Fix crash when setting breakpoint condition
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "common/vec.h"
53 #include "stack.h"
54 #include "common/gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66 #include <map>
67
68 /* Define whether or not the C operator '/' truncates towards zero for
69 differently signed operands (truncation direction is undefined in C).
70 Copied from valarith.c. */
71
72 #ifndef TRUNCATION_TOWARDS_ZERO
73 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
74 #endif
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_target_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *make_array_descriptor (struct type *, struct value *);
109
110 static void ada_add_block_symbols (struct obstack *,
111 const struct block *,
112 const lookup_name_info &lookup_name,
113 domain_enum, struct objfile *);
114
115 static void ada_add_all_symbols (struct obstack *, const struct block *,
116 const lookup_name_info &lookup_name,
117 domain_enum, int, int *);
118
119 static int is_nonfunction (struct block_symbol *, int);
120
121 static void add_defn_to_vec (struct obstack *, struct symbol *,
122 const struct block *);
123
124 static int num_defns_collected (struct obstack *);
125
126 static struct block_symbol *defns_collected (struct obstack *, int);
127
128 static struct value *resolve_subexp (expression_up *, int *, int,
129 struct type *, int,
130 innermost_block_tracker *);
131
132 static void replace_operator_with_call (expression_up *, int, int, int,
133 struct symbol *, const struct block *);
134
135 static int possible_user_operator_p (enum exp_opcode, struct value **);
136
137 static const char *ada_op_name (enum exp_opcode);
138
139 static const char *ada_decoded_op_name (enum exp_opcode);
140
141 static int numeric_type_p (struct type *);
142
143 static int integer_type_p (struct type *);
144
145 static int scalar_type_p (struct type *);
146
147 static int discrete_type_p (struct type *);
148
149 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
150 int, int);
151
152 static struct value *evaluate_subexp_type (struct expression *, int *);
153
154 static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
157 static int is_dynamic_field (struct type *, int);
158
159 static struct type *to_fixed_variant_branch_type (struct type *,
160 const gdb_byte *,
161 CORE_ADDR, struct value *);
162
163 static struct type *to_fixed_array_type (struct type *, struct value *, int);
164
165 static struct type *to_fixed_range_type (struct type *, struct value *);
166
167 static struct type *to_static_fixed_type (struct type *);
168 static struct type *static_unwrap_type (struct type *type);
169
170 static struct value *unwrap_value (struct value *);
171
172 static struct type *constrained_packed_array_type (struct type *, long *);
173
174 static struct type *decode_constrained_packed_array_type (struct type *);
175
176 static long decode_packed_array_bitsize (struct type *);
177
178 static struct value *decode_constrained_packed_array (struct value *);
179
180 static int ada_is_packed_array_type (struct type *);
181
182 static int ada_is_unconstrained_packed_array_type (struct type *);
183
184 static struct value *value_subscript_packed (struct value *, int,
185 struct value **);
186
187 static struct value *coerce_unspec_val_to_type (struct value *,
188 struct type *);
189
190 static int lesseq_defined_than (struct symbol *, struct symbol *);
191
192 static int equiv_types (struct type *, struct type *);
193
194 static int is_name_suffix (const char *);
195
196 static int advance_wild_match (const char **, const char *, int);
197
198 static bool wild_match (const char *name, const char *patn);
199
200 static struct value *ada_coerce_ref (struct value *);
201
202 static LONGEST pos_atr (struct value *);
203
204 static struct value *value_pos_atr (struct type *, struct value *);
205
206 static struct value *value_val_atr (struct type *, struct value *);
207
208 static struct symbol *standard_lookup (const char *, const struct block *,
209 domain_enum);
210
211 static struct value *ada_search_struct_field (const char *, struct value *, int,
212 struct type *);
213
214 static struct value *ada_value_primitive_field (struct value *, int, int,
215 struct type *);
216
217 static int find_struct_field (const char *, struct type *, int,
218 struct type **, int *, int *, int *, int *);
219
220 static int ada_resolve_function (struct block_symbol *, int,
221 struct value **, int, const char *,
222 struct type *, int);
223
224 static int ada_is_direct_array_type (struct type *);
225
226 static void ada_language_arch_info (struct gdbarch *,
227 struct language_arch_info *);
228
229 static struct value *ada_index_struct_field (int, struct value *, int,
230 struct type *);
231
232 static struct value *assign_aggregate (struct value *, struct value *,
233 struct expression *,
234 int *, enum noside);
235
236 static void aggregate_assign_from_choices (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int *,
239 int, LONGEST, LONGEST);
240
241 static void aggregate_assign_positional (struct value *, struct value *,
242 struct expression *,
243 int *, LONGEST *, int *, int,
244 LONGEST, LONGEST);
245
246
247 static void aggregate_assign_others (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int, LONGEST, LONGEST);
250
251
252 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
253
254
255 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
256 int *, enum noside);
257
258 static void ada_forward_operator_length (struct expression *, int, int *,
259 int *);
260
261 static struct type *ada_find_any_type (const char *name);
262
263 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
264 (const lookup_name_info &lookup_name);
265
266 \f
267
268 /* The result of a symbol lookup to be stored in our symbol cache. */
269
270 struct cache_entry
271 {
272 /* The name used to perform the lookup. */
273 const char *name;
274 /* The namespace used during the lookup. */
275 domain_enum domain;
276 /* The symbol returned by the lookup, or NULL if no matching symbol
277 was found. */
278 struct symbol *sym;
279 /* The block where the symbol was found, or NULL if no matching
280 symbol was found. */
281 const struct block *block;
282 /* A pointer to the next entry with the same hash. */
283 struct cache_entry *next;
284 };
285
286 /* The Ada symbol cache, used to store the result of Ada-mode symbol
287 lookups in the course of executing the user's commands.
288
289 The cache is implemented using a simple, fixed-sized hash.
290 The size is fixed on the grounds that there are not likely to be
291 all that many symbols looked up during any given session, regardless
292 of the size of the symbol table. If we decide to go to a resizable
293 table, let's just use the stuff from libiberty instead. */
294
295 #define HASH_SIZE 1009
296
297 struct ada_symbol_cache
298 {
299 /* An obstack used to store the entries in our cache. */
300 struct obstack cache_space;
301
302 /* The root of the hash table used to implement our symbol cache. */
303 struct cache_entry *root[HASH_SIZE];
304 };
305
306 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
307
308 /* Maximum-sized dynamic type. */
309 static unsigned int varsize_limit;
310
311 static const char ada_completer_word_break_characters[] =
312 #ifdef VMS
313 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
314 #else
315 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
316 #endif
317
318 /* The name of the symbol to use to get the name of the main subprogram. */
319 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
320 = "__gnat_ada_main_program_name";
321
322 /* Limit on the number of warnings to raise per expression evaluation. */
323 static int warning_limit = 2;
324
325 /* Number of warning messages issued; reset to 0 by cleanups after
326 expression evaluation. */
327 static int warnings_issued = 0;
328
329 static const char *known_runtime_file_name_patterns[] = {
330 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
331 };
332
333 static const char *known_auxiliary_function_name_patterns[] = {
334 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
335 };
336
337 /* Maintenance-related settings for this module. */
338
339 static struct cmd_list_element *maint_set_ada_cmdlist;
340 static struct cmd_list_element *maint_show_ada_cmdlist;
341
342 /* Implement the "maintenance set ada" (prefix) command. */
343
344 static void
345 maint_set_ada_cmd (const char *args, int from_tty)
346 {
347 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
348 gdb_stdout);
349 }
350
351 /* Implement the "maintenance show ada" (prefix) command. */
352
353 static void
354 maint_show_ada_cmd (const char *args, int from_tty)
355 {
356 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
357 }
358
359 /* The "maintenance ada set/show ignore-descriptive-type" value. */
360
361 static int ada_ignore_descriptive_types_p = 0;
362
363 /* Inferior-specific data. */
364
365 /* Per-inferior data for this module. */
366
367 struct ada_inferior_data
368 {
369 /* The ada__tags__type_specific_data type, which is used when decoding
370 tagged types. With older versions of GNAT, this type was directly
371 accessible through a component ("tsd") in the object tag. But this
372 is no longer the case, so we cache it for each inferior. */
373 struct type *tsd_type = nullptr;
374
375 /* The exception_support_info data. This data is used to determine
376 how to implement support for Ada exception catchpoints in a given
377 inferior. */
378 const struct exception_support_info *exception_info = nullptr;
379 };
380
381 /* Our key to this module's inferior data. */
382 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
383
384 /* Return our inferior data for the given inferior (INF).
385
386 This function always returns a valid pointer to an allocated
387 ada_inferior_data structure. If INF's inferior data has not
388 been previously set, this functions creates a new one with all
389 fields set to zero, sets INF's inferior to it, and then returns
390 a pointer to that newly allocated ada_inferior_data. */
391
392 static struct ada_inferior_data *
393 get_ada_inferior_data (struct inferior *inf)
394 {
395 struct ada_inferior_data *data;
396
397 data = ada_inferior_data.get (inf);
398 if (data == NULL)
399 data = ada_inferior_data.emplace (inf);
400
401 return data;
402 }
403
404 /* Perform all necessary cleanups regarding our module's inferior data
405 that is required after the inferior INF just exited. */
406
407 static void
408 ada_inferior_exit (struct inferior *inf)
409 {
410 ada_inferior_data.clear (inf);
411 }
412
413
414 /* program-space-specific data. */
415
416 /* This module's per-program-space data. */
417 struct ada_pspace_data
418 {
419 ~ada_pspace_data ()
420 {
421 if (sym_cache != NULL)
422 ada_free_symbol_cache (sym_cache);
423 }
424
425 /* The Ada symbol cache. */
426 struct ada_symbol_cache *sym_cache = nullptr;
427 };
428
429 /* Key to our per-program-space data. */
430 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
431
432 /* Return this module's data for the given program space (PSPACE).
433 If not is found, add a zero'ed one now.
434
435 This function always returns a valid object. */
436
437 static struct ada_pspace_data *
438 get_ada_pspace_data (struct program_space *pspace)
439 {
440 struct ada_pspace_data *data;
441
442 data = ada_pspace_data_handle.get (pspace);
443 if (data == NULL)
444 data = ada_pspace_data_handle.emplace (pspace);
445
446 return data;
447 }
448
449 /* Utilities */
450
451 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
452 all typedef layers have been peeled. Otherwise, return TYPE.
453
454 Normally, we really expect a typedef type to only have 1 typedef layer.
455 In other words, we really expect the target type of a typedef type to be
456 a non-typedef type. This is particularly true for Ada units, because
457 the language does not have a typedef vs not-typedef distinction.
458 In that respect, the Ada compiler has been trying to eliminate as many
459 typedef definitions in the debugging information, since they generally
460 do not bring any extra information (we still use typedef under certain
461 circumstances related mostly to the GNAT encoding).
462
463 Unfortunately, we have seen situations where the debugging information
464 generated by the compiler leads to such multiple typedef layers. For
465 instance, consider the following example with stabs:
466
467 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
468 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
469
470 This is an error in the debugging information which causes type
471 pck__float_array___XUP to be defined twice, and the second time,
472 it is defined as a typedef of a typedef.
473
474 This is on the fringe of legality as far as debugging information is
475 concerned, and certainly unexpected. But it is easy to handle these
476 situations correctly, so we can afford to be lenient in this case. */
477
478 static struct type *
479 ada_typedef_target_type (struct type *type)
480 {
481 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
482 type = TYPE_TARGET_TYPE (type);
483 return type;
484 }
485
486 /* Given DECODED_NAME a string holding a symbol name in its
487 decoded form (ie using the Ada dotted notation), returns
488 its unqualified name. */
489
490 static const char *
491 ada_unqualified_name (const char *decoded_name)
492 {
493 const char *result;
494
495 /* If the decoded name starts with '<', it means that the encoded
496 name does not follow standard naming conventions, and thus that
497 it is not your typical Ada symbol name. Trying to unqualify it
498 is therefore pointless and possibly erroneous. */
499 if (decoded_name[0] == '<')
500 return decoded_name;
501
502 result = strrchr (decoded_name, '.');
503 if (result != NULL)
504 result++; /* Skip the dot... */
505 else
506 result = decoded_name;
507
508 return result;
509 }
510
511 /* Return a string starting with '<', followed by STR, and '>'. */
512
513 static std::string
514 add_angle_brackets (const char *str)
515 {
516 return string_printf ("<%s>", str);
517 }
518
519 static const char *
520 ada_get_gdb_completer_word_break_characters (void)
521 {
522 return ada_completer_word_break_characters;
523 }
524
525 /* Print an array element index using the Ada syntax. */
526
527 static void
528 ada_print_array_index (struct value *index_value, struct ui_file *stream,
529 const struct value_print_options *options)
530 {
531 LA_VALUE_PRINT (index_value, stream, options);
532 fprintf_filtered (stream, " => ");
533 }
534
535 /* la_watch_location_expression for Ada. */
536
537 gdb::unique_xmalloc_ptr<char>
538 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
539 {
540 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
541 std::string name = type_to_string (type);
542 return gdb::unique_xmalloc_ptr<char>
543 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
544 }
545
546 /* Assuming VECT points to an array of *SIZE objects of size
547 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
548 updating *SIZE as necessary and returning the (new) array. */
549
550 void *
551 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
552 {
553 if (*size < min_size)
554 {
555 *size *= 2;
556 if (*size < min_size)
557 *size = min_size;
558 vect = xrealloc (vect, *size * element_size);
559 }
560 return vect;
561 }
562
563 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
564 suffix of FIELD_NAME beginning "___". */
565
566 static int
567 field_name_match (const char *field_name, const char *target)
568 {
569 int len = strlen (target);
570
571 return
572 (strncmp (field_name, target, len) == 0
573 && (field_name[len] == '\0'
574 || (startswith (field_name + len, "___")
575 && strcmp (field_name + strlen (field_name) - 6,
576 "___XVN") != 0)));
577 }
578
579
580 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
581 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
582 and return its index. This function also handles fields whose name
583 have ___ suffixes because the compiler sometimes alters their name
584 by adding such a suffix to represent fields with certain constraints.
585 If the field could not be found, return a negative number if
586 MAYBE_MISSING is set. Otherwise raise an error. */
587
588 int
589 ada_get_field_index (const struct type *type, const char *field_name,
590 int maybe_missing)
591 {
592 int fieldno;
593 struct type *struct_type = check_typedef ((struct type *) type);
594
595 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
596 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
597 return fieldno;
598
599 if (!maybe_missing)
600 error (_("Unable to find field %s in struct %s. Aborting"),
601 field_name, TYPE_NAME (struct_type));
602
603 return -1;
604 }
605
606 /* The length of the prefix of NAME prior to any "___" suffix. */
607
608 int
609 ada_name_prefix_len (const char *name)
610 {
611 if (name == NULL)
612 return 0;
613 else
614 {
615 const char *p = strstr (name, "___");
616
617 if (p == NULL)
618 return strlen (name);
619 else
620 return p - name;
621 }
622 }
623
624 /* Return non-zero if SUFFIX is a suffix of STR.
625 Return zero if STR is null. */
626
627 static int
628 is_suffix (const char *str, const char *suffix)
629 {
630 int len1, len2;
631
632 if (str == NULL)
633 return 0;
634 len1 = strlen (str);
635 len2 = strlen (suffix);
636 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
637 }
638
639 /* The contents of value VAL, treated as a value of type TYPE. The
640 result is an lval in memory if VAL is. */
641
642 static struct value *
643 coerce_unspec_val_to_type (struct value *val, struct type *type)
644 {
645 type = ada_check_typedef (type);
646 if (value_type (val) == type)
647 return val;
648 else
649 {
650 struct value *result;
651
652 /* Make sure that the object size is not unreasonable before
653 trying to allocate some memory for it. */
654 ada_ensure_varsize_limit (type);
655
656 if (value_lazy (val)
657 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
658 result = allocate_value_lazy (type);
659 else
660 {
661 result = allocate_value (type);
662 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
663 }
664 set_value_component_location (result, val);
665 set_value_bitsize (result, value_bitsize (val));
666 set_value_bitpos (result, value_bitpos (val));
667 if (VALUE_LVAL (result) == lval_memory)
668 set_value_address (result, value_address (val));
669 return result;
670 }
671 }
672
673 static const gdb_byte *
674 cond_offset_host (const gdb_byte *valaddr, long offset)
675 {
676 if (valaddr == NULL)
677 return NULL;
678 else
679 return valaddr + offset;
680 }
681
682 static CORE_ADDR
683 cond_offset_target (CORE_ADDR address, long offset)
684 {
685 if (address == 0)
686 return 0;
687 else
688 return address + offset;
689 }
690
691 /* Issue a warning (as for the definition of warning in utils.c, but
692 with exactly one argument rather than ...), unless the limit on the
693 number of warnings has passed during the evaluation of the current
694 expression. */
695
696 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
697 provided by "complaint". */
698 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
699
700 static void
701 lim_warning (const char *format, ...)
702 {
703 va_list args;
704
705 va_start (args, format);
706 warnings_issued += 1;
707 if (warnings_issued <= warning_limit)
708 vwarning (format, args);
709
710 va_end (args);
711 }
712
713 /* Issue an error if the size of an object of type T is unreasonable,
714 i.e. if it would be a bad idea to allocate a value of this type in
715 GDB. */
716
717 void
718 ada_ensure_varsize_limit (const struct type *type)
719 {
720 if (TYPE_LENGTH (type) > varsize_limit)
721 error (_("object size is larger than varsize-limit"));
722 }
723
724 /* Maximum value of a SIZE-byte signed integer type. */
725 static LONGEST
726 max_of_size (int size)
727 {
728 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
729
730 return top_bit | (top_bit - 1);
731 }
732
733 /* Minimum value of a SIZE-byte signed integer type. */
734 static LONGEST
735 min_of_size (int size)
736 {
737 return -max_of_size (size) - 1;
738 }
739
740 /* Maximum value of a SIZE-byte unsigned integer type. */
741 static ULONGEST
742 umax_of_size (int size)
743 {
744 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
745
746 return top_bit | (top_bit - 1);
747 }
748
749 /* Maximum value of integral type T, as a signed quantity. */
750 static LONGEST
751 max_of_type (struct type *t)
752 {
753 if (TYPE_UNSIGNED (t))
754 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
755 else
756 return max_of_size (TYPE_LENGTH (t));
757 }
758
759 /* Minimum value of integral type T, as a signed quantity. */
760 static LONGEST
761 min_of_type (struct type *t)
762 {
763 if (TYPE_UNSIGNED (t))
764 return 0;
765 else
766 return min_of_size (TYPE_LENGTH (t));
767 }
768
769 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
770 LONGEST
771 ada_discrete_type_high_bound (struct type *type)
772 {
773 type = resolve_dynamic_type (type, NULL, 0);
774 switch (TYPE_CODE (type))
775 {
776 case TYPE_CODE_RANGE:
777 return TYPE_HIGH_BOUND (type);
778 case TYPE_CODE_ENUM:
779 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
780 case TYPE_CODE_BOOL:
781 return 1;
782 case TYPE_CODE_CHAR:
783 case TYPE_CODE_INT:
784 return max_of_type (type);
785 default:
786 error (_("Unexpected type in ada_discrete_type_high_bound."));
787 }
788 }
789
790 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
791 LONGEST
792 ada_discrete_type_low_bound (struct type *type)
793 {
794 type = resolve_dynamic_type (type, NULL, 0);
795 switch (TYPE_CODE (type))
796 {
797 case TYPE_CODE_RANGE:
798 return TYPE_LOW_BOUND (type);
799 case TYPE_CODE_ENUM:
800 return TYPE_FIELD_ENUMVAL (type, 0);
801 case TYPE_CODE_BOOL:
802 return 0;
803 case TYPE_CODE_CHAR:
804 case TYPE_CODE_INT:
805 return min_of_type (type);
806 default:
807 error (_("Unexpected type in ada_discrete_type_low_bound."));
808 }
809 }
810
811 /* The identity on non-range types. For range types, the underlying
812 non-range scalar type. */
813
814 static struct type *
815 get_base_type (struct type *type)
816 {
817 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
818 {
819 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
820 return type;
821 type = TYPE_TARGET_TYPE (type);
822 }
823 return type;
824 }
825
826 /* Return a decoded version of the given VALUE. This means returning
827 a value whose type is obtained by applying all the GNAT-specific
828 encondings, making the resulting type a static but standard description
829 of the initial type. */
830
831 struct value *
832 ada_get_decoded_value (struct value *value)
833 {
834 struct type *type = ada_check_typedef (value_type (value));
835
836 if (ada_is_array_descriptor_type (type)
837 || (ada_is_constrained_packed_array_type (type)
838 && TYPE_CODE (type) != TYPE_CODE_PTR))
839 {
840 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
841 value = ada_coerce_to_simple_array_ptr (value);
842 else
843 value = ada_coerce_to_simple_array (value);
844 }
845 else
846 value = ada_to_fixed_value (value);
847
848 return value;
849 }
850
851 /* Same as ada_get_decoded_value, but with the given TYPE.
852 Because there is no associated actual value for this type,
853 the resulting type might be a best-effort approximation in
854 the case of dynamic types. */
855
856 struct type *
857 ada_get_decoded_type (struct type *type)
858 {
859 type = to_static_fixed_type (type);
860 if (ada_is_constrained_packed_array_type (type))
861 type = ada_coerce_to_simple_array_type (type);
862 return type;
863 }
864
865 \f
866
867 /* Language Selection */
868
869 /* If the main program is in Ada, return language_ada, otherwise return LANG
870 (the main program is in Ada iif the adainit symbol is found). */
871
872 enum language
873 ada_update_initial_language (enum language lang)
874 {
875 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
876 return language_ada;
877
878 return lang;
879 }
880
881 /* If the main procedure is written in Ada, then return its name.
882 The result is good until the next call. Return NULL if the main
883 procedure doesn't appear to be in Ada. */
884
885 char *
886 ada_main_name (void)
887 {
888 struct bound_minimal_symbol msym;
889 static gdb::unique_xmalloc_ptr<char> main_program_name;
890
891 /* For Ada, the name of the main procedure is stored in a specific
892 string constant, generated by the binder. Look for that symbol,
893 extract its address, and then read that string. If we didn't find
894 that string, then most probably the main procedure is not written
895 in Ada. */
896 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
897
898 if (msym.minsym != NULL)
899 {
900 CORE_ADDR main_program_name_addr;
901 int err_code;
902
903 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
904 if (main_program_name_addr == 0)
905 error (_("Invalid address for Ada main program name."));
906
907 target_read_string (main_program_name_addr, &main_program_name,
908 1024, &err_code);
909
910 if (err_code != 0)
911 return NULL;
912 return main_program_name.get ();
913 }
914
915 /* The main procedure doesn't seem to be in Ada. */
916 return NULL;
917 }
918 \f
919 /* Symbols */
920
921 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
922 of NULLs. */
923
924 const struct ada_opname_map ada_opname_table[] = {
925 {"Oadd", "\"+\"", BINOP_ADD},
926 {"Osubtract", "\"-\"", BINOP_SUB},
927 {"Omultiply", "\"*\"", BINOP_MUL},
928 {"Odivide", "\"/\"", BINOP_DIV},
929 {"Omod", "\"mod\"", BINOP_MOD},
930 {"Orem", "\"rem\"", BINOP_REM},
931 {"Oexpon", "\"**\"", BINOP_EXP},
932 {"Olt", "\"<\"", BINOP_LESS},
933 {"Ole", "\"<=\"", BINOP_LEQ},
934 {"Ogt", "\">\"", BINOP_GTR},
935 {"Oge", "\">=\"", BINOP_GEQ},
936 {"Oeq", "\"=\"", BINOP_EQUAL},
937 {"One", "\"/=\"", BINOP_NOTEQUAL},
938 {"Oand", "\"and\"", BINOP_BITWISE_AND},
939 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
940 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
941 {"Oconcat", "\"&\"", BINOP_CONCAT},
942 {"Oabs", "\"abs\"", UNOP_ABS},
943 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
944 {"Oadd", "\"+\"", UNOP_PLUS},
945 {"Osubtract", "\"-\"", UNOP_NEG},
946 {NULL, NULL}
947 };
948
949 /* The "encoded" form of DECODED, according to GNAT conventions. The
950 result is valid until the next call to ada_encode. If
951 THROW_ERRORS, throw an error if invalid operator name is found.
952 Otherwise, return NULL in that case. */
953
954 static char *
955 ada_encode_1 (const char *decoded, bool throw_errors)
956 {
957 static char *encoding_buffer = NULL;
958 static size_t encoding_buffer_size = 0;
959 const char *p;
960 int k;
961
962 if (decoded == NULL)
963 return NULL;
964
965 GROW_VECT (encoding_buffer, encoding_buffer_size,
966 2 * strlen (decoded) + 10);
967
968 k = 0;
969 for (p = decoded; *p != '\0'; p += 1)
970 {
971 if (*p == '.')
972 {
973 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
974 k += 2;
975 }
976 else if (*p == '"')
977 {
978 const struct ada_opname_map *mapping;
979
980 for (mapping = ada_opname_table;
981 mapping->encoded != NULL
982 && !startswith (p, mapping->decoded); mapping += 1)
983 ;
984 if (mapping->encoded == NULL)
985 {
986 if (throw_errors)
987 error (_("invalid Ada operator name: %s"), p);
988 else
989 return NULL;
990 }
991 strcpy (encoding_buffer + k, mapping->encoded);
992 k += strlen (mapping->encoded);
993 break;
994 }
995 else
996 {
997 encoding_buffer[k] = *p;
998 k += 1;
999 }
1000 }
1001
1002 encoding_buffer[k] = '\0';
1003 return encoding_buffer;
1004 }
1005
1006 /* The "encoded" form of DECODED, according to GNAT conventions.
1007 The result is valid until the next call to ada_encode. */
1008
1009 char *
1010 ada_encode (const char *decoded)
1011 {
1012 return ada_encode_1 (decoded, true);
1013 }
1014
1015 /* Return NAME folded to lower case, or, if surrounded by single
1016 quotes, unfolded, but with the quotes stripped away. Result good
1017 to next call. */
1018
1019 char *
1020 ada_fold_name (const char *name)
1021 {
1022 static char *fold_buffer = NULL;
1023 static size_t fold_buffer_size = 0;
1024
1025 int len = strlen (name);
1026 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1027
1028 if (name[0] == '\'')
1029 {
1030 strncpy (fold_buffer, name + 1, len - 2);
1031 fold_buffer[len - 2] = '\000';
1032 }
1033 else
1034 {
1035 int i;
1036
1037 for (i = 0; i <= len; i += 1)
1038 fold_buffer[i] = tolower (name[i]);
1039 }
1040
1041 return fold_buffer;
1042 }
1043
1044 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1045
1046 static int
1047 is_lower_alphanum (const char c)
1048 {
1049 return (isdigit (c) || (isalpha (c) && islower (c)));
1050 }
1051
1052 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1053 This function saves in LEN the length of that same symbol name but
1054 without either of these suffixes:
1055 . .{DIGIT}+
1056 . ${DIGIT}+
1057 . ___{DIGIT}+
1058 . __{DIGIT}+.
1059
1060 These are suffixes introduced by the compiler for entities such as
1061 nested subprogram for instance, in order to avoid name clashes.
1062 They do not serve any purpose for the debugger. */
1063
1064 static void
1065 ada_remove_trailing_digits (const char *encoded, int *len)
1066 {
1067 if (*len > 1 && isdigit (encoded[*len - 1]))
1068 {
1069 int i = *len - 2;
1070
1071 while (i > 0 && isdigit (encoded[i]))
1072 i--;
1073 if (i >= 0 && encoded[i] == '.')
1074 *len = i;
1075 else if (i >= 0 && encoded[i] == '$')
1076 *len = i;
1077 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1078 *len = i - 2;
1079 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1080 *len = i - 1;
1081 }
1082 }
1083
1084 /* Remove the suffix introduced by the compiler for protected object
1085 subprograms. */
1086
1087 static void
1088 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1089 {
1090 /* Remove trailing N. */
1091
1092 /* Protected entry subprograms are broken into two
1093 separate subprograms: The first one is unprotected, and has
1094 a 'N' suffix; the second is the protected version, and has
1095 the 'P' suffix. The second calls the first one after handling
1096 the protection. Since the P subprograms are internally generated,
1097 we leave these names undecoded, giving the user a clue that this
1098 entity is internal. */
1099
1100 if (*len > 1
1101 && encoded[*len - 1] == 'N'
1102 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1103 *len = *len - 1;
1104 }
1105
1106 /* If ENCODED follows the GNAT entity encoding conventions, then return
1107 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1108 replaced by ENCODED.
1109
1110 The resulting string is valid until the next call of ada_decode.
1111 If the string is unchanged by decoding, the original string pointer
1112 is returned. */
1113
1114 const char *
1115 ada_decode (const char *encoded)
1116 {
1117 int i, j;
1118 int len0;
1119 const char *p;
1120 char *decoded;
1121 int at_start_name;
1122 static char *decoding_buffer = NULL;
1123 static size_t decoding_buffer_size = 0;
1124
1125 /* With function descriptors on PPC64, the value of a symbol named
1126 ".FN", if it exists, is the entry point of the function "FN". */
1127 if (encoded[0] == '.')
1128 encoded += 1;
1129
1130 /* The name of the Ada main procedure starts with "_ada_".
1131 This prefix is not part of the decoded name, so skip this part
1132 if we see this prefix. */
1133 if (startswith (encoded, "_ada_"))
1134 encoded += 5;
1135
1136 /* If the name starts with '_', then it is not a properly encoded
1137 name, so do not attempt to decode it. Similarly, if the name
1138 starts with '<', the name should not be decoded. */
1139 if (encoded[0] == '_' || encoded[0] == '<')
1140 goto Suppress;
1141
1142 len0 = strlen (encoded);
1143
1144 ada_remove_trailing_digits (encoded, &len0);
1145 ada_remove_po_subprogram_suffix (encoded, &len0);
1146
1147 /* Remove the ___X.* suffix if present. Do not forget to verify that
1148 the suffix is located before the current "end" of ENCODED. We want
1149 to avoid re-matching parts of ENCODED that have previously been
1150 marked as discarded (by decrementing LEN0). */
1151 p = strstr (encoded, "___");
1152 if (p != NULL && p - encoded < len0 - 3)
1153 {
1154 if (p[3] == 'X')
1155 len0 = p - encoded;
1156 else
1157 goto Suppress;
1158 }
1159
1160 /* Remove any trailing TKB suffix. It tells us that this symbol
1161 is for the body of a task, but that information does not actually
1162 appear in the decoded name. */
1163
1164 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1165 len0 -= 3;
1166
1167 /* Remove any trailing TB suffix. The TB suffix is slightly different
1168 from the TKB suffix because it is used for non-anonymous task
1169 bodies. */
1170
1171 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1172 len0 -= 2;
1173
1174 /* Remove trailing "B" suffixes. */
1175 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1176
1177 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1178 len0 -= 1;
1179
1180 /* Make decoded big enough for possible expansion by operator name. */
1181
1182 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1183 decoded = decoding_buffer;
1184
1185 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1186
1187 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1188 {
1189 i = len0 - 2;
1190 while ((i >= 0 && isdigit (encoded[i]))
1191 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1192 i -= 1;
1193 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1194 len0 = i - 1;
1195 else if (encoded[i] == '$')
1196 len0 = i;
1197 }
1198
1199 /* The first few characters that are not alphabetic are not part
1200 of any encoding we use, so we can copy them over verbatim. */
1201
1202 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1203 decoded[j] = encoded[i];
1204
1205 at_start_name = 1;
1206 while (i < len0)
1207 {
1208 /* Is this a symbol function? */
1209 if (at_start_name && encoded[i] == 'O')
1210 {
1211 int k;
1212
1213 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1214 {
1215 int op_len = strlen (ada_opname_table[k].encoded);
1216 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1217 op_len - 1) == 0)
1218 && !isalnum (encoded[i + op_len]))
1219 {
1220 strcpy (decoded + j, ada_opname_table[k].decoded);
1221 at_start_name = 0;
1222 i += op_len;
1223 j += strlen (ada_opname_table[k].decoded);
1224 break;
1225 }
1226 }
1227 if (ada_opname_table[k].encoded != NULL)
1228 continue;
1229 }
1230 at_start_name = 0;
1231
1232 /* Replace "TK__" with "__", which will eventually be translated
1233 into "." (just below). */
1234
1235 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1236 i += 2;
1237
1238 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1239 be translated into "." (just below). These are internal names
1240 generated for anonymous blocks inside which our symbol is nested. */
1241
1242 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1243 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1244 && isdigit (encoded [i+4]))
1245 {
1246 int k = i + 5;
1247
1248 while (k < len0 && isdigit (encoded[k]))
1249 k++; /* Skip any extra digit. */
1250
1251 /* Double-check that the "__B_{DIGITS}+" sequence we found
1252 is indeed followed by "__". */
1253 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1254 i = k;
1255 }
1256
1257 /* Remove _E{DIGITS}+[sb] */
1258
1259 /* Just as for protected object subprograms, there are 2 categories
1260 of subprograms created by the compiler for each entry. The first
1261 one implements the actual entry code, and has a suffix following
1262 the convention above; the second one implements the barrier and
1263 uses the same convention as above, except that the 'E' is replaced
1264 by a 'B'.
1265
1266 Just as above, we do not decode the name of barrier functions
1267 to give the user a clue that the code he is debugging has been
1268 internally generated. */
1269
1270 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1271 && isdigit (encoded[i+2]))
1272 {
1273 int k = i + 3;
1274
1275 while (k < len0 && isdigit (encoded[k]))
1276 k++;
1277
1278 if (k < len0
1279 && (encoded[k] == 'b' || encoded[k] == 's'))
1280 {
1281 k++;
1282 /* Just as an extra precaution, make sure that if this
1283 suffix is followed by anything else, it is a '_'.
1284 Otherwise, we matched this sequence by accident. */
1285 if (k == len0
1286 || (k < len0 && encoded[k] == '_'))
1287 i = k;
1288 }
1289 }
1290
1291 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1292 the GNAT front-end in protected object subprograms. */
1293
1294 if (i < len0 + 3
1295 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1296 {
1297 /* Backtrack a bit up until we reach either the begining of
1298 the encoded name, or "__". Make sure that we only find
1299 digits or lowercase characters. */
1300 const char *ptr = encoded + i - 1;
1301
1302 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1303 ptr--;
1304 if (ptr < encoded
1305 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1306 i++;
1307 }
1308
1309 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1310 {
1311 /* This is a X[bn]* sequence not separated from the previous
1312 part of the name with a non-alpha-numeric character (in other
1313 words, immediately following an alpha-numeric character), then
1314 verify that it is placed at the end of the encoded name. If
1315 not, then the encoding is not valid and we should abort the
1316 decoding. Otherwise, just skip it, it is used in body-nested
1317 package names. */
1318 do
1319 i += 1;
1320 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1321 if (i < len0)
1322 goto Suppress;
1323 }
1324 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1325 {
1326 /* Replace '__' by '.'. */
1327 decoded[j] = '.';
1328 at_start_name = 1;
1329 i += 2;
1330 j += 1;
1331 }
1332 else
1333 {
1334 /* It's a character part of the decoded name, so just copy it
1335 over. */
1336 decoded[j] = encoded[i];
1337 i += 1;
1338 j += 1;
1339 }
1340 }
1341 decoded[j] = '\000';
1342
1343 /* Decoded names should never contain any uppercase character.
1344 Double-check this, and abort the decoding if we find one. */
1345
1346 for (i = 0; decoded[i] != '\0'; i += 1)
1347 if (isupper (decoded[i]) || decoded[i] == ' ')
1348 goto Suppress;
1349
1350 if (strcmp (decoded, encoded) == 0)
1351 return encoded;
1352 else
1353 return decoded;
1354
1355 Suppress:
1356 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1357 decoded = decoding_buffer;
1358 if (encoded[0] == '<')
1359 strcpy (decoded, encoded);
1360 else
1361 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1362 return decoded;
1363
1364 }
1365
1366 /* Table for keeping permanent unique copies of decoded names. Once
1367 allocated, names in this table are never released. While this is a
1368 storage leak, it should not be significant unless there are massive
1369 changes in the set of decoded names in successive versions of a
1370 symbol table loaded during a single session. */
1371 static struct htab *decoded_names_store;
1372
1373 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1374 in the language-specific part of GSYMBOL, if it has not been
1375 previously computed. Tries to save the decoded name in the same
1376 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1377 in any case, the decoded symbol has a lifetime at least that of
1378 GSYMBOL).
1379 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1380 const, but nevertheless modified to a semantically equivalent form
1381 when a decoded name is cached in it. */
1382
1383 const char *
1384 ada_decode_symbol (const struct general_symbol_info *arg)
1385 {
1386 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1387 const char **resultp =
1388 &gsymbol->language_specific.demangled_name;
1389
1390 if (!gsymbol->ada_mangled)
1391 {
1392 const char *decoded = ada_decode (gsymbol->name);
1393 struct obstack *obstack = gsymbol->language_specific.obstack;
1394
1395 gsymbol->ada_mangled = 1;
1396
1397 if (obstack != NULL)
1398 *resultp
1399 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1400 else
1401 {
1402 /* Sometimes, we can't find a corresponding objfile, in
1403 which case, we put the result on the heap. Since we only
1404 decode when needed, we hope this usually does not cause a
1405 significant memory leak (FIXME). */
1406
1407 char **slot = (char **) htab_find_slot (decoded_names_store,
1408 decoded, INSERT);
1409
1410 if (*slot == NULL)
1411 *slot = xstrdup (decoded);
1412 *resultp = *slot;
1413 }
1414 }
1415
1416 return *resultp;
1417 }
1418
1419 static char *
1420 ada_la_decode (const char *encoded, int options)
1421 {
1422 return xstrdup (ada_decode (encoded));
1423 }
1424
1425 /* Implement la_sniff_from_mangled_name for Ada. */
1426
1427 static int
1428 ada_sniff_from_mangled_name (const char *mangled, char **out)
1429 {
1430 const char *demangled = ada_decode (mangled);
1431
1432 *out = NULL;
1433
1434 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1435 {
1436 /* Set the gsymbol language to Ada, but still return 0.
1437 Two reasons for that:
1438
1439 1. For Ada, we prefer computing the symbol's decoded name
1440 on the fly rather than pre-compute it, in order to save
1441 memory (Ada projects are typically very large).
1442
1443 2. There are some areas in the definition of the GNAT
1444 encoding where, with a bit of bad luck, we might be able
1445 to decode a non-Ada symbol, generating an incorrect
1446 demangled name (Eg: names ending with "TB" for instance
1447 are identified as task bodies and so stripped from
1448 the decoded name returned).
1449
1450 Returning 1, here, but not setting *DEMANGLED, helps us get a
1451 little bit of the best of both worlds. Because we're last,
1452 we should not affect any of the other languages that were
1453 able to demangle the symbol before us; we get to correctly
1454 tag Ada symbols as such; and even if we incorrectly tagged a
1455 non-Ada symbol, which should be rare, any routing through the
1456 Ada language should be transparent (Ada tries to behave much
1457 like C/C++ with non-Ada symbols). */
1458 return 1;
1459 }
1460
1461 return 0;
1462 }
1463
1464 \f
1465
1466 /* Arrays */
1467
1468 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1469 generated by the GNAT compiler to describe the index type used
1470 for each dimension of an array, check whether it follows the latest
1471 known encoding. If not, fix it up to conform to the latest encoding.
1472 Otherwise, do nothing. This function also does nothing if
1473 INDEX_DESC_TYPE is NULL.
1474
1475 The GNAT encoding used to describle the array index type evolved a bit.
1476 Initially, the information would be provided through the name of each
1477 field of the structure type only, while the type of these fields was
1478 described as unspecified and irrelevant. The debugger was then expected
1479 to perform a global type lookup using the name of that field in order
1480 to get access to the full index type description. Because these global
1481 lookups can be very expensive, the encoding was later enhanced to make
1482 the global lookup unnecessary by defining the field type as being
1483 the full index type description.
1484
1485 The purpose of this routine is to allow us to support older versions
1486 of the compiler by detecting the use of the older encoding, and by
1487 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1488 we essentially replace each field's meaningless type by the associated
1489 index subtype). */
1490
1491 void
1492 ada_fixup_array_indexes_type (struct type *index_desc_type)
1493 {
1494 int i;
1495
1496 if (index_desc_type == NULL)
1497 return;
1498 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1499
1500 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1501 to check one field only, no need to check them all). If not, return
1502 now.
1503
1504 If our INDEX_DESC_TYPE was generated using the older encoding,
1505 the field type should be a meaningless integer type whose name
1506 is not equal to the field name. */
1507 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1508 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1509 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1510 return;
1511
1512 /* Fixup each field of INDEX_DESC_TYPE. */
1513 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1514 {
1515 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1516 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1517
1518 if (raw_type)
1519 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1520 }
1521 }
1522
1523 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1524
1525 static const char *bound_name[] = {
1526 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1527 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1528 };
1529
1530 /* Maximum number of array dimensions we are prepared to handle. */
1531
1532 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1533
1534
1535 /* The desc_* routines return primitive portions of array descriptors
1536 (fat pointers). */
1537
1538 /* The descriptor or array type, if any, indicated by TYPE; removes
1539 level of indirection, if needed. */
1540
1541 static struct type *
1542 desc_base_type (struct type *type)
1543 {
1544 if (type == NULL)
1545 return NULL;
1546 type = ada_check_typedef (type);
1547 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1548 type = ada_typedef_target_type (type);
1549
1550 if (type != NULL
1551 && (TYPE_CODE (type) == TYPE_CODE_PTR
1552 || TYPE_CODE (type) == TYPE_CODE_REF))
1553 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1554 else
1555 return type;
1556 }
1557
1558 /* True iff TYPE indicates a "thin" array pointer type. */
1559
1560 static int
1561 is_thin_pntr (struct type *type)
1562 {
1563 return
1564 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1565 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1566 }
1567
1568 /* The descriptor type for thin pointer type TYPE. */
1569
1570 static struct type *
1571 thin_descriptor_type (struct type *type)
1572 {
1573 struct type *base_type = desc_base_type (type);
1574
1575 if (base_type == NULL)
1576 return NULL;
1577 if (is_suffix (ada_type_name (base_type), "___XVE"))
1578 return base_type;
1579 else
1580 {
1581 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1582
1583 if (alt_type == NULL)
1584 return base_type;
1585 else
1586 return alt_type;
1587 }
1588 }
1589
1590 /* A pointer to the array data for thin-pointer value VAL. */
1591
1592 static struct value *
1593 thin_data_pntr (struct value *val)
1594 {
1595 struct type *type = ada_check_typedef (value_type (val));
1596 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1597
1598 data_type = lookup_pointer_type (data_type);
1599
1600 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1601 return value_cast (data_type, value_copy (val));
1602 else
1603 return value_from_longest (data_type, value_address (val));
1604 }
1605
1606 /* True iff TYPE indicates a "thick" array pointer type. */
1607
1608 static int
1609 is_thick_pntr (struct type *type)
1610 {
1611 type = desc_base_type (type);
1612 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1613 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1614 }
1615
1616 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1617 pointer to one, the type of its bounds data; otherwise, NULL. */
1618
1619 static struct type *
1620 desc_bounds_type (struct type *type)
1621 {
1622 struct type *r;
1623
1624 type = desc_base_type (type);
1625
1626 if (type == NULL)
1627 return NULL;
1628 else if (is_thin_pntr (type))
1629 {
1630 type = thin_descriptor_type (type);
1631 if (type == NULL)
1632 return NULL;
1633 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1634 if (r != NULL)
1635 return ada_check_typedef (r);
1636 }
1637 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1638 {
1639 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1640 if (r != NULL)
1641 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1642 }
1643 return NULL;
1644 }
1645
1646 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1647 one, a pointer to its bounds data. Otherwise NULL. */
1648
1649 static struct value *
1650 desc_bounds (struct value *arr)
1651 {
1652 struct type *type = ada_check_typedef (value_type (arr));
1653
1654 if (is_thin_pntr (type))
1655 {
1656 struct type *bounds_type =
1657 desc_bounds_type (thin_descriptor_type (type));
1658 LONGEST addr;
1659
1660 if (bounds_type == NULL)
1661 error (_("Bad GNAT array descriptor"));
1662
1663 /* NOTE: The following calculation is not really kosher, but
1664 since desc_type is an XVE-encoded type (and shouldn't be),
1665 the correct calculation is a real pain. FIXME (and fix GCC). */
1666 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1667 addr = value_as_long (arr);
1668 else
1669 addr = value_address (arr);
1670
1671 return
1672 value_from_longest (lookup_pointer_type (bounds_type),
1673 addr - TYPE_LENGTH (bounds_type));
1674 }
1675
1676 else if (is_thick_pntr (type))
1677 {
1678 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1679 _("Bad GNAT array descriptor"));
1680 struct type *p_bounds_type = value_type (p_bounds);
1681
1682 if (p_bounds_type
1683 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1684 {
1685 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1686
1687 if (TYPE_STUB (target_type))
1688 p_bounds = value_cast (lookup_pointer_type
1689 (ada_check_typedef (target_type)),
1690 p_bounds);
1691 }
1692 else
1693 error (_("Bad GNAT array descriptor"));
1694
1695 return p_bounds;
1696 }
1697 else
1698 return NULL;
1699 }
1700
1701 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1702 position of the field containing the address of the bounds data. */
1703
1704 static int
1705 fat_pntr_bounds_bitpos (struct type *type)
1706 {
1707 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1708 }
1709
1710 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1711 size of the field containing the address of the bounds data. */
1712
1713 static int
1714 fat_pntr_bounds_bitsize (struct type *type)
1715 {
1716 type = desc_base_type (type);
1717
1718 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1719 return TYPE_FIELD_BITSIZE (type, 1);
1720 else
1721 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1722 }
1723
1724 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1725 pointer to one, the type of its array data (a array-with-no-bounds type);
1726 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1727 data. */
1728
1729 static struct type *
1730 desc_data_target_type (struct type *type)
1731 {
1732 type = desc_base_type (type);
1733
1734 /* NOTE: The following is bogus; see comment in desc_bounds. */
1735 if (is_thin_pntr (type))
1736 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1737 else if (is_thick_pntr (type))
1738 {
1739 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1740
1741 if (data_type
1742 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1743 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1744 }
1745
1746 return NULL;
1747 }
1748
1749 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1750 its array data. */
1751
1752 static struct value *
1753 desc_data (struct value *arr)
1754 {
1755 struct type *type = value_type (arr);
1756
1757 if (is_thin_pntr (type))
1758 return thin_data_pntr (arr);
1759 else if (is_thick_pntr (type))
1760 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1761 _("Bad GNAT array descriptor"));
1762 else
1763 return NULL;
1764 }
1765
1766
1767 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1768 position of the field containing the address of the data. */
1769
1770 static int
1771 fat_pntr_data_bitpos (struct type *type)
1772 {
1773 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1774 }
1775
1776 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1777 size of the field containing the address of the data. */
1778
1779 static int
1780 fat_pntr_data_bitsize (struct type *type)
1781 {
1782 type = desc_base_type (type);
1783
1784 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1785 return TYPE_FIELD_BITSIZE (type, 0);
1786 else
1787 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1788 }
1789
1790 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1791 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1792 bound, if WHICH is 1. The first bound is I=1. */
1793
1794 static struct value *
1795 desc_one_bound (struct value *bounds, int i, int which)
1796 {
1797 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1798 _("Bad GNAT array descriptor bounds"));
1799 }
1800
1801 /* If BOUNDS is an array-bounds structure type, return the bit position
1802 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1803 bound, if WHICH is 1. The first bound is I=1. */
1804
1805 static int
1806 desc_bound_bitpos (struct type *type, int i, int which)
1807 {
1808 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1809 }
1810
1811 /* If BOUNDS is an array-bounds structure type, return the bit field size
1812 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1813 bound, if WHICH is 1. The first bound is I=1. */
1814
1815 static int
1816 desc_bound_bitsize (struct type *type, int i, int which)
1817 {
1818 type = desc_base_type (type);
1819
1820 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1821 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1822 else
1823 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1824 }
1825
1826 /* If TYPE is the type of an array-bounds structure, the type of its
1827 Ith bound (numbering from 1). Otherwise, NULL. */
1828
1829 static struct type *
1830 desc_index_type (struct type *type, int i)
1831 {
1832 type = desc_base_type (type);
1833
1834 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1835 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1836 else
1837 return NULL;
1838 }
1839
1840 /* The number of index positions in the array-bounds type TYPE.
1841 Return 0 if TYPE is NULL. */
1842
1843 static int
1844 desc_arity (struct type *type)
1845 {
1846 type = desc_base_type (type);
1847
1848 if (type != NULL)
1849 return TYPE_NFIELDS (type) / 2;
1850 return 0;
1851 }
1852
1853 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1854 an array descriptor type (representing an unconstrained array
1855 type). */
1856
1857 static int
1858 ada_is_direct_array_type (struct type *type)
1859 {
1860 if (type == NULL)
1861 return 0;
1862 type = ada_check_typedef (type);
1863 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1864 || ada_is_array_descriptor_type (type));
1865 }
1866
1867 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1868 * to one. */
1869
1870 static int
1871 ada_is_array_type (struct type *type)
1872 {
1873 while (type != NULL
1874 && (TYPE_CODE (type) == TYPE_CODE_PTR
1875 || TYPE_CODE (type) == TYPE_CODE_REF))
1876 type = TYPE_TARGET_TYPE (type);
1877 return ada_is_direct_array_type (type);
1878 }
1879
1880 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1881
1882 int
1883 ada_is_simple_array_type (struct type *type)
1884 {
1885 if (type == NULL)
1886 return 0;
1887 type = ada_check_typedef (type);
1888 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1889 || (TYPE_CODE (type) == TYPE_CODE_PTR
1890 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1891 == TYPE_CODE_ARRAY));
1892 }
1893
1894 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1895
1896 int
1897 ada_is_array_descriptor_type (struct type *type)
1898 {
1899 struct type *data_type = desc_data_target_type (type);
1900
1901 if (type == NULL)
1902 return 0;
1903 type = ada_check_typedef (type);
1904 return (data_type != NULL
1905 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1906 && desc_arity (desc_bounds_type (type)) > 0);
1907 }
1908
1909 /* Non-zero iff type is a partially mal-formed GNAT array
1910 descriptor. FIXME: This is to compensate for some problems with
1911 debugging output from GNAT. Re-examine periodically to see if it
1912 is still needed. */
1913
1914 int
1915 ada_is_bogus_array_descriptor (struct type *type)
1916 {
1917 return
1918 type != NULL
1919 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1920 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1921 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1922 && !ada_is_array_descriptor_type (type);
1923 }
1924
1925
1926 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1927 (fat pointer) returns the type of the array data described---specifically,
1928 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1929 in from the descriptor; otherwise, they are left unspecified. If
1930 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1931 returns NULL. The result is simply the type of ARR if ARR is not
1932 a descriptor. */
1933 struct type *
1934 ada_type_of_array (struct value *arr, int bounds)
1935 {
1936 if (ada_is_constrained_packed_array_type (value_type (arr)))
1937 return decode_constrained_packed_array_type (value_type (arr));
1938
1939 if (!ada_is_array_descriptor_type (value_type (arr)))
1940 return value_type (arr);
1941
1942 if (!bounds)
1943 {
1944 struct type *array_type =
1945 ada_check_typedef (desc_data_target_type (value_type (arr)));
1946
1947 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1948 TYPE_FIELD_BITSIZE (array_type, 0) =
1949 decode_packed_array_bitsize (value_type (arr));
1950
1951 return array_type;
1952 }
1953 else
1954 {
1955 struct type *elt_type;
1956 int arity;
1957 struct value *descriptor;
1958
1959 elt_type = ada_array_element_type (value_type (arr), -1);
1960 arity = ada_array_arity (value_type (arr));
1961
1962 if (elt_type == NULL || arity == 0)
1963 return ada_check_typedef (value_type (arr));
1964
1965 descriptor = desc_bounds (arr);
1966 if (value_as_long (descriptor) == 0)
1967 return NULL;
1968 while (arity > 0)
1969 {
1970 struct type *range_type = alloc_type_copy (value_type (arr));
1971 struct type *array_type = alloc_type_copy (value_type (arr));
1972 struct value *low = desc_one_bound (descriptor, arity, 0);
1973 struct value *high = desc_one_bound (descriptor, arity, 1);
1974
1975 arity -= 1;
1976 create_static_range_type (range_type, value_type (low),
1977 longest_to_int (value_as_long (low)),
1978 longest_to_int (value_as_long (high)));
1979 elt_type = create_array_type (array_type, elt_type, range_type);
1980
1981 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1982 {
1983 /* We need to store the element packed bitsize, as well as
1984 recompute the array size, because it was previously
1985 computed based on the unpacked element size. */
1986 LONGEST lo = value_as_long (low);
1987 LONGEST hi = value_as_long (high);
1988
1989 TYPE_FIELD_BITSIZE (elt_type, 0) =
1990 decode_packed_array_bitsize (value_type (arr));
1991 /* If the array has no element, then the size is already
1992 zero, and does not need to be recomputed. */
1993 if (lo < hi)
1994 {
1995 int array_bitsize =
1996 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1997
1998 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1999 }
2000 }
2001 }
2002
2003 return lookup_pointer_type (elt_type);
2004 }
2005 }
2006
2007 /* If ARR does not represent an array, returns ARR unchanged.
