Fix assertion failure in coerce_unspec_val_to_type
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "common/vec.h"
53 #include "stack.h"
54 #include "common/gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66 #include <map>
67
68 /* Define whether or not the C operator '/' truncates towards zero for
69 differently signed operands (truncation direction is undefined in C).
70 Copied from valarith.c. */
71
72 #ifndef TRUNCATION_TOWARDS_ZERO
73 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
74 #endif
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_target_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *make_array_descriptor (struct type *, struct value *);
109
110 static void ada_add_block_symbols (struct obstack *,
111 const struct block *,
112 const lookup_name_info &lookup_name,
113 domain_enum, struct objfile *);
114
115 static void ada_add_all_symbols (struct obstack *, const struct block *,
116 const lookup_name_info &lookup_name,
117 domain_enum, int, int *);
118
119 static int is_nonfunction (struct block_symbol *, int);
120
121 static void add_defn_to_vec (struct obstack *, struct symbol *,
122 const struct block *);
123
124 static int num_defns_collected (struct obstack *);
125
126 static struct block_symbol *defns_collected (struct obstack *, int);
127
128 static struct value *resolve_subexp (expression_up *, int *, int,
129 struct type *, int,
130 innermost_block_tracker *);
131
132 static void replace_operator_with_call (expression_up *, int, int, int,
133 struct symbol *, const struct block *);
134
135 static int possible_user_operator_p (enum exp_opcode, struct value **);
136
137 static const char *ada_op_name (enum exp_opcode);
138
139 static const char *ada_decoded_op_name (enum exp_opcode);
140
141 static int numeric_type_p (struct type *);
142
143 static int integer_type_p (struct type *);
144
145 static int scalar_type_p (struct type *);
146
147 static int discrete_type_p (struct type *);
148
149 static enum ada_renaming_category parse_old_style_renaming (struct type *,
150 const char **,
151 int *,
152 const char **);
153
154 static struct symbol *find_old_style_renaming_symbol (const char *,
155 const struct block *);
156
157 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
158 int, int);
159
160 static struct value *evaluate_subexp_type (struct expression *, int *);
161
162 static struct type *ada_find_parallel_type_with_name (struct type *,
163 const char *);
164
165 static int is_dynamic_field (struct type *, int);
166
167 static struct type *to_fixed_variant_branch_type (struct type *,
168 const gdb_byte *,
169 CORE_ADDR, struct value *);
170
171 static struct type *to_fixed_array_type (struct type *, struct value *, int);
172
173 static struct type *to_fixed_range_type (struct type *, struct value *);
174
175 static struct type *to_static_fixed_type (struct type *);
176 static struct type *static_unwrap_type (struct type *type);
177
178 static struct value *unwrap_value (struct value *);
179
180 static struct type *constrained_packed_array_type (struct type *, long *);
181
182 static struct type *decode_constrained_packed_array_type (struct type *);
183
184 static long decode_packed_array_bitsize (struct type *);
185
186 static struct value *decode_constrained_packed_array (struct value *);
187
188 static int ada_is_packed_array_type (struct type *);
189
190 static int ada_is_unconstrained_packed_array_type (struct type *);
191
192 static struct value *value_subscript_packed (struct value *, int,
193 struct value **);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int advance_wild_match (const char **, const char *, int);
205
206 static bool wild_match (const char *name, const char *patn);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
220 struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228 static int ada_resolve_function (struct block_symbol *, int,
229 struct value **, int, const char *,
230 struct type *, int);
231
232 static int ada_is_direct_array_type (struct type *);
233
234 static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
236
237 static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240 static struct value *assign_aggregate (struct value *, struct value *,
241 struct expression *,
242 int *, enum noside);
243
244 static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249 static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255 static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266 static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
268
269 static struct type *ada_find_any_type (const char *name);
270
271 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
272 (const lookup_name_info &lookup_name);
273
274 \f
275
276 /* The result of a symbol lookup to be stored in our symbol cache. */
277
278 struct cache_entry
279 {
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
283 domain_enum domain;
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292 };
293
294 /* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303 #define HASH_SIZE 1009
304
305 struct ada_symbol_cache
306 {
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312 };
313
314 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
315
316 /* Maximum-sized dynamic type. */
317 static unsigned int varsize_limit;
318
319 static const char ada_completer_word_break_characters[] =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Maintenance-related settings for this module. */
346
347 static struct cmd_list_element *maint_set_ada_cmdlist;
348 static struct cmd_list_element *maint_show_ada_cmdlist;
349
350 /* Implement the "maintenance set ada" (prefix) command. */
351
352 static void
353 maint_set_ada_cmd (const char *args, int from_tty)
354 {
355 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
356 gdb_stdout);
357 }
358
359 /* Implement the "maintenance show ada" (prefix) command. */
360
361 static void
362 maint_show_ada_cmd (const char *args, int from_tty)
363 {
364 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
365 }
366
367 /* The "maintenance ada set/show ignore-descriptive-type" value. */
368
369 static int ada_ignore_descriptive_types_p = 0;
370
371 /* Inferior-specific data. */
372
373 /* Per-inferior data for this module. */
374
375 struct ada_inferior_data
376 {
377 /* The ada__tags__type_specific_data type, which is used when decoding
378 tagged types. With older versions of GNAT, this type was directly
379 accessible through a component ("tsd") in the object tag. But this
380 is no longer the case, so we cache it for each inferior. */
381 struct type *tsd_type = nullptr;
382
383 /* The exception_support_info data. This data is used to determine
384 how to implement support for Ada exception catchpoints in a given
385 inferior. */
386 const struct exception_support_info *exception_info = nullptr;
387 };
388
389 /* Our key to this module's inferior data. */
390 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
391
392 /* Return our inferior data for the given inferior (INF).
393
394 This function always returns a valid pointer to an allocated
395 ada_inferior_data structure. If INF's inferior data has not
396 been previously set, this functions creates a new one with all
397 fields set to zero, sets INF's inferior to it, and then returns
398 a pointer to that newly allocated ada_inferior_data. */
399
400 static struct ada_inferior_data *
401 get_ada_inferior_data (struct inferior *inf)
402 {
403 struct ada_inferior_data *data;
404
405 data = ada_inferior_data.get (inf);
406 if (data == NULL)
407 data = ada_inferior_data.emplace (inf);
408
409 return data;
410 }
411
412 /* Perform all necessary cleanups regarding our module's inferior data
413 that is required after the inferior INF just exited. */
414
415 static void
416 ada_inferior_exit (struct inferior *inf)
417 {
418 ada_inferior_data.clear (inf);
419 }
420
421
422 /* program-space-specific data. */
423
424 /* This module's per-program-space data. */
425 struct ada_pspace_data
426 {
427 ~ada_pspace_data ()
428 {
429 if (sym_cache != NULL)
430 ada_free_symbol_cache (sym_cache);
431 }
432
433 /* The Ada symbol cache. */
434 struct ada_symbol_cache *sym_cache = nullptr;
435 };
436
437 /* Key to our per-program-space data. */
438 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
439
440 /* Return this module's data for the given program space (PSPACE).
441 If not is found, add a zero'ed one now.
442
443 This function always returns a valid object. */
444
445 static struct ada_pspace_data *
446 get_ada_pspace_data (struct program_space *pspace)
447 {
448 struct ada_pspace_data *data;
449
450 data = ada_pspace_data_handle.get (pspace);
451 if (data == NULL)
452 data = ada_pspace_data_handle.emplace (pspace);
453
454 return data;
455 }
456
457 /* Utilities */
458
459 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
460 all typedef layers have been peeled. Otherwise, return TYPE.
461
462 Normally, we really expect a typedef type to only have 1 typedef layer.
463 In other words, we really expect the target type of a typedef type to be
464 a non-typedef type. This is particularly true for Ada units, because
465 the language does not have a typedef vs not-typedef distinction.
466 In that respect, the Ada compiler has been trying to eliminate as many
467 typedef definitions in the debugging information, since they generally
468 do not bring any extra information (we still use typedef under certain
469 circumstances related mostly to the GNAT encoding).
470
471 Unfortunately, we have seen situations where the debugging information
472 generated by the compiler leads to such multiple typedef layers. For
473 instance, consider the following example with stabs:
474
475 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
476 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
477
478 This is an error in the debugging information which causes type
479 pck__float_array___XUP to be defined twice, and the second time,
480 it is defined as a typedef of a typedef.
481
482 This is on the fringe of legality as far as debugging information is
483 concerned, and certainly unexpected. But it is easy to handle these
484 situations correctly, so we can afford to be lenient in this case. */
485
486 static struct type *
487 ada_typedef_target_type (struct type *type)
488 {
489 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
490 type = TYPE_TARGET_TYPE (type);
491 return type;
492 }
493
494 /* Given DECODED_NAME a string holding a symbol name in its
495 decoded form (ie using the Ada dotted notation), returns
496 its unqualified name. */
497
498 static const char *
499 ada_unqualified_name (const char *decoded_name)
500 {
501 const char *result;
502
503 /* If the decoded name starts with '<', it means that the encoded
504 name does not follow standard naming conventions, and thus that
505 it is not your typical Ada symbol name. Trying to unqualify it
506 is therefore pointless and possibly erroneous. */
507 if (decoded_name[0] == '<')
508 return decoded_name;
509
510 result = strrchr (decoded_name, '.');
511 if (result != NULL)
512 result++; /* Skip the dot... */
513 else
514 result = decoded_name;
515
516 return result;
517 }
518
519 /* Return a string starting with '<', followed by STR, and '>'. */
520
521 static std::string
522 add_angle_brackets (const char *str)
523 {
524 return string_printf ("<%s>", str);
525 }
526
527 static const char *
528 ada_get_gdb_completer_word_break_characters (void)
529 {
530 return ada_completer_word_break_characters;
531 }
532
533 /* Print an array element index using the Ada syntax. */
534
535 static void
536 ada_print_array_index (struct value *index_value, struct ui_file *stream,
537 const struct value_print_options *options)
538 {
539 LA_VALUE_PRINT (index_value, stream, options);
540 fprintf_filtered (stream, " => ");
541 }
542
543 /* la_watch_location_expression for Ada. */
544
545 gdb::unique_xmalloc_ptr<char>
546 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
547 {
548 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
549 std::string name = type_to_string (type);
550 return gdb::unique_xmalloc_ptr<char>
551 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
552 }
553
554 /* Assuming VECT points to an array of *SIZE objects of size
555 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
556 updating *SIZE as necessary and returning the (new) array. */
557
558 void *
559 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
560 {
561 if (*size < min_size)
562 {
563 *size *= 2;
564 if (*size < min_size)
565 *size = min_size;
566 vect = xrealloc (vect, *size * element_size);
567 }
568 return vect;
569 }
570
571 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
572 suffix of FIELD_NAME beginning "___". */
573
574 static int
575 field_name_match (const char *field_name, const char *target)
576 {
577 int len = strlen (target);
578
579 return
580 (strncmp (field_name, target, len) == 0
581 && (field_name[len] == '\0'
582 || (startswith (field_name + len, "___")
583 && strcmp (field_name + strlen (field_name) - 6,
584 "___XVN") != 0)));
585 }
586
587
588 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
589 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
590 and return its index. This function also handles fields whose name
591 have ___ suffixes because the compiler sometimes alters their name
592 by adding such a suffix to represent fields with certain constraints.
593 If the field could not be found, return a negative number if
594 MAYBE_MISSING is set. Otherwise raise an error. */
595
596 int
597 ada_get_field_index (const struct type *type, const char *field_name,
598 int maybe_missing)
599 {
600 int fieldno;
601 struct type *struct_type = check_typedef ((struct type *) type);
602
603 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
604 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
605 return fieldno;
606
607 if (!maybe_missing)
608 error (_("Unable to find field %s in struct %s. Aborting"),
609 field_name, TYPE_NAME (struct_type));
610
611 return -1;
612 }
613
614 /* The length of the prefix of NAME prior to any "___" suffix. */
615
616 int
617 ada_name_prefix_len (const char *name)
618 {
619 if (name == NULL)
620 return 0;
621 else
622 {
623 const char *p = strstr (name, "___");
624
625 if (p == NULL)
626 return strlen (name);
627 else
628 return p - name;
629 }
630 }
631
632 /* Return non-zero if SUFFIX is a suffix of STR.
633 Return zero if STR is null. */
634
635 static int
636 is_suffix (const char *str, const char *suffix)
637 {
638 int len1, len2;
639
640 if (str == NULL)
641 return 0;
642 len1 = strlen (str);
643 len2 = strlen (suffix);
644 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
645 }
646
647 /* The contents of value VAL, treated as a value of type TYPE. The
648 result is an lval in memory if VAL is. */
649
650 static struct value *
651 coerce_unspec_val_to_type (struct value *val, struct type *type)
652 {
653 type = ada_check_typedef (type);
654 if (value_type (val) == type)
655 return val;
656 else
657 {
658 struct value *result;
659
660 /* Make sure that the object size is not unreasonable before
661 trying to allocate some memory for it. */
662 ada_ensure_varsize_limit (type);
663
664 if (value_lazy (val)
665 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
666 result = allocate_value_lazy (type);
667 else
668 {
669 result = allocate_value (type);
670 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
671 }
672 set_value_component_location (result, val);
673 set_value_bitsize (result, value_bitsize (val));
674 set_value_bitpos (result, value_bitpos (val));
675 if (VALUE_LVAL (result) == lval_memory)
676 set_value_address (result, value_address (val));
677 return result;
678 }
679 }
680
681 static const gdb_byte *
682 cond_offset_host (const gdb_byte *valaddr, long offset)
683 {
684 if (valaddr == NULL)
685 return NULL;
686 else
687 return valaddr + offset;
688 }
689
690 static CORE_ADDR
691 cond_offset_target (CORE_ADDR address, long offset)
692 {
693 if (address == 0)
694 return 0;
695 else
696 return address + offset;
697 }
698
699 /* Issue a warning (as for the definition of warning in utils.c, but
700 with exactly one argument rather than ...), unless the limit on the
701 number of warnings has passed during the evaluation of the current
702 expression. */
703
704 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
705 provided by "complaint". */
706 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
707
708 static void
709 lim_warning (const char *format, ...)
710 {
711 va_list args;
712
713 va_start (args, format);
714 warnings_issued += 1;
715 if (warnings_issued <= warning_limit)
716 vwarning (format, args);
717
718 va_end (args);
719 }
720
721 /* Issue an error if the size of an object of type T is unreasonable,
722 i.e. if it would be a bad idea to allocate a value of this type in
723 GDB. */
724
725 void
726 ada_ensure_varsize_limit (const struct type *type)
727 {
728 if (TYPE_LENGTH (type) > varsize_limit)
729 error (_("object size is larger than varsize-limit"));
730 }
731
732 /* Maximum value of a SIZE-byte signed integer type. */
733 static LONGEST
734 max_of_size (int size)
735 {
736 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
737
738 return top_bit | (top_bit - 1);
739 }
740
741 /* Minimum value of a SIZE-byte signed integer type. */
742 static LONGEST
743 min_of_size (int size)
744 {
745 return -max_of_size (size) - 1;
746 }
747
748 /* Maximum value of a SIZE-byte unsigned integer type. */
749 static ULONGEST
750 umax_of_size (int size)
751 {
752 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
753
754 return top_bit | (top_bit - 1);
755 }
756
757 /* Maximum value of integral type T, as a signed quantity. */
758 static LONGEST
759 max_of_type (struct type *t)
760 {
761 if (TYPE_UNSIGNED (t))
762 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
763 else
764 return max_of_size (TYPE_LENGTH (t));
765 }
766
767 /* Minimum value of integral type T, as a signed quantity. */
768 static LONGEST
769 min_of_type (struct type *t)
770 {
771 if (TYPE_UNSIGNED (t))
772 return 0;
773 else
774 return min_of_size (TYPE_LENGTH (t));
775 }
776
777 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
778 LONGEST
779 ada_discrete_type_high_bound (struct type *type)
780 {
781 type = resolve_dynamic_type (type, NULL, 0);
782 switch (TYPE_CODE (type))
783 {
784 case TYPE_CODE_RANGE:
785 return TYPE_HIGH_BOUND (type);
786 case TYPE_CODE_ENUM:
787 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
788 case TYPE_CODE_BOOL:
789 return 1;
790 case TYPE_CODE_CHAR:
791 case TYPE_CODE_INT:
792 return max_of_type (type);
793 default:
794 error (_("Unexpected type in ada_discrete_type_high_bound."));
795 }
796 }
797
798 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
799 LONGEST
800 ada_discrete_type_low_bound (struct type *type)
801 {
802 type = resolve_dynamic_type (type, NULL, 0);
803 switch (TYPE_CODE (type))
804 {
805 case TYPE_CODE_RANGE:
806 return TYPE_LOW_BOUND (type);
807 case TYPE_CODE_ENUM:
808 return TYPE_FIELD_ENUMVAL (type, 0);
809 case TYPE_CODE_BOOL:
810 return 0;
811 case TYPE_CODE_CHAR:
812 case TYPE_CODE_INT:
813 return min_of_type (type);
814 default:
815 error (_("Unexpected type in ada_discrete_type_low_bound."));
816 }
817 }
818
819 /* The identity on non-range types. For range types, the underlying
820 non-range scalar type. */
821
822 static struct type *
823 get_base_type (struct type *type)
824 {
825 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
826 {
827 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
828 return type;
829 type = TYPE_TARGET_TYPE (type);
830 }
831 return type;
832 }
833
834 /* Return a decoded version of the given VALUE. This means returning
835 a value whose type is obtained by applying all the GNAT-specific
836 encondings, making the resulting type a static but standard description
837 of the initial type. */
838
839 struct value *
840 ada_get_decoded_value (struct value *value)
841 {
842 struct type *type = ada_check_typedef (value_type (value));
843
844 if (ada_is_array_descriptor_type (type)
845 || (ada_is_constrained_packed_array_type (type)
846 && TYPE_CODE (type) != TYPE_CODE_PTR))
847 {
848 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
849 value = ada_coerce_to_simple_array_ptr (value);
850 else
851 value = ada_coerce_to_simple_array (value);
852 }
853 else
854 value = ada_to_fixed_value (value);
855
856 return value;
857 }
858
859 /* Same as ada_get_decoded_value, but with the given TYPE.
860 Because there is no associated actual value for this type,
861 the resulting type might be a best-effort approximation in
862 the case of dynamic types. */
863
864 struct type *
865 ada_get_decoded_type (struct type *type)
866 {
867 type = to_static_fixed_type (type);
868 if (ada_is_constrained_packed_array_type (type))
869 type = ada_coerce_to_simple_array_type (type);
870 return type;
871 }
872
873 \f
874
875 /* Language Selection */
876
877 /* If the main program is in Ada, return language_ada, otherwise return LANG
878 (the main program is in Ada iif the adainit symbol is found). */
879
880 enum language
881 ada_update_initial_language (enum language lang)
882 {
883 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
884 (struct objfile *) NULL).minsym != NULL)
885 return language_ada;
886
887 return lang;
888 }
889
890 /* If the main procedure is written in Ada, then return its name.
891 The result is good until the next call. Return NULL if the main
892 procedure doesn't appear to be in Ada. */
893
894 char *
895 ada_main_name (void)
896 {
897 struct bound_minimal_symbol msym;
898 static gdb::unique_xmalloc_ptr<char> main_program_name;
899
900 /* For Ada, the name of the main procedure is stored in a specific
901 string constant, generated by the binder. Look for that symbol,
902 extract its address, and then read that string. If we didn't find
903 that string, then most probably the main procedure is not written
904 in Ada. */
905 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
906
907 if (msym.minsym != NULL)
908 {
909 CORE_ADDR main_program_name_addr;
910 int err_code;
911
912 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
913 if (main_program_name_addr == 0)
914 error (_("Invalid address for Ada main program name."));
915
916 target_read_string (main_program_name_addr, &main_program_name,
917 1024, &err_code);
918
919 if (err_code != 0)
920 return NULL;
921 return main_program_name.get ();
922 }
923
924 /* The main procedure doesn't seem to be in Ada. */
925 return NULL;
926 }
927 \f
928 /* Symbols */
929
930 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
931 of NULLs. */
932
933 const struct ada_opname_map ada_opname_table[] = {
934 {"Oadd", "\"+\"", BINOP_ADD},
935 {"Osubtract", "\"-\"", BINOP_SUB},
936 {"Omultiply", "\"*\"", BINOP_MUL},
937 {"Odivide", "\"/\"", BINOP_DIV},
938 {"Omod", "\"mod\"", BINOP_MOD},
939 {"Orem", "\"rem\"", BINOP_REM},
940 {"Oexpon", "\"**\"", BINOP_EXP},
941 {"Olt", "\"<\"", BINOP_LESS},
942 {"Ole", "\"<=\"", BINOP_LEQ},
943 {"Ogt", "\">\"", BINOP_GTR},
944 {"Oge", "\">=\"", BINOP_GEQ},
945 {"Oeq", "\"=\"", BINOP_EQUAL},
946 {"One", "\"/=\"", BINOP_NOTEQUAL},
947 {"Oand", "\"and\"", BINOP_BITWISE_AND},
948 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
949 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
950 {"Oconcat", "\"&\"", BINOP_CONCAT},
951 {"Oabs", "\"abs\"", UNOP_ABS},
952 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
953 {"Oadd", "\"+\"", UNOP_PLUS},
954 {"Osubtract", "\"-\"", UNOP_NEG},
955 {NULL, NULL}
956 };
957
958 /* The "encoded" form of DECODED, according to GNAT conventions. The
959 result is valid until the next call to ada_encode. If
960 THROW_ERRORS, throw an error if invalid operator name is found.
961 Otherwise, return NULL in that case. */
962
963 static char *
964 ada_encode_1 (const char *decoded, bool throw_errors)
965 {
966 static char *encoding_buffer = NULL;
967 static size_t encoding_buffer_size = 0;
968 const char *p;
969 int k;
970
971 if (decoded == NULL)
972 return NULL;
973
974 GROW_VECT (encoding_buffer, encoding_buffer_size,
975 2 * strlen (decoded) + 10);
976
977 k = 0;
978 for (p = decoded; *p != '\0'; p += 1)
979 {
980 if (*p == '.')
981 {
982 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
983 k += 2;
984 }
985 else if (*p == '"')
986 {
987 const struct ada_opname_map *mapping;
988
989 for (mapping = ada_opname_table;
990 mapping->encoded != NULL
991 && !startswith (p, mapping->decoded); mapping += 1)
992 ;
993 if (mapping->encoded == NULL)
994 {
995 if (throw_errors)
996 error (_("invalid Ada operator name: %s"), p);
997 else
998 return NULL;
999 }
1000 strcpy (encoding_buffer + k, mapping->encoded);
1001 k += strlen (mapping->encoded);
1002 break;
1003 }
1004 else
1005 {
1006 encoding_buffer[k] = *p;
1007 k += 1;
1008 }
1009 }
1010
1011 encoding_buffer[k] = '\0';
1012 return encoding_buffer;
1013 }
1014
1015 /* The "encoded" form of DECODED, according to GNAT conventions.
1016 The result is valid until the next call to ada_encode. */
1017
1018 char *
1019 ada_encode (const char *decoded)
1020 {
1021 return ada_encode_1 (decoded, true);
1022 }
1023
1024 /* Return NAME folded to lower case, or, if surrounded by single
1025 quotes, unfolded, but with the quotes stripped away. Result good
1026 to next call. */
1027
1028 char *
1029 ada_fold_name (const char *name)
1030 {
1031 static char *fold_buffer = NULL;
1032 static size_t fold_buffer_size = 0;
1033
1034 int len = strlen (name);
1035 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1036
1037 if (name[0] == '\'')
1038 {
1039 strncpy (fold_buffer, name + 1, len - 2);
1040 fold_buffer[len - 2] = '\000';
1041 }
1042 else
1043 {
1044 int i;
1045
1046 for (i = 0; i <= len; i += 1)
1047 fold_buffer[i] = tolower (name[i]);
1048 }
1049
1050 return fold_buffer;
1051 }
1052
1053 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1054
1055 static int
1056 is_lower_alphanum (const char c)
1057 {
1058 return (isdigit (c) || (isalpha (c) && islower (c)));
1059 }
1060
1061 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1062 This function saves in LEN the length of that same symbol name but
1063 without either of these suffixes:
1064 . .{DIGIT}+
1065 . ${DIGIT}+
1066 . ___{DIGIT}+
1067 . __{DIGIT}+.
1068
1069 These are suffixes introduced by the compiler for entities such as
1070 nested subprogram for instance, in order to avoid name clashes.
1071 They do not serve any purpose for the debugger. */
1072
1073 static void
1074 ada_remove_trailing_digits (const char *encoded, int *len)
1075 {
1076 if (*len > 1 && isdigit (encoded[*len - 1]))
1077 {
1078 int i = *len - 2;
1079
1080 while (i > 0 && isdigit (encoded[i]))
1081 i--;
1082 if (i >= 0 && encoded[i] == '.')
1083 *len = i;
1084 else if (i >= 0 && encoded[i] == '$')
1085 *len = i;
1086 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1087 *len = i - 2;
1088 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1089 *len = i - 1;
1090 }
1091 }
1092
1093 /* Remove the suffix introduced by the compiler for protected object
1094 subprograms. */
1095
1096 static void
1097 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1098 {
1099 /* Remove trailing N. */
1100
1101 /* Protected entry subprograms are broken into two
1102 separate subprograms: The first one is unprotected, and has
1103 a 'N' suffix; the second is the protected version, and has
1104 the 'P' suffix. The second calls the first one after handling
1105 the protection. Since the P subprograms are internally generated,
1106 we leave these names undecoded, giving the user a clue that this
1107 entity is internal. */
1108
1109 if (*len > 1
1110 && encoded[*len - 1] == 'N'
1111 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1112 *len = *len - 1;
1113 }
1114
1115 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1116
1117 static void
1118 ada_remove_Xbn_suffix (const char *encoded, int *len)
1119 {
1120 int i = *len - 1;
1121
1122 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1123 i--;
1124
1125 if (encoded[i] != 'X')
1126 return;
1127
1128 if (i == 0)
1129 return;
1130
1131 if (isalnum (encoded[i-1]))
1132 *len = i;
1133 }
1134
1135 /* If ENCODED follows the GNAT entity encoding conventions, then return
1136 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1137 replaced by ENCODED.
1138
1139 The resulting string is valid until the next call of ada_decode.
1140 If the string is unchanged by decoding, the original string pointer
1141 is returned. */
1142
1143 const char *
1144 ada_decode (const char *encoded)
1145 {
1146 int i, j;
1147 int len0;
1148 const char *p;
1149 char *decoded;
1150 int at_start_name;
1151 static char *decoding_buffer = NULL;
1152 static size_t decoding_buffer_size = 0;
1153
1154 /* With function descriptors on PPC64, the value of a symbol named
1155 ".FN", if it exists, is the entry point of the function "FN". */
1156 if (encoded[0] == '.')
1157 encoded += 1;
1158
1159 /* The name of the Ada main procedure starts with "_ada_".
1160 This prefix is not part of the decoded name, so skip this part
1161 if we see this prefix. */
1162 if (startswith (encoded, "_ada_"))
1163 encoded += 5;
1164
1165 /* If the name starts with '_', then it is not a properly encoded
1166 name, so do not attempt to decode it. Similarly, if the name
1167 starts with '<', the name should not be decoded. */
1168 if (encoded[0] == '_' || encoded[0] == '<')
1169 goto Suppress;
1170
1171 len0 = strlen (encoded);
1172
1173 ada_remove_trailing_digits (encoded, &len0);
1174 ada_remove_po_subprogram_suffix (encoded, &len0);
1175
1176 /* Remove the ___X.* suffix if present. Do not forget to verify that
1177 the suffix is located before the current "end" of ENCODED. We want
1178 to avoid re-matching parts of ENCODED that have previously been
1179 marked as discarded (by decrementing LEN0). */
1180 p = strstr (encoded, "___");
1181 if (p != NULL && p - encoded < len0 - 3)
1182 {
1183 if (p[3] == 'X')
1184 len0 = p - encoded;
1185 else
1186 goto Suppress;
1187 }
1188
1189 /* Remove any trailing TKB suffix. It tells us that this symbol
1190 is for the body of a task, but that information does not actually
1191 appear in the decoded name. */
1192
1193 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1194 len0 -= 3;
1195
1196 /* Remove any trailing TB suffix. The TB suffix is slightly different
1197 from the TKB suffix because it is used for non-anonymous task
1198 bodies. */
1199
1200 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1201 len0 -= 2;
1202
1203 /* Remove trailing "B" suffixes. */
1204 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1205
1206 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1207 len0 -= 1;
1208
1209 /* Make decoded big enough for possible expansion by operator name. */
1210
1211 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1212 decoded = decoding_buffer;
1213
1214 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1215
1216 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1217 {
1218 i = len0 - 2;
1219 while ((i >= 0 && isdigit (encoded[i]))
1220 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1221 i -= 1;
1222 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1223 len0 = i - 1;
1224 else if (encoded[i] == '$')
1225 len0 = i;
1226 }
1227
1228 /* The first few characters that are not alphabetic are not part
1229 of any encoding we use, so we can copy them over verbatim. */
1230
1231 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1232 decoded[j] = encoded[i];
1233
1234 at_start_name = 1;
1235 while (i < len0)
1236 {
1237 /* Is this a symbol function? */
1238 if (at_start_name && encoded[i] == 'O')
1239 {
1240 int k;
1241
1242 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1243 {
1244 int op_len = strlen (ada_opname_table[k].encoded);
1245 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1246 op_len - 1) == 0)
1247 && !isalnum (encoded[i + op_len]))
1248 {
1249 strcpy (decoded + j, ada_opname_table[k].decoded);
1250 at_start_name = 0;
1251 i += op_len;
1252 j += strlen (ada_opname_table[k].decoded);
1253 break;
1254 }
1255 }
1256 if (ada_opname_table[k].encoded != NULL)
1257 continue;
1258 }
1259 at_start_name = 0;
1260
1261 /* Replace "TK__" with "__", which will eventually be translated
1262 into "." (just below). */
1263
1264 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1265 i += 2;
1266
1267 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1268 be translated into "." (just below). These are internal names
1269 generated for anonymous blocks inside which our symbol is nested. */
1270
1271 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1272 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1273 && isdigit (encoded [i+4]))
1274 {
1275 int k = i + 5;
1276
1277 while (k < len0 && isdigit (encoded[k]))
1278 k++; /* Skip any extra digit. */
1279
1280 /* Double-check that the "__B_{DIGITS}+" sequence we found
1281 is indeed followed by "__". */
1282 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1283 i = k;
1284 }
1285
1286 /* Remove _E{DIGITS}+[sb] */
1287
1288 /* Just as for protected object subprograms, there are 2 categories
1289 of subprograms created by the compiler for each entry. The first
1290 one implements the actual entry code, and has a suffix following
1291 the convention above; the second one implements the barrier and
1292 uses the same convention as above, except that the 'E' is replaced
1293 by a 'B'.
1294
1295 Just as above, we do not decode the name of barrier functions
1296 to give the user a clue that the code he is debugging has been
1297 internally generated. */
1298
1299 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1300 && isdigit (encoded[i+2]))
1301 {
1302 int k = i + 3;
1303
1304 while (k < len0 && isdigit (encoded[k]))
1305 k++;
1306
1307 if (k < len0
1308 && (encoded[k] == 'b' || encoded[k] == 's'))
1309 {
1310 k++;
1311 /* Just as an extra precaution, make sure that if this
1312 suffix is followed by anything else, it is a '_'.
1313 Otherwise, we matched this sequence by accident. */
1314 if (k == len0
1315 || (k < len0 && encoded[k] == '_'))
1316 i = k;
1317 }
1318 }
1319
1320 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1321 the GNAT front-end in protected object subprograms. */
1322
1323 if (i < len0 + 3
1324 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1325 {
1326 /* Backtrack a bit up until we reach either the begining of
1327 the encoded name, or "__". Make sure that we only find
1328 digits or lowercase characters. */
1329 const char *ptr = encoded + i - 1;
1330
1331 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1332 ptr--;
1333 if (ptr < encoded
1334 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1335 i++;
1336 }
1337
1338 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1339 {
1340 /* This is a X[bn]* sequence not separated from the previous
1341 part of the name with a non-alpha-numeric character (in other
1342 words, immediately following an alpha-numeric character), then
1343 verify that it is placed at the end of the encoded name. If
1344 not, then the encoding is not valid and we should abort the
1345 decoding. Otherwise, just skip it, it is used in body-nested
1346 package names. */
1347 do
1348 i += 1;
1349 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1350 if (i < len0)
1351 goto Suppress;
1352 }
1353 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1354 {
1355 /* Replace '__' by '.'. */
1356 decoded[j] = '.';
1357 at_start_name = 1;
1358 i += 2;
1359 j += 1;
1360 }
1361 else
1362 {
1363 /* It's a character part of the decoded name, so just copy it
1364 over. */
1365 decoded[j] = encoded[i];
1366 i += 1;
1367 j += 1;
1368 }
1369 }
1370 decoded[j] = '\000';
1371
1372 /* Decoded names should never contain any uppercase character.
1373 Double-check this, and abort the decoding if we find one. */
1374
1375 for (i = 0; decoded[i] != '\0'; i += 1)
1376 if (isupper (decoded[i]) || decoded[i] == ' ')
1377 goto Suppress;
1378
1379 if (strcmp (decoded, encoded) == 0)
1380 return encoded;
1381 else
1382 return decoded;
1383
1384 Suppress:
1385 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1386 decoded = decoding_buffer;
1387 if (encoded[0] == '<')
1388 strcpy (decoded, encoded);
1389 else
1390 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1391 return decoded;
1392
1393 }
1394
1395 /* Table for keeping permanent unique copies of decoded names. Once
1396 allocated, names in this table are never released. While this is a
1397 storage leak, it should not be significant unless there are massive
1398 changes in the set of decoded names in successive versions of a
1399 symbol table loaded during a single session. */
1400 static struct htab *decoded_names_store;
1401
1402 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1403 in the language-specific part of GSYMBOL, if it has not been
1404 previously computed. Tries to save the decoded name in the same
1405 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1406 in any case, the decoded symbol has a lifetime at least that of
1407 GSYMBOL).
1408 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1409 const, but nevertheless modified to a semantically equivalent form
1410 when a decoded name is cached in it. */
1411
1412 const char *
1413 ada_decode_symbol (const struct general_symbol_info *arg)
1414 {
1415 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1416 const char **resultp =
1417 &gsymbol->language_specific.demangled_name;
1418
1419 if (!gsymbol->ada_mangled)
1420 {
1421 const char *decoded = ada_decode (gsymbol->name);
1422 struct obstack *obstack = gsymbol->language_specific.obstack;
1423
1424 gsymbol->ada_mangled = 1;
1425
1426 if (obstack != NULL)
1427 *resultp
1428 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1429 else
1430 {
1431 /* Sometimes, we can't find a corresponding objfile, in
1432 which case, we put the result on the heap. Since we only
1433 decode when needed, we hope this usually does not cause a
1434 significant memory leak (FIXME). */
1435
1436 char **slot = (char **) htab_find_slot (decoded_names_store,
1437 decoded, INSERT);
1438
1439 if (*slot == NULL)
1440 *slot = xstrdup (decoded);
1441 *resultp = *slot;
1442 }
1443 }
1444
1445 return *resultp;
1446 }
1447
1448 static char *
1449 ada_la_decode (const char *encoded, int options)
1450 {
1451 return xstrdup (ada_decode (encoded));
1452 }
1453
1454 /* Implement la_sniff_from_mangled_name for Ada. */
1455
1456 static int
1457 ada_sniff_from_mangled_name (const char *mangled, char **out)
1458 {
1459 const char *demangled = ada_decode (mangled);
1460
1461 *out = NULL;
1462
1463 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1464 {
1465 /* Set the gsymbol language to Ada, but still return 0.
1466 Two reasons for that:
1467
1468 1. For Ada, we prefer computing the symbol's decoded name
1469 on the fly rather than pre-compute it, in order to save
1470 memory (Ada projects are typically very large).
1471
1472 2. There are some areas in the definition of the GNAT
1473 encoding where, with a bit of bad luck, we might be able
1474 to decode a non-Ada symbol, generating an incorrect
1475 demangled name (Eg: names ending with "TB" for instance
1476 are identified as task bodies and so stripped from
1477 the decoded name returned).
1478
1479 Returning 1, here, but not setting *DEMANGLED, helps us get a
1480 little bit of the best of both worlds. Because we're last,
1481 we should not affect any of the other languages that were
1482 able to demangle the symbol before us; we get to correctly
1483 tag Ada symbols as such; and even if we incorrectly tagged a
1484 non-Ada symbol, which should be rare, any routing through the
1485 Ada language should be transparent (Ada tries to behave much
1486 like C/C++ with non-Ada symbols). */
1487 return 1;
1488 }
1489
1490 return 0;
1491 }
1492
1493 \f
1494
1495 /* Arrays */
1496
1497 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1498 generated by the GNAT compiler to describe the index type used
1499 for each dimension of an array, check whether it follows the latest
1500 known encoding. If not, fix it up to conform to the latest encoding.
1501 Otherwise, do nothing. This function also does nothing if
1502 INDEX_DESC_TYPE is NULL.
1503
1504 The GNAT encoding used to describle the array index type evolved a bit.
1505 Initially, the information would be provided through the name of each
1506 field of the structure type only, while the type of these fields was
1507 described as unspecified and irrelevant. The debugger was then expected
1508 to perform a global type lookup using the name of that field in order
1509 to get access to the full index type description. Because these global
1510 lookups can be very expensive, the encoding was later enhanced to make
1511 the global lookup unnecessary by defining the field type as being
1512 the full index type description.
1513
1514 The purpose of this routine is to allow us to support older versions
1515 of the compiler by detecting the use of the older encoding, and by
1516 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1517 we essentially replace each field's meaningless type by the associated
1518 index subtype). */
1519
1520 void
1521 ada_fixup_array_indexes_type (struct type *index_desc_type)
1522 {
1523 int i;
1524
1525 if (index_desc_type == NULL)
1526 return;
1527 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1528
1529 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1530 to check one field only, no need to check them all). If not, return
1531 now.
1532
1533 If our INDEX_DESC_TYPE was generated using the older encoding,
1534 the field type should be a meaningless integer type whose name
1535 is not equal to the field name. */
1536 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1537 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1538 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1539 return;
1540
1541 /* Fixup each field of INDEX_DESC_TYPE. */
1542 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1543 {
1544 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1545 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1546
1547 if (raw_type)
1548 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1549 }
1550 }
1551
1552 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1553
1554 static const char *bound_name[] = {
1555 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1556 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1557 };
1558
1559 /* Maximum number of array dimensions we are prepared to handle. */
1560
1561 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1562
1563
1564 /* The desc_* routines return primitive portions of array descriptors
1565 (fat pointers). */
1566
1567 /* The descriptor or array type, if any, indicated by TYPE; removes
1568 level of indirection, if needed. */
1569
1570 static struct type *
1571 desc_base_type (struct type *type)
1572 {
1573 if (type == NULL)
1574 return NULL;
1575 type = ada_check_typedef (type);
1576 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1577 type = ada_typedef_target_type (type);
1578
1579 if (type != NULL
1580 && (TYPE_CODE (type) == TYPE_CODE_PTR
1581 || TYPE_CODE (type) == TYPE_CODE_REF))
1582 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1583 else
1584 return type;
1585 }
1586
1587 /* True iff TYPE indicates a "thin" array pointer type. */
1588
1589 static int
1590 is_thin_pntr (struct type *type)
1591 {
1592 return
1593 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1594 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1595 }
1596
1597 /* The descriptor type for thin pointer type TYPE. */
1598
1599 static struct type *
1600 thin_descriptor_type (struct type *type)
1601 {
1602 struct type *base_type = desc_base_type (type);
1603
1604 if (base_type == NULL)
1605 return NULL;
1606 if (is_suffix (ada_type_name (base_type), "___XVE"))
1607 return base_type;
1608 else
1609 {
1610 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1611
1612 if (alt_type == NULL)
1613 return base_type;
1614 else
1615 return alt_type;
1616 }
1617 }
1618
1619 /* A pointer to the array data for thin-pointer value VAL. */
1620
1621 static struct value *
1622 thin_data_pntr (struct value *val)
1623 {
1624 struct type *type = ada_check_typedef (value_type (val));
1625 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1626
1627 data_type = lookup_pointer_type (data_type);
1628
1629 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1630 return value_cast (data_type, value_copy (val));
1631 else
1632 return value_from_longest (data_type, value_address (val));
1633 }
1634
1635 /* True iff TYPE indicates a "thick" array pointer type. */
1636
1637 static int
1638 is_thick_pntr (struct type *type)
1639 {
1640 type = desc_base_type (type);
1641 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1642 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1643 }
1644
1645 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1646 pointer to one, the type of its bounds data; otherwise, NULL. */
1647
1648 static struct type *
1649 desc_bounds_type (struct type *type)
1650 {
1651 struct type *r;
1652
1653 type = desc_base_type (type);
1654
1655 if (type == NULL)
1656 return NULL;
1657 else if (is_thin_pntr (type))
1658 {
1659 type = thin_descriptor_type (type);
1660 if (type == NULL)
1661 return NULL;
1662 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1663 if (r != NULL)
1664 return ada_check_typedef (r);
1665 }
1666 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1667 {
1668 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1669 if (r != NULL)
1670 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1671 }
1672 return NULL;
1673 }
1674
1675 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1676 one, a pointer to its bounds data. Otherwise NULL. */
1677
1678 static struct value *
1679 desc_bounds (struct value *arr)
1680 {
1681 struct type *type = ada_check_typedef (value_type (arr));
1682
1683 if (is_thin_pntr (type))
1684 {
1685 struct type *bounds_type =
1686 desc_bounds_type (thin_descriptor_type (type));
1687 LONGEST addr;
1688
1689 if (bounds_type == NULL)
1690 error (_("Bad GNAT array descriptor"));
1691
1692 /* NOTE: The following calculation is not really kosher, but
1693 since desc_type is an XVE-encoded type (and shouldn't be),
1694 the correct calculation is a real pain. FIXME (and fix GCC). */
1695 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1696 addr = value_as_long (arr);
1697 else
1698 addr = value_address (arr);
1699
1700 return
1701 value_from_longest (lookup_pointer_type (bounds_type),
1702 addr - TYPE_LENGTH (bounds_type));
1703 }
1704
1705 else if (is_thick_pntr (type))
1706 {
1707 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1708 _("Bad GNAT array descriptor"));
1709 struct type *p_bounds_type = value_type (p_bounds);
1710
1711 if (p_bounds_type
1712 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1713 {
1714 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1715
1716 if (TYPE_STUB (target_type))
1717 p_bounds = value_cast (lookup_pointer_type
1718 (ada_check_typedef (target_type)),
1719 p_bounds);
1720 }
1721 else
1722 error (_("Bad GNAT array descriptor"));
1723
1724 return p_bounds;
1725 }
1726 else
1727 return NULL;
1728 }
1729
1730 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1731 position of the field containing the address of the bounds data. */
1732
1733 static int
1734 fat_pntr_bounds_bitpos (struct type *type)
1735 {
1736 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1737 }
1738
1739 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1740 size of the field containing the address of the bounds data. */
1741
1742 static int
1743 fat_pntr_bounds_bitsize (struct type *type)
1744 {
1745 type = desc_base_type (type);
1746
1747 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1748 return TYPE_FIELD_BITSIZE (type, 1);
1749 else
1750 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1751 }
1752
1753 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1754 pointer to one, the type of its array data (a array-with-no-bounds type);
1755 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1756 data. */
1757
1758 static struct type *
1759 desc_data_target_type (struct type *type)
1760 {
1761 type = desc_base_type (type);
1762
1763 /* NOTE: The following is bogus; see comment in desc_bounds. */
1764 if (is_thin_pntr (type))
1765 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1766 else if (is_thick_pntr (type))
1767 {
1768 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1769
1770 if (data_type
1771 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1772 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1773 }
1774
1775 return NULL;
1776 }
1777
1778 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1779 its array data. */
1780
1781 static struct value *
1782 desc_data (struct value *arr)
1783 {
1784 struct type *type = value_type (arr);
1785
1786 if (is_thin_pntr (type))
1787 return thin_data_pntr (arr);
1788 else if (is_thick_pntr (type))
1789 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1790 _("Bad GNAT array descriptor"));
1791 else
1792 return NULL;
1793 }
1794
1795
1796 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1797 position of the field containing the address of the data. */
1798
1799 static int
1800 fat_pntr_data_bitpos (struct type *type)
1801 {
1802 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1803 }
1804
1805 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1806 size of the field containing the address of the data. */
1807
1808 static int
1809 fat_pntr_data_bitsize (struct type *type)
1810 {
1811 type = desc_base_type (type);
1812
1813 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1814 return TYPE_FIELD_BITSIZE (type, 0);
1815 else
1816 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1817 }
1818
1819 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1820 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1821 bound, if WHICH is 1. The first bound is I=1. */
1822
1823 static struct value *
1824 desc_one_bound (struct value *bounds, int i, int which)
1825 {
1826 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1827 _("Bad GNAT array descriptor bounds"));
1828 }
1829
1830 /* If BOUNDS is an array-bounds structure type, return the bit position
1831 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1832 bound, if WHICH is 1. The first bound is I=1. */
1833
1834 static int
1835 desc_bound_bitpos (struct type *type, int i, int which)
1836 {
1837 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1838 }
1839
1840 /* If BOUNDS is an array-bounds structure type, return the bit field size
1841 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1842 bound, if WHICH is 1. The first bound is I=1. */
1843
1844 static int
1845 desc_bound_bitsize (struct type *type, int i, int which)
1846 {
1847 type = desc_base_type (type);
1848
1849 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1850 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1851 else
1852 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1853 }
1854
1855 /* If TYPE is the type of an array-bounds structure, the type of its
1856 Ith bound (numbering from 1). Otherwise, NULL. */
1857
1858 static struct type *
1859 desc_index_type (struct type *type, int i)
1860 {
1861 type = desc_base_type (type);
1862
1863 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1864 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1865 else
1866 return NULL;
1867 }
1868
1869 /* The number of index positions in the array-bounds type TYPE.
1870 Return 0 if TYPE is NULL. */
1871
1872 static int
1873 desc_arity (struct type *type)
1874 {
1875 type = desc_base_type (type);
1876
1877 if (type != NULL)
1878 return TYPE_NFIELDS (type) / 2;
1879 return 0;
1880 }
1881
1882 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1883 an array descriptor type (representing an unconstrained array
1884 type). */
1885
1886 static int
1887 ada_is_direct_array_type (struct type *type)
1888 {
1889 if (type == NULL)
1890 return 0;
1891 type = ada_check_typedef (type);
1892 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1893 || ada_is_array_descriptor_type (type));
1894 }
1895
1896 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1897 * to one. */
1898
1899 static int
1900 ada_is_array_type (struct type *type)
1901 {
1902 while (type != NULL
1903 && (TYPE_CODE (type) == TYPE_CODE_PTR
1904 || TYPE_CODE (type) == TYPE_CODE_REF))
1905 type = TYPE_TARGET_TYPE (type);
1906 return ada_is_direct_array_type (type);
1907 }
1908
1909 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1910
1911 int
1912 ada_is_simple_array_type (struct type *type)
1913 {
1914 if (type == NULL)
1915 return 0;
1916 type = ada_check_typedef (type);
1917 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1918 || (TYPE_CODE (type) == TYPE_CODE_PTR
1919 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1920 == TYPE_CODE_ARRAY));
1921 }
1922
1923 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1924
1925 int
1926 ada_is_array_descriptor_type (struct type *type)
1927 {
1928 struct type *data_type = desc_data_target_type (type);
1929
1930 if (type == NULL)
1931 return 0;
1932 type = ada_check_typedef (type);
1933 return (data_type != NULL
1934 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1935 && desc_arity (desc_bounds_type (type)) > 0);
1936 }
1937
1938 /* Non-zero iff type is a partially mal-formed GNAT array
1939 descriptor. FIXME: This is to compensate for some problems with
1940 debugging output from GNAT. Re-examine periodically to see if it
1941 is still needed. */
1942
1943 int
1944 ada_is_bogus_array_descriptor (struct type *type)
1945 {
1946 return
1947 type != NULL
1948 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1949 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1950 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1951 && !ada_is_array_descriptor_type (type);
1952 }
1953
1954
1955 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1956 (fat pointer) returns the type of the array data described---specifically,
1957 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1958 in from the descriptor; otherwise, they are left unspecified. If
1959 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1960 returns NULL. The result is simply the type of ARR if ARR is not
1961 a descriptor. */
1962 struct type *
1963 ada_type_of_array (struct value *arr, int bounds)
1964 {
1965 if (ada_is_constrained_packed_array_type (value_type (arr)))
1966 return decode_constrained_packed_array_type (value_type (arr));
1967
1968 if (!ada_is_array_descriptor_type (value_type (arr)))
1969 return value_type (arr);
1970
1971 if (!bounds)
1972 {
1973 struct type *array_type =
1974 ada_check_typedef (desc_data_target_type (value_type (arr)));
1975
1976 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1977 TYPE_FIELD_BITSIZE (array_type, 0) =
1978 decode_packed_array_bitsize (value_type (arr));
1979
1980 return array_type;
1981 }
1982 else
1983 {
1984 struct type *elt_type;
1985 int arity;
1986 struct value *descriptor;
1987
1988 elt_type = ada_array_element_type (value_type (arr), -1);
1989 arity = ada_array_arity (value_type (arr));
1990
1991 if (elt_type == NULL || arity == 0)
1992 return ada_check_typedef (value_type (arr));
1993
1994 descriptor = desc_bounds (arr);
1995 if (value_as_long (descriptor) == 0)
1996 return NULL;
1997 while (arity > 0)
1998 {
1999 struct type *range_type = alloc_type_copy (value_type (arr));
2000 struct type *array_type = alloc_type_copy (value_type (arr));
2001 struct value *low = desc_one_bound (descriptor, arity, 0);
2002 struct value *high = desc_one_bound (descriptor, arity, 1);
2003
2004 arity -= 1;
2005 create_static_range_type (range_type, value_type (low),
2006 longest_to_int (value_as_long (low)),
2007 longest_to_int (value_as_long (high)));
2008 elt_type = create_array_type (array_type, elt_type, range_type);
2009
2010 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2011 {
2012 /* We need to store the element packed bitsize, as well as
2013 recompute the array size, because it was previously
2014 computed based on the unpacked element size. */
2015 LONGEST lo = value_as_long (low);
2016 LONGEST hi = value_as_long (high);
2017
2018 TYPE_FIELD_BITSIZE (elt_type, 0) =
2019 decode_packed_array_bitsize (value_type (arr));
2020 /* If the array has no element, then the size is already
2021 zero, and does not need to be recomputed. */
2022 if (lo < hi)
2023 {
2024 int array_bitsize =
2025 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2026
2027 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2028 }
2029 }
2030 }
2031
2032 return lookup_pointer_type (elt_type);
2033 }
2034 }
2035
2036 /* If ARR does not represent an array, returns ARR unchanged.
2037 Otherwise, returns either a standard GDB array with bounds set
2038 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2039 GDB array. Returns NULL if ARR is a null fat pointer. */
2040
2041 struct value *
2042 ada_coerce_to_simple_array_ptr (struct value *arr)
2043 {
2044 if (ada_is_array_descriptor_type (value_type (arr)))
2045 {
2046 struct type *arrType = ada_type_of_array (arr, 1);
2047
2048 if (arrType == NULL)
2049 return NULL;
2050 return value_cast (arrType, value_copy (desc_data (arr)));
2051 }
2052 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2053 return decode_constrained_packed_array (arr);
2054 else
2055 return arr;
2056 }
2057
2058 /* If ARR does not represent an array, returns ARR unchanged.
