its value.
8539 We also evaluate an expression in order to print its type, which
8540 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8541 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8542 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8543 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8544 similar.
8545
8546 Evaluating expressions is a little more complicated for Ada entities
8547 than it is for entities in languages such as C. The main reason for
8548 this is that Ada provides types whose definition might be dynamic.
8549 One example of such types is variant records. Or another example
8550 would be an array whose bounds can only be known at run time.
8551
8552 The following description is a general guide as to what should be
8553 done (and what should NOT be done) in order to evaluate an expression
8554 involving such types, and when. This does not cover how the semantic
8555 information is encoded by GNAT as this is covered separatly. For the
8556 document used as the reference for the GNAT encoding, see exp_dbug.ads
8557 in the GNAT sources.
8558
8559 Ideally, we should embed each part of this description next to its
8560 associated code. Unfortunately, the amount of code is so vast right
8561 now that it's hard to see whether the code handling a particular
8562 situation might be duplicated or not. One day, when the code is
8563 cleaned up, this guide might become redundant with the comments
8564 inserted in the code, and we might want to remove it.
8565
8566 2. ``Fixing'' an Entity, the Simple Case:
8567 -----------------------------------------
8568
8569 When evaluating Ada expressions, the tricky issue is that they may
8570 reference entities whose type contents and size are not statically
8571 known. Consider for instance a variant record:
8572
8573 type Rec (Empty : Boolean := True) is record
8574 case Empty is
8575 when True => null;
8576 when False => Value : Integer;
8577 end case;
8578 end record;
8579 Yes : Rec := (Empty => False, Value => 1);
8580 No : Rec := (empty => True);
8581
8582 The size and contents of that record depends on the value of the
8583 descriminant (Rec.Empty). At this point, neither the debugging
8584 information nor the associated type structure in GDB are able to
8585 express such dynamic types. So what the debugger does is to create
8586 "fixed" versions of the type that applies to the specific object.
8587 We also informally refer to this opperation as "fixing" an object,
8588 which means creating its associated fixed type.
8589
8590 Example: when printing the value of variable "Yes" above, its fixed
8591 type would look like this:
8592
8593 type Rec is record
8594 Empty : Boolean;
8595 Value : Integer;
8596 end record;
8597
8598 On the other hand, if we printed the value of "No", its fixed type
8599 would become:
8600
8601 type Rec is record
8602 Empty : Boolean;
8603 end record;
8604
8605 Things become a little more complicated when trying to fix an entity
8606 with a dynamic type that directly contains another dynamic type,
8607 such as an array of variant records, for instance. There are
8608 two possible cases: Arrays, and records.
8609
8610 3. ``Fixing'' Arrays:
8611 ---------------------
8612
8613 The type structure in GDB describes an array in terms of its bounds,
8614 and the type of its elements. By design, all elements in the array
8615 have the same type and we cannot represent an array of variant elements
8616 using the current type structure in GDB. When fixing an array,
8617 we cannot fix the array element, as we would potentially need one
8618 fixed type per element of the array. As a result, the best we can do
8619 when fixing an array is to produce an array whose bounds and size
8620 are correct (allowing us to read it from memory), but without having
8621 touched its element type. Fixing each element will be done later,
8622 when (if) necessary.
8623
8624 Arrays are a little simpler to handle than records, because the same
8625 amount of memory is allocated for each element of the array, even if
8626 the amount of space actually used by each element differs from element
8627 to element. Consider for instance the following array of type Rec:
8628
8629 type Rec_Array is array (1 .. 2) of Rec;
8630
8631 The actual amount of memory occupied by each element might be different
8632 from element to element, depending on the value of their discriminant.
8633 But the amount of space reserved for each element in the array remains
8634 fixed regardless. So we simply need to compute that size using
8635 the debugging information available, from which we can then determine
8636 the array size (we multiply the number of elements of the array by
8637 the size of each element).
8638
8639 The simplest case is when we have an array of a constrained element
8640 type. For instance, consider the following type declarations:
8641
8642 type Bounded_String (Max_Size : Integer) is
8643 Length : Integer;
8644 Buffer : String (1 .. Max_Size);
8645 end record;
8646 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8647
8648 In this case, the compiler describes the array as an array of
8649 variable-size elements (identified by its XVS suffix) for which
8650 the size can be read in the parallel XVZ variable.
8651
8652 In the case of an array of an unconstrained element type, the compiler
8653 wraps the array element inside a private PAD type. This type should not
8654 be shown to the user, and must be "unwrap"'ed before printing. Note
8655 that we also use the adjective "aligner" in our code to designate
8656 these wrapper types.
8657
8658 In some cases, the size allocated for each element is statically
8659 known. In that case, the PAD type already has the correct size,
8660 and the array element should remain unfixed.
8661
8662 But there are cases when this size is not statically known.
8663 For instance, assuming that "Five" is an integer variable:
8664
8665 type Dynamic is array (1 .. Five) of Integer;
8666 type Wrapper (Has_Length : Boolean := False) is record
8667 Data : Dynamic;
8668 case Has_Length is
8669 when True => Length : Integer;
8670 when False => null;
8671 end case;
8672 end record;
8673 type Wrapper_Array is array (1 .. 2) of Wrapper;
8674
8675 Hello : Wrapper_Array := (others => (Has_Length => True,
8676 Data => (others => 17),
8677 Length => 1));
8678
8679
8680 The debugging info would describe variable Hello as being an
8681 array of a PAD type. The size of that PAD type is not statically
8682 known, but can be determined using a parallel XVZ variable.
8683 In that case, a copy of the PAD type with the correct size should
8684 be used for the fixed array.
8685
8686 3. ``Fixing'' record type objects:
8687 ----------------------------------
8688
8689 Things are slightly different from arrays in the case of dynamic
8690 record types. In this case, in order to compute the associated
8691 fixed type, we need to determine the size and offset of each of
8692 its components. This, in turn, requires us to compute the fixed
8693 type of each of these components.
8694
8695 Consider for instance the example:
8696
8697 type Bounded_String (Max_Size : Natural) is record
8698 Str : String (1 .. Max_Size);
8699 Length : Natural;
8700 end record;
8701 My_String : Bounded_String (Max_Size => 10);
8702
8703 In that case, the position of field "Length" depends on the size
8704 of field Str, which itself depends on the value of the Max_Size
8705 discriminant. In order to fix the type of variable My_String,
8706 we need to fix the type of field Str. Therefore, fixing a variant
8707 record requires us to fix each of its components.
8708
8709 However, if a component does not have a dynamic size, the component
8710 should not be fixed. In particular, fields that use a PAD type
8711 should not fixed. Here is an example where this might happen
8712 (assuming type Rec above):
8713
8714 type Container (Big : Boolean) is record
8715 First : Rec;
8716 After : Integer;
8717 case Big is
8718 when True => Another : Integer;
8719 when False => null;
8720 end case;
8721 end record;
8722 My_Container : Container := (Big => False,
8723 First => (Empty => True),
8724 After => 42);
8725
8726 In that example, the compiler creates a PAD type for component First,
8727 whose size is constant, and then positions the component After just
8728 right after it. The offset of component After is therefore constant
8729 in this case.
8730
8731 The debugger computes the position of each field based on an algorithm
8732 that uses, among other things, the actual position and size of the field
8733 preceding it. Let's now imagine that the user is trying to print
8734 the value of My_Container. If the type fixing was recursive, we would
8735 end up computing the offset of field After based on the size of the
8736 fixed version of field First. And since in our example First has
8737 only one actual field, the size of the fixed type is actually smaller
8738 than the amount of space allocated to that field, and thus we would
8739 compute the wrong offset of field After.
8740
8741 To make things more complicated, we need to watch out for dynamic
8742 components of variant records (identified by the ___XVL suffix in
8743 the component name). Even if the target type is a PAD type, the size
8744 of that type might not be statically known. So the PAD type needs
8745 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8746 we might end up with the wrong size for our component. This can be
8747 observed with the following type declarations:
8748
8749 type Octal is new Integer range 0 .. 7;
8750 type Octal_Array is array (Positive range <>) of Octal;
8751 pragma Pack (Octal_Array);
8752
8753 type Octal_Buffer (Size : Positive) is record
8754 Buffer : Octal_Array (1 .. Size);
8755 Length : Integer;
8756 end record;
8757
8758 In that case, Buffer is a PAD type whose size is unset and needs
8759 to be computed by fixing the unwrapped type.
8760
8761 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8762 ----------------------------------------------------------
8763
8764 Lastly, when should the sub-elements of an entity that remained unfixed
8765 thus far, be actually fixed?
8766
8767 The answer is: Only when referencing that element. For instance
8768 when selecting one component of a record, this specific component
8769 should be fixed at that point in time. Or when printing the value
8770 of a record, each component should be fixed before its value gets
8771 printed. Similarly for arrays, the element of the array should be
8772 fixed when printing each element of the array, or when extracting
8773 one element out of that array. On the other hand, fixing should
8774 not be performed on the elements when taking a slice of an array!
8775
8776 Note that one of the side-effects of miscomputing the offset and
8777 size of each field is that we end up also miscomputing the size
8778 of the containing type. This can have adverse results when computing
8779 the value of an entity. GDB fetches the value of an entity based
8780 on the size of its type, and thus a wrong size causes GDB to fetch
8781 the wrong amount of memory. In the case where the computed size is
8782 too small, GDB fetches too little data to print the value of our
8783 entiry. Results in this case as unpredicatble, as we usually read
8784 past the buffer containing the data =:-o. */
8785
8786 /* Implement the evaluate_exp routine in the exp_descriptor structure
8787 for the Ada language. */
8788
8789 static struct value *
8790 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8791 int *pos, enum noside noside)
8792 {
8793 enum exp_opcode op;
8794 int tem;
8795 int pc;
8796 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8797 struct type *type;
8798 int nargs, oplen;
8799 struct value **argvec;
8800
8801 pc = *pos;
8802 *pos += 1;
8803 op = exp->elts[pc].opcode;
8804
8805 switch (op)
8806 {
8807 default:
8808 *pos -= 1;
8809 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8810 arg1 = unwrap_value (arg1);
8811
8812 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8813 then we need to perform the conversion manually, because
8814 evaluate_subexp_standard doesn't do it. This conversion is
8815 necessary in Ada because the different kinds of float/fixed
8816 types in Ada have different representations.
8817
8818 Similarly, we need to perform the conversion from OP_LONG
8819 ourselves. */
8820 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8821 arg1 = ada_value_cast (expect_type, arg1, noside);
8822
8823 return arg1;
8824
8825 case OP_STRING:
8826 {
8827 struct value *result;
8828
8829 *pos -= 1;
8830 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8831 /* The result type will have code OP_STRING, bashed there from
8832 OP_ARRAY. Bash it back. */
8833 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8834 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8835 return result;
8836 }
8837
8838 case UNOP_CAST:
8839 (*pos) += 2;
8840 type = exp->elts[pc + 1].type;
8841 arg1 = evaluate_subexp (type, exp, pos, noside);
8842 if (noside == EVAL_SKIP)
8843 goto nosideret;
8844 arg1 = ada_value_cast (type, arg1, noside);
8845 return arg1;
8846
8847 case UNOP_QUAL:
8848 (*pos) += 2;
8849 type = exp->elts[pc + 1].type;
8850 return ada_evaluate_subexp (type, exp, pos, noside);
8851
8852 case BINOP_ASSIGN:
8853 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8854 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8855 {
8856 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8857 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8858 return arg1;
8859 return ada_value_assign (arg1, arg1);
8860 }
8861 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8862 except if the lhs of our assignment is a convenience variable.