2008 Otherwise, returns either a standard GDB array with bounds set
2009 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2010 GDB array. Returns NULL if ARR is a null fat pointer. */
2011
2012 struct value *
2013 ada_coerce_to_simple_array_ptr (struct value *arr)
2014 {
2015 if (ada_is_array_descriptor_type (value_type (arr)))
2016 {
2017 struct type *arrType = ada_type_of_array (arr, 1);
2018
2019 if (arrType == NULL)
2020 return NULL;
2021 return value_cast (arrType, value_copy (desc_data (arr)));
2022 }
2023 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2024 return decode_constrained_packed_array (arr);
2025 else
2026 return arr;
2027 }
2028
2029 /* If ARR does not represent an array, returns ARR unchanged.
2030 Otherwise, returns a standard GDB array describing ARR (which may
2031 be ARR itself if it already is in the proper form). */
2032
2033 struct value *
2034 ada_coerce_to_simple_array (struct value *arr)
2035 {
2036 if (ada_is_array_descriptor_type (value_type (arr)))
2037 {
2038 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2039
2040 if (arrVal == NULL)
2041 error (_("Bounds unavailable for null array pointer."));
2042 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2043 return value_ind (arrVal);
2044 }
2045 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2046 return decode_constrained_packed_array (arr);
2047 else
2048 return arr;
2049 }
2050
2051 /* If TYPE represents a GNAT array type, return it translated to an
2052 ordinary GDB array type (possibly with BITSIZE fields indicating
2053 packing). For other types, is the identity. */
2054
2055 struct type *
2056 ada_coerce_to_simple_array_type (struct type *type)
2057 {
2058 if (ada_is_constrained_packed_array_type (type))
2059 return decode_constrained_packed_array_type (type);
2060
2061 if (ada_is_array_descriptor_type (type))
2062 return ada_check_typedef (desc_data_target_type (type));
2063
2064 return type;
2065 }
2066
2067 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2068
2069 static int
2070 ada_is_packed_array_type (struct type *type)
2071 {
2072 if (type == NULL)
2073 return 0;
2074 type = desc_base_type (type);
2075 type = ada_check_typedef (type);
2076 return
2077 ada_type_name (type) != NULL
2078 && strstr (ada_type_name (type), "___XP") != NULL;
2079 }
2080
2081 /* Non-zero iff TYPE represents a standard GNAT constrained
2082 packed-array type. */
2083
2084 int
2085 ada_is_constrained_packed_array_type (struct type *type)
2086 {
2087 return ada_is_packed_array_type (type)
2088 && !ada_is_array_descriptor_type (type);
2089 }
2090
2091 /* Non-zero iff TYPE represents an array descriptor for a
2092 unconstrained packed-array type. */
2093
2094 static int
2095 ada_is_unconstrained_packed_array_type (struct type *type)
2096 {
2097 return ada_is_packed_array_type (type)
2098 && ada_is_array_descriptor_type (type);
2099 }
2100
2101 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2102 return the size of its elements in bits. */
2103
2104 static long
2105 decode_packed_array_bitsize (struct type *type)
2106 {
2107 const char *raw_name;
2108 const char *tail;
2109 long bits;
2110
2111 /* Access to arrays implemented as fat pointers are encoded as a typedef
2112 of the fat pointer type. We need the name of the fat pointer type
2113 to do the decoding, so strip the typedef layer. */
2114 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2115 type = ada_typedef_target_type (type);
2116
2117 raw_name = ada_type_name (ada_check_typedef (type));
2118 if (!raw_name)
2119 raw_name = ada_type_name (desc_base_type (type));
2120
2121 if (!raw_name)
2122 return 0;
2123
2124 tail = strstr (raw_name, "___XP");
2125 gdb_assert (tail != NULL);
2126
2127 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2128 {
2129 lim_warning
2130 (_("could not understand bit size information on packed array"));
2131 return 0;
2132 }
2133
2134 return bits;
2135 }
2136
2137 /* Given that TYPE is a standard GDB array type with all bounds filled
2138 in, and that the element size of its ultimate scalar constituents
2139 (that is, either its elements, or, if it is an array of arrays, its
2140 elements' elements, etc.) is *ELT_BITS, return an identical type,
2141 but with the bit sizes of its elements (and those of any
2142 constituent arrays) recorded in the BITSIZE components of its
2143 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2144 in bits.
2145
2146 Note that, for arrays whose index type has an XA encoding where
2147 a bound references a record discriminant, getting that discriminant,
2148 and therefore the actual value of that bound, is not possible
2149 because none of the given parameters gives us access to the record.
2150 This function assumes that it is OK in the context where it is being
2151 used to return an array whose bounds are still dynamic and where
2152 the length is arbitrary. */
2153
2154 static struct type *
2155 constrained_packed_array_type (struct type *type, long *elt_bits)
2156 {
2157 struct type *new_elt_type;
2158 struct type *new_type;
2159 struct type *index_type_desc;
2160 struct type *index_type;
2161 LONGEST low_bound, high_bound;
2162
2163 type = ada_check_typedef (type);
2164 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2165 return type;
2166
2167 index_type_desc = ada_find_parallel_type (type, "___XA");
2168 if (index_type_desc)
2169 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2170 NULL);
2171 else
2172 index_type = TYPE_INDEX_TYPE (type);
2173
2174 new_type = alloc_type_copy (type);
2175 new_elt_type =
2176 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2177 elt_bits);
2178 create_array_type (new_type, new_elt_type, index_type);
2179 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2180 TYPE_NAME (new_type) = ada_type_name (type);
2181
2182 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2183 && is_dynamic_type (check_typedef (index_type)))
2184 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2185 low_bound = high_bound = 0;
2186 if (high_bound < low_bound)
2187 *elt_bits = TYPE_LENGTH (new_type) = 0;
2188 else
2189 {
2190 *elt_bits *= (high_bound - low_bound + 1);
2191 TYPE_LENGTH (new_type) =
2192 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2193 }
2194
2195 TYPE_FIXED_INSTANCE (new_type) = 1;
2196 return new_type;
2197 }
2198
2199 /* The array type encoded by TYPE, where
2200 ada_is_constrained_packed_array_type (TYPE). */
2201
2202 static struct type *
2203 decode_constrained_packed_array_type (struct type *type)
2204 {
2205 const char *raw_name = ada_type_name (ada_check_typedef (type));
2206 char *name;
2207 const char *tail;
2208 struct type *shadow_type;
2209 long bits;
2210
2211 if (!raw_name)
2212 raw_name = ada_type_name (desc_base_type (type));
2213
2214 if (!raw_name)
2215 return NULL;
2216
2217 name = (char *) alloca (strlen (raw_name) + 1);
2218 tail = strstr (raw_name, "___XP");
2219 type = desc_base_type (type);
2220
2221 memcpy (name, raw_name, tail - raw_name);
2222 name[tail - raw_name] = '\000';
2223
2224 shadow_type = ada_find_parallel_type_with_name (type, name);
2225
2226 if (shadow_type == NULL)
2227 {
2228 lim_warning (_("could not find bounds information on packed array"));
2229 return NULL;
2230 }
2231 shadow_type = check_typedef (shadow_type);
2232
2233 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2234 {
2235 lim_warning (_("could not understand bounds "
2236 "information on packed array"));
2237 return NULL;
2238 }
2239
2240 bits = decode_packed_array_bitsize (type);
2241 return constrained_packed_array_type (shadow_type, &bits);
2242 }
2243
2244 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2245 array, returns a simple array that denotes that array. Its type is a
2246 standard GDB array type except that the BITSIZEs of the array
2247 target types are set to the number of bits in each element, and the
2248 type length is set appropriately. */
2249
2250 static struct value *
2251 decode_constrained_packed_array (struct value *arr)
2252 {
2253 struct type *type;
2254
2255 /* If our value is a pointer, then dereference it. Likewise if
2256 the value is a reference. Make sure that this operation does not
2257 cause the target type to be fixed, as this would indirectly cause
2258 this array to be decoded. The rest of the routine assumes that
2259 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2260 and "value_ind" routines to perform the dereferencing, as opposed
2261 to using "ada_coerce_ref" or "ada_value_ind". */
2262 arr = coerce_ref (arr);
2263 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2264 arr = value_ind (arr);
2265
2266 type = decode_constrained_packed_array_type (value_type (arr));
2267 if (type == NULL)
2268 {
2269 error (_("can't unpack array"));
2270 return NULL;
2271 }
2272
2273 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2274 && ada_is_modular_type (value_type (arr)))
2275 {
2276 /* This is a (right-justified) modular type representing a packed
2277 array with no wrapper. In order to interpret the value through
2278 the (left-justified) packed array type we just built, we must
2279 first left-justify it. */
2280 int bit_size, bit_pos;
2281 ULONGEST mod;
2282
2283 mod = ada_modulus (value_type (arr)) - 1;
2284 bit_size = 0;
2285 while (mod > 0)
2286 {
2287 bit_size += 1;
2288 mod >>= 1;
2289 }
2290 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2291 arr = ada_value_primitive_packed_val (arr, NULL,
2292 bit_pos / HOST_CHAR_BIT,
2293 bit_pos % HOST_CHAR_BIT,
2294 bit_size,
2295 type);
2296 }
2297
2298 return coerce_unspec_val_to_type (arr, type);
2299 }
2300
2301
2302 /* The value of the element of packed array ARR at the ARITY indices
2303 given in IND. ARR must be a simple array. */
2304
2305 static struct value *
2306 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2307 {
2308 int i;
2309 int bits, elt_off, bit_off;
2310 long elt_total_bit_offset;
2311 struct type *elt_type;
2312 struct value *v;
2313
2314 bits = 0;
2315 elt_total_bit_offset = 0;
2316 elt_type = ada_check_typedef (value_type (arr));
2317 for (i = 0; i < arity; i += 1)
2318 {
2319 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2320 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2321 error
2322 (_("attempt to do packed indexing of "
2323 "something other than a packed array"));
2324 else
2325 {
2326 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2327 LONGEST lowerbound, upperbound;
2328 LONGEST idx;
2329
2330 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2331 {
2332 lim_warning (_("don't know bounds of array"));
2333 lowerbound = upperbound = 0;
2334 }
2335
2336 idx = pos_atr (ind[i]);
2337 if (idx < lowerbound || idx > upperbound)
2338 lim_warning (_("packed array index %ld out of bounds"),
2339 (long) idx);
2340 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2341 elt_total_bit_offset += (idx - lowerbound) * bits;
2342 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2343 }
2344 }
2345 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2346 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2347
2348 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2349 bits, elt_type);
2350 return v;
2351 }
2352
2353 /* Non-zero iff TYPE includes negative integer values. */
2354
2355 static int
2356 has_negatives (struct type *type)
2357 {
2358 switch (TYPE_CODE (type))
2359 {
2360 default:
2361 return 0;
2362 case TYPE_CODE_INT:
2363 return !TYPE_UNSIGNED (type);
2364 case TYPE_CODE_RANGE:
2365 return TYPE_LOW_BOUND (type) < 0;
2366 }
2367 }
2368
2369 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2370 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2371 the unpacked buffer.
2372
2373 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2374 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2375
2376 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2377 zero otherwise.
2378
2379 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2380
2381 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2382
2383 static void
2384 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2385 gdb_byte *unpacked, int unpacked_len,
2386 int is_big_endian, int is_signed_type,
2387 int is_scalar)
2388 {
2389 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2390 int src_idx; /* Index into the source area */
2391 int src_bytes_left; /* Number of source bytes left to process. */
2392 int srcBitsLeft; /* Number of source bits left to move */
2393 int unusedLS; /* Number of bits in next significant
2394 byte of source that are unused */
2395
2396 int unpacked_idx; /* Index into the unpacked buffer */
2397 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2398
2399 unsigned long accum; /* Staging area for bits being transferred */
2400 int accumSize; /* Number of meaningful bits in accum */
2401 unsigned char sign;
2402
2403 /* Transmit bytes from least to most significant; delta is the direction
2404 the indices move. */
2405 int delta = is_big_endian ? -1 : 1;
2406
2407 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2408 bits from SRC. .*/
2409 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2410 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2411 bit_size, unpacked_len);
2412
2413 srcBitsLeft = bit_size;
2414 src_bytes_left = src_len;
2415 unpacked_bytes_left = unpacked_len;
2416 sign = 0;
2417
2418 if (is_big_endian)
2419 {
2420 src_idx = src_len - 1;
2421 if (is_signed_type
2422 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2423 sign = ~0;
2424
2425 unusedLS =
2426 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2427 % HOST_CHAR_BIT;
2428
2429 if (is_scalar)
2430 {
2431 accumSize = 0;
2432 unpacked_idx = unpacked_len - 1;
2433 }
2434 else
2435 {
2436 /* Non-scalar values must be aligned at a byte boundary... */
2437 accumSize =
2438 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2439 /* ... And are placed at the beginning (most-significant) bytes
2440 of the target. */
2441 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2442 unpacked_bytes_left = unpacked_idx + 1;
2443 }
2444 }
2445 else
2446 {
2447 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2448
2449 src_idx = unpacked_idx = 0;
2450 unusedLS = bit_offset;
2451 accumSize = 0;
2452
2453 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2454 sign = ~0;
2455 }
2456
2457 accum = 0;
2458 while (src_bytes_left > 0)
2459 {
2460 /* Mask for removing bits of the next source byte that are not
2461 part of the value. */
2462 unsigned int unusedMSMask =
2463 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2464 1;
2465 /* Sign-extend bits for this byte. */
2466 unsigned int signMask = sign & ~unusedMSMask;
2467
2468 accum |=
2469 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2470 accumSize += HOST_CHAR_BIT - unusedLS;
2471 if (accumSize >= HOST_CHAR_BIT)
2472 {
2473 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2474 accumSize -= HOST_CHAR_BIT;
2475 accum >>= HOST_CHAR_BIT;
2476 unpacked_bytes_left -= 1;
2477 unpacked_idx += delta;
2478 }
2479 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2480 unusedLS = 0;
2481 src_bytes_left -= 1;
2482 src_idx += delta;
2483 }
2484 while (unpacked_bytes_left > 0)
2485 {
2486 accum |= sign << accumSize;
2487 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2488 accumSize -= HOST_CHAR_BIT;
2489 if (accumSize < 0)
2490 accumSize = 0;
2491 accum >>= HOST_CHAR_BIT;
2492 unpacked_bytes_left -= 1;
2493 unpacked_idx += delta;
2494 }
2495 }
2496
2497 /* Create a new value of type TYPE from the contents of OBJ starting
2498 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2499 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2500 assigning through the result will set the field fetched from.
2501 VALADDR is ignored unless OBJ is NULL, in which case,
2502 VALADDR+OFFSET must address the start of storage containing the
2503 packed value. The value returned in this case is never an lval.
2504 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2505
2506 struct value *
2507 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2508 long offset, int bit_offset, int bit_size,
2509 struct type *type)
2510 {
2511 struct value *v;
2512 const gdb_byte *src; /* First byte containing data to unpack */
2513 gdb_byte *unpacked;
2514 const int is_scalar = is_scalar_type (type);
2515 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2516 gdb::byte_vector staging;
2517
2518 type = ada_check_typedef (type);
2519
2520 if (obj == NULL)
2521 src = valaddr + offset;
2522 else
2523 src = value_contents (obj) + offset;
2524
2525 if (is_dynamic_type (type))
2526 {
2527 /* The length of TYPE might by dynamic, so we need to resolve
2528 TYPE in order to know its actual size, which we then use
2529 to create the contents buffer of the value we return.
2530 The difficulty is that the data containing our object is
2531 packed, and therefore maybe not at a byte boundary. So, what
2532 we do, is unpack the data into a byte-aligned buffer, and then
2533 use that buffer as our object's value for resolving the type. */
2534 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2535 staging.resize (staging_len);
2536
2537 ada_unpack_from_contents (src, bit_offset, bit_size,
2538 staging.data (), staging.size (),
2539 is_big_endian, has_negatives (type),
2540 is_scalar);
2541 type = resolve_dynamic_type (type, staging.data (), 0);
2542 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2543 {
2544 /* This happens when the length of the object is dynamic,
2545 and is actually smaller than the space reserved for it.
2546 For instance, in an array of variant records, the bit_size
2547 we're given is the array stride, which is constant and
2548 normally equal to the maximum size of its element.
2549 But, in reality, each element only actually spans a portion
2550 of that stride. */
2551 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2552 }
2553 }
2554
2555 if (obj == NULL)
2556 {
2557 v = allocate_value (type);
2558 src = valaddr + offset;
2559 }
2560 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2561 {
2562 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2563 gdb_byte *buf;
2564
2565 v = value_at (type, value_address (obj) + offset);
2566 buf = (gdb_byte *) alloca (src_len);
2567 read_memory (value_address (v), buf, src_len);
2568 src = buf;
2569 }
2570 else
2571 {
2572 v = allocate_value (type);
2573 src = value_contents (obj) + offset;
2574 }
2575
2576 if (obj != NULL)
2577 {
2578 long new_offset = offset;
2579
2580 set_value_component_location (v, obj);
2581 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2582 set_value_bitsize (v, bit_size);
2583 if (value_bitpos (v) >= HOST_CHAR_BIT)
2584 {
2585 ++new_offset;
2586 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2587 }
2588 set_value_offset (v, new_offset);
2589
2590 /* Also set the parent value. This is needed when trying to
2591 assign a new value (in inferior memory). */
2592 set_value_parent (v, obj);
2593 }
2594 else
2595 set_value_bitsize (v, bit_size);
2596 unpacked = value_contents_writeable (v);
2597
2598 if (bit_size == 0)
2599 {
2600 memset (unpacked, 0, TYPE_LENGTH (type));
2601 return v;
2602 }
2603
2604 if (staging.size () == TYPE_LENGTH (type))
2605 {
2606 /* Small short-cut: If we've unpacked the data into a buffer
2607 of the same size as TYPE's length, then we can reuse that,
2608 instead of doing the unpacking again. */
2609 memcpy (unpacked, staging.data (), staging.size ());
2610 }
2611 else
2612 ada_unpack_from_contents (src, bit_offset, bit_size,
2613 unpacked, TYPE_LENGTH (type),
2614 is_big_endian, has_negatives (type), is_scalar);
2615
2616 return v;
2617 }
2618
2619 /* Store the contents of FROMVAL into the location of TOVAL.
2620 Return a new value with the location of TOVAL and contents of
2621 FROMVAL. Handles assignment into packed fields that have
2622 floating-point or non-scalar types. */
2623
2624 static struct value *
2625 ada_value_assign (struct value *toval, struct value *fromval)
2626 {
2627 struct type *type = value_type (toval);
2628 int bits = value_bitsize (toval);
2629
2630 toval = ada_coerce_ref (toval);
2631 fromval = ada_coerce_ref (fromval);
2632
2633 if (ada_is_direct_array_type (value_type (toval)))
2634 toval = ada_coerce_to_simple_array (toval);
2635 if (ada_is_direct_array_type (value_type (fromval)))
2636 fromval = ada_coerce_to_simple_array (fromval);
2637
2638 if (!deprecated_value_modifiable (toval))
2639 error (_("Left operand of assignment is not a modifiable lvalue."));
2640
2641 if (VALUE_LVAL (toval) == lval_memory
2642 && bits > 0
2643 && (TYPE_CODE (type) == TYPE_CODE_FLT
2644 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2645 {
2646 int len = (value_bitpos (toval)
2647 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2648 int from_size;
2649 gdb_byte *buffer = (gdb_byte *) alloca (len);
2650 struct value *val;
2651 CORE_ADDR to_addr = value_address (toval);
2652
2653 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2654 fromval = value_cast (type, fromval);
2655
2656 read_memory (to_addr, buffer, len);
2657 from_size = value_bitsize (fromval);
2658 if (from_size == 0)
2659 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2660
2661 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2662 ULONGEST from_offset = 0;
2663 if (is_big_endian && is_scalar_type (value_type (fromval)))
2664 from_offset = from_size - bits;
2665 copy_bitwise (buffer, value_bitpos (toval),
2666 value_contents (fromval), from_offset,
2667 bits, is_big_endian);
2668 write_memory_with_notification (to_addr, buffer, len);
2669
2670 val = value_copy (toval);
2671 memcpy (value_contents_raw (val), value_contents (fromval),
2672 TYPE_LENGTH (type));
2673 deprecated_set_value_type (val, type);
2674
2675 return val;
2676 }
2677
2678 return value_assign (toval, fromval);
2679 }
2680
2681
2682 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2683 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2684 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2685 COMPONENT, and not the inferior's memory. The current contents
2686 of COMPONENT are ignored.
2687
2688 Although not part of the initial design, this function also works
2689 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2690 had a null address, and COMPONENT had an address which is equal to
2691 its offset inside CONTAINER. */
2692
2693 static void
2694 value_assign_to_component (struct value *container, struct value *component,
2695 struct value *val)
2696 {
2697 LONGEST offset_in_container =
2698 (LONGEST) (value_address (component) - value_address (container));
2699 int bit_offset_in_container =
2700 value_bitpos (component) - value_bitpos (container);
2701 int bits;
2702
2703 val = value_cast (value_type (component), val);
2704
2705 if (value_bitsize (component) == 0)
2706 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2707 else
2708 bits = value_bitsize (component);
2709
2710 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2711 {
2712 int src_offset;
2713
2714 if (is_scalar_type (check_typedef (value_type (component))))
2715 src_offset
2716 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2717 else
2718 src_offset = 0;
2719 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2720 value_bitpos (container) + bit_offset_in_container,
2721 value_contents (val), src_offset, bits, 1);
2722 }
2723 else
2724 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2725 value_bitpos (container) + bit_offset_in_container,
2726 value_contents (val), 0, bits, 0);
2727 }
2728
2729 /* Determine if TYPE is an access to an unconstrained array. */
2730
2731 bool
2732 ada_is_access_to_unconstrained_array (struct type *type)
2733 {
2734 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2735 && is_thick_pntr (ada_typedef_target_type (type)));
2736 }
2737
2738 /* The value of the element of array ARR at the ARITY indices given in IND.
2739 ARR may be either a simple array, GNAT array descriptor, or pointer
2740 thereto. */
2741
2742 struct value *
2743 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2744 {
2745 int k;
2746 struct value *elt;
2747 struct type *elt_type;
2748
2749 elt = ada_coerce_to_simple_array (arr);
2750
2751 elt_type = ada_check_typedef (value_type (elt));
2752 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2753 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2754 return value_subscript_packed (elt, arity, ind);
2755
2756 for (k = 0; k < arity; k += 1)
2757 {
2758 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2759
2760 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2761 error (_("too many subscripts (%d expected)"), k);
2762
2763 elt = value_subscript (elt, pos_atr (ind[k]));
2764
2765 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2766 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2767 {
2768 /* The element is a typedef to an unconstrained array,
2769 except that the value_subscript call stripped the
2770 typedef layer. The typedef layer is GNAT's way to
2771 specify that the element is, at the source level, an
2772 access to the unconstrained array, rather than the
2773 unconstrained array. So, we need to restore that
2774 typedef layer, which we can do by forcing the element's
2775 type back to its original type. Otherwise, the returned
2776 value is going to be printed as the array, rather
2777 than as an access. Another symptom of the same issue
2778 would be that an expression trying to dereference the
2779 element would also be improperly rejected. */
2780 deprecated_set_value_type (elt, saved_elt_type);
2781 }
2782
2783 elt_type = ada_check_typedef (value_type (elt));
2784 }
2785
2786 return elt;
2787 }
2788
2789 /* Assuming ARR is a pointer to a GDB array, the value of the element
2790 of *ARR at the ARITY indices given in IND.
2791 Does not read the entire array into memory.
2792
2793 Note: Unlike what one would expect, this function is used instead of
2794 ada_value_subscript for basically all non-packed array types. The reason
2795 for this is that a side effect of doing our own pointer arithmetics instead
2796 of relying on value_subscript is that there is no implicit typedef peeling.
2797 This is important for arrays of array accesses, where it allows us to
2798 preserve the fact that the array's element is an array access, where the
2799 access part os encoded in a typedef layer. */
2800
2801 static struct value *
2802 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2803 {
2804 int k;
2805 struct value *array_ind = ada_value_ind (arr);
2806 struct type *type
2807 = check_typedef (value_enclosing_type (array_ind));
2808
2809 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2810 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2811 return value_subscript_packed (array_ind, arity, ind);
2812
2813 for (k = 0; k < arity; k += 1)
2814 {
2815 LONGEST lwb, upb;
2816 struct value *lwb_value;
2817
2818 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2819 error (_("too many subscripts (%d expected)"), k);
2820 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2821 value_copy (arr));
2822 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2823 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2824 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2825 type = TYPE_TARGET_TYPE (type);
2826 }
2827
2828 return value_ind (arr);
2829 }
2830
2831 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2832 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2833 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2834 this array is LOW, as per Ada rules. */
2835 static struct value *
2836 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2837 int low, int high)
2838 {
2839 struct type *type0 = ada_check_typedef (type);
2840 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2841 struct type *index_type
2842 = create_static_range_type (NULL, base_index_type, low, high);
2843 struct type *slice_type = create_array_type_with_stride
2844 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2845 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2846 TYPE_FIELD_BITSIZE (type0, 0));
2847 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2848 LONGEST base_low_pos, low_pos;
2849 CORE_ADDR base;
2850
2851 if (!discrete_position (base_index_type, low, &low_pos)
2852 || !discrete_position (base_index_type, base_low, &base_low_pos))
2853 {
2854 warning (_("unable to get positions in slice, use bounds instead"));
2855 low_pos = low;
2856 base_low_pos = base_low;
2857 }
2858
2859 base = value_as_address (array_ptr)
2860 + ((low_pos - base_low_pos)
2861 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2862 return value_at_lazy (slice_type, base);
2863 }
2864
2865
2866 static struct value *
2867 ada_value_slice (struct value *array, int low, int high)
2868 {
2869 struct type *type = ada_check_typedef (value_type (array));
2870 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2871 struct type *index_type
2872 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2873 struct type *slice_type = create_array_type_with_stride
2874 (NULL, TYPE_TARGET_TYPE (type), index_type,
2875 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2876 TYPE_FIELD_BITSIZE (type, 0));
2877 LONGEST low_pos, high_pos;
2878
2879 if (!discrete_position (base_index_type, low, &low_pos)
2880 || !discrete_position (base_index_type, high, &high_pos))
2881 {
2882 warning (_("unable to get positions in slice, use bounds instead"));
2883 low_pos = low;
2884 high_pos = high;
2885 }
2886
2887 return value_cast (slice_type,
2888 value_slice (array, low, high_pos - low_pos + 1));
2889 }
2890
2891 /* If type is a record type in the form of a standard GNAT array
2892 descriptor, returns the number of dimensions for type. If arr is a
2893 simple array, returns the number of "array of"s that prefix its
2894 type designation. Otherwise, returns 0. */
2895
2896 int
2897 ada_array_arity (struct type *type)
2898 {
2899 int arity;
2900
2901 if (type == NULL)
2902 return 0;
2903
2904 type = desc_base_type (type);
2905
2906 arity = 0;
2907 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2908 return desc_arity (desc_bounds_type (type));
2909 else
2910 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2911 {
2912 arity += 1;
2913 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2914 }
2915
2916 return arity;
2917 }
2918
2919 /* If TYPE is a record type in the form of a standard GNAT array
2920 descriptor or a simple array type, returns the element type for
2921 TYPE after indexing by NINDICES indices, or by all indices if
2922 NINDICES is -1. Otherwise, returns NULL. */
2923
2924 struct type *
2925 ada_array_element_type (struct type *type, int nindices)
2926 {
2927 type = desc_base_type (type);
2928
2929 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2930 {
2931 int k;
2932 struct type *p_array_type;
2933
2934 p_array_type = desc_data_target_type (type);
2935
2936 k = ada_array_arity (type);
2937 if (k == 0)
2938 return NULL;
2939
2940 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2941 if (nindices >= 0 && k > nindices)
2942 k = nindices;
2943 while (k > 0 && p_array_type != NULL)
2944 {
2945 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2946 k -= 1;
2947 }
2948 return p_array_type;
2949 }
2950 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2951 {
2952 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2953 {
2954 type = TYPE_TARGET_TYPE (type);
2955 nindices -= 1;
2956 }
2957 return type;
2958 }
2959
2960 return NULL;
2961 }
2962
2963 /* The type of nth index in arrays of given type (n numbering from 1).
2964 Does not examine memory. Throws an error if N is invalid or TYPE
2965 is not an array type. NAME is the name of the Ada attribute being
2966 evaluated ('range, 'first, 'last, or 'length); it is used in building
2967 the error message. */
2968
2969 static struct type *
2970 ada_index_type (struct type *type, int n, const char *name)
2971 {
2972 struct type *result_type;
2973
2974 type = desc_base_type (type);
2975
2976 if (n < 0 || n > ada_array_arity (type))
2977 error (_("invalid dimension number to '%s"), name);
2978
2979 if (ada_is_simple_array_type (type))
2980 {
2981 int i;
2982
2983 for (i = 1; i < n; i += 1)
2984 type = TYPE_TARGET_TYPE (type);
2985 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2986 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2987 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2988 perhaps stabsread.c would make more sense. */
2989 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2990 result_type = NULL;
2991 }
2992 else
2993 {
2994 result_type = desc_index_type (desc_bounds_type (type), n);
2995 if (result_type == NULL)
2996 error (_("attempt to take bound of something that is not an array"));
2997 }
2998
2999 return result_type;
3000 }
3001
3002 /* Given that arr is an array type, returns the lower bound of the
3003 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3004 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3005 array-descriptor type. It works for other arrays with bounds supplied
3006 by run-time quantities other than discriminants. */
3007
3008 static LONGEST
3009 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3010 {
3011 struct type *type, *index_type_desc, *index_type;
3012 int i;
3013
3014 gdb_assert (which == 0 || which == 1);
3015
3016 if (ada_is_constrained_packed_array_type (arr_type))
3017 arr_type = decode_constrained_packed_array_type (arr_type);
3018
3019 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3020 return (LONGEST) - which;
3021
3022 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3023 type = TYPE_TARGET_TYPE (arr_type);
3024 else
3025 type = arr_type;
3026
3027 if (TYPE_FIXED_INSTANCE (type))
3028 {
3029 /* The array has already been fixed, so we do not need to
3030 check the parallel ___XA type again. That encoding has
3031 already been applied, so ignore it now. */
3032 index_type_desc = NULL;
3033 }
3034 else
3035 {
3036 index_type_desc = ada_find_parallel_type (type, "___XA");
3037 ada_fixup_array_indexes_type (index_type_desc);
3038 }
3039
3040 if (index_type_desc != NULL)
3041 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3042 NULL);
3043 else
3044 {
3045 struct type *elt_type = check_typedef (type);
3046
3047 for (i = 1; i < n; i++)
3048 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3049
3050 index_type = TYPE_INDEX_TYPE (elt_type);
3051 }
3052
3053 return
3054 (LONGEST) (which == 0
3055 ? ada_discrete_type_low_bound (index_type)
3056 : ada_discrete_type_high_bound (index_type));
3057 }
3058
3059 /* Given that arr is an array value, returns the lower bound of the
3060 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3061 WHICH is 1. This routine will also work for arrays with bounds
3062 supplied by run-time quantities other than discriminants. */
3063
3064 static LONGEST
3065 ada_array_bound (struct value *arr, int n, int which)
3066 {
3067 struct type *arr_type;
3068
3069 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3070 arr = value_ind (arr);
3071 arr_type = value_enclosing_type (arr);
3072
3073 if (ada_is_constrained_packed_array_type (arr_type))
3074 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3075 else if (ada_is_simple_array_type (arr_type))
3076 return ada_array_bound_from_type (arr_type, n, which);
3077 else
3078 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3079 }
3080
3081 /* Given that arr is an array value, returns the length of the
3082 nth index. This routine will also work for arrays with bounds
3083 supplied by run-time quantities other than discriminants.
3084 Does not work for arrays indexed by enumeration types with representation
3085 clauses at the moment. */
3086
3087 static LONGEST
3088 ada_array_length (struct value *arr, int n)
3089 {
3090 struct type *arr_type, *index_type;
3091 int low, high;
3092
3093 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3094 arr = value_ind (arr);
3095 arr_type = value_enclosing_type (arr);
3096
3097 if (ada_is_constrained_packed_array_type (arr_type))
3098 return ada_array_length (decode_constrained_packed_array (arr), n);
3099
3100 if (ada_is_simple_array_type (arr_type))
3101 {
3102 low = ada_array_bound_from_type (arr_type, n, 0);
3103 high = ada_array_bound_from_type (arr_type, n, 1);
3104 }
3105 else
3106 {
3107 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3108 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3109 }
3110
3111 arr_type = check_typedef (arr_type);
3112 index_type = ada_index_type (arr_type, n, "length");
3113 if (index_type != NULL)
3114 {
3115 struct type *base_type;
3116 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3117 base_type = TYPE_TARGET_TYPE (index_type);
3118 else
3119 base_type = index_type;
3120
3121 low = pos_atr (value_from_longest (base_type, low));
3122 high = pos_atr (value_from_longest (base_type, high));
3123 }
3124 return high - low + 1;
3125 }
3126
3127 /* An array whose type is that of ARR_TYPE (an array type), with
3128 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3129 less than LOW, then LOW-1 is used. */
3130
3131 static struct value *
3132 empty_array (struct type *arr_type, int low, int high)
3133 {
3134 struct type *arr_type0 = ada_check_typedef (arr_type);
3135 struct type *index_type
3136 = create_static_range_type
3137 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3138 high < low ? low - 1 : high);
3139 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3140
3141 return allocate_value (create_array_type (NULL, elt_type, index_type));
3142 }
3143 \f
3144
3145 /* Name resolution */
3146
3147 /* The "decoded" name for the user-definable Ada operator corresponding
3148 to OP. */
3149
3150 static const char *
3151 ada_decoded_op_name (enum exp_opcode op)
3152 {
3153 int i;
3154
3155 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3156 {
3157 if (ada_opname_table[i].op == op)
3158 return ada_opname_table[i].decoded;
3159 }
3160 error (_("Could not find operator name for opcode"));
3161 }
3162
3163
3164 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3165 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3166 undefined namespace) and converts operators that are
3167 user-defined into appropriate function calls. If CONTEXT_TYPE is
3168 non-null, it provides a preferred result type [at the moment, only
3169 type void has any effect---causing procedures to be preferred over
3170 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3171 return type is preferred. May change (expand) *EXP. */
3172
3173 static void
3174 resolve (expression_up *expp, int void_context_p, int parse_completion,
3175 innermost_block_tracker *tracker)
3176 {
3177 struct type *context_type = NULL;
3178 int pc = 0;
3179
3180 if (void_context_p)
3181 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3182
3183 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3184 }
3185
3186 /* Resolve the operator of the subexpression beginning at
3187 position *POS of *EXPP. "Resolving" consists of replacing
3188 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3189 with their resolutions, replacing built-in operators with
3190 function calls to user-defined operators, where appropriate, and,
3191 when DEPROCEDURE_P is non-zero, converting function-valued variables
3192 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3193 are as in ada_resolve, above. */
3194
3195 static struct value *
3196 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3197 struct type *context_type, int parse_completion,
3198 innermost_block_tracker *tracker)
3199 {
3200 int pc = *pos;
3201 int i;
3202 struct expression *exp; /* Convenience: == *expp. */
3203 enum exp_opcode op = (*expp)->elts[pc].opcode;
3204 struct value **argvec; /* Vector of operand types (alloca'ed). */
3205 int nargs; /* Number of operands. */
3206 int oplen;
3207
3208 argvec = NULL;
3209 nargs = 0;
3210 exp = expp->get ();
3211
3212 /* Pass one: resolve operands, saving their types and updating *pos,
3213 if needed. */
3214 switch (op)
3215 {
3216 case OP_FUNCALL:
3217 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3218 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3219 *pos += 7;
3220 else
3221 {
3222 *pos += 3;
3223 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3224 }
3225 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3226 break;
3227
3228 case UNOP_ADDR:
3229 *pos += 1;
3230 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3231 break;
3232
3233 case UNOP_QUAL:
3234 *pos += 3;
3235 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3236 parse_completion, tracker);
3237 break;
3238
3239 case OP_ATR_MODULUS:
3240 case OP_ATR_SIZE:
3241 case OP_ATR_TAG:
3242 case OP_ATR_FIRST:
3243 case OP_ATR_LAST:
3244 case OP_ATR_LENGTH:
3245 case OP_ATR_POS:
3246 case OP_ATR_VAL:
3247 case OP_ATR_MIN:
3248 case OP_ATR_MAX:
3249 case TERNOP_IN_RANGE:
3250 case BINOP_IN_BOUNDS:
3251 case UNOP_IN_RANGE:
3252 case OP_AGGREGATE:
3253 case OP_OTHERS:
3254 case OP_CHOICES:
3255 case OP_POSITIONAL:
3256 case OP_DISCRETE_RANGE:
3257 case OP_NAME:
3258 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3259 *pos += oplen;
3260 break;
3261
3262 case BINOP_ASSIGN:
3263 {
3264 struct value *arg1;
3265
3266 *pos += 1;
3267 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3268 if (arg1 == NULL)
3269 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3270 else
3271 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3272 tracker);
3273 break;
3274 }
3275
3276 case UNOP_CAST:
3277 *pos += 3;
3278 nargs = 1;
3279 break;
3280
3281 case BINOP_ADD:
3282 case BINOP_SUB:
3283 case BINOP_MUL:
3284 case BINOP_DIV:
3285 case BINOP_REM:
3286 case BINOP_MOD:
3287 case BINOP_EXP:
3288 case BINOP_CONCAT:
3289 case BINOP_LOGICAL_AND:
3290 case BINOP_LOGICAL_OR:
3291 case BINOP_BITWISE_AND:
3292 case BINOP_BITWISE_IOR:
3293 case BINOP_BITWISE_XOR:
3294
3295 case BINOP_EQUAL:
3296 case BINOP_NOTEQUAL:
3297 case BINOP_LESS:
3298 case BINOP_GTR:
3299 case BINOP_LEQ:
3300 case BINOP_GEQ:
3301
3302 case BINOP_REPEAT:
3303 case BINOP_SUBSCRIPT:
3304 case BINOP_COMMA:
3305 *pos += 1;
3306 nargs = 2;
3307 break;
3308
3309 case UNOP_NEG:
3310 case UNOP_PLUS:
3311 case UNOP_LOGICAL_NOT:
3312 case UNOP_ABS:
3313 case UNOP_IND:
3314 *pos += 1;
3315 nargs = 1;
3316 break;
3317
3318 case OP_LONG:
3319 case OP_FLOAT:
3320 case OP_VAR_VALUE:
3321 case OP_VAR_MSYM_VALUE:
3322 *pos += 4;
3323 break;
3324
3325 case OP_TYPE:
3326 case OP_BOOL:
3327 case OP_LAST:
3328 case OP_INTERNALVAR:
3329 *pos += 3;
3330 break;
3331
3332 case UNOP_MEMVAL:
3333 *pos += 3;
3334 nargs = 1;
3335 break;
3336
3337 case OP_REGISTER:
3338 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3339 break;
3340
3341 case STRUCTOP_STRUCT:
3342 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3343 nargs = 1;
3344 break;
3345
3346 case TERNOP_SLICE:
3347 *pos += 1;
3348 nargs = 3;
3349 break;
3350
3351 case OP_STRING:
3352 break;
3353
3354 default:
3355 error (_("Unexpected operator during name resolution"));
3356 }
3357
3358 argvec = XALLOCAVEC (struct value *, nargs + 1);
3359 for (i = 0; i < nargs; i += 1)
3360 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3361 tracker);
3362 argvec[i] = NULL;
3363 exp = expp->get ();
3364
3365 /* Pass two: perform any resolution on principal operator. */
3366 switch (op)
3367 {
3368 default:
3369 break;
3370
3371 case OP_VAR_VALUE:
3372 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3373 {
3374 std::vector<struct block_symbol> candidates;
3375 int n_candidates;
3376
3377 n_candidates =
3378 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3379 (exp->elts[pc + 2].symbol),
3380 exp->elts[pc + 1].block, VAR_DOMAIN,
3381 &candidates);
3382
3383 if (n_candidates > 1)
3384 {
3385 /* Types tend to get re-introduced locally, so if there
3386 are any local symbols that are not types, first filter
3387 out all types. */
3388 int j;
3389 for (j = 0; j < n_candidates; j += 1)
3390 switch (SYMBOL_CLASS (candidates[j].symbol))
3391 {
3392 case LOC_REGISTER:
3393 case LOC_ARG:
3394 case LOC_REF_ARG:
3395 case LOC_REGPARM_ADDR:
3396 case LOC_LOCAL:
3397 case LOC_COMPUTED:
3398 goto FoundNonType;
3399 default:
3400 break;
3401 }
3402 FoundNonType:
3403 if (j < n_candidates)
3404 {
3405 j = 0;
3406 while (j < n_candidates)
3407 {
3408 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3409 {
3410 candidates[j] = candidates[n_candidates - 1];
3411 n_candidates -= 1;
3412 }
3413 else
3414 j += 1;
3415 }
3416 }
3417 }
3418
3419 if (n_candidates == 0)
3420 error (_("No definition found for %s"),
3421 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3422 else if (n_candidates == 1)
3423 i = 0;
3424 else if (deprocedure_p
3425 && !is_nonfunction (candidates.data (), n_candidates))
3426 {
3427 i = ada_resolve_function
3428 (candidates.data (), n_candidates, NULL, 0,
3429 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3430 context_type, parse_completion);
3431 if (i < 0)
3432 error (_("Could not find a match for %s"),
3433 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3434 }
3435 else
3436 {
3437 printf_filtered (_("Multiple matches for %s\n"),
3438 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3439 user_select_syms (candidates.data (), n_candidates, 1);
3440 i = 0;
3441 }
3442
3443 exp->elts[pc + 1].block = candidates[i].block;
3444 exp->elts[pc + 2].symbol = candidates[i].symbol;
3445 tracker->update (candidates[i]);
3446 }
3447
3448 if (deprocedure_p
3449 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3450 == TYPE_CODE_FUNC))
3451 {
3452 replace_operator_with_call (expp, pc, 0, 4,
3453 exp->elts[pc + 2].symbol,
3454 exp->elts[pc + 1].block);
3455 exp = expp->get ();
3456 }
3457 break;
3458
3459 case OP_FUNCALL:
3460 {
3461 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3462 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3463 {
3464 std::vector<struct block_symbol> candidates;
3465 int n_candidates;
3466
3467 n_candidates =
3468 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3469 (exp->elts[pc + 5].symbol),
3470 exp->elts[pc + 4].block, VAR_DOMAIN,
3471 &candidates);
3472
3473 if (n_candidates == 1)
3474 i = 0;
3475 else
3476 {
3477 i = ada_resolve_function
3478 (candidates.data (), n_candidates,
3479 argvec, nargs,
3480 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3481 context_type, parse_completion);
3482 if (i < 0)
3483 error (_("Could not find a match for %s"),
3484 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3485 }
3486
3487 exp->elts[pc + 4].block = candidates[i].block;
3488 exp->elts[pc + 5].symbol = candidates[i].symbol;
3489 tracker->update (candidates[i]);
3490 }
3491 }
3492 break;
3493 case BINOP_ADD:
3494 case BINOP_SUB:
3495 case BINOP_MUL:
3496 case BINOP_DIV:
3497 case BINOP_REM:
3498 case BINOP_MOD:
3499 case BINOP_CONCAT:
3500 case BINOP_BITWISE_AND:
3501 case BINOP_BITWISE_IOR:
3502 case BINOP_BITWISE_XOR:
3503 case BINOP_EQUAL:
3504 case BINOP_NOTEQUAL:
3505 case BINOP_LESS:
3506 case BINOP_GTR:
3507 case BINOP_LEQ:
3508 case BINOP_GEQ:
3509 case BINOP_EXP:
3510 case UNOP_NEG:
3511 case UNOP_PLUS:
3512 case UNOP_LOGICAL_NOT:
3513 case UNOP_ABS:
3514 if (possible_user_operator_p (op, argvec))
3515 {
3516 std::vector<struct block_symbol> candidates;
3517 int n_candidates;
3518
3519 n_candidates =
3520 ada_lookup_symbol_list (ada_decoded_op_name (op),
3521 NULL, VAR_DOMAIN,
3522 &candidates);
3523
3524 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3525 nargs, ada_decoded_op_name (op), NULL,
3526 parse_completion);
3527 if (i < 0)
3528 break;
3529
3530 replace_operator_with_call (expp, pc, nargs, 1,
3531 candidates[i].symbol,
3532 candidates[i].block);
3533 exp = expp->get ();
3534 }
3535 break;
3536
3537 case OP_TYPE:
3538 case OP_REGISTER:
3539 return NULL;
3540 }
3541
3542 *pos = pc;
3543 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3544 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3545 exp->elts[pc + 1].objfile,
3546 exp->elts[pc + 2].msymbol);
3547 else
3548 return evaluate_subexp_type (exp, pos);
3549 }
3550
3551 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3552 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3553 a non-pointer. */
3554 /* The term "match" here is rather loose. The match is heuristic and
3555 liberal. */
3556
3557 static int
3558 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3559 {
3560 ftype = ada_check_typedef (ftype);
3561 atype = ada_check_typedef (atype);
3562
3563 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3564 ftype = TYPE_TARGET_TYPE (ftype);
3565 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3566 atype = TYPE_TARGET_TYPE (atype);
3567
3568 switch (TYPE_CODE (ftype))
3569 {
3570 default:
3571 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3572 case TYPE_CODE_PTR:
3573 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3574 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3575 TYPE_TARGET_TYPE (atype), 0);
3576 else
3577 return (may_deref
3578 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3579 case TYPE_CODE_INT:
3580 case TYPE_CODE_ENUM:
3581 case TYPE_CODE_RANGE:
3582 switch (TYPE_CODE (atype))
3583 {
3584 case TYPE_CODE_INT:
3585 case TYPE_CODE_ENUM:
3586 case TYPE_CODE_RANGE:
3587 return 1;
3588 default:
3589 return 0;
3590 }
3591
3592 case TYPE_CODE_ARRAY:
3593 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3594 || ada_is_array_descriptor_type (atype));
3595
3596 case TYPE_CODE_STRUCT:
3597 if (ada_is_array_descriptor_type (ftype))
3598 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3599 || ada_is_array_descriptor_type (atype));
3600 else
3601 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3602 && !ada_is_array_descriptor_type (atype));
3603
3604 case TYPE_CODE_UNION:
3605 case TYPE_CODE_FLT:
3606 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3607 }
3608 }
3609
3610 /* Return non-zero if the formals of FUNC "sufficiently match" the
3611 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3612 may also be an enumeral, in which case it is treated as a 0-
3613 argument function. */
3614
3615 static int
3616 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3617 {
3618 int i;
3619 struct type *func_type = SYMBOL_TYPE (func);
3620
3621 if (SYMBOL_CLASS (func) == LOC_CONST
3622 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3623 return (n_actuals == 0);
3624 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3625 return 0;
3626
3627 if (TYPE_NFIELDS (func_type) != n_actuals)
3628 return 0;
3629
3630 for (i = 0; i < n_actuals; i += 1)
3631 {
3632 if (actuals[i] == NULL)
3633 return 0;
3634 else
3635 {
3636 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3637 i));
3638 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3639
3640 if (!ada_type_match (ftype, atype, 1))
3641 return 0;
3642 }
3643 }
3644 return 1;
3645 }
3646
3647 /* False iff function type FUNC_TYPE definitely does not produce a value
3648 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3649 FUNC_TYPE is not a valid function type with a non-null return type
3650 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3651
3652 static int
3653 return_match (struct type *func_type, struct type *context_type)
3654 {
3655 struct type *return_type;
3656
3657 if (func_type == NULL)
3658 return 1;
3659
3660 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3661 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3662 else
3663 return_type = get_base_type (func_type);
3664 if (return_type == NULL)
3665 return 1;
3666
3667 context_type = get_base_type (context_type);
3668
3669 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3670 return context_type == NULL || return_type == context_type;
3671 else if (context_type == NULL)
3672 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3673 else
3674 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3675 }
3676
3677
3678 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3679 function (if any) that matches the types of the NARGS arguments in
3680 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3681 that returns that type, then eliminate matches that don't. If
3682 CONTEXT_TYPE is void and there is at least one match that does not
3683 return void, eliminate all matches that do.
3684
3685 Asks the user if there is more than one match remaining. Returns -1
3686 if there is no such symbol or none is selected. NAME is used
3687 solely for messages. May re-arrange and modify SYMS in
3688 the process; the index returned is for the modified vector. */
3689
3690 static int
3691 ada_resolve_function (struct block_symbol syms[],
3692 int nsyms, struct value **args, int nargs,
3693 const char *name, struct type *context_type,
3694 int parse_completion)
3695 {
3696 int fallback;
3697 int k;
3698 int m; /* Number of hits */
3699
3700 m = 0;
3701 /* In the first pass of the loop, we only accept functions matching
3702 context_type. If none are found, we add a second pass of the loop
3703 where every function is accepted. */
3704 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3705 {
3706 for (k = 0; k < nsyms; k += 1)
3707 {
3708 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3709
3710 if (ada_args_match (syms[k].symbol, args, nargs)
3711 && (fallback || return_match (type, context_type)))
3712 {
3713 syms[m] = syms[k];
3714 m += 1;
3715 }
3716 }
3717 }
3718
3719 /* If we got multiple matches, ask the user which one to use. Don't do this
3720 interactive thing during completion, though, as the purpose of the
3721 completion is providing a list of all possible matches. Prompting the
3722 user to filter it down would be completely unexpected in this case. */
3723 if (m == 0)
3724 return -1;
3725 else if (m > 1 && !parse_completion)
3726 {
3727 printf_filtered (_("Multiple matches for %s\n"), name);
3728 user_select_syms (syms, m, 1);
3729 return 0;
3730 }
3731 return 0;
3732 }
3733
3734 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3735 in a listing of choices during disambiguation (see sort_choices, below).
3736 The idea is that overloadings of a subprogram name from the
3737 same package should sort in their source order. We settle for ordering
3738 such symbols by their trailing number (__N or $N). */
3739
3740 static int
3741 encoded_ordered_before (const char *N0, const char *N1)
3742 {
3743 if (N1 == NULL)
3744 return 0;
3745 else if (N0 == NULL)
3746 return 1;
3747 else
3748 {
3749 int k0, k1;
3750
3751 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3752 ;
3753 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3754 ;
3755 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3756 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3757 {
3758 int n0, n1;
3759
3760 n0 = k0;
3761 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3762 n0 -= 1;
3763 n1 = k1;
3764 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3765 n1 -= 1;
3766 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3767 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3768 }
3769 return (strcmp (N0, N1) < 0);
3770 }
3771 }
3772
3773 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3774 encoded names. */
3775
3776 static void
3777 sort_choices (struct block_symbol syms[], int nsyms)
3778 {
3779 int i;
3780
3781 for (i = 1; i < nsyms; i += 1)
3782 {
3783 struct block_symbol sym = syms[i];
3784 int j;
3785
3786 for (j = i - 1; j >= 0; j -= 1)
3787 {
3788 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3789 SYMBOL_LINKAGE_NAME (sym.symbol)))
3790 break;
3791 syms[j + 1] = syms[j];
3792 }
3793 syms[j + 1] = sym;
3794 }
3795 }
3796
3797 /* Whether GDB should display formals and return types for functions in the
3798 overloads selection menu. */
3799 static int print_signatures = 1;
3800
3801 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3802 all but functions, the signature is just the name of the symbol. For
3803 functions, this is the name of the function, the list of types for formals
3804 and the return type (if any). */
3805
3806 static void
3807 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3808 const struct type_print_options *flags)
3809 {
3810 struct type *type = SYMBOL_TYPE (sym);
3811
3812 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3813 if (!print_signatures
3814 || type == NULL
3815 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3816 return;
3817
3818 if (TYPE_NFIELDS (type) > 0)
3819 {
3820 int i;
3821
3822 fprintf_filtered (stream, " (");
3823 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3824 {
3825 if (i > 0)
3826 fprintf_filtered (stream, "; ");
3827 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3828 flags);
3829 }
3830 fprintf_filtered (stream, ")");
3831 }
3832 if (TYPE_TARGET_TYPE (type) != NULL
3833 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3834 {
3835 fprintf_filtered (stream, " return ");
3836 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3837 }
3838 }
3839
3840 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3841 by asking the user (if necessary), returning the number selected,
3842 and setting the first elements of SYMS items. Error if no symbols
3843 selected. */
3844
3845 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3846 to be re-integrated one of these days. */
3847
3848 int
3849 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3850 {
3851 int i;
3852 int *chosen = XALLOCAVEC (int , nsyms);
3853 int n_chosen;
3854 int first_choice = (max_results == 1) ? 1 : 2;
3855 const char *select_mode = multiple_symbols_select_mode ();
3856
3857 if (max_results < 1)
3858 error (_("Request to select 0 symbols!"));
3859 if (nsyms <= 1)
3860 return nsyms;
3861
3862 if (select_mode == multiple_symbols_cancel)
3863 error (_("\
3864 canceled because the command is ambiguous\n\
3865 See set/show multiple-symbol."));
3866
3867 /* If select_mode is "all", then return all possible symbols.
