1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_regex.h"
29 #include "expression.h"
30 #include "parser-defs.h"
37 #include "breakpoint.h"
40 #include "gdb_obstack.h"
42 #include "completer.h"
47 #include "dictionary.h"
55 #include "typeprint.h"
56 #include "namespace.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
72 static struct type
*desc_base_type (struct type
*);
74 static struct type
*desc_bounds_type (struct type
*);
76 static struct value
*desc_bounds (struct value
*);
78 static int fat_pntr_bounds_bitpos (struct type
*);
80 static int fat_pntr_bounds_bitsize (struct type
*);
82 static struct type
*desc_data_target_type (struct type
*);
84 static struct value
*desc_data (struct value
*);
86 static int fat_pntr_data_bitpos (struct type
*);
88 static int fat_pntr_data_bitsize (struct type
*);
90 static struct value
*desc_one_bound (struct value
*, int, int);
92 static int desc_bound_bitpos (struct type
*, int, int);
94 static int desc_bound_bitsize (struct type
*, int, int);
96 static struct type
*desc_index_type (struct type
*, int);
98 static int desc_arity (struct type
*);
100 static int ada_type_match (struct type
*, struct type
*, int);
102 static int ada_args_match (struct symbol
*, struct value
**, int);
104 static int full_match (const char *, const char *);
106 static struct value
*make_array_descriptor (struct type
*, struct value
*);
108 static void ada_add_block_symbols (struct obstack
*,
109 const struct block
*, const char *,
110 domain_enum
, struct objfile
*, int);
112 static void ada_add_all_symbols (struct obstack
*, const struct block
*,
113 const char *, domain_enum
, int, int *);
115 static int is_nonfunction (struct block_symbol
*, int);
117 static void add_defn_to_vec (struct obstack
*, struct symbol
*,
118 const struct block
*);
120 static int num_defns_collected (struct obstack
*);
122 static struct block_symbol
*defns_collected (struct obstack
*, int);
124 static struct value
*resolve_subexp (struct expression
**, int *, int,
127 static void replace_operator_with_call (struct expression
**, int, int, int,
128 struct symbol
*, const struct block
*);
130 static int possible_user_operator_p (enum exp_opcode
, struct value
**);
132 static char *ada_op_name (enum exp_opcode
);
134 static const char *ada_decoded_op_name (enum exp_opcode
);
136 static int numeric_type_p (struct type
*);
138 static int integer_type_p (struct type
*);
140 static int scalar_type_p (struct type
*);
142 static int discrete_type_p (struct type
*);
144 static enum ada_renaming_category
parse_old_style_renaming (struct type
*,
149 static struct symbol
*find_old_style_renaming_symbol (const char *,
150 const struct block
*);
152 static struct type
*ada_lookup_struct_elt_type (struct type
*, char *,
155 static struct value
*evaluate_subexp_type (struct expression
*, int *);
157 static struct type
*ada_find_parallel_type_with_name (struct type
*,
160 static int is_dynamic_field (struct type
*, int);
162 static struct type
*to_fixed_variant_branch_type (struct type
*,
164 CORE_ADDR
, struct value
*);
166 static struct type
*to_fixed_array_type (struct type
*, struct value
*, int);
168 static struct type
*to_fixed_range_type (struct type
*, struct value
*);
170 static struct type
*to_static_fixed_type (struct type
*);
171 static struct type
*static_unwrap_type (struct type
*type
);
173 static struct value
*unwrap_value (struct value
*);
175 static struct type
*constrained_packed_array_type (struct type
*, long *);
177 static struct type
*decode_constrained_packed_array_type (struct type
*);
179 static long decode_packed_array_bitsize (struct type
*);
181 static struct value
*decode_constrained_packed_array (struct value
*);
183 static int ada_is_packed_array_type (struct type
*);
185 static int ada_is_unconstrained_packed_array_type (struct type
*);
187 static struct value
*value_subscript_packed (struct value
*, int,
190 static void move_bits (gdb_byte
*, int, const gdb_byte
*, int, int, int);
192 static struct value
*coerce_unspec_val_to_type (struct value
*,
195 static struct value
*get_var_value (char *, char *);
197 static int lesseq_defined_than (struct symbol
*, struct symbol
*);
199 static int equiv_types (struct type
*, struct type
*);
201 static int is_name_suffix (const char *);
203 static int advance_wild_match (const char **, const char *, int);
205 static int wild_match (const char *, const char *);
207 static struct value
*ada_coerce_ref (struct value
*);
209 static LONGEST
pos_atr (struct value
*);
211 static struct value
*value_pos_atr (struct type
*, struct value
*);
213 static struct value
*value_val_atr (struct type
*, struct value
*);
215 static struct symbol
*standard_lookup (const char *, const struct block
*,
218 static struct value
*ada_search_struct_field (const char *, struct value
*, int,
221 static struct value
*ada_value_primitive_field (struct value
*, int, int,
224 static int find_struct_field (const char *, struct type
*, int,
225 struct type
**, int *, int *, int *, int *);
227 static struct value
*ada_to_fixed_value_create (struct type
*, CORE_ADDR
,
230 static int ada_resolve_function (struct block_symbol
*, int,
231 struct value
**, int, const char *,
234 static int ada_is_direct_array_type (struct type
*);
236 static void ada_language_arch_info (struct gdbarch
*,
237 struct language_arch_info
*);
239 static struct value
*ada_index_struct_field (int, struct value
*, int,
242 static struct value
*assign_aggregate (struct value
*, struct value
*,
246 static void aggregate_assign_from_choices (struct value
*, struct value
*,
248 int *, LONGEST
*, int *,
249 int, LONGEST
, LONGEST
);
251 static void aggregate_assign_positional (struct value
*, struct value
*,
253 int *, LONGEST
*, int *, int,
257 static void aggregate_assign_others (struct value
*, struct value
*,
259 int *, LONGEST
*, int, LONGEST
, LONGEST
);
262 static void add_component_interval (LONGEST
, LONGEST
, LONGEST
*, int *, int);
265 static struct value
*ada_evaluate_subexp (struct type
*, struct expression
*,
268 static void ada_forward_operator_length (struct expression
*, int, int *,
271 static struct type
*ada_find_any_type (const char *name
);
274 /* The result of a symbol lookup to be stored in our symbol cache. */
278 /* The name used to perform the lookup. */
280 /* The namespace used during the lookup. */
282 /* The symbol returned by the lookup, or NULL if no matching symbol
285 /* The block where the symbol was found, or NULL if no matching
287 const struct block
*block
;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry
*next
;
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
301 #define HASH_SIZE 1009
303 struct ada_symbol_cache
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space
;
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry
*root
[HASH_SIZE
];
312 static void ada_free_symbol_cache (struct ada_symbol_cache
*sym_cache
);
314 /* Maximum-sized dynamic type. */
315 static unsigned int varsize_limit
;
317 /* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319 static char *ada_completer_word_break_characters
=
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME
[]
328 = "__gnat_ada_main_program_name";
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit
= 2;
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued
= 0;
337 static const char *known_runtime_file_name_patterns
[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
341 static const char *known_auxiliary_function_name_patterns
[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
345 /* Space for allocating results of ada_lookup_symbol_list. */
346 static struct obstack symbol_list_obstack
;
348 /* Maintenance-related settings for this module. */
350 static struct cmd_list_element
*maint_set_ada_cmdlist
;
351 static struct cmd_list_element
*maint_show_ada_cmdlist
;
353 /* Implement the "maintenance set ada" (prefix) command. */
356 maint_set_ada_cmd (char *args
, int from_tty
)
358 help_list (maint_set_ada_cmdlist
, "maintenance set ada ", all_commands
,
362 /* Implement the "maintenance show ada" (prefix) command. */
365 maint_show_ada_cmd (char *args
, int from_tty
)
367 cmd_show_list (maint_show_ada_cmdlist
, from_tty
, "");
370 /* The "maintenance ada set/show ignore-descriptive-type" value. */
372 static int ada_ignore_descriptive_types_p
= 0;
374 /* Inferior-specific data. */
376 /* Per-inferior data for this module. */
378 struct ada_inferior_data
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type
*tsd_type
;
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
389 const struct exception_support_info
*exception_info
;
392 /* Our key to this module's inferior data. */
393 static const struct inferior_data
*ada_inferior_data
;
395 /* A cleanup routine for our inferior data. */
397 ada_inferior_data_cleanup (struct inferior
*inf
, void *arg
)
399 struct ada_inferior_data
*data
;
401 data
= (struct ada_inferior_data
*) inferior_data (inf
, ada_inferior_data
);
406 /* Return our inferior data for the given inferior (INF).
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
414 static struct ada_inferior_data
*
415 get_ada_inferior_data (struct inferior
*inf
)
417 struct ada_inferior_data
*data
;
419 data
= (struct ada_inferior_data
*) inferior_data (inf
, ada_inferior_data
);
422 data
= XCNEW (struct ada_inferior_data
);
423 set_inferior_data (inf
, ada_inferior_data
, data
);
429 /* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
433 ada_inferior_exit (struct inferior
*inf
)
435 ada_inferior_data_cleanup (inf
, NULL
);
436 set_inferior_data (inf
, ada_inferior_data
, NULL
);
440 /* program-space-specific data. */
442 /* This module's per-program-space data. */
443 struct ada_pspace_data
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache
*sym_cache
;
449 /* Key to our per-program-space data. */
450 static const struct program_space_data
*ada_pspace_data_handle
;
452 /* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
455 This function always returns a valid object. */
457 static struct ada_pspace_data
*
458 get_ada_pspace_data (struct program_space
*pspace
)
460 struct ada_pspace_data
*data
;
462 data
= ((struct ada_pspace_data
*)
463 program_space_data (pspace
, ada_pspace_data_handle
));
466 data
= XCNEW (struct ada_pspace_data
);
467 set_program_space_data (pspace
, ada_pspace_data_handle
, data
);
473 /* The cleanup callback for this module's per-program-space data. */
476 ada_pspace_data_cleanup (struct program_space
*pspace
, void *data
)
478 struct ada_pspace_data
*pspace_data
= (struct ada_pspace_data
*) data
;
480 if (pspace_data
->sym_cache
!= NULL
)
481 ada_free_symbol_cache (pspace_data
->sym_cache
);
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
515 ada_typedef_target_type (struct type
*type
)
517 while (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
)
518 type
= TYPE_TARGET_TYPE (type
);
522 /* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
527 ada_unqualified_name (const char *decoded_name
)
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name
[0] == '<')
538 result
= strrchr (decoded_name
, '.');
540 result
++; /* Skip the dot... */
542 result
= decoded_name
;
547 /* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
551 add_angle_brackets (const char *str
)
553 static char *result
= NULL
;
556 result
= xstrprintf ("<%s>", str
);
561 ada_get_gdb_completer_word_break_characters (void)
563 return ada_completer_word_break_characters
;
566 /* Print an array element index using the Ada syntax. */
569 ada_print_array_index (struct value
*index_value
, struct ui_file
*stream
,
570 const struct value_print_options
*options
)
572 LA_VALUE_PRINT (index_value
, stream
, options
);
573 fprintf_filtered (stream
, " => ");
576 /* Assuming VECT points to an array of *SIZE objects of size
577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
578 updating *SIZE as necessary and returning the (new) array. */
581 grow_vect (void *vect
, size_t *size
, size_t min_size
, int element_size
)
583 if (*size
< min_size
)
586 if (*size
< min_size
)
588 vect
= xrealloc (vect
, *size
* element_size
);
593 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
594 suffix of FIELD_NAME beginning "___". */
597 field_name_match (const char *field_name
, const char *target
)
599 int len
= strlen (target
);
602 (strncmp (field_name
, target
, len
) == 0
603 && (field_name
[len
] == '\0'
604 || (startswith (field_name
+ len
, "___")
605 && strcmp (field_name
+ strlen (field_name
) - 6,
610 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
619 ada_get_field_index (const struct type
*type
, const char *field_name
,
623 struct type
*struct_type
= check_typedef ((struct type
*) type
);
625 for (fieldno
= 0; fieldno
< TYPE_NFIELDS (struct_type
); fieldno
++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type
, fieldno
), field_name
))
630 error (_("Unable to find field %s in struct %s. Aborting"),
631 field_name
, TYPE_NAME (struct_type
));
636 /* The length of the prefix of NAME prior to any "___" suffix. */
639 ada_name_prefix_len (const char *name
)
645 const char *p
= strstr (name
, "___");
648 return strlen (name
);
654 /* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
658 is_suffix (const char *str
, const char *suffix
)
665 len2
= strlen (suffix
);
666 return (len1
>= len2
&& strcmp (str
+ len1
- len2
, suffix
) == 0);
669 /* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
672 static struct value
*
673 coerce_unspec_val_to_type (struct value
*val
, struct type
*type
)
675 type
= ada_check_typedef (type
);
676 if (value_type (val
) == type
)
680 struct value
*result
;
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
684 ada_ensure_varsize_limit (type
);
687 || TYPE_LENGTH (type
) > TYPE_LENGTH (value_type (val
)))
688 result
= allocate_value_lazy (type
);
691 result
= allocate_value (type
);
692 value_contents_copy_raw (result
, 0, val
, 0, TYPE_LENGTH (type
));
694 set_value_component_location (result
, val
);
695 set_value_bitsize (result
, value_bitsize (val
));
696 set_value_bitpos (result
, value_bitpos (val
));
697 set_value_address (result
, value_address (val
));
702 static const gdb_byte
*
703 cond_offset_host (const gdb_byte
*valaddr
, long offset
)
708 return valaddr
+ offset
;
712 cond_offset_target (CORE_ADDR address
, long offset
)
717 return address
+ offset
;
720 /* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
725 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
727 static void lim_warning (const char *format
, ...) ATTRIBUTE_PRINTF (1, 2);
730 lim_warning (const char *format
, ...)
734 va_start (args
, format
);
735 warnings_issued
+= 1;
736 if (warnings_issued
<= warning_limit
)
737 vwarning (format
, args
);
742 /* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
747 ada_ensure_varsize_limit (const struct type
*type
)
749 if (TYPE_LENGTH (type
) > varsize_limit
)
750 error (_("object size is larger than varsize-limit"));
753 /* Maximum value of a SIZE-byte signed integer type. */
755 max_of_size (int size
)
757 LONGEST top_bit
= (LONGEST
) 1 << (size
* 8 - 2);
759 return top_bit
| (top_bit
- 1);
762 /* Minimum value of a SIZE-byte signed integer type. */
764 min_of_size (int size
)
766 return -max_of_size (size
) - 1;
769 /* Maximum value of a SIZE-byte unsigned integer type. */
771 umax_of_size (int size
)
773 ULONGEST top_bit
= (ULONGEST
) 1 << (size
* 8 - 1);
775 return top_bit
| (top_bit
- 1);
778 /* Maximum value of integral type T, as a signed quantity. */
780 max_of_type (struct type
*t
)
782 if (TYPE_UNSIGNED (t
))
783 return (LONGEST
) umax_of_size (TYPE_LENGTH (t
));
785 return max_of_size (TYPE_LENGTH (t
));
788 /* Minimum value of integral type T, as a signed quantity. */
790 min_of_type (struct type
*t
)
792 if (TYPE_UNSIGNED (t
))
795 return min_of_size (TYPE_LENGTH (t
));
798 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
800 ada_discrete_type_high_bound (struct type
*type
)
802 type
= resolve_dynamic_type (type
, NULL
, 0);
803 switch (TYPE_CODE (type
))
805 case TYPE_CODE_RANGE
:
806 return TYPE_HIGH_BOUND (type
);
808 return TYPE_FIELD_ENUMVAL (type
, TYPE_NFIELDS (type
) - 1);
813 return max_of_type (type
);
815 error (_("Unexpected type in ada_discrete_type_high_bound."));
819 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
821 ada_discrete_type_low_bound (struct type
*type
)
823 type
= resolve_dynamic_type (type
, NULL
, 0);
824 switch (TYPE_CODE (type
))
826 case TYPE_CODE_RANGE
:
827 return TYPE_LOW_BOUND (type
);
829 return TYPE_FIELD_ENUMVAL (type
, 0);
834 return min_of_type (type
);
836 error (_("Unexpected type in ada_discrete_type_low_bound."));
840 /* The identity on non-range types. For range types, the underlying
841 non-range scalar type. */
844 get_base_type (struct type
*type
)
846 while (type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_RANGE
)
848 if (type
== TYPE_TARGET_TYPE (type
) || TYPE_TARGET_TYPE (type
) == NULL
)
850 type
= TYPE_TARGET_TYPE (type
);
855 /* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
861 ada_get_decoded_value (struct value
*value
)
863 struct type
*type
= ada_check_typedef (value_type (value
));
865 if (ada_is_array_descriptor_type (type
)
866 || (ada_is_constrained_packed_array_type (type
)
867 && TYPE_CODE (type
) != TYPE_CODE_PTR
))
869 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
) /* array access type. */
870 value
= ada_coerce_to_simple_array_ptr (value
);
872 value
= ada_coerce_to_simple_array (value
);
875 value
= ada_to_fixed_value (value
);
880 /* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
886 ada_get_decoded_type (struct type
*type
)
888 type
= to_static_fixed_type (type
);
889 if (ada_is_constrained_packed_array_type (type
))
890 type
= ada_coerce_to_simple_array_type (type
);
896 /* Language Selection */
898 /* If the main program is in Ada, return language_ada, otherwise return LANG
899 (the main program is in Ada iif the adainit symbol is found). */
902 ada_update_initial_language (enum language lang
)
904 if (lookup_minimal_symbol ("adainit", (const char *) NULL
,
905 (struct objfile
*) NULL
).minsym
!= NULL
)
911 /* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
918 struct bound_minimal_symbol msym
;
919 static char *main_program_name
= NULL
;
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
926 msym
= lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME
, NULL
, NULL
);
928 if (msym
.minsym
!= NULL
)
930 CORE_ADDR main_program_name_addr
;
933 main_program_name_addr
= BMSYMBOL_VALUE_ADDRESS (msym
);
934 if (main_program_name_addr
== 0)
935 error (_("Invalid address for Ada main program name."));
937 xfree (main_program_name
);
938 target_read_string (main_program_name_addr
, &main_program_name
,
943 return main_program_name
;
946 /* The main procedure doesn't seem to be in Ada. */
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
955 const struct ada_opname_map ada_opname_table
[] = {
956 {"Oadd", "\"+\"", BINOP_ADD
},
957 {"Osubtract", "\"-\"", BINOP_SUB
},
958 {"Omultiply", "\"*\"", BINOP_MUL
},
959 {"Odivide", "\"/\"", BINOP_DIV
},
960 {"Omod", "\"mod\"", BINOP_MOD
},
961 {"Orem", "\"rem\"", BINOP_REM
},
962 {"Oexpon", "\"**\"", BINOP_EXP
},
963 {"Olt", "\"<\"", BINOP_LESS
},
964 {"Ole", "\"<=\"", BINOP_LEQ
},
965 {"Ogt", "\">\"", BINOP_GTR
},
966 {"Oge", "\">=\"", BINOP_GEQ
},
967 {"Oeq", "\"=\"", BINOP_EQUAL
},
968 {"One", "\"/=\"", BINOP_NOTEQUAL
},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND
},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR
},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR
},
972 {"Oconcat", "\"&\"", BINOP_CONCAT
},
973 {"Oabs", "\"abs\"", UNOP_ABS
},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT
},
975 {"Oadd", "\"+\"", UNOP_PLUS
},
976 {"Osubtract", "\"-\"", UNOP_NEG
},
980 /* The "encoded" form of DECODED, according to GNAT conventions.
981 The result is valid until the next call to ada_encode. */
984 ada_encode (const char *decoded
)
986 static char *encoding_buffer
= NULL
;
987 static size_t encoding_buffer_size
= 0;
994 GROW_VECT (encoding_buffer
, encoding_buffer_size
,
995 2 * strlen (decoded
) + 10);
998 for (p
= decoded
; *p
!= '\0'; p
+= 1)
1002 encoding_buffer
[k
] = encoding_buffer
[k
+ 1] = '_';
1007 const struct ada_opname_map
*mapping
;
1009 for (mapping
= ada_opname_table
;
1010 mapping
->encoded
!= NULL
1011 && !startswith (p
, mapping
->decoded
); mapping
+= 1)
1013 if (mapping
->encoded
== NULL
)
1014 error (_("invalid Ada operator name: %s"), p
);
1015 strcpy (encoding_buffer
+ k
, mapping
->encoded
);
1016 k
+= strlen (mapping
->encoded
);
1021 encoding_buffer
[k
] = *p
;
1026 encoding_buffer
[k
] = '\0';
1027 return encoding_buffer
;
1030 /* Return NAME folded to lower case, or, if surrounded by single
1031 quotes, unfolded, but with the quotes stripped away. Result good
1035 ada_fold_name (const char *name
)
1037 static char *fold_buffer
= NULL
;
1038 static size_t fold_buffer_size
= 0;
1040 int len
= strlen (name
);
1041 GROW_VECT (fold_buffer
, fold_buffer_size
, len
+ 1);
1043 if (name
[0] == '\'')
1045 strncpy (fold_buffer
, name
+ 1, len
- 2);
1046 fold_buffer
[len
- 2] = '\000';
1052 for (i
= 0; i
<= len
; i
+= 1)
1053 fold_buffer
[i
] = tolower (name
[i
]);
1059 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1062 is_lower_alphanum (const char c
)
1064 return (isdigit (c
) || (isalpha (c
) && islower (c
)));
1067 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1068 This function saves in LEN the length of that same symbol name but
1069 without either of these suffixes:
1075 These are suffixes introduced by the compiler for entities such as
1076 nested subprogram for instance, in order to avoid name clashes.
1077 They do not serve any purpose for the debugger. */
1080 ada_remove_trailing_digits (const char *encoded
, int *len
)
1082 if (*len
> 1 && isdigit (encoded
[*len
- 1]))
1086 while (i
> 0 && isdigit (encoded
[i
]))
1088 if (i
>= 0 && encoded
[i
] == '.')
1090 else if (i
>= 0 && encoded
[i
] == '$')
1092 else if (i
>= 2 && startswith (encoded
+ i
- 2, "___"))
1094 else if (i
>= 1 && startswith (encoded
+ i
- 1, "__"))
1099 /* Remove the suffix introduced by the compiler for protected object
1103 ada_remove_po_subprogram_suffix (const char *encoded
, int *len
)
1105 /* Remove trailing N. */
1107 /* Protected entry subprograms are broken into two
1108 separate subprograms: The first one is unprotected, and has
1109 a 'N' suffix; the second is the protected version, and has
1110 the 'P' suffix. The second calls the first one after handling
1111 the protection. Since the P subprograms are internally generated,
1112 we leave these names undecoded, giving the user a clue that this
1113 entity is internal. */
1116 && encoded
[*len
- 1] == 'N'
1117 && (isdigit (encoded
[*len
- 2]) || islower (encoded
[*len
- 2])))
1121 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1124 ada_remove_Xbn_suffix (const char *encoded
, int *len
)
1128 while (i
> 0 && (encoded
[i
] == 'b' || encoded
[i
] == 'n'))
1131 if (encoded
[i
] != 'X')
1137 if (isalnum (encoded
[i
-1]))
1141 /* If ENCODED follows the GNAT entity encoding conventions, then return
1142 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1143 replaced by ENCODED.
1145 The resulting string is valid until the next call of ada_decode.
1146 If the string is unchanged by decoding, the original string pointer
1150 ada_decode (const char *encoded
)
1157 static char *decoding_buffer
= NULL
;
1158 static size_t decoding_buffer_size
= 0;
1160 /* The name of the Ada main procedure starts with "_ada_".
1161 This prefix is not part of the decoded name, so skip this part
1162 if we see this prefix. */
1163 if (startswith (encoded
, "_ada_"))
1166 /* If the name starts with '_', then it is not a properly encoded
1167 name, so do not attempt to decode it. Similarly, if the name
1168 starts with '<', the name should not be decoded. */
1169 if (encoded
[0] == '_' || encoded
[0] == '<')
1172 len0
= strlen (encoded
);
1174 ada_remove_trailing_digits (encoded
, &len0
);
1175 ada_remove_po_subprogram_suffix (encoded
, &len0
);
1177 /* Remove the ___X.* suffix if present. Do not forget to verify that
1178 the suffix is located before the current "end" of ENCODED. We want
1179 to avoid re-matching parts of ENCODED that have previously been
1180 marked as discarded (by decrementing LEN0). */
1181 p
= strstr (encoded
, "___");
1182 if (p
!= NULL
&& p
- encoded
< len0
- 3)
1190 /* Remove any trailing TKB suffix. It tells us that this symbol
1191 is for the body of a task, but that information does not actually
1192 appear in the decoded name. */
1194 if (len0
> 3 && startswith (encoded
+ len0
- 3, "TKB"))
1197 /* Remove any trailing TB suffix. The TB suffix is slightly different
1198 from the TKB suffix because it is used for non-anonymous task
1201 if (len0
> 2 && startswith (encoded
+ len0
- 2, "TB"))
1204 /* Remove trailing "B" suffixes. */
1205 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1207 if (len0
> 1 && startswith (encoded
+ len0
- 1, "B"))
1210 /* Make decoded big enough for possible expansion by operator name. */
1212 GROW_VECT (decoding_buffer
, decoding_buffer_size
, 2 * len0
+ 1);
1213 decoded
= decoding_buffer
;
1215 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1217 if (len0
> 1 && isdigit (encoded
[len0
- 1]))
1220 while ((i
>= 0 && isdigit (encoded
[i
]))
1221 || (i
>= 1 && encoded
[i
] == '_' && isdigit (encoded
[i
- 1])))
1223 if (i
> 1 && encoded
[i
] == '_' && encoded
[i
- 1] == '_')
1225 else if (encoded
[i
] == '$')
1229 /* The first few characters that are not alphabetic are not part
1230 of any encoding we use, so we can copy them over verbatim. */
1232 for (i
= 0, j
= 0; i
< len0
&& !isalpha (encoded
[i
]); i
+= 1, j
+= 1)
1233 decoded
[j
] = encoded
[i
];
1238 /* Is this a symbol function? */
1239 if (at_start_name
&& encoded
[i
] == 'O')
1243 for (k
= 0; ada_opname_table
[k
].encoded
!= NULL
; k
+= 1)
1245 int op_len
= strlen (ada_opname_table
[k
].encoded
);
1246 if ((strncmp (ada_opname_table
[k
].encoded
+ 1, encoded
+ i
+ 1,
1248 && !isalnum (encoded
[i
+ op_len
]))
1250 strcpy (decoded
+ j
, ada_opname_table
[k
].decoded
);
1253 j
+= strlen (ada_opname_table
[k
].decoded
);
1257 if (ada_opname_table
[k
].encoded
!= NULL
)
1262 /* Replace "TK__" with "__", which will eventually be translated
1263 into "." (just below). */
1265 if (i
< len0
- 4 && startswith (encoded
+ i
, "TK__"))
1268 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269 be translated into "." (just below). These are internal names
1270 generated for anonymous blocks inside which our symbol is nested. */
1272 if (len0
- i
> 5 && encoded
[i
] == '_' && encoded
[i
+1] == '_'
1273 && encoded
[i
+2] == 'B' && encoded
[i
+3] == '_'
1274 && isdigit (encoded
[i
+4]))
1278 while (k
< len0
&& isdigit (encoded
[k
]))
1279 k
++; /* Skip any extra digit. */
1281 /* Double-check that the "__B_{DIGITS}+" sequence we found
1282 is indeed followed by "__". */
1283 if (len0
- k
> 2 && encoded
[k
] == '_' && encoded
[k
+1] == '_')
1287 /* Remove _E{DIGITS}+[sb] */
1289 /* Just as for protected object subprograms, there are 2 categories
1290 of subprograms created by the compiler for each entry. The first
1291 one implements the actual entry code, and has a suffix following
1292 the convention above; the second one implements the barrier and
1293 uses the same convention as above, except that the 'E' is replaced
1296 Just as above, we do not decode the name of barrier functions
1297 to give the user a clue that the code he is debugging has been
1298 internally generated. */
1300 if (len0
- i
> 3 && encoded
[i
] == '_' && encoded
[i
+1] == 'E'
1301 && isdigit (encoded
[i
+2]))
1305 while (k
< len0
&& isdigit (encoded
[k
]))
1309 && (encoded
[k
] == 'b' || encoded
[k
] == 's'))
1312 /* Just as an extra precaution, make sure that if this
1313 suffix is followed by anything else, it is a '_'.
1314 Otherwise, we matched this sequence by accident. */
1316 || (k
< len0
&& encoded
[k
] == '_'))
1321 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1322 the GNAT front-end in protected object subprograms. */
1325 && encoded
[i
] == 'N' && encoded
[i
+1] == '_' && encoded
[i
+2] == '_')
1327 /* Backtrack a bit up until we reach either the begining of
1328 the encoded name, or "__". Make sure that we only find
1329 digits or lowercase characters. */
1330 const char *ptr
= encoded
+ i
- 1;
1332 while (ptr
>= encoded
&& is_lower_alphanum (ptr
[0]))
1335 || (ptr
> encoded
&& ptr
[0] == '_' && ptr
[-1] == '_'))
1339 if (encoded
[i
] == 'X' && i
!= 0 && isalnum (encoded
[i
- 1]))
1341 /* This is a X[bn]* sequence not separated from the previous
1342 part of the name with a non-alpha-numeric character (in other
1343 words, immediately following an alpha-numeric character), then
1344 verify that it is placed at the end of the encoded name. If
1345 not, then the encoding is not valid and we should abort the
1346 decoding. Otherwise, just skip it, it is used in body-nested
1350 while (i
< len0
&& (encoded
[i
] == 'b' || encoded
[i
] == 'n'));
1354 else if (i
< len0
- 2 && encoded
[i
] == '_' && encoded
[i
+ 1] == '_')
1356 /* Replace '__' by '.'. */
1364 /* It's a character part of the decoded name, so just copy it
1366 decoded
[j
] = encoded
[i
];
1371 decoded
[j
] = '\000';
1373 /* Decoded names should never contain any uppercase character.
1374 Double-check this, and abort the decoding if we find one. */
1376 for (i
= 0; decoded
[i
] != '\0'; i
+= 1)
1377 if (isupper (decoded
[i
]) || decoded
[i
] == ' ')
1380 if (strcmp (decoded
, encoded
) == 0)
1386 GROW_VECT (decoding_buffer
, decoding_buffer_size
, strlen (encoded
) + 3);
1387 decoded
= decoding_buffer
;
1388 if (encoded
[0] == '<')
1389 strcpy (decoded
, encoded
);
1391 xsnprintf (decoded
, decoding_buffer_size
, "<%s>", encoded
);
1396 /* Table for keeping permanent unique copies of decoded names. Once
1397 allocated, names in this table are never released. While this is a
1398 storage leak, it should not be significant unless there are massive
1399 changes in the set of decoded names in successive versions of a
1400 symbol table loaded during a single session. */
1401 static struct htab
*decoded_names_store
;
1403 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404 in the language-specific part of GSYMBOL, if it has not been
1405 previously computed. Tries to save the decoded name in the same
1406 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407 in any case, the decoded symbol has a lifetime at least that of
1409 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410 const, but nevertheless modified to a semantically equivalent form
1411 when a decoded name is cached in it. */
1414 ada_decode_symbol (const struct general_symbol_info
*arg
)
1416 struct general_symbol_info
*gsymbol
= (struct general_symbol_info
*) arg
;
1417 const char **resultp
=
1418 &gsymbol
->language_specific
.demangled_name
;
1420 if (!gsymbol
->ada_mangled
)
1422 const char *decoded
= ada_decode (gsymbol
->name
);
1423 struct obstack
*obstack
= gsymbol
->language_specific
.obstack
;
1425 gsymbol
->ada_mangled
= 1;
1427 if (obstack
!= NULL
)
1429 = (const char *) obstack_copy0 (obstack
, decoded
, strlen (decoded
));
1432 /* Sometimes, we can't find a corresponding objfile, in
1433 which case, we put the result on the heap. Since we only
1434 decode when needed, we hope this usually does not cause a
1435 significant memory leak (FIXME). */
1437 char **slot
= (char **) htab_find_slot (decoded_names_store
,
1441 *slot
= xstrdup (decoded
);
1450 ada_la_decode (const char *encoded
, int options
)
1452 return xstrdup (ada_decode (encoded
));
1455 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1456 suffixes that encode debugging information or leading _ada_ on
1457 SYM_NAME (see is_name_suffix commentary for the debugging
1458 information that is ignored). If WILD, then NAME need only match a
1459 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1460 either argument is NULL. */
1463 match_name (const char *sym_name
, const char *name
, int wild
)
1465 if (sym_name
== NULL
|| name
== NULL
)
1468 return wild_match (sym_name
, name
) == 0;
1471 int len_name
= strlen (name
);
1473 return (strncmp (sym_name
, name
, len_name
) == 0
1474 && is_name_suffix (sym_name
+ len_name
))
1475 || (startswith (sym_name
, "_ada_")
1476 && strncmp (sym_name
+ 5, name
, len_name
) == 0
1477 && is_name_suffix (sym_name
+ len_name
+ 5));
1484 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1485 generated by the GNAT compiler to describe the index type used
1486 for each dimension of an array, check whether it follows the latest
1487 known encoding. If not, fix it up to conform to the latest encoding.
1488 Otherwise, do nothing. This function also does nothing if
1489 INDEX_DESC_TYPE is NULL.
1491 The GNAT encoding used to describle the array index type evolved a bit.
1492 Initially, the information would be provided through the name of each
1493 field of the structure type only, while the type of these fields was
1494 described as unspecified and irrelevant. The debugger was then expected
1495 to perform a global type lookup using the name of that field in order
1496 to get access to the full index type description. Because these global
1497 lookups can be very expensive, the encoding was later enhanced to make
1498 the global lookup unnecessary by defining the field type as being
1499 the full index type description.
1501 The purpose of this routine is to allow us to support older versions
1502 of the compiler by detecting the use of the older encoding, and by
1503 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1504 we essentially replace each field's meaningless type by the associated
1508 ada_fixup_array_indexes_type (struct type
*index_desc_type
)
1512 if (index_desc_type
== NULL
)
1514 gdb_assert (TYPE_NFIELDS (index_desc_type
) > 0);
1516 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1517 to check one field only, no need to check them all). If not, return
1520 If our INDEX_DESC_TYPE was generated using the older encoding,
1521 the field type should be a meaningless integer type whose name
1522 is not equal to the field name. */
1523 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type
, 0)) != NULL
1524 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type
, 0)),
1525 TYPE_FIELD_NAME (index_desc_type
, 0)) == 0)
1528 /* Fixup each field of INDEX_DESC_TYPE. */
1529 for (i
= 0; i
< TYPE_NFIELDS (index_desc_type
); i
++)
1531 const char *name
= TYPE_FIELD_NAME (index_desc_type
, i
);
1532 struct type
*raw_type
= ada_check_typedef (ada_find_any_type (name
));
1535 TYPE_FIELD_TYPE (index_desc_type
, i
) = raw_type
;
1539 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1541 static char *bound_name
[] = {
1542 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1543 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1546 /* Maximum number of array dimensions we are prepared to handle. */
1548 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1551 /* The desc_* routines return primitive portions of array descriptors
1554 /* The descriptor or array type, if any, indicated by TYPE; removes
1555 level of indirection, if needed. */
1557 static struct type
*
1558 desc_base_type (struct type
*type
)
1562 type
= ada_check_typedef (type
);
1563 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
)
1564 type
= ada_typedef_target_type (type
);
1567 && (TYPE_CODE (type
) == TYPE_CODE_PTR
1568 || TYPE_CODE (type
) == TYPE_CODE_REF
))
1569 return ada_check_typedef (TYPE_TARGET_TYPE (type
));
1574 /* True iff TYPE indicates a "thin" array pointer type. */
1577 is_thin_pntr (struct type
*type
)
1580 is_suffix (ada_type_name (desc_base_type (type
)), "___XUT")
1581 || is_suffix (ada_type_name (desc_base_type (type
)), "___XUT___XVE");
1584 /* The descriptor type for thin pointer type TYPE. */
1586 static struct type
*
1587 thin_descriptor_type (struct type
*type
)
1589 struct type
*base_type
= desc_base_type (type
);
1591 if (base_type
== NULL
)
1593 if (is_suffix (ada_type_name (base_type
), "___XVE"))
1597 struct type
*alt_type
= ada_find_parallel_type (base_type
, "___XVE");
1599 if (alt_type
== NULL
)
1606 /* A pointer to the array data for thin-pointer value VAL. */
1608 static struct value
*
1609 thin_data_pntr (struct value
*val
)
1611 struct type
*type
= ada_check_typedef (value_type (val
));
1612 struct type
*data_type
= desc_data_target_type (thin_descriptor_type (type
));
1614 data_type
= lookup_pointer_type (data_type
);
1616 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
1617 return value_cast (data_type
, value_copy (val
));
1619 return value_from_longest (data_type
, value_address (val
));
1622 /* True iff TYPE indicates a "thick" array pointer type. */
1625 is_thick_pntr (struct type
*type
)
1627 type
= desc_base_type (type
);
1628 return (type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_STRUCT
1629 && lookup_struct_elt_type (type
, "P_BOUNDS", 1) != NULL
);
1632 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1633 pointer to one, the type of its bounds data; otherwise, NULL. */
1635 static struct type
*
1636 desc_bounds_type (struct type
*type
)
1640 type
= desc_base_type (type
);
1644 else if (is_thin_pntr (type
))
1646 type
= thin_descriptor_type (type
);
1649 r
= lookup_struct_elt_type (type
, "BOUNDS", 1);
1651 return ada_check_typedef (r
);
1653 else if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
1655 r
= lookup_struct_elt_type (type
, "P_BOUNDS", 1);
1657 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r
)));
1662 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1663 one, a pointer to its bounds data. Otherwise NULL. */
1665 static struct value
*
1666 desc_bounds (struct value
*arr
)
1668 struct type
*type
= ada_check_typedef (value_type (arr
));
1670 if (is_thin_pntr (type
))
1672 struct type
*bounds_type
=
1673 desc_bounds_type (thin_descriptor_type (type
));
1676 if (bounds_type
== NULL
)
1677 error (_("Bad GNAT array descriptor"));
1679 /* NOTE: The following calculation is not really kosher, but
1680 since desc_type is an XVE-encoded type (and shouldn't be),
1681 the correct calculation is a real pain. FIXME (and fix GCC). */
1682 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
1683 addr
= value_as_long (arr
);
1685 addr
= value_address (arr
);
1688 value_from_longest (lookup_pointer_type (bounds_type
),
1689 addr
- TYPE_LENGTH (bounds_type
));
1692 else if (is_thick_pntr (type
))
1694 struct value
*p_bounds
= value_struct_elt (&arr
, NULL
, "P_BOUNDS", NULL
,
1695 _("Bad GNAT array descriptor"));
1696 struct type
*p_bounds_type
= value_type (p_bounds
);
1699 && TYPE_CODE (p_bounds_type
) == TYPE_CODE_PTR
)
1701 struct type
*target_type
= TYPE_TARGET_TYPE (p_bounds_type
);
1703 if (TYPE_STUB (target_type
))
1704 p_bounds
= value_cast (lookup_pointer_type
1705 (ada_check_typedef (target_type
)),
1709 error (_("Bad GNAT array descriptor"));
1717 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1718 position of the field containing the address of the bounds data. */
1721 fat_pntr_bounds_bitpos (struct type
*type
)
1723 return TYPE_FIELD_BITPOS (desc_base_type (type
), 1);
1726 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1727 size of the field containing the address of the bounds data. */
1730 fat_pntr_bounds_bitsize (struct type
*type
)
1732 type
= desc_base_type (type
);
1734 if (TYPE_FIELD_BITSIZE (type
, 1) > 0)
1735 return TYPE_FIELD_BITSIZE (type
, 1);
1737 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type
, 1)));
1740 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1741 pointer to one, the type of its array data (a array-with-no-bounds type);
1742 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1745 static struct type
*
1746 desc_data_target_type (struct type
*type
)
1748 type
= desc_base_type (type
);
1750 /* NOTE: The following is bogus; see comment in desc_bounds. */
1751 if (is_thin_pntr (type
))
1752 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type
), 1));
1753 else if (is_thick_pntr (type
))
1755 struct type
*data_type
= lookup_struct_elt_type (type
, "P_ARRAY", 1);
1758 && TYPE_CODE (ada_check_typedef (data_type
)) == TYPE_CODE_PTR
)
1759 return ada_check_typedef (TYPE_TARGET_TYPE (data_type
));
1765 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1768 static struct value
*
1769 desc_data (struct value
*arr
)
1771 struct type
*type
= value_type (arr
);
1773 if (is_thin_pntr (type
))
1774 return thin_data_pntr (arr
);
1775 else if (is_thick_pntr (type
))
1776 return value_struct_elt (&arr
, NULL
, "P_ARRAY", NULL
,
1777 _("Bad GNAT array descriptor"));
1783 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1784 position of the field containing the address of the data. */
1787 fat_pntr_data_bitpos (struct type
*type
)
1789 return TYPE_FIELD_BITPOS (desc_base_type (type
), 0);
1792 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1793 size of the field containing the address of the data. */
1796 fat_pntr_data_bitsize (struct type
*type
)
1798 type
= desc_base_type (type
);
1800 if (TYPE_FIELD_BITSIZE (type
, 0) > 0)
1801 return TYPE_FIELD_BITSIZE (type
, 0);
1803 return TARGET_CHAR_BIT
* TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 0));
1806 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1807 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1808 bound, if WHICH is 1. The first bound is I=1. */
1810 static struct value
*
1811 desc_one_bound (struct value
*bounds
, int i
, int which
)
1813 return value_struct_elt (&bounds
, NULL
, bound_name
[2 * i
+ which
- 2], NULL
,
1814 _("Bad GNAT array descriptor bounds"));
1817 /* If BOUNDS is an array-bounds structure type, return the bit position
1818 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1819 bound, if WHICH is 1. The first bound is I=1. */
1822 desc_bound_bitpos (struct type
*type
, int i
, int which
)
1824 return TYPE_FIELD_BITPOS (desc_base_type (type
), 2 * i
+ which
- 2);
1827 /* If BOUNDS is an array-bounds structure type, return the bit field size
1828 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1829 bound, if WHICH is 1. The first bound is I=1. */
1832 desc_bound_bitsize (struct type
*type
, int i
, int which
)
1834 type
= desc_base_type (type
);
1836 if (TYPE_FIELD_BITSIZE (type
, 2 * i
+ which
- 2) > 0)
1837 return TYPE_FIELD_BITSIZE (type
, 2 * i
+ which
- 2);
1839 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 2 * i
+ which
- 2));
1842 /* If TYPE is the type of an array-bounds structure, the type of its
1843 Ith bound (numbering from 1). Otherwise, NULL. */
1845 static struct type
*
1846 desc_index_type (struct type
*type
, int i
)
1848 type
= desc_base_type (type
);
1850 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
1851 return lookup_struct_elt_type (type
, bound_name
[2 * i
- 2], 1);
1856 /* The number of index positions in the array-bounds type TYPE.
1857 Return 0 if TYPE is NULL. */
1860 desc_arity (struct type
*type
)
1862 type
= desc_base_type (type
);
1865 return TYPE_NFIELDS (type
) / 2;
1869 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1870 an array descriptor type (representing an unconstrained array
1874 ada_is_direct_array_type (struct type
*type
)
1878 type
= ada_check_typedef (type
);
1879 return (TYPE_CODE (type
) == TYPE_CODE_ARRAY
1880 || ada_is_array_descriptor_type (type
));
1883 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1887 ada_is_array_type (struct type
*type
)
1890 && (TYPE_CODE (type
) == TYPE_CODE_PTR
1891 || TYPE_CODE (type
) == TYPE_CODE_REF
))
1892 type
= TYPE_TARGET_TYPE (type
);
1893 return ada_is_direct_array_type (type
);
1896 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1899 ada_is_simple_array_type (struct type
*type
)
1903 type
= ada_check_typedef (type
);
1904 return (TYPE_CODE (type
) == TYPE_CODE_ARRAY
1905 || (TYPE_CODE (type
) == TYPE_CODE_PTR
1906 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type
)))
1907 == TYPE_CODE_ARRAY
));
1910 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1913 ada_is_array_descriptor_type (struct type
*type
)
1915 struct type
*data_type
= desc_data_target_type (type
);
1919 type
= ada_check_typedef (type
);
1920 return (data_type
!= NULL
1921 && TYPE_CODE (data_type
) == TYPE_CODE_ARRAY
1922 && desc_arity (desc_bounds_type (type
)) > 0);
1925 /* Non-zero iff type is a partially mal-formed GNAT array
1926 descriptor. FIXME: This is to compensate for some problems with
1927 debugging output from GNAT. Re-examine periodically to see if it
1931 ada_is_bogus_array_descriptor (struct type
*type
)
1935 && TYPE_CODE (type
) == TYPE_CODE_STRUCT
1936 && (lookup_struct_elt_type (type
, "P_BOUNDS", 1) != NULL
1937 || lookup_struct_elt_type (type
, "P_ARRAY", 1) != NULL
)
1938 && !ada_is_array_descriptor_type (type
);
1942 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1943 (fat pointer) returns the type of the array data described---specifically,
1944 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1945 in from the descriptor; otherwise, they are left unspecified. If
1946 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1947 returns NULL. The result is simply the type of ARR if ARR is not
1950 ada_type_of_array (struct value
*arr
, int bounds
)
1952 if (ada_is_constrained_packed_array_type (value_type (arr
)))
1953 return decode_constrained_packed_array_type (value_type (arr
));
1955 if (!ada_is_array_descriptor_type (value_type (arr
)))
1956 return value_type (arr
);
1960 struct type
*array_type
=
1961 ada_check_typedef (desc_data_target_type (value_type (arr
)));
1963 if (ada_is_unconstrained_packed_array_type (value_type (arr
)))
1964 TYPE_FIELD_BITSIZE (array_type
, 0) =
1965 decode_packed_array_bitsize (value_type (arr
));
1971 struct type
*elt_type
;
1973 struct value
*descriptor
;
1975 elt_type
= ada_array_element_type (value_type (arr
), -1);
1976 arity
= ada_array_arity (value_type (arr
));
1978 if (elt_type
== NULL
|| arity
== 0)
1979 return ada_check_typedef (value_type (arr
));
1981 descriptor
= desc_bounds (arr
);
1982 if (value_as_long (descriptor
) == 0)
1986 struct type
*range_type
= alloc_type_copy (value_type (arr
));
1987 struct type
*array_type
= alloc_type_copy (value_type (arr
));
1988 struct value
*low
= desc_one_bound (descriptor
, arity
, 0);
1989 struct value
*high
= desc_one_bound (descriptor
, arity
, 1);
1992 create_static_range_type (range_type
, value_type (low
),
1993 longest_to_int (value_as_long (low
)),
1994 longest_to_int (value_as_long (high
)));
1995 elt_type
= create_array_type (array_type
, elt_type
, range_type
);
1997 if (ada_is_unconstrained_packed_array_type (value_type (arr
)))
1999 /* We need to store the element packed bitsize, as well as
2000 recompute the array size, because it was previously
2001 computed based on the unpacked element size. */
2002 LONGEST lo
= value_as_long (low
);
2003 LONGEST hi
= value_as_long (high
);
2005 TYPE_FIELD_BITSIZE (elt_type
, 0) =
2006 decode_packed_array_bitsize (value_type (arr
));
2007 /* If the array has no element, then the size is already
2008 zero, and does not need to be recomputed. */
2012 (hi
- lo
+ 1) * TYPE_FIELD_BITSIZE (elt_type
, 0);
2014 TYPE_LENGTH (array_type
) = (array_bitsize
+ 7) / 8;
2019 return lookup_pointer_type (elt_type
);
2023 /* If ARR does not represent an array, returns ARR unchanged.
2024 Otherwise, returns either a standard GDB array with bounds set
2025 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2026 GDB array. Returns NULL if ARR is a null fat pointer. */
2029 ada_coerce_to_simple_array_ptr (struct value
*arr
)
2031 if (ada_is_array_descriptor_type (value_type (arr
)))
2033 struct type
*arrType
= ada_type_of_array (arr
, 1);
2035 if (arrType
== NULL
)
2037 return value_cast (arrType
, value_copy (desc_data (arr
)));
2039 else if (ada_is_constrained_packed_array_type (value_type (arr
)))
2040 return decode_constrained_packed_array (arr
);
2045 /* If ARR does not represent an array, returns ARR unchanged.
2046 Otherwise, returns a standard GDB array describing ARR (which may
2047 be ARR itself if it already is in the proper form). */
2050 ada_coerce_to_simple_array (struct value
*arr
)
2052 if (ada_is_array_descriptor_type (value_type (arr
)))
2054 struct value
*arrVal
= ada_coerce_to_simple_array_ptr (arr
);
2057 error (_("Bounds unavailable for null array pointer."));
2058 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal
)));
2059 return value_ind (arrVal
);
2061 else if (ada_is_constrained_packed_array_type (value_type (arr
)))
2062 return decode_constrained_packed_array (arr
);
2067 /* If TYPE represents a GNAT array type, return it translated to an
2068 ordinary GDB array type (possibly with BITSIZE fields indicating
2069 packing). For other types, is the identity. */
2072 ada_coerce_to_simple_array_type (struct type
*type
)
2074 if (ada_is_constrained_packed_array_type (type
))
2075 return decode_constrained_packed_array_type (type
);
2077 if (ada_is_array_descriptor_type (type
))
2078 return ada_check_typedef (desc_data_target_type (type
));
2083 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2086 ada_is_packed_array_type (struct type
*type
)
2090 type
= desc_base_type (type
);
2091 type
= ada_check_typedef (type
);
2093 ada_type_name (type
) != NULL
2094 && strstr (ada_type_name (type
), "___XP") != NULL
;
2097 /* Non-zero iff TYPE represents a standard GNAT constrained
2098 packed-array type. */
2101 ada_is_constrained_packed_array_type (struct type
*type
)
2103 return ada_is_packed_array_type (type
)
2104 && !ada_is_array_descriptor_type (type
);
2107 /* Non-zero iff TYPE represents an array descriptor for a
2108 unconstrained packed-array type. */
2111 ada_is_unconstrained_packed_array_type (struct type
*type
)
2113 return ada_is_packed_array_type (type
)
2114 && ada_is_array_descriptor_type (type
);
2117 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2118 return the size of its elements in bits. */
2121 decode_packed_array_bitsize (struct type
*type
)
2123 const char *raw_name
;
2127 /* Access to arrays implemented as fat pointers are encoded as a typedef
2128 of the fat pointer type. We need the name of the fat pointer type
2129 to do the decoding, so strip the typedef layer. */
2130 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
)
2131 type
= ada_typedef_target_type (type
);
2133 raw_name
= ada_type_name (ada_check_typedef (type
));
2135 raw_name
= ada_type_name (desc_base_type (type
));
2140 tail
= strstr (raw_name
, "___XP");
2141 gdb_assert (tail
!= NULL
);
2143 if (sscanf (tail
+ sizeof ("___XP") - 1, "%ld", &bits
) != 1)
2146 (_("could not understand bit size information on packed array"));
2153 /* Given that TYPE is a standard GDB array type with all bounds filled
2154 in, and that the element size of its ultimate scalar constituents
2155 (that is, either its elements, or, if it is an array of arrays, its
2156 elements' elements, etc.) is *ELT_BITS, return an identical type,
2157 but with the bit sizes of its elements (and those of any
2158 constituent arrays) recorded in the BITSIZE components of its
2159 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2162 Note that, for arrays whose index type has an XA encoding where
2163 a bound references a record discriminant, getting that discriminant,
2164 and therefore the actual value of that bound, is not possible
2165 because none of the given parameters gives us access to the record.