2059 Otherwise, returns a standard GDB array describing ARR (which may
2060 be ARR itself if it already is in the proper form). */
2061
2062 struct value *
2063 ada_coerce_to_simple_array (struct value *arr)
2064 {
2065 if (ada_is_array_descriptor_type (value_type (arr)))
2066 {
2067 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2068
2069 if (arrVal == NULL)
2070 error (_("Bounds unavailable for null array pointer."));
2071 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2072 return value_ind (arrVal);
2073 }
2074 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2075 return decode_constrained_packed_array (arr);
2076 else
2077 return arr;
2078 }
2079
2080 /* If TYPE represents a GNAT array type, return it translated to an
2081 ordinary GDB array type (possibly with BITSIZE fields indicating
2082 packing). For other types, is the identity. */
2083
2084 struct type *
2085 ada_coerce_to_simple_array_type (struct type *type)
2086 {
2087 if (ada_is_constrained_packed_array_type (type))
2088 return decode_constrained_packed_array_type (type);
2089
2090 if (ada_is_array_descriptor_type (type))
2091 return ada_check_typedef (desc_data_target_type (type));
2092
2093 return type;
2094 }
2095
2096 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2097
2098 static int
2099 ada_is_packed_array_type (struct type *type)
2100 {
2101 if (type == NULL)
2102 return 0;
2103 type = desc_base_type (type);
2104 type = ada_check_typedef (type);
2105 return
2106 ada_type_name (type) != NULL
2107 && strstr (ada_type_name (type), "___XP") != NULL;
2108 }
2109
2110 /* Non-zero iff TYPE represents a standard GNAT constrained
2111 packed-array type. */
2112
2113 int
2114 ada_is_constrained_packed_array_type (struct type *type)
2115 {
2116 return ada_is_packed_array_type (type)
2117 && !ada_is_array_descriptor_type (type);
2118 }
2119
2120 /* Non-zero iff TYPE represents an array descriptor for a
2121 unconstrained packed-array type. */
2122
2123 static int
2124 ada_is_unconstrained_packed_array_type (struct type *type)
2125 {
2126 return ada_is_packed_array_type (type)
2127 && ada_is_array_descriptor_type (type);
2128 }
2129
2130 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2131 return the size of its elements in bits. */
2132
2133 static long
2134 decode_packed_array_bitsize (struct type *type)
2135 {
2136 const char *raw_name;
2137 const char *tail;
2138 long bits;
2139
2140 /* Access to arrays implemented as fat pointers are encoded as a typedef
2141 of the fat pointer type. We need the name of the fat pointer type
2142 to do the decoding, so strip the typedef layer. */
2143 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2144 type = ada_typedef_target_type (type);
2145
2146 raw_name = ada_type_name (ada_check_typedef (type));
2147 if (!raw_name)
2148 raw_name = ada_type_name (desc_base_type (type));
2149
2150 if (!raw_name)
2151 return 0;
2152
2153 tail = strstr (raw_name, "___XP");
2154 gdb_assert (tail != NULL);
2155
2156 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2157 {
2158 lim_warning
2159 (_("could not understand bit size information on packed array"));
2160 return 0;
2161 }
2162
2163 return bits;
2164 }
2165
2166 /* Given that TYPE is a standard GDB array type with all bounds filled
2167 in, and that the element size of its ultimate scalar constituents
2168 (that is, either its elements, or, if it is an array of arrays, its
2169 elements' elements, etc.) is *ELT_BITS, return an identical type,
2170 but with the bit sizes of its elements (and those of any
2171 constituent arrays) recorded in the BITSIZE components of its
2172 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2173 in bits.
2174
2175 Note that, for arrays whose index type has an XA encoding where
2176 a bound references a record discriminant, getting that discriminant,
2177 and therefore the actual value of that bound, is not possible
2178 because none of the given parameters gives us access to the record.
2179 This function assumes that it is OK in the context where it is being
2180 used to return an array whose bounds are still dynamic and where
2181 the length is arbitrary. */
2182
2183 static struct type *
2184 constrained_packed_array_type (struct type *type, long *elt_bits)
2185 {
2186 struct type *new_elt_type;
2187 struct type *new_type;
2188 struct type *index_type_desc;
2189 struct type *index_type;
2190 LONGEST low_bound, high_bound;
2191
2192 type = ada_check_typedef (type);
2193 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2194 return type;
2195
2196 index_type_desc = ada_find_parallel_type (type, "___XA");
2197 if (index_type_desc)
2198 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2199 NULL);
2200 else
2201 index_type = TYPE_INDEX_TYPE (type);
2202
2203 new_type = alloc_type_copy (type);
2204 new_elt_type =
2205 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2206 elt_bits);
2207 create_array_type (new_type, new_elt_type, index_type);
2208 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2209 TYPE_NAME (new_type) = ada_type_name (type);
2210
2211 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2212 && is_dynamic_type (check_typedef (index_type)))
2213 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2214 low_bound = high_bound = 0;
2215 if (high_bound < low_bound)
2216 *elt_bits = TYPE_LENGTH (new_type) = 0;
2217 else
2218 {
2219 *elt_bits *= (high_bound - low_bound + 1);
2220 TYPE_LENGTH (new_type) =
2221 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2222 }
2223
2224 TYPE_FIXED_INSTANCE (new_type) = 1;
2225 return new_type;
2226 }
2227
2228 /* The array type encoded by TYPE, where
2229 ada_is_constrained_packed_array_type (TYPE). */
2230
2231 static struct type *
2232 decode_constrained_packed_array_type (struct type *type)
2233 {
2234 const char *raw_name = ada_type_name (ada_check_typedef (type));
2235 char *name;
2236 const char *tail;
2237 struct type *shadow_type;
2238 long bits;
2239
2240 if (!raw_name)
2241 raw_name = ada_type_name (desc_base_type (type));
2242
2243 if (!raw_name)
2244 return NULL;
2245
2246 name = (char *) alloca (strlen (raw_name) + 1);
2247 tail = strstr (raw_name, "___XP");
2248 type = desc_base_type (type);
2249
2250 memcpy (name, raw_name, tail - raw_name);
2251 name[tail - raw_name] = '\000';
2252
2253 shadow_type = ada_find_parallel_type_with_name (type, name);
2254
2255 if (shadow_type == NULL)
2256 {
2257 lim_warning (_("could not find bounds information on packed array"));
2258 return NULL;
2259 }
2260 shadow_type = check_typedef (shadow_type);
2261
2262 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2263 {
2264 lim_warning (_("could not understand bounds "
2265 "information on packed array"));
2266 return NULL;
2267 }
2268
2269 bits = decode_packed_array_bitsize (type);
2270 return constrained_packed_array_type (shadow_type, &bits);
2271 }
2272
2273 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2274 array, returns a simple array that denotes that array. Its type is a
2275 standard GDB array type except that the BITSIZEs of the array
2276 target types are set to the number of bits in each element, and the
2277 type length is set appropriately. */
2278
2279 static struct value *
2280 decode_constrained_packed_array (struct value *arr)
2281 {
2282 struct type *type;
2283
2284 /* If our value is a pointer, then dereference it. Likewise if
2285 the value is a reference. Make sure that this operation does not
2286 cause the target type to be fixed, as this would indirectly cause
2287 this array to be decoded. The rest of the routine assumes that
2288 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2289 and "value_ind" routines to perform the dereferencing, as opposed
2290 to using "ada_coerce_ref" or "ada_value_ind". */
2291 arr = coerce_ref (arr);
2292 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2293 arr = value_ind (arr);
2294
2295 type = decode_constrained_packed_array_type (value_type (arr));
2296 if (type == NULL)
2297 {
2298 error (_("can't unpack array"));
2299 return NULL;
2300 }
2301
2302 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2303 && ada_is_modular_type (value_type (arr)))
2304 {
2305 /* This is a (right-justified) modular type representing a packed
2306 array with no wrapper. In order to interpret the value through
2307 the (left-justified) packed array type we just built, we must
2308 first left-justify it. */
2309 int bit_size, bit_pos;
2310 ULONGEST mod;
2311
2312 mod = ada_modulus (value_type (arr)) - 1;
2313 bit_size = 0;
2314 while (mod > 0)
2315 {
2316 bit_size += 1;
2317 mod >>= 1;
2318 }
2319 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2320 arr = ada_value_primitive_packed_val (arr, NULL,
2321 bit_pos / HOST_CHAR_BIT,
2322 bit_pos % HOST_CHAR_BIT,
2323 bit_size,
2324 type);
2325 }
2326
2327 return coerce_unspec_val_to_type (arr, type);
2328 }
2329
2330
2331 /* The value of the element of packed array ARR at the ARITY indices
2332 given in IND. ARR must be a simple array. */
2333
2334 static struct value *
2335 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2336 {
2337 int i;
2338 int bits, elt_off, bit_off;
2339 long elt_total_bit_offset;
2340 struct type *elt_type;
2341 struct value *v;
2342
2343 bits = 0;
2344 elt_total_bit_offset = 0;
2345 elt_type = ada_check_typedef (value_type (arr));
2346 for (i = 0; i < arity; i += 1)
2347 {
2348 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2349 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2350 error
2351 (_("attempt to do packed indexing of "
2352 "something other than a packed array"));
2353 else
2354 {
2355 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2356 LONGEST lowerbound, upperbound;
2357 LONGEST idx;
2358
2359 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2360 {
2361 lim_warning (_("don't know bounds of array"));
2362 lowerbound = upperbound = 0;
2363 }
2364
2365 idx = pos_atr (ind[i]);
2366 if (idx < lowerbound || idx > upperbound)
2367 lim_warning (_("packed array index %ld out of bounds"),
2368 (long) idx);
2369 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2370 elt_total_bit_offset += (idx - lowerbound) * bits;
2371 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2372 }
2373 }
2374 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2375 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2376
2377 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2378 bits, elt_type);
2379 return v;
2380 }
2381
2382 /* Non-zero iff TYPE includes negative integer values. */
2383
2384 static int
2385 has_negatives (struct type *type)
2386 {
2387 switch (TYPE_CODE (type))
2388 {
2389 default:
2390 return 0;
2391 case TYPE_CODE_INT:
2392 return !TYPE_UNSIGNED (type);
2393 case TYPE_CODE_RANGE:
2394 return TYPE_LOW_BOUND (type) < 0;
2395 }
2396 }
2397
2398 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2399 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2400 the unpacked buffer.
2401
2402 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2403 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2404
2405 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2406 zero otherwise.
2407
2408 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2409
2410 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2411
2412 static void
2413 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2414 gdb_byte *unpacked, int unpacked_len,
2415 int is_big_endian, int is_signed_type,
2416 int is_scalar)
2417 {
2418 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2419 int src_idx; /* Index into the source area */
2420 int src_bytes_left; /* Number of source bytes left to process. */
2421 int srcBitsLeft; /* Number of source bits left to move */
2422 int unusedLS; /* Number of bits in next significant
2423 byte of source that are unused */
2424
2425 int unpacked_idx; /* Index into the unpacked buffer */
2426 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2427
2428 unsigned long accum; /* Staging area for bits being transferred */
2429 int accumSize; /* Number of meaningful bits in accum */
2430 unsigned char sign;
2431
2432 /* Transmit bytes from least to most significant; delta is the direction
2433 the indices move. */
2434 int delta = is_big_endian ? -1 : 1;
2435
2436 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2437 bits from SRC. .*/
2438 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2439 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2440 bit_size, unpacked_len);
2441
2442 srcBitsLeft = bit_size;
2443 src_bytes_left = src_len;
2444 unpacked_bytes_left = unpacked_len;
2445 sign = 0;
2446
2447 if (is_big_endian)
2448 {
2449 src_idx = src_len - 1;
2450 if (is_signed_type
2451 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2452 sign = ~0;
2453
2454 unusedLS =
2455 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2456 % HOST_CHAR_BIT;
2457
2458 if (is_scalar)
2459 {
2460 accumSize = 0;
2461 unpacked_idx = unpacked_len - 1;
2462 }
2463 else
2464 {
2465 /* Non-scalar values must be aligned at a byte boundary... */
2466 accumSize =
2467 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2468 /* ... And are placed at the beginning (most-significant) bytes
2469 of the target. */
2470 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2471 unpacked_bytes_left = unpacked_idx + 1;
2472 }
2473 }
2474 else
2475 {
2476 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2477
2478 src_idx = unpacked_idx = 0;
2479 unusedLS = bit_offset;
2480 accumSize = 0;
2481
2482 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2483 sign = ~0;
2484 }
2485
2486 accum = 0;
2487 while (src_bytes_left > 0)
2488 {
2489 /* Mask for removing bits of the next source byte that are not
2490 part of the value. */
2491 unsigned int unusedMSMask =
2492 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2493 1;
2494 /* Sign-extend bits for this byte. */
2495 unsigned int signMask = sign & ~unusedMSMask;
2496
2497 accum |=
2498 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2499 accumSize += HOST_CHAR_BIT - unusedLS;
2500 if (accumSize >= HOST_CHAR_BIT)
2501 {
2502 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2503 accumSize -= HOST_CHAR_BIT;
2504 accum >>= HOST_CHAR_BIT;
2505 unpacked_bytes_left -= 1;
2506 unpacked_idx += delta;
2507 }
2508 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2509 unusedLS = 0;
2510 src_bytes_left -= 1;
2511 src_idx += delta;
2512 }
2513 while (unpacked_bytes_left > 0)
2514 {
2515 accum |= sign << accumSize;
2516 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2517 accumSize -= HOST_CHAR_BIT;
2518 if (accumSize < 0)
2519 accumSize = 0;
2520 accum >>= HOST_CHAR_BIT;
2521 unpacked_bytes_left -= 1;
2522 unpacked_idx += delta;
2523 }
2524 }
2525
2526 /* Create a new value of type TYPE from the contents of OBJ starting
2527 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2528 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2529 assigning through the result will set the field fetched from.
2530 VALADDR is ignored unless OBJ is NULL, in which case,
2531 VALADDR+OFFSET must address the start of storage containing the
2532 packed value. The value returned in this case is never an lval.
2533 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2534
2535 struct value *
2536 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2537 long offset, int bit_offset, int bit_size,
2538 struct type *type)
2539 {
2540 struct value *v;
2541 const gdb_byte *src; /* First byte containing data to unpack */
2542 gdb_byte *unpacked;
2543 const int is_scalar = is_scalar_type (type);
2544 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2545 gdb::byte_vector staging;
2546
2547 type = ada_check_typedef (type);
2548
2549 if (obj == NULL)
2550 src = valaddr + offset;
2551 else
2552 src = value_contents (obj) + offset;
2553
2554 if (is_dynamic_type (type))
2555 {
2556 /* The length of TYPE might by dynamic, so we need to resolve
2557 TYPE in order to know its actual size, which we then use
2558 to create the contents buffer of the value we return.
2559 The difficulty is that the data containing our object is
2560 packed, and therefore maybe not at a byte boundary. So, what
2561 we do, is unpack the data into a byte-aligned buffer, and then
2562 use that buffer as our object's value for resolving the type. */
2563 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2564 staging.resize (staging_len);
2565
2566 ada_unpack_from_contents (src, bit_offset, bit_size,
2567 staging.data (), staging.size (),
2568 is_big_endian, has_negatives (type),
2569 is_scalar);
2570 type = resolve_dynamic_type (type, staging.data (), 0);
2571 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2572 {
2573 /* This happens when the length of the object is dynamic,
2574 and is actually smaller than the space reserved for it.
2575 For instance, in an array of variant records, the bit_size
2576 we're given is the array stride, which is constant and
2577 normally equal to the maximum size of its element.
2578 But, in reality, each element only actually spans a portion
2579 of that stride. */
2580 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2581 }
2582 }
2583
2584 if (obj == NULL)
2585 {
2586 v = allocate_value (type);
2587 src = valaddr + offset;
2588 }
2589 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2590 {
2591 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2592 gdb_byte *buf;
2593
2594 v = value_at (type, value_address (obj) + offset);
2595 buf = (gdb_byte *) alloca (src_len);
2596 read_memory (value_address (v), buf, src_len);
2597 src = buf;
2598 }
2599 else
2600 {
2601 v = allocate_value (type);
2602 src = value_contents (obj) + offset;
2603 }
2604
2605 if (obj != NULL)
2606 {
2607 long new_offset = offset;
2608
2609 set_value_component_location (v, obj);
2610 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2611 set_value_bitsize (v, bit_size);
2612 if (value_bitpos (v) >= HOST_CHAR_BIT)
2613 {
2614 ++new_offset;
2615 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2616 }
2617 set_value_offset (v, new_offset);
2618
2619 /* Also set the parent value. This is needed when trying to
2620 assign a new value (in inferior memory). */
2621 set_value_parent (v, obj);
2622 }
2623 else
2624 set_value_bitsize (v, bit_size);
2625 unpacked = value_contents_writeable (v);
2626
2627 if (bit_size == 0)
2628 {
2629 memset (unpacked, 0, TYPE_LENGTH (type));
2630 return v;
2631 }
2632
2633 if (staging.size () == TYPE_LENGTH (type))
2634 {
2635 /* Small short-cut: If we've unpacked the data into a buffer
2636 of the same size as TYPE's length, then we can reuse that,
2637 instead of doing the unpacking again. */
2638 memcpy (unpacked, staging.data (), staging.size ());
2639 }
2640 else
2641 ada_unpack_from_contents (src, bit_offset, bit_size,
2642 unpacked, TYPE_LENGTH (type),
2643 is_big_endian, has_negatives (type), is_scalar);
2644
2645 return v;
2646 }
2647
2648 /* Store the contents of FROMVAL into the location of TOVAL.
2649 Return a new value with the location of TOVAL and contents of
2650 FROMVAL. Handles assignment into packed fields that have
2651 floating-point or non-scalar types. */
2652
2653 static struct value *
2654 ada_value_assign (struct value *toval, struct value *fromval)
2655 {
2656 struct type *type = value_type (toval);
2657 int bits = value_bitsize (toval);
2658
2659 toval = ada_coerce_ref (toval);
2660 fromval = ada_coerce_ref (fromval);
2661
2662 if (ada_is_direct_array_type (value_type (toval)))
2663 toval = ada_coerce_to_simple_array (toval);
2664 if (ada_is_direct_array_type (value_type (fromval)))
2665 fromval = ada_coerce_to_simple_array (fromval);
2666
2667 if (!deprecated_value_modifiable (toval))
2668 error (_("Left operand of assignment is not a modifiable lvalue."));
2669
2670 if (VALUE_LVAL (toval) == lval_memory
2671 && bits > 0
2672 && (TYPE_CODE (type) == TYPE_CODE_FLT
2673 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2674 {
2675 int len = (value_bitpos (toval)
2676 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2677 int from_size;
2678 gdb_byte *buffer = (gdb_byte *) alloca (len);
2679 struct value *val;
2680 CORE_ADDR to_addr = value_address (toval);
2681
2682 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2683 fromval = value_cast (type, fromval);
2684
2685 read_memory (to_addr, buffer, len);
2686 from_size = value_bitsize (fromval);
2687 if (from_size == 0)
2688 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2689
2690 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2691 ULONGEST from_offset = 0;
2692 if (is_big_endian && is_scalar_type (value_type (fromval)))
2693 from_offset = from_size - bits;
2694 copy_bitwise (buffer, value_bitpos (toval),
2695 value_contents (fromval), from_offset,
2696 bits, is_big_endian);
2697 write_memory_with_notification (to_addr, buffer, len);
2698
2699 val = value_copy (toval);
2700 memcpy (value_contents_raw (val), value_contents (fromval),
2701 TYPE_LENGTH (type));
2702 deprecated_set_value_type (val, type);
2703
2704 return val;
2705 }
2706
2707 return value_assign (toval, fromval);
2708 }
2709
2710
2711 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2712 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2713 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2714 COMPONENT, and not the inferior's memory. The current contents
2715 of COMPONENT are ignored.
2716
2717 Although not part of the initial design, this function also works
2718 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2719 had a null address, and COMPONENT had an address which is equal to
2720 its offset inside CONTAINER. */
2721
2722 static void
2723 value_assign_to_component (struct value *container, struct value *component,
2724 struct value *val)
2725 {
2726 LONGEST offset_in_container =
2727 (LONGEST) (value_address (component) - value_address (container));
2728 int bit_offset_in_container =
2729 value_bitpos (component) - value_bitpos (container);
2730 int bits;
2731
2732 val = value_cast (value_type (component), val);
2733
2734 if (value_bitsize (component) == 0)
2735 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2736 else
2737 bits = value_bitsize (component);
2738
2739 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2740 {
2741 int src_offset;
2742
2743 if (is_scalar_type (check_typedef (value_type (component))))
2744 src_offset
2745 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2746 else
2747 src_offset = 0;
2748 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2749 value_bitpos (container) + bit_offset_in_container,
2750 value_contents (val), src_offset, bits, 1);
2751 }
2752 else
2753 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2754 value_bitpos (container) + bit_offset_in_container,
2755 value_contents (val), 0, bits, 0);
2756 }
2757
2758 /* Determine if TYPE is an access to an unconstrained array. */
2759
2760 bool
2761 ada_is_access_to_unconstrained_array (struct type *type)
2762 {
2763 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2764 && is_thick_pntr (ada_typedef_target_type (type)));
2765 }
2766
2767 /* The value of the element of array ARR at the ARITY indices given in IND.
2768 ARR may be either a simple array, GNAT array descriptor, or pointer
2769 thereto. */
2770
2771 struct value *
2772 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2773 {
2774 int k;
2775 struct value *elt;
2776 struct type *elt_type;
2777
2778 elt = ada_coerce_to_simple_array (arr);
2779
2780 elt_type = ada_check_typedef (value_type (elt));
2781 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2782 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2783 return value_subscript_packed (elt, arity, ind);
2784
2785 for (k = 0; k < arity; k += 1)
2786 {
2787 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2788
2789 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2790 error (_("too many subscripts (%d expected)"), k);
2791
2792 elt = value_subscript (elt, pos_atr (ind[k]));
2793
2794 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2795 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2796 {
2797 /* The element is a typedef to an unconstrained array,
2798 except that the value_subscript call stripped the
2799 typedef layer. The typedef layer is GNAT's way to
2800 specify that the element is, at the source level, an
2801 access to the unconstrained array, rather than the
2802 unconstrained array. So, we need to restore that
2803 typedef layer, which we can do by forcing the element's
2804 type back to its original type. Otherwise, the returned
2805 value is going to be printed as the array, rather
2806 than as an access. Another symptom of the same issue
2807 would be that an expression trying to dereference the
2808 element would also be improperly rejected. */
2809 deprecated_set_value_type (elt, saved_elt_type);
2810 }
2811
2812 elt_type = ada_check_typedef (value_type (elt));
2813 }
2814
2815 return elt;
2816 }
2817
2818 /* Assuming ARR is a pointer to a GDB array, the value of the element
2819 of *ARR at the ARITY indices given in IND.
2820 Does not read the entire array into memory.
2821
2822 Note: Unlike what one would expect, this function is used instead of
2823 ada_value_subscript for basically all non-packed array types. The reason
2824 for this is that a side effect of doing our own pointer arithmetics instead
2825 of relying on value_subscript is that there is no implicit typedef peeling.
2826 This is important for arrays of array accesses, where it allows us to
2827 preserve the fact that the array's element is an array access, where the
2828 access part os encoded in a typedef layer. */
2829
2830 static struct value *
2831 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2832 {
2833 int k;
2834 struct value *array_ind = ada_value_ind (arr);
2835 struct type *type
2836 = check_typedef (value_enclosing_type (array_ind));
2837
2838 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2839 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2840 return value_subscript_packed (array_ind, arity, ind);
2841
2842 for (k = 0; k < arity; k += 1)
2843 {
2844 LONGEST lwb, upb;
2845 struct value *lwb_value;
2846
2847 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2848 error (_("too many subscripts (%d expected)"), k);
2849 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2850 value_copy (arr));
2851 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2852 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2853 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2854 type = TYPE_TARGET_TYPE (type);
2855 }
2856
2857 return value_ind (arr);
2858 }
2859
2860 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2861 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2862 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2863 this array is LOW, as per Ada rules. */
2864 static struct value *
2865 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2866 int low, int high)
2867 {
2868 struct type *type0 = ada_check_typedef (type);
2869 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2870 struct type *index_type
2871 = create_static_range_type (NULL, base_index_type, low, high);
2872 struct type *slice_type = create_array_type_with_stride
2873 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2874 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2875 TYPE_FIELD_BITSIZE (type0, 0));
2876 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2877 LONGEST base_low_pos, low_pos;
2878 CORE_ADDR base;
2879
2880 if (!discrete_position (base_index_type, low, &low_pos)
2881 || !discrete_position (base_index_type, base_low, &base_low_pos))
2882 {
2883 warning (_("unable to get positions in slice, use bounds instead"));
2884 low_pos = low;
2885 base_low_pos = base_low;
2886 }
2887
2888 base = value_as_address (array_ptr)
2889 + ((low_pos - base_low_pos)
2890 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2891 return value_at_lazy (slice_type, base);
2892 }
2893
2894
2895 static struct value *
2896 ada_value_slice (struct value *array, int low, int high)
2897 {
2898 struct type *type = ada_check_typedef (value_type (array));
2899 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2900 struct type *index_type
2901 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2902 struct type *slice_type = create_array_type_with_stride
2903 (NULL, TYPE_TARGET_TYPE (type), index_type,
2904 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2905 TYPE_FIELD_BITSIZE (type, 0));
2906 LONGEST low_pos, high_pos;
2907
2908 if (!discrete_position (base_index_type, low, &low_pos)
2909 || !discrete_position (base_index_type, high, &high_pos))
2910 {
2911 warning (_("unable to get positions in slice, use bounds instead"));
2912 low_pos = low;
2913 high_pos = high;
2914 }
2915
2916 return value_cast (slice_type,
2917 value_slice (array, low, high_pos - low_pos + 1));
2918 }
2919
2920 /* If type is a record type in the form of a standard GNAT array
2921 descriptor, returns the number of dimensions for type. If arr is a
2922 simple array, returns the number of "array of"s that prefix its
2923 type designation. Otherwise, returns 0. */
2924
2925 int
2926 ada_array_arity (struct type *type)
2927 {
2928 int arity;
2929
2930 if (type == NULL)
2931 return 0;
2932
2933 type = desc_base_type (type);
2934
2935 arity = 0;
2936 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2937 return desc_arity (desc_bounds_type (type));
2938 else
2939 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2940 {
2941 arity += 1;
2942 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2943 }
2944
2945 return arity;
2946 }
2947
2948 /* If TYPE is a record type in the form of a standard GNAT array
2949 descriptor or a simple array type, returns the element type for
2950 TYPE after indexing by NINDICES indices, or by all indices if
2951 NINDICES is -1. Otherwise, returns NULL. */
2952
2953 struct type *
2954 ada_array_element_type (struct type *type, int nindices)
2955 {
2956 type = desc_base_type (type);
2957
2958 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2959 {
2960 int k;
2961 struct type *p_array_type;
2962
2963 p_array_type = desc_data_target_type (type);
2964
2965 k = ada_array_arity (type);
2966 if (k == 0)
2967 return NULL;
2968
2969 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2970 if (nindices >= 0 && k > nindices)
2971 k = nindices;
2972 while (k > 0 && p_array_type != NULL)
2973 {
2974 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2975 k -= 1;
2976 }
2977 return p_array_type;
2978 }
2979 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2980 {
2981 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2982 {
2983 type = TYPE_TARGET_TYPE (type);
2984 nindices -= 1;
2985 }
2986 return type;
2987 }
2988
2989 return NULL;
2990 }
2991
2992 /* The type of nth index in arrays of given type (n numbering from 1).
2993 Does not examine memory. Throws an error if N is invalid or TYPE
2994 is not an array type. NAME is the name of the Ada attribute being
2995 evaluated ('range, 'first, 'last, or 'length); it is used in building
2996 the error message. */
2997
2998 static struct type *
2999 ada_index_type (struct type *type, int n, const char *name)
3000 {
3001 struct type *result_type;
3002
3003 type = desc_base_type (type);
3004
3005 if (n < 0 || n > ada_array_arity (type))
3006 error (_("invalid dimension number to '%s"), name);
3007
3008 if (ada_is_simple_array_type (type))
3009 {
3010 int i;
3011
3012 for (i = 1; i < n; i += 1)
3013 type = TYPE_TARGET_TYPE (type);
3014 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3015 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3016 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3017 perhaps stabsread.c would make more sense. */
3018 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3019 result_type = NULL;
3020 }
3021 else
3022 {
3023 result_type = desc_index_type (desc_bounds_type (type), n);
3024 if (result_type == NULL)
3025 error (_("attempt to take bound of something that is not an array"));
3026 }
3027
3028 return result_type;
3029 }
3030
3031 /* Given that arr is an array type, returns the lower bound of the
3032 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3033 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3034 array-descriptor type. It works for other arrays with bounds supplied
3035 by run-time quantities other than discriminants. */
3036
3037 static LONGEST
3038 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3039 {
3040 struct type *type, *index_type_desc, *index_type;
3041 int i;
3042
3043 gdb_assert (which == 0 || which == 1);
3044
3045 if (ada_is_constrained_packed_array_type (arr_type))
3046 arr_type = decode_constrained_packed_array_type (arr_type);
3047
3048 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3049 return (LONGEST) - which;
3050
3051 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3052 type = TYPE_TARGET_TYPE (arr_type);
3053 else
3054 type = arr_type;
3055
3056 if (TYPE_FIXED_INSTANCE (type))
3057 {
3058 /* The array has already been fixed, so we do not need to
3059 check the parallel ___XA type again. That encoding has
3060 already been applied, so ignore it now. */
3061 index_type_desc = NULL;
3062 }
3063 else
3064 {
3065 index_type_desc = ada_find_parallel_type (type, "___XA");
3066 ada_fixup_array_indexes_type (index_type_desc);
3067 }
3068
3069 if (index_type_desc != NULL)
3070 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3071 NULL);
3072 else
3073 {
3074 struct type *elt_type = check_typedef (type);
3075
3076 for (i = 1; i < n; i++)
3077 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3078
3079 index_type = TYPE_INDEX_TYPE (elt_type);
3080 }
3081
3082 return
3083 (LONGEST) (which == 0
3084 ? ada_discrete_type_low_bound (index_type)
3085 : ada_discrete_type_high_bound (index_type));
3086 }
3087
3088 /* Given that arr is an array value, returns the lower bound of the
3089 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3090 WHICH is 1. This routine will also work for arrays with bounds
3091 supplied by run-time quantities other than discriminants. */
3092
3093 static LONGEST
3094 ada_array_bound (struct value *arr, int n, int which)
3095 {
3096 struct type *arr_type;
3097
3098 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3099 arr = value_ind (arr);
3100 arr_type = value_enclosing_type (arr);
3101
3102 if (ada_is_constrained_packed_array_type (arr_type))
3103 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3104 else if (ada_is_simple_array_type (arr_type))
3105 return ada_array_bound_from_type (arr_type, n, which);
3106 else
3107 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3108 }
3109
3110 /* Given that arr is an array value, returns the length of the
3111 nth index. This routine will also work for arrays with bounds
3112 supplied by run-time quantities other than discriminants.
3113 Does not work for arrays indexed by enumeration types with representation
3114 clauses at the moment. */
3115
3116 static LONGEST
3117 ada_array_length (struct value *arr, int n)
3118 {
3119 struct type *arr_type, *index_type;
3120 int low, high;
3121
3122 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3123 arr = value_ind (arr);
3124 arr_type = value_enclosing_type (arr);
3125
3126 if (ada_is_constrained_packed_array_type (arr_type))
3127 return ada_array_length (decode_constrained_packed_array (arr), n);
3128
3129 if (ada_is_simple_array_type (arr_type))
3130 {
3131 low = ada_array_bound_from_type (arr_type, n, 0);
3132 high = ada_array_bound_from_type (arr_type, n, 1);
3133 }
3134 else
3135 {
3136 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3137 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3138 }
3139
3140 arr_type = check_typedef (arr_type);
3141 index_type = ada_index_type (arr_type, n, "length");
3142 if (index_type != NULL)
3143 {
3144 struct type *base_type;
3145 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3146 base_type = TYPE_TARGET_TYPE (index_type);
3147 else
3148 base_type = index_type;
3149
3150 low = pos_atr (value_from_longest (base_type, low));
3151 high = pos_atr (value_from_longest (base_type, high));
3152 }
3153 return high - low + 1;
3154 }
3155
3156 /* An array whose type is that of ARR_TYPE (an array type), with
3157 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3158 less than LOW, then LOW-1 is used. */
3159
3160 static struct value *
3161 empty_array (struct type *arr_type, int low, int high)
3162 {
3163 struct type *arr_type0 = ada_check_typedef (arr_type);
3164 struct type *index_type
3165 = create_static_range_type
3166 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3167 high < low ? low - 1 : high);
3168 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3169
3170 return allocate_value (create_array_type (NULL, elt_type, index_type));
3171 }
3172 \f
3173
3174 /* Name resolution */
3175
3176 /* The "decoded" name for the user-definable Ada operator corresponding
3177 to OP. */
3178
3179 static const char *
3180 ada_decoded_op_name (enum exp_opcode op)
3181 {
3182 int i;
3183
3184 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3185 {
3186 if (ada_opname_table[i].op == op)
3187 return ada_opname_table[i].decoded;
3188 }
3189 error (_("Could not find operator name for opcode"));
3190 }
3191
3192
3193 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3194 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3195 undefined namespace) and converts operators that are
3196 user-defined into appropriate function calls. If CONTEXT_TYPE is
3197 non-null, it provides a preferred result type [at the moment, only
3198 type void has any effect---causing procedures to be preferred over
3199 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3200 return type is preferred. May change (expand) *EXP. */
3201
3202 static void
3203 resolve (expression_up *expp, int void_context_p, int parse_completion,
3204 innermost_block_tracker *tracker)
3205 {
3206 struct type *context_type = NULL;
3207 int pc = 0;
3208
3209 if (void_context_p)
3210 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3211
3212 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3213 }
3214
3215 /* Resolve the operator of the subexpression beginning at
3216 position *POS of *EXPP. "Resolving" consists of replacing
3217 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3218 with their resolutions, replacing built-in operators with
3219 function calls to user-defined operators, where appropriate, and,
3220 when DEPROCEDURE_P is non-zero, converting function-valued variables
3221 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3222 are as in ada_resolve, above. */
3223
3224 static struct value *
3225 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3226 struct type *context_type, int parse_completion,
3227 innermost_block_tracker *tracker)
3228 {
3229 int pc = *pos;
3230 int i;
3231 struct expression *exp; /* Convenience: == *expp. */
3232 enum exp_opcode op = (*expp)->elts[pc].opcode;
3233 struct value **argvec; /* Vector of operand types (alloca'ed). */
3234 int nargs; /* Number of operands. */
3235 int oplen;
3236
3237 argvec = NULL;
3238 nargs = 0;
3239 exp = expp->get ();
3240
3241 /* Pass one: resolve operands, saving their types and updating *pos,
3242 if needed. */
3243 switch (op)
3244 {
3245 case OP_FUNCALL:
3246 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3247 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3248 *pos += 7;
3249 else
3250 {
3251 *pos += 3;
3252 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3253 }
3254 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3255 break;
3256
3257 case UNOP_ADDR:
3258 *pos += 1;
3259 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3260 break;
3261
3262 case UNOP_QUAL:
3263 *pos += 3;
3264 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3265 parse_completion, tracker);
3266 break;
3267
3268 case OP_ATR_MODULUS:
3269 case OP_ATR_SIZE:
3270 case OP_ATR_TAG:
3271 case OP_ATR_FIRST:
3272 case OP_ATR_LAST:
3273 case OP_ATR_LENGTH:
3274 case OP_ATR_POS:
3275 case OP_ATR_VAL:
3276 case OP_ATR_MIN:
3277 case OP_ATR_MAX:
3278 case TERNOP_IN_RANGE:
3279 case BINOP_IN_BOUNDS:
3280 case UNOP_IN_RANGE:
3281 case OP_AGGREGATE:
3282 case OP_OTHERS:
3283 case OP_CHOICES:
3284 case OP_POSITIONAL:
3285 case OP_DISCRETE_RANGE:
3286 case OP_NAME:
3287 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3288 *pos += oplen;
3289 break;
3290
3291 case BINOP_ASSIGN:
3292 {
3293 struct value *arg1;
3294
3295 *pos += 1;
3296 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3297 if (arg1 == NULL)
3298 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3299 else
3300 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3301 tracker);
3302 break;
3303 }
3304
3305 case UNOP_CAST:
3306 *pos += 3;
3307 nargs = 1;
3308 break;
3309
3310 case BINOP_ADD:
3311 case BINOP_SUB:
3312 case BINOP_MUL:
3313 case BINOP_DIV:
3314 case BINOP_REM:
3315 case BINOP_MOD:
3316 case BINOP_EXP:
3317 case BINOP_CONCAT:
3318 case BINOP_LOGICAL_AND:
3319 case BINOP_LOGICAL_OR:
3320 case BINOP_BITWISE_AND:
3321 case BINOP_BITWISE_IOR:
3322 case BINOP_BITWISE_XOR:
3323
3324 case BINOP_EQUAL:
3325 case BINOP_NOTEQUAL:
3326 case BINOP_LESS:
3327 case BINOP_GTR:
3328 case BINOP_LEQ:
3329 case BINOP_GEQ:
3330
3331 case BINOP_REPEAT:
3332 case BINOP_SUBSCRIPT:
3333 case BINOP_COMMA:
3334 *pos += 1;
3335 nargs = 2;
3336 break;
3337
3338 case UNOP_NEG:
3339 case UNOP_PLUS:
3340 case UNOP_LOGICAL_NOT:
3341 case UNOP_ABS:
3342 case UNOP_IND:
3343 *pos += 1;
3344 nargs = 1;
3345 break;
3346
3347 case OP_LONG:
3348 case OP_FLOAT:
3349 case OP_VAR_VALUE:
3350 case OP_VAR_MSYM_VALUE:
3351 *pos += 4;
3352 break;
3353
3354 case OP_TYPE:
3355 case OP_BOOL:
3356 case OP_LAST:
3357 case OP_INTERNALVAR:
3358 *pos += 3;
3359 break;
3360
3361 case UNOP_MEMVAL:
3362 *pos += 3;
3363 nargs = 1;
3364 break;
3365
3366 case OP_REGISTER:
3367 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3368 break;
3369
3370 case STRUCTOP_STRUCT:
3371 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3372 nargs = 1;
3373 break;
3374
3375 case TERNOP_SLICE:
3376 *pos += 1;
3377 nargs = 3;
3378 break;
3379
3380 case OP_STRING:
3381 break;
3382
3383 default:
3384 error (_("Unexpected operator during name resolution"));
3385 }
3386
3387 argvec = XALLOCAVEC (struct value *, nargs + 1);
3388 for (i = 0; i < nargs; i += 1)
3389 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3390 tracker);
3391 argvec[i] = NULL;
3392 exp = expp->get ();
3393
3394 /* Pass two: perform any resolution on principal operator. */
3395 switch (op)
3396 {
3397 default:
3398 break;
3399
3400 case OP_VAR_VALUE:
3401 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3402 {
3403 std::vector<struct block_symbol> candidates;
3404 int n_candidates;
3405
3406 n_candidates =
3407 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3408 (exp->elts[pc + 2].symbol),
3409 exp->elts[pc + 1].block, VAR_DOMAIN,
3410 &candidates);
3411
3412 if (n_candidates > 1)
3413 {
3414 /* Types tend to get re-introduced locally, so if there
3415 are any local symbols that are not types, first filter
3416 out all types. */
3417 int j;
3418 for (j = 0; j < n_candidates; j += 1)
3419 switch (SYMBOL_CLASS (candidates[j].symbol))
3420 {
3421 case LOC_REGISTER:
3422 case LOC_ARG:
3423 case LOC_REF_ARG:
3424 case LOC_REGPARM_ADDR:
3425 case LOC_LOCAL:
3426 case LOC_COMPUTED:
3427 goto FoundNonType;
3428 default:
3429 break;
3430 }
3431 FoundNonType:
3432 if (j < n_candidates)
3433 {
3434 j = 0;
3435 while (j < n_candidates)
3436 {
3437 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3438 {
3439 candidates[j] = candidates[n_candidates - 1];
3440 n_candidates -= 1;
3441 }
3442 else
3443 j += 1;
3444 }
3445 }
3446 }
3447
3448 if (n_candidates == 0)
3449 error (_("No definition found for %s"),
3450 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3451 else if (n_candidates == 1)
3452 i = 0;
3453 else if (deprocedure_p
3454 && !is_nonfunction (candidates.data (), n_candidates))
3455 {
3456 i = ada_resolve_function
3457 (candidates.data (), n_candidates, NULL, 0,
3458 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3459 context_type, parse_completion);
3460 if (i < 0)
3461 error (_("Could not find a match for %s"),
3462 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3463 }
3464 else
3465 {
3466 printf_filtered (_("Multiple matches for %s\n"),
3467 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3468 user_select_syms (candidates.data (), n_candidates, 1);
3469 i = 0;
3470 }
3471
3472 exp->elts[pc + 1].block = candidates[i].block;
3473 exp->elts[pc + 2].symbol = candidates[i].symbol;
3474 tracker->update (candidates[i]);
3475 }
3476
3477 if (deprocedure_p
3478 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3479 == TYPE_CODE_FUNC))
3480 {
3481 replace_operator_with_call (expp, pc, 0, 4,
3482 exp->elts[pc + 2].symbol,
3483 exp->elts[pc + 1].block);
3484 exp = expp->get ();
3485 }
3486 break;
3487
3488 case OP_FUNCALL:
3489 {
3490 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3491 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3492 {
3493 std::vector<struct block_symbol> candidates;
3494 int n_candidates;
3495
3496 n_candidates =
3497 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3498 (exp->elts[pc + 5].symbol),
3499 exp->elts[pc + 4].block, VAR_DOMAIN,
3500 &candidates);
3501
3502 if (n_candidates == 1)
3503 i = 0;
3504 else
3505 {
3506 i = ada_resolve_function
3507 (candidates.data (), n_candidates,
3508 argvec, nargs,
3509 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3510 context_type, parse_completion);
3511 if (i < 0)
3512 error (_("Could not find a match for %s"),
3513 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3514 }
3515
3516 exp->elts[pc + 4].block = candidates[i].block;
3517 exp->elts[pc + 5].symbol = candidates[i].symbol;
3518 tracker->update (candidates[i]);
3519 }
3520 }
3521 break;
3522 case BINOP_ADD:
3523 case BINOP_SUB:
3524 case BINOP_MUL:
3525 case BINOP_DIV:
3526 case BINOP_REM:
3527 case BINOP_MOD:
3528 case BINOP_CONCAT:
3529 case BINOP_BITWISE_AND:
3530 case BINOP_BITWISE_IOR:
3531 case BINOP_BITWISE_XOR:
3532 case BINOP_EQUAL:
3533 case BINOP_NOTEQUAL:
3534 case BINOP_LESS:
3535 case BINOP_GTR:
3536 case BINOP_LEQ:
3537 case BINOP_GEQ:
3538 case BINOP_EXP:
3539 case UNOP_NEG:
3540 case UNOP_PLUS:
3541 case UNOP_LOGICAL_NOT:
3542 case UNOP_ABS:
3543 if (possible_user_operator_p (op, argvec))
3544 {
3545 std::vector<struct block_symbol> candidates;
3546 int n_candidates;
3547
3548 n_candidates =
3549 ada_lookup_symbol_list (ada_decoded_op_name (op),
3550 NULL, VAR_DOMAIN,
3551 &candidates);
3552
3553 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3554 nargs, ada_decoded_op_name (op), NULL,
3555 parse_completion);
3556 if (i < 0)
3557 break;
3558
3559 replace_operator_with_call (expp, pc, nargs, 1,
3560 candidates[i].symbol,
3561 candidates[i].block);
3562 exp = expp->get ();
3563 }
3564 break;
3565
3566 case OP_TYPE:
3567 case OP_REGISTER:
3568 return NULL;
3569 }
3570
3571 *pos = pc;
3572 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3573 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3574 exp->elts[pc + 1].objfile,
3575 exp->elts[pc + 2].msymbol);
3576 else
3577 return evaluate_subexp_type (exp, pos);
3578 }
3579
3580 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3581 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3582 a non-pointer. */
3583 /* The term "match" here is rather loose. The match is heuristic and
3584 liberal. */
3585
3586 static int
3587 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3588 {
3589 ftype = ada_check_typedef (ftype);
3590 atype = ada_check_typedef (atype);
3591
3592 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3593 ftype = TYPE_TARGET_TYPE (ftype);
3594 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3595 atype = TYPE_TARGET_TYPE (atype);
3596
3597 switch (TYPE_CODE (ftype))
3598 {
3599 default:
3600 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3601 case TYPE_CODE_PTR:
3602 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3603 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3604 TYPE_TARGET_TYPE (atype), 0);
3605 else
3606 return (may_deref
3607 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3608 case TYPE_CODE_INT:
3609 case TYPE_CODE_ENUM:
3610 case TYPE_CODE_RANGE:
3611 switch (TYPE_CODE (atype))
3612 {
3613 case TYPE_CODE_INT:
3614 case TYPE_CODE_ENUM:
3615 case TYPE_CODE_RANGE:
3616 return 1;
3617 default:
3618 return 0;
3619 }
3620
3621 case TYPE_CODE_ARRAY:
3622 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3623 || ada_is_array_descriptor_type (atype));
3624
3625 case TYPE_CODE_STRUCT:
3626 if (ada_is_array_descriptor_type (ftype))
3627 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3628 || ada_is_array_descriptor_type (atype));
3629 else
3630 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3631 && !ada_is_array_descriptor_type (atype));
3632
3633 case TYPE_CODE_UNION:
3634 case TYPE_CODE_FLT:
3635 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3636 }
3637 }
3638
3639 /* Return non-zero if the formals of FUNC "sufficiently match" the
3640 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3641 may also be an enumeral, in which case it is treated as a 0-
3642 argument function. */
3643
3644 static int
3645 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3646 {
3647 int i;
3648 struct type *func_type = SYMBOL_TYPE (func);
3649
3650 if (SYMBOL_CLASS (func) == LOC_CONST
3651 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3652 return (n_actuals == 0);
3653 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3654 return 0;
3655
3656 if (TYPE_NFIELDS (func_type) != n_actuals)
3657 return 0;
3658
3659 for (i = 0; i < n_actuals; i += 1)
3660 {
3661 if (actuals[i] == NULL)
3662 return 0;
3663 else
3664 {
3665 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3666 i));
3667 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3668
3669 if (!ada_type_match (ftype, atype, 1))
3670 return 0;
3671 }
3672 }
3673 return 1;
3674 }
3675
3676 /* False iff function type FUNC_TYPE definitely does not produce a value
3677 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3678 FUNC_TYPE is not a valid function type with a non-null return type
3679 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3680
3681 static int
3682 return_match (struct type *func_type, struct type *context_type)
3683 {
3684 struct type *return_type;
3685
3686 if (func_type == NULL)
3687 return 1;
3688
3689 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3690 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3691 else
3692 return_type = get_base_type (func_type);
3693 if (return_type == NULL)
3694 return 1;
3695
3696 context_type = get_base_type (context_type);
3697
3698 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3699 return context_type == NULL || return_type == context_type;
3700 else if (context_type == NULL)
3701 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3702 else
3703 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3704 }
3705
3706
3707 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3708 function (if any) that matches the types of the NARGS arguments in
3709 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3710 that returns that type, then eliminate matches that don't. If
3711 CONTEXT_TYPE is void and there is at least one match that does not
3712 return void, eliminate all matches that do.
3713
3714 Asks the user if there is more than one match remaining. Returns -1
3715 if there is no such symbol or none is selected. NAME is used
3716 solely for messages. May re-arrange and modify SYMS in
3717 the process; the index returned is for the modified vector. */
3718
3719 static int
3720 ada_resolve_function (struct block_symbol syms[],
3721 int nsyms, struct value **args, int nargs,
3722 const char *name, struct type *context_type,
3723 int parse_completion)
3724 {
3725 int fallback;
3726 int k;
3727 int m; /* Number of hits */
3728
3729 m = 0;
3730 /* In the first pass of the loop, we only accept functions matching
3731 context_type. If none are found, we add a second pass of the loop
3732 where every function is accepted. */
3733 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3734 {
3735 for (k = 0; k < nsyms; k += 1)
3736 {
3737 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3738
3739 if (ada_args_match (syms[k].symbol, args, nargs)
3740 && (fallback || return_match (type, context_type)))
3741 {
3742 syms[m] = syms[k];
3743 m += 1;
3744 }
3745 }
3746 }
3747
3748 /* If we got multiple matches, ask the user which one to use. Don't do this
3749 interactive thing during completion, though, as the purpose of the
3750 completion is providing a list of all possible matches. Prompting the
3751 user to filter it down would be completely unexpected in this case. */
3752 if (m == 0)
3753 return -1;
3754 else if (m > 1 && !parse_completion)
3755 {
3756 printf_filtered (_("Multiple matches for %s\n"), name);
3757 user_select_syms (syms, m, 1);
3758 return 0;
3759 }
3760 return 0;
3761 }
3762
3763 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3764 in a listing of choices during disambiguation (see sort_choices, below).
3765 The idea is that overloadings of a subprogram name from the
3766 same package should sort in their source order. We settle for ordering
3767 such symbols by their trailing number (__N or $N). */
3768
3769 static int
3770 encoded_ordered_before (const char *N0, const char *N1)
3771 {
3772 if (N1 == NULL)
3773 return 0;
3774 else if (N0 == NULL)
3775 return 1;
3776 else
3777 {
3778 int k0, k1;
3779
3780 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3781 ;
3782 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3783 ;
3784 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3785 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3786 {
3787 int n0, n1;
3788
3789 n0 = k0;
3790 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3791 n0 -= 1;
3792 n1 = k1;
3793 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3794 n1 -= 1;
3795 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3796 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3797 }
3798 return (strcmp (N0, N1) < 0);
3799 }
3800 }
3801
3802 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3803 encoded names. */
3804
3805 static void
3806 sort_choices (struct block_symbol syms[], int nsyms)
3807 {
3808 int i;
3809
3810 for (i = 1; i < nsyms; i += 1)
3811 {
3812 struct block_symbol sym = syms[i];
3813 int j;
3814
3815 for (j = i - 1; j >= 0; j -= 1)
3816 {
3817 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3818 SYMBOL_LINKAGE_NAME (sym.symbol)))
3819 break;
3820 syms[j + 1] = syms[j];
3821 }
3822 syms[j + 1] = sym;
3823 }
3824 }
3825
3826 /* Whether GDB should display formals and return types for functions in the
3827 overloads selection menu. */
3828 static int print_signatures = 1;
3829
3830 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3831 all but functions, the signature is just the name of the symbol. For
3832 functions, this is the name of the function, the list of types for formals
3833 and the return type (if any). */
3834
3835 static void
3836 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3837 const struct type_print_options *flags)
3838 {
3839 struct type *type = SYMBOL_TYPE (sym);
3840
3841 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3842 if (!print_signatures
3843 || type == NULL
3844 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3845 return;
3846
3847 if (TYPE_NFIELDS (type) > 0)
3848 {
3849 int i;
3850
3851 fprintf_filtered (stream, " (");
3852 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3853 {
3854 if (i > 0)
3855 fprintf_filtered (stream, "; ");
3856 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3857 flags);
3858 }
3859 fprintf_filtered (stream, ")");
3860 }
3861 if (TYPE_TARGET_TYPE (type) != NULL
3862 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3863 {
3864 fprintf_filtered (stream, " return ");
3865 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3866 }
3867 }
3868
3869 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3870 by asking the user (if necessary), returning the number selected,
3871 and setting the first elements of SYMS items. Error if no symbols
3872 selected. */
3873
3874 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3875 to be re-integrated one of these days. */
3876
3877 int
3878 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3879 {
3880 int i;
3881 int *chosen = XALLOCAVEC (int , nsyms);
3882 int n_chosen;
3883 int first_choice = (max_results == 1) ? 1 : 2;
3884 const char *select_mode = multiple_symbols_select_mode ();
3885
3886 if (max_results < 1)
3887 error (_("Request to select 0 symbols!"));
3888 if (nsyms <= 1)
3889 return nsyms;
3890
3891 if (select_mode == multiple_symbols_cancel)
3892 error (_("\
3893 canceled because the command is ambiguous\n\
3894 See set/show multiple-symbol."));
3895
3896 /* If select_mode is "all", then return all possible symbols.
3897 Only do that if more than one symbol can be selected, of course.
3898 Otherwise, display the menu as usual. */
3899 if (select_mode == multiple_symbols_all && max_results > 1)
3900 return nsyms;
3901
3902 printf_filtered (_("[0] cancel\n"));
3903 if (max_results > 1)
3904 printf_filtered (_("[1] all\n"));
3905
3906 sort_choices (syms, nsyms);
3907
3908 for (i = 0; i < nsyms; i += 1)
3909 {
3910 if (syms[i].symbol == NULL)
3911 continue;
3912
3913 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3914 {
3915 struct symtab_and_line sal =
3916 find_function_start_sal (syms[i].symbol, 1);
3917
3918 printf_filtered ("[%d] ", i + first_choice);
3919 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3920 &type_print_raw_options);
3921 if (sal.symtab == NULL)
3922 printf_filtered (_(" at <no source file available>:%d\n"),
3923 sal.line);
3924 else
3925 printf_filtered (_(" at %s:%d\n"),
3926 symtab_to_filename_for_display (sal.symtab),
3927 sal.line);
3928 continue;
3929 }
3930 else
3931 {
3932 int is_enumeral =
3933 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3934 && SYMBOL_TYPE (syms[i].symbol) != NULL
3935 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3936 struct symtab *symtab = NULL;
3937
3938 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3939 symtab = symbol_symtab (syms[i].symbol);
3940
3941 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3942 {
3943 printf_filtered ("[%d] ", i + first_choice);
3944 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3945 &type_print_raw_options);
3946 printf_filtered (_(" at %s:%d\n"),
3947 symtab_to_filename_for_display (symtab),
3948 SYMBOL_LINE (syms[i].symbol));
3949 }
3950 else if (is_enumeral
3951 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3952 {
3953 printf_filtered (("[%d] "), i + first_choice);
3954 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3955 gdb_stdout, -1, 0, &type_print_raw_options);
3956 printf_filtered (_("'(%s) (enumeral)\n"),
3957 SYMBOL_PRINT_NAME (syms[i].symbol));
3958 }
3959 else
3960 {
3961 printf_filtered ("[%d] ", i + first_choice);
3962 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3963 &type_print_raw_options);
3964
3965 if (symtab != NULL)
3966 printf_filtered (is_enumeral
3967 ? _(" in %s (enumeral)\n")
3968 : _(" at %s:?\n"),
3969 symtab_to_filename_for_display (symtab));
3970 else
3971 printf_filtered (is_enumeral
3972 ? _(" (enumeral)\n")
3973 : _(" at ?\n"));
3974 }
3975 }
3976 }
3977
3978 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3979 "overload-choice");
3980
3981 for (i = 0; i < n_chosen; i += 1)
3982 syms[i] = syms[chosen[i]];
3983
3984 return n_chosen;
3985 }
3986
3987 /* Read and validate a set of numeric choices from the user in the
3988 range 0 .. N_CHOICES-1. Place the results in increasing
3989 order in CHOICES[0 .. N-1], and return N.