3868 Only do that if more than one symbol can be selected, of course.
3869 Otherwise, display the menu as usual. */
3870 if (select_mode == multiple_symbols_all && max_results > 1)
3871 return nsyms;
3872
3873 printf_filtered (_("[0] cancel\n"));
3874 if (max_results > 1)
3875 printf_filtered (_("[1] all\n"));
3876
3877 sort_choices (syms, nsyms);
3878
3879 for (i = 0; i < nsyms; i += 1)
3880 {
3881 if (syms[i].symbol == NULL)
3882 continue;
3883
3884 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3885 {
3886 struct symtab_and_line sal =
3887 find_function_start_sal (syms[i].symbol, 1);
3888
3889 printf_filtered ("[%d] ", i + first_choice);
3890 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3891 &type_print_raw_options);
3892 if (sal.symtab == NULL)
3893 printf_filtered (_(" at <no source file available>:%d\n"),
3894 sal.line);
3895 else
3896 printf_filtered (_(" at %s:%d\n"),
3897 symtab_to_filename_for_display (sal.symtab),
3898 sal.line);
3899 continue;
3900 }
3901 else
3902 {
3903 int is_enumeral =
3904 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3905 && SYMBOL_TYPE (syms[i].symbol) != NULL
3906 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3907 struct symtab *symtab = NULL;
3908
3909 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3910 symtab = symbol_symtab (syms[i].symbol);
3911
3912 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3913 {
3914 printf_filtered ("[%d] ", i + first_choice);
3915 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3916 &type_print_raw_options);
3917 printf_filtered (_(" at %s:%d\n"),
3918 symtab_to_filename_for_display (symtab),
3919 SYMBOL_LINE (syms[i].symbol));
3920 }
3921 else if (is_enumeral
3922 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3923 {
3924 printf_filtered (("[%d] "), i + first_choice);
3925 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3926 gdb_stdout, -1, 0, &type_print_raw_options);
3927 printf_filtered (_("'(%s) (enumeral)\n"),
3928 SYMBOL_PRINT_NAME (syms[i].symbol));
3929 }
3930 else
3931 {
3932 printf_filtered ("[%d] ", i + first_choice);
3933 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3934 &type_print_raw_options);
3935
3936 if (symtab != NULL)
3937 printf_filtered (is_enumeral
3938 ? _(" in %s (enumeral)\n")
3939 : _(" at %s:?\n"),
3940 symtab_to_filename_for_display (symtab));
3941 else
3942 printf_filtered (is_enumeral
3943 ? _(" (enumeral)\n")
3944 : _(" at ?\n"));
3945 }
3946 }
3947 }
3948
3949 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3950 "overload-choice");
3951
3952 for (i = 0; i < n_chosen; i += 1)
3953 syms[i] = syms[chosen[i]];
3954
3955 return n_chosen;
3956 }
3957
3958 /* Read and validate a set of numeric choices from the user in the
3959 range 0 .. N_CHOICES-1. Place the results in increasing
3960 order in CHOICES[0 .. N-1], and return N.
3961
3962 The user types choices as a sequence of numbers on one line
3963 separated by blanks, encoding them as follows:
3964
3965 + A choice of 0 means to cancel the selection, throwing an error.
3966 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3967 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3968
3969 The user is not allowed to choose more than MAX_RESULTS values.
3970
3971 ANNOTATION_SUFFIX, if present, is used to annotate the input
3972 prompts (for use with the -f switch). */
3973
3974 int
3975 get_selections (int *choices, int n_choices, int max_results,
3976 int is_all_choice, const char *annotation_suffix)
3977 {
3978 char *args;
3979 const char *prompt;
3980 int n_chosen;
3981 int first_choice = is_all_choice ? 2 : 1;
3982
3983 prompt = getenv ("PS2");
3984 if (prompt == NULL)
3985 prompt = "> ";
3986
3987 args = command_line_input (prompt, annotation_suffix);
3988
3989 if (args == NULL)
3990 error_no_arg (_("one or more choice numbers"));
3991
3992 n_chosen = 0;
3993
3994 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3995 order, as given in args. Choices are validated. */
3996 while (1)
3997 {
3998 char *args2;
3999 int choice, j;
4000
4001 args = skip_spaces (args);
4002 if (*args == '\0' && n_chosen == 0)
4003 error_no_arg (_("one or more choice numbers"));
4004 else if (*args == '\0')
4005 break;
4006
4007 choice = strtol (args, &args2, 10);
4008 if (args == args2 || choice < 0
4009 || choice > n_choices + first_choice - 1)
4010 error (_("Argument must be choice number"));
4011 args = args2;
4012
4013 if (choice == 0)
4014 error (_("cancelled"));
4015
4016 if (choice < first_choice)
4017 {
4018 n_chosen = n_choices;
4019 for (j = 0; j < n_choices; j += 1)
4020 choices[j] = j;
4021 break;
4022 }
4023 choice -= first_choice;
4024
4025 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4026 {
4027 }
4028
4029 if (j < 0 || choice != choices[j])
4030 {
4031 int k;
4032
4033 for (k = n_chosen - 1; k > j; k -= 1)
4034 choices[k + 1] = choices[k];
4035 choices[j + 1] = choice;
4036 n_chosen += 1;
4037 }
4038 }
4039
4040 if (n_chosen > max_results)
4041 error (_("Select no more than %d of the above"), max_results);
4042
4043 return n_chosen;
4044 }
4045
4046 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4047 on the function identified by SYM and BLOCK, and taking NARGS
4048 arguments. Update *EXPP as needed to hold more space. */
4049
4050 static void
4051 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4052 int oplen, struct symbol *sym,
4053 const struct block *block)
4054 {
4055 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4056 symbol, -oplen for operator being replaced). */
4057 struct expression *newexp = (struct expression *)
4058 xzalloc (sizeof (struct expression)
4059 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4060 struct expression *exp = expp->get ();
4061
4062 newexp->nelts = exp->nelts + 7 - oplen;
4063 newexp->language_defn = exp->language_defn;
4064 newexp->gdbarch = exp->gdbarch;
4065 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4066 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4067 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4068
4069 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4070 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4071
4072 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4073 newexp->elts[pc + 4].block = block;
4074 newexp->elts[pc + 5].symbol = sym;
4075
4076 expp->reset (newexp);
4077 }
4078
4079 /* Type-class predicates */
4080
4081 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4082 or FLOAT). */
4083
4084 static int
4085 numeric_type_p (struct type *type)
4086 {
4087 if (type == NULL)
4088 return 0;
4089 else
4090 {
4091 switch (TYPE_CODE (type))
4092 {
4093 case TYPE_CODE_INT:
4094 case TYPE_CODE_FLT:
4095 return 1;
4096 case TYPE_CODE_RANGE:
4097 return (type == TYPE_TARGET_TYPE (type)
4098 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4099 default:
4100 return 0;
4101 }
4102 }
4103 }
4104
4105 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4106
4107 static int
4108 integer_type_p (struct type *type)
4109 {
4110 if (type == NULL)
4111 return 0;
4112 else
4113 {
4114 switch (TYPE_CODE (type))
4115 {
4116 case TYPE_CODE_INT:
4117 return 1;
4118 case TYPE_CODE_RANGE:
4119 return (type == TYPE_TARGET_TYPE (type)
4120 || integer_type_p (TYPE_TARGET_TYPE (type)));
4121 default:
4122 return 0;
4123 }
4124 }
4125 }
4126
4127 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4128
4129 static int
4130 scalar_type_p (struct type *type)
4131 {
4132 if (type == NULL)
4133 return 0;
4134 else
4135 {
4136 switch (TYPE_CODE (type))
4137 {
4138 case TYPE_CODE_INT:
4139 case TYPE_CODE_RANGE:
4140 case TYPE_CODE_ENUM:
4141 case TYPE_CODE_FLT:
4142 return 1;
4143 default:
4144 return 0;
4145 }
4146 }
4147 }
4148
4149 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4150
4151 static int
4152 discrete_type_p (struct type *type)
4153 {
4154 if (type == NULL)
4155 return 0;
4156 else
4157 {
4158 switch (TYPE_CODE (type))
4159 {
4160 case TYPE_CODE_INT:
4161 case TYPE_CODE_RANGE:
4162 case TYPE_CODE_ENUM:
4163 case TYPE_CODE_BOOL:
4164 return 1;
4165 default:
4166 return 0;
4167 }
4168 }
4169 }
4170
4171 /* Returns non-zero if OP with operands in the vector ARGS could be
4172 a user-defined function. Errs on the side of pre-defined operators
4173 (i.e., result 0). */
4174
4175 static int
4176 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4177 {
4178 struct type *type0 =
4179 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4180 struct type *type1 =
4181 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4182
4183 if (type0 == NULL)
4184 return 0;
4185
4186 switch (op)
4187 {
4188 default:
4189 return 0;
4190
4191 case BINOP_ADD:
4192 case BINOP_SUB:
4193 case BINOP_MUL:
4194 case BINOP_DIV:
4195 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4196
4197 case BINOP_REM:
4198 case BINOP_MOD:
4199 case BINOP_BITWISE_AND:
4200 case BINOP_BITWISE_IOR:
4201 case BINOP_BITWISE_XOR:
4202 return (!(integer_type_p (type0) && integer_type_p (type1)));
4203
4204 case BINOP_EQUAL:
4205 case BINOP_NOTEQUAL:
4206 case BINOP_LESS:
4207 case BINOP_GTR:
4208 case BINOP_LEQ:
4209 case BINOP_GEQ:
4210 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4211
4212 case BINOP_CONCAT:
4213 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4214
4215 case BINOP_EXP:
4216 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4217
4218 case UNOP_NEG:
4219 case UNOP_PLUS:
4220 case UNOP_LOGICAL_NOT:
4221 case UNOP_ABS:
4222 return (!numeric_type_p (type0));
4223
4224 }
4225 }
4226 \f
4227 /* Renaming */
4228
4229 /* NOTES:
4230
4231 1. In the following, we assume that a renaming type's name may
4232 have an ___XD suffix. It would be nice if this went away at some
4233 point.
4234 2. We handle both the (old) purely type-based representation of
4235 renamings and the (new) variable-based encoding. At some point,
4236 it is devoutly to be hoped that the former goes away
4237 (FIXME: hilfinger-2007-07-09).
4238 3. Subprogram renamings are not implemented, although the XRS
4239 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4240
4241 /* If SYM encodes a renaming,
4242
4243 <renaming> renames <renamed entity>,
4244
4245 sets *LEN to the length of the renamed entity's name,
4246 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4247 the string describing the subcomponent selected from the renamed
4248 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4249 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4250 are undefined). Otherwise, returns a value indicating the category
4251 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4252 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4253 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4254 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4255 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4256 may be NULL, in which case they are not assigned.
4257
4258 [Currently, however, GCC does not generate subprogram renamings.] */
4259
4260 enum ada_renaming_category
4261 ada_parse_renaming (struct symbol *sym,
4262 const char **renamed_entity, int *len,
4263 const char **renaming_expr)
4264 {
4265 enum ada_renaming_category kind;
4266 const char *info;
4267 const char *suffix;
4268
4269 if (sym == NULL)
4270 return ADA_NOT_RENAMING;
4271 switch (SYMBOL_CLASS (sym))
4272 {
4273 default:
4274 return ADA_NOT_RENAMING;
4275 case LOC_LOCAL:
4276 case LOC_STATIC:
4277 case LOC_COMPUTED:
4278 case LOC_OPTIMIZED_OUT:
4279 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4280 if (info == NULL)
4281 return ADA_NOT_RENAMING;
4282 switch (info[5])
4283 {
4284 case '_':
4285 kind = ADA_OBJECT_RENAMING;
4286 info += 6;
4287 break;
4288 case 'E':
4289 kind = ADA_EXCEPTION_RENAMING;
4290 info += 7;
4291 break;
4292 case 'P':
4293 kind = ADA_PACKAGE_RENAMING;
4294 info += 7;
4295 break;
4296 case 'S':
4297 kind = ADA_SUBPROGRAM_RENAMING;
4298 info += 7;
4299 break;
4300 default:
4301 return ADA_NOT_RENAMING;
4302 }
4303 }
4304
4305 if (renamed_entity != NULL)
4306 *renamed_entity = info;
4307 suffix = strstr (info, "___XE");
4308 if (suffix == NULL || suffix == info)
4309 return ADA_NOT_RENAMING;
4310 if (len != NULL)
4311 *len = strlen (info) - strlen (suffix);
4312 suffix += 5;
4313 if (renaming_expr != NULL)
4314 *renaming_expr = suffix;
4315 return kind;
4316 }
4317
4318 /* Compute the value of the given RENAMING_SYM, which is expected to
4319 be a symbol encoding a renaming expression. BLOCK is the block
4320 used to evaluate the renaming. */
4321
4322 static struct value *
4323 ada_read_renaming_var_value (struct symbol *renaming_sym,
4324 const struct block *block)
4325 {
4326 const char *sym_name;
4327
4328 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4329 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4330 return evaluate_expression (expr.get ());
4331 }
4332 \f
4333
4334 /* Evaluation: Function Calls */
4335
4336 /* Return an lvalue containing the value VAL. This is the identity on
4337 lvalues, and otherwise has the side-effect of allocating memory
4338 in the inferior where a copy of the value contents is copied. */
4339
4340 static struct value *
4341 ensure_lval (struct value *val)
4342 {
4343 if (VALUE_LVAL (val) == not_lval
4344 || VALUE_LVAL (val) == lval_internalvar)
4345 {
4346 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4347 const CORE_ADDR addr =
4348 value_as_long (value_allocate_space_in_inferior (len));
4349
4350 VALUE_LVAL (val) = lval_memory;
4351 set_value_address (val, addr);
4352 write_memory (addr, value_contents (val), len);
4353 }
4354
4355 return val;
4356 }
4357
4358 /* Return the value ACTUAL, converted to be an appropriate value for a
4359 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4360 allocating any necessary descriptors (fat pointers), or copies of
4361 values not residing in memory, updating it as needed. */
4362
4363 struct value *
4364 ada_convert_actual (struct value *actual, struct type *formal_type0)
4365 {
4366 struct type *actual_type = ada_check_typedef (value_type (actual));
4367 struct type *formal_type = ada_check_typedef (formal_type0);
4368 struct type *formal_target =
4369 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4370 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4371 struct type *actual_target =
4372 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4373 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4374
4375 if (ada_is_array_descriptor_type (formal_target)
4376 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4377 return make_array_descriptor (formal_type, actual);
4378 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4379 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4380 {
4381 struct value *result;
4382
4383 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4384 && ada_is_array_descriptor_type (actual_target))
4385 result = desc_data (actual);
4386 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4387 {
4388 if (VALUE_LVAL (actual) != lval_memory)
4389 {
4390 struct value *val;
4391
4392 actual_type = ada_check_typedef (value_type (actual));
4393 val = allocate_value (actual_type);
4394 memcpy ((char *) value_contents_raw (val),
4395 (char *) value_contents (actual),
4396 TYPE_LENGTH (actual_type));
4397 actual = ensure_lval (val);
4398 }
4399 result = value_addr (actual);
4400 }
4401 else
4402 return actual;
4403 return value_cast_pointers (formal_type, result, 0);
4404 }
4405 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4406 return ada_value_ind (actual);
4407 else if (ada_is_aligner_type (formal_type))
4408 {
4409 /* We need to turn this parameter into an aligner type
4410 as well. */
4411 struct value *aligner = allocate_value (formal_type);
4412 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4413
4414 value_assign_to_component (aligner, component, actual);
4415 return aligner;
4416 }
4417
4418 return actual;
4419 }
4420
4421 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4422 type TYPE. This is usually an inefficient no-op except on some targets
4423 (such as AVR) where the representation of a pointer and an address
4424 differs. */
4425
4426 static CORE_ADDR
4427 value_pointer (struct value *value, struct type *type)
4428 {
4429 struct gdbarch *gdbarch = get_type_arch (type);
4430 unsigned len = TYPE_LENGTH (type);
4431 gdb_byte *buf = (gdb_byte *) alloca (len);
4432 CORE_ADDR addr;
4433
4434 addr = value_address (value);
4435 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4436 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4437 return addr;
4438 }
4439
4440
4441 /* Push a descriptor of type TYPE for array value ARR on the stack at
4442 *SP, updating *SP to reflect the new descriptor. Return either
4443 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4444 to-descriptor type rather than a descriptor type), a struct value *
4445 representing a pointer to this descriptor. */
4446
4447 static struct value *
4448 make_array_descriptor (struct type *type, struct value *arr)
4449 {
4450 struct type *bounds_type = desc_bounds_type (type);
4451 struct type *desc_type = desc_base_type (type);
4452 struct value *descriptor = allocate_value (desc_type);
4453 struct value *bounds = allocate_value (bounds_type);
4454 int i;
4455
4456 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4457 i > 0; i -= 1)
4458 {
4459 modify_field (value_type (bounds), value_contents_writeable (bounds),
4460 ada_array_bound (arr, i, 0),
4461 desc_bound_bitpos (bounds_type, i, 0),
4462 desc_bound_bitsize (bounds_type, i, 0));
4463 modify_field (value_type (bounds), value_contents_writeable (bounds),
4464 ada_array_bound (arr, i, 1),
4465 desc_bound_bitpos (bounds_type, i, 1),
4466 desc_bound_bitsize (bounds_type, i, 1));
4467 }
4468
4469 bounds = ensure_lval (bounds);
4470
4471 modify_field (value_type (descriptor),
4472 value_contents_writeable (descriptor),
4473 value_pointer (ensure_lval (arr),
4474 TYPE_FIELD_TYPE (desc_type, 0)),
4475 fat_pntr_data_bitpos (desc_type),
4476 fat_pntr_data_bitsize (desc_type));
4477
4478 modify_field (value_type (descriptor),
4479 value_contents_writeable (descriptor),
4480 value_pointer (bounds,
4481 TYPE_FIELD_TYPE (desc_type, 1)),
4482 fat_pntr_bounds_bitpos (desc_type),
4483 fat_pntr_bounds_bitsize (desc_type));
4484
4485 descriptor = ensure_lval (descriptor);
4486
4487 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4488 return value_addr (descriptor);
4489 else
4490 return descriptor;
4491 }
4492 \f
4493 /* Symbol Cache Module */
4494
4495 /* Performance measurements made as of 2010-01-15 indicate that
4496 this cache does bring some noticeable improvements. Depending
4497 on the type of entity being printed, the cache can make it as much
4498 as an order of magnitude faster than without it.
4499
4500 The descriptive type DWARF extension has significantly reduced
4501 the need for this cache, at least when DWARF is being used. However,
4502 even in this case, some expensive name-based symbol searches are still
4503 sometimes necessary - to find an XVZ variable, mostly. */
4504
4505 /* Initialize the contents of SYM_CACHE. */
4506
4507 static void
4508 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4509 {
4510 obstack_init (&sym_cache->cache_space);
4511 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4512 }
4513
4514 /* Free the memory used by SYM_CACHE. */
4515
4516 static void
4517 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4518 {
4519 obstack_free (&sym_cache->cache_space, NULL);
4520 xfree (sym_cache);
4521 }
4522
4523 /* Return the symbol cache associated to the given program space PSPACE.
4524 If not allocated for this PSPACE yet, allocate and initialize one. */
4525
4526 static struct ada_symbol_cache *
4527 ada_get_symbol_cache (struct program_space *pspace)
4528 {
4529 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4530
4531 if (pspace_data->sym_cache == NULL)
4532 {
4533 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4534 ada_init_symbol_cache (pspace_data->sym_cache);
4535 }
4536
4537 return pspace_data->sym_cache;
4538 }
4539
4540 /* Clear all entries from the symbol cache. */
4541
4542 static void
4543 ada_clear_symbol_cache (void)
4544 {
4545 struct ada_symbol_cache *sym_cache
4546 = ada_get_symbol_cache (current_program_space);
4547
4548 obstack_free (&sym_cache->cache_space, NULL);
4549 ada_init_symbol_cache (sym_cache);
4550 }
4551
4552 /* Search our cache for an entry matching NAME and DOMAIN.
4553 Return it if found, or NULL otherwise. */
4554
4555 static struct cache_entry **
4556 find_entry (const char *name, domain_enum domain)
4557 {
4558 struct ada_symbol_cache *sym_cache
4559 = ada_get_symbol_cache (current_program_space);
4560 int h = msymbol_hash (name) % HASH_SIZE;
4561 struct cache_entry **e;
4562
4563 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4564 {
4565 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4566 return e;
4567 }
4568 return NULL;
4569 }
4570
4571 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4572 Return 1 if found, 0 otherwise.
4573
4574 If an entry was found and SYM is not NULL, set *SYM to the entry's
4575 SYM. Same principle for BLOCK if not NULL. */
4576
4577 static int
4578 lookup_cached_symbol (const char *name, domain_enum domain,
4579 struct symbol **sym, const struct block **block)
4580 {
4581 struct cache_entry **e = find_entry (name, domain);
4582
4583 if (e == NULL)
4584 return 0;
4585 if (sym != NULL)
4586 *sym = (*e)->sym;
4587 if (block != NULL)
4588 *block = (*e)->block;
4589 return 1;
4590 }
4591
4592 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4593 in domain DOMAIN, save this result in our symbol cache. */
4594
4595 static void
4596 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4597 const struct block *block)
4598 {
4599 struct ada_symbol_cache *sym_cache
4600 = ada_get_symbol_cache (current_program_space);
4601 int h;
4602 char *copy;
4603 struct cache_entry *e;
4604
4605 /* Symbols for builtin types don't have a block.
4606 For now don't cache such symbols. */
4607 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4608 return;
4609
4610 /* If the symbol is a local symbol, then do not cache it, as a search
4611 for that symbol depends on the context. To determine whether
4612 the symbol is local or not, we check the block where we found it
4613 against the global and static blocks of its associated symtab. */
4614 if (sym
4615 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4616 GLOBAL_BLOCK) != block
4617 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4618 STATIC_BLOCK) != block)
4619 return;
4620
4621 h = msymbol_hash (name) % HASH_SIZE;
4622 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4623 e->next = sym_cache->root[h];
4624 sym_cache->root[h] = e;
4625 e->name = copy
4626 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4627 strcpy (copy, name);
4628 e->sym = sym;
4629 e->domain = domain;
4630 e->block = block;
4631 }
4632 \f
4633 /* Symbol Lookup */
4634
4635 /* Return the symbol name match type that should be used used when
4636 searching for all symbols matching LOOKUP_NAME.
4637
4638 LOOKUP_NAME is expected to be a symbol name after transformation
4639 for Ada lookups. */
4640
4641 static symbol_name_match_type
4642 name_match_type_from_name (const char *lookup_name)
4643 {
4644 return (strstr (lookup_name, "__") == NULL
4645 ? symbol_name_match_type::WILD
4646 : symbol_name_match_type::FULL);
4647 }
4648
4649 /* Return the result of a standard (literal, C-like) lookup of NAME in
4650 given DOMAIN, visible from lexical block BLOCK. */
4651
4652 static struct symbol *
4653 standard_lookup (const char *name, const struct block *block,
4654 domain_enum domain)
4655 {
4656 /* Initialize it just to avoid a GCC false warning. */
4657 struct block_symbol sym = {};
4658
4659 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4660 return sym.symbol;
4661 ada_lookup_encoded_symbol (name, block, domain, &sym);
4662 cache_symbol (name, domain, sym.symbol, sym.block);
4663 return sym.symbol;
4664 }
4665
4666
4667 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4668 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4669 since they contend in overloading in the same way. */
4670 static int
4671 is_nonfunction (struct block_symbol syms[], int n)
4672 {
4673 int i;
4674
4675 for (i = 0; i < n; i += 1)
4676 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4677 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4678 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4679 return 1;
4680
4681 return 0;
4682 }
4683
4684 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4685 struct types. Otherwise, they may not. */
4686
4687 static int
4688 equiv_types (struct type *type0, struct type *type1)
4689 {
4690 if (type0 == type1)
4691 return 1;
4692 if (type0 == NULL || type1 == NULL
4693 || TYPE_CODE (type0) != TYPE_CODE (type1))
4694 return 0;
4695 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4696 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4697 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4698 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4699 return 1;
4700
4701 return 0;
4702 }
4703
4704 /* True iff SYM0 represents the same entity as SYM1, or one that is
4705 no more defined than that of SYM1. */
4706
4707 static int
4708 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4709 {
4710 if (sym0 == sym1)
4711 return 1;
4712 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4713 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4714 return 0;
4715
4716 switch (SYMBOL_CLASS (sym0))
4717 {
4718 case LOC_UNDEF:
4719 return 1;
4720 case LOC_TYPEDEF:
4721 {
4722 struct type *type0 = SYMBOL_TYPE (sym0);
4723 struct type *type1 = SYMBOL_TYPE (sym1);
4724 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4725 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4726 int len0 = strlen (name0);
4727
4728 return
4729 TYPE_CODE (type0) == TYPE_CODE (type1)
4730 && (equiv_types (type0, type1)
4731 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4732 && startswith (name1 + len0, "___XV")));
4733 }
4734 case LOC_CONST:
4735 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4736 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4737 default:
4738 return 0;
4739 }
4740 }
4741
4742 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4743 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4744
4745 static void
4746 add_defn_to_vec (struct obstack *obstackp,
4747 struct symbol *sym,
4748 const struct block *block)
4749 {
4750 int i;
4751 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4752
4753 /* Do not try to complete stub types, as the debugger is probably
4754 already scanning all symbols matching a certain name at the
4755 time when this function is called. Trying to replace the stub
4756 type by its associated full type will cause us to restart a scan
4757 which may lead to an infinite recursion. Instead, the client
4758 collecting the matching symbols will end up collecting several
4759 matches, with at least one of them complete. It can then filter
4760 out the stub ones if needed. */
4761
4762 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4763 {
4764 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4765 return;
4766 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4767 {
4768 prevDefns[i].symbol = sym;
4769 prevDefns[i].block = block;
4770 return;
4771 }
4772 }
4773
4774 {
4775 struct block_symbol info;
4776
4777 info.symbol = sym;
4778 info.block = block;
4779 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4780 }
4781 }
4782
4783 /* Number of block_symbol structures currently collected in current vector in
4784 OBSTACKP. */
4785
4786 static int
4787 num_defns_collected (struct obstack *obstackp)
4788 {
4789 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4790 }
4791
4792 /* Vector of block_symbol structures currently collected in current vector in
4793 OBSTACKP. If FINISH, close off the vector and return its final address. */
4794
4795 static struct block_symbol *
4796 defns_collected (struct obstack *obstackp, int finish)
4797 {
4798 if (finish)
4799 return (struct block_symbol *) obstack_finish (obstackp);
4800 else
4801 return (struct block_symbol *) obstack_base (obstackp);
4802 }
4803
4804 /* Return a bound minimal symbol matching NAME according to Ada
4805 decoding rules. Returns an invalid symbol if there is no such
4806 minimal symbol. Names prefixed with "standard__" are handled
4807 specially: "standard__" is first stripped off, and only static and
4808 global symbols are searched. */
4809
4810 struct bound_minimal_symbol
4811 ada_lookup_simple_minsym (const char *name)
4812 {
4813 struct bound_minimal_symbol result;
4814
4815 memset (&result, 0, sizeof (result));
4816
4817 symbol_name_match_type match_type = name_match_type_from_name (name);
4818 lookup_name_info lookup_name (name, match_type);
4819
4820 symbol_name_matcher_ftype *match_name
4821 = ada_get_symbol_name_matcher (lookup_name);
4822
4823 for (objfile *objfile : current_program_space->objfiles ())
4824 {
4825 for (minimal_symbol *msymbol : objfile->msymbols ())
4826 {
4827 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4828 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4829 {
4830 result.minsym = msymbol;
4831 result.objfile = objfile;
4832 break;
4833 }
4834 }
4835 }
4836
4837 return result;
4838 }
4839
4840 /* Return all the bound minimal symbols matching NAME according to Ada
4841 decoding rules. Returns an empty vector if there is no such
4842 minimal symbol. Names prefixed with "standard__" are handled
4843 specially: "standard__" is first stripped off, and only static and
4844 global symbols are searched. */
4845
4846 static std::vector<struct bound_minimal_symbol>
4847 ada_lookup_simple_minsyms (const char *name)
4848 {
4849 std::vector<struct bound_minimal_symbol> result;
4850
4851 symbol_name_match_type match_type = name_match_type_from_name (name);
4852 lookup_name_info lookup_name (name, match_type);
4853
4854 symbol_name_matcher_ftype *match_name
4855 = ada_get_symbol_name_matcher (lookup_name);
4856
4857 for (objfile *objfile : current_program_space->objfiles ())
4858 {
4859 for (minimal_symbol *msymbol : objfile->msymbols ())
4860 {
4861 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4862 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4863 result.push_back ({msymbol, objfile});
4864 }
4865 }
4866
4867 return result;
4868 }
4869
4870 /* For all subprograms that statically enclose the subprogram of the
4871 selected frame, add symbols matching identifier NAME in DOMAIN
4872 and their blocks to the list of data in OBSTACKP, as for
4873 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4874 with a wildcard prefix. */
4875
4876 static void
4877 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4878 const lookup_name_info &lookup_name,
4879 domain_enum domain)
4880 {
4881 }
4882
4883 /* True if TYPE is definitely an artificial type supplied to a symbol
4884 for which no debugging information was given in the symbol file. */
4885
4886 static int
4887 is_nondebugging_type (struct type *type)
4888 {
4889 const char *name = ada_type_name (type);
4890
4891 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4892 }
4893
4894 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4895 that are deemed "identical" for practical purposes.
4896
4897 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4898 types and that their number of enumerals is identical (in other
4899 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4900
4901 static int
4902 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4903 {
4904 int i;
4905
4906 /* The heuristic we use here is fairly conservative. We consider
4907 that 2 enumerate types are identical if they have the same
4908 number of enumerals and that all enumerals have the same
4909 underlying value and name. */
4910
4911 /* All enums in the type should have an identical underlying value. */
4912 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4913 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4914 return 0;
4915
4916 /* All enumerals should also have the same name (modulo any numerical
4917 suffix). */
4918 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4919 {
4920 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4921 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4922 int len_1 = strlen (name_1);
4923 int len_2 = strlen (name_2);
4924
4925 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4926 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4927 if (len_1 != len_2
4928 || strncmp (TYPE_FIELD_NAME (type1, i),
4929 TYPE_FIELD_NAME (type2, i),
4930 len_1) != 0)
4931 return 0;
4932 }
4933
4934 return 1;
4935 }
4936
4937 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4938 that are deemed "identical" for practical purposes. Sometimes,
4939 enumerals are not strictly identical, but their types are so similar
4940 that they can be considered identical.
4941
4942 For instance, consider the following code:
4943
4944 type Color is (Black, Red, Green, Blue, White);
4945 type RGB_Color is new Color range Red .. Blue;
4946
4947 Type RGB_Color is a subrange of an implicit type which is a copy
4948 of type Color. If we call that implicit type RGB_ColorB ("B" is
4949 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4950 As a result, when an expression references any of the enumeral
4951 by name (Eg. "print green"), the expression is technically
4952 ambiguous and the user should be asked to disambiguate. But
4953 doing so would only hinder the user, since it wouldn't matter
4954 what choice he makes, the outcome would always be the same.
4955 So, for practical purposes, we consider them as the same. */
4956
4957 static int
4958 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4959 {
4960 int i;
4961
4962 /* Before performing a thorough comparison check of each type,
4963 we perform a series of inexpensive checks. We expect that these
4964 checks will quickly fail in the vast majority of cases, and thus
4965 help prevent the unnecessary use of a more expensive comparison.
4966 Said comparison also expects us to make some of these checks
4967 (see ada_identical_enum_types_p). */
4968
4969 /* Quick check: All symbols should have an enum type. */
4970 for (i = 0; i < syms.size (); i++)
4971 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
4972 return 0;
4973
4974 /* Quick check: They should all have the same value. */
4975 for (i = 1; i < syms.size (); i++)
4976 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4977 return 0;
4978
4979 /* Quick check: They should all have the same number of enumerals. */
4980 for (i = 1; i < syms.size (); i++)
4981 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4982 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
4983 return 0;
4984
4985 /* All the sanity checks passed, so we might have a set of
4986 identical enumeration types. Perform a more complete
4987 comparison of the type of each symbol. */
4988 for (i = 1; i < syms.size (); i++)
4989 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4990 SYMBOL_TYPE (syms[0].symbol)))
4991 return 0;
4992
4993 return 1;
4994 }
4995
4996 /* Remove any non-debugging symbols in SYMS that definitely
4997 duplicate other symbols in the list (The only case I know of where
4998 this happens is when object files containing stabs-in-ecoff are
4999 linked with files containing ordinary ecoff debugging symbols (or no
5000 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5001 Returns the number of items in the modified list. */
5002
5003 static int
5004 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5005 {
5006 int i, j;
5007
5008 /* We should never be called with less than 2 symbols, as there
5009 cannot be any extra symbol in that case. But it's easy to
5010 handle, since we have nothing to do in that case. */
5011 if (syms->size () < 2)
5012 return syms->size ();
5013
5014 i = 0;
5015 while (i < syms->size ())
5016 {
5017 int remove_p = 0;
5018
5019 /* If two symbols have the same name and one of them is a stub type,
5020 the get rid of the stub. */
5021
5022 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5023 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5024 {
5025 for (j = 0; j < syms->size (); j++)
5026 {
5027 if (j != i
5028 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5029 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5030 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5031 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5032 remove_p = 1;
5033 }
5034 }
5035
5036 /* Two symbols with the same name, same class and same address
5037 should be identical. */
5038
5039 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5040 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5041 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5042 {
5043 for (j = 0; j < syms->size (); j += 1)
5044 {
5045 if (i != j
5046 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5047 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5048 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5049 && SYMBOL_CLASS ((*syms)[i].symbol)
5050 == SYMBOL_CLASS ((*syms)[j].symbol)
5051 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5052 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5053 remove_p = 1;
5054 }
5055 }
5056
5057 if (remove_p)
5058 syms->erase (syms->begin () + i);
5059
5060 i += 1;
5061 }
5062
5063 /* If all the remaining symbols are identical enumerals, then
5064 just keep the first one and discard the rest.
5065
5066 Unlike what we did previously, we do not discard any entry
5067 unless they are ALL identical. This is because the symbol
5068 comparison is not a strict comparison, but rather a practical
5069 comparison. If all symbols are considered identical, then
5070 we can just go ahead and use the first one and discard the rest.
5071 But if we cannot reduce the list to a single element, we have
5072 to ask the user to disambiguate anyways. And if we have to
5073 present a multiple-choice menu, it's less confusing if the list
5074 isn't missing some choices that were identical and yet distinct. */
5075 if (symbols_are_identical_enums (*syms))
5076 syms->resize (1);
5077
5078 return syms->size ();
5079 }
5080
5081 /* Given a type that corresponds to a renaming entity, use the type name
5082 to extract the scope (package name or function name, fully qualified,
5083 and following the GNAT encoding convention) where this renaming has been
5084 defined. */
5085
5086 static std::string
5087 xget_renaming_scope (struct type *renaming_type)
5088 {
5089 /* The renaming types adhere to the following convention:
5090 <scope>__<rename>___<XR extension>.
5091 So, to extract the scope, we search for the "___XR" extension,
5092 and then backtrack until we find the first "__". */
5093
5094 const char *name = TYPE_NAME (renaming_type);
5095 const char *suffix = strstr (name, "___XR");
5096 const char *last;
5097
5098 /* Now, backtrack a bit until we find the first "__". Start looking
5099 at suffix - 3, as the <rename> part is at least one character long. */
5100
5101 for (last = suffix - 3; last > name; last--)
5102 if (last[0] == '_' && last[1] == '_')
5103 break;
5104
5105 /* Make a copy of scope and return it. */
5106 return std::string (name, last);
5107 }
5108
5109 /* Return nonzero if NAME corresponds to a package name. */
5110
5111 static int
5112 is_package_name (const char *name)
5113 {
5114 /* Here, We take advantage of the fact that no symbols are generated
5115 for packages, while symbols are generated for each function.
5116 So the condition for NAME represent a package becomes equivalent
5117 to NAME not existing in our list of symbols. There is only one
5118 small complication with library-level functions (see below). */
5119
5120 /* If it is a function that has not been defined at library level,
5121 then we should be able to look it up in the symbols. */
5122 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5123 return 0;
5124
5125 /* Library-level function names start with "_ada_". See if function
5126 "_ada_" followed by NAME can be found. */
5127
5128 /* Do a quick check that NAME does not contain "__", since library-level
5129 functions names cannot contain "__" in them. */
5130 if (strstr (name, "__") != NULL)
5131 return 0;
5132
5133 std::string fun_name = string_printf ("_ada_%s", name);
5134
5135 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5136 }
5137
5138 /* Return nonzero if SYM corresponds to a renaming entity that is
5139 not visible from FUNCTION_NAME. */
5140
5141 static int
5142 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5143 {
5144 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5145 return 0;
5146
5147 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5148
5149 /* If the rename has been defined in a package, then it is visible. */
5150 if (is_package_name (scope.c_str ()))
5151 return 0;
5152
5153 /* Check that the rename is in the current function scope by checking
5154 that its name starts with SCOPE. */
5155
5156 /* If the function name starts with "_ada_", it means that it is
5157 a library-level function. Strip this prefix before doing the
5158 comparison, as the encoding for the renaming does not contain
5159 this prefix. */
5160 if (startswith (function_name, "_ada_"))
5161 function_name += 5;
5162
5163 return !startswith (function_name, scope.c_str ());
5164 }
5165
5166 /* Remove entries from SYMS that corresponds to a renaming entity that
5167 is not visible from the function associated with CURRENT_BLOCK or
5168 that is superfluous due to the presence of more specific renaming
5169 information. Places surviving symbols in the initial entries of
5170 SYMS and returns the number of surviving symbols.
5171
5172 Rationale:
5173 First, in cases where an object renaming is implemented as a
5174 reference variable, GNAT may produce both the actual reference
5175 variable and the renaming encoding. In this case, we discard the
5176 latter.
5177
5178 Second, GNAT emits a type following a specified encoding for each renaming
5179 entity. Unfortunately, STABS currently does not support the definition
5180 of types that are local to a given lexical block, so all renamings types
5181 are emitted at library level. As a consequence, if an application
5182 contains two renaming entities using the same name, and a user tries to
5183 print the value of one of these entities, the result of the ada symbol
5184 lookup will also contain the wrong renaming type.
5185
5186 This function partially covers for this limitation by attempting to
5187 remove from the SYMS list renaming symbols that should be visible
5188 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5189 method with the current information available. The implementation
5190 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5191
5192 - When the user tries to print a rename in a function while there
5193 is another rename entity defined in a package: Normally, the
5194 rename in the function has precedence over the rename in the
5195 package, so the latter should be removed from the list. This is
5196 currently not the case.
5197
5198 - This function will incorrectly remove valid renames if
5199 the CURRENT_BLOCK corresponds to a function which symbol name
5200 has been changed by an "Export" pragma. As a consequence,
5201 the user will be unable to print such rename entities. */
5202
5203 static int
5204 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5205 const struct block *current_block)
5206 {
5207 struct symbol *current_function;
5208 const char *current_function_name;
5209 int i;
5210 int is_new_style_renaming;
5211
5212 /* If there is both a renaming foo___XR... encoded as a variable and
5213 a simple variable foo in the same block, discard the latter.
5214 First, zero out such symbols, then compress. */
5215 is_new_style_renaming = 0;
5216 for (i = 0; i < syms->size (); i += 1)
5217 {
5218 struct symbol *sym = (*syms)[i].symbol;
5219 const struct block *block = (*syms)[i].block;
5220 const char *name;
5221 const char *suffix;
5222
5223 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5224 continue;
5225 name = SYMBOL_LINKAGE_NAME (sym);
5226 suffix = strstr (name, "___XR");
5227
5228 if (suffix != NULL)
5229 {
5230 int name_len = suffix - name;
5231 int j;
5232
5233 is_new_style_renaming = 1;
5234 for (j = 0; j < syms->size (); j += 1)
5235 if (i != j && (*syms)[j].symbol != NULL
5236 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5237 name_len) == 0
5238 && block == (*syms)[j].block)
5239 (*syms)[j].symbol = NULL;
5240 }
5241 }
5242 if (is_new_style_renaming)
5243 {
5244 int j, k;
5245
5246 for (j = k = 0; j < syms->size (); j += 1)
5247 if ((*syms)[j].symbol != NULL)
5248 {
5249 (*syms)[k] = (*syms)[j];
5250 k += 1;
5251 }
5252 return k;
5253 }
5254
5255 /* Extract the function name associated to CURRENT_BLOCK.
5256 Abort if unable to do so. */
5257
5258 if (current_block == NULL)
5259 return syms->size ();
5260
5261 current_function = block_linkage_function (current_block);
5262 if (current_function == NULL)
5263 return syms->size ();
5264
5265 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5266 if (current_function_name == NULL)
5267 return syms->size ();
5268
5269 /* Check each of the symbols, and remove it from the list if it is
5270 a type corresponding to a renaming that is out of the scope of
5271 the current block. */
5272
5273 i = 0;
5274 while (i < syms->size ())
5275 {
5276 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5277 == ADA_OBJECT_RENAMING
5278 && old_renaming_is_invisible ((*syms)[i].symbol,
5279 current_function_name))
5280 syms->erase (syms->begin () + i);
5281 else
5282 i += 1;
5283 }
5284
5285 return syms->size ();
5286 }
5287
5288 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5289 whose name and domain match NAME and DOMAIN respectively.
5290 If no match was found, then extend the search to "enclosing"
5291 routines (in other words, if we're inside a nested function,
5292 search the symbols defined inside the enclosing functions).
5293 If WILD_MATCH_P is nonzero, perform the naming matching in
5294 "wild" mode (see function "wild_match" for more info).
5295
5296 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5297
5298 static void
5299 ada_add_local_symbols (struct obstack *obstackp,
5300 const lookup_name_info &lookup_name,
5301 const struct block *block, domain_enum domain)
5302 {
5303 int block_depth = 0;
5304
5305 while (block != NULL)
5306 {
5307 block_depth += 1;
5308 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5309
5310 /* If we found a non-function match, assume that's the one. */
5311 if (is_nonfunction (defns_collected (obstackp, 0),
5312 num_defns_collected (obstackp)))
5313 return;
5314
5315 block = BLOCK_SUPERBLOCK (block);
5316 }
5317
5318 /* If no luck so far, try to find NAME as a local symbol in some lexically
5319 enclosing subprogram. */
5320 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5321 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5322 }
5323
5324 /* An object of this type is used as the user_data argument when
5325 calling the map_matching_symbols method. */
5326
5327 struct match_data
5328 {
5329 struct objfile *objfile;
5330 struct obstack *obstackp;
5331 struct symbol *arg_sym;
5332 int found_sym;
5333 };
5334
5335 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5336 to a list of symbols. DATA0 is a pointer to a struct match_data *
5337 containing the obstack that collects the symbol list, the file that SYM
5338 must come from, a flag indicating whether a non-argument symbol has
5339 been found in the current block, and the last argument symbol
5340 passed in SYM within the current block (if any). When SYM is null,
5341 marking the end of a block, the argument symbol is added if no
5342 other has been found. */
5343
5344 static int
5345 aux_add_nonlocal_symbols (const struct block *block, struct symbol *sym,
5346 void *data0)
5347 {
5348 struct match_data *data = (struct match_data *) data0;
5349
5350 if (sym == NULL)
5351 {
5352 if (!data->found_sym && data->arg_sym != NULL)
5353 add_defn_to_vec (data->obstackp,
5354 fixup_symbol_section (data->arg_sym, data->objfile),
5355 block);
5356 data->found_sym = 0;
5357 data->arg_sym = NULL;
5358 }
5359 else
5360 {
5361 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5362 return 0;
5363 else if (SYMBOL_IS_ARGUMENT (sym))
5364 data->arg_sym = sym;
5365 else
5366 {
5367 data->found_sym = 1;
5368 add_defn_to_vec (data->obstackp,
5369 fixup_symbol_section (sym, data->objfile),
5370 block);
5371 }
5372 }
5373 return 0;
5374 }
5375
5376 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5377 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5378 symbols to OBSTACKP. Return whether we found such symbols. */
5379
5380 static int
5381 ada_add_block_renamings (struct obstack *obstackp,
5382 const struct block *block,
5383 const lookup_name_info &lookup_name,
5384 domain_enum domain)
5385 {
5386 struct using_direct *renaming;
5387 int defns_mark = num_defns_collected (obstackp);
5388
5389 symbol_name_matcher_ftype *name_match
5390 = ada_get_symbol_name_matcher (lookup_name);
5391
5392 for (renaming = block_using (block);
5393 renaming != NULL;
5394 renaming = renaming->next)
5395 {
5396 const char *r_name;
5397
5398 /* Avoid infinite recursions: skip this renaming if we are actually
5399 already traversing it.
5400
5401 Currently, symbol lookup in Ada don't use the namespace machinery from
5402 C++/Fortran support: skip namespace imports that use them. */
5403 if (renaming->searched
5404 || (renaming->import_src != NULL
5405 && renaming->import_src[0] != '\0')
5406 || (renaming->import_dest != NULL
5407 && renaming->import_dest[0] != '\0'))
5408 continue;
5409 renaming->searched = 1;
5410
5411 /* TODO: here, we perform another name-based symbol lookup, which can
5412 pull its own multiple overloads. In theory, we should be able to do
5413 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5414 not a simple name. But in order to do this, we would need to enhance
5415 the DWARF reader to associate a symbol to this renaming, instead of a
5416 name. So, for now, we do something simpler: re-use the C++/Fortran
5417 namespace machinery. */
5418 r_name = (renaming->alias != NULL
5419 ? renaming->alias
5420 : renaming->declaration);
5421 if (name_match (r_name, lookup_name, NULL))
5422 {
5423 lookup_name_info decl_lookup_name (renaming->declaration,
5424 lookup_name.match_type ());
5425 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5426 1, NULL);
5427 }
5428 renaming->searched = 0;
5429 }
5430 return num_defns_collected (obstackp) != defns_mark;
5431 }
5432
5433 /* Implements compare_names, but only applying the comparision using
5434 the given CASING. */
5435
5436 static int
5437 compare_names_with_case (const char *string1, const char *string2,
5438 enum case_sensitivity casing)
5439 {
5440 while (*string1 != '\0' && *string2 != '\0')
5441 {
5442 char c1, c2;
5443
5444 if (isspace (*string1) || isspace (*string2))
5445 return strcmp_iw_ordered (string1, string2);
5446
5447 if (casing == case_sensitive_off)
5448 {
5449 c1 = tolower (*string1);
5450 c2 = tolower (*string2);
5451 }
5452 else
5453 {
5454 c1 = *string1;
5455 c2 = *string2;
5456 }
5457 if (c1 != c2)
5458 break;
5459
5460 string1 += 1;
5461 string2 += 1;
5462 }
5463
5464 switch (*string1)
5465 {
5466 case '(':
5467 return strcmp_iw_ordered (string1, string2);
5468 case '_':
5469 if (*string2 == '\0')
5470 {
5471 if (is_name_suffix (string1))
5472 return 0;
5473 else
5474 return 1;
5475 }
5476 /* FALLTHROUGH */
5477 default:
5478 if (*string2 == '(')
5479 return strcmp_iw_ordered (string1, string2);
5480 else
5481 {
5482 if (casing == case_sensitive_off)
5483 return tolower (*string1) - tolower (*string2);
5484 else
5485 return *string1 - *string2;
5486 }
5487 }
5488 }
5489
5490 /* Compare STRING1 to STRING2, with results as for strcmp.
5491 Compatible with strcmp_iw_ordered in that...
5492
5493 strcmp_iw_ordered (STRING1, STRING2) <= 0
5494
5495 ... implies...
5496
5497 compare_names (STRING1, STRING2) <= 0
5498
5499 (they may differ as to what symbols compare equal). */
5500
5501 static int
5502 compare_names (const char *string1, const char *string2)
5503 {
5504 int result;
5505
5506 /* Similar to what strcmp_iw_ordered does, we need to perform
5507 a case-insensitive comparison first, and only resort to
5508 a second, case-sensitive, comparison if the first one was
5509 not sufficient to differentiate the two strings. */
5510
5511 result = compare_names_with_case (string1, string2, case_sensitive_off);
5512 if (result == 0)
5513 result = compare_names_with_case (string1, string2, case_sensitive_on);
5514
5515 return result;
5516 }
5517
5518 /* Convenience function to get at the Ada encoded lookup name for
5519 LOOKUP_NAME, as a C string. */
5520
5521 static const char *
5522 ada_lookup_name (const lookup_name_info &lookup_name)
5523 {
5524 return lookup_name.ada ().lookup_name ().c_str ();
5525 }
5526
5527 /* Add to OBSTACKP all non-local symbols whose name and domain match
5528 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5529 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5530 symbols otherwise. */
5531
5532 static void
5533 add_nonlocal_symbols (struct obstack *obstackp,
5534 const lookup_name_info &lookup_name,
5535 domain_enum domain, int global)
5536 {
5537 struct match_data data;
5538
5539 memset (&data, 0, sizeof data);
5540 data.obstackp = obstackp;
5541
5542 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5543
5544 for (objfile *objfile : current_program_space->objfiles ())
5545 {
5546 data.objfile = objfile;
5547
5548 if (is_wild_match)
5549 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5550 domain, global,
5551 aux_add_nonlocal_symbols, &data,
5552 symbol_name_match_type::WILD,
5553 NULL);
5554 else
5555 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5556 domain, global,
5557 aux_add_nonlocal_symbols, &data,
5558 symbol_name_match_type::FULL,
5559 compare_names);
5560
5561 for (compunit_symtab *cu : objfile->compunits ())
5562 {
5563 const struct block *global_block
5564 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5565
5566 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5567 domain))
5568 data.found_sym = 1;
5569 }
5570 }
5571
5572 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5573 {
5574 const char *name = ada_lookup_name (lookup_name);
5575 std::string name1 = std::string ("<_ada_") + name + '>';
5576
5577 for (objfile *objfile : current_program_space->objfiles ())
5578 {
5579 data.objfile = objfile;
5580 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5581 domain, global,
5582 aux_add_nonlocal_symbols,
5583 &data,
5584 symbol_name_match_type::FULL,
5585 compare_names);
5586 }
5587 }
5588 }
5589
5590 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5591 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5592 returning the number of matches. Add these to OBSTACKP.
5593
5594 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5595 symbol match within the nest of blocks whose innermost member is BLOCK,
5596 is the one match returned (no other matches in that or
5597 enclosing blocks is returned). If there are any matches in or
5598 surrounding BLOCK, then these alone are returned.
5599
5600 Names prefixed with "standard__" are handled specially:
5601 "standard__" is first stripped off (by the lookup_name
5602 constructor), and only static and global symbols are searched.
5603
5604 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5605 to lookup global symbols. */
5606
5607 static void
5608 ada_add_all_symbols (struct obstack *obstackp,
5609 const struct block *block,
5610 const lookup_name_info &lookup_name,
5611 domain_enum domain,
5612 int full_search,
5613 int *made_global_lookup_p)
5614 {
5615 struct symbol *sym;
5616
5617 if (made_global_lookup_p)
5618 *made_global_lookup_p = 0;
5619
5620 /* Special case: If the user specifies a symbol name inside package
5621 Standard, do a non-wild matching of the symbol name without
5622 the "standard__" prefix. This was primarily introduced in order
5623 to allow the user to specifically access the standard exceptions
5624 using, for instance, Standard.Constraint_Error when Constraint_Error
5625 is ambiguous (due to the user defining its own Constraint_Error
5626 entity inside its program). */
5627 if (lookup_name.ada ().standard_p ())
5628 block = NULL;
5629
5630 /* Check the non-global symbols. If we have ANY match, then we're done. */
5631
5632 if (block != NULL)
5633 {
5634 if (full_search)
5635 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5636 else
5637 {
5638 /* In the !full_search case we're are being called by
5639 ada_iterate_over_symbols, and we don't want to search
5640 superblocks. */
5641 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5642 }
5643 if (num_defns_collected (obstackp) > 0 || !full_search)
5644 return;
5645 }
5646
5647 /* No non-global symbols found. Check our cache to see if we have
5648 already performed this search before. If we have, then return
5649 the same result. */
5650
5651 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5652 domain, &sym, &block))
5653 {
5654 if (sym != NULL)
5655 add_defn_to_vec (obstackp, sym, block);
5656 return;
5657 }
5658
5659 if (made_global_lookup_p)
5660 *made_global_lookup_p = 1;
5661
5662 /* Search symbols from all global blocks. */
5663
5664 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5665
5666 /* Now add symbols from all per-file blocks if we've gotten no hits
5667 (not strictly correct, but perhaps better than an error). */
5668
5669 if (num_defns_collected (obstackp) == 0)
5670 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5671 }
5672
5673 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5674 is non-zero, enclosing scope and in global scopes, returning the number of
5675 matches.
