Implement show | set may-call-functions [on|off]
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "common/vec.h"
53 #include "stack.h"
54 #include "common/gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (expression_up *, int *, int,
128 struct type *, int,
129 innermost_block_tracker *);
130
131 static void replace_operator_with_call (expression_up *, int, int, int,
132 struct symbol *, const struct block *);
133
134 static int possible_user_operator_p (enum exp_opcode, struct value **);
135
136 static const char *ada_op_name (enum exp_opcode);
137
138 static const char *ada_decoded_op_name (enum exp_opcode);
139
140 static int numeric_type_p (struct type *);
141
142 static int integer_type_p (struct type *);
143
144 static int scalar_type_p (struct type *);
145
146 static int discrete_type_p (struct type *);
147
148 static enum ada_renaming_category parse_old_style_renaming (struct type *,
149 const char **,
150 int *,
151 const char **);
152
153 static struct symbol *find_old_style_renaming_symbol (const char *,
154 const struct block *);
155
156 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
157 int, int);
158
159 static struct value *evaluate_subexp_type (struct expression *, int *);
160
161 static struct type *ada_find_parallel_type_with_name (struct type *,
162 const char *);
163
164 static int is_dynamic_field (struct type *, int);
165
166 static struct type *to_fixed_variant_branch_type (struct type *,
167 const gdb_byte *,
168 CORE_ADDR, struct value *);
169
170 static struct type *to_fixed_array_type (struct type *, struct value *, int);
171
172 static struct type *to_fixed_range_type (struct type *, struct value *);
173
174 static struct type *to_static_fixed_type (struct type *);
175 static struct type *static_unwrap_type (struct type *type);
176
177 static struct value *unwrap_value (struct value *);
178
179 static struct type *constrained_packed_array_type (struct type *, long *);
180
181 static struct type *decode_constrained_packed_array_type (struct type *);
182
183 static long decode_packed_array_bitsize (struct type *);
184
185 static struct value *decode_constrained_packed_array (struct value *);
186
187 static int ada_is_packed_array_type (struct type *);
188
189 static int ada_is_unconstrained_packed_array_type (struct type *);
190
191 static struct value *value_subscript_packed (struct value *, int,
192 struct value **);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int advance_wild_match (const char **, const char *, int);
204
205 static bool wild_match (const char *name, const char *patn);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (const char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (const char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static int ada_resolve_function (struct block_symbol *, int,
228 struct value **, int, const char *,
229 struct type *, int);
230
231 static int ada_is_direct_array_type (struct type *);
232
233 static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
235
236 static struct value *ada_index_struct_field (int, struct value *, int,
237 struct type *);
238
239 static struct value *assign_aggregate (struct value *, struct value *,
240 struct expression *,
241 int *, enum noside);
242
243 static void aggregate_assign_from_choices (struct value *, struct value *,
244 struct expression *,
245 int *, LONGEST *, int *,
246 int, LONGEST, LONGEST);
247
248 static void aggregate_assign_positional (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *, int,
251 LONGEST, LONGEST);
252
253
254 static void aggregate_assign_others (struct value *, struct value *,
255 struct expression *,
256 int *, LONGEST *, int, LONGEST, LONGEST);
257
258
259 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
260
261
262 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
263 int *, enum noside);
264
265 static void ada_forward_operator_length (struct expression *, int, int *,
266 int *);
267
268 static struct type *ada_find_any_type (const char *name);
269
270 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
271 (const lookup_name_info &lookup_name);
272
273 \f
274
275 /* The result of a symbol lookup to be stored in our symbol cache. */
276
277 struct cache_entry
278 {
279 /* The name used to perform the lookup. */
280 const char *name;
281 /* The namespace used during the lookup. */
282 domain_enum domain;
283 /* The symbol returned by the lookup, or NULL if no matching symbol
284 was found. */
285 struct symbol *sym;
286 /* The block where the symbol was found, or NULL if no matching
287 symbol was found. */
288 const struct block *block;
289 /* A pointer to the next entry with the same hash. */
290 struct cache_entry *next;
291 };
292
293 /* The Ada symbol cache, used to store the result of Ada-mode symbol
294 lookups in the course of executing the user's commands.
295
296 The cache is implemented using a simple, fixed-sized hash.
297 The size is fixed on the grounds that there are not likely to be
298 all that many symbols looked up during any given session, regardless
299 of the size of the symbol table. If we decide to go to a resizable
300 table, let's just use the stuff from libiberty instead. */
301
302 #define HASH_SIZE 1009
303
304 struct ada_symbol_cache
305 {
306 /* An obstack used to store the entries in our cache. */
307 struct obstack cache_space;
308
309 /* The root of the hash table used to implement our symbol cache. */
310 struct cache_entry *root[HASH_SIZE];
311 };
312
313 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
314
315 /* Maximum-sized dynamic type. */
316 static unsigned int varsize_limit;
317
318 static const char ada_completer_word_break_characters[] =
319 #ifdef VMS
320 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
321 #else
322 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
323 #endif
324
325 /* The name of the symbol to use to get the name of the main subprogram. */
326 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
327 = "__gnat_ada_main_program_name";
328
329 /* Limit on the number of warnings to raise per expression evaluation. */
330 static int warning_limit = 2;
331
332 /* Number of warning messages issued; reset to 0 by cleanups after
333 expression evaluation. */
334 static int warnings_issued = 0;
335
336 static const char *known_runtime_file_name_patterns[] = {
337 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
338 };
339
340 static const char *known_auxiliary_function_name_patterns[] = {
341 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
342 };
343
344 /* Maintenance-related settings for this module. */
345
346 static struct cmd_list_element *maint_set_ada_cmdlist;
347 static struct cmd_list_element *maint_show_ada_cmdlist;
348
349 /* Implement the "maintenance set ada" (prefix) command. */
350
351 static void
352 maint_set_ada_cmd (const char *args, int from_tty)
353 {
354 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
355 gdb_stdout);
356 }
357
358 /* Implement the "maintenance show ada" (prefix) command. */
359
360 static void
361 maint_show_ada_cmd (const char *args, int from_tty)
362 {
363 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
364 }
365
366 /* The "maintenance ada set/show ignore-descriptive-type" value. */
367
368 static int ada_ignore_descriptive_types_p = 0;
369
370 /* Inferior-specific data. */
371
372 /* Per-inferior data for this module. */
373
374 struct ada_inferior_data
375 {
376 /* The ada__tags__type_specific_data type, which is used when decoding
377 tagged types. With older versions of GNAT, this type was directly
378 accessible through a component ("tsd") in the object tag. But this
379 is no longer the case, so we cache it for each inferior. */
380 struct type *tsd_type;
381
382 /* The exception_support_info data. This data is used to determine
383 how to implement support for Ada exception catchpoints in a given
384 inferior. */
385 const struct exception_support_info *exception_info;
386 };
387
388 /* Our key to this module's inferior data. */
389 static const struct inferior_data *ada_inferior_data;
390
391 /* A cleanup routine for our inferior data. */
392 static void
393 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
394 {
395 struct ada_inferior_data *data;
396
397 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
398 if (data != NULL)
399 xfree (data);
400 }
401
402 /* Return our inferior data for the given inferior (INF).
403
404 This function always returns a valid pointer to an allocated
405 ada_inferior_data structure. If INF's inferior data has not
406 been previously set, this functions creates a new one with all
407 fields set to zero, sets INF's inferior to it, and then returns
408 a pointer to that newly allocated ada_inferior_data. */
409
410 static struct ada_inferior_data *
411 get_ada_inferior_data (struct inferior *inf)
412 {
413 struct ada_inferior_data *data;
414
415 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
416 if (data == NULL)
417 {
418 data = XCNEW (struct ada_inferior_data);
419 set_inferior_data (inf, ada_inferior_data, data);
420 }
421
422 return data;
423 }
424
425 /* Perform all necessary cleanups regarding our module's inferior data
426 that is required after the inferior INF just exited. */
427
428 static void
429 ada_inferior_exit (struct inferior *inf)
430 {
431 ada_inferior_data_cleanup (inf, NULL);
432 set_inferior_data (inf, ada_inferior_data, NULL);
433 }
434
435
436 /* program-space-specific data. */
437
438 /* This module's per-program-space data. */
439 struct ada_pspace_data
440 {
441 /* The Ada symbol cache. */
442 struct ada_symbol_cache *sym_cache;
443 };
444
445 /* Key to our per-program-space data. */
446 static const struct program_space_data *ada_pspace_data_handle;
447
448 /* Return this module's data for the given program space (PSPACE).
449 If not is found, add a zero'ed one now.
450
451 This function always returns a valid object. */
452
453 static struct ada_pspace_data *
454 get_ada_pspace_data (struct program_space *pspace)
455 {
456 struct ada_pspace_data *data;
457
458 data = ((struct ada_pspace_data *)
459 program_space_data (pspace, ada_pspace_data_handle));
460 if (data == NULL)
461 {
462 data = XCNEW (struct ada_pspace_data);
463 set_program_space_data (pspace, ada_pspace_data_handle, data);
464 }
465
466 return data;
467 }
468
469 /* The cleanup callback for this module's per-program-space data. */
470
471 static void
472 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
473 {
474 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
475
476 if (pspace_data->sym_cache != NULL)
477 ada_free_symbol_cache (pspace_data->sym_cache);
478 xfree (pspace_data);
479 }
480
481 /* Utilities */
482
483 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
484 all typedef layers have been peeled. Otherwise, return TYPE.
485
486 Normally, we really expect a typedef type to only have 1 typedef layer.
487 In other words, we really expect the target type of a typedef type to be
488 a non-typedef type. This is particularly true for Ada units, because
489 the language does not have a typedef vs not-typedef distinction.
490 In that respect, the Ada compiler has been trying to eliminate as many
491 typedef definitions in the debugging information, since they generally
492 do not bring any extra information (we still use typedef under certain
493 circumstances related mostly to the GNAT encoding).
494
495 Unfortunately, we have seen situations where the debugging information
496 generated by the compiler leads to such multiple typedef layers. For
497 instance, consider the following example with stabs:
498
499 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
500 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
501
502 This is an error in the debugging information which causes type
503 pck__float_array___XUP to be defined twice, and the second time,
504 it is defined as a typedef of a typedef.
505
506 This is on the fringe of legality as far as debugging information is
507 concerned, and certainly unexpected. But it is easy to handle these
508 situations correctly, so we can afford to be lenient in this case. */
509
510 static struct type *
511 ada_typedef_target_type (struct type *type)
512 {
513 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
514 type = TYPE_TARGET_TYPE (type);
515 return type;
516 }
517
518 /* Given DECODED_NAME a string holding a symbol name in its
519 decoded form (ie using the Ada dotted notation), returns
520 its unqualified name. */
521
522 static const char *
523 ada_unqualified_name (const char *decoded_name)
524 {
525 const char *result;
526
527 /* If the decoded name starts with '<', it means that the encoded
528 name does not follow standard naming conventions, and thus that
529 it is not your typical Ada symbol name. Trying to unqualify it
530 is therefore pointless and possibly erroneous. */
531 if (decoded_name[0] == '<')
532 return decoded_name;
533
534 result = strrchr (decoded_name, '.');
535 if (result != NULL)
536 result++; /* Skip the dot... */
537 else
538 result = decoded_name;
539
540 return result;
541 }
542
543 /* Return a string starting with '<', followed by STR, and '>'. */
544
545 static std::string
546 add_angle_brackets (const char *str)
547 {
548 return string_printf ("<%s>", str);
549 }
550
551 static const char *
552 ada_get_gdb_completer_word_break_characters (void)
553 {
554 return ada_completer_word_break_characters;
555 }
556
557 /* Print an array element index using the Ada syntax. */
558
559 static void
560 ada_print_array_index (struct value *index_value, struct ui_file *stream,
561 const struct value_print_options *options)
562 {
563 LA_VALUE_PRINT (index_value, stream, options);
564 fprintf_filtered (stream, " => ");
565 }
566
567 /* la_watch_location_expression for Ada. */
568
569 gdb::unique_xmalloc_ptr<char>
570 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
571 {
572 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
573 std::string name = type_to_string (type);
574 return gdb::unique_xmalloc_ptr<char>
575 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
576 }
577
578 /* Assuming VECT points to an array of *SIZE objects of size
579 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
580 updating *SIZE as necessary and returning the (new) array. */
581
582 void *
583 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
584 {
585 if (*size < min_size)
586 {
587 *size *= 2;
588 if (*size < min_size)
589 *size = min_size;
590 vect = xrealloc (vect, *size * element_size);
591 }
592 return vect;
593 }
594
595 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
596 suffix of FIELD_NAME beginning "___". */
597
598 static int
599 field_name_match (const char *field_name, const char *target)
600 {
601 int len = strlen (target);
602
603 return
604 (strncmp (field_name, target, len) == 0
605 && (field_name[len] == '\0'
606 || (startswith (field_name + len, "___")
607 && strcmp (field_name + strlen (field_name) - 6,
608 "___XVN") != 0)));
609 }
610
611
612 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
613 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
614 and return its index. This function also handles fields whose name
615 have ___ suffixes because the compiler sometimes alters their name
616 by adding such a suffix to represent fields with certain constraints.