2166 This function assumes that it is OK in the context where it is being
2167 used to return an array whose bounds are still dynamic and where
2168 the length is arbitrary. */
2170 static struct type
*
2171 constrained_packed_array_type (struct type
*type
, long *elt_bits
)
2173 struct type
*new_elt_type
;
2174 struct type
*new_type
;
2175 struct type
*index_type_desc
;
2176 struct type
*index_type
;
2177 LONGEST low_bound
, high_bound
;
2179 type
= ada_check_typedef (type
);
2180 if (TYPE_CODE (type
) != TYPE_CODE_ARRAY
)
2183 index_type_desc
= ada_find_parallel_type (type
, "___XA");
2184 if (index_type_desc
)
2185 index_type
= to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc
, 0),
2188 index_type
= TYPE_INDEX_TYPE (type
);
2190 new_type
= alloc_type_copy (type
);
2192 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type
)),
2194 create_array_type (new_type
, new_elt_type
, index_type
);
2195 TYPE_FIELD_BITSIZE (new_type
, 0) = *elt_bits
;
2196 TYPE_NAME (new_type
) = ada_type_name (type
);
2198 if ((TYPE_CODE (check_typedef (index_type
)) == TYPE_CODE_RANGE
2199 && is_dynamic_type (check_typedef (index_type
)))
2200 || get_discrete_bounds (index_type
, &low_bound
, &high_bound
) < 0)
2201 low_bound
= high_bound
= 0;
2202 if (high_bound
< low_bound
)
2203 *elt_bits
= TYPE_LENGTH (new_type
) = 0;
2206 *elt_bits
*= (high_bound
- low_bound
+ 1);
2207 TYPE_LENGTH (new_type
) =
2208 (*elt_bits
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2211 TYPE_FIXED_INSTANCE (new_type
) = 1;
2215 /* The array type encoded by TYPE, where
2216 ada_is_constrained_packed_array_type (TYPE). */
2218 static struct type
*
2219 decode_constrained_packed_array_type (struct type
*type
)
2221 const char *raw_name
= ada_type_name (ada_check_typedef (type
));
2224 struct type
*shadow_type
;
2228 raw_name
= ada_type_name (desc_base_type (type
));
2233 name
= (char *) alloca (strlen (raw_name
) + 1);
2234 tail
= strstr (raw_name
, "___XP");
2235 type
= desc_base_type (type
);
2237 memcpy (name
, raw_name
, tail
- raw_name
);
2238 name
[tail
- raw_name
] = '\000';
2240 shadow_type
= ada_find_parallel_type_with_name (type
, name
);
2242 if (shadow_type
== NULL
)
2244 lim_warning (_("could not find bounds information on packed array"));
2247 shadow_type
= check_typedef (shadow_type
);
2249 if (TYPE_CODE (shadow_type
) != TYPE_CODE_ARRAY
)
2251 lim_warning (_("could not understand bounds "
2252 "information on packed array"));
2256 bits
= decode_packed_array_bitsize (type
);
2257 return constrained_packed_array_type (shadow_type
, &bits
);
2260 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2261 array, returns a simple array that denotes that array. Its type is a
2262 standard GDB array type except that the BITSIZEs of the array
2263 target types are set to the number of bits in each element, and the
2264 type length is set appropriately. */
2266 static struct value
*
2267 decode_constrained_packed_array (struct value
*arr
)
2271 /* If our value is a pointer, then dereference it. Likewise if
2272 the value is a reference. Make sure that this operation does not
2273 cause the target type to be fixed, as this would indirectly cause
2274 this array to be decoded. The rest of the routine assumes that
2275 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2276 and "value_ind" routines to perform the dereferencing, as opposed
2277 to using "ada_coerce_ref" or "ada_value_ind". */
2278 arr
= coerce_ref (arr
);
2279 if (TYPE_CODE (ada_check_typedef (value_type (arr
))) == TYPE_CODE_PTR
)
2280 arr
= value_ind (arr
);
2282 type
= decode_constrained_packed_array_type (value_type (arr
));
2285 error (_("can't unpack array"));
2289 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr
)))
2290 && ada_is_modular_type (value_type (arr
)))
2292 /* This is a (right-justified) modular type representing a packed
2293 array with no wrapper. In order to interpret the value through
2294 the (left-justified) packed array type we just built, we must
2295 first left-justify it. */
2296 int bit_size
, bit_pos
;
2299 mod
= ada_modulus (value_type (arr
)) - 1;
2306 bit_pos
= HOST_CHAR_BIT
* TYPE_LENGTH (value_type (arr
)) - bit_size
;
2307 arr
= ada_value_primitive_packed_val (arr
, NULL
,
2308 bit_pos
/ HOST_CHAR_BIT
,
2309 bit_pos
% HOST_CHAR_BIT
,
2314 return coerce_unspec_val_to_type (arr
, type
);
2318 /* The value of the element of packed array ARR at the ARITY indices
2319 given in IND. ARR must be a simple array. */
2321 static struct value
*
2322 value_subscript_packed (struct value
*arr
, int arity
, struct value
**ind
)
2325 int bits
, elt_off
, bit_off
;
2326 long elt_total_bit_offset
;
2327 struct type
*elt_type
;
2331 elt_total_bit_offset
= 0;
2332 elt_type
= ada_check_typedef (value_type (arr
));
2333 for (i
= 0; i
< arity
; i
+= 1)
2335 if (TYPE_CODE (elt_type
) != TYPE_CODE_ARRAY
2336 || TYPE_FIELD_BITSIZE (elt_type
, 0) == 0)
2338 (_("attempt to do packed indexing of "
2339 "something other than a packed array"));
2342 struct type
*range_type
= TYPE_INDEX_TYPE (elt_type
);
2343 LONGEST lowerbound
, upperbound
;
2346 if (get_discrete_bounds (range_type
, &lowerbound
, &upperbound
) < 0)
2348 lim_warning (_("don't know bounds of array"));
2349 lowerbound
= upperbound
= 0;
2352 idx
= pos_atr (ind
[i
]);
2353 if (idx
< lowerbound
|| idx
> upperbound
)
2354 lim_warning (_("packed array index %ld out of bounds"),
2356 bits
= TYPE_FIELD_BITSIZE (elt_type
, 0);
2357 elt_total_bit_offset
+= (idx
- lowerbound
) * bits
;
2358 elt_type
= ada_check_typedef (TYPE_TARGET_TYPE (elt_type
));
2361 elt_off
= elt_total_bit_offset
/ HOST_CHAR_BIT
;
2362 bit_off
= elt_total_bit_offset
% HOST_CHAR_BIT
;
2364 v
= ada_value_primitive_packed_val (arr
, NULL
, elt_off
, bit_off
,
2369 /* Non-zero iff TYPE includes negative integer values. */
2372 has_negatives (struct type
*type
)
2374 switch (TYPE_CODE (type
))
2379 return !TYPE_UNSIGNED (type
);
2380 case TYPE_CODE_RANGE
:
2381 return TYPE_LOW_BOUND (type
) < 0;
2385 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2386 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2387 the unpacked buffer.
2389 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2390 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2392 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2395 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2397 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2400 ada_unpack_from_contents (const gdb_byte
*src
, int bit_offset
, int bit_size
,
2401 gdb_byte
*unpacked
, int unpacked_len
,
2402 int is_big_endian
, int is_signed_type
,
2405 int src_len
= (bit_size
+ bit_offset
+ HOST_CHAR_BIT
- 1) / 8;
2406 int src_idx
; /* Index into the source area */
2407 int src_bytes_left
; /* Number of source bytes left to process. */
2408 int srcBitsLeft
; /* Number of source bits left to move */
2409 int unusedLS
; /* Number of bits in next significant
2410 byte of source that are unused */
2412 int unpacked_idx
; /* Index into the unpacked buffer */
2413 int unpacked_bytes_left
; /* Number of bytes left to set in unpacked. */
2415 unsigned long accum
; /* Staging area for bits being transferred */
2416 int accumSize
; /* Number of meaningful bits in accum */
2419 /* Transmit bytes from least to most significant; delta is the direction
2420 the indices move. */
2421 int delta
= is_big_endian
? -1 : 1;
2423 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2425 if ((bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
> unpacked_len
)
2426 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2427 bit_size
, unpacked_len
);
2429 srcBitsLeft
= bit_size
;
2430 src_bytes_left
= src_len
;
2431 unpacked_bytes_left
= unpacked_len
;
2436 src_idx
= src_len
- 1;
2438 && ((src
[0] << bit_offset
) & (1 << (HOST_CHAR_BIT
- 1))))
2442 (HOST_CHAR_BIT
- (bit_size
+ bit_offset
) % HOST_CHAR_BIT
)
2448 unpacked_idx
= unpacked_len
- 1;
2452 /* Non-scalar values must be aligned at a byte boundary... */
2454 (HOST_CHAR_BIT
- bit_size
% HOST_CHAR_BIT
) % HOST_CHAR_BIT
;
2455 /* ... And are placed at the beginning (most-significant) bytes
2457 unpacked_idx
= (bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
- 1;
2458 unpacked_bytes_left
= unpacked_idx
+ 1;
2463 int sign_bit_offset
= (bit_size
+ bit_offset
- 1) % 8;
2465 src_idx
= unpacked_idx
= 0;
2466 unusedLS
= bit_offset
;
2469 if (is_signed_type
&& (src
[src_len
- 1] & (1 << sign_bit_offset
)))
2474 while (src_bytes_left
> 0)
2476 /* Mask for removing bits of the next source byte that are not
2477 part of the value. */
2478 unsigned int unusedMSMask
=
2479 (1 << (srcBitsLeft
>= HOST_CHAR_BIT
? HOST_CHAR_BIT
: srcBitsLeft
)) -
2481 /* Sign-extend bits for this byte. */
2482 unsigned int signMask
= sign
& ~unusedMSMask
;
2485 (((src
[src_idx
] >> unusedLS
) & unusedMSMask
) | signMask
) << accumSize
;
2486 accumSize
+= HOST_CHAR_BIT
- unusedLS
;
2487 if (accumSize
>= HOST_CHAR_BIT
)
2489 unpacked
[unpacked_idx
] = accum
& ~(~0L << HOST_CHAR_BIT
);
2490 accumSize
-= HOST_CHAR_BIT
;
2491 accum
>>= HOST_CHAR_BIT
;
2492 unpacked_bytes_left
-= 1;
2493 unpacked_idx
+= delta
;
2495 srcBitsLeft
-= HOST_CHAR_BIT
- unusedLS
;
2497 src_bytes_left
-= 1;
2500 while (unpacked_bytes_left
> 0)
2502 accum
|= sign
<< accumSize
;
2503 unpacked
[unpacked_idx
] = accum
& ~(~0L << HOST_CHAR_BIT
);
2504 accumSize
-= HOST_CHAR_BIT
;
2507 accum
>>= HOST_CHAR_BIT
;
2508 unpacked_bytes_left
-= 1;
2509 unpacked_idx
+= delta
;
2513 /* Create a new value of type TYPE from the contents of OBJ starting
2514 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2515 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2516 assigning through the result will set the field fetched from.
2517 VALADDR is ignored unless OBJ is NULL, in which case,
2518 VALADDR+OFFSET must address the start of storage containing the
2519 packed value. The value returned in this case is never an lval.
2520 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2523 ada_value_primitive_packed_val (struct value
*obj
, const gdb_byte
*valaddr
,
2524 long offset
, int bit_offset
, int bit_size
,
2528 const gdb_byte
*src
; /* First byte containing data to unpack */
2530 const int is_scalar
= is_scalar_type (type
);
2531 const int is_big_endian
= gdbarch_bits_big_endian (get_type_arch (type
));
2532 gdb_byte
*staging
= NULL
;
2533 int staging_len
= 0;
2534 struct cleanup
*old_chain
= make_cleanup (null_cleanup
, NULL
);
2536 type
= ada_check_typedef (type
);
2539 src
= valaddr
+ offset
;
2541 src
= value_contents (obj
) + offset
;
2543 if (is_dynamic_type (type
))
2545 /* The length of TYPE might by dynamic, so we need to resolve
2546 TYPE in order to know its actual size, which we then use
2547 to create the contents buffer of the value we return.
2548 The difficulty is that the data containing our object is
2549 packed, and therefore maybe not at a byte boundary. So, what
2550 we do, is unpack the data into a byte-aligned buffer, and then
2551 use that buffer as our object's value for resolving the type. */
2552 staging_len
= (bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2553 staging
= (gdb_byte
*) malloc (staging_len
);
2554 make_cleanup (xfree
, staging
);
2556 ada_unpack_from_contents (src
, bit_offset
, bit_size
,
2557 staging
, staging_len
,
2558 is_big_endian
, has_negatives (type
),
2560 type
= resolve_dynamic_type (type
, staging
, 0);
2561 if (TYPE_LENGTH (type
) < (bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
)
2563 /* This happens when the length of the object is dynamic,
2564 and is actually smaller than the space reserved for it.
2565 For instance, in an array of variant records, the bit_size
2566 we're given is the array stride, which is constant and
2567 normally equal to the maximum size of its element.
2568 But, in reality, each element only actually spans a portion
2570 bit_size
= TYPE_LENGTH (type
) * HOST_CHAR_BIT
;
2576 v
= allocate_value (type
);
2577 src
= valaddr
+ offset
;
2579 else if (VALUE_LVAL (obj
) == lval_memory
&& value_lazy (obj
))
2581 int src_len
= (bit_size
+ bit_offset
+ HOST_CHAR_BIT
- 1) / 8;
2584 v
= value_at (type
, value_address (obj
) + offset
);
2585 buf
= (gdb_byte
*) alloca (src_len
);
2586 read_memory (value_address (v
), buf
, src_len
);
2591 v
= allocate_value (type
);
2592 src
= value_contents (obj
) + offset
;
2597 long new_offset
= offset
;
2599 set_value_component_location (v
, obj
);
2600 set_value_bitpos (v
, bit_offset
+ value_bitpos (obj
));
2601 set_value_bitsize (v
, bit_size
);
2602 if (value_bitpos (v
) >= HOST_CHAR_BIT
)
2605 set_value_bitpos (v
, value_bitpos (v
) - HOST_CHAR_BIT
);
2607 set_value_offset (v
, new_offset
);
2609 /* Also set the parent value. This is needed when trying to
2610 assign a new value (in inferior memory). */
2611 set_value_parent (v
, obj
);
2614 set_value_bitsize (v
, bit_size
);
2615 unpacked
= value_contents_writeable (v
);
2619 memset (unpacked
, 0, TYPE_LENGTH (type
));
2620 do_cleanups (old_chain
);
2624 if (staging
!= NULL
&& staging_len
== TYPE_LENGTH (type
))
2626 /* Small short-cut: If we've unpacked the data into a buffer
2627 of the same size as TYPE's length, then we can reuse that,
2628 instead of doing the unpacking again. */
2629 memcpy (unpacked
, staging
, staging_len
);
2632 ada_unpack_from_contents (src
, bit_offset
, bit_size
,
2633 unpacked
, TYPE_LENGTH (type
),
2634 is_big_endian
, has_negatives (type
), is_scalar
);
2636 do_cleanups (old_chain
);
2640 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2641 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2644 move_bits (gdb_byte
*target
, int targ_offset
, const gdb_byte
*source
,
2645 int src_offset
, int n
, int bits_big_endian_p
)
2647 unsigned int accum
, mask
;
2648 int accum_bits
, chunk_size
;
2650 target
+= targ_offset
/ HOST_CHAR_BIT
;
2651 targ_offset
%= HOST_CHAR_BIT
;
2652 source
+= src_offset
/ HOST_CHAR_BIT
;
2653 src_offset
%= HOST_CHAR_BIT
;
2654 if (bits_big_endian_p
)
2656 accum
= (unsigned char) *source
;
2658 accum_bits
= HOST_CHAR_BIT
- src_offset
;
2664 accum
= (accum
<< HOST_CHAR_BIT
) + (unsigned char) *source
;
2665 accum_bits
+= HOST_CHAR_BIT
;
2667 chunk_size
= HOST_CHAR_BIT
- targ_offset
;
2670 unused_right
= HOST_CHAR_BIT
- (chunk_size
+ targ_offset
);
2671 mask
= ((1 << chunk_size
) - 1) << unused_right
;
2674 | ((accum
>> (accum_bits
- chunk_size
- unused_right
)) & mask
);
2676 accum_bits
-= chunk_size
;
2683 accum
= (unsigned char) *source
>> src_offset
;
2685 accum_bits
= HOST_CHAR_BIT
- src_offset
;
2689 accum
= accum
+ ((unsigned char) *source
<< accum_bits
);
2690 accum_bits
+= HOST_CHAR_BIT
;
2692 chunk_size
= HOST_CHAR_BIT
- targ_offset
;
2695 mask
= ((1 << chunk_size
) - 1) << targ_offset
;
2696 *target
= (*target
& ~mask
) | ((accum
<< targ_offset
) & mask
);
2698 accum_bits
-= chunk_size
;
2699 accum
>>= chunk_size
;
2706 /* Store the contents of FROMVAL into the location of TOVAL.
2707 Return a new value with the location of TOVAL and contents of
2708 FROMVAL. Handles assignment into packed fields that have
2709 floating-point or non-scalar types. */
2711 static struct value
*
2712 ada_value_assign (struct value
*toval
, struct value
*fromval
)
2714 struct type
*type
= value_type (toval
);
2715 int bits
= value_bitsize (toval
);
2717 toval
= ada_coerce_ref (toval
);
2718 fromval
= ada_coerce_ref (fromval
);
2720 if (ada_is_direct_array_type (value_type (toval
)))
2721 toval
= ada_coerce_to_simple_array (toval
);
2722 if (ada_is_direct_array_type (value_type (fromval
)))
2723 fromval
= ada_coerce_to_simple_array (fromval
);
2725 if (!deprecated_value_modifiable (toval
))
2726 error (_("Left operand of assignment is not a modifiable lvalue."));
2728 if (VALUE_LVAL (toval
) == lval_memory
2730 && (TYPE_CODE (type
) == TYPE_CODE_FLT
2731 || TYPE_CODE (type
) == TYPE_CODE_STRUCT
))
2733 int len
= (value_bitpos (toval
)
2734 + bits
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2736 gdb_byte
*buffer
= (gdb_byte
*) alloca (len
);
2738 CORE_ADDR to_addr
= value_address (toval
);
2740 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
2741 fromval
= value_cast (type
, fromval
);
2743 read_memory (to_addr
, buffer
, len
);
2744 from_size
= value_bitsize (fromval
);
2746 from_size
= TYPE_LENGTH (value_type (fromval
)) * TARGET_CHAR_BIT
;
2747 if (gdbarch_bits_big_endian (get_type_arch (type
)))
2748 move_bits (buffer
, value_bitpos (toval
),
2749 value_contents (fromval
), from_size
- bits
, bits
, 1);
2751 move_bits (buffer
, value_bitpos (toval
),
2752 value_contents (fromval
), 0, bits
, 0);
2753 write_memory_with_notification (to_addr
, buffer
, len
);
2755 val
= value_copy (toval
);
2756 memcpy (value_contents_raw (val
), value_contents (fromval
),
2757 TYPE_LENGTH (type
));
2758 deprecated_set_value_type (val
, type
);
2763 return value_assign (toval
, fromval
);
2767 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2768 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2769 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2770 COMPONENT, and not the inferior's memory. The current contents
2771 of COMPONENT are ignored.
2773 Although not part of the initial design, this function also works
2774 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2775 had a null address, and COMPONENT had an address which is equal to
2776 its offset inside CONTAINER. */
2779 value_assign_to_component (struct value
*container
, struct value
*component
,
2782 LONGEST offset_in_container
=
2783 (LONGEST
) (value_address (component
) - value_address (container
));
2784 int bit_offset_in_container
=
2785 value_bitpos (component
) - value_bitpos (container
);
2788 val
= value_cast (value_type (component
), val
);
2790 if (value_bitsize (component
) == 0)
2791 bits
= TARGET_CHAR_BIT
* TYPE_LENGTH (value_type (component
));
2793 bits
= value_bitsize (component
);
2795 if (gdbarch_bits_big_endian (get_type_arch (value_type (container
))))
2796 move_bits (value_contents_writeable (container
) + offset_in_container
,
2797 value_bitpos (container
) + bit_offset_in_container
,
2798 value_contents (val
),
2799 TYPE_LENGTH (value_type (component
)) * TARGET_CHAR_BIT
- bits
,
2802 move_bits (value_contents_writeable (container
) + offset_in_container
,
2803 value_bitpos (container
) + bit_offset_in_container
,
2804 value_contents (val
), 0, bits
, 0);
2807 /* The value of the element of array ARR at the ARITY indices given in IND.
2808 ARR may be either a simple array, GNAT array descriptor, or pointer
2812 ada_value_subscript (struct value
*arr
, int arity
, struct value
**ind
)
2816 struct type
*elt_type
;
2818 elt
= ada_coerce_to_simple_array (arr
);
2820 elt_type
= ada_check_typedef (value_type (elt
));
2821 if (TYPE_CODE (elt_type
) == TYPE_CODE_ARRAY
2822 && TYPE_FIELD_BITSIZE (elt_type
, 0) > 0)
2823 return value_subscript_packed (elt
, arity
, ind
);
2825 for (k
= 0; k
< arity
; k
+= 1)
2827 if (TYPE_CODE (elt_type
) != TYPE_CODE_ARRAY
)
2828 error (_("too many subscripts (%d expected)"), k
);
2829 elt
= value_subscript (elt
, pos_atr (ind
[k
]));
2834 /* Assuming ARR is a pointer to a GDB array, the value of the element
2835 of *ARR at the ARITY indices given in IND.
2836 Does not read the entire array into memory.
2838 Note: Unlike what one would expect, this function is used instead of
2839 ada_value_subscript for basically all non-packed array types. The reason
2840 for this is that a side effect of doing our own pointer arithmetics instead
2841 of relying on value_subscript is that there is no implicit typedef peeling.
2842 This is important for arrays of array accesses, where it allows us to
2843 preserve the fact that the array's element is an array access, where the
2844 access part os encoded in a typedef layer. */
2846 static struct value
*
2847 ada_value_ptr_subscript (struct value
*arr
, int arity
, struct value
**ind
)
2850 struct value
*array_ind
= ada_value_ind (arr
);
2852 = check_typedef (value_enclosing_type (array_ind
));
2854 if (TYPE_CODE (type
) == TYPE_CODE_ARRAY
2855 && TYPE_FIELD_BITSIZE (type
, 0) > 0)
2856 return value_subscript_packed (array_ind
, arity
, ind
);
2858 for (k
= 0; k
< arity
; k
+= 1)
2861 struct value
*lwb_value
;
2863 if (TYPE_CODE (type
) != TYPE_CODE_ARRAY
)
2864 error (_("too many subscripts (%d expected)"), k
);
2865 arr
= value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type
)),
2867 get_discrete_bounds (TYPE_INDEX_TYPE (type
), &lwb
, &upb
);
2868 lwb_value
= value_from_longest (value_type(ind
[k
]), lwb
);
2869 arr
= value_ptradd (arr
, pos_atr (ind
[k
]) - pos_atr (lwb_value
));
2870 type
= TYPE_TARGET_TYPE (type
);
2873 return value_ind (arr
);
2876 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2877 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2878 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2879 this array is LOW, as per Ada rules. */
2880 static struct value
*
2881 ada_value_slice_from_ptr (struct value
*array_ptr
, struct type
*type
,
2884 struct type
*type0
= ada_check_typedef (type
);
2885 struct type
*base_index_type
= TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0
));
2886 struct type
*index_type
2887 = create_static_range_type (NULL
, base_index_type
, low
, high
);
2888 struct type
*slice_type
=
2889 create_array_type (NULL
, TYPE_TARGET_TYPE (type0
), index_type
);
2890 int base_low
= ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0
));
2891 LONGEST base_low_pos
, low_pos
;
2894 if (!discrete_position (base_index_type
, low
, &low_pos
)
2895 || !discrete_position (base_index_type
, base_low
, &base_low_pos
))
2897 warning (_("unable to get positions in slice, use bounds instead"));
2899 base_low_pos
= base_low
;
2902 base
= value_as_address (array_ptr
)
2903 + ((low_pos
- base_low_pos
)
2904 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0
)));
2905 return value_at_lazy (slice_type
, base
);
2909 static struct value
*
2910 ada_value_slice (struct value
*array
, int low
, int high
)
2912 struct type
*type
= ada_check_typedef (value_type (array
));
2913 struct type
*base_index_type
= TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type
));
2914 struct type
*index_type
2915 = create_static_range_type (NULL
, TYPE_INDEX_TYPE (type
), low
, high
);
2916 struct type
*slice_type
=
2917 create_array_type (NULL
, TYPE_TARGET_TYPE (type
), index_type
);
2918 LONGEST low_pos
, high_pos
;
2920 if (!discrete_position (base_index_type
, low
, &low_pos
)
2921 || !discrete_position (base_index_type
, high
, &high_pos
))
2923 warning (_("unable to get positions in slice, use bounds instead"));
2928 return value_cast (slice_type
,
2929 value_slice (array
, low
, high_pos
- low_pos
+ 1));
2932 /* If type is a record type in the form of a standard GNAT array
2933 descriptor, returns the number of dimensions for type. If arr is a
2934 simple array, returns the number of "array of"s that prefix its
2935 type designation. Otherwise, returns 0. */
2938 ada_array_arity (struct type
*type
)
2945 type
= desc_base_type (type
);
2948 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
2949 return desc_arity (desc_bounds_type (type
));
2951 while (TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2954 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
2960 /* If TYPE is a record type in the form of a standard GNAT array
2961 descriptor or a simple array type, returns the element type for
2962 TYPE after indexing by NINDICES indices, or by all indices if
2963 NINDICES is -1. Otherwise, returns NULL. */
2966 ada_array_element_type (struct type
*type
, int nindices
)
2968 type
= desc_base_type (type
);
2970 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
2973 struct type
*p_array_type
;
2975 p_array_type
= desc_data_target_type (type
);
2977 k
= ada_array_arity (type
);
2981 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2982 if (nindices
>= 0 && k
> nindices
)
2984 while (k
> 0 && p_array_type
!= NULL
)
2986 p_array_type
= ada_check_typedef (TYPE_TARGET_TYPE (p_array_type
));
2989 return p_array_type
;
2991 else if (TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2993 while (nindices
!= 0 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2995 type
= TYPE_TARGET_TYPE (type
);
3004 /* The type of nth index in arrays of given type (n numbering from 1).
3005 Does not examine memory. Throws an error if N is invalid or TYPE
3006 is not an array type. NAME is the name of the Ada attribute being
3007 evaluated ('range, 'first, 'last, or 'length); it is used in building
3008 the error message. */
3010 static struct type
*
3011 ada_index_type (struct type
*type
, int n
, const char *name
)
3013 struct type
*result_type
;
3015 type
= desc_base_type (type
);
3017 if (n
< 0 || n
> ada_array_arity (type
))
3018 error (_("invalid dimension number to '%s"), name
);
3020 if (ada_is_simple_array_type (type
))
3024 for (i
= 1; i
< n
; i
+= 1)
3025 type
= TYPE_TARGET_TYPE (type
);
3026 result_type
= TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type
));
3027 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3028 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3029 perhaps stabsread.c would make more sense. */
3030 if (result_type
&& TYPE_CODE (result_type
) == TYPE_CODE_UNDEF
)
3035 result_type
= desc_index_type (desc_bounds_type (type
), n
);
3036 if (result_type
== NULL
)
3037 error (_("attempt to take bound of something that is not an array"));
3043 /* Given that arr is an array type, returns the lower bound of the
3044 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3045 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3046 array-descriptor type. It works for other arrays with bounds supplied
3047 by run-time quantities other than discriminants. */
3050 ada_array_bound_from_type (struct type
*arr_type
, int n
, int which
)
3052 struct type
*type
, *index_type_desc
, *index_type
;
3055 gdb_assert (which
== 0 || which
== 1);
3057 if (ada_is_constrained_packed_array_type (arr_type
))
3058 arr_type
= decode_constrained_packed_array_type (arr_type
);
3060 if (arr_type
== NULL
|| !ada_is_simple_array_type (arr_type
))
3061 return (LONGEST
) - which
;
3063 if (TYPE_CODE (arr_type
) == TYPE_CODE_PTR
)
3064 type
= TYPE_TARGET_TYPE (arr_type
);
3068 if (TYPE_FIXED_INSTANCE (type
))
3070 /* The array has already been fixed, so we do not need to
3071 check the parallel ___XA type again. That encoding has
3072 already been applied, so ignore it now. */
3073 index_type_desc
= NULL
;
3077 index_type_desc
= ada_find_parallel_type (type
, "___XA");
3078 ada_fixup_array_indexes_type (index_type_desc
);
3081 if (index_type_desc
!= NULL
)
3082 index_type
= to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc
, n
- 1),
3086 struct type
*elt_type
= check_typedef (type
);
3088 for (i
= 1; i
< n
; i
++)
3089 elt_type
= check_typedef (TYPE_TARGET_TYPE (elt_type
));
3091 index_type
= TYPE_INDEX_TYPE (elt_type
);
3095 (LONGEST
) (which
== 0
3096 ? ada_discrete_type_low_bound (index_type
)
3097 : ada_discrete_type_high_bound (index_type
));
3100 /* Given that arr is an array value, returns the lower bound of the
3101 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3102 WHICH is 1. This routine will also work for arrays with bounds
3103 supplied by run-time quantities other than discriminants. */
3106 ada_array_bound (struct value
*arr
, int n
, int which
)
3108 struct type
*arr_type
;
3110 if (TYPE_CODE (check_typedef (value_type (arr
))) == TYPE_CODE_PTR
)
3111 arr
= value_ind (arr
);
3112 arr_type
= value_enclosing_type (arr
);
3114 if (ada_is_constrained_packed_array_type (arr_type
))
3115 return ada_array_bound (decode_constrained_packed_array (arr
), n
, which
);
3116 else if (ada_is_simple_array_type (arr_type
))
3117 return ada_array_bound_from_type (arr_type
, n
, which
);
3119 return value_as_long (desc_one_bound (desc_bounds (arr
), n
, which
));
3122 /* Given that arr is an array value, returns the length of the
3123 nth index. This routine will also work for arrays with bounds
3124 supplied by run-time quantities other than discriminants.
3125 Does not work for arrays indexed by enumeration types with representation
3126 clauses at the moment. */
3129 ada_array_length (struct value
*arr
, int n
)
3131 struct type
*arr_type
, *index_type
;
3134 if (TYPE_CODE (check_typedef (value_type (arr
))) == TYPE_CODE_PTR
)
3135 arr
= value_ind (arr
);
3136 arr_type
= value_enclosing_type (arr
);
3138 if (ada_is_constrained_packed_array_type (arr_type
))
3139 return ada_array_length (decode_constrained_packed_array (arr
), n
);
3141 if (ada_is_simple_array_type (arr_type
))
3143 low
= ada_array_bound_from_type (arr_type
, n
, 0);
3144 high
= ada_array_bound_from_type (arr_type
, n
, 1);
3148 low
= value_as_long (desc_one_bound (desc_bounds (arr
), n
, 0));
3149 high
= value_as_long (desc_one_bound (desc_bounds (arr
), n
, 1));
3152 arr_type
= check_typedef (arr_type
);
3153 index_type
= TYPE_INDEX_TYPE (arr_type
);
3154 if (index_type
!= NULL
)
3156 struct type
*base_type
;
3157 if (TYPE_CODE (index_type
) == TYPE_CODE_RANGE
)
3158 base_type
= TYPE_TARGET_TYPE (index_type
);
3160 base_type
= index_type
;
3162 low
= pos_atr (value_from_longest (base_type
, low
));
3163 high
= pos_atr (value_from_longest (base_type
, high
));
3165 return high
- low
+ 1;
3168 /* An empty array whose type is that of ARR_TYPE (an array type),
3169 with bounds LOW to LOW-1. */
3171 static struct value
*
3172 empty_array (struct type
*arr_type
, int low
)
3174 struct type
*arr_type0
= ada_check_typedef (arr_type
);
3175 struct type
*index_type
3176 = create_static_range_type
3177 (NULL
, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0
)), low
, low
- 1);
3178 struct type
*elt_type
= ada_array_element_type (arr_type0
, 1);
3180 return allocate_value (create_array_type (NULL
, elt_type
, index_type
));
3184 /* Name resolution */
3186 /* The "decoded" name for the user-definable Ada operator corresponding
3190 ada_decoded_op_name (enum exp_opcode op
)
3194 for (i
= 0; ada_opname_table
[i
].encoded
!= NULL
; i
+= 1)
3196 if (ada_opname_table
[i
].op
== op
)
3197 return ada_opname_table
[i
].decoded
;
3199 error (_("Could not find operator name for opcode"));
3203 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3204 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3205 undefined namespace) and converts operators that are
3206 user-defined into appropriate function calls. If CONTEXT_TYPE is
3207 non-null, it provides a preferred result type [at the moment, only
3208 type void has any effect---causing procedures to be preferred over
3209 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3210 return type is preferred. May change (expand) *EXP. */
3213 resolve (struct expression
**expp
, int void_context_p
)
3215 struct type
*context_type
= NULL
;
3219 context_type
= builtin_type ((*expp
)->gdbarch
)->builtin_void
;
3221 resolve_subexp (expp
, &pc
, 1, context_type
);
3224 /* Resolve the operator of the subexpression beginning at
3225 position *POS of *EXPP. "Resolving" consists of replacing
3226 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3227 with their resolutions, replacing built-in operators with
3228 function calls to user-defined operators, where appropriate, and,
3229 when DEPROCEDURE_P is non-zero, converting function-valued variables
3230 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3231 are as in ada_resolve, above. */
3233 static struct value
*
3234 resolve_subexp (struct expression
**expp
, int *pos
, int deprocedure_p
,
3235 struct type
*context_type
)
3239 struct expression
*exp
; /* Convenience: == *expp. */
3240 enum exp_opcode op
= (*expp
)->elts
[pc
].opcode
;
3241 struct value
**argvec
; /* Vector of operand types (alloca'ed). */
3242 int nargs
; /* Number of operands. */
3249 /* Pass one: resolve operands, saving their types and updating *pos,
3254 if (exp
->elts
[pc
+ 3].opcode
== OP_VAR_VALUE
3255 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
3260 resolve_subexp (expp
, pos
, 0, NULL
);
3262 nargs
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
3267 resolve_subexp (expp
, pos
, 0, NULL
);
3272 resolve_subexp (expp
, pos
, 1, check_typedef (exp
->elts
[pc
+ 1].type
));
3275 case OP_ATR_MODULUS
:
3285 case TERNOP_IN_RANGE
:
3286 case BINOP_IN_BOUNDS
:
3292 case OP_DISCRETE_RANGE
:
3294 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
3303 arg1
= resolve_subexp (expp
, pos
, 0, NULL
);
3305 resolve_subexp (expp
, pos
, 1, NULL
);
3307 resolve_subexp (expp
, pos
, 1, value_type (arg1
));
3324 case BINOP_LOGICAL_AND
:
3325 case BINOP_LOGICAL_OR
:
3326 case BINOP_BITWISE_AND
:
3327 case BINOP_BITWISE_IOR
:
3328 case BINOP_BITWISE_XOR
:
3331 case BINOP_NOTEQUAL
:
3338 case BINOP_SUBSCRIPT
:
3346 case UNOP_LOGICAL_NOT
:
3362 case OP_INTERNALVAR
:
3372 *pos
+= 4 + BYTES_TO_EXP_ELEM (exp
->elts
[pc
+ 1].longconst
+ 1);
3375 case STRUCTOP_STRUCT
:
3376 *pos
+= 4 + BYTES_TO_EXP_ELEM (exp
->elts
[pc
+ 1].longconst
+ 1);
3389 error (_("Unexpected operator during name resolution"));
3392 argvec
= XALLOCAVEC (struct value
*, nargs
+ 1);
3393 for (i
= 0; i
< nargs
; i
+= 1)
3394 argvec
[i
] = resolve_subexp (expp
, pos
, 1, NULL
);
3398 /* Pass two: perform any resolution on principal operator. */
3405 if (SYMBOL_DOMAIN (exp
->elts
[pc
+ 2].symbol
) == UNDEF_DOMAIN
)
3407 struct block_symbol
*candidates
;
3411 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3412 (exp
->elts
[pc
+ 2].symbol
),
3413 exp
->elts
[pc
+ 1].block
, VAR_DOMAIN
,
3416 if (n_candidates
> 1)
3418 /* Types tend to get re-introduced locally, so if there
3419 are any local symbols that are not types, first filter
3422 for (j
= 0; j
< n_candidates
; j
+= 1)
3423 switch (SYMBOL_CLASS (candidates
[j
].symbol
))
3428 case LOC_REGPARM_ADDR
:
3436 if (j
< n_candidates
)
3439 while (j
< n_candidates
)
3441 if (SYMBOL_CLASS (candidates
[j
].symbol
) == LOC_TYPEDEF
)
3443 candidates
[j
] = candidates
[n_candidates
- 1];
3452 if (n_candidates
== 0)
3453 error (_("No definition found for %s"),
3454 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
3455 else if (n_candidates
== 1)
3457 else if (deprocedure_p
3458 && !is_nonfunction (candidates
, n_candidates
))
3460 i
= ada_resolve_function
3461 (candidates
, n_candidates
, NULL
, 0,
3462 SYMBOL_LINKAGE_NAME (exp
->elts
[pc
+ 2].symbol
),
3465 error (_("Could not find a match for %s"),
3466 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
3470 printf_filtered (_("Multiple matches for %s\n"),
3471 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
3472 user_select_syms (candidates
, n_candidates
, 1);
3476 exp
->elts
[pc
+ 1].block
= candidates
[i
].block
;
3477 exp
->elts
[pc
+ 2].symbol
= candidates
[i
].symbol
;
3478 if (innermost_block
== NULL
3479 || contained_in (candidates
[i
].block
, innermost_block
))
3480 innermost_block
= candidates
[i
].block
;
3484 && (TYPE_CODE (SYMBOL_TYPE (exp
->elts
[pc
+ 2].symbol
))
3487 replace_operator_with_call (expp
, pc
, 0, 0,
3488 exp
->elts
[pc
+ 2].symbol
,
3489 exp
->elts
[pc
+ 1].block
);
3496 if (exp
->elts
[pc
+ 3].opcode
== OP_VAR_VALUE
3497 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
3499 struct block_symbol
*candidates
;
3503 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3504 (exp
->elts
[pc
+ 5].symbol
),
3505 exp
->elts
[pc
+ 4].block
, VAR_DOMAIN
,
3507 if (n_candidates
== 1)
3511 i
= ada_resolve_function
3512 (candidates
, n_candidates
,
3514 SYMBOL_LINKAGE_NAME (exp
->elts
[pc
+ 5].symbol
),
3517 error (_("Could not find a match for %s"),
3518 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 5].symbol
));
3521 exp
->elts
[pc
+ 4].block
= candidates
[i
].block
;
3522 exp
->elts
[pc
+ 5].symbol
= candidates
[i
].symbol
;
3523 if (innermost_block
== NULL
3524 || contained_in (candidates
[i
].block
, innermost_block
))
3525 innermost_block
= candidates
[i
].block
;
3536 case BINOP_BITWISE_AND
:
3537 case BINOP_BITWISE_IOR
:
3538 case BINOP_BITWISE_XOR
:
3540 case BINOP_NOTEQUAL
:
3548 case UNOP_LOGICAL_NOT
:
3550 if (possible_user_operator_p (op
, argvec
))
3552 struct block_symbol
*candidates
;
3556 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op
)),
3557 (struct block
*) NULL
, VAR_DOMAIN
,
3559 i
= ada_resolve_function (candidates
, n_candidates
, argvec
, nargs
,
3560 ada_decoded_op_name (op
), NULL
);
3564 replace_operator_with_call (expp
, pc
, nargs
, 1,
3565 candidates
[i
].symbol
,
3566 candidates
[i
].block
);
3577 return evaluate_subexp_type (exp
, pos
);
3580 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3581 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3583 /* The term "match" here is rather loose. The match is heuristic and
3587 ada_type_match (struct type
*ftype
, struct type
*atype
, int may_deref
)
3589 ftype
= ada_check_typedef (ftype
);
3590 atype
= ada_check_typedef (atype
);
3592 if (TYPE_CODE (ftype
) == TYPE_CODE_REF
)
3593 ftype
= TYPE_TARGET_TYPE (ftype
);
3594 if (TYPE_CODE (atype
) == TYPE_CODE_REF
)
3595 atype
= TYPE_TARGET_TYPE (atype
);
3597 switch (TYPE_CODE (ftype
))
3600 return TYPE_CODE (ftype
) == TYPE_CODE (atype
);
3602 if (TYPE_CODE (atype
) == TYPE_CODE_PTR
)
3603 return ada_type_match (TYPE_TARGET_TYPE (ftype
),
3604 TYPE_TARGET_TYPE (atype
), 0);
3607 && ada_type_match (TYPE_TARGET_TYPE (ftype
), atype
, 0));
3609 case TYPE_CODE_ENUM
:
3610 case TYPE_CODE_RANGE
:
3611 switch (TYPE_CODE (atype
))
3614 case TYPE_CODE_ENUM
:
3615 case TYPE_CODE_RANGE
:
3621 case TYPE_CODE_ARRAY
:
3622 return (TYPE_CODE (atype
) == TYPE_CODE_ARRAY
3623 || ada_is_array_descriptor_type (atype
));
3625 case TYPE_CODE_STRUCT
:
3626 if (ada_is_array_descriptor_type (ftype
))
3627 return (TYPE_CODE (atype
) == TYPE_CODE_ARRAY
3628 || ada_is_array_descriptor_type (atype
));
3630 return (TYPE_CODE (atype
) == TYPE_CODE_STRUCT
3631 && !ada_is_array_descriptor_type (atype
));
3633 case TYPE_CODE_UNION
:
3635 return (TYPE_CODE (atype
) == TYPE_CODE (ftype
));
3639 /* Return non-zero if the formals of FUNC "sufficiently match" the
3640 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3641 may also be an enumeral, in which case it is treated as a 0-
3642 argument function. */
3645 ada_args_match (struct symbol
*func
, struct value
**actuals
, int n_actuals
)
3648 struct type
*func_type
= SYMBOL_TYPE (func
);
3650 if (SYMBOL_CLASS (func
) == LOC_CONST
3651 && TYPE_CODE (func_type
) == TYPE_CODE_ENUM
)
3652 return (n_actuals
== 0);
3653 else if (func_type
== NULL
|| TYPE_CODE (func_type
) != TYPE_CODE_FUNC
)
3656 if (TYPE_NFIELDS (func_type
) != n_actuals
)
3659 for (i
= 0; i
< n_actuals
; i
+= 1)
3661 if (actuals
[i
] == NULL
)
3665 struct type
*ftype
= ada_check_typedef (TYPE_FIELD_TYPE (func_type
,
3667 struct type
*atype
= ada_check_typedef (value_type (actuals
[i
]));
3669 if (!ada_type_match (ftype
, atype
, 1))
3676 /* False iff function type FUNC_TYPE definitely does not produce a value
3677 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3678 FUNC_TYPE is not a valid function type with a non-null return type
3679 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3682 return_match (struct type
*func_type
, struct type
*context_type
)
3684 struct type
*return_type
;
3686 if (func_type
== NULL
)
3689 if (TYPE_CODE (func_type
) == TYPE_CODE_FUNC
)
3690 return_type
= get_base_type (TYPE_TARGET_TYPE (func_type
));
3692 return_type
= get_base_type (func_type
);
3693 if (return_type
== NULL
)
3696 context_type
= get_base_type (context_type
);
3698 if (TYPE_CODE (return_type
) == TYPE_CODE_ENUM
)
3699 return context_type
== NULL
|| return_type
== context_type
;
3700 else if (context_type
== NULL
)
3701 return TYPE_CODE (return_type
) != TYPE_CODE_VOID
;
3703 return TYPE_CODE (return_type
) == TYPE_CODE (context_type
);
3707 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3708 function (if any) that matches the types of the NARGS arguments in
3709 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3710 that returns that type, then eliminate matches that don't. If
3711 CONTEXT_TYPE is void and there is at least one match that does not
3712 return void, eliminate all matches that do.
3714 Asks the user if there is more than one match remaining. Returns -1
3715 if there is no such symbol or none is selected. NAME is used
3716 solely for messages. May re-arrange and modify SYMS in
3717 the process; the index returned is for the modified vector. */
3720 ada_resolve_function (struct block_symbol syms
[],
3721 int nsyms
, struct value
**args
, int nargs
,
3722 const char *name
, struct type
*context_type
)
3726 int m
; /* Number of hits */
3729 /* In the first pass of the loop, we only accept functions matching
3730 context_type. If none are found, we add a second pass of the loop
3731 where every function is accepted. */
3732 for (fallback
= 0; m
== 0 && fallback
< 2; fallback
++)
3734 for (k
= 0; k
< nsyms
; k
+= 1)
3736 struct type
*type
= ada_check_typedef (SYMBOL_TYPE (syms
[k
].symbol
));
3738 if (ada_args_match (syms
[k
].symbol
, args
, nargs
)
3739 && (fallback
|| return_match (type
, context_type
)))
3747 /* If we got multiple matches, ask the user which one to use. Don't do this
3748 interactive thing during completion, though, as the purpose of the
3749 completion is providing a list of all possible matches. Prompting the
3750 user to filter it down would be completely unexpected in this case. */
3753 else if (m
> 1 && !parse_completion
)
3755 printf_filtered (_("Multiple matches for %s\n"), name
);
3756 user_select_syms (syms
, m
, 1);
3762 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3763 in a listing of choices during disambiguation (see sort_choices, below).
3764 The idea is that overloadings of a subprogram name from the
3765 same package should sort in their source order. We settle for ordering
3766 such symbols by their trailing number (__N or $N). */
3769 encoded_ordered_before (const char *N0
, const char *N1
)
3773 else if (N0
== NULL
)
3779 for (k0
= strlen (N0
) - 1; k0
> 0 && isdigit (N0
[k0
]); k0
-= 1)
3781 for (k1
= strlen (N1
) - 1; k1
> 0 && isdigit (N1
[k1
]); k1
-= 1)
3783 if ((N0
[k0
] == '_' || N0
[k0
] == '$') && N0
[k0
+ 1] != '\000'
3784 && (N1
[k1
] == '_' || N1
[k1
] == '$') && N1
[k1
+ 1] != '\000')
3789 while (N0
[n0
] == '_' && n0
> 0 && N0
[n0
- 1] == '_')
3792 while (N1
[n1
] == '_' && n1
> 0 && N1
[n1
- 1] == '_')
3794 if (n0
== n1
&& strncmp (N0
, N1
, n0
) == 0)
3795 return (atoi (N0
+ k0
+ 1) < atoi (N1
+ k1
+ 1));
3797 return (strcmp (N0
, N1
) < 0);
3801 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3805 sort_choices (struct block_symbol syms
[], int nsyms
)
3809 for (i
= 1; i
< nsyms
; i
+= 1)
3811 struct block_symbol sym
= syms
[i
];
3814 for (j
= i
- 1; j
>= 0; j
-= 1)
3816 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms
[j
].symbol
),
3817 SYMBOL_LINKAGE_NAME (sym
.symbol
)))
3819 syms
[j
+ 1] = syms
[j
];
3825 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3826 by asking the user (if necessary), returning the number selected,
3827 and setting the first elements of SYMS items. Error if no symbols
3830 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3831 to be re-integrated one of these days. */
3834 user_select_syms (struct block_symbol
*syms
, int nsyms
, int max_results
)
3837 int *chosen
= XALLOCAVEC (int , nsyms
);
3839 int first_choice
= (max_results
== 1) ? 1 : 2;
3840 const char *select_mode
= multiple_symbols_select_mode ();
3842 if (max_results
< 1)
3843 error (_("Request to select 0 symbols!"));
3847 if (select_mode
== multiple_symbols_cancel
)
3849 canceled because the command is ambiguous\n\
3850 See set/show multiple-symbol."));
3852 /* If select_mode is "all", then return all possible symbols.