3990
3991 The user types choices as a sequence of numbers on one line
3992 separated by blanks, encoding them as follows:
3993
3994 + A choice of 0 means to cancel the selection, throwing an error.
3995 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3996 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3997
3998 The user is not allowed to choose more than MAX_RESULTS values.
3999
4000 ANNOTATION_SUFFIX, if present, is used to annotate the input
4001 prompts (for use with the -f switch). */
4002
4003 int
4004 get_selections (int *choices, int n_choices, int max_results,
4005 int is_all_choice, const char *annotation_suffix)
4006 {
4007 char *args;
4008 const char *prompt;
4009 int n_chosen;
4010 int first_choice = is_all_choice ? 2 : 1;
4011
4012 prompt = getenv ("PS2");
4013 if (prompt == NULL)
4014 prompt = "> ";
4015
4016 args = command_line_input (prompt, annotation_suffix);
4017
4018 if (args == NULL)
4019 error_no_arg (_("one or more choice numbers"));
4020
4021 n_chosen = 0;
4022
4023 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4024 order, as given in args. Choices are validated. */
4025 while (1)
4026 {
4027 char *args2;
4028 int choice, j;
4029
4030 args = skip_spaces (args);
4031 if (*args == '\0' && n_chosen == 0)
4032 error_no_arg (_("one or more choice numbers"));
4033 else if (*args == '\0')
4034 break;
4035
4036 choice = strtol (args, &args2, 10);
4037 if (args == args2 || choice < 0
4038 || choice > n_choices + first_choice - 1)
4039 error (_("Argument must be choice number"));
4040 args = args2;
4041
4042 if (choice == 0)
4043 error (_("cancelled"));
4044
4045 if (choice < first_choice)
4046 {
4047 n_chosen = n_choices;
4048 for (j = 0; j < n_choices; j += 1)
4049 choices[j] = j;
4050 break;
4051 }
4052 choice -= first_choice;
4053
4054 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4055 {
4056 }
4057
4058 if (j < 0 || choice != choices[j])
4059 {
4060 int k;
4061
4062 for (k = n_chosen - 1; k > j; k -= 1)
4063 choices[k + 1] = choices[k];
4064 choices[j + 1] = choice;
4065 n_chosen += 1;
4066 }
4067 }
4068
4069 if (n_chosen > max_results)
4070 error (_("Select no more than %d of the above"), max_results);
4071
4072 return n_chosen;
4073 }
4074
4075 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4076 on the function identified by SYM and BLOCK, and taking NARGS
4077 arguments. Update *EXPP as needed to hold more space. */
4078
4079 static void
4080 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4081 int oplen, struct symbol *sym,
4082 const struct block *block)
4083 {
4084 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4085 symbol, -oplen for operator being replaced). */
4086 struct expression *newexp = (struct expression *)
4087 xzalloc (sizeof (struct expression)
4088 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4089 struct expression *exp = expp->get ();
4090
4091 newexp->nelts = exp->nelts + 7 - oplen;
4092 newexp->language_defn = exp->language_defn;
4093 newexp->gdbarch = exp->gdbarch;
4094 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4095 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4096 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4097
4098 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4099 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4100
4101 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4102 newexp->elts[pc + 4].block = block;
4103 newexp->elts[pc + 5].symbol = sym;
4104
4105 expp->reset (newexp);
4106 }
4107
4108 /* Type-class predicates */
4109
4110 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4111 or FLOAT). */
4112
4113 static int
4114 numeric_type_p (struct type *type)
4115 {
4116 if (type == NULL)
4117 return 0;
4118 else
4119 {
4120 switch (TYPE_CODE (type))
4121 {
4122 case TYPE_CODE_INT:
4123 case TYPE_CODE_FLT:
4124 return 1;
4125 case TYPE_CODE_RANGE:
4126 return (type == TYPE_TARGET_TYPE (type)
4127 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4128 default:
4129 return 0;
4130 }
4131 }
4132 }
4133
4134 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4135
4136 static int
4137 integer_type_p (struct type *type)
4138 {
4139 if (type == NULL)
4140 return 0;
4141 else
4142 {
4143 switch (TYPE_CODE (type))
4144 {
4145 case TYPE_CODE_INT:
4146 return 1;
4147 case TYPE_CODE_RANGE:
4148 return (type == TYPE_TARGET_TYPE (type)
4149 || integer_type_p (TYPE_TARGET_TYPE (type)));
4150 default:
4151 return 0;
4152 }
4153 }
4154 }
4155
4156 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4157
4158 static int
4159 scalar_type_p (struct type *type)
4160 {
4161 if (type == NULL)
4162 return 0;
4163 else
4164 {
4165 switch (TYPE_CODE (type))
4166 {
4167 case TYPE_CODE_INT:
4168 case TYPE_CODE_RANGE:
4169 case TYPE_CODE_ENUM:
4170 case TYPE_CODE_FLT:
4171 return 1;
4172 default:
4173 return 0;
4174 }
4175 }
4176 }
4177
4178 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4179
4180 static int
4181 discrete_type_p (struct type *type)
4182 {
4183 if (type == NULL)
4184 return 0;
4185 else
4186 {
4187 switch (TYPE_CODE (type))
4188 {
4189 case TYPE_CODE_INT:
4190 case TYPE_CODE_RANGE:
4191 case TYPE_CODE_ENUM:
4192 case TYPE_CODE_BOOL:
4193 return 1;
4194 default:
4195 return 0;
4196 }
4197 }
4198 }
4199
4200 /* Returns non-zero if OP with operands in the vector ARGS could be
4201 a user-defined function. Errs on the side of pre-defined operators
4202 (i.e., result 0). */
4203
4204 static int
4205 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4206 {
4207 struct type *type0 =
4208 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4209 struct type *type1 =
4210 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4211
4212 if (type0 == NULL)
4213 return 0;
4214
4215 switch (op)
4216 {
4217 default:
4218 return 0;
4219
4220 case BINOP_ADD:
4221 case BINOP_SUB:
4222 case BINOP_MUL:
4223 case BINOP_DIV:
4224 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4225
4226 case BINOP_REM:
4227 case BINOP_MOD:
4228 case BINOP_BITWISE_AND:
4229 case BINOP_BITWISE_IOR:
4230 case BINOP_BITWISE_XOR:
4231 return (!(integer_type_p (type0) && integer_type_p (type1)));
4232
4233 case BINOP_EQUAL:
4234 case BINOP_NOTEQUAL:
4235 case BINOP_LESS:
4236 case BINOP_GTR:
4237 case BINOP_LEQ:
4238 case BINOP_GEQ:
4239 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4240
4241 case BINOP_CONCAT:
4242 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4243
4244 case BINOP_EXP:
4245 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4246
4247 case UNOP_NEG:
4248 case UNOP_PLUS:
4249 case UNOP_LOGICAL_NOT:
4250 case UNOP_ABS:
4251 return (!numeric_type_p (type0));
4252
4253 }
4254 }
4255 \f
4256 /* Renaming */
4257
4258 /* NOTES:
4259
4260 1. In the following, we assume that a renaming type's name may
4261 have an ___XD suffix. It would be nice if this went away at some
4262 point.
4263 2. We handle both the (old) purely type-based representation of
4264 renamings and the (new) variable-based encoding. At some point,
4265 it is devoutly to be hoped that the former goes away
4266 (FIXME: hilfinger-2007-07-09).
4267 3. Subprogram renamings are not implemented, although the XRS
4268 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4269
4270 /* If SYM encodes a renaming,
4271
4272 <renaming> renames <renamed entity>,
4273
4274 sets *LEN to the length of the renamed entity's name,
4275 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4276 the string describing the subcomponent selected from the renamed
4277 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4278 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4279 are undefined). Otherwise, returns a value indicating the category
4280 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4281 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4282 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4283 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4284 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4285 may be NULL, in which case they are not assigned.
4286
4287 [Currently, however, GCC does not generate subprogram renamings.] */
4288
4289 enum ada_renaming_category
4290 ada_parse_renaming (struct symbol *sym,
4291 const char **renamed_entity, int *len,
4292 const char **renaming_expr)
4293 {
4294 enum ada_renaming_category kind;
4295 const char *info;
4296 const char *suffix;
4297
4298 if (sym == NULL)
4299 return ADA_NOT_RENAMING;
4300 switch (SYMBOL_CLASS (sym))
4301 {
4302 default:
4303 return ADA_NOT_RENAMING;
4304 case LOC_TYPEDEF:
4305 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4306 renamed_entity, len, renaming_expr);
4307 case LOC_LOCAL:
4308 case LOC_STATIC:
4309 case LOC_COMPUTED:
4310 case LOC_OPTIMIZED_OUT:
4311 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4312 if (info == NULL)
4313 return ADA_NOT_RENAMING;
4314 switch (info[5])
4315 {
4316 case '_':
4317 kind = ADA_OBJECT_RENAMING;
4318 info += 6;
4319 break;
4320 case 'E':
4321 kind = ADA_EXCEPTION_RENAMING;
4322 info += 7;
4323 break;
4324 case 'P':
4325 kind = ADA_PACKAGE_RENAMING;
4326 info += 7;
4327 break;
4328 case 'S':
4329 kind = ADA_SUBPROGRAM_RENAMING;
4330 info += 7;
4331 break;
4332 default:
4333 return ADA_NOT_RENAMING;
4334 }
4335 }
4336
4337 if (renamed_entity != NULL)
4338 *renamed_entity = info;
4339 suffix = strstr (info, "___XE");
4340 if (suffix == NULL || suffix == info)
4341 return ADA_NOT_RENAMING;
4342 if (len != NULL)
4343 *len = strlen (info) - strlen (suffix);
4344 suffix += 5;
4345 if (renaming_expr != NULL)
4346 *renaming_expr = suffix;
4347 return kind;
4348 }
4349
4350 /* Assuming TYPE encodes a renaming according to the old encoding in
4351 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4352 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4353 ADA_NOT_RENAMING otherwise. */
4354 static enum ada_renaming_category
4355 parse_old_style_renaming (struct type *type,
4356 const char **renamed_entity, int *len,
4357 const char **renaming_expr)
4358 {
4359 enum ada_renaming_category kind;
4360 const char *name;
4361 const char *info;
4362 const char *suffix;
4363
4364 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4365 || TYPE_NFIELDS (type) != 1)
4366 return ADA_NOT_RENAMING;
4367
4368 name = TYPE_NAME (type);
4369 if (name == NULL)
4370 return ADA_NOT_RENAMING;
4371
4372 name = strstr (name, "___XR");
4373 if (name == NULL)
4374 return ADA_NOT_RENAMING;
4375 switch (name[5])
4376 {
4377 case '\0':
4378 case '_':
4379 kind = ADA_OBJECT_RENAMING;
4380 break;
4381 case 'E':
4382 kind = ADA_EXCEPTION_RENAMING;
4383 break;
4384 case 'P':
4385 kind = ADA_PACKAGE_RENAMING;
4386 break;
4387 case 'S':
4388 kind = ADA_SUBPROGRAM_RENAMING;
4389 break;
4390 default:
4391 return ADA_NOT_RENAMING;
4392 }
4393
4394 info = TYPE_FIELD_NAME (type, 0);
4395 if (info == NULL)
4396 return ADA_NOT_RENAMING;
4397 if (renamed_entity != NULL)
4398 *renamed_entity = info;
4399 suffix = strstr (info, "___XE");
4400 if (renaming_expr != NULL)
4401 *renaming_expr = suffix + 5;
4402 if (suffix == NULL || suffix == info)
4403 return ADA_NOT_RENAMING;
4404 if (len != NULL)
4405 *len = suffix - info;
4406 return kind;
4407 }
4408
4409 /* Compute the value of the given RENAMING_SYM, which is expected to
4410 be a symbol encoding a renaming expression. BLOCK is the block
4411 used to evaluate the renaming. */
4412
4413 static struct value *
4414 ada_read_renaming_var_value (struct symbol *renaming_sym,
4415 const struct block *block)
4416 {
4417 const char *sym_name;
4418
4419 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4420 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4421 return evaluate_expression (expr.get ());
4422 }
4423 \f
4424
4425 /* Evaluation: Function Calls */
4426
4427 /* Return an lvalue containing the value VAL. This is the identity on
4428 lvalues, and otherwise has the side-effect of allocating memory
4429 in the inferior where a copy of the value contents is copied. */
4430
4431 static struct value *
4432 ensure_lval (struct value *val)
4433 {
4434 if (VALUE_LVAL (val) == not_lval
4435 || VALUE_LVAL (val) == lval_internalvar)
4436 {
4437 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4438 const CORE_ADDR addr =
4439 value_as_long (value_allocate_space_in_inferior (len));
4440
4441 VALUE_LVAL (val) = lval_memory;
4442 set_value_address (val, addr);
4443 write_memory (addr, value_contents (val), len);
4444 }
4445
4446 return val;
4447 }
4448
4449 /* Return the value ACTUAL, converted to be an appropriate value for a
4450 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4451 allocating any necessary descriptors (fat pointers), or copies of
4452 values not residing in memory, updating it as needed. */
4453
4454 struct value *
4455 ada_convert_actual (struct value *actual, struct type *formal_type0)
4456 {
4457 struct type *actual_type = ada_check_typedef (value_type (actual));
4458 struct type *formal_type = ada_check_typedef (formal_type0);
4459 struct type *formal_target =
4460 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4461 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4462 struct type *actual_target =
4463 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4464 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4465
4466 if (ada_is_array_descriptor_type (formal_target)
4467 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4468 return make_array_descriptor (formal_type, actual);
4469 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4470 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4471 {
4472 struct value *result;
4473
4474 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4475 && ada_is_array_descriptor_type (actual_target))
4476 result = desc_data (actual);
4477 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4478 {
4479 if (VALUE_LVAL (actual) != lval_memory)
4480 {
4481 struct value *val;
4482
4483 actual_type = ada_check_typedef (value_type (actual));
4484 val = allocate_value (actual_type);
4485 memcpy ((char *) value_contents_raw (val),
4486 (char *) value_contents (actual),
4487 TYPE_LENGTH (actual_type));
4488 actual = ensure_lval (val);
4489 }
4490 result = value_addr (actual);
4491 }
4492 else
4493 return actual;
4494 return value_cast_pointers (formal_type, result, 0);
4495 }
4496 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4497 return ada_value_ind (actual);
4498 else if (ada_is_aligner_type (formal_type))
4499 {
4500 /* We need to turn this parameter into an aligner type
4501 as well. */
4502 struct value *aligner = allocate_value (formal_type);
4503 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4504
4505 value_assign_to_component (aligner, component, actual);
4506 return aligner;
4507 }
4508
4509 return actual;
4510 }
4511
4512 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4513 type TYPE. This is usually an inefficient no-op except on some targets
4514 (such as AVR) where the representation of a pointer and an address
4515 differs. */
4516
4517 static CORE_ADDR
4518 value_pointer (struct value *value, struct type *type)
4519 {
4520 struct gdbarch *gdbarch = get_type_arch (type);
4521 unsigned len = TYPE_LENGTH (type);
4522 gdb_byte *buf = (gdb_byte *) alloca (len);
4523 CORE_ADDR addr;
4524
4525 addr = value_address (value);
4526 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4527 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4528 return addr;
4529 }
4530
4531
4532 /* Push a descriptor of type TYPE for array value ARR on the stack at
4533 *SP, updating *SP to reflect the new descriptor. Return either
4534 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4535 to-descriptor type rather than a descriptor type), a struct value *
4536 representing a pointer to this descriptor. */
4537
4538 static struct value *
4539 make_array_descriptor (struct type *type, struct value *arr)
4540 {
4541 struct type *bounds_type = desc_bounds_type (type);
4542 struct type *desc_type = desc_base_type (type);
4543 struct value *descriptor = allocate_value (desc_type);
4544 struct value *bounds = allocate_value (bounds_type);
4545 int i;
4546
4547 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4548 i > 0; i -= 1)
4549 {
4550 modify_field (value_type (bounds), value_contents_writeable (bounds),
4551 ada_array_bound (arr, i, 0),
4552 desc_bound_bitpos (bounds_type, i, 0),
4553 desc_bound_bitsize (bounds_type, i, 0));
4554 modify_field (value_type (bounds), value_contents_writeable (bounds),
4555 ada_array_bound (arr, i, 1),
4556 desc_bound_bitpos (bounds_type, i, 1),
4557 desc_bound_bitsize (bounds_type, i, 1));
4558 }
4559
4560 bounds = ensure_lval (bounds);
4561
4562 modify_field (value_type (descriptor),
4563 value_contents_writeable (descriptor),
4564 value_pointer (ensure_lval (arr),
4565 TYPE_FIELD_TYPE (desc_type, 0)),
4566 fat_pntr_data_bitpos (desc_type),
4567 fat_pntr_data_bitsize (desc_type));
4568
4569 modify_field (value_type (descriptor),
4570 value_contents_writeable (descriptor),
4571 value_pointer (bounds,
4572 TYPE_FIELD_TYPE (desc_type, 1)),
4573 fat_pntr_bounds_bitpos (desc_type),
4574 fat_pntr_bounds_bitsize (desc_type));
4575
4576 descriptor = ensure_lval (descriptor);
4577
4578 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4579 return value_addr (descriptor);
4580 else
4581 return descriptor;
4582 }
4583 \f
4584 /* Symbol Cache Module */
4585
4586 /* Performance measurements made as of 2010-01-15 indicate that
4587 this cache does bring some noticeable improvements. Depending
4588 on the type of entity being printed, the cache can make it as much
4589 as an order of magnitude faster than without it.
4590
4591 The descriptive type DWARF extension has significantly reduced
4592 the need for this cache, at least when DWARF is being used. However,
4593 even in this case, some expensive name-based symbol searches are still
4594 sometimes necessary - to find an XVZ variable, mostly. */
4595
4596 /* Initialize the contents of SYM_CACHE. */
4597
4598 static void
4599 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4600 {
4601 obstack_init (&sym_cache->cache_space);
4602 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4603 }
4604
4605 /* Free the memory used by SYM_CACHE. */
4606
4607 static void
4608 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4609 {
4610 obstack_free (&sym_cache->cache_space, NULL);
4611 xfree (sym_cache);
4612 }
4613
4614 /* Return the symbol cache associated to the given program space PSPACE.
4615 If not allocated for this PSPACE yet, allocate and initialize one. */
4616
4617 static struct ada_symbol_cache *
4618 ada_get_symbol_cache (struct program_space *pspace)
4619 {
4620 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4621
4622 if (pspace_data->sym_cache == NULL)
4623 {
4624 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4625 ada_init_symbol_cache (pspace_data->sym_cache);
4626 }
4627
4628 return pspace_data->sym_cache;
4629 }
4630
4631 /* Clear all entries from the symbol cache. */
4632
4633 static void
4634 ada_clear_symbol_cache (void)
4635 {
4636 struct ada_symbol_cache *sym_cache
4637 = ada_get_symbol_cache (current_program_space);
4638
4639 obstack_free (&sym_cache->cache_space, NULL);
4640 ada_init_symbol_cache (sym_cache);
4641 }
4642
4643 /* Search our cache for an entry matching NAME and DOMAIN.
4644 Return it if found, or NULL otherwise. */
4645
4646 static struct cache_entry **
4647 find_entry (const char *name, domain_enum domain)
4648 {
4649 struct ada_symbol_cache *sym_cache
4650 = ada_get_symbol_cache (current_program_space);
4651 int h = msymbol_hash (name) % HASH_SIZE;
4652 struct cache_entry **e;
4653
4654 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4655 {
4656 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4657 return e;
4658 }
4659 return NULL;
4660 }
4661
4662 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4663 Return 1 if found, 0 otherwise.
4664
4665 If an entry was found and SYM is not NULL, set *SYM to the entry's
4666 SYM. Same principle for BLOCK if not NULL. */
4667
4668 static int
4669 lookup_cached_symbol (const char *name, domain_enum domain,
4670 struct symbol **sym, const struct block **block)
4671 {
4672 struct cache_entry **e = find_entry (name, domain);
4673
4674 if (e == NULL)
4675 return 0;
4676 if (sym != NULL)
4677 *sym = (*e)->sym;
4678 if (block != NULL)
4679 *block = (*e)->block;
4680 return 1;
4681 }
4682
4683 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4684 in domain DOMAIN, save this result in our symbol cache. */
4685
4686 static void
4687 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4688 const struct block *block)
4689 {
4690 struct ada_symbol_cache *sym_cache
4691 = ada_get_symbol_cache (current_program_space);
4692 int h;
4693 char *copy;
4694 struct cache_entry *e;
4695
4696 /* Symbols for builtin types don't have a block.
4697 For now don't cache such symbols. */
4698 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4699 return;
4700
4701 /* If the symbol is a local symbol, then do not cache it, as a search
4702 for that symbol depends on the context. To determine whether
4703 the symbol is local or not, we check the block where we found it
4704 against the global and static blocks of its associated symtab. */
4705 if (sym
4706 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4707 GLOBAL_BLOCK) != block
4708 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4709 STATIC_BLOCK) != block)
4710 return;
4711
4712 h = msymbol_hash (name) % HASH_SIZE;
4713 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4714 e->next = sym_cache->root[h];
4715 sym_cache->root[h] = e;
4716 e->name = copy
4717 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4718 strcpy (copy, name);
4719 e->sym = sym;
4720 e->domain = domain;
4721 e->block = block;
4722 }
4723 \f
4724 /* Symbol Lookup */
4725
4726 /* Return the symbol name match type that should be used used when
4727 searching for all symbols matching LOOKUP_NAME.
4728
4729 LOOKUP_NAME is expected to be a symbol name after transformation
4730 for Ada lookups. */
4731
4732 static symbol_name_match_type
4733 name_match_type_from_name (const char *lookup_name)
4734 {
4735 return (strstr (lookup_name, "__") == NULL
4736 ? symbol_name_match_type::WILD
4737 : symbol_name_match_type::FULL);
4738 }
4739
4740 /* Return the result of a standard (literal, C-like) lookup of NAME in
4741 given DOMAIN, visible from lexical block BLOCK. */
4742
4743 static struct symbol *
4744 standard_lookup (const char *name, const struct block *block,
4745 domain_enum domain)
4746 {
4747 /* Initialize it just to avoid a GCC false warning. */
4748 struct block_symbol sym = {};
4749
4750 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4751 return sym.symbol;
4752 ada_lookup_encoded_symbol (name, block, domain, &sym);
4753 cache_symbol (name, domain, sym.symbol, sym.block);
4754 return sym.symbol;
4755 }
4756
4757
4758 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4759 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4760 since they contend in overloading in the same way. */
4761 static int
4762 is_nonfunction (struct block_symbol syms[], int n)
4763 {
4764 int i;
4765
4766 for (i = 0; i < n; i += 1)
4767 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4768 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4769 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4770 return 1;
4771
4772 return 0;
4773 }
4774
4775 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4776 struct types. Otherwise, they may not. */
4777
4778 static int
4779 equiv_types (struct type *type0, struct type *type1)
4780 {
4781 if (type0 == type1)
4782 return 1;
4783 if (type0 == NULL || type1 == NULL
4784 || TYPE_CODE (type0) != TYPE_CODE (type1))
4785 return 0;
4786 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4787 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4788 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4789 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4790 return 1;
4791
4792 return 0;
4793 }
4794
4795 /* True iff SYM0 represents the same entity as SYM1, or one that is
4796 no more defined than that of SYM1. */
4797
4798 static int
4799 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4800 {
4801 if (sym0 == sym1)
4802 return 1;
4803 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4804 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4805 return 0;
4806
4807 switch (SYMBOL_CLASS (sym0))
4808 {
4809 case LOC_UNDEF:
4810 return 1;
4811 case LOC_TYPEDEF:
4812 {
4813 struct type *type0 = SYMBOL_TYPE (sym0);
4814 struct type *type1 = SYMBOL_TYPE (sym1);
4815 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4816 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4817 int len0 = strlen (name0);
4818
4819 return
4820 TYPE_CODE (type0) == TYPE_CODE (type1)
4821 && (equiv_types (type0, type1)
4822 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4823 && startswith (name1 + len0, "___XV")));
4824 }
4825 case LOC_CONST:
4826 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4827 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4828 default:
4829 return 0;
4830 }
4831 }
4832
4833 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4834 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4835
4836 static void
4837 add_defn_to_vec (struct obstack *obstackp,
4838 struct symbol *sym,
4839 const struct block *block)
4840 {
4841 int i;
4842 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4843
4844 /* Do not try to complete stub types, as the debugger is probably
4845 already scanning all symbols matching a certain name at the
4846 time when this function is called. Trying to replace the stub
4847 type by its associated full type will cause us to restart a scan
4848 which may lead to an infinite recursion. Instead, the client
4849 collecting the matching symbols will end up collecting several
4850 matches, with at least one of them complete. It can then filter
4851 out the stub ones if needed. */
4852
4853 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4854 {
4855 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4856 return;
4857 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4858 {
4859 prevDefns[i].symbol = sym;
4860 prevDefns[i].block = block;
4861 return;
4862 }
4863 }
4864
4865 {
4866 struct block_symbol info;
4867
4868 info.symbol = sym;
4869 info.block = block;
4870 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4871 }
4872 }
4873
4874 /* Number of block_symbol structures currently collected in current vector in
4875 OBSTACKP. */
4876
4877 static int
4878 num_defns_collected (struct obstack *obstackp)
4879 {
4880 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4881 }
4882
4883 /* Vector of block_symbol structures currently collected in current vector in
4884 OBSTACKP. If FINISH, close off the vector and return its final address. */
4885
4886 static struct block_symbol *
4887 defns_collected (struct obstack *obstackp, int finish)
4888 {
4889 if (finish)
4890 return (struct block_symbol *) obstack_finish (obstackp);
4891 else
4892 return (struct block_symbol *) obstack_base (obstackp);
4893 }
4894
4895 /* Return a bound minimal symbol matching NAME according to Ada
4896 decoding rules. Returns an invalid symbol if there is no such
4897 minimal symbol. Names prefixed with "standard__" are handled
4898 specially: "standard__" is first stripped off, and only static and
4899 global symbols are searched. */
4900
4901 struct bound_minimal_symbol
4902 ada_lookup_simple_minsym (const char *name)
4903 {
4904 struct bound_minimal_symbol result;
4905
4906 memset (&result, 0, sizeof (result));
4907
4908 symbol_name_match_type match_type = name_match_type_from_name (name);
4909 lookup_name_info lookup_name (name, match_type);
4910
4911 symbol_name_matcher_ftype *match_name
4912 = ada_get_symbol_name_matcher (lookup_name);
4913
4914 for (objfile *objfile : current_program_space->objfiles ())
4915 {
4916 for (minimal_symbol *msymbol : objfile->msymbols ())
4917 {
4918 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4919 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4920 {
4921 result.minsym = msymbol;
4922 result.objfile = objfile;
4923 break;
4924 }
4925 }
4926 }
4927
4928 return result;
4929 }
4930
4931 /* Return all the bound minimal symbols matching NAME according to Ada
4932 decoding rules. Returns an empty vector if there is no such
4933 minimal symbol. Names prefixed with "standard__" are handled
4934 specially: "standard__" is first stripped off, and only static and
4935 global symbols are searched. */
4936
4937 static std::vector<struct bound_minimal_symbol>
4938 ada_lookup_simple_minsyms (const char *name)
4939 {
4940 std::vector<struct bound_minimal_symbol> result;
4941
4942 symbol_name_match_type match_type = name_match_type_from_name (name);
4943 lookup_name_info lookup_name (name, match_type);
4944
4945 symbol_name_matcher_ftype *match_name
4946 = ada_get_symbol_name_matcher (lookup_name);
4947
4948 for (objfile *objfile : current_program_space->objfiles ())
4949 {
4950 for (minimal_symbol *msymbol : objfile->msymbols ())
4951 {
4952 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4953 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4954 result.push_back ({msymbol, objfile});
4955 }
4956 }
4957
4958 return result;
4959 }
4960
4961 /* For all subprograms that statically enclose the subprogram of the
4962 selected frame, add symbols matching identifier NAME in DOMAIN
4963 and their blocks to the list of data in OBSTACKP, as for
4964 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4965 with a wildcard prefix. */
4966
4967 static void
4968 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4969 const lookup_name_info &lookup_name,
4970 domain_enum domain)
4971 {
4972 }
4973
4974 /* True if TYPE is definitely an artificial type supplied to a symbol
4975 for which no debugging information was given in the symbol file. */
4976
4977 static int
4978 is_nondebugging_type (struct type *type)
4979 {
4980 const char *name = ada_type_name (type);
4981
4982 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4983 }
4984
4985 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4986 that are deemed "identical" for practical purposes.
4987
4988 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4989 types and that their number of enumerals is identical (in other
4990 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4991
4992 static int
4993 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4994 {
4995 int i;
4996
4997 /* The heuristic we use here is fairly conservative. We consider
4998 that 2 enumerate types are identical if they have the same
4999 number of enumerals and that all enumerals have the same
5000 underlying value and name. */
5001
5002 /* All enums in the type should have an identical underlying value. */
5003 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5004 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5005 return 0;
5006
5007 /* All enumerals should also have the same name (modulo any numerical
5008 suffix). */
5009 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5010 {
5011 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5012 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5013 int len_1 = strlen (name_1);
5014 int len_2 = strlen (name_2);
5015
5016 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5017 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5018 if (len_1 != len_2
5019 || strncmp (TYPE_FIELD_NAME (type1, i),
5020 TYPE_FIELD_NAME (type2, i),
5021 len_1) != 0)
5022 return 0;
5023 }
5024
5025 return 1;
5026 }
5027
5028 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5029 that are deemed "identical" for practical purposes. Sometimes,
5030 enumerals are not strictly identical, but their types are so similar
5031 that they can be considered identical.
5032
5033 For instance, consider the following code:
5034
5035 type Color is (Black, Red, Green, Blue, White);
5036 type RGB_Color is new Color range Red .. Blue;
5037
5038 Type RGB_Color is a subrange of an implicit type which is a copy
5039 of type Color. If we call that implicit type RGB_ColorB ("B" is
5040 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5041 As a result, when an expression references any of the enumeral
5042 by name (Eg. "print green"), the expression is technically
5043 ambiguous and the user should be asked to disambiguate. But
5044 doing so would only hinder the user, since it wouldn't matter
5045 what choice he makes, the outcome would always be the same.
5046 So, for practical purposes, we consider them as the same. */
5047
5048 static int
5049 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5050 {
5051 int i;
5052
5053 /* Before performing a thorough comparison check of each type,
5054 we perform a series of inexpensive checks. We expect that these
5055 checks will quickly fail in the vast majority of cases, and thus
5056 help prevent the unnecessary use of a more expensive comparison.
5057 Said comparison also expects us to make some of these checks
5058 (see ada_identical_enum_types_p). */
5059
5060 /* Quick check: All symbols should have an enum type. */
5061 for (i = 0; i < syms.size (); i++)
5062 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5063 return 0;
5064
5065 /* Quick check: They should all have the same value. */
5066 for (i = 1; i < syms.size (); i++)
5067 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5068 return 0;
5069
5070 /* Quick check: They should all have the same number of enumerals. */
5071 for (i = 1; i < syms.size (); i++)
5072 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5073 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5074 return 0;
5075
5076 /* All the sanity checks passed, so we might have a set of
5077 identical enumeration types. Perform a more complete
5078 comparison of the type of each symbol. */
5079 for (i = 1; i < syms.size (); i++)
5080 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5081 SYMBOL_TYPE (syms[0].symbol)))
5082 return 0;
5083
5084 return 1;
5085 }
5086
5087 /* Remove any non-debugging symbols in SYMS that definitely
5088 duplicate other symbols in the list (The only case I know of where
5089 this happens is when object files containing stabs-in-ecoff are
5090 linked with files containing ordinary ecoff debugging symbols (or no
5091 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5092 Returns the number of items in the modified list. */
5093
5094 static int
5095 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5096 {
5097 int i, j;
5098
5099 /* We should never be called with less than 2 symbols, as there
5100 cannot be any extra symbol in that case. But it's easy to
5101 handle, since we have nothing to do in that case. */
5102 if (syms->size () < 2)
5103 return syms->size ();
5104
5105 i = 0;
5106 while (i < syms->size ())
5107 {
5108 int remove_p = 0;
5109
5110 /* If two symbols have the same name and one of them is a stub type,
5111 the get rid of the stub. */
5112
5113 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5114 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5115 {
5116 for (j = 0; j < syms->size (); j++)
5117 {
5118 if (j != i
5119 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5120 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5121 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5122 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5123 remove_p = 1;
5124 }
5125 }
5126
5127 /* Two symbols with the same name, same class and same address
5128 should be identical. */
5129
5130 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5131 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5132 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5133 {
5134 for (j = 0; j < syms->size (); j += 1)
5135 {
5136 if (i != j
5137 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5138 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5139 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5140 && SYMBOL_CLASS ((*syms)[i].symbol)
5141 == SYMBOL_CLASS ((*syms)[j].symbol)
5142 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5143 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5144 remove_p = 1;
5145 }
5146 }
5147
5148 if (remove_p)
5149 syms->erase (syms->begin () + i);
5150
5151 i += 1;
5152 }
5153
5154 /* If all the remaining symbols are identical enumerals, then
5155 just keep the first one and discard the rest.
5156
5157 Unlike what we did previously, we do not discard any entry
5158 unless they are ALL identical. This is because the symbol
5159 comparison is not a strict comparison, but rather a practical
5160 comparison. If all symbols are considered identical, then
5161 we can just go ahead and use the first one and discard the rest.
5162 But if we cannot reduce the list to a single element, we have
5163 to ask the user to disambiguate anyways. And if we have to
5164 present a multiple-choice menu, it's less confusing if the list
5165 isn't missing some choices that were identical and yet distinct. */
5166 if (symbols_are_identical_enums (*syms))
5167 syms->resize (1);
5168
5169 return syms->size ();
5170 }
5171
5172 /* Given a type that corresponds to a renaming entity, use the type name
5173 to extract the scope (package name or function name, fully qualified,
5174 and following the GNAT encoding convention) where this renaming has been
5175 defined. */
5176
5177 static std::string
5178 xget_renaming_scope (struct type *renaming_type)
5179 {
5180 /* The renaming types adhere to the following convention:
5181 <scope>__<rename>___<XR extension>.
5182 So, to extract the scope, we search for the "___XR" extension,
5183 and then backtrack until we find the first "__". */
5184
5185 const char *name = TYPE_NAME (renaming_type);
5186 const char *suffix = strstr (name, "___XR");
5187 const char *last;
5188
5189 /* Now, backtrack a bit until we find the first "__". Start looking
5190 at suffix - 3, as the <rename> part is at least one character long. */
5191
5192 for (last = suffix - 3; last > name; last--)
5193 if (last[0] == '_' && last[1] == '_')
5194 break;
5195
5196 /* Make a copy of scope and return it. */
5197 return std::string (name, last);
5198 }
5199
5200 /* Return nonzero if NAME corresponds to a package name. */
5201
5202 static int
5203 is_package_name (const char *name)
5204 {
5205 /* Here, We take advantage of the fact that no symbols are generated
5206 for packages, while symbols are generated for each function.
5207 So the condition for NAME represent a package becomes equivalent
5208 to NAME not existing in our list of symbols. There is only one
5209 small complication with library-level functions (see below). */
5210
5211 /* If it is a function that has not been defined at library level,
5212 then we should be able to look it up in the symbols. */
5213 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5214 return 0;
5215
5216 /* Library-level function names start with "_ada_". See if function
5217 "_ada_" followed by NAME can be found. */
5218
5219 /* Do a quick check that NAME does not contain "__", since library-level
5220 functions names cannot contain "__" in them. */
5221 if (strstr (name, "__") != NULL)
5222 return 0;
5223
5224 std::string fun_name = string_printf ("_ada_%s", name);
5225
5226 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5227 }
5228
5229 /* Return nonzero if SYM corresponds to a renaming entity that is
5230 not visible from FUNCTION_NAME. */
5231
5232 static int
5233 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5234 {
5235 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5236 return 0;
5237
5238 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5239
5240 /* If the rename has been defined in a package, then it is visible. */
5241 if (is_package_name (scope.c_str ()))
5242 return 0;
5243
5244 /* Check that the rename is in the current function scope by checking
5245 that its name starts with SCOPE. */
5246
5247 /* If the function name starts with "_ada_", it means that it is
5248 a library-level function. Strip this prefix before doing the
5249 comparison, as the encoding for the renaming does not contain
5250 this prefix. */
5251 if (startswith (function_name, "_ada_"))
5252 function_name += 5;
5253
5254 return !startswith (function_name, scope.c_str ());
5255 }
5256
5257 /* Remove entries from SYMS that corresponds to a renaming entity that
5258 is not visible from the function associated with CURRENT_BLOCK or
5259 that is superfluous due to the presence of more specific renaming
5260 information. Places surviving symbols in the initial entries of
5261 SYMS and returns the number of surviving symbols.
5262
5263 Rationale:
5264 First, in cases where an object renaming is implemented as a
5265 reference variable, GNAT may produce both the actual reference
5266 variable and the renaming encoding. In this case, we discard the
5267 latter.
5268
5269 Second, GNAT emits a type following a specified encoding for each renaming
5270 entity. Unfortunately, STABS currently does not support the definition
5271 of types that are local to a given lexical block, so all renamings types
5272 are emitted at library level. As a consequence, if an application
5273 contains two renaming entities using the same name, and a user tries to
5274 print the value of one of these entities, the result of the ada symbol
5275 lookup will also contain the wrong renaming type.
5276
5277 This function partially covers for this limitation by attempting to
5278 remove from the SYMS list renaming symbols that should be visible
5279 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5280 method with the current information available. The implementation
5281 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5282
5283 - When the user tries to print a rename in a function while there
5284 is another rename entity defined in a package: Normally, the
5285 rename in the function has precedence over the rename in the
5286 package, so the latter should be removed from the list. This is
5287 currently not the case.
5288
5289 - This function will incorrectly remove valid renames if
5290 the CURRENT_BLOCK corresponds to a function which symbol name
5291 has been changed by an "Export" pragma. As a consequence,
5292 the user will be unable to print such rename entities. */
5293
5294 static int
5295 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5296 const struct block *current_block)
5297 {
5298 struct symbol *current_function;
5299 const char *current_function_name;
5300 int i;
5301 int is_new_style_renaming;
5302
5303 /* If there is both a renaming foo___XR... encoded as a variable and
5304 a simple variable foo in the same block, discard the latter.
5305 First, zero out such symbols, then compress. */
5306 is_new_style_renaming = 0;
5307 for (i = 0; i < syms->size (); i += 1)
5308 {
5309 struct symbol *sym = (*syms)[i].symbol;
5310 const struct block *block = (*syms)[i].block;
5311 const char *name;
5312 const char *suffix;
5313
5314 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5315 continue;
5316 name = SYMBOL_LINKAGE_NAME (sym);
5317 suffix = strstr (name, "___XR");
5318
5319 if (suffix != NULL)
5320 {
5321 int name_len = suffix - name;
5322 int j;
5323
5324 is_new_style_renaming = 1;
5325 for (j = 0; j < syms->size (); j += 1)
5326 if (i != j && (*syms)[j].symbol != NULL
5327 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5328 name_len) == 0
5329 && block == (*syms)[j].block)
5330 (*syms)[j].symbol = NULL;
5331 }
5332 }
5333 if (is_new_style_renaming)
5334 {
5335 int j, k;
5336
5337 for (j = k = 0; j < syms->size (); j += 1)
5338 if ((*syms)[j].symbol != NULL)
5339 {
5340 (*syms)[k] = (*syms)[j];
5341 k += 1;
5342 }
5343 return k;
5344 }
5345
5346 /* Extract the function name associated to CURRENT_BLOCK.
5347 Abort if unable to do so. */
5348
5349 if (current_block == NULL)
5350 return syms->size ();
5351
5352 current_function = block_linkage_function (current_block);
5353 if (current_function == NULL)
5354 return syms->size ();
5355
5356 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5357 if (current_function_name == NULL)
5358 return syms->size ();
5359
5360 /* Check each of the symbols, and remove it from the list if it is
5361 a type corresponding to a renaming that is out of the scope of
5362 the current block. */
5363
5364 i = 0;
5365 while (i < syms->size ())
5366 {
5367 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5368 == ADA_OBJECT_RENAMING
5369 && old_renaming_is_invisible ((*syms)[i].symbol,
5370 current_function_name))
5371 syms->erase (syms->begin () + i);
5372 else
5373 i += 1;
5374 }
5375
5376 return syms->size ();
5377 }
5378
5379 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5380 whose name and domain match NAME and DOMAIN respectively.
5381 If no match was found, then extend the search to "enclosing"
5382 routines (in other words, if we're inside a nested function,
5383 search the symbols defined inside the enclosing functions).
5384 If WILD_MATCH_P is nonzero, perform the naming matching in
5385 "wild" mode (see function "wild_match" for more info).
5386
5387 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5388
5389 static void
5390 ada_add_local_symbols (struct obstack *obstackp,
5391 const lookup_name_info &lookup_name,
5392 const struct block *block, domain_enum domain)
5393 {
5394 int block_depth = 0;
5395
5396 while (block != NULL)
5397 {
5398 block_depth += 1;
5399 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5400
5401 /* If we found a non-function match, assume that's the one. */
5402 if (is_nonfunction (defns_collected (obstackp, 0),
5403 num_defns_collected (obstackp)))
5404 return;
5405
5406 block = BLOCK_SUPERBLOCK (block);
5407 }
5408
5409 /* If no luck so far, try to find NAME as a local symbol in some lexically
5410 enclosing subprogram. */
5411 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5412 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5413 }
5414
5415 /* An object of this type is used as the user_data argument when
5416 calling the map_matching_symbols method. */
5417
5418 struct match_data
5419 {
5420 struct objfile *objfile;
5421 struct obstack *obstackp;
5422 struct symbol *arg_sym;
5423 int found_sym;
5424 };
5425
5426 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5427 to a list of symbols. DATA0 is a pointer to a struct match_data *
5428 containing the obstack that collects the symbol list, the file that SYM
5429 must come from, a flag indicating whether a non-argument symbol has
5430 been found in the current block, and the last argument symbol
5431 passed in SYM within the current block (if any). When SYM is null,
5432 marking the end of a block, the argument symbol is added if no
5433 other has been found. */
5434
5435 static int
5436 aux_add_nonlocal_symbols (const struct block *block, struct symbol *sym,
5437 void *data0)
5438 {
5439 struct match_data *data = (struct match_data *) data0;
5440
5441 if (sym == NULL)
5442 {
5443 if (!data->found_sym && data->arg_sym != NULL)
5444 add_defn_to_vec (data->obstackp,
5445 fixup_symbol_section (data->arg_sym, data->objfile),
5446 block);
5447 data->found_sym = 0;
5448 data->arg_sym = NULL;
5449 }
5450 else
5451 {
5452 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5453 return 0;
5454 else if (SYMBOL_IS_ARGUMENT (sym))
5455 data->arg_sym = sym;
5456 else
5457 {
5458 data->found_sym = 1;
5459 add_defn_to_vec (data->obstackp,
5460 fixup_symbol_section (sym, data->objfile),
5461 block);
5462 }
5463 }
5464 return 0;
5465 }
5466
5467 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5468 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5469 symbols to OBSTACKP. Return whether we found such symbols. */
5470
5471 static int
5472 ada_add_block_renamings (struct obstack *obstackp,
5473 const struct block *block,
5474 const lookup_name_info &lookup_name,
5475 domain_enum domain)
5476 {
5477 struct using_direct *renaming;
5478 int defns_mark = num_defns_collected (obstackp);
5479
5480 symbol_name_matcher_ftype *name_match
5481 = ada_get_symbol_name_matcher (lookup_name);
5482
5483 for (renaming = block_using (block);
5484 renaming != NULL;
5485 renaming = renaming->next)
5486 {
5487 const char *r_name;
5488
5489 /* Avoid infinite recursions: skip this renaming if we are actually
5490 already traversing it.
5491
5492 Currently, symbol lookup in Ada don't use the namespace machinery from
5493 C++/Fortran support: skip namespace imports that use them. */
5494 if (renaming->searched
5495 || (renaming->import_src != NULL
5496 && renaming->import_src[0] != '\0')
5497 || (renaming->import_dest != NULL
5498 && renaming->import_dest[0] != '\0'))
5499 continue;
5500 renaming->searched = 1;
5501
5502 /* TODO: here, we perform another name-based symbol lookup, which can
5503 pull its own multiple overloads. In theory, we should be able to do
5504 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5505 not a simple name. But in order to do this, we would need to enhance
5506 the DWARF reader to associate a symbol to this renaming, instead of a
5507 name. So, for now, we do something simpler: re-use the C++/Fortran
5508 namespace machinery. */
5509 r_name = (renaming->alias != NULL
5510 ? renaming->alias
5511 : renaming->declaration);
5512 if (name_match (r_name, lookup_name, NULL))
5513 {
5514 lookup_name_info decl_lookup_name (renaming->declaration,
5515 lookup_name.match_type ());
5516 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5517 1, NULL);
5518 }
5519 renaming->searched = 0;
5520 }
5521 return num_defns_collected (obstackp) != defns_mark;
5522 }
5523
5524 /* Implements compare_names, but only applying the comparision using
5525 the given CASING. */
5526
5527 static int
5528 compare_names_with_case (const char *string1, const char *string2,
5529 enum case_sensitivity casing)
5530 {
5531 while (*string1 != '\0' && *string2 != '\0')
5532 {
5533 char c1, c2;
5534
5535 if (isspace (*string1) || isspace (*string2))
5536 return strcmp_iw_ordered (string1, string2);
5537
5538 if (casing == case_sensitive_off)
5539 {
5540 c1 = tolower (*string1);
5541 c2 = tolower (*string2);
5542 }
5543 else
5544 {
5545 c1 = *string1;
5546 c2 = *string2;
5547 }
5548 if (c1 != c2)
5549 break;
5550
5551 string1 += 1;
5552 string2 += 1;
5553 }
5554
5555 switch (*string1)
5556 {
5557 case '(':
5558 return strcmp_iw_ordered (string1, string2);
5559 case '_':
5560 if (*string2 == '\0')
5561 {
5562 if (is_name_suffix (string1))
5563 return 0;
5564 else
5565 return 1;
5566 }
5567 /* FALLTHROUGH */
5568 default:
5569 if (*string2 == '(')
5570 return strcmp_iw_ordered (string1, string2);
5571 else
5572 {
5573 if (casing == case_sensitive_off)
5574 return tolower (*string1) - tolower (*string2);
5575 else
5576 return *string1 - *string2;
5577 }
5578 }
5579 }
5580
5581 /* Compare STRING1 to STRING2, with results as for strcmp.
5582 Compatible with strcmp_iw_ordered in that...
5583
5584 strcmp_iw_ordered (STRING1, STRING2) <= 0
5585
5586 ... implies...
5587
5588 compare_names (STRING1, STRING2) <= 0
5589
5590 (they may differ as to what symbols compare equal). */
5591
5592 static int
5593 compare_names (const char *string1, const char *string2)
5594 {
5595 int result;
5596
5597 /* Similar to what strcmp_iw_ordered does, we need to perform
5598 a case-insensitive comparison first, and only resort to
5599 a second, case-sensitive, comparison if the first one was
5600 not sufficient to differentiate the two strings. */
5601
5602 result = compare_names_with_case (string1, string2, case_sensitive_off);
5603 if (result == 0)
5604 result = compare_names_with_case (string1, string2, case_sensitive_on);
5605
5606 return result;
5607 }
5608
5609 /* Convenience function to get at the Ada encoded lookup name for
5610 LOOKUP_NAME, as a C string. */
5611
5612 static const char *
5613 ada_lookup_name (const lookup_name_info &lookup_name)
5614 {
5615 return lookup_name.ada ().lookup_name ().c_str ();
5616 }
5617
5618 /* Add to OBSTACKP all non-local symbols whose name and domain match
5619 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5620 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5621 symbols otherwise. */
5622
5623 static void
5624 add_nonlocal_symbols (struct obstack *obstackp,
5625 const lookup_name_info &lookup_name,
5626 domain_enum domain, int global)
5627 {
5628 struct match_data data;
5629
5630 memset (&data, 0, sizeof data);
5631 data.obstackp = obstackp;
5632
5633 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5634
5635 for (objfile *objfile : current_program_space->objfiles ())
5636 {
5637 data.objfile = objfile;
5638
5639 if (is_wild_match)
5640 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5641 domain, global,
5642 aux_add_nonlocal_symbols, &data,
5643 symbol_name_match_type::WILD,
5644 NULL);
5645 else
5646 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5647 domain, global,
5648 aux_add_nonlocal_symbols, &data,
5649 symbol_name_match_type::FULL,
5650 compare_names);
5651
5652 for (compunit_symtab *cu : objfile->compunits ())
5653 {
5654 const struct block *global_block
5655 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5656
5657 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5658 domain))
5659 data.found_sym = 1;
5660 }
5661 }
5662
5663 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5664 {
5665 const char *name = ada_lookup_name (lookup_name);
5666 std::string name1 = std::string ("<_ada_") + name + '>';
5667
5668 for (objfile *objfile : current_program_space->objfiles ())
5669 {
5670 data.objfile = objfile;
5671 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5672 domain, global,
5673 aux_add_nonlocal_symbols,
5674 &data,
5675 symbol_name_match_type::FULL,
5676 compare_names);
5677 }
5678 }
5679 }
5680
5681 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5682 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5683 returning the number of matches. Add these to OBSTACKP.
5684
5685 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5686 symbol match within the nest of blocks whose innermost member is BLOCK,
5687 is the one match returned (no other matches in that or
5688 enclosing blocks is returned). If there are any matches in or
5689 surrounding BLOCK, then these alone are returned.
5690
5691 Names prefixed with "standard__" are handled specially:
5692 "standard__" is first stripped off (by the lookup_name
5693 constructor), and only static and global symbols are searched.
5694
5695 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5696 to lookup global symbols. */
5697
5698 static void
5699 ada_add_all_symbols (struct obstack *obstackp,
5700 const struct block *block,
5701 const lookup_name_info &lookup_name,
5702 domain_enum domain,
5703 int full_search,
5704 int *made_global_lookup_p)
5705 {
5706 struct symbol *sym;
5707
5708 if (made_global_lookup_p)
5709 *made_global_lookup_p = 0;
5710
5711 /* Special case: If the user specifies a symbol name inside package
5712 Standard, do a non-wild matching of the symbol name without
5713 the "standard__" prefix. This was primarily introduced in order
5714 to allow the user to specifically access the standard exceptions
5715 using, for instance, Standard.Constraint_Error when Constraint_Error
5716 is ambiguous (due to the user defining its own Constraint_Error
5717 entity inside its program). */
5718 if (lookup_name.ada ().standard_p ())
5719 block = NULL;
5720
5721 /* Check the non-global symbols. If we have ANY match, then we're done. */
5722
5723 if (block != NULL)
5724 {
5725 if (full_search)
5726 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5727 else
5728 {
5729 /* In the !full_search case we're are being called by
5730 ada_iterate_over_symbols, and we don't want to search
5731 superblocks. */
5732 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5733 }
5734 if (num_defns_collected (obstackp) > 0 || !full_search)
5735 return;
5736 }
5737
5738 /* No non-global symbols found. Check our cache to see if we have
5739 already performed this search before. If we have, then return
5740 the same result. */
5741
5742 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5743 domain, &sym, &block))
5744 {
5745 if (sym != NULL)
5746 add_defn_to_vec (obstackp, sym, block);
5747 return;
5748 }
5749
5750 if (made_global_lookup_p)
5751 *made_global_lookup_p = 1;
5752
5753 /* Search symbols from all global blocks. */
5754
5755 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5756
5757 /* Now add symbols from all per-file blocks if we've gotten no hits
5758 (not strictly correct, but perhaps better than an error). */
5759
5760 if (num_defns_collected (obstackp) == 0)
5761 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5762 }
5763
5764 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5765 is non-zero, enclosing scope and in global scopes, returning the number of
5766 matches.
5767 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5768 found and the blocks and symbol tables (if any) in which they were
5769 found.