617 If the field could not be found, return a negative number if
618 MAYBE_MISSING is set. Otherwise raise an error. */
619
620 int
621 ada_get_field_index (const struct type *type, const char *field_name,
622 int maybe_missing)
623 {
624 int fieldno;
625 struct type *struct_type = check_typedef ((struct type *) type);
626
627 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
628 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
629 return fieldno;
630
631 if (!maybe_missing)
632 error (_("Unable to find field %s in struct %s. Aborting"),
633 field_name, TYPE_NAME (struct_type));
634
635 return -1;
636 }
637
638 /* The length of the prefix of NAME prior to any "___" suffix. */
639
640 int
641 ada_name_prefix_len (const char *name)
642 {
643 if (name == NULL)
644 return 0;
645 else
646 {
647 const char *p = strstr (name, "___");
648
649 if (p == NULL)
650 return strlen (name);
651 else
652 return p - name;
653 }
654 }
655
656 /* Return non-zero if SUFFIX is a suffix of STR.
657 Return zero if STR is null. */
658
659 static int
660 is_suffix (const char *str, const char *suffix)
661 {
662 int len1, len2;
663
664 if (str == NULL)
665 return 0;
666 len1 = strlen (str);
667 len2 = strlen (suffix);
668 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
669 }
670
671 /* The contents of value VAL, treated as a value of type TYPE. The
672 result is an lval in memory if VAL is. */
673
674 static struct value *
675 coerce_unspec_val_to_type (struct value *val, struct type *type)
676 {
677 type = ada_check_typedef (type);
678 if (value_type (val) == type)
679 return val;
680 else
681 {
682 struct value *result;
683
684 /* Make sure that the object size is not unreasonable before
685 trying to allocate some memory for it. */
686 ada_ensure_varsize_limit (type);
687
688 if (value_lazy (val)
689 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
690 result = allocate_value_lazy (type);
691 else
692 {
693 result = allocate_value (type);
694 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
695 }
696 set_value_component_location (result, val);
697 set_value_bitsize (result, value_bitsize (val));
698 set_value_bitpos (result, value_bitpos (val));
699 set_value_address (result, value_address (val));
700 return result;
701 }
702 }
703
704 static const gdb_byte *
705 cond_offset_host (const gdb_byte *valaddr, long offset)
706 {
707 if (valaddr == NULL)
708 return NULL;
709 else
710 return valaddr + offset;
711 }
712
713 static CORE_ADDR
714 cond_offset_target (CORE_ADDR address, long offset)
715 {
716 if (address == 0)
717 return 0;
718 else
719 return address + offset;
720 }
721
722 /* Issue a warning (as for the definition of warning in utils.c, but
723 with exactly one argument rather than ...), unless the limit on the
724 number of warnings has passed during the evaluation of the current
725 expression. */
726
727 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
728 provided by "complaint". */
729 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
730
731 static void
732 lim_warning (const char *format, ...)
733 {
734 va_list args;
735
736 va_start (args, format);
737 warnings_issued += 1;
738 if (warnings_issued <= warning_limit)
739 vwarning (format, args);
740
741 va_end (args);
742 }
743
744 /* Issue an error if the size of an object of type T is unreasonable,
745 i.e. if it would be a bad idea to allocate a value of this type in
746 GDB. */
747
748 void
749 ada_ensure_varsize_limit (const struct type *type)
750 {
751 if (TYPE_LENGTH (type) > varsize_limit)
752 error (_("object size is larger than varsize-limit"));
753 }
754
755 /* Maximum value of a SIZE-byte signed integer type. */
756 static LONGEST
757 max_of_size (int size)
758 {
759 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
760
761 return top_bit | (top_bit - 1);
762 }
763
764 /* Minimum value of a SIZE-byte signed integer type. */
765 static LONGEST
766 min_of_size (int size)
767 {
768 return -max_of_size (size) - 1;
769 }
770
771 /* Maximum value of a SIZE-byte unsigned integer type. */
772 static ULONGEST
773 umax_of_size (int size)
774 {
775 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
776
777 return top_bit | (top_bit - 1);
778 }
779
780 /* Maximum value of integral type T, as a signed quantity. */
781 static LONGEST
782 max_of_type (struct type *t)
783 {
784 if (TYPE_UNSIGNED (t))
785 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
786 else
787 return max_of_size (TYPE_LENGTH (t));
788 }
789
790 /* Minimum value of integral type T, as a signed quantity. */
791 static LONGEST
792 min_of_type (struct type *t)
793 {
794 if (TYPE_UNSIGNED (t))
795 return 0;
796 else
797 return min_of_size (TYPE_LENGTH (t));
798 }
799
800 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
801 LONGEST
802 ada_discrete_type_high_bound (struct type *type)
803 {
804 type = resolve_dynamic_type (type, NULL, 0);
805 switch (TYPE_CODE (type))
806 {
807 case TYPE_CODE_RANGE:
808 return TYPE_HIGH_BOUND (type);
809 case TYPE_CODE_ENUM:
810 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
811 case TYPE_CODE_BOOL:
812 return 1;
813 case TYPE_CODE_CHAR:
814 case TYPE_CODE_INT:
815 return max_of_type (type);
816 default:
817 error (_("Unexpected type in ada_discrete_type_high_bound."));
818 }
819 }
820
821 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
822 LONGEST
823 ada_discrete_type_low_bound (struct type *type)
824 {
825 type = resolve_dynamic_type (type, NULL, 0);
826 switch (TYPE_CODE (type))
827 {
828 case TYPE_CODE_RANGE:
829 return TYPE_LOW_BOUND (type);
830 case TYPE_CODE_ENUM:
831 return TYPE_FIELD_ENUMVAL (type, 0);
832 case TYPE_CODE_BOOL:
833 return 0;
834 case TYPE_CODE_CHAR:
835 case TYPE_CODE_INT:
836 return min_of_type (type);
837 default:
838 error (_("Unexpected type in ada_discrete_type_low_bound."));
839 }
840 }
841
842 /* The identity on non-range types. For range types, the underlying
843 non-range scalar type. */
844
845 static struct type *
846 get_base_type (struct type *type)
847 {
848 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
849 {
850 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
851 return type;
852 type = TYPE_TARGET_TYPE (type);
853 }
854 return type;
855 }
856
857 /* Return a decoded version of the given VALUE. This means returning
858 a value whose type is obtained by applying all the GNAT-specific
859 encondings, making the resulting type a static but standard description
860 of the initial type. */
861
862 struct value *
863 ada_get_decoded_value (struct value *value)
864 {
865 struct type *type = ada_check_typedef (value_type (value));
866
867 if (ada_is_array_descriptor_type (type)
868 || (ada_is_constrained_packed_array_type (type)
869 && TYPE_CODE (type) != TYPE_CODE_PTR))
870 {
871 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
872 value = ada_coerce_to_simple_array_ptr (value);
873 else
874 value = ada_coerce_to_simple_array (value);
875 }
876 else
877 value = ada_to_fixed_value (value);
878
879 return value;
880 }
881
882 /* Same as ada_get_decoded_value, but with the given TYPE.
883 Because there is no associated actual value for this type,
884 the resulting type might be a best-effort approximation in
885 the case of dynamic types. */
886
887 struct type *
888 ada_get_decoded_type (struct type *type)
889 {
890 type = to_static_fixed_type (type);
891 if (ada_is_constrained_packed_array_type (type))
892 type = ada_coerce_to_simple_array_type (type);
893 return type;
894 }
895
896 \f
897
898 /* Language Selection */
899
900 /* If the main program is in Ada, return language_ada, otherwise return LANG
901 (the main program is in Ada iif the adainit symbol is found). */
902
903 enum language
904 ada_update_initial_language (enum language lang)
905 {
906 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
907 (struct objfile *) NULL).minsym != NULL)
908 return language_ada;
909
910 return lang;
911 }
912
913 /* If the main procedure is written in Ada, then return its name.
914 The result is good until the next call. Return NULL if the main
915 procedure doesn't appear to be in Ada. */
916
917 char *
918 ada_main_name (void)
919 {
920 struct bound_minimal_symbol msym;
921 static gdb::unique_xmalloc_ptr<char> main_program_name;
922
923 /* For Ada, the name of the main procedure is stored in a specific
924 string constant, generated by the binder. Look for that symbol,
925 extract its address, and then read that string. If we didn't find
926 that string, then most probably the main procedure is not written
927 in Ada. */
928 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
929
930 if (msym.minsym != NULL)
931 {
932 CORE_ADDR main_program_name_addr;
933 int err_code;
934
935 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
936 if (main_program_name_addr == 0)
937 error (_("Invalid address for Ada main program name."));
938
939 target_read_string (main_program_name_addr, &main_program_name,
940 1024, &err_code);
941
942 if (err_code != 0)
943 return NULL;
944 return main_program_name.get ();
945 }
946
947 /* The main procedure doesn't seem to be in Ada. */
948 return NULL;
949 }
950 \f
951 /* Symbols */
952
953 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
954 of NULLs. */
955
956 const struct ada_opname_map ada_opname_table[] = {
957 {"Oadd", "\"+\"", BINOP_ADD},
958 {"Osubtract", "\"-\"", BINOP_SUB},
959 {"Omultiply", "\"*\"", BINOP_MUL},
960 {"Odivide", "\"/\"", BINOP_DIV},
961 {"Omod", "\"mod\"", BINOP_MOD},
962 {"Orem", "\"rem\"", BINOP_REM},
963 {"Oexpon", "\"**\"", BINOP_EXP},
964 {"Olt", "\"<\"", BINOP_LESS},
965 {"Ole", "\"<=\"", BINOP_LEQ},
966 {"Ogt", "\">\"", BINOP_GTR},
967 {"Oge", "\">=\"", BINOP_GEQ},
968 {"Oeq", "\"=\"", BINOP_EQUAL},
969 {"One", "\"/=\"", BINOP_NOTEQUAL},
970 {"Oand", "\"and\"", BINOP_BITWISE_AND},
971 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
972 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
973 {"Oconcat", "\"&\"", BINOP_CONCAT},
974 {"Oabs", "\"abs\"", UNOP_ABS},
975 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
976 {"Oadd", "\"+\"", UNOP_PLUS},
977 {"Osubtract", "\"-\"", UNOP_NEG},
978 {NULL, NULL}
979 };
980
981 /* The "encoded" form of DECODED, according to GNAT conventions. The
982 result is valid until the next call to ada_encode. If
983 THROW_ERRORS, throw an error if invalid operator name is found.
984 Otherwise, return NULL in that case. */
985
986 static char *
987 ada_encode_1 (const char *decoded, bool throw_errors)
988 {
989 static char *encoding_buffer = NULL;
990 static size_t encoding_buffer_size = 0;
991 const char *p;
992 int k;
993
994 if (decoded == NULL)
995 return NULL;
996
997 GROW_VECT (encoding_buffer, encoding_buffer_size,
998 2 * strlen (decoded) + 10);
999
1000 k = 0;
1001 for (p = decoded; *p != '\0'; p += 1)
1002 {
1003 if (*p == '.')
1004 {
1005 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1006 k += 2;
1007 }
1008 else if (*p == '"')
1009 {
1010 const struct ada_opname_map *mapping;
1011
1012 for (mapping = ada_opname_table;
1013 mapping->encoded != NULL
1014 && !startswith (p, mapping->decoded); mapping += 1)
1015 ;
1016 if (mapping->encoded == NULL)
1017 {
1018 if (throw_errors)
1019 error (_("invalid Ada operator name: %s"), p);
1020 else
1021 return NULL;
1022 }
1023 strcpy (encoding_buffer + k, mapping->encoded);
1024 k += strlen (mapping->encoded);
1025 break;
1026 }
1027 else
1028 {
1029 encoding_buffer[k] = *p;
1030 k += 1;
1031 }
1032 }
1033
1034 encoding_buffer[k] = '\0';
1035 return encoding_buffer;
1036 }
1037
1038 /* The "encoded" form of DECODED, according to GNAT conventions.