5676 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5677 found and the blocks and symbol tables (if any) in which they were
5678 found.
5679
5680 When full_search is non-zero, any non-function/non-enumeral
5681 symbol match within the nest of blocks whose innermost member is BLOCK,
5682 is the one match returned (no other matches in that or
5683 enclosing blocks is returned). If there are any matches in or
5684 surrounding BLOCK, then these alone are returned.
5685
5686 Names prefixed with "standard__" are handled specially: "standard__"
5687 is first stripped off, and only static and global symbols are searched. */
5688
5689 static int
5690 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5691 const struct block *block,
5692 domain_enum domain,
5693 std::vector<struct block_symbol> *results,
5694 int full_search)
5695 {
5696 int syms_from_global_search;
5697 int ndefns;
5698 auto_obstack obstack;
5699
5700 ada_add_all_symbols (&obstack, block, lookup_name,
5701 domain, full_search, &syms_from_global_search);
5702
5703 ndefns = num_defns_collected (&obstack);
5704
5705 struct block_symbol *base = defns_collected (&obstack, 1);
5706 for (int i = 0; i < ndefns; ++i)
5707 results->push_back (base[i]);
5708
5709 ndefns = remove_extra_symbols (results);
5710
5711 if (ndefns == 0 && full_search && syms_from_global_search)
5712 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5713
5714 if (ndefns == 1 && full_search && syms_from_global_search)
5715 cache_symbol (ada_lookup_name (lookup_name), domain,
5716 (*results)[0].symbol, (*results)[0].block);
5717
5718 ndefns = remove_irrelevant_renamings (results, block);
5719
5720 return ndefns;
5721 }
5722
5723 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5724 in global scopes, returning the number of matches, and filling *RESULTS
5725 with (SYM,BLOCK) tuples.
5726
5727 See ada_lookup_symbol_list_worker for further details. */
5728
5729 int
5730 ada_lookup_symbol_list (const char *name, const struct block *block,
5731 domain_enum domain,
5732 std::vector<struct block_symbol> *results)
5733 {
5734 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5735 lookup_name_info lookup_name (name, name_match_type);
5736
5737 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5738 }
5739
5740 /* Implementation of the la_iterate_over_symbols method. */
5741
5742 static void
5743 ada_iterate_over_symbols
5744 (const struct block *block, const lookup_name_info &name,
5745 domain_enum domain,
5746 gdb::function_view<symbol_found_callback_ftype> callback)
5747 {
5748 int ndefs, i;
5749 std::vector<struct block_symbol> results;
5750
5751 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5752
5753 for (i = 0; i < ndefs; ++i)
5754 {
5755 if (!callback (&results[i]))
5756 break;
5757 }
5758 }
5759
5760 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5761 to 1, but choosing the first symbol found if there are multiple
5762 choices.
5763
5764 The result is stored in *INFO, which must be non-NULL.
5765 If no match is found, INFO->SYM is set to NULL. */
5766
5767 void
5768 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5769 domain_enum domain,
5770 struct block_symbol *info)
5771 {
5772 /* Since we already have an encoded name, wrap it in '<>' to force a
5773 verbatim match. Otherwise, if the name happens to not look like
5774 an encoded name (because it doesn't include a "__"),
5775 ada_lookup_name_info would re-encode/fold it again, and that
5776 would e.g., incorrectly lowercase object renaming names like
5777 "R28b" -> "r28b". */
5778 std::string verbatim = std::string ("<") + name + '>';
5779
5780 gdb_assert (info != NULL);
5781 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5782 }
5783
5784 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5785 scope and in global scopes, or NULL if none. NAME is folded and
5786 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5787 choosing the first symbol if there are multiple choices.
5788 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5789
5790 struct block_symbol
5791 ada_lookup_symbol (const char *name, const struct block *block0,
5792 domain_enum domain, int *is_a_field_of_this)
5793 {
5794 if (is_a_field_of_this != NULL)
5795 *is_a_field_of_this = 0;
5796
5797 std::vector<struct block_symbol> candidates;
5798 int n_candidates;
5799
5800 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5801
5802 if (n_candidates == 0)
5803 return {};
5804
5805 block_symbol info = candidates[0];
5806 info.symbol = fixup_symbol_section (info.symbol, NULL);
5807 return info;
5808 }
5809
5810 static struct block_symbol
5811 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5812 const char *name,
5813 const struct block *block,
5814 const domain_enum domain)
5815 {
5816 struct block_symbol sym;
5817
5818 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5819 if (sym.symbol != NULL)
5820 return sym;
5821
5822 /* If we haven't found a match at this point, try the primitive
5823 types. In other languages, this search is performed before
5824 searching for global symbols in order to short-circuit that
5825 global-symbol search if it happens that the name corresponds
5826 to a primitive type. But we cannot do the same in Ada, because
5827 it is perfectly legitimate for a program to declare a type which
5828 has the same name as a standard type. If looking up a type in
5829 that situation, we have traditionally ignored the primitive type
5830 in favor of user-defined types. This is why, unlike most other
5831 languages, we search the primitive types this late and only after
5832 having searched the global symbols without success. */
5833
5834 if (domain == VAR_DOMAIN)
5835 {
5836 struct gdbarch *gdbarch;
5837
5838 if (block == NULL)
5839 gdbarch = target_gdbarch ();
5840 else
5841 gdbarch = block_gdbarch (block);
5842 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5843 if (sym.symbol != NULL)
5844 return sym;
5845 }
5846
5847 return {};
5848 }
5849
5850
5851 /* True iff STR is a possible encoded suffix of a normal Ada name
5852 that is to be ignored for matching purposes. Suffixes of parallel
5853 names (e.g., XVE) are not included here. Currently, the possible suffixes
5854 are given by any of the regular expressions:
5855
5856 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5857 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5858 TKB [subprogram suffix for task bodies]
5859 _E[0-9]+[bs]$ [protected object entry suffixes]
5860 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5861
5862 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5863 match is performed. This sequence is used to differentiate homonyms,
5864 is an optional part of a valid name suffix. */
5865
5866 static int
5867 is_name_suffix (const char *str)
5868 {
5869 int k;
5870 const char *matching;
5871 const int len = strlen (str);
5872
5873 /* Skip optional leading __[0-9]+. */
5874
5875 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5876 {
5877 str += 3;
5878 while (isdigit (str[0]))
5879 str += 1;
5880 }
5881
5882 /* [.$][0-9]+ */
5883
5884 if (str[0] == '.' || str[0] == '$')
5885 {
5886 matching = str + 1;
5887 while (isdigit (matching[0]))
5888 matching += 1;
5889 if (matching[0] == '\0')
5890 return 1;
5891 }
5892
5893 /* ___[0-9]+ */
5894
5895 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5896 {
5897 matching = str + 3;
5898 while (isdigit (matching[0]))
5899 matching += 1;
5900 if (matching[0] == '\0')
5901 return 1;
5902 }
5903
5904 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5905
5906 if (strcmp (str, "TKB") == 0)
5907 return 1;
5908
5909 #if 0
5910 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5911 with a N at the end. Unfortunately, the compiler uses the same
5912 convention for other internal types it creates. So treating
5913 all entity names that end with an "N" as a name suffix causes
5914 some regressions. For instance, consider the case of an enumerated
5915 type. To support the 'Image attribute, it creates an array whose
5916 name ends with N.
5917 Having a single character like this as a suffix carrying some
5918 information is a bit risky. Perhaps we should change the encoding
5919 to be something like "_N" instead. In the meantime, do not do
5920 the following check. */
5921 /* Protected Object Subprograms */
5922 if (len == 1 && str [0] == 'N')
5923 return 1;
5924 #endif
5925
5926 /* _E[0-9]+[bs]$ */
5927 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5928 {
5929 matching = str + 3;
5930 while (isdigit (matching[0]))
5931 matching += 1;
5932 if ((matching[0] == 'b' || matching[0] == 's')
5933 && matching [1] == '\0')
5934 return 1;
5935 }
5936
5937 /* ??? We should not modify STR directly, as we are doing below. This
5938 is fine in this case, but may become problematic later if we find
5939 that this alternative did not work, and want to try matching
5940 another one from the begining of STR. Since we modified it, we
5941 won't be able to find the begining of the string anymore! */
5942 if (str[0] == 'X')
5943 {
5944 str += 1;
5945 while (str[0] != '_' && str[0] != '\0')
5946 {
5947 if (str[0] != 'n' && str[0] != 'b')
5948 return 0;
5949 str += 1;
5950 }
5951 }
5952
5953 if (str[0] == '\000')
5954 return 1;
5955
5956 if (str[0] == '_')
5957 {
5958 if (str[1] != '_' || str[2] == '\000')
5959 return 0;
5960 if (str[2] == '_')
5961 {
5962 if (strcmp (str + 3, "JM") == 0)
5963 return 1;
5964 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5965 the LJM suffix in favor of the JM one. But we will
5966 still accept LJM as a valid suffix for a reasonable
5967 amount of time, just to allow ourselves to debug programs
5968 compiled using an older version of GNAT. */
5969 if (strcmp (str + 3, "LJM") == 0)
5970 return 1;
5971 if (str[3] != 'X')
5972 return 0;
5973 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5974 || str[4] == 'U' || str[4] == 'P')
5975 return 1;
5976 if (str[4] == 'R' && str[5] != 'T')
5977 return 1;
5978 return 0;
5979 }
5980 if (!isdigit (str[2]))
5981 return 0;
5982 for (k = 3; str[k] != '\0'; k += 1)
5983 if (!isdigit (str[k]) && str[k] != '_')
5984 return 0;
5985 return 1;
5986 }
5987 if (str[0] == '$' && isdigit (str[1]))
5988 {
5989 for (k = 2; str[k] != '\0'; k += 1)
5990 if (!isdigit (str[k]) && str[k] != '_')
5991 return 0;
5992 return 1;
5993 }
5994 return 0;
5995 }
5996
5997 /* Return non-zero if the string starting at NAME and ending before
5998 NAME_END contains no capital letters. */
5999
6000 static int
6001 is_valid_name_for_wild_match (const char *name0)
6002 {
6003 const char *decoded_name = ada_decode (name0);
6004 int i;
6005
6006 /* If the decoded name starts with an angle bracket, it means that
6007 NAME0 does not follow the GNAT encoding format. It should then
6008 not be allowed as a possible wild match. */
6009 if (decoded_name[0] == '<')
6010 return 0;
6011
6012 for (i=0; decoded_name[i] != '\0'; i++)
6013 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6014 return 0;
6015
6016 return 1;
6017 }
6018
6019 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6020 that could start a simple name. Assumes that *NAMEP points into
6021 the string beginning at NAME0. */
6022
6023 static int
6024 advance_wild_match (const char **namep, const char *name0, int target0)
6025 {
6026 const char *name = *namep;
6027
6028 while (1)
6029 {
6030 int t0, t1;
6031
6032 t0 = *name;
6033 if (t0 == '_')
6034 {
6035 t1 = name[1];
6036 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6037 {
6038 name += 1;
6039 if (name == name0 + 5 && startswith (name0, "_ada"))
6040 break;
6041 else
6042 name += 1;
6043 }
6044 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6045 || name[2] == target0))
6046 {
6047 name += 2;
6048 break;
6049 }
6050 else
6051 return 0;
6052 }
6053 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6054 name += 1;
6055 else
6056 return 0;
6057 }
6058
6059 *namep = name;
6060 return 1;
6061 }
6062
6063 /* Return true iff NAME encodes a name of the form prefix.PATN.
6064 Ignores any informational suffixes of NAME (i.e., for which
6065 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6066 simple name. */
6067
6068 static bool
6069 wild_match (const char *name, const char *patn)
6070 {
6071 const char *p;
6072 const char *name0 = name;
6073
6074 while (1)
6075 {
6076 const char *match = name;
6077
6078 if (*name == *patn)
6079 {
6080 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6081 if (*p != *name)
6082 break;
6083 if (*p == '\0' && is_name_suffix (name))
6084 return match == name0 || is_valid_name_for_wild_match (name0);
6085
6086 if (name[-1] == '_')
6087 name -= 1;
6088 }
6089 if (!advance_wild_match (&name, name0, *patn))
6090 return false;
6091 }
6092 }
6093
6094 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6095 any trailing suffixes that encode debugging information or leading
6096 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6097 information that is ignored). */
6098
6099 static bool
6100 full_match (const char *sym_name, const char *search_name)
6101 {
6102 size_t search_name_len = strlen (search_name);
6103
6104 if (strncmp (sym_name, search_name, search_name_len) == 0
6105 && is_name_suffix (sym_name + search_name_len))
6106 return true;
6107
6108 if (startswith (sym_name, "_ada_")
6109 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6110 && is_name_suffix (sym_name + search_name_len + 5))
6111 return true;
6112
6113 return false;
6114 }
6115
6116 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6117 *defn_symbols, updating the list of symbols in OBSTACKP (if
6118 necessary). OBJFILE is the section containing BLOCK. */
6119
6120 static void
6121 ada_add_block_symbols (struct obstack *obstackp,
6122 const struct block *block,
6123 const lookup_name_info &lookup_name,
6124 domain_enum domain, struct objfile *objfile)
6125 {
6126 struct block_iterator iter;
6127 /* A matching argument symbol, if any. */
6128 struct symbol *arg_sym;
6129 /* Set true when we find a matching non-argument symbol. */
6130 int found_sym;
6131 struct symbol *sym;
6132
6133 arg_sym = NULL;
6134 found_sym = 0;
6135 for (sym = block_iter_match_first (block, lookup_name, &iter);
6136 sym != NULL;
6137 sym = block_iter_match_next (lookup_name, &iter))
6138 {
6139 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6140 SYMBOL_DOMAIN (sym), domain))
6141 {
6142 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6143 {
6144 if (SYMBOL_IS_ARGUMENT (sym))
6145 arg_sym = sym;
6146 else
6147 {
6148 found_sym = 1;
6149 add_defn_to_vec (obstackp,
6150 fixup_symbol_section (sym, objfile),
6151 block);
6152 }
6153 }
6154 }
6155 }
6156
6157 /* Handle renamings. */
6158
6159 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6160 found_sym = 1;
6161
6162 if (!found_sym && arg_sym != NULL)
6163 {
6164 add_defn_to_vec (obstackp,
6165 fixup_symbol_section (arg_sym, objfile),
6166 block);
6167 }
6168
6169 if (!lookup_name.ada ().wild_match_p ())
6170 {
6171 arg_sym = NULL;
6172 found_sym = 0;
6173 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6174 const char *name = ada_lookup_name.c_str ();
6175 size_t name_len = ada_lookup_name.size ();
6176
6177 ALL_BLOCK_SYMBOLS (block, iter, sym)
6178 {
6179 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6180 SYMBOL_DOMAIN (sym), domain))
6181 {
6182 int cmp;
6183
6184 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6185 if (cmp == 0)
6186 {
6187 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6188 if (cmp == 0)
6189 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6190 name_len);
6191 }
6192
6193 if (cmp == 0
6194 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6195 {
6196 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6197 {
6198 if (SYMBOL_IS_ARGUMENT (sym))
6199 arg_sym = sym;
6200 else
6201 {
6202 found_sym = 1;
6203 add_defn_to_vec (obstackp,
6204 fixup_symbol_section (sym, objfile),
6205 block);
6206 }
6207 }
6208 }
6209 }
6210 }
6211
6212 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6213 They aren't parameters, right? */
6214 if (!found_sym && arg_sym != NULL)
6215 {
6216 add_defn_to_vec (obstackp,
6217 fixup_symbol_section (arg_sym, objfile),
6218 block);
6219 }
6220 }
6221 }
6222 \f
6223
6224 /* Symbol Completion */
6225
6226 /* See symtab.h. */
6227
6228 bool
6229 ada_lookup_name_info::matches
6230 (const char *sym_name,
6231 symbol_name_match_type match_type,
6232 completion_match_result *comp_match_res) const
6233 {
6234 bool match = false;
6235 const char *text = m_encoded_name.c_str ();
6236 size_t text_len = m_encoded_name.size ();
6237
6238 /* First, test against the fully qualified name of the symbol. */
6239
6240 if (strncmp (sym_name, text, text_len) == 0)
6241 match = true;
6242
6243 if (match && !m_encoded_p)
6244 {
6245 /* One needed check before declaring a positive match is to verify
6246 that iff we are doing a verbatim match, the decoded version
6247 of the symbol name starts with '<'. Otherwise, this symbol name
6248 is not a suitable completion. */
6249 const char *sym_name_copy = sym_name;
6250 bool has_angle_bracket;
6251
6252 sym_name = ada_decode (sym_name);
6253 has_angle_bracket = (sym_name[0] == '<');
6254 match = (has_angle_bracket == m_verbatim_p);
6255 sym_name = sym_name_copy;
6256 }
6257
6258 if (match && !m_verbatim_p)
6259 {
6260 /* When doing non-verbatim match, another check that needs to
6261 be done is to verify that the potentially matching symbol name
6262 does not include capital letters, because the ada-mode would
6263 not be able to understand these symbol names without the
6264 angle bracket notation. */
6265 const char *tmp;
6266
6267 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6268 if (*tmp != '\0')
6269 match = false;
6270 }
6271
6272 /* Second: Try wild matching... */
6273
6274 if (!match && m_wild_match_p)
6275 {
6276 /* Since we are doing wild matching, this means that TEXT
6277 may represent an unqualified symbol name. We therefore must
6278 also compare TEXT against the unqualified name of the symbol. */
6279 sym_name = ada_unqualified_name (ada_decode (sym_name));
6280
6281 if (strncmp (sym_name, text, text_len) == 0)
6282 match = true;
6283 }
6284
6285 /* Finally: If we found a match, prepare the result to return. */
6286
6287 if (!match)
6288 return false;
6289
6290 if (comp_match_res != NULL)
6291 {
6292 std::string &match_str = comp_match_res->match.storage ();
6293
6294 if (!m_encoded_p)
6295 match_str = ada_decode (sym_name);
6296 else
6297 {
6298 if (m_verbatim_p)
6299 match_str = add_angle_brackets (sym_name);
6300 else
6301 match_str = sym_name;
6302
6303 }
6304
6305 comp_match_res->set_match (match_str.c_str ());
6306 }
6307
6308 return true;
6309 }
6310
6311 /* Add the list of possible symbol names completing TEXT to TRACKER.
6312 WORD is the entire command on which completion is made. */
6313
6314 static void
6315 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6316 complete_symbol_mode mode,
6317 symbol_name_match_type name_match_type,
6318 const char *text, const char *word,
6319 enum type_code code)
6320 {
6321 struct symbol *sym;
6322 const struct block *b, *surrounding_static_block = 0;
6323 struct block_iterator iter;
6324
6325 gdb_assert (code == TYPE_CODE_UNDEF);
6326
6327 lookup_name_info lookup_name (text, name_match_type, true);
6328
6329 /* First, look at the partial symtab symbols. */
6330 expand_symtabs_matching (NULL,
6331 lookup_name,
6332 NULL,
6333 NULL,
6334 ALL_DOMAIN);
6335
6336 /* At this point scan through the misc symbol vectors and add each
6337 symbol you find to the list. Eventually we want to ignore
6338 anything that isn't a text symbol (everything else will be
6339 handled by the psymtab code above). */
6340
6341 for (objfile *objfile : current_program_space->objfiles ())
6342 {
6343 for (minimal_symbol *msymbol : objfile->msymbols ())
6344 {
6345 QUIT;
6346
6347 if (completion_skip_symbol (mode, msymbol))
6348 continue;
6349
6350 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6351
6352 /* Ada minimal symbols won't have their language set to Ada. If
6353 we let completion_list_add_name compare using the
6354 default/C-like matcher, then when completing e.g., symbols in a
6355 package named "pck", we'd match internal Ada symbols like
6356 "pckS", which are invalid in an Ada expression, unless you wrap
6357 them in '<' '>' to request a verbatim match.
6358
6359 Unfortunately, some Ada encoded names successfully demangle as
6360 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6361 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6362 with the wrong language set. Paper over that issue here. */
6363 if (symbol_language == language_auto
6364 || symbol_language == language_cplus)
6365 symbol_language = language_ada;
6366
6367 completion_list_add_name (tracker,
6368 symbol_language,
6369 MSYMBOL_LINKAGE_NAME (msymbol),
6370 lookup_name, text, word);
6371 }
6372 }
6373
6374 /* Search upwards from currently selected frame (so that we can
6375 complete on local vars. */
6376
6377 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6378 {
6379 if (!BLOCK_SUPERBLOCK (b))
6380 surrounding_static_block = b; /* For elmin of dups */
6381
6382 ALL_BLOCK_SYMBOLS (b, iter, sym)
6383 {
6384 if (completion_skip_symbol (mode, sym))
6385 continue;
6386
6387 completion_list_add_name (tracker,
6388 SYMBOL_LANGUAGE (sym),
6389 SYMBOL_LINKAGE_NAME (sym),
6390 lookup_name, text, word);
6391 }
6392 }
6393
6394 /* Go through the symtabs and check the externs and statics for
6395 symbols which match. */
6396
6397 for (objfile *objfile : current_program_space->objfiles ())
6398 {
6399 for (compunit_symtab *s : objfile->compunits ())
6400 {
6401 QUIT;
6402 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6403 ALL_BLOCK_SYMBOLS (b, iter, sym)
6404 {
6405 if (completion_skip_symbol (mode, sym))
6406 continue;
6407
6408 completion_list_add_name (tracker,
6409 SYMBOL_LANGUAGE (sym),
6410 SYMBOL_LINKAGE_NAME (sym),
6411 lookup_name, text, word);
6412 }
6413 }
6414 }
6415
6416 for (objfile *objfile : current_program_space->objfiles ())
6417 {
6418 for (compunit_symtab *s : objfile->compunits ())
6419 {
6420 QUIT;
6421 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6422 /* Don't do this block twice. */
6423 if (b == surrounding_static_block)
6424 continue;
6425 ALL_BLOCK_SYMBOLS (b, iter, sym)
6426 {
6427 if (completion_skip_symbol (mode, sym))
6428 continue;
6429
6430 completion_list_add_name (tracker,
6431 SYMBOL_LANGUAGE (sym),
6432 SYMBOL_LINKAGE_NAME (sym),
6433 lookup_name, text, word);
6434 }
6435 }
6436 }
6437 }
6438
6439 /* Field Access */
6440
6441 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6442 for tagged types. */
6443
6444 static int
6445 ada_is_dispatch_table_ptr_type (struct type *type)
6446 {
6447 const char *name;
6448
6449 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6450 return 0;
6451
6452 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6453 if (name == NULL)
6454 return 0;
6455
6456 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6457 }
6458
6459 /* Return non-zero if TYPE is an interface tag. */
6460
6461 static int
6462 ada_is_interface_tag (struct type *type)
6463 {
6464 const char *name = TYPE_NAME (type);
6465
6466 if (name == NULL)
6467 return 0;
6468
6469 return (strcmp (name, "ada__tags__interface_tag") == 0);
6470 }
6471
6472 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6473 to be invisible to users. */
6474
6475 int
6476 ada_is_ignored_field (struct type *type, int field_num)
6477 {
6478 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6479 return 1;
6480
6481 /* Check the name of that field. */
6482 {
6483 const char *name = TYPE_FIELD_NAME (type, field_num);
6484
6485 /* Anonymous field names should not be printed.
6486 brobecker/2007-02-20: I don't think this can actually happen
6487 but we don't want to print the value of annonymous fields anyway. */
6488 if (name == NULL)
6489 return 1;
6490
6491 /* Normally, fields whose name start with an underscore ("_")
6492 are fields that have been internally generated by the compiler,
6493 and thus should not be printed. The "_parent" field is special,
6494 however: This is a field internally generated by the compiler
6495 for tagged types, and it contains the components inherited from
6496 the parent type. This field should not be printed as is, but
6497 should not be ignored either. */
6498 if (name[0] == '_' && !startswith (name, "_parent"))
6499 return 1;
6500 }
6501
6502 /* If this is the dispatch table of a tagged type or an interface tag,
6503 then ignore. */
6504 if (ada_is_tagged_type (type, 1)
6505 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6506 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6507 return 1;
6508
6509 /* Not a special field, so it should not be ignored. */
6510 return 0;
6511 }
6512
6513 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6514 pointer or reference type whose ultimate target has a tag field. */
6515
6516 int
6517 ada_is_tagged_type (struct type *type, int refok)
6518 {
6519 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6520 }
6521
6522 /* True iff TYPE represents the type of X'Tag */
6523
6524 int
6525 ada_is_tag_type (struct type *type)
6526 {
6527 type = ada_check_typedef (type);
6528
6529 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6530 return 0;
6531 else
6532 {
6533 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6534
6535 return (name != NULL
6536 && strcmp (name, "ada__tags__dispatch_table") == 0);
6537 }
6538 }
6539
6540 /* The type of the tag on VAL. */
6541
6542 struct type *
6543 ada_tag_type (struct value *val)
6544 {
6545 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6546 }
6547
6548 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6549 retired at Ada 05). */
6550
6551 static int
6552 is_ada95_tag (struct value *tag)
6553 {
6554 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6555 }
6556
6557 /* The value of the tag on VAL. */
6558
6559 struct value *
6560 ada_value_tag (struct value *val)
6561 {
6562 return ada_value_struct_elt (val, "_tag", 0);
6563 }
6564
6565 /* The value of the tag on the object of type TYPE whose contents are
6566 saved at VALADDR, if it is non-null, or is at memory address
6567 ADDRESS. */
6568
6569 static struct value *
6570 value_tag_from_contents_and_address (struct type *type,
6571 const gdb_byte *valaddr,
6572 CORE_ADDR address)
6573 {
6574 int tag_byte_offset;
6575 struct type *tag_type;
6576
6577 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6578 NULL, NULL, NULL))
6579 {
6580 const gdb_byte *valaddr1 = ((valaddr == NULL)
6581 ? NULL
6582 : valaddr + tag_byte_offset);
6583 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6584
6585 return value_from_contents_and_address (tag_type, valaddr1, address1);
6586 }
6587 return NULL;
6588 }
6589
6590 static struct type *
6591 type_from_tag (struct value *tag)
6592 {
6593 const char *type_name = ada_tag_name (tag);
6594
6595 if (type_name != NULL)
6596 return ada_find_any_type (ada_encode (type_name));
6597 return NULL;
6598 }
6599
6600 /* Given a value OBJ of a tagged type, return a value of this
6601 type at the base address of the object. The base address, as
6602 defined in Ada.Tags, it is the address of the primary tag of
6603 the object, and therefore where the field values of its full
6604 view can be fetched. */
6605
6606 struct value *
6607 ada_tag_value_at_base_address (struct value *obj)
6608 {
6609 struct value *val;
6610 LONGEST offset_to_top = 0;
6611 struct type *ptr_type, *obj_type;
6612 struct value *tag;
6613 CORE_ADDR base_address;
6614
6615 obj_type = value_type (obj);
6616
6617 /* It is the responsability of the caller to deref pointers. */
6618
6619 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6620 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6621 return obj;
6622
6623 tag = ada_value_tag (obj);
6624 if (!tag)
6625 return obj;
6626
6627 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6628
6629 if (is_ada95_tag (tag))
6630 return obj;
6631
6632 ptr_type = language_lookup_primitive_type
6633 (language_def (language_ada), target_gdbarch(), "storage_offset");
6634 ptr_type = lookup_pointer_type (ptr_type);
6635 val = value_cast (ptr_type, tag);
6636 if (!val)
6637 return obj;
6638
6639 /* It is perfectly possible that an exception be raised while
6640 trying to determine the base address, just like for the tag;
6641 see ada_tag_name for more details. We do not print the error
6642 message for the same reason. */
6643
6644 try
6645 {
6646 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6647 }
6648
6649 catch (const gdb_exception_error &e)
6650 {
6651 return obj;
6652 }
6653
6654 /* If offset is null, nothing to do. */
6655
6656 if (offset_to_top == 0)
6657 return obj;
6658
6659 /* -1 is a special case in Ada.Tags; however, what should be done
6660 is not quite clear from the documentation. So do nothing for
6661 now. */
6662
6663 if (offset_to_top == -1)
6664 return obj;
6665
6666 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6667 from the base address. This was however incompatible with
6668 C++ dispatch table: C++ uses a *negative* value to *add*
6669 to the base address. Ada's convention has therefore been
6670 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6671 use the same convention. Here, we support both cases by
6672 checking the sign of OFFSET_TO_TOP. */
6673
6674 if (offset_to_top > 0)
6675 offset_to_top = -offset_to_top;
6676
6677 base_address = value_address (obj) + offset_to_top;
6678 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6679
6680 /* Make sure that we have a proper tag at the new address.
6681 Otherwise, offset_to_top is bogus (which can happen when
6682 the object is not initialized yet). */
6683
6684 if (!tag)
6685 return obj;
6686
6687 obj_type = type_from_tag (tag);
6688
6689 if (!obj_type)
6690 return obj;
6691
6692 return value_from_contents_and_address (obj_type, NULL, base_address);
6693 }
6694
6695 /* Return the "ada__tags__type_specific_data" type. */
6696
6697 static struct type *
6698 ada_get_tsd_type (struct inferior *inf)
6699 {
6700 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6701
6702 if (data->tsd_type == 0)
6703 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6704 return data->tsd_type;
6705 }
6706
6707 /* Return the TSD (type-specific data) associated to the given TAG.
6708 TAG is assumed to be the tag of a tagged-type entity.
6709
6710 May return NULL if we are unable to get the TSD. */
6711
6712 static struct value *
6713 ada_get_tsd_from_tag (struct value *tag)
6714 {
6715 struct value *val;
6716 struct type *type;
6717
6718 /* First option: The TSD is simply stored as a field of our TAG.
6719 Only older versions of GNAT would use this format, but we have
6720 to test it first, because there are no visible markers for
6721 the current approach except the absence of that field. */
6722
6723 val = ada_value_struct_elt (tag, "tsd", 1);
6724 if (val)
6725 return val;
6726
6727 /* Try the second representation for the dispatch table (in which
6728 there is no explicit 'tsd' field in the referent of the tag pointer,
6729 and instead the tsd pointer is stored just before the dispatch
6730 table. */
6731
6732 type = ada_get_tsd_type (current_inferior());
6733 if (type == NULL)
6734 return NULL;
6735 type = lookup_pointer_type (lookup_pointer_type (type));
6736 val = value_cast (type, tag);
6737 if (val == NULL)
6738 return NULL;
6739 return value_ind (value_ptradd (val, -1));
6740 }
6741
6742 /* Given the TSD of a tag (type-specific data), return a string
6743 containing the name of the associated type.
6744
6745 The returned value is good until the next call. May return NULL
6746 if we are unable to determine the tag name. */
6747
6748 static char *
6749 ada_tag_name_from_tsd (struct value *tsd)
6750 {
6751 static char name[1024];
6752 char *p;
6753 struct value *val;
6754
6755 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6756 if (val == NULL)
6757 return NULL;
6758 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6759 for (p = name; *p != '\0'; p += 1)
6760 if (isalpha (*p))
6761 *p = tolower (*p);
6762 return name;
6763 }
6764
6765 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6766 a C string.
6767
6768 Return NULL if the TAG is not an Ada tag, or if we were unable to
6769 determine the name of that tag. The result is good until the next
6770 call. */
6771
6772 const char *
6773 ada_tag_name (struct value *tag)
6774 {
6775 char *name = NULL;
6776
6777 if (!ada_is_tag_type (value_type (tag)))
6778 return NULL;
6779
6780 /* It is perfectly possible that an exception be raised while trying
6781 to determine the TAG's name, even under normal circumstances:
6782 The associated variable may be uninitialized or corrupted, for
6783 instance. We do not let any exception propagate past this point.
6784 instead we return NULL.
6785
6786 We also do not print the error message either (which often is very
6787 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6788 the caller print a more meaningful message if necessary. */
6789 try
6790 {
6791 struct value *tsd = ada_get_tsd_from_tag (tag);
6792
6793 if (tsd != NULL)
6794 name = ada_tag_name_from_tsd (tsd);
6795 }
6796 catch (const gdb_exception_error &e)
6797 {
6798 }
6799
6800 return name;
6801 }
6802
6803 /* The parent type of TYPE, or NULL if none. */
6804
6805 struct type *
6806 ada_parent_type (struct type *type)
6807 {
6808 int i;
6809
6810 type = ada_check_typedef (type);
6811
6812 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6813 return NULL;
6814
6815 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6816 if (ada_is_parent_field (type, i))
6817 {
6818 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6819
6820 /* If the _parent field is a pointer, then dereference it. */
6821 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6822 parent_type = TYPE_TARGET_TYPE (parent_type);
6823 /* If there is a parallel XVS type, get the actual base type. */
6824 parent_type = ada_get_base_type (parent_type);
6825
6826 return ada_check_typedef (parent_type);
6827 }
6828
6829 return NULL;
6830 }
6831
6832 /* True iff field number FIELD_NUM of structure type TYPE contains the
6833 parent-type (inherited) fields of a derived type. Assumes TYPE is
6834 a structure type with at least FIELD_NUM+1 fields. */
6835
6836 int
6837 ada_is_parent_field (struct type *type, int field_num)
6838 {
6839 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6840
6841 return (name != NULL
6842 && (startswith (name, "PARENT")
6843 || startswith (name, "_parent")));
6844 }
6845
6846 /* True iff field number FIELD_NUM of structure type TYPE is a
6847 transparent wrapper field (which should be silently traversed when doing
6848 field selection and flattened when printing). Assumes TYPE is a
6849 structure type with at least FIELD_NUM+1 fields. Such fields are always
6850 structures. */
6851
6852 int
6853 ada_is_wrapper_field (struct type *type, int field_num)
6854 {
6855 const char *name = TYPE_FIELD_NAME (type, field_num);
6856
6857 if (name != NULL && strcmp (name, "RETVAL") == 0)
6858 {
6859 /* This happens in functions with "out" or "in out" parameters
6860 which are passed by copy. For such functions, GNAT describes
6861 the function's return type as being a struct where the return
6862 value is in a field called RETVAL, and where the other "out"
6863 or "in out" parameters are fields of that struct. This is not
6864 a wrapper. */
6865 return 0;
6866 }
6867
6868 return (name != NULL
6869 && (startswith (name, "PARENT")
6870 || strcmp (name, "REP") == 0
6871 || startswith (name, "_parent")
6872 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6873 }
6874
6875 /* True iff field number FIELD_NUM of structure or union type TYPE
6876 is a variant wrapper. Assumes TYPE is a structure type with at least
6877 FIELD_NUM+1 fields. */
6878
6879 int
6880 ada_is_variant_part (struct type *type, int field_num)
6881 {
6882 /* Only Ada types are eligible. */
6883 if (!ADA_TYPE_P (type))
6884 return 0;
6885
6886 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6887
6888 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6889 || (is_dynamic_field (type, field_num)
6890 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6891 == TYPE_CODE_UNION)));
6892 }
6893
6894 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6895 whose discriminants are contained in the record type OUTER_TYPE,
6896 returns the type of the controlling discriminant for the variant.
6897 May return NULL if the type could not be found. */
6898
6899 struct type *
6900 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6901 {
6902 const char *name = ada_variant_discrim_name (var_type);
6903
6904 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6905 }
6906
6907 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6908 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6909 represents a 'when others' clause; otherwise 0. */
6910
6911 int
6912 ada_is_others_clause (struct type *type, int field_num)
6913 {
6914 const char *name = TYPE_FIELD_NAME (type, field_num);
6915
6916 return (name != NULL && name[0] == 'O');
6917 }
6918
6919 /* Assuming that TYPE0 is the type of the variant part of a record,
6920 returns the name of the discriminant controlling the variant.
6921 The value is valid until the next call to ada_variant_discrim_name. */
6922
6923 const char *
6924 ada_variant_discrim_name (struct type *type0)
6925 {
6926 static char *result = NULL;
6927 static size_t result_len = 0;
6928 struct type *type;
6929 const char *name;
6930 const char *discrim_end;
6931 const char *discrim_start;
6932
6933 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6934 type = TYPE_TARGET_TYPE (type0);
6935 else
6936 type = type0;
6937
6938 name = ada_type_name (type);
6939
6940 if (name == NULL || name[0] == '\000')
6941 return "";
6942
6943 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6944 discrim_end -= 1)
6945 {
6946 if (startswith (discrim_end, "___XVN"))
6947 break;
6948 }
6949 if (discrim_end == name)
6950 return "";
6951
6952 for (discrim_start = discrim_end; discrim_start != name + 3;
6953 discrim_start -= 1)
6954 {
6955 if (discrim_start == name + 1)
6956 return "";
6957 if ((discrim_start > name + 3
6958 && startswith (discrim_start - 3, "___"))
6959 || discrim_start[-1] == '.')
6960 break;
6961 }
6962
6963 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6964 strncpy (result, discrim_start, discrim_end - discrim_start);
6965 result[discrim_end - discrim_start] = '\0';
6966 return result;
6967 }
6968
6969 /* Scan STR for a subtype-encoded number, beginning at position K.
6970 Put the position of the character just past the number scanned in
6971 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6972 Return 1 if there was a valid number at the given position, and 0
6973 otherwise. A "subtype-encoded" number consists of the absolute value
6974 in decimal, followed by the letter 'm' to indicate a negative number.
6975 Assumes 0m does not occur. */
6976
6977 int
6978 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6979 {
6980 ULONGEST RU;
6981
6982 if (!isdigit (str[k]))
6983 return 0;
6984
6985 /* Do it the hard way so as not to make any assumption about
6986 the relationship of unsigned long (%lu scan format code) and
6987 LONGEST. */
6988 RU = 0;
6989 while (isdigit (str[k]))
6990 {
6991 RU = RU * 10 + (str[k] - '0');
6992 k += 1;
6993 }
6994
6995 if (str[k] == 'm')
6996 {
6997 if (R != NULL)
6998 *R = (-(LONGEST) (RU - 1)) - 1;
6999 k += 1;
7000 }
7001 else if (R != NULL)
7002 *R = (LONGEST) RU;
7003
7004 /* NOTE on the above: Technically, C does not say what the results of
7005 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7006 number representable as a LONGEST (although either would probably work
7007 in most implementations). When RU>0, the locution in the then branch
7008 above is always equivalent to the negative of RU. */
7009
7010 if (new_k != NULL)
7011 *new_k = k;
7012 return 1;
7013 }
7014
7015 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7016 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7017 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7018
7019 int
7020 ada_in_variant (LONGEST val, struct type *type, int field_num)
7021 {
7022 const char *name = TYPE_FIELD_NAME (type, field_num);
7023 int p;
7024
7025 p = 0;
7026 while (1)
7027 {
7028 switch (name[p])
7029 {
7030 case '\0':
7031 return 0;
7032 case 'S':
7033 {
7034 LONGEST W;
7035
7036 if (!ada_scan_number (name, p + 1, &W, &p))
7037 return 0;
7038 if (val == W)
7039 return 1;
7040 break;
7041 }
7042 case 'R':
7043 {
7044 LONGEST L, U;
7045
7046 if (!ada_scan_number (name, p + 1, &L, &p)
7047 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7048 return 0;
7049 if (val >= L && val <= U)
7050 return 1;
7051 break;
7052 }
7053 case 'O':
7054 return 1;
7055 default:
7056 return 0;
7057 }
7058 }
7059 }
7060
7061 /* FIXME: Lots of redundancy below. Try to consolidate. */
7062
7063 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7064 ARG_TYPE, extract and return the value of one of its (non-static)
7065 fields. FIELDNO says which field. Differs from value_primitive_field
7066 only in that it can handle packed values of arbitrary type. */
7067
7068 static struct value *
7069 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7070 struct type *arg_type)
7071 {
7072 struct type *type;
7073
7074 arg_type = ada_check_typedef (arg_type);
7075 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7076
7077 /* Handle packed fields. It might be that the field is not packed
7078 relative to its containing structure, but the structure itself is
7079 packed; in this case we must take the bit-field path. */
7080 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
7081 {
7082 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7083 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7084
7085 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7086 offset + bit_pos / 8,
7087 bit_pos % 8, bit_size, type);
7088 }
7089 else
7090 return value_primitive_field (arg1, offset, fieldno, arg_type);
7091 }
7092
7093 /* Find field with name NAME in object of type TYPE. If found,
7094 set the following for each argument that is non-null:
7095 - *FIELD_TYPE_P to the field's type;
7096 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7097 an object of that type;
7098 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7099 - *BIT_SIZE_P to its size in bits if the field is packed, and
7100 0 otherwise;
7101 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7102 fields up to but not including the desired field, or by the total
7103 number of fields if not found. A NULL value of NAME never
7104 matches; the function just counts visible fields in this case.
7105
7106 Notice that we need to handle when a tagged record hierarchy
7107 has some components with the same name, like in this scenario:
7108
7109 type Top_T is tagged record
7110 N : Integer := 1;
7111 U : Integer := 974;
7112 A : Integer := 48;
7113 end record;
7114
7115 type Middle_T is new Top.Top_T with record
7116 N : Character := 'a';
7117 C : Integer := 3;
7118 end record;
7119
7120 type Bottom_T is new Middle.Middle_T with record
7121 N : Float := 4.0;
7122 C : Character := '5';
7123 X : Integer := 6;
7124 A : Character := 'J';
7125 end record;
7126
7127 Let's say we now have a variable declared and initialized as follow:
7128
7129 TC : Top_A := new Bottom_T;
7130
7131 And then we use this variable to call this function
7132
7133 procedure Assign (Obj: in out Top_T; TV : Integer);
7134
7135 as follow:
7136
7137 Assign (Top_T (B), 12);
7138
7139 Now, we're in the debugger, and we're inside that procedure
7140 then and we want to print the value of obj.c:
7141
7142 Usually, the tagged record or one of the parent type owns the
7143 component to print and there's no issue but in this particular
7144 case, what does it mean to ask for Obj.C? Since the actual
7145 type for object is type Bottom_T, it could mean two things: type
7146 component C from the Middle_T view, but also component C from
7147 Bottom_T. So in that "undefined" case, when the component is
7148 not found in the non-resolved type (which includes all the
7149 components of the parent type), then resolve it and see if we
7150 get better luck once expanded.
7151
7152 In the case of homonyms in the derived tagged type, we don't
7153 guaranty anything, and pick the one that's easiest for us
7154 to program.
7155
7156 Returns 1 if found, 0 otherwise. */
7157
7158 static int
7159 find_struct_field (const char *name, struct type *type, int offset,
7160 struct type **field_type_p,
7161 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7162 int *index_p)
7163 {
7164 int i;
7165 int parent_offset = -1;
7166
7167 type = ada_check_typedef (type);
7168
7169 if (field_type_p != NULL)
7170 *field_type_p = NULL;
7171 if (byte_offset_p != NULL)
7172 *byte_offset_p = 0;
7173 if (bit_offset_p != NULL)
7174 *bit_offset_p = 0;
7175 if (bit_size_p != NULL)
7176 *bit_size_p = 0;
7177
7178 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7179 {
7180 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7181 int fld_offset = offset + bit_pos / 8;
7182 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7183
7184 if (t_field_name == NULL)
7185 continue;
7186
7187 else if (ada_is_parent_field (type, i))
7188 {
7189 /* This is a field pointing us to the parent type of a tagged
7190 type. As hinted in this function's documentation, we give
7191 preference to fields in the current record first, so what
7192 we do here is just record the index of this field before
7193 we skip it. If it turns out we couldn't find our field
7194 in the current record, then we'll get back to it and search
7195 inside it whether the field might exist in the parent. */
7196
7197 parent_offset = i;
7198 continue;
7199 }
7200
7201 else if (name != NULL && field_name_match (t_field_name, name))
7202 {
7203 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7204
7205 if (field_type_p != NULL)
7206 *field_type_p = TYPE_FIELD_TYPE (type, i);
7207 if (byte_offset_p != NULL)
7208 *byte_offset_p = fld_offset;
7209 if (bit_offset_p != NULL)
7210 *bit_offset_p = bit_pos % 8;
7211 if (bit_size_p != NULL)
7212 *bit_size_p = bit_size;
7213 return 1;
7214 }
7215 else if (ada_is_wrapper_field (type, i))
7216 {
7217 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7218 field_type_p, byte_offset_p, bit_offset_p,
7219 bit_size_p, index_p))
7220 return 1;
7221 }
7222 else if (ada_is_variant_part (type, i))
7223 {
7224 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7225 fixed type?? */
7226 int j;
7227 struct type *field_type
7228 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7229
7230 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7231 {
7232 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7233 fld_offset
7234 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7235 field_type_p, byte_offset_p,
7236 bit_offset_p, bit_size_p, index_p))
7237 return 1;
7238 }
7239 }
7240 else if (index_p != NULL)
7241 *index_p += 1;
7242 }
7243
7244 /* Field not found so far. If this is a tagged type which
7245 has a parent, try finding that field in the parent now. */
7246
7247 if (parent_offset != -1)
7248 {
7249 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7250 int fld_offset = offset + bit_pos / 8;
7251
7252 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7253 fld_offset, field_type_p, byte_offset_p,
7254 bit_offset_p, bit_size_p, index_p))
7255 return 1;
7256 }
7257
7258 return 0;
7259 }
7260
7261 /* Number of user-visible fields in record type TYPE. */
7262
7263 static int
7264 num_visible_fields (struct type *type)
7265 {
7266 int n;
7267
7268 n = 0;
7269 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7270 return n;
7271 }
7272
7273 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7274 and search in it assuming it has (class) type TYPE.
7275 If found, return value, else return NULL.
7276
7277 Searches recursively through wrapper fields (e.g., '_parent').
7278
7279 In the case of homonyms in the tagged types, please refer to the
7280 long explanation in find_struct_field's function documentation. */
7281
7282 static struct value *
7283 ada_search_struct_field (const char *name, struct value *arg, int offset,
7284 struct type *type)
7285 {
7286 int i;
7287 int parent_offset = -1;
7288
7289 type = ada_check_typedef (type);
7290 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7291 {
7292 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7293
7294 if (t_field_name == NULL)
7295 continue;
7296
7297 else if (ada_is_parent_field (type, i))
7298 {
7299 /* This is a field pointing us to the parent type of a tagged
7300 type. As hinted in this function's documentation, we give
7301 preference to fields in the current record first, so what
7302 we do here is just record the index of this field before
7303 we skip it. If it turns out we couldn't find our field
7304 in the current record, then we'll get back to it and search
7305 inside it whether the field might exist in the parent. */
7306
7307 parent_offset = i;
7308 continue;
7309 }
7310
7311 else if (field_name_match (t_field_name, name))
7312 return ada_value_primitive_field (arg, offset, i, type);
7313
7314 else if (ada_is_wrapper_field (type, i))
7315 {
7316 struct value *v = /* Do not let indent join lines here. */
7317 ada_search_struct_field (name, arg,
7318 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7319 TYPE_FIELD_TYPE (type, i));
7320
7321 if (v != NULL)
7322 return v;
7323 }
7324
7325 else if (ada_is_variant_part (type, i))
7326 {
7327 /* PNH: Do we ever get here? See find_struct_field. */
7328 int j;
7329 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7330 i));
7331 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7332
7333 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7334 {
7335 struct value *v = ada_search_struct_field /* Force line
7336 break. */
7337 (name, arg,
7338 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7339 TYPE_FIELD_TYPE (field_type, j));
7340
7341 if (v != NULL)
7342 return v;
7343 }
7344 }
7345 }
7346
7347 /* Field not found so far. If this is a tagged type which
7348 has a parent, try finding that field in the parent now. */
7349
7350 if (parent_offset != -1)
7351 {
7352 struct value *v = ada_search_struct_field (
7353 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7354 TYPE_FIELD_TYPE (type, parent_offset));
7355
7356 if (v != NULL)
7357 return v;
7358 }
7359
7360 return NULL;
7361 }
7362
7363 static struct value *ada_index_struct_field_1 (int *, struct value *,
7364 int, struct type *);
7365
7366
7367 /* Return field #INDEX in ARG, where the index is that returned by
7368 * find_struct_field through its INDEX_P argument. Adjust the address
7369 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7370 * If found, return value, else return NULL. */
7371
7372 static struct value *
7373 ada_index_struct_field (int index, struct value *arg, int offset,
7374 struct type *type)
7375 {
7376 return ada_index_struct_field_1 (&index, arg, offset, type);
7377 }
7378
7379
7380 /* Auxiliary function for ada_index_struct_field. Like
7381 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7382 * *INDEX_P. */
7383
7384 static struct value *
7385 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7386 struct type *type)
7387 {
7388 int i;
7389 type = ada_check_typedef (type);
7390
7391 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7392 {
7393 if (TYPE_FIELD_NAME (type, i) == NULL)
7394 continue;
7395 else if (ada_is_wrapper_field (type, i))
7396 {
7397 struct value *v = /* Do not let indent join lines here. */
7398 ada_index_struct_field_1 (index_p, arg,
7399 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7400 TYPE_FIELD_TYPE (type, i));
7401
7402 if (v != NULL)
7403 return v;
7404 }
7405
7406 else if (ada_is_variant_part (type, i))
7407 {
7408 /* PNH: Do we ever get here? See ada_search_struct_field,
7409 find_struct_field. */
7410 error (_("Cannot assign this kind of variant record"));
7411 }
7412 else if (*index_p == 0)
7413 return ada_value_primitive_field (arg, offset, i, type);
7414 else
7415 *index_p -= 1;
7416 }
7417 return NULL;
7418 }
7419
7420 /* Given ARG, a value of type (pointer or reference to a)*
7421 structure/union, extract the component named NAME from the ultimate
7422 target structure/union and return it as a value with its
7423 appropriate type.
7424
7425 The routine searches for NAME among all members of the structure itself
7426 and (recursively) among all members of any wrapper members
7427 (e.g., '_parent').
7428
7429 If NO_ERR, then simply return NULL in case of error, rather than
7430 calling error. */
7431
7432 struct value *
7433 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7434 {
7435 struct type *t, *t1;
7436 struct value *v;
7437 int check_tag;
7438
7439 v = NULL;
7440 t1 = t = ada_check_typedef (value_type (arg));
7441 if (TYPE_CODE (t) == TYPE_CODE_REF)
7442 {
7443 t1 = TYPE_TARGET_TYPE (t);
7444 if (t1 == NULL)
7445 goto BadValue;
7446 t1 = ada_check_typedef (t1);
7447 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7448 {
7449 arg = coerce_ref (arg);
7450 t = t1;
7451 }
7452 }
7453
7454 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7455 {
7456 t1 = TYPE_TARGET_TYPE (t);
7457 if (t1 == NULL)
7458 goto BadValue;
7459 t1 = ada_check_typedef (t1);
7460 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7461 {
7462 arg = value_ind (arg);
7463 t = t1;
7464 }
7465 else
7466 break;
7467 }
7468
7469 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7470 goto BadValue;
7471
7472 if (t1 == t)
7473 v = ada_search_struct_field (name, arg, 0, t);
7474 else
7475 {
7476 int bit_offset, bit_size, byte_offset;
7477 struct type *field_type;
7478 CORE_ADDR address;
7479
7480 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7481 address = value_address (ada_value_ind (arg));
7482 else
7483 address = value_address (ada_coerce_ref (arg));
7484
7485 /* Check to see if this is a tagged type. We also need to handle
7486 the case where the type is a reference to a tagged type, but
7487 we have to be careful to exclude pointers to tagged types.
7488 The latter should be shown as usual (as a pointer), whereas
7489 a reference should mostly be transparent to the user. */
7490
7491 if (ada_is_tagged_type (t1, 0)
7492 || (TYPE_CODE (t1) == TYPE_CODE_REF
7493 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7494 {
7495 /* We first try to find the searched field in the current type.
7496 If not found then let's look in the fixed type. */
7497
7498 if (!find_struct_field (name, t1, 0,
7499 &field_type, &byte_offset, &bit_offset,
7500 &bit_size, NULL))
7501 check_tag = 1;
7502 else
7503 check_tag = 0;
7504 }
7505 else
7506 check_tag = 0;
7507
7508 /* Convert to fixed type in all cases, so that we have proper
7509 offsets to each field in unconstrained record types. */
7510 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7511 address, NULL, check_tag);
7512
7513 if (find_struct_field (name, t1, 0,
7514 &field_type, &byte_offset, &bit_offset,
7515 &bit_size, NULL))
7516 {
7517 if (bit_size != 0)
7518 {
7519 if (TYPE_CODE (t) == TYPE_CODE_REF)
7520 arg = ada_coerce_ref (arg);
7521 else
7522 arg = ada_value_ind (arg);
7523 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7524 bit_offset, bit_size,
7525 field_type);
7526 }
7527 else
7528 v = value_at_lazy (field_type, address + byte_offset);
7529 }
7530 }
7531
7532 if (v != NULL || no_err)
7533 return v;
7534 else
7535 error (_("There is no member named %s."), name);
7536
7537 BadValue:
7538 if (no_err)
7539 return NULL;
7540 else
7541 error (_("Attempt to extract a component of "
7542 "a value that is not a record."));
7543 }
7544
7545 /* Return a string representation of type TYPE. */
7546
7547 static std::string
7548 type_as_string (struct type *type)
7549 {
7550 string_file tmp_stream;
7551
7552 type_print (type, "", &tmp_stream, -1);
7553
7554 return std::move (tmp_stream.string ());
7555 }
7556
7557 /* Given a type TYPE, look up the type of the component of type named NAME.