5770
5771 When full_search is non-zero, any non-function/non-enumeral
5772 symbol match within the nest of blocks whose innermost member is BLOCK,
5773 is the one match returned (no other matches in that or
5774 enclosing blocks is returned). If there are any matches in or
5775 surrounding BLOCK, then these alone are returned.
5776
5777 Names prefixed with "standard__" are handled specially: "standard__"
5778 is first stripped off, and only static and global symbols are searched. */
5779
5780 static int
5781 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5782 const struct block *block,
5783 domain_enum domain,
5784 std::vector<struct block_symbol> *results,
5785 int full_search)
5786 {
5787 int syms_from_global_search;
5788 int ndefns;
5789 auto_obstack obstack;
5790
5791 ada_add_all_symbols (&obstack, block, lookup_name,
5792 domain, full_search, &syms_from_global_search);
5793
5794 ndefns = num_defns_collected (&obstack);
5795
5796 struct block_symbol *base = defns_collected (&obstack, 1);
5797 for (int i = 0; i < ndefns; ++i)
5798 results->push_back (base[i]);
5799
5800 ndefns = remove_extra_symbols (results);
5801
5802 if (ndefns == 0 && full_search && syms_from_global_search)
5803 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5804
5805 if (ndefns == 1 && full_search && syms_from_global_search)
5806 cache_symbol (ada_lookup_name (lookup_name), domain,
5807 (*results)[0].symbol, (*results)[0].block);
5808
5809 ndefns = remove_irrelevant_renamings (results, block);
5810
5811 return ndefns;
5812 }
5813
5814 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5815 in global scopes, returning the number of matches, and filling *RESULTS
5816 with (SYM,BLOCK) tuples.
5817
5818 See ada_lookup_symbol_list_worker for further details. */
5819
5820 int
5821 ada_lookup_symbol_list (const char *name, const struct block *block,
5822 domain_enum domain,
5823 std::vector<struct block_symbol> *results)
5824 {
5825 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5826 lookup_name_info lookup_name (name, name_match_type);
5827
5828 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5829 }
5830
5831 /* Implementation of the la_iterate_over_symbols method. */
5832
5833 static void
5834 ada_iterate_over_symbols
5835 (const struct block *block, const lookup_name_info &name,
5836 domain_enum domain,
5837 gdb::function_view<symbol_found_callback_ftype> callback)
5838 {
5839 int ndefs, i;
5840 std::vector<struct block_symbol> results;
5841
5842 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5843
5844 for (i = 0; i < ndefs; ++i)
5845 {
5846 if (!callback (&results[i]))
5847 break;
5848 }
5849 }
5850
5851 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5852 to 1, but choosing the first symbol found if there are multiple
5853 choices.
5854
5855 The result is stored in *INFO, which must be non-NULL.
5856 If no match is found, INFO->SYM is set to NULL. */
5857
5858 void
5859 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5860 domain_enum domain,
5861 struct block_symbol *info)
5862 {
5863 /* Since we already have an encoded name, wrap it in '<>' to force a
5864 verbatim match. Otherwise, if the name happens to not look like
5865 an encoded name (because it doesn't include a "__"),
5866 ada_lookup_name_info would re-encode/fold it again, and that
5867 would e.g., incorrectly lowercase object renaming names like
5868 "R28b" -> "r28b". */
5869 std::string verbatim = std::string ("<") + name + '>';
5870
5871 gdb_assert (info != NULL);
5872 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5873 }
5874
5875 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5876 scope and in global scopes, or NULL if none. NAME is folded and
5877 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5878 choosing the first symbol if there are multiple choices.
5879 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5880
5881 struct block_symbol
5882 ada_lookup_symbol (const char *name, const struct block *block0,
5883 domain_enum domain, int *is_a_field_of_this)
5884 {
5885 if (is_a_field_of_this != NULL)
5886 *is_a_field_of_this = 0;
5887
5888 std::vector<struct block_symbol> candidates;
5889 int n_candidates;
5890
5891 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5892
5893 if (n_candidates == 0)
5894 return {};
5895
5896 block_symbol info = candidates[0];
5897 info.symbol = fixup_symbol_section (info.symbol, NULL);
5898 return info;
5899 }
5900
5901 static struct block_symbol
5902 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5903 const char *name,
5904 const struct block *block,
5905 const domain_enum domain)
5906 {
5907 struct block_symbol sym;
5908
5909 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5910 if (sym.symbol != NULL)
5911 return sym;
5912
5913 /* If we haven't found a match at this point, try the primitive
5914 types. In other languages, this search is performed before
5915 searching for global symbols in order to short-circuit that
5916 global-symbol search if it happens that the name corresponds
5917 to a primitive type. But we cannot do the same in Ada, because
5918 it is perfectly legitimate for a program to declare a type which
5919 has the same name as a standard type. If looking up a type in
5920 that situation, we have traditionally ignored the primitive type
5921 in favor of user-defined types. This is why, unlike most other
5922 languages, we search the primitive types this late and only after
5923 having searched the global symbols without success. */
5924
5925 if (domain == VAR_DOMAIN)
5926 {
5927 struct gdbarch *gdbarch;
5928
5929 if (block == NULL)
5930 gdbarch = target_gdbarch ();
5931 else
5932 gdbarch = block_gdbarch (block);
5933 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5934 if (sym.symbol != NULL)
5935 return sym;
5936 }
5937
5938 return {};
5939 }
5940
5941
5942 /* True iff STR is a possible encoded suffix of a normal Ada name
5943 that is to be ignored for matching purposes. Suffixes of parallel
5944 names (e.g., XVE) are not included here. Currently, the possible suffixes
5945 are given by any of the regular expressions:
5946
5947 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5948 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5949 TKB [subprogram suffix for task bodies]
5950 _E[0-9]+[bs]$ [protected object entry suffixes]
5951 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5952
5953 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5954 match is performed. This sequence is used to differentiate homonyms,
5955 is an optional part of a valid name suffix. */
5956
5957 static int
5958 is_name_suffix (const char *str)
5959 {
5960 int k;
5961 const char *matching;
5962 const int len = strlen (str);
5963
5964 /* Skip optional leading __[0-9]+. */
5965
5966 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5967 {
5968 str += 3;
5969 while (isdigit (str[0]))
5970 str += 1;
5971 }
5972
5973 /* [.$][0-9]+ */
5974
5975 if (str[0] == '.' || str[0] == '$')
5976 {
5977 matching = str + 1;
5978 while (isdigit (matching[0]))
5979 matching += 1;
5980 if (matching[0] == '\0')
5981 return 1;
5982 }
5983
5984 /* ___[0-9]+ */
5985
5986 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5987 {
5988 matching = str + 3;
5989 while (isdigit (matching[0]))
5990 matching += 1;
5991 if (matching[0] == '\0')
5992 return 1;
5993 }
5994
5995 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5996
5997 if (strcmp (str, "TKB") == 0)
5998 return 1;
5999
6000 #if 0
6001 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6002 with a N at the end. Unfortunately, the compiler uses the same
6003 convention for other internal types it creates. So treating
6004 all entity names that end with an "N" as a name suffix causes
6005 some regressions. For instance, consider the case of an enumerated
6006 type. To support the 'Image attribute, it creates an array whose
6007 name ends with N.
6008 Having a single character like this as a suffix carrying some
6009 information is a bit risky. Perhaps we should change the encoding
6010 to be something like "_N" instead. In the meantime, do not do
6011 the following check. */
6012 /* Protected Object Subprograms */
6013 if (len == 1 && str [0] == 'N')
6014 return 1;
6015 #endif
6016
6017 /* _E[0-9]+[bs]$ */
6018 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6019 {
6020 matching = str + 3;
6021 while (isdigit (matching[0]))
6022 matching += 1;
6023 if ((matching[0] == 'b' || matching[0] == 's')
6024 && matching [1] == '\0')
6025 return 1;
6026 }
6027
6028 /* ??? We should not modify STR directly, as we are doing below. This
6029 is fine in this case, but may become problematic later if we find
6030 that this alternative did not work, and want to try matching
6031 another one from the begining of STR. Since we modified it, we
6032 won't be able to find the begining of the string anymore! */
6033 if (str[0] == 'X')
6034 {
6035 str += 1;
6036 while (str[0] != '_' && str[0] != '\0')
6037 {
6038 if (str[0] != 'n' && str[0] != 'b')
6039 return 0;
6040 str += 1;
6041 }
6042 }
6043
6044 if (str[0] == '\000')
6045 return 1;
6046
6047 if (str[0] == '_')
6048 {
6049 if (str[1] != '_' || str[2] == '\000')
6050 return 0;
6051 if (str[2] == '_')
6052 {
6053 if (strcmp (str + 3, "JM") == 0)
6054 return 1;
6055 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6056 the LJM suffix in favor of the JM one. But we will
6057 still accept LJM as a valid suffix for a reasonable
6058 amount of time, just to allow ourselves to debug programs
6059 compiled using an older version of GNAT. */
6060 if (strcmp (str + 3, "LJM") == 0)
6061 return 1;
6062 if (str[3] != 'X')
6063 return 0;
6064 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6065 || str[4] == 'U' || str[4] == 'P')
6066 return 1;
6067 if (str[4] == 'R' && str[5] != 'T')
6068 return 1;
6069 return 0;
6070 }
6071 if (!isdigit (str[2]))
6072 return 0;
6073 for (k = 3; str[k] != '\0'; k += 1)
6074 if (!isdigit (str[k]) && str[k] != '_')
6075 return 0;
6076 return 1;
6077 }
6078 if (str[0] == '$' && isdigit (str[1]))
6079 {
6080 for (k = 2; str[k] != '\0'; k += 1)
6081 if (!isdigit (str[k]) && str[k] != '_')
6082 return 0;
6083 return 1;
6084 }
6085 return 0;
6086 }
6087
6088 /* Return non-zero if the string starting at NAME and ending before
6089 NAME_END contains no capital letters. */
6090
6091 static int
6092 is_valid_name_for_wild_match (const char *name0)
6093 {
6094 const char *decoded_name = ada_decode (name0);
6095 int i;
6096
6097 /* If the decoded name starts with an angle bracket, it means that
6098 NAME0 does not follow the GNAT encoding format. It should then
6099 not be allowed as a possible wild match. */
6100 if (decoded_name[0] == '<')
6101 return 0;
6102
6103 for (i=0; decoded_name[i] != '\0'; i++)
6104 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6105 return 0;
6106
6107 return 1;
6108 }
6109
6110 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6111 that could start a simple name. Assumes that *NAMEP points into
6112 the string beginning at NAME0. */
6113
6114 static int
6115 advance_wild_match (const char **namep, const char *name0, int target0)
6116 {
6117 const char *name = *namep;
6118
6119 while (1)
6120 {
6121 int t0, t1;
6122
6123 t0 = *name;
6124 if (t0 == '_')
6125 {
6126 t1 = name[1];
6127 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6128 {
6129 name += 1;
6130 if (name == name0 + 5 && startswith (name0, "_ada"))
6131 break;
6132 else
6133 name += 1;
6134 }
6135 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6136 || name[2] == target0))
6137 {
6138 name += 2;
6139 break;
6140 }
6141 else
6142 return 0;
6143 }
6144 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6145 name += 1;
6146 else
6147 return 0;
6148 }
6149
6150 *namep = name;
6151 return 1;
6152 }
6153
6154 /* Return true iff NAME encodes a name of the form prefix.PATN.
6155 Ignores any informational suffixes of NAME (i.e., for which
6156 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6157 simple name. */
6158
6159 static bool
6160 wild_match (const char *name, const char *patn)
6161 {
6162 const char *p;
6163 const char *name0 = name;
6164
6165 while (1)
6166 {
6167 const char *match = name;
6168
6169 if (*name == *patn)
6170 {
6171 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6172 if (*p != *name)
6173 break;
6174 if (*p == '\0' && is_name_suffix (name))
6175 return match == name0 || is_valid_name_for_wild_match (name0);
6176
6177 if (name[-1] == '_')
6178 name -= 1;
6179 }
6180 if (!advance_wild_match (&name, name0, *patn))
6181 return false;
6182 }
6183 }
6184
6185 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6186 any trailing suffixes that encode debugging information or leading
6187 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6188 information that is ignored). */
6189
6190 static bool
6191 full_match (const char *sym_name, const char *search_name)
6192 {
6193 size_t search_name_len = strlen (search_name);
6194
6195 if (strncmp (sym_name, search_name, search_name_len) == 0
6196 && is_name_suffix (sym_name + search_name_len))
6197 return true;
6198
6199 if (startswith (sym_name, "_ada_")
6200 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6201 && is_name_suffix (sym_name + search_name_len + 5))
6202 return true;
6203
6204 return false;
6205 }
6206
6207 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6208 *defn_symbols, updating the list of symbols in OBSTACKP (if
6209 necessary). OBJFILE is the section containing BLOCK. */
6210
6211 static void
6212 ada_add_block_symbols (struct obstack *obstackp,
6213 const struct block *block,
6214 const lookup_name_info &lookup_name,
6215 domain_enum domain, struct objfile *objfile)
6216 {
6217 struct block_iterator iter;
6218 /* A matching argument symbol, if any. */
6219 struct symbol *arg_sym;
6220 /* Set true when we find a matching non-argument symbol. */
6221 int found_sym;
6222 struct symbol *sym;
6223
6224 arg_sym = NULL;
6225 found_sym = 0;
6226 for (sym = block_iter_match_first (block, lookup_name, &iter);
6227 sym != NULL;
6228 sym = block_iter_match_next (lookup_name, &iter))
6229 {
6230 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6231 SYMBOL_DOMAIN (sym), domain))
6232 {
6233 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6234 {
6235 if (SYMBOL_IS_ARGUMENT (sym))
6236 arg_sym = sym;
6237 else
6238 {
6239 found_sym = 1;
6240 add_defn_to_vec (obstackp,
6241 fixup_symbol_section (sym, objfile),
6242 block);
6243 }
6244 }
6245 }
6246 }
6247
6248 /* Handle renamings. */
6249
6250 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6251 found_sym = 1;
6252
6253 if (!found_sym && arg_sym != NULL)
6254 {
6255 add_defn_to_vec (obstackp,
6256 fixup_symbol_section (arg_sym, objfile),
6257 block);
6258 }
6259
6260 if (!lookup_name.ada ().wild_match_p ())
6261 {
6262 arg_sym = NULL;
6263 found_sym = 0;
6264 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6265 const char *name = ada_lookup_name.c_str ();
6266 size_t name_len = ada_lookup_name.size ();
6267
6268 ALL_BLOCK_SYMBOLS (block, iter, sym)
6269 {
6270 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6271 SYMBOL_DOMAIN (sym), domain))
6272 {
6273 int cmp;
6274
6275 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6276 if (cmp == 0)
6277 {
6278 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6279 if (cmp == 0)
6280 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6281 name_len);
6282 }
6283
6284 if (cmp == 0
6285 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6286 {
6287 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6288 {
6289 if (SYMBOL_IS_ARGUMENT (sym))
6290 arg_sym = sym;
6291 else
6292 {
6293 found_sym = 1;
6294 add_defn_to_vec (obstackp,
6295 fixup_symbol_section (sym, objfile),
6296 block);
6297 }
6298 }
6299 }
6300 }
6301 }
6302
6303 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6304 They aren't parameters, right? */
6305 if (!found_sym && arg_sym != NULL)
6306 {
6307 add_defn_to_vec (obstackp,
6308 fixup_symbol_section (arg_sym, objfile),
6309 block);
6310 }
6311 }
6312 }
6313 \f
6314
6315 /* Symbol Completion */
6316
6317 /* See symtab.h. */
6318
6319 bool
6320 ada_lookup_name_info::matches
6321 (const char *sym_name,
6322 symbol_name_match_type match_type,
6323 completion_match_result *comp_match_res) const
6324 {
6325 bool match = false;
6326 const char *text = m_encoded_name.c_str ();
6327 size_t text_len = m_encoded_name.size ();
6328
6329 /* First, test against the fully qualified name of the symbol. */
6330
6331 if (strncmp (sym_name, text, text_len) == 0)
6332 match = true;
6333
6334 if (match && !m_encoded_p)
6335 {
6336 /* One needed check before declaring a positive match is to verify
6337 that iff we are doing a verbatim match, the decoded version
6338 of the symbol name starts with '<'. Otherwise, this symbol name
6339 is not a suitable completion. */
6340 const char *sym_name_copy = sym_name;
6341 bool has_angle_bracket;
6342
6343 sym_name = ada_decode (sym_name);
6344 has_angle_bracket = (sym_name[0] == '<');
6345 match = (has_angle_bracket == m_verbatim_p);
6346 sym_name = sym_name_copy;
6347 }
6348
6349 if (match && !m_verbatim_p)
6350 {
6351 /* When doing non-verbatim match, another check that needs to
6352 be done is to verify that the potentially matching symbol name
6353 does not include capital letters, because the ada-mode would
6354 not be able to understand these symbol names without the
6355 angle bracket notation. */
6356 const char *tmp;
6357
6358 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6359 if (*tmp != '\0')
6360 match = false;
6361 }
6362
6363 /* Second: Try wild matching... */
6364
6365 if (!match && m_wild_match_p)
6366 {
6367 /* Since we are doing wild matching, this means that TEXT
6368 may represent an unqualified symbol name. We therefore must
6369 also compare TEXT against the unqualified name of the symbol. */
6370 sym_name = ada_unqualified_name (ada_decode (sym_name));
6371
6372 if (strncmp (sym_name, text, text_len) == 0)
6373 match = true;
6374 }
6375
6376 /* Finally: If we found a match, prepare the result to return. */
6377
6378 if (!match)
6379 return false;
6380
6381 if (comp_match_res != NULL)
6382 {
6383 std::string &match_str = comp_match_res->match.storage ();
6384
6385 if (!m_encoded_p)
6386 match_str = ada_decode (sym_name);
6387 else
6388 {
6389 if (m_verbatim_p)
6390 match_str = add_angle_brackets (sym_name);
6391 else
6392 match_str = sym_name;
6393
6394 }
6395
6396 comp_match_res->set_match (match_str.c_str ());
6397 }
6398
6399 return true;
6400 }
6401
6402 /* Add the list of possible symbol names completing TEXT to TRACKER.
6403 WORD is the entire command on which completion is made. */
6404
6405 static void
6406 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6407 complete_symbol_mode mode,
6408 symbol_name_match_type name_match_type,
6409 const char *text, const char *word,
6410 enum type_code code)
6411 {
6412 struct symbol *sym;
6413 const struct block *b, *surrounding_static_block = 0;
6414 struct block_iterator iter;
6415
6416 gdb_assert (code == TYPE_CODE_UNDEF);
6417
6418 lookup_name_info lookup_name (text, name_match_type, true);
6419
6420 /* First, look at the partial symtab symbols. */
6421 expand_symtabs_matching (NULL,
6422 lookup_name,
6423 NULL,
6424 NULL,
6425 ALL_DOMAIN);
6426
6427 /* At this point scan through the misc symbol vectors and add each
6428 symbol you find to the list. Eventually we want to ignore
6429 anything that isn't a text symbol (everything else will be
6430 handled by the psymtab code above). */
6431
6432 for (objfile *objfile : current_program_space->objfiles ())
6433 {
6434 for (minimal_symbol *msymbol : objfile->msymbols ())
6435 {
6436 QUIT;
6437
6438 if (completion_skip_symbol (mode, msymbol))
6439 continue;
6440
6441 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6442
6443 /* Ada minimal symbols won't have their language set to Ada. If
6444 we let completion_list_add_name compare using the
6445 default/C-like matcher, then when completing e.g., symbols in a
6446 package named "pck", we'd match internal Ada symbols like
6447 "pckS", which are invalid in an Ada expression, unless you wrap
6448 them in '<' '>' to request a verbatim match.
6449
6450 Unfortunately, some Ada encoded names successfully demangle as
6451 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6452 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6453 with the wrong language set. Paper over that issue here. */
6454 if (symbol_language == language_auto
6455 || symbol_language == language_cplus)
6456 symbol_language = language_ada;
6457
6458 completion_list_add_name (tracker,
6459 symbol_language,
6460 MSYMBOL_LINKAGE_NAME (msymbol),
6461 lookup_name, text, word);
6462 }
6463 }
6464
6465 /* Search upwards from currently selected frame (so that we can
6466 complete on local vars. */
6467
6468 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6469 {
6470 if (!BLOCK_SUPERBLOCK (b))
6471 surrounding_static_block = b; /* For elmin of dups */
6472
6473 ALL_BLOCK_SYMBOLS (b, iter, sym)
6474 {
6475 if (completion_skip_symbol (mode, sym))
6476 continue;
6477
6478 completion_list_add_name (tracker,
6479 SYMBOL_LANGUAGE (sym),
6480 SYMBOL_LINKAGE_NAME (sym),
6481 lookup_name, text, word);
6482 }
6483 }
6484
6485 /* Go through the symtabs and check the externs and statics for
6486 symbols which match. */
6487
6488 for (objfile *objfile : current_program_space->objfiles ())
6489 {
6490 for (compunit_symtab *s : objfile->compunits ())
6491 {
6492 QUIT;
6493 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6494 ALL_BLOCK_SYMBOLS (b, iter, sym)
6495 {
6496 if (completion_skip_symbol (mode, sym))
6497 continue;
6498
6499 completion_list_add_name (tracker,
6500 SYMBOL_LANGUAGE (sym),
6501 SYMBOL_LINKAGE_NAME (sym),
6502 lookup_name, text, word);
6503 }
6504 }
6505 }
6506
6507 for (objfile *objfile : current_program_space->objfiles ())
6508 {
6509 for (compunit_symtab *s : objfile->compunits ())
6510 {
6511 QUIT;
6512 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6513 /* Don't do this block twice. */
6514 if (b == surrounding_static_block)
6515 continue;
6516 ALL_BLOCK_SYMBOLS (b, iter, sym)
6517 {
6518 if (completion_skip_symbol (mode, sym))
6519 continue;
6520
6521 completion_list_add_name (tracker,
6522 SYMBOL_LANGUAGE (sym),
6523 SYMBOL_LINKAGE_NAME (sym),
6524 lookup_name, text, word);
6525 }
6526 }
6527 }
6528 }
6529
6530 /* Field Access */
6531
6532 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6533 for tagged types. */
6534
6535 static int
6536 ada_is_dispatch_table_ptr_type (struct type *type)
6537 {
6538 const char *name;
6539
6540 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6541 return 0;
6542
6543 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6544 if (name == NULL)
6545 return 0;
6546
6547 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6548 }
6549
6550 /* Return non-zero if TYPE is an interface tag. */
6551
6552 static int
6553 ada_is_interface_tag (struct type *type)
6554 {
6555 const char *name = TYPE_NAME (type);
6556
6557 if (name == NULL)
6558 return 0;
6559
6560 return (strcmp (name, "ada__tags__interface_tag") == 0);
6561 }
6562
6563 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6564 to be invisible to users. */
6565
6566 int
6567 ada_is_ignored_field (struct type *type, int field_num)
6568 {
6569 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6570 return 1;
6571
6572 /* Check the name of that field. */
6573 {
6574 const char *name = TYPE_FIELD_NAME (type, field_num);
6575
6576 /* Anonymous field names should not be printed.
6577 brobecker/2007-02-20: I don't think this can actually happen
6578 but we don't want to print the value of annonymous fields anyway. */
6579 if (name == NULL)
6580 return 1;
6581
6582 /* Normally, fields whose name start with an underscore ("_")
6583 are fields that have been internally generated by the compiler,
6584 and thus should not be printed. The "_parent" field is special,
6585 however: This is a field internally generated by the compiler
6586 for tagged types, and it contains the components inherited from
6587 the parent type. This field should not be printed as is, but
6588 should not be ignored either. */
6589 if (name[0] == '_' && !startswith (name, "_parent"))
6590 return 1;
6591 }
6592
6593 /* If this is the dispatch table of a tagged type or an interface tag,
6594 then ignore. */
6595 if (ada_is_tagged_type (type, 1)
6596 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6597 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6598 return 1;
6599
6600 /* Not a special field, so it should not be ignored. */
6601 return 0;
6602 }
6603
6604 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6605 pointer or reference type whose ultimate target has a tag field. */
6606
6607 int
6608 ada_is_tagged_type (struct type *type, int refok)
6609 {
6610 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6611 }
6612
6613 /* True iff TYPE represents the type of X'Tag */
6614
6615 int
6616 ada_is_tag_type (struct type *type)
6617 {
6618 type = ada_check_typedef (type);
6619
6620 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6621 return 0;
6622 else
6623 {
6624 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6625
6626 return (name != NULL
6627 && strcmp (name, "ada__tags__dispatch_table") == 0);
6628 }
6629 }
6630
6631 /* The type of the tag on VAL. */
6632
6633 struct type *
6634 ada_tag_type (struct value *val)
6635 {
6636 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6637 }
6638
6639 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6640 retired at Ada 05). */
6641
6642 static int
6643 is_ada95_tag (struct value *tag)
6644 {
6645 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6646 }
6647
6648 /* The value of the tag on VAL. */
6649
6650 struct value *
6651 ada_value_tag (struct value *val)
6652 {
6653 return ada_value_struct_elt (val, "_tag", 0);
6654 }
6655
6656 /* The value of the tag on the object of type TYPE whose contents are
6657 saved at VALADDR, if it is non-null, or is at memory address
6658 ADDRESS. */
6659
6660 static struct value *
6661 value_tag_from_contents_and_address (struct type *type,
6662 const gdb_byte *valaddr,
6663 CORE_ADDR address)
6664 {
6665 int tag_byte_offset;
6666 struct type *tag_type;
6667
6668 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6669 NULL, NULL, NULL))
6670 {
6671 const gdb_byte *valaddr1 = ((valaddr == NULL)
6672 ? NULL
6673 : valaddr + tag_byte_offset);
6674 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6675
6676 return value_from_contents_and_address (tag_type, valaddr1, address1);
6677 }
6678 return NULL;
6679 }
6680
6681 static struct type *
6682 type_from_tag (struct value *tag)
6683 {
6684 const char *type_name = ada_tag_name (tag);
6685
6686 if (type_name != NULL)
6687 return ada_find_any_type (ada_encode (type_name));
6688 return NULL;
6689 }
6690
6691 /* Given a value OBJ of a tagged type, return a value of this
6692 type at the base address of the object. The base address, as
6693 defined in Ada.Tags, it is the address of the primary tag of
6694 the object, and therefore where the field values of its full
6695 view can be fetched. */
6696
6697 struct value *
6698 ada_tag_value_at_base_address (struct value *obj)
6699 {
6700 struct value *val;
6701 LONGEST offset_to_top = 0;
6702 struct type *ptr_type, *obj_type;
6703 struct value *tag;
6704 CORE_ADDR base_address;
6705
6706 obj_type = value_type (obj);
6707
6708 /* It is the responsability of the caller to deref pointers. */
6709
6710 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6711 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6712 return obj;
6713
6714 tag = ada_value_tag (obj);
6715 if (!tag)
6716 return obj;
6717
6718 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6719
6720 if (is_ada95_tag (tag))
6721 return obj;
6722
6723 ptr_type = language_lookup_primitive_type
6724 (language_def (language_ada), target_gdbarch(), "storage_offset");
6725 ptr_type = lookup_pointer_type (ptr_type);
6726 val = value_cast (ptr_type, tag);
6727 if (!val)
6728 return obj;
6729
6730 /* It is perfectly possible that an exception be raised while
6731 trying to determine the base address, just like for the tag;
6732 see ada_tag_name for more details. We do not print the error
6733 message for the same reason. */
6734
6735 try
6736 {
6737 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6738 }
6739
6740 catch (const gdb_exception_error &e)
6741 {
6742 return obj;
6743 }
6744
6745 /* If offset is null, nothing to do. */
6746
6747 if (offset_to_top == 0)
6748 return obj;
6749
6750 /* -1 is a special case in Ada.Tags; however, what should be done
6751 is not quite clear from the documentation. So do nothing for
6752 now. */
6753
6754 if (offset_to_top == -1)
6755 return obj;
6756
6757 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6758 from the base address. This was however incompatible with
6759 C++ dispatch table: C++ uses a *negative* value to *add*
6760 to the base address. Ada's convention has therefore been
6761 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6762 use the same convention. Here, we support both cases by
6763 checking the sign of OFFSET_TO_TOP. */
6764
6765 if (offset_to_top > 0)
6766 offset_to_top = -offset_to_top;
6767
6768 base_address = value_address (obj) + offset_to_top;
6769 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6770
6771 /* Make sure that we have a proper tag at the new address.
6772 Otherwise, offset_to_top is bogus (which can happen when
6773 the object is not initialized yet). */
6774
6775 if (!tag)
6776 return obj;
6777
6778 obj_type = type_from_tag (tag);
6779
6780 if (!obj_type)
6781 return obj;
6782
6783 return value_from_contents_and_address (obj_type, NULL, base_address);
6784 }
6785
6786 /* Return the "ada__tags__type_specific_data" type. */
6787
6788 static struct type *
6789 ada_get_tsd_type (struct inferior *inf)
6790 {
6791 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6792
6793 if (data->tsd_type == 0)
6794 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6795 return data->tsd_type;
6796 }
6797
6798 /* Return the TSD (type-specific data) associated to the given TAG.
6799 TAG is assumed to be the tag of a tagged-type entity.
6800
6801 May return NULL if we are unable to get the TSD. */
6802
6803 static struct value *
6804 ada_get_tsd_from_tag (struct value *tag)
6805 {
6806 struct value *val;
6807 struct type *type;
6808
6809 /* First option: The TSD is simply stored as a field of our TAG.
6810 Only older versions of GNAT would use this format, but we have
6811 to test it first, because there are no visible markers for
6812 the current approach except the absence of that field. */
6813
6814 val = ada_value_struct_elt (tag, "tsd", 1);
6815 if (val)
6816 return val;
6817
6818 /* Try the second representation for the dispatch table (in which
6819 there is no explicit 'tsd' field in the referent of the tag pointer,
6820 and instead the tsd pointer is stored just before the dispatch
6821 table. */
6822
6823 type = ada_get_tsd_type (current_inferior());
6824 if (type == NULL)
6825 return NULL;
6826 type = lookup_pointer_type (lookup_pointer_type (type));
6827 val = value_cast (type, tag);
6828 if (val == NULL)
6829 return NULL;
6830 return value_ind (value_ptradd (val, -1));
6831 }
6832
6833 /* Given the TSD of a tag (type-specific data), return a string
6834 containing the name of the associated type.
6835
6836 The returned value is good until the next call. May return NULL
6837 if we are unable to determine the tag name. */
6838
6839 static char *
6840 ada_tag_name_from_tsd (struct value *tsd)
6841 {
6842 static char name[1024];
6843 char *p;
6844 struct value *val;
6845
6846 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6847 if (val == NULL)
6848 return NULL;
6849 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6850 for (p = name; *p != '\0'; p += 1)
6851 if (isalpha (*p))
6852 *p = tolower (*p);
6853 return name;
6854 }
6855
6856 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6857 a C string.
6858
6859 Return NULL if the TAG is not an Ada tag, or if we were unable to
6860 determine the name of that tag. The result is good until the next
6861 call. */
6862
6863 const char *
6864 ada_tag_name (struct value *tag)
6865 {
6866 char *name = NULL;
6867
6868 if (!ada_is_tag_type (value_type (tag)))
6869 return NULL;
6870
6871 /* It is perfectly possible that an exception be raised while trying
6872 to determine the TAG's name, even under normal circumstances:
6873 The associated variable may be uninitialized or corrupted, for
6874 instance. We do not let any exception propagate past this point.
6875 instead we return NULL.
6876
6877 We also do not print the error message either (which often is very
6878 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6879 the caller print a more meaningful message if necessary. */
6880 try
6881 {
6882 struct value *tsd = ada_get_tsd_from_tag (tag);
6883
6884 if (tsd != NULL)
6885 name = ada_tag_name_from_tsd (tsd);
6886 }
6887 catch (const gdb_exception_error &e)
6888 {
6889 }
6890
6891 return name;
6892 }
6893
6894 /* The parent type of TYPE, or NULL if none. */
6895
6896 struct type *
6897 ada_parent_type (struct type *type)
6898 {
6899 int i;
6900
6901 type = ada_check_typedef (type);
6902
6903 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6904 return NULL;
6905
6906 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6907 if (ada_is_parent_field (type, i))
6908 {
6909 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6910
6911 /* If the _parent field is a pointer, then dereference it. */
6912 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6913 parent_type = TYPE_TARGET_TYPE (parent_type);
6914 /* If there is a parallel XVS type, get the actual base type. */
6915 parent_type = ada_get_base_type (parent_type);
6916
6917 return ada_check_typedef (parent_type);
6918 }
6919
6920 return NULL;
6921 }
6922
6923 /* True iff field number FIELD_NUM of structure type TYPE contains the
6924 parent-type (inherited) fields of a derived type. Assumes TYPE is
6925 a structure type with at least FIELD_NUM+1 fields. */
6926
6927 int
6928 ada_is_parent_field (struct type *type, int field_num)
6929 {
6930 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6931
6932 return (name != NULL
6933 && (startswith (name, "PARENT")
6934 || startswith (name, "_parent")));
6935 }
6936
6937 /* True iff field number FIELD_NUM of structure type TYPE is a
6938 transparent wrapper field (which should be silently traversed when doing
6939 field selection and flattened when printing). Assumes TYPE is a
6940 structure type with at least FIELD_NUM+1 fields. Such fields are always
6941 structures. */
6942
6943 int
6944 ada_is_wrapper_field (struct type *type, int field_num)
6945 {
6946 const char *name = TYPE_FIELD_NAME (type, field_num);
6947
6948 if (name != NULL && strcmp (name, "RETVAL") == 0)
6949 {
6950 /* This happens in functions with "out" or "in out" parameters
6951 which are passed by copy. For such functions, GNAT describes
6952 the function's return type as being a struct where the return
6953 value is in a field called RETVAL, and where the other "out"
6954 or "in out" parameters are fields of that struct. This is not
6955 a wrapper. */
6956 return 0;
6957 }
6958
6959 return (name != NULL
6960 && (startswith (name, "PARENT")
6961 || strcmp (name, "REP") == 0
6962 || startswith (name, "_parent")
6963 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6964 }
6965
6966 /* True iff field number FIELD_NUM of structure or union type TYPE
6967 is a variant wrapper. Assumes TYPE is a structure type with at least
6968 FIELD_NUM+1 fields. */
6969
6970 int
6971 ada_is_variant_part (struct type *type, int field_num)
6972 {
6973 /* Only Ada types are eligible. */
6974 if (!ADA_TYPE_P (type))
6975 return 0;
6976
6977 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6978
6979 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6980 || (is_dynamic_field (type, field_num)
6981 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6982 == TYPE_CODE_UNION)));
6983 }
6984
6985 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6986 whose discriminants are contained in the record type OUTER_TYPE,
6987 returns the type of the controlling discriminant for the variant.
6988 May return NULL if the type could not be found. */
6989
6990 struct type *
6991 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6992 {
6993 const char *name = ada_variant_discrim_name (var_type);
6994
6995 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6996 }
6997
6998 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6999 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7000 represents a 'when others' clause; otherwise 0. */
7001
7002 int
7003 ada_is_others_clause (struct type *type, int field_num)
7004 {
7005 const char *name = TYPE_FIELD_NAME (type, field_num);
7006
7007 return (name != NULL && name[0] == 'O');
7008 }
7009
7010 /* Assuming that TYPE0 is the type of the variant part of a record,
7011 returns the name of the discriminant controlling the variant.
7012 The value is valid until the next call to ada_variant_discrim_name. */
7013
7014 const char *
7015 ada_variant_discrim_name (struct type *type0)
7016 {
7017 static char *result = NULL;
7018 static size_t result_len = 0;
7019 struct type *type;
7020 const char *name;
7021 const char *discrim_end;
7022 const char *discrim_start;
7023
7024 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7025 type = TYPE_TARGET_TYPE (type0);
7026 else
7027 type = type0;
7028
7029 name = ada_type_name (type);
7030
7031 if (name == NULL || name[0] == '\000')
7032 return "";
7033
7034 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7035 discrim_end -= 1)
7036 {
7037 if (startswith (discrim_end, "___XVN"))
7038 break;
7039 }
7040 if (discrim_end == name)
7041 return "";
7042
7043 for (discrim_start = discrim_end; discrim_start != name + 3;
7044 discrim_start -= 1)
7045 {
7046 if (discrim_start == name + 1)
7047 return "";
7048 if ((discrim_start > name + 3
7049 && startswith (discrim_start - 3, "___"))
7050 || discrim_start[-1] == '.')
7051 break;
7052 }
7053
7054 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7055 strncpy (result, discrim_start, discrim_end - discrim_start);
7056 result[discrim_end - discrim_start] = '\0';
7057 return result;
7058 }
7059
7060 /* Scan STR for a subtype-encoded number, beginning at position K.
7061 Put the position of the character just past the number scanned in
7062 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7063 Return 1 if there was a valid number at the given position, and 0
7064 otherwise. A "subtype-encoded" number consists of the absolute value
7065 in decimal, followed by the letter 'm' to indicate a negative number.
7066 Assumes 0m does not occur. */
7067
7068 int
7069 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7070 {
7071 ULONGEST RU;
7072
7073 if (!isdigit (str[k]))
7074 return 0;
7075
7076 /* Do it the hard way so as not to make any assumption about
7077 the relationship of unsigned long (%lu scan format code) and
7078 LONGEST. */
7079 RU = 0;
7080 while (isdigit (str[k]))
7081 {
7082 RU = RU * 10 + (str[k] - '0');
7083 k += 1;
7084 }
7085
7086 if (str[k] == 'm')
7087 {
7088 if (R != NULL)
7089 *R = (-(LONGEST) (RU - 1)) - 1;
7090 k += 1;
7091 }
7092 else if (R != NULL)
7093 *R = (LONGEST) RU;
7094
7095 /* NOTE on the above: Technically, C does not say what the results of
7096 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7097 number representable as a LONGEST (although either would probably work
7098 in most implementations). When RU>0, the locution in the then branch
7099 above is always equivalent to the negative of RU. */
7100
7101 if (new_k != NULL)
7102 *new_k = k;
7103 return 1;
7104 }
7105
7106 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7107 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7108 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7109
7110 int
7111 ada_in_variant (LONGEST val, struct type *type, int field_num)
7112 {
7113 const char *name = TYPE_FIELD_NAME (type, field_num);
7114 int p;
7115
7116 p = 0;
7117 while (1)
7118 {
7119 switch (name[p])
7120 {
7121 case '\0':
7122 return 0;
7123 case 'S':
7124 {
7125 LONGEST W;
7126
7127 if (!ada_scan_number (name, p + 1, &W, &p))
7128 return 0;
7129 if (val == W)
7130 return 1;
7131 break;
7132 }
7133 case 'R':
7134 {
7135 LONGEST L, U;
7136
7137 if (!ada_scan_number (name, p + 1, &L, &p)
7138 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7139 return 0;
7140 if (val >= L && val <= U)
7141 return 1;
7142 break;
7143 }
7144 case 'O':
7145 return 1;
7146 default:
7147 return 0;
7148 }
7149 }
7150 }
7151
7152 /* FIXME: Lots of redundancy below. Try to consolidate. */
7153
7154 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7155 ARG_TYPE, extract and return the value of one of its (non-static)
7156 fields. FIELDNO says which field. Differs from value_primitive_field
7157 only in that it can handle packed values of arbitrary type. */
7158
7159 static struct value *
7160 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7161 struct type *arg_type)
7162 {
7163 struct type *type;
7164
7165 arg_type = ada_check_typedef (arg_type);
7166 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7167
7168 /* Handle packed fields. It might be that the field is not packed
7169 relative to its containing structure, but the structure itself is
7170 packed; in this case we must take the bit-field path. */
7171 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
7172 {
7173 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7174 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7175
7176 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7177 offset + bit_pos / 8,
7178 bit_pos % 8, bit_size, type);
7179 }
7180 else
7181 return value_primitive_field (arg1, offset, fieldno, arg_type);
7182 }
7183
7184 /* Find field with name NAME in object of type TYPE. If found,
7185 set the following for each argument that is non-null:
7186 - *FIELD_TYPE_P to the field's type;
7187 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7188 an object of that type;
7189 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7190 - *BIT_SIZE_P to its size in bits if the field is packed, and
7191 0 otherwise;
7192 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7193 fields up to but not including the desired field, or by the total
7194 number of fields if not found. A NULL value of NAME never
7195 matches; the function just counts visible fields in this case.
7196
7197 Notice that we need to handle when a tagged record hierarchy
7198 has some components with the same name, like in this scenario:
7199
7200 type Top_T is tagged record
7201 N : Integer := 1;
7202 U : Integer := 974;
7203 A : Integer := 48;
7204 end record;
7205
7206 type Middle_T is new Top.Top_T with record
7207 N : Character := 'a';
7208 C : Integer := 3;
7209 end record;
7210
7211 type Bottom_T is new Middle.Middle_T with record
7212 N : Float := 4.0;
7213 C : Character := '5';
7214 X : Integer := 6;
7215 A : Character := 'J';
7216 end record;
7217
7218 Let's say we now have a variable declared and initialized as follow:
7219
7220 TC : Top_A := new Bottom_T;
7221
7222 And then we use this variable to call this function
7223
7224 procedure Assign (Obj: in out Top_T; TV : Integer);
7225
7226 as follow:
7227
7228 Assign (Top_T (B), 12);
7229
7230 Now, we're in the debugger, and we're inside that procedure
7231 then and we want to print the value of obj.c:
7232
7233 Usually, the tagged record or one of the parent type owns the
7234 component to print and there's no issue but in this particular
7235 case, what does it mean to ask for Obj.C? Since the actual
7236 type for object is type Bottom_T, it could mean two things: type
7237 component C from the Middle_T view, but also component C from
7238 Bottom_T. So in that "undefined" case, when the component is
7239 not found in the non-resolved type (which includes all the
7240 components of the parent type), then resolve it and see if we
7241 get better luck once expanded.
7242
7243 In the case of homonyms in the derived tagged type, we don't
7244 guaranty anything, and pick the one that's easiest for us
7245 to program.
7246
7247 Returns 1 if found, 0 otherwise. */
7248
7249 static int
7250 find_struct_field (const char *name, struct type *type, int offset,
7251 struct type **field_type_p,
7252 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7253 int *index_p)
7254 {
7255 int i;
7256 int parent_offset = -1;
7257
7258 type = ada_check_typedef (type);
7259
7260 if (field_type_p != NULL)
7261 *field_type_p = NULL;
7262 if (byte_offset_p != NULL)
7263 *byte_offset_p = 0;
7264 if (bit_offset_p != NULL)
7265 *bit_offset_p = 0;
7266 if (bit_size_p != NULL)
7267 *bit_size_p = 0;
7268
7269 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7270 {
7271 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7272 int fld_offset = offset + bit_pos / 8;
7273 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7274
7275 if (t_field_name == NULL)
7276 continue;
7277
7278 else if (ada_is_parent_field (type, i))
7279 {
7280 /* This is a field pointing us to the parent type of a tagged
7281 type. As hinted in this function's documentation, we give
7282 preference to fields in the current record first, so what
7283 we do here is just record the index of this field before
7284 we skip it. If it turns out we couldn't find our field
7285 in the current record, then we'll get back to it and search
7286 inside it whether the field might exist in the parent. */
7287
7288 parent_offset = i;
7289 continue;
7290 }
7291
7292 else if (name != NULL && field_name_match (t_field_name, name))
7293 {
7294 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7295
7296 if (field_type_p != NULL)
7297 *field_type_p = TYPE_FIELD_TYPE (type, i);
7298 if (byte_offset_p != NULL)
7299 *byte_offset_p = fld_offset;
7300 if (bit_offset_p != NULL)
7301 *bit_offset_p = bit_pos % 8;
7302 if (bit_size_p != NULL)
7303 *bit_size_p = bit_size;
7304 return 1;
7305 }
7306 else if (ada_is_wrapper_field (type, i))
7307 {
7308 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7309 field_type_p, byte_offset_p, bit_offset_p,
7310 bit_size_p, index_p))
7311 return 1;
7312 }
7313 else if (ada_is_variant_part (type, i))
7314 {
7315 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7316 fixed type?? */
7317 int j;
7318 struct type *field_type
7319 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7320
7321 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7322 {
7323 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7324 fld_offset
7325 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7326 field_type_p, byte_offset_p,
7327 bit_offset_p, bit_size_p, index_p))
7328 return 1;
7329 }
7330 }
7331 else if (index_p != NULL)
7332 *index_p += 1;
7333 }
7334
7335 /* Field not found so far. If this is a tagged type which
7336 has a parent, try finding that field in the parent now. */
7337
7338 if (parent_offset != -1)
7339 {
7340 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7341 int fld_offset = offset + bit_pos / 8;
7342
7343 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7344 fld_offset, field_type_p, byte_offset_p,
7345 bit_offset_p, bit_size_p, index_p))
7346 return 1;
7347 }
7348
7349 return 0;
7350 }
7351
7352 /* Number of user-visible fields in record type TYPE. */
7353
7354 static int
7355 num_visible_fields (struct type *type)
7356 {
7357 int n;
7358
7359 n = 0;
7360 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7361 return n;
7362 }
7363
7364 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7365 and search in it assuming it has (class) type TYPE.
7366 If found, return value, else return NULL.
7367
7368 Searches recursively through wrapper fields (e.g., '_parent').
7369
7370 In the case of homonyms in the tagged types, please refer to the
7371 long explanation in find_struct_field's function documentation. */
7372
7373 static struct value *
7374 ada_search_struct_field (const char *name, struct value *arg, int offset,
7375 struct type *type)
7376 {
7377 int i;
7378 int parent_offset = -1;
7379
7380 type = ada_check_typedef (type);
7381 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7382 {
7383 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7384
7385 if (t_field_name == NULL)
7386 continue;
7387
7388 else if (ada_is_parent_field (type, i))
7389 {
7390 /* This is a field pointing us to the parent type of a tagged
7391 type. As hinted in this function's documentation, we give
7392 preference to fields in the current record first, so what
7393 we do here is just record the index of this field before
7394 we skip it. If it turns out we couldn't find our field
7395 in the current record, then we'll get back to it and search
7396 inside it whether the field might exist in the parent. */
7397
7398 parent_offset = i;
7399 continue;
7400 }
7401
7402 else if (field_name_match (t_field_name, name))
7403 return ada_value_primitive_field (arg, offset, i, type);
7404
7405 else if (ada_is_wrapper_field (type, i))
7406 {
7407 struct value *v = /* Do not let indent join lines here. */
7408 ada_search_struct_field (name, arg,
7409 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7410 TYPE_FIELD_TYPE (type, i));
7411
7412 if (v != NULL)
7413 return v;
7414 }
7415
7416 else if (ada_is_variant_part (type, i))
7417 {
7418 /* PNH: Do we ever get here? See find_struct_field. */
7419 int j;
7420 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7421 i));
7422 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7423
7424 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7425 {
7426 struct value *v = ada_search_struct_field /* Force line
7427 break. */
7428 (name, arg,
7429 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7430 TYPE_FIELD_TYPE (field_type, j));
7431
7432 if (v != NULL)
7433 return v;
7434 }
7435 }
7436 }
7437
7438 /* Field not found so far. If this is a tagged type which
7439 has a parent, try finding that field in the parent now. */
7440
7441 if (parent_offset != -1)
7442 {
7443 struct value *v = ada_search_struct_field (
7444 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7445 TYPE_FIELD_TYPE (type, parent_offset));
7446
7447 if (v != NULL)
7448 return v;
7449 }
7450
7451 return NULL;
7452 }
7453
7454 static struct value *ada_index_struct_field_1 (int *, struct value *,
7455 int, struct type *);
7456
7457
7458 /* Return field #INDEX in ARG, where the index is that returned by
7459 * find_struct_field through its INDEX_P argument. Adjust the address
7460 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7461 * If found, return value, else return NULL. */
7462
7463 static struct value *
7464 ada_index_struct_field (int index, struct value *arg, int offset,
7465 struct type *type)
7466 {
7467 return ada_index_struct_field_1 (&index, arg, offset, type);
7468 }
7469
7470
7471 /* Auxiliary function for ada_index_struct_field. Like
7472 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7473 * *INDEX_P. */
7474
7475 static struct value *
7476 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7477 struct type *type)
7478 {
7479 int i;
7480 type = ada_check_typedef (type);
7481
7482 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7483 {
7484 if (TYPE_FIELD_NAME (type, i) == NULL)
7485 continue;
7486 else if (ada_is_wrapper_field (type, i))
7487 {
7488 struct value *v = /* Do not let indent join lines here. */
7489 ada_index_struct_field_1 (index_p, arg,
7490 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7491 TYPE_FIELD_TYPE (type, i));
7492
7493 if (v != NULL)
7494 return v;
7495 }
7496
7497 else if (ada_is_variant_part (type, i))
7498 {
7499 /* PNH: Do we ever get here? See ada_search_struct_field,
7500 find_struct_field. */
7501 error (_("Cannot assign this kind of variant record"));
7502 }
7503 else if (*index_p == 0)
7504 return ada_value_primitive_field (arg, offset, i, type);
7505 else
7506 *index_p -= 1;
7507 }
7508 return NULL;
7509 }
7510
7511 /* Given ARG, a value of type (pointer or reference to a)*
7512 structure/union, extract the component named NAME from the ultimate
7513 target structure/union and return it as a value with its
7514 appropriate type.
7515
7516 The routine searches for NAME among all members of the structure itself
7517 and (recursively) among all members of any wrapper members
7518 (e.g., '_parent').
7519
7520 If NO_ERR, then simply return NULL in case of error, rather than
7521 calling error. */
7522
7523 struct value *
7524 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7525 {
7526 struct type *t, *t1;
7527 struct value *v;
7528 int check_tag;
7529
7530 v = NULL;
7531 t1 = t = ada_check_typedef (value_type (arg));
7532 if (TYPE_CODE (t) == TYPE_CODE_REF)
7533 {
7534 t1 = TYPE_TARGET_TYPE (t);
7535 if (t1 == NULL)
7536 goto BadValue;
7537 t1 = ada_check_typedef (t1);
7538 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7539 {
7540 arg = coerce_ref (arg);
7541 t = t1;
7542 }
7543 }
7544
7545 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7546 {
7547 t1 = TYPE_TARGET_TYPE (t);
7548 if (t1 == NULL)
7549 goto BadValue;
7550 t1 = ada_check_typedef (t1);
7551 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7552 {
7553 arg = value_ind (arg);
7554 t = t1;
7555 }
7556 else
7557 break;
7558 }
7559
7560 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7561 goto BadValue;
7562
7563 if (t1 == t)
7564 v = ada_search_struct_field (name, arg, 0, t);
7565 else
7566 {
7567 int bit_offset, bit_size, byte_offset;
7568 struct type *field_type;
7569 CORE_ADDR address;
7570
7571 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7572 address = value_address (ada_value_ind (arg));
7573 else
7574 address = value_address (ada_coerce_ref (arg));
7575
7576 /* Check to see if this is a tagged type. We also need to handle
7577 the case where the type is a reference to a tagged type, but
7578 we have to be careful to exclude pointers to tagged types.
7579 The latter should be shown as usual (as a pointer), whereas
7580 a reference should mostly be transparent to the user. */
7581
7582 if (ada_is_tagged_type (t1, 0)
7583 || (TYPE_CODE (t1) == TYPE_CODE_REF
7584 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7585 {
7586 /* We first try to find the searched field in the current type.
7587 If not found then let's look in the fixed type. */
7588
7589 if (!find_struct_field (name, t1, 0,
7590 &field_type, &byte_offset, &bit_offset,
7591 &bit_size, NULL))
7592 check_tag = 1;
7593 else
7594 check_tag = 0;
7595 }
7596 else
7597 check_tag = 0;
7598
7599 /* Convert to fixed type in all cases, so that we have proper
7600 offsets to each field in unconstrained record types. */
7601 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7602 address, NULL, check_tag);
7603
7604 if (find_struct_field (name, t1, 0,
7605 &field_type, &byte_offset, &bit_offset,
7606 &bit_size, NULL))
7607 {
7608 if (bit_size != 0)
7609 {
7610 if (TYPE_CODE (t) == TYPE_CODE_REF)
7611 arg = ada_coerce_ref (arg);
7612 else
7613 arg = ada_value_ind (arg);
7614 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7615 bit_offset, bit_size,
7616 field_type);
7617 }
7618 else
7619 v = value_at_lazy (field_type, address + byte_offset);
7620 }
7621 }
7622
7623 if (v != NULL || no_err)
7624 return v;
7625 else
7626 error (_("There is no member named %s."), name);
7627
7628 BadValue:
7629 if (no_err)
7630 return NULL;
7631 else
7632 error (_("Attempt to extract a component of "
7633 "a value that is not a record."));
7634 }
7635
7636 /* Return a string representation of type TYPE. */
7637
7638 static std::string
7639 type_as_string (struct type *type)
7640 {
7641 string_file tmp_stream;
7642
7643 type_print (type, "", &tmp_stream, -1);
7644
7645 return std::move (tmp_stream.string ());
7646 }
7647
7648 /* Given a type TYPE, look up the type of the component of type named NAME.