1039 The result is valid until the next call to ada_encode. */
1040
1041 char *
1042 ada_encode (const char *decoded)
1043 {
1044 return ada_encode_1 (decoded, true);
1045 }
1046
1047 /* Return NAME folded to lower case, or, if surrounded by single
1048 quotes, unfolded, but with the quotes stripped away. Result good
1049 to next call. */
1050
1051 char *
1052 ada_fold_name (const char *name)
1053 {
1054 static char *fold_buffer = NULL;
1055 static size_t fold_buffer_size = 0;
1056
1057 int len = strlen (name);
1058 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1059
1060 if (name[0] == '\'')
1061 {
1062 strncpy (fold_buffer, name + 1, len - 2);
1063 fold_buffer[len - 2] = '\000';
1064 }
1065 else
1066 {
1067 int i;
1068
1069 for (i = 0; i <= len; i += 1)
1070 fold_buffer[i] = tolower (name[i]);
1071 }
1072
1073 return fold_buffer;
1074 }
1075
1076 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1077
1078 static int
1079 is_lower_alphanum (const char c)
1080 {
1081 return (isdigit (c) || (isalpha (c) && islower (c)));
1082 }
1083
1084 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1085 This function saves in LEN the length of that same symbol name but
1086 without either of these suffixes:
1087 . .{DIGIT}+
1088 . ${DIGIT}+
1089 . ___{DIGIT}+
1090 . __{DIGIT}+.
1091
1092 These are suffixes introduced by the compiler for entities such as
1093 nested subprogram for instance, in order to avoid name clashes.
1094 They do not serve any purpose for the debugger. */
1095
1096 static void
1097 ada_remove_trailing_digits (const char *encoded, int *len)
1098 {
1099 if (*len > 1 && isdigit (encoded[*len - 1]))
1100 {
1101 int i = *len - 2;
1102
1103 while (i > 0 && isdigit (encoded[i]))
1104 i--;
1105 if (i >= 0 && encoded[i] == '.')
1106 *len = i;
1107 else if (i >= 0 && encoded[i] == '$')
1108 *len = i;
1109 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1110 *len = i - 2;
1111 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1112 *len = i - 1;
1113 }
1114 }
1115
1116 /* Remove the suffix introduced by the compiler for protected object
1117 subprograms. */
1118
1119 static void
1120 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1121 {
1122 /* Remove trailing N. */
1123
1124 /* Protected entry subprograms are broken into two
1125 separate subprograms: The first one is unprotected, and has
1126 a 'N' suffix; the second is the protected version, and has
1127 the 'P' suffix. The second calls the first one after handling
1128 the protection. Since the P subprograms are internally generated,
1129 we leave these names undecoded, giving the user a clue that this
1130 entity is internal. */
1131
1132 if (*len > 1
1133 && encoded[*len - 1] == 'N'
1134 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1135 *len = *len - 1;
1136 }
1137
1138 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1139
1140 static void
1141 ada_remove_Xbn_suffix (const char *encoded, int *len)
1142 {
1143 int i = *len - 1;
1144
1145 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1146 i--;
1147
1148 if (encoded[i] != 'X')
1149 return;
1150
1151 if (i == 0)
1152 return;
1153
1154 if (isalnum (encoded[i-1]))
1155 *len = i;
1156 }
1157
1158 /* If ENCODED follows the GNAT entity encoding conventions, then return
1159 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1160 replaced by ENCODED.
1161
1162 The resulting string is valid until the next call of ada_decode.
1163 If the string is unchanged by decoding, the original string pointer
1164 is returned. */
1165
1166 const char *
1167 ada_decode (const char *encoded)
1168 {
1169 int i, j;
1170 int len0;
1171 const char *p;
1172 char *decoded;
1173 int at_start_name;
1174 static char *decoding_buffer = NULL;
1175 static size_t decoding_buffer_size = 0;
1176
1177 /* With function descriptors on PPC64, the value of a symbol named
1178 ".FN", if it exists, is the entry point of the function "FN". */
1179 if (encoded[0] == '.')
1180 encoded += 1;
1181
1182 /* The name of the Ada main procedure starts with "_ada_".
1183 This prefix is not part of the decoded name, so skip this part
1184 if we see this prefix. */
1185 if (startswith (encoded, "_ada_"))
1186 encoded += 5;
1187
1188 /* If the name starts with '_', then it is not a properly encoded
1189 name, so do not attempt to decode it. Similarly, if the name
1190 starts with '<', the name should not be decoded. */
1191 if (encoded[0] == '_' || encoded[0] == '<')
1192 goto Suppress;
1193
1194 len0 = strlen (encoded);
1195
1196 ada_remove_trailing_digits (encoded, &len0);
1197 ada_remove_po_subprogram_suffix (encoded, &len0);
1198
1199 /* Remove the ___X.* suffix if present. Do not forget to verify that
1200 the suffix is located before the current "end" of ENCODED. We want
1201 to avoid re-matching parts of ENCODED that have previously been
1202 marked as discarded (by decrementing LEN0). */
1203 p = strstr (encoded, "___");
1204 if (p != NULL && p - encoded < len0 - 3)
1205 {
1206 if (p[3] == 'X')
1207 len0 = p - encoded;
1208 else
1209 goto Suppress;
1210 }
1211
1212 /* Remove any trailing TKB suffix. It tells us that this symbol
1213 is for the body of a task, but that information does not actually
1214 appear in the decoded name. */
1215
1216 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1217 len0 -= 3;
1218
1219 /* Remove any trailing TB suffix. The TB suffix is slightly different
1220 from the TKB suffix because it is used for non-anonymous task
1221 bodies. */
1222
1223 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1224 len0 -= 2;
1225
1226 /* Remove trailing "B" suffixes. */
1227 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1228
1229 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1230 len0 -= 1;
1231
1232 /* Make decoded big enough for possible expansion by operator name. */
1233
1234 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1235 decoded = decoding_buffer;
1236
1237 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1238
1239 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1240 {
1241 i = len0 - 2;
1242 while ((i >= 0 && isdigit (encoded[i]))
1243 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1244 i -= 1;
1245 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1246 len0 = i - 1;
1247 else if (encoded[i] == '$')
1248 len0 = i;
1249 }
1250
1251 /* The first few characters that are not alphabetic are not part
1252 of any encoding we use, so we can copy them over verbatim. */
1253
1254 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1255 decoded[j] = encoded[i];
1256
1257 at_start_name = 1;
1258 while (i < len0)
1259 {
1260 /* Is this a symbol function? */
1261 if (at_start_name && encoded[i] == 'O')
1262 {
1263 int k;
1264
1265 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1266 {
1267 int op_len = strlen (ada_opname_table[k].encoded);
1268 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1269 op_len - 1) == 0)
1270 && !isalnum (encoded[i + op_len]))
1271 {
1272 strcpy (decoded + j, ada_opname_table[k].decoded);
1273 at_start_name = 0;
1274 i += op_len;
1275 j += strlen (ada_opname_table[k].decoded);
1276 break;
1277 }
1278 }
1279 if (ada_opname_table[k].encoded != NULL)
1280 continue;
1281 }
1282 at_start_name = 0;
1283
1284 /* Replace "TK__" with "__", which will eventually be translated
1285 into "." (just below). */
1286
1287 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1288 i += 2;
1289
1290 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1291 be translated into "." (just below). These are internal names
1292 generated for anonymous blocks inside which our symbol is nested. */
1293
1294 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1295 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1296 && isdigit (encoded [i+4]))
1297 {
1298 int k = i + 5;
1299
1300 while (k < len0 && isdigit (encoded[k]))
1301 k++; /* Skip any extra digit. */
1302
1303 /* Double-check that the "__B_{DIGITS}+" sequence we found
1304 is indeed followed by "__". */
1305 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1306 i = k;
1307 }
1308
1309 /* Remove _E{DIGITS}+[sb] */
1310
1311 /* Just as for protected object subprograms, there are 2 categories
1312 of subprograms created by the compiler for each entry. The first
1313 one implements the actual entry code, and has a suffix following
1314 the convention above; the second one implements the barrier and
1315 uses the same convention as above, except that the 'E' is replaced
1316 by a 'B'.
1317
1318 Just as above, we do not decode the name of barrier functions
1319 to give the user a clue that the code he is debugging has been
1320 internally generated. */
1321
1322 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1323 && isdigit (encoded[i+2]))
1324 {
1325 int k = i + 3;
1326
1327 while (k < len0 && isdigit (encoded[k]))
1328 k++;
1329
1330 if (k < len0
1331 && (encoded[k] == 'b' || encoded[k] == 's'))
1332 {
1333 k++;
1334 /* Just as an extra precaution, make sure that if this
1335 suffix is followed by anything else, it is a '_'.
1336 Otherwise, we matched this sequence by accident. */
1337 if (k == len0
1338 || (k < len0 && encoded[k] == '_'))
1339 i = k;
1340 }
1341 }
1342
1343 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1344 the GNAT front-end in protected object subprograms. */
1345
1346 if (i < len0 + 3
1347 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1348 {
1349 /* Backtrack a bit up until we reach either the begining of
1350 the encoded name, or "__". Make sure that we only find
1351 digits or lowercase characters. */
1352 const char *ptr = encoded + i - 1;
1353
1354 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1355 ptr--;
1356 if (ptr < encoded
1357 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1358 i++;
1359 }
1360
1361 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1362 {
1363 /* This is a X[bn]* sequence not separated from the previous
1364 part of the name with a non-alpha-numeric character (in other
1365 words, immediately following an alpha-numeric character), then
1366 verify that it is placed at the end of the encoded name. If
1367 not, then the encoding is not valid and we should abort the
1368 decoding. Otherwise, just skip it, it is used in body-nested
1369 package names. */
1370 do
1371 i += 1;
1372 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1373 if (i < len0)
1374 goto Suppress;
1375 }
1376 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1377 {
1378 /* Replace '__' by '.'. */
1379 decoded[j] = '.';
1380 at_start_name = 1;
1381 i += 2;
1382 j += 1;
1383 }
1384 else
1385 {
1386 /* It's a character part of the decoded name, so just copy it
1387 over. */
1388 decoded[j] = encoded[i];
1389 i += 1;
1390 j += 1;
1391 }
1392 }
1393 decoded[j] = '\000';
1394
1395 /* Decoded names should never contain any uppercase character.
1396 Double-check this, and abort the decoding if we find one. */
1397
1398 for (i = 0; decoded[i] != '\0'; i += 1)
1399 if (isupper (decoded[i]) || decoded[i] == ' ')
1400 goto Suppress;
1401
1402 if (strcmp (decoded, encoded) == 0)
1403 return encoded;
1404 else
1405 return decoded;
1406
1407 Suppress:
1408 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1409 decoded = decoding_buffer;
1410 if (encoded[0] == '<')
1411 strcpy (decoded, encoded);
1412 else
1413 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1414 return decoded;
1415
1416 }
1417
1418 /* Table for keeping permanent unique copies of decoded names. Once
1419 allocated, names in this table are never released. While this is a
1420 storage leak, it should not be significant unless there are massive
1421 changes in the set of decoded names in successive versions of a
1422 symbol table loaded during a single session. */
1423 static struct htab *decoded_names_store;
1424
1425 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1426 in the language-specific part of GSYMBOL, if it has not been
1427 previously computed. Tries to save the decoded name in the same
1428 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1429 in any case, the decoded symbol has a lifetime at least that of
1430 GSYMBOL).
1431 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1432 const, but nevertheless modified to a semantically equivalent form
1433 when a decoded name is cached in it. */
1434
1435 const char *
1436 ada_decode_symbol (const struct general_symbol_info *arg)
1437 {
1438 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1439 const char **resultp =
1440 &gsymbol->language_specific.demangled_name;
1441
1442 if (!gsymbol->ada_mangled)
1443 {
1444 const char *decoded = ada_decode (gsymbol->name);
1445 struct obstack *obstack = gsymbol->language_specific.obstack;
1446
1447 gsymbol->ada_mangled = 1;
1448
1449 if (obstack != NULL)
1450 *resultp
1451 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1452 else
1453 {
1454 /* Sometimes, we can't find a corresponding objfile, in
1455 which case, we put the result on the heap. Since we only
1456 decode when needed, we hope this usually does not cause a
1457 significant memory leak (FIXME). */
1458
1459 char **slot = (char **) htab_find_slot (decoded_names_store,
1460 decoded, INSERT);
1461
1462 if (*slot == NULL)
1463 *slot = xstrdup (decoded);
1464 *resultp = *slot;
1465 }
1466 }
1467
1468 return *resultp;
1469 }
1470
1471 static char *
1472 ada_la_decode (const char *encoded, int options)
1473 {
1474 return xstrdup (ada_decode (encoded));
1475 }
1476
1477 /* Implement la_sniff_from_mangled_name for Ada. */
1478
1479 static int
1480 ada_sniff_from_mangled_name (const char *mangled, char **out)
1481 {
1482 const char *demangled = ada_decode (mangled);
1483
1484 *out = NULL;
1485
1486 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1487 {
1488 /* Set the gsymbol language to Ada, but still return 0.
1489 Two reasons for that:
1490
1491 1. For Ada, we prefer computing the symbol's decoded name
1492 on the fly rather than pre-compute it, in order to save
1493 memory (Ada projects are typically very large).