7558 If DISPP is non-null, add its byte displacement from the beginning of a
7559 structure (pointed to by a value) of type TYPE to *DISPP (does not
7560 work for packed fields).
7561
7562 Matches any field whose name has NAME as a prefix, possibly
7563 followed by "___".
7564
7565 TYPE can be either a struct or union. If REFOK, TYPE may also
7566 be a (pointer or reference)+ to a struct or union, and the
7567 ultimate target type will be searched.
7568
7569 Looks recursively into variant clauses and parent types.
7570
7571 In the case of homonyms in the tagged types, please refer to the
7572 long explanation in find_struct_field's function documentation.
7573
7574 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7575 TYPE is not a type of the right kind. */
7576
7577 static struct type *
7578 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7579 int noerr)
7580 {
7581 int i;
7582 int parent_offset = -1;
7583
7584 if (name == NULL)
7585 goto BadName;
7586
7587 if (refok && type != NULL)
7588 while (1)
7589 {
7590 type = ada_check_typedef (type);
7591 if (TYPE_CODE (type) != TYPE_CODE_PTR
7592 && TYPE_CODE (type) != TYPE_CODE_REF)
7593 break;
7594 type = TYPE_TARGET_TYPE (type);
7595 }
7596
7597 if (type == NULL
7598 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7599 && TYPE_CODE (type) != TYPE_CODE_UNION))
7600 {
7601 if (noerr)
7602 return NULL;
7603
7604 error (_("Type %s is not a structure or union type"),
7605 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7606 }
7607
7608 type = to_static_fixed_type (type);
7609
7610 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7611 {
7612 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7613 struct type *t;
7614
7615 if (t_field_name == NULL)
7616 continue;
7617
7618 else if (ada_is_parent_field (type, i))
7619 {
7620 /* This is a field pointing us to the parent type of a tagged
7621 type. As hinted in this function's documentation, we give
7622 preference to fields in the current record first, so what
7623 we do here is just record the index of this field before
7624 we skip it. If it turns out we couldn't find our field
7625 in the current record, then we'll get back to it and search
7626 inside it whether the field might exist in the parent. */
7627
7628 parent_offset = i;
7629 continue;
7630 }
7631
7632 else if (field_name_match (t_field_name, name))
7633 return TYPE_FIELD_TYPE (type, i);
7634
7635 else if (ada_is_wrapper_field (type, i))
7636 {
7637 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7638 0, 1);
7639 if (t != NULL)
7640 return t;
7641 }
7642
7643 else if (ada_is_variant_part (type, i))
7644 {
7645 int j;
7646 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7647 i));
7648
7649 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7650 {
7651 /* FIXME pnh 2008/01/26: We check for a field that is
7652 NOT wrapped in a struct, since the compiler sometimes
7653 generates these for unchecked variant types. Revisit
7654 if the compiler changes this practice. */
7655 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7656
7657 if (v_field_name != NULL
7658 && field_name_match (v_field_name, name))
7659 t = TYPE_FIELD_TYPE (field_type, j);
7660 else
7661 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7662 j),
7663 name, 0, 1);
7664
7665 if (t != NULL)
7666 return t;
7667 }
7668 }
7669
7670 }
7671
7672 /* Field not found so far. If this is a tagged type which
7673 has a parent, try finding that field in the parent now. */
7674
7675 if (parent_offset != -1)
7676 {
7677 struct type *t;
7678
7679 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7680 name, 0, 1);
7681 if (t != NULL)
7682 return t;
7683 }
7684
7685 BadName:
7686 if (!noerr)
7687 {
7688 const char *name_str = name != NULL ? name : _("<null>");
7689
7690 error (_("Type %s has no component named %s"),
7691 type_as_string (type).c_str (), name_str);
7692 }
7693
7694 return NULL;
7695 }
7696
7697 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7698 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7699 represents an unchecked union (that is, the variant part of a
7700 record that is named in an Unchecked_Union pragma). */
7701
7702 static int
7703 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7704 {
7705 const char *discrim_name = ada_variant_discrim_name (var_type);
7706
7707 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7708 }
7709
7710
7711 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7712 within a value of type OUTER_TYPE that is stored in GDB at
7713 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7714 numbering from 0) is applicable. Returns -1 if none are. */
7715
7716 int
7717 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7718 const gdb_byte *outer_valaddr)
7719 {
7720 int others_clause;
7721 int i;
7722 const char *discrim_name = ada_variant_discrim_name (var_type);
7723 struct value *outer;
7724 struct value *discrim;
7725 LONGEST discrim_val;
7726
7727 /* Using plain value_from_contents_and_address here causes problems
7728 because we will end up trying to resolve a type that is currently
7729 being constructed. */
7730 outer = value_from_contents_and_address_unresolved (outer_type,
7731 outer_valaddr, 0);
7732 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7733 if (discrim == NULL)
7734 return -1;
7735 discrim_val = value_as_long (discrim);
7736
7737 others_clause = -1;
7738 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7739 {
7740 if (ada_is_others_clause (var_type, i))
7741 others_clause = i;
7742 else if (ada_in_variant (discrim_val, var_type, i))
7743 return i;
7744 }
7745
7746 return others_clause;
7747 }
7748 \f
7749
7750
7751 /* Dynamic-Sized Records */
7752
7753 /* Strategy: The type ostensibly attached to a value with dynamic size
7754 (i.e., a size that is not statically recorded in the debugging
7755 data) does not accurately reflect the size or layout of the value.
7756 Our strategy is to convert these values to values with accurate,
7757 conventional types that are constructed on the fly. */
7758
7759 /* There is a subtle and tricky problem here. In general, we cannot
7760 determine the size of dynamic records without its data. However,
7761 the 'struct value' data structure, which GDB uses to represent
7762 quantities in the inferior process (the target), requires the size
7763 of the type at the time of its allocation in order to reserve space
7764 for GDB's internal copy of the data. That's why the
7765 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7766 rather than struct value*s.
7767
7768 However, GDB's internal history variables ($1, $2, etc.) are
7769 struct value*s containing internal copies of the data that are not, in
7770 general, the same as the data at their corresponding addresses in
7771 the target. Fortunately, the types we give to these values are all
7772 conventional, fixed-size types (as per the strategy described
7773 above), so that we don't usually have to perform the
7774 'to_fixed_xxx_type' conversions to look at their values.
7775 Unfortunately, there is one exception: if one of the internal
7776 history variables is an array whose elements are unconstrained
7777 records, then we will need to create distinct fixed types for each
7778 element selected. */
7779
7780 /* The upshot of all of this is that many routines take a (type, host
7781 address, target address) triple as arguments to represent a value.
7782 The host address, if non-null, is supposed to contain an internal
7783 copy of the relevant data; otherwise, the program is to consult the
7784 target at the target address. */
7785
7786 /* Assuming that VAL0 represents a pointer value, the result of
7787 dereferencing it. Differs from value_ind in its treatment of
7788 dynamic-sized types. */
7789
7790 struct value *
7791 ada_value_ind (struct value *val0)
7792 {
7793 struct value *val = value_ind (val0);
7794
7795 if (ada_is_tagged_type (value_type (val), 0))
7796 val = ada_tag_value_at_base_address (val);
7797
7798 return ada_to_fixed_value (val);
7799 }
7800
7801 /* The value resulting from dereferencing any "reference to"
7802 qualifiers on VAL0. */
7803
7804 static struct value *
7805 ada_coerce_ref (struct value *val0)
7806 {
7807 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7808 {
7809 struct value *val = val0;
7810
7811 val = coerce_ref (val);
7812
7813 if (ada_is_tagged_type (value_type (val), 0))
7814 val = ada_tag_value_at_base_address (val);
7815
7816 return ada_to_fixed_value (val);
7817 }
7818 else
7819 return val0;
7820 }
7821
7822 /* Return OFF rounded upward if necessary to a multiple of
7823 ALIGNMENT (a power of 2). */
7824
7825 static unsigned int
7826 align_value (unsigned int off, unsigned int alignment)
7827 {
7828 return (off + alignment - 1) & ~(alignment - 1);
7829 }
7830
7831 /* Return the bit alignment required for field #F of template type TYPE. */
7832
7833 static unsigned int
7834 field_alignment (struct type *type, int f)
7835 {
7836 const char *name = TYPE_FIELD_NAME (type, f);
7837 int len;
7838 int align_offset;
7839
7840 /* The field name should never be null, unless the debugging information
7841 is somehow malformed. In this case, we assume the field does not
7842 require any alignment. */
7843 if (name == NULL)
7844 return 1;
7845
7846 len = strlen (name);
7847
7848 if (!isdigit (name[len - 1]))
7849 return 1;
7850
7851 if (isdigit (name[len - 2]))
7852 align_offset = len - 2;
7853 else
7854 align_offset = len - 1;
7855
7856 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7857 return TARGET_CHAR_BIT;
7858
7859 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7860 }
7861
7862 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7863
7864 static struct symbol *
7865 ada_find_any_type_symbol (const char *name)
7866 {
7867 struct symbol *sym;
7868
7869 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7870 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7871 return sym;
7872
7873 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7874 return sym;
7875 }
7876
7877 /* Find a type named NAME. Ignores ambiguity. This routine will look
7878 solely for types defined by debug info, it will not search the GDB
7879 primitive types. */
7880
7881 static struct type *
7882 ada_find_any_type (const char *name)
7883 {
7884 struct symbol *sym = ada_find_any_type_symbol (name);
7885
7886 if (sym != NULL)
7887 return SYMBOL_TYPE (sym);
7888
7889 return NULL;
7890 }
7891
7892 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7893 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7894 symbol, in which case it is returned. Otherwise, this looks for
7895 symbols whose name is that of NAME_SYM suffixed with "___XR".
7896 Return symbol if found, and NULL otherwise. */
7897
7898 static bool
7899 ada_is_renaming_symbol (struct symbol *name_sym)
7900 {
7901 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7902 return strstr (name, "___XR") != NULL;
7903 }
7904
7905 /* Because of GNAT encoding conventions, several GDB symbols may match a
7906 given type name. If the type denoted by TYPE0 is to be preferred to
7907 that of TYPE1 for purposes of type printing, return non-zero;
7908 otherwise return 0. */
7909
7910 int
7911 ada_prefer_type (struct type *type0, struct type *type1)
7912 {
7913 if (type1 == NULL)
7914 return 1;
7915 else if (type0 == NULL)
7916 return 0;
7917 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7918 return 1;
7919 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7920 return 0;
7921 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7922 return 1;
7923 else if (ada_is_constrained_packed_array_type (type0))
7924 return 1;
7925 else if (ada_is_array_descriptor_type (type0)
7926 && !ada_is_array_descriptor_type (type1))
7927 return 1;
7928 else
7929 {
7930 const char *type0_name = TYPE_NAME (type0);
7931 const char *type1_name = TYPE_NAME (type1);
7932
7933 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7934 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7935 return 1;
7936 }
7937 return 0;
7938 }
7939
7940 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7941 null. */
7942
7943 const char *
7944 ada_type_name (struct type *type)
7945 {
7946 if (type == NULL)
7947 return NULL;
7948 return TYPE_NAME (type);
7949 }
7950
7951 /* Search the list of "descriptive" types associated to TYPE for a type
7952 whose name is NAME. */
7953
7954 static struct type *
7955 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7956 {
7957 struct type *result, *tmp;
7958
7959 if (ada_ignore_descriptive_types_p)
7960 return NULL;
7961
7962 /* If there no descriptive-type info, then there is no parallel type
7963 to be found. */
7964 if (!HAVE_GNAT_AUX_INFO (type))
7965 return NULL;
7966
7967 result = TYPE_DESCRIPTIVE_TYPE (type);
7968 while (result != NULL)
7969 {
7970 const char *result_name = ada_type_name (result);
7971
7972 if (result_name == NULL)
7973 {
7974 warning (_("unexpected null name on descriptive type"));
7975 return NULL;
7976 }
7977
7978 /* If the names match, stop. */
7979 if (strcmp (result_name, name) == 0)
7980 break;
7981
7982 /* Otherwise, look at the next item on the list, if any. */
7983 if (HAVE_GNAT_AUX_INFO (result))
7984 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7985 else
7986 tmp = NULL;
7987
7988 /* If not found either, try after having resolved the typedef. */
7989 if (tmp != NULL)
7990 result = tmp;
7991 else
7992 {
7993 result = check_typedef (result);
7994 if (HAVE_GNAT_AUX_INFO (result))
7995 result = TYPE_DESCRIPTIVE_TYPE (result);
7996 else
7997 result = NULL;
7998 }
7999 }
8000
8001 /* If we didn't find a match, see whether this is a packed array. With
8002 older compilers, the descriptive type information is either absent or
8003 irrelevant when it comes to packed arrays so the above lookup fails.
8004 Fall back to using a parallel lookup by name in this case. */
8005 if (result == NULL && ada_is_constrained_packed_array_type (type))
8006 return ada_find_any_type (name);
8007
8008 return result;
8009 }
8010
8011 /* Find a parallel type to TYPE with the specified NAME, using the
8012 descriptive type taken from the debugging information, if available,
8013 and otherwise using the (slower) name-based method. */
8014
8015 static struct type *
8016 ada_find_parallel_type_with_name (struct type *type, const char *name)
8017 {
8018 struct type *result = NULL;
8019
8020 if (HAVE_GNAT_AUX_INFO (type))
8021 result = find_parallel_type_by_descriptive_type (type, name);
8022 else
8023 result = ada_find_any_type (name);
8024
8025 return result;
8026 }
8027
8028 /* Same as above, but specify the name of the parallel type by appending
8029 SUFFIX to the name of TYPE. */
8030
8031 struct type *
8032 ada_find_parallel_type (struct type *type, const char *suffix)
8033 {
8034 char *name;
8035 const char *type_name = ada_type_name (type);
8036 int len;
8037
8038 if (type_name == NULL)
8039 return NULL;
8040
8041 len = strlen (type_name);
8042
8043 name = (char *) alloca (len + strlen (suffix) + 1);
8044
8045 strcpy (name, type_name);
8046 strcpy (name + len, suffix);
8047
8048 return ada_find_parallel_type_with_name (type, name);
8049 }
8050
8051 /* If TYPE is a variable-size record type, return the corresponding template
8052 type describing its fields. Otherwise, return NULL. */
8053
8054 static struct type *
8055 dynamic_template_type (struct type *type)
8056 {
8057 type = ada_check_typedef (type);
8058
8059 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8060 || ada_type_name (type) == NULL)
8061 return NULL;
8062 else
8063 {
8064 int len = strlen (ada_type_name (type));
8065
8066 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8067 return type;
8068 else
8069 return ada_find_parallel_type (type, "___XVE");
8070 }
8071 }
8072
8073 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8074 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8075
8076 static int
8077 is_dynamic_field (struct type *templ_type, int field_num)
8078 {
8079 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8080
8081 return name != NULL
8082 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8083 && strstr (name, "___XVL") != NULL;
8084 }
8085
8086 /* The index of the variant field of TYPE, or -1 if TYPE does not
8087 represent a variant record type. */
8088
8089 static int
8090 variant_field_index (struct type *type)
8091 {
8092 int f;
8093
8094 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8095 return -1;
8096
8097 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8098 {
8099 if (ada_is_variant_part (type, f))
8100 return f;
8101 }
8102 return -1;
8103 }
8104
8105 /* A record type with no fields. */
8106
8107 static struct type *
8108 empty_record (struct type *templ)
8109 {
8110 struct type *type = alloc_type_copy (templ);
8111
8112 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8113 TYPE_NFIELDS (type) = 0;
8114 TYPE_FIELDS (type) = NULL;
8115 INIT_NONE_SPECIFIC (type);
8116 TYPE_NAME (type) = "<empty>";
8117 TYPE_LENGTH (type) = 0;
8118 return type;
8119 }
8120
8121 /* An ordinary record type (with fixed-length fields) that describes
8122 the value of type TYPE at VALADDR or ADDRESS (see comments at
8123 the beginning of this section) VAL according to GNAT conventions.
8124 DVAL0 should describe the (portion of a) record that contains any
8125 necessary discriminants. It should be NULL if value_type (VAL) is
8126 an outer-level type (i.e., as opposed to a branch of a variant.) A
8127 variant field (unless unchecked) is replaced by a particular branch
8128 of the variant.
8129
8130 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8131 length are not statically known are discarded. As a consequence,
8132 VALADDR, ADDRESS and DVAL0 are ignored.
8133
8134 NOTE: Limitations: For now, we assume that dynamic fields and
8135 variants occupy whole numbers of bytes. However, they need not be
8136 byte-aligned. */
8137
8138 struct type *
8139 ada_template_to_fixed_record_type_1 (struct type *type,
8140 const gdb_byte *valaddr,
8141 CORE_ADDR address, struct value *dval0,
8142 int keep_dynamic_fields)
8143 {
8144 struct value *mark = value_mark ();
8145 struct value *dval;
8146 struct type *rtype;
8147 int nfields, bit_len;
8148 int variant_field;
8149 long off;
8150 int fld_bit_len;
8151 int f;
8152
8153 /* Compute the number of fields in this record type that are going
8154 to be processed: unless keep_dynamic_fields, this includes only
8155 fields whose position and length are static will be processed. */
8156 if (keep_dynamic_fields)
8157 nfields = TYPE_NFIELDS (type);
8158 else
8159 {
8160 nfields = 0;
8161 while (nfields < TYPE_NFIELDS (type)
8162 && !ada_is_variant_part (type, nfields)
8163 && !is_dynamic_field (type, nfields))
8164 nfields++;
8165 }
8166
8167 rtype = alloc_type_copy (type);
8168 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8169 INIT_NONE_SPECIFIC (rtype);
8170 TYPE_NFIELDS (rtype) = nfields;
8171 TYPE_FIELDS (rtype) = (struct field *)
8172 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8173 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8174 TYPE_NAME (rtype) = ada_type_name (type);
8175 TYPE_FIXED_INSTANCE (rtype) = 1;
8176
8177 off = 0;
8178 bit_len = 0;
8179 variant_field = -1;
8180
8181 for (f = 0; f < nfields; f += 1)
8182 {
8183 off = align_value (off, field_alignment (type, f))
8184 + TYPE_FIELD_BITPOS (type, f);
8185 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8186 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8187
8188 if (ada_is_variant_part (type, f))
8189 {
8190 variant_field = f;
8191 fld_bit_len = 0;
8192 }
8193 else if (is_dynamic_field (type, f))
8194 {
8195 const gdb_byte *field_valaddr = valaddr;
8196 CORE_ADDR field_address = address;
8197 struct type *field_type =
8198 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8199
8200 if (dval0 == NULL)
8201 {
8202 /* rtype's length is computed based on the run-time
8203 value of discriminants. If the discriminants are not
8204 initialized, the type size may be completely bogus and
8205 GDB may fail to allocate a value for it. So check the
8206 size first before creating the value. */
8207 ada_ensure_varsize_limit (rtype);
8208 /* Using plain value_from_contents_and_address here
8209 causes problems because we will end up trying to
8210 resolve a type that is currently being
8211 constructed. */
8212 dval = value_from_contents_and_address_unresolved (rtype,
8213 valaddr,
8214 address);
8215 rtype = value_type (dval);
8216 }
8217 else
8218 dval = dval0;
8219
8220 /* If the type referenced by this field is an aligner type, we need
8221 to unwrap that aligner type, because its size might not be set.
8222 Keeping the aligner type would cause us to compute the wrong
8223 size for this field, impacting the offset of the all the fields
8224 that follow this one. */
8225 if (ada_is_aligner_type (field_type))
8226 {
8227 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8228
8229 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8230 field_address = cond_offset_target (field_address, field_offset);
8231 field_type = ada_aligned_type (field_type);
8232 }
8233
8234 field_valaddr = cond_offset_host (field_valaddr,
8235 off / TARGET_CHAR_BIT);
8236 field_address = cond_offset_target (field_address,
8237 off / TARGET_CHAR_BIT);
8238
8239 /* Get the fixed type of the field. Note that, in this case,
8240 we do not want to get the real type out of the tag: if
8241 the current field is the parent part of a tagged record,
8242 we will get the tag of the object. Clearly wrong: the real
8243 type of the parent is not the real type of the child. We
8244 would end up in an infinite loop. */
8245 field_type = ada_get_base_type (field_type);
8246 field_type = ada_to_fixed_type (field_type, field_valaddr,
8247 field_address, dval, 0);
8248 /* If the field size is already larger than the maximum
8249 object size, then the record itself will necessarily
8250 be larger than the maximum object size. We need to make
8251 this check now, because the size might be so ridiculously
8252 large (due to an uninitialized variable in the inferior)
8253 that it would cause an overflow when adding it to the
8254 record size. */
8255 ada_ensure_varsize_limit (field_type);
8256
8257 TYPE_FIELD_TYPE (rtype, f) = field_type;
8258 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8259 /* The multiplication can potentially overflow. But because
8260 the field length has been size-checked just above, and
8261 assuming that the maximum size is a reasonable value,
8262 an overflow should not happen in practice. So rather than
8263 adding overflow recovery code to this already complex code,
8264 we just assume that it's not going to happen. */
8265 fld_bit_len =
8266 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8267 }
8268 else
8269 {
8270 /* Note: If this field's type is a typedef, it is important
8271 to preserve the typedef layer.
8272
8273 Otherwise, we might be transforming a typedef to a fat
8274 pointer (encoding a pointer to an unconstrained array),
8275 into a basic fat pointer (encoding an unconstrained
8276 array). As both types are implemented using the same
8277 structure, the typedef is the only clue which allows us
8278 to distinguish between the two options. Stripping it
8279 would prevent us from printing this field appropriately. */
8280 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8281 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8282 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8283 fld_bit_len =
8284 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8285 else
8286 {
8287 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8288
8289 /* We need to be careful of typedefs when computing
8290 the length of our field. If this is a typedef,
8291 get the length of the target type, not the length
8292 of the typedef. */
8293 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8294 field_type = ada_typedef_target_type (field_type);
8295
8296 fld_bit_len =
8297 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8298 }
8299 }
8300 if (off + fld_bit_len > bit_len)
8301 bit_len = off + fld_bit_len;
8302 off += fld_bit_len;
8303 TYPE_LENGTH (rtype) =
8304 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8305 }
8306
8307 /* We handle the variant part, if any, at the end because of certain
8308 odd cases in which it is re-ordered so as NOT to be the last field of
8309 the record. This can happen in the presence of representation
8310 clauses. */
8311 if (variant_field >= 0)
8312 {
8313 struct type *branch_type;
8314
8315 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8316
8317 if (dval0 == NULL)
8318 {
8319 /* Using plain value_from_contents_and_address here causes
8320 problems because we will end up trying to resolve a type
8321 that is currently being constructed. */
8322 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8323 address);
8324 rtype = value_type (dval);
8325 }
8326 else
8327 dval = dval0;
8328
8329 branch_type =
8330 to_fixed_variant_branch_type
8331 (TYPE_FIELD_TYPE (type, variant_field),
8332 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8333 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8334 if (branch_type == NULL)
8335 {
8336 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8337 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8338 TYPE_NFIELDS (rtype) -= 1;
8339 }
8340 else
8341 {
8342 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8343 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8344 fld_bit_len =
8345 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8346 TARGET_CHAR_BIT;
8347 if (off + fld_bit_len > bit_len)
8348 bit_len = off + fld_bit_len;
8349 TYPE_LENGTH (rtype) =
8350 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8351 }
8352 }
8353
8354 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8355 should contain the alignment of that record, which should be a strictly
8356 positive value. If null or negative, then something is wrong, most
8357 probably in the debug info. In that case, we don't round up the size
8358 of the resulting type. If this record is not part of another structure,
8359 the current RTYPE length might be good enough for our purposes. */
8360 if (TYPE_LENGTH (type) <= 0)
8361 {
8362 if (TYPE_NAME (rtype))
8363 warning (_("Invalid type size for `%s' detected: %s."),
8364 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
8365 else
8366 warning (_("Invalid type size for <unnamed> detected: %s."),
8367 pulongest (TYPE_LENGTH (type)));
8368 }
8369 else
8370 {
8371 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8372 TYPE_LENGTH (type));
8373 }
8374
8375 value_free_to_mark (mark);
8376 if (TYPE_LENGTH (rtype) > varsize_limit)
8377 error (_("record type with dynamic size is larger than varsize-limit"));
8378 return rtype;
8379 }
8380
8381 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8382 of 1. */
8383
8384 static struct type *
8385 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8386 CORE_ADDR address, struct value *dval0)
8387 {
8388 return ada_template_to_fixed_record_type_1 (type, valaddr,
8389 address, dval0, 1);
8390 }
8391
8392 /* An ordinary record type in which ___XVL-convention fields and
8393 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8394 static approximations, containing all possible fields. Uses
8395 no runtime values. Useless for use in values, but that's OK,
8396 since the results are used only for type determinations. Works on both
8397 structs and unions. Representation note: to save space, we memorize
8398 the result of this function in the TYPE_TARGET_TYPE of the
8399 template type. */
8400
8401 static struct type *
8402 template_to_static_fixed_type (struct type *type0)
8403 {
8404 struct type *type;
8405 int nfields;
8406 int f;
8407
8408 /* No need no do anything if the input type is already fixed. */
8409 if (TYPE_FIXED_INSTANCE (type0))
8410 return type0;
8411
8412 /* Likewise if we already have computed the static approximation. */
8413 if (TYPE_TARGET_TYPE (type0) != NULL)
8414 return TYPE_TARGET_TYPE (type0);
8415
8416 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8417 type = type0;
8418 nfields = TYPE_NFIELDS (type0);
8419
8420 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8421 recompute all over next time. */
8422 TYPE_TARGET_TYPE (type0) = type;
8423
8424 for (f = 0; f < nfields; f += 1)
8425 {
8426 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8427 struct type *new_type;
8428
8429 if (is_dynamic_field (type0, f))
8430 {
8431 field_type = ada_check_typedef (field_type);
8432 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8433 }
8434 else
8435 new_type = static_unwrap_type (field_type);
8436
8437 if (new_type != field_type)
8438 {
8439 /* Clone TYPE0 only the first time we get a new field type. */
8440 if (type == type0)
8441 {
8442 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8443 TYPE_CODE (type) = TYPE_CODE (type0);
8444 INIT_NONE_SPECIFIC (type);
8445 TYPE_NFIELDS (type) = nfields;
8446 TYPE_FIELDS (type) = (struct field *)
8447 TYPE_ALLOC (type, nfields * sizeof (struct field));
8448 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8449 sizeof (struct field) * nfields);
8450 TYPE_NAME (type) = ada_type_name (type0);
8451 TYPE_FIXED_INSTANCE (type) = 1;
8452 TYPE_LENGTH (type) = 0;
8453 }
8454 TYPE_FIELD_TYPE (type, f) = new_type;
8455 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8456 }
8457 }
8458
8459 return type;
8460 }
8461
8462 /* Given an object of type TYPE whose contents are at VALADDR and
8463 whose address in memory is ADDRESS, returns a revision of TYPE,
8464 which should be a non-dynamic-sized record, in which the variant
8465 part, if any, is replaced with the appropriate branch. Looks
8466 for discriminant values in DVAL0, which can be NULL if the record
8467 contains the necessary discriminant values. */
8468
8469 static struct type *
8470 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8471 CORE_ADDR address, struct value *dval0)
8472 {
8473 struct value *mark = value_mark ();
8474 struct value *dval;
8475 struct type *rtype;
8476 struct type *branch_type;
8477 int nfields = TYPE_NFIELDS (type);
8478 int variant_field = variant_field_index (type);
8479
8480 if (variant_field == -1)
8481 return type;
8482
8483 if (dval0 == NULL)
8484 {
8485 dval = value_from_contents_and_address (type, valaddr, address);
8486 type = value_type (dval);
8487 }
8488 else
8489 dval = dval0;
8490
8491 rtype = alloc_type_copy (type);
8492 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8493 INIT_NONE_SPECIFIC (rtype);
8494 TYPE_NFIELDS (rtype) = nfields;
8495 TYPE_FIELDS (rtype) =
8496 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8497 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8498 sizeof (struct field) * nfields);
8499 TYPE_NAME (rtype) = ada_type_name (type);
8500 TYPE_FIXED_INSTANCE (rtype) = 1;
8501 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8502
8503 branch_type = to_fixed_variant_branch_type
8504 (TYPE_FIELD_TYPE (type, variant_field),
8505 cond_offset_host (valaddr,
8506 TYPE_FIELD_BITPOS (type, variant_field)
8507 / TARGET_CHAR_BIT),
8508 cond_offset_target (address,
8509 TYPE_FIELD_BITPOS (type, variant_field)
8510 / TARGET_CHAR_BIT), dval);
8511 if (branch_type == NULL)
8512 {
8513 int f;
8514
8515 for (f = variant_field + 1; f < nfields; f += 1)
8516 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8517 TYPE_NFIELDS (rtype) -= 1;
8518 }
8519 else
8520 {
8521 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8522 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8523 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8524 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8525 }
8526 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8527
8528 value_free_to_mark (mark);
8529 return rtype;
8530 }
8531
8532 /* An ordinary record type (with fixed-length fields) that describes
8533 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8534 beginning of this section]. Any necessary discriminants' values
8535 should be in DVAL, a record value; it may be NULL if the object
8536 at ADDR itself contains any necessary discriminant values.
8537 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8538 values from the record are needed. Except in the case that DVAL,
8539 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8540 unchecked) is replaced by a particular branch of the variant.
8541
8542 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8543 is questionable and may be removed. It can arise during the
8544 processing of an unconstrained-array-of-record type where all the
8545 variant branches have exactly the same size. This is because in
8546 such cases, the compiler does not bother to use the XVS convention
8547 when encoding the record. I am currently dubious of this
8548 shortcut and suspect the compiler should be altered. FIXME. */
8549
8550 static struct type *
8551 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8552 CORE_ADDR address, struct value *dval)
8553 {
8554 struct type *templ_type;
8555
8556 if (TYPE_FIXED_INSTANCE (type0))
8557 return type0;
8558
8559 templ_type = dynamic_template_type (type0);
8560
8561 if (templ_type != NULL)
8562 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8563 else if (variant_field_index (type0) >= 0)
8564 {
8565 if (dval == NULL && valaddr == NULL && address == 0)
8566 return type0;
8567 return to_record_with_fixed_variant_part (type0, valaddr, address,
8568 dval);
8569 }
8570 else
8571 {
8572 TYPE_FIXED_INSTANCE (type0) = 1;
8573 return type0;
8574 }
8575
8576 }
8577
8578 /* An ordinary record type (with fixed-length fields) that describes
8579 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8580 union type. Any necessary discriminants' values should be in DVAL,
8581 a record value. That is, this routine selects the appropriate
8582 branch of the union at ADDR according to the discriminant value
8583 indicated in the union's type name. Returns VAR_TYPE0 itself if
8584 it represents a variant subject to a pragma Unchecked_Union. */
8585
8586 static struct type *
8587 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8588 CORE_ADDR address, struct value *dval)
8589 {
8590 int which;
8591 struct type *templ_type;
8592 struct type *var_type;
8593
8594 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8595 var_type = TYPE_TARGET_TYPE (var_type0);
8596 else
8597 var_type = var_type0;
8598
8599 templ_type = ada_find_parallel_type (var_type, "___XVU");
8600
8601 if (templ_type != NULL)
8602 var_type = templ_type;
8603
8604 if (is_unchecked_variant (var_type, value_type (dval)))
8605 return var_type0;
8606 which =
8607 ada_which_variant_applies (var_type,
8608 value_type (dval), value_contents (dval));
8609
8610 if (which < 0)
8611 return empty_record (var_type);
8612 else if (is_dynamic_field (var_type, which))
8613 return to_fixed_record_type
8614 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8615 valaddr, address, dval);
8616 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8617 return
8618 to_fixed_record_type
8619 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8620 else
8621 return TYPE_FIELD_TYPE (var_type, which);
8622 }
8623
8624 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8625 ENCODING_TYPE, a type following the GNAT conventions for discrete
8626 type encodings, only carries redundant information. */
8627
8628 static int
8629 ada_is_redundant_range_encoding (struct type *range_type,
8630 struct type *encoding_type)
8631 {
8632 const char *bounds_str;
8633 int n;
8634 LONGEST lo, hi;
8635
8636 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8637
8638 if (TYPE_CODE (get_base_type (range_type))
8639 != TYPE_CODE (get_base_type (encoding_type)))
8640 {
8641 /* The compiler probably used a simple base type to describe
8642 the range type instead of the range's actual base type,
8643 expecting us to get the real base type from the encoding
8644 anyway. In this situation, the encoding cannot be ignored
8645 as redundant. */
8646 return 0;
8647 }
8648
8649 if (is_dynamic_type (range_type))
8650 return 0;
8651
8652 if (TYPE_NAME (encoding_type) == NULL)
8653 return 0;
8654
8655 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8656 if (bounds_str == NULL)
8657 return 0;
8658
8659 n = 8; /* Skip "___XDLU_". */
8660 if (!ada_scan_number (bounds_str, n, &lo, &n))
8661 return 0;
8662 if (TYPE_LOW_BOUND (range_type) != lo)
8663 return 0;
8664
8665 n += 2; /* Skip the "__" separator between the two bounds. */
8666 if (!ada_scan_number (bounds_str, n, &hi, &n))
8667 return 0;
8668 if (TYPE_HIGH_BOUND (range_type) != hi)
8669 return 0;
8670
8671 return 1;
8672 }
8673
8674 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8675 a type following the GNAT encoding for describing array type
8676 indices, only carries redundant information. */
8677
8678 static int
8679 ada_is_redundant_index_type_desc (struct type *array_type,
8680 struct type *desc_type)
8681 {
8682 struct type *this_layer = check_typedef (array_type);
8683 int i;
8684
8685 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8686 {
8687 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8688 TYPE_FIELD_TYPE (desc_type, i)))
8689 return 0;
8690 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8691 }
8692
8693 return 1;
8694 }
8695
8696 /* Assuming that TYPE0 is an array type describing the type of a value
8697 at ADDR, and that DVAL describes a record containing any
8698 discriminants used in TYPE0, returns a type for the value that
8699 contains no dynamic components (that is, no components whose sizes
8700 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8701 true, gives an error message if the resulting type's size is over
8702 varsize_limit. */
8703
8704 static struct type *
8705 to_fixed_array_type (struct type *type0, struct value *dval,
8706 int ignore_too_big)
8707 {
8708 struct type *index_type_desc;
8709 struct type *result;
8710 int constrained_packed_array_p;
8711 static const char *xa_suffix = "___XA";
8712
8713 type0 = ada_check_typedef (type0);
8714 if (TYPE_FIXED_INSTANCE (type0))
8715 return type0;
8716
8717 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8718 if (constrained_packed_array_p)
8719 type0 = decode_constrained_packed_array_type (type0);
8720
8721 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8722
8723 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8724 encoding suffixed with 'P' may still be generated. If so,
8725 it should be used to find the XA type. */
8726
8727 if (index_type_desc == NULL)
8728 {
8729 const char *type_name = ada_type_name (type0);
8730
8731 if (type_name != NULL)
8732 {
8733 const int len = strlen (type_name);
8734 char *name = (char *) alloca (len + strlen (xa_suffix));
8735
8736 if (type_name[len - 1] == 'P')
8737 {
8738 strcpy (name, type_name);
8739 strcpy (name + len - 1, xa_suffix);
8740 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8741 }
8742 }
8743 }
8744
8745 ada_fixup_array_indexes_type (index_type_desc);
8746 if (index_type_desc != NULL
8747 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8748 {
8749 /* Ignore this ___XA parallel type, as it does not bring any
8750 useful information. This allows us to avoid creating fixed
8751 versions of the array's index types, which would be identical
8752 to the original ones. This, in turn, can also help avoid
8753 the creation of fixed versions of the array itself. */
8754 index_type_desc = NULL;
8755 }
8756
8757 if (index_type_desc == NULL)
8758 {
8759 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8760
8761 /* NOTE: elt_type---the fixed version of elt_type0---should never
8762 depend on the contents of the array in properly constructed
8763 debugging data. */
8764 /* Create a fixed version of the array element type.
8765 We're not providing the address of an element here,
8766 and thus the actual object value cannot be inspected to do
8767 the conversion. This should not be a problem, since arrays of
8768 unconstrained objects are not allowed. In particular, all
8769 the elements of an array of a tagged type should all be of
8770 the same type specified in the debugging info. No need to
8771 consult the object tag. */
8772 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8773
8774 /* Make sure we always create a new array type when dealing with
8775 packed array types, since we're going to fix-up the array
8776 type length and element bitsize a little further down. */
8777 if (elt_type0 == elt_type && !constrained_packed_array_p)
8778 result = type0;
8779 else
8780 result = create_array_type (alloc_type_copy (type0),
8781 elt_type, TYPE_INDEX_TYPE (type0));
8782 }
8783 else
8784 {
8785 int i;
8786 struct type *elt_type0;
8787
8788 elt_type0 = type0;
8789 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8790 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8791
8792 /* NOTE: result---the fixed version of elt_type0---should never
8793 depend on the contents of the array in properly constructed
8794 debugging data. */
8795 /* Create a fixed version of the array element type.
8796 We're not providing the address of an element here,
8797 and thus the actual object value cannot be inspected to do
8798 the conversion. This should not be a problem, since arrays of
8799 unconstrained objects are not allowed. In particular, all
8800 the elements of an array of a tagged type should all be of
8801 the same type specified in the debugging info. No need to
8802 consult the object tag. */
8803 result =
8804 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8805
8806 elt_type0 = type0;
8807 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8808 {
8809 struct type *range_type =
8810 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8811
8812 result = create_array_type (alloc_type_copy (elt_type0),
8813 result, range_type);
8814 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8815 }
8816 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8817 error (_("array type with dynamic size is larger than varsize-limit"));
8818 }
8819
8820 /* We want to preserve the type name. This can be useful when
8821 trying to get the type name of a value that has already been
8822 printed (for instance, if the user did "print VAR; whatis $". */
8823 TYPE_NAME (result) = TYPE_NAME (type0);
8824
8825 if (constrained_packed_array_p)
8826 {
8827 /* So far, the resulting type has been created as if the original
8828 type was a regular (non-packed) array type. As a result, the
8829 bitsize of the array elements needs to be set again, and the array
8830 length needs to be recomputed based on that bitsize. */
8831 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8832 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8833
8834 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8835 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8836 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8837 TYPE_LENGTH (result)++;
8838 }
8839
8840 TYPE_FIXED_INSTANCE (result) = 1;
8841 return result;
8842 }
8843
8844
8845 /* A standard type (containing no dynamically sized components)
8846 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8847 DVAL describes a record containing any discriminants used in TYPE0,
8848 and may be NULL if there are none, or if the object of type TYPE at
8849 ADDRESS or in VALADDR contains these discriminants.
8850
8851 If CHECK_TAG is not null, in the case of tagged types, this function
8852 attempts to locate the object's tag and use it to compute the actual
8853 type. However, when ADDRESS is null, we cannot use it to determine the
8854 location of the tag, and therefore compute the tagged type's actual type.
8855 So we return the tagged type without consulting the tag. */
8856
8857 static struct type *
8858 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8859 CORE_ADDR address, struct value *dval, int check_tag)
8860 {
8861 type = ada_check_typedef (type);
8862
8863 /* Only un-fixed types need to be handled here. */
8864 if (!HAVE_GNAT_AUX_INFO (type))
8865 return type;
8866
8867 switch (TYPE_CODE (type))
8868 {
8869 default:
8870 return type;
8871 case TYPE_CODE_STRUCT:
8872 {
8873 struct type *static_type = to_static_fixed_type (type);
8874 struct type *fixed_record_type =
8875 to_fixed_record_type (type, valaddr, address, NULL);
8876
8877 /* If STATIC_TYPE is a tagged type and we know the object's address,
8878 then we can determine its tag, and compute the object's actual
8879 type from there. Note that we have to use the fixed record
8880 type (the parent part of the record may have dynamic fields
8881 and the way the location of _tag is expressed may depend on
8882 them). */
8883
8884 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8885 {
8886 struct value *tag =
8887 value_tag_from_contents_and_address
8888 (fixed_record_type,
8889 valaddr,
8890 address);
8891 struct type *real_type = type_from_tag (tag);
8892 struct value *obj =
8893 value_from_contents_and_address (fixed_record_type,
8894 valaddr,
8895 address);
8896 fixed_record_type = value_type (obj);
8897 if (real_type != NULL)
8898 return to_fixed_record_type
8899 (real_type, NULL,
8900 value_address (ada_tag_value_at_base_address (obj)), NULL);
8901 }
8902
8903 /* Check to see if there is a parallel ___XVZ variable.
8904 If there is, then it provides the actual size of our type. */
8905 else if (ada_type_name (fixed_record_type) != NULL)
8906 {
8907 const char *name = ada_type_name (fixed_record_type);
8908 char *xvz_name
8909 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8910 bool xvz_found = false;
8911 LONGEST size;
8912
8913 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8914 try
8915 {
8916 xvz_found = get_int_var_value (xvz_name, size);
8917 }
8918 catch (const gdb_exception_error &except)
8919 {
8920 /* We found the variable, but somehow failed to read
8921 its value. Rethrow the same error, but with a little
8922 bit more information, to help the user understand
8923 what went wrong (Eg: the variable might have been
8924 optimized out). */
8925 throw_error (except.error,
8926 _("unable to read value of %s (%s)"),
8927 xvz_name, except.what ());
8928 }
8929
8930 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8931 {
8932 fixed_record_type = copy_type (fixed_record_type);
8933 TYPE_LENGTH (fixed_record_type) = size;
8934
8935 /* The FIXED_RECORD_TYPE may have be a stub. We have
8936 observed this when the debugging info is STABS, and
8937 apparently it is something that is hard to fix.
8938
8939 In practice, we don't need the actual type definition
8940 at all, because the presence of the XVZ variable allows us
8941 to assume that there must be a XVS type as well, which we
8942 should be able to use later, when we need the actual type
8943 definition.
8944
8945 In the meantime, pretend that the "fixed" type we are
8946 returning is NOT a stub, because this can cause trouble
8947 when using this type to create new types targeting it.
8948 Indeed, the associated creation routines often check
8949 whether the target type is a stub and will try to replace
8950 it, thus using a type with the wrong size. This, in turn,
8951 might cause the new type to have the wrong size too.
8952 Consider the case of an array, for instance, where the size
8953 of the array is computed from the number of elements in
8954 our array multiplied by the size of its element. */
8955 TYPE_STUB (fixed_record_type) = 0;
8956 }
8957 }
8958 return fixed_record_type;
8959 }
8960 case TYPE_CODE_ARRAY:
8961 return to_fixed_array_type (type, dval, 1);
8962 case TYPE_CODE_UNION:
8963 if (dval == NULL)
8964 return type;
8965 else
8966 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8967 }
8968 }
8969
8970 /* The same as ada_to_fixed_type_1, except that it preserves the type
8971 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8972
8973 The typedef layer needs be preserved in order to differentiate between
8974 arrays and array pointers when both types are implemented using the same
8975 fat pointer. In the array pointer case, the pointer is encoded as
8976 a typedef of the pointer type. For instance, considering:
8977
8978 type String_Access is access String;
8979 S1 : String_Access := null;
8980
8981 To the debugger, S1 is defined as a typedef of type String. But
8982 to the user, it is a pointer. So if the user tries to print S1,
8983 we should not dereference the array, but print the array address
8984 instead.
8985
8986 If we didn't preserve the typedef layer, we would lose the fact that
8987 the type is to be presented as a pointer (needs de-reference before
8988 being printed). And we would also use the source-level type name. */
8989
8990 struct type *
8991 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8992 CORE_ADDR address, struct value *dval, int check_tag)
8993
8994 {
8995 struct type *fixed_type =
8996 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8997
8998 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8999 then preserve the typedef layer.
9000
9001 Implementation note: We can only check the main-type portion of
9002 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9003 from TYPE now returns a type that has the same instance flags
9004 as TYPE. For instance, if TYPE is a "typedef const", and its
9005 target type is a "struct", then the typedef elimination will return
9006 a "const" version of the target type. See check_typedef for more
9007 details about how the typedef layer elimination is done.
9008
9009 brobecker/2010-11-19: It seems to me that the only case where it is
9010 useful to preserve the typedef layer is when dealing with fat pointers.
9011 Perhaps, we could add a check for that and preserve the typedef layer
9012 only in that situation. But this seems unecessary so far, probably
9013 because we call check_typedef/ada_check_typedef pretty much everywhere.
9014 */
9015 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9016 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9017 == TYPE_MAIN_TYPE (fixed_type)))
9018 return type;
9019
9020 return fixed_type;
9021 }
9022
9023 /* A standard (static-sized) type corresponding as well as possible to
9024 TYPE0, but based on no runtime data. */
9025
9026 static struct type *
9027 to_static_fixed_type (struct type *type0)
9028 {
9029 struct type *type;
9030
9031 if (type0 == NULL)
9032 return NULL;
9033
9034 if (TYPE_FIXED_INSTANCE (type0))
9035 return type0;
9036
9037 type0 = ada_check_typedef (type0);
9038
9039 switch (TYPE_CODE (type0))
9040 {
9041 default:
9042 return type0;
9043 case TYPE_CODE_STRUCT:
9044 type = dynamic_template_type (type0);
9045 if (type != NULL)
9046 return template_to_static_fixed_type (type);
9047 else
9048 return template_to_static_fixed_type (type0);
9049 case TYPE_CODE_UNION:
9050 type = ada_find_parallel_type (type0, "___XVU");
9051 if (type != NULL)
9052 return template_to_static_fixed_type (type);
9053 else
9054 return template_to_static_fixed_type (type0);
9055 }
9056 }
9057
9058 /* A static approximation of TYPE with all type wrappers removed. */
9059
9060 static struct type *
9061 static_unwrap_type (struct type *type)
9062 {
9063 if (ada_is_aligner_type (type))
9064 {
9065 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9066 if (ada_type_name (type1) == NULL)
9067 TYPE_NAME (type1) = ada_type_name (type);
9068
9069 return static_unwrap_type (type1);
9070 }
9071 else
9072 {
9073 struct type *raw_real_type = ada_get_base_type (type);
9074
9075 if (raw_real_type == type)
9076 return type;
9077 else
9078 return to_static_fixed_type (raw_real_type);
9079 }
9080 }
9081
9082 /* In some cases, incomplete and private types require
9083 cross-references that are not resolved as records (for example,
9084 type Foo;
9085 type FooP is access Foo;
9086 V: FooP;
9087 type Foo is array ...;
9088 ). In these cases, since there is no mechanism for producing
9089 cross-references to such types, we instead substitute for FooP a
9090 stub enumeration type that is nowhere resolved, and whose tag is
9091 the name of the actual type. Call these types "non-record stubs". */
9092
9093 /* A type equivalent to TYPE that is not a non-record stub, if one
9094 exists, otherwise TYPE. */
9095
9096 struct type *
9097 ada_check_typedef (struct type *type)
9098 {
9099 if (type == NULL)
9100 return NULL;
9101
9102 /* If our type is an access to an unconstrained array, which is encoded
9103 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9104 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9105 what allows us to distinguish between fat pointers that represent
9106 array types, and fat pointers that represent array access types
9107 (in both cases, the compiler implements them as fat pointers). */
9108 if (ada_is_access_to_unconstrained_array (type))
9109 return type;
9110
9111 type = check_typedef (type);
9112 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9113 || !TYPE_STUB (type)
9114 || TYPE_NAME (type) == NULL)
9115 return type;
9116 else
9117 {
9118 const char *name = TYPE_NAME (type);
9119 struct type *type1 = ada_find_any_type (name);
9120
9121 if (type1 == NULL)
9122 return type;
9123
9124 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9125 stubs pointing to arrays, as we don't create symbols for array
9126 types, only for the typedef-to-array types). If that's the case,
9127 strip the typedef layer. */
9128 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9129 type1 = ada_check_typedef (type1);
9130
9131 return type1;
9132 }
9133 }
9134
9135 /* A value representing the data at VALADDR/ADDRESS as described by
9136 type TYPE0, but with a standard (static-sized) type that correctly
9137 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9138 type, then return VAL0 [this feature is simply to avoid redundant
9139 creation of struct values]. */
9140
9141 static struct value *
9142 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9143 struct value *val0)
9144 {
9145 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9146
9147 if (type == type0 && val0 != NULL)
9148 return val0;
9149
9150 if (VALUE_LVAL (val0) != lval_memory)
9151 {
9152 /* Our value does not live in memory; it could be a convenience
9153 variable, for instance. Create a not_lval value using val0's
9154 contents. */
9155 return value_from_contents (type, value_contents (val0));
9156 }
9157
9158 return value_from_contents_and_address (type, 0, address);
9159 }
9160
9161 /* A value representing VAL, but with a standard (static-sized) type
9162 that correctly describes it. Does not necessarily create a new
9163 value. */
9164
9165 struct value *
9166 ada_to_fixed_value (struct value *val)
9167 {
9168 val = unwrap_value (val);
9169 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9170 return val;
9171 }
9172 \f
9173
9174 /* Attributes */
9175
9176 /* Table mapping attribute numbers to names.
9177 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9178
9179 static const char *attribute_names[] = {
9180 "<?>",
9181
9182 "first",
9183 "last",
9184 "length",
9185 "image",
9186 "max",
9187 "min",
9188 "modulus",
9189 "pos",
9190 "size",
9191 "tag",
9192 "val",
9193 0
9194 };
9195
9196 const char *
9197 ada_attribute_name (enum exp_opcode n)
9198 {
9199 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9200 return attribute_names[n - OP_ATR_FIRST + 1];
9201 else
9202 return attribute_names[0];
9203 }
9204
9205 /* Evaluate the 'POS attribute applied to ARG. */
9206
9207 static LONGEST
9208 pos_atr (struct value *arg)
9209 {
9210 struct value *val = coerce_ref (arg);
9211 struct type *type = value_type (val);
9212 LONGEST result;
9213
9214 if (!discrete_type_p (type))
9215 error (_("'POS only defined on discrete types"));
9216
9217 if (!discrete_position (type, value_as_long (val), &result))
9218 error (_("enumeration value is invalid: can't find 'POS"));
9219
9220 return result;
9221 }
9222
9223 static struct value *
9224 value_pos_atr (struct type *type, struct value *arg)
9225 {
9226 return value_from_longest (type, pos_atr (arg));
9227 }
9228
9229 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9230
9231 static struct value *
9232 value_val_atr (struct type *type, struct value *arg)
9233 {
9234 if (!discrete_type_p (type))
9235 error (_("'VAL only defined on discrete types"));
9236 if (!integer_type_p (value_type (arg)))
9237 error (_("'VAL requires integral argument"));
9238
9239 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9240 {
9241 long pos = value_as_long (arg);
9242
9243 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9244 error (_("argument to 'VAL out of range"));
9245 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9246 }
9247 else
9248 return value_from_longest (type, value_as_long (arg));
9249 }
9250 \f
9251
9252 /* Evaluation */
9253
9254 /* True if TYPE appears to be an Ada character type.
9255 [At the moment, this is true only for Character and Wide_Character;
9256 It is a heuristic test that could stand improvement]. */
9257
9258 bool
9259 ada_is_character_type (struct type *type)
9260 {
9261 const char *name;
9262
9263 /* If the type code says it's a character, then assume it really is,
9264 and don't check any further. */
9265 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9266 return true;
9267
9268 /* Otherwise, assume it's a character type iff it is a discrete type
9269 with a known character type name. */
9270 name = ada_type_name (type);
9271 return (name != NULL
9272 && (TYPE_CODE (type) == TYPE_CODE_INT
9273 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9274 && (strcmp (name, "character") == 0
9275 || strcmp (name, "wide_character") == 0
9276 || strcmp (name, "wide_wide_character") == 0
9277 || strcmp (name, "unsigned char") == 0));
9278 }
9279
9280 /* True if TYPE appears to be an Ada string type. */
9281
9282 bool
9283 ada_is_string_type (struct type *type)
9284 {
9285 type = ada_check_typedef (type);
9286 if (type != NULL
9287 && TYPE_CODE (type) != TYPE_CODE_PTR
9288 && (ada_is_simple_array_type (type)
9289 || ada_is_array_descriptor_type (type))
9290 && ada_array_arity (type) == 1)
9291 {
9292 struct type *elttype = ada_array_element_type (type, 1);
9293
9294 return ada_is_character_type (elttype);
9295 }
9296 else
9297 return false;
9298 }
9299
9300 /* The compiler sometimes provides a parallel XVS type for a given
9301 PAD type. Normally, it is safe to follow the PAD type directly,
9302 but older versions of the compiler have a bug that causes the offset
9303 of its "F" field to be wrong. Following that field in that case
9304 would lead to incorrect results, but this can be worked around
9305 by ignoring the PAD type and using the associated XVS type instead.