8863 In the case of assigning to a convenience variable, the lhs
8864 should be exactly the result of the evaluation of the rhs. */
8865 type = value_type (arg1);
8866 if (VALUE_LVAL (arg1) == lval_internalvar)
8867 type = NULL;
8868 arg2 = evaluate_subexp (type, exp, pos, noside);
8869 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8870 return arg1;
8871 if (ada_is_fixed_point_type (value_type (arg1)))
8872 arg2 = cast_to_fixed (value_type (arg1), arg2);
8873 else if (ada_is_fixed_point_type (value_type (arg2)))
8874 error
8875 (_("Fixed-point values must be assigned to fixed-point variables"));
8876 else
8877 arg2 = coerce_for_assign (value_type (arg1), arg2);
8878 return ada_value_assign (arg1, arg2);
8879
8880 case BINOP_ADD:
8881 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8882 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8883 if (noside == EVAL_SKIP)
8884 goto nosideret;
8885 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8886 return (value_from_longest
8887 (value_type (arg1),
8888 value_as_long (arg1) + value_as_long (arg2)));
8889 if ((ada_is_fixed_point_type (value_type (arg1))
8890 || ada_is_fixed_point_type (value_type (arg2)))
8891 && value_type (arg1) != value_type (arg2))
8892 error (_("Operands of fixed-point addition must have the same type"));
8893 /* Do the addition, and cast the result to the type of the first
8894 argument. We cannot cast the result to a reference type, so if
8895 ARG1 is a reference type, find its underlying type. */
8896 type = value_type (arg1);
8897 while (TYPE_CODE (type) == TYPE_CODE_REF)
8898 type = TYPE_TARGET_TYPE (type);
8899 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8900 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8901
8902 case BINOP_SUB:
8903 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8904 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8905 if (noside == EVAL_SKIP)
8906 goto nosideret;
8907 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8908 return (value_from_longest
8909 (value_type (arg1),
8910 value_as_long (arg1) - value_as_long (arg2)));
8911 if ((ada_is_fixed_point_type (value_type (arg1))
8912 || ada_is_fixed_point_type (value_type (arg2)))
8913 && value_type (arg1) != value_type (arg2))
8914 error (_("Operands of fixed-point subtraction must have the same type"));
8915 /* Do the substraction, and cast the result to the type of the first
8916 argument. We cannot cast the result to a reference type, so if
8917 ARG1 is a reference type, find its underlying type. */
8918 type = value_type (arg1);
8919 while (TYPE_CODE (type) == TYPE_CODE_REF)
8920 type = TYPE_TARGET_TYPE (type);
8921 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8922 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8923
8924 case BINOP_MUL:
8925 case BINOP_DIV:
8926 case BINOP_REM:
8927 case BINOP_MOD:
8928 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8929 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8930 if (noside == EVAL_SKIP)
8931 goto nosideret;
8932 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8933 {
8934 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8935 return value_zero (value_type (arg1), not_lval);
8936 }
8937 else
8938 {
8939 type = builtin_type (exp->gdbarch)->builtin_double;
8940 if (ada_is_fixed_point_type (value_type (arg1)))
8941 arg1 = cast_from_fixed (type, arg1);
8942 if (ada_is_fixed_point_type (value_type (arg2)))
8943 arg2 = cast_from_fixed (type, arg2);
8944 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8945 return ada_value_binop (arg1, arg2, op);
8946 }
8947
8948 case BINOP_EQUAL:
8949 case BINOP_NOTEQUAL:
8950 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8951 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8952 if (noside == EVAL_SKIP)
8953 goto nosideret;
8954 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8955 tem = 0;
8956 else
8957 {
8958 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8959 tem = ada_value_equal (arg1, arg2);
8960 }
8961 if (op == BINOP_NOTEQUAL)
8962 tem = !tem;
8963 type = language_bool_type (exp->language_defn, exp->gdbarch);
8964 return value_from_longest (type, (LONGEST) tem);
8965
8966 case UNOP_NEG:
8967 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8968 if (noside == EVAL_SKIP)
8969 goto nosideret;
8970 else if (ada_is_fixed_point_type (value_type (arg1)))
8971 return value_cast (value_type (arg1), value_neg (arg1));
8972 else
8973 {
8974 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8975 return value_neg (arg1);
8976 }
8977
8978 case BINOP_LOGICAL_AND:
8979 case BINOP_LOGICAL_OR:
8980 case UNOP_LOGICAL_NOT:
8981 {
8982 struct value *val;
8983
8984 *pos -= 1;
8985 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8986 type = language_bool_type (exp->language_defn, exp->gdbarch);
8987 return value_cast (type, val);
8988 }
8989
8990 case BINOP_BITWISE_AND:
8991 case BINOP_BITWISE_IOR:
8992 case BINOP_BITWISE_XOR:
8993 {
8994 struct value *val;
8995
8996 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8997 *pos = pc;
8998 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8999
9000 return value_cast (value_type (arg1), val);
9001 }
9002
9003 case OP_VAR_VALUE:
9004 *pos -= 1;
9005
9006 if (noside == EVAL_SKIP)
9007 {
9008 *pos += 4;
9009 goto nosideret;
9010 }
9011 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9012 /* Only encountered when an unresolved symbol occurs in a
9013 context other than a function call, in which case, it is
9014 invalid. */
9015 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9016 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9017 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9018 {
9019 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9020 /* Check to see if this is a tagged type. We also need to handle
9021 the case where the type is a reference to a tagged type, but
9022 we have to be careful to exclude pointers to tagged types.
9023 The latter should be shown as usual (as a pointer), whereas
9024 a reference should mostly be transparent to the user. */
9025 if (ada_is_tagged_type (type, 0)
9026 || (TYPE_CODE(type) == TYPE_CODE_REF
9027 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9028 {
9029 /* Tagged types are a little special in the fact that the real
9030 type is dynamic and can only be determined by inspecting the
9031 object's tag. This means that we need to get the object's
9032 value first (EVAL_NORMAL) and then extract the actual object
9033 type from its tag.
9034
9035 Note that we cannot skip the final step where we extract
9036 the object type from its tag, because the EVAL_NORMAL phase
9037 results in dynamic components being resolved into fixed ones.
9038 This can cause problems when trying to print the type
9039 description of tagged types whose parent has a dynamic size:
9040 We use the type name of the "_parent" component in order
9041 to print the name of the ancestor type in the type description.
9042 If that component had a dynamic size, the resolution into
9043 a fixed type would result in the loss of that type name,
9044 thus preventing us from printing the name of the ancestor
9045 type in the type description. */
9046 struct type *actual_type;
9047
9048 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9049 actual_type = type_from_tag (ada_value_tag (arg1));
9050 if (actual_type == NULL)
9051 /* If, for some reason, we were unable to determine
9052 the actual type from the tag, then use the static
9053 approximation that we just computed as a fallback.
9054 This can happen if the debugging information is
9055 incomplete, for instance. */
9056 actual_type = type;
9057
9058 return value_zero (actual_type, not_lval);
9059 }
9060
9061 *pos += 4;
9062 return value_zero
9063 (to_static_fixed_type
9064 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9065 not_lval);
9066 }
9067 else
9068 {
9069 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9070 arg1 = unwrap_value (arg1);
9071 return ada_to_fixed_value (arg1);
9072 }
9073
9074 case OP_FUNCALL:
9075 (*pos) += 2;
9076
9077 /* Allocate arg vector, including space for the function to be
9078 called in argvec[0] and a terminating NULL. */
9079 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9080 argvec =
9081 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9082
9083 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9084 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9085 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9086 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9087 else
9088 {
9089 for (tem = 0; tem <= nargs; tem += 1)
9090 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9091 argvec[tem] = 0;
9092
9093 if (noside == EVAL_SKIP)
9094 goto nosideret;
9095 }
9096
9097 if (ada_is_constrained_packed_array_type
9098 (desc_base_type (value_type (argvec[0]))))
9099 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9100 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9101 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9102 /* This is a packed array that has already been fixed, and
9103 therefore already coerced to a simple array. Nothing further
9104 to do. */
9105 ;
9106 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9107 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9108 && VALUE_LVAL (argvec[0]) == lval_memory))
9109 argvec[0] = value_addr (argvec[0]);
9110
9111 type = ada_check_typedef (value_type (argvec[0]));
9112 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9113 {
9114 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9115 {
9116 case TYPE_CODE_FUNC:
9117 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9118 break;
9119 case TYPE_CODE_ARRAY:
9120 break;
9121 case TYPE_CODE_STRUCT:
9122 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9123 argvec[0] = ada_value_ind (argvec[0]);
9124 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9125 break;
9126 default:
9127 error (_("cannot subscript or call something of type `%s'"),
9128 ada_type_name (value_type (argvec[0])));
9129 break;
9130 }
9131 }
9132
9133 switch (TYPE_CODE (type))
9134 {
9135 case TYPE_CODE_FUNC:
9136 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9137 return allocate_value (TYPE_TARGET_TYPE (type));
9138 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9139 case TYPE_CODE_STRUCT:
9140 {
9141 int arity;
9142
9143 arity = ada_array_arity (type);
9144 type = ada_array_element_type (type, nargs);
9145 if (type == NULL)
9146 error (_("cannot subscript or call a record"));
9147 if (arity != nargs)
9148 error (_("wrong number of subscripts; expecting %d"), arity);
9149 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9150 return value_zero (ada_aligned_type (type), lval_memory);
9151 return
9152 unwrap_value (ada_value_subscript
9153 (argvec[0], nargs, argvec + 1));
9154 }
9155 case TYPE_CODE_ARRAY:
9156 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9157 {
9158 type = ada_array_element_type (type, nargs);
9159 if (type == NULL)
9160 error (_("element type of array unknown"));
9161 else
9162 return value_zero (ada_aligned_type (type), lval_memory);
9163 }
9164 return
9165 unwrap_value (ada_value_subscript
9166 (ada_coerce_to_simple_array (argvec[0]),
9167 nargs, argvec + 1));
9168 case TYPE_CODE_PTR: /* Pointer to array */
9169 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9170 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9171 {
9172 type = ada_array_element_type (type, nargs);
9173 if (type == NULL)
9174 error (_("element type of array unknown"));
9175 else
9176 return value_zero (ada_aligned_type (type), lval_memory);
9177 }
9178 return
9179 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9180 nargs, argvec + 1));
9181
9182 default:
9183 error (_("Attempt to index or call something other than an "
9184 "array or function"));
9185 }
9186
9187 case TERNOP_SLICE:
9188 {
9189 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9190 struct value *low_bound_val =
9191 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9192 struct value *high_bound_val =
9193 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9194 LONGEST low_bound;
9195 LONGEST high_bound;
9196
9197 low_bound_val = coerce_ref (low_bound_val);
9198 high_bound_val = coerce_ref (high_bound_val);
9199 low_bound = pos_atr (low_bound_val);
9200 high_bound = pos_atr (high_bound_val);
9201
9202 if (noside == EVAL_SKIP)
9203 goto nosideret;
9204
9205 /* If this is a reference to an aligner type, then remove all
9206 the aligners. */
9207 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9208 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9209 TYPE_TARGET_TYPE (value_type (array)) =
9210 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9211
9212 if (ada_is_constrained_packed_array_type (value_type (array)))
9213 error (_("cannot slice a packed array"));
9214
9215 /* If this is a reference to an array or an array lvalue,
9216 convert to a pointer. */
9217 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9218 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9219 && VALUE_LVAL (array) == lval_memory))
9220 array = value_addr (array);
9221
9222 if (noside == EVAL_AVOID_SIDE_EFFECTS