1494
1495 2. There are some areas in the definition of the GNAT
1496 encoding where, with a bit of bad luck, we might be able
1497 to decode a non-Ada symbol, generating an incorrect
1498 demangled name (Eg: names ending with "TB" for instance
1499 are identified as task bodies and so stripped from
1500 the decoded name returned).
1501
1502 Returning 1, here, but not setting *DEMANGLED, helps us get a
1503 little bit of the best of both worlds. Because we're last,
1504 we should not affect any of the other languages that were
1505 able to demangle the symbol before us; we get to correctly
1506 tag Ada symbols as such; and even if we incorrectly tagged a
1507 non-Ada symbol, which should be rare, any routing through the
1508 Ada language should be transparent (Ada tries to behave much
1509 like C/C++ with non-Ada symbols). */
1510 return 1;
1511 }
1512
1513 return 0;
1514 }
1515
1516 \f
1517
1518 /* Arrays */
1519
1520 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1521 generated by the GNAT compiler to describe the index type used
1522 for each dimension of an array, check whether it follows the latest
1523 known encoding. If not, fix it up to conform to the latest encoding.
1524 Otherwise, do nothing. This function also does nothing if
1525 INDEX_DESC_TYPE is NULL.
1526
1527 The GNAT encoding used to describle the array index type evolved a bit.
1528 Initially, the information would be provided through the name of each
1529 field of the structure type only, while the type of these fields was
1530 described as unspecified and irrelevant. The debugger was then expected
1531 to perform a global type lookup using the name of that field in order
1532 to get access to the full index type description. Because these global
1533 lookups can be very expensive, the encoding was later enhanced to make
1534 the global lookup unnecessary by defining the field type as being
1535 the full index type description.
1536
1537 The purpose of this routine is to allow us to support older versions
1538 of the compiler by detecting the use of the older encoding, and by
1539 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1540 we essentially replace each field's meaningless type by the associated
1541 index subtype). */
1542
1543 void
1544 ada_fixup_array_indexes_type (struct type *index_desc_type)
1545 {
1546 int i;
1547
1548 if (index_desc_type == NULL)
1549 return;
1550 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1551
1552 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1553 to check one field only, no need to check them all). If not, return
1554 now.
1555
1556 If our INDEX_DESC_TYPE was generated using the older encoding,
1557 the field type should be a meaningless integer type whose name
1558 is not equal to the field name. */
1559 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1560 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1561 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1562 return;
1563
1564 /* Fixup each field of INDEX_DESC_TYPE. */
1565 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1566 {
1567 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1568 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1569
1570 if (raw_type)
1571 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1572 }
1573 }
1574
1575 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1576
1577 static const char *bound_name[] = {
1578 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1579 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1580 };
1581
1582 /* Maximum number of array dimensions we are prepared to handle. */
1583
1584 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1585
1586
1587 /* The desc_* routines return primitive portions of array descriptors
1588 (fat pointers). */
1589
1590 /* The descriptor or array type, if any, indicated by TYPE; removes
1591 level of indirection, if needed. */
1592
1593 static struct type *
1594 desc_base_type (struct type *type)
1595 {
1596 if (type == NULL)
1597 return NULL;
1598 type = ada_check_typedef (type);
1599 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1600 type = ada_typedef_target_type (type);
1601
1602 if (type != NULL
1603 && (TYPE_CODE (type) == TYPE_CODE_PTR
1604 || TYPE_CODE (type) == TYPE_CODE_REF))
1605 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1606 else
1607 return type;
1608 }
1609
1610 /* True iff TYPE indicates a "thin" array pointer type. */
1611
1612 static int
1613 is_thin_pntr (struct type *type)
1614 {
1615 return
1616 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1617 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1618 }
1619
1620 /* The descriptor type for thin pointer type TYPE. */
1621
1622 static struct type *
1623 thin_descriptor_type (struct type *type)
1624 {
1625 struct type *base_type = desc_base_type (type);
1626
1627 if (base_type == NULL)
1628 return NULL;
1629 if (is_suffix (ada_type_name (base_type), "___XVE"))
1630 return base_type;
1631 else
1632 {
1633 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1634
1635 if (alt_type == NULL)
1636 return base_type;
1637 else
1638 return alt_type;
1639 }
1640 }
1641
1642 /* A pointer to the array data for thin-pointer value VAL. */
1643
1644 static struct value *
1645 thin_data_pntr (struct value *val)
1646 {
1647 struct type *type = ada_check_typedef (value_type (val));
1648 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1649
1650 data_type = lookup_pointer_type (data_type);
1651
1652 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1653 return value_cast (data_type, value_copy (val));
1654 else
1655 return value_from_longest (data_type, value_address (val));
1656 }
1657
1658 /* True iff TYPE indicates a "thick" array pointer type. */
1659
1660 static int
1661 is_thick_pntr (struct type *type)
1662 {
1663 type = desc_base_type (type);
1664 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1665 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1666 }
1667
1668 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1669 pointer to one, the type of its bounds data; otherwise, NULL. */
1670
1671 static struct type *
1672 desc_bounds_type (struct type *type)
1673 {
1674 struct type *r;
1675
1676 type = desc_base_type (type);
1677
1678 if (type == NULL)
1679 return NULL;
1680 else if (is_thin_pntr (type))
1681 {
1682 type = thin_descriptor_type (type);
1683 if (type == NULL)
1684 return NULL;
1685 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1686 if (r != NULL)
1687 return ada_check_typedef (r);
1688 }
1689 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1690 {
1691 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1692 if (r != NULL)
1693 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1694 }
1695 return NULL;
1696 }
1697
1698 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1699 one, a pointer to its bounds data. Otherwise NULL. */
1700
1701 static struct value *
1702 desc_bounds (struct value *arr)
1703 {
1704 struct type *type = ada_check_typedef (value_type (arr));
1705
1706 if (is_thin_pntr (type))
1707 {
1708 struct type *bounds_type =
1709 desc_bounds_type (thin_descriptor_type (type));
1710 LONGEST addr;
1711
1712 if (bounds_type == NULL)
1713 error (_("Bad GNAT array descriptor"));
1714
1715 /* NOTE: The following calculation is not really kosher, but
1716 since desc_type is an XVE-encoded type (and shouldn't be),
1717 the correct calculation is a real pain. FIXME (and fix GCC). */
1718 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1719 addr = value_as_long (arr);
1720 else
1721 addr = value_address (arr);
1722
1723 return
1724 value_from_longest (lookup_pointer_type (bounds_type),
1725 addr - TYPE_LENGTH (bounds_type));
1726 }
1727
1728 else if (is_thick_pntr (type))
1729 {
1730 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1731 _("Bad GNAT array descriptor"));
1732 struct type *p_bounds_type = value_type (p_bounds);
1733
1734 if (p_bounds_type
1735 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1736 {
1737 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1738
1739 if (TYPE_STUB (target_type))
1740 p_bounds = value_cast (lookup_pointer_type
1741 (ada_check_typedef (target_type)),
1742 p_bounds);
1743 }
1744 else
1745 error (_("Bad GNAT array descriptor"));
1746
1747 return p_bounds;
1748 }
1749 else
1750 return NULL;
1751 }
1752
1753 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1754 position of the field containing the address of the bounds data. */
1755
1756 static int
1757 fat_pntr_bounds_bitpos (struct type *type)
1758 {
1759 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1760 }
1761
1762 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1763 size of the field containing the address of the bounds data. */
1764
1765 static int
1766 fat_pntr_bounds_bitsize (struct type *type)
1767 {
1768 type = desc_base_type (type);
1769
1770 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1771 return TYPE_FIELD_BITSIZE (type, 1);
1772 else
1773 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1774 }
1775
1776 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1777 pointer to one, the type of its array data (a array-with-no-bounds type);
1778 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1779 data. */
1780
1781 static struct type *
1782 desc_data_target_type (struct type *type)
1783 {
1784 type = desc_base_type (type);
1785
1786 /* NOTE: The following is bogus; see comment in desc_bounds. */
1787 if (is_thin_pntr (type))
1788 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1789 else if (is_thick_pntr (type))
1790 {
1791 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1792
1793 if (data_type
1794 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1795 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1796 }
1797
1798 return NULL;
1799 }
1800
1801 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1802 its array data. */
1803
1804 static struct value *
1805 desc_data (struct value *arr)
1806 {
1807 struct type *type = value_type (arr);
1808
1809 if (is_thin_pntr (type))
1810 return thin_data_pntr (arr);
1811 else if (is_thick_pntr (type))
1812 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1813 _("Bad GNAT array descriptor"));
1814 else
1815 return NULL;
1816 }
1817
1818
1819 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1820 position of the field containing the address of the data. */
1821
1822 static int
1823 fat_pntr_data_bitpos (struct type *type)
1824 {
1825 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1826 }
1827
1828 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1829 size of the field containing the address of the data. */
1830
1831 static int
1832 fat_pntr_data_bitsize (struct type *type)
1833 {
1834 type = desc_base_type (type);
1835
1836 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1837 return TYPE_FIELD_BITSIZE (type, 0);
1838 else
1839 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1840 }
1841
1842 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1843 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1844 bound, if WHICH is 1. The first bound is I=1. */
1845
1846 static struct value *
1847 desc_one_bound (struct value *bounds, int i, int which)
1848 {
1849 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1850 _("Bad GNAT array descriptor bounds"));
1851 }
1852
1853 /* If BOUNDS is an array-bounds structure type, return the bit position
1854 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1855 bound, if WHICH is 1. The first bound is I=1. */
1856
1857 static int
1858 desc_bound_bitpos (struct type *type, int i, int which)
1859 {
1860 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1861 }
1862
1863 /* If BOUNDS is an array-bounds structure type, return the bit field size
1864 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1865 bound, if WHICH is 1. The first bound is I=1. */
1866
1867 static int
1868 desc_bound_bitsize (struct type *type, int i, int which)
1869 {
1870 type = desc_base_type (type);
1871
1872 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1873 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1874 else
1875 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1876 }
1877
1878 /* If TYPE is the type of an array-bounds structure, the type of its
1879 Ith bound (numbering from 1). Otherwise, NULL. */
1880
1881 static struct type *
1882 desc_index_type (struct type *type, int i)
1883 {
1884 type = desc_base_type (type);
1885
1886 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1887 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1888 else
1889 return NULL;
1890 }
1891
1892 /* The number of index positions in the array-bounds type TYPE.