9306
9307 Set to True if the debugger should trust the contents of PAD types.
9308 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9309 static int trust_pad_over_xvs = 1;
9310
9311 /* True if TYPE is a struct type introduced by the compiler to force the
9312 alignment of a value. Such types have a single field with a
9313 distinctive name. */
9314
9315 int
9316 ada_is_aligner_type (struct type *type)
9317 {
9318 type = ada_check_typedef (type);
9319
9320 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9321 return 0;
9322
9323 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9324 && TYPE_NFIELDS (type) == 1
9325 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9326 }
9327
9328 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9329 the parallel type. */
9330
9331 struct type *
9332 ada_get_base_type (struct type *raw_type)
9333 {
9334 struct type *real_type_namer;
9335 struct type *raw_real_type;
9336
9337 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9338 return raw_type;
9339
9340 if (ada_is_aligner_type (raw_type))
9341 /* The encoding specifies that we should always use the aligner type.
9342 So, even if this aligner type has an associated XVS type, we should
9343 simply ignore it.
9344
9345 According to the compiler gurus, an XVS type parallel to an aligner
9346 type may exist because of a stabs limitation. In stabs, aligner
9347 types are empty because the field has a variable-sized type, and
9348 thus cannot actually be used as an aligner type. As a result,
9349 we need the associated parallel XVS type to decode the type.
9350 Since the policy in the compiler is to not change the internal
9351 representation based on the debugging info format, we sometimes
9352 end up having a redundant XVS type parallel to the aligner type. */
9353 return raw_type;
9354
9355 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9356 if (real_type_namer == NULL
9357 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9358 || TYPE_NFIELDS (real_type_namer) != 1)
9359 return raw_type;
9360
9361 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9362 {
9363 /* This is an older encoding form where the base type needs to be
9364 looked up by name. We prefer the newer enconding because it is
9365 more efficient. */
9366 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9367 if (raw_real_type == NULL)
9368 return raw_type;
9369 else
9370 return raw_real_type;
9371 }
9372
9373 /* The field in our XVS type is a reference to the base type. */
9374 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9375 }
9376
9377 /* The type of value designated by TYPE, with all aligners removed. */
9378
9379 struct type *
9380 ada_aligned_type (struct type *type)
9381 {
9382 if (ada_is_aligner_type (type))
9383 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9384 else
9385 return ada_get_base_type (type);
9386 }
9387
9388
9389 /* The address of the aligned value in an object at address VALADDR
9390 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9391
9392 const gdb_byte *
9393 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9394 {
9395 if (ada_is_aligner_type (type))
9396 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9397 valaddr +
9398 TYPE_FIELD_BITPOS (type,
9399 0) / TARGET_CHAR_BIT);
9400 else
9401 return valaddr;
9402 }
9403
9404
9405
9406 /* The printed representation of an enumeration literal with encoded
9407 name NAME. The value is good to the next call of ada_enum_name. */
9408 const char *
9409 ada_enum_name (const char *name)
9410 {
9411 static char *result;
9412 static size_t result_len = 0;
9413 const char *tmp;
9414
9415 /* First, unqualify the enumeration name:
9416 1. Search for the last '.' character. If we find one, then skip
9417 all the preceding characters, the unqualified name starts
9418 right after that dot.
9419 2. Otherwise, we may be debugging on a target where the compiler
9420 translates dots into "__". Search forward for double underscores,
9421 but stop searching when we hit an overloading suffix, which is
9422 of the form "__" followed by digits. */
9423
9424 tmp = strrchr (name, '.');
9425 if (tmp != NULL)
9426 name = tmp + 1;
9427 else
9428 {
9429 while ((tmp = strstr (name, "__")) != NULL)
9430 {
9431 if (isdigit (tmp[2]))
9432 break;
9433 else
9434 name = tmp + 2;
9435 }
9436 }
9437
9438 if (name[0] == 'Q')
9439 {
9440 int v;
9441
9442 if (name[1] == 'U' || name[1] == 'W')
9443 {
9444 if (sscanf (name + 2, "%x", &v) != 1)
9445 return name;
9446 }
9447 else
9448 return name;
9449
9450 GROW_VECT (result, result_len, 16);
9451 if (isascii (v) && isprint (v))
9452 xsnprintf (result, result_len, "'%c'", v);
9453 else if (name[1] == 'U')
9454 xsnprintf (result, result_len, "[\"%02x\"]", v);
9455 else
9456 xsnprintf (result, result_len, "[\"%04x\"]", v);
9457
9458 return result;
9459 }
9460 else
9461 {
9462 tmp = strstr (name, "__");
9463 if (tmp == NULL)
9464 tmp = strstr (name, "$");
9465 if (tmp != NULL)
9466 {
9467 GROW_VECT (result, result_len, tmp - name + 1);
9468 strncpy (result, name, tmp - name);
9469 result[tmp - name] = '\0';
9470 return result;
9471 }
9472
9473 return name;
9474 }
9475 }
9476
9477 /* Evaluate the subexpression of EXP starting at *POS as for
9478 evaluate_type, updating *POS to point just past the evaluated
9479 expression. */
9480
9481 static struct value *
9482 evaluate_subexp_type (struct expression *exp, int *pos)
9483 {
9484 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9485 }
9486
9487 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9488 value it wraps. */
9489
9490 static struct value *
9491 unwrap_value (struct value *val)
9492 {
9493 struct type *type = ada_check_typedef (value_type (val));
9494
9495 if (ada_is_aligner_type (type))
9496 {
9497 struct value *v = ada_value_struct_elt (val, "F", 0);
9498 struct type *val_type = ada_check_typedef (value_type (v));
9499
9500 if (ada_type_name (val_type) == NULL)
9501 TYPE_NAME (val_type) = ada_type_name (type);
9502
9503 return unwrap_value (v);
9504 }
9505 else
9506 {
9507 struct type *raw_real_type =
9508 ada_check_typedef (ada_get_base_type (type));
9509
9510 /* If there is no parallel XVS or XVE type, then the value is
9511 already unwrapped. Return it without further modification. */
9512 if ((type == raw_real_type)
9513 && ada_find_parallel_type (type, "___XVE") == NULL)
9514 return val;
9515
9516 return
9517 coerce_unspec_val_to_type
9518 (val, ada_to_fixed_type (raw_real_type, 0,
9519 value_address (val),
9520 NULL, 1));
9521 }
9522 }
9523
9524 static struct value *
9525 cast_from_fixed (struct type *type, struct value *arg)
9526 {
9527 struct value *scale = ada_scaling_factor (value_type (arg));
9528 arg = value_cast (value_type (scale), arg);
9529
9530 arg = value_binop (arg, scale, BINOP_MUL);
9531 return value_cast (type, arg);
9532 }
9533
9534 static struct value *
9535 cast_to_fixed (struct type *type, struct value *arg)
9536 {
9537 if (type == value_type (arg))
9538 return arg;
9539
9540 struct value *scale = ada_scaling_factor (type);
9541 if (ada_is_fixed_point_type (value_type (arg)))
9542 arg = cast_from_fixed (value_type (scale), arg);
9543 else
9544 arg = value_cast (value_type (scale), arg);
9545
9546 arg = value_binop (arg, scale, BINOP_DIV);
9547 return value_cast (type, arg);
9548 }
9549
9550 /* Given two array types T1 and T2, return nonzero iff both arrays
9551 contain the same number of elements. */
9552
9553 static int
9554 ada_same_array_size_p (struct type *t1, struct type *t2)
9555 {
9556 LONGEST lo1, hi1, lo2, hi2;
9557
9558 /* Get the array bounds in order to verify that the size of
9559 the two arrays match. */
9560 if (!get_array_bounds (t1, &lo1, &hi1)
9561 || !get_array_bounds (t2, &lo2, &hi2))
9562 error (_("unable to determine array bounds"));
9563
9564 /* To make things easier for size comparison, normalize a bit
9565 the case of empty arrays by making sure that the difference
9566 between upper bound and lower bound is always -1. */
9567 if (lo1 > hi1)
9568 hi1 = lo1 - 1;
9569 if (lo2 > hi2)
9570 hi2 = lo2 - 1;
9571
9572 return (hi1 - lo1 == hi2 - lo2);
9573 }
9574
9575 /* Assuming that VAL is an array of integrals, and TYPE represents
9576 an array with the same number of elements, but with wider integral
9577 elements, return an array "casted" to TYPE. In practice, this
9578 means that the returned array is built by casting each element
9579 of the original array into TYPE's (wider) element type. */
9580
9581 static struct value *
9582 ada_promote_array_of_integrals (struct type *type, struct value *val)
9583 {
9584 struct type *elt_type = TYPE_TARGET_TYPE (type);
9585 LONGEST lo, hi;
9586 struct value *res;
9587 LONGEST i;
9588
9589 /* Verify that both val and type are arrays of scalars, and
9590 that the size of val's elements is smaller than the size
9591 of type's element. */
9592 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9593 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9594 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9595 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9596 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9597 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9598
9599 if (!get_array_bounds (type, &lo, &hi))
9600 error (_("unable to determine array bounds"));
9601
9602 res = allocate_value (type);
9603
9604 /* Promote each array element. */
9605 for (i = 0; i < hi - lo + 1; i++)
9606 {
9607 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9608
9609 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9610 value_contents_all (elt), TYPE_LENGTH (elt_type));
9611 }
9612
9613 return res;
9614 }
9615
9616 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9617 return the converted value. */
9618
9619 static struct value *
9620 coerce_for_assign (struct type *type, struct value *val)
9621 {
9622 struct type *type2 = value_type (val);
9623
9624 if (type == type2)
9625 return val;
9626
9627 type2 = ada_check_typedef (type2);
9628 type = ada_check_typedef (type);
9629
9630 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9631 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9632 {
9633 val = ada_value_ind (val);
9634 type2 = value_type (val);
9635 }
9636
9637 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9638 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9639 {
9640 if (!ada_same_array_size_p (type, type2))
9641 error (_("cannot assign arrays of different length"));
9642
9643 if (is_integral_type (TYPE_TARGET_TYPE (type))
9644 && is_integral_type (TYPE_TARGET_TYPE (type2))
9645 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9646 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9647 {
9648 /* Allow implicit promotion of the array elements to
9649 a wider type. */
9650 return ada_promote_array_of_integrals (type, val);
9651 }
9652
9653 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9654 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9655 error (_("Incompatible types in assignment"));
9656 deprecated_set_value_type (val, type);
9657 }
9658 return val;
9659 }
9660
9661 static struct value *
9662 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9663 {
9664 struct value *val;
9665 struct type *type1, *type2;
9666 LONGEST v, v1, v2;
9667
9668 arg1 = coerce_ref (arg1);
9669 arg2 = coerce_ref (arg2);
9670 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9671 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9672
9673 if (TYPE_CODE (type1) != TYPE_CODE_INT
9674 || TYPE_CODE (type2) != TYPE_CODE_INT)
9675 return value_binop (arg1, arg2, op);
9676
9677 switch (op)
9678 {
9679 case BINOP_MOD:
9680 case BINOP_DIV:
9681 case BINOP_REM:
9682 break;
9683 default:
9684 return value_binop (arg1, arg2, op);
9685 }
9686
9687 v2 = value_as_long (arg2);
9688 if (v2 == 0)
9689 error (_("second operand of %s must not be zero."), op_string (op));
9690
9691 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9692 return value_binop (arg1, arg2, op);
9693
9694 v1 = value_as_long (arg1);
9695 switch (op)
9696 {
9697 case BINOP_DIV:
9698 v = v1 / v2;
9699 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9700 v += v > 0 ? -1 : 1;
9701 break;
9702 case BINOP_REM:
9703 v = v1 % v2;
9704 if (v * v1 < 0)
9705 v -= v2;
9706 break;
9707 default:
9708 /* Should not reach this point. */
9709 v = 0;
9710 }
9711
9712 val = allocate_value (type1);
9713 store_unsigned_integer (value_contents_raw (val),
9714 TYPE_LENGTH (value_type (val)),
9715 gdbarch_byte_order (get_type_arch (type1)), v);
9716 return val;
9717 }
9718
9719 static int
9720 ada_value_equal (struct value *arg1, struct value *arg2)
9721 {
9722 if (ada_is_direct_array_type (value_type (arg1))
9723 || ada_is_direct_array_type (value_type (arg2)))
9724 {
9725 struct type *arg1_type, *arg2_type;
9726
9727 /* Automatically dereference any array reference before
9728 we attempt to perform the comparison. */
9729 arg1 = ada_coerce_ref (arg1);
9730 arg2 = ada_coerce_ref (arg2);
9731
9732 arg1 = ada_coerce_to_simple_array (arg1);
9733 arg2 = ada_coerce_to_simple_array (arg2);
9734
9735 arg1_type = ada_check_typedef (value_type (arg1));
9736 arg2_type = ada_check_typedef (value_type (arg2));
9737
9738 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9739 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9740 error (_("Attempt to compare array with non-array"));
9741 /* FIXME: The following works only for types whose
9742 representations use all bits (no padding or undefined bits)
9743 and do not have user-defined equality. */
9744 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9745 && memcmp (value_contents (arg1), value_contents (arg2),
9746 TYPE_LENGTH (arg1_type)) == 0);
9747 }
9748 return value_equal (arg1, arg2);
9749 }
9750
9751 /* Total number of component associations in the aggregate starting at
9752 index PC in EXP. Assumes that index PC is the start of an
9753 OP_AGGREGATE. */
9754
9755 static int
9756 num_component_specs (struct expression *exp, int pc)
9757 {
9758 int n, m, i;
9759
9760 m = exp->elts[pc + 1].longconst;
9761 pc += 3;
9762 n = 0;
9763 for (i = 0; i < m; i += 1)
9764 {
9765 switch (exp->elts[pc].opcode)
9766 {
9767 default:
9768 n += 1;
9769 break;
9770 case OP_CHOICES:
9771 n += exp->elts[pc + 1].longconst;
9772 break;
9773 }
9774 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9775 }
9776 return n;
9777 }
9778
9779 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9780 component of LHS (a simple array or a record), updating *POS past
9781 the expression, assuming that LHS is contained in CONTAINER. Does
9782 not modify the inferior's memory, nor does it modify LHS (unless
9783 LHS == CONTAINER). */
9784
9785 static void
9786 assign_component (struct value *container, struct value *lhs, LONGEST index,
9787 struct expression *exp, int *pos)
9788 {
9789 struct value *mark = value_mark ();
9790 struct value *elt;
9791 struct type *lhs_type = check_typedef (value_type (lhs));
9792
9793 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9794 {
9795 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9796 struct value *index_val = value_from_longest (index_type, index);
9797
9798 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9799 }
9800 else
9801 {
9802 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9803 elt = ada_to_fixed_value (elt);
9804 }
9805
9806 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9807 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9808 else
9809 value_assign_to_component (container, elt,
9810 ada_evaluate_subexp (NULL, exp, pos,
9811 EVAL_NORMAL));
9812
9813 value_free_to_mark (mark);
9814 }
9815
9816 /* Assuming that LHS represents an lvalue having a record or array
9817 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9818 of that aggregate's value to LHS, advancing *POS past the
9819 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9820 lvalue containing LHS (possibly LHS itself). Does not modify
9821 the inferior's memory, nor does it modify the contents of
9822 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9823
9824 static struct value *
9825 assign_aggregate (struct value *container,
9826 struct value *lhs, struct expression *exp,
9827 int *pos, enum noside noside)
9828 {
9829 struct type *lhs_type;
9830 int n = exp->elts[*pos+1].longconst;
9831 LONGEST low_index, high_index;
9832 int num_specs;
9833 LONGEST *indices;
9834 int max_indices, num_indices;
9835 int i;
9836
9837 *pos += 3;
9838 if (noside != EVAL_NORMAL)
9839 {
9840 for (i = 0; i < n; i += 1)
9841 ada_evaluate_subexp (NULL, exp, pos, noside);
9842 return container;
9843 }
9844
9845 container = ada_coerce_ref (container);
9846 if (ada_is_direct_array_type (value_type (container)))
9847 container = ada_coerce_to_simple_array (container);
9848 lhs = ada_coerce_ref (lhs);
9849 if (!deprecated_value_modifiable (lhs))
9850 error (_("Left operand of assignment is not a modifiable lvalue."));
9851
9852 lhs_type = check_typedef (value_type (lhs));
9853 if (ada_is_direct_array_type (lhs_type))
9854 {
9855 lhs = ada_coerce_to_simple_array (lhs);
9856 lhs_type = check_typedef (value_type (lhs));
9857 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9858 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9859 }
9860 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9861 {
9862 low_index = 0;
9863 high_index = num_visible_fields (lhs_type) - 1;
9864 }
9865 else
9866 error (_("Left-hand side must be array or record."));
9867
9868 num_specs = num_component_specs (exp, *pos - 3);
9869 max_indices = 4 * num_specs + 4;
9870 indices = XALLOCAVEC (LONGEST, max_indices);
9871 indices[0] = indices[1] = low_index - 1;
9872 indices[2] = indices[3] = high_index + 1;
9873 num_indices = 4;
9874
9875 for (i = 0; i < n; i += 1)
9876 {
9877 switch (exp->elts[*pos].opcode)
9878 {
9879 case OP_CHOICES:
9880 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9881 &num_indices, max_indices,
9882 low_index, high_index);
9883 break;
9884 case OP_POSITIONAL:
9885 aggregate_assign_positional (container, lhs, exp, pos, indices,
9886 &num_indices, max_indices,
9887 low_index, high_index);
9888 break;
9889 case OP_OTHERS:
9890 if (i != n-1)
9891 error (_("Misplaced 'others' clause"));
9892 aggregate_assign_others (container, lhs, exp, pos, indices,
9893 num_indices, low_index, high_index);
9894 break;
9895 default:
9896 error (_("Internal error: bad aggregate clause"));
9897 }
9898 }
9899
9900 return container;
9901 }
9902
9903 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9904 construct at *POS, updating *POS past the construct, given that
9905 the positions are relative to lower bound LOW, where HIGH is the
9906 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9907 updating *NUM_INDICES as needed. CONTAINER is as for
9908 assign_aggregate. */
9909 static void
9910 aggregate_assign_positional (struct value *container,
9911 struct value *lhs, struct expression *exp,
9912 int *pos, LONGEST *indices, int *num_indices,
9913 int max_indices, LONGEST low, LONGEST high)
9914 {
9915 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9916
9917 if (ind - 1 == high)
9918 warning (_("Extra components in aggregate ignored."));
9919 if (ind <= high)
9920 {
9921 add_component_interval (ind, ind, indices, num_indices, max_indices);
9922 *pos += 3;
9923 assign_component (container, lhs, ind, exp, pos);
9924 }
9925 else
9926 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9927 }
9928
9929 /* Assign into the components of LHS indexed by the OP_CHOICES
9930 construct at *POS, updating *POS past the construct, given that
9931 the allowable indices are LOW..HIGH. Record the indices assigned
9932 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9933 needed. CONTAINER is as for assign_aggregate. */
9934 static void
9935 aggregate_assign_from_choices (struct value *container,
9936 struct value *lhs, struct expression *exp,
9937 int *pos, LONGEST *indices, int *num_indices,
9938 int max_indices, LONGEST low, LONGEST high)
9939 {
9940 int j;
9941 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9942 int choice_pos, expr_pc;
9943 int is_array = ada_is_direct_array_type (value_type (lhs));
9944
9945 choice_pos = *pos += 3;
9946
9947 for (j = 0; j < n_choices; j += 1)
9948 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9949 expr_pc = *pos;
9950 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9951
9952 for (j = 0; j < n_choices; j += 1)
9953 {
9954 LONGEST lower, upper;
9955 enum exp_opcode op = exp->elts[choice_pos].opcode;
9956
9957 if (op == OP_DISCRETE_RANGE)
9958 {
9959 choice_pos += 1;
9960 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9961 EVAL_NORMAL));
9962 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9963 EVAL_NORMAL));
9964 }
9965 else if (is_array)
9966 {
9967 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9968 EVAL_NORMAL));
9969 upper = lower;
9970 }
9971 else
9972 {
9973 int ind;
9974 const char *name;
9975
9976 switch (op)
9977 {
9978 case OP_NAME:
9979 name = &exp->elts[choice_pos + 2].string;
9980 break;
9981 case OP_VAR_VALUE:
9982 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9983 break;
9984 default:
9985 error (_("Invalid record component association."));
9986 }
9987 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9988 ind = 0;
9989 if (! find_struct_field (name, value_type (lhs), 0,
9990 NULL, NULL, NULL, NULL, &ind))
9991 error (_("Unknown component name: %s."), name);
9992 lower = upper = ind;
9993 }
9994
9995 if (lower <= upper && (lower < low || upper > high))
9996 error (_("Index in component association out of bounds."));
9997
9998 add_component_interval (lower, upper, indices, num_indices,
9999 max_indices);
10000 while (lower <= upper)
10001 {
10002 int pos1;
10003
10004 pos1 = expr_pc;
10005 assign_component (container, lhs, lower, exp, &pos1);
10006 lower += 1;
10007 }
10008 }
10009 }
10010
10011 /* Assign the value of the expression in the OP_OTHERS construct in
10012 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10013 have not been previously assigned. The index intervals already assigned
10014 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10015 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10016 static void
10017 aggregate_assign_others (struct value *container,
10018 struct value *lhs, struct expression *exp,
10019 int *pos, LONGEST *indices, int num_indices,
10020 LONGEST low, LONGEST high)
10021 {
10022 int i;
10023 int expr_pc = *pos + 1;
10024
10025 for (i = 0; i < num_indices - 2; i += 2)
10026 {
10027 LONGEST ind;
10028
10029 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10030 {
10031 int localpos;
10032
10033 localpos = expr_pc;
10034 assign_component (container, lhs, ind, exp, &localpos);
10035 }
10036 }
10037 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10038 }
10039
10040 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10041 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10042 modifying *SIZE as needed. It is an error if *SIZE exceeds
10043 MAX_SIZE. The resulting intervals do not overlap. */
10044 static void
10045 add_component_interval (LONGEST low, LONGEST high,
10046 LONGEST* indices, int *size, int max_size)
10047 {
10048 int i, j;
10049
10050 for (i = 0; i < *size; i += 2) {
10051 if (high >= indices[i] && low <= indices[i + 1])
10052 {
10053 int kh;
10054
10055 for (kh = i + 2; kh < *size; kh += 2)
10056 if (high < indices[kh])
10057 break;
10058 if (low < indices[i])
10059 indices[i] = low;
10060 indices[i + 1] = indices[kh - 1];
10061 if (high > indices[i + 1])
10062 indices[i + 1] = high;
10063 memcpy (indices + i + 2, indices + kh, *size - kh);
10064 *size -= kh - i - 2;
10065 return;
10066 }
10067 else if (high < indices[i])
10068 break;
10069 }
10070
10071 if (*size == max_size)
10072 error (_("Internal error: miscounted aggregate components."));
10073 *size += 2;
10074 for (j = *size-1; j >= i+2; j -= 1)
10075 indices[j] = indices[j - 2];
10076 indices[i] = low;
10077 indices[i + 1] = high;
10078 }
10079
10080 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10081 is different. */
10082
10083 static struct value *
10084 ada_value_cast (struct type *type, struct value *arg2)
10085 {
10086 if (type == ada_check_typedef (value_type (arg2)))
10087 return arg2;
10088
10089 if (ada_is_fixed_point_type (type))
10090 return cast_to_fixed (type, arg2);
10091
10092 if (ada_is_fixed_point_type (value_type (arg2)))
10093 return cast_from_fixed (type, arg2);
10094
10095 return value_cast (type, arg2);
10096 }
10097
10098 /* Evaluating Ada expressions, and printing their result.
10099 ------------------------------------------------------
10100
10101 1. Introduction:
10102 ----------------
10103
10104 We usually evaluate an Ada expression in order to print its value.
10105 We also evaluate an expression in order to print its type, which
10106 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10107 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10108 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10109 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10110 similar.
10111
10112 Evaluating expressions is a little more complicated for Ada entities
10113 than it is for entities in languages such as C. The main reason for
10114 this is that Ada provides types whose definition might be dynamic.
10115 One example of such types is variant records. Or another example
10116 would be an array whose bounds can only be known at run time.
10117
10118 The following description is a general guide as to what should be
10119 done (and what should NOT be done) in order to evaluate an expression
10120 involving such types, and when. This does not cover how the semantic
10121 information is encoded by GNAT as this is covered separatly. For the
10122 document used as the reference for the GNAT encoding, see exp_dbug.ads
10123 in the GNAT sources.
10124
10125 Ideally, we should embed each part of this description next to its
10126 associated code. Unfortunately, the amount of code is so vast right
10127 now that it's hard to see whether the code handling a particular
10128 situation might be duplicated or not. One day, when the code is
10129 cleaned up, this guide might become redundant with the comments
10130 inserted in the code, and we might want to remove it.
10131
10132 2. ``Fixing'' an Entity, the Simple Case:
10133 -----------------------------------------
10134
10135 When evaluating Ada expressions, the tricky issue is that they may
10136 reference entities whose type contents and size are not statically
10137 known. Consider for instance a variant record:
10138
10139 type Rec (Empty : Boolean := True) is record
10140 case Empty is
10141 when True => null;
10142 when False => Value : Integer;
10143 end case;
10144 end record;
10145 Yes : Rec := (Empty => False, Value => 1);
10146 No : Rec := (empty => True);
10147
10148 The size and contents of that record depends on the value of the
10149 descriminant (Rec.Empty). At this point, neither the debugging
10150 information nor the associated type structure in GDB are able to
10151 express such dynamic types. So what the debugger does is to create
10152 "fixed" versions of the type that applies to the specific object.
10153 We also informally refer to this opperation as "fixing" an object,
10154 which means creating its associated fixed type.
10155
10156 Example: when printing the value of variable "Yes" above, its fixed
10157 type would look like this:
10158
10159 type Rec is record
10160 Empty : Boolean;
10161 Value : Integer;
10162 end record;
10163
10164 On the other hand, if we printed the value of "No", its fixed type
10165 would become:
10166
10167 type Rec is record
10168 Empty : Boolean;
10169 end record;
10170
10171 Things become a little more complicated when trying to fix an entity
10172 with a dynamic type that directly contains another dynamic type,
10173 such as an array of variant records, for instance. There are
10174 two possible cases: Arrays, and records.
10175
10176 3. ``Fixing'' Arrays:
10177 ---------------------
10178
10179 The type structure in GDB describes an array in terms of its bounds,
10180 and the type of its elements. By design, all elements in the array
10181 have the same type and we cannot represent an array of variant elements
10182 using the current type structure in GDB. When fixing an array,
10183 we cannot fix the array element, as we would potentially need one
10184 fixed type per element of the array. As a result, the best we can do
10185 when fixing an array is to produce an array whose bounds and size
10186 are correct (allowing us to read it from memory), but without having
10187 touched its element type. Fixing each element will be done later,
10188 when (if) necessary.
10189
10190 Arrays are a little simpler to handle than records, because the same
10191 amount of memory is allocated for each element of the array, even if
10192 the amount of space actually used by each element differs from element
10193 to element. Consider for instance the following array of type Rec:
10194
10195 type Rec_Array is array (1 .. 2) of Rec;
10196
10197 The actual amount of memory occupied by each element might be different
10198 from element to element, depending on the value of their discriminant.
10199 But the amount of space reserved for each element in the array remains
10200 fixed regardless. So we simply need to compute that size using
10201 the debugging information available, from which we can then determine
10202 the array size (we multiply the number of elements of the array by
10203 the size of each element).
10204
10205 The simplest case is when we have an array of a constrained element
10206 type. For instance, consider the following type declarations:
10207
10208 type Bounded_String (Max_Size : Integer) is
10209 Length : Integer;
10210 Buffer : String (1 .. Max_Size);
10211 end record;
10212 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10213
10214 In this case, the compiler describes the array as an array of
10215 variable-size elements (identified by its XVS suffix) for which
10216 the size can be read in the parallel XVZ variable.
10217
10218 In the case of an array of an unconstrained element type, the compiler
10219 wraps the array element inside a private PAD type. This type should not
10220 be shown to the user, and must be "unwrap"'ed before printing. Note
10221 that we also use the adjective "aligner" in our code to designate
10222 these wrapper types.
10223
10224 In some cases, the size allocated for each element is statically
10225 known. In that case, the PAD type already has the correct size,
10226 and the array element should remain unfixed.
10227
10228 But there are cases when this size is not statically known.
10229 For instance, assuming that "Five" is an integer variable:
10230
10231 type Dynamic is array (1 .. Five) of Integer;
10232 type Wrapper (Has_Length : Boolean := False) is record
10233 Data : Dynamic;
10234 case Has_Length is
10235 when True => Length : Integer;
10236 when False => null;
10237 end case;
10238 end record;
10239 type Wrapper_Array is array (1 .. 2) of Wrapper;
10240
10241 Hello : Wrapper_Array := (others => (Has_Length => True,
10242 Data => (others => 17),
10243 Length => 1));
10244
10245
10246 The debugging info would describe variable Hello as being an
10247 array of a PAD type. The size of that PAD type is not statically
10248 known, but can be determined using a parallel XVZ variable.
10249 In that case, a copy of the PAD type with the correct size should
10250 be used for the fixed array.
10251
10252 3. ``Fixing'' record type objects:
10253 ----------------------------------
10254
10255 Things are slightly different from arrays in the case of dynamic
10256 record types. In this case, in order to compute the associated
10257 fixed type, we need to determine the size and offset of each of
10258 its components. This, in turn, requires us to compute the fixed
10259 type of each of these components.
10260
10261 Consider for instance the example:
10262
10263 type Bounded_String (Max_Size : Natural) is record
10264 Str : String (1 .. Max_Size);
10265 Length : Natural;
10266 end record;
10267 My_String : Bounded_String (Max_Size => 10);
10268
10269 In that case, the position of field "Length" depends on the size
10270 of field Str, which itself depends on the value of the Max_Size
10271 discriminant. In order to fix the type of variable My_String,
10272 we need to fix the type of field Str. Therefore, fixing a variant
10273 record requires us to fix each of its components.
10274
10275 However, if a component does not have a dynamic size, the component
10276 should not be fixed. In particular, fields that use a PAD type
10277 should not fixed. Here is an example where this might happen
10278 (assuming type Rec above):
10279
10280 type Container (Big : Boolean) is record
10281 First : Rec;
10282 After : Integer;
10283 case Big is
10284 when True => Another : Integer;
10285 when False => null;
10286 end case;
10287 end record;
10288 My_Container : Container := (Big => False,
10289 First => (Empty => True),
10290 After => 42);
10291
10292 In that example, the compiler creates a PAD type for component First,
10293 whose size is constant, and then positions the component After just
10294 right after it. The offset of component After is therefore constant
10295 in this case.
10296
10297 The debugger computes the position of each field based on an algorithm
10298 that uses, among other things, the actual position and size of the field
10299 preceding it. Let's now imagine that the user is trying to print
10300 the value of My_Container. If the type fixing was recursive, we would
10301 end up computing the offset of field After based on the size of the
10302 fixed version of field First. And since in our example First has
10303 only one actual field, the size of the fixed type is actually smaller
10304 than the amount of space allocated to that field, and thus we would
10305 compute the wrong offset of field After.
10306
10307 To make things more complicated, we need to watch out for dynamic
10308 components of variant records (identified by the ___XVL suffix in
10309 the component name). Even if the target type is a PAD type, the size
10310 of that type might not be statically known. So the PAD type needs
10311 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10312 we might end up with the wrong size for our component. This can be
10313 observed with the following type declarations:
10314
10315 type Octal is new Integer range 0 .. 7;
10316 type Octal_Array is array (Positive range <>) of Octal;
10317 pragma Pack (Octal_Array);
10318
10319 type Octal_Buffer (Size : Positive) is record
10320 Buffer : Octal_Array (1 .. Size);
10321 Length : Integer;
10322 end record;
10323
10324 In that case, Buffer is a PAD type whose size is unset and needs
10325 to be computed by fixing the unwrapped type.
10326
10327 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10328 ----------------------------------------------------------
10329
10330 Lastly, when should the sub-elements of an entity that remained unfixed
10331 thus far, be actually fixed?
10332
10333 The answer is: Only when referencing that element. For instance
10334 when selecting one component of a record, this specific component
10335 should be fixed at that point in time. Or when printing the value
10336 of a record, each component should be fixed before its value gets
10337 printed. Similarly for arrays, the element of the array should be
10338 fixed when printing each element of the array, or when extracting
10339 one element out of that array. On the other hand, fixing should
10340 not be performed on the elements when taking a slice of an array!
10341
10342 Note that one of the side effects of miscomputing the offset and
10343 size of each field is that we end up also miscomputing the size
10344 of the containing type. This can have adverse results when computing
10345 the value of an entity. GDB fetches the value of an entity based
10346 on the size of its type, and thus a wrong size causes GDB to fetch
10347 the wrong amount of memory. In the case where the computed size is
10348 too small, GDB fetches too little data to print the value of our
10349 entity. Results in this case are unpredictable, as we usually read
10350 past the buffer containing the data =:-o. */
10351
10352 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10353 for that subexpression cast to TO_TYPE. Advance *POS over the
10354 subexpression. */
10355
10356 static value *
10357 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10358 enum noside noside, struct type *to_type)
10359 {
10360 int pc = *pos;
10361
10362 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10363 || exp->elts[pc].opcode == OP_VAR_VALUE)
10364 {
10365 (*pos) += 4;
10366
10367 value *val;
10368 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10369 {
10370 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10371 return value_zero (to_type, not_lval);
10372
10373 val = evaluate_var_msym_value (noside,
10374 exp->elts[pc + 1].objfile,
10375 exp->elts[pc + 2].msymbol);
10376 }
10377 else
10378 val = evaluate_var_value (noside,
10379 exp->elts[pc + 1].block,
10380 exp->elts[pc + 2].symbol);
10381
10382 if (noside == EVAL_SKIP)
10383 return eval_skip_value (exp);
10384
10385 val = ada_value_cast (to_type, val);
10386
10387 /* Follow the Ada language semantics that do not allow taking
10388 an address of the result of a cast (view conversion in Ada). */
10389 if (VALUE_LVAL (val) == lval_memory)
10390 {
10391 if (value_lazy (val))
10392 value_fetch_lazy (val);
10393 VALUE_LVAL (val) = not_lval;
10394 }
10395 return val;
10396 }
10397
10398 value *val = evaluate_subexp (to_type, exp, pos, noside);
10399 if (noside == EVAL_SKIP)
10400 return eval_skip_value (exp);
10401 return ada_value_cast (to_type, val);
10402 }
10403
10404 /* Implement the evaluate_exp routine in the exp_descriptor structure
10405 for the Ada language. */
10406
10407 static struct value *
10408 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10409 int *pos, enum noside noside)
10410 {
10411 enum exp_opcode op;
10412 int tem;
10413 int pc;
10414 int preeval_pos;
10415 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10416 struct type *type;
10417 int nargs, oplen;
10418 struct value **argvec;
10419
10420 pc = *pos;
10421 *pos += 1;
10422 op = exp->elts[pc].opcode;
10423
10424 switch (op)
10425 {
10426 default:
10427 *pos -= 1;
10428 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10429
10430 if (noside == EVAL_NORMAL)
10431 arg1 = unwrap_value (arg1);
10432
10433 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10434 then we need to perform the conversion manually, because
10435 evaluate_subexp_standard doesn't do it. This conversion is
10436 necessary in Ada because the different kinds of float/fixed
10437 types in Ada have different representations.
10438
10439 Similarly, we need to perform the conversion from OP_LONG
10440 ourselves. */
10441 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10442 arg1 = ada_value_cast (expect_type, arg1);
10443
10444 return arg1;
10445
10446 case OP_STRING:
10447 {
10448 struct value *result;
10449
10450 *pos -= 1;
10451 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10452 /* The result type will have code OP_STRING, bashed there from
10453 OP_ARRAY. Bash it back. */
10454 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10455 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10456 return result;
10457 }
10458
10459 case UNOP_CAST:
10460 (*pos) += 2;
10461 type = exp->elts[pc + 1].type;
10462 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10463
10464 case UNOP_QUAL:
10465 (*pos) += 2;
10466 type = exp->elts[pc + 1].type;
10467 return ada_evaluate_subexp (type, exp, pos, noside);
10468
10469 case BINOP_ASSIGN:
10470 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10471 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10472 {
10473 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10474 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10475 return arg1;
10476 return ada_value_assign (arg1, arg1);
10477 }
10478 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10479 except if the lhs of our assignment is a convenience variable.
10480 In the case of assigning to a convenience variable, the lhs
10481 should be exactly the result of the evaluation of the rhs. */
10482 type = value_type (arg1);
10483 if (VALUE_LVAL (arg1) == lval_internalvar)
10484 type = NULL;
10485 arg2 = evaluate_subexp (type, exp, pos, noside);
10486 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10487 return arg1;
10488 if (VALUE_LVAL (arg1) == lval_internalvar)
10489 {
10490 /* Nothing. */
10491 }
10492 else if (ada_is_fixed_point_type (value_type (arg1)))
10493 arg2 = cast_to_fixed (value_type (arg1), arg2);
10494 else if (ada_is_fixed_point_type (value_type (arg2)))
10495 error
10496 (_("Fixed-point values must be assigned to fixed-point variables"));
10497 else
10498 arg2 = coerce_for_assign (value_type (arg1), arg2);
10499 return ada_value_assign (arg1, arg2);
10500
10501 case BINOP_ADD:
10502 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10503 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10504 if (noside == EVAL_SKIP)
10505 goto nosideret;
10506 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10507 return (value_from_longest
10508 (value_type (arg1),
10509 value_as_long (arg1) + value_as_long (arg2)));
10510 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10511 return (value_from_longest
10512 (value_type (arg2),
10513 value_as_long (arg1) + value_as_long (arg2)));
10514 if ((ada_is_fixed_point_type (value_type (arg1))
10515 || ada_is_fixed_point_type (value_type (arg2)))
10516 && value_type (arg1) != value_type (arg2))
10517 error (_("Operands of fixed-point addition must have the same type"));
10518 /* Do the addition, and cast the result to the type of the first
10519 argument. We cannot cast the result to a reference type, so if
10520 ARG1 is a reference type, find its underlying type. */
10521 type = value_type (arg1);
10522 while (TYPE_CODE (type) == TYPE_CODE_REF)
10523 type = TYPE_TARGET_TYPE (type);
10524 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10525 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10526
10527 case BINOP_SUB:
10528 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10529 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10530 if (noside == EVAL_SKIP)
10531 goto nosideret;
10532 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10533 return (value_from_longest
10534 (value_type (arg1),
10535 value_as_long (arg1) - value_as_long (arg2)));
10536 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10537 return (value_from_longest
10538 (value_type (arg2),
10539 value_as_long (arg1) - value_as_long (arg2)));
10540 if ((ada_is_fixed_point_type (value_type (arg1))
10541 || ada_is_fixed_point_type (value_type (arg2)))
10542 && value_type (arg1) != value_type (arg2))
10543 error (_("Operands of fixed-point subtraction "
10544 "must have the same type"));
10545 /* Do the substraction, and cast the result to the type of the first
10546 argument. We cannot cast the result to a reference type, so if
10547 ARG1 is a reference type, find its underlying type. */
10548 type = value_type (arg1);
10549 while (TYPE_CODE (type) == TYPE_CODE_REF)
10550 type = TYPE_TARGET_TYPE (type);
10551 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10552 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10553
10554 case BINOP_MUL:
10555 case BINOP_DIV:
10556 case BINOP_REM:
10557 case BINOP_MOD:
10558 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10559 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10560 if (noside == EVAL_SKIP)
10561 goto nosideret;
10562 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10563 {
10564 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10565 return value_zero (value_type (arg1), not_lval);
10566 }
10567 else
10568 {
10569 type = builtin_type (exp->gdbarch)->builtin_double;
10570 if (ada_is_fixed_point_type (value_type (arg1)))
10571 arg1 = cast_from_fixed (type, arg1);
10572 if (ada_is_fixed_point_type (value_type (arg2)))
10573 arg2 = cast_from_fixed (type, arg2);
10574 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10575 return ada_value_binop (arg1, arg2, op);
10576 }
10577
10578 case BINOP_EQUAL:
10579 case BINOP_NOTEQUAL:
10580 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10581 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10582 if (noside == EVAL_SKIP)
10583 goto nosideret;
10584 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10585 tem = 0;
10586 else
10587 {
10588 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10589 tem = ada_value_equal (arg1, arg2);
10590 }
10591 if (op == BINOP_NOTEQUAL)
10592 tem = !tem;
10593 type = language_bool_type (exp->language_defn, exp->gdbarch);
10594 return value_from_longest (type, (LONGEST) tem);
10595
10596 case UNOP_NEG:
10597 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10598 if (noside == EVAL_SKIP)
10599 goto nosideret;
10600 else if (ada_is_fixed_point_type (value_type (arg1)))
10601 return value_cast (value_type (arg1), value_neg (arg1));
10602 else
10603 {
10604 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10605 return value_neg (arg1);
10606 }
10607
10608 case BINOP_LOGICAL_AND:
10609 case BINOP_LOGICAL_OR:
10610 case UNOP_LOGICAL_NOT:
10611 {
10612 struct value *val;
10613
10614 *pos -= 1;
10615 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10616 type = language_bool_type (exp->language_defn, exp->gdbarch);
10617 return value_cast (type, val);
10618 }
10619
10620 case BINOP_BITWISE_AND:
10621 case BINOP_BITWISE_IOR:
10622 case BINOP_BITWISE_XOR:
10623 {
10624 struct value *val;
10625
10626 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10627 *pos = pc;
10628 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10629
10630 return value_cast (value_type (arg1), val);
10631 }
10632
10633 case OP_VAR_VALUE:
10634 *pos -= 1;
10635
10636 if (noside == EVAL_SKIP)
10637 {
10638 *pos += 4;
10639 goto nosideret;
10640 }
10641
10642 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10643 /* Only encountered when an unresolved symbol occurs in a
10644 context other than a function call, in which case, it is
10645 invalid. */
10646 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10647 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10648
10649 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10650 {
10651 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10652 /* Check to see if this is a tagged type. We also need to handle
10653 the case where the type is a reference to a tagged type, but
10654 we have to be careful to exclude pointers to tagged types.
10655 The latter should be shown as usual (as a pointer), whereas
10656 a reference should mostly be transparent to the user. */
10657 if (ada_is_tagged_type (type, 0)
10658 || (TYPE_CODE (type) == TYPE_CODE_REF
10659 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10660 {
10661 /* Tagged types are a little special in the fact that the real
10662 type is dynamic and can only be determined by inspecting the
10663 object's tag. This means that we need to get the object's
10664 value first (EVAL_NORMAL) and then extract the actual object
10665 type from its tag.
10666
10667 Note that we cannot skip the final step where we extract
10668 the object type from its tag, because the EVAL_NORMAL phase
10669 results in dynamic components being resolved into fixed ones.
10670 This can cause problems when trying to print the type
10671 description of tagged types whose parent has a dynamic size:
10672 We use the type name of the "_parent" component in order
10673 to print the name of the ancestor type in the type description.
10674 If that component had a dynamic size, the resolution into
10675 a fixed type would result in the loss of that type name,
10676 thus preventing us from printing the name of the ancestor
10677 type in the type description. */
10678 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10679
10680 if (TYPE_CODE (type) != TYPE_CODE_REF)
10681 {
10682 struct type *actual_type;
10683
10684 actual_type = type_from_tag (ada_value_tag (arg1));
10685 if (actual_type == NULL)
10686 /* If, for some reason, we were unable to determine
10687 the actual type from the tag, then use the static
10688 approximation that we just computed as a fallback.
10689 This can happen if the debugging information is
10690 incomplete, for instance. */
10691 actual_type = type;
10692 return value_zero (actual_type, not_lval);
10693 }
10694 else
10695 {
10696 /* In the case of a ref, ada_coerce_ref takes care
10697 of determining the actual type. But the evaluation
10698 should return a ref as it should be valid to ask
10699 for its address; so rebuild a ref after coerce. */
10700 arg1 = ada_coerce_ref (arg1);
10701 return value_ref (arg1, TYPE_CODE_REF);
10702 }
10703 }
10704
10705 /* Records and unions for which GNAT encodings have been
10706 generated need to be statically fixed as well.
10707 Otherwise, non-static fixing produces a type where
10708 all dynamic properties are removed, which prevents "ptype"
10709 from being able to completely describe the type.