3853 Only do that if more than one symbol can be selected, of course.
3854 Otherwise, display the menu as usual. */
3855 if (select_mode
== multiple_symbols_all
&& max_results
> 1)
3858 printf_unfiltered (_("[0] cancel\n"));
3859 if (max_results
> 1)
3860 printf_unfiltered (_("[1] all\n"));
3862 sort_choices (syms
, nsyms
);
3864 for (i
= 0; i
< nsyms
; i
+= 1)
3866 if (syms
[i
].symbol
== NULL
)
3869 if (SYMBOL_CLASS (syms
[i
].symbol
) == LOC_BLOCK
)
3871 struct symtab_and_line sal
=
3872 find_function_start_sal (syms
[i
].symbol
, 1);
3874 if (sal
.symtab
== NULL
)
3875 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3877 SYMBOL_PRINT_NAME (syms
[i
].symbol
),
3880 printf_unfiltered (_("[%d] %s at %s:%d\n"), i
+ first_choice
,
3881 SYMBOL_PRINT_NAME (syms
[i
].symbol
),
3882 symtab_to_filename_for_display (sal
.symtab
),
3889 (SYMBOL_CLASS (syms
[i
].symbol
) == LOC_CONST
3890 && SYMBOL_TYPE (syms
[i
].symbol
) != NULL
3891 && TYPE_CODE (SYMBOL_TYPE (syms
[i
].symbol
)) == TYPE_CODE_ENUM
);
3892 struct symtab
*symtab
= NULL
;
3894 if (SYMBOL_OBJFILE_OWNED (syms
[i
].symbol
))
3895 symtab
= symbol_symtab (syms
[i
].symbol
);
3897 if (SYMBOL_LINE (syms
[i
].symbol
) != 0 && symtab
!= NULL
)
3898 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3900 SYMBOL_PRINT_NAME (syms
[i
].symbol
),
3901 symtab_to_filename_for_display (symtab
),
3902 SYMBOL_LINE (syms
[i
].symbol
));
3903 else if (is_enumeral
3904 && TYPE_NAME (SYMBOL_TYPE (syms
[i
].symbol
)) != NULL
)
3906 printf_unfiltered (("[%d] "), i
+ first_choice
);
3907 ada_print_type (SYMBOL_TYPE (syms
[i
].symbol
), NULL
,
3908 gdb_stdout
, -1, 0, &type_print_raw_options
);
3909 printf_unfiltered (_("'(%s) (enumeral)\n"),
3910 SYMBOL_PRINT_NAME (syms
[i
].symbol
));
3912 else if (symtab
!= NULL
)
3913 printf_unfiltered (is_enumeral
3914 ? _("[%d] %s in %s (enumeral)\n")
3915 : _("[%d] %s at %s:?\n"),
3917 SYMBOL_PRINT_NAME (syms
[i
].symbol
),
3918 symtab_to_filename_for_display (symtab
));
3920 printf_unfiltered (is_enumeral
3921 ? _("[%d] %s (enumeral)\n")
3922 : _("[%d] %s at ?\n"),
3924 SYMBOL_PRINT_NAME (syms
[i
].symbol
));
3928 n_chosen
= get_selections (chosen
, nsyms
, max_results
, max_results
> 1,
3931 for (i
= 0; i
< n_chosen
; i
+= 1)
3932 syms
[i
] = syms
[chosen
[i
]];
3937 /* Read and validate a set of numeric choices from the user in the
3938 range 0 .. N_CHOICES-1. Place the results in increasing
3939 order in CHOICES[0 .. N-1], and return N.
3941 The user types choices as a sequence of numbers on one line
3942 separated by blanks, encoding them as follows:
3944 + A choice of 0 means to cancel the selection, throwing an error.
3945 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3946 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3948 The user is not allowed to choose more than MAX_RESULTS values.
3950 ANNOTATION_SUFFIX, if present, is used to annotate the input
3951 prompts (for use with the -f switch). */
3954 get_selections (int *choices
, int n_choices
, int max_results
,
3955 int is_all_choice
, char *annotation_suffix
)
3960 int first_choice
= is_all_choice
? 2 : 1;
3962 prompt
= getenv ("PS2");
3966 args
= command_line_input (prompt
, 0, annotation_suffix
);
3969 error_no_arg (_("one or more choice numbers"));
3973 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3974 order, as given in args. Choices are validated. */
3980 args
= skip_spaces (args
);
3981 if (*args
== '\0' && n_chosen
== 0)
3982 error_no_arg (_("one or more choice numbers"));
3983 else if (*args
== '\0')
3986 choice
= strtol (args
, &args2
, 10);
3987 if (args
== args2
|| choice
< 0
3988 || choice
> n_choices
+ first_choice
- 1)
3989 error (_("Argument must be choice number"));
3993 error (_("cancelled"));
3995 if (choice
< first_choice
)
3997 n_chosen
= n_choices
;
3998 for (j
= 0; j
< n_choices
; j
+= 1)
4002 choice
-= first_choice
;
4004 for (j
= n_chosen
- 1; j
>= 0 && choice
< choices
[j
]; j
-= 1)
4008 if (j
< 0 || choice
!= choices
[j
])
4012 for (k
= n_chosen
- 1; k
> j
; k
-= 1)
4013 choices
[k
+ 1] = choices
[k
];
4014 choices
[j
+ 1] = choice
;
4019 if (n_chosen
> max_results
)
4020 error (_("Select no more than %d of the above"), max_results
);
4025 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4026 on the function identified by SYM and BLOCK, and taking NARGS
4027 arguments. Update *EXPP as needed to hold more space. */
4030 replace_operator_with_call (struct expression
**expp
, int pc
, int nargs
,
4031 int oplen
, struct symbol
*sym
,
4032 const struct block
*block
)
4034 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4035 symbol, -oplen for operator being replaced). */
4036 struct expression
*newexp
= (struct expression
*)
4037 xzalloc (sizeof (struct expression
)
4038 + EXP_ELEM_TO_BYTES ((*expp
)->nelts
+ 7 - oplen
));
4039 struct expression
*exp
= *expp
;
4041 newexp
->nelts
= exp
->nelts
+ 7 - oplen
;
4042 newexp
->language_defn
= exp
->language_defn
;
4043 newexp
->gdbarch
= exp
->gdbarch
;
4044 memcpy (newexp
->elts
, exp
->elts
, EXP_ELEM_TO_BYTES (pc
));
4045 memcpy (newexp
->elts
+ pc
+ 7, exp
->elts
+ pc
+ oplen
,
4046 EXP_ELEM_TO_BYTES (exp
->nelts
- pc
- oplen
));
4048 newexp
->elts
[pc
].opcode
= newexp
->elts
[pc
+ 2].opcode
= OP_FUNCALL
;
4049 newexp
->elts
[pc
+ 1].longconst
= (LONGEST
) nargs
;
4051 newexp
->elts
[pc
+ 3].opcode
= newexp
->elts
[pc
+ 6].opcode
= OP_VAR_VALUE
;
4052 newexp
->elts
[pc
+ 4].block
= block
;
4053 newexp
->elts
[pc
+ 5].symbol
= sym
;
4059 /* Type-class predicates */
4061 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4065 numeric_type_p (struct type
*type
)
4071 switch (TYPE_CODE (type
))
4076 case TYPE_CODE_RANGE
:
4077 return (type
== TYPE_TARGET_TYPE (type
)
4078 || numeric_type_p (TYPE_TARGET_TYPE (type
)));
4085 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4088 integer_type_p (struct type
*type
)
4094 switch (TYPE_CODE (type
))
4098 case TYPE_CODE_RANGE
:
4099 return (type
== TYPE_TARGET_TYPE (type
)
4100 || integer_type_p (TYPE_TARGET_TYPE (type
)));
4107 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4110 scalar_type_p (struct type
*type
)
4116 switch (TYPE_CODE (type
))
4119 case TYPE_CODE_RANGE
:
4120 case TYPE_CODE_ENUM
:
4129 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4132 discrete_type_p (struct type
*type
)
4138 switch (TYPE_CODE (type
))
4141 case TYPE_CODE_RANGE
:
4142 case TYPE_CODE_ENUM
:
4143 case TYPE_CODE_BOOL
:
4151 /* Returns non-zero if OP with operands in the vector ARGS could be
4152 a user-defined function. Errs on the side of pre-defined operators
4153 (i.e., result 0). */
4156 possible_user_operator_p (enum exp_opcode op
, struct value
*args
[])
4158 struct type
*type0
=
4159 (args
[0] == NULL
) ? NULL
: ada_check_typedef (value_type (args
[0]));
4160 struct type
*type1
=
4161 (args
[1] == NULL
) ? NULL
: ada_check_typedef (value_type (args
[1]));
4175 return (!(numeric_type_p (type0
) && numeric_type_p (type1
)));
4179 case BINOP_BITWISE_AND
:
4180 case BINOP_BITWISE_IOR
:
4181 case BINOP_BITWISE_XOR
:
4182 return (!(integer_type_p (type0
) && integer_type_p (type1
)));
4185 case BINOP_NOTEQUAL
:
4190 return (!(scalar_type_p (type0
) && scalar_type_p (type1
)));
4193 return !ada_is_array_type (type0
) || !ada_is_array_type (type1
);
4196 return (!(numeric_type_p (type0
) && integer_type_p (type1
)));
4200 case UNOP_LOGICAL_NOT
:
4202 return (!numeric_type_p (type0
));
4211 1. In the following, we assume that a renaming type's name may
4212 have an ___XD suffix. It would be nice if this went away at some
4214 2. We handle both the (old) purely type-based representation of
4215 renamings and the (new) variable-based encoding. At some point,
4216 it is devoutly to be hoped that the former goes away
4217 (FIXME: hilfinger-2007-07-09).
4218 3. Subprogram renamings are not implemented, although the XRS
4219 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4221 /* If SYM encodes a renaming,
4223 <renaming> renames <renamed entity>,
4225 sets *LEN to the length of the renamed entity's name,
4226 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4227 the string describing the subcomponent selected from the renamed
4228 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4229 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4230 are undefined). Otherwise, returns a value indicating the category
4231 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4232 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4233 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4234 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4235 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4236 may be NULL, in which case they are not assigned.
4238 [Currently, however, GCC does not generate subprogram renamings.] */
4240 enum ada_renaming_category
4241 ada_parse_renaming (struct symbol
*sym
,
4242 const char **renamed_entity
, int *len
,
4243 const char **renaming_expr
)
4245 enum ada_renaming_category kind
;
4250 return ADA_NOT_RENAMING
;
4251 switch (SYMBOL_CLASS (sym
))
4254 return ADA_NOT_RENAMING
;
4256 return parse_old_style_renaming (SYMBOL_TYPE (sym
),
4257 renamed_entity
, len
, renaming_expr
);
4261 case LOC_OPTIMIZED_OUT
:
4262 info
= strstr (SYMBOL_LINKAGE_NAME (sym
), "___XR");
4264 return ADA_NOT_RENAMING
;
4268 kind
= ADA_OBJECT_RENAMING
;
4272 kind
= ADA_EXCEPTION_RENAMING
;
4276 kind
= ADA_PACKAGE_RENAMING
;
4280 kind
= ADA_SUBPROGRAM_RENAMING
;
4284 return ADA_NOT_RENAMING
;
4288 if (renamed_entity
!= NULL
)
4289 *renamed_entity
= info
;
4290 suffix
= strstr (info
, "___XE");
4291 if (suffix
== NULL
|| suffix
== info
)
4292 return ADA_NOT_RENAMING
;
4294 *len
= strlen (info
) - strlen (suffix
);
4296 if (renaming_expr
!= NULL
)
4297 *renaming_expr
= suffix
;
4301 /* Assuming TYPE encodes a renaming according to the old encoding in
4302 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4303 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4304 ADA_NOT_RENAMING otherwise. */
4305 static enum ada_renaming_category
4306 parse_old_style_renaming (struct type
*type
,
4307 const char **renamed_entity
, int *len
,
4308 const char **renaming_expr
)
4310 enum ada_renaming_category kind
;
4315 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_ENUM
4316 || TYPE_NFIELDS (type
) != 1)
4317 return ADA_NOT_RENAMING
;
4319 name
= type_name_no_tag (type
);
4321 return ADA_NOT_RENAMING
;
4323 name
= strstr (name
, "___XR");
4325 return ADA_NOT_RENAMING
;
4330 kind
= ADA_OBJECT_RENAMING
;
4333 kind
= ADA_EXCEPTION_RENAMING
;
4336 kind
= ADA_PACKAGE_RENAMING
;
4339 kind
= ADA_SUBPROGRAM_RENAMING
;
4342 return ADA_NOT_RENAMING
;
4345 info
= TYPE_FIELD_NAME (type
, 0);
4347 return ADA_NOT_RENAMING
;
4348 if (renamed_entity
!= NULL
)
4349 *renamed_entity
= info
;
4350 suffix
= strstr (info
, "___XE");
4351 if (renaming_expr
!= NULL
)
4352 *renaming_expr
= suffix
+ 5;
4353 if (suffix
== NULL
|| suffix
== info
)
4354 return ADA_NOT_RENAMING
;
4356 *len
= suffix
- info
;
4360 /* Compute the value of the given RENAMING_SYM, which is expected to
4361 be a symbol encoding a renaming expression. BLOCK is the block
4362 used to evaluate the renaming. */
4364 static struct value
*
4365 ada_read_renaming_var_value (struct symbol
*renaming_sym
,
4366 const struct block
*block
)
4368 const char *sym_name
;
4369 struct expression
*expr
;
4370 struct value
*value
;
4371 struct cleanup
*old_chain
= NULL
;
4373 sym_name
= SYMBOL_LINKAGE_NAME (renaming_sym
);
4374 expr
= parse_exp_1 (&sym_name
, 0, block
, 0);
4375 old_chain
= make_cleanup (free_current_contents
, &expr
);
4376 value
= evaluate_expression (expr
);
4378 do_cleanups (old_chain
);
4383 /* Evaluation: Function Calls */
4385 /* Return an lvalue containing the value VAL. This is the identity on
4386 lvalues, and otherwise has the side-effect of allocating memory
4387 in the inferior where a copy of the value contents is copied. */
4389 static struct value
*
4390 ensure_lval (struct value
*val
)
4392 if (VALUE_LVAL (val
) == not_lval
4393 || VALUE_LVAL (val
) == lval_internalvar
)
4395 int len
= TYPE_LENGTH (ada_check_typedef (value_type (val
)));
4396 const CORE_ADDR addr
=
4397 value_as_long (value_allocate_space_in_inferior (len
));
4399 set_value_address (val
, addr
);
4400 VALUE_LVAL (val
) = lval_memory
;
4401 write_memory (addr
, value_contents (val
), len
);
4407 /* Return the value ACTUAL, converted to be an appropriate value for a
4408 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4409 allocating any necessary descriptors (fat pointers), or copies of
4410 values not residing in memory, updating it as needed. */
4413 ada_convert_actual (struct value
*actual
, struct type
*formal_type0
)
4415 struct type
*actual_type
= ada_check_typedef (value_type (actual
));
4416 struct type
*formal_type
= ada_check_typedef (formal_type0
);
4417 struct type
*formal_target
=
4418 TYPE_CODE (formal_type
) == TYPE_CODE_PTR
4419 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type
)) : formal_type
;
4420 struct type
*actual_target
=
4421 TYPE_CODE (actual_type
) == TYPE_CODE_PTR
4422 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type
)) : actual_type
;
4424 if (ada_is_array_descriptor_type (formal_target
)
4425 && TYPE_CODE (actual_target
) == TYPE_CODE_ARRAY
)
4426 return make_array_descriptor (formal_type
, actual
);
4427 else if (TYPE_CODE (formal_type
) == TYPE_CODE_PTR
4428 || TYPE_CODE (formal_type
) == TYPE_CODE_REF
)
4430 struct value
*result
;
4432 if (TYPE_CODE (formal_target
) == TYPE_CODE_ARRAY
4433 && ada_is_array_descriptor_type (actual_target
))
4434 result
= desc_data (actual
);
4435 else if (TYPE_CODE (actual_type
) != TYPE_CODE_PTR
)
4437 if (VALUE_LVAL (actual
) != lval_memory
)
4441 actual_type
= ada_check_typedef (value_type (actual
));
4442 val
= allocate_value (actual_type
);
4443 memcpy ((char *) value_contents_raw (val
),
4444 (char *) value_contents (actual
),
4445 TYPE_LENGTH (actual_type
));
4446 actual
= ensure_lval (val
);
4448 result
= value_addr (actual
);
4452 return value_cast_pointers (formal_type
, result
, 0);
4454 else if (TYPE_CODE (actual_type
) == TYPE_CODE_PTR
)
4455 return ada_value_ind (actual
);
4456 else if (ada_is_aligner_type (formal_type
))
4458 /* We need to turn this parameter into an aligner type
4460 struct value
*aligner
= allocate_value (formal_type
);
4461 struct value
*component
= ada_value_struct_elt (aligner
, "F", 0);
4463 value_assign_to_component (aligner
, component
, actual
);
4470 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4471 type TYPE. This is usually an inefficient no-op except on some targets
4472 (such as AVR) where the representation of a pointer and an address
4476 value_pointer (struct value
*value
, struct type
*type
)
4478 struct gdbarch
*gdbarch
= get_type_arch (type
);
4479 unsigned len
= TYPE_LENGTH (type
);
4480 gdb_byte
*buf
= (gdb_byte
*) alloca (len
);
4483 addr
= value_address (value
);
4484 gdbarch_address_to_pointer (gdbarch
, type
, buf
, addr
);
4485 addr
= extract_unsigned_integer (buf
, len
, gdbarch_byte_order (gdbarch
));
4490 /* Push a descriptor of type TYPE for array value ARR on the stack at
4491 *SP, updating *SP to reflect the new descriptor. Return either
4492 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4493 to-descriptor type rather than a descriptor type), a struct value *
4494 representing a pointer to this descriptor. */
4496 static struct value
*
4497 make_array_descriptor (struct type
*type
, struct value
*arr
)
4499 struct type
*bounds_type
= desc_bounds_type (type
);
4500 struct type
*desc_type
= desc_base_type (type
);
4501 struct value
*descriptor
= allocate_value (desc_type
);
4502 struct value
*bounds
= allocate_value (bounds_type
);
4505 for (i
= ada_array_arity (ada_check_typedef (value_type (arr
)));
4508 modify_field (value_type (bounds
), value_contents_writeable (bounds
),
4509 ada_array_bound (arr
, i
, 0),
4510 desc_bound_bitpos (bounds_type
, i
, 0),
4511 desc_bound_bitsize (bounds_type
, i
, 0));
4512 modify_field (value_type (bounds
), value_contents_writeable (bounds
),
4513 ada_array_bound (arr
, i
, 1),
4514 desc_bound_bitpos (bounds_type
, i
, 1),
4515 desc_bound_bitsize (bounds_type
, i
, 1));
4518 bounds
= ensure_lval (bounds
);
4520 modify_field (value_type (descriptor
),
4521 value_contents_writeable (descriptor
),
4522 value_pointer (ensure_lval (arr
),
4523 TYPE_FIELD_TYPE (desc_type
, 0)),
4524 fat_pntr_data_bitpos (desc_type
),
4525 fat_pntr_data_bitsize (desc_type
));
4527 modify_field (value_type (descriptor
),
4528 value_contents_writeable (descriptor
),
4529 value_pointer (bounds
,
4530 TYPE_FIELD_TYPE (desc_type
, 1)),
4531 fat_pntr_bounds_bitpos (desc_type
),
4532 fat_pntr_bounds_bitsize (desc_type
));
4534 descriptor
= ensure_lval (descriptor
);
4536 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
4537 return value_addr (descriptor
);
4542 /* Symbol Cache Module */
4544 /* Performance measurements made as of 2010-01-15 indicate that
4545 this cache does bring some noticeable improvements. Depending
4546 on the type of entity being printed, the cache can make it as much
4547 as an order of magnitude faster than without it.
4549 The descriptive type DWARF extension has significantly reduced
4550 the need for this cache, at least when DWARF is being used. However,
4551 even in this case, some expensive name-based symbol searches are still
4552 sometimes necessary - to find an XVZ variable, mostly. */
4554 /* Initialize the contents of SYM_CACHE. */
4557 ada_init_symbol_cache (struct ada_symbol_cache
*sym_cache
)
4559 obstack_init (&sym_cache
->cache_space
);
4560 memset (sym_cache
->root
, '\000', sizeof (sym_cache
->root
));
4563 /* Free the memory used by SYM_CACHE. */
4566 ada_free_symbol_cache (struct ada_symbol_cache
*sym_cache
)
4568 obstack_free (&sym_cache
->cache_space
, NULL
);
4572 /* Return the symbol cache associated to the given program space PSPACE.
4573 If not allocated for this PSPACE yet, allocate and initialize one. */
4575 static struct ada_symbol_cache
*
4576 ada_get_symbol_cache (struct program_space
*pspace
)
4578 struct ada_pspace_data
*pspace_data
= get_ada_pspace_data (pspace
);
4580 if (pspace_data
->sym_cache
== NULL
)
4582 pspace_data
->sym_cache
= XCNEW (struct ada_symbol_cache
);
4583 ada_init_symbol_cache (pspace_data
->sym_cache
);
4586 return pspace_data
->sym_cache
;
4589 /* Clear all entries from the symbol cache. */
4592 ada_clear_symbol_cache (void)
4594 struct ada_symbol_cache
*sym_cache
4595 = ada_get_symbol_cache (current_program_space
);
4597 obstack_free (&sym_cache
->cache_space
, NULL
);
4598 ada_init_symbol_cache (sym_cache
);
4601 /* Search our cache for an entry matching NAME and DOMAIN.
4602 Return it if found, or NULL otherwise. */
4604 static struct cache_entry
**
4605 find_entry (const char *name
, domain_enum domain
)
4607 struct ada_symbol_cache
*sym_cache
4608 = ada_get_symbol_cache (current_program_space
);
4609 int h
= msymbol_hash (name
) % HASH_SIZE
;
4610 struct cache_entry
**e
;
4612 for (e
= &sym_cache
->root
[h
]; *e
!= NULL
; e
= &(*e
)->next
)
4614 if (domain
== (*e
)->domain
&& strcmp (name
, (*e
)->name
) == 0)
4620 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4621 Return 1 if found, 0 otherwise.
4623 If an entry was found and SYM is not NULL, set *SYM to the entry's
4624 SYM. Same principle for BLOCK if not NULL. */
4627 lookup_cached_symbol (const char *name
, domain_enum domain
,
4628 struct symbol
**sym
, const struct block
**block
)
4630 struct cache_entry
**e
= find_entry (name
, domain
);
4637 *block
= (*e
)->block
;
4641 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4642 in domain DOMAIN, save this result in our symbol cache. */
4645 cache_symbol (const char *name
, domain_enum domain
, struct symbol
*sym
,
4646 const struct block
*block
)
4648 struct ada_symbol_cache
*sym_cache
4649 = ada_get_symbol_cache (current_program_space
);
4652 struct cache_entry
*e
;
4654 /* Symbols for builtin types don't have a block.
4655 For now don't cache such symbols. */
4656 if (sym
!= NULL
&& !SYMBOL_OBJFILE_OWNED (sym
))
4659 /* If the symbol is a local symbol, then do not cache it, as a search
4660 for that symbol depends on the context. To determine whether
4661 the symbol is local or not, we check the block where we found it
4662 against the global and static blocks of its associated symtab. */
4664 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym
)),
4665 GLOBAL_BLOCK
) != block
4666 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym
)),
4667 STATIC_BLOCK
) != block
)
4670 h
= msymbol_hash (name
) % HASH_SIZE
;
4671 e
= (struct cache_entry
*) obstack_alloc (&sym_cache
->cache_space
,
4673 e
->next
= sym_cache
->root
[h
];
4674 sym_cache
->root
[h
] = e
;
4676 = (char *) obstack_alloc (&sym_cache
->cache_space
, strlen (name
) + 1);
4677 strcpy (copy
, name
);
4685 /* Return nonzero if wild matching should be used when searching for
4686 all symbols matching LOOKUP_NAME.
4688 LOOKUP_NAME is expected to be a symbol name after transformation
4689 for Ada lookups (see ada_name_for_lookup). */
4692 should_use_wild_match (const char *lookup_name
)
4694 return (strstr (lookup_name
, "__") == NULL
);
4697 /* Return the result of a standard (literal, C-like) lookup of NAME in
4698 given DOMAIN, visible from lexical block BLOCK. */
4700 static struct symbol
*
4701 standard_lookup (const char *name
, const struct block
*block
,
4704 /* Initialize it just to avoid a GCC false warning. */
4705 struct block_symbol sym
= {NULL
, NULL
};
4707 if (lookup_cached_symbol (name
, domain
, &sym
.symbol
, NULL
))
4709 sym
= lookup_symbol_in_language (name
, block
, domain
, language_c
, 0);
4710 cache_symbol (name
, domain
, sym
.symbol
, sym
.block
);
4715 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4716 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4717 since they contend in overloading in the same way. */
4719 is_nonfunction (struct block_symbol syms
[], int n
)
4723 for (i
= 0; i
< n
; i
+= 1)
4724 if (TYPE_CODE (SYMBOL_TYPE (syms
[i
].symbol
)) != TYPE_CODE_FUNC
4725 && (TYPE_CODE (SYMBOL_TYPE (syms
[i
].symbol
)) != TYPE_CODE_ENUM
4726 || SYMBOL_CLASS (syms
[i
].symbol
) != LOC_CONST
))
4732 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4733 struct types. Otherwise, they may not. */
4736 equiv_types (struct type
*type0
, struct type
*type1
)
4740 if (type0
== NULL
|| type1
== NULL
4741 || TYPE_CODE (type0
) != TYPE_CODE (type1
))
4743 if ((TYPE_CODE (type0
) == TYPE_CODE_STRUCT
4744 || TYPE_CODE (type0
) == TYPE_CODE_ENUM
)
4745 && ada_type_name (type0
) != NULL
&& ada_type_name (type1
) != NULL
4746 && strcmp (ada_type_name (type0
), ada_type_name (type1
)) == 0)
4752 /* True iff SYM0 represents the same entity as SYM1, or one that is
4753 no more defined than that of SYM1. */
4756 lesseq_defined_than (struct symbol
*sym0
, struct symbol
*sym1
)
4760 if (SYMBOL_DOMAIN (sym0
) != SYMBOL_DOMAIN (sym1
)
4761 || SYMBOL_CLASS (sym0
) != SYMBOL_CLASS (sym1
))
4764 switch (SYMBOL_CLASS (sym0
))
4770 struct type
*type0
= SYMBOL_TYPE (sym0
);
4771 struct type
*type1
= SYMBOL_TYPE (sym1
);
4772 const char *name0
= SYMBOL_LINKAGE_NAME (sym0
);
4773 const char *name1
= SYMBOL_LINKAGE_NAME (sym1
);
4774 int len0
= strlen (name0
);
4777 TYPE_CODE (type0
) == TYPE_CODE (type1
)
4778 && (equiv_types (type0
, type1
)
4779 || (len0
< strlen (name1
) && strncmp (name0
, name1
, len0
) == 0
4780 && startswith (name1
+ len0
, "___XV")));
4783 return SYMBOL_VALUE (sym0
) == SYMBOL_VALUE (sym1
)
4784 && equiv_types (SYMBOL_TYPE (sym0
), SYMBOL_TYPE (sym1
));
4790 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4791 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4794 add_defn_to_vec (struct obstack
*obstackp
,
4796 const struct block
*block
)
4799 struct block_symbol
*prevDefns
= defns_collected (obstackp
, 0);
4801 /* Do not try to complete stub types, as the debugger is probably
4802 already scanning all symbols matching a certain name at the
4803 time when this function is called. Trying to replace the stub
4804 type by its associated full type will cause us to restart a scan
4805 which may lead to an infinite recursion. Instead, the client
4806 collecting the matching symbols will end up collecting several
4807 matches, with at least one of them complete. It can then filter
4808 out the stub ones if needed. */
4810 for (i
= num_defns_collected (obstackp
) - 1; i
>= 0; i
-= 1)
4812 if (lesseq_defined_than (sym
, prevDefns
[i
].symbol
))
4814 else if (lesseq_defined_than (prevDefns
[i
].symbol
, sym
))
4816 prevDefns
[i
].symbol
= sym
;
4817 prevDefns
[i
].block
= block
;
4823 struct block_symbol info
;
4827 obstack_grow (obstackp
, &info
, sizeof (struct block_symbol
));
4831 /* Number of block_symbol structures currently collected in current vector in
4835 num_defns_collected (struct obstack
*obstackp
)
4837 return obstack_object_size (obstackp
) / sizeof (struct block_symbol
);
4840 /* Vector of block_symbol structures currently collected in current vector in
4841 OBSTACKP. If FINISH, close off the vector and return its final address. */
4843 static struct block_symbol
*
4844 defns_collected (struct obstack
*obstackp
, int finish
)
4847 return (struct block_symbol
*) obstack_finish (obstackp
);
4849 return (struct block_symbol
*) obstack_base (obstackp
);
4852 /* Return a bound minimal symbol matching NAME according to Ada
4853 decoding rules. Returns an invalid symbol if there is no such
4854 minimal symbol. Names prefixed with "standard__" are handled
4855 specially: "standard__" is first stripped off, and only static and
4856 global symbols are searched. */
4858 struct bound_minimal_symbol
4859 ada_lookup_simple_minsym (const char *name
)
4861 struct bound_minimal_symbol result
;
4862 struct objfile
*objfile
;
4863 struct minimal_symbol
*msymbol
;
4864 const int wild_match_p
= should_use_wild_match (name
);
4866 memset (&result
, 0, sizeof (result
));
4868 /* Special case: If the user specifies a symbol name inside package
4869 Standard, do a non-wild matching of the symbol name without
4870 the "standard__" prefix. This was primarily introduced in order
4871 to allow the user to specifically access the standard exceptions
4872 using, for instance, Standard.Constraint_Error when Constraint_Error
4873 is ambiguous (due to the user defining its own Constraint_Error
4874 entity inside its program). */
4875 if (startswith (name
, "standard__"))
4876 name
+= sizeof ("standard__") - 1;
4878 ALL_MSYMBOLS (objfile
, msymbol
)
4880 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol
), name
, wild_match_p
)
4881 && MSYMBOL_TYPE (msymbol
) != mst_solib_trampoline
)
4883 result
.minsym
= msymbol
;
4884 result
.objfile
= objfile
;
4892 /* For all subprograms that statically enclose the subprogram of the
4893 selected frame, add symbols matching identifier NAME in DOMAIN
4894 and their blocks to the list of data in OBSTACKP, as for
4895 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4896 with a wildcard prefix. */
4899 add_symbols_from_enclosing_procs (struct obstack
*obstackp
,
4900 const char *name
, domain_enum domain
,
4905 /* True if TYPE is definitely an artificial type supplied to a symbol
4906 for which no debugging information was given in the symbol file. */
4909 is_nondebugging_type (struct type
*type
)
4911 const char *name
= ada_type_name (type
);
4913 return (name
!= NULL
&& strcmp (name
, "<variable, no debug info>") == 0);
4916 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4917 that are deemed "identical" for practical purposes.
4919 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4920 types and that their number of enumerals is identical (in other
4921 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4924 ada_identical_enum_types_p (struct type
*type1
, struct type
*type2
)
4928 /* The heuristic we use here is fairly conservative. We consider
4929 that 2 enumerate types are identical if they have the same
4930 number of enumerals and that all enumerals have the same
4931 underlying value and name. */
4933 /* All enums in the type should have an identical underlying value. */
4934 for (i
= 0; i
< TYPE_NFIELDS (type1
); i
++)
4935 if (TYPE_FIELD_ENUMVAL (type1
, i
) != TYPE_FIELD_ENUMVAL (type2
, i
))
4938 /* All enumerals should also have the same name (modulo any numerical
4940 for (i
= 0; i
< TYPE_NFIELDS (type1
); i
++)
4942 const char *name_1
= TYPE_FIELD_NAME (type1
, i
);
4943 const char *name_2
= TYPE_FIELD_NAME (type2
, i
);
4944 int len_1
= strlen (name_1
);
4945 int len_2
= strlen (name_2
);
4947 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1
, i
), &len_1
);
4948 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2
, i
), &len_2
);
4950 || strncmp (TYPE_FIELD_NAME (type1
, i
),
4951 TYPE_FIELD_NAME (type2
, i
),
4959 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4960 that are deemed "identical" for practical purposes. Sometimes,
4961 enumerals are not strictly identical, but their types are so similar
4962 that they can be considered identical.
4964 For instance, consider the following code:
4966 type Color is (Black, Red, Green, Blue, White);
4967 type RGB_Color is new Color range Red .. Blue;
4969 Type RGB_Color is a subrange of an implicit type which is a copy
4970 of type Color. If we call that implicit type RGB_ColorB ("B" is
4971 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4972 As a result, when an expression references any of the enumeral
4973 by name (Eg. "print green"), the expression is technically
4974 ambiguous and the user should be asked to disambiguate. But
4975 doing so would only hinder the user, since it wouldn't matter
4976 what choice he makes, the outcome would always be the same.
4977 So, for practical purposes, we consider them as the same. */
4980 symbols_are_identical_enums (struct block_symbol
*syms
, int nsyms
)
4984 /* Before performing a thorough comparison check of each type,
4985 we perform a series of inexpensive checks. We expect that these
4986 checks will quickly fail in the vast majority of cases, and thus
4987 help prevent the unnecessary use of a more expensive comparison.
4988 Said comparison also expects us to make some of these checks
4989 (see ada_identical_enum_types_p). */
4991 /* Quick check: All symbols should have an enum type. */
4992 for (i
= 0; i
< nsyms
; i
++)
4993 if (TYPE_CODE (SYMBOL_TYPE (syms
[i
].symbol
)) != TYPE_CODE_ENUM
)
4996 /* Quick check: They should all have the same value. */
4997 for (i
= 1; i
< nsyms
; i
++)
4998 if (SYMBOL_VALUE (syms
[i
].symbol
) != SYMBOL_VALUE (syms
[0].symbol
))
5001 /* Quick check: They should all have the same number of enumerals. */
5002 for (i
= 1; i
< nsyms
; i
++)
5003 if (TYPE_NFIELDS (SYMBOL_TYPE (syms
[i
].symbol
))
5004 != TYPE_NFIELDS (SYMBOL_TYPE (syms
[0].symbol
)))
5007 /* All the sanity checks passed, so we might have a set of
5008 identical enumeration types. Perform a more complete
5009 comparison of the type of each symbol. */
5010 for (i
= 1; i
< nsyms
; i
++)
5011 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms
[i
].symbol
),
5012 SYMBOL_TYPE (syms
[0].symbol
)))
5018 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5019 duplicate other symbols in the list (The only case I know of where
5020 this happens is when object files containing stabs-in-ecoff are
5021 linked with files containing ordinary ecoff debugging symbols (or no
5022 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5023 Returns the number of items in the modified list. */
5026 remove_extra_symbols (struct block_symbol
*syms
, int nsyms
)
5030 /* We should never be called with less than 2 symbols, as there
5031 cannot be any extra symbol in that case. But it's easy to
5032 handle, since we have nothing to do in that case. */
5041 /* If two symbols have the same name and one of them is a stub type,
5042 the get rid of the stub. */
5044 if (TYPE_STUB (SYMBOL_TYPE (syms
[i
].symbol
))
5045 && SYMBOL_LINKAGE_NAME (syms
[i
].symbol
) != NULL
)
5047 for (j
= 0; j
< nsyms
; j
++)
5050 && !TYPE_STUB (SYMBOL_TYPE (syms
[j
].symbol
))
5051 && SYMBOL_LINKAGE_NAME (syms
[j
].symbol
) != NULL
5052 && strcmp (SYMBOL_LINKAGE_NAME (syms
[i
].symbol
),
5053 SYMBOL_LINKAGE_NAME (syms
[j
].symbol
)) == 0)
5058 /* Two symbols with the same name, same class and same address
5059 should be identical. */
5061 else if (SYMBOL_LINKAGE_NAME (syms
[i
].symbol
) != NULL
5062 && SYMBOL_CLASS (syms
[i
].symbol
) == LOC_STATIC
5063 && is_nondebugging_type (SYMBOL_TYPE (syms
[i
].symbol
)))
5065 for (j
= 0; j
< nsyms
; j
+= 1)
5068 && SYMBOL_LINKAGE_NAME (syms
[j
].symbol
) != NULL
5069 && strcmp (SYMBOL_LINKAGE_NAME (syms
[i
].symbol
),
5070 SYMBOL_LINKAGE_NAME (syms
[j
].symbol
)) == 0
5071 && SYMBOL_CLASS (syms
[i
].symbol
)
5072 == SYMBOL_CLASS (syms
[j
].symbol
)
5073 && SYMBOL_VALUE_ADDRESS (syms
[i
].symbol
)
5074 == SYMBOL_VALUE_ADDRESS (syms
[j
].symbol
))
5081 for (j
= i
+ 1; j
< nsyms
; j
+= 1)
5082 syms
[j
- 1] = syms
[j
];
5089 /* If all the remaining symbols are identical enumerals, then
5090 just keep the first one and discard the rest.
5092 Unlike what we did previously, we do not discard any entry
5093 unless they are ALL identical. This is because the symbol
5094 comparison is not a strict comparison, but rather a practical
5095 comparison. If all symbols are considered identical, then
5096 we can just go ahead and use the first one and discard the rest.
5097 But if we cannot reduce the list to a single element, we have
5098 to ask the user to disambiguate anyways. And if we have to
5099 present a multiple-choice menu, it's less confusing if the list
5100 isn't missing some choices that were identical and yet distinct. */
5101 if (symbols_are_identical_enums (syms
, nsyms
))
5107 /* Given a type that corresponds to a renaming entity, use the type name
5108 to extract the scope (package name or function name, fully qualified,
5109 and following the GNAT encoding convention) where this renaming has been
5110 defined. The string returned needs to be deallocated after use. */
5113 xget_renaming_scope (struct type
*renaming_type
)
5115 /* The renaming types adhere to the following convention:
5116 <scope>__<rename>___<XR extension>.
5117 So, to extract the scope, we search for the "___XR" extension,
5118 and then backtrack until we find the first "__". */
5120 const char *name
= type_name_no_tag (renaming_type
);
5121 const char *suffix
= strstr (name
, "___XR");
5126 /* Now, backtrack a bit until we find the first "__". Start looking
5127 at suffix - 3, as the <rename> part is at least one character long. */
5129 for (last
= suffix
- 3; last
> name
; last
--)
5130 if (last
[0] == '_' && last
[1] == '_')
5133 /* Make a copy of scope and return it. */
5135 scope_len
= last
- name
;
5136 scope
= (char *) xmalloc ((scope_len
+ 1) * sizeof (char));
5138 strncpy (scope
, name
, scope_len
);
5139 scope
[scope_len
] = '\0';
5144 /* Return nonzero if NAME corresponds to a package name. */
5147 is_package_name (const char *name
)
5149 /* Here, We take advantage of the fact that no symbols are generated
5150 for packages, while symbols are generated for each function.
5151 So the condition for NAME represent a package becomes equivalent
5152 to NAME not existing in our list of symbols. There is only one
5153 small complication with library-level functions (see below). */
5157 /* If it is a function that has not been defined at library level,
5158 then we should be able to look it up in the symbols. */
5159 if (standard_lookup (name
, NULL
, VAR_DOMAIN
) != NULL
)
5162 /* Library-level function names start with "_ada_". See if function
5163 "_ada_" followed by NAME can be found. */
5165 /* Do a quick check that NAME does not contain "__", since library-level
5166 functions names cannot contain "__" in them. */
5167 if (strstr (name
, "__") != NULL
)
5170 fun_name
= xstrprintf ("_ada_%s", name
);
5172 return (standard_lookup (fun_name
, NULL
, VAR_DOMAIN
) == NULL
);
5175 /* Return nonzero if SYM corresponds to a renaming entity that is
5176 not visible from FUNCTION_NAME. */
5179 old_renaming_is_invisible (const struct symbol
*sym
, const char *function_name
)
5182 struct cleanup
*old_chain
;
5184 if (SYMBOL_CLASS (sym
) != LOC_TYPEDEF
)
5187 scope
= xget_renaming_scope (SYMBOL_TYPE (sym
));
5188 old_chain
= make_cleanup (xfree
, scope
);
5190 /* If the rename has been defined in a package, then it is visible. */
5191 if (is_package_name (scope
))
5193 do_cleanups (old_chain
);
5197 /* Check that the rename is in the current function scope by checking
5198 that its name starts with SCOPE. */
5200 /* If the function name starts with "_ada_", it means that it is
5201 a library-level function. Strip this prefix before doing the
5202 comparison, as the encoding for the renaming does not contain
5204 if (startswith (function_name
, "_ada_"))
5208 int is_invisible
= !startswith (function_name
, scope
);
5210 do_cleanups (old_chain
);
5211 return is_invisible
;
5215 /* Remove entries from SYMS that corresponds to a renaming entity that
5216 is not visible from the function associated with CURRENT_BLOCK or
5217 that is superfluous due to the presence of more specific renaming
5218 information. Places surviving symbols in the initial entries of
5219 SYMS and returns the number of surviving symbols.
5222 First, in cases where an object renaming is implemented as a
5223 reference variable, GNAT may produce both the actual reference
5224 variable and the renaming encoding. In this case, we discard the
5227 Second, GNAT emits a type following a specified encoding for each renaming
5228 entity. Unfortunately, STABS currently does not support the definition
5229 of types that are local to a given lexical block, so all renamings types
5230 are emitted at library level. As a consequence, if an application
5231 contains two renaming entities using the same name, and a user tries to
5232 print the value of one of these entities, the result of the ada symbol
5233 lookup will also contain the wrong renaming type.
5235 This function partially covers for this limitation by attempting to
5236 remove from the SYMS list renaming symbols that should be visible
5237 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5238 method with the current information available. The implementation
5239 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5241 - When the user tries to print a rename in a function while there
5242 is another rename entity defined in a package: Normally, the
5243 rename in the function has precedence over the rename in the
5244 package, so the latter should be removed from the list. This is
5245 currently not the case.
5247 - This function will incorrectly remove valid renames if
5248 the CURRENT_BLOCK corresponds to a function which symbol name
5249 has been changed by an "Export" pragma. As a consequence,
5250 the user will be unable to print such rename entities. */
5253 remove_irrelevant_renamings (struct block_symbol
*syms
,
5254 int nsyms
, const struct block
*current_block
)
5256 struct symbol
*current_function
;
5257 const char *current_function_name
;
5259 int is_new_style_renaming
;
5261 /* If there is both a renaming foo___XR... encoded as a variable and
5262 a simple variable foo in the same block, discard the latter.
5263 First, zero out such symbols, then compress. */
5264 is_new_style_renaming
= 0;
5265 for (i
= 0; i
< nsyms
; i
+= 1)
5267 struct symbol
*sym
= syms
[i
].symbol
;
5268 const struct block
*block
= syms
[i
].block
;
5272 if (sym
== NULL
|| SYMBOL_CLASS (sym
) == LOC_TYPEDEF
)
5274 name
= SYMBOL_LINKAGE_NAME (sym
);
5275 suffix
= strstr (name
, "___XR");
5279 int name_len
= suffix
- name
;
5282 is_new_style_renaming
= 1;
5283 for (j
= 0; j
< nsyms
; j
+= 1)
5284 if (i
!= j
&& syms
[j
].symbol
!= NULL
5285 && strncmp (name
, SYMBOL_LINKAGE_NAME (syms
[j
].symbol
),
5287 && block
== syms
[j
].block
)
5288 syms
[j
].symbol
= NULL
;
5291 if (is_new_style_renaming
)
5295 for (j
= k
= 0; j
< nsyms
; j
+= 1)
5296 if (syms
[j
].symbol
!= NULL
)
5304 /* Extract the function name associated to CURRENT_BLOCK.
5305 Abort if unable to do so. */
5307 if (current_block
== NULL
)
5310 current_function
= block_linkage_function (current_block
);
5311 if (current_function
== NULL
)
5314 current_function_name
= SYMBOL_LINKAGE_NAME (current_function
);
5315 if (current_function_name
== NULL
)
5318 /* Check each of the symbols, and remove it from the list if it is
5319 a type corresponding to a renaming that is out of the scope of
5320 the current block. */
5325 if (ada_parse_renaming (syms
[i
].symbol
, NULL
, NULL
, NULL
)
5326 == ADA_OBJECT_RENAMING
5327 && old_renaming_is_invisible (syms
[i
].symbol
, current_function_name
))
5331 for (j
= i
+ 1; j
< nsyms
; j
+= 1)
5332 syms
[j
- 1] = syms
[j
];
5342 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5343 whose name and domain match NAME and DOMAIN respectively.
5344 If no match was found, then extend the search to "enclosing"
5345 routines (in other words, if we're inside a nested function,
5346 search the symbols defined inside the enclosing functions).
5347 If WILD_MATCH_P is nonzero, perform the naming matching in
5348 "wild" mode (see function "wild_match" for more info).
5350 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5353 ada_add_local_symbols (struct obstack
*obstackp
, const char *name
,
5354 const struct block
*block
, domain_enum domain
,
5357 int block_depth
= 0;
5359 while (block
!= NULL
)
5362 ada_add_block_symbols (obstackp
, block
, name
, domain
, NULL
,
5365 /* If we found a non-function match, assume that's the one. */
5366 if (is_nonfunction (defns_collected (obstackp
, 0),
5367 num_defns_collected (obstackp
)))
5370 block
= BLOCK_SUPERBLOCK (block
);
5373 /* If no luck so far, try to find NAME as a local symbol in some lexically
5374 enclosing subprogram. */
5375 if (num_defns_collected (obstackp
) == 0 && block_depth
> 2)
5376 add_symbols_from_enclosing_procs (obstackp
, name
, domain
, wild_match_p
);
5379 /* An object of this type is used as the user_data argument when
5380 calling the map_matching_symbols method. */
5384 struct objfile
*objfile
;
5385 struct obstack
*obstackp
;
5386 struct symbol
*arg_sym
;
5390 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5391 to a list of symbols. DATA0 is a pointer to a struct match_data *
5392 containing the obstack that collects the symbol list, the file that SYM
5393 must come from, a flag indicating whether a non-argument symbol has
5394 been found in the current block, and the last argument symbol
5395 passed in SYM within the current block (if any). When SYM is null,
5396 marking the end of a block, the argument symbol is added if no
5397 other has been found. */
5400 aux_add_nonlocal_symbols (struct block
*block
, struct symbol
*sym
, void *data0
)
5402 struct match_data
*data
= (struct match_data
*) data0
;
5406 if (!data
->found_sym
&& data
->arg_sym
!= NULL
)
5407 add_defn_to_vec (data
->obstackp
,
5408 fixup_symbol_section (data
->arg_sym
, data
->objfile
),
5410 data
->found_sym
= 0;
5411 data
->arg_sym
= NULL
;
5415 if (SYMBOL_CLASS (sym
) == LOC_UNRESOLVED
)
5417 else if (SYMBOL_IS_ARGUMENT (sym
))
5418 data
->arg_sym
= sym
;
5421 data
->found_sym
= 1;
5422 add_defn_to_vec (data
->obstackp
,
5423 fixup_symbol_section (sym
, data
->objfile
),
5430 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5431 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5432 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5433 function "wild_match" for more information). Return whether we found such
5437 ada_add_block_renamings (struct obstack
*obstackp
,
5438 const struct block
*block
,
5443 struct using_direct
*renaming
;
5444 int defns_mark
= num_defns_collected (obstackp
);
5446 for (renaming
= block_using (block
);
5448 renaming
= renaming
->next
)
5453 /* Avoid infinite recursions: skip this renaming if we are actually
5454 already traversing it.
5456 Currently, symbol lookup in Ada don't use the namespace machinery from
5457 C++/Fortran support: skip namespace imports that use them. */
5458 if (renaming
->searched
5459 || (renaming
->import_src
!= NULL
5460 && renaming
->import_src
[0] != '\0')
5461 || (renaming
->import_dest
!= NULL
5462 && renaming
->import_dest
[0] != '\0'))
5464 renaming
->searched
= 1;
5466 /* TODO: here, we perform another name-based symbol lookup, which can
5467 pull its own multiple overloads. In theory, we should be able to do
5468 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5469 not a simple name. But in order to do this, we would need to enhance
5470 the DWARF reader to associate a symbol to this renaming, instead of a
5471 name. So, for now, we do something simpler: re-use the C++/Fortran
5472 namespace machinery. */
5473 r_name
= (renaming
->alias
!= NULL
5475 : renaming
->declaration
);
5477 = wild_match_p
? wild_match (r_name
, name
) : strcmp (r_name
, name
);
5478 if (name_match
== 0)
5479 ada_add_all_symbols (obstackp
, block
, renaming
->declaration
, domain
,
5481 renaming
->searched
= 0;
5483 return num_defns_collected (obstackp
) != defns_mark
;
5486 /* Implements compare_names, but only applying the comparision using
5487 the given CASING. */
5490 compare_names_with_case (const char *string1
, const char *string2
,
5491 enum case_sensitivity casing
)
5493 while (*string1
!= '\0' && *string2
!= '\0')
5497 if (isspace (*string1
) || isspace (*string2
))
5498 return strcmp_iw_ordered (string1
, string2
);
5500 if (casing
== case_sensitive_off
)
5502 c1
= tolower (*string1
);
5503 c2
= tolower (*string2
);
5520 return strcmp_iw_ordered (string1
, string2
);
5522 if (*string2
== '\0')
5524 if (is_name_suffix (string1
))
5531 if (*string2
== '(')
5532 return strcmp_iw_ordered (string1
, string2
);
5535 if (casing
== case_sensitive_off
)
5536 return tolower (*string1
) - tolower (*string2
);
5538 return *string1
- *string2
;
5543 /* Compare STRING1 to STRING2, with results as for strcmp.