1893 Return 0 if TYPE is NULL. */
1894
1895 static int
1896 desc_arity (struct type *type)
1897 {
1898 type = desc_base_type (type);
1899
1900 if (type != NULL)
1901 return TYPE_NFIELDS (type) / 2;
1902 return 0;
1903 }
1904
1905 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1906 an array descriptor type (representing an unconstrained array
1907 type). */
1908
1909 static int
1910 ada_is_direct_array_type (struct type *type)
1911 {
1912 if (type == NULL)
1913 return 0;
1914 type = ada_check_typedef (type);
1915 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1916 || ada_is_array_descriptor_type (type));
1917 }
1918
1919 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1920 * to one. */
1921
1922 static int
1923 ada_is_array_type (struct type *type)
1924 {
1925 while (type != NULL
1926 && (TYPE_CODE (type) == TYPE_CODE_PTR
1927 || TYPE_CODE (type) == TYPE_CODE_REF))
1928 type = TYPE_TARGET_TYPE (type);
1929 return ada_is_direct_array_type (type);
1930 }
1931
1932 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1933
1934 int
1935 ada_is_simple_array_type (struct type *type)
1936 {
1937 if (type == NULL)
1938 return 0;
1939 type = ada_check_typedef (type);
1940 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1941 || (TYPE_CODE (type) == TYPE_CODE_PTR
1942 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1943 == TYPE_CODE_ARRAY));
1944 }
1945
1946 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1947
1948 int
1949 ada_is_array_descriptor_type (struct type *type)
1950 {
1951 struct type *data_type = desc_data_target_type (type);
1952
1953 if (type == NULL)
1954 return 0;
1955 type = ada_check_typedef (type);
1956 return (data_type != NULL
1957 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1958 && desc_arity (desc_bounds_type (type)) > 0);
1959 }
1960
1961 /* Non-zero iff type is a partially mal-formed GNAT array
1962 descriptor. FIXME: This is to compensate for some problems with
1963 debugging output from GNAT. Re-examine periodically to see if it
1964 is still needed. */
1965
1966 int
1967 ada_is_bogus_array_descriptor (struct type *type)
1968 {
1969 return
1970 type != NULL
1971 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1972 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1973 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1974 && !ada_is_array_descriptor_type (type);
1975 }
1976
1977
1978 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1979 (fat pointer) returns the type of the array data described---specifically,
1980 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1981 in from the descriptor; otherwise, they are left unspecified. If
1982 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1983 returns NULL. The result is simply the type of ARR if ARR is not
1984 a descriptor. */
1985 struct type *
1986 ada_type_of_array (struct value *arr, int bounds)
1987 {
1988 if (ada_is_constrained_packed_array_type (value_type (arr)))
1989 return decode_constrained_packed_array_type (value_type (arr));
1990
1991 if (!ada_is_array_descriptor_type (value_type (arr)))
1992 return value_type (arr);
1993
1994 if (!bounds)
1995 {
1996 struct type *array_type =
1997 ada_check_typedef (desc_data_target_type (value_type (arr)));
1998
1999 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2000 TYPE_FIELD_BITSIZE (array_type, 0) =
2001 decode_packed_array_bitsize (value_type (arr));
2002
2003 return array_type;
2004 }
2005 else
2006 {
2007 struct type *elt_type;
2008 int arity;
2009 struct value *descriptor;
2010
2011 elt_type = ada_array_element_type (value_type (arr), -1);
2012 arity = ada_array_arity (value_type (arr));
2013
2014 if (elt_type == NULL || arity == 0)
2015 return ada_check_typedef (value_type (arr));
2016
2017 descriptor = desc_bounds (arr);
2018 if (value_as_long (descriptor) == 0)
2019 return NULL;
2020 while (arity > 0)
2021 {
2022 struct type *range_type = alloc_type_copy (value_type (arr));
2023 struct type *array_type = alloc_type_copy (value_type (arr));
2024 struct value *low = desc_one_bound (descriptor, arity, 0);
2025 struct value *high = desc_one_bound (descriptor, arity, 1);
2026
2027 arity -= 1;
2028 create_static_range_type (range_type, value_type (low),
2029 longest_to_int (value_as_long (low)),
2030 longest_to_int (value_as_long (high)));
2031 elt_type = create_array_type (array_type, elt_type, range_type);
2032
2033 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2034 {
2035 /* We need to store the element packed bitsize, as well as
2036 recompute the array size, because it was previously
2037 computed based on the unpacked element size. */
2038 LONGEST lo = value_as_long (low);
2039 LONGEST hi = value_as_long (high);
2040
2041 TYPE_FIELD_BITSIZE (elt_type, 0) =
2042 decode_packed_array_bitsize (value_type (arr));
2043 /* If the array has no element, then the size is already
2044 zero, and does not need to be recomputed. */
2045 if (lo < hi)
2046 {
2047 int array_bitsize =
2048 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2049
2050 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2051 }
2052 }
2053 }
2054
2055 return lookup_pointer_type (elt_type);
2056 }
2057 }
2058
2059 /* If ARR does not represent an array, returns ARR unchanged.
2060 Otherwise, returns either a standard GDB array with bounds set
2061 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2062 GDB array. Returns NULL if ARR is a null fat pointer. */
2063
2064 struct value *
2065 ada_coerce_to_simple_array_ptr (struct value *arr)
2066 {
2067 if (ada_is_array_descriptor_type (value_type (arr)))
2068 {
2069 struct type *arrType = ada_type_of_array (arr, 1);
2070
2071 if (arrType == NULL)
2072 return NULL;
2073 return value_cast (arrType, value_copy (desc_data (arr)));
2074 }
2075 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2076 return decode_constrained_packed_array (arr);
2077 else
2078 return arr;
2079 }
2080
2081 /* If ARR does not represent an array, returns ARR unchanged.
2082 Otherwise, returns a standard GDB array describing ARR (which may
2083 be ARR itself if it already is in the proper form). */
2084
2085 struct value *
2086 ada_coerce_to_simple_array (struct value *arr)
2087 {
2088 if (ada_is_array_descriptor_type (value_type (arr)))
2089 {
2090 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2091
2092 if (arrVal == NULL)
2093 error (_("Bounds unavailable for null array pointer."));
2094 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2095 return value_ind (arrVal);
2096 }
2097 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2098 return decode_constrained_packed_array (arr);
2099 else
2100 return arr;
2101 }
2102
2103 /* If TYPE represents a GNAT array type, return it translated to an
2104 ordinary GDB array type (possibly with BITSIZE fields indicating
2105 packing). For other types, is the identity. */
2106
2107 struct type *
2108 ada_coerce_to_simple_array_type (struct type *type)
2109 {
2110 if (ada_is_constrained_packed_array_type (type))
2111 return decode_constrained_packed_array_type (type);
2112
2113 if (ada_is_array_descriptor_type (type))
2114 return ada_check_typedef (desc_data_target_type (type));
2115
2116 return type;
2117 }
2118
2119 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2120
2121 static int
2122 ada_is_packed_array_type (struct type *type)
2123 {
2124 if (type == NULL)
2125 return 0;
2126 type = desc_base_type (type);
2127 type = ada_check_typedef (type);
2128 return
2129 ada_type_name (type) != NULL
2130 && strstr (ada_type_name (type), "___XP") != NULL;
2131 }
2132
2133 /* Non-zero iff TYPE represents a standard GNAT constrained
2134 packed-array type. */
2135
2136 int
2137 ada_is_constrained_packed_array_type (struct type *type)
2138 {
2139 return ada_is_packed_array_type (type)
2140 && !ada_is_array_descriptor_type (type);
2141 }
2142
2143 /* Non-zero iff TYPE represents an array descriptor for a
2144 unconstrained packed-array type. */
2145
2146 static int
2147 ada_is_unconstrained_packed_array_type (struct type *type)
2148 {
2149 return ada_is_packed_array_type (type)
2150 && ada_is_array_descriptor_type (type);
2151 }
2152
2153 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2154 return the size of its elements in bits. */
2155
2156 static long
2157 decode_packed_array_bitsize (struct type *type)
2158 {
2159 const char *raw_name;
2160 const char *tail;
2161 long bits;
2162
2163 /* Access to arrays implemented as fat pointers are encoded as a typedef
2164 of the fat pointer type. We need the name of the fat pointer type
2165 to do the decoding, so strip the typedef layer. */
2166 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2167 type = ada_typedef_target_type (type);
2168
2169 raw_name = ada_type_name (ada_check_typedef (type));
2170 if (!raw_name)
2171 raw_name = ada_type_name (desc_base_type (type));
2172
2173 if (!raw_name)
2174 return 0;
2175
2176 tail = strstr (raw_name, "___XP");
2177 gdb_assert (tail != NULL);
2178
2179 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2180 {
2181 lim_warning
2182 (_("could not understand bit size information on packed array"));
2183 return 0;
2184 }
2185
2186 return bits;
2187 }
2188
2189 /* Given that TYPE is a standard GDB array type with all bounds filled
2190 in, and that the element size of its ultimate scalar constituents
2191 (that is, either its elements, or, if it is an array of arrays, its
2192 elements' elements, etc.) is *ELT_BITS, return an identical type,
2193 but with the bit sizes of its elements (and those of any
2194 constituent arrays) recorded in the BITSIZE components of its
2195 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2196 in bits.
2197
2198 Note that, for arrays whose index type has an XA encoding where
2199 a bound references a record discriminant, getting that discriminant,
2200 and therefore the actual value of that bound, is not possible
2201 because none of the given parameters gives us access to the record.
2202 This function assumes that it is OK in the context where it is being
2203 used to return an array whose bounds are still dynamic and where
2204 the length is arbitrary. */
2205
2206 static struct type *
2207 constrained_packed_array_type (struct type *type, long *elt_bits)
2208 {
2209 struct type *new_elt_type;
2210 struct type *new_type;
2211 struct type *index_type_desc;
2212 struct type *index_type;
2213 LONGEST low_bound, high_bound;
2214
2215 type = ada_check_typedef (type);
2216 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2217 return type;
2218
2219 index_type_desc = ada_find_parallel_type (type, "___XA");
2220 if (index_type_desc)
2221 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2222 NULL);
2223 else
2224 index_type = TYPE_INDEX_TYPE (type);
2225
2226 new_type = alloc_type_copy (type);
2227 new_elt_type =
2228 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2229 elt_bits);
2230 create_array_type (new_type, new_elt_type, index_type);
2231 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2232 TYPE_NAME (new_type) = ada_type_name (type);
2233
2234 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2235 && is_dynamic_type (check_typedef (index_type)))
2236 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2237 low_bound = high_bound = 0;
2238 if (high_bound < low_bound)
2239 *elt_bits = TYPE_LENGTH (new_type) = 0;
2240 else
2241 {
2242 *elt_bits *= (high_bound - low_bound + 1);
2243 TYPE_LENGTH (new_type) =
2244 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2245 }
2246
2247 TYPE_FIXED_INSTANCE (new_type) = 1;
2248 return new_type;
2249 }
2250
2251 /* The array type encoded by TYPE, where
2252 ada_is_constrained_packed_array_type (TYPE). */
2253
2254 static struct type *
2255 decode_constrained_packed_array_type (struct type *type)
2256 {
2257 const char *raw_name = ada_type_name (ada_check_typedef (type));
2258 char *name;
2259 const char *tail;
2260 struct type *shadow_type;
2261 long bits;
2262
2263 if (!raw_name)
2264 raw_name = ada_type_name (desc_base_type (type));
2265
2266 if (!raw_name)
2267 return NULL;
2268
2269 name = (char *) alloca (strlen (raw_name) + 1);
2270 tail = strstr (raw_name, "___XP");
2271 type = desc_base_type (type);
2272
2273 memcpy (name, raw_name, tail - raw_name);
2274 name[tail - raw_name] = '\000';
2275
2276 shadow_type = ada_find_parallel_type_with_name (type, name);
2277
2278 if (shadow_type == NULL)
2279 {
2280 lim_warning (_("could not find bounds information on packed array"));
2281 return NULL;
2282 }
2283 shadow_type = check_typedef (shadow_type);
2284
2285 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2286 {
2287 lim_warning (_("could not understand bounds "
2288 "information on packed array"));
2289 return NULL;
2290 }
2291
2292 bits = decode_packed_array_bitsize (type);
2293 return constrained_packed_array_type (shadow_type, &bits);
2294 }
2295
2296 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2297 array, returns a simple array that denotes that array. Its type is a
2298 standard GDB array type except that the BITSIZEs of the array
2299 target types are set to the number of bits in each element, and the
2300 type length is set appropriately. */
2301
2302 static struct value *
2303 decode_constrained_packed_array (struct value *arr)
2304 {
2305 struct type *type;
2306
2307 /* If our value is a pointer, then dereference it. Likewise if
2308 the value is a reference. Make sure that this operation does not
2309 cause the target type to be fixed, as this would indirectly cause
2310 this array to be decoded. The rest of the routine assumes that
2311 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2312 and "value_ind" routines to perform the dereferencing, as opposed
2313 to using "ada_coerce_ref" or "ada_value_ind". */
2314 arr = coerce_ref (arr);
2315 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2316 arr = value_ind (arr);
2317
2318 type = decode_constrained_packed_array_type (value_type (arr));
2319 if (type == NULL)
2320 {
2321 error (_("can't unpack array"));
2322 return NULL;
2323 }
2324
2325 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2326 && ada_is_modular_type (value_type (arr)))
2327 {
2328 /* This is a (right-justified) modular type representing a packed
2329 array with no wrapper. In order to interpret the value through
2330 the (left-justified) packed array type we just built, we must
2331 first left-justify it. */
2332 int bit_size, bit_pos;
2333 ULONGEST mod;
2334
2335 mod = ada_modulus (value_type (arr)) - 1;
2336 bit_size = 0;
2337 while (mod > 0)
2338 {
2339 bit_size += 1;
2340 mod >>= 1;
2341 }
2342 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2343 arr = ada_value_primitive_packed_val (arr, NULL,
2344 bit_pos / HOST_CHAR_BIT,
2345 bit_pos % HOST_CHAR_BIT,
2346 bit_size,
2347 type);
2348 }
2349
2350 return coerce_unspec_val_to_type (arr, type);
2351 }
2352
2353
2354 /* The value of the element of packed array ARR at the ARITY indices
2355 given in IND. ARR must be a simple array. */
2356
2357 static struct value *
2358 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2359 {
2360 int i;
2361 int bits, elt_off, bit_off;
2362 long elt_total_bit_offset;
2363 struct type *elt_type;
2364 struct value *v;
2365
2366 bits = 0;
2367 elt_total_bit_offset = 0;
2368 elt_type = ada_check_typedef (value_type (arr));
2369 for (i = 0; i < arity; i += 1)
2370 {
2371 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2372 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2373 error
2374 (_("attempt to do packed indexing of "
2375 "something other than a packed array"));
2376 else
2377 {
2378 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2379 LONGEST lowerbound, upperbound;
2380 LONGEST idx;
2381
2382 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2383 {
2384 lim_warning (_("don't know bounds of array"));
2385 lowerbound = upperbound = 0;
2386 }
2387
2388 idx = pos_atr (ind[i]);
2389 if (idx < lowerbound || idx > upperbound)
2390 lim_warning (_("packed array index %ld out of bounds"),
2391 (long) idx);
2392 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2393 elt_total_bit_offset += (idx - lowerbound) * bits;
2394 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2395 }
2396 }
2397 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2398 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2399
2400 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2401 bits, elt_type);
2402 return v;
2403 }
2404
2405 /* Non-zero iff TYPE includes negative integer values. */
2406
2407 static int
2408 has_negatives (struct type *type)
2409 {
2410 switch (TYPE_CODE (type))
2411 {
2412 default:
2413 return 0;
2414 case TYPE_CODE_INT:
2415 return !TYPE_UNSIGNED (type);
2416 case TYPE_CODE_RANGE:
2417 return TYPE_LOW_BOUND (type) < 0;
2418 }
2419 }
2420
2421 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2422 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2423 the unpacked buffer.