7649 If DISPP is non-null, add its byte displacement from the beginning of a
7650 structure (pointed to by a value) of type TYPE to *DISPP (does not
7651 work for packed fields).
7652
7653 Matches any field whose name has NAME as a prefix, possibly
7654 followed by "___".
7655
7656 TYPE can be either a struct or union. If REFOK, TYPE may also
7657 be a (pointer or reference)+ to a struct or union, and the
7658 ultimate target type will be searched.
7659
7660 Looks recursively into variant clauses and parent types.
7661
7662 In the case of homonyms in the tagged types, please refer to the
7663 long explanation in find_struct_field's function documentation.
7664
7665 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7666 TYPE is not a type of the right kind. */
7667
7668 static struct type *
7669 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7670 int noerr)
7671 {
7672 int i;
7673 int parent_offset = -1;
7674
7675 if (name == NULL)
7676 goto BadName;
7677
7678 if (refok && type != NULL)
7679 while (1)
7680 {
7681 type = ada_check_typedef (type);
7682 if (TYPE_CODE (type) != TYPE_CODE_PTR
7683 && TYPE_CODE (type) != TYPE_CODE_REF)
7684 break;
7685 type = TYPE_TARGET_TYPE (type);
7686 }
7687
7688 if (type == NULL
7689 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7690 && TYPE_CODE (type) != TYPE_CODE_UNION))
7691 {
7692 if (noerr)
7693 return NULL;
7694
7695 error (_("Type %s is not a structure or union type"),
7696 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7697 }
7698
7699 type = to_static_fixed_type (type);
7700
7701 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7702 {
7703 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7704 struct type *t;
7705
7706 if (t_field_name == NULL)
7707 continue;
7708
7709 else if (ada_is_parent_field (type, i))
7710 {
7711 /* This is a field pointing us to the parent type of a tagged
7712 type. As hinted in this function's documentation, we give
7713 preference to fields in the current record first, so what
7714 we do here is just record the index of this field before
7715 we skip it. If it turns out we couldn't find our field
7716 in the current record, then we'll get back to it and search
7717 inside it whether the field might exist in the parent. */
7718
7719 parent_offset = i;
7720 continue;
7721 }
7722
7723 else if (field_name_match (t_field_name, name))
7724 return TYPE_FIELD_TYPE (type, i);
7725
7726 else if (ada_is_wrapper_field (type, i))
7727 {
7728 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7729 0, 1);
7730 if (t != NULL)
7731 return t;
7732 }
7733
7734 else if (ada_is_variant_part (type, i))
7735 {
7736 int j;
7737 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7738 i));
7739
7740 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7741 {
7742 /* FIXME pnh 2008/01/26: We check for a field that is
7743 NOT wrapped in a struct, since the compiler sometimes
7744 generates these for unchecked variant types. Revisit
7745 if the compiler changes this practice. */
7746 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7747
7748 if (v_field_name != NULL
7749 && field_name_match (v_field_name, name))
7750 t = TYPE_FIELD_TYPE (field_type, j);
7751 else
7752 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7753 j),
7754 name, 0, 1);
7755
7756 if (t != NULL)
7757 return t;
7758 }
7759 }
7760
7761 }
7762
7763 /* Field not found so far. If this is a tagged type which
7764 has a parent, try finding that field in the parent now. */
7765
7766 if (parent_offset != -1)
7767 {
7768 struct type *t;
7769
7770 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7771 name, 0, 1);
7772 if (t != NULL)
7773 return t;
7774 }
7775
7776 BadName:
7777 if (!noerr)
7778 {
7779 const char *name_str = name != NULL ? name : _("<null>");
7780
7781 error (_("Type %s has no component named %s"),
7782 type_as_string (type).c_str (), name_str);
7783 }
7784
7785 return NULL;
7786 }
7787
7788 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7789 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7790 represents an unchecked union (that is, the variant part of a
7791 record that is named in an Unchecked_Union pragma). */
7792
7793 static int
7794 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7795 {
7796 const char *discrim_name = ada_variant_discrim_name (var_type);
7797
7798 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7799 }
7800
7801
7802 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7803 within a value of type OUTER_TYPE that is stored in GDB at
7804 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7805 numbering from 0) is applicable. Returns -1 if none are. */
7806
7807 int
7808 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7809 const gdb_byte *outer_valaddr)
7810 {
7811 int others_clause;
7812 int i;
7813 const char *discrim_name = ada_variant_discrim_name (var_type);
7814 struct value *outer;
7815 struct value *discrim;
7816 LONGEST discrim_val;
7817
7818 /* Using plain value_from_contents_and_address here causes problems
7819 because we will end up trying to resolve a type that is currently
7820 being constructed. */
7821 outer = value_from_contents_and_address_unresolved (outer_type,
7822 outer_valaddr, 0);
7823 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7824 if (discrim == NULL)
7825 return -1;
7826 discrim_val = value_as_long (discrim);
7827
7828 others_clause = -1;
7829 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7830 {
7831 if (ada_is_others_clause (var_type, i))
7832 others_clause = i;
7833 else if (ada_in_variant (discrim_val, var_type, i))
7834 return i;
7835 }
7836
7837 return others_clause;
7838 }
7839 \f
7840
7841
7842 /* Dynamic-Sized Records */
7843
7844 /* Strategy: The type ostensibly attached to a value with dynamic size
7845 (i.e., a size that is not statically recorded in the debugging
7846 data) does not accurately reflect the size or layout of the value.
7847 Our strategy is to convert these values to values with accurate,
7848 conventional types that are constructed on the fly. */
7849
7850 /* There is a subtle and tricky problem here. In general, we cannot
7851 determine the size of dynamic records without its data. However,
7852 the 'struct value' data structure, which GDB uses to represent
7853 quantities in the inferior process (the target), requires the size
7854 of the type at the time of its allocation in order to reserve space
7855 for GDB's internal copy of the data. That's why the
7856 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7857 rather than struct value*s.
7858
7859 However, GDB's internal history variables ($1, $2, etc.) are
7860 struct value*s containing internal copies of the data that are not, in
7861 general, the same as the data at their corresponding addresses in
7862 the target. Fortunately, the types we give to these values are all
7863 conventional, fixed-size types (as per the strategy described
7864 above), so that we don't usually have to perform the
7865 'to_fixed_xxx_type' conversions to look at their values.
7866 Unfortunately, there is one exception: if one of the internal
7867 history variables is an array whose elements are unconstrained
7868 records, then we will need to create distinct fixed types for each
7869 element selected. */
7870
7871 /* The upshot of all of this is that many routines take a (type, host
7872 address, target address) triple as arguments to represent a value.
7873 The host address, if non-null, is supposed to contain an internal
7874 copy of the relevant data; otherwise, the program is to consult the
7875 target at the target address. */
7876
7877 /* Assuming that VAL0 represents a pointer value, the result of
7878 dereferencing it. Differs from value_ind in its treatment of
7879 dynamic-sized types. */
7880
7881 struct value *
7882 ada_value_ind (struct value *val0)
7883 {
7884 struct value *val = value_ind (val0);
7885
7886 if (ada_is_tagged_type (value_type (val), 0))
7887 val = ada_tag_value_at_base_address (val);
7888
7889 return ada_to_fixed_value (val);
7890 }
7891
7892 /* The value resulting from dereferencing any "reference to"
7893 qualifiers on VAL0. */
7894
7895 static struct value *
7896 ada_coerce_ref (struct value *val0)
7897 {
7898 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7899 {
7900 struct value *val = val0;
7901
7902 val = coerce_ref (val);
7903
7904 if (ada_is_tagged_type (value_type (val), 0))
7905 val = ada_tag_value_at_base_address (val);
7906
7907 return ada_to_fixed_value (val);
7908 }
7909 else
7910 return val0;
7911 }
7912
7913 /* Return OFF rounded upward if necessary to a multiple of
7914 ALIGNMENT (a power of 2). */
7915
7916 static unsigned int
7917 align_value (unsigned int off, unsigned int alignment)
7918 {
7919 return (off + alignment - 1) & ~(alignment - 1);
7920 }
7921
7922 /* Return the bit alignment required for field #F of template type TYPE. */
7923
7924 static unsigned int
7925 field_alignment (struct type *type, int f)
7926 {
7927 const char *name = TYPE_FIELD_NAME (type, f);
7928 int len;
7929 int align_offset;
7930
7931 /* The field name should never be null, unless the debugging information
7932 is somehow malformed. In this case, we assume the field does not
7933 require any alignment. */
7934 if (name == NULL)
7935 return 1;
7936
7937 len = strlen (name);
7938
7939 if (!isdigit (name[len - 1]))
7940 return 1;
7941
7942 if (isdigit (name[len - 2]))
7943 align_offset = len - 2;
7944 else
7945 align_offset = len - 1;
7946
7947 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7948 return TARGET_CHAR_BIT;
7949
7950 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7951 }
7952
7953 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7954
7955 static struct symbol *
7956 ada_find_any_type_symbol (const char *name)
7957 {
7958 struct symbol *sym;
7959
7960 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7961 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7962 return sym;
7963
7964 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7965 return sym;
7966 }
7967
7968 /* Find a type named NAME. Ignores ambiguity. This routine will look
7969 solely for types defined by debug info, it will not search the GDB
7970 primitive types. */
7971
7972 static struct type *
7973 ada_find_any_type (const char *name)
7974 {
7975 struct symbol *sym = ada_find_any_type_symbol (name);
7976
7977 if (sym != NULL)
7978 return SYMBOL_TYPE (sym);
7979
7980 return NULL;
7981 }
7982
7983 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7984 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7985 symbol, in which case it is returned. Otherwise, this looks for
7986 symbols whose name is that of NAME_SYM suffixed with "___XR".
7987 Return symbol if found, and NULL otherwise. */
7988
7989 struct symbol *
7990 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7991 {
7992 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7993 struct symbol *sym;
7994
7995 if (strstr (name, "___XR") != NULL)
7996 return name_sym;
7997
7998 sym = find_old_style_renaming_symbol (name, block);
7999
8000 if (sym != NULL)
8001 return sym;
8002
8003 /* Not right yet. FIXME pnh 7/20/2007. */
8004 sym = ada_find_any_type_symbol (name);
8005 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8006 return sym;
8007 else
8008 return NULL;
8009 }
8010
8011 static struct symbol *
8012 find_old_style_renaming_symbol (const char *name, const struct block *block)
8013 {
8014 const struct symbol *function_sym = block_linkage_function (block);
8015 char *rename;
8016
8017 if (function_sym != NULL)
8018 {
8019 /* If the symbol is defined inside a function, NAME is not fully
8020 qualified. This means we need to prepend the function name
8021 as well as adding the ``___XR'' suffix to build the name of
8022 the associated renaming symbol. */
8023 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8024 /* Function names sometimes contain suffixes used
8025 for instance to qualify nested subprograms. When building
8026 the XR type name, we need to make sure that this suffix is
8027 not included. So do not include any suffix in the function
8028 name length below. */
8029 int function_name_len = ada_name_prefix_len (function_name);
8030 const int rename_len = function_name_len + 2 /* "__" */
8031 + strlen (name) + 6 /* "___XR\0" */ ;
8032
8033 /* Strip the suffix if necessary. */
8034 ada_remove_trailing_digits (function_name, &function_name_len);
8035 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8036 ada_remove_Xbn_suffix (function_name, &function_name_len);
8037
8038 /* Library-level functions are a special case, as GNAT adds
8039 a ``_ada_'' prefix to the function name to avoid namespace
8040 pollution. However, the renaming symbols themselves do not
8041 have this prefix, so we need to skip this prefix if present. */
8042 if (function_name_len > 5 /* "_ada_" */
8043 && strstr (function_name, "_ada_") == function_name)
8044 {
8045 function_name += 5;
8046 function_name_len -= 5;
8047 }
8048
8049 rename = (char *) alloca (rename_len * sizeof (char));
8050 strncpy (rename, function_name, function_name_len);
8051 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8052 "__%s___XR", name);
8053 }
8054 else
8055 {
8056 const int rename_len = strlen (name) + 6;
8057
8058 rename = (char *) alloca (rename_len * sizeof (char));
8059 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8060 }
8061
8062 return ada_find_any_type_symbol (rename);
8063 }
8064
8065 /* Because of GNAT encoding conventions, several GDB symbols may match a
8066 given type name. If the type denoted by TYPE0 is to be preferred to
8067 that of TYPE1 for purposes of type printing, return non-zero;
8068 otherwise return 0. */
8069
8070 int
8071 ada_prefer_type (struct type *type0, struct type *type1)
8072 {
8073 if (type1 == NULL)
8074 return 1;
8075 else if (type0 == NULL)
8076 return 0;
8077 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8078 return 1;
8079 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8080 return 0;
8081 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8082 return 1;
8083 else if (ada_is_constrained_packed_array_type (type0))
8084 return 1;
8085 else if (ada_is_array_descriptor_type (type0)
8086 && !ada_is_array_descriptor_type (type1))
8087 return 1;
8088 else
8089 {
8090 const char *type0_name = TYPE_NAME (type0);
8091 const char *type1_name = TYPE_NAME (type1);
8092
8093 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8094 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8095 return 1;
8096 }
8097 return 0;
8098 }
8099
8100 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8101 null. */
8102
8103 const char *
8104 ada_type_name (struct type *type)
8105 {
8106 if (type == NULL)
8107 return NULL;
8108 return TYPE_NAME (type);
8109 }
8110
8111 /* Search the list of "descriptive" types associated to TYPE for a type
8112 whose name is NAME. */
8113
8114 static struct type *
8115 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8116 {
8117 struct type *result, *tmp;
8118
8119 if (ada_ignore_descriptive_types_p)
8120 return NULL;
8121
8122 /* If there no descriptive-type info, then there is no parallel type
8123 to be found. */
8124 if (!HAVE_GNAT_AUX_INFO (type))
8125 return NULL;
8126
8127 result = TYPE_DESCRIPTIVE_TYPE (type);
8128 while (result != NULL)
8129 {
8130 const char *result_name = ada_type_name (result);
8131
8132 if (result_name == NULL)
8133 {
8134 warning (_("unexpected null name on descriptive type"));
8135 return NULL;
8136 }
8137
8138 /* If the names match, stop. */
8139 if (strcmp (result_name, name) == 0)
8140 break;
8141
8142 /* Otherwise, look at the next item on the list, if any. */
8143 if (HAVE_GNAT_AUX_INFO (result))
8144 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8145 else
8146 tmp = NULL;
8147
8148 /* If not found either, try after having resolved the typedef. */
8149 if (tmp != NULL)
8150 result = tmp;
8151 else
8152 {
8153 result = check_typedef (result);
8154 if (HAVE_GNAT_AUX_INFO (result))
8155 result = TYPE_DESCRIPTIVE_TYPE (result);
8156 else
8157 result = NULL;
8158 }
8159 }
8160
8161 /* If we didn't find a match, see whether this is a packed array. With
8162 older compilers, the descriptive type information is either absent or
8163 irrelevant when it comes to packed arrays so the above lookup fails.
8164 Fall back to using a parallel lookup by name in this case. */
8165 if (result == NULL && ada_is_constrained_packed_array_type (type))
8166 return ada_find_any_type (name);
8167
8168 return result;
8169 }
8170
8171 /* Find a parallel type to TYPE with the specified NAME, using the
8172 descriptive type taken from the debugging information, if available,
8173 and otherwise using the (slower) name-based method. */
8174
8175 static struct type *
8176 ada_find_parallel_type_with_name (struct type *type, const char *name)
8177 {
8178 struct type *result = NULL;
8179
8180 if (HAVE_GNAT_AUX_INFO (type))
8181 result = find_parallel_type_by_descriptive_type (type, name);
8182 else
8183 result = ada_find_any_type (name);
8184
8185 return result;
8186 }
8187
8188 /* Same as above, but specify the name of the parallel type by appending
8189 SUFFIX to the name of TYPE. */
8190
8191 struct type *
8192 ada_find_parallel_type (struct type *type, const char *suffix)
8193 {
8194 char *name;
8195 const char *type_name = ada_type_name (type);
8196 int len;
8197
8198 if (type_name == NULL)
8199 return NULL;
8200
8201 len = strlen (type_name);
8202
8203 name = (char *) alloca (len + strlen (suffix) + 1);
8204
8205 strcpy (name, type_name);
8206 strcpy (name + len, suffix);
8207
8208 return ada_find_parallel_type_with_name (type, name);
8209 }
8210
8211 /* If TYPE is a variable-size record type, return the corresponding template
8212 type describing its fields. Otherwise, return NULL. */
8213
8214 static struct type *
8215 dynamic_template_type (struct type *type)
8216 {
8217 type = ada_check_typedef (type);
8218
8219 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8220 || ada_type_name (type) == NULL)
8221 return NULL;
8222 else
8223 {
8224 int len = strlen (ada_type_name (type));
8225
8226 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8227 return type;
8228 else
8229 return ada_find_parallel_type (type, "___XVE");
8230 }
8231 }
8232
8233 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8234 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8235
8236 static int
8237 is_dynamic_field (struct type *templ_type, int field_num)
8238 {
8239 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8240
8241 return name != NULL
8242 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8243 && strstr (name, "___XVL") != NULL;
8244 }
8245
8246 /* The index of the variant field of TYPE, or -1 if TYPE does not
8247 represent a variant record type. */
8248
8249 static int
8250 variant_field_index (struct type *type)
8251 {
8252 int f;
8253
8254 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8255 return -1;
8256
8257 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8258 {
8259 if (ada_is_variant_part (type, f))
8260 return f;
8261 }
8262 return -1;
8263 }
8264
8265 /* A record type with no fields. */
8266
8267 static struct type *
8268 empty_record (struct type *templ)
8269 {
8270 struct type *type = alloc_type_copy (templ);
8271
8272 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8273 TYPE_NFIELDS (type) = 0;
8274 TYPE_FIELDS (type) = NULL;
8275 INIT_NONE_SPECIFIC (type);
8276 TYPE_NAME (type) = "<empty>";
8277 TYPE_LENGTH (type) = 0;
8278 return type;
8279 }
8280
8281 /* An ordinary record type (with fixed-length fields) that describes
8282 the value of type TYPE at VALADDR or ADDRESS (see comments at
8283 the beginning of this section) VAL according to GNAT conventions.
8284 DVAL0 should describe the (portion of a) record that contains any
8285 necessary discriminants. It should be NULL if value_type (VAL) is
8286 an outer-level type (i.e., as opposed to a branch of a variant.) A
8287 variant field (unless unchecked) is replaced by a particular branch
8288 of the variant.
8289
8290 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8291 length are not statically known are discarded. As a consequence,
8292 VALADDR, ADDRESS and DVAL0 are ignored.
8293
8294 NOTE: Limitations: For now, we assume that dynamic fields and
8295 variants occupy whole numbers of bytes. However, they need not be
8296 byte-aligned. */
8297
8298 struct type *
8299 ada_template_to_fixed_record_type_1 (struct type *type,
8300 const gdb_byte *valaddr,
8301 CORE_ADDR address, struct value *dval0,
8302 int keep_dynamic_fields)
8303 {
8304 struct value *mark = value_mark ();
8305 struct value *dval;
8306 struct type *rtype;
8307 int nfields, bit_len;
8308 int variant_field;
8309 long off;
8310 int fld_bit_len;
8311 int f;
8312
8313 /* Compute the number of fields in this record type that are going
8314 to be processed: unless keep_dynamic_fields, this includes only
8315 fields whose position and length are static will be processed. */
8316 if (keep_dynamic_fields)
8317 nfields = TYPE_NFIELDS (type);
8318 else
8319 {
8320 nfields = 0;
8321 while (nfields < TYPE_NFIELDS (type)
8322 && !ada_is_variant_part (type, nfields)
8323 && !is_dynamic_field (type, nfields))
8324 nfields++;
8325 }
8326
8327 rtype = alloc_type_copy (type);
8328 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8329 INIT_NONE_SPECIFIC (rtype);
8330 TYPE_NFIELDS (rtype) = nfields;
8331 TYPE_FIELDS (rtype) = (struct field *)
8332 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8333 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8334 TYPE_NAME (rtype) = ada_type_name (type);
8335 TYPE_FIXED_INSTANCE (rtype) = 1;
8336
8337 off = 0;
8338 bit_len = 0;
8339 variant_field = -1;
8340
8341 for (f = 0; f < nfields; f += 1)
8342 {
8343 off = align_value (off, field_alignment (type, f))
8344 + TYPE_FIELD_BITPOS (type, f);
8345 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8346 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8347
8348 if (ada_is_variant_part (type, f))
8349 {
8350 variant_field = f;
8351 fld_bit_len = 0;
8352 }
8353 else if (is_dynamic_field (type, f))
8354 {
8355 const gdb_byte *field_valaddr = valaddr;
8356 CORE_ADDR field_address = address;
8357 struct type *field_type =
8358 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8359
8360 if (dval0 == NULL)
8361 {
8362 /* rtype's length is computed based on the run-time
8363 value of discriminants. If the discriminants are not
8364 initialized, the type size may be completely bogus and
8365 GDB may fail to allocate a value for it. So check the
8366 size first before creating the value. */
8367 ada_ensure_varsize_limit (rtype);
8368 /* Using plain value_from_contents_and_address here
8369 causes problems because we will end up trying to
8370 resolve a type that is currently being
8371 constructed. */
8372 dval = value_from_contents_and_address_unresolved (rtype,
8373 valaddr,
8374 address);
8375 rtype = value_type (dval);
8376 }
8377 else
8378 dval = dval0;
8379
8380 /* If the type referenced by this field is an aligner type, we need
8381 to unwrap that aligner type, because its size might not be set.
8382 Keeping the aligner type would cause us to compute the wrong
8383 size for this field, impacting the offset of the all the fields
8384 that follow this one. */
8385 if (ada_is_aligner_type (field_type))
8386 {
8387 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8388
8389 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8390 field_address = cond_offset_target (field_address, field_offset);
8391 field_type = ada_aligned_type (field_type);
8392 }
8393
8394 field_valaddr = cond_offset_host (field_valaddr,
8395 off / TARGET_CHAR_BIT);
8396 field_address = cond_offset_target (field_address,
8397 off / TARGET_CHAR_BIT);
8398
8399 /* Get the fixed type of the field. Note that, in this case,
8400 we do not want to get the real type out of the tag: if
8401 the current field is the parent part of a tagged record,
8402 we will get the tag of the object. Clearly wrong: the real
8403 type of the parent is not the real type of the child. We
8404 would end up in an infinite loop. */
8405 field_type = ada_get_base_type (field_type);
8406 field_type = ada_to_fixed_type (field_type, field_valaddr,
8407 field_address, dval, 0);
8408 /* If the field size is already larger than the maximum
8409 object size, then the record itself will necessarily
8410 be larger than the maximum object size. We need to make
8411 this check now, because the size might be so ridiculously
8412 large (due to an uninitialized variable in the inferior)
8413 that it would cause an overflow when adding it to the
8414 record size. */
8415 ada_ensure_varsize_limit (field_type);
8416
8417 TYPE_FIELD_TYPE (rtype, f) = field_type;
8418 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8419 /* The multiplication can potentially overflow. But because
8420 the field length has been size-checked just above, and
8421 assuming that the maximum size is a reasonable value,
8422 an overflow should not happen in practice. So rather than
8423 adding overflow recovery code to this already complex code,
8424 we just assume that it's not going to happen. */
8425 fld_bit_len =
8426 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8427 }
8428 else
8429 {
8430 /* Note: If this field's type is a typedef, it is important
8431 to preserve the typedef layer.
8432
8433 Otherwise, we might be transforming a typedef to a fat
8434 pointer (encoding a pointer to an unconstrained array),
8435 into a basic fat pointer (encoding an unconstrained
8436 array). As both types are implemented using the same
8437 structure, the typedef is the only clue which allows us
8438 to distinguish between the two options. Stripping it
8439 would prevent us from printing this field appropriately. */
8440 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8441 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8442 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8443 fld_bit_len =
8444 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8445 else
8446 {
8447 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8448
8449 /* We need to be careful of typedefs when computing
8450 the length of our field. If this is a typedef,
8451 get the length of the target type, not the length
8452 of the typedef. */
8453 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8454 field_type = ada_typedef_target_type (field_type);
8455
8456 fld_bit_len =
8457 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8458 }
8459 }
8460 if (off + fld_bit_len > bit_len)
8461 bit_len = off + fld_bit_len;
8462 off += fld_bit_len;
8463 TYPE_LENGTH (rtype) =
8464 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8465 }
8466
8467 /* We handle the variant part, if any, at the end because of certain
8468 odd cases in which it is re-ordered so as NOT to be the last field of
8469 the record. This can happen in the presence of representation
8470 clauses. */
8471 if (variant_field >= 0)
8472 {
8473 struct type *branch_type;
8474
8475 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8476
8477 if (dval0 == NULL)
8478 {
8479 /* Using plain value_from_contents_and_address here causes
8480 problems because we will end up trying to resolve a type
8481 that is currently being constructed. */
8482 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8483 address);
8484 rtype = value_type (dval);
8485 }
8486 else
8487 dval = dval0;
8488
8489 branch_type =
8490 to_fixed_variant_branch_type
8491 (TYPE_FIELD_TYPE (type, variant_field),
8492 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8493 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8494 if (branch_type == NULL)
8495 {
8496 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8497 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8498 TYPE_NFIELDS (rtype) -= 1;
8499 }
8500 else
8501 {
8502 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8503 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8504 fld_bit_len =
8505 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8506 TARGET_CHAR_BIT;
8507 if (off + fld_bit_len > bit_len)
8508 bit_len = off + fld_bit_len;
8509 TYPE_LENGTH (rtype) =
8510 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8511 }
8512 }
8513
8514 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8515 should contain the alignment of that record, which should be a strictly
8516 positive value. If null or negative, then something is wrong, most
8517 probably in the debug info. In that case, we don't round up the size
8518 of the resulting type. If this record is not part of another structure,
8519 the current RTYPE length might be good enough for our purposes. */
8520 if (TYPE_LENGTH (type) <= 0)
8521 {
8522 if (TYPE_NAME (rtype))
8523 warning (_("Invalid type size for `%s' detected: %s."),
8524 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
8525 else
8526 warning (_("Invalid type size for <unnamed> detected: %s."),
8527 pulongest (TYPE_LENGTH (type)));
8528 }
8529 else
8530 {
8531 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8532 TYPE_LENGTH (type));
8533 }
8534
8535 value_free_to_mark (mark);
8536 if (TYPE_LENGTH (rtype) > varsize_limit)
8537 error (_("record type with dynamic size is larger than varsize-limit"));
8538 return rtype;
8539 }
8540
8541 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8542 of 1. */
8543
8544 static struct type *
8545 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8546 CORE_ADDR address, struct value *dval0)
8547 {
8548 return ada_template_to_fixed_record_type_1 (type, valaddr,
8549 address, dval0, 1);
8550 }
8551
8552 /* An ordinary record type in which ___XVL-convention fields and
8553 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8554 static approximations, containing all possible fields. Uses
8555 no runtime values. Useless for use in values, but that's OK,
8556 since the results are used only for type determinations. Works on both
8557 structs and unions. Representation note: to save space, we memorize
8558 the result of this function in the TYPE_TARGET_TYPE of the
8559 template type. */
8560
8561 static struct type *
8562 template_to_static_fixed_type (struct type *type0)
8563 {
8564 struct type *type;
8565 int nfields;
8566 int f;
8567
8568 /* No need no do anything if the input type is already fixed. */
8569 if (TYPE_FIXED_INSTANCE (type0))
8570 return type0;
8571
8572 /* Likewise if we already have computed the static approximation. */
8573 if (TYPE_TARGET_TYPE (type0) != NULL)
8574 return TYPE_TARGET_TYPE (type0);
8575
8576 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8577 type = type0;
8578 nfields = TYPE_NFIELDS (type0);
8579
8580 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8581 recompute all over next time. */
8582 TYPE_TARGET_TYPE (type0) = type;
8583
8584 for (f = 0; f < nfields; f += 1)
8585 {
8586 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8587 struct type *new_type;
8588
8589 if (is_dynamic_field (type0, f))
8590 {
8591 field_type = ada_check_typedef (field_type);
8592 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8593 }
8594 else
8595 new_type = static_unwrap_type (field_type);
8596
8597 if (new_type != field_type)
8598 {
8599 /* Clone TYPE0 only the first time we get a new field type. */
8600 if (type == type0)
8601 {
8602 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8603 TYPE_CODE (type) = TYPE_CODE (type0);
8604 INIT_NONE_SPECIFIC (type);
8605 TYPE_NFIELDS (type) = nfields;
8606 TYPE_FIELDS (type) = (struct field *)
8607 TYPE_ALLOC (type, nfields * sizeof (struct field));
8608 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8609 sizeof (struct field) * nfields);
8610 TYPE_NAME (type) = ada_type_name (type0);
8611 TYPE_FIXED_INSTANCE (type) = 1;
8612 TYPE_LENGTH (type) = 0;
8613 }
8614 TYPE_FIELD_TYPE (type, f) = new_type;
8615 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8616 }
8617 }
8618
8619 return type;
8620 }
8621
8622 /* Given an object of type TYPE whose contents are at VALADDR and
8623 whose address in memory is ADDRESS, returns a revision of TYPE,
8624 which should be a non-dynamic-sized record, in which the variant
8625 part, if any, is replaced with the appropriate branch. Looks
8626 for discriminant values in DVAL0, which can be NULL if the record
8627 contains the necessary discriminant values. */
8628
8629 static struct type *
8630 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8631 CORE_ADDR address, struct value *dval0)
8632 {
8633 struct value *mark = value_mark ();
8634 struct value *dval;
8635 struct type *rtype;
8636 struct type *branch_type;
8637 int nfields = TYPE_NFIELDS (type);
8638 int variant_field = variant_field_index (type);
8639
8640 if (variant_field == -1)
8641 return type;
8642
8643 if (dval0 == NULL)
8644 {
8645 dval = value_from_contents_and_address (type, valaddr, address);
8646 type = value_type (dval);
8647 }
8648 else
8649 dval = dval0;
8650
8651 rtype = alloc_type_copy (type);
8652 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8653 INIT_NONE_SPECIFIC (rtype);
8654 TYPE_NFIELDS (rtype) = nfields;
8655 TYPE_FIELDS (rtype) =
8656 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8657 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8658 sizeof (struct field) * nfields);
8659 TYPE_NAME (rtype) = ada_type_name (type);
8660 TYPE_FIXED_INSTANCE (rtype) = 1;
8661 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8662
8663 branch_type = to_fixed_variant_branch_type
8664 (TYPE_FIELD_TYPE (type, variant_field),
8665 cond_offset_host (valaddr,
8666 TYPE_FIELD_BITPOS (type, variant_field)
8667 / TARGET_CHAR_BIT),
8668 cond_offset_target (address,
8669 TYPE_FIELD_BITPOS (type, variant_field)
8670 / TARGET_CHAR_BIT), dval);
8671 if (branch_type == NULL)
8672 {
8673 int f;
8674
8675 for (f = variant_field + 1; f < nfields; f += 1)
8676 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8677 TYPE_NFIELDS (rtype) -= 1;
8678 }
8679 else
8680 {
8681 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8682 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8683 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8684 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8685 }
8686 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8687
8688 value_free_to_mark (mark);
8689 return rtype;
8690 }
8691
8692 /* An ordinary record type (with fixed-length fields) that describes
8693 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8694 beginning of this section]. Any necessary discriminants' values
8695 should be in DVAL, a record value; it may be NULL if the object
8696 at ADDR itself contains any necessary discriminant values.
8697 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8698 values from the record are needed. Except in the case that DVAL,
8699 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8700 unchecked) is replaced by a particular branch of the variant.
8701
8702 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8703 is questionable and may be removed. It can arise during the
8704 processing of an unconstrained-array-of-record type where all the
8705 variant branches have exactly the same size. This is because in
8706 such cases, the compiler does not bother to use the XVS convention
8707 when encoding the record. I am currently dubious of this
8708 shortcut and suspect the compiler should be altered. FIXME. */
8709
8710 static struct type *
8711 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8712 CORE_ADDR address, struct value *dval)
8713 {
8714 struct type *templ_type;
8715
8716 if (TYPE_FIXED_INSTANCE (type0))
8717 return type0;
8718
8719 templ_type = dynamic_template_type (type0);
8720
8721 if (templ_type != NULL)
8722 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8723 else if (variant_field_index (type0) >= 0)
8724 {
8725 if (dval == NULL && valaddr == NULL && address == 0)
8726 return type0;
8727 return to_record_with_fixed_variant_part (type0, valaddr, address,
8728 dval);
8729 }
8730 else
8731 {
8732 TYPE_FIXED_INSTANCE (type0) = 1;
8733 return type0;
8734 }
8735
8736 }
8737
8738 /* An ordinary record type (with fixed-length fields) that describes
8739 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8740 union type. Any necessary discriminants' values should be in DVAL,
8741 a record value. That is, this routine selects the appropriate
8742 branch of the union at ADDR according to the discriminant value
8743 indicated in the union's type name. Returns VAR_TYPE0 itself if
8744 it represents a variant subject to a pragma Unchecked_Union. */
8745
8746 static struct type *
8747 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8748 CORE_ADDR address, struct value *dval)
8749 {
8750 int which;
8751 struct type *templ_type;
8752 struct type *var_type;
8753
8754 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8755 var_type = TYPE_TARGET_TYPE (var_type0);
8756 else
8757 var_type = var_type0;
8758
8759 templ_type = ada_find_parallel_type (var_type, "___XVU");
8760
8761 if (templ_type != NULL)
8762 var_type = templ_type;
8763
8764 if (is_unchecked_variant (var_type, value_type (dval)))
8765 return var_type0;
8766 which =
8767 ada_which_variant_applies (var_type,
8768 value_type (dval), value_contents (dval));
8769
8770 if (which < 0)
8771 return empty_record (var_type);
8772 else if (is_dynamic_field (var_type, which))
8773 return to_fixed_record_type
8774 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8775 valaddr, address, dval);
8776 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8777 return
8778 to_fixed_record_type
8779 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8780 else
8781 return TYPE_FIELD_TYPE (var_type, which);
8782 }
8783
8784 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8785 ENCODING_TYPE, a type following the GNAT conventions for discrete
8786 type encodings, only carries redundant information. */
8787
8788 static int
8789 ada_is_redundant_range_encoding (struct type *range_type,
8790 struct type *encoding_type)
8791 {
8792 const char *bounds_str;
8793 int n;
8794 LONGEST lo, hi;
8795
8796 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8797
8798 if (TYPE_CODE (get_base_type (range_type))
8799 != TYPE_CODE (get_base_type (encoding_type)))
8800 {
8801 /* The compiler probably used a simple base type to describe
8802 the range type instead of the range's actual base type,
8803 expecting us to get the real base type from the encoding
8804 anyway. In this situation, the encoding cannot be ignored
8805 as redundant. */
8806 return 0;
8807 }
8808
8809 if (is_dynamic_type (range_type))
8810 return 0;
8811
8812 if (TYPE_NAME (encoding_type) == NULL)
8813 return 0;
8814
8815 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8816 if (bounds_str == NULL)
8817 return 0;
8818
8819 n = 8; /* Skip "___XDLU_". */
8820 if (!ada_scan_number (bounds_str, n, &lo, &n))
8821 return 0;
8822 if (TYPE_LOW_BOUND (range_type) != lo)
8823 return 0;
8824
8825 n += 2; /* Skip the "__" separator between the two bounds. */
8826 if (!ada_scan_number (bounds_str, n, &hi, &n))
8827 return 0;
8828 if (TYPE_HIGH_BOUND (range_type) != hi)
8829 return 0;
8830
8831 return 1;
8832 }
8833
8834 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8835 a type following the GNAT encoding for describing array type
8836 indices, only carries redundant information. */
8837
8838 static int
8839 ada_is_redundant_index_type_desc (struct type *array_type,
8840 struct type *desc_type)
8841 {
8842 struct type *this_layer = check_typedef (array_type);
8843 int i;
8844
8845 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8846 {
8847 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8848 TYPE_FIELD_TYPE (desc_type, i)))
8849 return 0;
8850 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8851 }
8852
8853 return 1;
8854 }
8855
8856 /* Assuming that TYPE0 is an array type describing the type of a value
8857 at ADDR, and that DVAL describes a record containing any
8858 discriminants used in TYPE0, returns a type for the value that
8859 contains no dynamic components (that is, no components whose sizes
8860 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8861 true, gives an error message if the resulting type's size is over
8862 varsize_limit. */
8863
8864 static struct type *
8865 to_fixed_array_type (struct type *type0, struct value *dval,
8866 int ignore_too_big)
8867 {
8868 struct type *index_type_desc;
8869 struct type *result;
8870 int constrained_packed_array_p;
8871 static const char *xa_suffix = "___XA";
8872
8873 type0 = ada_check_typedef (type0);
8874 if (TYPE_FIXED_INSTANCE (type0))
8875 return type0;
8876
8877 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8878 if (constrained_packed_array_p)
8879 type0 = decode_constrained_packed_array_type (type0);
8880
8881 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8882
8883 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8884 encoding suffixed with 'P' may still be generated. If so,
8885 it should be used to find the XA type. */
8886
8887 if (index_type_desc == NULL)
8888 {
8889 const char *type_name = ada_type_name (type0);
8890
8891 if (type_name != NULL)
8892 {
8893 const int len = strlen (type_name);
8894 char *name = (char *) alloca (len + strlen (xa_suffix));
8895
8896 if (type_name[len - 1] == 'P')
8897 {
8898 strcpy (name, type_name);
8899 strcpy (name + len - 1, xa_suffix);
8900 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8901 }
8902 }
8903 }
8904
8905 ada_fixup_array_indexes_type (index_type_desc);
8906 if (index_type_desc != NULL
8907 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8908 {
8909 /* Ignore this ___XA parallel type, as it does not bring any
8910 useful information. This allows us to avoid creating fixed
8911 versions of the array's index types, which would be identical
8912 to the original ones. This, in turn, can also help avoid
8913 the creation of fixed versions of the array itself. */
8914 index_type_desc = NULL;
8915 }
8916
8917 if (index_type_desc == NULL)
8918 {
8919 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8920
8921 /* NOTE: elt_type---the fixed version of elt_type0---should never
8922 depend on the contents of the array in properly constructed
8923 debugging data. */
8924 /* Create a fixed version of the array element type.
8925 We're not providing the address of an element here,
8926 and thus the actual object value cannot be inspected to do
8927 the conversion. This should not be a problem, since arrays of
8928 unconstrained objects are not allowed. In particular, all
8929 the elements of an array of a tagged type should all be of
8930 the same type specified in the debugging info. No need to
8931 consult the object tag. */
8932 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8933
8934 /* Make sure we always create a new array type when dealing with
8935 packed array types, since we're going to fix-up the array
8936 type length and element bitsize a little further down. */
8937 if (elt_type0 == elt_type && !constrained_packed_array_p)
8938 result = type0;
8939 else
8940 result = create_array_type (alloc_type_copy (type0),
8941 elt_type, TYPE_INDEX_TYPE (type0));
8942 }
8943 else
8944 {
8945 int i;
8946 struct type *elt_type0;
8947
8948 elt_type0 = type0;
8949 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8950 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8951
8952 /* NOTE: result---the fixed version of elt_type0---should never
8953 depend on the contents of the array in properly constructed
8954 debugging data. */
8955 /* Create a fixed version of the array element type.
8956 We're not providing the address of an element here,
8957 and thus the actual object value cannot be inspected to do
8958 the conversion. This should not be a problem, since arrays of
8959 unconstrained objects are not allowed. In particular, all
8960 the elements of an array of a tagged type should all be of
8961 the same type specified in the debugging info. No need to
8962 consult the object tag. */
8963 result =
8964 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8965
8966 elt_type0 = type0;
8967 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8968 {
8969 struct type *range_type =
8970 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8971
8972 result = create_array_type (alloc_type_copy (elt_type0),
8973 result, range_type);
8974 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8975 }
8976 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8977 error (_("array type with dynamic size is larger than varsize-limit"));
8978 }
8979
8980 /* We want to preserve the type name. This can be useful when
8981 trying to get the type name of a value that has already been
8982 printed (for instance, if the user did "print VAR; whatis $". */
8983 TYPE_NAME (result) = TYPE_NAME (type0);
8984
8985 if (constrained_packed_array_p)
8986 {
8987 /* So far, the resulting type has been created as if the original
8988 type was a regular (non-packed) array type. As a result, the
8989 bitsize of the array elements needs to be set again, and the array
8990 length needs to be recomputed based on that bitsize. */
8991 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8992 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8993
8994 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8995 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8996 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8997 TYPE_LENGTH (result)++;
8998 }
8999
9000 TYPE_FIXED_INSTANCE (result) = 1;
9001 return result;
9002 }
9003
9004
9005 /* A standard type (containing no dynamically sized components)
9006 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9007 DVAL describes a record containing any discriminants used in TYPE0,
9008 and may be NULL if there are none, or if the object of type TYPE at
9009 ADDRESS or in VALADDR contains these discriminants.
9010
9011 If CHECK_TAG is not null, in the case of tagged types, this function
9012 attempts to locate the object's tag and use it to compute the actual
9013 type. However, when ADDRESS is null, we cannot use it to determine the
9014 location of the tag, and therefore compute the tagged type's actual type.
9015 So we return the tagged type without consulting the tag. */
9016
9017 static struct type *
9018 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9019 CORE_ADDR address, struct value *dval, int check_tag)
9020 {
9021 type = ada_check_typedef (type);
9022
9023 /* Only un-fixed types need to be handled here. */
9024 if (!HAVE_GNAT_AUX_INFO (type))
9025 return type;
9026
9027 switch (TYPE_CODE (type))
9028 {
9029 default:
9030 return type;
9031 case TYPE_CODE_STRUCT:
9032 {
9033 struct type *static_type = to_static_fixed_type (type);
9034 struct type *fixed_record_type =
9035 to_fixed_record_type (type, valaddr, address, NULL);
9036
9037 /* If STATIC_TYPE is a tagged type and we know the object's address,
9038 then we can determine its tag, and compute the object's actual
9039 type from there. Note that we have to use the fixed record
9040 type (the parent part of the record may have dynamic fields
9041 and the way the location of _tag is expressed may depend on
9042 them). */
9043
9044 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9045 {
9046 struct value *tag =
9047 value_tag_from_contents_and_address
9048 (fixed_record_type,
9049 valaddr,
9050 address);
9051 struct type *real_type = type_from_tag (tag);
9052 struct value *obj =
9053 value_from_contents_and_address (fixed_record_type,
9054 valaddr,
9055 address);
9056 fixed_record_type = value_type (obj);
9057 if (real_type != NULL)
9058 return to_fixed_record_type
9059 (real_type, NULL,
9060 value_address (ada_tag_value_at_base_address (obj)), NULL);
9061 }
9062
9063 /* Check to see if there is a parallel ___XVZ variable.
9064 If there is, then it provides the actual size of our type. */
9065 else if (ada_type_name (fixed_record_type) != NULL)
9066 {
9067 const char *name = ada_type_name (fixed_record_type);
9068 char *xvz_name
9069 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9070 bool xvz_found = false;
9071 LONGEST size;
9072
9073 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9074 try
9075 {
9076 xvz_found = get_int_var_value (xvz_name, size);
9077 }
9078 catch (const gdb_exception_error &except)
9079 {
9080 /* We found the variable, but somehow failed to read
9081 its value. Rethrow the same error, but with a little
9082 bit more information, to help the user understand
9083 what went wrong (Eg: the variable might have been
9084 optimized out). */
9085 throw_error (except.error,
9086 _("unable to read value of %s (%s)"),
9087 xvz_name, except.what ());
9088 }
9089
9090 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9091 {
9092 fixed_record_type = copy_type (fixed_record_type);
9093 TYPE_LENGTH (fixed_record_type) = size;
9094
9095 /* The FIXED_RECORD_TYPE may have be a stub. We have
9096 observed this when the debugging info is STABS, and
9097 apparently it is something that is hard to fix.
9098
9099 In practice, we don't need the actual type definition
9100 at all, because the presence of the XVZ variable allows us
9101 to assume that there must be a XVS type as well, which we
9102 should be able to use later, when we need the actual type
9103 definition.
9104
9105 In the meantime, pretend that the "fixed" type we are
9106 returning is NOT a stub, because this can cause trouble
9107 when using this type to create new types targeting it.
9108 Indeed, the associated creation routines often check
9109 whether the target type is a stub and will try to replace
9110 it, thus using a type with the wrong size. This, in turn,
9111 might cause the new type to have the wrong size too.
9112 Consider the case of an array, for instance, where the size
9113 of the array is computed from the number of elements in
9114 our array multiplied by the size of its element. */
9115 TYPE_STUB (fixed_record_type) = 0;
9116 }
9117 }
9118 return fixed_record_type;
9119 }
9120 case TYPE_CODE_ARRAY:
9121 return to_fixed_array_type (type, dval, 1);
9122 case TYPE_CODE_UNION:
9123 if (dval == NULL)
9124 return type;
9125 else
9126 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9127 }
9128 }
9129
9130 /* The same as ada_to_fixed_type_1, except that it preserves the type
9131 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9132
9133 The typedef layer needs be preserved in order to differentiate between
9134 arrays and array pointers when both types are implemented using the same
9135 fat pointer. In the array pointer case, the pointer is encoded as
9136 a typedef of the pointer type. For instance, considering:
9137
9138 type String_Access is access String;
9139 S1 : String_Access := null;
9140
9141 To the debugger, S1 is defined as a typedef of type String. But
9142 to the user, it is a pointer. So if the user tries to print S1,
9143 we should not dereference the array, but print the array address
9144 instead.
9145
9146 If we didn't preserve the typedef layer, we would lose the fact that
9147 the type is to be presented as a pointer (needs de-reference before
9148 being printed). And we would also use the source-level type name. */
9149
9150 struct type *
9151 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9152 CORE_ADDR address, struct value *dval, int check_tag)
9153
9154 {
9155 struct type *fixed_type =
9156 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9157
9158 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9159 then preserve the typedef layer.
9160
9161 Implementation note: We can only check the main-type portion of
9162 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9163 from TYPE now returns a type that has the same instance flags
9164 as TYPE. For instance, if TYPE is a "typedef const", and its
9165 target type is a "struct", then the typedef elimination will return
9166 a "const" version of the target type. See check_typedef for more
9167 details about how the typedef layer elimination is done.
9168
9169 brobecker/2010-11-19: It seems to me that the only case where it is
9170 useful to preserve the typedef layer is when dealing with fat pointers.
9171 Perhaps, we could add a check for that and preserve the typedef layer
9172 only in that situation. But this seems unecessary so far, probably
9173 because we call check_typedef/ada_check_typedef pretty much everywhere.
9174 */
9175 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9176 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9177 == TYPE_MAIN_TYPE (fixed_type)))
9178 return type;
9179
9180 return fixed_type;
9181 }
9182
9183 /* A standard (static-sized) type corresponding as well as possible to
9184 TYPE0, but based on no runtime data. */
9185
9186 static struct type *
9187 to_static_fixed_type (struct type *type0)
9188 {
9189 struct type *type;
9190
9191 if (type0 == NULL)
9192 return NULL;
9193
9194 if (TYPE_FIXED_INSTANCE (type0))
9195 return type0;
9196
9197 type0 = ada_check_typedef (type0);
9198
9199 switch (TYPE_CODE (type0))
9200 {
9201 default:
9202 return type0;
9203 case TYPE_CODE_STRUCT:
9204 type = dynamic_template_type (type0);
9205 if (type != NULL)
9206 return template_to_static_fixed_type (type);
9207 else
9208 return template_to_static_fixed_type (type0);
9209 case TYPE_CODE_UNION:
9210 type = ada_find_parallel_type (type0, "___XVU");
9211 if (type != NULL)
9212 return template_to_static_fixed_type (type);
9213 else
9214 return template_to_static_fixed_type (type0);
9215 }
9216 }
9217
9218 /* A static approximation of TYPE with all type wrappers removed. */
9219
9220 static struct type *
9221 static_unwrap_type (struct type *type)
9222 {
9223 if (ada_is_aligner_type (type))
9224 {
9225 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9226 if (ada_type_name (type1) == NULL)
9227 TYPE_NAME (type1) = ada_type_name (type);
9228
9229 return static_unwrap_type (type1);
9230 }
9231 else
9232 {
9233 struct type *raw_real_type = ada_get_base_type (type);
9234
9235 if (raw_real_type == type)
9236 return type;
9237 else
9238 return to_static_fixed_type (raw_real_type);
9239 }
9240 }
9241
9242 /* In some cases, incomplete and private types require
9243 cross-references that are not resolved as records (for example,
9244 type Foo;
9245 type FooP is access Foo;
9246 V: FooP;
9247 type Foo is array ...;
9248 ). In these cases, since there is no mechanism for producing
9249 cross-references to such types, we instead substitute for FooP a
9250 stub enumeration type that is nowhere resolved, and whose tag is
9251 the name of the actual type. Call these types "non-record stubs". */
9252
9253 /* A type equivalent to TYPE that is not a non-record stub, if one
9254 exists, otherwise TYPE. */
9255
9256 struct type *
9257 ada_check_typedef (struct type *type)
9258 {
9259 if (type == NULL)
9260 return NULL;
9261
9262 /* If our type is an access to an unconstrained array, which is encoded
9263 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9264 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9265 what allows us to distinguish between fat pointers that represent
9266 array types, and fat pointers that represent array access types
9267 (in both cases, the compiler implements them as fat pointers). */
9268 if (ada_is_access_to_unconstrained_array (type))
9269 return type;
9270
9271 type = check_typedef (type);
9272 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9273 || !TYPE_STUB (type)
9274 || TYPE_NAME (type) == NULL)
9275 return type;
9276 else
9277 {
9278 const char *name = TYPE_NAME (type);
9279 struct type *type1 = ada_find_any_type (name);
9280
9281 if (type1 == NULL)
9282 return type;
9283
9284 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9285 stubs pointing to arrays, as we don't create symbols for array
9286 types, only for the typedef-to-array types). If that's the case,
9287 strip the typedef layer. */
9288 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9289 type1 = ada_check_typedef (type1);
9290
9291 return type1;
9292 }
9293 }
9294
9295 /* A value representing the data at VALADDR/ADDRESS as described by
9296 type TYPE0, but with a standard (static-sized) type that correctly
9297 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9298 type, then return VAL0 [this feature is simply to avoid redundant
9299 creation of struct values]. */
9300
9301 static struct value *
9302 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9303 struct value *val0)
9304 {
9305 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9306
9307 if (type == type0 && val0 != NULL)
9308 return val0;
9309
9310 if (VALUE_LVAL (val0) != lval_memory)
9311 {
9312 /* Our value does not live in memory; it could be a convenience
9313 variable, for instance. Create a not_lval value using val0's
9314 contents. */
9315 return value_from_contents (type, value_contents (val0));
9316 }
9317
9318 return value_from_contents_and_address (type, 0, address);
9319 }
9320
9321 /* A value representing VAL, but with a standard (static-sized) type
9322 that correctly describes it. Does not necessarily create a new
9323 value. */
9324
9325 struct value *
9326 ada_to_fixed_value (struct value *val)
9327 {
9328 val = unwrap_value (val);
9329 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9330 return val;
9331 }
9332 \f
9333
9334 /* Attributes */
9335
9336 /* Table mapping attribute numbers to names.
9337 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9338
9339 static const char *attribute_names[] = {
9340 "<?>",
9341
9342 "first",
9343 "last",
9344 "length",
9345 "image",
9346 "max",
9347 "min",
9348 "modulus",
9349 "pos",
9350 "size",
9351 "tag",
9352 "val",
9353 0
9354 };
9355
9356 const char *
9357 ada_attribute_name (enum exp_opcode n)
9358 {
9359 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9360 return attribute_names[n - OP_ATR_FIRST + 1];
9361 else
9362 return attribute_names[0];
9363 }
9364
9365 /* Evaluate the 'POS attribute applied to ARG. */
9366
9367 static LONGEST
9368 pos_atr (struct value *arg)
9369 {
9370 struct value *val = coerce_ref (arg);
9371 struct type *type = value_type (val);
9372 LONGEST result;
9373
9374 if (!discrete_type_p (type))
9375 error (_("'POS only defined on discrete types"));
9376
9377 if (!discrete_position (type, value_as_long (val), &result))
9378 error (_("enumeration value is invalid: can't find 'POS"));
9379
9380 return result;
9381 }
9382
9383 static struct value *
9384 value_pos_atr (struct type *type, struct value *arg)
9385 {
9386 return value_from_longest (type, pos_atr (arg));
9387 }
9388
9389 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9390
9391 static struct value *
9392 value_val_atr (struct type *type, struct value *arg)
9393 {
9394 if (!discrete_type_p (type))
9395 error (_("'VAL only defined on discrete types"));
9396 if (!integer_type_p (value_type (arg)))
9397 error (_("'VAL requires integral argument"));
9398
9399 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9400 {
9401 long pos = value_as_long (arg);
9402
9403 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9404 error (_("argument to 'VAL out of range"));
9405 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9406 }
9407 else
9408 return value_from_longest (type, value_as_long (arg));
9409 }
9410 \f
9411
9412 /* Evaluation */
9413
9414 /* True if TYPE appears to be an Ada character type.