9223 && ada_is_array_descriptor_type (ada_check_typedef
9224 (value_type (array))))
9225 return empty_array (ada_type_of_array (array, 0), low_bound);
9226
9227 array = ada_coerce_to_simple_array_ptr (array);
9228
9229 /* If we have more than one level of pointer indirection,
9230 dereference the value until we get only one level. */
9231 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9232 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9233 == TYPE_CODE_PTR))
9234 array = value_ind (array);
9235
9236 /* Make sure we really do have an array type before going further,
9237 to avoid a SEGV when trying to get the index type or the target
9238 type later down the road if the debug info generated by
9239 the compiler is incorrect or incomplete. */
9240 if (!ada_is_simple_array_type (value_type (array)))
9241 error (_("cannot take slice of non-array"));
9242
9243 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9244 {
9245 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9246 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9247 low_bound);
9248 else
9249 {
9250 struct type *arr_type0 =
9251 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9252 NULL, 1);
9253
9254 return ada_value_slice_from_ptr (array, arr_type0,
9255 longest_to_int (low_bound),
9256 longest_to_int (high_bound));
9257 }
9258 }
9259 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9260 return array;
9261 else if (high_bound < low_bound)
9262 return empty_array (value_type (array), low_bound);
9263 else
9264 return ada_value_slice (array, longest_to_int (low_bound),
9265 longest_to_int (high_bound));
9266 }
9267
9268 case UNOP_IN_RANGE:
9269 (*pos) += 2;
9270 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9271 type = check_typedef (exp->elts[pc + 1].type);
9272
9273 if (noside == EVAL_SKIP)
9274 goto nosideret;
9275
9276 switch (TYPE_CODE (type))
9277 {
9278 default:
9279 lim_warning (_("Membership test incompletely implemented; "
9280 "always returns true"));
9281 type = language_bool_type (exp->language_defn, exp->gdbarch);
9282 return value_from_longest (type, (LONGEST) 1);
9283
9284 case TYPE_CODE_RANGE:
9285 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9286 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9287 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9288 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9289 type = language_bool_type (exp->language_defn, exp->gdbarch);
9290 return
9291 value_from_longest (type,
9292 (value_less (arg1, arg3)
9293 || value_equal (arg1, arg3))
9294 && (value_less (arg2, arg1)
9295 || value_equal (arg2, arg1)));
9296 }
9297
9298 case BINOP_IN_BOUNDS:
9299 (*pos) += 2;
9300 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9301 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9302
9303 if (noside == EVAL_SKIP)
9304 goto nosideret;
9305
9306 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9307 {
9308 type = language_bool_type (exp->language_defn, exp->gdbarch);
9309 return value_zero (type, not_lval);
9310 }
9311
9312 tem = longest_to_int (exp->elts[pc + 1].longconst);
9313
9314 type = ada_index_type (value_type (arg2), tem, "range");
9315 if (!type)
9316 type = value_type (arg1);
9317
9318 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9319 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9320
9321 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9322 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9323 type = language_bool_type (exp->language_defn, exp->gdbarch);
9324 return
9325 value_from_longest (type,
9326 (value_less (arg1, arg3)
9327 || value_equal (arg1, arg3))
9328 && (value_less (arg2, arg1)
9329 || value_equal (arg2, arg1)));
9330
9331 case TERNOP_IN_RANGE:
9332 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9333 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9334 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9335
9336 if (noside == EVAL_SKIP)
9337 goto nosideret;
9338
9339 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9340 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9341 type = language_bool_type (exp->language_defn, exp->gdbarch);
9342 return
9343 value_from_longest (type,
9344 (value_less (arg1, arg3)
9345 || value_equal (arg1, arg3))
9346 && (value_less (arg2, arg1)
9347 || value_equal (arg2, arg1)));
9348
9349 case OP_ATR_FIRST:
9350 case OP_ATR_LAST:
9351 case OP_ATR_LENGTH:
9352 {
9353 struct type *type_arg;
9354
9355 if (exp->elts[*pos].opcode == OP_TYPE)
9356 {
9357 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9358 arg1 = NULL;
9359 type_arg = check_typedef (exp->elts[pc + 2].type);
9360 }
9361 else
9362 {
9363 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9364 type_arg = NULL;
9365 }
9366
9367 if (exp->elts[*pos].opcode != OP_LONG)
9368 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9369 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9370 *pos += 4;
9371
9372 if (noside == EVAL_SKIP)
9373 goto nosideret;
9374
9375 if (type_arg == NULL)
9376 {
9377 arg1 = ada_coerce_ref (arg1);
9378
9379 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9380 arg1 = ada_coerce_to_simple_array (arg1);
9381
9382 type = ada_index_type (value_type (arg1), tem,
9383 ada_attribute_name (op));
9384 if (type == NULL)
9385 type = builtin_type (exp->gdbarch)->builtin_int;
9386
9387 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9388 return allocate_value (type);
9389
9390 switch (op)
9391 {
9392 default: /* Should never happen. */
9393 error (_("unexpected attribute encountered"));
9394 case OP_ATR_FIRST:
9395 return value_from_longest
9396 (type, ada_array_bound (arg1, tem, 0));
9397 case OP_ATR_LAST:
9398 return value_from_longest
9399 (type, ada_array_bound (arg1, tem, 1));
9400 case OP_ATR_LENGTH:
9401 return value_from_longest
9402 (type, ada_array_length (arg1, tem));
9403 }
9404 }
9405 else if (discrete_type_p (type_arg))
9406 {
9407 struct type *range_type;
9408 char *name = ada_type_name (type_arg);
9409
9410 range_type = NULL;
9411 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9412 range_type = to_fixed_range_type (type_arg, NULL);
9413 if (range_type == NULL)
9414 range_type = type_arg;
9415 switch (op)
9416 {
9417 default:
9418 error (_("unexpected attribute encountered"));
9419 case OP_ATR_FIRST:
9420 return value_from_longest
9421 (range_type, ada_discrete_type_low_bound (range_type));
9422 case OP_ATR_LAST:
9423 return value_from_longest
9424 (range_type, ada_discrete_type_high_bound (range_type));
9425 case OP_ATR_LENGTH:
9426 error (_("the 'length attribute applies only to array types"));
9427 }
9428 }
9429 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9430 error (_("unimplemented type attribute"));
9431 else
9432 {
9433 LONGEST low, high;
9434
9435 if (ada_is_constrained_packed_array_type (type_arg))
9436 type_arg = decode_constrained_packed_array_type (type_arg);
9437
9438 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9439 if (type == NULL)
9440 type = builtin_type (exp->gdbarch)->builtin_int;
9441
9442 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9443 return allocate_value (type);
9444
9445 switch (op)
9446 {
9447 default:
9448 error (_("unexpected attribute encountered"));
9449 case OP_ATR_FIRST:
9450 low = ada_array_bound_from_type (type_arg, tem, 0);
9451 return value_from_longest (type, low);
9452 case OP_ATR_LAST:
9453 high = ada_array_bound_from_type (type_arg, tem, 1);
9454 return value_from_longest (type, high);
9455 case OP_ATR_LENGTH:
9456 low = ada_array_bound_from_type (type_arg, tem, 0);
9457 high = ada_array_bound_from_type (type_arg, tem, 1);
9458 return value_from_longest (type, high - low + 1);
9459 }
9460 }
9461 }
9462
9463 case OP_ATR_TAG:
9464 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9465 if (noside == EVAL_SKIP)
9466 goto nosideret;
9467
9468 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9469 return value_zero (ada_tag_type (arg1), not_lval);
9470
9471 return ada_value_tag (arg1);
9472
9473 case OP_ATR_MIN:
9474 case OP_ATR_MAX:
9475 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9476 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9477 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9478 if (noside == EVAL_SKIP)
9479 goto nosideret;
9480 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9481 return value_zero (value_type (arg1), not_lval);
9482 else
9483 {
9484 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9485 return value_binop (arg1, arg2,
9486 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9487 }
9488
9489 case OP_ATR_MODULUS:
9490 {
9491 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9492
9493 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9494 if (noside == EVAL_SKIP)
9495 goto nosideret;
9496
9497 if (!ada_is_modular_type (type_arg))
9498 error (_("'modulus must be applied to modular type"));
9499
9500 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9501 ada_modulus (type_arg));
9502 }
9503
9504
9505 case OP_ATR_POS:
9506 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9507 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9508 if (noside == EVAL_SKIP)
9509 goto nosideret;
9510 type = builtin_type (exp->gdbarch)->builtin_int;
9511 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9512 return value_zero (type, not_lval);
9513 else
9514 return value_pos_atr (type, arg1);
9515
9516 case OP_ATR_SIZE:
9517 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9518 type = value_type (arg1);
9519
9520 /* If the argument is a reference, then dereference its type, since
9521 the user is really asking for the size of the actual object,
9522 not the size of the pointer. */
9523 if (TYPE_CODE (type) == TYPE_CODE_REF)
9524 type = TYPE_TARGET_TYPE (type);
9525
9526 if (noside == EVAL_SKIP)
9527 goto nosideret;
9528 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9529 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9530 else
9531 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9532 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9533
9534 case OP_ATR_VAL:
9535 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9536 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9537 type = exp->elts[pc + 2].type;
9538 if (noside == EVAL_SKIP)
9539 goto nosideret;
9540 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9541 return value_zero (type, not_lval);
9542 else
9543 return value_val_atr (type, arg1);
9544
9545 case BINOP_EXP:
9546 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9547 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9548 if (noside == EVAL_SKIP)
9549 goto nosideret;
9550 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9551 return value_zero (value_type (arg1), not_lval);
9552 else
9553 {
9554 /* For integer exponentiation operations,
9555 only promote the first argument. */
9556 if (is_integral_type (value_type (arg2)))
9557 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9558 else
9559 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9560
9561 return value_binop (arg1, arg2, op);
9562 }
9563
9564 case UNOP_PLUS:
9565 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9566 if (noside == EVAL_SKIP)
9567 goto nosideret;
9568 else
9569 return arg1;
9570
9571 case UNOP_ABS:
9572 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9573 if (noside == EVAL_SKIP)
9574 goto nosideret;
9575 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9576 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9577 return value_neg (arg1);
9578 else
9579 return arg1;
9580
9581 case UNOP_IND:
9582 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9583 if (noside == EVAL_SKIP)
9584 goto nosideret;
9585 type = ada_check_typedef (value_type (arg1));
9586 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9587 {
9588 if (ada_is_array_descriptor_type (type))
9589 /* GDB allows dereferencing GNAT array descriptors. */
9590 {
9591 struct type *arrType = ada_type_of_array (arg1, 0);
9592
9593 if (arrType == NULL)
9594 error (_("Attempt to dereference null array pointer."));
9595 return value_at_lazy (arrType, 0);
9596 }
9597 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9598 || TYPE_CODE (type) == TYPE_CODE_REF
9599 /* In C you can dereference an array to get the 1st elt. */
9600 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9601 {
9602 type = to_static_fixed_type
9603 (ada_aligned_type
9604 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9605 check_size (type);
9606 return value_zero (type, lval_memory);
9607 }
9608 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9609 {
9610 /* GDB allows dereferencing an int. */
9611 if (expect_type == NULL)
9612 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9613 lval_memory);
9614 else
9615 {
9616 expect_type =
9617 to_static_fixed_type (ada_aligned_type (expect_type));
9618 return value_zero (expect_type, lval_memory);
9619 }
9620 }
9621 else
9622 error (_("Attempt to take contents of a non-pointer value."));
9623 }
9624 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9625 type = ada_check_typedef (value_type (arg1));
9626
9627 if (TYPE_CODE (type) == TYPE_CODE_INT)
9628 /* GDB allows dereferencing an int. If we were given
9629 the expect_type, then use that as the target type.