2424
2425 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2426 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2427
2428 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2429 zero otherwise.
2430
2431 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2432
2433 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2434
2435 static void
2436 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2437 gdb_byte *unpacked, int unpacked_len,
2438 int is_big_endian, int is_signed_type,
2439 int is_scalar)
2440 {
2441 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2442 int src_idx; /* Index into the source area */
2443 int src_bytes_left; /* Number of source bytes left to process. */
2444 int srcBitsLeft; /* Number of source bits left to move */
2445 int unusedLS; /* Number of bits in next significant
2446 byte of source that are unused */
2447
2448 int unpacked_idx; /* Index into the unpacked buffer */
2449 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2450
2451 unsigned long accum; /* Staging area for bits being transferred */
2452 int accumSize; /* Number of meaningful bits in accum */
2453 unsigned char sign;
2454
2455 /* Transmit bytes from least to most significant; delta is the direction
2456 the indices move. */
2457 int delta = is_big_endian ? -1 : 1;
2458
2459 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2460 bits from SRC. .*/
2461 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2462 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2463 bit_size, unpacked_len);
2464
2465 srcBitsLeft = bit_size;
2466 src_bytes_left = src_len;
2467 unpacked_bytes_left = unpacked_len;
2468 sign = 0;
2469
2470 if (is_big_endian)
2471 {
2472 src_idx = src_len - 1;
2473 if (is_signed_type
2474 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2475 sign = ~0;
2476
2477 unusedLS =
2478 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2479 % HOST_CHAR_BIT;
2480
2481 if (is_scalar)
2482 {
2483 accumSize = 0;
2484 unpacked_idx = unpacked_len - 1;
2485 }
2486 else
2487 {
2488 /* Non-scalar values must be aligned at a byte boundary... */
2489 accumSize =
2490 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2491 /* ... And are placed at the beginning (most-significant) bytes
2492 of the target. */
2493 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2494 unpacked_bytes_left = unpacked_idx + 1;
2495 }
2496 }
2497 else
2498 {
2499 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2500
2501 src_idx = unpacked_idx = 0;
2502 unusedLS = bit_offset;
2503 accumSize = 0;
2504
2505 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2506 sign = ~0;
2507 }
2508
2509 accum = 0;
2510 while (src_bytes_left > 0)
2511 {
2512 /* Mask for removing bits of the next source byte that are not
2513 part of the value. */
2514 unsigned int unusedMSMask =
2515 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2516 1;
2517 /* Sign-extend bits for this byte. */
2518 unsigned int signMask = sign & ~unusedMSMask;
2519
2520 accum |=
2521 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2522 accumSize += HOST_CHAR_BIT - unusedLS;
2523 if (accumSize >= HOST_CHAR_BIT)
2524 {
2525 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2526 accumSize -= HOST_CHAR_BIT;
2527 accum >>= HOST_CHAR_BIT;
2528 unpacked_bytes_left -= 1;
2529 unpacked_idx += delta;
2530 }
2531 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2532 unusedLS = 0;
2533 src_bytes_left -= 1;
2534 src_idx += delta;
2535 }
2536 while (unpacked_bytes_left > 0)
2537 {
2538 accum |= sign << accumSize;
2539 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2540 accumSize -= HOST_CHAR_BIT;
2541 if (accumSize < 0)
2542 accumSize = 0;
2543 accum >>= HOST_CHAR_BIT;
2544 unpacked_bytes_left -= 1;
2545 unpacked_idx += delta;
2546 }
2547 }
2548
2549 /* Create a new value of type TYPE from the contents of OBJ starting
2550 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2551 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2552 assigning through the result will set the field fetched from.
2553 VALADDR is ignored unless OBJ is NULL, in which case,
2554 VALADDR+OFFSET must address the start of storage containing the
2555 packed value. The value returned in this case is never an lval.
2556 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2557
2558 struct value *
2559 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2560 long offset, int bit_offset, int bit_size,
2561 struct type *type)
2562 {
2563 struct value *v;
2564 const gdb_byte *src; /* First byte containing data to unpack */
2565 gdb_byte *unpacked;
2566 const int is_scalar = is_scalar_type (type);
2567 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2568 gdb::byte_vector staging;
2569
2570 type = ada_check_typedef (type);
2571
2572 if (obj == NULL)
2573 src = valaddr + offset;
2574 else
2575 src = value_contents (obj) + offset;
2576
2577 if (is_dynamic_type (type))
2578 {
2579 /* The length of TYPE might by dynamic, so we need to resolve
2580 TYPE in order to know its actual size, which we then use
2581 to create the contents buffer of the value we return.
2582 The difficulty is that the data containing our object is
2583 packed, and therefore maybe not at a byte boundary. So, what
2584 we do, is unpack the data into a byte-aligned buffer, and then
2585 use that buffer as our object's value for resolving the type. */
2586 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2587 staging.resize (staging_len);
2588
2589 ada_unpack_from_contents (src, bit_offset, bit_size,
2590 staging.data (), staging.size (),
2591 is_big_endian, has_negatives (type),
2592 is_scalar);
2593 type = resolve_dynamic_type (type, staging.data (), 0);
2594 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2595 {
2596 /* This happens when the length of the object is dynamic,
2597 and is actually smaller than the space reserved for it.
2598 For instance, in an array of variant records, the bit_size
2599 we're given is the array stride, which is constant and
2600 normally equal to the maximum size of its element.
2601 But, in reality, each element only actually spans a portion
2602 of that stride. */
2603 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2604 }
2605 }
2606
2607 if (obj == NULL)
2608 {
2609 v = allocate_value (type);
2610 src = valaddr + offset;
2611 }
2612 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2613 {
2614 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2615 gdb_byte *buf;
2616
2617 v = value_at (type, value_address (obj) + offset);
2618 buf = (gdb_byte *) alloca (src_len);
2619 read_memory (value_address (v), buf, src_len);
2620 src = buf;
2621 }
2622 else
2623 {
2624 v = allocate_value (type);
2625 src = value_contents (obj) + offset;
2626 }
2627
2628 if (obj != NULL)
2629 {
2630 long new_offset = offset;
2631
2632 set_value_component_location (v, obj);
2633 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2634 set_value_bitsize (v, bit_size);
2635 if (value_bitpos (v) >= HOST_CHAR_BIT)
2636 {
2637 ++new_offset;
2638 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2639 }
2640 set_value_offset (v, new_offset);
2641
2642 /* Also set the parent value. This is needed when trying to
2643 assign a new value (in inferior memory). */
2644 set_value_parent (v, obj);
2645 }
2646 else
2647 set_value_bitsize (v, bit_size);
2648 unpacked = value_contents_writeable (v);
2649
2650 if (bit_size == 0)
2651 {
2652 memset (unpacked, 0, TYPE_LENGTH (type));
2653 return v;
2654 }
2655
2656 if (staging.size () == TYPE_LENGTH (type))
2657 {
2658 /* Small short-cut: If we've unpacked the data into a buffer
2659 of the same size as TYPE's length, then we can reuse that,
2660 instead of doing the unpacking again. */
2661 memcpy (unpacked, staging.data (), staging.size ());
2662 }
2663 else
2664 ada_unpack_from_contents (src, bit_offset, bit_size,
2665 unpacked, TYPE_LENGTH (type),
2666 is_big_endian, has_negatives (type), is_scalar);
2667
2668 return v;
2669 }
2670
2671 /* Store the contents of FROMVAL into the location of TOVAL.
2672 Return a new value with the location of TOVAL and contents of
2673 FROMVAL. Handles assignment into packed fields that have
2674 floating-point or non-scalar types. */
2675
2676 static struct value *
2677 ada_value_assign (struct value *toval, struct value *fromval)
2678 {
2679 struct type *type = value_type (toval);
2680 int bits = value_bitsize (toval);
2681
2682 toval = ada_coerce_ref (toval);
2683 fromval = ada_coerce_ref (fromval);
2684
2685 if (ada_is_direct_array_type (value_type (toval)))
2686 toval = ada_coerce_to_simple_array (toval);
2687 if (ada_is_direct_array_type (value_type (fromval)))
2688 fromval = ada_coerce_to_simple_array (fromval);
2689
2690 if (!deprecated_value_modifiable (toval))
2691 error (_("Left operand of assignment is not a modifiable lvalue."));
2692
2693 if (VALUE_LVAL (toval) == lval_memory
2694 && bits > 0
2695 && (TYPE_CODE (type) == TYPE_CODE_FLT
2696 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2697 {
2698 int len = (value_bitpos (toval)
2699 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2700 int from_size;
2701 gdb_byte *buffer = (gdb_byte *) alloca (len);
2702 struct value *val;
2703 CORE_ADDR to_addr = value_address (toval);
2704
2705 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2706 fromval = value_cast (type, fromval);
2707
2708 read_memory (to_addr, buffer, len);
2709 from_size = value_bitsize (fromval);
2710 if (from_size == 0)
2711 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2712 if (gdbarch_bits_big_endian (get_type_arch (type)))
2713 copy_bitwise (buffer, value_bitpos (toval),
2714 value_contents (fromval), from_size - bits, bits, 1);
2715 else
2716 copy_bitwise (buffer, value_bitpos (toval),
2717 value_contents (fromval), 0, bits, 0);
2718 write_memory_with_notification (to_addr, buffer, len);
2719
2720 val = value_copy (toval);
2721 memcpy (value_contents_raw (val), value_contents (fromval),
2722 TYPE_LENGTH (type));
2723 deprecated_set_value_type (val, type);
2724
2725 return val;
2726 }
2727
2728 return value_assign (toval, fromval);
2729 }
2730
2731
2732 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2733 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2734 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2735 COMPONENT, and not the inferior's memory. The current contents
2736 of COMPONENT are ignored.
2737
2738 Although not part of the initial design, this function also works
2739 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2740 had a null address, and COMPONENT had an address which is equal to
2741 its offset inside CONTAINER. */
2742
2743 static void
2744 value_assign_to_component (struct value *container, struct value *component,
2745 struct value *val)
2746 {
2747 LONGEST offset_in_container =
2748 (LONGEST) (value_address (component) - value_address (container));
2749 int bit_offset_in_container =
2750 value_bitpos (component) - value_bitpos (container);
2751 int bits;
2752
2753 val = value_cast (value_type (component), val);
2754
2755 if (value_bitsize (component) == 0)
2756 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2757 else
2758 bits = value_bitsize (component);
2759
2760 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2761 {
2762 int src_offset;
2763
2764 if (is_scalar_type (check_typedef (value_type (component))))
2765 src_offset
2766 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2767 else
2768 src_offset = 0;
2769 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2770 value_bitpos (container) + bit_offset_in_container,
2771 value_contents (val), src_offset, bits, 1);
2772 }
2773 else
2774 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2775 value_bitpos (container) + bit_offset_in_container,
2776 value_contents (val), 0, bits, 0);
2777 }
2778
2779 /* Determine if TYPE is an access to an unconstrained array. */
2780
2781 bool
2782 ada_is_access_to_unconstrained_array (struct type *type)
2783 {
2784 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2785 && is_thick_pntr (ada_typedef_target_type (type)));
2786 }
2787
2788 /* The value of the element of array ARR at the ARITY indices given in IND.