10710 For instance, a case statement in a variant record would be
10711 replaced by the relevant components based on the actual
10712 value of the discriminants. */
10713 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10714 && dynamic_template_type (type) != NULL)
10715 || (TYPE_CODE (type) == TYPE_CODE_UNION
10716 && ada_find_parallel_type (type, "___XVU") != NULL))
10717 {
10718 *pos += 4;
10719 return value_zero (to_static_fixed_type (type), not_lval);
10720 }
10721 }
10722
10723 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10724 return ada_to_fixed_value (arg1);
10725
10726 case OP_FUNCALL:
10727 (*pos) += 2;
10728
10729 /* Allocate arg vector, including space for the function to be
10730 called in argvec[0] and a terminating NULL. */
10731 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10732 argvec = XALLOCAVEC (struct value *, nargs + 2);
10733
10734 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10735 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10736 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10737 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10738 else
10739 {
10740 for (tem = 0; tem <= nargs; tem += 1)
10741 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10742 argvec[tem] = 0;
10743
10744 if (noside == EVAL_SKIP)
10745 goto nosideret;
10746 }
10747
10748 if (ada_is_constrained_packed_array_type
10749 (desc_base_type (value_type (argvec[0]))))
10750 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10751 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10752 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10753 /* This is a packed array that has already been fixed, and
10754 therefore already coerced to a simple array. Nothing further
10755 to do. */
10756 ;
10757 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10758 {
10759 /* Make sure we dereference references so that all the code below
10760 feels like it's really handling the referenced value. Wrapping
10761 types (for alignment) may be there, so make sure we strip them as
10762 well. */
10763 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10764 }
10765 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10766 && VALUE_LVAL (argvec[0]) == lval_memory)
10767 argvec[0] = value_addr (argvec[0]);
10768
10769 type = ada_check_typedef (value_type (argvec[0]));
10770
10771 /* Ada allows us to implicitly dereference arrays when subscripting
10772 them. So, if this is an array typedef (encoding use for array
10773 access types encoded as fat pointers), strip it now. */
10774 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10775 type = ada_typedef_target_type (type);
10776
10777 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10778 {
10779 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10780 {
10781 case TYPE_CODE_FUNC:
10782 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10783 break;
10784 case TYPE_CODE_ARRAY:
10785 break;
10786 case TYPE_CODE_STRUCT:
10787 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10788 argvec[0] = ada_value_ind (argvec[0]);
10789 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10790 break;
10791 default:
10792 error (_("cannot subscript or call something of type `%s'"),
10793 ada_type_name (value_type (argvec[0])));
10794 break;
10795 }
10796 }
10797
10798 switch (TYPE_CODE (type))
10799 {
10800 case TYPE_CODE_FUNC:
10801 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10802 {
10803 if (TYPE_TARGET_TYPE (type) == NULL)
10804 error_call_unknown_return_type (NULL);
10805 return allocate_value (TYPE_TARGET_TYPE (type));
10806 }
10807 return call_function_by_hand (argvec[0], NULL,
10808 gdb::make_array_view (argvec + 1,
10809 nargs));
10810 case TYPE_CODE_INTERNAL_FUNCTION:
10811 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10812 /* We don't know anything about what the internal
10813 function might return, but we have to return
10814 something. */
10815 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10816 not_lval);
10817 else
10818 return call_internal_function (exp->gdbarch, exp->language_defn,
10819 argvec[0], nargs, argvec + 1);
10820
10821 case TYPE_CODE_STRUCT:
10822 {
10823 int arity;
10824
10825 arity = ada_array_arity (type);
10826 type = ada_array_element_type (type, nargs);
10827 if (type == NULL)
10828 error (_("cannot subscript or call a record"));
10829 if (arity != nargs)
10830 error (_("wrong number of subscripts; expecting %d"), arity);
10831 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10832 return value_zero (ada_aligned_type (type), lval_memory);
10833 return
10834 unwrap_value (ada_value_subscript
10835 (argvec[0], nargs, argvec + 1));
10836 }
10837 case TYPE_CODE_ARRAY:
10838 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10839 {
10840 type = ada_array_element_type (type, nargs);
10841 if (type == NULL)
10842 error (_("element type of array unknown"));
10843 else
10844 return value_zero (ada_aligned_type (type), lval_memory);
10845 }
10846 return
10847 unwrap_value (ada_value_subscript
10848 (ada_coerce_to_simple_array (argvec[0]),
10849 nargs, argvec + 1));
10850 case TYPE_CODE_PTR: /* Pointer to array */
10851 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10852 {
10853 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10854 type = ada_array_element_type (type, nargs);
10855 if (type == NULL)
10856 error (_("element type of array unknown"));
10857 else
10858 return value_zero (ada_aligned_type (type), lval_memory);
10859 }
10860 return
10861 unwrap_value (ada_value_ptr_subscript (argvec[0],
10862 nargs, argvec + 1));
10863
10864 default:
10865 error (_("Attempt to index or call something other than an "
10866 "array or function"));
10867 }
10868
10869 case TERNOP_SLICE:
10870 {
10871 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10872 struct value *low_bound_val =
10873 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10874 struct value *high_bound_val =
10875 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10876 LONGEST low_bound;
10877 LONGEST high_bound;
10878
10879 low_bound_val = coerce_ref (low_bound_val);
10880 high_bound_val = coerce_ref (high_bound_val);
10881 low_bound = value_as_long (low_bound_val);
10882 high_bound = value_as_long (high_bound_val);
10883
10884 if (noside == EVAL_SKIP)
10885 goto nosideret;
10886
10887 /* If this is a reference to an aligner type, then remove all
10888 the aligners. */
10889 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10890 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10891 TYPE_TARGET_TYPE (value_type (array)) =
10892 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10893
10894 if (ada_is_constrained_packed_array_type (value_type (array)))
10895 error (_("cannot slice a packed array"));
10896
10897 /* If this is a reference to an array or an array lvalue,
10898 convert to a pointer. */
10899 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10900 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10901 && VALUE_LVAL (array) == lval_memory))
10902 array = value_addr (array);
10903
10904 if (noside == EVAL_AVOID_SIDE_EFFECTS
10905 && ada_is_array_descriptor_type (ada_check_typedef
10906 (value_type (array))))
10907 return empty_array (ada_type_of_array (array, 0), low_bound,
10908 high_bound);
10909
10910 array = ada_coerce_to_simple_array_ptr (array);
10911
10912 /* If we have more than one level of pointer indirection,
10913 dereference the value until we get only one level. */
10914 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10915 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10916 == TYPE_CODE_PTR))
10917 array = value_ind (array);
10918
10919 /* Make sure we really do have an array type before going further,
10920 to avoid a SEGV when trying to get the index type or the target
10921 type later down the road if the debug info generated by
10922 the compiler is incorrect or incomplete. */
10923 if (!ada_is_simple_array_type (value_type (array)))
10924 error (_("cannot take slice of non-array"));
10925
10926 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10927 == TYPE_CODE_PTR)
10928 {
10929 struct type *type0 = ada_check_typedef (value_type (array));
10930
10931 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10932 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10933 else
10934 {
10935 struct type *arr_type0 =
10936 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10937
10938 return ada_value_slice_from_ptr (array, arr_type0,
10939 longest_to_int (low_bound),
10940 longest_to_int (high_bound));
10941 }
10942 }
10943 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10944 return array;
10945 else if (high_bound < low_bound)
10946 return empty_array (value_type (array), low_bound, high_bound);
10947 else
10948 return ada_value_slice (array, longest_to_int (low_bound),
10949 longest_to_int (high_bound));
10950 }
10951
10952 case UNOP_IN_RANGE:
10953 (*pos) += 2;
10954 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10955 type = check_typedef (exp->elts[pc + 1].type);
10956
10957 if (noside == EVAL_SKIP)
10958 goto nosideret;
10959
10960 switch (TYPE_CODE (type))
10961 {
10962 default:
10963 lim_warning (_("Membership test incompletely implemented; "
10964 "always returns true"));
10965 type = language_bool_type (exp->language_defn, exp->gdbarch);
10966 return value_from_longest (type, (LONGEST) 1);
10967
10968 case TYPE_CODE_RANGE:
10969 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10970 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10971 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10972 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10973 type = language_bool_type (exp->language_defn, exp->gdbarch);
10974 return
10975 value_from_longest (type,
10976 (value_less (arg1, arg3)
10977 || value_equal (arg1, arg3))
10978 && (value_less (arg2, arg1)
10979 || value_equal (arg2, arg1)));
10980 }
10981
10982 case BINOP_IN_BOUNDS:
10983 (*pos) += 2;
10984 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10985 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10986
10987 if (noside == EVAL_SKIP)
10988 goto nosideret;
10989
10990 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10991 {
10992 type = language_bool_type (exp->language_defn, exp->gdbarch);
10993 return value_zero (type, not_lval);
10994 }
10995
10996 tem = longest_to_int (exp->elts[pc + 1].longconst);
10997
10998 type = ada_index_type (value_type (arg2), tem, "range");
10999 if (!type)
11000 type = value_type (arg1);
11001
11002 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11003 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11004
11005 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11006 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11007 type = language_bool_type (exp->language_defn, exp->gdbarch);
11008 return
11009 value_from_longest (type,
11010 (value_less (arg1, arg3)
11011 || value_equal (arg1, arg3))
11012 && (value_less (arg2, arg1)
11013 || value_equal (arg2, arg1)));
11014
11015 case TERNOP_IN_RANGE:
11016 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11017 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11018 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11019
11020 if (noside == EVAL_SKIP)
11021 goto nosideret;
11022
11023 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11024 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11025 type = language_bool_type (exp->language_defn, exp->gdbarch);
11026 return
11027 value_from_longest (type,
11028 (value_less (arg1, arg3)
11029 || value_equal (arg1, arg3))
11030 && (value_less (arg2, arg1)
11031 || value_equal (arg2, arg1)));
11032
11033 case OP_ATR_FIRST:
11034 case OP_ATR_LAST:
11035 case OP_ATR_LENGTH:
11036 {
11037 struct type *type_arg;
11038
11039 if (exp->elts[*pos].opcode == OP_TYPE)
11040 {
11041 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11042 arg1 = NULL;
11043 type_arg = check_typedef (exp->elts[pc + 2].type);
11044 }
11045 else
11046 {
11047 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11048 type_arg = NULL;
11049 }
11050
11051 if (exp->elts[*pos].opcode != OP_LONG)
11052 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11053 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11054 *pos += 4;
11055
11056 if (noside == EVAL_SKIP)
11057 goto nosideret;
11058 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11059 {
11060 if (type_arg == NULL)
11061 type_arg = value_type (arg1);
11062
11063 if (ada_is_constrained_packed_array_type (type_arg))
11064 type_arg = decode_constrained_packed_array_type (type_arg);
11065
11066 if (!discrete_type_p (type_arg))
11067 {
11068 switch (op)
11069 {
11070 default: /* Should never happen. */
11071 error (_("unexpected attribute encountered"));
11072 case OP_ATR_FIRST:
11073 case OP_ATR_LAST:
11074 type_arg = ada_index_type (type_arg, tem,
11075 ada_attribute_name (op));
11076 break;
11077 case OP_ATR_LENGTH:
11078 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11079 break;
11080 }
11081 }
11082
11083 return value_zero (type_arg, not_lval);
11084 }
11085 else if (type_arg == NULL)
11086 {
11087 arg1 = ada_coerce_ref (arg1);
11088
11089 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11090 arg1 = ada_coerce_to_simple_array (arg1);
11091
11092 if (op == OP_ATR_LENGTH)
11093 type = builtin_type (exp->gdbarch)->builtin_int;
11094 else
11095 {
11096 type = ada_index_type (value_type (arg1), tem,
11097 ada_attribute_name (op));
11098 if (type == NULL)
11099 type = builtin_type (exp->gdbarch)->builtin_int;
11100 }
11101
11102 switch (op)
11103 {
11104 default: /* Should never happen. */
11105 error (_("unexpected attribute encountered"));
11106 case OP_ATR_FIRST:
11107 return value_from_longest
11108 (type, ada_array_bound (arg1, tem, 0));
11109 case OP_ATR_LAST:
11110 return value_from_longest
11111 (type, ada_array_bound (arg1, tem, 1));
11112 case OP_ATR_LENGTH:
11113 return value_from_longest
11114 (type, ada_array_length (arg1, tem));
11115 }
11116 }
11117 else if (discrete_type_p (type_arg))
11118 {
11119 struct type *range_type;
11120 const char *name = ada_type_name (type_arg);
11121
11122 range_type = NULL;
11123 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11124 range_type = to_fixed_range_type (type_arg, NULL);
11125 if (range_type == NULL)
11126 range_type = type_arg;
11127 switch (op)
11128 {
11129 default:
11130 error (_("unexpected attribute encountered"));
11131 case OP_ATR_FIRST:
11132 return value_from_longest
11133 (range_type, ada_discrete_type_low_bound (range_type));
11134 case OP_ATR_LAST:
11135 return value_from_longest
11136 (range_type, ada_discrete_type_high_bound (range_type));
11137 case OP_ATR_LENGTH:
11138 error (_("the 'length attribute applies only to array types"));
11139 }
11140 }
11141 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11142 error (_("unimplemented type attribute"));
11143 else
11144 {
11145 LONGEST low, high;
11146
11147 if (ada_is_constrained_packed_array_type (type_arg))
11148 type_arg = decode_constrained_packed_array_type (type_arg);
11149
11150 if (op == OP_ATR_LENGTH)
11151 type = builtin_type (exp->gdbarch)->builtin_int;
11152 else
11153 {
11154 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11155 if (type == NULL)
11156 type = builtin_type (exp->gdbarch)->builtin_int;
11157 }
11158
11159 switch (op)
11160 {
11161 default:
11162 error (_("unexpected attribute encountered"));
11163 case OP_ATR_FIRST:
11164 low = ada_array_bound_from_type (type_arg, tem, 0);
11165 return value_from_longest (type, low);
11166 case OP_ATR_LAST:
11167 high = ada_array_bound_from_type (type_arg, tem, 1);
11168 return value_from_longest (type, high);
11169 case OP_ATR_LENGTH:
11170 low = ada_array_bound_from_type (type_arg, tem, 0);
11171 high = ada_array_bound_from_type (type_arg, tem, 1);
11172 return value_from_longest (type, high - low + 1);
11173 }
11174 }
11175 }
11176
11177 case OP_ATR_TAG:
11178 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11179 if (noside == EVAL_SKIP)
11180 goto nosideret;
11181
11182 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11183 return value_zero (ada_tag_type (arg1), not_lval);
11184
11185 return ada_value_tag (arg1);
11186
11187 case OP_ATR_MIN:
11188 case OP_ATR_MAX:
11189 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11190 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11191 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11192 if (noside == EVAL_SKIP)
11193 goto nosideret;
11194 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11195 return value_zero (value_type (arg1), not_lval);
11196 else
11197 {
11198 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11199 return value_binop (arg1, arg2,
11200 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11201 }
11202
11203 case OP_ATR_MODULUS:
11204 {
11205 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11206
11207 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11208 if (noside == EVAL_SKIP)
11209 goto nosideret;
11210
11211 if (!ada_is_modular_type (type_arg))
11212 error (_("'modulus must be applied to modular type"));
11213
11214 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11215 ada_modulus (type_arg));
11216 }
11217
11218
11219 case OP_ATR_POS:
11220 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11221 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11222 if (noside == EVAL_SKIP)
11223 goto nosideret;
11224 type = builtin_type (exp->gdbarch)->builtin_int;
11225 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11226 return value_zero (type, not_lval);
11227 else
11228 return value_pos_atr (type, arg1);
11229
11230 case OP_ATR_SIZE:
11231 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11232 type = value_type (arg1);
11233
11234 /* If the argument is a reference, then dereference its type, since
11235 the user is really asking for the size of the actual object,
11236 not the size of the pointer. */
11237 if (TYPE_CODE (type) == TYPE_CODE_REF)
11238 type = TYPE_TARGET_TYPE (type);
11239
11240 if (noside == EVAL_SKIP)
11241 goto nosideret;
11242 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11243 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11244 else
11245 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11246 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11247
11248 case OP_ATR_VAL:
11249 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11250 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11251 type = exp->elts[pc + 2].type;
11252 if (noside == EVAL_SKIP)
11253 goto nosideret;
11254 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11255 return value_zero (type, not_lval);
11256 else
11257 return value_val_atr (type, arg1);
11258
11259 case BINOP_EXP:
11260 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11261 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11262 if (noside == EVAL_SKIP)
11263 goto nosideret;
11264 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11265 return value_zero (value_type (arg1), not_lval);
11266 else
11267 {
11268 /* For integer exponentiation operations,
11269 only promote the first argument. */
11270 if (is_integral_type (value_type (arg2)))
11271 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11272 else
11273 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11274
11275 return value_binop (arg1, arg2, op);
11276 }
11277
11278 case UNOP_PLUS:
11279 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11280 if (noside == EVAL_SKIP)
11281 goto nosideret;
11282 else
11283 return arg1;
11284
11285 case UNOP_ABS:
11286 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11287 if (noside == EVAL_SKIP)
11288 goto nosideret;
11289 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11290 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11291 return value_neg (arg1);
11292 else
11293 return arg1;
11294
11295 case UNOP_IND:
11296 preeval_pos = *pos;
11297 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11298 if (noside == EVAL_SKIP)
11299 goto nosideret;
11300 type = ada_check_typedef (value_type (arg1));
11301 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11302 {
11303 if (ada_is_array_descriptor_type (type))
11304 /* GDB allows dereferencing GNAT array descriptors. */
11305 {
11306 struct type *arrType = ada_type_of_array (arg1, 0);
11307
11308 if (arrType == NULL)
11309 error (_("Attempt to dereference null array pointer."));
11310 return value_at_lazy (arrType, 0);
11311 }
11312 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11313 || TYPE_CODE (type) == TYPE_CODE_REF
11314 /* In C you can dereference an array to get the 1st elt. */
11315 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11316 {
11317 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11318 only be determined by inspecting the object's tag.
11319 This means that we need to evaluate completely the
11320 expression in order to get its type. */
11321
11322 if ((TYPE_CODE (type) == TYPE_CODE_REF
11323 || TYPE_CODE (type) == TYPE_CODE_PTR)
11324 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11325 {
11326 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11327 EVAL_NORMAL);
11328 type = value_type (ada_value_ind (arg1));
11329 }
11330 else
11331 {
11332 type = to_static_fixed_type
11333 (ada_aligned_type
11334 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11335 }
11336 ada_ensure_varsize_limit (type);
11337 return value_zero (type, lval_memory);
11338 }
11339 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11340 {
11341 /* GDB allows dereferencing an int. */
11342 if (expect_type == NULL)
11343 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11344 lval_memory);
11345 else
11346 {
11347 expect_type =
11348 to_static_fixed_type (ada_aligned_type (expect_type));
11349 return value_zero (expect_type, lval_memory);
11350 }
11351 }
11352 else
11353 error (_("Attempt to take contents of a non-pointer value."));
11354 }
11355 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11356 type = ada_check_typedef (value_type (arg1));
11357
11358 if (TYPE_CODE (type) == TYPE_CODE_INT)
11359 /* GDB allows dereferencing an int. If we were given
11360 the expect_type, then use that as the target type.
11361 Otherwise, assume that the target type is an int. */
11362 {
11363 if (expect_type != NULL)
11364 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11365 arg1));
11366 else
11367 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11368 (CORE_ADDR) value_as_address (arg1));
11369 }
11370
11371 if (ada_is_array_descriptor_type (type))
11372 /* GDB allows dereferencing GNAT array descriptors. */
11373 return ada_coerce_to_simple_array (arg1);
11374 else
11375 return ada_value_ind (arg1);
11376
11377 case STRUCTOP_STRUCT:
11378 tem = longest_to_int (exp->elts[pc + 1].longconst);
11379 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11380 preeval_pos = *pos;
11381 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11382 if (noside == EVAL_SKIP)
11383 goto nosideret;
11384 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11385 {
11386 struct type *type1 = value_type (arg1);
11387
11388 if (ada_is_tagged_type (type1, 1))
11389 {
11390 type = ada_lookup_struct_elt_type (type1,
11391 &exp->elts[pc + 2].string,
11392 1, 1);
11393
11394 /* If the field is not found, check if it exists in the
11395 extension of this object's type. This means that we
11396 need to evaluate completely the expression. */
11397
11398 if (type == NULL)
11399 {
11400 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11401 EVAL_NORMAL);
11402 arg1 = ada_value_struct_elt (arg1,
11403 &exp->elts[pc + 2].string,
11404 0);
11405 arg1 = unwrap_value (arg1);
11406 type = value_type (ada_to_fixed_value (arg1));
11407 }
11408 }
11409 else
11410 type =
11411 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11412 0);
11413
11414 return value_zero (ada_aligned_type (type), lval_memory);
11415 }
11416 else
11417 {
11418 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11419 arg1 = unwrap_value (arg1);
11420 return ada_to_fixed_value (arg1);
11421 }
11422
11423 case OP_TYPE:
11424 /* The value is not supposed to be used. This is here to make it
11425 easier to accommodate expressions that contain types. */
11426 (*pos) += 2;
11427 if (noside == EVAL_SKIP)
11428 goto nosideret;
11429 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11430 return allocate_value (exp->elts[pc + 1].type);
11431 else
11432 error (_("Attempt to use a type name as an expression"));
11433
11434 case OP_AGGREGATE:
11435 case OP_CHOICES:
11436 case OP_OTHERS:
11437 case OP_DISCRETE_RANGE:
11438 case OP_POSITIONAL:
11439 case OP_NAME:
11440 if (noside == EVAL_NORMAL)
11441 switch (op)
11442 {
11443 case OP_NAME:
11444 error (_("Undefined name, ambiguous name, or renaming used in "
11445 "component association: %s."), &exp->elts[pc+2].string);
11446 case OP_AGGREGATE:
11447 error (_("Aggregates only allowed on the right of an assignment"));
11448 default:
11449 internal_error (__FILE__, __LINE__,
11450 _("aggregate apparently mangled"));
11451 }
11452
11453 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11454 *pos += oplen - 1;
11455 for (tem = 0; tem < nargs; tem += 1)
11456 ada_evaluate_subexp (NULL, exp, pos, noside);
11457 goto nosideret;
11458 }
11459
11460 nosideret:
11461 return eval_skip_value (exp);
11462 }
11463 \f
11464
11465 /* Fixed point */
11466
11467 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11468 type name that encodes the 'small and 'delta information.
11469 Otherwise, return NULL. */
11470
11471 static const char *
11472 fixed_type_info (struct type *type)
11473 {
11474 const char *name = ada_type_name (type);
11475 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11476
11477 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11478 {
11479 const char *tail = strstr (name, "___XF_");
11480
11481 if (tail == NULL)
11482 return NULL;
11483 else
11484 return tail + 5;
11485 }
11486 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11487 return fixed_type_info (TYPE_TARGET_TYPE (type));
11488 else
11489 return NULL;
11490 }
11491
11492 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11493
11494 int
11495 ada_is_fixed_point_type (struct type *type)
11496 {
11497 return fixed_type_info (type) != NULL;
11498 }
11499
11500 /* Return non-zero iff TYPE represents a System.Address type. */
11501
11502 int
11503 ada_is_system_address_type (struct type *type)
11504 {
11505 return (TYPE_NAME (type)
11506 && strcmp (TYPE_NAME (type), "system__address") == 0);
11507 }
11508
11509 /* Assuming that TYPE is the representation of an Ada fixed-point
11510 type, return the target floating-point type to be used to represent
11511 of this type during internal computation. */
11512
11513 static struct type *
11514 ada_scaling_type (struct type *type)
11515 {
11516 return builtin_type (get_type_arch (type))->builtin_long_double;
11517 }
11518
11519 /* Assuming that TYPE is the representation of an Ada fixed-point
11520 type, return its delta, or NULL if the type is malformed and the
11521 delta cannot be determined. */
11522
11523 struct value *
11524 ada_delta (struct type *type)
11525 {
11526 const char *encoding = fixed_type_info (type);
11527 struct type *scale_type = ada_scaling_type (type);
11528
11529 long long num, den;
11530
11531 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11532 return nullptr;
11533 else
11534 return value_binop (value_from_longest (scale_type, num),
11535 value_from_longest (scale_type, den), BINOP_DIV);
11536 }
11537
11538 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11539 factor ('SMALL value) associated with the type. */
11540
11541 struct value *
11542 ada_scaling_factor (struct type *type)
11543 {
11544 const char *encoding = fixed_type_info (type);
11545 struct type *scale_type = ada_scaling_type (type);
11546
11547 long long num0, den0, num1, den1;
11548 int n;
11549
11550 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11551 &num0, &den0, &num1, &den1);
11552
11553 if (n < 2)
11554 return value_from_longest (scale_type, 1);
11555 else if (n == 4)
11556 return value_binop (value_from_longest (scale_type, num1),
11557 value_from_longest (scale_type, den1), BINOP_DIV);
11558 else
11559 return value_binop (value_from_longest (scale_type, num0),
11560 value_from_longest (scale_type, den0), BINOP_DIV);
11561 }
11562
11563 \f
11564
11565 /* Range types */
11566
11567 /* Scan STR beginning at position K for a discriminant name, and
11568 return the value of that discriminant field of DVAL in *PX. If
11569 PNEW_K is not null, put the position of the character beyond the
11570 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11571 not alter *PX and *PNEW_K if unsuccessful. */
11572
11573 static int
11574 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11575 int *pnew_k)
11576 {
11577 static char *bound_buffer = NULL;
11578 static size_t bound_buffer_len = 0;
11579 const char *pstart, *pend, *bound;
11580 struct value *bound_val;
11581
11582 if (dval == NULL || str == NULL || str[k] == '\0')
11583 return 0;
11584
11585 pstart = str + k;
11586 pend = strstr (pstart, "__");
11587 if (pend == NULL)
11588 {
11589 bound = pstart;
11590 k += strlen (bound);
11591 }
11592 else
11593 {
11594 int len = pend - pstart;
11595
11596 /* Strip __ and beyond. */
11597 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11598 strncpy (bound_buffer, pstart, len);
11599 bound_buffer[len] = '\0';
11600
11601 bound = bound_buffer;
11602 k = pend - str;
11603 }
11604
11605 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11606 if (bound_val == NULL)
11607 return 0;
11608
11609 *px = value_as_long (bound_val);
11610 if (pnew_k != NULL)
11611 *pnew_k = k;
11612 return 1;
11613 }
11614
11615 /* Value of variable named NAME in the current environment. If
11616 no such variable found, then if ERR_MSG is null, returns 0, and
11617 otherwise causes an error with message ERR_MSG. */
11618
11619 static struct value *
11620 get_var_value (const char *name, const char *err_msg)
11621 {
11622 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11623
11624 std::vector<struct block_symbol> syms;
11625 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11626 get_selected_block (0),
11627 VAR_DOMAIN, &syms, 1);
11628
11629 if (nsyms != 1)
11630 {
11631 if (err_msg == NULL)
11632 return 0;
11633 else
11634 error (("%s"), err_msg);
11635 }
11636
11637 return value_of_variable (syms[0].symbol, syms[0].block);
11638 }
11639
11640 /* Value of integer variable named NAME in the current environment.
11641 If no such variable is found, returns false. Otherwise, sets VALUE
11642 to the variable's value and returns true. */
11643
11644 bool
11645 get_int_var_value (const char *name, LONGEST &value)
11646 {
11647 struct value *var_val = get_var_value (name, 0);
11648
11649 if (var_val == 0)
11650 return false;
11651
11652 value = value_as_long (var_val);
11653 return true;
11654 }
11655
11656
11657 /* Return a range type whose base type is that of the range type named
11658 NAME in the current environment, and whose bounds are calculated
11659 from NAME according to the GNAT range encoding conventions.
11660 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11661 corresponding range type from debug information; fall back to using it
11662 if symbol lookup fails. If a new type must be created, allocate it
11663 like ORIG_TYPE was. The bounds information, in general, is encoded
11664 in NAME, the base type given in the named range type. */
11665
11666 static struct type *
11667 to_fixed_range_type (struct type *raw_type, struct value *dval)
11668 {
11669 const char *name;
11670 struct type *base_type;
11671 const char *subtype_info;
11672
11673 gdb_assert (raw_type != NULL);
11674 gdb_assert (TYPE_NAME (raw_type) != NULL);
11675
11676 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11677 base_type = TYPE_TARGET_TYPE (raw_type);
11678 else
11679 base_type = raw_type;
11680
11681 name = TYPE_NAME (raw_type);
11682 subtype_info = strstr (name, "___XD");
11683 if (subtype_info == NULL)
11684 {
11685 LONGEST L = ada_discrete_type_low_bound (raw_type);
11686 LONGEST U = ada_discrete_type_high_bound (raw_type);
11687
11688 if (L < INT_MIN || U > INT_MAX)
11689 return raw_type;
11690 else
11691 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11692 L, U);
11693 }
11694 else
11695 {
11696 static char *name_buf = NULL;
11697 static size_t name_len = 0;
11698 int prefix_len = subtype_info - name;
11699 LONGEST L, U;
11700 struct type *type;
11701 const char *bounds_str;
11702 int n;
11703
11704 GROW_VECT (name_buf, name_len, prefix_len + 5);
11705 strncpy (name_buf, name, prefix_len);
11706 name_buf[prefix_len] = '\0';
11707
11708 subtype_info += 5;
11709 bounds_str = strchr (subtype_info, '_');
11710 n = 1;
11711
11712 if (*subtype_info == 'L')
11713 {
11714 if (!ada_scan_number (bounds_str, n, &L, &n)
11715 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11716 return raw_type;
11717 if (bounds_str[n] == '_')
11718 n += 2;
11719 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11720 n += 1;
11721 subtype_info += 1;
11722 }
11723 else
11724 {
11725 strcpy (name_buf + prefix_len, "___L");
11726 if (!get_int_var_value (name_buf, L))
11727 {
11728 lim_warning (_("Unknown lower bound, using 1."));
11729 L = 1;
11730 }
11731 }
11732
11733 if (*subtype_info == 'U')
11734 {
11735 if (!ada_scan_number (bounds_str, n, &U, &n)
11736 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11737 return raw_type;
11738 }
11739 else
11740 {
11741 strcpy (name_buf + prefix_len, "___U");
11742 if (!get_int_var_value (name_buf, U))
11743 {
11744 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11745 U = L;
11746 }
11747 }
11748
11749 type = create_static_range_type (alloc_type_copy (raw_type),
11750 base_type, L, U);
11751 /* create_static_range_type alters the resulting type's length
11752 to match the size of the base_type, which is not what we want.
11753 Set it back to the original range type's length. */
11754 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11755 TYPE_NAME (type) = name;
11756 return type;
11757 }
11758 }
11759
11760 /* True iff NAME is the name of a range type. */
11761
11762 int
11763 ada_is_range_type_name (const char *name)
11764 {
11765 return (name != NULL && strstr (name, "___XD"));
11766 }
11767 \f
11768
11769 /* Modular types */
11770
11771 /* True iff TYPE is an Ada modular type. */
11772
11773 int
11774 ada_is_modular_type (struct type *type)
11775 {
11776 struct type *subranged_type = get_base_type (type);
11777
11778 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11779 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11780 && TYPE_UNSIGNED (subranged_type));
11781 }
11782
11783 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11784
11785 ULONGEST
11786 ada_modulus (struct type *type)
11787 {
11788 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11789 }
11790 \f
11791
11792 /* Ada exception catchpoint support:
11793 ---------------------------------
11794
11795 We support 3 kinds of exception catchpoints:
11796 . catchpoints on Ada exceptions
11797 . catchpoints on unhandled Ada exceptions
11798 . catchpoints on failed assertions
11799
11800 Exceptions raised during failed assertions, or unhandled exceptions
11801 could perfectly be caught with the general catchpoint on Ada exceptions.
11802 However, we can easily differentiate these two special cases, and having
11803 the option to distinguish these two cases from the rest can be useful
11804 to zero-in on certain situations.
11805
11806 Exception catchpoints are a specialized form of breakpoint,
11807 since they rely on inserting breakpoints inside known routines
11808 of the GNAT runtime. The implementation therefore uses a standard
11809 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11810 of breakpoint_ops.
11811
11812 Support in the runtime for exception catchpoints have been changed
11813 a few times already, and these changes affect the implementation
11814 of these catchpoints. In order to be able to support several
11815 variants of the runtime, we use a sniffer that will determine
11816 the runtime variant used by the program being debugged. */
11817
11818 /* Ada's standard exceptions.
11819
11820 The Ada 83 standard also defined Numeric_Error. But there so many
11821 situations where it was unclear from the Ada 83 Reference Manual
11822 (RM) whether Constraint_Error or Numeric_Error should be raised,
11823 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11824 Interpretation saying that anytime the RM says that Numeric_Error
11825 should be raised, the implementation may raise Constraint_Error.
11826 Ada 95 went one step further and pretty much removed Numeric_Error
11827 from the list of standard exceptions (it made it a renaming of
11828 Constraint_Error, to help preserve compatibility when compiling
11829 an Ada83 compiler). As such, we do not include Numeric_Error from
11830 this list of standard exceptions. */
11831
11832 static const char *standard_exc[] = {
11833 "constraint_error",
11834 "program_error",
11835 "storage_error",
11836 "tasking_error"
11837 };
11838
11839 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11840
11841 /* A structure that describes how to support exception catchpoints
11842 for a given executable. */
11843
11844 struct exception_support_info
11845 {
11846 /* The name of the symbol to break on in order to insert
11847 a catchpoint on exceptions. */
11848 const char *catch_exception_sym;
11849
11850 /* The name of the symbol to break on in order to insert
11851 a catchpoint on unhandled exceptions. */
11852 const char *catch_exception_unhandled_sym;
11853
11854 /* The name of the symbol to break on in order to insert
11855 a catchpoint on failed assertions. */
11856 const char *catch_assert_sym;
11857
11858 /* The name of the symbol to break on in order to insert
11859 a catchpoint on exception handling. */
11860 const char *catch_handlers_sym;
11861
11862 /* Assuming that the inferior just triggered an unhandled exception
11863 catchpoint, this function is responsible for returning the address
11864 in inferior memory where the name of that exception is stored.
11865 Return zero if the address could not be computed. */
11866 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11867 };
11868
11869 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11870 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11871
11872 /* The following exception support info structure describes how to
11873 implement exception catchpoints with the latest version of the
11874 Ada runtime (as of 2007-03-06). */
11875
11876 static const struct exception_support_info default_exception_support_info =
11877 {
11878 "__gnat_debug_raise_exception", /* catch_exception_sym */
11879 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11880 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11881 "__gnat_begin_handler", /* catch_handlers_sym */
11882 ada_unhandled_exception_name_addr
11883 };
11884
11885 /* The following exception support info structure describes how to
11886 implement exception catchpoints with a slightly older version
11887 of the Ada runtime. */
11888
11889 static const struct exception_support_info exception_support_info_fallback =
11890 {
11891 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11892 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11893 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11894 "__gnat_begin_handler", /* catch_handlers_sym */
11895 ada_unhandled_exception_name_addr_from_raise
11896 };
11897
11898 /* Return nonzero if we can detect the exception support routines
11899 described in EINFO.
11900
11901 This function errors out if an abnormal situation is detected
11902 (for instance, if we find the exception support routines, but
11903 that support is found to be incomplete). */
11904
11905 static int
11906 ada_has_this_exception_support (const struct exception_support_info *einfo)
11907 {
11908 struct symbol *sym;
11909
11910 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11911 that should be compiled with debugging information. As a result, we
11912 expect to find that symbol in the symtabs. */
11913
11914 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11915 if (sym == NULL)
11916 {
11917 /* Perhaps we did not find our symbol because the Ada runtime was
11918 compiled without debugging info, or simply stripped of it.
11919 It happens on some GNU/Linux distributions for instance, where
11920 users have to install a separate debug package in order to get
11921 the runtime's debugging info. In that situation, let the user
11922 know why we cannot insert an Ada exception catchpoint.
11923
11924 Note: Just for the purpose of inserting our Ada exception
11925 catchpoint, we could rely purely on the associated minimal symbol.
11926 But we would be operating in degraded mode anyway, since we are
11927 still lacking the debugging info needed later on to extract
11928 the name of the exception being raised (this name is printed in
11929 the catchpoint message, and is also used when trying to catch
11930 a specific exception). We do not handle this case for now. */
11931 struct bound_minimal_symbol msym
11932 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11933
11934 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11935 error (_("Your Ada runtime appears to be missing some debugging "
11936 "information.\nCannot insert Ada exception catchpoint "
11937 "in this configuration."));
11938
11939 return 0;
11940 }
11941
11942 /* Make sure that the symbol we found corresponds to a function. */
11943
11944 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11945 error (_("Symbol \"%s\" is not a function (class = %d)"),
11946 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11947
11948 return 1;
11949 }
11950
11951 /* Inspect the Ada runtime and determine which exception info structure
11952 should be used to provide support for exception catchpoints.
11953
11954 This function will always set the per-inferior exception_info,
11955 or raise an error. */
11956
11957 static void
11958 ada_exception_support_info_sniffer (void)
11959 {
11960 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11961
11962 /* If the exception info is already known, then no need to recompute it. */
11963 if (data->exception_info != NULL)
11964 return;
11965
11966 /* Check the latest (default) exception support info. */
11967 if (ada_has_this_exception_support (&default_exception_support_info))
11968 {
11969 data->exception_info = &default_exception_support_info;
11970 return;
11971 }
11972
11973 /* Try our fallback exception suport info. */
11974 if (ada_has_this_exception_support (&exception_support_info_fallback))
11975 {
11976 data->exception_info = &exception_support_info_fallback;
11977 return;
11978 }
11979
11980 /* Sometimes, it is normal for us to not be able to find the routine
11981 we are looking for. This happens when the program is linked with
11982 the shared version of the GNAT runtime, and the program has not been
11983 started yet. Inform the user of these two possible causes if
11984 applicable. */
11985
11986 if (ada_update_initial_language (language_unknown) != language_ada)
11987 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11988
11989 /* If the symbol does not exist, then check that the program is
11990 already started, to make sure that shared libraries have been
11991 loaded. If it is not started, this may mean that the symbol is
11992 in a shared library. */
11993
11994 if (inferior_ptid.pid () == 0)
11995 error (_("Unable to insert catchpoint. Try to start the program first."));
11996
11997 /* At this point, we know that we are debugging an Ada program and
11998 that the inferior has been started, but we still are not able to
11999 find the run-time symbols. That can mean that we are in
12000 configurable run time mode, or that a-except as been optimized
12001 out by the linker... In any case, at this point it is not worth
12002 supporting this feature. */
12003
12004 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12005 }
12006
12007 /* True iff FRAME is very likely to be that of a function that is
12008 part of the runtime system. This is all very heuristic, but is
12009 intended to be used as advice as to what frames are uninteresting
12010 to most users. */
12011
12012 static int
12013 is_known_support_routine (struct frame_info *frame)
12014 {
12015 enum language func_lang;
12016 int i;
12017 const char *fullname;
12018
12019 /* If this code does not have any debugging information (no symtab),
12020 This cannot be any user code. */
12021
12022 symtab_and_line sal = find_frame_sal (frame);
12023 if (sal.symtab == NULL)
12024 return 1;
12025
12026 /* If there is a symtab, but the associated source file cannot be
12027 located, then assume this is not user code: Selecting a frame
12028 for which we cannot display the code would not be very helpful
12029 for the user. This should also take care of case such as VxWorks
12030 where the kernel has some debugging info provided for a few units. */
12031
12032 fullname = symtab_to_fullname (sal.symtab);
12033 if (access (fullname, R_OK) != 0)
12034 return 1;
12035
12036 /* Check the unit filename againt the Ada runtime file naming.
12037 We also check the name of the objfile against the name of some
12038 known system libraries that sometimes come with debugging info
12039 too. */
12040
12041 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12042 {
12043 re_comp (known_runtime_file_name_patterns[i]);
12044 if (re_exec (lbasename (sal.symtab->filename)))
12045 return 1;
12046 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12047 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12048 return 1;
12049 }
12050
12051 /* Check whether the function is a GNAT-generated entity. */
12052
12053 gdb::unique_xmalloc_ptr<char> func_name
12054 = find_frame_funname (frame, &func_lang, NULL);
12055 if (func_name == NULL)
12056 return 1;
12057
12058 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12059 {
12060 re_comp (known_auxiliary_function_name_patterns[i]);
12061 if (re_exec (func_name.get ()))
12062 return 1;
12063 }
12064
12065 return 0;
12066 }
12067
12068 /* Find the first frame that contains debugging information and that is not
12069 part of the Ada run-time, starting from FI and moving upward. */
12070
12071 void
12072 ada_find_printable_frame (struct frame_info *fi)
12073 {
12074 for (; fi != NULL; fi = get_prev_frame (fi))
12075 {
12076 if (!is_known_support_routine (fi))
12077 {
12078 select_frame (fi);
12079 break;
12080 }
12081 }
12082
12083 }
12084
12085 /* Assuming that the inferior just triggered an unhandled exception
12086 catchpoint, return the address in inferior memory where the name
12087 of the exception is stored.
12088
12089 Return zero if the address could not be computed. */
12090
12091 static CORE_ADDR
12092 ada_unhandled_exception_name_addr (void)
12093 {
12094 return parse_and_eval_address ("e.full_name");
12095 }
12096
12097 /* Same as ada_unhandled_exception_name_addr, except that this function
12098 should be used when the inferior uses an older version of the runtime,
12099 where the exception name needs to be extracted from a specific frame
12100 several frames up in the callstack. */
12101
12102 static CORE_ADDR
12103 ada_unhandled_exception_name_addr_from_raise (void)
12104 {
12105 int frame_level;
12106 struct frame_info *fi;
12107 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12108
12109 /* To determine the name of this exception, we need to select
12110 the frame corresponding to RAISE_SYM_NAME. This frame is
12111 at least 3 levels up, so we simply skip the first 3 frames
12112 without checking the name of their associated function. */
12113 fi = get_current_frame ();
12114 for (frame_level = 0; frame_level < 3; frame_level += 1)
12115 if (fi != NULL)
12116 fi = get_prev_frame (fi);
12117
12118 while (fi != NULL)
12119 {
12120 enum language func_lang;
12121
12122 gdb::unique_xmalloc_ptr<char> func_name
12123 = find_frame_funname (fi, &func_lang, NULL);
12124 if (func_name != NULL)
12125 {
12126 if (strcmp (func_name.get (),
12127 data->exception_info->catch_exception_sym) == 0)
12128 break; /* We found the frame we were looking for... */
12129 }
12130 fi = get_prev_frame (fi);
12131 }
12132
12133 if (fi == NULL)
12134 return 0;
12135
12136 select_frame (fi);
12137 return parse_and_eval_address ("id.full_name");
12138 }
12139
12140 /* Assuming the inferior just triggered an Ada exception catchpoint
12141 (of any type), return the address in inferior memory where the name
12142 of the exception is stored, if applicable.
12143
12144 Assumes the selected frame is the current frame.
12145
12146 Return zero if the address could not be computed, or if not relevant. */
12147
12148 static CORE_ADDR
12149 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12150 struct breakpoint *b)
12151 {
12152 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12153
12154 switch (ex)
12155 {
12156 case ada_catch_exception:
12157 return (parse_and_eval_address ("e.full_name"));
12158 break;
12159
12160 case ada_catch_exception_unhandled:
12161 return data->exception_info->unhandled_exception_name_addr ();
12162 break;
12163
12164 case ada_catch_handlers:
12165 return 0; /* The runtimes does not provide access to the exception
12166 name. */
12167 break;
12168
12169 case ada_catch_assert:
12170 return 0; /* Exception name is not relevant in this case. */
12171 break;
12172
12173 default:
12174 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12175 break;
12176 }
12177
12178 return 0; /* Should never be reached. */
12179 }
12180
12181 /* Assuming the inferior is stopped at an exception catchpoint,
12182 return the message which was associated to the exception, if
12183 available. Return NULL if the message could not be retrieved.
12184
12185 Note: The exception message can be associated to an exception
12186 either through the use of the Raise_Exception function, or
12187 more simply (Ada 2005 and later), via:
12188
12189 raise Exception_Name with "exception message";
12190
12191 */
12192
12193 static gdb::unique_xmalloc_ptr<char>
12194 ada_exception_message_1 (void)
12195 {
12196 struct value *e_msg_val;
12197 int e_msg_len;
12198
12199 /* For runtimes that support this feature, the exception message
12200 is passed as an unbounded string argument called "message". */
12201 e_msg_val = parse_and_eval ("message");
12202 if (e_msg_val == NULL)
12203 return NULL; /* Exception message not supported. */
12204
12205 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12206 gdb_assert (e_msg_val != NULL);
12207 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12208
12209 /* If the message string is empty, then treat it as if there was
12210 no exception message. */
12211 if (e_msg_len <= 0)
12212 return NULL;
12213
12214 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12215 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12216 e_msg.get ()[e_msg_len] = '\0';
12217
12218 return e_msg;
12219 }
12220
12221 /* Same as ada_exception_message_1, except that all exceptions are
12222 contained here (returning NULL instead). */
12223
12224 static gdb::unique_xmalloc_ptr<char>
12225 ada_exception_message (void)
12226 {
12227 gdb::unique_xmalloc_ptr<char> e_msg;
12228
12229 try
12230 {
12231 e_msg = ada_exception_message_1 ();
12232 }
12233 catch (const gdb_exception_error &e)
12234 {
12235 e_msg.reset (nullptr);
12236 }
12237
12238 return e_msg;
12239 }
12240
12241 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12242 any error that ada_exception_name_addr_1 might cause to be thrown.
12243 When an error is intercepted, a warning with the error message is printed,
12244 and zero is returned. */
12245
12246 static CORE_ADDR
12247 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12248 struct breakpoint *b)
12249 {
12250 CORE_ADDR result = 0;
12251
12252 try
12253 {
12254 result = ada_exception_name_addr_1 (ex, b);
12255 }
12256
12257 catch (const gdb_exception_error &e)
12258 {
12259 warning (_("failed to get exception name: %s"), e.what ());
12260 return 0;
12261 }
12262
12263 return result;
12264 }
12265
12266 static std::string ada_exception_catchpoint_cond_string
12267 (const char *excep_string,
12268 enum ada_exception_catchpoint_kind ex);
12269
12270 /* Ada catchpoints.
12271
12272 In the case of catchpoints on Ada exceptions, the catchpoint will
12273 stop the target on every exception the program throws. When a user
12274 specifies the name of a specific exception, we translate this
12275 request into a condition expression (in text form), and then parse
12276 it into an expression stored in each of the catchpoint's locations.
12277 We then use this condition to check whether the exception that was
12278 raised is the one the user is interested in. If not, then the
12279 target is resumed again. We store the name of the requested
12280 exception, in order to be able to re-set the condition expression
12281 when symbols change. */
12282
12283 /* An instance of this type is used to represent an Ada catchpoint
12284 breakpoint location. */
12285
12286 class ada_catchpoint_location : public bp_location
12287 {
12288 public:
12289 ada_catchpoint_location (breakpoint *owner)
12290 : bp_location (owner)
12291 {}
12292
12293 /* The condition that checks whether the exception that was raised
12294 is the specific exception the user specified on catchpoint
12295 creation. */
12296 expression_up excep_cond_expr;
12297 };
12298
12299 /* An instance of this type is used to represent an Ada catchpoint. */
12300
12301 struct ada_catchpoint : public breakpoint
12302 {
12303 /* The name of the specific exception the user specified. */
12304 std::string excep_string;
12305 };
12306
12307 /* Parse the exception condition string in the context of each of the
12308 catchpoint's locations, and store them for later evaluation. */
12309
12310 static void
12311 create_excep_cond_exprs (struct ada_catchpoint *c,
12312 enum ada_exception_catchpoint_kind ex)
12313 {
12314 /* Nothing to do if there's no specific exception to catch. */
12315 if (c->excep_string.empty ())
12316 return;
12317
12318 /* Same if there are no locations... */
12319 if (c->loc == NULL)
12320 return;
12321
12322 /* We have to compute the expression once for each program space,
12323 because the expression may hold the addresses of multiple symbols
12324 in some cases. */
12325 std::multimap<program_space *, struct bp_location *> loc_map;
12326 for (bp_location *bl = c->loc; bl != NULL; bl = bl->next)
12327 loc_map.emplace (bl->pspace, bl);
12328
12329 scoped_restore_current_program_space save_pspace;
12330
12331 std::string cond_string;
12332 program_space *last_ps = nullptr;
12333 for (auto iter : loc_map)
12334 {
12335 struct ada_catchpoint_location *ada_loc
12336 = (struct ada_catchpoint_location *) iter.second;
12337
12338 if (ada_loc->pspace != last_ps)
12339 {
12340 last_ps = ada_loc->pspace;
12341 set_current_program_space (last_ps);
12342
12343 /* Compute the condition expression in text form, from the
12344 specific expection we want to catch. */
12345 cond_string
12346 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (),
12347 ex);
12348 }
12349
12350 expression_up exp;
12351
12352 if (!ada_loc->shlib_disabled)
12353 {
12354 const char *s;
12355
12356 s = cond_string.c_str ();
12357 try
12358 {
12359 exp = parse_exp_1 (&s, ada_loc->address,
12360 block_for_pc (ada_loc->address),
12361 0);
12362 }
12363 catch (const gdb_exception_error &e)
12364 {
12365 warning (_("failed to reevaluate internal exception condition "
12366 "for catchpoint %d: %s"),
12367 c->number, e.what ());
12368 }
12369 }
12370
12371 ada_loc->excep_cond_expr = std::move (exp);
12372 }
12373 }
12374
12375 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12376 structure for all exception catchpoint kinds. */
12377
12378 static struct bp_location *
12379 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12380 struct breakpoint *self)
12381 {
12382 return new ada_catchpoint_location (self);
12383 }
12384
12385 /* Implement the RE_SET method in the breakpoint_ops structure for all
12386 exception catchpoint kinds. */
12387
12388 static void
12389 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12390 {
12391 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12392
12393 /* Call the base class's method. This updates the catchpoint's
12394 locations. */
12395 bkpt_breakpoint_ops.re_set (b);
12396
12397 /* Reparse the exception conditional expressions. One for each
12398 location. */
12399 create_excep_cond_exprs (c, ex);
12400 }
12401
12402 /* Returns true if we should stop for this breakpoint hit. If the
12403 user specified a specific exception, we only want to cause a stop
12404 if the program thrown that exception. */
12405
12406 static int
12407 should_stop_exception (const struct bp_location *bl)
12408 {
12409 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12410 const struct ada_catchpoint_location *ada_loc
12411 = (const struct ada_catchpoint_location *) bl;
12412 int stop;
12413
12414 /* With no specific exception, should always stop. */
12415 if (c->excep_string.empty ())
12416 return 1;
12417
12418 if (ada_loc->excep_cond_expr == NULL)
12419 {
12420 /* We will have a NULL expression if back when we were creating
12421 the expressions, this location's had failed to parse. */
12422 return 1;
12423 }
12424
12425 stop = 1;
12426 try
12427 {
12428 struct value *mark;
12429
12430 mark = value_mark ();
12431 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12432 value_free_to_mark (mark);
12433 }
12434 catch (const gdb_exception &ex)
12435 {
12436 exception_fprintf (gdb_stderr, ex,
12437 _("Error in testing exception condition:\n"));
12438 }
12439
12440 return stop;
12441 }
12442
12443 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12444 for all exception catchpoint kinds. */
12445
12446 static void
12447 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12448 {
12449 bs->stop = should_stop_exception (bs->bp_location_at);
12450 }
12451
12452 /* Implement the PRINT_IT method in the breakpoint_ops structure
12453 for all exception catchpoint kinds. */
12454
12455 static enum print_stop_action
12456 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12457 {
12458 struct ui_out *uiout = current_uiout;
12459 struct breakpoint *b = bs->breakpoint_at;
12460
12461 annotate_catchpoint (b->number);
12462
12463 if (uiout->is_mi_like_p ())
12464 {
12465 uiout->field_string ("reason",
12466 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12467 uiout->field_string ("disp", bpdisp_text (b->disposition));
12468 }
12469
12470 uiout->text (b->disposition == disp_del
12471 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12472 uiout->field_int ("bkptno", b->number);
12473 uiout->text (", ");
12474
12475 /* ada_exception_name_addr relies on the selected frame being the
12476 current frame. Need to do this here because this function may be
12477 called more than once when printing a stop, and below, we'll
12478 select the first frame past the Ada run-time (see
12479 ada_find_printable_frame). */
12480 select_frame (get_current_frame ());
12481
12482 switch (ex)
12483 {
12484 case ada_catch_exception:
12485 case ada_catch_exception_unhandled:
12486 case ada_catch_handlers:
12487 {
12488 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12489 char exception_name[256];
12490
12491 if (addr != 0)
12492 {
12493 read_memory (addr, (gdb_byte *) exception_name,
12494 sizeof (exception_name) - 1);
12495 exception_name [sizeof (exception_name) - 1] = '\0';
12496 }
12497 else
12498 {
12499 /* For some reason, we were unable to read the exception
12500 name. This could happen if the Runtime was compiled
12501 without debugging info, for instance. In that case,
12502 just replace the exception name by the generic string
12503 "exception" - it will read as "an exception" in the
12504 notification we are about to print. */
12505 memcpy (exception_name, "exception", sizeof ("exception"));
12506 }
12507 /* In the case of unhandled exception breakpoints, we print
12508 the exception name as "unhandled EXCEPTION_NAME", to make
12509 it clearer to the user which kind of catchpoint just got
12510 hit. We used ui_out_text to make sure that this extra
12511 info does not pollute the exception name in the MI case. */
12512 if (ex == ada_catch_exception_unhandled)
12513 uiout->text ("unhandled ");
12514 uiout->field_string ("exception-name", exception_name);
12515 }
12516 break;
12517 case ada_catch_assert:
12518 /* In this case, the name of the exception is not really
12519 important. Just print "failed assertion" to make it clearer
12520 that his program just hit an assertion-failure catchpoint.
12521 We used ui_out_text because this info does not belong in
12522 the MI output. */
12523 uiout->text ("failed assertion");
12524 break;
12525 }
12526
12527 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12528 if (exception_message != NULL)
12529 {
12530 uiout->text (" (");
12531 uiout->field_string ("exception-message", exception_message.get ());
12532 uiout->text (")");
12533 }
12534
12535 uiout->text (" at ");
12536 ada_find_printable_frame (get_current_frame ());
12537
12538 return PRINT_SRC_AND_LOC;
12539 }
12540
12541 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12542 for all exception catchpoint kinds. */
12543
12544 static void
12545 print_one_exception (enum ada_exception_catchpoint_kind ex,
12546 struct breakpoint *b, struct bp_location **last_loc)
12547 {
12548 struct ui_out *uiout = current_uiout;
12549 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12550 struct value_print_options opts;
12551
12552 get_user_print_options (&opts);
12553 if (opts.addressprint)
12554 {
12555 annotate_field (4);
12556 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12557 }
12558
12559 annotate_field (5);
12560 *last_loc = b->loc;
12561 switch (ex)
12562 {
12563 case ada_catch_exception:
12564 if (!c->excep_string.empty ())
12565 {
12566 std::string msg = string_printf (_("`%s' Ada exception"),
12567 c->excep_string.c_str ());
12568
12569 uiout->field_string ("what", msg);
12570 }
12571 else
12572 uiout->field_string ("what", "all Ada exceptions");
12573
12574 break;
12575
12576 case ada_catch_exception_unhandled:
12577 uiout->field_string ("what", "unhandled Ada exceptions");
12578 break;
12579
12580 case ada_catch_handlers:
12581 if (!c->excep_string.empty ())
12582 {
12583 uiout->field_fmt ("what",
12584 _("`%s' Ada exception handlers"),
12585 c->excep_string.c_str ());
12586 }
12587 else
12588 uiout->field_string ("what", "all Ada exceptions handlers");
12589 break;
12590
12591 case ada_catch_assert:
12592 uiout->field_string ("what", "failed Ada assertions");
12593 break;
12594
12595 default:
12596 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12597 break;
12598 }
12599 }
12600
12601 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12602 for all exception catchpoint kinds. */
12603
12604 static void
12605 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12606 struct breakpoint *b)
12607 {
12608 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12609 struct ui_out *uiout = current_uiout;
12610
12611 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12612 : _("Catchpoint "));
12613 uiout->field_int ("bkptno", b->number);
12614 uiout->text (": ");
12615
12616 switch (ex)
12617 {
12618 case ada_catch_exception:
12619 if (!c->excep_string.empty ())
12620 {
12621 std::string info = string_printf (_("`%s' Ada exception"),
12622 c->excep_string.c_str ());
12623 uiout->text (info.c_str ());
12624 }
12625 else
12626 uiout->text (_("all Ada exceptions"));
12627 break;
12628
12629 case ada_catch_exception_unhandled:
12630 uiout->text (_("unhandled Ada exceptions"));
12631 break;
12632
12633 case ada_catch_handlers:
12634 if (!c->excep_string.empty ())
12635 {
12636 std::string info
12637 = string_printf (_("`%s' Ada exception handlers"),
12638 c->excep_string.c_str ());
12639 uiout->text (info.c_str ());
12640 }
12641 else
12642 uiout->text (_("all Ada exceptions handlers"));
12643 break;
12644
12645 case ada_catch_assert:
12646 uiout->text (_("failed Ada assertions"));
12647 break;
12648
12649 default:
12650 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12651 break;
12652 }
12653 }
12654
12655 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12656 for all exception catchpoint kinds. */
12657
12658 static void
12659 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12660 struct breakpoint *b, struct ui_file *fp)
12661 {
12662 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12663
12664 switch (ex)
12665 {
12666 case ada_catch_exception:
12667 fprintf_filtered (fp, "catch exception");
12668 if (!c->excep_string.empty ())
12669 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12670 break;
12671
12672 case ada_catch_exception_unhandled:
12673 fprintf_filtered (fp, "catch exception unhandled");
12674 break;
12675
12676 case ada_catch_handlers:
12677 fprintf_filtered (fp, "catch handlers");
12678 break;
12679
12680 case ada_catch_assert:
12681 fprintf_filtered (fp, "catch assert");
12682 break;
12683
12684 default:
12685 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12686 }
12687 print_recreate_thread (b, fp);
12688 }
12689
12690 /* Virtual table for "catch exception" breakpoints. */
12691
12692 static struct bp_location *
12693 allocate_location_catch_exception (struct breakpoint *self)
12694 {
12695 return allocate_location_exception (ada_catch_exception, self);
12696 }
12697
12698 static void
12699 re_set_catch_exception (struct breakpoint *b)
12700 {
12701 re_set_exception (ada_catch_exception, b);
12702 }
12703
12704 static void
12705 check_status_catch_exception (bpstat bs)
12706 {
12707 check_status_exception (ada_catch_exception, bs);
12708 }
12709
12710 static enum print_stop_action
12711 print_it_catch_exception (bpstat bs)
12712 {
12713 return print_it_exception (ada_catch_exception, bs);
12714 }
12715
12716 static void
12717 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12718 {
12719 print_one_exception (ada_catch_exception, b, last_loc);
12720 }
12721
12722 static void
12723 print_mention_catch_exception (struct breakpoint *b)
12724 {
12725 print_mention_exception (ada_catch_exception, b);
12726 }
12727
12728 static void
12729 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12730 {
12731 print_recreate_exception (ada_catch_exception, b, fp);
12732 }
12733
12734 static struct breakpoint_ops catch_exception_breakpoint_ops;
12735
12736 /* Virtual table for "catch exception unhandled" breakpoints. */
12737
12738 static struct bp_location *
12739 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12740 {
12741 return allocate_location_exception (ada_catch_exception_unhandled, self);
12742 }
12743
12744 static void
12745 re_set_catch_exception_unhandled (struct breakpoint *b)
12746 {
12747 re_set_exception (ada_catch_exception_unhandled, b);
12748 }
12749
12750 static void
12751 check_status_catch_exception_unhandled (bpstat bs)
12752 {
12753 check_status_exception (ada_catch_exception_unhandled, bs);
12754 }
12755
12756 static enum print_stop_action
12757 print_it_catch_exception_unhandled (bpstat bs)
12758 {
12759 return print_it_exception (ada_catch_exception_unhandled, bs);
12760 }
12761
12762 static void
12763 print_one_catch_exception_unhandled (struct breakpoint *b,
12764 struct bp_location **last_loc)
12765 {
12766 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12767 }
12768
12769 static void
12770 print_mention_catch_exception_unhandled (struct breakpoint *b)
12771 {
12772 print_mention_exception (ada_catch_exception_unhandled, b);
12773 }
12774
12775 static void
12776 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12777 struct ui_file *fp)
12778 {
12779 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12780 }
12781
12782 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12783
12784 /* Virtual table for "catch assert" breakpoints. */
12785
12786 static struct bp_location *
12787 allocate_location_catch_assert (struct breakpoint *self)
12788 {
12789 return allocate_location_exception (ada_catch_assert, self);
12790 }
12791
12792 static void
12793 re_set_catch_assert (struct breakpoint *b)
12794 {
12795 re_set_exception (ada_catch_assert, b);
12796 }
12797
12798 static void
12799 check_status_catch_assert (bpstat bs)
12800 {
12801 check_status_exception (ada_catch_assert, bs);
12802 }
12803
12804 static enum print_stop_action
12805 print_it_catch_assert (bpstat bs)
12806 {
12807 return print_it_exception (ada_catch_assert, bs);
12808 }
12809
12810 static void
12811 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12812 {
12813 print_one_exception (ada_catch_assert, b, last_loc);
12814 }
12815
12816 static void
12817 print_mention_catch_assert (struct breakpoint *b)
12818 {
12819 print_mention_exception (ada_catch_assert, b);
12820 }
12821
12822 static void
12823 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12824 {
12825 print_recreate_exception (ada_catch_assert, b, fp);
12826 }
12827
12828 static struct breakpoint_ops catch_assert_breakpoint_ops;
12829
12830 /* Virtual table for "catch handlers" breakpoints. */
12831
12832 static struct bp_location *
12833 allocate_location_catch_handlers (struct breakpoint *self)
12834 {
12835 return allocate_location_exception (ada_catch_handlers, self);
12836 }
12837
12838 static void
12839 re_set_catch_handlers (struct breakpoint *b)
12840 {
12841 re_set_exception (ada_catch_handlers, b);
12842 }
12843
12844 static void
12845 check_status_catch_handlers (bpstat bs)
12846 {
12847 check_status_exception (ada_catch_handlers, bs);
12848 }
12849
12850 static enum print_stop_action
12851 print_it_catch_handlers (bpstat bs)
12852 {
12853 return print_it_exception (ada_catch_handlers, bs);
12854 }
12855
12856 static void
12857 print_one_catch_handlers (struct breakpoint *b,
12858 struct bp_location **last_loc)
12859 {
12860 print_one_exception (ada_catch_handlers, b, last_loc);
12861 }
12862
12863 static void
12864 print_mention_catch_handlers (struct breakpoint *b)
12865 {
12866 print_mention_exception (ada_catch_handlers, b);
12867 }
12868
12869 static void
12870 print_recreate_catch_handlers (struct breakpoint *b,
12871 struct ui_file *fp)
12872 {
12873 print_recreate_exception (ada_catch_handlers, b, fp);
12874 }
12875
12876 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12877
12878 /* Split the arguments specified in a "catch exception" command.