5544 Compatible with strcmp_iw_ordered in that...
5546 strcmp_iw_ordered (STRING1, STRING2) <= 0
5550 compare_names (STRING1, STRING2) <= 0
5552 (they may differ as to what symbols compare equal). */
5555 compare_names (const char *string1
, const char *string2
)
5559 /* Similar to what strcmp_iw_ordered does, we need to perform
5560 a case-insensitive comparison first, and only resort to
5561 a second, case-sensitive, comparison if the first one was
5562 not sufficient to differentiate the two strings. */
5564 result
= compare_names_with_case (string1
, string2
, case_sensitive_off
);
5566 result
= compare_names_with_case (string1
, string2
, case_sensitive_on
);
5571 /* Add to OBSTACKP all non-local symbols whose name and domain match
5572 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5573 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5576 add_nonlocal_symbols (struct obstack
*obstackp
, const char *name
,
5577 domain_enum domain
, int global
,
5580 struct objfile
*objfile
;
5581 struct compunit_symtab
*cu
;
5582 struct match_data data
;
5584 memset (&data
, 0, sizeof data
);
5585 data
.obstackp
= obstackp
;
5587 ALL_OBJFILES (objfile
)
5589 data
.objfile
= objfile
;
5592 objfile
->sf
->qf
->map_matching_symbols (objfile
, name
, domain
, global
,
5593 aux_add_nonlocal_symbols
, &data
,
5596 objfile
->sf
->qf
->map_matching_symbols (objfile
, name
, domain
, global
,
5597 aux_add_nonlocal_symbols
, &data
,
5598 full_match
, compare_names
);
5600 ALL_OBJFILE_COMPUNITS (objfile
, cu
)
5602 const struct block
*global_block
5603 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu
), GLOBAL_BLOCK
);
5605 if (ada_add_block_renamings (obstackp
, global_block
, name
, domain
,
5611 if (num_defns_collected (obstackp
) == 0 && global
&& !is_wild_match
)
5613 ALL_OBJFILES (objfile
)
5615 char *name1
= (char *) alloca (strlen (name
) + sizeof ("_ada_"));
5616 strcpy (name1
, "_ada_");
5617 strcpy (name1
+ sizeof ("_ada_") - 1, name
);
5618 data
.objfile
= objfile
;
5619 objfile
->sf
->qf
->map_matching_symbols (objfile
, name1
, domain
,
5621 aux_add_nonlocal_symbols
,
5623 full_match
, compare_names
);
5628 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
5629 non-zero, enclosing scope and in global scopes, returning the number of
5630 matches. Add these to OBSTACKP.
5632 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5633 symbol match within the nest of blocks whose innermost member is BLOCK,
5634 is the one match returned (no other matches in that or
5635 enclosing blocks is returned). If there are any matches in or
5636 surrounding BLOCK, then these alone are returned.
5638 Names prefixed with "standard__" are handled specially: "standard__"
5639 is first stripped off, and only static and global symbols are searched.
5641 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5642 to lookup global symbols. */
5645 ada_add_all_symbols (struct obstack
*obstackp
,
5646 const struct block
*block
,
5650 int *made_global_lookup_p
)
5653 const int wild_match_p
= should_use_wild_match (name
);
5655 if (made_global_lookup_p
)
5656 *made_global_lookup_p
= 0;
5658 /* Special case: If the user specifies a symbol name inside package
5659 Standard, do a non-wild matching of the symbol name without
5660 the "standard__" prefix. This was primarily introduced in order
5661 to allow the user to specifically access the standard exceptions
5662 using, for instance, Standard.Constraint_Error when Constraint_Error
5663 is ambiguous (due to the user defining its own Constraint_Error
5664 entity inside its program). */
5665 if (startswith (name
, "standard__"))
5668 name
= name
+ sizeof ("standard__") - 1;
5671 /* Check the non-global symbols. If we have ANY match, then we're done. */
5676 ada_add_local_symbols (obstackp
, name
, block
, domain
, wild_match_p
);
5679 /* In the !full_search case we're are being called by
5680 ada_iterate_over_symbols, and we don't want to search
5682 ada_add_block_symbols (obstackp
, block
, name
, domain
, NULL
,
5685 if (num_defns_collected (obstackp
) > 0 || !full_search
)
5689 /* No non-global symbols found. Check our cache to see if we have
5690 already performed this search before. If we have, then return
5693 if (lookup_cached_symbol (name
, domain
, &sym
, &block
))
5696 add_defn_to_vec (obstackp
, sym
, block
);
5700 if (made_global_lookup_p
)
5701 *made_global_lookup_p
= 1;
5703 /* Search symbols from all global blocks. */
5705 add_nonlocal_symbols (obstackp
, name
, domain
, 1, wild_match_p
);
5707 /* Now add symbols from all per-file blocks if we've gotten no hits
5708 (not strictly correct, but perhaps better than an error). */
5710 if (num_defns_collected (obstackp
) == 0)
5711 add_nonlocal_symbols (obstackp
, name
, domain
, 0, wild_match_p
);
5714 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5715 non-zero, enclosing scope and in global scopes, returning the number of
5717 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5718 indicating the symbols found and the blocks and symbol tables (if
5719 any) in which they were found. This vector is transient---good only to
5720 the next call of ada_lookup_symbol_list.
5722 When full_search is non-zero, any non-function/non-enumeral
5723 symbol match within the nest of blocks whose innermost member is BLOCK,
5724 is the one match returned (no other matches in that or
5725 enclosing blocks is returned). If there are any matches in or
5726 surrounding BLOCK, then these alone are returned.
5728 Names prefixed with "standard__" are handled specially: "standard__"
5729 is first stripped off, and only static and global symbols are searched. */
5732 ada_lookup_symbol_list_worker (const char *name
, const struct block
*block
,
5734 struct block_symbol
**results
,
5737 const int wild_match_p
= should_use_wild_match (name
);
5738 int syms_from_global_search
;
5741 obstack_free (&symbol_list_obstack
, NULL
);
5742 obstack_init (&symbol_list_obstack
);
5743 ada_add_all_symbols (&symbol_list_obstack
, block
, name
, domain
,
5744 full_search
, &syms_from_global_search
);
5746 ndefns
= num_defns_collected (&symbol_list_obstack
);
5747 *results
= defns_collected (&symbol_list_obstack
, 1);
5749 ndefns
= remove_extra_symbols (*results
, ndefns
);
5751 if (ndefns
== 0 && full_search
&& syms_from_global_search
)
5752 cache_symbol (name
, domain
, NULL
, NULL
);
5754 if (ndefns
== 1 && full_search
&& syms_from_global_search
)
5755 cache_symbol (name
, domain
, (*results
)[0].symbol
, (*results
)[0].block
);
5757 ndefns
= remove_irrelevant_renamings (*results
, ndefns
, block
);
5761 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5762 in global scopes, returning the number of matches, and setting *RESULTS
5763 to a vector of (SYM,BLOCK) tuples.
5764 See ada_lookup_symbol_list_worker for further details. */
5767 ada_lookup_symbol_list (const char *name0
, const struct block
*block0
,
5768 domain_enum domain
, struct block_symbol
**results
)
5770 return ada_lookup_symbol_list_worker (name0
, block0
, domain
, results
, 1);
5773 /* Implementation of the la_iterate_over_symbols method. */
5776 ada_iterate_over_symbols (const struct block
*block
,
5777 const char *name
, domain_enum domain
,
5778 symbol_found_callback_ftype
*callback
,
5782 struct block_symbol
*results
;
5784 ndefs
= ada_lookup_symbol_list_worker (name
, block
, domain
, &results
, 0);
5785 for (i
= 0; i
< ndefs
; ++i
)
5787 if (! (*callback
) (results
[i
].symbol
, data
))
5792 /* If NAME is the name of an entity, return a string that should
5793 be used to look that entity up in Ada units. This string should
5794 be deallocated after use using xfree.
5796 NAME can have any form that the "break" or "print" commands might
5797 recognize. In other words, it does not have to be the "natural"
5798 name, or the "encoded" name. */
5801 ada_name_for_lookup (const char *name
)
5804 int nlen
= strlen (name
);
5806 if (name
[0] == '<' && name
[nlen
- 1] == '>')
5808 canon
= (char *) xmalloc (nlen
- 1);
5809 memcpy (canon
, name
+ 1, nlen
- 2);
5810 canon
[nlen
- 2] = '\0';
5813 canon
= xstrdup (ada_encode (ada_fold_name (name
)));
5817 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5818 to 1, but choosing the first symbol found if there are multiple
5821 The result is stored in *INFO, which must be non-NULL.
5822 If no match is found, INFO->SYM is set to NULL. */
5825 ada_lookup_encoded_symbol (const char *name
, const struct block
*block
,
5827 struct block_symbol
*info
)
5829 struct block_symbol
*candidates
;
5832 gdb_assert (info
!= NULL
);
5833 memset (info
, 0, sizeof (struct block_symbol
));
5835 n_candidates
= ada_lookup_symbol_list (name
, block
, domain
, &candidates
);
5836 if (n_candidates
== 0)
5839 *info
= candidates
[0];
5840 info
->symbol
= fixup_symbol_section (info
->symbol
, NULL
);
5843 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5844 scope and in global scopes, or NULL if none. NAME is folded and
5845 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5846 choosing the first symbol if there are multiple choices.
5847 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5850 ada_lookup_symbol (const char *name
, const struct block
*block0
,
5851 domain_enum domain
, int *is_a_field_of_this
)
5853 struct block_symbol info
;
5855 if (is_a_field_of_this
!= NULL
)
5856 *is_a_field_of_this
= 0;
5858 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name
)),
5859 block0
, domain
, &info
);
5863 static struct block_symbol
5864 ada_lookup_symbol_nonlocal (const struct language_defn
*langdef
,
5866 const struct block
*block
,
5867 const domain_enum domain
)
5869 struct block_symbol sym
;
5871 sym
= ada_lookup_symbol (name
, block_static_block (block
), domain
, NULL
);
5872 if (sym
.symbol
!= NULL
)
5875 /* If we haven't found a match at this point, try the primitive
5876 types. In other languages, this search is performed before
5877 searching for global symbols in order to short-circuit that
5878 global-symbol search if it happens that the name corresponds
5879 to a primitive type. But we cannot do the same in Ada, because
5880 it is perfectly legitimate for a program to declare a type which
5881 has the same name as a standard type. If looking up a type in
5882 that situation, we have traditionally ignored the primitive type
5883 in favor of user-defined types. This is why, unlike most other
5884 languages, we search the primitive types this late and only after
5885 having searched the global symbols without success. */
5887 if (domain
== VAR_DOMAIN
)
5889 struct gdbarch
*gdbarch
;
5892 gdbarch
= target_gdbarch ();
5894 gdbarch
= block_gdbarch (block
);
5895 sym
.symbol
= language_lookup_primitive_type_as_symbol (langdef
, gdbarch
, name
);
5896 if (sym
.symbol
!= NULL
)
5900 return (struct block_symbol
) {NULL
, NULL
};
5904 /* True iff STR is a possible encoded suffix of a normal Ada name
5905 that is to be ignored for matching purposes. Suffixes of parallel
5906 names (e.g., XVE) are not included here. Currently, the possible suffixes
5907 are given by any of the regular expressions:
5909 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5910 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5911 TKB [subprogram suffix for task bodies]
5912 _E[0-9]+[bs]$ [protected object entry suffixes]
5913 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5915 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5916 match is performed. This sequence is used to differentiate homonyms,
5917 is an optional part of a valid name suffix. */
5920 is_name_suffix (const char *str
)
5923 const char *matching
;
5924 const int len
= strlen (str
);
5926 /* Skip optional leading __[0-9]+. */
5928 if (len
> 3 && str
[0] == '_' && str
[1] == '_' && isdigit (str
[2]))
5931 while (isdigit (str
[0]))
5937 if (str
[0] == '.' || str
[0] == '$')
5940 while (isdigit (matching
[0]))
5942 if (matching
[0] == '\0')
5948 if (len
> 3 && str
[0] == '_' && str
[1] == '_' && str
[2] == '_')
5951 while (isdigit (matching
[0]))
5953 if (matching
[0] == '\0')
5957 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5959 if (strcmp (str
, "TKB") == 0)
5963 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5964 with a N at the end. Unfortunately, the compiler uses the same
5965 convention for other internal types it creates. So treating
5966 all entity names that end with an "N" as a name suffix causes
5967 some regressions. For instance, consider the case of an enumerated
5968 type. To support the 'Image attribute, it creates an array whose
5970 Having a single character like this as a suffix carrying some
5971 information is a bit risky. Perhaps we should change the encoding
5972 to be something like "_N" instead. In the meantime, do not do
5973 the following check. */
5974 /* Protected Object Subprograms */
5975 if (len
== 1 && str
[0] == 'N')
5980 if (len
> 3 && str
[0] == '_' && str
[1] == 'E' && isdigit (str
[2]))
5983 while (isdigit (matching
[0]))
5985 if ((matching
[0] == 'b' || matching
[0] == 's')
5986 && matching
[1] == '\0')
5990 /* ??? We should not modify STR directly, as we are doing below. This
5991 is fine in this case, but may become problematic later if we find
5992 that this alternative did not work, and want to try matching
5993 another one from the begining of STR. Since we modified it, we
5994 won't be able to find the begining of the string anymore! */
5998 while (str
[0] != '_' && str
[0] != '\0')
6000 if (str
[0] != 'n' && str
[0] != 'b')
6006 if (str
[0] == '\000')
6011 if (str
[1] != '_' || str
[2] == '\000')
6015 if (strcmp (str
+ 3, "JM") == 0)
6017 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6018 the LJM suffix in favor of the JM one. But we will
6019 still accept LJM as a valid suffix for a reasonable
6020 amount of time, just to allow ourselves to debug programs
6021 compiled using an older version of GNAT. */
6022 if (strcmp (str
+ 3, "LJM") == 0)
6026 if (str
[4] == 'F' || str
[4] == 'D' || str
[4] == 'B'
6027 || str
[4] == 'U' || str
[4] == 'P')
6029 if (str
[4] == 'R' && str
[5] != 'T')
6033 if (!isdigit (str
[2]))
6035 for (k
= 3; str
[k
] != '\0'; k
+= 1)
6036 if (!isdigit (str
[k
]) && str
[k
] != '_')
6040 if (str
[0] == '$' && isdigit (str
[1]))
6042 for (k
= 2; str
[k
] != '\0'; k
+= 1)
6043 if (!isdigit (str
[k
]) && str
[k
] != '_')
6050 /* Return non-zero if the string starting at NAME and ending before
6051 NAME_END contains no capital letters. */
6054 is_valid_name_for_wild_match (const char *name0
)
6056 const char *decoded_name
= ada_decode (name0
);
6059 /* If the decoded name starts with an angle bracket, it means that
6060 NAME0 does not follow the GNAT encoding format. It should then
6061 not be allowed as a possible wild match. */
6062 if (decoded_name
[0] == '<')
6065 for (i
=0; decoded_name
[i
] != '\0'; i
++)
6066 if (isalpha (decoded_name
[i
]) && !islower (decoded_name
[i
]))
6072 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6073 that could start a simple name. Assumes that *NAMEP points into
6074 the string beginning at NAME0. */
6077 advance_wild_match (const char **namep
, const char *name0
, int target0
)
6079 const char *name
= *namep
;
6089 if ((t1
>= 'a' && t1
<= 'z') || (t1
>= '0' && t1
<= '9'))
6092 if (name
== name0
+ 5 && startswith (name0
, "_ada"))
6097 else if (t1
== '_' && ((name
[2] >= 'a' && name
[2] <= 'z')
6098 || name
[2] == target0
))
6106 else if ((t0
>= 'a' && t0
<= 'z') || (t0
>= '0' && t0
<= '9'))
6116 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6117 informational suffixes of NAME (i.e., for which is_name_suffix is
6118 true). Assumes that PATN is a lower-cased Ada simple name. */
6121 wild_match (const char *name
, const char *patn
)
6124 const char *name0
= name
;
6128 const char *match
= name
;
6132 for (name
+= 1, p
= patn
+ 1; *p
!= '\0'; name
+= 1, p
+= 1)
6135 if (*p
== '\0' && is_name_suffix (name
))
6136 return match
!= name0
&& !is_valid_name_for_wild_match (name0
);
6138 if (name
[-1] == '_')
6141 if (!advance_wild_match (&name
, name0
, *patn
))
6146 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6147 informational suffix. */
6150 full_match (const char *sym_name
, const char *search_name
)
6152 return !match_name (sym_name
, search_name
, 0);
6156 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6157 vector *defn_symbols, updating the list of symbols in OBSTACKP
6158 (if necessary). If WILD, treat as NAME with a wildcard prefix.
6159 OBJFILE is the section containing BLOCK. */
6162 ada_add_block_symbols (struct obstack
*obstackp
,
6163 const struct block
*block
, const char *name
,
6164 domain_enum domain
, struct objfile
*objfile
,
6167 struct block_iterator iter
;
6168 int name_len
= strlen (name
);
6169 /* A matching argument symbol, if any. */
6170 struct symbol
*arg_sym
;
6171 /* Set true when we find a matching non-argument symbol. */
6179 for (sym
= block_iter_match_first (block
, name
, wild_match
, &iter
);
6180 sym
!= NULL
; sym
= block_iter_match_next (name
, wild_match
, &iter
))
6182 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym
),
6183 SYMBOL_DOMAIN (sym
), domain
)
6184 && wild_match (SYMBOL_LINKAGE_NAME (sym
), name
) == 0)
6186 if (SYMBOL_CLASS (sym
) == LOC_UNRESOLVED
)
6188 else if (SYMBOL_IS_ARGUMENT (sym
))
6193 add_defn_to_vec (obstackp
,
6194 fixup_symbol_section (sym
, objfile
),
6202 for (sym
= block_iter_match_first (block
, name
, full_match
, &iter
);
6203 sym
!= NULL
; sym
= block_iter_match_next (name
, full_match
, &iter
))
6205 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym
),
6206 SYMBOL_DOMAIN (sym
), domain
))
6208 if (SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
)
6210 if (SYMBOL_IS_ARGUMENT (sym
))
6215 add_defn_to_vec (obstackp
,
6216 fixup_symbol_section (sym
, objfile
),
6224 /* Handle renamings. */
6226 if (ada_add_block_renamings (obstackp
, block
, name
, domain
, wild
))
6229 if (!found_sym
&& arg_sym
!= NULL
)
6231 add_defn_to_vec (obstackp
,
6232 fixup_symbol_section (arg_sym
, objfile
),
6241 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
6243 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym
),
6244 SYMBOL_DOMAIN (sym
), domain
))
6248 cmp
= (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym
)[0];
6251 cmp
= !startswith (SYMBOL_LINKAGE_NAME (sym
), "_ada_");
6253 cmp
= strncmp (name
, SYMBOL_LINKAGE_NAME (sym
) + 5,
6258 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym
) + name_len
+ 5))
6260 if (SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
)
6262 if (SYMBOL_IS_ARGUMENT (sym
))
6267 add_defn_to_vec (obstackp
,
6268 fixup_symbol_section (sym
, objfile
),
6276 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6277 They aren't parameters, right? */
6278 if (!found_sym
&& arg_sym
!= NULL
)
6280 add_defn_to_vec (obstackp
,
6281 fixup_symbol_section (arg_sym
, objfile
),
6288 /* Symbol Completion */
6290 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6291 name in a form that's appropriate for the completion. The result
6292 does not need to be deallocated, but is only good until the next call.
6294 TEXT_LEN is equal to the length of TEXT.
6295 Perform a wild match if WILD_MATCH_P is set.
6296 ENCODED_P should be set if TEXT represents the start of a symbol name
6297 in its encoded form. */
6300 symbol_completion_match (const char *sym_name
,
6301 const char *text
, int text_len
,
6302 int wild_match_p
, int encoded_p
)
6304 const int verbatim_match
= (text
[0] == '<');
6309 /* Strip the leading angle bracket. */
6314 /* First, test against the fully qualified name of the symbol. */
6316 if (strncmp (sym_name
, text
, text_len
) == 0)
6319 if (match
&& !encoded_p
)
6321 /* One needed check before declaring a positive match is to verify
6322 that iff we are doing a verbatim match, the decoded version
6323 of the symbol name starts with '<'. Otherwise, this symbol name
6324 is not a suitable completion. */
6325 const char *sym_name_copy
= sym_name
;
6326 int has_angle_bracket
;
6328 sym_name
= ada_decode (sym_name
);
6329 has_angle_bracket
= (sym_name
[0] == '<');
6330 match
= (has_angle_bracket
== verbatim_match
);
6331 sym_name
= sym_name_copy
;
6334 if (match
&& !verbatim_match
)
6336 /* When doing non-verbatim match, another check that needs to
6337 be done is to verify that the potentially matching symbol name
6338 does not include capital letters, because the ada-mode would
6339 not be able to understand these symbol names without the
6340 angle bracket notation. */
6343 for (tmp
= sym_name
; *tmp
!= '\0' && !isupper (*tmp
); tmp
++);
6348 /* Second: Try wild matching... */
6350 if (!match
&& wild_match_p
)
6352 /* Since we are doing wild matching, this means that TEXT
6353 may represent an unqualified symbol name. We therefore must
6354 also compare TEXT against the unqualified name of the symbol. */
6355 sym_name
= ada_unqualified_name (ada_decode (sym_name
));
6357 if (strncmp (sym_name
, text
, text_len
) == 0)
6361 /* Finally: If we found a mach, prepare the result to return. */
6367 sym_name
= add_angle_brackets (sym_name
);
6370 sym_name
= ada_decode (sym_name
);
6375 /* A companion function to ada_make_symbol_completion_list().
6376 Check if SYM_NAME represents a symbol which name would be suitable
6377 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6378 it is appended at the end of the given string vector SV.
6380 ORIG_TEXT is the string original string from the user command
6381 that needs to be completed. WORD is the entire command on which
6382 completion should be performed. These two parameters are used to
6383 determine which part of the symbol name should be added to the
6385 if WILD_MATCH_P is set, then wild matching is performed.
6386 ENCODED_P should be set if TEXT represents a symbol name in its
6387 encoded formed (in which case the completion should also be
6391 symbol_completion_add (VEC(char_ptr
) **sv
,
6392 const char *sym_name
,
6393 const char *text
, int text_len
,
6394 const char *orig_text
, const char *word
,
6395 int wild_match_p
, int encoded_p
)
6397 const char *match
= symbol_completion_match (sym_name
, text
, text_len
,
6398 wild_match_p
, encoded_p
);
6404 /* We found a match, so add the appropriate completion to the given
6407 if (word
== orig_text
)
6409 completion
= (char *) xmalloc (strlen (match
) + 5);
6410 strcpy (completion
, match
);
6412 else if (word
> orig_text
)
6414 /* Return some portion of sym_name. */
6415 completion
= (char *) xmalloc (strlen (match
) + 5);
6416 strcpy (completion
, match
+ (word
- orig_text
));
6420 /* Return some of ORIG_TEXT plus sym_name. */
6421 completion
= (char *) xmalloc (strlen (match
) + (orig_text
- word
) + 5);
6422 strncpy (completion
, word
, orig_text
- word
);
6423 completion
[orig_text
- word
] = '\0';
6424 strcat (completion
, match
);
6427 VEC_safe_push (char_ptr
, *sv
, completion
);
6430 /* An object of this type is passed as the user_data argument to the
6431 expand_symtabs_matching method. */
6432 struct add_partial_datum
6434 VEC(char_ptr
) **completions
;
6443 /* A callback for expand_symtabs_matching. */
6446 ada_complete_symbol_matcher (const char *name
, void *user_data
)
6448 struct add_partial_datum
*data
= (struct add_partial_datum
*) user_data
;
6450 return symbol_completion_match (name
, data
->text
, data
->text_len
,
6451 data
->wild_match
, data
->encoded
) != NULL
;
6454 /* Return a list of possible symbol names completing TEXT0. WORD is
6455 the entire command on which completion is made. */
6457 static VEC (char_ptr
) *
6458 ada_make_symbol_completion_list (const char *text0
, const char *word
,
6459 enum type_code code
)
6465 VEC(char_ptr
) *completions
= VEC_alloc (char_ptr
, 128);
6467 struct compunit_symtab
*s
;
6468 struct minimal_symbol
*msymbol
;
6469 struct objfile
*objfile
;
6470 const struct block
*b
, *surrounding_static_block
= 0;
6472 struct block_iterator iter
;
6473 struct cleanup
*old_chain
= make_cleanup (null_cleanup
, NULL
);
6475 gdb_assert (code
== TYPE_CODE_UNDEF
);
6477 if (text0
[0] == '<')
6479 text
= xstrdup (text0
);
6480 make_cleanup (xfree
, text
);
6481 text_len
= strlen (text
);
6487 text
= xstrdup (ada_encode (text0
));
6488 make_cleanup (xfree
, text
);
6489 text_len
= strlen (text
);
6490 for (i
= 0; i
< text_len
; i
++)
6491 text
[i
] = tolower (text
[i
]);
6493 encoded_p
= (strstr (text0
, "__") != NULL
);
6494 /* If the name contains a ".", then the user is entering a fully
6495 qualified entity name, and the match must not be done in wild
6496 mode. Similarly, if the user wants to complete what looks like
6497 an encoded name, the match must not be done in wild mode. */
6498 wild_match_p
= (strchr (text0
, '.') == NULL
&& !encoded_p
);
6501 /* First, look at the partial symtab symbols. */
6503 struct add_partial_datum data
;
6505 data
.completions
= &completions
;
6507 data
.text_len
= text_len
;
6510 data
.wild_match
= wild_match_p
;
6511 data
.encoded
= encoded_p
;
6512 expand_symtabs_matching (NULL
, ada_complete_symbol_matcher
, NULL
,
6516 /* At this point scan through the misc symbol vectors and add each
6517 symbol you find to the list. Eventually we want to ignore
6518 anything that isn't a text symbol (everything else will be
6519 handled by the psymtab code above). */
6521 ALL_MSYMBOLS (objfile
, msymbol
)
6524 symbol_completion_add (&completions
, MSYMBOL_LINKAGE_NAME (msymbol
),
6525 text
, text_len
, text0
, word
, wild_match_p
,
6529 /* Search upwards from currently selected frame (so that we can
6530 complete on local vars. */
6532 for (b
= get_selected_block (0); b
!= NULL
; b
= BLOCK_SUPERBLOCK (b
))
6534 if (!BLOCK_SUPERBLOCK (b
))
6535 surrounding_static_block
= b
; /* For elmin of dups */
6537 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
6539 symbol_completion_add (&completions
, SYMBOL_LINKAGE_NAME (sym
),
6540 text
, text_len
, text0
, word
,
6541 wild_match_p
, encoded_p
);
6545 /* Go through the symtabs and check the externs and statics for
6546 symbols which match. */
6548 ALL_COMPUNITS (objfile
, s
)
6551 b
= BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s
), GLOBAL_BLOCK
);
6552 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
6554 symbol_completion_add (&completions
, SYMBOL_LINKAGE_NAME (sym
),
6555 text
, text_len
, text0
, word
,
6556 wild_match_p
, encoded_p
);
6560 ALL_COMPUNITS (objfile
, s
)
6563 b
= BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s
), STATIC_BLOCK
);
6564 /* Don't do this block twice. */
6565 if (b
== surrounding_static_block
)
6567 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
6569 symbol_completion_add (&completions
, SYMBOL_LINKAGE_NAME (sym
),
6570 text
, text_len
, text0
, word
,
6571 wild_match_p
, encoded_p
);
6575 do_cleanups (old_chain
);
6581 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6582 for tagged types. */
6585 ada_is_dispatch_table_ptr_type (struct type
*type
)
6589 if (TYPE_CODE (type
) != TYPE_CODE_PTR
)
6592 name
= TYPE_NAME (TYPE_TARGET_TYPE (type
));
6596 return (strcmp (name
, "ada__tags__dispatch_table") == 0);
6599 /* Return non-zero if TYPE is an interface tag. */
6602 ada_is_interface_tag (struct type
*type
)
6604 const char *name
= TYPE_NAME (type
);
6609 return (strcmp (name
, "ada__tags__interface_tag") == 0);
6612 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6613 to be invisible to users. */
6616 ada_is_ignored_field (struct type
*type
, int field_num
)
6618 if (field_num
< 0 || field_num
> TYPE_NFIELDS (type
))
6621 /* Check the name of that field. */
6623 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
6625 /* Anonymous field names should not be printed.
6626 brobecker/2007-02-20: I don't think this can actually happen
6627 but we don't want to print the value of annonymous fields anyway. */
6631 /* Normally, fields whose name start with an underscore ("_")
6632 are fields that have been internally generated by the compiler,
6633 and thus should not be printed. The "_parent" field is special,
6634 however: This is a field internally generated by the compiler
6635 for tagged types, and it contains the components inherited from
6636 the parent type. This field should not be printed as is, but
6637 should not be ignored either. */
6638 if (name
[0] == '_' && !startswith (name
, "_parent"))
6642 /* If this is the dispatch table of a tagged type or an interface tag,
6644 if (ada_is_tagged_type (type
, 1)
6645 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type
, field_num
))
6646 || ada_is_interface_tag (TYPE_FIELD_TYPE (type
, field_num
))))
6649 /* Not a special field, so it should not be ignored. */
6653 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6654 pointer or reference type whose ultimate target has a tag field. */
6657 ada_is_tagged_type (struct type
*type
, int refok
)
6659 return (ada_lookup_struct_elt_type (type
, "_tag", refok
, 1, NULL
) != NULL
);
6662 /* True iff TYPE represents the type of X'Tag */
6665 ada_is_tag_type (struct type
*type
)
6667 type
= ada_check_typedef (type
);
6669 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_PTR
)
6673 const char *name
= ada_type_name (TYPE_TARGET_TYPE (type
));
6675 return (name
!= NULL
6676 && strcmp (name
, "ada__tags__dispatch_table") == 0);
6680 /* The type of the tag on VAL. */
6683 ada_tag_type (struct value
*val
)
6685 return ada_lookup_struct_elt_type (value_type (val
), "_tag", 1, 0, NULL
);
6688 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6689 retired at Ada 05). */
6692 is_ada95_tag (struct value
*tag
)
6694 return ada_value_struct_elt (tag
, "tsd", 1) != NULL
;
6697 /* The value of the tag on VAL. */
6700 ada_value_tag (struct value
*val
)
6702 return ada_value_struct_elt (val
, "_tag", 0);
6705 /* The value of the tag on the object of type TYPE whose contents are
6706 saved at VALADDR, if it is non-null, or is at memory address
6709 static struct value
*
6710 value_tag_from_contents_and_address (struct type
*type
,
6711 const gdb_byte
*valaddr
,
6714 int tag_byte_offset
;
6715 struct type
*tag_type
;
6717 if (find_struct_field ("_tag", type
, 0, &tag_type
, &tag_byte_offset
,
6720 const gdb_byte
*valaddr1
= ((valaddr
== NULL
)
6722 : valaddr
+ tag_byte_offset
);
6723 CORE_ADDR address1
= (address
== 0) ? 0 : address
+ tag_byte_offset
;
6725 return value_from_contents_and_address (tag_type
, valaddr1
, address1
);
6730 static struct type
*
6731 type_from_tag (struct value
*tag
)
6733 const char *type_name
= ada_tag_name (tag
);
6735 if (type_name
!= NULL
)
6736 return ada_find_any_type (ada_encode (type_name
));
6740 /* Given a value OBJ of a tagged type, return a value of this
6741 type at the base address of the object. The base address, as
6742 defined in Ada.Tags, it is the address of the primary tag of
6743 the object, and therefore where the field values of its full
6744 view can be fetched. */
6747 ada_tag_value_at_base_address (struct value
*obj
)
6750 LONGEST offset_to_top
= 0;
6751 struct type
*ptr_type
, *obj_type
;
6753 CORE_ADDR base_address
;
6755 obj_type
= value_type (obj
);
6757 /* It is the responsability of the caller to deref pointers. */
6759 if (TYPE_CODE (obj_type
) == TYPE_CODE_PTR
6760 || TYPE_CODE (obj_type
) == TYPE_CODE_REF
)
6763 tag
= ada_value_tag (obj
);
6767 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6769 if (is_ada95_tag (tag
))
6772 ptr_type
= builtin_type (target_gdbarch ())->builtin_data_ptr
;
6773 ptr_type
= lookup_pointer_type (ptr_type
);
6774 val
= value_cast (ptr_type
, tag
);
6778 /* It is perfectly possible that an exception be raised while
6779 trying to determine the base address, just like for the tag;
6780 see ada_tag_name for more details. We do not print the error
6781 message for the same reason. */
6785 offset_to_top
= value_as_long (value_ind (value_ptradd (val
, -2)));
6788 CATCH (e
, RETURN_MASK_ERROR
)
6794 /* If offset is null, nothing to do. */
6796 if (offset_to_top
== 0)
6799 /* -1 is a special case in Ada.Tags; however, what should be done
6800 is not quite clear from the documentation. So do nothing for
6803 if (offset_to_top
== -1)
6806 base_address
= value_address (obj
) - offset_to_top
;
6807 tag
= value_tag_from_contents_and_address (obj_type
, NULL
, base_address
);
6809 /* Make sure that we have a proper tag at the new address.
6810 Otherwise, offset_to_top is bogus (which can happen when
6811 the object is not initialized yet). */
6816 obj_type
= type_from_tag (tag
);
6821 return value_from_contents_and_address (obj_type
, NULL
, base_address
);
6824 /* Return the "ada__tags__type_specific_data" type. */
6826 static struct type
*
6827 ada_get_tsd_type (struct inferior
*inf
)
6829 struct ada_inferior_data
*data
= get_ada_inferior_data (inf
);
6831 if (data
->tsd_type
== 0)
6832 data
->tsd_type
= ada_find_any_type ("ada__tags__type_specific_data");
6833 return data
->tsd_type
;
6836 /* Return the TSD (type-specific data) associated to the given TAG.
6837 TAG is assumed to be the tag of a tagged-type entity.
6839 May return NULL if we are unable to get the TSD. */
6841 static struct value
*
6842 ada_get_tsd_from_tag (struct value
*tag
)
6847 /* First option: The TSD is simply stored as a field of our TAG.
6848 Only older versions of GNAT would use this format, but we have
6849 to test it first, because there are no visible markers for
6850 the current approach except the absence of that field. */
6852 val
= ada_value_struct_elt (tag
, "tsd", 1);
6856 /* Try the second representation for the dispatch table (in which
6857 there is no explicit 'tsd' field in the referent of the tag pointer,
6858 and instead the tsd pointer is stored just before the dispatch
6861 type
= ada_get_tsd_type (current_inferior());
6864 type
= lookup_pointer_type (lookup_pointer_type (type
));
6865 val
= value_cast (type
, tag
);
6868 return value_ind (value_ptradd (val
, -1));
6871 /* Given the TSD of a tag (type-specific data), return a string
6872 containing the name of the associated type.
6874 The returned value is good until the next call. May return NULL
6875 if we are unable to determine the tag name. */
6878 ada_tag_name_from_tsd (struct value
*tsd
)
6880 static char name
[1024];
6884 val
= ada_value_struct_elt (tsd
, "expanded_name", 1);
6887 read_memory_string (value_as_address (val
), name
, sizeof (name
) - 1);
6888 for (p
= name
; *p
!= '\0'; p
+= 1)
6894 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6897 Return NULL if the TAG is not an Ada tag, or if we were unable to
6898 determine the name of that tag. The result is good until the next
6902 ada_tag_name (struct value
*tag
)
6906 if (!ada_is_tag_type (value_type (tag
)))
6909 /* It is perfectly possible that an exception be raised while trying
6910 to determine the TAG's name, even under normal circumstances:
6911 The associated variable may be uninitialized or corrupted, for
6912 instance. We do not let any exception propagate past this point.
6913 instead we return NULL.
6915 We also do not print the error message either (which often is very
6916 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6917 the caller print a more meaningful message if necessary. */
6920 struct value
*tsd
= ada_get_tsd_from_tag (tag
);
6923 name
= ada_tag_name_from_tsd (tsd
);
6925 CATCH (e
, RETURN_MASK_ERROR
)
6933 /* The parent type of TYPE, or NULL if none. */
6936 ada_parent_type (struct type
*type
)
6940 type
= ada_check_typedef (type
);
6942 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
)
6945 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
6946 if (ada_is_parent_field (type
, i
))
6948 struct type
*parent_type
= TYPE_FIELD_TYPE (type
, i
);
6950 /* If the _parent field is a pointer, then dereference it. */
6951 if (TYPE_CODE (parent_type
) == TYPE_CODE_PTR
)
6952 parent_type
= TYPE_TARGET_TYPE (parent_type
);
6953 /* If there is a parallel XVS type, get the actual base type. */
6954 parent_type
= ada_get_base_type (parent_type
);
6956 return ada_check_typedef (parent_type
);
6962 /* True iff field number FIELD_NUM of structure type TYPE contains the
6963 parent-type (inherited) fields of a derived type. Assumes TYPE is
6964 a structure type with at least FIELD_NUM+1 fields. */
6967 ada_is_parent_field (struct type
*type
, int field_num
)
6969 const char *name
= TYPE_FIELD_NAME (ada_check_typedef (type
), field_num
);
6971 return (name
!= NULL
6972 && (startswith (name
, "PARENT")
6973 || startswith (name
, "_parent")));
6976 /* True iff field number FIELD_NUM of structure type TYPE is a
6977 transparent wrapper field (which should be silently traversed when doing
6978 field selection and flattened when printing). Assumes TYPE is a
6979 structure type with at least FIELD_NUM+1 fields. Such fields are always
6983 ada_is_wrapper_field (struct type
*type
, int field_num
)
6985 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
6987 if (name
!= NULL
&& strcmp (name
, "RETVAL") == 0)
6989 /* This happens in functions with "out" or "in out" parameters
6990 which are passed by copy. For such functions, GNAT describes
6991 the function's return type as being a struct where the return
6992 value is in a field called RETVAL, and where the other "out"
6993 or "in out" parameters are fields of that struct. This is not
6998 return (name
!= NULL
6999 && (startswith (name
, "PARENT")
7000 || strcmp (name
, "REP") == 0
7001 || startswith (name
, "_parent")
7002 || name
[0] == 'S' || name
[0] == 'R' || name
[0] == 'O'));
7005 /* True iff field number FIELD_NUM of structure or union type TYPE
7006 is a variant wrapper. Assumes TYPE is a structure type with at least
7007 FIELD_NUM+1 fields. */
7010 ada_is_variant_part (struct type
*type
, int field_num
)
7012 struct type
*field_type
= TYPE_FIELD_TYPE (type
, field_num
);
7014 return (TYPE_CODE (field_type
) == TYPE_CODE_UNION
7015 || (is_dynamic_field (type
, field_num
)
7016 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type
))
7017 == TYPE_CODE_UNION
)));
7020 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7021 whose discriminants are contained in the record type OUTER_TYPE,
7022 returns the type of the controlling discriminant for the variant.
7023 May return NULL if the type could not be found. */
7026 ada_variant_discrim_type (struct type
*var_type
, struct type
*outer_type
)
7028 char *name
= ada_variant_discrim_name (var_type
);
7030 return ada_lookup_struct_elt_type (outer_type
, name
, 1, 1, NULL
);
7033 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7034 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7035 represents a 'when others' clause; otherwise 0. */
7038 ada_is_others_clause (struct type
*type
, int field_num
)
7040 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
7042 return (name
!= NULL
&& name
[0] == 'O');
7045 /* Assuming that TYPE0 is the type of the variant part of a record,
7046 returns the name of the discriminant controlling the variant.
7047 The value is valid until the next call to ada_variant_discrim_name. */
7050 ada_variant_discrim_name (struct type
*type0
)
7052 static char *result
= NULL
;
7053 static size_t result_len
= 0;
7056 const char *discrim_end
;
7057 const char *discrim_start
;
7059 if (TYPE_CODE (type0
) == TYPE_CODE_PTR
)
7060 type
= TYPE_TARGET_TYPE (type0
);
7064 name
= ada_type_name (type
);
7066 if (name
== NULL
|| name
[0] == '\000')
7069 for (discrim_end
= name
+ strlen (name
) - 6; discrim_end
!= name
;
7072 if (startswith (discrim_end
, "___XVN"))
7075 if (discrim_end
== name
)
7078 for (discrim_start
= discrim_end
; discrim_start
!= name
+ 3;
7081 if (discrim_start
== name
+ 1)
7083 if ((discrim_start
> name
+ 3
7084 && startswith (discrim_start
- 3, "___"))
7085 || discrim_start
[-1] == '.')
7089 GROW_VECT (result
, result_len
, discrim_end
- discrim_start
+ 1);
7090 strncpy (result
, discrim_start
, discrim_end
- discrim_start
);
7091 result
[discrim_end
- discrim_start
] = '\0';
7095 /* Scan STR for a subtype-encoded number, beginning at position K.
7096 Put the position of the character just past the number scanned in
7097 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7098 Return 1 if there was a valid number at the given position, and 0
7099 otherwise. A "subtype-encoded" number consists of the absolute value
7100 in decimal, followed by the letter 'm' to indicate a negative number.
7101 Assumes 0m does not occur. */
7104 ada_scan_number (const char str
[], int k
, LONGEST
* R
, int *new_k
)
7108 if (!isdigit (str
[k
]))
7111 /* Do it the hard way so as not to make any assumption about
7112 the relationship of unsigned long (%lu scan format code) and
7115 while (isdigit (str
[k
]))
7117 RU
= RU
* 10 + (str
[k
] - '0');
7124 *R
= (-(LONGEST
) (RU
- 1)) - 1;
7130 /* NOTE on the above: Technically, C does not say what the results of
7131 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7132 number representable as a LONGEST (although either would probably work
7133 in most implementations). When RU>0, the locution in the then branch
7134 above is always equivalent to the negative of RU. */
7141 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7142 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7143 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7146 ada_in_variant (LONGEST val
, struct type
*type
, int field_num
)
7148 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
7162 if (!ada_scan_number (name
, p
+ 1, &W
, &p
))
7172 if (!ada_scan_number (name
, p
+ 1, &L
, &p
)
7173 || name
[p
] != 'T' || !ada_scan_number (name
, p
+ 1, &U
, &p
))
7175 if (val
>= L
&& val
<= U
)
7187 /* FIXME: Lots of redundancy below. Try to consolidate. */
7189 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7190 ARG_TYPE, extract and return the value of one of its (non-static)
7191 fields. FIELDNO says which field. Differs from value_primitive_field
7192 only in that it can handle packed values of arbitrary type. */
7194 static struct value
*
7195 ada_value_primitive_field (struct value
*arg1
, int offset
, int fieldno
,
7196 struct type
*arg_type
)
7200 arg_type
= ada_check_typedef (arg_type
);
7201 type
= TYPE_FIELD_TYPE (arg_type
, fieldno
);
7203 /* Handle packed fields. */
7205 if (TYPE_FIELD_BITSIZE (arg_type
, fieldno
) != 0)
7207 int bit_pos
= TYPE_FIELD_BITPOS (arg_type
, fieldno
);
7208 int bit_size
= TYPE_FIELD_BITSIZE (arg_type
, fieldno
);
7210 return ada_value_primitive_packed_val (arg1
, value_contents (arg1
),
7211 offset
+ bit_pos
/ 8,
7212 bit_pos
% 8, bit_size
, type
);
7215 return value_primitive_field (arg1
, offset
, fieldno
, arg_type
);
7218 /* Find field with name NAME in object of type TYPE. If found,
7219 set the following for each argument that is non-null:
7220 - *FIELD_TYPE_P to the field's type;
7221 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7222 an object of that type;
7223 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7224 - *BIT_SIZE_P to its size in bits if the field is packed, and
7226 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7227 fields up to but not including the desired field, or by the total
7228 number of fields if not found. A NULL value of NAME never
7229 matches; the function just counts visible fields in this case.
7231 Returns 1 if found, 0 otherwise. */
7234 find_struct_field (const char *name
, struct type
*type
, int offset
,
7235 struct type
**field_type_p
,
7236 int *byte_offset_p
, int *bit_offset_p
, int *bit_size_p
,
7241 type
= ada_check_typedef (type
);
7243 if (field_type_p
!= NULL
)
7244 *field_type_p
= NULL
;
7245 if (byte_offset_p
!= NULL
)
7247 if (bit_offset_p
!= NULL
)
7249 if (bit_size_p
!= NULL
)
7252 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
7254 int bit_pos
= TYPE_FIELD_BITPOS (type
, i
);
7255 int fld_offset
= offset
+ bit_pos
/ 8;
7256 const char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
7258 if (t_field_name
== NULL
)
7261 else if (name
!= NULL
&& field_name_match (t_field_name
, name
))
7263 int bit_size
= TYPE_FIELD_BITSIZE (type
, i
);
7265 if (field_type_p
!= NULL
)
7266 *field_type_p
= TYPE_FIELD_TYPE (type
, i
);
7267 if (byte_offset_p
!= NULL
)
7268 *byte_offset_p
= fld_offset
;
7269 if (bit_offset_p
!= NULL
)
7270 *bit_offset_p
= bit_pos
% 8;
7271 if (bit_size_p
!= NULL
)
7272 *bit_size_p
= bit_size
;
7275 else if (ada_is_wrapper_field (type
, i
))
7277 if (find_struct_field (name
, TYPE_FIELD_TYPE (type
, i
), fld_offset
,
7278 field_type_p
, byte_offset_p
, bit_offset_p
,
7279 bit_size_p
, index_p
))
7282 else if (ada_is_variant_part (type
, i
))
7284 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7287 struct type
*field_type
7288 = ada_check_typedef (TYPE_FIELD_TYPE (type
, i
));
7290 for (j
= 0; j
< TYPE_NFIELDS (field_type
); j
+= 1)
7292 if (find_struct_field (name
, TYPE_FIELD_TYPE (field_type
, j
),
7294 + TYPE_FIELD_BITPOS (field_type
, j
) / 8,
7295 field_type_p
, byte_offset_p
,
7296 bit_offset_p
, bit_size_p
, index_p
))
7300 else if (index_p
!= NULL
)
7306 /* Number of user-visible fields in record type TYPE. */
7309 num_visible_fields (struct type
*type
)
7314 find_struct_field (NULL
, type
, 0, NULL
, NULL
, NULL
, NULL
, &n
);
7318 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7319 and search in it assuming it has (class) type TYPE.
7320 If found, return value, else return NULL.
7322 Searches recursively through wrapper fields (e.g., '_parent'). */
7324 static struct value
*
7325 ada_search_struct_field (const char *name
, struct value
*arg
, int offset
,
7330 type
= ada_check_typedef (type
);
7331 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
7333 const char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
7335 if (t_field_name
== NULL
)
7338 else if (field_name_match (t_field_name
, name
))
7339 return ada_value_primitive_field (arg
, offset
, i
, type
);
7341 else if (ada_is_wrapper_field (type
, i
))
7343 struct value
*v
= /* Do not let indent join lines here. */
7344 ada_search_struct_field (name
, arg
,
7345 offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8,
7346 TYPE_FIELD_TYPE (type
, i
));
7352 else if (ada_is_variant_part (type
, i
))
7354 /* PNH: Do we ever get here? See find_struct_field. */
7356 struct type
*field_type
= ada_check_typedef (TYPE_FIELD_TYPE (type
,
7358 int var_offset
= offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8;
7360 for (j
= 0; j
< TYPE_NFIELDS (field_type
); j
+= 1)
7362 struct value
*v
= ada_search_struct_field
/* Force line
7365 var_offset
+ TYPE_FIELD_BITPOS (field_type
, j
) / 8,
7366 TYPE_FIELD_TYPE (field_type
, j
));
7376 static struct value
*ada_index_struct_field_1 (int *, struct value
*,
7377 int, struct type
*);
7380 /* Return field #INDEX in ARG, where the index is that returned by
7381 * find_struct_field through its INDEX_P argument. Adjust the address
7382 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7383 * If found, return value, else return NULL. */
7385 static struct value
*
7386 ada_index_struct_field (int index
, struct value
*arg
, int offset
,
7389 return ada_index_struct_field_1 (&index
, arg
, offset
, type
);
7393 /* Auxiliary function for ada_index_struct_field. Like
7394 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7397 static struct value
*
7398 ada_index_struct_field_1 (int *index_p
, struct value
*arg
, int offset
,
7402 type
= ada_check_typedef (type
);
7404 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
7406 if (TYPE_FIELD_NAME (type
, i
) == NULL
)
7408 else if (ada_is_wrapper_field (type
, i
))
7410 struct value
*v
= /* Do not let indent join lines here. */
7411 ada_index_struct_field_1 (index_p
, arg
,
7412 offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8,
7413 TYPE_FIELD_TYPE (type
, i
));
7419 else if (ada_is_variant_part (type
, i
))
7421 /* PNH: Do we ever get here? See ada_search_struct_field,
7422 find_struct_field. */
7423 error (_("Cannot assign this kind of variant record"));
7425 else if (*index_p
== 0)
7426 return ada_value_primitive_field (arg
, offset
, i
, type
);
7433 /* Given ARG, a value of type (pointer or reference to a)*
7434 structure/union, extract the component named NAME from the ultimate
7435 target structure/union and return it as a value with its
7438 The routine searches for NAME among all members of the structure itself
7439 and (recursively) among all members of any wrapper members
7442 If NO_ERR, then simply return NULL in case of error, rather than
7446 ada_value_struct_elt (struct value
*arg
, char *name
, int no_err
)
7448 struct type
*t
, *t1
;
7452 t1
= t
= ada_check_typedef (value_type (arg
));
7453 if (TYPE_CODE (t
) == TYPE_CODE_REF
)
7455 t1
= TYPE_TARGET_TYPE (t
);
7458 t1
= ada_check_typedef (t1
);
7459 if (TYPE_CODE (t1
) == TYPE_CODE_PTR
)
7461 arg
= coerce_ref (arg
);
7466 while (TYPE_CODE (t
) == TYPE_CODE_PTR
)
7468 t1
= TYPE_TARGET_TYPE (t
);
7471 t1
= ada_check_typedef (t1
);
7472 if (TYPE_CODE (t1
) == TYPE_CODE_PTR
)
7474 arg
= value_ind (arg
);
7481 if (TYPE_CODE (t1
) != TYPE_CODE_STRUCT
&& TYPE_CODE (t1
) != TYPE_CODE_UNION
)
7485 v
= ada_search_struct_field (name
, arg
, 0, t
);
7488 int bit_offset
, bit_size
, byte_offset
;
7489 struct type
*field_type
;
7492 if (TYPE_CODE (t
) == TYPE_CODE_PTR
)
7493 address
= value_address (ada_value_ind (arg
));
7495 address
= value_address (ada_coerce_ref (arg
));
7497 t1
= ada_to_fixed_type (ada_get_base_type (t1
), NULL
, address
, NULL
, 1);
7498 if (find_struct_field (name
, t1
, 0,
7499 &field_type
, &byte_offset
, &bit_offset
,
7504 if (TYPE_CODE (t
) == TYPE_CODE_REF
)
7505 arg
= ada_coerce_ref (arg
);
7507 arg
= ada_value_ind (arg
);
7508 v
= ada_value_primitive_packed_val (arg
, NULL
, byte_offset
,
7509 bit_offset
, bit_size
,
7513 v
= value_at_lazy (field_type
, address
+ byte_offset
);
7517 if (v
!= NULL
|| no_err
)
7520 error (_("There is no member named %s."), name
);
7526 error (_("Attempt to extract a component of "
7527 "a value that is not a record."));
7530 /* Given a type TYPE, look up the type of the component of type named NAME.