9630 Otherwise, assume that the target type is an int. */
9631 {
9632 if (expect_type != NULL)
9633 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9634 arg1));
9635 else
9636 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9637 (CORE_ADDR) value_as_address (arg1));
9638 }
9639
9640 if (ada_is_array_descriptor_type (type))
9641 /* GDB allows dereferencing GNAT array descriptors. */
9642 return ada_coerce_to_simple_array (arg1);
9643 else
9644 return ada_value_ind (arg1);
9645
9646 case STRUCTOP_STRUCT:
9647 tem = longest_to_int (exp->elts[pc + 1].longconst);
9648 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9649 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9650 if (noside == EVAL_SKIP)
9651 goto nosideret;
9652 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9653 {
9654 struct type *type1 = value_type (arg1);
9655
9656 if (ada_is_tagged_type (type1, 1))
9657 {
9658 type = ada_lookup_struct_elt_type (type1,
9659 &exp->elts[pc + 2].string,
9660 1, 1, NULL);
9661 if (type == NULL)
9662 /* In this case, we assume that the field COULD exist
9663 in some extension of the type. Return an object of
9664 "type" void, which will match any formal
9665 (see ada_type_match). */
9666 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9667 lval_memory);
9668 }
9669 else
9670 type =
9671 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9672 0, NULL);
9673
9674 return value_zero (ada_aligned_type (type), lval_memory);
9675 }
9676 else
9677 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9678 arg1 = unwrap_value (arg1);
9679 return ada_to_fixed_value (arg1);
9680
9681 case OP_TYPE:
9682 /* The value is not supposed to be used. This is here to make it
9683 easier to accommodate expressions that contain types. */
9684 (*pos) += 2;
9685 if (noside == EVAL_SKIP)
9686 goto nosideret;
9687 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9688 return allocate_value (exp->elts[pc + 1].type);
9689 else
9690 error (_("Attempt to use a type name as an expression"));
9691
9692 case OP_AGGREGATE:
9693 case OP_CHOICES:
9694 case OP_OTHERS:
9695 case OP_DISCRETE_RANGE:
9696 case OP_POSITIONAL:
9697 case OP_NAME:
9698 if (noside == EVAL_NORMAL)
9699 switch (op)
9700 {
9701 case OP_NAME:
9702 error (_("Undefined name, ambiguous name, or renaming used in "
9703 "component association: %s."), &exp->elts[pc+2].string);
9704 case OP_AGGREGATE:
9705 error (_("Aggregates only allowed on the right of an assignment"));
9706 default:
9707 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9708 }
9709
9710 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9711 *pos += oplen - 1;
9712 for (tem = 0; tem < nargs; tem += 1)
9713 ada_evaluate_subexp (NULL, exp, pos, noside);
9714 goto nosideret;
9715 }
9716
9717 nosideret:
9718 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9719 }
9720 \f
9721
9722 /* Fixed point */
9723
9724 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9725 type name that encodes the 'small and 'delta information.
9726 Otherwise, return NULL. */
9727
9728 static const char *
9729 fixed_type_info (struct type *type)
9730 {
9731 const char *name = ada_type_name (type);
9732 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9733
9734 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9735 {
9736 const char *tail = strstr (name, "___XF_");
9737
9738 if (tail == NULL)
9739 return NULL;
9740 else
9741 return tail + 5;
9742 }
9743 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9744 return fixed_type_info (TYPE_TARGET_TYPE (type));
9745 else
9746 return NULL;
9747 }
9748
9749 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9750
9751 int
9752 ada_is_fixed_point_type (struct type *type)
9753 {
9754 return fixed_type_info (type) != NULL;
9755 }
9756
9757 /* Return non-zero iff TYPE represents a System.Address type. */
9758
9759 int
9760 ada_is_system_address_type (struct type *type)
9761 {
9762 return (TYPE_NAME (type)
9763 && strcmp (TYPE_NAME (type), "system__address") == 0);
9764 }
9765
9766 /* Assuming that TYPE is the representation of an Ada fixed-point
9767 type, return its delta, or -1 if the type is malformed and the
9768 delta cannot be determined. */
9769
9770 DOUBLEST
9771 ada_delta (struct type *type)
9772 {
9773 const char *encoding = fixed_type_info (type);
9774 DOUBLEST num, den;
9775
9776 /* Strictly speaking, num and den are encoded as integer. However,
9777 they may not fit into a long, and they will have to be converted
9778 to DOUBLEST anyway. So scan them as DOUBLEST. */
9779 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9780 &num, &den) < 2)
9781 return -1.0;
9782 else
9783 return num / den;
9784 }
9785
9786 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9787 factor ('SMALL value) associated with the type. */
9788
9789 static DOUBLEST
9790 scaling_factor (struct type *type)
9791 {
9792 const char *encoding = fixed_type_info (type);
9793 DOUBLEST num0, den0, num1, den1;
9794 int n;
9795
9796 /* Strictly speaking, num's and den's are encoded as integer. However,
9797 they may not fit into a long, and they will have to be converted
9798 to DOUBLEST anyway. So scan them as DOUBLEST. */
9799 n = sscanf (encoding,
9800 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9801 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9802 &num0, &den0, &num1, &den1);
9803
9804 if (n < 2)
9805 return 1.0;
9806 else if (n == 4)
9807 return num1 / den1;
9808 else
9809 return num0 / den0;
9810 }
9811
9812
9813 /* Assuming that X is the representation of a value of fixed-point
9814 type TYPE, return its floating-point equivalent. */
9815
9816 DOUBLEST
9817 ada_fixed_to_float (struct type *type, LONGEST x)
9818 {
9819 return (DOUBLEST) x *scaling_factor (type);
9820 }
9821
9822 /* The representation of a fixed-point value of type TYPE
9823 corresponding to the value X. */
9824
9825 LONGEST
9826 ada_float_to_fixed (struct type *type, DOUBLEST x)
9827 {
9828 return (LONGEST) (x / scaling_factor (type) + 0.5);
9829 }
9830
9831 \f
9832
9833 /* Range types */
9834
9835 /* Scan STR beginning at position K for a discriminant name, and
9836 return the value of that discriminant field of DVAL in *PX. If
9837 PNEW_K is not null, put the position of the character beyond the
9838 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9839 not alter *PX and *PNEW_K if unsuccessful. */
9840
9841 static int
9842 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9843 int *pnew_k)
9844 {
9845 static char *bound_buffer = NULL;
9846 static size_t bound_buffer_len = 0;
9847 char *bound;
9848 char *pend;
9849 struct value *bound_val;
9850
9851 if (dval == NULL || str == NULL || str[k] == '\0')
9852 return 0;
9853
9854 pend = strstr (str + k, "__");
9855 if (pend == NULL)
9856 {
9857 bound = str + k;
9858 k += strlen (bound);
9859 }
9860 else
9861 {
9862 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9863 bound = bound_buffer;
9864 strncpy (bound_buffer, str + k, pend - (str + k));
9865 bound[pend - (str + k)] = '\0';
9866 k = pend - str;
9867 }
9868
9869 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9870 if (bound_val == NULL)
9871 return 0;
9872
9873 *px = value_as_long (bound_val);
9874 if (pnew_k != NULL)
9875 *pnew_k = k;
9876 return 1;
9877 }
9878
9879 /* Value of variable named NAME in the current environment. If
9880 no such variable found, then if ERR_MSG is null, returns 0, and
9881 otherwise causes an error with message ERR_MSG. */
9882
9883 static struct value *
9884 get_var_value (char *name, char *err_msg)
9885 {
9886 struct ada_symbol_info *syms;
9887 int nsyms;
9888
9889 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9890 &syms);
9891
9892 if (nsyms != 1)
9893 {
9894 if (err_msg == NULL)
9895 return 0;
9896 else
9897 error (("%s"), err_msg);
9898 }
9899
9900 return value_of_variable (syms[0].sym, syms[0].block);
9901 }
9902
9903 /* Value of integer variable named NAME in the current environment. If
9904 no such variable found, returns 0, and sets *FLAG to 0. If
9905 successful, sets *FLAG to 1. */
9906
9907 LONGEST
9908 get_int_var_value (char *name, int *flag)
9909 {
9910 struct value *var_val = get_var_value (name, 0);
9911
9912 if (var_val == 0)
9913 {
9914 if (flag != NULL)
9915 *flag = 0;
9916 return 0;
9917 }
9918 else
9919 {
9920 if (flag != NULL)
9921 *flag = 1;
9922 return value_as_long (var_val);
9923 }
9924 }
9925
9926
9927 /* Return a range type whose base type is that of the range type named
9928 NAME in the current environment, and whose bounds are calculated
9929 from NAME according to the GNAT range encoding conventions.
9930 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9931 corresponding range type from debug information; fall back to using it
9932 if symbol lookup fails. If a new type must be created, allocate it
9933 like ORIG_TYPE was. The bounds information, in general, is encoded
9934 in NAME, the base type given in the named range type. */
9935
9936 static struct type *
9937 to_fixed_range_type (struct type *raw_type, struct value *dval)
9938 {
9939 char *name;
9940 struct type *base_type;
9941 char *subtype_info;
9942
9943 gdb_assert (raw_type != NULL);
9944 gdb_assert (TYPE_NAME (raw_type) != NULL);
9945
9946 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9947 base_type = TYPE_TARGET_TYPE (raw_type);
9948 else
9949 base_type = raw_type;
9950
9951 name = TYPE_NAME (raw_type);
9952 subtype_info = strstr (name, "___XD");
9953 if (subtype_info == NULL)
9954 {
9955 LONGEST L = ada_discrete_type_low_bound (raw_type);
9956 LONGEST U = ada_discrete_type_high_bound (raw_type);
9957
9958 if (L < INT_MIN || U > INT_MAX)
9959 return raw_type;
9960 else
9961 return create_range_type (alloc_type_copy (raw_type), raw_type,
9962 ada_discrete_type_low_bound (raw_type),
9963 ada_discrete_type_high_bound (raw_type));
9964 }
9965 else
9966 {
9967 static char *name_buf = NULL;
9968 static size_t name_len = 0;
9969 int prefix_len = subtype_info - name;
9970 LONGEST L, U;
9971 struct type *type;
9972 char *bounds_str;
9973 int n;
9974
9975 GROW_VECT (name_buf, name_len, prefix_len + 5);
9976 strncpy (name_buf, name, prefix_len);
9977 name_buf[prefix_len] = '\0';
9978
9979 subtype_info += 5;
9980 bounds_str = strchr (subtype_info, '_');
9981 n = 1;
9982
9983 if (*subtype_info == 'L')
9984 {
9985 if (!ada_scan_number (bounds_str, n, &L, &n)
9986 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9987 return raw_type;
9988 if (bounds_str[n] == '_')
9989 n += 2;
9990 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9991 n += 1;
9992 subtype_info += 1;
9993 }
9994 else
9995 {
9996 int ok;
9997
9998 strcpy (name_buf + prefix_len, "___L");
9999 L = get_int_var_value (name_buf, &ok);
10000 if (!ok)
10001 {
10002 lim_warning (_("Unknown lower bound, using 1."));
10003 L = 1;
10004 }
10005 }
10006
10007 if (*subtype_info == 'U')
10008 {
10009 if (!ada_scan_number (bounds_str, n, &U, &n)
10010 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10011 return raw_type;
10012 }
10013 else
10014 {
10015 int ok;
10016
10017 strcpy (name_buf + prefix_len, "___U");
10018 U = get_int_var_value (name_buf, &ok);
10019 if (!ok)
10020 {
10021 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10022 U = L;
10023 }
10024 }
10025
10026 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10027 TYPE_NAME (type) = name;
10028 return type;
10029 }
10030 }
10031
10032 /* True iff NAME is the name of a range type. */
10033
10034 int
10035 ada_is_range_type_name (const char *name)
10036 {
10037 return (name != NULL && strstr (name, "___XD"));
10038 }
10039 \f
10040
10041 /* Modular types */
10042
10043 /* True iff TYPE is an Ada modular type. */
10044
10045 int
10046 ada_is_modular_type (struct type *type)
10047 {
10048 struct type *subranged_type = base_type (type);
10049
10050 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10051 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10052 && TYPE_UNSIGNED (subranged_type));
10053 }
10054
10055 /* Try to determine the lower and upper bounds of the given modular type
10056 using the type name only. Return non-zero and set L and U as the lower
10057 and upper bounds (respectively) if successful. */
10058
10059 int
10060 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10061 {
10062 char *name = ada_type_name (type);
10063 char *suffix;
10064 int k;
10065 LONGEST U;
10066
10067 if (name == NULL)
10068 return 0;
10069
10070 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10071 we are looking for static bounds, which means an __XDLU suffix.