2789 ARR may be either a simple array, GNAT array descriptor, or pointer
2790 thereto. */
2791
2792 struct value *
2793 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2794 {
2795 int k;
2796 struct value *elt;
2797 struct type *elt_type;
2798
2799 elt = ada_coerce_to_simple_array (arr);
2800
2801 elt_type = ada_check_typedef (value_type (elt));
2802 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2803 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2804 return value_subscript_packed (elt, arity, ind);
2805
2806 for (k = 0; k < arity; k += 1)
2807 {
2808 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2809
2810 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2811 error (_("too many subscripts (%d expected)"), k);
2812
2813 elt = value_subscript (elt, pos_atr (ind[k]));
2814
2815 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2816 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2817 {
2818 /* The element is a typedef to an unconstrained array,
2819 except that the value_subscript call stripped the
2820 typedef layer. The typedef layer is GNAT's way to
2821 specify that the element is, at the source level, an
2822 access to the unconstrained array, rather than the
2823 unconstrained array. So, we need to restore that
2824 typedef layer, which we can do by forcing the element's
2825 type back to its original type. Otherwise, the returned
2826 value is going to be printed as the array, rather
2827 than as an access. Another symptom of the same issue
2828 would be that an expression trying to dereference the
2829 element would also be improperly rejected. */
2830 deprecated_set_value_type (elt, saved_elt_type);
2831 }
2832
2833 elt_type = ada_check_typedef (value_type (elt));
2834 }
2835
2836 return elt;
2837 }
2838
2839 /* Assuming ARR is a pointer to a GDB array, the value of the element
2840 of *ARR at the ARITY indices given in IND.
2841 Does not read the entire array into memory.
2842
2843 Note: Unlike what one would expect, this function is used instead of
2844 ada_value_subscript for basically all non-packed array types. The reason
2845 for this is that a side effect of doing our own pointer arithmetics instead
2846 of relying on value_subscript is that there is no implicit typedef peeling.
2847 This is important for arrays of array accesses, where it allows us to
2848 preserve the fact that the array's element is an array access, where the
2849 access part os encoded in a typedef layer. */
2850
2851 static struct value *
2852 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2853 {
2854 int k;
2855 struct value *array_ind = ada_value_ind (arr);
2856 struct type *type
2857 = check_typedef (value_enclosing_type (array_ind));
2858
2859 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2860 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2861 return value_subscript_packed (array_ind, arity, ind);
2862
2863 for (k = 0; k < arity; k += 1)
2864 {
2865 LONGEST lwb, upb;
2866 struct value *lwb_value;
2867
2868 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2869 error (_("too many subscripts (%d expected)"), k);
2870 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2871 value_copy (arr));
2872 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2873 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2874 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2875 type = TYPE_TARGET_TYPE (type);
2876 }
2877
2878 return value_ind (arr);
2879 }
2880
2881 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2882 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2883 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2884 this array is LOW, as per Ada rules. */
2885 static struct value *
2886 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2887 int low, int high)
2888 {
2889 struct type *type0 = ada_check_typedef (type);
2890 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2891 struct type *index_type
2892 = create_static_range_type (NULL, base_index_type, low, high);
2893 struct type *slice_type = create_array_type_with_stride
2894 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2895 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2896 TYPE_FIELD_BITSIZE (type0, 0));
2897 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2898 LONGEST base_low_pos, low_pos;
2899 CORE_ADDR base;
2900
2901 if (!discrete_position (base_index_type, low, &low_pos)
2902 || !discrete_position (base_index_type, base_low, &base_low_pos))
2903 {
2904 warning (_("unable to get positions in slice, use bounds instead"));
2905 low_pos = low;
2906 base_low_pos = base_low;
2907 }
2908
2909 base = value_as_address (array_ptr)
2910 + ((low_pos - base_low_pos)
2911 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2912 return value_at_lazy (slice_type, base);
2913 }
2914
2915
2916 static struct value *
2917 ada_value_slice (struct value *array, int low, int high)
2918 {
2919 struct type *type = ada_check_typedef (value_type (array));
2920 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2921 struct type *index_type
2922 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2923 struct type *slice_type = create_array_type_with_stride
2924 (NULL, TYPE_TARGET_TYPE (type), index_type,
2925 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2926 TYPE_FIELD_BITSIZE (type, 0));
2927 LONGEST low_pos, high_pos;
2928
2929 if (!discrete_position (base_index_type, low, &low_pos)
2930 || !discrete_position (base_index_type, high, &high_pos))
2931 {
2932 warning (_("unable to get positions in slice, use bounds instead"));
2933 low_pos = low;
2934 high_pos = high;
2935 }
2936
2937 return value_cast (slice_type,
2938 value_slice (array, low, high_pos - low_pos + 1));
2939 }
2940
2941 /* If type is a record type in the form of a standard GNAT array
2942 descriptor, returns the number of dimensions for type. If arr is a
2943 simple array, returns the number of "array of"s that prefix its
2944 type designation. Otherwise, returns 0. */
2945
2946 int
2947 ada_array_arity (struct type *type)
2948 {
2949 int arity;
2950
2951 if (type == NULL)
2952 return 0;
2953
2954 type = desc_base_type (type);
2955
2956 arity = 0;
2957 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2958 return desc_arity (desc_bounds_type (type));
2959 else
2960 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2961 {
2962 arity += 1;
2963 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2964 }
2965
2966 return arity;
2967 }
2968
2969 /* If TYPE is a record type in the form of a standard GNAT array
2970 descriptor or a simple array type, returns the element type for
2971 TYPE after indexing by NINDICES indices, or by all indices if
2972 NINDICES is -1. Otherwise, returns NULL. */
2973
2974 struct type *
2975 ada_array_element_type (struct type *type, int nindices)
2976 {
2977 type = desc_base_type (type);
2978
2979 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2980 {
2981 int k;
2982 struct type *p_array_type;
2983
2984 p_array_type = desc_data_target_type (type);
2985
2986 k = ada_array_arity (type);
2987 if (k == 0)
2988 return NULL;
2989
2990 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2991 if (nindices >= 0 && k > nindices)
2992 k = nindices;
2993 while (k > 0 && p_array_type != NULL)
2994 {
2995 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2996 k -= 1;
2997 }
2998 return p_array_type;
2999 }
3000 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3001 {
3002 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3003 {
3004 type = TYPE_TARGET_TYPE (type);
3005 nindices -= 1;
3006 }
3007 return type;
3008 }
3009
3010 return NULL;
3011 }
3012
3013 /* The type of nth index in arrays of given type (n numbering from 1).
3014 Does not examine memory. Throws an error if N is invalid or TYPE
3015 is not an array type. NAME is the name of the Ada attribute being
3016 evaluated ('range, 'first, 'last, or 'length); it is used in building
3017 the error message. */
3018
3019 static struct type *
3020 ada_index_type (struct type *type, int n, const char *name)
3021 {
3022 struct type *result_type;
3023
3024 type = desc_base_type (type);
3025
3026 if (n < 0 || n > ada_array_arity (type))
3027 error (_("invalid dimension number to '%s"), name);
3028
3029 if (ada_is_simple_array_type (type))
3030 {
3031 int i;
3032
3033 for (i = 1; i < n; i += 1)
3034 type = TYPE_TARGET_TYPE (type);
3035 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3036 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3037 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3038 perhaps stabsread.c would make more sense. */
3039 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3040 result_type = NULL;
3041 }
3042 else
3043 {
3044 result_type = desc_index_type (desc_bounds_type (type), n);
3045 if (result_type == NULL)
3046 error (_("attempt to take bound of something that is not an array"));
3047 }
3048
3049 return result_type;
3050 }
3051
3052 /* Given that arr is an array type, returns the lower bound of the
3053 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3054 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3055 array-descriptor type. It works for other arrays with bounds supplied
3056 by run-time quantities other than discriminants. */
3057
3058 static LONGEST
3059 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3060 {
3061 struct type *type, *index_type_desc, *index_type;
3062 int i;
3063
3064 gdb_assert (which == 0 || which == 1);
3065
3066 if (ada_is_constrained_packed_array_type (arr_type))
3067 arr_type = decode_constrained_packed_array_type (arr_type);
3068
3069 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3070 return (LONGEST) - which;
3071
3072 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3073 type = TYPE_TARGET_TYPE (arr_type);
3074 else
3075 type = arr_type;
3076
3077 if (TYPE_FIXED_INSTANCE (type))
3078 {
3079 /* The array has already been fixed, so we do not need to
3080 check the parallel ___XA type again. That encoding has
3081 already been applied, so ignore it now. */
3082 index_type_desc = NULL;
3083 }
3084 else
3085 {
3086 index_type_desc = ada_find_parallel_type (type, "___XA");
3087 ada_fixup_array_indexes_type (index_type_desc);
3088 }
3089
3090 if (index_type_desc != NULL)
3091 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3092 NULL);
3093 else
3094 {
3095 struct type *elt_type = check_typedef (type);
3096
3097 for (i = 1; i < n; i++)
3098 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3099
3100 index_type = TYPE_INDEX_TYPE (elt_type);
3101 }
3102
3103 return
3104 (LONGEST) (which == 0
3105 ? ada_discrete_type_low_bound (index_type)
3106 : ada_discrete_type_high_bound (index_type));
3107 }
3108
3109 /* Given that arr is an array value, returns the lower bound of the
3110 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3111 WHICH is 1. This routine will also work for arrays with bounds
3112 supplied by run-time quantities other than discriminants. */
3113
3114 static LONGEST
3115 ada_array_bound (struct value *arr, int n, int which)
3116 {
3117 struct type *arr_type;
3118
3119 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3120 arr = value_ind (arr);
3121 arr_type = value_enclosing_type (arr);
3122
3123 if (ada_is_constrained_packed_array_type (arr_type))
3124 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3125 else if (ada_is_simple_array_type (arr_type))
3126 return ada_array_bound_from_type (arr_type, n, which);
3127 else
3128 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3129 }
3130
3131 /* Given that arr is an array value, returns the length of the
3132 nth index. This routine will also work for arrays with bounds
3133 supplied by run-time quantities other than discriminants.