7531 If DISPP is non-null, add its byte displacement from the beginning of a
7532 structure (pointed to by a value) of type TYPE to *DISPP (does not
7533 work for packed fields).
7535 Matches any field whose name has NAME as a prefix, possibly
7538 TYPE can be either a struct or union. If REFOK, TYPE may also
7539 be a (pointer or reference)+ to a struct or union, and the
7540 ultimate target type will be searched.
7542 Looks recursively into variant clauses and parent types.
7544 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7545 TYPE is not a type of the right kind. */
7547 static struct type
*
7548 ada_lookup_struct_elt_type (struct type
*type
, char *name
, int refok
,
7549 int noerr
, int *dispp
)
7556 if (refok
&& type
!= NULL
)
7559 type
= ada_check_typedef (type
);
7560 if (TYPE_CODE (type
) != TYPE_CODE_PTR
7561 && TYPE_CODE (type
) != TYPE_CODE_REF
)
7563 type
= TYPE_TARGET_TYPE (type
);
7567 || (TYPE_CODE (type
) != TYPE_CODE_STRUCT
7568 && TYPE_CODE (type
) != TYPE_CODE_UNION
))
7574 target_terminal_ours ();
7575 gdb_flush (gdb_stdout
);
7577 error (_("Type (null) is not a structure or union type"));
7580 /* XXX: type_sprint */
7581 fprintf_unfiltered (gdb_stderr
, _("Type "));
7582 type_print (type
, "", gdb_stderr
, -1);
7583 error (_(" is not a structure or union type"));
7588 type
= to_static_fixed_type (type
);
7590 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
7592 const char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
7596 if (t_field_name
== NULL
)
7599 else if (field_name_match (t_field_name
, name
))
7602 *dispp
+= TYPE_FIELD_BITPOS (type
, i
) / 8;
7603 return TYPE_FIELD_TYPE (type
, i
);
7606 else if (ada_is_wrapper_field (type
, i
))
7609 t
= ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type
, i
), name
,
7614 *dispp
+= disp
+ TYPE_FIELD_BITPOS (type
, i
) / 8;
7619 else if (ada_is_variant_part (type
, i
))
7622 struct type
*field_type
= ada_check_typedef (TYPE_FIELD_TYPE (type
,
7625 for (j
= TYPE_NFIELDS (field_type
) - 1; j
>= 0; j
-= 1)
7627 /* FIXME pnh 2008/01/26: We check for a field that is
7628 NOT wrapped in a struct, since the compiler sometimes
7629 generates these for unchecked variant types. Revisit
7630 if the compiler changes this practice. */
7631 const char *v_field_name
= TYPE_FIELD_NAME (field_type
, j
);
7633 if (v_field_name
!= NULL
7634 && field_name_match (v_field_name
, name
))
7635 t
= TYPE_FIELD_TYPE (field_type
, j
);
7637 t
= ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type
,
7644 *dispp
+= disp
+ TYPE_FIELD_BITPOS (type
, i
) / 8;
7655 target_terminal_ours ();
7656 gdb_flush (gdb_stdout
);
7659 /* XXX: type_sprint */
7660 fprintf_unfiltered (gdb_stderr
, _("Type "));
7661 type_print (type
, "", gdb_stderr
, -1);
7662 error (_(" has no component named <null>"));
7666 /* XXX: type_sprint */
7667 fprintf_unfiltered (gdb_stderr
, _("Type "));
7668 type_print (type
, "", gdb_stderr
, -1);
7669 error (_(" has no component named %s"), name
);
7676 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7677 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7678 represents an unchecked union (that is, the variant part of a
7679 record that is named in an Unchecked_Union pragma). */
7682 is_unchecked_variant (struct type
*var_type
, struct type
*outer_type
)
7684 char *discrim_name
= ada_variant_discrim_name (var_type
);
7686 return (ada_lookup_struct_elt_type (outer_type
, discrim_name
, 0, 1, NULL
)
7691 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7692 within a value of type OUTER_TYPE that is stored in GDB at
7693 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7694 numbering from 0) is applicable. Returns -1 if none are. */
7697 ada_which_variant_applies (struct type
*var_type
, struct type
*outer_type
,
7698 const gdb_byte
*outer_valaddr
)
7702 char *discrim_name
= ada_variant_discrim_name (var_type
);
7703 struct value
*outer
;
7704 struct value
*discrim
;
7705 LONGEST discrim_val
;
7707 /* Using plain value_from_contents_and_address here causes problems
7708 because we will end up trying to resolve a type that is currently
7709 being constructed. */
7710 outer
= value_from_contents_and_address_unresolved (outer_type
,
7712 discrim
= ada_value_struct_elt (outer
, discrim_name
, 1);
7713 if (discrim
== NULL
)
7715 discrim_val
= value_as_long (discrim
);
7718 for (i
= 0; i
< TYPE_NFIELDS (var_type
); i
+= 1)
7720 if (ada_is_others_clause (var_type
, i
))
7722 else if (ada_in_variant (discrim_val
, var_type
, i
))
7726 return others_clause
;
7731 /* Dynamic-Sized Records */
7733 /* Strategy: The type ostensibly attached to a value with dynamic size
7734 (i.e., a size that is not statically recorded in the debugging
7735 data) does not accurately reflect the size or layout of the value.
7736 Our strategy is to convert these values to values with accurate,
7737 conventional types that are constructed on the fly. */
7739 /* There is a subtle and tricky problem here. In general, we cannot
7740 determine the size of dynamic records without its data. However,
7741 the 'struct value' data structure, which GDB uses to represent
7742 quantities in the inferior process (the target), requires the size
7743 of the type at the time of its allocation in order to reserve space
7744 for GDB's internal copy of the data. That's why the
7745 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7746 rather than struct value*s.
7748 However, GDB's internal history variables ($1, $2, etc.) are
7749 struct value*s containing internal copies of the data that are not, in
7750 general, the same as the data at their corresponding addresses in
7751 the target. Fortunately, the types we give to these values are all
7752 conventional, fixed-size types (as per the strategy described
7753 above), so that we don't usually have to perform the
7754 'to_fixed_xxx_type' conversions to look at their values.
7755 Unfortunately, there is one exception: if one of the internal
7756 history variables is an array whose elements are unconstrained
7757 records, then we will need to create distinct fixed types for each
7758 element selected. */
7760 /* The upshot of all of this is that many routines take a (type, host
7761 address, target address) triple as arguments to represent a value.
7762 The host address, if non-null, is supposed to contain an internal
7763 copy of the relevant data; otherwise, the program is to consult the
7764 target at the target address. */
7766 /* Assuming that VAL0 represents a pointer value, the result of
7767 dereferencing it. Differs from value_ind in its treatment of
7768 dynamic-sized types. */
7771 ada_value_ind (struct value
*val0
)
7773 struct value
*val
= value_ind (val0
);
7775 if (ada_is_tagged_type (value_type (val
), 0))
7776 val
= ada_tag_value_at_base_address (val
);
7778 return ada_to_fixed_value (val
);
7781 /* The value resulting from dereferencing any "reference to"
7782 qualifiers on VAL0. */
7784 static struct value
*
7785 ada_coerce_ref (struct value
*val0
)
7787 if (TYPE_CODE (value_type (val0
)) == TYPE_CODE_REF
)
7789 struct value
*val
= val0
;
7791 val
= coerce_ref (val
);
7793 if (ada_is_tagged_type (value_type (val
), 0))
7794 val
= ada_tag_value_at_base_address (val
);
7796 return ada_to_fixed_value (val
);
7802 /* Return OFF rounded upward if necessary to a multiple of
7803 ALIGNMENT (a power of 2). */
7806 align_value (unsigned int off
, unsigned int alignment
)
7808 return (off
+ alignment
- 1) & ~(alignment
- 1);
7811 /* Return the bit alignment required for field #F of template type TYPE. */
7814 field_alignment (struct type
*type
, int f
)
7816 const char *name
= TYPE_FIELD_NAME (type
, f
);
7820 /* The field name should never be null, unless the debugging information
7821 is somehow malformed. In this case, we assume the field does not
7822 require any alignment. */
7826 len
= strlen (name
);
7828 if (!isdigit (name
[len
- 1]))
7831 if (isdigit (name
[len
- 2]))
7832 align_offset
= len
- 2;
7834 align_offset
= len
- 1;
7836 if (align_offset
< 7 || !startswith (name
+ align_offset
- 6, "___XV"))
7837 return TARGET_CHAR_BIT
;
7839 return atoi (name
+ align_offset
) * TARGET_CHAR_BIT
;
7842 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7844 static struct symbol
*
7845 ada_find_any_type_symbol (const char *name
)
7849 sym
= standard_lookup (name
, get_selected_block (NULL
), VAR_DOMAIN
);
7850 if (sym
!= NULL
&& SYMBOL_CLASS (sym
) == LOC_TYPEDEF
)
7853 sym
= standard_lookup (name
, NULL
, STRUCT_DOMAIN
);
7857 /* Find a type named NAME. Ignores ambiguity. This routine will look
7858 solely for types defined by debug info, it will not search the GDB
7861 static struct type
*
7862 ada_find_any_type (const char *name
)
7864 struct symbol
*sym
= ada_find_any_type_symbol (name
);
7867 return SYMBOL_TYPE (sym
);
7872 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7873 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7874 symbol, in which case it is returned. Otherwise, this looks for
7875 symbols whose name is that of NAME_SYM suffixed with "___XR".
7876 Return symbol if found, and NULL otherwise. */
7879 ada_find_renaming_symbol (struct symbol
*name_sym
, const struct block
*block
)
7881 const char *name
= SYMBOL_LINKAGE_NAME (name_sym
);
7884 if (strstr (name
, "___XR") != NULL
)
7887 sym
= find_old_style_renaming_symbol (name
, block
);
7892 /* Not right yet. FIXME pnh 7/20/2007. */
7893 sym
= ada_find_any_type_symbol (name
);
7894 if (sym
!= NULL
&& strstr (SYMBOL_LINKAGE_NAME (sym
), "___XR") != NULL
)
7900 static struct symbol
*
7901 find_old_style_renaming_symbol (const char *name
, const struct block
*block
)
7903 const struct symbol
*function_sym
= block_linkage_function (block
);
7906 if (function_sym
!= NULL
)
7908 /* If the symbol is defined inside a function, NAME is not fully
7909 qualified. This means we need to prepend the function name
7910 as well as adding the ``___XR'' suffix to build the name of
7911 the associated renaming symbol. */
7912 const char *function_name
= SYMBOL_LINKAGE_NAME (function_sym
);
7913 /* Function names sometimes contain suffixes used
7914 for instance to qualify nested subprograms. When building
7915 the XR type name, we need to make sure that this suffix is
7916 not included. So do not include any suffix in the function
7917 name length below. */
7918 int function_name_len
= ada_name_prefix_len (function_name
);
7919 const int rename_len
= function_name_len
+ 2 /* "__" */
7920 + strlen (name
) + 6 /* "___XR\0" */ ;
7922 /* Strip the suffix if necessary. */
7923 ada_remove_trailing_digits (function_name
, &function_name_len
);
7924 ada_remove_po_subprogram_suffix (function_name
, &function_name_len
);
7925 ada_remove_Xbn_suffix (function_name
, &function_name_len
);
7927 /* Library-level functions are a special case, as GNAT adds
7928 a ``_ada_'' prefix to the function name to avoid namespace
7929 pollution. However, the renaming symbols themselves do not
7930 have this prefix, so we need to skip this prefix if present. */
7931 if (function_name_len
> 5 /* "_ada_" */
7932 && strstr (function_name
, "_ada_") == function_name
)
7935 function_name_len
-= 5;
7938 rename
= (char *) alloca (rename_len
* sizeof (char));
7939 strncpy (rename
, function_name
, function_name_len
);
7940 xsnprintf (rename
+ function_name_len
, rename_len
- function_name_len
,
7945 const int rename_len
= strlen (name
) + 6;
7947 rename
= (char *) alloca (rename_len
* sizeof (char));
7948 xsnprintf (rename
, rename_len
* sizeof (char), "%s___XR", name
);
7951 return ada_find_any_type_symbol (rename
);
7954 /* Because of GNAT encoding conventions, several GDB symbols may match a
7955 given type name. If the type denoted by TYPE0 is to be preferred to
7956 that of TYPE1 for purposes of type printing, return non-zero;
7957 otherwise return 0. */
7960 ada_prefer_type (struct type
*type0
, struct type
*type1
)
7964 else if (type0
== NULL
)
7966 else if (TYPE_CODE (type1
) == TYPE_CODE_VOID
)
7968 else if (TYPE_CODE (type0
) == TYPE_CODE_VOID
)
7970 else if (TYPE_NAME (type1
) == NULL
&& TYPE_NAME (type0
) != NULL
)
7972 else if (ada_is_constrained_packed_array_type (type0
))
7974 else if (ada_is_array_descriptor_type (type0
)
7975 && !ada_is_array_descriptor_type (type1
))
7979 const char *type0_name
= type_name_no_tag (type0
);
7980 const char *type1_name
= type_name_no_tag (type1
);
7982 if (type0_name
!= NULL
&& strstr (type0_name
, "___XR") != NULL
7983 && (type1_name
== NULL
|| strstr (type1_name
, "___XR") == NULL
))
7989 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7990 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7993 ada_type_name (struct type
*type
)
7997 else if (TYPE_NAME (type
) != NULL
)
7998 return TYPE_NAME (type
);
8000 return TYPE_TAG_NAME (type
);
8003 /* Search the list of "descriptive" types associated to TYPE for a type
8004 whose name is NAME. */
8006 static struct type
*
8007 find_parallel_type_by_descriptive_type (struct type
*type
, const char *name
)
8009 struct type
*result
, *tmp
;
8011 if (ada_ignore_descriptive_types_p
)
8014 /* If there no descriptive-type info, then there is no parallel type
8016 if (!HAVE_GNAT_AUX_INFO (type
))
8019 result
= TYPE_DESCRIPTIVE_TYPE (type
);
8020 while (result
!= NULL
)
8022 const char *result_name
= ada_type_name (result
);
8024 if (result_name
== NULL
)
8026 warning (_("unexpected null name on descriptive type"));
8030 /* If the names match, stop. */
8031 if (strcmp (result_name
, name
) == 0)
8034 /* Otherwise, look at the next item on the list, if any. */
8035 if (HAVE_GNAT_AUX_INFO (result
))
8036 tmp
= TYPE_DESCRIPTIVE_TYPE (result
);
8040 /* If not found either, try after having resolved the typedef. */
8045 result
= check_typedef (result
);
8046 if (HAVE_GNAT_AUX_INFO (result
))
8047 result
= TYPE_DESCRIPTIVE_TYPE (result
);
8053 /* If we didn't find a match, see whether this is a packed array. With
8054 older compilers, the descriptive type information is either absent or
8055 irrelevant when it comes to packed arrays so the above lookup fails.
8056 Fall back to using a parallel lookup by name in this case. */
8057 if (result
== NULL
&& ada_is_constrained_packed_array_type (type
))
8058 return ada_find_any_type (name
);
8063 /* Find a parallel type to TYPE with the specified NAME, using the
8064 descriptive type taken from the debugging information, if available,
8065 and otherwise using the (slower) name-based method. */
8067 static struct type
*
8068 ada_find_parallel_type_with_name (struct type
*type
, const char *name
)
8070 struct type
*result
= NULL
;
8072 if (HAVE_GNAT_AUX_INFO (type
))
8073 result
= find_parallel_type_by_descriptive_type (type
, name
);
8075 result
= ada_find_any_type (name
);
8080 /* Same as above, but specify the name of the parallel type by appending
8081 SUFFIX to the name of TYPE. */
8084 ada_find_parallel_type (struct type
*type
, const char *suffix
)
8087 const char *type_name
= ada_type_name (type
);
8090 if (type_name
== NULL
)
8093 len
= strlen (type_name
);
8095 name
= (char *) alloca (len
+ strlen (suffix
) + 1);
8097 strcpy (name
, type_name
);
8098 strcpy (name
+ len
, suffix
);
8100 return ada_find_parallel_type_with_name (type
, name
);
8103 /* If TYPE is a variable-size record type, return the corresponding template
8104 type describing its fields. Otherwise, return NULL. */
8106 static struct type
*
8107 dynamic_template_type (struct type
*type
)
8109 type
= ada_check_typedef (type
);
8111 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
8112 || ada_type_name (type
) == NULL
)
8116 int len
= strlen (ada_type_name (type
));
8118 if (len
> 6 && strcmp (ada_type_name (type
) + len
- 6, "___XVE") == 0)
8121 return ada_find_parallel_type (type
, "___XVE");
8125 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8126 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8129 is_dynamic_field (struct type
*templ_type
, int field_num
)
8131 const char *name
= TYPE_FIELD_NAME (templ_type
, field_num
);
8134 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type
, field_num
)) == TYPE_CODE_PTR
8135 && strstr (name
, "___XVL") != NULL
;
8138 /* The index of the variant field of TYPE, or -1 if TYPE does not
8139 represent a variant record type. */
8142 variant_field_index (struct type
*type
)
8146 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
)
8149 for (f
= 0; f
< TYPE_NFIELDS (type
); f
+= 1)
8151 if (ada_is_variant_part (type
, f
))
8157 /* A record type with no fields. */
8159 static struct type
*
8160 empty_record (struct type
*templ
)
8162 struct type
*type
= alloc_type_copy (templ
);
8164 TYPE_CODE (type
) = TYPE_CODE_STRUCT
;
8165 TYPE_NFIELDS (type
) = 0;
8166 TYPE_FIELDS (type
) = NULL
;
8167 INIT_CPLUS_SPECIFIC (type
);
8168 TYPE_NAME (type
) = "<empty>";
8169 TYPE_TAG_NAME (type
) = NULL
;
8170 TYPE_LENGTH (type
) = 0;
8174 /* An ordinary record type (with fixed-length fields) that describes
8175 the value of type TYPE at VALADDR or ADDRESS (see comments at
8176 the beginning of this section) VAL according to GNAT conventions.
8177 DVAL0 should describe the (portion of a) record that contains any
8178 necessary discriminants. It should be NULL if value_type (VAL) is
8179 an outer-level type (i.e., as opposed to a branch of a variant.) A
8180 variant field (unless unchecked) is replaced by a particular branch
8183 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8184 length are not statically known are discarded. As a consequence,
8185 VALADDR, ADDRESS and DVAL0 are ignored.
8187 NOTE: Limitations: For now, we assume that dynamic fields and
8188 variants occupy whole numbers of bytes. However, they need not be
8192 ada_template_to_fixed_record_type_1 (struct type
*type
,
8193 const gdb_byte
*valaddr
,
8194 CORE_ADDR address
, struct value
*dval0
,
8195 int keep_dynamic_fields
)
8197 struct value
*mark
= value_mark ();
8200 int nfields
, bit_len
;
8206 /* Compute the number of fields in this record type that are going
8207 to be processed: unless keep_dynamic_fields, this includes only
8208 fields whose position and length are static will be processed. */
8209 if (keep_dynamic_fields
)
8210 nfields
= TYPE_NFIELDS (type
);
8214 while (nfields
< TYPE_NFIELDS (type
)
8215 && !ada_is_variant_part (type
, nfields
)
8216 && !is_dynamic_field (type
, nfields
))
8220 rtype
= alloc_type_copy (type
);
8221 TYPE_CODE (rtype
) = TYPE_CODE_STRUCT
;
8222 INIT_CPLUS_SPECIFIC (rtype
);
8223 TYPE_NFIELDS (rtype
) = nfields
;
8224 TYPE_FIELDS (rtype
) = (struct field
*)
8225 TYPE_ALLOC (rtype
, nfields
* sizeof (struct field
));
8226 memset (TYPE_FIELDS (rtype
), 0, sizeof (struct field
) * nfields
);
8227 TYPE_NAME (rtype
) = ada_type_name (type
);
8228 TYPE_TAG_NAME (rtype
) = NULL
;
8229 TYPE_FIXED_INSTANCE (rtype
) = 1;
8235 for (f
= 0; f
< nfields
; f
+= 1)
8237 off
= align_value (off
, field_alignment (type
, f
))
8238 + TYPE_FIELD_BITPOS (type
, f
);
8239 SET_FIELD_BITPOS (TYPE_FIELD (rtype
, f
), off
);
8240 TYPE_FIELD_BITSIZE (rtype
, f
) = 0;
8242 if (ada_is_variant_part (type
, f
))
8247 else if (is_dynamic_field (type
, f
))
8249 const gdb_byte
*field_valaddr
= valaddr
;
8250 CORE_ADDR field_address
= address
;
8251 struct type
*field_type
=
8252 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type
, f
));
8256 /* rtype's length is computed based on the run-time
8257 value of discriminants. If the discriminants are not
8258 initialized, the type size may be completely bogus and
8259 GDB may fail to allocate a value for it. So check the
8260 size first before creating the value. */
8261 ada_ensure_varsize_limit (rtype
);
8262 /* Using plain value_from_contents_and_address here
8263 causes problems because we will end up trying to
8264 resolve a type that is currently being
8266 dval
= value_from_contents_and_address_unresolved (rtype
,
8269 rtype
= value_type (dval
);
8274 /* If the type referenced by this field is an aligner type, we need
8275 to unwrap that aligner type, because its size might not be set.
8276 Keeping the aligner type would cause us to compute the wrong
8277 size for this field, impacting the offset of the all the fields
8278 that follow this one. */
8279 if (ada_is_aligner_type (field_type
))
8281 long field_offset
= TYPE_FIELD_BITPOS (field_type
, f
);
8283 field_valaddr
= cond_offset_host (field_valaddr
, field_offset
);
8284 field_address
= cond_offset_target (field_address
, field_offset
);
8285 field_type
= ada_aligned_type (field_type
);
8288 field_valaddr
= cond_offset_host (field_valaddr
,
8289 off
/ TARGET_CHAR_BIT
);
8290 field_address
= cond_offset_target (field_address
,
8291 off
/ TARGET_CHAR_BIT
);
8293 /* Get the fixed type of the field. Note that, in this case,
8294 we do not want to get the real type out of the tag: if
8295 the current field is the parent part of a tagged record,
8296 we will get the tag of the object. Clearly wrong: the real
8297 type of the parent is not the real type of the child. We
8298 would end up in an infinite loop. */
8299 field_type
= ada_get_base_type (field_type
);
8300 field_type
= ada_to_fixed_type (field_type
, field_valaddr
,
8301 field_address
, dval
, 0);
8302 /* If the field size is already larger than the maximum
8303 object size, then the record itself will necessarily
8304 be larger than the maximum object size. We need to make
8305 this check now, because the size might be so ridiculously
8306 large (due to an uninitialized variable in the inferior)
8307 that it would cause an overflow when adding it to the
8309 ada_ensure_varsize_limit (field_type
);
8311 TYPE_FIELD_TYPE (rtype
, f
) = field_type
;
8312 TYPE_FIELD_NAME (rtype
, f
) = TYPE_FIELD_NAME (type
, f
);
8313 /* The multiplication can potentially overflow. But because
8314 the field length has been size-checked just above, and
8315 assuming that the maximum size is a reasonable value,
8316 an overflow should not happen in practice. So rather than
8317 adding overflow recovery code to this already complex code,
8318 we just assume that it's not going to happen. */
8320 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype
, f
)) * TARGET_CHAR_BIT
;
8324 /* Note: If this field's type is a typedef, it is important
8325 to preserve the typedef layer.
8327 Otherwise, we might be transforming a typedef to a fat
8328 pointer (encoding a pointer to an unconstrained array),
8329 into a basic fat pointer (encoding an unconstrained
8330 array). As both types are implemented using the same
8331 structure, the typedef is the only clue which allows us
8332 to distinguish between the two options. Stripping it
8333 would prevent us from printing this field appropriately. */
8334 TYPE_FIELD_TYPE (rtype
, f
) = TYPE_FIELD_TYPE (type
, f
);
8335 TYPE_FIELD_NAME (rtype
, f
) = TYPE_FIELD_NAME (type
, f
);
8336 if (TYPE_FIELD_BITSIZE (type
, f
) > 0)
8338 TYPE_FIELD_BITSIZE (rtype
, f
) = TYPE_FIELD_BITSIZE (type
, f
);
8341 struct type
*field_type
= TYPE_FIELD_TYPE (type
, f
);
8343 /* We need to be careful of typedefs when computing
8344 the length of our field. If this is a typedef,
8345 get the length of the target type, not the length
8347 if (TYPE_CODE (field_type
) == TYPE_CODE_TYPEDEF
)
8348 field_type
= ada_typedef_target_type (field_type
);
8351 TYPE_LENGTH (ada_check_typedef (field_type
)) * TARGET_CHAR_BIT
;
8354 if (off
+ fld_bit_len
> bit_len
)
8355 bit_len
= off
+ fld_bit_len
;
8357 TYPE_LENGTH (rtype
) =
8358 align_value (bit_len
, TARGET_CHAR_BIT
) / TARGET_CHAR_BIT
;
8361 /* We handle the variant part, if any, at the end because of certain
8362 odd cases in which it is re-ordered so as NOT to be the last field of
8363 the record. This can happen in the presence of representation
8365 if (variant_field
>= 0)
8367 struct type
*branch_type
;
8369 off
= TYPE_FIELD_BITPOS (rtype
, variant_field
);
8373 /* Using plain value_from_contents_and_address here causes
8374 problems because we will end up trying to resolve a type
8375 that is currently being constructed. */
8376 dval
= value_from_contents_and_address_unresolved (rtype
, valaddr
,
8378 rtype
= value_type (dval
);
8384 to_fixed_variant_branch_type
8385 (TYPE_FIELD_TYPE (type
, variant_field
),
8386 cond_offset_host (valaddr
, off
/ TARGET_CHAR_BIT
),
8387 cond_offset_target (address
, off
/ TARGET_CHAR_BIT
), dval
);
8388 if (branch_type
== NULL
)
8390 for (f
= variant_field
+ 1; f
< TYPE_NFIELDS (rtype
); f
+= 1)
8391 TYPE_FIELDS (rtype
)[f
- 1] = TYPE_FIELDS (rtype
)[f
];
8392 TYPE_NFIELDS (rtype
) -= 1;
8396 TYPE_FIELD_TYPE (rtype
, variant_field
) = branch_type
;
8397 TYPE_FIELD_NAME (rtype
, variant_field
) = "S";
8399 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype
, variant_field
)) *
8401 if (off
+ fld_bit_len
> bit_len
)
8402 bit_len
= off
+ fld_bit_len
;
8403 TYPE_LENGTH (rtype
) =
8404 align_value (bit_len
, TARGET_CHAR_BIT
) / TARGET_CHAR_BIT
;
8408 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8409 should contain the alignment of that record, which should be a strictly
8410 positive value. If null or negative, then something is wrong, most
8411 probably in the debug info. In that case, we don't round up the size
8412 of the resulting type. If this record is not part of another structure,
8413 the current RTYPE length might be good enough for our purposes. */
8414 if (TYPE_LENGTH (type
) <= 0)
8416 if (TYPE_NAME (rtype
))
8417 warning (_("Invalid type size for `%s' detected: %d."),
8418 TYPE_NAME (rtype
), TYPE_LENGTH (type
));
8420 warning (_("Invalid type size for <unnamed> detected: %d."),
8421 TYPE_LENGTH (type
));
8425 TYPE_LENGTH (rtype
) = align_value (TYPE_LENGTH (rtype
),
8426 TYPE_LENGTH (type
));
8429 value_free_to_mark (mark
);
8430 if (TYPE_LENGTH (rtype
) > varsize_limit
)
8431 error (_("record type with dynamic size is larger than varsize-limit"));
8435 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8438 static struct type
*
8439 template_to_fixed_record_type (struct type
*type
, const gdb_byte
*valaddr
,
8440 CORE_ADDR address
, struct value
*dval0
)
8442 return ada_template_to_fixed_record_type_1 (type
, valaddr
,
8446 /* An ordinary record type in which ___XVL-convention fields and
8447 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8448 static approximations, containing all possible fields. Uses
8449 no runtime values. Useless for use in values, but that's OK,
8450 since the results are used only for type determinations. Works on both
8451 structs and unions. Representation note: to save space, we memorize
8452 the result of this function in the TYPE_TARGET_TYPE of the
8455 static struct type
*
8456 template_to_static_fixed_type (struct type
*type0
)
8462 /* No need no do anything if the input type is already fixed. */
8463 if (TYPE_FIXED_INSTANCE (type0
))
8466 /* Likewise if we already have computed the static approximation. */
8467 if (TYPE_TARGET_TYPE (type0
) != NULL
)
8468 return TYPE_TARGET_TYPE (type0
);
8470 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8472 nfields
= TYPE_NFIELDS (type0
);
8474 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8475 recompute all over next time. */
8476 TYPE_TARGET_TYPE (type0
) = type
;
8478 for (f
= 0; f
< nfields
; f
+= 1)
8480 struct type
*field_type
= TYPE_FIELD_TYPE (type0
, f
);
8481 struct type
*new_type
;
8483 if (is_dynamic_field (type0
, f
))
8485 field_type
= ada_check_typedef (field_type
);
8486 new_type
= to_static_fixed_type (TYPE_TARGET_TYPE (field_type
));
8489 new_type
= static_unwrap_type (field_type
);
8491 if (new_type
!= field_type
)
8493 /* Clone TYPE0 only the first time we get a new field type. */
8496 TYPE_TARGET_TYPE (type0
) = type
= alloc_type_copy (type0
);
8497 TYPE_CODE (type
) = TYPE_CODE (type0
);
8498 INIT_CPLUS_SPECIFIC (type
);
8499 TYPE_NFIELDS (type
) = nfields
;
8500 TYPE_FIELDS (type
) = (struct field
*)
8501 TYPE_ALLOC (type
, nfields
* sizeof (struct field
));
8502 memcpy (TYPE_FIELDS (type
), TYPE_FIELDS (type0
),
8503 sizeof (struct field
) * nfields
);
8504 TYPE_NAME (type
) = ada_type_name (type0
);
8505 TYPE_TAG_NAME (type
) = NULL
;
8506 TYPE_FIXED_INSTANCE (type
) = 1;
8507 TYPE_LENGTH (type
) = 0;
8509 TYPE_FIELD_TYPE (type
, f
) = new_type
;
8510 TYPE_FIELD_NAME (type
, f
) = TYPE_FIELD_NAME (type0
, f
);
8517 /* Given an object of type TYPE whose contents are at VALADDR and
8518 whose address in memory is ADDRESS, returns a revision of TYPE,
8519 which should be a non-dynamic-sized record, in which the variant
8520 part, if any, is replaced with the appropriate branch. Looks
8521 for discriminant values in DVAL0, which can be NULL if the record
8522 contains the necessary discriminant values. */
8524 static struct type
*
8525 to_record_with_fixed_variant_part (struct type
*type
, const gdb_byte
*valaddr
,
8526 CORE_ADDR address
, struct value
*dval0
)
8528 struct value
*mark
= value_mark ();
8531 struct type
*branch_type
;
8532 int nfields
= TYPE_NFIELDS (type
);
8533 int variant_field
= variant_field_index (type
);
8535 if (variant_field
== -1)
8540 dval
= value_from_contents_and_address (type
, valaddr
, address
);
8541 type
= value_type (dval
);
8546 rtype
= alloc_type_copy (type
);
8547 TYPE_CODE (rtype
) = TYPE_CODE_STRUCT
;
8548 INIT_CPLUS_SPECIFIC (rtype
);
8549 TYPE_NFIELDS (rtype
) = nfields
;
8550 TYPE_FIELDS (rtype
) =
8551 (struct field
*) TYPE_ALLOC (rtype
, nfields
* sizeof (struct field
));
8552 memcpy (TYPE_FIELDS (rtype
), TYPE_FIELDS (type
),
8553 sizeof (struct field
) * nfields
);
8554 TYPE_NAME (rtype
) = ada_type_name (type
);
8555 TYPE_TAG_NAME (rtype
) = NULL
;
8556 TYPE_FIXED_INSTANCE (rtype
) = 1;
8557 TYPE_LENGTH (rtype
) = TYPE_LENGTH (type
);
8559 branch_type
= to_fixed_variant_branch_type
8560 (TYPE_FIELD_TYPE (type
, variant_field
),
8561 cond_offset_host (valaddr
,
8562 TYPE_FIELD_BITPOS (type
, variant_field
)
8564 cond_offset_target (address
,
8565 TYPE_FIELD_BITPOS (type
, variant_field
)
8566 / TARGET_CHAR_BIT
), dval
);
8567 if (branch_type
== NULL
)
8571 for (f
= variant_field
+ 1; f
< nfields
; f
+= 1)
8572 TYPE_FIELDS (rtype
)[f
- 1] = TYPE_FIELDS (rtype
)[f
];
8573 TYPE_NFIELDS (rtype
) -= 1;
8577 TYPE_FIELD_TYPE (rtype
, variant_field
) = branch_type
;
8578 TYPE_FIELD_NAME (rtype
, variant_field
) = "S";
8579 TYPE_FIELD_BITSIZE (rtype
, variant_field
) = 0;
8580 TYPE_LENGTH (rtype
) += TYPE_LENGTH (branch_type
);
8582 TYPE_LENGTH (rtype
) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type
, variant_field
));
8584 value_free_to_mark (mark
);
8588 /* An ordinary record type (with fixed-length fields) that describes
8589 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8590 beginning of this section]. Any necessary discriminants' values
8591 should be in DVAL, a record value; it may be NULL if the object
8592 at ADDR itself contains any necessary discriminant values.
8593 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8594 values from the record are needed. Except in the case that DVAL,
8595 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8596 unchecked) is replaced by a particular branch of the variant.
8598 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8599 is questionable and may be removed. It can arise during the
8600 processing of an unconstrained-array-of-record type where all the
8601 variant branches have exactly the same size. This is because in
8602 such cases, the compiler does not bother to use the XVS convention
8603 when encoding the record. I am currently dubious of this
8604 shortcut and suspect the compiler should be altered. FIXME. */
8606 static struct type
*
8607 to_fixed_record_type (struct type
*type0
, const gdb_byte
*valaddr
,
8608 CORE_ADDR address
, struct value
*dval
)
8610 struct type
*templ_type
;
8612 if (TYPE_FIXED_INSTANCE (type0
))
8615 templ_type
= dynamic_template_type (type0
);
8617 if (templ_type
!= NULL
)
8618 return template_to_fixed_record_type (templ_type
, valaddr
, address
, dval
);
8619 else if (variant_field_index (type0
) >= 0)
8621 if (dval
== NULL
&& valaddr
== NULL
&& address
== 0)
8623 return to_record_with_fixed_variant_part (type0
, valaddr
, address
,
8628 TYPE_FIXED_INSTANCE (type0
) = 1;
8634 /* An ordinary record type (with fixed-length fields) that describes
8635 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8636 union type. Any necessary discriminants' values should be in DVAL,
8637 a record value. That is, this routine selects the appropriate
8638 branch of the union at ADDR according to the discriminant value
8639 indicated in the union's type name. Returns VAR_TYPE0 itself if
8640 it represents a variant subject to a pragma Unchecked_Union. */
8642 static struct type
*
8643 to_fixed_variant_branch_type (struct type
*var_type0
, const gdb_byte
*valaddr
,
8644 CORE_ADDR address
, struct value
*dval
)
8647 struct type
*templ_type
;
8648 struct type
*var_type
;
8650 if (TYPE_CODE (var_type0
) == TYPE_CODE_PTR
)
8651 var_type
= TYPE_TARGET_TYPE (var_type0
);
8653 var_type
= var_type0
;
8655 templ_type
= ada_find_parallel_type (var_type
, "___XVU");
8657 if (templ_type
!= NULL
)
8658 var_type
= templ_type
;
8660 if (is_unchecked_variant (var_type
, value_type (dval
)))
8663 ada_which_variant_applies (var_type
,
8664 value_type (dval
), value_contents (dval
));
8667 return empty_record (var_type
);
8668 else if (is_dynamic_field (var_type
, which
))
8669 return to_fixed_record_type
8670 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type
, which
)),
8671 valaddr
, address
, dval
);
8672 else if (variant_field_index (TYPE_FIELD_TYPE (var_type
, which
)) >= 0)
8674 to_fixed_record_type
8675 (TYPE_FIELD_TYPE (var_type
, which
), valaddr
, address
, dval
);
8677 return TYPE_FIELD_TYPE (var_type
, which
);
8680 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8681 ENCODING_TYPE, a type following the GNAT conventions for discrete
8682 type encodings, only carries redundant information. */
8685 ada_is_redundant_range_encoding (struct type
*range_type
,
8686 struct type
*encoding_type
)
8688 struct type
*fixed_range_type
;
8689 const char *bounds_str
;
8693 gdb_assert (TYPE_CODE (range_type
) == TYPE_CODE_RANGE
);
8695 if (TYPE_CODE (get_base_type (range_type
))
8696 != TYPE_CODE (get_base_type (encoding_type
)))
8698 /* The compiler probably used a simple base type to describe
8699 the range type instead of the range's actual base type,
8700 expecting us to get the real base type from the encoding
8701 anyway. In this situation, the encoding cannot be ignored
8706 if (is_dynamic_type (range_type
))
8709 if (TYPE_NAME (encoding_type
) == NULL
)
8712 bounds_str
= strstr (TYPE_NAME (encoding_type
), "___XDLU_");
8713 if (bounds_str
== NULL
)
8716 n
= 8; /* Skip "___XDLU_". */
8717 if (!ada_scan_number (bounds_str
, n
, &lo
, &n
))
8719 if (TYPE_LOW_BOUND (range_type
) != lo
)
8722 n
+= 2; /* Skip the "__" separator between the two bounds. */
8723 if (!ada_scan_number (bounds_str
, n
, &hi
, &n
))
8725 if (TYPE_HIGH_BOUND (range_type
) != hi
)
8731 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8732 a type following the GNAT encoding for describing array type
8733 indices, only carries redundant information. */
8736 ada_is_redundant_index_type_desc (struct type
*array_type
,
8737 struct type
*desc_type
)
8739 struct type
*this_layer
= check_typedef (array_type
);
8742 for (i
= 0; i
< TYPE_NFIELDS (desc_type
); i
++)
8744 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer
),
8745 TYPE_FIELD_TYPE (desc_type
, i
)))
8747 this_layer
= check_typedef (TYPE_TARGET_TYPE (this_layer
));
8753 /* Assuming that TYPE0 is an array type describing the type of a value
8754 at ADDR, and that DVAL describes a record containing any
8755 discriminants used in TYPE0, returns a type for the value that
8756 contains no dynamic components (that is, no components whose sizes
8757 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8758 true, gives an error message if the resulting type's size is over
8761 static struct type
*
8762 to_fixed_array_type (struct type
*type0
, struct value
*dval
,
8765 struct type
*index_type_desc
;
8766 struct type
*result
;
8767 int constrained_packed_array_p
;
8768 static const char *xa_suffix
= "___XA";
8770 type0
= ada_check_typedef (type0
);
8771 if (TYPE_FIXED_INSTANCE (type0
))
8774 constrained_packed_array_p
= ada_is_constrained_packed_array_type (type0
);
8775 if (constrained_packed_array_p
)
8776 type0
= decode_constrained_packed_array_type (type0
);
8778 index_type_desc
= ada_find_parallel_type (type0
, xa_suffix
);
8780 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8781 encoding suffixed with 'P' may still be generated. If so,
8782 it should be used to find the XA type. */
8784 if (index_type_desc
== NULL
)
8786 const char *type_name
= ada_type_name (type0
);
8788 if (type_name
!= NULL
)
8790 const int len
= strlen (type_name
);
8791 char *name
= (char *) alloca (len
+ strlen (xa_suffix
));
8793 if (type_name
[len
- 1] == 'P')
8795 strcpy (name
, type_name
);
8796 strcpy (name
+ len
- 1, xa_suffix
);
8797 index_type_desc
= ada_find_parallel_type_with_name (type0
, name
);
8802 ada_fixup_array_indexes_type (index_type_desc
);
8803 if (index_type_desc
!= NULL
8804 && ada_is_redundant_index_type_desc (type0
, index_type_desc
))
8806 /* Ignore this ___XA parallel type, as it does not bring any
8807 useful information. This allows us to avoid creating fixed
8808 versions of the array's index types, which would be identical
8809 to the original ones. This, in turn, can also help avoid
8810 the creation of fixed versions of the array itself. */
8811 index_type_desc
= NULL
;
8814 if (index_type_desc
== NULL
)
8816 struct type
*elt_type0
= ada_check_typedef (TYPE_TARGET_TYPE (type0
));
8818 /* NOTE: elt_type---the fixed version of elt_type0---should never
8819 depend on the contents of the array in properly constructed
8821 /* Create a fixed version of the array element type.
8822 We're not providing the address of an element here,
8823 and thus the actual object value cannot be inspected to do
8824 the conversion. This should not be a problem, since arrays of
8825 unconstrained objects are not allowed. In particular, all
8826 the elements of an array of a tagged type should all be of
8827 the same type specified in the debugging info. No need to
8828 consult the object tag. */
8829 struct type
*elt_type
= ada_to_fixed_type (elt_type0
, 0, 0, dval
, 1);
8831 /* Make sure we always create a new array type when dealing with
8832 packed array types, since we're going to fix-up the array
8833 type length and element bitsize a little further down. */
8834 if (elt_type0
== elt_type
&& !constrained_packed_array_p
)
8837 result
= create_array_type (alloc_type_copy (type0
),
8838 elt_type
, TYPE_INDEX_TYPE (type0
));
8843 struct type
*elt_type0
;
8846 for (i
= TYPE_NFIELDS (index_type_desc
); i
> 0; i
-= 1)
8847 elt_type0
= TYPE_TARGET_TYPE (elt_type0
);
8849 /* NOTE: result---the fixed version of elt_type0---should never
8850 depend on the contents of the array in properly constructed
8852 /* Create a fixed version of the array element type.
8853 We're not providing the address of an element here,
8854 and thus the actual object value cannot be inspected to do
8855 the conversion. This should not be a problem, since arrays of
8856 unconstrained objects are not allowed. In particular, all
8857 the elements of an array of a tagged type should all be of
8858 the same type specified in the debugging info. No need to
8859 consult the object tag. */
8861 ada_to_fixed_type (ada_check_typedef (elt_type0
), 0, 0, dval
, 1);
8864 for (i
= TYPE_NFIELDS (index_type_desc
) - 1; i
>= 0; i
-= 1)
8866 struct type
*range_type
=
8867 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc
, i
), dval
);
8869 result
= create_array_type (alloc_type_copy (elt_type0
),
8870 result
, range_type
);
8871 elt_type0
= TYPE_TARGET_TYPE (elt_type0
);
8873 if (!ignore_too_big
&& TYPE_LENGTH (result
) > varsize_limit
)
8874 error (_("array type with dynamic size is larger than varsize-limit"));
8877 /* We want to preserve the type name. This can be useful when
8878 trying to get the type name of a value that has already been
8879 printed (for instance, if the user did "print VAR; whatis $". */
8880 TYPE_NAME (result
) = TYPE_NAME (type0
);
8882 if (constrained_packed_array_p
)
8884 /* So far, the resulting type has been created as if the original
8885 type was a regular (non-packed) array type. As a result, the
8886 bitsize of the array elements needs to be set again, and the array
8887 length needs to be recomputed based on that bitsize. */
8888 int len
= TYPE_LENGTH (result
) / TYPE_LENGTH (TYPE_TARGET_TYPE (result
));
8889 int elt_bitsize
= TYPE_FIELD_BITSIZE (type0
, 0);
8891 TYPE_FIELD_BITSIZE (result
, 0) = TYPE_FIELD_BITSIZE (type0
, 0);
8892 TYPE_LENGTH (result
) = len
* elt_bitsize
/ HOST_CHAR_BIT
;
8893 if (TYPE_LENGTH (result
) * HOST_CHAR_BIT
< len
* elt_bitsize
)
8894 TYPE_LENGTH (result
)++;
8897 TYPE_FIXED_INSTANCE (result
) = 1;
8902 /* A standard type (containing no dynamically sized components)
8903 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8904 DVAL describes a record containing any discriminants used in TYPE0,
8905 and may be NULL if there are none, or if the object of type TYPE at
8906 ADDRESS or in VALADDR contains these discriminants.
8908 If CHECK_TAG is not null, in the case of tagged types, this function
8909 attempts to locate the object's tag and use it to compute the actual
8910 type. However, when ADDRESS is null, we cannot use it to determine the
8911 location of the tag, and therefore compute the tagged type's actual type.
8912 So we return the tagged type without consulting the tag. */
8914 static struct type
*
8915 ada_to_fixed_type_1 (struct type
*type
, const gdb_byte
*valaddr
,
8916 CORE_ADDR address
, struct value
*dval
, int check_tag
)
8918 type
= ada_check_typedef (type
);
8919 switch (TYPE_CODE (type
))
8923 case TYPE_CODE_STRUCT
:
8925 struct type
*static_type
= to_static_fixed_type (type
);
8926 struct type
*fixed_record_type
=
8927 to_fixed_record_type (type
, valaddr
, address
, NULL
);
8929 /* If STATIC_TYPE is a tagged type and we know the object's address,
8930 then we can determine its tag, and compute the object's actual
8931 type from there. Note that we have to use the fixed record
8932 type (the parent part of the record may have dynamic fields
8933 and the way the location of _tag is expressed may depend on
8936 if (check_tag
&& address
!= 0 && ada_is_tagged_type (static_type
, 0))
8939 value_tag_from_contents_and_address
8943 struct type
*real_type
= type_from_tag (tag
);
8945 value_from_contents_and_address (fixed_record_type
,
8948 fixed_record_type
= value_type (obj
);
8949 if (real_type
!= NULL
)
8950 return to_fixed_record_type
8952 value_address (ada_tag_value_at_base_address (obj
)), NULL
);
8955 /* Check to see if there is a parallel ___XVZ variable.
8956 If there is, then it provides the actual size of our type. */
8957 else if (ada_type_name (fixed_record_type
) != NULL
)
8959 const char *name
= ada_type_name (fixed_record_type
);
8961 = (char *) alloca (strlen (name
) + 7 /* "___XVZ\0" */);
8965 xsnprintf (xvz_name
, strlen (name
) + 7, "%s___XVZ", name
);
8966 size
= get_int_var_value (xvz_name
, &xvz_found
);
8967 if (xvz_found
&& TYPE_LENGTH (fixed_record_type
) != size
)
8969 fixed_record_type
= copy_type (fixed_record_type
);
8970 TYPE_LENGTH (fixed_record_type
) = size
;
8972 /* The FIXED_RECORD_TYPE may have be a stub. We have
8973 observed this when the debugging info is STABS, and
8974 apparently it is something that is hard to fix.
8976 In practice, we don't need the actual type definition
8977 at all, because the presence of the XVZ variable allows us
8978 to assume that there must be a XVS type as well, which we
8979 should be able to use later, when we need the actual type
8982 In the meantime, pretend that the "fixed" type we are
8983 returning is NOT a stub, because this can cause trouble
8984 when using this type to create new types targeting it.
8985 Indeed, the associated creation routines often check
8986 whether the target type is a stub and will try to replace
8987 it, thus using a type with the wrong size. This, in turn,
8988 might cause the new type to have the wrong size too.
8989 Consider the case of an array, for instance, where the size
8990 of the array is computed from the number of elements in
8991 our array multiplied by the size of its element. */
8992 TYPE_STUB (fixed_record_type
) = 0;
8995 return fixed_record_type
;
8997 case TYPE_CODE_ARRAY
:
8998 return to_fixed_array_type (type
, dval
, 1);
8999 case TYPE_CODE_UNION
:
9003 return to_fixed_variant_branch_type (type
, valaddr
, address
, dval
);
9007 /* The same as ada_to_fixed_type_1, except that it preserves the type
9008 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9010 The typedef layer needs be preserved in order to differentiate between
9011 arrays and array pointers when both types are implemented using the same
9012 fat pointer. In the array pointer case, the pointer is encoded as
9013 a typedef of the pointer type. For instance, considering:
9015 type String_Access is access String;
9016 S1 : String_Access := null;
9018 To the debugger, S1 is defined as a typedef of type String. But
9019 to the user, it is a pointer. So if the user tries to print S1,
9020 we should not dereference the array, but print the array address
9023 If we didn't preserve the typedef layer, we would lose the fact that
9024 the type is to be presented as a pointer (needs de-reference before
9025 being printed). And we would also use the source-level type name. */
9028 ada_to_fixed_type (struct type
*type
, const gdb_byte
*valaddr
,
9029 CORE_ADDR address
, struct value
*dval
, int check_tag
)
9032 struct type
*fixed_type
=
9033 ada_to_fixed_type_1 (type
, valaddr
, address
, dval
, check_tag
);
9035 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9036 then preserve the typedef layer.
9038 Implementation note: We can only check the main-type portion of
9039 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9040 from TYPE now returns a type that has the same instance flags
9041 as TYPE. For instance, if TYPE is a "typedef const", and its
9042 target type is a "struct", then the typedef elimination will return
9043 a "const" version of the target type. See check_typedef for more
9044 details about how the typedef layer elimination is done.
9046 brobecker/2010-11-19: It seems to me that the only case where it is
9047 useful to preserve the typedef layer is when dealing with fat pointers.
9048 Perhaps, we could add a check for that and preserve the typedef layer
9049 only in that situation. But this seems unecessary so far, probably
9050 because we call check_typedef/ada_check_typedef pretty much everywhere.