9415 [At the moment, this is true only for Character and Wide_Character;
9416 It is a heuristic test that could stand improvement]. */
9417
9418 bool
9419 ada_is_character_type (struct type *type)
9420 {
9421 const char *name;
9422
9423 /* If the type code says it's a character, then assume it really is,
9424 and don't check any further. */
9425 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9426 return true;
9427
9428 /* Otherwise, assume it's a character type iff it is a discrete type
9429 with a known character type name. */
9430 name = ada_type_name (type);
9431 return (name != NULL
9432 && (TYPE_CODE (type) == TYPE_CODE_INT
9433 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9434 && (strcmp (name, "character") == 0
9435 || strcmp (name, "wide_character") == 0
9436 || strcmp (name, "wide_wide_character") == 0
9437 || strcmp (name, "unsigned char") == 0));
9438 }
9439
9440 /* True if TYPE appears to be an Ada string type. */
9441
9442 bool
9443 ada_is_string_type (struct type *type)
9444 {
9445 type = ada_check_typedef (type);
9446 if (type != NULL
9447 && TYPE_CODE (type) != TYPE_CODE_PTR
9448 && (ada_is_simple_array_type (type)
9449 || ada_is_array_descriptor_type (type))
9450 && ada_array_arity (type) == 1)
9451 {
9452 struct type *elttype = ada_array_element_type (type, 1);
9453
9454 return ada_is_character_type (elttype);
9455 }
9456 else
9457 return false;
9458 }
9459
9460 /* The compiler sometimes provides a parallel XVS type for a given
9461 PAD type. Normally, it is safe to follow the PAD type directly,
9462 but older versions of the compiler have a bug that causes the offset
9463 of its "F" field to be wrong. Following that field in that case
9464 would lead to incorrect results, but this can be worked around
9465 by ignoring the PAD type and using the associated XVS type instead.
9466
9467 Set to True if the debugger should trust the contents of PAD types.
9468 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9469 static int trust_pad_over_xvs = 1;
9470
9471 /* True if TYPE is a struct type introduced by the compiler to force the
9472 alignment of a value. Such types have a single field with a
9473 distinctive name. */
9474
9475 int
9476 ada_is_aligner_type (struct type *type)
9477 {
9478 type = ada_check_typedef (type);
9479
9480 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9481 return 0;
9482
9483 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9484 && TYPE_NFIELDS (type) == 1
9485 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9486 }
9487
9488 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9489 the parallel type. */
9490
9491 struct type *
9492 ada_get_base_type (struct type *raw_type)
9493 {
9494 struct type *real_type_namer;
9495 struct type *raw_real_type;
9496
9497 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9498 return raw_type;
9499
9500 if (ada_is_aligner_type (raw_type))
9501 /* The encoding specifies that we should always use the aligner type.
9502 So, even if this aligner type has an associated XVS type, we should
9503 simply ignore it.
9504
9505 According to the compiler gurus, an XVS type parallel to an aligner
9506 type may exist because of a stabs limitation. In stabs, aligner
9507 types are empty because the field has a variable-sized type, and
9508 thus cannot actually be used as an aligner type. As a result,
9509 we need the associated parallel XVS type to decode the type.
9510 Since the policy in the compiler is to not change the internal
9511 representation based on the debugging info format, we sometimes
9512 end up having a redundant XVS type parallel to the aligner type. */
9513 return raw_type;
9514
9515 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9516 if (real_type_namer == NULL
9517 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9518 || TYPE_NFIELDS (real_type_namer) != 1)
9519 return raw_type;
9520
9521 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9522 {
9523 /* This is an older encoding form where the base type needs to be
9524 looked up by name. We prefer the newer enconding because it is
9525 more efficient. */
9526 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9527 if (raw_real_type == NULL)
9528 return raw_type;
9529 else
9530 return raw_real_type;
9531 }
9532
9533 /* The field in our XVS type is a reference to the base type. */
9534 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9535 }
9536
9537 /* The type of value designated by TYPE, with all aligners removed. */
9538
9539 struct type *
9540 ada_aligned_type (struct type *type)
9541 {
9542 if (ada_is_aligner_type (type))
9543 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9544 else
9545 return ada_get_base_type (type);
9546 }
9547
9548
9549 /* The address of the aligned value in an object at address VALADDR
9550 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9551
9552 const gdb_byte *
9553 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9554 {
9555 if (ada_is_aligner_type (type))
9556 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9557 valaddr +
9558 TYPE_FIELD_BITPOS (type,
9559 0) / TARGET_CHAR_BIT);
9560 else
9561 return valaddr;
9562 }
9563
9564
9565
9566 /* The printed representation of an enumeration literal with encoded
9567 name NAME. The value is good to the next call of ada_enum_name. */
9568 const char *
9569 ada_enum_name (const char *name)
9570 {
9571 static char *result;
9572 static size_t result_len = 0;
9573 const char *tmp;
9574
9575 /* First, unqualify the enumeration name:
9576 1. Search for the last '.' character. If we find one, then skip
9577 all the preceding characters, the unqualified name starts
9578 right after that dot.
9579 2. Otherwise, we may be debugging on a target where the compiler
9580 translates dots into "__". Search forward for double underscores,
9581 but stop searching when we hit an overloading suffix, which is
9582 of the form "__" followed by digits. */
9583
9584 tmp = strrchr (name, '.');
9585 if (tmp != NULL)
9586 name = tmp + 1;
9587 else
9588 {
9589 while ((tmp = strstr (name, "__")) != NULL)
9590 {
9591 if (isdigit (tmp[2]))
9592 break;
9593 else
9594 name = tmp + 2;
9595 }
9596 }
9597
9598 if (name[0] == 'Q')
9599 {
9600 int v;
9601
9602 if (name[1] == 'U' || name[1] == 'W')
9603 {
9604 if (sscanf (name + 2, "%x", &v) != 1)
9605 return name;
9606 }
9607 else
9608 return name;
9609
9610 GROW_VECT (result, result_len, 16);
9611 if (isascii (v) && isprint (v))
9612 xsnprintf (result, result_len, "'%c'", v);
9613 else if (name[1] == 'U')
9614 xsnprintf (result, result_len, "[\"%02x\"]", v);
9615 else
9616 xsnprintf (result, result_len, "[\"%04x\"]", v);
9617
9618 return result;
9619 }
9620 else
9621 {
9622 tmp = strstr (name, "__");
9623 if (tmp == NULL)
9624 tmp = strstr (name, "$");
9625 if (tmp != NULL)
9626 {
9627 GROW_VECT (result, result_len, tmp - name + 1);
9628 strncpy (result, name, tmp - name);
9629 result[tmp - name] = '\0';
9630 return result;
9631 }
9632
9633 return name;
9634 }
9635 }
9636
9637 /* Evaluate the subexpression of EXP starting at *POS as for
9638 evaluate_type, updating *POS to point just past the evaluated
9639 expression. */
9640
9641 static struct value *
9642 evaluate_subexp_type (struct expression *exp, int *pos)
9643 {
9644 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9645 }
9646
9647 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9648 value it wraps. */
9649
9650 static struct value *
9651 unwrap_value (struct value *val)
9652 {
9653 struct type *type = ada_check_typedef (value_type (val));
9654
9655 if (ada_is_aligner_type (type))
9656 {
9657 struct value *v = ada_value_struct_elt (val, "F", 0);
9658 struct type *val_type = ada_check_typedef (value_type (v));
9659
9660 if (ada_type_name (val_type) == NULL)
9661 TYPE_NAME (val_type) = ada_type_name (type);
9662
9663 return unwrap_value (v);
9664 }
9665 else
9666 {
9667 struct type *raw_real_type =
9668 ada_check_typedef (ada_get_base_type (type));
9669
9670 /* If there is no parallel XVS or XVE type, then the value is
9671 already unwrapped. Return it without further modification. */
9672 if ((type == raw_real_type)
9673 && ada_find_parallel_type (type, "___XVE") == NULL)
9674 return val;
9675
9676 return
9677 coerce_unspec_val_to_type
9678 (val, ada_to_fixed_type (raw_real_type, 0,
9679 value_address (val),
9680 NULL, 1));
9681 }
9682 }
9683
9684 static struct value *
9685 cast_from_fixed (struct type *type, struct value *arg)
9686 {
9687 struct value *scale = ada_scaling_factor (value_type (arg));
9688 arg = value_cast (value_type (scale), arg);
9689
9690 arg = value_binop (arg, scale, BINOP_MUL);
9691 return value_cast (type, arg);
9692 }
9693
9694 static struct value *
9695 cast_to_fixed (struct type *type, struct value *arg)
9696 {
9697 if (type == value_type (arg))
9698 return arg;
9699
9700 struct value *scale = ada_scaling_factor (type);
9701 if (ada_is_fixed_point_type (value_type (arg)))
9702 arg = cast_from_fixed (value_type (scale), arg);
9703 else
9704 arg = value_cast (value_type (scale), arg);
9705
9706 arg = value_binop (arg, scale, BINOP_DIV);
9707 return value_cast (type, arg);
9708 }
9709
9710 /* Given two array types T1 and T2, return nonzero iff both arrays
9711 contain the same number of elements. */
9712
9713 static int
9714 ada_same_array_size_p (struct type *t1, struct type *t2)
9715 {
9716 LONGEST lo1, hi1, lo2, hi2;
9717
9718 /* Get the array bounds in order to verify that the size of
9719 the two arrays match. */
9720 if (!get_array_bounds (t1, &lo1, &hi1)
9721 || !get_array_bounds (t2, &lo2, &hi2))
9722 error (_("unable to determine array bounds"));
9723
9724 /* To make things easier for size comparison, normalize a bit
9725 the case of empty arrays by making sure that the difference
9726 between upper bound and lower bound is always -1. */
9727 if (lo1 > hi1)
9728 hi1 = lo1 - 1;
9729 if (lo2 > hi2)
9730 hi2 = lo2 - 1;
9731
9732 return (hi1 - lo1 == hi2 - lo2);
9733 }
9734
9735 /* Assuming that VAL is an array of integrals, and TYPE represents
9736 an array with the same number of elements, but with wider integral
9737 elements, return an array "casted" to TYPE. In practice, this
9738 means that the returned array is built by casting each element
9739 of the original array into TYPE's (wider) element type. */
9740
9741 static struct value *
9742 ada_promote_array_of_integrals (struct type *type, struct value *val)
9743 {
9744 struct type *elt_type = TYPE_TARGET_TYPE (type);
9745 LONGEST lo, hi;
9746 struct value *res;
9747 LONGEST i;
9748
9749 /* Verify that both val and type are arrays of scalars, and
9750 that the size of val's elements is smaller than the size
9751 of type's element. */
9752 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9753 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9754 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9755 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9756 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9757 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9758
9759 if (!get_array_bounds (type, &lo, &hi))
9760 error (_("unable to determine array bounds"));
9761
9762 res = allocate_value (type);
9763
9764 /* Promote each array element. */
9765 for (i = 0; i < hi - lo + 1; i++)
9766 {
9767 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9768
9769 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9770 value_contents_all (elt), TYPE_LENGTH (elt_type));
9771 }
9772
9773 return res;
9774 }
9775
9776 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9777 return the converted value. */
9778
9779 static struct value *
9780 coerce_for_assign (struct type *type, struct value *val)
9781 {
9782 struct type *type2 = value_type (val);
9783
9784 if (type == type2)
9785 return val;
9786
9787 type2 = ada_check_typedef (type2);
9788 type = ada_check_typedef (type);
9789
9790 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9791 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9792 {
9793 val = ada_value_ind (val);
9794 type2 = value_type (val);
9795 }
9796
9797 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9798 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9799 {
9800 if (!ada_same_array_size_p (type, type2))
9801 error (_("cannot assign arrays of different length"));
9802
9803 if (is_integral_type (TYPE_TARGET_TYPE (type))
9804 && is_integral_type (TYPE_TARGET_TYPE (type2))
9805 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9806 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9807 {
9808 /* Allow implicit promotion of the array elements to
9809 a wider type. */
9810 return ada_promote_array_of_integrals (type, val);
9811 }
9812
9813 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9814 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9815 error (_("Incompatible types in assignment"));
9816 deprecated_set_value_type (val, type);
9817 }
9818 return val;
9819 }
9820
9821 static struct value *
9822 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9823 {
9824 struct value *val;
9825 struct type *type1, *type2;
9826 LONGEST v, v1, v2;
9827
9828 arg1 = coerce_ref (arg1);
9829 arg2 = coerce_ref (arg2);
9830 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9831 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9832
9833 if (TYPE_CODE (type1) != TYPE_CODE_INT
9834 || TYPE_CODE (type2) != TYPE_CODE_INT)
9835 return value_binop (arg1, arg2, op);
9836
9837 switch (op)
9838 {
9839 case BINOP_MOD:
9840 case BINOP_DIV:
9841 case BINOP_REM:
9842 break;
9843 default:
9844 return value_binop (arg1, arg2, op);
9845 }
9846
9847 v2 = value_as_long (arg2);
9848 if (v2 == 0)
9849 error (_("second operand of %s must not be zero."), op_string (op));
9850
9851 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9852 return value_binop (arg1, arg2, op);
9853
9854 v1 = value_as_long (arg1);
9855 switch (op)
9856 {
9857 case BINOP_DIV:
9858 v = v1 / v2;
9859 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9860 v += v > 0 ? -1 : 1;
9861 break;
9862 case BINOP_REM:
9863 v = v1 % v2;
9864 if (v * v1 < 0)
9865 v -= v2;
9866 break;
9867 default:
9868 /* Should not reach this point. */
9869 v = 0;
9870 }
9871
9872 val = allocate_value (type1);
9873 store_unsigned_integer (value_contents_raw (val),
9874 TYPE_LENGTH (value_type (val)),
9875 gdbarch_byte_order (get_type_arch (type1)), v);
9876 return val;
9877 }
9878
9879 static int
9880 ada_value_equal (struct value *arg1, struct value *arg2)
9881 {
9882 if (ada_is_direct_array_type (value_type (arg1))
9883 || ada_is_direct_array_type (value_type (arg2)))
9884 {
9885 struct type *arg1_type, *arg2_type;
9886
9887 /* Automatically dereference any array reference before
9888 we attempt to perform the comparison. */
9889 arg1 = ada_coerce_ref (arg1);
9890 arg2 = ada_coerce_ref (arg2);
9891
9892 arg1 = ada_coerce_to_simple_array (arg1);
9893 arg2 = ada_coerce_to_simple_array (arg2);
9894
9895 arg1_type = ada_check_typedef (value_type (arg1));
9896 arg2_type = ada_check_typedef (value_type (arg2));
9897
9898 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9899 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9900 error (_("Attempt to compare array with non-array"));
9901 /* FIXME: The following works only for types whose
9902 representations use all bits (no padding or undefined bits)
9903 and do not have user-defined equality. */
9904 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9905 && memcmp (value_contents (arg1), value_contents (arg2),
9906 TYPE_LENGTH (arg1_type)) == 0);
9907 }
9908 return value_equal (arg1, arg2);
9909 }
9910
9911 /* Total number of component associations in the aggregate starting at
9912 index PC in EXP. Assumes that index PC is the start of an
9913 OP_AGGREGATE. */
9914
9915 static int
9916 num_component_specs (struct expression *exp, int pc)
9917 {
9918 int n, m, i;
9919
9920 m = exp->elts[pc + 1].longconst;
9921 pc += 3;
9922 n = 0;
9923 for (i = 0; i < m; i += 1)
9924 {
9925 switch (exp->elts[pc].opcode)
9926 {
9927 default:
9928 n += 1;
9929 break;
9930 case OP_CHOICES:
9931 n += exp->elts[pc + 1].longconst;
9932 break;
9933 }
9934 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9935 }
9936 return n;
9937 }
9938
9939 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9940 component of LHS (a simple array or a record), updating *POS past
9941 the expression, assuming that LHS is contained in CONTAINER. Does
9942 not modify the inferior's memory, nor does it modify LHS (unless
9943 LHS == CONTAINER). */
9944
9945 static void
9946 assign_component (struct value *container, struct value *lhs, LONGEST index,
9947 struct expression *exp, int *pos)
9948 {
9949 struct value *mark = value_mark ();
9950 struct value *elt;
9951 struct type *lhs_type = check_typedef (value_type (lhs));
9952
9953 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9954 {
9955 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9956 struct value *index_val = value_from_longest (index_type, index);
9957
9958 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9959 }
9960 else
9961 {
9962 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9963 elt = ada_to_fixed_value (elt);
9964 }
9965
9966 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9967 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9968 else
9969 value_assign_to_component (container, elt,
9970 ada_evaluate_subexp (NULL, exp, pos,
9971 EVAL_NORMAL));
9972
9973 value_free_to_mark (mark);
9974 }
9975
9976 /* Assuming that LHS represents an lvalue having a record or array
9977 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9978 of that aggregate's value to LHS, advancing *POS past the
9979 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9980 lvalue containing LHS (possibly LHS itself). Does not modify
9981 the inferior's memory, nor does it modify the contents of
9982 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9983
9984 static struct value *
9985 assign_aggregate (struct value *container,
9986 struct value *lhs, struct expression *exp,
9987 int *pos, enum noside noside)
9988 {
9989 struct type *lhs_type;
9990 int n = exp->elts[*pos+1].longconst;
9991 LONGEST low_index, high_index;
9992 int num_specs;
9993 LONGEST *indices;
9994 int max_indices, num_indices;
9995 int i;
9996
9997 *pos += 3;
9998 if (noside != EVAL_NORMAL)
9999 {
10000 for (i = 0; i < n; i += 1)
10001 ada_evaluate_subexp (NULL, exp, pos, noside);
10002 return container;
10003 }
10004
10005 container = ada_coerce_ref (container);
10006 if (ada_is_direct_array_type (value_type (container)))
10007 container = ada_coerce_to_simple_array (container);
10008 lhs = ada_coerce_ref (lhs);
10009 if (!deprecated_value_modifiable (lhs))
10010 error (_("Left operand of assignment is not a modifiable lvalue."));
10011
10012 lhs_type = check_typedef (value_type (lhs));
10013 if (ada_is_direct_array_type (lhs_type))
10014 {
10015 lhs = ada_coerce_to_simple_array (lhs);
10016 lhs_type = check_typedef (value_type (lhs));
10017 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10018 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
10019 }
10020 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10021 {
10022 low_index = 0;
10023 high_index = num_visible_fields (lhs_type) - 1;
10024 }
10025 else
10026 error (_("Left-hand side must be array or record."));
10027
10028 num_specs = num_component_specs (exp, *pos - 3);
10029 max_indices = 4 * num_specs + 4;
10030 indices = XALLOCAVEC (LONGEST, max_indices);
10031 indices[0] = indices[1] = low_index - 1;
10032 indices[2] = indices[3] = high_index + 1;
10033 num_indices = 4;
10034
10035 for (i = 0; i < n; i += 1)
10036 {
10037 switch (exp->elts[*pos].opcode)
10038 {
10039 case OP_CHOICES:
10040 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10041 &num_indices, max_indices,
10042 low_index, high_index);
10043 break;
10044 case OP_POSITIONAL:
10045 aggregate_assign_positional (container, lhs, exp, pos, indices,
10046 &num_indices, max_indices,
10047 low_index, high_index);
10048 break;
10049 case OP_OTHERS:
10050 if (i != n-1)
10051 error (_("Misplaced 'others' clause"));
10052 aggregate_assign_others (container, lhs, exp, pos, indices,
10053 num_indices, low_index, high_index);
10054 break;
10055 default:
10056 error (_("Internal error: bad aggregate clause"));
10057 }
10058 }
10059
10060 return container;
10061 }
10062
10063 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10064 construct at *POS, updating *POS past the construct, given that
10065 the positions are relative to lower bound LOW, where HIGH is the
10066 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10067 updating *NUM_INDICES as needed. CONTAINER is as for
10068 assign_aggregate. */
10069 static void
10070 aggregate_assign_positional (struct value *container,
10071 struct value *lhs, struct expression *exp,
10072 int *pos, LONGEST *indices, int *num_indices,
10073 int max_indices, LONGEST low, LONGEST high)
10074 {
10075 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10076
10077 if (ind - 1 == high)
10078 warning (_("Extra components in aggregate ignored."));
10079 if (ind <= high)
10080 {
10081 add_component_interval (ind, ind, indices, num_indices, max_indices);
10082 *pos += 3;
10083 assign_component (container, lhs, ind, exp, pos);
10084 }
10085 else
10086 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10087 }
10088
10089 /* Assign into the components of LHS indexed by the OP_CHOICES
10090 construct at *POS, updating *POS past the construct, given that
10091 the allowable indices are LOW..HIGH. Record the indices assigned
10092 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10093 needed. CONTAINER is as for assign_aggregate. */
10094 static void
10095 aggregate_assign_from_choices (struct value *container,
10096 struct value *lhs, struct expression *exp,
10097 int *pos, LONGEST *indices, int *num_indices,
10098 int max_indices, LONGEST low, LONGEST high)
10099 {
10100 int j;
10101 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10102 int choice_pos, expr_pc;
10103 int is_array = ada_is_direct_array_type (value_type (lhs));
10104
10105 choice_pos = *pos += 3;
10106
10107 for (j = 0; j < n_choices; j += 1)
10108 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10109 expr_pc = *pos;
10110 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10111
10112 for (j = 0; j < n_choices; j += 1)
10113 {
10114 LONGEST lower, upper;
10115 enum exp_opcode op = exp->elts[choice_pos].opcode;
10116
10117 if (op == OP_DISCRETE_RANGE)
10118 {
10119 choice_pos += 1;
10120 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10121 EVAL_NORMAL));
10122 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10123 EVAL_NORMAL));
10124 }
10125 else if (is_array)
10126 {
10127 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10128 EVAL_NORMAL));
10129 upper = lower;
10130 }
10131 else
10132 {
10133 int ind;
10134 const char *name;
10135
10136 switch (op)
10137 {
10138 case OP_NAME:
10139 name = &exp->elts[choice_pos + 2].string;
10140 break;
10141 case OP_VAR_VALUE:
10142 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10143 break;
10144 default:
10145 error (_("Invalid record component association."));
10146 }
10147 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10148 ind = 0;
10149 if (! find_struct_field (name, value_type (lhs), 0,
10150 NULL, NULL, NULL, NULL, &ind))
10151 error (_("Unknown component name: %s."), name);
10152 lower = upper = ind;
10153 }
10154
10155 if (lower <= upper && (lower < low || upper > high))
10156 error (_("Index in component association out of bounds."));
10157
10158 add_component_interval (lower, upper, indices, num_indices,
10159 max_indices);
10160 while (lower <= upper)
10161 {
10162 int pos1;
10163
10164 pos1 = expr_pc;
10165 assign_component (container, lhs, lower, exp, &pos1);
10166 lower += 1;
10167 }
10168 }
10169 }
10170
10171 /* Assign the value of the expression in the OP_OTHERS construct in
10172 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10173 have not been previously assigned. The index intervals already assigned
10174 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10175 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10176 static void
10177 aggregate_assign_others (struct value *container,
10178 struct value *lhs, struct expression *exp,
10179 int *pos, LONGEST *indices, int num_indices,
10180 LONGEST low, LONGEST high)
10181 {
10182 int i;
10183 int expr_pc = *pos + 1;
10184
10185 for (i = 0; i < num_indices - 2; i += 2)
10186 {
10187 LONGEST ind;
10188
10189 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10190 {
10191 int localpos;
10192
10193 localpos = expr_pc;
10194 assign_component (container, lhs, ind, exp, &localpos);
10195 }
10196 }
10197 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10198 }
10199
10200 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10201 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10202 modifying *SIZE as needed. It is an error if *SIZE exceeds
10203 MAX_SIZE. The resulting intervals do not overlap. */
10204 static void
10205 add_component_interval (LONGEST low, LONGEST high,
10206 LONGEST* indices, int *size, int max_size)
10207 {
10208 int i, j;
10209
10210 for (i = 0; i < *size; i += 2) {
10211 if (high >= indices[i] && low <= indices[i + 1])
10212 {
10213 int kh;
10214
10215 for (kh = i + 2; kh < *size; kh += 2)
10216 if (high < indices[kh])
10217 break;
10218 if (low < indices[i])
10219 indices[i] = low;
10220 indices[i + 1] = indices[kh - 1];
10221 if (high > indices[i + 1])
10222 indices[i + 1] = high;
10223 memcpy (indices + i + 2, indices + kh, *size - kh);
10224 *size -= kh - i - 2;
10225 return;
10226 }
10227 else if (high < indices[i])
10228 break;
10229 }
10230
10231 if (*size == max_size)
10232 error (_("Internal error: miscounted aggregate components."));
10233 *size += 2;
10234 for (j = *size-1; j >= i+2; j -= 1)
10235 indices[j] = indices[j - 2];
10236 indices[i] = low;
10237 indices[i + 1] = high;
10238 }
10239
10240 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10241 is different. */
10242
10243 static struct value *
10244 ada_value_cast (struct type *type, struct value *arg2)
10245 {
10246 if (type == ada_check_typedef (value_type (arg2)))
10247 return arg2;
10248
10249 if (ada_is_fixed_point_type (type))
10250 return cast_to_fixed (type, arg2);
10251
10252 if (ada_is_fixed_point_type (value_type (arg2)))
10253 return cast_from_fixed (type, arg2);
10254
10255 return value_cast (type, arg2);
10256 }
10257
10258 /* Evaluating Ada expressions, and printing their result.
10259 ------------------------------------------------------
10260
10261 1. Introduction:
10262 ----------------
10263
10264 We usually evaluate an Ada expression in order to print its value.
10265 We also evaluate an expression in order to print its type, which
10266 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10267 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10268 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10269 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10270 similar.
10271
10272 Evaluating expressions is a little more complicated for Ada entities
10273 than it is for entities in languages such as C. The main reason for
10274 this is that Ada provides types whose definition might be dynamic.
10275 One example of such types is variant records. Or another example
10276 would be an array whose bounds can only be known at run time.
10277
10278 The following description is a general guide as to what should be
10279 done (and what should NOT be done) in order to evaluate an expression
10280 involving such types, and when. This does not cover how the semantic
10281 information is encoded by GNAT as this is covered separatly. For the
10282 document used as the reference for the GNAT encoding, see exp_dbug.ads
10283 in the GNAT sources.
10284
10285 Ideally, we should embed each part of this description next to its
10286 associated code. Unfortunately, the amount of code is so vast right
10287 now that it's hard to see whether the code handling a particular
10288 situation might be duplicated or not. One day, when the code is
10289 cleaned up, this guide might become redundant with the comments
10290 inserted in the code, and we might want to remove it.
10291
10292 2. ``Fixing'' an Entity, the Simple Case:
10293 -----------------------------------------
10294
10295 When evaluating Ada expressions, the tricky issue is that they may
10296 reference entities whose type contents and size are not statically
10297 known. Consider for instance a variant record:
10298
10299 type Rec (Empty : Boolean := True) is record
10300 case Empty is
10301 when True => null;
10302 when False => Value : Integer;
10303 end case;
10304 end record;
10305 Yes : Rec := (Empty => False, Value => 1);
10306 No : Rec := (empty => True);
10307
10308 The size and contents of that record depends on the value of the
10309 descriminant (Rec.Empty). At this point, neither the debugging
10310 information nor the associated type structure in GDB are able to
10311 express such dynamic types. So what the debugger does is to create
10312 "fixed" versions of the type that applies to the specific object.
10313 We also informally refer to this opperation as "fixing" an object,
10314 which means creating its associated fixed type.
10315
10316 Example: when printing the value of variable "Yes" above, its fixed
10317 type would look like this:
10318
10319 type Rec is record
10320 Empty : Boolean;
10321 Value : Integer;
10322 end record;
10323
10324 On the other hand, if we printed the value of "No", its fixed type
10325 would become:
10326
10327 type Rec is record
10328 Empty : Boolean;
10329 end record;
10330
10331 Things become a little more complicated when trying to fix an entity
10332 with a dynamic type that directly contains another dynamic type,
10333 such as an array of variant records, for instance. There are
10334 two possible cases: Arrays, and records.
10335
10336 3. ``Fixing'' Arrays:
10337 ---------------------
10338
10339 The type structure in GDB describes an array in terms of its bounds,
10340 and the type of its elements. By design, all elements in the array
10341 have the same type and we cannot represent an array of variant elements
10342 using the current type structure in GDB. When fixing an array,
10343 we cannot fix the array element, as we would potentially need one
10344 fixed type per element of the array. As a result, the best we can do
10345 when fixing an array is to produce an array whose bounds and size
10346 are correct (allowing us to read it from memory), but without having
10347 touched its element type. Fixing each element will be done later,
10348 when (if) necessary.
10349
10350 Arrays are a little simpler to handle than records, because the same
10351 amount of memory is allocated for each element of the array, even if
10352 the amount of space actually used by each element differs from element
10353 to element. Consider for instance the following array of type Rec:
10354
10355 type Rec_Array is array (1 .. 2) of Rec;
10356
10357 The actual amount of memory occupied by each element might be different
10358 from element to element, depending on the value of their discriminant.
10359 But the amount of space reserved for each element in the array remains
10360 fixed regardless. So we simply need to compute that size using
10361 the debugging information available, from which we can then determine
10362 the array size (we multiply the number of elements of the array by
10363 the size of each element).
10364
10365 The simplest case is when we have an array of a constrained element
10366 type. For instance, consider the following type declarations:
10367
10368 type Bounded_String (Max_Size : Integer) is
10369 Length : Integer;
10370 Buffer : String (1 .. Max_Size);
10371 end record;
10372 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10373
10374 In this case, the compiler describes the array as an array of
10375 variable-size elements (identified by its XVS suffix) for which
10376 the size can be read in the parallel XVZ variable.
10377
10378 In the case of an array of an unconstrained element type, the compiler
10379 wraps the array element inside a private PAD type. This type should not
10380 be shown to the user, and must be "unwrap"'ed before printing. Note
10381 that we also use the adjective "aligner" in our code to designate
10382 these wrapper types.
10383
10384 In some cases, the size allocated for each element is statically
10385 known. In that case, the PAD type already has the correct size,
10386 and the array element should remain unfixed.
10387
10388 But there are cases when this size is not statically known.
10389 For instance, assuming that "Five" is an integer variable:
10390
10391 type Dynamic is array (1 .. Five) of Integer;
10392 type Wrapper (Has_Length : Boolean := False) is record
10393 Data : Dynamic;
10394 case Has_Length is
10395 when True => Length : Integer;
10396 when False => null;
10397 end case;
10398 end record;
10399 type Wrapper_Array is array (1 .. 2) of Wrapper;
10400
10401 Hello : Wrapper_Array := (others => (Has_Length => True,
10402 Data => (others => 17),
10403 Length => 1));
10404
10405
10406 The debugging info would describe variable Hello as being an
10407 array of a PAD type. The size of that PAD type is not statically
10408 known, but can be determined using a parallel XVZ variable.
10409 In that case, a copy of the PAD type with the correct size should
10410 be used for the fixed array.
10411
10412 3. ``Fixing'' record type objects:
10413 ----------------------------------
10414
10415 Things are slightly different from arrays in the case of dynamic
10416 record types. In this case, in order to compute the associated
10417 fixed type, we need to determine the size and offset of each of
10418 its components. This, in turn, requires us to compute the fixed
10419 type of each of these components.
10420
10421 Consider for instance the example:
10422
10423 type Bounded_String (Max_Size : Natural) is record
10424 Str : String (1 .. Max_Size);
10425 Length : Natural;
10426 end record;
10427 My_String : Bounded_String (Max_Size => 10);
10428
10429 In that case, the position of field "Length" depends on the size
10430 of field Str, which itself depends on the value of the Max_Size
10431 discriminant. In order to fix the type of variable My_String,
10432 we need to fix the type of field Str. Therefore, fixing a variant
10433 record requires us to fix each of its components.
10434
10435 However, if a component does not have a dynamic size, the component
10436 should not be fixed. In particular, fields that use a PAD type
10437 should not fixed. Here is an example where this might happen
10438 (assuming type Rec above):
10439
10440 type Container (Big : Boolean) is record
10441 First : Rec;
10442 After : Integer;
10443 case Big is
10444 when True => Another : Integer;
10445 when False => null;
10446 end case;
10447 end record;
10448 My_Container : Container := (Big => False,
10449 First => (Empty => True),
10450 After => 42);
10451
10452 In that example, the compiler creates a PAD type for component First,
10453 whose size is constant, and then positions the component After just
10454 right after it. The offset of component After is therefore constant
10455 in this case.
10456
10457 The debugger computes the position of each field based on an algorithm
10458 that uses, among other things, the actual position and size of the field
10459 preceding it. Let's now imagine that the user is trying to print
10460 the value of My_Container. If the type fixing was recursive, we would
10461 end up computing the offset of field After based on the size of the
10462 fixed version of field First. And since in our example First has
10463 only one actual field, the size of the fixed type is actually smaller
10464 than the amount of space allocated to that field, and thus we would
10465 compute the wrong offset of field After.
10466
10467 To make things more complicated, we need to watch out for dynamic
10468 components of variant records (identified by the ___XVL suffix in
10469 the component name). Even if the target type is a PAD type, the size
10470 of that type might not be statically known. So the PAD type needs
10471 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10472 we might end up with the wrong size for our component. This can be
10473 observed with the following type declarations:
10474
10475 type Octal is new Integer range 0 .. 7;
10476 type Octal_Array is array (Positive range <>) of Octal;
10477 pragma Pack (Octal_Array);
10478
10479 type Octal_Buffer (Size : Positive) is record
10480 Buffer : Octal_Array (1 .. Size);
10481 Length : Integer;
10482 end record;
10483
10484 In that case, Buffer is a PAD type whose size is unset and needs
10485 to be computed by fixing the unwrapped type.
10486
10487 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10488 ----------------------------------------------------------
10489
10490 Lastly, when should the sub-elements of an entity that remained unfixed
10491 thus far, be actually fixed?
10492
10493 The answer is: Only when referencing that element. For instance
10494 when selecting one component of a record, this specific component
10495 should be fixed at that point in time. Or when printing the value
10496 of a record, each component should be fixed before its value gets
10497 printed. Similarly for arrays, the element of the array should be
10498 fixed when printing each element of the array, or when extracting
10499 one element out of that array. On the other hand, fixing should
10500 not be performed on the elements when taking a slice of an array!
10501
10502 Note that one of the side effects of miscomputing the offset and
10503 size of each field is that we end up also miscomputing the size
10504 of the containing type. This can have adverse results when computing
10505 the value of an entity. GDB fetches the value of an entity based
10506 on the size of its type, and thus a wrong size causes GDB to fetch
10507 the wrong amount of memory. In the case where the computed size is
10508 too small, GDB fetches too little data to print the value of our
10509 entity. Results in this case are unpredictable, as we usually read
10510 past the buffer containing the data =:-o. */
10511
10512 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10513 for that subexpression cast to TO_TYPE. Advance *POS over the
10514 subexpression. */
10515
10516 static value *
10517 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10518 enum noside noside, struct type *to_type)
10519 {
10520 int pc = *pos;
10521
10522 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10523 || exp->elts[pc].opcode == OP_VAR_VALUE)
10524 {
10525 (*pos) += 4;
10526
10527 value *val;
10528 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10529 {
10530 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10531 return value_zero (to_type, not_lval);
10532
10533 val = evaluate_var_msym_value (noside,
10534 exp->elts[pc + 1].objfile,
10535 exp->elts[pc + 2].msymbol);
10536 }
10537 else
10538 val = evaluate_var_value (noside,
10539 exp->elts[pc + 1].block,
10540 exp->elts[pc + 2].symbol);
10541
10542 if (noside == EVAL_SKIP)
10543 return eval_skip_value (exp);
10544
10545 val = ada_value_cast (to_type, val);
10546
10547 /* Follow the Ada language semantics that do not allow taking
10548 an address of the result of a cast (view conversion in Ada). */
10549 if (VALUE_LVAL (val) == lval_memory)
10550 {
10551 if (value_lazy (val))
10552 value_fetch_lazy (val);
10553 VALUE_LVAL (val) = not_lval;
10554 }
10555 return val;
10556 }
10557
10558 value *val = evaluate_subexp (to_type, exp, pos, noside);
10559 if (noside == EVAL_SKIP)
10560 return eval_skip_value (exp);
10561 return ada_value_cast (to_type, val);
10562 }
10563
10564 /* Implement the evaluate_exp routine in the exp_descriptor structure
10565 for the Ada language. */
10566
10567 static struct value *
10568 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10569 int *pos, enum noside noside)
10570 {
10571 enum exp_opcode op;
10572 int tem;
10573 int pc;
10574 int preeval_pos;
10575 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10576 struct type *type;
10577 int nargs, oplen;
10578 struct value **argvec;
10579
10580 pc = *pos;
10581 *pos += 1;
10582 op = exp->elts[pc].opcode;
10583
10584 switch (op)
10585 {
10586 default:
10587 *pos -= 1;
10588 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10589
10590 if (noside == EVAL_NORMAL)
10591 arg1 = unwrap_value (arg1);
10592
10593 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10594 then we need to perform the conversion manually, because
10595 evaluate_subexp_standard doesn't do it. This conversion is
10596 necessary in Ada because the different kinds of float/fixed
10597 types in Ada have different representations.
10598
10599 Similarly, we need to perform the conversion from OP_LONG
10600 ourselves. */
10601 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10602 arg1 = ada_value_cast (expect_type, arg1);
10603
10604 return arg1;
10605
10606 case OP_STRING:
10607 {
10608 struct value *result;
10609
10610 *pos -= 1;
10611 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10612 /* The result type will have code OP_STRING, bashed there from
10613 OP_ARRAY. Bash it back. */
10614 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10615 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10616 return result;
10617 }
10618
10619 case UNOP_CAST:
10620 (*pos) += 2;
10621 type = exp->elts[pc + 1].type;
10622 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10623
10624 case UNOP_QUAL:
10625 (*pos) += 2;
10626 type = exp->elts[pc + 1].type;
10627 return ada_evaluate_subexp (type, exp, pos, noside);
10628
10629 case BINOP_ASSIGN:
10630 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10631 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10632 {
10633 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10634 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10635 return arg1;
10636 return ada_value_assign (arg1, arg1);
10637 }
10638 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10639 except if the lhs of our assignment is a convenience variable.
10640 In the case of assigning to a convenience variable, the lhs
10641 should be exactly the result of the evaluation of the rhs. */
10642 type = value_type (arg1);
10643 if (VALUE_LVAL (arg1) == lval_internalvar)
10644 type = NULL;
10645 arg2 = evaluate_subexp (type, exp, pos, noside);
10646 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10647 return arg1;
10648 if (ada_is_fixed_point_type (value_type (arg1)))
10649 arg2 = cast_to_fixed (value_type (arg1), arg2);
10650 else if (ada_is_fixed_point_type (value_type (arg2)))
10651 error
10652 (_("Fixed-point values must be assigned to fixed-point variables"));
10653 else
10654 arg2 = coerce_for_assign (value_type (arg1), arg2);
10655 return ada_value_assign (arg1, arg2);
10656
10657 case BINOP_ADD:
10658 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10659 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10660 if (noside == EVAL_SKIP)
10661 goto nosideret;
10662 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10663 return (value_from_longest
10664 (value_type (arg1),
10665 value_as_long (arg1) + value_as_long (arg2)));
10666 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10667 return (value_from_longest
10668 (value_type (arg2),
10669 value_as_long (arg1) + value_as_long (arg2)));
10670 if ((ada_is_fixed_point_type (value_type (arg1))
10671 || ada_is_fixed_point_type (value_type (arg2)))
10672 && value_type (arg1) != value_type (arg2))
10673 error (_("Operands of fixed-point addition must have the same type"));
10674 /* Do the addition, and cast the result to the type of the first
10675 argument. We cannot cast the result to a reference type, so if
10676 ARG1 is a reference type, find its underlying type. */
10677 type = value_type (arg1);
10678 while (TYPE_CODE (type) == TYPE_CODE_REF)
10679 type = TYPE_TARGET_TYPE (type);
10680 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10681 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10682
10683 case BINOP_SUB:
10684 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10685 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10686 if (noside == EVAL_SKIP)
10687 goto nosideret;
10688 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10689 return (value_from_longest
10690 (value_type (arg1),
10691 value_as_long (arg1) - value_as_long (arg2)));
10692 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10693 return (value_from_longest
10694 (value_type (arg2),
10695 value_as_long (arg1) - value_as_long (arg2)));
10696 if ((ada_is_fixed_point_type (value_type (arg1))
10697 || ada_is_fixed_point_type (value_type (arg2)))
10698 && value_type (arg1) != value_type (arg2))
10699 error (_("Operands of fixed-point subtraction "
10700 "must have the same type"));
10701 /* Do the substraction, and cast the result to the type of the first
10702 argument. We cannot cast the result to a reference type, so if
10703 ARG1 is a reference type, find its underlying type. */
10704 type = value_type (arg1);
10705 while (TYPE_CODE (type) == TYPE_CODE_REF)
10706 type = TYPE_TARGET_TYPE (type);
10707 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10708 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10709
10710 case BINOP_MUL:
10711 case BINOP_DIV:
10712 case BINOP_REM:
10713 case BINOP_MOD:
10714 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10715 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10716 if (noside == EVAL_SKIP)
10717 goto nosideret;
10718 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10719 {
10720 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10721 return value_zero (value_type (arg1), not_lval);
10722 }
10723 else
10724 {
10725 type = builtin_type (exp->gdbarch)->builtin_double;
10726 if (ada_is_fixed_point_type (value_type (arg1)))
10727 arg1 = cast_from_fixed (type, arg1);
10728 if (ada_is_fixed_point_type (value_type (arg2)))
10729 arg2 = cast_from_fixed (type, arg2);
10730 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10731 return ada_value_binop (arg1, arg2, op);
10732 }
10733
10734 case BINOP_EQUAL:
10735 case BINOP_NOTEQUAL:
10736 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10737 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10738 if (noside == EVAL_SKIP)
10739 goto nosideret;
10740 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10741 tem = 0;
10742 else
10743 {
10744 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10745 tem = ada_value_equal (arg1, arg2);
10746 }
10747 if (op == BINOP_NOTEQUAL)
10748 tem = !tem;
10749 type = language_bool_type (exp->language_defn, exp->gdbarch);
10750 return value_from_longest (type, (LONGEST) tem);
10751
10752 case UNOP_NEG:
10753 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10754 if (noside == EVAL_SKIP)
10755 goto nosideret;
10756 else if (ada_is_fixed_point_type (value_type (arg1)))
10757 return value_cast (value_type (arg1), value_neg (arg1));
10758 else
10759 {
10760 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10761 return value_neg (arg1);
10762 }
10763
10764 case BINOP_LOGICAL_AND:
10765 case BINOP_LOGICAL_OR:
10766 case UNOP_LOGICAL_NOT:
10767 {
10768 struct value *val;
10769
10770 *pos -= 1;
10771 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10772 type = language_bool_type (exp->language_defn, exp->gdbarch);
10773 return value_cast (type, val);
10774 }
10775
10776 case BINOP_BITWISE_AND:
10777 case BINOP_BITWISE_IOR:
10778 case BINOP_BITWISE_XOR:
10779 {
10780 struct value *val;
10781
10782 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10783 *pos = pc;
10784 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10785
10786 return value_cast (value_type (arg1), val);
10787 }
10788
10789 case OP_VAR_VALUE:
10790 *pos -= 1;
10791
10792 if (noside == EVAL_SKIP)
10793 {
10794 *pos += 4;
10795 goto nosideret;
10796 }
10797
10798 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10799 /* Only encountered when an unresolved symbol occurs in a
10800 context other than a function call, in which case, it is
10801 invalid. */
10802 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10803 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10804
10805 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10806 {
10807 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10808 /* Check to see if this is a tagged type. We also need to handle
10809 the case where the type is a reference to a tagged type, but
10810 we have to be careful to exclude pointers to tagged types.
10811 The latter should be shown as usual (as a pointer), whereas
10812 a reference should mostly be transparent to the user. */
10813 if (ada_is_tagged_type (type, 0)
10814 || (TYPE_CODE (type) == TYPE_CODE_REF
10815 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10816 {
10817 /* Tagged types are a little special in the fact that the real
10818 type is dynamic and can only be determined by inspecting the
10819 object's tag. This means that we need to get the object's
10820 value first (EVAL_NORMAL) and then extract the actual object
10821 type from its tag.
10822
10823 Note that we cannot skip the final step where we extract
10824 the object type from its tag, because the EVAL_NORMAL phase
10825 results in dynamic components being resolved into fixed ones.
10826 This can cause problems when trying to print the type
10827 description of tagged types whose parent has a dynamic size:
10828 We use the type name of the "_parent" component in order
10829 to print the name of the ancestor type in the type description.
10830 If that component had a dynamic size, the resolution into
10831 a fixed type would result in the loss of that type name,
10832 thus preventing us from printing the name of the ancestor
10833 type in the type description. */
10834 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10835
10836 if (TYPE_CODE (type) != TYPE_CODE_REF)
10837 {
10838 struct type *actual_type;
10839
10840 actual_type = type_from_tag (ada_value_tag (arg1));
10841 if (actual_type == NULL)
10842 /* If, for some reason, we were unable to determine
10843 the actual type from the tag, then use the static
10844 approximation that we just computed as a fallback.
10845 This can happen if the debugging information is
10846 incomplete, for instance. */
10847 actual_type = type;
10848 return value_zero (actual_type, not_lval);
10849 }
10850 else
10851 {
10852 /* In the case of a ref, ada_coerce_ref takes care
10853 of determining the actual type. But the evaluation
10854 should return a ref as it should be valid to ask
10855 for its address; so rebuild a ref after coerce. */
10856 arg1 = ada_coerce_ref (arg1);
10857 return value_ref (arg1, TYPE_CODE_REF);
10858 }
10859 }
10860
10861 /* Records and unions for which GNAT encodings have been
10862 generated need to be statically fixed as well.
10863 Otherwise, non-static fixing produces a type where
10864 all dynamic properties are removed, which prevents "ptype"
10865 from being able to completely describe the type.