10072 Moreover, we know that the lower bound of modular types is always
10073 zero, so the actual suffix should start with "__XDLU_0__", and
10074 then be followed by the upper bound value. */
10075 suffix = strstr (name, "__XDLU_0__");
10076 if (suffix == NULL)
10077 return 0;
10078 k = 10;
10079 if (!ada_scan_number (suffix, k, &U, NULL))
10080 return 0;
10081
10082 *modulus = (ULONGEST) U + 1;
10083 return 1;
10084 }
10085
10086 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10087
10088 ULONGEST
10089 ada_modulus (struct type *type)
10090 {
10091 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10092 }
10093 \f
10094
10095 /* Ada exception catchpoint support:
10096 ---------------------------------
10097
10098 We support 3 kinds of exception catchpoints:
10099 . catchpoints on Ada exceptions
10100 . catchpoints on unhandled Ada exceptions
10101 . catchpoints on failed assertions
10102
10103 Exceptions raised during failed assertions, or unhandled exceptions
10104 could perfectly be caught with the general catchpoint on Ada exceptions.
10105 However, we can easily differentiate these two special cases, and having
10106 the option to distinguish these two cases from the rest can be useful
10107 to zero-in on certain situations.
10108
10109 Exception catchpoints are a specialized form of breakpoint,
10110 since they rely on inserting breakpoints inside known routines
10111 of the GNAT runtime. The implementation therefore uses a standard
10112 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10113 of breakpoint_ops.
10114
10115 Support in the runtime for exception catchpoints have been changed
10116 a few times already, and these changes affect the implementation
10117 of these catchpoints. In order to be able to support several
10118 variants of the runtime, we use a sniffer that will determine
10119 the runtime variant used by the program being debugged.
10120
10121 At this time, we do not support the use of conditions on Ada exception
10122 catchpoints. The COND and COND_STRING fields are therefore set
10123 to NULL (most of the time, see below).
10124
10125 Conditions where EXP_STRING, COND, and COND_STRING are used:
10126
10127 When a user specifies the name of a specific exception in the case
10128 of catchpoints on Ada exceptions, we store the name of that exception
10129 in the EXP_STRING. We then translate this request into an actual
10130 condition stored in COND_STRING, and then parse it into an expression
10131 stored in COND. */
10132
10133 /* The different types of catchpoints that we introduced for catching
10134 Ada exceptions. */
10135
10136 enum exception_catchpoint_kind
10137 {
10138 ex_catch_exception,
10139 ex_catch_exception_unhandled,
10140 ex_catch_assert
10141 };
10142
10143 /* Ada's standard exceptions. */
10144
10145 static char *standard_exc[] = {
10146 "constraint_error",
10147 "program_error",
10148 "storage_error",
10149 "tasking_error"
10150 };
10151
10152 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10153
10154 /* A structure that describes how to support exception catchpoints
10155 for a given executable. */
10156
10157 struct exception_support_info
10158 {
10159 /* The name of the symbol to break on in order to insert
10160 a catchpoint on exceptions. */
10161 const char *catch_exception_sym;
10162
10163 /* The name of the symbol to break on in order to insert
10164 a catchpoint on unhandled exceptions. */
10165 const char *catch_exception_unhandled_sym;
10166
10167 /* The name of the symbol to break on in order to insert
10168 a catchpoint on failed assertions. */
10169 const char *catch_assert_sym;
10170
10171 /* Assuming that the inferior just triggered an unhandled exception
10172 catchpoint, this function is responsible for returning the address
10173 in inferior memory where the name of that exception is stored.
10174 Return zero if the address could not be computed. */
10175 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10176 };
10177
10178 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10179 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10180
10181 /* The following exception support info structure describes how to
10182 implement exception catchpoints with the latest version of the
10183 Ada runtime (as of 2007-03-06). */
10184
10185 static const struct exception_support_info default_exception_support_info =
10186 {
10187 "__gnat_debug_raise_exception", /* catch_exception_sym */
10188 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10189 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10190 ada_unhandled_exception_name_addr
10191 };
10192
10193 /* The following exception support info structure describes how to
10194 implement exception catchpoints with a slightly older version
10195 of the Ada runtime. */
10196
10197 static const struct exception_support_info exception_support_info_fallback =
10198 {
10199 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10200 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10201 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10202 ada_unhandled_exception_name_addr_from_raise
10203 };
10204
10205 /* For each executable, we sniff which exception info structure to use
10206 and cache it in the following global variable. */
10207
10208 static const struct exception_support_info *exception_info = NULL;
10209
10210 /* Inspect the Ada runtime and determine which exception info structure
10211 should be used to provide support for exception catchpoints.
10212
10213 This function will always set exception_info, or raise an error. */
10214
10215 static void
10216 ada_exception_support_info_sniffer (void)
10217 {
10218 struct symbol *sym;
10219
10220 /* If the exception info is already known, then no need to recompute it. */
10221 if (exception_info != NULL)
10222 return;
10223
10224 /* Check the latest (default) exception support info. */
10225 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10226 NULL, VAR_DOMAIN);
10227 if (sym != NULL)
10228 {
10229 exception_info = &default_exception_support_info;
10230 return;
10231 }
10232
10233 /* Try our fallback exception suport info. */
10234 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10235 NULL, VAR_DOMAIN);
10236 if (sym != NULL)
10237 {
10238 exception_info = &exception_support_info_fallback;
10239 return;
10240 }
10241
10242 /* Sometimes, it is normal for us to not be able to find the routine
10243 we are looking for. This happens when the program is linked with
10244 the shared version of the GNAT runtime, and the program has not been
10245 started yet. Inform the user of these two possible causes if
10246 applicable. */
10247
10248 if (ada_update_initial_language (language_unknown) != language_ada)
10249 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10250
10251 /* If the symbol does not exist, then check that the program is
10252 already started, to make sure that shared libraries have been
10253 loaded. If it is not started, this may mean that the symbol is
10254 in a shared library. */
10255
10256 if (ptid_get_pid (inferior_ptid) == 0)
10257 error (_("Unable to insert catchpoint. Try to start the program first."));
10258
10259 /* At this point, we know that we are debugging an Ada program and
10260 that the inferior has been started, but we still are not able to
10261 find the run-time symbols. That can mean that we are in
10262 configurable run time mode, or that a-except as been optimized
10263 out by the linker... In any case, at this point it is not worth
10264 supporting this feature. */
10265
10266 error (_("Cannot insert catchpoints in this configuration."));
10267 }
10268
10269 /* An observer of "executable_changed" events.
10270 Its role is to clear certain cached values that need to be recomputed
10271 each time a new executable is loaded by GDB. */
10272
10273 static void
10274 ada_executable_changed_observer (void)
10275 {
10276 /* If the executable changed, then it is possible that the Ada runtime
10277 is different. So we need to invalidate the exception support info
10278 cache. */
10279 exception_info = NULL;
10280 }
10281
10282 /* True iff FRAME is very likely to be that of a function that is
10283 part of the runtime system. This is all very heuristic, but is
10284 intended to be used as advice as to what frames are uninteresting
10285 to most users. */
10286
10287 static int
10288 is_known_support_routine (struct frame_info *frame)
10289 {
10290 struct symtab_and_line sal;
10291 char *func_name;
10292 enum language func_lang;
10293 int i;
10294
10295 /* If this code does not have any debugging information (no symtab),
10296 This cannot be any user code. */
10297
10298 find_frame_sal (frame, &sal);
10299 if (sal.symtab == NULL)
10300 return 1;
10301
10302 /* If there is a symtab, but the associated source file cannot be
10303 located, then assume this is not user code: Selecting a frame
10304 for which we cannot display the code would not be very helpful
10305 for the user. This should also take care of case such as VxWorks
10306 where the kernel has some debugging info provided for a few units. */
10307
10308 if (symtab_to_fullname (sal.symtab) == NULL)
10309 return 1;
10310
10311 /* Check the unit filename againt the Ada runtime file naming.
10312 We also check the name of the objfile against the name of some
10313 known system libraries that sometimes come with debugging info
10314 too. */
10315
10316 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10317 {
10318 re_comp (known_runtime_file_name_patterns[i]);
10319 if (re_exec (sal.symtab->filename))
10320 return 1;
10321 if (sal.symtab->objfile != NULL
10322 && re_exec (sal.symtab->objfile->name))
10323 return 1;
10324 }
10325
10326 /* Check whether the function is a GNAT-generated entity. */
10327
10328 find_frame_funname (frame, &func_name, &func_lang);
10329 if (func_name == NULL)
10330 return 1;
10331
10332 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10333 {
10334 re_comp (known_auxiliary_function_name_patterns[i]);
10335 if (re_exec (func_name))
10336 return 1;
10337 }
10338
10339 return 0;
10340 }
10341
10342 /* Find the first frame that contains debugging information and that is not
10343 part of the Ada run-time, starting from FI and moving upward. */
10344
10345 void
10346 ada_find_printable_frame (struct frame_info *fi)
10347 {
10348 for (; fi != NULL; fi = get_prev_frame (fi))
10349 {
10350 if (!is_known_support_routine (fi))
10351 {
10352 select_frame (fi);
10353 break;
10354 }
10355 }
10356
10357 }
10358
10359 /* Assuming that the inferior just triggered an unhandled exception
10360 catchpoint, return the address in inferior memory where the name
10361 of the exception is stored.
10362
10363 Return zero if the address could not be computed. */
10364
10365 static CORE_ADDR
10366 ada_unhandled_exception_name_addr (void)
10367 {
10368 return parse_and_eval_address ("e.full_name");
10369 }
10370
10371 /* Same as ada_unhandled_exception_name_addr, except that this function
10372 should be used when the inferior uses an older version of the runtime,
10373 where the exception name needs to be extracted from a specific frame
10374 several frames up in the callstack. */
10375
10376 static CORE_ADDR
10377 ada_unhandled_exception_name_addr_from_raise (void)
10378 {
10379 int frame_level;
10380 struct frame_info *fi;
10381
10382 /* To determine the name of this exception, we need to select
10383 the frame corresponding to RAISE_SYM_NAME. This frame is
10384 at least 3 levels up, so we simply skip the first 3 frames
10385 without checking the name of their associated function. */
10386 fi = get_current_frame ();
10387 for (frame_level = 0; frame_level < 3; frame_level += 1)
10388 if (fi != NULL)
10389 fi = get_prev_frame (fi);
10390
10391 while (fi != NULL)
10392 {
10393 char *func_name;
10394 enum language func_lang;
10395
10396 find_frame_funname (fi, &func_name, &func_lang);
10397 if (func_name != NULL
10398 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10399 break; /* We found the frame we were looking for... */
10400 fi = get_prev_frame (fi);
10401 }
10402
10403 if (fi == NULL)
10404 return 0;
10405
10406 select_frame (fi);
10407 return parse_and_eval_address ("id.full_name");
10408 }
10409
10410 /* Assuming the inferior just triggered an Ada exception catchpoint
10411 (of any type), return the address in inferior memory where the name
10412 of the exception is stored, if applicable.
10413
10414 Return zero if the address could not be computed, or if not relevant. */
10415
10416 static CORE_ADDR
10417 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10418 struct breakpoint *b)
10419 {
10420 switch (ex)
10421 {
10422 case ex_catch_exception:
10423 return (parse_and_eval_address ("e.full_name"));
10424 break;
10425
10426 case ex_catch_exception_unhandled:
10427 return exception_info->unhandled_exception_name_addr ();
10428 break;
10429
10430 case ex_catch_assert:
10431 return 0; /* Exception name is not relevant in this case. */
10432 break;
10433
10434 default:
10435 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10436 break;
10437 }
10438
10439 return 0; /* Should never be reached. */
10440 }
10441
10442 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10443 any error that ada_exception_name_addr_1 might cause to be thrown.