9052 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
9053 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type
))
9054 == TYPE_MAIN_TYPE (fixed_type
)))
9060 /* A standard (static-sized) type corresponding as well as possible to
9061 TYPE0, but based on no runtime data. */
9063 static struct type
*
9064 to_static_fixed_type (struct type
*type0
)
9071 if (TYPE_FIXED_INSTANCE (type0
))
9074 type0
= ada_check_typedef (type0
);
9076 switch (TYPE_CODE (type0
))
9080 case TYPE_CODE_STRUCT
:
9081 type
= dynamic_template_type (type0
);
9083 return template_to_static_fixed_type (type
);
9085 return template_to_static_fixed_type (type0
);
9086 case TYPE_CODE_UNION
:
9087 type
= ada_find_parallel_type (type0
, "___XVU");
9089 return template_to_static_fixed_type (type
);
9091 return template_to_static_fixed_type (type0
);
9095 /* A static approximation of TYPE with all type wrappers removed. */
9097 static struct type
*
9098 static_unwrap_type (struct type
*type
)
9100 if (ada_is_aligner_type (type
))
9102 struct type
*type1
= TYPE_FIELD_TYPE (ada_check_typedef (type
), 0);
9103 if (ada_type_name (type1
) == NULL
)
9104 TYPE_NAME (type1
) = ada_type_name (type
);
9106 return static_unwrap_type (type1
);
9110 struct type
*raw_real_type
= ada_get_base_type (type
);
9112 if (raw_real_type
== type
)
9115 return to_static_fixed_type (raw_real_type
);
9119 /* In some cases, incomplete and private types require
9120 cross-references that are not resolved as records (for example,
9122 type FooP is access Foo;
9124 type Foo is array ...;
9125 ). In these cases, since there is no mechanism for producing
9126 cross-references to such types, we instead substitute for FooP a
9127 stub enumeration type that is nowhere resolved, and whose tag is
9128 the name of the actual type. Call these types "non-record stubs". */
9130 /* A type equivalent to TYPE that is not a non-record stub, if one
9131 exists, otherwise TYPE. */
9134 ada_check_typedef (struct type
*type
)
9139 /* If our type is a typedef type of a fat pointer, then we're done.
9140 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9141 what allows us to distinguish between fat pointers that represent
9142 array types, and fat pointers that represent array access types
9143 (in both cases, the compiler implements them as fat pointers). */
9144 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
9145 && is_thick_pntr (ada_typedef_target_type (type
)))
9148 type
= check_typedef (type
);
9149 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_ENUM
9150 || !TYPE_STUB (type
)
9151 || TYPE_TAG_NAME (type
) == NULL
)
9155 const char *name
= TYPE_TAG_NAME (type
);
9156 struct type
*type1
= ada_find_any_type (name
);
9161 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9162 stubs pointing to arrays, as we don't create symbols for array
9163 types, only for the typedef-to-array types). If that's the case,
9164 strip the typedef layer. */
9165 if (TYPE_CODE (type1
) == TYPE_CODE_TYPEDEF
)
9166 type1
= ada_check_typedef (type1
);
9172 /* A value representing the data at VALADDR/ADDRESS as described by
9173 type TYPE0, but with a standard (static-sized) type that correctly
9174 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9175 type, then return VAL0 [this feature is simply to avoid redundant
9176 creation of struct values]. */
9178 static struct value
*
9179 ada_to_fixed_value_create (struct type
*type0
, CORE_ADDR address
,
9182 struct type
*type
= ada_to_fixed_type (type0
, 0, address
, NULL
, 1);
9184 if (type
== type0
&& val0
!= NULL
)
9187 return value_from_contents_and_address (type
, 0, address
);
9190 /* A value representing VAL, but with a standard (static-sized) type
9191 that correctly describes it. Does not necessarily create a new
9195 ada_to_fixed_value (struct value
*val
)
9197 val
= unwrap_value (val
);
9198 val
= ada_to_fixed_value_create (value_type (val
),
9199 value_address (val
),
9207 /* Table mapping attribute numbers to names.
9208 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9210 static const char *attribute_names
[] = {
9228 ada_attribute_name (enum exp_opcode n
)
9230 if (n
>= OP_ATR_FIRST
&& n
<= (int) OP_ATR_VAL
)
9231 return attribute_names
[n
- OP_ATR_FIRST
+ 1];
9233 return attribute_names
[0];
9236 /* Evaluate the 'POS attribute applied to ARG. */
9239 pos_atr (struct value
*arg
)
9241 struct value
*val
= coerce_ref (arg
);
9242 struct type
*type
= value_type (val
);
9245 if (!discrete_type_p (type
))
9246 error (_("'POS only defined on discrete types"));
9248 if (!discrete_position (type
, value_as_long (val
), &result
))
9249 error (_("enumeration value is invalid: can't find 'POS"));
9254 static struct value
*
9255 value_pos_atr (struct type
*type
, struct value
*arg
)
9257 return value_from_longest (type
, pos_atr (arg
));
9260 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9262 static struct value
*
9263 value_val_atr (struct type
*type
, struct value
*arg
)
9265 if (!discrete_type_p (type
))
9266 error (_("'VAL only defined on discrete types"));
9267 if (!integer_type_p (value_type (arg
)))
9268 error (_("'VAL requires integral argument"));
9270 if (TYPE_CODE (type
) == TYPE_CODE_ENUM
)
9272 long pos
= value_as_long (arg
);
9274 if (pos
< 0 || pos
>= TYPE_NFIELDS (type
))
9275 error (_("argument to 'VAL out of range"));
9276 return value_from_longest (type
, TYPE_FIELD_ENUMVAL (type
, pos
));
9279 return value_from_longest (type
, value_as_long (arg
));
9285 /* True if TYPE appears to be an Ada character type.
9286 [At the moment, this is true only for Character and Wide_Character;
9287 It is a heuristic test that could stand improvement]. */
9290 ada_is_character_type (struct type
*type
)
9294 /* If the type code says it's a character, then assume it really is,
9295 and don't check any further. */
9296 if (TYPE_CODE (type
) == TYPE_CODE_CHAR
)
9299 /* Otherwise, assume it's a character type iff it is a discrete type
9300 with a known character type name. */
9301 name
= ada_type_name (type
);
9302 return (name
!= NULL
9303 && (TYPE_CODE (type
) == TYPE_CODE_INT
9304 || TYPE_CODE (type
) == TYPE_CODE_RANGE
)
9305 && (strcmp (name
, "character") == 0
9306 || strcmp (name
, "wide_character") == 0
9307 || strcmp (name
, "wide_wide_character") == 0
9308 || strcmp (name
, "unsigned char") == 0));
9311 /* True if TYPE appears to be an Ada string type. */
9314 ada_is_string_type (struct type
*type
)
9316 type
= ada_check_typedef (type
);
9318 && TYPE_CODE (type
) != TYPE_CODE_PTR
9319 && (ada_is_simple_array_type (type
)
9320 || ada_is_array_descriptor_type (type
))
9321 && ada_array_arity (type
) == 1)
9323 struct type
*elttype
= ada_array_element_type (type
, 1);
9325 return ada_is_character_type (elttype
);
9331 /* The compiler sometimes provides a parallel XVS type for a given
9332 PAD type. Normally, it is safe to follow the PAD type directly,
9333 but older versions of the compiler have a bug that causes the offset
9334 of its "F" field to be wrong. Following that field in that case
9335 would lead to incorrect results, but this can be worked around
9336 by ignoring the PAD type and using the associated XVS type instead.
9338 Set to True if the debugger should trust the contents of PAD types.
9339 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9340 static int trust_pad_over_xvs
= 1;
9342 /* True if TYPE is a struct type introduced by the compiler to force the
9343 alignment of a value. Such types have a single field with a
9344 distinctive name. */
9347 ada_is_aligner_type (struct type
*type
)
9349 type
= ada_check_typedef (type
);
9351 if (!trust_pad_over_xvs
&& ada_find_parallel_type (type
, "___XVS") != NULL
)
9354 return (TYPE_CODE (type
) == TYPE_CODE_STRUCT
9355 && TYPE_NFIELDS (type
) == 1
9356 && strcmp (TYPE_FIELD_NAME (type
, 0), "F") == 0);
9359 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9360 the parallel type. */
9363 ada_get_base_type (struct type
*raw_type
)
9365 struct type
*real_type_namer
;
9366 struct type
*raw_real_type
;
9368 if (raw_type
== NULL
|| TYPE_CODE (raw_type
) != TYPE_CODE_STRUCT
)
9371 if (ada_is_aligner_type (raw_type
))
9372 /* The encoding specifies that we should always use the aligner type.
9373 So, even if this aligner type has an associated XVS type, we should
9376 According to the compiler gurus, an XVS type parallel to an aligner
9377 type may exist because of a stabs limitation. In stabs, aligner
9378 types are empty because the field has a variable-sized type, and
9379 thus cannot actually be used as an aligner type. As a result,
9380 we need the associated parallel XVS type to decode the type.
9381 Since the policy in the compiler is to not change the internal
9382 representation based on the debugging info format, we sometimes
9383 end up having a redundant XVS type parallel to the aligner type. */
9386 real_type_namer
= ada_find_parallel_type (raw_type
, "___XVS");
9387 if (real_type_namer
== NULL
9388 || TYPE_CODE (real_type_namer
) != TYPE_CODE_STRUCT
9389 || TYPE_NFIELDS (real_type_namer
) != 1)
9392 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer
, 0)) != TYPE_CODE_REF
)
9394 /* This is an older encoding form where the base type needs to be
9395 looked up by name. We prefer the newer enconding because it is
9397 raw_real_type
= ada_find_any_type (TYPE_FIELD_NAME (real_type_namer
, 0));
9398 if (raw_real_type
== NULL
)
9401 return raw_real_type
;
9404 /* The field in our XVS type is a reference to the base type. */
9405 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer
, 0));
9408 /* The type of value designated by TYPE, with all aligners removed. */
9411 ada_aligned_type (struct type
*type
)
9413 if (ada_is_aligner_type (type
))
9414 return ada_aligned_type (TYPE_FIELD_TYPE (type
, 0));
9416 return ada_get_base_type (type
);
9420 /* The address of the aligned value in an object at address VALADDR
9421 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9424 ada_aligned_value_addr (struct type
*type
, const gdb_byte
*valaddr
)
9426 if (ada_is_aligner_type (type
))
9427 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type
, 0),
9429 TYPE_FIELD_BITPOS (type
,
9430 0) / TARGET_CHAR_BIT
);
9437 /* The printed representation of an enumeration literal with encoded
9438 name NAME. The value is good to the next call of ada_enum_name. */
9440 ada_enum_name (const char *name
)
9442 static char *result
;
9443 static size_t result_len
= 0;
9446 /* First, unqualify the enumeration name:
9447 1. Search for the last '.' character. If we find one, then skip
9448 all the preceding characters, the unqualified name starts
9449 right after that dot.
9450 2. Otherwise, we may be debugging on a target where the compiler
9451 translates dots into "__". Search forward for double underscores,
9452 but stop searching when we hit an overloading suffix, which is
9453 of the form "__" followed by digits. */
9455 tmp
= strrchr (name
, '.');
9460 while ((tmp
= strstr (name
, "__")) != NULL
)
9462 if (isdigit (tmp
[2]))
9473 if (name
[1] == 'U' || name
[1] == 'W')
9475 if (sscanf (name
+ 2, "%x", &v
) != 1)
9481 GROW_VECT (result
, result_len
, 16);
9482 if (isascii (v
) && isprint (v
))
9483 xsnprintf (result
, result_len
, "'%c'", v
);
9484 else if (name
[1] == 'U')
9485 xsnprintf (result
, result_len
, "[\"%02x\"]", v
);
9487 xsnprintf (result
, result_len
, "[\"%04x\"]", v
);
9493 tmp
= strstr (name
, "__");
9495 tmp
= strstr (name
, "$");
9498 GROW_VECT (result
, result_len
, tmp
- name
+ 1);
9499 strncpy (result
, name
, tmp
- name
);
9500 result
[tmp
- name
] = '\0';
9508 /* Evaluate the subexpression of EXP starting at *POS as for
9509 evaluate_type, updating *POS to point just past the evaluated
9512 static struct value
*
9513 evaluate_subexp_type (struct expression
*exp
, int *pos
)
9515 return evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_AVOID_SIDE_EFFECTS
);
9518 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9521 static struct value
*
9522 unwrap_value (struct value
*val
)
9524 struct type
*type
= ada_check_typedef (value_type (val
));
9526 if (ada_is_aligner_type (type
))
9528 struct value
*v
= ada_value_struct_elt (val
, "F", 0);
9529 struct type
*val_type
= ada_check_typedef (value_type (v
));
9531 if (ada_type_name (val_type
) == NULL
)
9532 TYPE_NAME (val_type
) = ada_type_name (type
);
9534 return unwrap_value (v
);
9538 struct type
*raw_real_type
=
9539 ada_check_typedef (ada_get_base_type (type
));
9541 /* If there is no parallel XVS or XVE type, then the value is
9542 already unwrapped. Return it without further modification. */
9543 if ((type
== raw_real_type
)
9544 && ada_find_parallel_type (type
, "___XVE") == NULL
)
9548 coerce_unspec_val_to_type
9549 (val
, ada_to_fixed_type (raw_real_type
, 0,
9550 value_address (val
),
9555 static struct value
*
9556 cast_to_fixed (struct type
*type
, struct value
*arg
)
9560 if (type
== value_type (arg
))
9562 else if (ada_is_fixed_point_type (value_type (arg
)))
9563 val
= ada_float_to_fixed (type
,
9564 ada_fixed_to_float (value_type (arg
),
9565 value_as_long (arg
)));
9568 DOUBLEST argd
= value_as_double (arg
);
9570 val
= ada_float_to_fixed (type
, argd
);
9573 return value_from_longest (type
, val
);
9576 static struct value
*
9577 cast_from_fixed (struct type
*type
, struct value
*arg
)
9579 DOUBLEST val
= ada_fixed_to_float (value_type (arg
),
9580 value_as_long (arg
));
9582 return value_from_double (type
, val
);
9585 /* Given two array types T1 and T2, return nonzero iff both arrays
9586 contain the same number of elements. */
9589 ada_same_array_size_p (struct type
*t1
, struct type
*t2
)
9591 LONGEST lo1
, hi1
, lo2
, hi2
;
9593 /* Get the array bounds in order to verify that the size of
9594 the two arrays match. */
9595 if (!get_array_bounds (t1
, &lo1
, &hi1
)
9596 || !get_array_bounds (t2
, &lo2
, &hi2
))
9597 error (_("unable to determine array bounds"));
9599 /* To make things easier for size comparison, normalize a bit
9600 the case of empty arrays by making sure that the difference
9601 between upper bound and lower bound is always -1. */
9607 return (hi1
- lo1
== hi2
- lo2
);
9610 /* Assuming that VAL is an array of integrals, and TYPE represents
9611 an array with the same number of elements, but with wider integral
9612 elements, return an array "casted" to TYPE. In practice, this
9613 means that the returned array is built by casting each element
9614 of the original array into TYPE's (wider) element type. */
9616 static struct value
*
9617 ada_promote_array_of_integrals (struct type
*type
, struct value
*val
)
9619 struct type
*elt_type
= TYPE_TARGET_TYPE (type
);
9624 /* Verify that both val and type are arrays of scalars, and
9625 that the size of val's elements is smaller than the size
9626 of type's element. */
9627 gdb_assert (TYPE_CODE (type
) == TYPE_CODE_ARRAY
);
9628 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type
)));
9629 gdb_assert (TYPE_CODE (value_type (val
)) == TYPE_CODE_ARRAY
);
9630 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val
))));
9631 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type
))
9632 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val
))));
9634 if (!get_array_bounds (type
, &lo
, &hi
))
9635 error (_("unable to determine array bounds"));
9637 res
= allocate_value (type
);
9639 /* Promote each array element. */
9640 for (i
= 0; i
< hi
- lo
+ 1; i
++)
9642 struct value
*elt
= value_cast (elt_type
, value_subscript (val
, lo
+ i
));
9644 memcpy (value_contents_writeable (res
) + (i
* TYPE_LENGTH (elt_type
)),
9645 value_contents_all (elt
), TYPE_LENGTH (elt_type
));
9651 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9652 return the converted value. */
9654 static struct value
*
9655 coerce_for_assign (struct type
*type
, struct value
*val
)
9657 struct type
*type2
= value_type (val
);
9662 type2
= ada_check_typedef (type2
);
9663 type
= ada_check_typedef (type
);
9665 if (TYPE_CODE (type2
) == TYPE_CODE_PTR
9666 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
9668 val
= ada_value_ind (val
);
9669 type2
= value_type (val
);
9672 if (TYPE_CODE (type2
) == TYPE_CODE_ARRAY
9673 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
9675 if (!ada_same_array_size_p (type
, type2
))
9676 error (_("cannot assign arrays of different length"));
9678 if (is_integral_type (TYPE_TARGET_TYPE (type
))
9679 && is_integral_type (TYPE_TARGET_TYPE (type2
))
9680 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2
))
9681 < TYPE_LENGTH (TYPE_TARGET_TYPE (type
)))
9683 /* Allow implicit promotion of the array elements to
9685 return ada_promote_array_of_integrals (type
, val
);
9688 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2
))
9689 != TYPE_LENGTH (TYPE_TARGET_TYPE (type
)))
9690 error (_("Incompatible types in assignment"));
9691 deprecated_set_value_type (val
, type
);
9696 static struct value
*
9697 ada_value_binop (struct value
*arg1
, struct value
*arg2
, enum exp_opcode op
)
9700 struct type
*type1
, *type2
;
9703 arg1
= coerce_ref (arg1
);
9704 arg2
= coerce_ref (arg2
);
9705 type1
= get_base_type (ada_check_typedef (value_type (arg1
)));
9706 type2
= get_base_type (ada_check_typedef (value_type (arg2
)));
9708 if (TYPE_CODE (type1
) != TYPE_CODE_INT
9709 || TYPE_CODE (type2
) != TYPE_CODE_INT
)
9710 return value_binop (arg1
, arg2
, op
);
9719 return value_binop (arg1
, arg2
, op
);
9722 v2
= value_as_long (arg2
);
9724 error (_("second operand of %s must not be zero."), op_string (op
));
9726 if (TYPE_UNSIGNED (type1
) || op
== BINOP_MOD
)
9727 return value_binop (arg1
, arg2
, op
);
9729 v1
= value_as_long (arg1
);
9734 if (!TRUNCATION_TOWARDS_ZERO
&& v1
* (v1
% v2
) < 0)
9735 v
+= v
> 0 ? -1 : 1;
9743 /* Should not reach this point. */
9747 val
= allocate_value (type1
);
9748 store_unsigned_integer (value_contents_raw (val
),
9749 TYPE_LENGTH (value_type (val
)),
9750 gdbarch_byte_order (get_type_arch (type1
)), v
);
9755 ada_value_equal (struct value
*arg1
, struct value
*arg2
)
9757 if (ada_is_direct_array_type (value_type (arg1
))
9758 || ada_is_direct_array_type (value_type (arg2
)))
9760 /* Automatically dereference any array reference before
9761 we attempt to perform the comparison. */
9762 arg1
= ada_coerce_ref (arg1
);
9763 arg2
= ada_coerce_ref (arg2
);
9765 arg1
= ada_coerce_to_simple_array (arg1
);
9766 arg2
= ada_coerce_to_simple_array (arg2
);
9767 if (TYPE_CODE (value_type (arg1
)) != TYPE_CODE_ARRAY
9768 || TYPE_CODE (value_type (arg2
)) != TYPE_CODE_ARRAY
)
9769 error (_("Attempt to compare array with non-array"));
9770 /* FIXME: The following works only for types whose
9771 representations use all bits (no padding or undefined bits)
9772 and do not have user-defined equality. */
9774 TYPE_LENGTH (value_type (arg1
)) == TYPE_LENGTH (value_type (arg2
))
9775 && memcmp (value_contents (arg1
), value_contents (arg2
),
9776 TYPE_LENGTH (value_type (arg1
))) == 0;
9778 return value_equal (arg1
, arg2
);
9781 /* Total number of component associations in the aggregate starting at
9782 index PC in EXP. Assumes that index PC is the start of an
9786 num_component_specs (struct expression
*exp
, int pc
)
9790 m
= exp
->elts
[pc
+ 1].longconst
;
9793 for (i
= 0; i
< m
; i
+= 1)
9795 switch (exp
->elts
[pc
].opcode
)
9801 n
+= exp
->elts
[pc
+ 1].longconst
;
9804 ada_evaluate_subexp (NULL
, exp
, &pc
, EVAL_SKIP
);
9809 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9810 component of LHS (a simple array or a record), updating *POS past
9811 the expression, assuming that LHS is contained in CONTAINER. Does
9812 not modify the inferior's memory, nor does it modify LHS (unless
9813 LHS == CONTAINER). */
9816 assign_component (struct value
*container
, struct value
*lhs
, LONGEST index
,
9817 struct expression
*exp
, int *pos
)
9819 struct value
*mark
= value_mark ();
9822 if (TYPE_CODE (value_type (lhs
)) == TYPE_CODE_ARRAY
)
9824 struct type
*index_type
= builtin_type (exp
->gdbarch
)->builtin_int
;
9825 struct value
*index_val
= value_from_longest (index_type
, index
);
9827 elt
= unwrap_value (ada_value_subscript (lhs
, 1, &index_val
));
9831 elt
= ada_index_struct_field (index
, lhs
, 0, value_type (lhs
));
9832 elt
= ada_to_fixed_value (elt
);
9835 if (exp
->elts
[*pos
].opcode
== OP_AGGREGATE
)
9836 assign_aggregate (container
, elt
, exp
, pos
, EVAL_NORMAL
);
9838 value_assign_to_component (container
, elt
,
9839 ada_evaluate_subexp (NULL
, exp
, pos
,
9842 value_free_to_mark (mark
);
9845 /* Assuming that LHS represents an lvalue having a record or array
9846 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9847 of that aggregate's value to LHS, advancing *POS past the
9848 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9849 lvalue containing LHS (possibly LHS itself). Does not modify
9850 the inferior's memory, nor does it modify the contents of
9851 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9853 static struct value
*
9854 assign_aggregate (struct value
*container
,
9855 struct value
*lhs
, struct expression
*exp
,
9856 int *pos
, enum noside noside
)
9858 struct type
*lhs_type
;
9859 int n
= exp
->elts
[*pos
+1].longconst
;
9860 LONGEST low_index
, high_index
;
9863 int max_indices
, num_indices
;
9867 if (noside
!= EVAL_NORMAL
)
9869 for (i
= 0; i
< n
; i
+= 1)
9870 ada_evaluate_subexp (NULL
, exp
, pos
, noside
);
9874 container
= ada_coerce_ref (container
);
9875 if (ada_is_direct_array_type (value_type (container
)))
9876 container
= ada_coerce_to_simple_array (container
);
9877 lhs
= ada_coerce_ref (lhs
);
9878 if (!deprecated_value_modifiable (lhs
))
9879 error (_("Left operand of assignment is not a modifiable lvalue."));
9881 lhs_type
= value_type (lhs
);
9882 if (ada_is_direct_array_type (lhs_type
))
9884 lhs
= ada_coerce_to_simple_array (lhs
);
9885 lhs_type
= value_type (lhs
);
9886 low_index
= TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type
);
9887 high_index
= TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type
);
9889 else if (TYPE_CODE (lhs_type
) == TYPE_CODE_STRUCT
)
9892 high_index
= num_visible_fields (lhs_type
) - 1;
9895 error (_("Left-hand side must be array or record."));
9897 num_specs
= num_component_specs (exp
, *pos
- 3);
9898 max_indices
= 4 * num_specs
+ 4;
9899 indices
= XALLOCAVEC (LONGEST
, max_indices
);
9900 indices
[0] = indices
[1] = low_index
- 1;
9901 indices
[2] = indices
[3] = high_index
+ 1;
9904 for (i
= 0; i
< n
; i
+= 1)
9906 switch (exp
->elts
[*pos
].opcode
)
9909 aggregate_assign_from_choices (container
, lhs
, exp
, pos
, indices
,
9910 &num_indices
, max_indices
,
9911 low_index
, high_index
);
9914 aggregate_assign_positional (container
, lhs
, exp
, pos
, indices
,
9915 &num_indices
, max_indices
,
9916 low_index
, high_index
);
9920 error (_("Misplaced 'others' clause"));
9921 aggregate_assign_others (container
, lhs
, exp
, pos
, indices
,
9922 num_indices
, low_index
, high_index
);
9925 error (_("Internal error: bad aggregate clause"));
9932 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9933 construct at *POS, updating *POS past the construct, given that
9934 the positions are relative to lower bound LOW, where HIGH is the
9935 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9936 updating *NUM_INDICES as needed. CONTAINER is as for
9937 assign_aggregate. */
9939 aggregate_assign_positional (struct value
*container
,
9940 struct value
*lhs
, struct expression
*exp
,
9941 int *pos
, LONGEST
*indices
, int *num_indices
,
9942 int max_indices
, LONGEST low
, LONGEST high
)
9944 LONGEST ind
= longest_to_int (exp
->elts
[*pos
+ 1].longconst
) + low
;
9946 if (ind
- 1 == high
)
9947 warning (_("Extra components in aggregate ignored."));
9950 add_component_interval (ind
, ind
, indices
, num_indices
, max_indices
);
9952 assign_component (container
, lhs
, ind
, exp
, pos
);
9955 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
9958 /* Assign into the components of LHS indexed by the OP_CHOICES
9959 construct at *POS, updating *POS past the construct, given that
9960 the allowable indices are LOW..HIGH. Record the indices assigned
9961 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9962 needed. CONTAINER is as for assign_aggregate. */
9964 aggregate_assign_from_choices (struct value
*container
,
9965 struct value
*lhs
, struct expression
*exp
,
9966 int *pos
, LONGEST
*indices
, int *num_indices
,
9967 int max_indices
, LONGEST low
, LONGEST high
)
9970 int n_choices
= longest_to_int (exp
->elts
[*pos
+1].longconst
);
9971 int choice_pos
, expr_pc
;
9972 int is_array
= ada_is_direct_array_type (value_type (lhs
));
9974 choice_pos
= *pos
+= 3;
9976 for (j
= 0; j
< n_choices
; j
+= 1)
9977 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
9979 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
9981 for (j
= 0; j
< n_choices
; j
+= 1)
9983 LONGEST lower
, upper
;
9984 enum exp_opcode op
= exp
->elts
[choice_pos
].opcode
;
9986 if (op
== OP_DISCRETE_RANGE
)
9989 lower
= value_as_long (ada_evaluate_subexp (NULL
, exp
, pos
,
9991 upper
= value_as_long (ada_evaluate_subexp (NULL
, exp
, pos
,
9996 lower
= value_as_long (ada_evaluate_subexp (NULL
, exp
, &choice_pos
,
10008 name
= &exp
->elts
[choice_pos
+ 2].string
;
10011 name
= SYMBOL_NATURAL_NAME (exp
->elts
[choice_pos
+ 2].symbol
);
10014 error (_("Invalid record component association."));
10016 ada_evaluate_subexp (NULL
, exp
, &choice_pos
, EVAL_SKIP
);
10018 if (! find_struct_field (name
, value_type (lhs
), 0,
10019 NULL
, NULL
, NULL
, NULL
, &ind
))
10020 error (_("Unknown component name: %s."), name
);
10021 lower
= upper
= ind
;
10024 if (lower
<= upper
&& (lower
< low
|| upper
> high
))
10025 error (_("Index in component association out of bounds."));
10027 add_component_interval (lower
, upper
, indices
, num_indices
,
10029 while (lower
<= upper
)
10034 assign_component (container
, lhs
, lower
, exp
, &pos1
);
10040 /* Assign the value of the expression in the OP_OTHERS construct in
10041 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10042 have not been previously assigned. The index intervals already assigned
10043 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10044 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10046 aggregate_assign_others (struct value
*container
,
10047 struct value
*lhs
, struct expression
*exp
,
10048 int *pos
, LONGEST
*indices
, int num_indices
,
10049 LONGEST low
, LONGEST high
)
10052 int expr_pc
= *pos
+ 1;
10054 for (i
= 0; i
< num_indices
- 2; i
+= 2)
10058 for (ind
= indices
[i
+ 1] + 1; ind
< indices
[i
+ 2]; ind
+= 1)
10062 localpos
= expr_pc
;
10063 assign_component (container
, lhs
, ind
, exp
, &localpos
);
10066 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
10069 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10070 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10071 modifying *SIZE as needed. It is an error if *SIZE exceeds
10072 MAX_SIZE. The resulting intervals do not overlap. */
10074 add_component_interval (LONGEST low
, LONGEST high
,
10075 LONGEST
* indices
, int *size
, int max_size
)
10079 for (i
= 0; i
< *size
; i
+= 2) {
10080 if (high
>= indices
[i
] && low
<= indices
[i
+ 1])
10084 for (kh
= i
+ 2; kh
< *size
; kh
+= 2)
10085 if (high
< indices
[kh
])
10087 if (low
< indices
[i
])
10089 indices
[i
+ 1] = indices
[kh
- 1];
10090 if (high
> indices
[i
+ 1])
10091 indices
[i
+ 1] = high
;
10092 memcpy (indices
+ i
+ 2, indices
+ kh
, *size
- kh
);
10093 *size
-= kh
- i
- 2;
10096 else if (high
< indices
[i
])
10100 if (*size
== max_size
)
10101 error (_("Internal error: miscounted aggregate components."));
10103 for (j
= *size
-1; j
>= i
+2; j
-= 1)
10104 indices
[j
] = indices
[j
- 2];
10106 indices
[i
+ 1] = high
;
10109 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10112 static struct value
*
10113 ada_value_cast (struct type
*type
, struct value
*arg2
, enum noside noside
)
10115 if (type
== ada_check_typedef (value_type (arg2
)))
10118 if (ada_is_fixed_point_type (type
))
10119 return (cast_to_fixed (type
, arg2
));
10121 if (ada_is_fixed_point_type (value_type (arg2
)))
10122 return cast_from_fixed (type
, arg2
);
10124 return value_cast (type
, arg2
);
10127 /* Evaluating Ada expressions, and printing their result.
10128 ------------------------------------------------------
10133 We usually evaluate an Ada expression in order to print its value.
10134 We also evaluate an expression in order to print its type, which
10135 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10136 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10137 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10138 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10141 Evaluating expressions is a little more complicated for Ada entities
10142 than it is for entities in languages such as C. The main reason for
10143 this is that Ada provides types whose definition might be dynamic.
10144 One example of such types is variant records. Or another example
10145 would be an array whose bounds can only be known at run time.
10147 The following description is a general guide as to what should be
10148 done (and what should NOT be done) in order to evaluate an expression
10149 involving such types, and when. This does not cover how the semantic
10150 information is encoded by GNAT as this is covered separatly. For the
10151 document used as the reference for the GNAT encoding, see exp_dbug.ads
10152 in the GNAT sources.
10154 Ideally, we should embed each part of this description next to its
10155 associated code. Unfortunately, the amount of code is so vast right
10156 now that it's hard to see whether the code handling a particular
10157 situation might be duplicated or not. One day, when the code is
10158 cleaned up, this guide might become redundant with the comments
10159 inserted in the code, and we might want to remove it.
10161 2. ``Fixing'' an Entity, the Simple Case:
10162 -----------------------------------------
10164 When evaluating Ada expressions, the tricky issue is that they may
10165 reference entities whose type contents and size are not statically
10166 known. Consider for instance a variant record:
10168 type Rec (Empty : Boolean := True) is record
10171 when False => Value : Integer;
10174 Yes : Rec := (Empty => False, Value => 1);
10175 No : Rec := (empty => True);
10177 The size and contents of that record depends on the value of the
10178 descriminant (Rec.Empty). At this point, neither the debugging
10179 information nor the associated type structure in GDB are able to
10180 express such dynamic types. So what the debugger does is to create
10181 "fixed" versions of the type that applies to the specific object.
10182 We also informally refer to this opperation as "fixing" an object,
10183 which means creating its associated fixed type.
10185 Example: when printing the value of variable "Yes" above, its fixed
10186 type would look like this:
10193 On the other hand, if we printed the value of "No", its fixed type
10200 Things become a little more complicated when trying to fix an entity
10201 with a dynamic type that directly contains another dynamic type,
10202 such as an array of variant records, for instance. There are
10203 two possible cases: Arrays, and records.
10205 3. ``Fixing'' Arrays:
10206 ---------------------
10208 The type structure in GDB describes an array in terms of its bounds,
10209 and the type of its elements. By design, all elements in the array
10210 have the same type and we cannot represent an array of variant elements
10211 using the current type structure in GDB. When fixing an array,
10212 we cannot fix the array element, as we would potentially need one
10213 fixed type per element of the array. As a result, the best we can do
10214 when fixing an array is to produce an array whose bounds and size
10215 are correct (allowing us to read it from memory), but without having
10216 touched its element type. Fixing each element will be done later,
10217 when (if) necessary.
10219 Arrays are a little simpler to handle than records, because the same
10220 amount of memory is allocated for each element of the array, even if
10221 the amount of space actually used by each element differs from element
10222 to element. Consider for instance the following array of type Rec:
10224 type Rec_Array is array (1 .. 2) of Rec;
10226 The actual amount of memory occupied by each element might be different
10227 from element to element, depending on the value of their discriminant.
10228 But the amount of space reserved for each element in the array remains
10229 fixed regardless. So we simply need to compute that size using
10230 the debugging information available, from which we can then determine
10231 the array size (we multiply the number of elements of the array by
10232 the size of each element).
10234 The simplest case is when we have an array of a constrained element
10235 type. For instance, consider the following type declarations:
10237 type Bounded_String (Max_Size : Integer) is
10239 Buffer : String (1 .. Max_Size);
10241 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10243 In this case, the compiler describes the array as an array of
10244 variable-size elements (identified by its XVS suffix) for which
10245 the size can be read in the parallel XVZ variable.
10247 In the case of an array of an unconstrained element type, the compiler
10248 wraps the array element inside a private PAD type. This type should not
10249 be shown to the user, and must be "unwrap"'ed before printing. Note
10250 that we also use the adjective "aligner" in our code to designate
10251 these wrapper types.
10253 In some cases, the size allocated for each element is statically
10254 known. In that case, the PAD type already has the correct size,
10255 and the array element should remain unfixed.
10257 But there are cases when this size is not statically known.
10258 For instance, assuming that "Five" is an integer variable:
10260 type Dynamic is array (1 .. Five) of Integer;
10261 type Wrapper (Has_Length : Boolean := False) is record
10264 when True => Length : Integer;
10265 when False => null;
10268 type Wrapper_Array is array (1 .. 2) of Wrapper;
10270 Hello : Wrapper_Array := (others => (Has_Length => True,
10271 Data => (others => 17),
10275 The debugging info would describe variable Hello as being an
10276 array of a PAD type. The size of that PAD type is not statically
10277 known, but can be determined using a parallel XVZ variable.
10278 In that case, a copy of the PAD type with the correct size should
10279 be used for the fixed array.
10281 3. ``Fixing'' record type objects:
10282 ----------------------------------
10284 Things are slightly different from arrays in the case of dynamic
10285 record types. In this case, in order to compute the associated
10286 fixed type, we need to determine the size and offset of each of
10287 its components. This, in turn, requires us to compute the fixed
10288 type of each of these components.
10290 Consider for instance the example:
10292 type Bounded_String (Max_Size : Natural) is record
10293 Str : String (1 .. Max_Size);
10296 My_String : Bounded_String (Max_Size => 10);
10298 In that case, the position of field "Length" depends on the size
10299 of field Str, which itself depends on the value of the Max_Size
10300 discriminant. In order to fix the type of variable My_String,
10301 we need to fix the type of field Str. Therefore, fixing a variant
10302 record requires us to fix each of its components.
10304 However, if a component does not have a dynamic size, the component
10305 should not be fixed. In particular, fields that use a PAD type
10306 should not fixed. Here is an example where this might happen
10307 (assuming type Rec above):
10309 type Container (Big : Boolean) is record
10313 when True => Another : Integer;
10314 when False => null;
10317 My_Container : Container := (Big => False,
10318 First => (Empty => True),
10321 In that example, the compiler creates a PAD type for component First,
10322 whose size is constant, and then positions the component After just
10323 right after it. The offset of component After is therefore constant
10326 The debugger computes the position of each field based on an algorithm
10327 that uses, among other things, the actual position and size of the field
10328 preceding it. Let's now imagine that the user is trying to print
10329 the value of My_Container. If the type fixing was recursive, we would
10330 end up computing the offset of field After based on the size of the
10331 fixed version of field First. And since in our example First has
10332 only one actual field, the size of the fixed type is actually smaller
10333 than the amount of space allocated to that field, and thus we would
10334 compute the wrong offset of field After.
10336 To make things more complicated, we need to watch out for dynamic
10337 components of variant records (identified by the ___XVL suffix in
10338 the component name). Even if the target type is a PAD type, the size
10339 of that type might not be statically known. So the PAD type needs
10340 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10341 we might end up with the wrong size for our component. This can be
10342 observed with the following type declarations:
10344 type Octal is new Integer range 0 .. 7;
10345 type Octal_Array is array (Positive range <>) of Octal;
10346 pragma Pack (Octal_Array);
10348 type Octal_Buffer (Size : Positive) is record
10349 Buffer : Octal_Array (1 .. Size);
10353 In that case, Buffer is a PAD type whose size is unset and needs
10354 to be computed by fixing the unwrapped type.
10356 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10357 ----------------------------------------------------------
10359 Lastly, when should the sub-elements of an entity that remained unfixed
10360 thus far, be actually fixed?
10362 The answer is: Only when referencing that element. For instance
10363 when selecting one component of a record, this specific component
10364 should be fixed at that point in time. Or when printing the value
10365 of a record, each component should be fixed before its value gets
10366 printed. Similarly for arrays, the element of the array should be
10367 fixed when printing each element of the array, or when extracting
10368 one element out of that array. On the other hand, fixing should
10369 not be performed on the elements when taking a slice of an array!
10371 Note that one of the side-effects of miscomputing the offset and
10372 size of each field is that we end up also miscomputing the size
10373 of the containing type. This can have adverse results when computing
10374 the value of an entity. GDB fetches the value of an entity based
10375 on the size of its type, and thus a wrong size causes GDB to fetch
10376 the wrong amount of memory. In the case where the computed size is
10377 too small, GDB fetches too little data to print the value of our
10378 entiry. Results in this case as unpredicatble, as we usually read
10379 past the buffer containing the data =:-o. */
10381 /* Implement the evaluate_exp routine in the exp_descriptor structure
10382 for the Ada language. */
10384 static struct value
*
10385 ada_evaluate_subexp (struct type
*expect_type
, struct expression
*exp
,
10386 int *pos
, enum noside noside
)
10388 enum exp_opcode op
;
10392 struct value
*arg1
= NULL
, *arg2
= NULL
, *arg3
;
10395 struct value
**argvec
;
10399 op
= exp
->elts
[pc
].opcode
;
10405 arg1
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
10407 if (noside
== EVAL_NORMAL
)
10408 arg1
= unwrap_value (arg1
);
10410 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10411 then we need to perform the conversion manually, because
10412 evaluate_subexp_standard doesn't do it. This conversion is
10413 necessary in Ada because the different kinds of float/fixed
10414 types in Ada have different representations.
10416 Similarly, we need to perform the conversion from OP_LONG
10418 if ((op
== OP_DOUBLE
|| op
== OP_LONG
) && expect_type
!= NULL
)
10419 arg1
= ada_value_cast (expect_type
, arg1
, noside
);
10425 struct value
*result
;
10428 result
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
10429 /* The result type will have code OP_STRING, bashed there from
10430 OP_ARRAY. Bash it back. */
10431 if (TYPE_CODE (value_type (result
)) == TYPE_CODE_STRING
)
10432 TYPE_CODE (value_type (result
)) = TYPE_CODE_ARRAY
;
10438 type
= exp
->elts
[pc
+ 1].type
;
10439 arg1
= evaluate_subexp (type
, exp
, pos
, noside
);
10440 if (noside
== EVAL_SKIP
)
10442 arg1
= ada_value_cast (type
, arg1
, noside
);
10447 type
= exp
->elts
[pc
+ 1].type
;
10448 return ada_evaluate_subexp (type
, exp
, pos
, noside
);
10451 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10452 if (exp
->elts
[*pos
].opcode
== OP_AGGREGATE
)
10454 arg1
= assign_aggregate (arg1
, arg1
, exp
, pos
, noside
);
10455 if (noside
== EVAL_SKIP
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
10457 return ada_value_assign (arg1
, arg1
);
10459 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10460 except if the lhs of our assignment is a convenience variable.
10461 In the case of assigning to a convenience variable, the lhs
10462 should be exactly the result of the evaluation of the rhs. */
10463 type
= value_type (arg1
);
10464 if (VALUE_LVAL (arg1
) == lval_internalvar
)
10466 arg2
= evaluate_subexp (type
, exp
, pos
, noside
);
10467 if (noside
== EVAL_SKIP
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
10469 if (ada_is_fixed_point_type (value_type (arg1
)))
10470 arg2
= cast_to_fixed (value_type (arg1
), arg2
);
10471 else if (ada_is_fixed_point_type (value_type (arg2
)))
10473 (_("Fixed-point values must be assigned to fixed-point variables"));
10475 arg2
= coerce_for_assign (value_type (arg1
), arg2
);
10476 return ada_value_assign (arg1
, arg2
);
10479 arg1
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
10480 arg2
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
10481 if (noside
== EVAL_SKIP
)
10483 if (TYPE_CODE (value_type (arg1
)) == TYPE_CODE_PTR
)
10484 return (value_from_longest
10485 (value_type (arg1
),
10486 value_as_long (arg1
) + value_as_long (arg2
)));
10487 if (TYPE_CODE (value_type (arg2
)) == TYPE_CODE_PTR
)
10488 return (value_from_longest
10489 (value_type (arg2
),
10490 value_as_long (arg1
) + value_as_long (arg2
)));
10491 if ((ada_is_fixed_point_type (value_type (arg1
))
10492 || ada_is_fixed_point_type (value_type (arg2
)))
10493 && value_type (arg1
) != value_type (arg2
))
10494 error (_("Operands of fixed-point addition must have the same type"));
10495 /* Do the addition, and cast the result to the type of the first
10496 argument. We cannot cast the result to a reference type, so if
10497 ARG1 is a reference type, find its underlying type. */
10498 type
= value_type (arg1
);
10499 while (TYPE_CODE (type
) == TYPE_CODE_REF
)
10500 type
= TYPE_TARGET_TYPE (type
);
10501 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10502 return value_cast (type
, value_binop (arg1
, arg2
, BINOP_ADD
));
10505 arg1
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
10506 arg2
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
10507 if (noside
== EVAL_SKIP
)
10509 if (TYPE_CODE (value_type (arg1
)) == TYPE_CODE_PTR
)
10510 return (value_from_longest
10511 (value_type (arg1
),
10512 value_as_long (arg1
) - value_as_long (arg2
)));
10513 if (TYPE_CODE (value_type (arg2
)) == TYPE_CODE_PTR
)
10514 return (value_from_longest
10515 (value_type (arg2
),
10516 value_as_long (arg1
) - value_as_long (arg2
)));
10517 if ((ada_is_fixed_point_type (value_type (arg1
))
10518 || ada_is_fixed_point_type (value_type (arg2
)))
10519 && value_type (arg1
) != value_type (arg2
))
10520 error (_("Operands of fixed-point subtraction "
10521 "must have the same type"));
10522 /* Do the substraction, and cast the result to the type of the first
10523 argument. We cannot cast the result to a reference type, so if
10524 ARG1 is a reference type, find its underlying type. */
10525 type
= value_type (arg1
);
10526 while (TYPE_CODE (type
) == TYPE_CODE_REF
)
10527 type
= TYPE_TARGET_TYPE (type
);
10528 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10529 return value_cast (type
, value_binop (arg1
, arg2
, BINOP_SUB
));
10535 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10536 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10537 if (noside
== EVAL_SKIP
)
10539 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10541 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10542 return value_zero (value_type (arg1
), not_lval
);
10546 type
= builtin_type (exp
->gdbarch
)->builtin_double
;
10547 if (ada_is_fixed_point_type (value_type (arg1
)))
10548 arg1
= cast_from_fixed (type
, arg1
);
10549 if (ada_is_fixed_point_type (value_type (arg2
)))
10550 arg2
= cast_from_fixed (type
, arg2
);
10551 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10552 return ada_value_binop (arg1
, arg2
, op
);
10556 case BINOP_NOTEQUAL
:
10557 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10558 arg2
= evaluate_subexp (value_type (arg1
), exp
, pos
, noside
);
10559 if (noside
== EVAL_SKIP
)
10561 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10565 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10566 tem
= ada_value_equal (arg1
, arg2
);
10568 if (op
== BINOP_NOTEQUAL
)
10570 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10571 return value_from_longest (type
, (LONGEST
) tem
);
10574 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10575 if (noside
== EVAL_SKIP
)
10577 else if (ada_is_fixed_point_type (value_type (arg1
)))
10578 return value_cast (value_type (arg1
), value_neg (arg1
));
10581 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
10582 return value_neg (arg1
);
10585 case BINOP_LOGICAL_AND
:
10586 case BINOP_LOGICAL_OR
:
10587 case UNOP_LOGICAL_NOT
:
10592 val
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
10593 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10594 return value_cast (type
, val
);
10597 case BINOP_BITWISE_AND
:
10598 case BINOP_BITWISE_IOR
:
10599 case BINOP_BITWISE_XOR
:
10603 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_AVOID_SIDE_EFFECTS
);
10605 val
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
10607 return value_cast (value_type (arg1
), val
);
10613 if (noside
== EVAL_SKIP
)
10619 if (SYMBOL_DOMAIN (exp
->elts
[pc
+ 2].symbol
) == UNDEF_DOMAIN
)
10620 /* Only encountered when an unresolved symbol occurs in a
10621 context other than a function call, in which case, it is
10623 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10624 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
10626 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10628 type
= static_unwrap_type (SYMBOL_TYPE (exp
->elts
[pc
+ 2].symbol
));
10629 /* Check to see if this is a tagged type. We also need to handle
10630 the case where the type is a reference to a tagged type, but
10631 we have to be careful to exclude pointers to tagged types.
10632 The latter should be shown as usual (as a pointer), whereas
10633 a reference should mostly be transparent to the user. */
10634 if (ada_is_tagged_type (type
, 0)
10635 || (TYPE_CODE (type
) == TYPE_CODE_REF
10636 && ada_is_tagged_type (TYPE_TARGET_TYPE (type
), 0)))
10638 /* Tagged types are a little special in the fact that the real
10639 type is dynamic and can only be determined by inspecting the
10640 object's tag. This means that we need to get the object's
10641 value first (EVAL_NORMAL) and then extract the actual object
10644 Note that we cannot skip the final step where we extract
10645 the object type from its tag, because the EVAL_NORMAL phase
10646 results in dynamic components being resolved into fixed ones.
10647 This can cause problems when trying to print the type
10648 description of tagged types whose parent has a dynamic size:
10649 We use the type name of the "_parent" component in order
10650 to print the name of the ancestor type in the type description.
10651 If that component had a dynamic size, the resolution into
10652 a fixed type would result in the loss of that type name,
10653 thus preventing us from printing the name of the ancestor
10654 type in the type description. */
10655 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_NORMAL
);
10657 if (TYPE_CODE (type
) != TYPE_CODE_REF
)
10659 struct type
*actual_type
;
10661 actual_type
= type_from_tag (ada_value_tag (arg1
));
10662 if (actual_type
== NULL
)
10663 /* If, for some reason, we were unable to determine
10664 the actual type from the tag, then use the static
10665 approximation that we just computed as a fallback.
10666 This can happen if the debugging information is
10667 incomplete, for instance. */
10668 actual_type
= type
;
10669 return value_zero (actual_type
, not_lval
);
10673 /* In the case of a ref, ada_coerce_ref takes care
10674 of determining the actual type. But the evaluation
10675 should return a ref as it should be valid to ask
10676 for its address; so rebuild a ref after coerce. */
10677 arg1
= ada_coerce_ref (arg1
);
10678 return value_ref (arg1
);
10682 /* Records and unions for which GNAT encodings have been
10683 generated need to be statically fixed as well.
10684 Otherwise, non-static fixing produces a type where
10685 all dynamic properties are removed, which prevents "ptype"
10686 from being able to completely describe the type.