10866 For instance, a case statement in a variant record would be
10867 replaced by the relevant components based on the actual
10868 value of the discriminants. */
10869 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10870 && dynamic_template_type (type) != NULL)
10871 || (TYPE_CODE (type) == TYPE_CODE_UNION
10872 && ada_find_parallel_type (type, "___XVU") != NULL))
10873 {
10874 *pos += 4;
10875 return value_zero (to_static_fixed_type (type), not_lval);
10876 }
10877 }
10878
10879 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10880 return ada_to_fixed_value (arg1);
10881
10882 case OP_FUNCALL:
10883 (*pos) += 2;
10884
10885 /* Allocate arg vector, including space for the function to be
10886 called in argvec[0] and a terminating NULL. */
10887 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10888 argvec = XALLOCAVEC (struct value *, nargs + 2);
10889
10890 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10891 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10892 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10893 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10894 else
10895 {
10896 for (tem = 0; tem <= nargs; tem += 1)
10897 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10898 argvec[tem] = 0;
10899
10900 if (noside == EVAL_SKIP)
10901 goto nosideret;
10902 }
10903
10904 if (ada_is_constrained_packed_array_type
10905 (desc_base_type (value_type (argvec[0]))))
10906 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10907 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10908 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10909 /* This is a packed array that has already been fixed, and
10910 therefore already coerced to a simple array. Nothing further
10911 to do. */
10912 ;
10913 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10914 {
10915 /* Make sure we dereference references so that all the code below
10916 feels like it's really handling the referenced value. Wrapping
10917 types (for alignment) may be there, so make sure we strip them as
10918 well. */
10919 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10920 }
10921 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10922 && VALUE_LVAL (argvec[0]) == lval_memory)
10923 argvec[0] = value_addr (argvec[0]);
10924
10925 type = ada_check_typedef (value_type (argvec[0]));
10926
10927 /* Ada allows us to implicitly dereference arrays when subscripting
10928 them. So, if this is an array typedef (encoding use for array
10929 access types encoded as fat pointers), strip it now. */
10930 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10931 type = ada_typedef_target_type (type);
10932
10933 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10934 {
10935 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10936 {
10937 case TYPE_CODE_FUNC:
10938 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10939 break;
10940 case TYPE_CODE_ARRAY:
10941 break;
10942 case TYPE_CODE_STRUCT:
10943 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10944 argvec[0] = ada_value_ind (argvec[0]);
10945 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10946 break;
10947 default:
10948 error (_("cannot subscript or call something of type `%s'"),
10949 ada_type_name (value_type (argvec[0])));
10950 break;
10951 }
10952 }
10953
10954 switch (TYPE_CODE (type))
10955 {
10956 case TYPE_CODE_FUNC:
10957 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10958 {
10959 if (TYPE_TARGET_TYPE (type) == NULL)
10960 error_call_unknown_return_type (NULL);
10961 return allocate_value (TYPE_TARGET_TYPE (type));
10962 }
10963 return call_function_by_hand (argvec[0], NULL,
10964 gdb::make_array_view (argvec + 1,
10965 nargs));
10966 case TYPE_CODE_INTERNAL_FUNCTION:
10967 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10968 /* We don't know anything about what the internal
10969 function might return, but we have to return
10970 something. */
10971 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10972 not_lval);
10973 else
10974 return call_internal_function (exp->gdbarch, exp->language_defn,
10975 argvec[0], nargs, argvec + 1);
10976
10977 case TYPE_CODE_STRUCT:
10978 {
10979 int arity;
10980
10981 arity = ada_array_arity (type);
10982 type = ada_array_element_type (type, nargs);
10983 if (type == NULL)
10984 error (_("cannot subscript or call a record"));
10985 if (arity != nargs)
10986 error (_("wrong number of subscripts; expecting %d"), arity);
10987 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10988 return value_zero (ada_aligned_type (type), lval_memory);
10989 return
10990 unwrap_value (ada_value_subscript
10991 (argvec[0], nargs, argvec + 1));
10992 }
10993 case TYPE_CODE_ARRAY:
10994 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10995 {
10996 type = ada_array_element_type (type, nargs);
10997 if (type == NULL)
10998 error (_("element type of array unknown"));
10999 else
11000 return value_zero (ada_aligned_type (type), lval_memory);
11001 }
11002 return
11003 unwrap_value (ada_value_subscript
11004 (ada_coerce_to_simple_array (argvec[0]),
11005 nargs, argvec + 1));
11006 case TYPE_CODE_PTR: /* Pointer to array */
11007 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11008 {
11009 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
11010 type = ada_array_element_type (type, nargs);
11011 if (type == NULL)
11012 error (_("element type of array unknown"));
11013 else
11014 return value_zero (ada_aligned_type (type), lval_memory);
11015 }
11016 return
11017 unwrap_value (ada_value_ptr_subscript (argvec[0],
11018 nargs, argvec + 1));
11019
11020 default:
11021 error (_("Attempt to index or call something other than an "
11022 "array or function"));
11023 }
11024
11025 case TERNOP_SLICE:
11026 {
11027 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11028 struct value *low_bound_val =
11029 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11030 struct value *high_bound_val =
11031 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11032 LONGEST low_bound;
11033 LONGEST high_bound;
11034
11035 low_bound_val = coerce_ref (low_bound_val);
11036 high_bound_val = coerce_ref (high_bound_val);
11037 low_bound = value_as_long (low_bound_val);
11038 high_bound = value_as_long (high_bound_val);
11039
11040 if (noside == EVAL_SKIP)
11041 goto nosideret;
11042
11043 /* If this is a reference to an aligner type, then remove all
11044 the aligners. */
11045 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11046 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11047 TYPE_TARGET_TYPE (value_type (array)) =
11048 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11049
11050 if (ada_is_constrained_packed_array_type (value_type (array)))
11051 error (_("cannot slice a packed array"));
11052
11053 /* If this is a reference to an array or an array lvalue,
11054 convert to a pointer. */
11055 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11056 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11057 && VALUE_LVAL (array) == lval_memory))
11058 array = value_addr (array);
11059
11060 if (noside == EVAL_AVOID_SIDE_EFFECTS
11061 && ada_is_array_descriptor_type (ada_check_typedef
11062 (value_type (array))))
11063 return empty_array (ada_type_of_array (array, 0), low_bound,
11064 high_bound);
11065
11066 array = ada_coerce_to_simple_array_ptr (array);
11067
11068 /* If we have more than one level of pointer indirection,
11069 dereference the value until we get only one level. */
11070 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11071 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11072 == TYPE_CODE_PTR))
11073 array = value_ind (array);
11074
11075 /* Make sure we really do have an array type before going further,
11076 to avoid a SEGV when trying to get the index type or the target
11077 type later down the road if the debug info generated by
11078 the compiler is incorrect or incomplete. */
11079 if (!ada_is_simple_array_type (value_type (array)))
11080 error (_("cannot take slice of non-array"));
11081
11082 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11083 == TYPE_CODE_PTR)
11084 {
11085 struct type *type0 = ada_check_typedef (value_type (array));
11086
11087 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11088 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
11089 else
11090 {
11091 struct type *arr_type0 =
11092 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11093
11094 return ada_value_slice_from_ptr (array, arr_type0,
11095 longest_to_int (low_bound),
11096 longest_to_int (high_bound));
11097 }
11098 }
11099 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11100 return array;
11101 else if (high_bound < low_bound)
11102 return empty_array (value_type (array), low_bound, high_bound);
11103 else
11104 return ada_value_slice (array, longest_to_int (low_bound),
11105 longest_to_int (high_bound));
11106 }
11107
11108 case UNOP_IN_RANGE:
11109 (*pos) += 2;
11110 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11111 type = check_typedef (exp->elts[pc + 1].type);
11112
11113 if (noside == EVAL_SKIP)
11114 goto nosideret;
11115
11116 switch (TYPE_CODE (type))
11117 {
11118 default:
11119 lim_warning (_("Membership test incompletely implemented; "
11120 "always returns true"));
11121 type = language_bool_type (exp->language_defn, exp->gdbarch);
11122 return value_from_longest (type, (LONGEST) 1);
11123
11124 case TYPE_CODE_RANGE:
11125 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11126 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11127 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11128 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11129 type = language_bool_type (exp->language_defn, exp->gdbarch);
11130 return
11131 value_from_longest (type,
11132 (value_less (arg1, arg3)
11133 || value_equal (arg1, arg3))
11134 && (value_less (arg2, arg1)
11135 || value_equal (arg2, arg1)));
11136 }
11137
11138 case BINOP_IN_BOUNDS:
11139 (*pos) += 2;
11140 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11141 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11142
11143 if (noside == EVAL_SKIP)
11144 goto nosideret;
11145
11146 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11147 {
11148 type = language_bool_type (exp->language_defn, exp->gdbarch);
11149 return value_zero (type, not_lval);
11150 }
11151
11152 tem = longest_to_int (exp->elts[pc + 1].longconst);
11153
11154 type = ada_index_type (value_type (arg2), tem, "range");
11155 if (!type)
11156 type = value_type (arg1);
11157
11158 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11159 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11160
11161 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11162 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11163 type = language_bool_type (exp->language_defn, exp->gdbarch);
11164 return
11165 value_from_longest (type,
11166 (value_less (arg1, arg3)
11167 || value_equal (arg1, arg3))
11168 && (value_less (arg2, arg1)
11169 || value_equal (arg2, arg1)));
11170
11171 case TERNOP_IN_RANGE:
11172 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11173 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11174 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11175
11176 if (noside == EVAL_SKIP)
11177 goto nosideret;
11178
11179 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11180 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11181 type = language_bool_type (exp->language_defn, exp->gdbarch);
11182 return
11183 value_from_longest (type,
11184 (value_less (arg1, arg3)
11185 || value_equal (arg1, arg3))
11186 && (value_less (arg2, arg1)
11187 || value_equal (arg2, arg1)));
11188
11189 case OP_ATR_FIRST:
11190 case OP_ATR_LAST:
11191 case OP_ATR_LENGTH:
11192 {
11193 struct type *type_arg;
11194
11195 if (exp->elts[*pos].opcode == OP_TYPE)
11196 {
11197 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11198 arg1 = NULL;
11199 type_arg = check_typedef (exp->elts[pc + 2].type);
11200 }
11201 else
11202 {
11203 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11204 type_arg = NULL;
11205 }
11206
11207 if (exp->elts[*pos].opcode != OP_LONG)
11208 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11209 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11210 *pos += 4;
11211
11212 if (noside == EVAL_SKIP)
11213 goto nosideret;
11214
11215 if (type_arg == NULL)
11216 {
11217 arg1 = ada_coerce_ref (arg1);
11218
11219 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11220 arg1 = ada_coerce_to_simple_array (arg1);
11221
11222 if (op == OP_ATR_LENGTH)
11223 type = builtin_type (exp->gdbarch)->builtin_int;
11224 else
11225 {
11226 type = ada_index_type (value_type (arg1), tem,
11227 ada_attribute_name (op));
11228 if (type == NULL)
11229 type = builtin_type (exp->gdbarch)->builtin_int;
11230 }
11231
11232 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11233 return allocate_value (type);
11234
11235 switch (op)
11236 {
11237 default: /* Should never happen. */
11238 error (_("unexpected attribute encountered"));
11239 case OP_ATR_FIRST:
11240 return value_from_longest
11241 (type, ada_array_bound (arg1, tem, 0));
11242 case OP_ATR_LAST:
11243 return value_from_longest
11244 (type, ada_array_bound (arg1, tem, 1));
11245 case OP_ATR_LENGTH:
11246 return value_from_longest
11247 (type, ada_array_length (arg1, tem));
11248 }
11249 }
11250 else if (discrete_type_p (type_arg))
11251 {
11252 struct type *range_type;
11253 const char *name = ada_type_name (type_arg);
11254
11255 range_type = NULL;
11256 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11257 range_type = to_fixed_range_type (type_arg, NULL);
11258 if (range_type == NULL)
11259 range_type = type_arg;
11260 switch (op)
11261 {
11262 default:
11263 error (_("unexpected attribute encountered"));
11264 case OP_ATR_FIRST:
11265 return value_from_longest
11266 (range_type, ada_discrete_type_low_bound (range_type));
11267 case OP_ATR_LAST:
11268 return value_from_longest
11269 (range_type, ada_discrete_type_high_bound (range_type));
11270 case OP_ATR_LENGTH:
11271 error (_("the 'length attribute applies only to array types"));
11272 }
11273 }
11274 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11275 error (_("unimplemented type attribute"));
11276 else
11277 {
11278 LONGEST low, high;
11279
11280 if (ada_is_constrained_packed_array_type (type_arg))
11281 type_arg = decode_constrained_packed_array_type (type_arg);
11282
11283 if (op == OP_ATR_LENGTH)
11284 type = builtin_type (exp->gdbarch)->builtin_int;
11285 else
11286 {
11287 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11288 if (type == NULL)
11289 type = builtin_type (exp->gdbarch)->builtin_int;
11290 }
11291
11292 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11293 return allocate_value (type);
11294
11295 switch (op)
11296 {
11297 default:
11298 error (_("unexpected attribute encountered"));
11299 case OP_ATR_FIRST:
11300 low = ada_array_bound_from_type (type_arg, tem, 0);
11301 return value_from_longest (type, low);
11302 case OP_ATR_LAST:
11303 high = ada_array_bound_from_type (type_arg, tem, 1);
11304 return value_from_longest (type, high);
11305 case OP_ATR_LENGTH:
11306 low = ada_array_bound_from_type (type_arg, tem, 0);
11307 high = ada_array_bound_from_type (type_arg, tem, 1);
11308 return value_from_longest (type, high - low + 1);
11309 }
11310 }
11311 }
11312
11313 case OP_ATR_TAG:
11314 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11315 if (noside == EVAL_SKIP)
11316 goto nosideret;
11317
11318 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11319 return value_zero (ada_tag_type (arg1), not_lval);
11320
11321 return ada_value_tag (arg1);
11322
11323 case OP_ATR_MIN:
11324 case OP_ATR_MAX:
11325 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11326 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11327 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11328 if (noside == EVAL_SKIP)
11329 goto nosideret;
11330 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11331 return value_zero (value_type (arg1), not_lval);
11332 else
11333 {
11334 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11335 return value_binop (arg1, arg2,
11336 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11337 }
11338
11339 case OP_ATR_MODULUS:
11340 {
11341 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11342
11343 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11344 if (noside == EVAL_SKIP)
11345 goto nosideret;
11346
11347 if (!ada_is_modular_type (type_arg))
11348 error (_("'modulus must be applied to modular type"));
11349
11350 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11351 ada_modulus (type_arg));
11352 }
11353
11354
11355 case OP_ATR_POS:
11356 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11357 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11358 if (noside == EVAL_SKIP)
11359 goto nosideret;
11360 type = builtin_type (exp->gdbarch)->builtin_int;
11361 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11362 return value_zero (type, not_lval);
11363 else
11364 return value_pos_atr (type, arg1);
11365
11366 case OP_ATR_SIZE:
11367 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11368 type = value_type (arg1);
11369
11370 /* If the argument is a reference, then dereference its type, since
11371 the user is really asking for the size of the actual object,
11372 not the size of the pointer. */
11373 if (TYPE_CODE (type) == TYPE_CODE_REF)
11374 type = TYPE_TARGET_TYPE (type);
11375
11376 if (noside == EVAL_SKIP)
11377 goto nosideret;
11378 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11379 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11380 else
11381 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11382 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11383
11384 case OP_ATR_VAL:
11385 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11386 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11387 type = exp->elts[pc + 2].type;
11388 if (noside == EVAL_SKIP)
11389 goto nosideret;
11390 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11391 return value_zero (type, not_lval);
11392 else
11393 return value_val_atr (type, arg1);
11394
11395 case BINOP_EXP:
11396 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11397 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11398 if (noside == EVAL_SKIP)
11399 goto nosideret;
11400 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11401 return value_zero (value_type (arg1), not_lval);
11402 else
11403 {
11404 /* For integer exponentiation operations,
11405 only promote the first argument. */
11406 if (is_integral_type (value_type (arg2)))
11407 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11408 else
11409 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11410
11411 return value_binop (arg1, arg2, op);
11412 }
11413
11414 case UNOP_PLUS:
11415 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11416 if (noside == EVAL_SKIP)
11417 goto nosideret;
11418 else
11419 return arg1;
11420
11421 case UNOP_ABS:
11422 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11423 if (noside == EVAL_SKIP)
11424 goto nosideret;
11425 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11426 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11427 return value_neg (arg1);
11428 else
11429 return arg1;
11430
11431 case UNOP_IND:
11432 preeval_pos = *pos;
11433 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11434 if (noside == EVAL_SKIP)
11435 goto nosideret;
11436 type = ada_check_typedef (value_type (arg1));
11437 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11438 {
11439 if (ada_is_array_descriptor_type (type))
11440 /* GDB allows dereferencing GNAT array descriptors. */
11441 {
11442 struct type *arrType = ada_type_of_array (arg1, 0);
11443
11444 if (arrType == NULL)
11445 error (_("Attempt to dereference null array pointer."));
11446 return value_at_lazy (arrType, 0);
11447 }
11448 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11449 || TYPE_CODE (type) == TYPE_CODE_REF
11450 /* In C you can dereference an array to get the 1st elt. */
11451 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11452 {
11453 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11454 only be determined by inspecting the object's tag.
11455 This means that we need to evaluate completely the
11456 expression in order to get its type. */
11457
11458 if ((TYPE_CODE (type) == TYPE_CODE_REF
11459 || TYPE_CODE (type) == TYPE_CODE_PTR)
11460 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11461 {
11462 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11463 EVAL_NORMAL);
11464 type = value_type (ada_value_ind (arg1));
11465 }
11466 else
11467 {
11468 type = to_static_fixed_type
11469 (ada_aligned_type
11470 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11471 }
11472 ada_ensure_varsize_limit (type);
11473 return value_zero (type, lval_memory);
11474 }
11475 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11476 {
11477 /* GDB allows dereferencing an int. */
11478 if (expect_type == NULL)
11479 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11480 lval_memory);
11481 else
11482 {
11483 expect_type =
11484 to_static_fixed_type (ada_aligned_type (expect_type));
11485 return value_zero (expect_type, lval_memory);
11486 }
11487 }
11488 else
11489 error (_("Attempt to take contents of a non-pointer value."));
11490 }
11491 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11492 type = ada_check_typedef (value_type (arg1));
11493
11494 if (TYPE_CODE (type) == TYPE_CODE_INT)
11495 /* GDB allows dereferencing an int. If we were given
11496 the expect_type, then use that as the target type.
11497 Otherwise, assume that the target type is an int. */
11498 {
11499 if (expect_type != NULL)
11500 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11501 arg1));
11502 else
11503 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11504 (CORE_ADDR) value_as_address (arg1));
11505 }
11506
11507 if (ada_is_array_descriptor_type (type))
11508 /* GDB allows dereferencing GNAT array descriptors. */
11509 return ada_coerce_to_simple_array (arg1);
11510 else
11511 return ada_value_ind (arg1);
11512
11513 case STRUCTOP_STRUCT:
11514 tem = longest_to_int (exp->elts[pc + 1].longconst);
11515 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11516 preeval_pos = *pos;
11517 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11518 if (noside == EVAL_SKIP)
11519 goto nosideret;
11520 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11521 {
11522 struct type *type1 = value_type (arg1);
11523
11524 if (ada_is_tagged_type (type1, 1))
11525 {
11526 type = ada_lookup_struct_elt_type (type1,
11527 &exp->elts[pc + 2].string,
11528 1, 1);
11529
11530 /* If the field is not found, check if it exists in the
11531 extension of this object's type. This means that we
11532 need to evaluate completely the expression. */
11533
11534 if (type == NULL)
11535 {
11536 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11537 EVAL_NORMAL);
11538 arg1 = ada_value_struct_elt (arg1,
11539 &exp->elts[pc + 2].string,
11540 0);
11541 arg1 = unwrap_value (arg1);
11542 type = value_type (ada_to_fixed_value (arg1));
11543 }
11544 }
11545 else
11546 type =
11547 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11548 0);
11549
11550 return value_zero (ada_aligned_type (type), lval_memory);
11551 }
11552 else
11553 {
11554 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11555 arg1 = unwrap_value (arg1);
11556 return ada_to_fixed_value (arg1);
11557 }
11558
11559 case OP_TYPE:
11560 /* The value is not supposed to be used. This is here to make it
11561 easier to accommodate expressions that contain types. */
11562 (*pos) += 2;
11563 if (noside == EVAL_SKIP)
11564 goto nosideret;
11565 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11566 return allocate_value (exp->elts[pc + 1].type);
11567 else
11568 error (_("Attempt to use a type name as an expression"));
11569
11570 case OP_AGGREGATE:
11571 case OP_CHOICES:
11572 case OP_OTHERS:
11573 case OP_DISCRETE_RANGE:
11574 case OP_POSITIONAL:
11575 case OP_NAME:
11576 if (noside == EVAL_NORMAL)
11577 switch (op)
11578 {
11579 case OP_NAME:
11580 error (_("Undefined name, ambiguous name, or renaming used in "
11581 "component association: %s."), &exp->elts[pc+2].string);
11582 case OP_AGGREGATE:
11583 error (_("Aggregates only allowed on the right of an assignment"));
11584 default:
11585 internal_error (__FILE__, __LINE__,
11586 _("aggregate apparently mangled"));
11587 }
11588
11589 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11590 *pos += oplen - 1;
11591 for (tem = 0; tem < nargs; tem += 1)
11592 ada_evaluate_subexp (NULL, exp, pos, noside);
11593 goto nosideret;
11594 }
11595
11596 nosideret:
11597 return eval_skip_value (exp);
11598 }
11599 \f
11600
11601 /* Fixed point */
11602
11603 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11604 type name that encodes the 'small and 'delta information.
11605 Otherwise, return NULL. */
11606
11607 static const char *
11608 fixed_type_info (struct type *type)
11609 {
11610 const char *name = ada_type_name (type);
11611 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11612
11613 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11614 {
11615 const char *tail = strstr (name, "___XF_");
11616
11617 if (tail == NULL)
11618 return NULL;
11619 else
11620 return tail + 5;
11621 }
11622 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11623 return fixed_type_info (TYPE_TARGET_TYPE (type));
11624 else
11625 return NULL;
11626 }
11627
11628 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11629
11630 int
11631 ada_is_fixed_point_type (struct type *type)
11632 {
11633 return fixed_type_info (type) != NULL;
11634 }
11635
11636 /* Return non-zero iff TYPE represents a System.Address type. */
11637
11638 int
11639 ada_is_system_address_type (struct type *type)
11640 {
11641 return (TYPE_NAME (type)
11642 && strcmp (TYPE_NAME (type), "system__address") == 0);
11643 }
11644
11645 /* Assuming that TYPE is the representation of an Ada fixed-point
11646 type, return the target floating-point type to be used to represent
11647 of this type during internal computation. */
11648
11649 static struct type *
11650 ada_scaling_type (struct type *type)
11651 {
11652 return builtin_type (get_type_arch (type))->builtin_long_double;
11653 }
11654
11655 /* Assuming that TYPE is the representation of an Ada fixed-point
11656 type, return its delta, or NULL if the type is malformed and the
11657 delta cannot be determined. */
11658
11659 struct value *
11660 ada_delta (struct type *type)
11661 {
11662 const char *encoding = fixed_type_info (type);
11663 struct type *scale_type = ada_scaling_type (type);
11664
11665 long long num, den;
11666
11667 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11668 return nullptr;
11669 else
11670 return value_binop (value_from_longest (scale_type, num),
11671 value_from_longest (scale_type, den), BINOP_DIV);
11672 }
11673
11674 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11675 factor ('SMALL value) associated with the type. */
11676
11677 struct value *
11678 ada_scaling_factor (struct type *type)
11679 {
11680 const char *encoding = fixed_type_info (type);
11681 struct type *scale_type = ada_scaling_type (type);
11682
11683 long long num0, den0, num1, den1;
11684 int n;
11685
11686 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11687 &num0, &den0, &num1, &den1);
11688
11689 if (n < 2)
11690 return value_from_longest (scale_type, 1);
11691 else if (n == 4)
11692 return value_binop (value_from_longest (scale_type, num1),
11693 value_from_longest (scale_type, den1), BINOP_DIV);
11694 else
11695 return value_binop (value_from_longest (scale_type, num0),
11696 value_from_longest (scale_type, den0), BINOP_DIV);
11697 }
11698
11699 \f
11700
11701 /* Range types */
11702
11703 /* Scan STR beginning at position K for a discriminant name, and
11704 return the value of that discriminant field of DVAL in *PX. If
11705 PNEW_K is not null, put the position of the character beyond the
11706 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11707 not alter *PX and *PNEW_K if unsuccessful. */
11708
11709 static int
11710 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11711 int *pnew_k)
11712 {
11713 static char *bound_buffer = NULL;
11714 static size_t bound_buffer_len = 0;
11715 const char *pstart, *pend, *bound;
11716 struct value *bound_val;
11717
11718 if (dval == NULL || str == NULL || str[k] == '\0')
11719 return 0;
11720
11721 pstart = str + k;
11722 pend = strstr (pstart, "__");
11723 if (pend == NULL)
11724 {
11725 bound = pstart;
11726 k += strlen (bound);
11727 }
11728 else
11729 {
11730 int len = pend - pstart;
11731
11732 /* Strip __ and beyond. */
11733 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11734 strncpy (bound_buffer, pstart, len);
11735 bound_buffer[len] = '\0';
11736
11737 bound = bound_buffer;
11738 k = pend - str;
11739 }
11740
11741 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11742 if (bound_val == NULL)
11743 return 0;
11744
11745 *px = value_as_long (bound_val);
11746 if (pnew_k != NULL)
11747 *pnew_k = k;
11748 return 1;
11749 }
11750
11751 /* Value of variable named NAME in the current environment. If
11752 no such variable found, then if ERR_MSG is null, returns 0, and
11753 otherwise causes an error with message ERR_MSG. */
11754
11755 static struct value *
11756 get_var_value (const char *name, const char *err_msg)
11757 {
11758 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11759
11760 std::vector<struct block_symbol> syms;
11761 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11762 get_selected_block (0),
11763 VAR_DOMAIN, &syms, 1);
11764
11765 if (nsyms != 1)
11766 {
11767 if (err_msg == NULL)
11768 return 0;
11769 else
11770 error (("%s"), err_msg);
11771 }
11772
11773 return value_of_variable (syms[0].symbol, syms[0].block);
11774 }
11775
11776 /* Value of integer variable named NAME in the current environment.
11777 If no such variable is found, returns false. Otherwise, sets VALUE
11778 to the variable's value and returns true. */
11779
11780 bool
11781 get_int_var_value (const char *name, LONGEST &value)
11782 {
11783 struct value *var_val = get_var_value (name, 0);
11784
11785 if (var_val == 0)
11786 return false;
11787
11788 value = value_as_long (var_val);
11789 return true;
11790 }
11791
11792
11793 /* Return a range type whose base type is that of the range type named
11794 NAME in the current environment, and whose bounds are calculated
11795 from NAME according to the GNAT range encoding conventions.
11796 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11797 corresponding range type from debug information; fall back to using it
11798 if symbol lookup fails. If a new type must be created, allocate it
11799 like ORIG_TYPE was. The bounds information, in general, is encoded
11800 in NAME, the base type given in the named range type. */
11801
11802 static struct type *
11803 to_fixed_range_type (struct type *raw_type, struct value *dval)
11804 {
11805 const char *name;
11806 struct type *base_type;
11807 const char *subtype_info;
11808
11809 gdb_assert (raw_type != NULL);
11810 gdb_assert (TYPE_NAME (raw_type) != NULL);
11811
11812 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11813 base_type = TYPE_TARGET_TYPE (raw_type);
11814 else
11815 base_type = raw_type;
11816
11817 name = TYPE_NAME (raw_type);
11818 subtype_info = strstr (name, "___XD");
11819 if (subtype_info == NULL)
11820 {
11821 LONGEST L = ada_discrete_type_low_bound (raw_type);
11822 LONGEST U = ada_discrete_type_high_bound (raw_type);
11823
11824 if (L < INT_MIN || U > INT_MAX)
11825 return raw_type;
11826 else
11827 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11828 L, U);
11829 }
11830 else
11831 {
11832 static char *name_buf = NULL;
11833 static size_t name_len = 0;
11834 int prefix_len = subtype_info - name;
11835 LONGEST L, U;
11836 struct type *type;
11837 const char *bounds_str;
11838 int n;
11839
11840 GROW_VECT (name_buf, name_len, prefix_len + 5);
11841 strncpy (name_buf, name, prefix_len);
11842 name_buf[prefix_len] = '\0';
11843
11844 subtype_info += 5;
11845 bounds_str = strchr (subtype_info, '_');
11846 n = 1;
11847
11848 if (*subtype_info == 'L')
11849 {
11850 if (!ada_scan_number (bounds_str, n, &L, &n)
11851 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11852 return raw_type;
11853 if (bounds_str[n] == '_')
11854 n += 2;
11855 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11856 n += 1;
11857 subtype_info += 1;
11858 }
11859 else
11860 {
11861 strcpy (name_buf + prefix_len, "___L");
11862 if (!get_int_var_value (name_buf, L))
11863 {
11864 lim_warning (_("Unknown lower bound, using 1."));
11865 L = 1;
11866 }
11867 }
11868
11869 if (*subtype_info == 'U')
11870 {
11871 if (!ada_scan_number (bounds_str, n, &U, &n)
11872 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11873 return raw_type;
11874 }
11875 else
11876 {
11877 strcpy (name_buf + prefix_len, "___U");
11878 if (!get_int_var_value (name_buf, U))
11879 {
11880 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11881 U = L;
11882 }
11883 }
11884
11885 type = create_static_range_type (alloc_type_copy (raw_type),
11886 base_type, L, U);
11887 /* create_static_range_type alters the resulting type's length
11888 to match the size of the base_type, which is not what we want.
11889 Set it back to the original range type's length. */
11890 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11891 TYPE_NAME (type) = name;
11892 return type;
11893 }
11894 }
11895
11896 /* True iff NAME is the name of a range type. */
11897
11898 int
11899 ada_is_range_type_name (const char *name)
11900 {
11901 return (name != NULL && strstr (name, "___XD"));
11902 }
11903 \f
11904
11905 /* Modular types */
11906
11907 /* True iff TYPE is an Ada modular type. */
11908
11909 int
11910 ada_is_modular_type (struct type *type)
11911 {
11912 struct type *subranged_type = get_base_type (type);
11913
11914 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11915 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11916 && TYPE_UNSIGNED (subranged_type));
11917 }
11918
11919 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11920
11921 ULONGEST
11922 ada_modulus (struct type *type)
11923 {
11924 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11925 }
11926 \f
11927
11928 /* Ada exception catchpoint support:
11929 ---------------------------------
11930
11931 We support 3 kinds of exception catchpoints:
11932 . catchpoints on Ada exceptions
11933 . catchpoints on unhandled Ada exceptions
11934 . catchpoints on failed assertions
11935
11936 Exceptions raised during failed assertions, or unhandled exceptions
11937 could perfectly be caught with the general catchpoint on Ada exceptions.
11938 However, we can easily differentiate these two special cases, and having
11939 the option to distinguish these two cases from the rest can be useful
11940 to zero-in on certain situations.
11941
11942 Exception catchpoints are a specialized form of breakpoint,
11943 since they rely on inserting breakpoints inside known routines
11944 of the GNAT runtime. The implementation therefore uses a standard
11945 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11946 of breakpoint_ops.
11947
11948 Support in the runtime for exception catchpoints have been changed
11949 a few times already, and these changes affect the implementation
11950 of these catchpoints. In order to be able to support several
11951 variants of the runtime, we use a sniffer that will determine
11952 the runtime variant used by the program being debugged. */
11953
11954 /* Ada's standard exceptions.
11955
11956 The Ada 83 standard also defined Numeric_Error. But there so many
11957 situations where it was unclear from the Ada 83 Reference Manual
11958 (RM) whether Constraint_Error or Numeric_Error should be raised,
11959 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11960 Interpretation saying that anytime the RM says that Numeric_Error
11961 should be raised, the implementation may raise Constraint_Error.
11962 Ada 95 went one step further and pretty much removed Numeric_Error
11963 from the list of standard exceptions (it made it a renaming of
11964 Constraint_Error, to help preserve compatibility when compiling
11965 an Ada83 compiler). As such, we do not include Numeric_Error from
11966 this list of standard exceptions. */
11967
11968 static const char *standard_exc[] = {
11969 "constraint_error",
11970 "program_error",
11971 "storage_error",
11972 "tasking_error"
11973 };
11974
11975 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11976
11977 /* A structure that describes how to support exception catchpoints
11978 for a given executable. */
11979
11980 struct exception_support_info
11981 {
11982 /* The name of the symbol to break on in order to insert
11983 a catchpoint on exceptions. */
11984 const char *catch_exception_sym;
11985
11986 /* The name of the symbol to break on in order to insert
11987 a catchpoint on unhandled exceptions. */
11988 const char *catch_exception_unhandled_sym;
11989
11990 /* The name of the symbol to break on in order to insert
11991 a catchpoint on failed assertions. */
11992 const char *catch_assert_sym;
11993
11994 /* The name of the symbol to break on in order to insert
11995 a catchpoint on exception handling. */
11996 const char *catch_handlers_sym;
11997
11998 /* Assuming that the inferior just triggered an unhandled exception
11999 catchpoint, this function is responsible for returning the address
12000 in inferior memory where the name of that exception is stored.
12001 Return zero if the address could not be computed. */
12002 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12003 };
12004
12005 static CORE_ADDR ada_unhandled_exception_name_addr (void);
12006 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12007
12008 /* The following exception support info structure describes how to
12009 implement exception catchpoints with the latest version of the
12010 Ada runtime (as of 2007-03-06). */
12011
12012 static const struct exception_support_info default_exception_support_info =
12013 {
12014 "__gnat_debug_raise_exception", /* catch_exception_sym */
12015 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12016 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
12017 "__gnat_begin_handler", /* catch_handlers_sym */
12018 ada_unhandled_exception_name_addr
12019 };
12020
12021 /* The following exception support info structure describes how to
12022 implement exception catchpoints with a slightly older version
12023 of the Ada runtime. */
12024
12025 static const struct exception_support_info exception_support_info_fallback =
12026 {
12027 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12028 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12029 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12030 "__gnat_begin_handler", /* catch_handlers_sym */
12031 ada_unhandled_exception_name_addr_from_raise
12032 };
12033
12034 /* Return nonzero if we can detect the exception support routines
12035 described in EINFO.
12036
12037 This function errors out if an abnormal situation is detected
12038 (for instance, if we find the exception support routines, but
12039 that support is found to be incomplete). */
12040
12041 static int
12042 ada_has_this_exception_support (const struct exception_support_info *einfo)
12043 {
12044 struct symbol *sym;
12045
12046 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12047 that should be compiled with debugging information. As a result, we
12048 expect to find that symbol in the symtabs. */
12049
12050 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12051 if (sym == NULL)
12052 {
12053 /* Perhaps we did not find our symbol because the Ada runtime was
12054 compiled without debugging info, or simply stripped of it.
12055 It happens on some GNU/Linux distributions for instance, where
12056 users have to install a separate debug package in order to get
12057 the runtime's debugging info. In that situation, let the user
12058 know why we cannot insert an Ada exception catchpoint.
12059
12060 Note: Just for the purpose of inserting our Ada exception
12061 catchpoint, we could rely purely on the associated minimal symbol.
12062 But we would be operating in degraded mode anyway, since we are
12063 still lacking the debugging info needed later on to extract
12064 the name of the exception being raised (this name is printed in
12065 the catchpoint message, and is also used when trying to catch
12066 a specific exception). We do not handle this case for now. */
12067 struct bound_minimal_symbol msym
12068 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12069
12070 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12071 error (_("Your Ada runtime appears to be missing some debugging "
12072 "information.\nCannot insert Ada exception catchpoint "
12073 "in this configuration."));
12074
12075 return 0;
12076 }
12077
12078 /* Make sure that the symbol we found corresponds to a function. */
12079
12080 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12081 error (_("Symbol \"%s\" is not a function (class = %d)"),
12082 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12083
12084 return 1;
12085 }
12086
12087 /* Inspect the Ada runtime and determine which exception info structure
12088 should be used to provide support for exception catchpoints.
12089
12090 This function will always set the per-inferior exception_info,
12091 or raise an error. */
12092
12093 static void
12094 ada_exception_support_info_sniffer (void)
12095 {
12096 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12097
12098 /* If the exception info is already known, then no need to recompute it. */
12099 if (data->exception_info != NULL)
12100 return;
12101
12102 /* Check the latest (default) exception support info. */
12103 if (ada_has_this_exception_support (&default_exception_support_info))
12104 {
12105 data->exception_info = &default_exception_support_info;
12106 return;
12107 }
12108
12109 /* Try our fallback exception suport info. */
12110 if (ada_has_this_exception_support (&exception_support_info_fallback))
12111 {
12112 data->exception_info = &exception_support_info_fallback;
12113 return;
12114 }
12115
12116 /* Sometimes, it is normal for us to not be able to find the routine
12117 we are looking for. This happens when the program is linked with
12118 the shared version of the GNAT runtime, and the program has not been
12119 started yet. Inform the user of these two possible causes if
12120 applicable. */
12121
12122 if (ada_update_initial_language (language_unknown) != language_ada)
12123 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12124
12125 /* If the symbol does not exist, then check that the program is
12126 already started, to make sure that shared libraries have been
12127 loaded. If it is not started, this may mean that the symbol is
12128 in a shared library. */
12129
12130 if (inferior_ptid.pid () == 0)
12131 error (_("Unable to insert catchpoint. Try to start the program first."));
12132
12133 /* At this point, we know that we are debugging an Ada program and
12134 that the inferior has been started, but we still are not able to
12135 find the run-time symbols. That can mean that we are in
12136 configurable run time mode, or that a-except as been optimized
12137 out by the linker... In any case, at this point it is not worth
12138 supporting this feature. */
12139
12140 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12141 }
12142
12143 /* True iff FRAME is very likely to be that of a function that is
12144 part of the runtime system. This is all very heuristic, but is
12145 intended to be used as advice as to what frames are uninteresting
12146 to most users. */
12147
12148 static int
12149 is_known_support_routine (struct frame_info *frame)
12150 {
12151 enum language func_lang;
12152 int i;
12153 const char *fullname;
12154
12155 /* If this code does not have any debugging information (no symtab),
12156 This cannot be any user code. */
12157
12158 symtab_and_line sal = find_frame_sal (frame);
12159 if (sal.symtab == NULL)
12160 return 1;
12161
12162 /* If there is a symtab, but the associated source file cannot be
12163 located, then assume this is not user code: Selecting a frame
12164 for which we cannot display the code would not be very helpful
12165 for the user. This should also take care of case such as VxWorks
12166 where the kernel has some debugging info provided for a few units. */
12167
12168 fullname = symtab_to_fullname (sal.symtab);
12169 if (access (fullname, R_OK) != 0)
12170 return 1;
12171
12172 /* Check the unit filename againt the Ada runtime file naming.
12173 We also check the name of the objfile against the name of some
12174 known system libraries that sometimes come with debugging info
12175 too. */
12176
12177 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12178 {
12179 re_comp (known_runtime_file_name_patterns[i]);
12180 if (re_exec (lbasename (sal.symtab->filename)))
12181 return 1;
12182 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12183 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12184 return 1;
12185 }
12186
12187 /* Check whether the function is a GNAT-generated entity. */
12188
12189 gdb::unique_xmalloc_ptr<char> func_name
12190 = find_frame_funname (frame, &func_lang, NULL);
12191 if (func_name == NULL)
12192 return 1;
12193
12194 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12195 {
12196 re_comp (known_auxiliary_function_name_patterns[i]);
12197 if (re_exec (func_name.get ()))
12198 return 1;
12199 }
12200
12201 return 0;
12202 }
12203
12204 /* Find the first frame that contains debugging information and that is not
12205 part of the Ada run-time, starting from FI and moving upward. */
12206
12207 void
12208 ada_find_printable_frame (struct frame_info *fi)
12209 {
12210 for (; fi != NULL; fi = get_prev_frame (fi))
12211 {
12212 if (!is_known_support_routine (fi))
12213 {
12214 select_frame (fi);
12215 break;
12216 }
12217 }
12218
12219 }
12220
12221 /* Assuming that the inferior just triggered an unhandled exception
12222 catchpoint, return the address in inferior memory where the name
12223 of the exception is stored.
12224
12225 Return zero if the address could not be computed. */
12226
12227 static CORE_ADDR
12228 ada_unhandled_exception_name_addr (void)
12229 {
12230 return parse_and_eval_address ("e.full_name");
12231 }
12232
12233 /* Same as ada_unhandled_exception_name_addr, except that this function
12234 should be used when the inferior uses an older version of the runtime,
12235 where the exception name needs to be extracted from a specific frame
12236 several frames up in the callstack. */
12237
12238 static CORE_ADDR
12239 ada_unhandled_exception_name_addr_from_raise (void)
12240 {
12241 int frame_level;
12242 struct frame_info *fi;
12243 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12244
12245 /* To determine the name of this exception, we need to select
12246 the frame corresponding to RAISE_SYM_NAME. This frame is
12247 at least 3 levels up, so we simply skip the first 3 frames
12248 without checking the name of their associated function. */
12249 fi = get_current_frame ();
12250 for (frame_level = 0; frame_level < 3; frame_level += 1)
12251 if (fi != NULL)
12252 fi = get_prev_frame (fi);
12253
12254 while (fi != NULL)
12255 {
12256 enum language func_lang;
12257
12258 gdb::unique_xmalloc_ptr<char> func_name
12259 = find_frame_funname (fi, &func_lang, NULL);
12260 if (func_name != NULL)
12261 {
12262 if (strcmp (func_name.get (),
12263 data->exception_info->catch_exception_sym) == 0)
12264 break; /* We found the frame we were looking for... */
12265 }
12266 fi = get_prev_frame (fi);
12267 }
12268
12269 if (fi == NULL)
12270 return 0;
12271
12272 select_frame (fi);
12273 return parse_and_eval_address ("id.full_name");
12274 }
12275
12276 /* Assuming the inferior just triggered an Ada exception catchpoint
12277 (of any type), return the address in inferior memory where the name
12278 of the exception is stored, if applicable.
12279
12280 Assumes the selected frame is the current frame.
12281
12282 Return zero if the address could not be computed, or if not relevant. */
12283
12284 static CORE_ADDR
12285 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12286 struct breakpoint *b)
12287 {
12288 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12289
12290 switch (ex)
12291 {
12292 case ada_catch_exception:
12293 return (parse_and_eval_address ("e.full_name"));
12294 break;
12295
12296 case ada_catch_exception_unhandled:
12297 return data->exception_info->unhandled_exception_name_addr ();
12298 break;
12299
12300 case ada_catch_handlers:
12301 return 0; /* The runtimes does not provide access to the exception
12302 name. */
12303 break;
12304
12305 case ada_catch_assert:
12306 return 0; /* Exception name is not relevant in this case. */
12307 break;
12308
12309 default:
12310 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12311 break;
12312 }
12313
12314 return 0; /* Should never be reached. */
12315 }
12316
12317 /* Assuming the inferior is stopped at an exception catchpoint,
12318 return the message which was associated to the exception, if
12319 available. Return NULL if the message could not be retrieved.
12320
12321 Note: The exception message can be associated to an exception
12322 either through the use of the Raise_Exception function, or
12323 more simply (Ada 2005 and later), via:
12324
12325 raise Exception_Name with "exception message";
12326
12327 */
12328
12329 static gdb::unique_xmalloc_ptr<char>
12330 ada_exception_message_1 (void)
12331 {
12332 struct value *e_msg_val;
12333 int e_msg_len;
12334
12335 /* For runtimes that support this feature, the exception message
12336 is passed as an unbounded string argument called "message". */
12337 e_msg_val = parse_and_eval ("message");
12338 if (e_msg_val == NULL)
12339 return NULL; /* Exception message not supported. */
12340
12341 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12342 gdb_assert (e_msg_val != NULL);
12343 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12344
12345 /* If the message string is empty, then treat it as if there was
12346 no exception message. */
12347 if (e_msg_len <= 0)
12348 return NULL;
12349
12350 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12351 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12352 e_msg.get ()[e_msg_len] = '\0';
12353
12354 return e_msg;
12355 }
12356
12357 /* Same as ada_exception_message_1, except that all exceptions are
12358 contained here (returning NULL instead). */
12359
12360 static gdb::unique_xmalloc_ptr<char>
12361 ada_exception_message (void)
12362 {
12363 gdb::unique_xmalloc_ptr<char> e_msg;
12364
12365 try
12366 {
12367 e_msg = ada_exception_message_1 ();
12368 }
12369 catch (const gdb_exception_error &e)
12370 {
12371 e_msg.reset (nullptr);
12372 }
12373
12374 return e_msg;
12375 }
12376
12377 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12378 any error that ada_exception_name_addr_1 might cause to be thrown.
12379 When an error is intercepted, a warning with the error message is printed,
12380 and zero is returned. */
12381
12382 static CORE_ADDR
12383 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12384 struct breakpoint *b)
12385 {
12386 CORE_ADDR result = 0;
12387
12388 try
12389 {
12390 result = ada_exception_name_addr_1 (ex, b);
12391 }
12392
12393 catch (const gdb_exception_error &e)
12394 {
12395 warning (_("failed to get exception name: %s"), e.what ());
12396 return 0;
12397 }
12398
12399 return result;
12400 }
12401
12402 static std::string ada_exception_catchpoint_cond_string
12403 (const char *excep_string,
12404 enum ada_exception_catchpoint_kind ex);
12405
12406 /* Ada catchpoints.
12407
12408 In the case of catchpoints on Ada exceptions, the catchpoint will
12409 stop the target on every exception the program throws. When a user
12410 specifies the name of a specific exception, we translate this
12411 request into a condition expression (in text form), and then parse
12412 it into an expression stored in each of the catchpoint's locations.
12413 We then use this condition to check whether the exception that was
12414 raised is the one the user is interested in. If not, then the
12415 target is resumed again. We store the name of the requested
12416 exception, in order to be able to re-set the condition expression
12417 when symbols change. */
12418
12419 /* An instance of this type is used to represent an Ada catchpoint
12420 breakpoint location. */
12421
12422 class ada_catchpoint_location : public bp_location
12423 {
12424 public:
12425 ada_catchpoint_location (breakpoint *owner)
12426 : bp_location (owner)
12427 {}
12428
12429 /* The condition that checks whether the exception that was raised
12430 is the specific exception the user specified on catchpoint
12431 creation. */
12432 expression_up excep_cond_expr;
12433 };
12434
12435 /* An instance of this type is used to represent an Ada catchpoint. */
12436
12437 struct ada_catchpoint : public breakpoint
12438 {
12439 /* The name of the specific exception the user specified. */
12440 std::string excep_string;
12441 };
12442
12443 /* Parse the exception condition string in the context of each of the
12444 catchpoint's locations, and store them for later evaluation. */
12445
12446 static void
12447 create_excep_cond_exprs (struct ada_catchpoint *c,
12448 enum ada_exception_catchpoint_kind ex)
12449 {
12450 /* Nothing to do if there's no specific exception to catch. */
12451 if (c->excep_string.empty ())
12452 return;
12453
12454 /* Same if there are no locations... */
12455 if (c->loc == NULL)
12456 return;
12457
12458 /* We have to compute the expression once for each program space,
12459 because the expression may hold the addresses of multiple symbols
12460 in some cases. */
12461 std::multimap<program_space *, struct bp_location *> loc_map;
12462 for (bp_location *bl = c->loc; bl != NULL; bl = bl->next)
12463 loc_map.emplace (bl->pspace, bl);
12464
12465 scoped_restore_current_program_space save_pspace;
12466
12467 std::string cond_string;
12468 program_space *last_ps = nullptr;
12469 for (auto iter : loc_map)
12470 {
12471 struct ada_catchpoint_location *ada_loc
12472 = (struct ada_catchpoint_location *) iter.second;
12473
12474 if (ada_loc->pspace != last_ps)
12475 {
12476 last_ps = ada_loc->pspace;
12477 set_current_program_space (last_ps);
12478
12479 /* Compute the condition expression in text form, from the
12480 specific expection we want to catch. */
12481 cond_string
12482 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (),
12483 ex);
12484 }
12485
12486 expression_up exp;
12487
12488 if (!ada_loc->shlib_disabled)
12489 {
12490 const char *s;
12491
12492 s = cond_string.c_str ();
12493 try
12494 {
12495 exp = parse_exp_1 (&s, ada_loc->address,
12496 block_for_pc (ada_loc->address),
12497 0);
12498 }
12499 catch (const gdb_exception_error &e)
12500 {
12501 warning (_("failed to reevaluate internal exception condition "
12502 "for catchpoint %d: %s"),
12503 c->number, e.what ());
12504 }
12505 }
12506
12507 ada_loc->excep_cond_expr = std::move (exp);
12508 }
12509 }
12510
12511 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12512 structure for all exception catchpoint kinds. */
12513
12514 static struct bp_location *
12515 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12516 struct breakpoint *self)
12517 {
12518 return new ada_catchpoint_location (self);
12519 }
12520
12521 /* Implement the RE_SET method in the breakpoint_ops structure for all
12522 exception catchpoint kinds. */
12523
12524 static void
12525 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12526 {
12527 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12528
12529 /* Call the base class's method. This updates the catchpoint's
12530 locations. */
12531 bkpt_breakpoint_ops.re_set (b);
12532
12533 /* Reparse the exception conditional expressions. One for each
12534 location. */
12535 create_excep_cond_exprs (c, ex);
12536 }
12537
12538 /* Returns true if we should stop for this breakpoint hit. If the
12539 user specified a specific exception, we only want to cause a stop
12540 if the program thrown that exception. */
12541
12542 static int
12543 should_stop_exception (const struct bp_location *bl)
12544 {
12545 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12546 const struct ada_catchpoint_location *ada_loc
12547 = (const struct ada_catchpoint_location *) bl;
12548 int stop;
12549
12550 /* With no specific exception, should always stop. */
12551 if (c->excep_string.empty ())
12552 return 1;
12553
12554 if (ada_loc->excep_cond_expr == NULL)
12555 {
12556 /* We will have a NULL expression if back when we were creating
12557 the expressions, this location's had failed to parse. */
12558 return 1;
12559 }
12560
12561 stop = 1;
12562 try
12563 {
12564 struct value *mark;
12565
12566 mark = value_mark ();
12567 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12568 value_free_to_mark (mark);
12569 }
12570 catch (const gdb_exception &ex)
12571 {
12572 exception_fprintf (gdb_stderr, ex,
12573 _("Error in testing exception condition:\n"));
12574 }
12575
12576 return stop;
12577 }
12578
12579 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12580 for all exception catchpoint kinds. */
12581
12582 static void
12583 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12584 {
12585 bs->stop = should_stop_exception (bs->bp_location_at);
12586 }
12587
12588 /* Implement the PRINT_IT method in the breakpoint_ops structure
12589 for all exception catchpoint kinds. */
12590
12591 static enum print_stop_action
12592 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12593 {
12594 struct ui_out *uiout = current_uiout;
12595 struct breakpoint *b = bs->breakpoint_at;
12596
12597 annotate_catchpoint (b->number);
12598
12599 if (uiout->is_mi_like_p ())
12600 {
12601 uiout->field_string ("reason",
12602 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12603 uiout->field_string ("disp", bpdisp_text (b->disposition));
12604 }
12605
12606 uiout->text (b->disposition == disp_del
12607 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12608 uiout->field_int ("bkptno", b->number);
12609 uiout->text (", ");
12610
12611 /* ada_exception_name_addr relies on the selected frame being the
12612 current frame. Need to do this here because this function may be
12613 called more than once when printing a stop, and below, we'll
12614 select the first frame past the Ada run-time (see
12615 ada_find_printable_frame). */
12616 select_frame (get_current_frame ());
12617
12618 switch (ex)
12619 {
12620 case ada_catch_exception:
12621 case ada_catch_exception_unhandled:
12622 case ada_catch_handlers:
12623 {
12624 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12625 char exception_name[256];
12626
12627 if (addr != 0)
12628 {
12629 read_memory (addr, (gdb_byte *) exception_name,
12630 sizeof (exception_name) - 1);
12631 exception_name [sizeof (exception_name) - 1] = '\0';
12632 }
12633 else
12634 {
12635 /* For some reason, we were unable to read the exception
12636 name. This could happen if the Runtime was compiled
12637 without debugging info, for instance. In that case,
12638 just replace the exception name by the generic string
12639 "exception" - it will read as "an exception" in the
12640 notification we are about to print. */
12641 memcpy (exception_name, "exception", sizeof ("exception"));
12642 }
12643 /* In the case of unhandled exception breakpoints, we print
12644 the exception name as "unhandled EXCEPTION_NAME", to make
12645 it clearer to the user which kind of catchpoint just got
12646 hit. We used ui_out_text to make sure that this extra
12647 info does not pollute the exception name in the MI case. */
12648 if (ex == ada_catch_exception_unhandled)
12649 uiout->text ("unhandled ");
12650 uiout->field_string ("exception-name", exception_name);
12651 }
12652 break;
12653 case ada_catch_assert:
12654 /* In this case, the name of the exception is not really
12655 important. Just print "failed assertion" to make it clearer
12656 that his program just hit an assertion-failure catchpoint.
12657 We used ui_out_text because this info does not belong in
12658 the MI output. */
12659 uiout->text ("failed assertion");
12660 break;
12661 }
12662
12663 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12664 if (exception_message != NULL)
12665 {
12666 uiout->text (" (");
12667 uiout->field_string ("exception-message", exception_message.get ());
12668 uiout->text (")");
12669 }
12670
12671 uiout->text (" at ");
12672 ada_find_printable_frame (get_current_frame ());
12673
12674 return PRINT_SRC_AND_LOC;
12675 }
12676
12677 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12678 for all exception catchpoint kinds. */
12679
12680 static void
12681 print_one_exception (enum ada_exception_catchpoint_kind ex,
12682 struct breakpoint *b, struct bp_location **last_loc)
12683 {
12684 struct ui_out *uiout = current_uiout;
12685 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12686 struct value_print_options opts;
12687
12688 get_user_print_options (&opts);
12689 if (opts.addressprint)
12690 {
12691 annotate_field (4);
12692 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12693 }
12694
12695 annotate_field (5);
12696 *last_loc = b->loc;
12697 switch (ex)
12698 {
12699 case ada_catch_exception:
12700 if (!c->excep_string.empty ())
12701 {
12702 std::string msg = string_printf (_("`%s' Ada exception"),
12703 c->excep_string.c_str ());
12704
12705 uiout->field_string ("what", msg);
12706 }
12707 else
12708 uiout->field_string ("what", "all Ada exceptions");
12709
12710 break;
12711
12712 case ada_catch_exception_unhandled:
12713 uiout->field_string ("what", "unhandled Ada exceptions");
12714 break;
12715
12716 case ada_catch_handlers:
12717 if (!c->excep_string.empty ())
12718 {
12719 uiout->field_fmt ("what",
12720 _("`%s' Ada exception handlers"),
12721 c->excep_string.c_str ());
12722 }
12723 else
12724 uiout->field_string ("what", "all Ada exceptions handlers");
12725 break;
12726
12727 case ada_catch_assert:
12728 uiout->field_string ("what", "failed Ada assertions");
12729 break;
12730
12731 default:
12732 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12733 break;
12734 }
12735 }
12736
12737 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12738 for all exception catchpoint kinds. */
12739
12740 static void
12741 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12742 struct breakpoint *b)
12743 {
12744 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12745 struct ui_out *uiout = current_uiout;
12746
12747 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12748 : _("Catchpoint "));
12749 uiout->field_int ("bkptno", b->number);
12750 uiout->text (": ");
12751
12752 switch (ex)
12753 {
12754 case ada_catch_exception:
12755 if (!c->excep_string.empty ())
12756 {
12757 std::string info = string_printf (_("`%s' Ada exception"),
12758 c->excep_string.c_str ());
12759 uiout->text (info.c_str ());
12760 }
12761 else
12762 uiout->text (_("all Ada exceptions"));
12763 break;
12764
12765 case ada_catch_exception_unhandled:
12766 uiout->text (_("unhandled Ada exceptions"));
12767 break;
12768
12769 case ada_catch_handlers:
12770 if (!c->excep_string.empty ())
12771 {
12772 std::string info
12773 = string_printf (_("`%s' Ada exception handlers"),
12774 c->excep_string.c_str ());
12775 uiout->text (info.c_str ());
12776 }
12777 else
12778 uiout->text (_("all Ada exceptions handlers"));
12779 break;
12780
12781 case ada_catch_assert:
12782 uiout->text (_("failed Ada assertions"));
12783 break;
12784
12785 default:
12786 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12787 break;
12788 }
12789 }
12790
12791 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12792 for all exception catchpoint kinds. */
12793
12794 static void
12795 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12796 struct breakpoint *b, struct ui_file *fp)
12797 {
12798 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12799
12800 switch (ex)
12801 {
12802 case ada_catch_exception:
12803 fprintf_filtered (fp, "catch exception");
12804 if (!c->excep_string.empty ())
12805 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12806 break;
12807
12808 case ada_catch_exception_unhandled:
12809 fprintf_filtered (fp, "catch exception unhandled");
12810 break;
12811
12812 case ada_catch_handlers:
12813 fprintf_filtered (fp, "catch handlers");
12814 break;
12815
12816 case ada_catch_assert:
12817 fprintf_filtered (fp, "catch assert");
12818 break;
12819
12820 default:
12821 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12822 }
12823 print_recreate_thread (b, fp);
12824 }
12825
12826 /* Virtual table for "catch exception" breakpoints. */
12827
12828 static struct bp_location *
12829 allocate_location_catch_exception (struct breakpoint *self)
12830 {
12831 return allocate_location_exception (ada_catch_exception, self);
12832 }
12833
12834 static void
12835 re_set_catch_exception (struct breakpoint *b)
12836 {
12837 re_set_exception (ada_catch_exception, b);
12838 }
12839
12840 static void
12841 check_status_catch_exception (bpstat bs)
12842 {
12843 check_status_exception (ada_catch_exception, bs);
12844 }
12845
12846 static enum print_stop_action
12847 print_it_catch_exception (bpstat bs)
12848 {
12849 return print_it_exception (ada_catch_exception, bs);
12850 }
12851
12852 static void
12853 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12854 {
12855 print_one_exception (ada_catch_exception, b, last_loc);
12856 }
12857
12858 static void
12859 print_mention_catch_exception (struct breakpoint *b)
12860 {
12861 print_mention_exception (ada_catch_exception, b);
12862 }
12863
12864 static void
12865 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12866 {
12867 print_recreate_exception (ada_catch_exception, b, fp);
12868 }
12869
12870 static struct breakpoint_ops catch_exception_breakpoint_ops;
12871
12872 /* Virtual table for "catch exception unhandled" breakpoints. */
12873
12874 static struct bp_location *
12875 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12876 {
12877 return allocate_location_exception (ada_catch_exception_unhandled, self);
12878 }
12879
12880 static void
12881 re_set_catch_exception_unhandled (struct breakpoint *b)
12882 {
12883 re_set_exception (ada_catch_exception_unhandled, b);
12884 }
12885
12886 static void
12887 check_status_catch_exception_unhandled (bpstat bs)
12888 {
12889 check_status_exception (ada_catch_exception_unhandled, bs);
12890 }
12891
12892 static enum print_stop_action
12893 print_it_catch_exception_unhandled (bpstat bs)
12894 {
12895 return print_it_exception (ada_catch_exception_unhandled, bs);
12896 }
12897
12898 static void
12899 print_one_catch_exception_unhandled (struct breakpoint *b,
12900 struct bp_location **last_loc)
12901 {
12902 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12903 }
12904
12905 static void
12906 print_mention_catch_exception_unhandled (struct breakpoint *b)
12907 {
12908 print_mention_exception (ada_catch_exception_unhandled, b);
12909 }
12910
12911 static void
12912 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12913 struct ui_file *fp)
12914 {
12915 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12916 }
12917
12918 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12919
12920 /* Virtual table for "catch assert" breakpoints. */
12921
12922 static struct bp_location *
12923 allocate_location_catch_assert (struct breakpoint *self)
12924 {
12925 return allocate_location_exception (ada_catch_assert, self);
12926 }
12927
12928 static void
12929 re_set_catch_assert (struct breakpoint *b)
12930 {
12931 re_set_exception (ada_catch_assert, b);
12932 }
12933
12934 static void
12935 check_status_catch_assert (bpstat bs)
12936 {
12937 check_status_exception (ada_catch_assert, bs);
12938 }
12939
12940 static enum print_stop_action
12941 print_it_catch_assert (bpstat bs)
12942 {
12943 return print_it_exception (ada_catch_assert, bs);
12944 }
12945
12946 static void
12947 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12948 {
12949 print_one_exception (ada_catch_assert, b, last_loc);
12950 }
12951
12952 static void
12953 print_mention_catch_assert (struct breakpoint *b)
12954 {
12955 print_mention_exception (ada_catch_assert, b);
12956 }
12957
12958 static void
12959 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12960 {
12961 print_recreate_exception (ada_catch_assert, b, fp);
12962 }
12963
12964 static struct breakpoint_ops catch_assert_breakpoint_ops;
12965
12966 /* Virtual table for "catch handlers" breakpoints. */
12967
12968 static struct bp_location *
12969 allocate_location_catch_handlers (struct breakpoint *self)
12970 {
12971 return allocate_location_exception (ada_catch_handlers, self);
12972 }
12973
12974 static void
12975 re_set_catch_handlers (struct breakpoint *b)
12976 {
12977 re_set_exception (ada_catch_handlers, b);
12978 }
12979
12980 static void
12981 check_status_catch_handlers (bpstat bs)
12982 {
12983 check_status_exception (ada_catch_handlers, bs);
12984 }
12985
12986 static enum print_stop_action
12987 print_it_catch_handlers (bpstat bs)
12988 {
12989 return print_it_exception (ada_catch_handlers, bs);
12990 }
12991
12992 static void
12993 print_one_catch_handlers (struct breakpoint *b,
12994 struct bp_location **last_loc)
12995 {
12996 print_one_exception (ada_catch_handlers, b, last_loc);
12997 }
12998
12999 static void
13000 print_mention_catch_handlers (struct breakpoint *b)
13001 {
13002 print_mention_exception (ada_catch_handlers, b);
13003 }
13004
13005 static void
13006 print_recreate_catch_handlers (struct breakpoint *b,
13007 struct ui_file *fp)
13008 {
13009 print_recreate_exception (ada_catch_handlers, b, fp);
13010 }
13011
13012 static struct breakpoint_ops catch_handlers_breakpoint_ops;
13013
13014 /* Split the arguments specified in a "catch exception" command.