10444 When an error is intercepted, a warning with the error message is printed,
10445 and zero is returned. */
10446
10447 static CORE_ADDR
10448 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10449 struct breakpoint *b)
10450 {
10451 struct gdb_exception e;
10452 CORE_ADDR result = 0;
10453
10454 TRY_CATCH (e, RETURN_MASK_ERROR)
10455 {
10456 result = ada_exception_name_addr_1 (ex, b);
10457 }
10458
10459 if (e.reason < 0)
10460 {
10461 warning (_("failed to get exception name: %s"), e.message);
10462 return 0;
10463 }
10464
10465 return result;
10466 }
10467
10468 /* Implement the PRINT_IT method in the breakpoint_ops structure
10469 for all exception catchpoint kinds. */
10470
10471 static enum print_stop_action
10472 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10473 {
10474 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10475 char exception_name[256];
10476
10477 if (addr != 0)
10478 {
10479 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10480 exception_name [sizeof (exception_name) - 1] = '\0';
10481 }
10482
10483 ada_find_printable_frame (get_current_frame ());
10484
10485 annotate_catchpoint (b->number);
10486 switch (ex)
10487 {
10488 case ex_catch_exception:
10489 if (addr != 0)
10490 printf_filtered (_("\nCatchpoint %d, %s at "),
10491 b->number, exception_name);
10492 else
10493 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10494 break;
10495 case ex_catch_exception_unhandled:
10496 if (addr != 0)
10497 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10498 b->number, exception_name);
10499 else
10500 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10501 b->number);
10502 break;
10503 case ex_catch_assert:
10504 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10505 b->number);
10506 break;
10507 }
10508
10509 return PRINT_SRC_AND_LOC;
10510 }
10511
10512 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10513 for all exception catchpoint kinds. */
10514
10515 static void
10516 print_one_exception (enum exception_catchpoint_kind ex,
10517 struct breakpoint *b, struct bp_location **last_loc)
10518 {
10519 struct value_print_options opts;
10520
10521 get_user_print_options (&opts);
10522 if (opts.addressprint)
10523 {
10524 annotate_field (4);
10525 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10526 }
10527
10528 annotate_field (5);
10529 *last_loc = b->loc;
10530 switch (ex)
10531 {
10532 case ex_catch_exception:
10533 if (b->exp_string != NULL)
10534 {
10535 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10536
10537 ui_out_field_string (uiout, "what", msg);
10538 xfree (msg);
10539 }
10540 else
10541 ui_out_field_string (uiout, "what", "all Ada exceptions");
10542
10543 break;
10544
10545 case ex_catch_exception_unhandled:
10546 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10547 break;
10548
10549 case ex_catch_assert:
10550 ui_out_field_string (uiout, "what", "failed Ada assertions");
10551 break;
10552
10553 default:
10554 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10555 break;
10556 }
10557 }
10558
10559 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10560 for all exception catchpoint kinds. */
10561
10562 static void
10563 print_mention_exception (enum exception_catchpoint_kind ex,
10564 struct breakpoint *b)
10565 {
10566 switch (ex)
10567 {
10568 case ex_catch_exception:
10569 if (b->exp_string != NULL)
10570 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10571 b->number, b->exp_string);
10572 else
10573 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10574
10575 break;
10576
10577 case ex_catch_exception_unhandled:
10578 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10579 b->number);
10580 break;
10581
10582 case ex_catch_assert:
10583 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10584 break;
10585
10586 default:
10587 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10588 break;
10589 }
10590 }
10591
10592 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10593 for all exception catchpoint kinds. */
10594
10595 static void
10596 print_recreate_exception (enum exception_catchpoint_kind ex,
10597 struct breakpoint *b, struct ui_file *fp)
10598 {
10599 switch (ex)
10600 {
10601 case ex_catch_exception:
10602 fprintf_filtered (fp, "catch exception");
10603 if (b->exp_string != NULL)
10604 fprintf_filtered (fp, " %s", b->exp_string);
10605 break;
10606
10607 case ex_catch_exception_unhandled:
10608 fprintf_filtered (fp, "catch exception unhandled");
10609 break;
10610
10611 case ex_catch_assert:
10612 fprintf_filtered (fp, "catch assert");
10613 break;
10614
10615 default:
10616 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10617 }
10618 }
10619
10620 /* Virtual table for "catch exception" breakpoints. */
10621
10622 static enum print_stop_action
10623 print_it_catch_exception (struct breakpoint *b)
10624 {
10625 return print_it_exception (ex_catch_exception, b);
10626 }
10627
10628 static void
10629 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10630 {
10631 print_one_exception (ex_catch_exception, b, last_loc);
10632 }
10633
10634 static void
10635 print_mention_catch_exception (struct breakpoint *b)
10636 {
10637 print_mention_exception (ex_catch_exception, b);
10638 }
10639
10640 static void
10641 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10642 {
10643 print_recreate_exception (ex_catch_exception, b, fp);
10644 }
10645
10646 static struct breakpoint_ops catch_exception_breakpoint_ops =
10647 {
10648 NULL, /* insert */
10649 NULL, /* remove */
10650 NULL, /* breakpoint_hit */
10651 print_it_catch_exception,
10652 print_one_catch_exception,
10653 print_mention_catch_exception,
10654 print_recreate_catch_exception
10655 };
10656
10657 /* Virtual table for "catch exception unhandled" breakpoints. */
10658
10659 static enum print_stop_action
10660 print_it_catch_exception_unhandled (struct breakpoint *b)
10661 {
10662 return print_it_exception (ex_catch_exception_unhandled, b);
10663 }
10664
10665 static void
10666 print_one_catch_exception_unhandled (struct breakpoint *b,
10667 struct bp_location **last_loc)
10668 {
10669 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10670 }
10671
10672 static void
10673 print_mention_catch_exception_unhandled (struct breakpoint *b)
10674 {
10675 print_mention_exception (ex_catch_exception_unhandled, b);
10676 }
10677
10678 static void
10679 print_recreate_catch_exception_unhandled (struct breakpoint *b,
10680 struct ui_file *fp)
10681 {
10682 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10683 }
10684
10685 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10686 NULL, /* insert */
10687 NULL, /* remove */
10688 NULL, /* breakpoint_hit */
10689 print_it_catch_exception_unhandled,
10690 print_one_catch_exception_unhandled,
10691 print_mention_catch_exception_unhandled,
10692 print_recreate_catch_exception_unhandled
10693 };
10694
10695 /* Virtual table for "catch assert" breakpoints. */
10696
10697 static enum print_stop_action
10698 print_it_catch_assert (struct breakpoint *b)
10699 {
10700 return print_it_exception (ex_catch_assert, b);
10701 }
10702
10703 static void
10704 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
10705 {
10706 print_one_exception (ex_catch_assert, b, last_loc);
10707 }
10708
10709 static void
10710 print_mention_catch_assert (struct breakpoint *b)
10711 {
10712 print_mention_exception (ex_catch_assert, b);
10713 }
10714
10715 static void
10716 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
10717 {
10718 print_recreate_exception (ex_catch_assert, b, fp);
10719 }
10720
10721 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10722 NULL, /* insert */
10723 NULL, /* remove */
10724 NULL, /* breakpoint_hit */
10725 print_it_catch_assert,
10726 print_one_catch_assert,
10727 print_mention_catch_assert,
10728 print_recreate_catch_assert
10729 };
10730
10731 /* Return non-zero if B is an Ada exception catchpoint. */
10732
10733 int
10734 ada_exception_catchpoint_p (struct breakpoint *b)
10735 {
10736 return (b->ops == &catch_exception_breakpoint_ops
10737 || b->ops == &catch_exception_unhandled_breakpoint_ops
10738 || b->ops == &catch_assert_breakpoint_ops);
10739 }
10740
10741 /* Return a newly allocated copy of the first space-separated token
10742 in ARGSP, and then adjust ARGSP to point immediately after that
10743 token.
10744
10745 Return NULL if ARGPS does not contain any more tokens. */
10746
10747 static char *
10748 ada_get_next_arg (char **argsp)
10749 {
10750 char *args = *argsp;
10751 char *end;
10752 char *result;
10753
10754 /* Skip any leading white space. */
10755
10756 while (isspace (*args))
10757 args++;
10758
10759 if (args[0] == '\0')
10760 return NULL; /* No more arguments. */
10761
10762 /* Find the end of the current argument. */
10763
10764 end = args;
10765 while (*end != '\0' && !isspace (*end))
10766 end++;
10767
10768 /* Adjust ARGSP to point to the start of the next argument. */
10769
10770 *argsp = end;
10771
10772 /* Make a copy of the current argument and return it. */
10773
10774 result = xmalloc (end - args + 1);
10775 strncpy (result, args, end - args);
10776 result[end - args] = '\0';
10777
10778 return result;
10779 }
10780
10781 /* Split the arguments specified in a "catch exception" command.
10782 Set EX to the appropriate catchpoint type.
10783 Set EXP_STRING to the name of the specific exception if
10784 specified by the user. */
10785
10786 static void
10787 catch_ada_exception_command_split (char *args,
10788 enum exception_catchpoint_kind *ex,
10789 char **exp_string)
10790 {
10791 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10792 char *exception_name;
10793
10794 exception_name = ada_get_next_arg (&args);
10795 make_cleanup (xfree, exception_name);
10796
10797 /* Check that we do not have any more arguments. Anything else
10798 is unexpected. */
10799
10800 while (isspace (*args))
10801 args++;
10802
10803 if (args[0] != '\0')
10804 error (_("Junk at end of expression"));
10805
10806 discard_cleanups (old_chain);
10807
10808 if (exception_name == NULL)
10809 {
10810 /* Catch all exceptions. */
10811 *ex = ex_catch_exception;
10812 *exp_string = NULL;
10813 }
10814 else if (strcmp (exception_name, "unhandled") == 0)
10815 {
10816 /* Catch unhandled exceptions. */
10817 *ex = ex_catch_exception_unhandled;
10818 *exp_string = NULL;
10819 }
10820 else
10821 {
10822 /* Catch a specific exception. */
10823 *ex = ex_catch_exception;
10824 *exp_string = exception_name;
10825 }
10826 }
10827
10828 /* Return the name of the symbol on which we should break in order to
10829 implement a catchpoint of the EX kind. */
10830
10831 static const char *
10832 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10833 {
10834 gdb_assert (exception_info != NULL);
10835
10836 switch (ex)
10837 {
10838 case ex_catch_exception:
10839 return (exception_info->catch_exception_sym);
10840 break;
10841 case ex_catch_exception_unhandled:
10842 return (exception_info->catch_exception_unhandled_sym);
10843 break;
10844 case ex_catch_assert:
10845 return (exception_info->catch_assert_sym);
10846 break;
10847 default:
10848 internal_error (__FILE__, __LINE__,
10849 _("unexpected catchpoint kind (%d)"), ex);
10850 }
10851 }
10852
10853 /* Return the breakpoint ops "virtual table" used for catchpoints
10854 of the EX kind. */
10855
10856 static struct breakpoint_ops *
10857 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10858 {
10859 switch (ex)
10860 {
10861 case ex_catch_exception:
10862 return (&catch_exception_breakpoint_ops);
10863 break;
10864 case ex_catch_exception_unhandled:
10865 return (&catch_exception_unhandled_breakpoint_ops);
10866 break;
10867 case ex_catch_assert:
10868 return (&catch_assert_breakpoint_ops);
10869 break;
10870 default:
10871 internal_error (__FILE__, __LINE__,
10872 _("unexpected catchpoint kind (%d)"), ex);
10873 }
10874 }
10875
10876 /* Return the condition that will be used to match the current exception
10877 being raised with the exception that the user wants to catch. This
10878 assumes that this condition is used when the inferior just triggered
10879 an exception catchpoint.
10880
10881 The string returned is a newly allocated string that needs to be
10882 deallocated later. */
10883
10884 static char *
10885 ada_exception_catchpoint_cond_string (const char *exp_string)
10886 {
10887 int i;
10888
10889 /* The standard exceptions are a special case. They are defined in
10890 runtime units that have been compiled without debugging info; if
10891 EXP_STRING is the not-fully-qualified name of a standard
10892 exception (e.g. "constraint_error") then, during the evaluation
10893 of the condition expression, the symbol lookup on this name would
10894 *not* return this standard exception. The catchpoint condition
10895 may then be set only on user-defined exceptions which have the
10896 same not-fully-qualified name (e.g. my_package.constraint_error).