12879 Set EX to the appropriate catchpoint type.
12880 Set EXCEP_STRING to the name of the specific exception if
12881 specified by the user.
12882 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12883 "catch handlers" command. False otherwise.
12884 If a condition is found at the end of the arguments, the condition
12885 expression is stored in COND_STRING (memory must be deallocated
12886 after use). Otherwise COND_STRING is set to NULL. */
12887
12888 static void
12889 catch_ada_exception_command_split (const char *args,
12890 bool is_catch_handlers_cmd,
12891 enum ada_exception_catchpoint_kind *ex,
12892 std::string *excep_string,
12893 std::string *cond_string)
12894 {
12895 std::string exception_name;
12896
12897 exception_name = extract_arg (&args);
12898 if (exception_name == "if")
12899 {
12900 /* This is not an exception name; this is the start of a condition
12901 expression for a catchpoint on all exceptions. So, "un-get"
12902 this token, and set exception_name to NULL. */
12903 exception_name.clear ();
12904 args -= 2;
12905 }
12906
12907 /* Check to see if we have a condition. */
12908
12909 args = skip_spaces (args);
12910 if (startswith (args, "if")
12911 && (isspace (args[2]) || args[2] == '\0'))
12912 {
12913 args += 2;
12914 args = skip_spaces (args);
12915
12916 if (args[0] == '\0')
12917 error (_("Condition missing after `if' keyword"));
12918 *cond_string = args;
12919
12920 args += strlen (args);
12921 }
12922
12923 /* Check that we do not have any more arguments. Anything else
12924 is unexpected. */
12925
12926 if (args[0] != '\0')
12927 error (_("Junk at end of expression"));
12928
12929 if (is_catch_handlers_cmd)
12930 {
12931 /* Catch handling of exceptions. */
12932 *ex = ada_catch_handlers;
12933 *excep_string = exception_name;
12934 }
12935 else if (exception_name.empty ())
12936 {
12937 /* Catch all exceptions. */
12938 *ex = ada_catch_exception;
12939 excep_string->clear ();
12940 }
12941 else if (exception_name == "unhandled")
12942 {
12943 /* Catch unhandled exceptions. */
12944 *ex = ada_catch_exception_unhandled;
12945 excep_string->clear ();
12946 }
12947 else
12948 {
12949 /* Catch a specific exception. */
12950 *ex = ada_catch_exception;
12951 *excep_string = exception_name;
12952 }
12953 }
12954
12955 /* Return the name of the symbol on which we should break in order to
12956 implement a catchpoint of the EX kind. */
12957
12958 static const char *
12959 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12960 {
12961 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12962
12963 gdb_assert (data->exception_info != NULL);
12964
12965 switch (ex)
12966 {
12967 case ada_catch_exception:
12968 return (data->exception_info->catch_exception_sym);
12969 break;
12970 case ada_catch_exception_unhandled:
12971 return (data->exception_info->catch_exception_unhandled_sym);
12972 break;
12973 case ada_catch_assert:
12974 return (data->exception_info->catch_assert_sym);
12975 break;
12976 case ada_catch_handlers:
12977 return (data->exception_info->catch_handlers_sym);
12978 break;
12979 default:
12980 internal_error (__FILE__, __LINE__,
12981 _("unexpected catchpoint kind (%d)"), ex);
12982 }
12983 }
12984
12985 /* Return the breakpoint ops "virtual table" used for catchpoints
12986 of the EX kind. */
12987
12988 static const struct breakpoint_ops *
12989 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12990 {
12991 switch (ex)
12992 {
12993 case ada_catch_exception:
12994 return (&catch_exception_breakpoint_ops);
12995 break;
12996 case ada_catch_exception_unhandled:
12997 return (&catch_exception_unhandled_breakpoint_ops);
12998 break;
12999 case ada_catch_assert:
13000 return (&catch_assert_breakpoint_ops);
13001 break;
13002 case ada_catch_handlers:
13003 return (&catch_handlers_breakpoint_ops);
13004 break;
13005 default:
13006 internal_error (__FILE__, __LINE__,
13007 _("unexpected catchpoint kind (%d)"), ex);
13008 }
13009 }
13010
13011 /* Return the condition that will be used to match the current exception
13012 being raised with the exception that the user wants to catch. This
13013 assumes that this condition is used when the inferior just triggered
13014 an exception catchpoint.
13015 EX: the type of catchpoints used for catching Ada exceptions. */
13016
13017 static std::string
13018 ada_exception_catchpoint_cond_string (const char *excep_string,
13019 enum ada_exception_catchpoint_kind ex)
13020 {
13021 int i;
13022 std::string result;
13023 const char *name;
13024
13025 if (ex == ada_catch_handlers)
13026 {
13027 /* For exception handlers catchpoints, the condition string does
13028 not use the same parameter as for the other exceptions. */
13029 name = ("long_integer (GNAT_GCC_exception_Access"
13030 "(gcc_exception).all.occurrence.id)");
13031 }
13032 else
13033 name = "long_integer (e)";
13034
13035 /* The standard exceptions are a special case. They are defined in
13036 runtime units that have been compiled without debugging info; if
13037 EXCEP_STRING is the not-fully-qualified name of a standard
13038 exception (e.g. "constraint_error") then, during the evaluation
13039 of the condition expression, the symbol lookup on this name would
13040 *not* return this standard exception. The catchpoint condition
13041 may then be set only on user-defined exceptions which have the
13042 same not-fully-qualified name (e.g. my_package.constraint_error).
13043
13044 To avoid this unexcepted behavior, these standard exceptions are
13045 systematically prefixed by "standard". This means that "catch
13046 exception constraint_error" is rewritten into "catch exception
13047 standard.constraint_error".
13048
13049 If an exception named contraint_error is defined in another package of
13050 the inferior program, then the only way to specify this exception as a
13051 breakpoint condition is to use its fully-qualified named:
13052 e.g. my_package.constraint_error.
13053
13054 Furthermore, in some situations a standard exception's symbol may
13055 be present in more than one objfile, because the compiler may
13056 choose to emit copy relocations for them. So, we have to compare
13057 against all the possible addresses. */
13058
13059 /* Storage for a rewritten symbol name. */
13060 std::string std_name;
13061 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13062 {
13063 if (strcmp (standard_exc [i], excep_string) == 0)
13064 {
13065 std_name = std::string ("standard.") + excep_string;
13066 excep_string = std_name.c_str ();
13067 break;
13068 }
13069 }
13070
13071 excep_string = ada_encode (excep_string);
13072 std::vector<struct bound_minimal_symbol> symbols
13073 = ada_lookup_simple_minsyms (excep_string);
13074 for (const bound_minimal_symbol &msym : symbols)
13075 {
13076 if (!result.empty ())
13077 result += " or ";
13078 string_appendf (result, "%s = %s", name,
13079 pulongest (BMSYMBOL_VALUE_ADDRESS (msym)));
13080 }
13081
13082 return result;
13083 }
13084
13085 /* Return the symtab_and_line that should be used to insert an exception
13086 catchpoint of the TYPE kind.
13087
13088 ADDR_STRING returns the name of the function where the real
13089 breakpoint that implements the catchpoints is set, depending on the
13090 type of catchpoint we need to create. */
13091
13092 static struct symtab_and_line
13093 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13094 std::string *addr_string, const struct breakpoint_ops **ops)
13095 {
13096 const char *sym_name;
13097 struct symbol *sym;
13098
13099 /* First, find out which exception support info to use. */
13100 ada_exception_support_info_sniffer ();
13101
13102 /* Then lookup the function on which we will break in order to catch
13103 the Ada exceptions requested by the user. */
13104 sym_name = ada_exception_sym_name (ex);
13105 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13106
13107 if (sym == NULL)
13108 error (_("Catchpoint symbol not found: %s"), sym_name);
13109
13110 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13111 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13112
13113 /* Set ADDR_STRING. */
13114 *addr_string = sym_name;
13115
13116 /* Set OPS. */
13117 *ops = ada_exception_breakpoint_ops (ex);
13118
13119 return find_function_start_sal (sym, 1);
13120 }
13121
13122 /* Create an Ada exception catchpoint.
13123
13124 EX_KIND is the kind of exception catchpoint to be created.
13125
13126 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13127 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13128 of the exception to which this catchpoint applies.
13129
13130 COND_STRING, if not empty, is the catchpoint condition.
13131
13132 TEMPFLAG, if nonzero, means that the underlying breakpoint
13133 should be temporary.
13134
13135 FROM_TTY is the usual argument passed to all commands implementations. */
13136
13137 void
13138 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13139 enum ada_exception_catchpoint_kind ex_kind,
13140 const std::string &excep_string,
13141 const std::string &cond_string,
13142 int tempflag,
13143 int disabled,
13144 int from_tty)
13145 {
13146 std::string addr_string;
13147 const struct breakpoint_ops *ops = NULL;
13148 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13149
13150 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13151 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
13152 ops, tempflag, disabled, from_tty);
13153 c->excep_string = excep_string;
13154 create_excep_cond_exprs (c.get (), ex_kind);
13155 if (!cond_string.empty ())
13156 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13157 install_breakpoint (0, std::move (c), 1);
13158 }
13159
13160 /* Implement the "catch exception" command. */
13161
13162 static void
13163 catch_ada_exception_command (const char *arg_entry, int from_tty,
13164 struct cmd_list_element *command)
13165 {
13166 const char *arg = arg_entry;
13167 struct gdbarch *gdbarch = get_current_arch ();
13168 int tempflag;
13169 enum ada_exception_catchpoint_kind ex_kind;
13170 std::string excep_string;
13171 std::string cond_string;
13172
13173 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13174
13175 if (!arg)
13176 arg = "";
13177 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13178 &cond_string);
13179 create_ada_exception_catchpoint (gdbarch, ex_kind,
13180 excep_string, cond_string,
13181 tempflag, 1 /* enabled */,
13182 from_tty);
13183 }
13184
13185 /* Implement the "catch handlers" command. */
13186
13187 static void
13188 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13189 struct cmd_list_element *command)
13190 {
13191 const char *arg = arg_entry;
13192 struct gdbarch *gdbarch = get_current_arch ();
13193 int tempflag;
13194 enum ada_exception_catchpoint_kind ex_kind;
13195 std::string excep_string;
13196 std::string cond_string;
13197
13198 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13199
13200 if (!arg)
13201 arg = "";
13202 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13203 &cond_string);
13204 create_ada_exception_catchpoint (gdbarch, ex_kind,
13205 excep_string, cond_string,
13206 tempflag, 1 /* enabled */,
13207 from_tty);
13208 }
13209
13210 /* Completion function for the Ada "catch" commands. */
13211
13212 static void
13213 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13214 const char *text, const char *word)
13215 {
13216 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13217
13218 for (const ada_exc_info &info : exceptions)
13219 {
13220 if (startswith (info.name, word))
13221 tracker.add_completion (make_unique_xstrdup (info.name));
13222 }
13223 }
13224
13225 /* Split the arguments specified in a "catch assert" command.
13226
13227 ARGS contains the command's arguments (or the empty string if
13228 no arguments were passed).
13229
13230 If ARGS contains a condition, set COND_STRING to that condition
13231 (the memory needs to be deallocated after use). */
13232
13233 static void
13234 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13235 {
13236 args = skip_spaces (args);
13237
13238 /* Check whether a condition was provided. */
13239 if (startswith (args, "if")
13240 && (isspace (args[2]) || args[2] == '\0'))
13241 {
13242 args += 2;
13243 args = skip_spaces (args);
13244 if (args[0] == '\0')
13245 error (_("condition missing after `if' keyword"));
13246 cond_string.assign (args);
13247 }
13248
13249 /* Otherwise, there should be no other argument at the end of
13250 the command. */
13251 else if (args[0] != '\0')
13252 error (_("Junk at end of arguments."));
13253 }
13254
13255 /* Implement the "catch assert" command. */
13256
13257 static void
13258 catch_assert_command (const char *arg_entry, int from_tty,
13259 struct cmd_list_element *command)
13260 {
13261 const char *arg = arg_entry;
13262 struct gdbarch *gdbarch = get_current_arch ();
13263 int tempflag;
13264 std::string cond_string;
13265
13266 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13267
13268 if (!arg)
13269 arg = "";
13270 catch_ada_assert_command_split (arg, cond_string);
13271 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13272 "", cond_string,
13273 tempflag, 1 /* enabled */,
13274 from_tty);
13275 }
13276
13277 /* Return non-zero if the symbol SYM is an Ada exception object. */
13278
13279 static int
13280 ada_is_exception_sym (struct symbol *sym)
13281 {
13282 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13283
13284 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13285 && SYMBOL_CLASS (sym) != LOC_BLOCK
13286 && SYMBOL_CLASS (sym) != LOC_CONST
13287 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13288 && type_name != NULL && strcmp (type_name, "exception") == 0);
13289 }
13290
13291 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13292 Ada exception object. This matches all exceptions except the ones
13293 defined by the Ada language. */
13294
13295 static int
13296 ada_is_non_standard_exception_sym (struct symbol *sym)
13297 {
13298 int i;
13299
13300 if (!ada_is_exception_sym (sym))
13301 return 0;
13302
13303 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13304 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13305 return 0; /* A standard exception. */
13306
13307 /* Numeric_Error is also a standard exception, so exclude it.
13308 See the STANDARD_EXC description for more details as to why
13309 this exception is not listed in that array. */
13310 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13311 return 0;
13312
13313 return 1;
13314 }
13315
13316 /* A helper function for std::sort, comparing two struct ada_exc_info
13317 objects.
13318
13319 The comparison is determined first by exception name, and then
13320 by exception address. */
13321
13322 bool
13323 ada_exc_info::operator< (const ada_exc_info &other) const
13324 {
13325 int result;
13326
13327 result = strcmp (name, other.name);
13328 if (result < 0)
13329 return true;
13330 if (result == 0 && addr < other.addr)
13331 return true;
13332 return false;
13333 }
13334
13335 bool
13336 ada_exc_info::operator== (const ada_exc_info &other) const
13337 {
13338 return addr == other.addr && strcmp (name, other.name) == 0;
13339 }
13340
13341 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13342 routine, but keeping the first SKIP elements untouched.
13343
13344 All duplicates are also removed. */
13345
13346 static void
13347 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13348 int skip)
13349 {
13350 std::sort (exceptions->begin () + skip, exceptions->end ());
13351 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13352 exceptions->end ());
13353 }
13354
13355 /* Add all exceptions defined by the Ada standard whose name match
13356 a regular expression.
13357
13358 If PREG is not NULL, then this regexp_t object is used to
13359 perform the symbol name matching. Otherwise, no name-based
13360 filtering is performed.
13361
13362 EXCEPTIONS is a vector of exceptions to which matching exceptions
13363 gets pushed. */
13364
13365 static void
13366 ada_add_standard_exceptions (compiled_regex *preg,
13367 std::vector<ada_exc_info> *exceptions)
13368 {
13369 int i;
13370
13371 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13372 {
13373 if (preg == NULL
13374 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13375 {
13376 struct bound_minimal_symbol msymbol
13377 = ada_lookup_simple_minsym (standard_exc[i]);
13378
13379 if (msymbol.minsym != NULL)
13380 {
13381 struct ada_exc_info info
13382 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13383
13384 exceptions->push_back (info);
13385 }
13386 }
13387 }
13388 }
13389
13390 /* Add all Ada exceptions defined locally and accessible from the given
13391 FRAME.
13392
13393 If PREG is not NULL, then this regexp_t object is used to
13394 perform the symbol name matching. Otherwise, no name-based
13395 filtering is performed.
13396
13397 EXCEPTIONS is a vector of exceptions to which matching exceptions
13398 gets pushed. */
13399
13400 static void
13401 ada_add_exceptions_from_frame (compiled_regex *preg,
13402 struct frame_info *frame,
13403 std::vector<ada_exc_info> *exceptions)
13404 {
13405 const struct block *block = get_frame_block (frame, 0);
13406
13407 while (block != 0)
13408 {
13409 struct block_iterator iter;
13410 struct symbol *sym;
13411
13412 ALL_BLOCK_SYMBOLS (block, iter, sym)
13413 {
13414 switch (SYMBOL_CLASS (sym))
13415 {
13416 case LOC_TYPEDEF:
13417 case LOC_BLOCK:
13418 case LOC_CONST:
13419 break;
13420 default:
13421 if (ada_is_exception_sym (sym))
13422 {
13423 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13424 SYMBOL_VALUE_ADDRESS (sym)};
13425
13426 exceptions->push_back (info);
13427 }
13428 }
13429 }
13430 if (BLOCK_FUNCTION (block) != NULL)
13431 break;
13432 block = BLOCK_SUPERBLOCK (block);
13433 }
13434 }
13435
13436 /* Return true if NAME matches PREG or if PREG is NULL. */
13437
13438 static bool
13439 name_matches_regex (const char *name, compiled_regex *preg)
13440 {
13441 return (preg == NULL
13442 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13443 }
13444
13445 /* Add all exceptions defined globally whose name name match
13446 a regular expression, excluding standard exceptions.
13447
13448 The reason we exclude standard exceptions is that they need
13449 to be handled separately: Standard exceptions are defined inside
13450 a runtime unit which is normally not compiled with debugging info,
13451 and thus usually do not show up in our symbol search. However,
13452 if the unit was in fact built with debugging info, we need to
13453 exclude them because they would duplicate the entry we found
13454 during the special loop that specifically searches for those
13455 standard exceptions.
13456
13457 If PREG is not NULL, then this regexp_t object is used to
13458 perform the symbol name matching. Otherwise, no name-based
13459 filtering is performed.
13460
13461 EXCEPTIONS is a vector of exceptions to which matching exceptions
13462 gets pushed. */
13463
13464 static void
13465 ada_add_global_exceptions (compiled_regex *preg,
13466 std::vector<ada_exc_info> *exceptions)
13467 {
13468 /* In Ada, the symbol "search name" is a linkage name, whereas the
13469 regular expression used to do the matching refers to the natural
13470 name. So match against the decoded name. */
13471 expand_symtabs_matching (NULL,
13472 lookup_name_info::match_any (),
13473 [&] (const char *search_name)
13474 {
13475 const char *decoded = ada_decode (search_name);
13476 return name_matches_regex (decoded, preg);
13477 },
13478 NULL,
13479 VARIABLES_DOMAIN);
13480
13481 for (objfile *objfile : current_program_space->objfiles ())
13482 {
13483 for (compunit_symtab *s : objfile->compunits ())
13484 {
13485 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13486 int i;
13487
13488 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13489 {
13490 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13491 struct block_iterator iter;
13492 struct symbol *sym;
13493
13494 ALL_BLOCK_SYMBOLS (b, iter, sym)
13495 if (ada_is_non_standard_exception_sym (sym)
13496 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13497 {
13498 struct ada_exc_info info
13499 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13500
13501 exceptions->push_back (info);
13502 }
13503 }
13504 }
13505 }
13506 }
13507
13508 /* Implements ada_exceptions_list with the regular expression passed
13509 as a regex_t, rather than a string.
13510
13511 If not NULL, PREG is used to filter out exceptions whose names
13512 do not match. Otherwise, all exceptions are listed. */
13513
13514 static std::vector<ada_exc_info>
13515 ada_exceptions_list_1 (compiled_regex *preg)
13516 {
13517 std::vector<ada_exc_info> result;
13518 int prev_len;
13519
13520 /* First, list the known standard exceptions. These exceptions
13521 need to be handled separately, as they are usually defined in
13522 runtime units that have been compiled without debugging info. */
13523
13524 ada_add_standard_exceptions (preg, &result);
13525
13526 /* Next, find all exceptions whose scope is local and accessible
13527 from the currently selected frame. */
13528
13529 if (has_stack_frames ())
13530 {
13531 prev_len = result.size ();
13532 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13533 &result);
13534 if (result.size () > prev_len)
13535 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13536 }
13537
13538 /* Add all exceptions whose scope is global. */
13539
13540 prev_len = result.size ();
13541 ada_add_global_exceptions (preg, &result);
13542 if (result.size () > prev_len)
13543 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13544
13545 return result;
13546 }
13547
13548 /* Return a vector of ada_exc_info.
13549
13550 If REGEXP is NULL, all exceptions are included in the result.
13551 Otherwise, it should contain a valid regular expression,
13552 and only the exceptions whose names match that regular expression
13553 are included in the result.
13554
13555 The exceptions are sorted in the following order:
13556 - Standard exceptions (defined by the Ada language), in
13557 alphabetical order;
13558 - Exceptions only visible from the current frame, in
13559 alphabetical order;
13560 - Exceptions whose scope is global, in alphabetical order. */
13561
13562 std::vector<ada_exc_info>
13563 ada_exceptions_list (const char *regexp)
13564 {
13565 if (regexp == NULL)
13566 return ada_exceptions_list_1 (NULL);
13567
13568 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13569 return ada_exceptions_list_1 (&reg);
13570 }
13571
13572 /* Implement the "info exceptions" command. */
13573
13574 static void
13575 info_exceptions_command (const char *regexp, int from_tty)
13576 {
13577 struct gdbarch *gdbarch = get_current_arch ();
13578
13579 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13580
13581 if (regexp != NULL)
13582 printf_filtered
13583 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13584 else
13585 printf_filtered (_("All defined Ada exceptions:\n"));
13586
13587 for (const ada_exc_info &info : exceptions)
13588 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13589 }
13590
13591 /* Operators */
13592 /* Information about operators given special treatment in functions
13593 below. */
13594 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13595
13596 #define ADA_OPERATORS \
13597 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13598 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13599 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13600 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13601 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13602 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13603 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13604 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13605 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13606 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13607 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13608 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13609 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13610 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13611 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13612 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13613 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13614 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13615 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13616
13617 static void
13618 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13619 int *argsp)
13620 {
13621 switch (exp->elts[pc - 1].opcode)
13622 {
13623 default:
13624 operator_length_standard (exp, pc, oplenp, argsp);
13625 break;
13626
13627 #define OP_DEFN(op, len, args, binop) \
13628 case op: *oplenp = len; *argsp = args; break;
13629 ADA_OPERATORS;
13630 #undef OP_DEFN
13631
13632 case OP_AGGREGATE:
13633 *oplenp = 3;
13634 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13635 break;
13636
13637 case OP_CHOICES:
13638 *oplenp = 3;
13639 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13640 break;
13641 }
13642 }
13643
13644 /* Implementation of the exp_descriptor method operator_check. */
13645
13646 static int
13647 ada_operator_check (struct expression *exp, int pos,
13648 int (*objfile_func) (struct objfile *objfile, void *data),
13649 void *data)
13650 {
13651 const union exp_element *const elts = exp->elts;
13652 struct type *type = NULL;
13653
13654 switch (elts[pos].opcode)
13655 {
13656 case UNOP_IN_RANGE:
13657 case UNOP_QUAL:
13658 type = elts[pos + 1].type;
13659 break;
13660
13661 default:
13662 return operator_check_standard (exp, pos, objfile_func, data);
13663 }
13664
13665 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13666
13667 if (type && TYPE_OBJFILE (type)
13668 && (*objfile_func) (TYPE_OBJFILE (type), data))
13669 return 1;
13670
13671 return 0;
13672 }
13673
13674 static const char *
13675 ada_op_name (enum exp_opcode opcode)
13676 {
13677 switch (opcode)
13678 {
13679 default:
13680 return op_name_standard (opcode);
13681
13682 #define OP_DEFN(op, len, args, binop) case op: return #op;
13683 ADA_OPERATORS;
13684 #undef OP_DEFN
13685
13686 case OP_AGGREGATE:
13687 return "OP_AGGREGATE";
13688 case OP_CHOICES:
13689 return "OP_CHOICES";
13690 case OP_NAME:
13691 return "OP_NAME";
13692 }
13693 }
13694
13695 /* As for operator_length, but assumes PC is pointing at the first
13696 element of the operator, and gives meaningful results only for the
13697 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13698
13699 static void
13700 ada_forward_operator_length (struct expression *exp, int pc,
13701 int *oplenp, int *argsp)
13702 {
13703 switch (exp->elts[pc].opcode)
13704 {
13705 default:
13706 *oplenp = *argsp = 0;
13707 break;
13708
13709 #define OP_DEFN(op, len, args, binop) \
13710 case op: *oplenp = len; *argsp = args; break;
13711 ADA_OPERATORS;
13712 #undef OP_DEFN
13713
13714 case OP_AGGREGATE:
13715 *oplenp = 3;
13716 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13717 break;
13718
13719 case OP_CHOICES:
13720 *oplenp = 3;
13721 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13722 break;
13723
13724 case OP_STRING:
13725 case OP_NAME:
13726 {
13727 int len = longest_to_int (exp->elts[pc + 1].longconst);
13728
13729 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13730 *argsp = 0;
13731 break;
13732 }
13733 }
13734 }
13735
13736 static int
13737 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13738 {
13739 enum exp_opcode op = exp->elts[elt].opcode;
13740 int oplen, nargs;
13741 int pc = elt;
13742 int i;
13743
13744 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13745
13746 switch (op)
13747 {
13748 /* Ada attributes ('Foo). */
13749 case OP_ATR_FIRST:
13750 case OP_ATR_LAST:
13751 case OP_ATR_LENGTH:
13752 case OP_ATR_IMAGE:
13753 case OP_ATR_MAX:
13754 case OP_ATR_MIN:
13755 case OP_ATR_MODULUS:
13756 case OP_ATR_POS:
13757 case OP_ATR_SIZE:
13758 case OP_ATR_TAG:
13759 case OP_ATR_VAL:
13760 break;
13761
13762 case UNOP_IN_RANGE:
13763 case UNOP_QUAL:
13764 /* XXX: gdb_sprint_host_address, type_sprint */
13765 fprintf_filtered (stream, _("Type @"));
13766 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13767 fprintf_filtered (stream, " (");
13768 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13769 fprintf_filtered (stream, ")");
13770 break;
13771 case BINOP_IN_BOUNDS:
13772 fprintf_filtered (stream, " (%d)",
13773 longest_to_int (exp->elts[pc + 2].longconst));
13774 break;
13775 case TERNOP_IN_RANGE:
13776 break;
13777
13778 case OP_AGGREGATE:
13779 case OP_OTHERS:
13780 case OP_DISCRETE_RANGE:
13781 case OP_POSITIONAL:
13782 case OP_CHOICES:
13783 break;
13784
13785 case OP_NAME:
13786 case OP_STRING:
13787 {
13788 char *name = &exp->elts[elt + 2].string;
13789 int len = longest_to_int (exp->elts[elt + 1].longconst);
13790
13791 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13792 break;
13793 }
13794
13795 default:
13796 return dump_subexp_body_standard (exp, stream, elt);
13797 }
13798
13799 elt += oplen;
13800 for (i = 0; i < nargs; i += 1)
13801 elt = dump_subexp (exp, stream, elt);
13802
13803 return elt;
13804 }
13805
13806 /* The Ada extension of print_subexp (q.v.). */
13807
13808 static void
13809 ada_print_subexp (struct expression *exp, int *pos,
13810 struct ui_file *stream, enum precedence prec)
13811 {
13812 int oplen, nargs, i;
13813 int pc = *pos;
13814 enum exp_opcode op = exp->elts[pc].opcode;
13815
13816 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13817
13818 *pos += oplen;
13819 switch (op)
13820 {
13821 default:
13822 *pos -= oplen;
13823 print_subexp_standard (exp, pos, stream, prec);
13824 return;
13825
13826 case OP_VAR_VALUE:
13827 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13828 return;
13829
13830 case BINOP_IN_BOUNDS:
13831 /* XXX: sprint_subexp */
13832 print_subexp (exp, pos, stream, PREC_SUFFIX);
13833 fputs_filtered (" in ", stream);
13834 print_subexp (exp, pos, stream, PREC_SUFFIX);
13835 fputs_filtered ("'range", stream);
13836 if (exp->elts[pc + 1].longconst > 1)
13837 fprintf_filtered (stream, "(%ld)",
13838 (long) exp->elts[pc + 1].longconst);
13839 return;
13840
13841 case TERNOP_IN_RANGE:
13842 if (prec >= PREC_EQUAL)
13843 fputs_filtered ("(", stream);
13844 /* XXX: sprint_subexp */
13845 print_subexp (exp, pos, stream, PREC_SUFFIX);
13846 fputs_filtered (" in ", stream);
13847 print_subexp (exp, pos, stream, PREC_EQUAL);
13848 fputs_filtered (" .. ", stream);
13849 print_subexp (exp, pos, stream, PREC_EQUAL);
13850 if (prec >= PREC_EQUAL)
13851 fputs_filtered (")", stream);
13852 return;
13853
13854 case OP_ATR_FIRST:
13855 case OP_ATR_LAST:
13856 case OP_ATR_LENGTH:
13857 case OP_ATR_IMAGE:
13858 case OP_ATR_MAX:
13859 case OP_ATR_MIN:
13860 case OP_ATR_MODULUS:
13861 case OP_ATR_POS:
13862 case OP_ATR_SIZE:
13863 case OP_ATR_TAG:
13864 case OP_ATR_VAL:
13865 if (exp->elts[*pos].opcode == OP_TYPE)
13866 {
13867 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13868 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13869 &type_print_raw_options);
13870 *pos += 3;
13871 }
13872 else
13873 print_subexp (exp, pos, stream, PREC_SUFFIX);
13874 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13875 if (nargs > 1)
13876 {
13877 int tem;
13878
13879 for (tem = 1; tem < nargs; tem += 1)
13880 {
13881 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13882 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13883 }
13884 fputs_filtered (")", stream);
13885 }
13886 return;
13887
13888 case UNOP_QUAL:
13889 type_print (exp->elts[pc + 1].type, "", stream, 0);
13890 fputs_filtered ("'(", stream);
13891 print_subexp (exp, pos, stream, PREC_PREFIX);
13892 fputs_filtered (")", stream);
13893 return;
13894
13895 case UNOP_IN_RANGE:
13896 /* XXX: sprint_subexp */
13897 print_subexp (exp, pos, stream, PREC_SUFFIX);
13898 fputs_filtered (" in ", stream);
13899 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13900 &type_print_raw_options);
13901 return;
13902
13903 case OP_DISCRETE_RANGE:
13904 print_subexp (exp, pos, stream, PREC_SUFFIX);
13905 fputs_filtered ("..", stream);
13906 print_subexp (exp, pos, stream, PREC_SUFFIX);
13907 return;
13908
13909 case OP_OTHERS:
13910 fputs_filtered ("others => ", stream);
13911 print_subexp (exp, pos, stream, PREC_SUFFIX);
13912 return;
13913
13914 case OP_CHOICES:
13915 for (i = 0; i < nargs-1; i += 1)
13916 {
13917 if (i > 0)
13918 fputs_filtered ("|", stream);
13919 print_subexp (exp, pos, stream, PREC_SUFFIX);
13920 }
13921 fputs_filtered (" => ", stream);
13922 print_subexp (exp, pos, stream, PREC_SUFFIX);
13923 return;
13924
13925 case OP_POSITIONAL:
13926 print_subexp (exp, pos, stream, PREC_SUFFIX);
13927 return;
13928
13929 case OP_AGGREGATE:
13930 fputs_filtered ("(", stream);
13931 for (i = 0; i < nargs; i += 1)
13932 {
13933 if (i > 0)
13934 fputs_filtered (", ", stream);
13935 print_subexp (exp, pos, stream, PREC_SUFFIX);
13936 }
13937 fputs_filtered (")", stream);
13938 return;
13939 }
13940 }
13941
13942 /* Table mapping opcodes into strings for printing operators
13943 and precedences of the operators. */
13944
13945 static const struct op_print ada_op_print_tab[] = {
13946 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13947 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13948 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13949 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13950 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13951 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13952 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13953 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13954 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13955 {">=", BINOP_GEQ, PREC_ORDER, 0},
13956 {">", BINOP_GTR, PREC_ORDER, 0},
13957 {"<", BINOP_LESS, PREC_ORDER, 0},
13958 {">>", BINOP_RSH, PREC_SHIFT, 0},
13959 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13960 {"+", BINOP_ADD, PREC_ADD, 0},
13961 {"-", BINOP_SUB, PREC_ADD, 0},
13962 {"&", BINOP_CONCAT, PREC_ADD, 0},
13963 {"*", BINOP_MUL, PREC_MUL, 0},
13964 {"/", BINOP_DIV, PREC_MUL, 0},
13965 {"rem", BINOP_REM, PREC_MUL, 0},
13966 {"mod", BINOP_MOD, PREC_MUL, 0},
13967 {"**", BINOP_EXP, PREC_REPEAT, 0},
13968 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13969 {"-", UNOP_NEG, PREC_PREFIX, 0},
13970 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13971 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13972 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13973 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13974 {".all", UNOP_IND, PREC_SUFFIX, 1},
13975 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13976 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13977 {NULL, OP_NULL, PREC_SUFFIX, 0}
13978 };
13979 \f
13980 enum ada_primitive_types {
13981 ada_primitive_type_int,
13982 ada_primitive_type_long,
13983 ada_primitive_type_short,
13984 ada_primitive_type_char,
13985 ada_primitive_type_float,
13986 ada_primitive_type_double,
13987 ada_primitive_type_void,
13988 ada_primitive_type_long_long,
13989 ada_primitive_type_long_double,
13990 ada_primitive_type_natural,
13991 ada_primitive_type_positive,
13992 ada_primitive_type_system_address,
13993 ada_primitive_type_storage_offset,
13994 nr_ada_primitive_types
13995 };
13996
13997 static void
13998 ada_language_arch_info (struct gdbarch *gdbarch,
13999 struct language_arch_info *lai)
14000 {
14001 const struct builtin_type *builtin = builtin_type (gdbarch);
14002
14003 lai->primitive_type_vector
14004 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14005 struct type *);
14006
14007 lai->primitive_type_vector [ada_primitive_type_int]
14008 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14009 0, "integer");
14010 lai->primitive_type_vector [ada_primitive_type_long]
14011 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14012 0, "long_integer");
14013 lai->primitive_type_vector [ada_primitive_type_short]
14014 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14015 0, "short_integer");
14016 lai->string_char_type
14017 = lai->primitive_type_vector [ada_primitive_type_char]
14018 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14019 lai->primitive_type_vector [ada_primitive_type_float]
14020 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14021 "float", gdbarch_float_format (gdbarch));
14022 lai->primitive_type_vector [ada_primitive_type_double]
14023 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14024 "long_float", gdbarch_double_format (gdbarch));
14025 lai->primitive_type_vector [ada_primitive_type_long_long]
14026 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14027 0, "long_long_integer");
14028 lai->primitive_type_vector [ada_primitive_type_long_double]
14029 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14030 "long_long_float", gdbarch_long_double_format (gdbarch));
14031 lai->primitive_type_vector [ada_primitive_type_natural]
14032 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14033 0, "natural");
14034 lai->primitive_type_vector [ada_primitive_type_positive]
14035 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14036 0, "positive");
14037 lai->primitive_type_vector [ada_primitive_type_void]
14038 = builtin->builtin_void;
14039
14040 lai->primitive_type_vector [ada_primitive_type_system_address]
14041 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14042 "void"));
14043 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14044 = "system__address";
14045
14046 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14047 type. This is a signed integral type whose size is the same as
14048 the size of addresses. */
14049 {
14050 unsigned int addr_length = TYPE_LENGTH
14051 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14052
14053 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14054 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14055 "storage_offset");
14056 }
14057
14058 lai->bool_type_symbol = NULL;
14059 lai->bool_type_default = builtin->builtin_bool;
14060 }
14061 \f
14062 /* Language vector */
14063
14064 /* Not really used, but needed in the ada_language_defn. */
14065
14066 static void
14067 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14068 {
14069 ada_emit_char (c, type, stream, quoter, 1);
14070 }
14071
14072 static int
14073 parse (struct parser_state *ps)
14074 {
14075 warnings_issued = 0;
14076 return ada_parse (ps);
14077 }
14078
14079 static const struct exp_descriptor ada_exp_descriptor = {
14080 ada_print_subexp,
14081 ada_operator_length,
14082 ada_operator_check,
14083 ada_op_name,
14084 ada_dump_subexp_body,
14085 ada_evaluate_subexp
14086 };
14087
14088 /* symbol_name_matcher_ftype adapter for wild_match. */
14089
14090 static bool
14091 do_wild_match (const char *symbol_search_name,
14092 const lookup_name_info &lookup_name,
14093 completion_match_result *comp_match_res)
14094 {
14095 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14096 }
14097
14098 /* symbol_name_matcher_ftype adapter for full_match. */
14099
14100 static bool
14101 do_full_match (const char *symbol_search_name,
14102 const lookup_name_info &lookup_name,
14103 completion_match_result *comp_match_res)
14104 {
14105 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14106 }
14107
14108 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
14109
14110 static bool
14111 do_exact_match (const char *symbol_search_name,
14112 const lookup_name_info &lookup_name,
14113 completion_match_result *comp_match_res)
14114 {
14115 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14116 }
14117
14118 /* Build the Ada lookup name for LOOKUP_NAME. */
14119
14120 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14121 {
14122 const std::string &user_name = lookup_name.name ();
14123
14124 if (user_name[0] == '<')
14125 {
14126 if (user_name.back () == '>')
14127 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14128 else
14129 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14130 m_encoded_p = true;
14131 m_verbatim_p = true;
14132 m_wild_match_p = false;
14133 m_standard_p = false;
14134 }
14135 else
14136 {
14137 m_verbatim_p = false;
14138
14139 m_encoded_p = user_name.find ("__") != std::string::npos;
14140
14141 if (!m_encoded_p)
14142 {
14143 const char *folded = ada_fold_name (user_name.c_str ());
14144 const char *encoded = ada_encode_1 (folded, false);
14145 if (encoded != NULL)
14146 m_encoded_name = encoded;
14147 else
14148 m_encoded_name = user_name;
14149 }
14150 else
14151 m_encoded_name = user_name;
14152
14153 /* Handle the 'package Standard' special case. See description
14154 of m_standard_p. */
14155 if (startswith (m_encoded_name.c_str (), "standard__"))
14156 {
14157 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14158 m_standard_p = true;
14159 }
14160 else
14161 m_standard_p = false;
14162
14163 /* If the name contains a ".", then the user is entering a fully
14164 qualified entity name, and the match must not be done in wild
14165 mode. Similarly, if the user wants to complete what looks
14166 like an encoded name, the match must not be done in wild
14167 mode. Also, in the standard__ special case always do
14168 non-wild matching. */
14169 m_wild_match_p
14170 = (lookup_name.match_type () != symbol_name_match_type::FULL
14171 && !m_encoded_p
14172 && !m_standard_p
14173 && user_name.find ('.') == std::string::npos);
14174 }
14175 }
14176
14177 /* symbol_name_matcher_ftype method for Ada. This only handles
14178 completion mode. */
14179
14180 static bool
14181 ada_symbol_name_matches (const char *symbol_search_name,
14182 const lookup_name_info &lookup_name,
14183 completion_match_result *comp_match_res)
14184 {
14185 return lookup_name.ada ().matches (symbol_search_name,
14186 lookup_name.match_type (),
14187 comp_match_res);
14188 }
14189
14190 /* A name matcher that matches the symbol name exactly, with
14191 strcmp. */
14192
14193 static bool
14194 literal_symbol_name_matcher (const char *symbol_search_name,
14195 const lookup_name_info &lookup_name,
14196 completion_match_result *comp_match_res)
14197 {
14198 const std::string &name = lookup_name.name ();
14199
14200 int cmp = (lookup_name.completion_mode ()
14201 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14202 : strcmp (symbol_search_name, name.c_str ()));
14203 if (cmp == 0)
14204 {
14205 if (comp_match_res != NULL)
14206 comp_match_res->set_match (symbol_search_name);
14207 return true;
14208 }
14209 else
14210 return false;
14211 }
14212
14213 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14214 Ada. */
14215
14216 static symbol_name_matcher_ftype *
14217 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14218 {
14219 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14220 return literal_symbol_name_matcher;
14221
14222 if (lookup_name.completion_mode ())
14223 return ada_symbol_name_matches;
14224 else
14225 {
14226 if (lookup_name.ada ().wild_match_p ())
14227 return do_wild_match;
14228 else if (lookup_name.ada ().verbatim_p ())
14229 return do_exact_match;
14230 else
14231 return do_full_match;
14232 }
14233 }
14234
14235 /* Implement the "la_read_var_value" language_defn method for Ada. */
14236
14237 static struct value *
14238 ada_read_var_value (struct symbol *var, const struct block *var_block,
14239 struct frame_info *frame)
14240 {
14241 /* The only case where default_read_var_value is not sufficient
14242 is when VAR is a renaming... */
14243 if (frame != nullptr)
14244 {
14245 const struct block *frame_block = get_frame_block (frame, NULL);
14246 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14247 return ada_read_renaming_var_value (var, frame_block);
14248 }
14249
14250 /* This is a typical case where we expect the default_read_var_value
14251 function to work. */
14252 return default_read_var_value (var, var_block, frame);
14253 }
14254
14255 static const char *ada_extensions[] =
14256 {
14257 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14258 };
14259
14260 extern const struct language_defn ada_language_defn = {
14261 "ada", /* Language name */
14262 "Ada",
14263 language_ada,
14264 range_check_off,
14265 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14266 that's not quite what this means. */
14267 array_row_major,
14268 macro_expansion_no,
14269 ada_extensions,
14270 &ada_exp_descriptor,
14271 parse,
14272 resolve,
14273 ada_printchar, /* Print a character constant */
14274 ada_printstr, /* Function to print string constant */
14275 emit_char, /* Function to print single char (not used) */
14276 ada_print_type, /* Print a type using appropriate syntax */
14277 ada_print_typedef, /* Print a typedef using appropriate syntax */
14278 ada_val_print, /* Print a value using appropriate syntax */
14279 ada_value_print, /* Print a top-level value */
14280 ada_read_var_value, /* la_read_var_value */
14281 NULL, /* Language specific skip_trampoline */
14282 NULL, /* name_of_this */
14283 true, /* la_store_sym_names_in_linkage_form_p */
14284 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14285 basic_lookup_transparent_type, /* lookup_transparent_type */
14286 ada_la_decode, /* Language specific symbol demangler */
14287 ada_sniff_from_mangled_name,
14288 NULL, /* Language specific
14289 class_name_from_physname */
14290 ada_op_print_tab, /* expression operators for printing */
14291 0, /* c-style arrays */
14292 1, /* String lower bound */
14293 ada_get_gdb_completer_word_break_characters,
14294 ada_collect_symbol_completion_matches,
14295 ada_language_arch_info,
14296 ada_print_array_index,
14297 default_pass_by_reference,
14298 c_get_string,
14299 ada_watch_location_expression,
14300 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14301 ada_iterate_over_symbols,
14302 default_search_name_hash,
14303 &ada_varobj_ops,
14304 NULL,
14305 NULL,
14306 ada_is_string_type,
14307 "(...)" /* la_struct_too_deep_ellipsis */
14308 };
14309
14310 /* Command-list for the "set/show ada" prefix command. */
14311 static struct cmd_list_element *set_ada_list;
14312 static struct cmd_list_element *show_ada_list;
14313
14314 /* Implement the "set ada" prefix command. */
14315
14316 static void
14317 set_ada_command (const char *arg, int from_tty)
14318 {
14319 printf_unfiltered (_(\
14320 "\"set ada\" must be followed by the name of a setting.\n"));
14321 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14322 }
14323
14324 /* Implement the "show ada" prefix command. */
14325
14326 static void
14327 show_ada_command (const char *args, int from_tty)
14328 {
14329 cmd_show_list (show_ada_list, from_tty, "");
14330 }
14331
14332 static void
14333 initialize_ada_catchpoint_ops (void)
14334 {
14335 struct breakpoint_ops *ops;
14336
14337 initialize_breakpoint_ops ();
14338
14339 ops = &catch_exception_breakpoint_ops;
14340 *ops = bkpt_breakpoint_ops;
14341 ops->allocate_location = allocate_location_catch_exception;
14342 ops->re_set = re_set_catch_exception;
14343 ops->check_status = check_status_catch_exception;
14344 ops->print_it = print_it_catch_exception;
14345 ops->print_one = print_one_catch_exception;
14346 ops->print_mention = print_mention_catch_exception;
14347 ops->print_recreate = print_recreate_catch_exception;
14348
14349 ops = &catch_exception_unhandled_breakpoint_ops;
14350 *ops = bkpt_breakpoint_ops;
14351 ops->allocate_location = allocate_location_catch_exception_unhandled;
14352 ops->re_set = re_set_catch_exception_unhandled;
14353 ops->check_status = check_status_catch_exception_unhandled;
14354 ops->print_it = print_it_catch_exception_unhandled;
14355 ops->print_one = print_one_catch_exception_unhandled;
14356 ops->print_mention = print_mention_catch_exception_unhandled;
14357 ops->print_recreate = print_recreate_catch_exception_unhandled;
14358
14359 ops = &catch_assert_breakpoint_ops;
14360 *ops = bkpt_breakpoint_ops;
14361 ops->allocate_location = allocate_location_catch_assert;
14362 ops->re_set = re_set_catch_assert;
14363 ops->check_status = check_status_catch_assert;
14364 ops->print_it = print_it_catch_assert;
14365 ops->print_one = print_one_catch_assert;
14366 ops->print_mention = print_mention_catch_assert;
14367 ops->print_recreate = print_recreate_catch_assert;
14368
14369 ops = &catch_handlers_breakpoint_ops;
14370 *ops = bkpt_breakpoint_ops;
14371 ops->allocate_location = allocate_location_catch_handlers;
14372 ops->re_set = re_set_catch_handlers;
14373 ops->check_status = check_status_catch_handlers;
14374 ops->print_it = print_it_catch_handlers;
14375 ops->print_one = print_one_catch_handlers;
14376 ops->print_mention = print_mention_catch_handlers;
14377 ops->print_recreate = print_recreate_catch_handlers;
14378 }
14379
14380 /* This module's 'new_objfile' observer. */
14381
14382 static void
14383 ada_new_objfile_observer (struct objfile *objfile)
14384 {
14385 ada_clear_symbol_cache ();
14386 }
14387
14388 /* This module's 'free_objfile' observer. */
14389
14390 static void
14391 ada_free_objfile_observer (struct objfile *objfile)
14392 {
14393 ada_clear_symbol_cache ();
14394 }
14395
14396 void
14397 _initialize_ada_language (void)
14398 {
14399 initialize_ada_catchpoint_ops ();
14400
14401 add_prefix_cmd ("ada", no_class, set_ada_command,
14402 _("Prefix command for changing Ada-specific settings"),
14403 &set_ada_list, "set ada ", 0, &setlist);
14404
14405 add_prefix_cmd ("ada", no_class, show_ada_command,
14406 _("Generic command for showing Ada-specific settings."),
14407 &show_ada_list, "show ada ", 0, &showlist);
14408
14409 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14410 &trust_pad_over_xvs, _("\
14411 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14412 Show whether an optimization trusting PAD types over XVS types is activated"),
14413 _("\
14414 This is related to the encoding used by the GNAT compiler. The debugger\n\
14415 should normally trust the contents of PAD types, but certain older versions\n\
14416 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14417 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14418 work around this bug. It is always safe to turn this option \"off\", but\n\
14419 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14420 this option to \"off\" unless necessary."),
14421 NULL, NULL, &set_ada_list, &show_ada_list);
14422
14423 add_setshow_boolean_cmd ("print-signatures", class_vars,
14424 &print_signatures, _("\
14425 Enable or disable the output of formal and return types for functions in the \
14426 overloads selection menu"), _("\
14427 Show whether the output of formal and return types for functions in the \
14428 overloads selection menu is activated"),
14429 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14430
14431 add_catch_command ("exception", _("\
14432 Catch Ada exceptions, when raised.\n\
14433 Usage: catch exception [ARG] [if CONDITION]\n\
14434 Without any argument, stop when any Ada exception is raised.\n\
14435 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14436 being raised does not have a handler (and will therefore lead to the task's\n\
14437 termination).\n\
14438 Otherwise, the catchpoint only stops when the name of the exception being\n\
14439 raised is the same as ARG.\n\
14440 CONDITION is a boolean expression that is evaluated to see whether the\n\
14441 exception should cause a stop."),
14442 catch_ada_exception_command,
14443 catch_ada_completer,
14444 CATCH_PERMANENT,
14445 CATCH_TEMPORARY);
14446
14447 add_catch_command ("handlers", _("\
14448 Catch Ada exceptions, when handled.\n\
14449 Usage: catch handlers [ARG] [if CONDITION]\n\
14450 Without any argument, stop when any Ada exception is handled.\n\
14451 With an argument, catch only exceptions with the given name.\n\
14452 CONDITION is a boolean expression that is evaluated to see whether the\n\
14453 exception should cause a stop."),
14454 catch_ada_handlers_command,
14455 catch_ada_completer,
14456 CATCH_PERMANENT,
14457 CATCH_TEMPORARY);
14458 add_catch_command ("assert", _("\
14459 Catch failed Ada assertions, when raised.\n\
14460 Usage: catch assert [if CONDITION]\n\
14461 CONDITION is a boolean expression that is evaluated to see whether the\n\
14462 exception should cause a stop."),
14463 catch_assert_command,
14464 NULL,
14465 CATCH_PERMANENT,
14466 CATCH_TEMPORARY);
14467
14468 varsize_limit = 65536;
14469 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14470 &varsize_limit, _("\
14471 Set the maximum number of bytes allowed in a variable-size object."), _("\
14472 Show the maximum number of bytes allowed in a variable-size object."), _("\
14473 Attempts to access an object whose size is not a compile-time constant\n\
14474 and exceeds this limit will cause an error."),
14475 NULL, NULL, &setlist, &showlist);
14476
14477 add_info ("exceptions", info_exceptions_command,
14478 _("\
14479 List all Ada exception names.\n\
14480 Usage: info exceptions [REGEXP]\n\
14481 If a regular expression is passed as an argument, only those matching\n\
14482 the regular expression are listed."));
14483
14484 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14485 _("Set Ada maintenance-related variables."),
14486 &maint_set_ada_cmdlist, "maintenance set ada ",
14487 0/*allow-unknown*/, &maintenance_set_cmdlist);
14488
14489 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14490 _("Show Ada maintenance-related variables"),
14491 &maint_show_ada_cmdlist, "maintenance show ada ",
14492 0/*allow-unknown*/, &maintenance_show_cmdlist);
14493
14494 add_setshow_boolean_cmd
14495 ("ignore-descriptive-types", class_maintenance,
14496 &ada_ignore_descriptive_types_p,
14497 _("Set whether descriptive types generated by GNAT should be ignored."),
14498 _("Show whether descriptive types generated by GNAT should be ignored."),
14499 _("\
14500 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14501 DWARF attribute."),
14502 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14503
14504 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14505 NULL, xcalloc, xfree);
14506
14507 /* The ada-lang observers. */
14508 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14509 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14510 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14511 }
This page took 0.360239 seconds and 4 git commands to generate.