13015 Set EX to the appropriate catchpoint type.
13016 Set EXCEP_STRING to the name of the specific exception if
13017 specified by the user.
13018 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13019 "catch handlers" command. False otherwise.
13020 If a condition is found at the end of the arguments, the condition
13021 expression is stored in COND_STRING (memory must be deallocated
13022 after use). Otherwise COND_STRING is set to NULL. */
13023
13024 static void
13025 catch_ada_exception_command_split (const char *args,
13026 bool is_catch_handlers_cmd,
13027 enum ada_exception_catchpoint_kind *ex,
13028 std::string *excep_string,
13029 std::string *cond_string)
13030 {
13031 std::string exception_name;
13032
13033 exception_name = extract_arg (&args);
13034 if (exception_name == "if")
13035 {
13036 /* This is not an exception name; this is the start of a condition
13037 expression for a catchpoint on all exceptions. So, "un-get"
13038 this token, and set exception_name to NULL. */
13039 exception_name.clear ();
13040 args -= 2;
13041 }
13042
13043 /* Check to see if we have a condition. */
13044
13045 args = skip_spaces (args);
13046 if (startswith (args, "if")
13047 && (isspace (args[2]) || args[2] == '\0'))
13048 {
13049 args += 2;
13050 args = skip_spaces (args);
13051
13052 if (args[0] == '\0')
13053 error (_("Condition missing after `if' keyword"));
13054 *cond_string = args;
13055
13056 args += strlen (args);
13057 }
13058
13059 /* Check that we do not have any more arguments. Anything else
13060 is unexpected. */
13061
13062 if (args[0] != '\0')
13063 error (_("Junk at end of expression"));
13064
13065 if (is_catch_handlers_cmd)
13066 {
13067 /* Catch handling of exceptions. */
13068 *ex = ada_catch_handlers;
13069 *excep_string = exception_name;
13070 }
13071 else if (exception_name.empty ())
13072 {
13073 /* Catch all exceptions. */
13074 *ex = ada_catch_exception;
13075 excep_string->clear ();
13076 }
13077 else if (exception_name == "unhandled")
13078 {
13079 /* Catch unhandled exceptions. */
13080 *ex = ada_catch_exception_unhandled;
13081 excep_string->clear ();
13082 }
13083 else
13084 {
13085 /* Catch a specific exception. */
13086 *ex = ada_catch_exception;
13087 *excep_string = exception_name;
13088 }
13089 }
13090
13091 /* Return the name of the symbol on which we should break in order to
13092 implement a catchpoint of the EX kind. */
13093
13094 static const char *
13095 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13096 {
13097 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13098
13099 gdb_assert (data->exception_info != NULL);
13100
13101 switch (ex)
13102 {
13103 case ada_catch_exception:
13104 return (data->exception_info->catch_exception_sym);
13105 break;
13106 case ada_catch_exception_unhandled:
13107 return (data->exception_info->catch_exception_unhandled_sym);
13108 break;
13109 case ada_catch_assert:
13110 return (data->exception_info->catch_assert_sym);
13111 break;
13112 case ada_catch_handlers:
13113 return (data->exception_info->catch_handlers_sym);
13114 break;
13115 default:
13116 internal_error (__FILE__, __LINE__,
13117 _("unexpected catchpoint kind (%d)"), ex);
13118 }
13119 }
13120
13121 /* Return the breakpoint ops "virtual table" used for catchpoints
13122 of the EX kind. */
13123
13124 static const struct breakpoint_ops *
13125 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13126 {
13127 switch (ex)
13128 {
13129 case ada_catch_exception:
13130 return (&catch_exception_breakpoint_ops);
13131 break;
13132 case ada_catch_exception_unhandled:
13133 return (&catch_exception_unhandled_breakpoint_ops);
13134 break;
13135 case ada_catch_assert:
13136 return (&catch_assert_breakpoint_ops);
13137 break;
13138 case ada_catch_handlers:
13139 return (&catch_handlers_breakpoint_ops);
13140 break;
13141 default:
13142 internal_error (__FILE__, __LINE__,
13143 _("unexpected catchpoint kind (%d)"), ex);
13144 }
13145 }
13146
13147 /* Return the condition that will be used to match the current exception
13148 being raised with the exception that the user wants to catch. This
13149 assumes that this condition is used when the inferior just triggered
13150 an exception catchpoint.
13151 EX: the type of catchpoints used for catching Ada exceptions. */
13152
13153 static std::string
13154 ada_exception_catchpoint_cond_string (const char *excep_string,
13155 enum ada_exception_catchpoint_kind ex)
13156 {
13157 int i;
13158 std::string result;
13159 const char *name;
13160
13161 if (ex == ada_catch_handlers)
13162 {
13163 /* For exception handlers catchpoints, the condition string does
13164 not use the same parameter as for the other exceptions. */
13165 name = ("long_integer (GNAT_GCC_exception_Access"
13166 "(gcc_exception).all.occurrence.id)");
13167 }
13168 else
13169 name = "long_integer (e)";
13170
13171 /* The standard exceptions are a special case. They are defined in
13172 runtime units that have been compiled without debugging info; if
13173 EXCEP_STRING is the not-fully-qualified name of a standard
13174 exception (e.g. "constraint_error") then, during the evaluation
13175 of the condition expression, the symbol lookup on this name would
13176 *not* return this standard exception. The catchpoint condition
13177 may then be set only on user-defined exceptions which have the
13178 same not-fully-qualified name (e.g. my_package.constraint_error).
13179
13180 To avoid this unexcepted behavior, these standard exceptions are
13181 systematically prefixed by "standard". This means that "catch
13182 exception constraint_error" is rewritten into "catch exception
13183 standard.constraint_error".
13184
13185 If an exception named contraint_error is defined in another package of
13186 the inferior program, then the only way to specify this exception as a
13187 breakpoint condition is to use its fully-qualified named:
13188 e.g. my_package.constraint_error.
13189
13190 Furthermore, in some situations a standard exception's symbol may
13191 be present in more than one objfile, because the compiler may
13192 choose to emit copy relocations for them. So, we have to compare
13193 against all the possible addresses. */
13194
13195 /* Storage for a rewritten symbol name. */
13196 std::string std_name;
13197 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13198 {
13199 if (strcmp (standard_exc [i], excep_string) == 0)
13200 {
13201 std_name = std::string ("standard.") + excep_string;
13202 excep_string = std_name.c_str ();
13203 break;
13204 }
13205 }
13206
13207 excep_string = ada_encode (excep_string);
13208 std::vector<struct bound_minimal_symbol> symbols
13209 = ada_lookup_simple_minsyms (excep_string);
13210 for (const bound_minimal_symbol &msym : symbols)
13211 {
13212 if (!result.empty ())
13213 result += " or ";
13214 string_appendf (result, "%s = %s", name,
13215 pulongest (BMSYMBOL_VALUE_ADDRESS (msym)));
13216 }
13217
13218 return result;
13219 }
13220
13221 /* Return the symtab_and_line that should be used to insert an exception
13222 catchpoint of the TYPE kind.
13223
13224 ADDR_STRING returns the name of the function where the real
13225 breakpoint that implements the catchpoints is set, depending on the
13226 type of catchpoint we need to create. */
13227
13228 static struct symtab_and_line
13229 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13230 std::string *addr_string, const struct breakpoint_ops **ops)
13231 {
13232 const char *sym_name;
13233 struct symbol *sym;
13234
13235 /* First, find out which exception support info to use. */
13236 ada_exception_support_info_sniffer ();
13237
13238 /* Then lookup the function on which we will break in order to catch
13239 the Ada exceptions requested by the user. */
13240 sym_name = ada_exception_sym_name (ex);
13241 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13242
13243 if (sym == NULL)
13244 error (_("Catchpoint symbol not found: %s"), sym_name);
13245
13246 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13247 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13248
13249 /* Set ADDR_STRING. */
13250 *addr_string = sym_name;
13251
13252 /* Set OPS. */
13253 *ops = ada_exception_breakpoint_ops (ex);
13254
13255 return find_function_start_sal (sym, 1);
13256 }
13257
13258 /* Create an Ada exception catchpoint.
13259
13260 EX_KIND is the kind of exception catchpoint to be created.
13261
13262 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13263 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13264 of the exception to which this catchpoint applies.
13265
13266 COND_STRING, if not empty, is the catchpoint condition.
13267
13268 TEMPFLAG, if nonzero, means that the underlying breakpoint
13269 should be temporary.
13270
13271 FROM_TTY is the usual argument passed to all commands implementations. */
13272
13273 void
13274 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13275 enum ada_exception_catchpoint_kind ex_kind,
13276 const std::string &excep_string,
13277 const std::string &cond_string,
13278 int tempflag,
13279 int disabled,
13280 int from_tty)
13281 {
13282 std::string addr_string;
13283 const struct breakpoint_ops *ops = NULL;
13284 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13285
13286 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13287 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
13288 ops, tempflag, disabled, from_tty);
13289 c->excep_string = excep_string;
13290 create_excep_cond_exprs (c.get (), ex_kind);
13291 if (!cond_string.empty ())
13292 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13293 install_breakpoint (0, std::move (c), 1);
13294 }
13295
13296 /* Implement the "catch exception" command. */
13297
13298 static void
13299 catch_ada_exception_command (const char *arg_entry, int from_tty,
13300 struct cmd_list_element *command)
13301 {
13302 const char *arg = arg_entry;
13303 struct gdbarch *gdbarch = get_current_arch ();
13304 int tempflag;
13305 enum ada_exception_catchpoint_kind ex_kind;
13306 std::string excep_string;
13307 std::string cond_string;
13308
13309 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13310
13311 if (!arg)
13312 arg = "";
13313 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13314 &cond_string);
13315 create_ada_exception_catchpoint (gdbarch, ex_kind,
13316 excep_string, cond_string,
13317 tempflag, 1 /* enabled */,
13318 from_tty);
13319 }
13320
13321 /* Implement the "catch handlers" command. */
13322
13323 static void
13324 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13325 struct cmd_list_element *command)
13326 {
13327 const char *arg = arg_entry;
13328 struct gdbarch *gdbarch = get_current_arch ();
13329 int tempflag;
13330 enum ada_exception_catchpoint_kind ex_kind;
13331 std::string excep_string;
13332 std::string cond_string;
13333
13334 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13335
13336 if (!arg)
13337 arg = "";
13338 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13339 &cond_string);
13340 create_ada_exception_catchpoint (gdbarch, ex_kind,
13341 excep_string, cond_string,
13342 tempflag, 1 /* enabled */,
13343 from_tty);
13344 }
13345
13346 /* Completion function for the Ada "catch" commands. */
13347
13348 static void
13349 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13350 const char *text, const char *word)
13351 {
13352 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13353
13354 for (const ada_exc_info &info : exceptions)
13355 {
13356 if (startswith (info.name, word))
13357 tracker.add_completion
13358 (gdb::unique_xmalloc_ptr<char> (xstrdup (info.name)));
13359 }
13360 }
13361
13362 /* Split the arguments specified in a "catch assert" command.
13363
13364 ARGS contains the command's arguments (or the empty string if
13365 no arguments were passed).
13366
13367 If ARGS contains a condition, set COND_STRING to that condition
13368 (the memory needs to be deallocated after use). */
13369
13370 static void
13371 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13372 {
13373 args = skip_spaces (args);
13374
13375 /* Check whether a condition was provided. */
13376 if (startswith (args, "if")
13377 && (isspace (args[2]) || args[2] == '\0'))
13378 {
13379 args += 2;
13380 args = skip_spaces (args);
13381 if (args[0] == '\0')
13382 error (_("condition missing after `if' keyword"));
13383 cond_string.assign (args);
13384 }
13385
13386 /* Otherwise, there should be no other argument at the end of
13387 the command. */
13388 else if (args[0] != '\0')
13389 error (_("Junk at end of arguments."));
13390 }
13391
13392 /* Implement the "catch assert" command. */
13393
13394 static void
13395 catch_assert_command (const char *arg_entry, int from_tty,
13396 struct cmd_list_element *command)
13397 {
13398 const char *arg = arg_entry;
13399 struct gdbarch *gdbarch = get_current_arch ();
13400 int tempflag;
13401 std::string cond_string;
13402
13403 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13404
13405 if (!arg)
13406 arg = "";
13407 catch_ada_assert_command_split (arg, cond_string);
13408 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13409 "", cond_string,
13410 tempflag, 1 /* enabled */,
13411 from_tty);
13412 }
13413
13414 /* Return non-zero if the symbol SYM is an Ada exception object. */
13415
13416 static int
13417 ada_is_exception_sym (struct symbol *sym)
13418 {
13419 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13420
13421 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13422 && SYMBOL_CLASS (sym) != LOC_BLOCK
13423 && SYMBOL_CLASS (sym) != LOC_CONST
13424 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13425 && type_name != NULL && strcmp (type_name, "exception") == 0);
13426 }
13427
13428 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13429 Ada exception object. This matches all exceptions except the ones
13430 defined by the Ada language. */
13431
13432 static int
13433 ada_is_non_standard_exception_sym (struct symbol *sym)
13434 {
13435 int i;
13436
13437 if (!ada_is_exception_sym (sym))
13438 return 0;
13439
13440 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13441 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13442 return 0; /* A standard exception. */
13443
13444 /* Numeric_Error is also a standard exception, so exclude it.
13445 See the STANDARD_EXC description for more details as to why
13446 this exception is not listed in that array. */
13447 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13448 return 0;
13449
13450 return 1;
13451 }
13452
13453 /* A helper function for std::sort, comparing two struct ada_exc_info
13454 objects.
13455
13456 The comparison is determined first by exception name, and then
13457 by exception address. */
13458
13459 bool
13460 ada_exc_info::operator< (const ada_exc_info &other) const
13461 {
13462 int result;
13463
13464 result = strcmp (name, other.name);
13465 if (result < 0)
13466 return true;
13467 if (result == 0 && addr < other.addr)
13468 return true;
13469 return false;
13470 }
13471
13472 bool
13473 ada_exc_info::operator== (const ada_exc_info &other) const
13474 {
13475 return addr == other.addr && strcmp (name, other.name) == 0;
13476 }
13477
13478 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13479 routine, but keeping the first SKIP elements untouched.
13480
13481 All duplicates are also removed. */
13482
13483 static void
13484 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13485 int skip)
13486 {
13487 std::sort (exceptions->begin () + skip, exceptions->end ());
13488 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13489 exceptions->end ());
13490 }
13491
13492 /* Add all exceptions defined by the Ada standard whose name match
13493 a regular expression.
13494
13495 If PREG is not NULL, then this regexp_t object is used to
13496 perform the symbol name matching. Otherwise, no name-based
13497 filtering is performed.
13498
13499 EXCEPTIONS is a vector of exceptions to which matching exceptions
13500 gets pushed. */
13501
13502 static void
13503 ada_add_standard_exceptions (compiled_regex *preg,
13504 std::vector<ada_exc_info> *exceptions)
13505 {
13506 int i;
13507
13508 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13509 {
13510 if (preg == NULL
13511 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13512 {
13513 struct bound_minimal_symbol msymbol
13514 = ada_lookup_simple_minsym (standard_exc[i]);
13515
13516 if (msymbol.minsym != NULL)
13517 {
13518 struct ada_exc_info info
13519 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13520
13521 exceptions->push_back (info);
13522 }
13523 }
13524 }
13525 }
13526
13527 /* Add all Ada exceptions defined locally and accessible from the given
13528 FRAME.
13529
13530 If PREG is not NULL, then this regexp_t object is used to
13531 perform the symbol name matching. Otherwise, no name-based
13532 filtering is performed.
13533
13534 EXCEPTIONS is a vector of exceptions to which matching exceptions
13535 gets pushed. */
13536
13537 static void
13538 ada_add_exceptions_from_frame (compiled_regex *preg,
13539 struct frame_info *frame,
13540 std::vector<ada_exc_info> *exceptions)
13541 {
13542 const struct block *block = get_frame_block (frame, 0);
13543
13544 while (block != 0)
13545 {
13546 struct block_iterator iter;
13547 struct symbol *sym;
13548
13549 ALL_BLOCK_SYMBOLS (block, iter, sym)
13550 {
13551 switch (SYMBOL_CLASS (sym))
13552 {
13553 case LOC_TYPEDEF:
13554 case LOC_BLOCK:
13555 case LOC_CONST:
13556 break;
13557 default:
13558 if (ada_is_exception_sym (sym))
13559 {
13560 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13561 SYMBOL_VALUE_ADDRESS (sym)};
13562
13563 exceptions->push_back (info);
13564 }
13565 }
13566 }
13567 if (BLOCK_FUNCTION (block) != NULL)
13568 break;
13569 block = BLOCK_SUPERBLOCK (block);
13570 }
13571 }
13572
13573 /* Return true if NAME matches PREG or if PREG is NULL. */
13574
13575 static bool
13576 name_matches_regex (const char *name, compiled_regex *preg)
13577 {
13578 return (preg == NULL
13579 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13580 }
13581
13582 /* Add all exceptions defined globally whose name name match
13583 a regular expression, excluding standard exceptions.
13584
13585 The reason we exclude standard exceptions is that they need
13586 to be handled separately: Standard exceptions are defined inside
13587 a runtime unit which is normally not compiled with debugging info,
13588 and thus usually do not show up in our symbol search. However,
13589 if the unit was in fact built with debugging info, we need to
13590 exclude them because they would duplicate the entry we found
13591 during the special loop that specifically searches for those
13592 standard exceptions.
13593
13594 If PREG is not NULL, then this regexp_t object is used to
13595 perform the symbol name matching. Otherwise, no name-based
13596 filtering is performed.
13597
13598 EXCEPTIONS is a vector of exceptions to which matching exceptions
13599 gets pushed. */
13600
13601 static void
13602 ada_add_global_exceptions (compiled_regex *preg,
13603 std::vector<ada_exc_info> *exceptions)
13604 {
13605 /* In Ada, the symbol "search name" is a linkage name, whereas the
13606 regular expression used to do the matching refers to the natural
13607 name. So match against the decoded name. */
13608 expand_symtabs_matching (NULL,
13609 lookup_name_info::match_any (),
13610 [&] (const char *search_name)
13611 {
13612 const char *decoded = ada_decode (search_name);
13613 return name_matches_regex (decoded, preg);
13614 },
13615 NULL,
13616 VARIABLES_DOMAIN);
13617
13618 for (objfile *objfile : current_program_space->objfiles ())
13619 {
13620 for (compunit_symtab *s : objfile->compunits ())
13621 {
13622 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13623 int i;
13624
13625 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13626 {
13627 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13628 struct block_iterator iter;
13629 struct symbol *sym;
13630
13631 ALL_BLOCK_SYMBOLS (b, iter, sym)
13632 if (ada_is_non_standard_exception_sym (sym)
13633 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13634 {
13635 struct ada_exc_info info
13636 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13637
13638 exceptions->push_back (info);
13639 }
13640 }
13641 }
13642 }
13643 }
13644
13645 /* Implements ada_exceptions_list with the regular expression passed
13646 as a regex_t, rather than a string.
13647
13648 If not NULL, PREG is used to filter out exceptions whose names
13649 do not match. Otherwise, all exceptions are listed. */
13650
13651 static std::vector<ada_exc_info>
13652 ada_exceptions_list_1 (compiled_regex *preg)
13653 {
13654 std::vector<ada_exc_info> result;
13655 int prev_len;
13656
13657 /* First, list the known standard exceptions. These exceptions
13658 need to be handled separately, as they are usually defined in
13659 runtime units that have been compiled without debugging info. */
13660
13661 ada_add_standard_exceptions (preg, &result);
13662
13663 /* Next, find all exceptions whose scope is local and accessible
13664 from the currently selected frame. */
13665
13666 if (has_stack_frames ())
13667 {
13668 prev_len = result.size ();
13669 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13670 &result);
13671 if (result.size () > prev_len)
13672 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13673 }
13674
13675 /* Add all exceptions whose scope is global. */
13676
13677 prev_len = result.size ();
13678 ada_add_global_exceptions (preg, &result);
13679 if (result.size () > prev_len)
13680 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13681
13682 return result;
13683 }
13684
13685 /* Return a vector of ada_exc_info.
13686
13687 If REGEXP is NULL, all exceptions are included in the result.
13688 Otherwise, it should contain a valid regular expression,
13689 and only the exceptions whose names match that regular expression
13690 are included in the result.
13691
13692 The exceptions are sorted in the following order:
13693 - Standard exceptions (defined by the Ada language), in
13694 alphabetical order;
13695 - Exceptions only visible from the current frame, in
13696 alphabetical order;
13697 - Exceptions whose scope is global, in alphabetical order. */
13698
13699 std::vector<ada_exc_info>
13700 ada_exceptions_list (const char *regexp)
13701 {
13702 if (regexp == NULL)
13703 return ada_exceptions_list_1 (NULL);
13704
13705 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13706 return ada_exceptions_list_1 (&reg);
13707 }
13708
13709 /* Implement the "info exceptions" command. */
13710
13711 static void
13712 info_exceptions_command (const char *regexp, int from_tty)
13713 {
13714 struct gdbarch *gdbarch = get_current_arch ();
13715
13716 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13717
13718 if (regexp != NULL)
13719 printf_filtered
13720 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13721 else
13722 printf_filtered (_("All defined Ada exceptions:\n"));
13723
13724 for (const ada_exc_info &info : exceptions)
13725 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13726 }
13727
13728 /* Operators */
13729 /* Information about operators given special treatment in functions
13730 below. */
13731 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13732
13733 #define ADA_OPERATORS \
13734 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13735 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13736 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13737 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13738 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13739 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13740 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13741 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13742 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13743 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13744 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13745 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13746 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13747 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13748 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13749 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13750 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13751 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13752 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13753
13754 static void
13755 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13756 int *argsp)
13757 {
13758 switch (exp->elts[pc - 1].opcode)
13759 {
13760 default:
13761 operator_length_standard (exp, pc, oplenp, argsp);
13762 break;
13763
13764 #define OP_DEFN(op, len, args, binop) \
13765 case op: *oplenp = len; *argsp = args; break;
13766 ADA_OPERATORS;
13767 #undef OP_DEFN
13768
13769 case OP_AGGREGATE:
13770 *oplenp = 3;
13771 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13772 break;
13773
13774 case OP_CHOICES:
13775 *oplenp = 3;
13776 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13777 break;
13778 }
13779 }
13780
13781 /* Implementation of the exp_descriptor method operator_check. */
13782
13783 static int
13784 ada_operator_check (struct expression *exp, int pos,
13785 int (*objfile_func) (struct objfile *objfile, void *data),
13786 void *data)
13787 {
13788 const union exp_element *const elts = exp->elts;
13789 struct type *type = NULL;
13790
13791 switch (elts[pos].opcode)
13792 {
13793 case UNOP_IN_RANGE:
13794 case UNOP_QUAL:
13795 type = elts[pos + 1].type;
13796 break;
13797
13798 default:
13799 return operator_check_standard (exp, pos, objfile_func, data);
13800 }
13801
13802 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13803
13804 if (type && TYPE_OBJFILE (type)
13805 && (*objfile_func) (TYPE_OBJFILE (type), data))
13806 return 1;
13807
13808 return 0;
13809 }
13810
13811 static const char *
13812 ada_op_name (enum exp_opcode opcode)
13813 {
13814 switch (opcode)
13815 {
13816 default:
13817 return op_name_standard (opcode);
13818
13819 #define OP_DEFN(op, len, args, binop) case op: return #op;
13820 ADA_OPERATORS;
13821 #undef OP_DEFN
13822
13823 case OP_AGGREGATE:
13824 return "OP_AGGREGATE";
13825 case OP_CHOICES:
13826 return "OP_CHOICES";
13827 case OP_NAME:
13828 return "OP_NAME";
13829 }
13830 }
13831
13832 /* As for operator_length, but assumes PC is pointing at the first
13833 element of the operator, and gives meaningful results only for the
13834 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13835
13836 static void
13837 ada_forward_operator_length (struct expression *exp, int pc,
13838 int *oplenp, int *argsp)
13839 {
13840 switch (exp->elts[pc].opcode)
13841 {
13842 default:
13843 *oplenp = *argsp = 0;
13844 break;
13845
13846 #define OP_DEFN(op, len, args, binop) \
13847 case op: *oplenp = len; *argsp = args; break;
13848 ADA_OPERATORS;
13849 #undef OP_DEFN
13850
13851 case OP_AGGREGATE:
13852 *oplenp = 3;
13853 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13854 break;
13855
13856 case OP_CHOICES:
13857 *oplenp = 3;
13858 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13859 break;
13860
13861 case OP_STRING:
13862 case OP_NAME:
13863 {
13864 int len = longest_to_int (exp->elts[pc + 1].longconst);
13865
13866 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13867 *argsp = 0;
13868 break;
13869 }
13870 }
13871 }
13872
13873 static int
13874 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13875 {
13876 enum exp_opcode op = exp->elts[elt].opcode;
13877 int oplen, nargs;
13878 int pc = elt;
13879 int i;
13880
13881 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13882
13883 switch (op)
13884 {
13885 /* Ada attributes ('Foo). */
13886 case OP_ATR_FIRST:
13887 case OP_ATR_LAST:
13888 case OP_ATR_LENGTH:
13889 case OP_ATR_IMAGE:
13890 case OP_ATR_MAX:
13891 case OP_ATR_MIN:
13892 case OP_ATR_MODULUS:
13893 case OP_ATR_POS:
13894 case OP_ATR_SIZE:
13895 case OP_ATR_TAG:
13896 case OP_ATR_VAL:
13897 break;
13898
13899 case UNOP_IN_RANGE:
13900 case UNOP_QUAL:
13901 /* XXX: gdb_sprint_host_address, type_sprint */
13902 fprintf_filtered (stream, _("Type @"));
13903 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13904 fprintf_filtered (stream, " (");
13905 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13906 fprintf_filtered (stream, ")");
13907 break;
13908 case BINOP_IN_BOUNDS:
13909 fprintf_filtered (stream, " (%d)",
13910 longest_to_int (exp->elts[pc + 2].longconst));
13911 break;
13912 case TERNOP_IN_RANGE:
13913 break;
13914
13915 case OP_AGGREGATE:
13916 case OP_OTHERS:
13917 case OP_DISCRETE_RANGE:
13918 case OP_POSITIONAL:
13919 case OP_CHOICES:
13920 break;
13921
13922 case OP_NAME:
13923 case OP_STRING:
13924 {
13925 char *name = &exp->elts[elt + 2].string;
13926 int len = longest_to_int (exp->elts[elt + 1].longconst);
13927
13928 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13929 break;
13930 }
13931
13932 default:
13933 return dump_subexp_body_standard (exp, stream, elt);
13934 }
13935
13936 elt += oplen;
13937 for (i = 0; i < nargs; i += 1)
13938 elt = dump_subexp (exp, stream, elt);
13939
13940 return elt;
13941 }
13942
13943 /* The Ada extension of print_subexp (q.v.). */
13944
13945 static void
13946 ada_print_subexp (struct expression *exp, int *pos,
13947 struct ui_file *stream, enum precedence prec)
13948 {
13949 int oplen, nargs, i;
13950 int pc = *pos;
13951 enum exp_opcode op = exp->elts[pc].opcode;
13952
13953 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13954
13955 *pos += oplen;
13956 switch (op)
13957 {
13958 default:
13959 *pos -= oplen;
13960 print_subexp_standard (exp, pos, stream, prec);
13961 return;
13962
13963 case OP_VAR_VALUE:
13964 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13965 return;
13966
13967 case BINOP_IN_BOUNDS:
13968 /* XXX: sprint_subexp */
13969 print_subexp (exp, pos, stream, PREC_SUFFIX);
13970 fputs_filtered (" in ", stream);
13971 print_subexp (exp, pos, stream, PREC_SUFFIX);
13972 fputs_filtered ("'range", stream);
13973 if (exp->elts[pc + 1].longconst > 1)
13974 fprintf_filtered (stream, "(%ld)",
13975 (long) exp->elts[pc + 1].longconst);
13976 return;
13977
13978 case TERNOP_IN_RANGE:
13979 if (prec >= PREC_EQUAL)
13980 fputs_filtered ("(", stream);
13981 /* XXX: sprint_subexp */
13982 print_subexp (exp, pos, stream, PREC_SUFFIX);
13983 fputs_filtered (" in ", stream);
13984 print_subexp (exp, pos, stream, PREC_EQUAL);
13985 fputs_filtered (" .. ", stream);
13986 print_subexp (exp, pos, stream, PREC_EQUAL);
13987 if (prec >= PREC_EQUAL)
13988 fputs_filtered (")", stream);
13989 return;
13990
13991 case OP_ATR_FIRST:
13992 case OP_ATR_LAST:
13993 case OP_ATR_LENGTH:
13994 case OP_ATR_IMAGE:
13995 case OP_ATR_MAX:
13996 case OP_ATR_MIN:
13997 case OP_ATR_MODULUS:
13998 case OP_ATR_POS:
13999 case OP_ATR_SIZE:
14000 case OP_ATR_TAG:
14001 case OP_ATR_VAL:
14002 if (exp->elts[*pos].opcode == OP_TYPE)
14003 {
14004 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
14005 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
14006 &type_print_raw_options);
14007 *pos += 3;
14008 }
14009 else
14010 print_subexp (exp, pos, stream, PREC_SUFFIX);
14011 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
14012 if (nargs > 1)
14013 {
14014 int tem;
14015
14016 for (tem = 1; tem < nargs; tem += 1)
14017 {
14018 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
14019 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
14020 }
14021 fputs_filtered (")", stream);
14022 }
14023 return;
14024
14025 case UNOP_QUAL:
14026 type_print (exp->elts[pc + 1].type, "", stream, 0);
14027 fputs_filtered ("'(", stream);
14028 print_subexp (exp, pos, stream, PREC_PREFIX);
14029 fputs_filtered (")", stream);
14030 return;
14031
14032 case UNOP_IN_RANGE:
14033 /* XXX: sprint_subexp */
14034 print_subexp (exp, pos, stream, PREC_SUFFIX);
14035 fputs_filtered (" in ", stream);
14036 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14037 &type_print_raw_options);
14038 return;
14039
14040 case OP_DISCRETE_RANGE:
14041 print_subexp (exp, pos, stream, PREC_SUFFIX);
14042 fputs_filtered ("..", stream);
14043 print_subexp (exp, pos, stream, PREC_SUFFIX);
14044 return;
14045
14046 case OP_OTHERS:
14047 fputs_filtered ("others => ", stream);
14048 print_subexp (exp, pos, stream, PREC_SUFFIX);
14049 return;
14050
14051 case OP_CHOICES:
14052 for (i = 0; i < nargs-1; i += 1)
14053 {
14054 if (i > 0)
14055 fputs_filtered ("|", stream);
14056 print_subexp (exp, pos, stream, PREC_SUFFIX);
14057 }
14058 fputs_filtered (" => ", stream);
14059 print_subexp (exp, pos, stream, PREC_SUFFIX);
14060 return;
14061
14062 case OP_POSITIONAL:
14063 print_subexp (exp, pos, stream, PREC_SUFFIX);
14064 return;
14065
14066 case OP_AGGREGATE:
14067 fputs_filtered ("(", stream);
14068 for (i = 0; i < nargs; i += 1)
14069 {
14070 if (i > 0)
14071 fputs_filtered (", ", stream);
14072 print_subexp (exp, pos, stream, PREC_SUFFIX);
14073 }
14074 fputs_filtered (")", stream);
14075 return;
14076 }
14077 }
14078
14079 /* Table mapping opcodes into strings for printing operators
14080 and precedences of the operators. */
14081
14082 static const struct op_print ada_op_print_tab[] = {
14083 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14084 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14085 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14086 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14087 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14088 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14089 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14090 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14091 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14092 {">=", BINOP_GEQ, PREC_ORDER, 0},
14093 {">", BINOP_GTR, PREC_ORDER, 0},
14094 {"<", BINOP_LESS, PREC_ORDER, 0},
14095 {">>", BINOP_RSH, PREC_SHIFT, 0},
14096 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14097 {"+", BINOP_ADD, PREC_ADD, 0},
14098 {"-", BINOP_SUB, PREC_ADD, 0},
14099 {"&", BINOP_CONCAT, PREC_ADD, 0},
14100 {"*", BINOP_MUL, PREC_MUL, 0},
14101 {"/", BINOP_DIV, PREC_MUL, 0},
14102 {"rem", BINOP_REM, PREC_MUL, 0},
14103 {"mod", BINOP_MOD, PREC_MUL, 0},
14104 {"**", BINOP_EXP, PREC_REPEAT, 0},
14105 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14106 {"-", UNOP_NEG, PREC_PREFIX, 0},
14107 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14108 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14109 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14110 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14111 {".all", UNOP_IND, PREC_SUFFIX, 1},
14112 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14113 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14114 {NULL, OP_NULL, PREC_SUFFIX, 0}
14115 };
14116 \f
14117 enum ada_primitive_types {
14118 ada_primitive_type_int,
14119 ada_primitive_type_long,
14120 ada_primitive_type_short,
14121 ada_primitive_type_char,
14122 ada_primitive_type_float,
14123 ada_primitive_type_double,
14124 ada_primitive_type_void,
14125 ada_primitive_type_long_long,
14126 ada_primitive_type_long_double,
14127 ada_primitive_type_natural,
14128 ada_primitive_type_positive,
14129 ada_primitive_type_system_address,
14130 ada_primitive_type_storage_offset,
14131 nr_ada_primitive_types
14132 };
14133
14134 static void
14135 ada_language_arch_info (struct gdbarch *gdbarch,
14136 struct language_arch_info *lai)
14137 {
14138 const struct builtin_type *builtin = builtin_type (gdbarch);
14139
14140 lai->primitive_type_vector
14141 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14142 struct type *);
14143
14144 lai->primitive_type_vector [ada_primitive_type_int]
14145 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14146 0, "integer");
14147 lai->primitive_type_vector [ada_primitive_type_long]
14148 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14149 0, "long_integer");
14150 lai->primitive_type_vector [ada_primitive_type_short]
14151 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14152 0, "short_integer");
14153 lai->string_char_type
14154 = lai->primitive_type_vector [ada_primitive_type_char]
14155 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14156 lai->primitive_type_vector [ada_primitive_type_float]
14157 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14158 "float", gdbarch_float_format (gdbarch));
14159 lai->primitive_type_vector [ada_primitive_type_double]
14160 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14161 "long_float", gdbarch_double_format (gdbarch));
14162 lai->primitive_type_vector [ada_primitive_type_long_long]
14163 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14164 0, "long_long_integer");
14165 lai->primitive_type_vector [ada_primitive_type_long_double]
14166 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14167 "long_long_float", gdbarch_long_double_format (gdbarch));
14168 lai->primitive_type_vector [ada_primitive_type_natural]
14169 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14170 0, "natural");
14171 lai->primitive_type_vector [ada_primitive_type_positive]
14172 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14173 0, "positive");
14174 lai->primitive_type_vector [ada_primitive_type_void]
14175 = builtin->builtin_void;
14176
14177 lai->primitive_type_vector [ada_primitive_type_system_address]
14178 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14179 "void"));
14180 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14181 = "system__address";
14182
14183 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14184 type. This is a signed integral type whose size is the same as
14185 the size of addresses. */
14186 {
14187 unsigned int addr_length = TYPE_LENGTH
14188 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14189
14190 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14191 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14192 "storage_offset");
14193 }
14194
14195 lai->bool_type_symbol = NULL;
14196 lai->bool_type_default = builtin->builtin_bool;
14197 }
14198 \f
14199 /* Language vector */
14200
14201 /* Not really used, but needed in the ada_language_defn. */
14202
14203 static void
14204 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14205 {
14206 ada_emit_char (c, type, stream, quoter, 1);
14207 }
14208
14209 static int
14210 parse (struct parser_state *ps)
14211 {
14212 warnings_issued = 0;
14213 return ada_parse (ps);
14214 }
14215
14216 static const struct exp_descriptor ada_exp_descriptor = {
14217 ada_print_subexp,
14218 ada_operator_length,
14219 ada_operator_check,
14220 ada_op_name,
14221 ada_dump_subexp_body,
14222 ada_evaluate_subexp
14223 };
14224
14225 /* symbol_name_matcher_ftype adapter for wild_match. */
14226
14227 static bool
14228 do_wild_match (const char *symbol_search_name,
14229 const lookup_name_info &lookup_name,
14230 completion_match_result *comp_match_res)
14231 {
14232 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14233 }
14234
14235 /* symbol_name_matcher_ftype adapter for full_match. */
14236
14237 static bool
14238 do_full_match (const char *symbol_search_name,
14239 const lookup_name_info &lookup_name,
14240 completion_match_result *comp_match_res)
14241 {
14242 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14243 }
14244
14245 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
14246
14247 static bool
14248 do_exact_match (const char *symbol_search_name,
14249 const lookup_name_info &lookup_name,
14250 completion_match_result *comp_match_res)
14251 {
14252 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14253 }
14254
14255 /* Build the Ada lookup name for LOOKUP_NAME. */
14256
14257 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14258 {
14259 const std::string &user_name = lookup_name.name ();
14260
14261 if (user_name[0] == '<')
14262 {
14263 if (user_name.back () == '>')
14264 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14265 else
14266 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14267 m_encoded_p = true;
14268 m_verbatim_p = true;
14269 m_wild_match_p = false;
14270 m_standard_p = false;
14271 }
14272 else
14273 {
14274 m_verbatim_p = false;
14275
14276 m_encoded_p = user_name.find ("__") != std::string::npos;
14277
14278 if (!m_encoded_p)
14279 {
14280 const char *folded = ada_fold_name (user_name.c_str ());
14281 const char *encoded = ada_encode_1 (folded, false);
14282 if (encoded != NULL)
14283 m_encoded_name = encoded;
14284 else
14285 m_encoded_name = user_name;
14286 }
14287 else
14288 m_encoded_name = user_name;
14289
14290 /* Handle the 'package Standard' special case. See description
14291 of m_standard_p. */
14292 if (startswith (m_encoded_name.c_str (), "standard__"))
14293 {
14294 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14295 m_standard_p = true;
14296 }
14297 else
14298 m_standard_p = false;
14299
14300 /* If the name contains a ".", then the user is entering a fully
14301 qualified entity name, and the match must not be done in wild
14302 mode. Similarly, if the user wants to complete what looks
14303 like an encoded name, the match must not be done in wild
14304 mode. Also, in the standard__ special case always do
14305 non-wild matching. */
14306 m_wild_match_p
14307 = (lookup_name.match_type () != symbol_name_match_type::FULL
14308 && !m_encoded_p
14309 && !m_standard_p
14310 && user_name.find ('.') == std::string::npos);
14311 }
14312 }
14313
14314 /* symbol_name_matcher_ftype method for Ada. This only handles
14315 completion mode. */
14316
14317 static bool
14318 ada_symbol_name_matches (const char *symbol_search_name,
14319 const lookup_name_info &lookup_name,
14320 completion_match_result *comp_match_res)
14321 {
14322 return lookup_name.ada ().matches (symbol_search_name,
14323 lookup_name.match_type (),
14324 comp_match_res);
14325 }
14326
14327 /* A name matcher that matches the symbol name exactly, with
14328 strcmp. */
14329
14330 static bool
14331 literal_symbol_name_matcher (const char *symbol_search_name,
14332 const lookup_name_info &lookup_name,
14333 completion_match_result *comp_match_res)
14334 {
14335 const std::string &name = lookup_name.name ();
14336
14337 int cmp = (lookup_name.completion_mode ()
14338 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14339 : strcmp (symbol_search_name, name.c_str ()));
14340 if (cmp == 0)
14341 {
14342 if (comp_match_res != NULL)
14343 comp_match_res->set_match (symbol_search_name);
14344 return true;
14345 }
14346 else
14347 return false;
14348 }
14349
14350 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14351 Ada. */
14352
14353 static symbol_name_matcher_ftype *
14354 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14355 {
14356 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14357 return literal_symbol_name_matcher;
14358
14359 if (lookup_name.completion_mode ())
14360 return ada_symbol_name_matches;
14361 else
14362 {
14363 if (lookup_name.ada ().wild_match_p ())
14364 return do_wild_match;
14365 else if (lookup_name.ada ().verbatim_p ())
14366 return do_exact_match;
14367 else
14368 return do_full_match;
14369 }
14370 }
14371
14372 /* Implement the "la_read_var_value" language_defn method for Ada. */
14373
14374 static struct value *
14375 ada_read_var_value (struct symbol *var, const struct block *var_block,
14376 struct frame_info *frame)
14377 {
14378 const struct block *frame_block = NULL;
14379 struct symbol *renaming_sym = NULL;
14380
14381 /* The only case where default_read_var_value is not sufficient
14382 is when VAR is a renaming... */
14383 if (frame)
14384 frame_block = get_frame_block (frame, NULL);
14385 if (frame_block)
14386 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14387 if (renaming_sym != NULL)
14388 return ada_read_renaming_var_value (renaming_sym, frame_block);
14389
14390 /* This is a typical case where we expect the default_read_var_value
14391 function to work. */
14392 return default_read_var_value (var, var_block, frame);
14393 }
14394
14395 static const char *ada_extensions[] =
14396 {
14397 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14398 };
14399
14400 extern const struct language_defn ada_language_defn = {
14401 "ada", /* Language name */
14402 "Ada",
14403 language_ada,
14404 range_check_off,
14405 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14406 that's not quite what this means. */
14407 array_row_major,
14408 macro_expansion_no,
14409 ada_extensions,
14410 &ada_exp_descriptor,
14411 parse,
14412 resolve,
14413 ada_printchar, /* Print a character constant */
14414 ada_printstr, /* Function to print string constant */
14415 emit_char, /* Function to print single char (not used) */
14416 ada_print_type, /* Print a type using appropriate syntax */
14417 ada_print_typedef, /* Print a typedef using appropriate syntax */
14418 ada_val_print, /* Print a value using appropriate syntax */
14419 ada_value_print, /* Print a top-level value */
14420 ada_read_var_value, /* la_read_var_value */
14421 NULL, /* Language specific skip_trampoline */
14422 NULL, /* name_of_this */
14423 true, /* la_store_sym_names_in_linkage_form_p */
14424 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14425 basic_lookup_transparent_type, /* lookup_transparent_type */
14426 ada_la_decode, /* Language specific symbol demangler */
14427 ada_sniff_from_mangled_name,
14428 NULL, /* Language specific
14429 class_name_from_physname */
14430 ada_op_print_tab, /* expression operators for printing */
14431 0, /* c-style arrays */
14432 1, /* String lower bound */
14433 ada_get_gdb_completer_word_break_characters,
14434 ada_collect_symbol_completion_matches,
14435 ada_language_arch_info,
14436 ada_print_array_index,
14437 default_pass_by_reference,
14438 c_get_string,
14439 ada_watch_location_expression,
14440 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14441 ada_iterate_over_symbols,
14442 default_search_name_hash,
14443 &ada_varobj_ops,
14444 NULL,
14445 NULL,
14446 ada_is_string_type,
14447 "(...)" /* la_struct_too_deep_ellipsis */
14448 };
14449
14450 /* Command-list for the "set/show ada" prefix command. */
14451 static struct cmd_list_element *set_ada_list;
14452 static struct cmd_list_element *show_ada_list;
14453
14454 /* Implement the "set ada" prefix command. */
14455
14456 static void
14457 set_ada_command (const char *arg, int from_tty)
14458 {
14459 printf_unfiltered (_(\
14460 "\"set ada\" must be followed by the name of a setting.\n"));
14461 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14462 }
14463
14464 /* Implement the "show ada" prefix command. */
14465
14466 static void
14467 show_ada_command (const char *args, int from_tty)
14468 {
14469 cmd_show_list (show_ada_list, from_tty, "");
14470 }
14471
14472 static void
14473 initialize_ada_catchpoint_ops (void)
14474 {
14475 struct breakpoint_ops *ops;
14476
14477 initialize_breakpoint_ops ();
14478
14479 ops = &catch_exception_breakpoint_ops;
14480 *ops = bkpt_breakpoint_ops;
14481 ops->allocate_location = allocate_location_catch_exception;
14482 ops->re_set = re_set_catch_exception;
14483 ops->check_status = check_status_catch_exception;
14484 ops->print_it = print_it_catch_exception;
14485 ops->print_one = print_one_catch_exception;
14486 ops->print_mention = print_mention_catch_exception;
14487 ops->print_recreate = print_recreate_catch_exception;
14488
14489 ops = &catch_exception_unhandled_breakpoint_ops;
14490 *ops = bkpt_breakpoint_ops;
14491 ops->allocate_location = allocate_location_catch_exception_unhandled;
14492 ops->re_set = re_set_catch_exception_unhandled;
14493 ops->check_status = check_status_catch_exception_unhandled;
14494 ops->print_it = print_it_catch_exception_unhandled;
14495 ops->print_one = print_one_catch_exception_unhandled;
14496 ops->print_mention = print_mention_catch_exception_unhandled;
14497 ops->print_recreate = print_recreate_catch_exception_unhandled;
14498
14499 ops = &catch_assert_breakpoint_ops;
14500 *ops = bkpt_breakpoint_ops;
14501 ops->allocate_location = allocate_location_catch_assert;
14502 ops->re_set = re_set_catch_assert;
14503 ops->check_status = check_status_catch_assert;
14504 ops->print_it = print_it_catch_assert;
14505 ops->print_one = print_one_catch_assert;
14506 ops->print_mention = print_mention_catch_assert;
14507 ops->print_recreate = print_recreate_catch_assert;
14508
14509 ops = &catch_handlers_breakpoint_ops;
14510 *ops = bkpt_breakpoint_ops;
14511 ops->allocate_location = allocate_location_catch_handlers;
14512 ops->re_set = re_set_catch_handlers;
14513 ops->check_status = check_status_catch_handlers;
14514 ops->print_it = print_it_catch_handlers;
14515 ops->print_one = print_one_catch_handlers;
14516 ops->print_mention = print_mention_catch_handlers;
14517 ops->print_recreate = print_recreate_catch_handlers;
14518 }
14519
14520 /* This module's 'new_objfile' observer. */
14521
14522 static void
14523 ada_new_objfile_observer (struct objfile *objfile)
14524 {
14525 ada_clear_symbol_cache ();
14526 }
14527
14528 /* This module's 'free_objfile' observer. */
14529
14530 static void
14531 ada_free_objfile_observer (struct objfile *objfile)
14532 {
14533 ada_clear_symbol_cache ();
14534 }
14535
14536 void
14537 _initialize_ada_language (void)
14538 {
14539 initialize_ada_catchpoint_ops ();
14540
14541 add_prefix_cmd ("ada", no_class, set_ada_command,
14542 _("Prefix command for changing Ada-specific settings"),
14543 &set_ada_list, "set ada ", 0, &setlist);
14544
14545 add_prefix_cmd ("ada", no_class, show_ada_command,
14546 _("Generic command for showing Ada-specific settings."),
14547 &show_ada_list, "show ada ", 0, &showlist);
14548
14549 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14550 &trust_pad_over_xvs, _("\
14551 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14552 Show whether an optimization trusting PAD types over XVS types is activated"),
14553 _("\
14554 This is related to the encoding used by the GNAT compiler. The debugger\n\
14555 should normally trust the contents of PAD types, but certain older versions\n\
14556 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14557 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14558 work around this bug. It is always safe to turn this option \"off\", but\n\
14559 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14560 this option to \"off\" unless necessary."),
14561 NULL, NULL, &set_ada_list, &show_ada_list);
14562
14563 add_setshow_boolean_cmd ("print-signatures", class_vars,
14564 &print_signatures, _("\
14565 Enable or disable the output of formal and return types for functions in the \
14566 overloads selection menu"), _("\
14567 Show whether the output of formal and return types for functions in the \
14568 overloads selection menu is activated"),
14569 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14570
14571 add_catch_command ("exception", _("\
14572 Catch Ada exceptions, when raised.\n\
14573 Usage: catch exception [ ARG ]\n\
14574 \n\
14575 Without any argument, stop when any Ada exception is raised.\n\
14576 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14577 being raised does not have a handler (and will therefore lead to the task's\n\
14578 termination).\n\
14579 Otherwise, the catchpoint only stops when the name of the exception being\n\
14580 raised is the same as ARG."),
14581 catch_ada_exception_command,
14582 catch_ada_completer,
14583 CATCH_PERMANENT,
14584 CATCH_TEMPORARY);
14585
14586 add_catch_command ("handlers", _("\
14587 Catch Ada exceptions, when handled.\n\
14588 With an argument, catch only exceptions with the given name."),
14589 catch_ada_handlers_command,
14590 catch_ada_completer,
14591 CATCH_PERMANENT,
14592 CATCH_TEMPORARY);
14593 add_catch_command ("assert", _("\
14594 Catch failed Ada assertions, when raised.\n\
14595 With an argument, catch only exceptions with the given name."),
14596 catch_assert_command,
14597 NULL,
14598 CATCH_PERMANENT,
14599 CATCH_TEMPORARY);
14600
14601 varsize_limit = 65536;
14602 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14603 &varsize_limit, _("\
14604 Set the maximum number of bytes allowed in a variable-size object."), _("\
14605 Show the maximum number of bytes allowed in a variable-size object."), _("\
14606 Attempts to access an object whose size is not a compile-time constant\n\
14607 and exceeds this limit will cause an error."),
14608 NULL, NULL, &setlist, &showlist);
14609
14610 add_info ("exceptions", info_exceptions_command,
14611 _("\
14612 List all Ada exception names.\n\
14613 If a regular expression is passed as an argument, only those matching\n\
14614 the regular expression are listed."));
14615
14616 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14617 _("Set Ada maintenance-related variables."),
14618 &maint_set_ada_cmdlist, "maintenance set ada ",
14619 0/*allow-unknown*/, &maintenance_set_cmdlist);
14620
14621 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14622 _("Show Ada maintenance-related variables"),
14623 &maint_show_ada_cmdlist, "maintenance show ada ",
14624 0/*allow-unknown*/, &maintenance_show_cmdlist);
14625
14626 add_setshow_boolean_cmd
14627 ("ignore-descriptive-types", class_maintenance,
14628 &ada_ignore_descriptive_types_p,
14629 _("Set whether descriptive types generated by GNAT should be ignored."),
14630 _("Show whether descriptive types generated by GNAT should be ignored."),
14631 _("\
14632 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14633 DWARF attribute."),
14634 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14635
14636 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14637 NULL, xcalloc, xfree);
14638
14639 /* The ada-lang observers. */
14640 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14641 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14642 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14643 }
This page took 0.430149 seconds and 4 git commands to generate.