10687 For instance, a case statement in a variant record would be
10688 replaced by the relevant components based on the actual
10689 value of the discriminants. */
10690 if ((TYPE_CODE (type
) == TYPE_CODE_STRUCT
10691 && dynamic_template_type (type
) != NULL
)
10692 || (TYPE_CODE (type
) == TYPE_CODE_UNION
10693 && ada_find_parallel_type (type
, "___XVU") != NULL
))
10696 return value_zero (to_static_fixed_type (type
), not_lval
);
10700 arg1
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
10701 return ada_to_fixed_value (arg1
);
10706 /* Allocate arg vector, including space for the function to be
10707 called in argvec[0] and a terminating NULL. */
10708 nargs
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
10709 argvec
= XALLOCAVEC (struct value
*, nargs
+ 2);
10711 if (exp
->elts
[*pos
].opcode
== OP_VAR_VALUE
10712 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
10713 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10714 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 5].symbol
));
10717 for (tem
= 0; tem
<= nargs
; tem
+= 1)
10718 argvec
[tem
] = evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10721 if (noside
== EVAL_SKIP
)
10725 if (ada_is_constrained_packed_array_type
10726 (desc_base_type (value_type (argvec
[0]))))
10727 argvec
[0] = ada_coerce_to_simple_array (argvec
[0]);
10728 else if (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_ARRAY
10729 && TYPE_FIELD_BITSIZE (value_type (argvec
[0]), 0) != 0)
10730 /* This is a packed array that has already been fixed, and
10731 therefore already coerced to a simple array. Nothing further
10734 else if (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_REF
)
10736 /* Make sure we dereference references so that all the code below
10737 feels like it's really handling the referenced value. Wrapping
10738 types (for alignment) may be there, so make sure we strip them as
10740 argvec
[0] = ada_to_fixed_value (coerce_ref (argvec
[0]));
10742 else if (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_ARRAY
10743 && VALUE_LVAL (argvec
[0]) == lval_memory
)
10744 argvec
[0] = value_addr (argvec
[0]);
10746 type
= ada_check_typedef (value_type (argvec
[0]));
10748 /* Ada allows us to implicitly dereference arrays when subscripting
10749 them. So, if this is an array typedef (encoding use for array
10750 access types encoded as fat pointers), strip it now. */
10751 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
)
10752 type
= ada_typedef_target_type (type
);
10754 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
10756 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type
))))
10758 case TYPE_CODE_FUNC
:
10759 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
10761 case TYPE_CODE_ARRAY
:
10763 case TYPE_CODE_STRUCT
:
10764 if (noside
!= EVAL_AVOID_SIDE_EFFECTS
)
10765 argvec
[0] = ada_value_ind (argvec
[0]);
10766 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
10769 error (_("cannot subscript or call something of type `%s'"),
10770 ada_type_name (value_type (argvec
[0])));
10775 switch (TYPE_CODE (type
))
10777 case TYPE_CODE_FUNC
:
10778 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10780 struct type
*rtype
= TYPE_TARGET_TYPE (type
);
10782 if (TYPE_GNU_IFUNC (type
))
10783 return allocate_value (TYPE_TARGET_TYPE (rtype
));
10784 return allocate_value (rtype
);
10786 return call_function_by_hand (argvec
[0], nargs
, argvec
+ 1);
10787 case TYPE_CODE_INTERNAL_FUNCTION
:
10788 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10789 /* We don't know anything about what the internal
10790 function might return, but we have to return
10792 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
,
10795 return call_internal_function (exp
->gdbarch
, exp
->language_defn
,
10796 argvec
[0], nargs
, argvec
+ 1);
10798 case TYPE_CODE_STRUCT
:
10802 arity
= ada_array_arity (type
);
10803 type
= ada_array_element_type (type
, nargs
);
10805 error (_("cannot subscript or call a record"));
10806 if (arity
!= nargs
)
10807 error (_("wrong number of subscripts; expecting %d"), arity
);
10808 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10809 return value_zero (ada_aligned_type (type
), lval_memory
);
10811 unwrap_value (ada_value_subscript
10812 (argvec
[0], nargs
, argvec
+ 1));
10814 case TYPE_CODE_ARRAY
:
10815 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10817 type
= ada_array_element_type (type
, nargs
);
10819 error (_("element type of array unknown"));
10821 return value_zero (ada_aligned_type (type
), lval_memory
);
10824 unwrap_value (ada_value_subscript
10825 (ada_coerce_to_simple_array (argvec
[0]),
10826 nargs
, argvec
+ 1));
10827 case TYPE_CODE_PTR
: /* Pointer to array */
10828 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10830 type
= to_fixed_array_type (TYPE_TARGET_TYPE (type
), NULL
, 1);
10831 type
= ada_array_element_type (type
, nargs
);
10833 error (_("element type of array unknown"));
10835 return value_zero (ada_aligned_type (type
), lval_memory
);
10838 unwrap_value (ada_value_ptr_subscript (argvec
[0],
10839 nargs
, argvec
+ 1));
10842 error (_("Attempt to index or call something other than an "
10843 "array or function"));
10848 struct value
*array
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10849 struct value
*low_bound_val
=
10850 evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10851 struct value
*high_bound_val
=
10852 evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10854 LONGEST high_bound
;
10856 low_bound_val
= coerce_ref (low_bound_val
);
10857 high_bound_val
= coerce_ref (high_bound_val
);
10858 low_bound
= value_as_long (low_bound_val
);
10859 high_bound
= value_as_long (high_bound_val
);
10861 if (noside
== EVAL_SKIP
)
10864 /* If this is a reference to an aligner type, then remove all
10866 if (TYPE_CODE (value_type (array
)) == TYPE_CODE_REF
10867 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array
))))
10868 TYPE_TARGET_TYPE (value_type (array
)) =
10869 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array
)));
10871 if (ada_is_constrained_packed_array_type (value_type (array
)))
10872 error (_("cannot slice a packed array"));
10874 /* If this is a reference to an array or an array lvalue,
10875 convert to a pointer. */
10876 if (TYPE_CODE (value_type (array
)) == TYPE_CODE_REF
10877 || (TYPE_CODE (value_type (array
)) == TYPE_CODE_ARRAY
10878 && VALUE_LVAL (array
) == lval_memory
))
10879 array
= value_addr (array
);
10881 if (noside
== EVAL_AVOID_SIDE_EFFECTS
10882 && ada_is_array_descriptor_type (ada_check_typedef
10883 (value_type (array
))))
10884 return empty_array (ada_type_of_array (array
, 0), low_bound
);
10886 array
= ada_coerce_to_simple_array_ptr (array
);
10888 /* If we have more than one level of pointer indirection,
10889 dereference the value until we get only one level. */
10890 while (TYPE_CODE (value_type (array
)) == TYPE_CODE_PTR
10891 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array
)))
10893 array
= value_ind (array
);
10895 /* Make sure we really do have an array type before going further,
10896 to avoid a SEGV when trying to get the index type or the target
10897 type later down the road if the debug info generated by
10898 the compiler is incorrect or incomplete. */
10899 if (!ada_is_simple_array_type (value_type (array
)))
10900 error (_("cannot take slice of non-array"));
10902 if (TYPE_CODE (ada_check_typedef (value_type (array
)))
10905 struct type
*type0
= ada_check_typedef (value_type (array
));
10907 if (high_bound
< low_bound
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
10908 return empty_array (TYPE_TARGET_TYPE (type0
), low_bound
);
10911 struct type
*arr_type0
=
10912 to_fixed_array_type (TYPE_TARGET_TYPE (type0
), NULL
, 1);
10914 return ada_value_slice_from_ptr (array
, arr_type0
,
10915 longest_to_int (low_bound
),
10916 longest_to_int (high_bound
));
10919 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10921 else if (high_bound
< low_bound
)
10922 return empty_array (value_type (array
), low_bound
);
10924 return ada_value_slice (array
, longest_to_int (low_bound
),
10925 longest_to_int (high_bound
));
10928 case UNOP_IN_RANGE
:
10930 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10931 type
= check_typedef (exp
->elts
[pc
+ 1].type
);
10933 if (noside
== EVAL_SKIP
)
10936 switch (TYPE_CODE (type
))
10939 lim_warning (_("Membership test incompletely implemented; "
10940 "always returns true"));
10941 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10942 return value_from_longest (type
, (LONGEST
) 1);
10944 case TYPE_CODE_RANGE
:
10945 arg2
= value_from_longest (type
, TYPE_LOW_BOUND (type
));
10946 arg3
= value_from_longest (type
, TYPE_HIGH_BOUND (type
));
10947 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10948 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
10949 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10951 value_from_longest (type
,
10952 (value_less (arg1
, arg3
)
10953 || value_equal (arg1
, arg3
))
10954 && (value_less (arg2
, arg1
)
10955 || value_equal (arg2
, arg1
)));
10958 case BINOP_IN_BOUNDS
:
10960 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10961 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10963 if (noside
== EVAL_SKIP
)
10966 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10968 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10969 return value_zero (type
, not_lval
);
10972 tem
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
10974 type
= ada_index_type (value_type (arg2
), tem
, "range");
10976 type
= value_type (arg1
);
10978 arg3
= value_from_longest (type
, ada_array_bound (arg2
, tem
, 1));
10979 arg2
= value_from_longest (type
, ada_array_bound (arg2
, tem
, 0));
10981 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10982 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
10983 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10985 value_from_longest (type
,
10986 (value_less (arg1
, arg3
)
10987 || value_equal (arg1
, arg3
))
10988 && (value_less (arg2
, arg1
)
10989 || value_equal (arg2
, arg1
)));
10991 case TERNOP_IN_RANGE
:
10992 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10993 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10994 arg3
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10996 if (noside
== EVAL_SKIP
)
10999 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
11000 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
11001 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
11003 value_from_longest (type
,
11004 (value_less (arg1
, arg3
)
11005 || value_equal (arg1
, arg3
))
11006 && (value_less (arg2
, arg1
)
11007 || value_equal (arg2
, arg1
)));
11011 case OP_ATR_LENGTH
:
11013 struct type
*type_arg
;
11015 if (exp
->elts
[*pos
].opcode
== OP_TYPE
)
11017 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
11019 type_arg
= check_typedef (exp
->elts
[pc
+ 2].type
);
11023 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11027 if (exp
->elts
[*pos
].opcode
!= OP_LONG
)
11028 error (_("Invalid operand to '%s"), ada_attribute_name (op
));
11029 tem
= longest_to_int (exp
->elts
[*pos
+ 2].longconst
);
11032 if (noside
== EVAL_SKIP
)
11035 if (type_arg
== NULL
)
11037 arg1
= ada_coerce_ref (arg1
);
11039 if (ada_is_constrained_packed_array_type (value_type (arg1
)))
11040 arg1
= ada_coerce_to_simple_array (arg1
);
11042 if (op
== OP_ATR_LENGTH
)
11043 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
11046 type
= ada_index_type (value_type (arg1
), tem
,
11047 ada_attribute_name (op
));
11049 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
11052 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11053 return allocate_value (type
);
11057 default: /* Should never happen. */
11058 error (_("unexpected attribute encountered"));
11060 return value_from_longest
11061 (type
, ada_array_bound (arg1
, tem
, 0));
11063 return value_from_longest
11064 (type
, ada_array_bound (arg1
, tem
, 1));
11065 case OP_ATR_LENGTH
:
11066 return value_from_longest
11067 (type
, ada_array_length (arg1
, tem
));
11070 else if (discrete_type_p (type_arg
))
11072 struct type
*range_type
;
11073 const char *name
= ada_type_name (type_arg
);
11076 if (name
!= NULL
&& TYPE_CODE (type_arg
) != TYPE_CODE_ENUM
)
11077 range_type
= to_fixed_range_type (type_arg
, NULL
);
11078 if (range_type
== NULL
)
11079 range_type
= type_arg
;
11083 error (_("unexpected attribute encountered"));
11085 return value_from_longest
11086 (range_type
, ada_discrete_type_low_bound (range_type
));
11088 return value_from_longest
11089 (range_type
, ada_discrete_type_high_bound (range_type
));
11090 case OP_ATR_LENGTH
:
11091 error (_("the 'length attribute applies only to array types"));
11094 else if (TYPE_CODE (type_arg
) == TYPE_CODE_FLT
)
11095 error (_("unimplemented type attribute"));
11100 if (ada_is_constrained_packed_array_type (type_arg
))
11101 type_arg
= decode_constrained_packed_array_type (type_arg
);
11103 if (op
== OP_ATR_LENGTH
)
11104 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
11107 type
= ada_index_type (type_arg
, tem
, ada_attribute_name (op
));
11109 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
11112 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11113 return allocate_value (type
);
11118 error (_("unexpected attribute encountered"));
11120 low
= ada_array_bound_from_type (type_arg
, tem
, 0);
11121 return value_from_longest (type
, low
);
11123 high
= ada_array_bound_from_type (type_arg
, tem
, 1);
11124 return value_from_longest (type
, high
);
11125 case OP_ATR_LENGTH
:
11126 low
= ada_array_bound_from_type (type_arg
, tem
, 0);
11127 high
= ada_array_bound_from_type (type_arg
, tem
, 1);
11128 return value_from_longest (type
, high
- low
+ 1);
11134 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11135 if (noside
== EVAL_SKIP
)
11138 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11139 return value_zero (ada_tag_type (arg1
), not_lval
);
11141 return ada_value_tag (arg1
);
11145 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
11146 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11147 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11148 if (noside
== EVAL_SKIP
)
11150 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11151 return value_zero (value_type (arg1
), not_lval
);
11154 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
11155 return value_binop (arg1
, arg2
,
11156 op
== OP_ATR_MIN
? BINOP_MIN
: BINOP_MAX
);
11159 case OP_ATR_MODULUS
:
11161 struct type
*type_arg
= check_typedef (exp
->elts
[pc
+ 2].type
);
11163 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
11164 if (noside
== EVAL_SKIP
)
11167 if (!ada_is_modular_type (type_arg
))
11168 error (_("'modulus must be applied to modular type"));
11170 return value_from_longest (TYPE_TARGET_TYPE (type_arg
),
11171 ada_modulus (type_arg
));
11176 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
11177 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11178 if (noside
== EVAL_SKIP
)
11180 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
11181 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11182 return value_zero (type
, not_lval
);
11184 return value_pos_atr (type
, arg1
);
11187 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11188 type
= value_type (arg1
);
11190 /* If the argument is a reference, then dereference its type, since
11191 the user is really asking for the size of the actual object,
11192 not the size of the pointer. */
11193 if (TYPE_CODE (type
) == TYPE_CODE_REF
)
11194 type
= TYPE_TARGET_TYPE (type
);
11196 if (noside
== EVAL_SKIP
)
11198 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11199 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
, not_lval
);
11201 return value_from_longest (builtin_type (exp
->gdbarch
)->builtin_int
,
11202 TARGET_CHAR_BIT
* TYPE_LENGTH (type
));
11205 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
11206 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11207 type
= exp
->elts
[pc
+ 2].type
;
11208 if (noside
== EVAL_SKIP
)
11210 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11211 return value_zero (type
, not_lval
);
11213 return value_val_atr (type
, arg1
);
11216 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11217 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11218 if (noside
== EVAL_SKIP
)
11220 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11221 return value_zero (value_type (arg1
), not_lval
);
11224 /* For integer exponentiation operations,
11225 only promote the first argument. */
11226 if (is_integral_type (value_type (arg2
)))
11227 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
11229 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
11231 return value_binop (arg1
, arg2
, op
);
11235 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11236 if (noside
== EVAL_SKIP
)
11242 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11243 if (noside
== EVAL_SKIP
)
11245 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
11246 if (value_less (arg1
, value_zero (value_type (arg1
), not_lval
)))
11247 return value_neg (arg1
);
11252 preeval_pos
= *pos
;
11253 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11254 if (noside
== EVAL_SKIP
)
11256 type
= ada_check_typedef (value_type (arg1
));
11257 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11259 if (ada_is_array_descriptor_type (type
))
11260 /* GDB allows dereferencing GNAT array descriptors. */
11262 struct type
*arrType
= ada_type_of_array (arg1
, 0);
11264 if (arrType
== NULL
)
11265 error (_("Attempt to dereference null array pointer."));
11266 return value_at_lazy (arrType
, 0);
11268 else if (TYPE_CODE (type
) == TYPE_CODE_PTR
11269 || TYPE_CODE (type
) == TYPE_CODE_REF
11270 /* In C you can dereference an array to get the 1st elt. */
11271 || TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
11273 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11274 only be determined by inspecting the object's tag.
11275 This means that we need to evaluate completely the
11276 expression in order to get its type. */
11278 if ((TYPE_CODE (type
) == TYPE_CODE_REF
11279 || TYPE_CODE (type
) == TYPE_CODE_PTR
)
11280 && ada_is_tagged_type (TYPE_TARGET_TYPE (type
), 0))
11282 arg1
= evaluate_subexp (NULL_TYPE
, exp
, &preeval_pos
,
11284 type
= value_type (ada_value_ind (arg1
));
11288 type
= to_static_fixed_type
11290 (ada_check_typedef (TYPE_TARGET_TYPE (type
))));
11292 ada_ensure_varsize_limit (type
);
11293 return value_zero (type
, lval_memory
);
11295 else if (TYPE_CODE (type
) == TYPE_CODE_INT
)
11297 /* GDB allows dereferencing an int. */
11298 if (expect_type
== NULL
)
11299 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
,
11304 to_static_fixed_type (ada_aligned_type (expect_type
));
11305 return value_zero (expect_type
, lval_memory
);
11309 error (_("Attempt to take contents of a non-pointer value."));
11311 arg1
= ada_coerce_ref (arg1
); /* FIXME: What is this for?? */
11312 type
= ada_check_typedef (value_type (arg1
));
11314 if (TYPE_CODE (type
) == TYPE_CODE_INT
)
11315 /* GDB allows dereferencing an int. If we were given
11316 the expect_type, then use that as the target type.
11317 Otherwise, assume that the target type is an int. */
11319 if (expect_type
!= NULL
)
11320 return ada_value_ind (value_cast (lookup_pointer_type (expect_type
),
11323 return value_at_lazy (builtin_type (exp
->gdbarch
)->builtin_int
,
11324 (CORE_ADDR
) value_as_address (arg1
));
11327 if (ada_is_array_descriptor_type (type
))
11328 /* GDB allows dereferencing GNAT array descriptors. */
11329 return ada_coerce_to_simple_array (arg1
);
11331 return ada_value_ind (arg1
);
11333 case STRUCTOP_STRUCT
:
11334 tem
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
11335 (*pos
) += 3 + BYTES_TO_EXP_ELEM (tem
+ 1);
11336 preeval_pos
= *pos
;
11337 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11338 if (noside
== EVAL_SKIP
)
11340 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11342 struct type
*type1
= value_type (arg1
);
11344 if (ada_is_tagged_type (type1
, 1))
11346 type
= ada_lookup_struct_elt_type (type1
,
11347 &exp
->elts
[pc
+ 2].string
,
11350 /* If the field is not found, check if it exists in the
11351 extension of this object's type. This means that we
11352 need to evaluate completely the expression. */
11356 arg1
= evaluate_subexp (NULL_TYPE
, exp
, &preeval_pos
,
11358 arg1
= ada_value_struct_elt (arg1
,
11359 &exp
->elts
[pc
+ 2].string
,
11361 arg1
= unwrap_value (arg1
);
11362 type
= value_type (ada_to_fixed_value (arg1
));
11367 ada_lookup_struct_elt_type (type1
, &exp
->elts
[pc
+ 2].string
, 1,
11370 return value_zero (ada_aligned_type (type
), lval_memory
);
11373 arg1
= ada_value_struct_elt (arg1
, &exp
->elts
[pc
+ 2].string
, 0);
11374 arg1
= unwrap_value (arg1
);
11375 return ada_to_fixed_value (arg1
);
11378 /* The value is not supposed to be used. This is here to make it
11379 easier to accommodate expressions that contain types. */
11381 if (noside
== EVAL_SKIP
)
11383 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11384 return allocate_value (exp
->elts
[pc
+ 1].type
);
11386 error (_("Attempt to use a type name as an expression"));
11391 case OP_DISCRETE_RANGE
:
11392 case OP_POSITIONAL
:
11394 if (noside
== EVAL_NORMAL
)
11398 error (_("Undefined name, ambiguous name, or renaming used in "
11399 "component association: %s."), &exp
->elts
[pc
+2].string
);
11401 error (_("Aggregates only allowed on the right of an assignment"));
11403 internal_error (__FILE__
, __LINE__
,
11404 _("aggregate apparently mangled"));
11407 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
11409 for (tem
= 0; tem
< nargs
; tem
+= 1)
11410 ada_evaluate_subexp (NULL
, exp
, pos
, noside
);
11415 return value_from_longest (builtin_type (exp
->gdbarch
)->builtin_int
, 1);
11421 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11422 type name that encodes the 'small and 'delta information.
11423 Otherwise, return NULL. */
11425 static const char *
11426 fixed_type_info (struct type
*type
)
11428 const char *name
= ada_type_name (type
);
11429 enum type_code code
= (type
== NULL
) ? TYPE_CODE_UNDEF
: TYPE_CODE (type
);
11431 if ((code
== TYPE_CODE_INT
|| code
== TYPE_CODE_RANGE
) && name
!= NULL
)
11433 const char *tail
= strstr (name
, "___XF_");
11440 else if (code
== TYPE_CODE_RANGE
&& TYPE_TARGET_TYPE (type
) != type
)
11441 return fixed_type_info (TYPE_TARGET_TYPE (type
));
11446 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11449 ada_is_fixed_point_type (struct type
*type
)
11451 return fixed_type_info (type
) != NULL
;
11454 /* Return non-zero iff TYPE represents a System.Address type. */
11457 ada_is_system_address_type (struct type
*type
)
11459 return (TYPE_NAME (type
)
11460 && strcmp (TYPE_NAME (type
), "system__address") == 0);
11463 /* Assuming that TYPE is the representation of an Ada fixed-point
11464 type, return its delta, or -1 if the type is malformed and the
11465 delta cannot be determined. */
11468 ada_delta (struct type
*type
)
11470 const char *encoding
= fixed_type_info (type
);
11473 /* Strictly speaking, num and den are encoded as integer. However,
11474 they may not fit into a long, and they will have to be converted
11475 to DOUBLEST anyway. So scan them as DOUBLEST. */
11476 if (sscanf (encoding
, "_%" DOUBLEST_SCAN_FORMAT
"_%" DOUBLEST_SCAN_FORMAT
,
11483 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11484 factor ('SMALL value) associated with the type. */
11487 scaling_factor (struct type
*type
)
11489 const char *encoding
= fixed_type_info (type
);
11490 DOUBLEST num0
, den0
, num1
, den1
;
11493 /* Strictly speaking, num's and den's are encoded as integer. However,
11494 they may not fit into a long, and they will have to be converted
11495 to DOUBLEST anyway. So scan them as DOUBLEST. */
11496 n
= sscanf (encoding
,
11497 "_%" DOUBLEST_SCAN_FORMAT
"_%" DOUBLEST_SCAN_FORMAT
11498 "_%" DOUBLEST_SCAN_FORMAT
"_%" DOUBLEST_SCAN_FORMAT
,
11499 &num0
, &den0
, &num1
, &den1
);
11504 return num1
/ den1
;
11506 return num0
/ den0
;
11510 /* Assuming that X is the representation of a value of fixed-point
11511 type TYPE, return its floating-point equivalent. */
11514 ada_fixed_to_float (struct type
*type
, LONGEST x
)
11516 return (DOUBLEST
) x
*scaling_factor (type
);
11519 /* The representation of a fixed-point value of type TYPE
11520 corresponding to the value X. */
11523 ada_float_to_fixed (struct type
*type
, DOUBLEST x
)
11525 return (LONGEST
) (x
/ scaling_factor (type
) + 0.5);
11532 /* Scan STR beginning at position K for a discriminant name, and
11533 return the value of that discriminant field of DVAL in *PX. If
11534 PNEW_K is not null, put the position of the character beyond the
11535 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11536 not alter *PX and *PNEW_K if unsuccessful. */
11539 scan_discrim_bound (const char *str
, int k
, struct value
*dval
, LONGEST
* px
,
11542 static char *bound_buffer
= NULL
;
11543 static size_t bound_buffer_len
= 0;
11544 const char *pstart
, *pend
, *bound
;
11545 struct value
*bound_val
;
11547 if (dval
== NULL
|| str
== NULL
|| str
[k
] == '\0')
11551 pend
= strstr (pstart
, "__");
11555 k
+= strlen (bound
);
11559 int len
= pend
- pstart
;
11561 /* Strip __ and beyond. */
11562 GROW_VECT (bound_buffer
, bound_buffer_len
, len
+ 1);
11563 strncpy (bound_buffer
, pstart
, len
);
11564 bound_buffer
[len
] = '\0';
11566 bound
= bound_buffer
;
11570 bound_val
= ada_search_struct_field (bound
, dval
, 0, value_type (dval
));
11571 if (bound_val
== NULL
)
11574 *px
= value_as_long (bound_val
);
11575 if (pnew_k
!= NULL
)
11580 /* Value of variable named NAME in the current environment. If
11581 no such variable found, then if ERR_MSG is null, returns 0, and
11582 otherwise causes an error with message ERR_MSG. */
11584 static struct value
*
11585 get_var_value (char *name
, char *err_msg
)
11587 struct block_symbol
*syms
;
11590 nsyms
= ada_lookup_symbol_list (name
, get_selected_block (0), VAR_DOMAIN
,
11595 if (err_msg
== NULL
)
11598 error (("%s"), err_msg
);
11601 return value_of_variable (syms
[0].symbol
, syms
[0].block
);
11604 /* Value of integer variable named NAME in the current environment. If
11605 no such variable found, returns 0, and sets *FLAG to 0. If
11606 successful, sets *FLAG to 1. */
11609 get_int_var_value (char *name
, int *flag
)
11611 struct value
*var_val
= get_var_value (name
, 0);
11623 return value_as_long (var_val
);
11628 /* Return a range type whose base type is that of the range type named
11629 NAME in the current environment, and whose bounds are calculated
11630 from NAME according to the GNAT range encoding conventions.
11631 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11632 corresponding range type from debug information; fall back to using it
11633 if symbol lookup fails. If a new type must be created, allocate it
11634 like ORIG_TYPE was. The bounds information, in general, is encoded
11635 in NAME, the base type given in the named range type. */
11637 static struct type
*
11638 to_fixed_range_type (struct type
*raw_type
, struct value
*dval
)
11641 struct type
*base_type
;
11642 const char *subtype_info
;
11644 gdb_assert (raw_type
!= NULL
);
11645 gdb_assert (TYPE_NAME (raw_type
) != NULL
);
11647 if (TYPE_CODE (raw_type
) == TYPE_CODE_RANGE
)
11648 base_type
= TYPE_TARGET_TYPE (raw_type
);
11650 base_type
= raw_type
;
11652 name
= TYPE_NAME (raw_type
);
11653 subtype_info
= strstr (name
, "___XD");
11654 if (subtype_info
== NULL
)
11656 LONGEST L
= ada_discrete_type_low_bound (raw_type
);
11657 LONGEST U
= ada_discrete_type_high_bound (raw_type
);
11659 if (L
< INT_MIN
|| U
> INT_MAX
)
11662 return create_static_range_type (alloc_type_copy (raw_type
), raw_type
,
11667 static char *name_buf
= NULL
;
11668 static size_t name_len
= 0;
11669 int prefix_len
= subtype_info
- name
;
11672 const char *bounds_str
;
11675 GROW_VECT (name_buf
, name_len
, prefix_len
+ 5);
11676 strncpy (name_buf
, name
, prefix_len
);
11677 name_buf
[prefix_len
] = '\0';
11680 bounds_str
= strchr (subtype_info
, '_');
11683 if (*subtype_info
== 'L')
11685 if (!ada_scan_number (bounds_str
, n
, &L
, &n
)
11686 && !scan_discrim_bound (bounds_str
, n
, dval
, &L
, &n
))
11688 if (bounds_str
[n
] == '_')
11690 else if (bounds_str
[n
] == '.') /* FIXME? SGI Workshop kludge. */
11698 strcpy (name_buf
+ prefix_len
, "___L");
11699 L
= get_int_var_value (name_buf
, &ok
);
11702 lim_warning (_("Unknown lower bound, using 1."));
11707 if (*subtype_info
== 'U')
11709 if (!ada_scan_number (bounds_str
, n
, &U
, &n
)
11710 && !scan_discrim_bound (bounds_str
, n
, dval
, &U
, &n
))
11717 strcpy (name_buf
+ prefix_len
, "___U");
11718 U
= get_int_var_value (name_buf
, &ok
);
11721 lim_warning (_("Unknown upper bound, using %ld."), (long) L
);
11726 type
= create_static_range_type (alloc_type_copy (raw_type
),
11728 TYPE_NAME (type
) = name
;
11733 /* True iff NAME is the name of a range type. */
11736 ada_is_range_type_name (const char *name
)
11738 return (name
!= NULL
&& strstr (name
, "___XD"));
11742 /* Modular types */
11744 /* True iff TYPE is an Ada modular type. */
11747 ada_is_modular_type (struct type
*type
)
11749 struct type
*subranged_type
= get_base_type (type
);
11751 return (subranged_type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_RANGE
11752 && TYPE_CODE (subranged_type
) == TYPE_CODE_INT
11753 && TYPE_UNSIGNED (subranged_type
));
11756 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11759 ada_modulus (struct type
*type
)
11761 return (ULONGEST
) TYPE_HIGH_BOUND (type
) + 1;
11765 /* Ada exception catchpoint support:
11766 ---------------------------------
11768 We support 3 kinds of exception catchpoints:
11769 . catchpoints on Ada exceptions
11770 . catchpoints on unhandled Ada exceptions
11771 . catchpoints on failed assertions
11773 Exceptions raised during failed assertions, or unhandled exceptions
11774 could perfectly be caught with the general catchpoint on Ada exceptions.
11775 However, we can easily differentiate these two special cases, and having
11776 the option to distinguish these two cases from the rest can be useful
11777 to zero-in on certain situations.
11779 Exception catchpoints are a specialized form of breakpoint,
11780 since they rely on inserting breakpoints inside known routines
11781 of the GNAT runtime. The implementation therefore uses a standard
11782 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11785 Support in the runtime for exception catchpoints have been changed
11786 a few times already, and these changes affect the implementation
11787 of these catchpoints. In order to be able to support several
11788 variants of the runtime, we use a sniffer that will determine
11789 the runtime variant used by the program being debugged. */
11791 /* Ada's standard exceptions.
11793 The Ada 83 standard also defined Numeric_Error. But there so many
11794 situations where it was unclear from the Ada 83 Reference Manual
11795 (RM) whether Constraint_Error or Numeric_Error should be raised,
11796 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11797 Interpretation saying that anytime the RM says that Numeric_Error
11798 should be raised, the implementation may raise Constraint_Error.
11799 Ada 95 went one step further and pretty much removed Numeric_Error
11800 from the list of standard exceptions (it made it a renaming of
11801 Constraint_Error, to help preserve compatibility when compiling
11802 an Ada83 compiler). As such, we do not include Numeric_Error from
11803 this list of standard exceptions. */
11805 static char *standard_exc
[] = {
11806 "constraint_error",
11812 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype
) (void);
11814 /* A structure that describes how to support exception catchpoints
11815 for a given executable. */
11817 struct exception_support_info
11819 /* The name of the symbol to break on in order to insert
11820 a catchpoint on exceptions. */
11821 const char *catch_exception_sym
;
11823 /* The name of the symbol to break on in order to insert
11824 a catchpoint on unhandled exceptions. */
11825 const char *catch_exception_unhandled_sym
;
11827 /* The name of the symbol to break on in order to insert
11828 a catchpoint on failed assertions. */
11829 const char *catch_assert_sym
;
11831 /* Assuming that the inferior just triggered an unhandled exception
11832 catchpoint, this function is responsible for returning the address
11833 in inferior memory where the name of that exception is stored.
11834 Return zero if the address could not be computed. */
11835 ada_unhandled_exception_name_addr_ftype
*unhandled_exception_name_addr
;
11838 static CORE_ADDR
ada_unhandled_exception_name_addr (void);
11839 static CORE_ADDR
ada_unhandled_exception_name_addr_from_raise (void);
11841 /* The following exception support info structure describes how to
11842 implement exception catchpoints with the latest version of the
11843 Ada runtime (as of 2007-03-06). */
11845 static const struct exception_support_info default_exception_support_info
=
11847 "__gnat_debug_raise_exception", /* catch_exception_sym */
11848 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11849 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11850 ada_unhandled_exception_name_addr
11853 /* The following exception support info structure describes how to
11854 implement exception catchpoints with a slightly older version
11855 of the Ada runtime. */
11857 static const struct exception_support_info exception_support_info_fallback
=
11859 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11860 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11861 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11862 ada_unhandled_exception_name_addr_from_raise
11865 /* Return nonzero if we can detect the exception support routines
11866 described in EINFO.
11868 This function errors out if an abnormal situation is detected
11869 (for instance, if we find the exception support routines, but
11870 that support is found to be incomplete). */
11873 ada_has_this_exception_support (const struct exception_support_info
*einfo
)
11875 struct symbol
*sym
;
11877 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11878 that should be compiled with debugging information. As a result, we
11879 expect to find that symbol in the symtabs. */
11881 sym
= standard_lookup (einfo
->catch_exception_sym
, NULL
, VAR_DOMAIN
);
11884 /* Perhaps we did not find our symbol because the Ada runtime was
11885 compiled without debugging info, or simply stripped of it.
11886 It happens on some GNU/Linux distributions for instance, where
11887 users have to install a separate debug package in order to get
11888 the runtime's debugging info. In that situation, let the user
11889 know why we cannot insert an Ada exception catchpoint.
11891 Note: Just for the purpose of inserting our Ada exception
11892 catchpoint, we could rely purely on the associated minimal symbol.
11893 But we would be operating in degraded mode anyway, since we are
11894 still lacking the debugging info needed later on to extract
11895 the name of the exception being raised (this name is printed in
11896 the catchpoint message, and is also used when trying to catch
11897 a specific exception). We do not handle this case for now. */
11898 struct bound_minimal_symbol msym
11899 = lookup_minimal_symbol (einfo
->catch_exception_sym
, NULL
, NULL
);
11901 if (msym
.minsym
&& MSYMBOL_TYPE (msym
.minsym
) != mst_solib_trampoline
)
11902 error (_("Your Ada runtime appears to be missing some debugging "
11903 "information.\nCannot insert Ada exception catchpoint "
11904 "in this configuration."));
11909 /* Make sure that the symbol we found corresponds to a function. */
11911 if (SYMBOL_CLASS (sym
) != LOC_BLOCK
)
11912 error (_("Symbol \"%s\" is not a function (class = %d)"),
11913 SYMBOL_LINKAGE_NAME (sym
), SYMBOL_CLASS (sym
));
11918 /* Inspect the Ada runtime and determine which exception info structure
11919 should be used to provide support for exception catchpoints.
11921 This function will always set the per-inferior exception_info,
11922 or raise an error. */
11925 ada_exception_support_info_sniffer (void)
11927 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
11929 /* If the exception info is already known, then no need to recompute it. */
11930 if (data
->exception_info
!= NULL
)
11933 /* Check the latest (default) exception support info. */
11934 if (ada_has_this_exception_support (&default_exception_support_info
))
11936 data
->exception_info
= &default_exception_support_info
;
11940 /* Try our fallback exception suport info. */
11941 if (ada_has_this_exception_support (&exception_support_info_fallback
))
11943 data
->exception_info
= &exception_support_info_fallback
;
11947 /* Sometimes, it is normal for us to not be able to find the routine
11948 we are looking for. This happens when the program is linked with
11949 the shared version of the GNAT runtime, and the program has not been
11950 started yet. Inform the user of these two possible causes if
11953 if (ada_update_initial_language (language_unknown
) != language_ada
)
11954 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11956 /* If the symbol does not exist, then check that the program is
11957 already started, to make sure that shared libraries have been
11958 loaded. If it is not started, this may mean that the symbol is
11959 in a shared library. */
11961 if (ptid_get_pid (inferior_ptid
) == 0)
11962 error (_("Unable to insert catchpoint. Try to start the program first."));
11964 /* At this point, we know that we are debugging an Ada program and
11965 that the inferior has been started, but we still are not able to
11966 find the run-time symbols. That can mean that we are in
11967 configurable run time mode, or that a-except as been optimized
11968 out by the linker... In any case, at this point it is not worth
11969 supporting this feature. */
11971 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11974 /* True iff FRAME is very likely to be that of a function that is
11975 part of the runtime system. This is all very heuristic, but is
11976 intended to be used as advice as to what frames are uninteresting
11980 is_known_support_routine (struct frame_info
*frame
)
11982 struct symtab_and_line sal
;
11984 enum language func_lang
;
11986 const char *fullname
;
11988 /* If this code does not have any debugging information (no symtab),
11989 This cannot be any user code. */
11991 find_frame_sal (frame
, &sal
);
11992 if (sal
.symtab
== NULL
)
11995 /* If there is a symtab, but the associated source file cannot be
11996 located, then assume this is not user code: Selecting a frame
11997 for which we cannot display the code would not be very helpful
11998 for the user. This should also take care of case such as VxWorks
11999 where the kernel has some debugging info provided for a few units. */
12001 fullname
= symtab_to_fullname (sal
.symtab
);
12002 if (access (fullname
, R_OK
) != 0)
12005 /* Check the unit filename againt the Ada runtime file naming.
12006 We also check the name of the objfile against the name of some
12007 known system libraries that sometimes come with debugging info
12010 for (i
= 0; known_runtime_file_name_patterns
[i
] != NULL
; i
+= 1)
12012 re_comp (known_runtime_file_name_patterns
[i
]);
12013 if (re_exec (lbasename (sal
.symtab
->filename
)))
12015 if (SYMTAB_OBJFILE (sal
.symtab
) != NULL
12016 && re_exec (objfile_name (SYMTAB_OBJFILE (sal
.symtab
))))
12020 /* Check whether the function is a GNAT-generated entity. */
12022 find_frame_funname (frame
, &func_name
, &func_lang
, NULL
);
12023 if (func_name
== NULL
)
12026 for (i
= 0; known_auxiliary_function_name_patterns
[i
] != NULL
; i
+= 1)
12028 re_comp (known_auxiliary_function_name_patterns
[i
]);
12029 if (re_exec (func_name
))
12040 /* Find the first frame that contains debugging information and that is not
12041 part of the Ada run-time, starting from FI and moving upward. */
12044 ada_find_printable_frame (struct frame_info
*fi
)
12046 for (; fi
!= NULL
; fi
= get_prev_frame (fi
))
12048 if (!is_known_support_routine (fi
))
12057 /* Assuming that the inferior just triggered an unhandled exception
12058 catchpoint, return the address in inferior memory where the name
12059 of the exception is stored.
12061 Return zero if the address could not be computed. */
12064 ada_unhandled_exception_name_addr (void)
12066 return parse_and_eval_address ("e.full_name");
12069 /* Same as ada_unhandled_exception_name_addr, except that this function
12070 should be used when the inferior uses an older version of the runtime,
12071 where the exception name needs to be extracted from a specific frame
12072 several frames up in the callstack. */
12075 ada_unhandled_exception_name_addr_from_raise (void)
12078 struct frame_info
*fi
;
12079 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
12080 struct cleanup
*old_chain
;
12082 /* To determine the name of this exception, we need to select
12083 the frame corresponding to RAISE_SYM_NAME. This frame is
12084 at least 3 levels up, so we simply skip the first 3 frames
12085 without checking the name of their associated function. */
12086 fi
= get_current_frame ();
12087 for (frame_level
= 0; frame_level
< 3; frame_level
+= 1)
12089 fi
= get_prev_frame (fi
);
12091 old_chain
= make_cleanup (null_cleanup
, NULL
);
12095 enum language func_lang
;
12097 find_frame_funname (fi
, &func_name
, &func_lang
, NULL
);
12098 if (func_name
!= NULL
)
12100 make_cleanup (xfree
, func_name
);
12102 if (strcmp (func_name
,
12103 data
->exception_info
->catch_exception_sym
) == 0)
12104 break; /* We found the frame we were looking for... */
12105 fi
= get_prev_frame (fi
);
12108 do_cleanups (old_chain
);
12114 return parse_and_eval_address ("id.full_name");
12117 /* Assuming the inferior just triggered an Ada exception catchpoint
12118 (of any type), return the address in inferior memory where the name
12119 of the exception is stored, if applicable.
12121 Return zero if the address could not be computed, or if not relevant. */
12124 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex
,
12125 struct breakpoint
*b
)
12127 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
12131 case ada_catch_exception
:
12132 return (parse_and_eval_address ("e.full_name"));
12135 case ada_catch_exception_unhandled
:
12136 return data
->exception_info
->unhandled_exception_name_addr ();
12139 case ada_catch_assert
:
12140 return 0; /* Exception name is not relevant in this case. */
12144 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
12148 return 0; /* Should never be reached. */
12151 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12152 any error that ada_exception_name_addr_1 might cause to be thrown.
12153 When an error is intercepted, a warning with the error message is printed,
12154 and zero is returned. */
12157 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex
,
12158 struct breakpoint
*b
)
12160 CORE_ADDR result
= 0;
12164 result
= ada_exception_name_addr_1 (ex
, b
);
12167 CATCH (e
, RETURN_MASK_ERROR
)
12169 warning (_("failed to get exception name: %s"), e
.message
);
12177 static char *ada_exception_catchpoint_cond_string (const char *excep_string
);
12179 /* Ada catchpoints.
12181 In the case of catchpoints on Ada exceptions, the catchpoint will
12182 stop the target on every exception the program throws. When a user
12183 specifies the name of a specific exception, we translate this
12184 request into a condition expression (in text form), and then parse
12185 it into an expression stored in each of the catchpoint's locations.
12186 We then use this condition to check whether the exception that was
12187 raised is the one the user is interested in. If not, then the
12188 target is resumed again. We store the name of the requested
12189 exception, in order to be able to re-set the condition expression
12190 when symbols change. */
12192 /* An instance of this type is used to represent an Ada catchpoint
12193 breakpoint location. It includes a "struct bp_location" as a kind
12194 of base class; users downcast to "struct bp_location *" when
12197 struct ada_catchpoint_location
12199 /* The base class. */
12200 struct bp_location base
;
12202 /* The condition that checks whether the exception that was raised
12203 is the specific exception the user specified on catchpoint
12205 struct expression
*excep_cond_expr
;
12208 /* Implement the DTOR method in the bp_location_ops structure for all
12209 Ada exception catchpoint kinds. */
12212 ada_catchpoint_location_dtor (struct bp_location
*bl
)
12214 struct ada_catchpoint_location
*al
= (struct ada_catchpoint_location
*) bl
;
12216 xfree (al
->excep_cond_expr
);
12219 /* The vtable to be used in Ada catchpoint locations. */
12221 static const struct bp_location_ops ada_catchpoint_location_ops
=
12223 ada_catchpoint_location_dtor
12226 /* An instance of this type is used to represent an Ada catchpoint.
12227 It includes a "struct breakpoint" as a kind of base class; users
12228 downcast to "struct breakpoint *" when needed. */
12230 struct ada_catchpoint
12232 /* The base class. */
12233 struct breakpoint base
;
12235 /* The name of the specific exception the user specified. */
12236 char *excep_string
;
12239 /* Parse the exception condition string in the context of each of the
12240 catchpoint's locations, and store them for later evaluation. */
12243 create_excep_cond_exprs (struct ada_catchpoint
*c
)
12245 struct cleanup
*old_chain
;
12246 struct bp_location
*bl
;
12249 /* Nothing to do if there's no specific exception to catch. */
12250 if (c
->excep_string
== NULL
)
12253 /* Same if there are no locations... */
12254 if (c
->base
.loc
== NULL
)
12257 /* Compute the condition expression in text form, from the specific
12258 expection we want to catch. */
12259 cond_string
= ada_exception_catchpoint_cond_string (c
->excep_string
);
12260 old_chain
= make_cleanup (xfree
, cond_string
);
12262 /* Iterate over all the catchpoint's locations, and parse an
12263 expression for each. */
12264 for (bl
= c
->base
.loc
; bl
!= NULL
; bl
= bl
->next
)
12266 struct ada_catchpoint_location
*ada_loc
12267 = (struct ada_catchpoint_location
*) bl
;
12268 struct expression
*exp
= NULL
;
12270 if (!bl
->shlib_disabled
)
12277 exp
= parse_exp_1 (&s
, bl
->address
,
12278 block_for_pc (bl
->address
), 0);
12280 CATCH (e
, RETURN_MASK_ERROR
)
12282 warning (_("failed to reevaluate internal exception condition "
12283 "for catchpoint %d: %s"),
12284 c
->base
.number
, e
.message
);
12285 /* There is a bug in GCC on sparc-solaris when building with
12286 optimization which causes EXP to change unexpectedly
12287 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
12288 The problem should be fixed starting with GCC 4.9.
12289 In the meantime, work around it by forcing EXP back
12296 ada_loc
->excep_cond_expr
= exp
;
12299 do_cleanups (old_chain
);
12302 /* Implement the DTOR method in the breakpoint_ops structure for all
12303 exception catchpoint kinds. */
12306 dtor_exception (enum ada_exception_catchpoint_kind ex
, struct breakpoint
*b
)
12308 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
12310 xfree (c
->excep_string
);
12312 bkpt_breakpoint_ops
.dtor (b
);
12315 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12316 structure for all exception catchpoint kinds. */
12318 static struct bp_location
*
12319 allocate_location_exception (enum ada_exception_catchpoint_kind ex
,
12320 struct breakpoint
*self
)
12322 struct ada_catchpoint_location
*loc
;
12324 loc
= XNEW (struct ada_catchpoint_location
);
12325 init_bp_location (&loc
->base
, &ada_catchpoint_location_ops
, self
);
12326 loc
->excep_cond_expr
= NULL
;
12330 /* Implement the RE_SET method in the breakpoint_ops structure for all
12331 exception catchpoint kinds. */
12334 re_set_exception (enum ada_exception_catchpoint_kind ex
, struct breakpoint
*b
)
12336 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
12338 /* Call the base class's method. This updates the catchpoint's
12340 bkpt_breakpoint_ops
.re_set (b
);
12342 /* Reparse the exception conditional expressions. One for each
12344 create_excep_cond_exprs (c
);
12347 /* Returns true if we should stop for this breakpoint hit. If the
12348 user specified a specific exception, we only want to cause a stop
12349 if the program thrown that exception. */
12352 should_stop_exception (const struct bp_location
*bl
)
12354 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) bl
->owner
;
12355 const struct ada_catchpoint_location
*ada_loc
12356 = (const struct ada_catchpoint_location
*) bl
;
12359 /* With no specific exception, should always stop. */
12360 if (c
->excep_string
== NULL
)
12363 if (ada_loc
->excep_cond_expr
== NULL
)
12365 /* We will have a NULL expression if back when we were creating
12366 the expressions, this location's had failed to parse. */
12373 struct value
*mark
;
12375 mark
= value_mark ();
12376 stop
= value_true (evaluate_expression (ada_loc
->excep_cond_expr
));
12377 value_free_to_mark (mark
);
12379 CATCH (ex
, RETURN_MASK_ALL
)
12381 exception_fprintf (gdb_stderr
, ex
,
12382 _("Error in testing exception condition:\n"));
12389 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12390 for all exception catchpoint kinds. */
12393 check_status_exception (enum ada_exception_catchpoint_kind ex
, bpstat bs
)
12395 bs
->stop
= should_stop_exception (bs
->bp_location_at
);
12398 /* Implement the PRINT_IT method in the breakpoint_ops structure
12399 for all exception catchpoint kinds. */
12401 static enum print_stop_action
12402 print_it_exception (enum ada_exception_catchpoint_kind ex
, bpstat bs
)
12404 struct ui_out
*uiout
= current_uiout
;
12405 struct breakpoint
*b
= bs
->breakpoint_at
;
12407 annotate_catchpoint (b
->number
);
12409 if (ui_out_is_mi_like_p (uiout
))
12411 ui_out_field_string (uiout
, "reason",
12412 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT
));
12413 ui_out_field_string (uiout
, "disp", bpdisp_text (b
->disposition
));
12416 ui_out_text (uiout
,
12417 b
->disposition
== disp_del
? "\nTemporary catchpoint "
12418 : "\nCatchpoint ");
12419 ui_out_field_int (uiout
, "bkptno", b
->number
);
12420 ui_out_text (uiout
, ", ");
12424 case ada_catch_exception
:
12425 case ada_catch_exception_unhandled
:
12427 const CORE_ADDR addr
= ada_exception_name_addr (ex
, b
);
12428 char exception_name
[256];
12432 read_memory (addr
, (gdb_byte
*) exception_name
,
12433 sizeof (exception_name
) - 1);
12434 exception_name
[sizeof (exception_name
) - 1] = '\0';
12438 /* For some reason, we were unable to read the exception
12439 name. This could happen if the Runtime was compiled
12440 without debugging info, for instance. In that case,
12441 just replace the exception name by the generic string
12442 "exception" - it will read as "an exception" in the
12443 notification we are about to print. */
12444 memcpy (exception_name
, "exception", sizeof ("exception"));
12446 /* In the case of unhandled exception breakpoints, we print
12447 the exception name as "unhandled EXCEPTION_NAME", to make
12448 it clearer to the user which kind of catchpoint just got
12449 hit. We used ui_out_text to make sure that this extra
12450 info does not pollute the exception name in the MI case. */
12451 if (ex
== ada_catch_exception_unhandled
)
12452 ui_out_text (uiout
, "unhandled ");
12453 ui_out_field_string (uiout
, "exception-name", exception_name
);
12456 case ada_catch_assert
:
12457 /* In this case, the name of the exception is not really
12458 important. Just print "failed assertion" to make it clearer
12459 that his program just hit an assertion-failure catchpoint.