10897
10898 To avoid this unexcepted behavior, these standard exceptions are
10899 systematically prefixed by "standard". This means that "catch
10900 exception constraint_error" is rewritten into "catch exception
10901 standard.constraint_error".
10902
10903 If an exception named contraint_error is defined in another package of
10904 the inferior program, then the only way to specify this exception as a
10905 breakpoint condition is to use its fully-qualified named:
10906 e.g. my_package.constraint_error. */
10907
10908 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10909 {
10910 if (strcmp (standard_exc [i], exp_string) == 0)
10911 {
10912 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10913 exp_string);
10914 }
10915 }
10916 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10917 }
10918
10919 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10920
10921 static struct expression *
10922 ada_parse_catchpoint_condition (char *cond_string,
10923 struct symtab_and_line sal)
10924 {
10925 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10926 }
10927
10928 /* Return the symtab_and_line that should be used to insert an exception
10929 catchpoint of the TYPE kind.
10930
10931 EX_STRING should contain the name of a specific exception
10932 that the catchpoint should catch, or NULL otherwise.
10933
10934 The idea behind all the remaining parameters is that their names match
10935 the name of certain fields in the breakpoint structure that are used to
10936 handle exception catchpoints. This function returns the value to which
10937 these fields should be set, depending on the type of catchpoint we need
10938 to create.
10939
10940 If COND and COND_STRING are both non-NULL, any value they might
10941 hold will be free'ed, and then replaced by newly allocated ones.
10942 These parameters are left untouched otherwise. */
10943
10944 static struct symtab_and_line
10945 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10946 char **addr_string, char **cond_string,
10947 struct expression **cond, struct breakpoint_ops **ops)
10948 {
10949 const char *sym_name;
10950 struct symbol *sym;
10951 struct symtab_and_line sal;
10952
10953 /* First, find out which exception support info to use. */
10954 ada_exception_support_info_sniffer ();
10955
10956 /* Then lookup the function on which we will break in order to catch
10957 the Ada exceptions requested by the user. */
10958
10959 sym_name = ada_exception_sym_name (ex);
10960 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10961
10962 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10963 that should be compiled with debugging information. As a result, we
10964 expect to find that symbol in the symtabs. If we don't find it, then
10965 the target most likely does not support Ada exceptions, or we cannot
10966 insert exception breakpoints yet, because the GNAT runtime hasn't been
10967 loaded yet. */
10968
10969 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10970 in such a way that no debugging information is produced for the symbol
10971 we are looking for. In this case, we could search the minimal symbols
10972 as a fall-back mechanism. This would still be operating in degraded
10973 mode, however, as we would still be missing the debugging information
10974 that is needed in order to extract the name of the exception being
10975 raised (this name is printed in the catchpoint message, and is also
10976 used when trying to catch a specific exception). We do not handle
10977 this case for now. */
10978
10979 if (sym == NULL)
10980 error (_("Unable to break on '%s' in this configuration."), sym_name);
10981
10982 /* Make sure that the symbol we found corresponds to a function. */
10983 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10984 error (_("Symbol \"%s\" is not a function (class = %d)"),
10985 sym_name, SYMBOL_CLASS (sym));
10986
10987 sal = find_function_start_sal (sym, 1);
10988
10989 /* Set ADDR_STRING. */
10990
10991 *addr_string = xstrdup (sym_name);
10992
10993 /* Set the COND and COND_STRING (if not NULL). */
10994
10995 if (cond_string != NULL && cond != NULL)
10996 {
10997 if (*cond_string != NULL)
10998 {
10999 xfree (*cond_string);
11000 *cond_string = NULL;
11001 }
11002 if (*cond != NULL)
11003 {
11004 xfree (*cond);
11005 *cond = NULL;
11006 }
11007 if (exp_string != NULL)
11008 {
11009 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
11010 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
11011 }
11012 }
11013
11014 /* Set OPS. */
11015 *ops = ada_exception_breakpoint_ops (ex);
11016
11017 return sal;
11018 }
11019
11020 /* Parse the arguments (ARGS) of the "catch exception" command.
11021
11022 Set TYPE to the appropriate exception catchpoint type.
11023 If the user asked the catchpoint to catch only a specific
11024 exception, then save the exception name in ADDR_STRING.
11025
11026 See ada_exception_sal for a description of all the remaining
11027 function arguments of this function. */
11028
11029 struct symtab_and_line
11030 ada_decode_exception_location (char *args, char **addr_string,
11031 char **exp_string, char **cond_string,
11032 struct expression **cond,
11033 struct breakpoint_ops **ops)
11034 {
11035 enum exception_catchpoint_kind ex;
11036
11037 catch_ada_exception_command_split (args, &ex, exp_string);
11038 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
11039 cond, ops);
11040 }
11041
11042 struct symtab_and_line
11043 ada_decode_assert_location (char *args, char **addr_string,
11044 struct breakpoint_ops **ops)
11045 {
11046 /* Check that no argument where provided at the end of the command. */
11047
11048 if (args != NULL)
11049 {
11050 while (isspace (*args))
11051 args++;
11052 if (*args != '\0')
11053 error (_("Junk at end of arguments."));
11054 }
11055
11056 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
11057 ops);
11058 }
11059
11060 /* Operators */
11061 /* Information about operators given special treatment in functions
11062 below. */
11063 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11064
11065 #define ADA_OPERATORS \
11066 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11067 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11068 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11069 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11070 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11071 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11072 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11073 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11074 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11075 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11076 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11077 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11078 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11079 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11080 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11081 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11082 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11083 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11084 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11085
11086 static void
11087 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11088 int *argsp)
11089 {
11090 switch (exp->elts[pc - 1].opcode)
11091 {
11092 default:
11093 operator_length_standard (exp, pc, oplenp, argsp);
11094 break;
11095
11096 #define OP_DEFN(op, len, args, binop) \
11097 case op: *oplenp = len; *argsp = args; break;
11098 ADA_OPERATORS;
11099 #undef OP_DEFN
11100
11101 case OP_AGGREGATE:
11102 *oplenp = 3;
11103 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11104 break;
11105
11106 case OP_CHOICES:
11107 *oplenp = 3;
11108 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11109 break;
11110 }
11111 }
11112
11113 /* Implementation of the exp_descriptor method operator_check. */
11114
11115 static int
11116 ada_operator_check (struct expression *exp, int pos,
11117 int (*objfile_func) (struct objfile *objfile, void *data),
11118 void *data)
11119 {
11120 const union exp_element *const elts = exp->elts;
11121 struct type *type = NULL;
11122
11123 switch (elts[pos].opcode)
11124 {
11125 case UNOP_IN_RANGE:
11126 case UNOP_QUAL:
11127 type = elts[pos + 1].type;
11128 break;
11129
11130 default:
11131 return operator_check_standard (exp, pos, objfile_func, data);
11132 }
11133
11134 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11135
11136 if (type && TYPE_OBJFILE (type)
11137 && (*objfile_func) (TYPE_OBJFILE (type), data))
11138 return 1;
11139
11140 return 0;
11141 }
11142
11143 static char *
11144 ada_op_name (enum exp_opcode opcode)
11145 {
11146 switch (opcode)
11147 {
11148 default:
11149 return op_name_standard (opcode);
11150
11151 #define OP_DEFN(op, len, args, binop) case op: return #op;
11152 ADA_OPERATORS;
11153 #undef OP_DEFN
11154
11155 case OP_AGGREGATE:
11156 return "OP_AGGREGATE";
11157 case OP_CHOICES:
11158 return "OP_CHOICES";
11159 case OP_NAME:
11160 return "OP_NAME";
11161 }
11162 }
11163
11164 /* As for operator_length, but assumes PC is pointing at the first
11165 element of the operator, and gives meaningful results only for the
11166 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
11167
11168 static void
11169 ada_forward_operator_length (struct expression *exp, int pc,
11170 int *oplenp, int *argsp)
11171 {
11172 switch (exp->elts[pc].opcode)
11173 {
11174 default:
11175 *oplenp = *argsp = 0;
11176 break;
11177
11178 #define OP_DEFN(op, len, args, binop) \
11179 case op: *oplenp = len; *argsp = args; break;
11180 ADA_OPERATORS;
11181 #undef OP_DEFN
11182
11183 case OP_AGGREGATE:
11184 *oplenp = 3;
11185 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11186 break;
11187
11188 case OP_CHOICES:
11189 *oplenp = 3;
11190 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11191 break;
11192
11193 case OP_STRING:
11194 case OP_NAME:
11195 {
11196 int len = longest_to_int (exp->elts[pc + 1].longconst);
11197
11198 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11199 *argsp = 0;
11200 break;
11201 }
11202 }
11203 }
11204
11205 static int
11206 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11207 {
11208 enum exp_opcode op = exp->elts[elt].opcode;
11209 int oplen, nargs;
11210 int pc = elt;
11211 int i;
11212
11213 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11214
11215 switch (op)
11216 {
11217 /* Ada attributes ('Foo). */
11218 case OP_ATR_FIRST:
11219 case OP_ATR_LAST:
11220 case OP_ATR_LENGTH:
11221 case OP_ATR_IMAGE:
11222 case OP_ATR_MAX:
11223 case OP_ATR_MIN:
11224 case OP_ATR_MODULUS:
11225 case OP_ATR_POS:
11226 case OP_ATR_SIZE:
11227 case OP_ATR_TAG:
11228 case OP_ATR_VAL:
11229 break;
11230
11231 case UNOP_IN_RANGE:
11232 case UNOP_QUAL:
11233 /* XXX: gdb_sprint_host_address, type_sprint */
11234 fprintf_filtered (stream, _("Type @"));
11235 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11236 fprintf_filtered (stream, " (");
11237 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11238 fprintf_filtered (stream, ")");
11239 break;
11240 case BINOP_IN_BOUNDS:
11241 fprintf_filtered (stream, " (%d)",
11242 longest_to_int (exp->elts[pc + 2].longconst));
11243 break;
11244 case TERNOP_IN_RANGE:
11245 break;
11246
11247 case OP_AGGREGATE:
11248 case OP_OTHERS:
11249 case OP_DISCRETE_RANGE:
11250 case OP_POSITIONAL:
11251 case OP_CHOICES:
11252 break;
11253
11254 case OP_NAME:
11255 case OP_STRING:
11256 {
11257 char *name = &exp->elts[elt + 2].string;
11258 int len = longest_to_int (exp->elts[elt + 1].longconst);
11259
11260 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11261 break;
11262 }
11263
11264 default:
11265 return dump_subexp_body_standard (exp, stream, elt);
11266 }
11267
11268 elt += oplen;
11269 for (i = 0; i < nargs; i += 1)
11270 elt = dump_subexp (exp, stream, elt);
11271
11272 return elt;
11273 }
11274
11275 /* The Ada extension of print_subexp (q.v.). */
11276
11277 static void
11278 ada_print_subexp (struct expression *exp, int *pos,
11279 struct ui_file *stream, enum precedence prec)
11280 {
11281 int oplen, nargs, i;
11282 int pc = *pos;
11283 enum exp_opcode op = exp->elts[pc].opcode;
11284
11285 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11286
11287 *pos += oplen;
11288 switch (op)
11289 {
11290 default:
11291 *pos -= oplen;
11292 print_subexp_standard (exp, pos, stream, prec);
11293 return;
11294
11295 case OP_VAR_VALUE:
11296 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11297 return;
11298
11299 case BINOP_IN_BOUNDS:
11300 /* XXX: sprint_subexp */
11301 print_subexp (exp, pos, stream, PREC_SUFFIX);
11302 fputs_filtered (" in ", stream);
11303 print_subexp (exp, pos, stream, PREC_SUFFIX);
11304 fputs_filtered ("'range", stream);
11305 if (exp->elts[pc + 1].longconst > 1)
11306 fprintf_filtered (stream, "(%ld)",
11307 (long) exp->elts[pc + 1].longconst);
11308 return;
11309
11310 case TERNOP_IN_RANGE:
11311 if (prec >= PREC_EQUAL)
11312 fputs_filtered ("(", stream);
11313 /* XXX: sprint_subexp */
11314 print_subexp (exp, pos, stream, PREC_SUFFIX);
11315 fputs_filtered (" in ", stream);
11316 print_subexp (exp, pos, stream, PREC_EQUAL);
11317 fputs_filtered (" .. ", stream);
11318 print_subexp (exp, pos, stream, PREC_EQUAL);
11319 if (prec >= PREC_EQUAL)
11320 fputs_filtered (")", stream);
11321 return;
11322
11323 case OP_ATR_FIRST:
11324 case OP_ATR_LAST:
11325 case OP_ATR_LENGTH:
11326 case OP_ATR_IMAGE:
11327 case OP_ATR_MAX:
11328 case OP_ATR_MIN:
11329 case OP_ATR_MODULUS:
11330 case OP_ATR_POS:
11331 case OP_ATR_SIZE:
11332 case OP_ATR_TAG:
11333 case OP_ATR_VAL:
11334 if (exp->elts[*pos].opcode == OP_TYPE)
11335 {
11336 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11337 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11338 *pos += 3;
11339 }
11340 else
11341 print_subexp (exp, pos, stream, PREC_SUFFIX);
11342 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11343 if (nargs > 1)
11344 {
11345 int tem;
11346
11347 for (tem = 1; tem < nargs; tem += 1)
11348 {
11349 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11350 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11351 }
11352 fputs_filtered (")", stream);
11353 }
11354 return;
11355
11356 case UNOP_QUAL:
11357 type_print (exp->elts[pc + 1].type, "", stream, 0);
11358 fputs_filtered ("'(", stream);
11359 print_subexp (exp, pos, stream, PREC_PREFIX);
11360 fputs_filtered (")", stream);
11361 return;
11362
11363 case UNOP_IN_RANGE:
11364 /* XXX: sprint_subexp */
11365 print_subexp (exp, pos, stream, PREC_SUFFIX);
11366 fputs_filtered (" in ", stream);
11367 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11368 return;
11369
11370 case OP_DISCRETE_RANGE:
11371 print_subexp (exp, pos, stream, PREC_SUFFIX);
11372 fputs_filtered ("..", stream);
11373 print_subexp (exp, pos, stream, PREC_SUFFIX);
11374 return;
11375
11376 case OP_OTHERS:
11377 fputs_filtered ("others => ", stream);
11378 print_subexp (exp, pos, stream, PREC_SUFFIX);
11379 return;
11380
11381 case OP_CHOICES:
11382 for (i = 0; i < nargs-1; i += 1)
11383 {
11384 if (i > 0)
11385 fputs_filtered ("|", stream);
11386 print_subexp (exp, pos, stream, PREC_SUFFIX);
11387 }
11388 fputs_filtered (" => ", stream);
11389 print_subexp (exp, pos, stream, PREC_SUFFIX);
11390 return;
11391
11392 case OP_POSITIONAL:
11393 print_subexp (exp, pos, stream, PREC_SUFFIX);
11394 return;
11395
11396 case OP_AGGREGATE:
11397 fputs_filtered ("(", stream);
11398 for (i = 0; i < nargs; i += 1)
11399 {
11400 if (i > 0)
11401 fputs_filtered (", ", stream);
11402 print_subexp (exp, pos, stream, PREC_SUFFIX);
11403 }
11404 fputs_filtered (")", stream);
11405 return;
11406 }
11407 }
11408
11409 /* Table mapping opcodes into strings for printing operators
11410 and precedences of the operators. */
11411
11412 static const struct op_print ada_op_print_tab[] = {
11413 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11414 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11415 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11416 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11417 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11418 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11419 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11420 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11421 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11422 {">=", BINOP_GEQ, PREC_ORDER, 0},
11423 {">", BINOP_GTR, PREC_ORDER, 0},
11424 {"<", BINOP_LESS, PREC_ORDER, 0},
11425 {">>", BINOP_RSH, PREC_SHIFT, 0},
11426 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11427 {"+", BINOP_ADD, PREC_ADD, 0},
11428 {"-", BINOP_SUB, PREC_ADD, 0},
11429 {"&", BINOP_CONCAT, PREC_ADD, 0},
11430 {"*", BINOP_MUL, PREC_MUL, 0},
11431 {"/", BINOP_DIV, PREC_MUL, 0},
11432 {"rem", BINOP_REM, PREC_MUL, 0},
11433 {"mod", BINOP_MOD, PREC_MUL, 0},
11434 {"**", BINOP_EXP, PREC_REPEAT, 0},
11435 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11436 {"-", UNOP_NEG, PREC_PREFIX, 0},
11437 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11438 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11439 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11440 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11441 {".all", UNOP_IND, PREC_SUFFIX, 1},
11442 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11443 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11444 {NULL, 0, 0, 0}
11445 };
11446 \f
11447 enum ada_primitive_types {
11448 ada_primitive_type_int,
11449 ada_primitive_type_long,
11450 ada_primitive_type_short,
11451 ada_primitive_type_char,
11452 ada_primitive_type_float,
11453 ada_primitive_type_double,
11454 ada_primitive_type_void,
11455 ada_primitive_type_long_long,
11456 ada_primitive_type_long_double,
11457 ada_primitive_type_natural,
11458 ada_primitive_type_positive,
11459 ada_primitive_type_system_address,
11460 nr_ada_primitive_types
11461 };
11462
11463 static void
11464 ada_language_arch_info (struct gdbarch *gdbarch,
11465 struct language_arch_info *lai)
11466 {
11467 const struct builtin_type *builtin = builtin_type (gdbarch);
11468
11469 lai->primitive_type_vector
11470 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11471 struct type *);
11472
11473 lai->primitive_type_vector [ada_primitive_type_int]
11474 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11475 0, "integer");
11476 lai->primitive_type_vector [ada_primitive_type_long]
11477 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11478 0, "long_integer");
11479 lai->primitive_type_vector [ada_primitive_type_short]
11480 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11481 0, "short_integer");
11482 lai->string_char_type
11483 = lai->primitive_type_vector [ada_primitive_type_char]
11484 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11485 lai->primitive_type_vector [ada_primitive_type_float]
11486 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11487 "float", NULL);
11488 lai->primitive_type_vector [ada_primitive_type_double]
11489 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11490 "long_float", NULL);
11491 lai->primitive_type_vector [ada_primitive_type_long_long]
11492 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11493 0, "long_long_integer");
11494 lai->primitive_type_vector [ada_primitive_type_long_double]
11495 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11496 "long_long_float", NULL);
11497 lai->primitive_type_vector [ada_primitive_type_natural]
11498 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11499 0, "natural");
11500 lai->primitive_type_vector [ada_primitive_type_positive]
11501 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11502 0, "positive");
11503 lai->primitive_type_vector [ada_primitive_type_void]
11504 = builtin->builtin_void;
11505
11506 lai->primitive_type_vector [ada_primitive_type_system_address]
11507 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11508 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11509 = "system__address";
11510
11511 lai->bool_type_symbol = NULL;
11512 lai->bool_type_default = builtin->builtin_bool;
11513 }
11514 \f
11515 /* Language vector */
11516
11517 /* Not really used, but needed in the ada_language_defn. */
11518
11519 static void
11520 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11521 {
11522 ada_emit_char (c, type, stream, quoter, 1);
11523 }
11524
11525 static int
11526 parse (void)
11527 {
11528 warnings_issued = 0;
11529 return ada_parse ();
11530 }
11531
11532 static const struct exp_descriptor ada_exp_descriptor = {
11533 ada_print_subexp,
11534 ada_operator_length,
11535 ada_operator_check,
11536 ada_op_name,
11537 ada_dump_subexp_body,
11538 ada_evaluate_subexp
11539 };
11540
11541 const struct language_defn ada_language_defn = {
11542 "ada", /* Language name */
11543 language_ada,
11544 range_check_off,
11545 type_check_off,
11546 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11547 that's not quite what this means. */
11548 array_row_major,
11549 macro_expansion_no,
11550 &ada_exp_descriptor,
11551 parse,
11552 ada_error,
11553 resolve,
11554 ada_printchar, /* Print a character constant */
11555 ada_printstr, /* Function to print string constant */
11556 emit_char, /* Function to print single char (not used) */
11557 ada_print_type, /* Print a type using appropriate syntax */
11558 ada_print_typedef, /* Print a typedef using appropriate syntax */
11559 ada_val_print, /* Print a value using appropriate syntax */
11560 ada_value_print, /* Print a top-level value */
11561 NULL, /* Language specific skip_trampoline */
11562 NULL, /* name_of_this */
11563 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11564 basic_lookup_transparent_type, /* lookup_transparent_type */
11565 ada_la_decode, /* Language specific symbol demangler */
11566 NULL, /* Language specific class_name_from_physname */
11567 ada_op_print_tab, /* expression operators for printing */
11568 0, /* c-style arrays */
11569 1, /* String lower bound */
11570 ada_get_gdb_completer_word_break_characters,
11571 ada_make_symbol_completion_list,
11572 ada_language_arch_info,
11573 ada_print_array_index,
11574 default_pass_by_reference,
11575 c_get_string,
11576 LANG_MAGIC
11577 };
11578
11579 /* Provide a prototype to silence -Wmissing-prototypes. */
11580 extern initialize_file_ftype _initialize_ada_language;
11581
11582 /* Command-list for the "set/show ada" prefix command. */
11583 static struct cmd_list_element *set_ada_list;
11584 static struct cmd_list_element *show_ada_list;
11585
11586 /* Implement the "set ada" prefix command. */
11587
11588 static void
11589 set_ada_command (char *arg, int from_tty)
11590 {
11591 printf_unfiltered (_(\
11592 "\"set ada\" must be followed by the name of a setting.\n"));
11593 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11594 }
11595
11596 /* Implement the "show ada" prefix command. */
11597
11598 static void
11599 show_ada_command (char *args, int from_tty)
11600 {
11601 cmd_show_list (show_ada_list, from_tty, "");
11602 }
11603
11604 void
11605 _initialize_ada_language (void)
11606 {
11607 add_language (&ada_language_defn);
11608
11609 add_prefix_cmd ("ada", no_class, set_ada_command,
11610 _("Prefix command for changing Ada-specfic settings"),
11611 &set_ada_list, "set ada ", 0, &setlist);
11612
11613 add_prefix_cmd ("ada", no_class, show_ada_command,
11614 _("Generic command for showing Ada-specific settings."),
11615 &show_ada_list, "show ada ", 0, &showlist);
11616
11617 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11618 &trust_pad_over_xvs, _("\
11619 Enable or disable an optimization trusting PAD types over XVS types"), _("\
11620 Show whether an optimization trusting PAD types over XVS types is activated"),
11621 _("\
11622 This is related to the encoding used by the GNAT compiler. The debugger\n\
11623 should normally trust the contents of PAD types, but certain older versions\n\
11624 of GNAT have a bug that sometimes causes the information in the PAD type\n\
11625 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11626 work around this bug. It is always safe to turn this option \"off\", but\n\
11627 this incurs a slight performance penalty, so it is recommended to NOT change\n\
11628 this option to \"off\" unless necessary."),
11629 NULL, NULL, &set_ada_list, &show_ada_list);
11630
11631 varsize_limit = 65536;
11632
11633 obstack_init (&symbol_list_obstack);
11634
11635 decoded_names_store = htab_create_alloc
11636 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11637 NULL, xcalloc, xfree);
11638
11639 observer_attach_executable_changed (ada_executable_changed_observer);
11640
11641 /* Setup per-inferior data. */
11642 observer_attach_inferior_exit (ada_inferior_exit);
11643 ada_inferior_data
11644 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
11645 }
This page took 0.31588 seconds and 4 git commands to generate.