12460 We used ui_out_text because this info does not belong in
12462 ui_out_text (uiout
, "failed assertion");
12465 ui_out_text (uiout
, " at ");
12466 ada_find_printable_frame (get_current_frame ());
12468 return PRINT_SRC_AND_LOC
;
12471 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12472 for all exception catchpoint kinds. */
12475 print_one_exception (enum ada_exception_catchpoint_kind ex
,
12476 struct breakpoint
*b
, struct bp_location
**last_loc
)
12478 struct ui_out
*uiout
= current_uiout
;
12479 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
12480 struct value_print_options opts
;
12482 get_user_print_options (&opts
);
12483 if (opts
.addressprint
)
12485 annotate_field (4);
12486 ui_out_field_core_addr (uiout
, "addr", b
->loc
->gdbarch
, b
->loc
->address
);
12489 annotate_field (5);
12490 *last_loc
= b
->loc
;
12493 case ada_catch_exception
:
12494 if (c
->excep_string
!= NULL
)
12496 char *msg
= xstrprintf (_("`%s' Ada exception"), c
->excep_string
);
12498 ui_out_field_string (uiout
, "what", msg
);
12502 ui_out_field_string (uiout
, "what", "all Ada exceptions");
12506 case ada_catch_exception_unhandled
:
12507 ui_out_field_string (uiout
, "what", "unhandled Ada exceptions");
12510 case ada_catch_assert
:
12511 ui_out_field_string (uiout
, "what", "failed Ada assertions");
12515 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
12520 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12521 for all exception catchpoint kinds. */
12524 print_mention_exception (enum ada_exception_catchpoint_kind ex
,
12525 struct breakpoint
*b
)
12527 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
12528 struct ui_out
*uiout
= current_uiout
;
12530 ui_out_text (uiout
, b
->disposition
== disp_del
? _("Temporary catchpoint ")
12531 : _("Catchpoint "));
12532 ui_out_field_int (uiout
, "bkptno", b
->number
);
12533 ui_out_text (uiout
, ": ");
12537 case ada_catch_exception
:
12538 if (c
->excep_string
!= NULL
)
12540 char *info
= xstrprintf (_("`%s' Ada exception"), c
->excep_string
);
12541 struct cleanup
*old_chain
= make_cleanup (xfree
, info
);
12543 ui_out_text (uiout
, info
);
12544 do_cleanups (old_chain
);
12547 ui_out_text (uiout
, _("all Ada exceptions"));
12550 case ada_catch_exception_unhandled
:
12551 ui_out_text (uiout
, _("unhandled Ada exceptions"));
12554 case ada_catch_assert
:
12555 ui_out_text (uiout
, _("failed Ada assertions"));
12559 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
12564 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12565 for all exception catchpoint kinds. */
12568 print_recreate_exception (enum ada_exception_catchpoint_kind ex
,
12569 struct breakpoint
*b
, struct ui_file
*fp
)
12571 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
12575 case ada_catch_exception
:
12576 fprintf_filtered (fp
, "catch exception");
12577 if (c
->excep_string
!= NULL
)
12578 fprintf_filtered (fp
, " %s", c
->excep_string
);
12581 case ada_catch_exception_unhandled
:
12582 fprintf_filtered (fp
, "catch exception unhandled");
12585 case ada_catch_assert
:
12586 fprintf_filtered (fp
, "catch assert");
12590 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
12592 print_recreate_thread (b
, fp
);
12595 /* Virtual table for "catch exception" breakpoints. */
12598 dtor_catch_exception (struct breakpoint
*b
)
12600 dtor_exception (ada_catch_exception
, b
);
12603 static struct bp_location
*
12604 allocate_location_catch_exception (struct breakpoint
*self
)
12606 return allocate_location_exception (ada_catch_exception
, self
);
12610 re_set_catch_exception (struct breakpoint
*b
)
12612 re_set_exception (ada_catch_exception
, b
);
12616 check_status_catch_exception (bpstat bs
)
12618 check_status_exception (ada_catch_exception
, bs
);
12621 static enum print_stop_action
12622 print_it_catch_exception (bpstat bs
)
12624 return print_it_exception (ada_catch_exception
, bs
);
12628 print_one_catch_exception (struct breakpoint
*b
, struct bp_location
**last_loc
)
12630 print_one_exception (ada_catch_exception
, b
, last_loc
);
12634 print_mention_catch_exception (struct breakpoint
*b
)
12636 print_mention_exception (ada_catch_exception
, b
);
12640 print_recreate_catch_exception (struct breakpoint
*b
, struct ui_file
*fp
)
12642 print_recreate_exception (ada_catch_exception
, b
, fp
);
12645 static struct breakpoint_ops catch_exception_breakpoint_ops
;
12647 /* Virtual table for "catch exception unhandled" breakpoints. */
12650 dtor_catch_exception_unhandled (struct breakpoint
*b
)
12652 dtor_exception (ada_catch_exception_unhandled
, b
);
12655 static struct bp_location
*
12656 allocate_location_catch_exception_unhandled (struct breakpoint
*self
)
12658 return allocate_location_exception (ada_catch_exception_unhandled
, self
);
12662 re_set_catch_exception_unhandled (struct breakpoint
*b
)
12664 re_set_exception (ada_catch_exception_unhandled
, b
);
12668 check_status_catch_exception_unhandled (bpstat bs
)
12670 check_status_exception (ada_catch_exception_unhandled
, bs
);
12673 static enum print_stop_action
12674 print_it_catch_exception_unhandled (bpstat bs
)
12676 return print_it_exception (ada_catch_exception_unhandled
, bs
);
12680 print_one_catch_exception_unhandled (struct breakpoint
*b
,
12681 struct bp_location
**last_loc
)
12683 print_one_exception (ada_catch_exception_unhandled
, b
, last_loc
);
12687 print_mention_catch_exception_unhandled (struct breakpoint
*b
)
12689 print_mention_exception (ada_catch_exception_unhandled
, b
);
12693 print_recreate_catch_exception_unhandled (struct breakpoint
*b
,
12694 struct ui_file
*fp
)
12696 print_recreate_exception (ada_catch_exception_unhandled
, b
, fp
);
12699 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops
;
12701 /* Virtual table for "catch assert" breakpoints. */
12704 dtor_catch_assert (struct breakpoint
*b
)
12706 dtor_exception (ada_catch_assert
, b
);
12709 static struct bp_location
*
12710 allocate_location_catch_assert (struct breakpoint
*self
)
12712 return allocate_location_exception (ada_catch_assert
, self
);
12716 re_set_catch_assert (struct breakpoint
*b
)
12718 re_set_exception (ada_catch_assert
, b
);
12722 check_status_catch_assert (bpstat bs
)
12724 check_status_exception (ada_catch_assert
, bs
);
12727 static enum print_stop_action
12728 print_it_catch_assert (bpstat bs
)
12730 return print_it_exception (ada_catch_assert
, bs
);
12734 print_one_catch_assert (struct breakpoint
*b
, struct bp_location
**last_loc
)
12736 print_one_exception (ada_catch_assert
, b
, last_loc
);
12740 print_mention_catch_assert (struct breakpoint
*b
)
12742 print_mention_exception (ada_catch_assert
, b
);
12746 print_recreate_catch_assert (struct breakpoint
*b
, struct ui_file
*fp
)
12748 print_recreate_exception (ada_catch_assert
, b
, fp
);
12751 static struct breakpoint_ops catch_assert_breakpoint_ops
;
12753 /* Return a newly allocated copy of the first space-separated token
12754 in ARGSP, and then adjust ARGSP to point immediately after that
12757 Return NULL if ARGPS does not contain any more tokens. */
12760 ada_get_next_arg (char **argsp
)
12762 char *args
= *argsp
;
12766 args
= skip_spaces (args
);
12767 if (args
[0] == '\0')
12768 return NULL
; /* No more arguments. */
12770 /* Find the end of the current argument. */
12772 end
= skip_to_space (args
);
12774 /* Adjust ARGSP to point to the start of the next argument. */
12778 /* Make a copy of the current argument and return it. */
12780 result
= (char *) xmalloc (end
- args
+ 1);
12781 strncpy (result
, args
, end
- args
);
12782 result
[end
- args
] = '\0';
12787 /* Split the arguments specified in a "catch exception" command.
12788 Set EX to the appropriate catchpoint type.
12789 Set EXCEP_STRING to the name of the specific exception if
12790 specified by the user.
12791 If a condition is found at the end of the arguments, the condition
12792 expression is stored in COND_STRING (memory must be deallocated
12793 after use). Otherwise COND_STRING is set to NULL. */
12796 catch_ada_exception_command_split (char *args
,
12797 enum ada_exception_catchpoint_kind
*ex
,
12798 char **excep_string
,
12799 char **cond_string
)
12801 struct cleanup
*old_chain
= make_cleanup (null_cleanup
, NULL
);
12802 char *exception_name
;
12805 exception_name
= ada_get_next_arg (&args
);
12806 if (exception_name
!= NULL
&& strcmp (exception_name
, "if") == 0)
12808 /* This is not an exception name; this is the start of a condition
12809 expression for a catchpoint on all exceptions. So, "un-get"
12810 this token, and set exception_name to NULL. */
12811 xfree (exception_name
);
12812 exception_name
= NULL
;
12815 make_cleanup (xfree
, exception_name
);
12817 /* Check to see if we have a condition. */
12819 args
= skip_spaces (args
);
12820 if (startswith (args
, "if")
12821 && (isspace (args
[2]) || args
[2] == '\0'))
12824 args
= skip_spaces (args
);
12826 if (args
[0] == '\0')
12827 error (_("Condition missing after `if' keyword"));
12828 cond
= xstrdup (args
);
12829 make_cleanup (xfree
, cond
);
12831 args
+= strlen (args
);
12834 /* Check that we do not have any more arguments. Anything else
12837 if (args
[0] != '\0')
12838 error (_("Junk at end of expression"));
12840 discard_cleanups (old_chain
);
12842 if (exception_name
== NULL
)
12844 /* Catch all exceptions. */
12845 *ex
= ada_catch_exception
;
12846 *excep_string
= NULL
;
12848 else if (strcmp (exception_name
, "unhandled") == 0)
12850 /* Catch unhandled exceptions. */
12851 *ex
= ada_catch_exception_unhandled
;
12852 *excep_string
= NULL
;
12856 /* Catch a specific exception. */
12857 *ex
= ada_catch_exception
;
12858 *excep_string
= exception_name
;
12860 *cond_string
= cond
;
12863 /* Return the name of the symbol on which we should break in order to
12864 implement a catchpoint of the EX kind. */
12866 static const char *
12867 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex
)
12869 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
12871 gdb_assert (data
->exception_info
!= NULL
);
12875 case ada_catch_exception
:
12876 return (data
->exception_info
->catch_exception_sym
);
12878 case ada_catch_exception_unhandled
:
12879 return (data
->exception_info
->catch_exception_unhandled_sym
);
12881 case ada_catch_assert
:
12882 return (data
->exception_info
->catch_assert_sym
);
12885 internal_error (__FILE__
, __LINE__
,
12886 _("unexpected catchpoint kind (%d)"), ex
);
12890 /* Return the breakpoint ops "virtual table" used for catchpoints
12893 static const struct breakpoint_ops
*
12894 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex
)
12898 case ada_catch_exception
:
12899 return (&catch_exception_breakpoint_ops
);
12901 case ada_catch_exception_unhandled
:
12902 return (&catch_exception_unhandled_breakpoint_ops
);
12904 case ada_catch_assert
:
12905 return (&catch_assert_breakpoint_ops
);
12908 internal_error (__FILE__
, __LINE__
,
12909 _("unexpected catchpoint kind (%d)"), ex
);
12913 /* Return the condition that will be used to match the current exception
12914 being raised with the exception that the user wants to catch. This
12915 assumes that this condition is used when the inferior just triggered
12916 an exception catchpoint.
12918 The string returned is a newly allocated string that needs to be
12919 deallocated later. */
12922 ada_exception_catchpoint_cond_string (const char *excep_string
)
12926 /* The standard exceptions are a special case. They are defined in
12927 runtime units that have been compiled without debugging info; if
12928 EXCEP_STRING is the not-fully-qualified name of a standard
12929 exception (e.g. "constraint_error") then, during the evaluation
12930 of the condition expression, the symbol lookup on this name would
12931 *not* return this standard exception. The catchpoint condition
12932 may then be set only on user-defined exceptions which have the
12933 same not-fully-qualified name (e.g. my_package.constraint_error).
12935 To avoid this unexcepted behavior, these standard exceptions are
12936 systematically prefixed by "standard". This means that "catch
12937 exception constraint_error" is rewritten into "catch exception
12938 standard.constraint_error".
12940 If an exception named contraint_error is defined in another package of
12941 the inferior program, then the only way to specify this exception as a
12942 breakpoint condition is to use its fully-qualified named:
12943 e.g. my_package.constraint_error. */
12945 for (i
= 0; i
< sizeof (standard_exc
) / sizeof (char *); i
++)
12947 if (strcmp (standard_exc
[i
], excep_string
) == 0)
12949 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12953 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string
);
12956 /* Return the symtab_and_line that should be used to insert an exception
12957 catchpoint of the TYPE kind.
12959 EXCEP_STRING should contain the name of a specific exception that
12960 the catchpoint should catch, or NULL otherwise.
12962 ADDR_STRING returns the name of the function where the real
12963 breakpoint that implements the catchpoints is set, depending on the
12964 type of catchpoint we need to create. */
12966 static struct symtab_and_line
12967 ada_exception_sal (enum ada_exception_catchpoint_kind ex
, char *excep_string
,
12968 char **addr_string
, const struct breakpoint_ops
**ops
)
12970 const char *sym_name
;
12971 struct symbol
*sym
;
12973 /* First, find out which exception support info to use. */
12974 ada_exception_support_info_sniffer ();
12976 /* Then lookup the function on which we will break in order to catch
12977 the Ada exceptions requested by the user. */
12978 sym_name
= ada_exception_sym_name (ex
);
12979 sym
= standard_lookup (sym_name
, NULL
, VAR_DOMAIN
);
12981 /* We can assume that SYM is not NULL at this stage. If the symbol
12982 did not exist, ada_exception_support_info_sniffer would have
12983 raised an exception.
12985 Also, ada_exception_support_info_sniffer should have already
12986 verified that SYM is a function symbol. */
12987 gdb_assert (sym
!= NULL
);
12988 gdb_assert (SYMBOL_CLASS (sym
) == LOC_BLOCK
);
12990 /* Set ADDR_STRING. */
12991 *addr_string
= xstrdup (sym_name
);
12994 *ops
= ada_exception_breakpoint_ops (ex
);
12996 return find_function_start_sal (sym
, 1);
12999 /* Create an Ada exception catchpoint.
13001 EX_KIND is the kind of exception catchpoint to be created.
13003 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13004 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13005 of the exception to which this catchpoint applies. When not NULL,
13006 the string must be allocated on the heap, and its deallocation
13007 is no longer the responsibility of the caller.
13009 COND_STRING, if not NULL, is the catchpoint condition. This string
13010 must be allocated on the heap, and its deallocation is no longer
13011 the responsibility of the caller.
13013 TEMPFLAG, if nonzero, means that the underlying breakpoint
13014 should be temporary.
13016 FROM_TTY is the usual argument passed to all commands implementations. */
13019 create_ada_exception_catchpoint (struct gdbarch
*gdbarch
,
13020 enum ada_exception_catchpoint_kind ex_kind
,
13021 char *excep_string
,
13027 struct ada_catchpoint
*c
;
13028 char *addr_string
= NULL
;
13029 const struct breakpoint_ops
*ops
= NULL
;
13030 struct symtab_and_line sal
13031 = ada_exception_sal (ex_kind
, excep_string
, &addr_string
, &ops
);
13033 c
= XNEW (struct ada_catchpoint
);
13034 init_ada_exception_breakpoint (&c
->base
, gdbarch
, sal
, addr_string
,
13035 ops
, tempflag
, disabled
, from_tty
);
13036 c
->excep_string
= excep_string
;
13037 create_excep_cond_exprs (c
);
13038 if (cond_string
!= NULL
)
13039 set_breakpoint_condition (&c
->base
, cond_string
, from_tty
);
13040 install_breakpoint (0, &c
->base
, 1);
13043 /* Implement the "catch exception" command. */
13046 catch_ada_exception_command (char *arg
, int from_tty
,
13047 struct cmd_list_element
*command
)
13049 struct gdbarch
*gdbarch
= get_current_arch ();
13051 enum ada_exception_catchpoint_kind ex_kind
;
13052 char *excep_string
= NULL
;
13053 char *cond_string
= NULL
;
13055 tempflag
= get_cmd_context (command
) == CATCH_TEMPORARY
;
13059 catch_ada_exception_command_split (arg
, &ex_kind
, &excep_string
,
13061 create_ada_exception_catchpoint (gdbarch
, ex_kind
,
13062 excep_string
, cond_string
,
13063 tempflag
, 1 /* enabled */,
13067 /* Split the arguments specified in a "catch assert" command.
13069 ARGS contains the command's arguments (or the empty string if
13070 no arguments were passed).
13072 If ARGS contains a condition, set COND_STRING to that condition
13073 (the memory needs to be deallocated after use). */
13076 catch_ada_assert_command_split (char *args
, char **cond_string
)
13078 args
= skip_spaces (args
);
13080 /* Check whether a condition was provided. */
13081 if (startswith (args
, "if")
13082 && (isspace (args
[2]) || args
[2] == '\0'))
13085 args
= skip_spaces (args
);
13086 if (args
[0] == '\0')
13087 error (_("condition missing after `if' keyword"));
13088 *cond_string
= xstrdup (args
);
13091 /* Otherwise, there should be no other argument at the end of
13093 else if (args
[0] != '\0')
13094 error (_("Junk at end of arguments."));
13097 /* Implement the "catch assert" command. */
13100 catch_assert_command (char *arg
, int from_tty
,
13101 struct cmd_list_element
*command
)
13103 struct gdbarch
*gdbarch
= get_current_arch ();
13105 char *cond_string
= NULL
;
13107 tempflag
= get_cmd_context (command
) == CATCH_TEMPORARY
;
13111 catch_ada_assert_command_split (arg
, &cond_string
);
13112 create_ada_exception_catchpoint (gdbarch
, ada_catch_assert
,
13114 tempflag
, 1 /* enabled */,
13118 /* Return non-zero if the symbol SYM is an Ada exception object. */
13121 ada_is_exception_sym (struct symbol
*sym
)
13123 const char *type_name
= type_name_no_tag (SYMBOL_TYPE (sym
));
13125 return (SYMBOL_CLASS (sym
) != LOC_TYPEDEF
13126 && SYMBOL_CLASS (sym
) != LOC_BLOCK
13127 && SYMBOL_CLASS (sym
) != LOC_CONST
13128 && SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
13129 && type_name
!= NULL
&& strcmp (type_name
, "exception") == 0);
13132 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13133 Ada exception object. This matches all exceptions except the ones
13134 defined by the Ada language. */
13137 ada_is_non_standard_exception_sym (struct symbol
*sym
)
13141 if (!ada_is_exception_sym (sym
))
13144 for (i
= 0; i
< ARRAY_SIZE (standard_exc
); i
++)
13145 if (strcmp (SYMBOL_LINKAGE_NAME (sym
), standard_exc
[i
]) == 0)
13146 return 0; /* A standard exception. */
13148 /* Numeric_Error is also a standard exception, so exclude it.
13149 See the STANDARD_EXC description for more details as to why
13150 this exception is not listed in that array. */
13151 if (strcmp (SYMBOL_LINKAGE_NAME (sym
), "numeric_error") == 0)
13157 /* A helper function for qsort, comparing two struct ada_exc_info
13160 The comparison is determined first by exception name, and then
13161 by exception address. */
13164 compare_ada_exception_info (const void *a
, const void *b
)
13166 const struct ada_exc_info
*exc_a
= (struct ada_exc_info
*) a
;
13167 const struct ada_exc_info
*exc_b
= (struct ada_exc_info
*) b
;
13170 result
= strcmp (exc_a
->name
, exc_b
->name
);
13174 if (exc_a
->addr
< exc_b
->addr
)
13176 if (exc_a
->addr
> exc_b
->addr
)
13182 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13183 routine, but keeping the first SKIP elements untouched.
13185 All duplicates are also removed. */
13188 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info
) **exceptions
,
13191 struct ada_exc_info
*to_sort
13192 = VEC_address (ada_exc_info
, *exceptions
) + skip
;
13194 = VEC_length (ada_exc_info
, *exceptions
) - skip
;
13197 qsort (to_sort
, to_sort_len
, sizeof (struct ada_exc_info
),
13198 compare_ada_exception_info
);
13200 for (i
= 1, j
= 1; i
< to_sort_len
; i
++)
13201 if (compare_ada_exception_info (&to_sort
[i
], &to_sort
[j
- 1]) != 0)
13202 to_sort
[j
++] = to_sort
[i
];
13204 VEC_truncate(ada_exc_info
, *exceptions
, skip
+ to_sort_len
);
13207 /* A function intended as the "name_matcher" callback in the struct
13208 quick_symbol_functions' expand_symtabs_matching method.
13210 SEARCH_NAME is the symbol's search name.
13212 If USER_DATA is not NULL, it is a pointer to a regext_t object
13213 used to match the symbol (by natural name). Otherwise, when USER_DATA
13214 is null, no filtering is performed, and all symbols are a positive
13218 ada_exc_search_name_matches (const char *search_name
, void *user_data
)
13220 regex_t
*preg
= (regex_t
*) user_data
;
13225 /* In Ada, the symbol "search name" is a linkage name, whereas
13226 the regular expression used to do the matching refers to
13227 the natural name. So match against the decoded name. */
13228 return (regexec (preg
, ada_decode (search_name
), 0, NULL
, 0) == 0);
13231 /* Add all exceptions defined by the Ada standard whose name match
13232 a regular expression.
13234 If PREG is not NULL, then this regexp_t object is used to
13235 perform the symbol name matching. Otherwise, no name-based
13236 filtering is performed.
13238 EXCEPTIONS is a vector of exceptions to which matching exceptions
13242 ada_add_standard_exceptions (regex_t
*preg
, VEC(ada_exc_info
) **exceptions
)
13246 for (i
= 0; i
< ARRAY_SIZE (standard_exc
); i
++)
13249 || regexec (preg
, standard_exc
[i
], 0, NULL
, 0) == 0)
13251 struct bound_minimal_symbol msymbol
13252 = ada_lookup_simple_minsym (standard_exc
[i
]);
13254 if (msymbol
.minsym
!= NULL
)
13256 struct ada_exc_info info
13257 = {standard_exc
[i
], BMSYMBOL_VALUE_ADDRESS (msymbol
)};
13259 VEC_safe_push (ada_exc_info
, *exceptions
, &info
);
13265 /* Add all Ada exceptions defined locally and accessible from the given
13268 If PREG is not NULL, then this regexp_t object is used to
13269 perform the symbol name matching. Otherwise, no name-based
13270 filtering is performed.
13272 EXCEPTIONS is a vector of exceptions to which matching exceptions
13276 ada_add_exceptions_from_frame (regex_t
*preg
, struct frame_info
*frame
,
13277 VEC(ada_exc_info
) **exceptions
)
13279 const struct block
*block
= get_frame_block (frame
, 0);
13283 struct block_iterator iter
;
13284 struct symbol
*sym
;
13286 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
13288 switch (SYMBOL_CLASS (sym
))
13295 if (ada_is_exception_sym (sym
))
13297 struct ada_exc_info info
= {SYMBOL_PRINT_NAME (sym
),
13298 SYMBOL_VALUE_ADDRESS (sym
)};
13300 VEC_safe_push (ada_exc_info
, *exceptions
, &info
);
13304 if (BLOCK_FUNCTION (block
) != NULL
)
13306 block
= BLOCK_SUPERBLOCK (block
);
13310 /* Add all exceptions defined globally whose name name match
13311 a regular expression, excluding standard exceptions.
13313 The reason we exclude standard exceptions is that they need
13314 to be handled separately: Standard exceptions are defined inside
13315 a runtime unit which is normally not compiled with debugging info,
13316 and thus usually do not show up in our symbol search. However,
13317 if the unit was in fact built with debugging info, we need to
13318 exclude them because they would duplicate the entry we found
13319 during the special loop that specifically searches for those
13320 standard exceptions.
13322 If PREG is not NULL, then this regexp_t object is used to
13323 perform the symbol name matching. Otherwise, no name-based
13324 filtering is performed.
13326 EXCEPTIONS is a vector of exceptions to which matching exceptions
13330 ada_add_global_exceptions (regex_t
*preg
, VEC(ada_exc_info
) **exceptions
)
13332 struct objfile
*objfile
;
13333 struct compunit_symtab
*s
;
13335 expand_symtabs_matching (NULL
, ada_exc_search_name_matches
, NULL
,
13336 VARIABLES_DOMAIN
, preg
);
13338 ALL_COMPUNITS (objfile
, s
)
13340 const struct blockvector
*bv
= COMPUNIT_BLOCKVECTOR (s
);
13343 for (i
= GLOBAL_BLOCK
; i
<= STATIC_BLOCK
; i
++)
13345 struct block
*b
= BLOCKVECTOR_BLOCK (bv
, i
);
13346 struct block_iterator iter
;
13347 struct symbol
*sym
;
13349 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
13350 if (ada_is_non_standard_exception_sym (sym
)
13352 || regexec (preg
, SYMBOL_NATURAL_NAME (sym
),
13355 struct ada_exc_info info
13356 = {SYMBOL_PRINT_NAME (sym
), SYMBOL_VALUE_ADDRESS (sym
)};
13358 VEC_safe_push (ada_exc_info
, *exceptions
, &info
);
13364 /* Implements ada_exceptions_list with the regular expression passed
13365 as a regex_t, rather than a string.
13367 If not NULL, PREG is used to filter out exceptions whose names
13368 do not match. Otherwise, all exceptions are listed. */
13370 static VEC(ada_exc_info
) *
13371 ada_exceptions_list_1 (regex_t
*preg
)
13373 VEC(ada_exc_info
) *result
= NULL
;
13374 struct cleanup
*old_chain
13375 = make_cleanup (VEC_cleanup (ada_exc_info
), &result
);
13378 /* First, list the known standard exceptions. These exceptions
13379 need to be handled separately, as they are usually defined in
13380 runtime units that have been compiled without debugging info. */
13382 ada_add_standard_exceptions (preg
, &result
);
13384 /* Next, find all exceptions whose scope is local and accessible
13385 from the currently selected frame. */
13387 if (has_stack_frames ())
13389 prev_len
= VEC_length (ada_exc_info
, result
);
13390 ada_add_exceptions_from_frame (preg
, get_selected_frame (NULL
),
13392 if (VEC_length (ada_exc_info
, result
) > prev_len
)
13393 sort_remove_dups_ada_exceptions_list (&result
, prev_len
);
13396 /* Add all exceptions whose scope is global. */
13398 prev_len
= VEC_length (ada_exc_info
, result
);
13399 ada_add_global_exceptions (preg
, &result
);
13400 if (VEC_length (ada_exc_info
, result
) > prev_len
)
13401 sort_remove_dups_ada_exceptions_list (&result
, prev_len
);
13403 discard_cleanups (old_chain
);
13407 /* Return a vector of ada_exc_info.
13409 If REGEXP is NULL, all exceptions are included in the result.
13410 Otherwise, it should contain a valid regular expression,
13411 and only the exceptions whose names match that regular expression
13412 are included in the result.
13414 The exceptions are sorted in the following order:
13415 - Standard exceptions (defined by the Ada language), in
13416 alphabetical order;
13417 - Exceptions only visible from the current frame, in
13418 alphabetical order;
13419 - Exceptions whose scope is global, in alphabetical order. */
13421 VEC(ada_exc_info
) *
13422 ada_exceptions_list (const char *regexp
)
13424 VEC(ada_exc_info
) *result
= NULL
;
13425 struct cleanup
*old_chain
= NULL
;
13428 if (regexp
!= NULL
)
13429 old_chain
= compile_rx_or_error (®
, regexp
,
13430 _("invalid regular expression"));
13432 result
= ada_exceptions_list_1 (regexp
!= NULL
? ®
: NULL
);
13434 if (old_chain
!= NULL
)
13435 do_cleanups (old_chain
);
13439 /* Implement the "info exceptions" command. */
13442 info_exceptions_command (char *regexp
, int from_tty
)
13444 VEC(ada_exc_info
) *exceptions
;
13445 struct cleanup
*cleanup
;
13446 struct gdbarch
*gdbarch
= get_current_arch ();
13448 struct ada_exc_info
*info
;
13450 exceptions
= ada_exceptions_list (regexp
);
13451 cleanup
= make_cleanup (VEC_cleanup (ada_exc_info
), &exceptions
);
13453 if (regexp
!= NULL
)
13455 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp
);
13457 printf_filtered (_("All defined Ada exceptions:\n"));
13459 for (ix
= 0; VEC_iterate(ada_exc_info
, exceptions
, ix
, info
); ix
++)
13460 printf_filtered ("%s: %s\n", info
->name
, paddress (gdbarch
, info
->addr
));
13462 do_cleanups (cleanup
);
13466 /* Information about operators given special treatment in functions
13468 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13470 #define ADA_OPERATORS \
13471 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13472 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13473 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13474 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13475 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13476 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13477 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13478 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13479 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13480 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13481 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13482 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13483 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13484 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13485 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13486 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13487 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13488 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13489 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13492 ada_operator_length (const struct expression
*exp
, int pc
, int *oplenp
,
13495 switch (exp
->elts
[pc
- 1].opcode
)
13498 operator_length_standard (exp
, pc
, oplenp
, argsp
);
13501 #define OP_DEFN(op, len, args, binop) \
13502 case op: *oplenp = len; *argsp = args; break;
13508 *argsp
= longest_to_int (exp
->elts
[pc
- 2].longconst
);
13513 *argsp
= longest_to_int (exp
->elts
[pc
- 2].longconst
) + 1;
13518 /* Implementation of the exp_descriptor method operator_check. */
13521 ada_operator_check (struct expression
*exp
, int pos
,
13522 int (*objfile_func
) (struct objfile
*objfile
, void *data
),
13525 const union exp_element
*const elts
= exp
->elts
;
13526 struct type
*type
= NULL
;
13528 switch (elts
[pos
].opcode
)
13530 case UNOP_IN_RANGE
:
13532 type
= elts
[pos
+ 1].type
;
13536 return operator_check_standard (exp
, pos
, objfile_func
, data
);
13539 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13541 if (type
&& TYPE_OBJFILE (type
)
13542 && (*objfile_func
) (TYPE_OBJFILE (type
), data
))
13549 ada_op_name (enum exp_opcode opcode
)
13554 return op_name_standard (opcode
);
13556 #define OP_DEFN(op, len, args, binop) case op: return #op;
13561 return "OP_AGGREGATE";
13563 return "OP_CHOICES";
13569 /* As for operator_length, but assumes PC is pointing at the first
13570 element of the operator, and gives meaningful results only for the
13571 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13574 ada_forward_operator_length (struct expression
*exp
, int pc
,
13575 int *oplenp
, int *argsp
)
13577 switch (exp
->elts
[pc
].opcode
)
13580 *oplenp
= *argsp
= 0;
13583 #define OP_DEFN(op, len, args, binop) \
13584 case op: *oplenp = len; *argsp = args; break;
13590 *argsp
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
13595 *argsp
= longest_to_int (exp
->elts
[pc
+ 1].longconst
) + 1;
13601 int len
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
13603 *oplenp
= 4 + BYTES_TO_EXP_ELEM (len
+ 1);
13611 ada_dump_subexp_body (struct expression
*exp
, struct ui_file
*stream
, int elt
)
13613 enum exp_opcode op
= exp
->elts
[elt
].opcode
;
13618 ada_forward_operator_length (exp
, elt
, &oplen
, &nargs
);
13622 /* Ada attributes ('Foo). */
13625 case OP_ATR_LENGTH
:
13629 case OP_ATR_MODULUS
:
13636 case UNOP_IN_RANGE
:
13638 /* XXX: gdb_sprint_host_address, type_sprint */
13639 fprintf_filtered (stream
, _("Type @"));
13640 gdb_print_host_address (exp
->elts
[pc
+ 1].type
, stream
);
13641 fprintf_filtered (stream
, " (");
13642 type_print (exp
->elts
[pc
+ 1].type
, NULL
, stream
, 0);
13643 fprintf_filtered (stream
, ")");
13645 case BINOP_IN_BOUNDS
:
13646 fprintf_filtered (stream
, " (%d)",
13647 longest_to_int (exp
->elts
[pc
+ 2].longconst
));
13649 case TERNOP_IN_RANGE
:
13654 case OP_DISCRETE_RANGE
:
13655 case OP_POSITIONAL
:
13662 char *name
= &exp
->elts
[elt
+ 2].string
;
13663 int len
= longest_to_int (exp
->elts
[elt
+ 1].longconst
);
13665 fprintf_filtered (stream
, "Text: `%.*s'", len
, name
);
13670 return dump_subexp_body_standard (exp
, stream
, elt
);
13674 for (i
= 0; i
< nargs
; i
+= 1)
13675 elt
= dump_subexp (exp
, stream
, elt
);
13680 /* The Ada extension of print_subexp (q.v.). */
13683 ada_print_subexp (struct expression
*exp
, int *pos
,
13684 struct ui_file
*stream
, enum precedence prec
)
13686 int oplen
, nargs
, i
;
13688 enum exp_opcode op
= exp
->elts
[pc
].opcode
;
13690 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
13697 print_subexp_standard (exp
, pos
, stream
, prec
);
13701 fputs_filtered (SYMBOL_NATURAL_NAME (exp
->elts
[pc
+ 2].symbol
), stream
);
13704 case BINOP_IN_BOUNDS
:
13705 /* XXX: sprint_subexp */
13706 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13707 fputs_filtered (" in ", stream
);
13708 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13709 fputs_filtered ("'range", stream
);
13710 if (exp
->elts
[pc
+ 1].longconst
> 1)
13711 fprintf_filtered (stream
, "(%ld)",
13712 (long) exp
->elts
[pc
+ 1].longconst
);
13715 case TERNOP_IN_RANGE
:
13716 if (prec
>= PREC_EQUAL
)
13717 fputs_filtered ("(", stream
);
13718 /* XXX: sprint_subexp */
13719 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13720 fputs_filtered (" in ", stream
);
13721 print_subexp (exp
, pos
, stream
, PREC_EQUAL
);
13722 fputs_filtered (" .. ", stream
);
13723 print_subexp (exp
, pos
, stream
, PREC_EQUAL
);
13724 if (prec
>= PREC_EQUAL
)
13725 fputs_filtered (")", stream
);
13730 case OP_ATR_LENGTH
:
13734 case OP_ATR_MODULUS
:
13739 if (exp
->elts
[*pos
].opcode
== OP_TYPE
)
13741 if (TYPE_CODE (exp
->elts
[*pos
+ 1].type
) != TYPE_CODE_VOID
)
13742 LA_PRINT_TYPE (exp
->elts
[*pos
+ 1].type
, "", stream
, 0, 0,
13743 &type_print_raw_options
);
13747 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13748 fprintf_filtered (stream
, "'%s", ada_attribute_name (op
));
13753 for (tem
= 1; tem
< nargs
; tem
+= 1)
13755 fputs_filtered ((tem
== 1) ? " (" : ", ", stream
);
13756 print_subexp (exp
, pos
, stream
, PREC_ABOVE_COMMA
);
13758 fputs_filtered (")", stream
);
13763 type_print (exp
->elts
[pc
+ 1].type
, "", stream
, 0);
13764 fputs_filtered ("'(", stream
);
13765 print_subexp (exp
, pos
, stream
, PREC_PREFIX
);
13766 fputs_filtered (")", stream
);
13769 case UNOP_IN_RANGE
:
13770 /* XXX: sprint_subexp */
13771 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13772 fputs_filtered (" in ", stream
);
13773 LA_PRINT_TYPE (exp
->elts
[pc
+ 1].type
, "", stream
, 1, 0,
13774 &type_print_raw_options
);
13777 case OP_DISCRETE_RANGE
:
13778 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13779 fputs_filtered ("..", stream
);
13780 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13784 fputs_filtered ("others => ", stream
);
13785 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13789 for (i
= 0; i
< nargs
-1; i
+= 1)
13792 fputs_filtered ("|", stream
);
13793 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13795 fputs_filtered (" => ", stream
);
13796 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13799 case OP_POSITIONAL
:
13800 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13804 fputs_filtered ("(", stream
);
13805 for (i
= 0; i
< nargs
; i
+= 1)
13808 fputs_filtered (", ", stream
);
13809 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13811 fputs_filtered (")", stream
);
13816 /* Table mapping opcodes into strings for printing operators
13817 and precedences of the operators. */
13819 static const struct op_print ada_op_print_tab
[] = {
13820 {":=", BINOP_ASSIGN
, PREC_ASSIGN
, 1},
13821 {"or else", BINOP_LOGICAL_OR
, PREC_LOGICAL_OR
, 0},
13822 {"and then", BINOP_LOGICAL_AND
, PREC_LOGICAL_AND
, 0},
13823 {"or", BINOP_BITWISE_IOR
, PREC_BITWISE_IOR
, 0},
13824 {"xor", BINOP_BITWISE_XOR
, PREC_BITWISE_XOR
, 0},
13825 {"and", BINOP_BITWISE_AND
, PREC_BITWISE_AND
, 0},
13826 {"=", BINOP_EQUAL
, PREC_EQUAL
, 0},
13827 {"/=", BINOP_NOTEQUAL
, PREC_EQUAL
, 0},
13828 {"<=", BINOP_LEQ
, PREC_ORDER
, 0},
13829 {">=", BINOP_GEQ
, PREC_ORDER
, 0},
13830 {">", BINOP_GTR
, PREC_ORDER
, 0},
13831 {"<", BINOP_LESS
, PREC_ORDER
, 0},
13832 {">>", BINOP_RSH
, PREC_SHIFT
, 0},
13833 {"<<", BINOP_LSH
, PREC_SHIFT
, 0},
13834 {"+", BINOP_ADD
, PREC_ADD
, 0},
13835 {"-", BINOP_SUB
, PREC_ADD
, 0},
13836 {"&", BINOP_CONCAT
, PREC_ADD
, 0},
13837 {"*", BINOP_MUL
, PREC_MUL
, 0},
13838 {"/", BINOP_DIV
, PREC_MUL
, 0},
13839 {"rem", BINOP_REM
, PREC_MUL
, 0},
13840 {"mod", BINOP_MOD
, PREC_MUL
, 0},
13841 {"**", BINOP_EXP
, PREC_REPEAT
, 0},
13842 {"@", BINOP_REPEAT
, PREC_REPEAT
, 0},
13843 {"-", UNOP_NEG
, PREC_PREFIX
, 0},
13844 {"+", UNOP_PLUS
, PREC_PREFIX
, 0},
13845 {"not ", UNOP_LOGICAL_NOT
, PREC_PREFIX
, 0},
13846 {"not ", UNOP_COMPLEMENT
, PREC_PREFIX
, 0},
13847 {"abs ", UNOP_ABS
, PREC_PREFIX
, 0},
13848 {".all", UNOP_IND
, PREC_SUFFIX
, 1},
13849 {"'access", UNOP_ADDR
, PREC_SUFFIX
, 1},
13850 {"'size", OP_ATR_SIZE
, PREC_SUFFIX
, 1},
13851 {NULL
, OP_NULL
, PREC_SUFFIX
, 0}
13854 enum ada_primitive_types
{
13855 ada_primitive_type_int
,
13856 ada_primitive_type_long
,
13857 ada_primitive_type_short
,
13858 ada_primitive_type_char
,
13859 ada_primitive_type_float
,
13860 ada_primitive_type_double
,
13861 ada_primitive_type_void
,
13862 ada_primitive_type_long_long
,
13863 ada_primitive_type_long_double
,
13864 ada_primitive_type_natural
,
13865 ada_primitive_type_positive
,
13866 ada_primitive_type_system_address
,
13867 nr_ada_primitive_types
13871 ada_language_arch_info (struct gdbarch
*gdbarch
,
13872 struct language_arch_info
*lai
)
13874 const struct builtin_type
*builtin
= builtin_type (gdbarch
);
13876 lai
->primitive_type_vector
13877 = GDBARCH_OBSTACK_CALLOC (gdbarch
, nr_ada_primitive_types
+ 1,
13880 lai
->primitive_type_vector
[ada_primitive_type_int
]
13881 = arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
13883 lai
->primitive_type_vector
[ada_primitive_type_long
]
13884 = arch_integer_type (gdbarch
, gdbarch_long_bit (gdbarch
),
13885 0, "long_integer");
13886 lai
->primitive_type_vector
[ada_primitive_type_short
]
13887 = arch_integer_type (gdbarch
, gdbarch_short_bit (gdbarch
),
13888 0, "short_integer");
13889 lai
->string_char_type
13890 = lai
->primitive_type_vector
[ada_primitive_type_char
]
13891 = arch_character_type (gdbarch
, TARGET_CHAR_BIT
, 0, "character");
13892 lai
->primitive_type_vector
[ada_primitive_type_float
]
13893 = arch_float_type (gdbarch
, gdbarch_float_bit (gdbarch
),
13895 lai
->primitive_type_vector
[ada_primitive_type_double
]
13896 = arch_float_type (gdbarch
, gdbarch_double_bit (gdbarch
),
13897 "long_float", NULL
);
13898 lai
->primitive_type_vector
[ada_primitive_type_long_long
]
13899 = arch_integer_type (gdbarch
, gdbarch_long_long_bit (gdbarch
),
13900 0, "long_long_integer");
13901 lai
->primitive_type_vector
[ada_primitive_type_long_double
]
13902 = arch_float_type (gdbarch
, gdbarch_double_bit (gdbarch
),
13903 "long_long_float", NULL
);
13904 lai
->primitive_type_vector
[ada_primitive_type_natural
]
13905 = arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
13907 lai
->primitive_type_vector
[ada_primitive_type_positive
]
13908 = arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
13910 lai
->primitive_type_vector
[ada_primitive_type_void
]
13911 = builtin
->builtin_void
;
13913 lai
->primitive_type_vector
[ada_primitive_type_system_address
]
13914 = lookup_pointer_type (arch_type (gdbarch
, TYPE_CODE_VOID
, 1, "void"));
13915 TYPE_NAME (lai
->primitive_type_vector
[ada_primitive_type_system_address
])
13916 = "system__address";
13918 lai
->bool_type_symbol
= NULL
;
13919 lai
->bool_type_default
= builtin
->builtin_bool
;
13922 /* Language vector */
13924 /* Not really used, but needed in the ada_language_defn. */
13927 emit_char (int c
, struct type
*type
, struct ui_file
*stream
, int quoter
)
13929 ada_emit_char (c
, type
, stream
, quoter
, 1);
13933 parse (struct parser_state
*ps
)
13935 warnings_issued
= 0;
13936 return ada_parse (ps
);
13939 static const struct exp_descriptor ada_exp_descriptor
= {
13941 ada_operator_length
,
13942 ada_operator_check
,
13944 ada_dump_subexp_body
,
13945 ada_evaluate_subexp
13948 /* Implement the "la_get_symbol_name_cmp" language_defn method
13951 static symbol_name_cmp_ftype
13952 ada_get_symbol_name_cmp (const char *lookup_name
)
13954 if (should_use_wild_match (lookup_name
))
13957 return compare_names
;
13960 /* Implement the "la_read_var_value" language_defn method for Ada. */
13962 static struct value
*
13963 ada_read_var_value (struct symbol
*var
, const struct block
*var_block
,
13964 struct frame_info
*frame
)
13966 const struct block
*frame_block
= NULL
;
13967 struct symbol
*renaming_sym
= NULL
;
13969 /* The only case where default_read_var_value is not sufficient
13970 is when VAR is a renaming... */
13972 frame_block
= get_frame_block (frame
, NULL
);
13974 renaming_sym
= ada_find_renaming_symbol (var
, frame_block
);
13975 if (renaming_sym
!= NULL
)
13976 return ada_read_renaming_var_value (renaming_sym
, frame_block
);
13978 /* This is a typical case where we expect the default_read_var_value
13979 function to work. */
13980 return default_read_var_value (var
, var_block
, frame
);
13983 const struct language_defn ada_language_defn
= {
13984 "ada", /* Language name */
13988 case_sensitive_on
, /* Yes, Ada is case-insensitive, but
13989 that's not quite what this means. */
13991 macro_expansion_no
,
13992 &ada_exp_descriptor
,
13996 ada_printchar
, /* Print a character constant */
13997 ada_printstr
, /* Function to print string constant */
13998 emit_char
, /* Function to print single char (not used) */
13999 ada_print_type
, /* Print a type using appropriate syntax */
14000 ada_print_typedef
, /* Print a typedef using appropriate syntax */
14001 ada_val_print
, /* Print a value using appropriate syntax */
14002 ada_value_print
, /* Print a top-level value */
14003 ada_read_var_value
, /* la_read_var_value */
14004 NULL
, /* Language specific skip_trampoline */
14005 NULL
, /* name_of_this */
14006 ada_lookup_symbol_nonlocal
, /* Looking up non-local symbols. */
14007 basic_lookup_transparent_type
, /* lookup_transparent_type */
14008 ada_la_decode
, /* Language specific symbol demangler */
14009 NULL
, /* Language specific
14010 class_name_from_physname */
14011 ada_op_print_tab
, /* expression operators for printing */
14012 0, /* c-style arrays */
14013 1, /* String lower bound */
14014 ada_get_gdb_completer_word_break_characters
,
14015 ada_make_symbol_completion_list
,
14016 ada_language_arch_info
,
14017 ada_print_array_index
,
14018 default_pass_by_reference
,
14020 ada_get_symbol_name_cmp
, /* la_get_symbol_name_cmp */
14021 ada_iterate_over_symbols
,
14028 /* Provide a prototype to silence -Wmissing-prototypes. */
14029 extern initialize_file_ftype _initialize_ada_language
;
14031 /* Command-list for the "set/show ada" prefix command. */
14032 static struct cmd_list_element
*set_ada_list
;
14033 static struct cmd_list_element
*show_ada_list
;
14035 /* Implement the "set ada" prefix command. */
14038 set_ada_command (char *arg
, int from_tty
)
14040 printf_unfiltered (_(\
14041 "\"set ada\" must be followed by the name of a setting.\n"));
14042 help_list (set_ada_list
, "set ada ", all_commands
, gdb_stdout
);
14045 /* Implement the "show ada" prefix command. */
14048 show_ada_command (char *args
, int from_tty
)
14050 cmd_show_list (show_ada_list
, from_tty
, "");
14054 initialize_ada_catchpoint_ops (void)
14056 struct breakpoint_ops
*ops
;
14058 initialize_breakpoint_ops ();
14060 ops
= &catch_exception_breakpoint_ops
;
14061 *ops
= bkpt_breakpoint_ops
;
14062 ops
->dtor
= dtor_catch_exception
;
14063 ops
->allocate_location
= allocate_location_catch_exception
;
14064 ops
->re_set
= re_set_catch_exception
;
14065 ops
->check_status
= check_status_catch_exception
;
14066 ops
->print_it
= print_it_catch_exception
;
14067 ops
->print_one
= print_one_catch_exception
;
14068 ops
->print_mention
= print_mention_catch_exception
;
14069 ops
->print_recreate
= print_recreate_catch_exception
;
14071 ops
= &catch_exception_unhandled_breakpoint_ops
;
14072 *ops
= bkpt_breakpoint_ops
;
14073 ops
->dtor
= dtor_catch_exception_unhandled
;
14074 ops
->allocate_location
= allocate_location_catch_exception_unhandled
;
14075 ops
->re_set
= re_set_catch_exception_unhandled
;
14076 ops
->check_status
= check_status_catch_exception_unhandled
;
14077 ops
->print_it
= print_it_catch_exception_unhandled
;
14078 ops
->print_one
= print_one_catch_exception_unhandled
;
14079 ops
->print_mention
= print_mention_catch_exception_unhandled
;
14080 ops
->print_recreate
= print_recreate_catch_exception_unhandled
;
14082 ops
= &catch_assert_breakpoint_ops
;
14083 *ops
= bkpt_breakpoint_ops
;
14084 ops
->dtor
= dtor_catch_assert
;
14085 ops
->allocate_location
= allocate_location_catch_assert
;
14086 ops
->re_set
= re_set_catch_assert
;
14087 ops
->check_status
= check_status_catch_assert
;
14088 ops
->print_it
= print_it_catch_assert
;
14089 ops
->print_one
= print_one_catch_assert
;
14090 ops
->print_mention
= print_mention_catch_assert
;
14091 ops
->print_recreate
= print_recreate_catch_assert
;
14094 /* This module's 'new_objfile' observer. */
14097 ada_new_objfile_observer (struct objfile
*objfile
)
14099 ada_clear_symbol_cache ();
14102 /* This module's 'free_objfile' observer. */
14105 ada_free_objfile_observer (struct objfile
*objfile
)
14107 ada_clear_symbol_cache ();
14111 _initialize_ada_language (void)
14113 add_language (&ada_language_defn
);
14115 initialize_ada_catchpoint_ops ();
14117 add_prefix_cmd ("ada", no_class
, set_ada_command
,
14118 _("Prefix command for changing Ada-specfic settings"),
14119 &set_ada_list
, "set ada ", 0, &setlist
);
14121 add_prefix_cmd ("ada", no_class
, show_ada_command
,
14122 _("Generic command for showing Ada-specific settings."),
14123 &show_ada_list
, "show ada ", 0, &showlist
);
14125 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure
,
14126 &trust_pad_over_xvs
, _("\
14127 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14128 Show whether an optimization trusting PAD types over XVS types is activated"),
14130 This is related to the encoding used by the GNAT compiler. The debugger\n\
14131 should normally trust the contents of PAD types, but certain older versions\n\
14132 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14133 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14134 work around this bug. It is always safe to turn this option \"off\", but\n\
14135 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14136 this option to \"off\" unless necessary."),
14137 NULL
, NULL
, &set_ada_list
, &show_ada_list
);
14139 add_catch_command ("exception", _("\
14140 Catch Ada exceptions, when raised.\n\
14141 With an argument, catch only exceptions with the given name."),
14142 catch_ada_exception_command
,
14146 add_catch_command ("assert", _("\
14147 Catch failed Ada assertions, when raised.\n\
14148 With an argument, catch only exceptions with the given name."),
14149 catch_assert_command
,
14154 varsize_limit
= 65536;
14156 add_info ("exceptions", info_exceptions_command
,
14158 List all Ada exception names.\n\
14159 If a regular expression is passed as an argument, only those matching\n\
14160 the regular expression are listed."));
14162 add_prefix_cmd ("ada", class_maintenance
, maint_set_ada_cmd
,
14163 _("Set Ada maintenance-related variables."),
14164 &maint_set_ada_cmdlist
, "maintenance set ada ",
14165 0/*allow-unknown*/, &maintenance_set_cmdlist
);
14167 add_prefix_cmd ("ada", class_maintenance
, maint_show_ada_cmd
,
14168 _("Show Ada maintenance-related variables"),
14169 &maint_show_ada_cmdlist
, "maintenance show ada ",
14170 0/*allow-unknown*/, &maintenance_show_cmdlist
);
14172 add_setshow_boolean_cmd
14173 ("ignore-descriptive-types", class_maintenance
,
14174 &ada_ignore_descriptive_types_p
,
14175 _("Set whether descriptive types generated by GNAT should be ignored."),
14176 _("Show whether descriptive types generated by GNAT should be ignored."),
14178 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14179 DWARF attribute."),
14180 NULL
, NULL
, &maint_set_ada_cmdlist
, &maint_show_ada_cmdlist
);
14182 obstack_init (&symbol_list_obstack
);
14184 decoded_names_store
= htab_create_alloc
14185 (256, htab_hash_string
, (int (*)(const void *, const void *)) streq
,
14186 NULL
, xcalloc
, xfree
);
14188 /* The ada-lang observers. */
14189 observer_attach_new_objfile (ada_new_objfile_observer
);
14190 observer_attach_free_objfile (ada_free_objfile_observer
);
14191 observer_attach_inferior_exit (ada_inferior_exit
);
14193 /* Setup various context-specific data. */
14195 = register_inferior_data_with_cleanup (NULL
, ada_inferior_data_cleanup
);
14196 ada_pspace_data_handle
14197 = register_program_space_data_with_cleanup (NULL
, ada_pspace_data_cleanup
);