3134 Does not work for arrays indexed by enumeration types with representation
3135 clauses at the moment. */
3136
3137 static LONGEST
3138 ada_array_length (struct value *arr, int n)
3139 {
3140 struct type *arr_type, *index_type;
3141 int low, high;
3142
3143 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3144 arr = value_ind (arr);
3145 arr_type = value_enclosing_type (arr);
3146
3147 if (ada_is_constrained_packed_array_type (arr_type))
3148 return ada_array_length (decode_constrained_packed_array (arr), n);
3149
3150 if (ada_is_simple_array_type (arr_type))
3151 {
3152 low = ada_array_bound_from_type (arr_type, n, 0);
3153 high = ada_array_bound_from_type (arr_type, n, 1);
3154 }
3155 else
3156 {
3157 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3158 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3159 }
3160
3161 arr_type = check_typedef (arr_type);
3162 index_type = ada_index_type (arr_type, n, "length");
3163 if (index_type != NULL)
3164 {
3165 struct type *base_type;
3166 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3167 base_type = TYPE_TARGET_TYPE (index_type);
3168 else
3169 base_type = index_type;
3170
3171 low = pos_atr (value_from_longest (base_type, low));
3172 high = pos_atr (value_from_longest (base_type, high));
3173 }
3174 return high - low + 1;
3175 }
3176
3177 /* An array whose type is that of ARR_TYPE (an array type), with
3178 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3179 less than LOW, then LOW-1 is used. */
3180
3181 static struct value *
3182 empty_array (struct type *arr_type, int low, int high)
3183 {
3184 struct type *arr_type0 = ada_check_typedef (arr_type);
3185 struct type *index_type
3186 = create_static_range_type
3187 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3188 high < low ? low - 1 : high);
3189 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3190
3191 return allocate_value (create_array_type (NULL, elt_type, index_type));
3192 }
3193 \f
3194
3195 /* Name resolution */
3196
3197 /* The "decoded" name for the user-definable Ada operator corresponding
3198 to OP. */
3199
3200 static const char *
3201 ada_decoded_op_name (enum exp_opcode op)
3202 {
3203 int i;
3204
3205 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3206 {
3207 if (ada_opname_table[i].op == op)
3208 return ada_opname_table[i].decoded;
3209 }
3210 error (_("Could not find operator name for opcode"));
3211 }
3212
3213
3214 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3215 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3216 undefined namespace) and converts operators that are
3217 user-defined into appropriate function calls. If CONTEXT_TYPE is
3218 non-null, it provides a preferred result type [at the moment, only
3219 type void has any effect---causing procedures to be preferred over
3220 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3221 return type is preferred. May change (expand) *EXP. */
3222
3223 static void
3224 resolve (expression_up *expp, int void_context_p, int parse_completion,
3225 innermost_block_tracker *tracker)
3226 {
3227 struct type *context_type = NULL;
3228 int pc = 0;
3229
3230 if (void_context_p)
3231 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3232
3233 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3234 }
3235
3236 /* Resolve the operator of the subexpression beginning at
3237 position *POS of *EXPP. "Resolving" consists of replacing
3238 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3239 with their resolutions, replacing built-in operators with
3240 function calls to user-defined operators, where appropriate, and,
3241 when DEPROCEDURE_P is non-zero, converting function-valued variables
3242 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3243 are as in ada_resolve, above. */
3244
3245 static struct value *
3246 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3247 struct type *context_type, int parse_completion,
3248 innermost_block_tracker *tracker)
3249 {
3250 int pc = *pos;
3251 int i;
3252 struct expression *exp; /* Convenience: == *expp. */
3253 enum exp_opcode op = (*expp)->elts[pc].opcode;
3254 struct value **argvec; /* Vector of operand types (alloca'ed). */
3255 int nargs; /* Number of operands. */
3256 int oplen;
3257
3258 argvec = NULL;
3259 nargs = 0;
3260 exp = expp->get ();
3261
3262 /* Pass one: resolve operands, saving their types and updating *pos,
3263 if needed. */
3264 switch (op)
3265 {
3266 case OP_FUNCALL:
3267 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3268 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3269 *pos += 7;
3270 else
3271 {
3272 *pos += 3;
3273 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3274 }
3275 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3276 break;
3277
3278 case UNOP_ADDR:
3279 *pos += 1;
3280 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3281 break;
3282
3283 case UNOP_QUAL:
3284 *pos += 3;
3285 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3286 parse_completion, tracker);
3287 break;
3288
3289 case OP_ATR_MODULUS:
3290 case OP_ATR_SIZE:
3291 case OP_ATR_TAG:
3292 case OP_ATR_FIRST:
3293 case OP_ATR_LAST:
3294 case OP_ATR_LENGTH:
3295 case OP_ATR_POS:
3296 case OP_ATR_VAL:
3297 case OP_ATR_MIN:
3298 case OP_ATR_MAX:
3299 case TERNOP_IN_RANGE:
3300 case BINOP_IN_BOUNDS:
3301 case UNOP_IN_RANGE:
3302 case OP_AGGREGATE:
3303 case OP_OTHERS:
3304 case OP_CHOICES:
3305 case OP_POSITIONAL:
3306 case OP_DISCRETE_RANGE:
3307 case OP_NAME:
3308 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3309 *pos += oplen;
3310 break;
3311
3312 case BINOP_ASSIGN:
3313 {
3314 struct value *arg1;
3315
3316 *pos += 1;
3317 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3318 if (arg1 == NULL)
3319 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3320 else
3321 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3322 tracker);
3323 break;
3324 }
3325
3326 case UNOP_CAST:
3327 *pos += 3;
3328 nargs = 1;
3329 break;
3330
3331 case BINOP_ADD:
3332 case BINOP_SUB:
3333 case BINOP_MUL:
3334 case BINOP_DIV:
3335 case BINOP_REM:
3336 case BINOP_MOD:
3337 case BINOP_EXP:
3338 case BINOP_CONCAT:
3339 case BINOP_LOGICAL_AND:
3340 case BINOP_LOGICAL_OR:
3341 case BINOP_BITWISE_AND:
3342 case BINOP_BITWISE_IOR:
3343 case BINOP_BITWISE_XOR:
3344
3345 case BINOP_EQUAL:
3346 case BINOP_NOTEQUAL:
3347 case BINOP_LESS:
3348 case BINOP_GTR:
3349 case BINOP_LEQ:
3350 case BINOP_GEQ:
3351
3352 case BINOP_REPEAT:
3353 case BINOP_SUBSCRIPT:
3354 case BINOP_COMMA:
3355 *pos += 1;
3356 nargs = 2;
3357 break;
3358
3359 case UNOP_NEG:
3360 case UNOP_PLUS:
3361 case UNOP_LOGICAL_NOT:
3362 case UNOP_ABS:
3363 case UNOP_IND:
3364 *pos += 1;
3365 nargs = 1;
3366 break;
3367
3368 case OP_LONG:
3369 case OP_FLOAT:
3370 case OP_VAR_VALUE:
3371 case OP_VAR_MSYM_VALUE:
3372 *pos += 4;
3373 break;
3374
3375 case OP_TYPE:
3376 case OP_BOOL:
3377 case OP_LAST:
3378 case OP_INTERNALVAR:
3379 *pos += 3;
3380 break;
3381
3382 case UNOP_MEMVAL:
3383 *pos += 3;
3384 nargs = 1;
3385 break;
3386
3387 case OP_REGISTER:
3388 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3389 break;
3390
3391 case STRUCTOP_STRUCT:
3392 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3393 nargs = 1;
3394 break;
3395
3396 case TERNOP_SLICE:
3397 *pos += 1;
3398 nargs = 3;
3399 break;
3400
3401 case OP_STRING:
3402 break;
3403
3404 default:
3405 error (_("Unexpected operator during name resolution"));
3406 }
3407
3408 argvec = XALLOCAVEC (struct value *, nargs + 1);
3409 for (i = 0; i < nargs; i += 1)
3410 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3411 tracker);
3412 argvec[i] = NULL;
3413 exp = expp->get ();
3414
3415 /* Pass two: perform any resolution on principal operator. */
3416 switch (op)
3417 {
3418 default:
3419 break;
3420
3421 case OP_VAR_VALUE:
3422 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3423 {
3424 std::vector<struct block_symbol> candidates;
3425 int n_candidates;
3426
3427 n_candidates =
3428 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3429 (exp->elts[pc + 2].symbol),
3430 exp->elts[pc + 1].block, VAR_DOMAIN,
3431 &candidates);
3432
3433 if (n_candidates > 1)
3434 {
3435 /* Types tend to get re-introduced locally, so if there
3436 are any local symbols that are not types, first filter
3437 out all types. */
3438 int j;
3439 for (j = 0; j < n_candidates; j += 1)
3440 switch (SYMBOL_CLASS (candidates[j].symbol))
3441 {
3442 case LOC_REGISTER:
3443 case LOC_ARG:
3444 case LOC_REF_ARG:
3445 case LOC_REGPARM_ADDR:
3446 case LOC_LOCAL:
3447 case LOC_COMPUTED:
3448 goto FoundNonType;
3449 default:
3450 break;
3451 }
3452 FoundNonType:
3453 if (j < n_candidates)
3454 {
3455 j = 0;
3456 while (j < n_candidates)
3457 {
3458 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3459 {
3460 candidates[j] = candidates[n_candidates - 1];
3461 n_candidates -= 1;
3462 }
3463 else
3464 j += 1;
3465 }
3466 }
3467 }
3468
3469 if (n_candidates == 0)
3470 error (_("No definition found for %s"),
3471 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3472 else if (n_candidates == 1)
3473 i = 0;
3474 else if (deprocedure_p
3475 && !is_nonfunction (candidates.data (), n_candidates))
3476 {
3477 i = ada_resolve_function
3478 (candidates.data (), n_candidates, NULL, 0,
3479 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3480 context_type, parse_completion);
3481 if (i < 0)
3482 error (_("Could not find a match for %s"),
3483 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3484 }
3485 else
3486 {
3487 printf_filtered (_("Multiple matches for %s\n"),
3488 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3489 user_select_syms (candidates.data (), n_candidates, 1);
3490 i = 0;
3491 }
3492
3493 exp->elts[pc + 1].block = candidates[i].block;
3494 exp->elts[pc + 2].symbol = candidates[i].symbol;
3495 tracker->update (candidates[i]);
3496 }
3497
3498 if (deprocedure_p
3499 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3500 == TYPE_CODE_FUNC))
3501 {
3502 replace_operator_with_call (expp, pc, 0, 4,
3503 exp->elts[pc + 2].symbol,
3504 exp->elts[pc + 1].block);
3505 exp = expp->get ();
3506 }
3507 break;
3508
3509 case OP_FUNCALL:
3510 {
3511 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3512 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3513 {
3514 std::vector<struct block_symbol> candidates;
3515 int n_candidates;
3516
3517 n_candidates =
3518 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3519 (exp->elts[pc + 5].symbol),
3520 exp->elts[pc + 4].block, VAR_DOMAIN,
3521 &candidates);
3522
3523 if (n_candidates == 1)
3524 i = 0;
3525 else
3526 {
3527 i = ada_resolve_function
3528 (candidates.data (), n_candidates,
3529 argvec, nargs,
3530 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3531 context_type, parse_completion);
3532 if (i < 0)
3533 error (_("Could not find a match for %s"),
3534 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3535 }
3536
3537 exp->elts[pc + 4].block = candidates[i].block;
3538 exp->elts[pc + 5].symbol = candidates[i].symbol;
3539 tracker->update (candidates[i]);
3540 }
3541 }
3542 break;
3543 case BINOP_ADD:
3544 case BINOP_SUB:
3545 case BINOP_MUL:
3546 case BINOP_DIV:
3547 case BINOP_REM:
3548 case BINOP_MOD:
3549 case BINOP_CONCAT:
3550 case BINOP_BITWISE_AND:
3551 case BINOP_BITWISE_IOR:
3552 case BINOP_BITWISE_XOR:
3553 case BINOP_EQUAL:
3554 case BINOP_NOTEQUAL:
3555 case BINOP_LESS:
3556 case BINOP_GTR:
3557 case BINOP_LEQ:
3558 case BINOP_GEQ:
3559 case BINOP_EXP:
3560 case UNOP_NEG:
3561 case UNOP_PLUS:
3562 case UNOP_LOGICAL_NOT:
3563 case UNOP_ABS:
3564 if (possible_user_operator_p (op, argvec))
3565 {
3566 std::vector<struct block_symbol> candidates;
3567 int n_candidates;
3568
3569 n_candidates =
3570 ada_lookup_symbol_list (ada_decoded_op_name (op),
3571 NULL, VAR_DOMAIN,
3572 &candidates);
3573
3574 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3575 nargs, ada_decoded_op_name (op), NULL,
3576 parse_completion);
3577 if (i < 0)
3578 break;
3579
3580 replace_operator_with_call (expp, pc, nargs, 1,
3581 candidates[i].symbol,
3582 candidates[i].block);
3583 exp = expp->get ();
3584 }
3585 break;
3586
3587 case OP_TYPE:
3588 case OP_REGISTER:
3589 return NULL;
3590 }
3591
3592 *pos = pc;
3593 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3594 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3595 exp->elts[pc + 1].objfile,
3596 exp->elts[pc + 2].msymbol);
3597 else
3598 return evaluate_subexp_type (exp, pos);
3599 }
3600
3601 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3602 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3603 a non-pointer. */
3604 /* The term "match" here is rather loose. The match is heuristic and
3605 liberal. */
3606
3607 static int
3608 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3609 {
3610 ftype = ada_check_typedef (ftype);
3611 atype = ada_check_typedef (atype);
3612
3613 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3614 ftype = TYPE_TARGET_TYPE (ftype);
3615 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3616 atype = TYPE_TARGET_TYPE (atype);
3617
3618 switch (TYPE_CODE (ftype))
3619 {
3620 default:
3621 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3622 case TYPE_CODE_PTR:
3623 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3624 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3625 TYPE_TARGET_TYPE (atype), 0);
3626 else
3627 return (may_deref
3628 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3629 case TYPE_CODE_INT:
3630 case TYPE_CODE_ENUM:
3631 case TYPE_CODE_RANGE:
3632 switch (TYPE_CODE (atype))
3633 {
3634 case TYPE_CODE_INT:
3635 case TYPE_CODE_ENUM:
3636 case TYPE_CODE_RANGE:
3637 return 1;
3638 default:
3639 return 0;
3640 }
3641
3642 case TYPE_CODE_ARRAY:
3643 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3644 || ada_is_array_descriptor_type (atype));
3645
3646 case TYPE_CODE_STRUCT:
3647 if (ada_is_array_descriptor_type (ftype))
3648 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3649 || ada_is_array_descriptor_type (atype));
3650 else
3651 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3652 && !ada_is_array_descriptor_type (atype));
3653
3654 case TYPE_CODE_UNION:
3655 case TYPE_CODE_FLT:
3656 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3657 }
3658 }
3659
3660 /* Return non-zero if the formals of FUNC "sufficiently match" the
3661 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3662 may also be an enumeral, in which case it is treated as a 0-
3663 argument function. */
3664
3665 static int
3666 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3667 {
3668 int i;
3669 struct type *func_type = SYMBOL_TYPE (func);
3670
3671 if (SYMBOL_CLASS (func) == LOC_CONST
3672 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3673 return (n_actuals == 0);
3674 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3675 return 0;
3676
3677 if (TYPE_NFIELDS (func_type) != n_actuals)
3678 return 0;
3679
3680 for (i = 0; i < n_actuals; i += 1)
3681 {
3682 if (actuals[i] == NULL)
3683 return 0;
3684 else
3685 {
3686 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3687 i));
3688 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3689
3690 if (!ada_type_match (ftype, atype, 1))
3691 return 0;
3692 }
3693 }
3694 return 1;
3695 }
3696
3697 /* False iff function type FUNC_TYPE definitely does not produce a value
3698 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3699 FUNC_TYPE is not a valid function type with a non-null return type
3700 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3701
3702 static int
3703 return_match (struct type *func_type, struct type *context_type)
3704 {
3705 struct type *return_type;
3706
3707 if (func_type == NULL)
3708 return 1;
3709
3710 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3711 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3712 else
3713 return_type = get_base_type (func_type);
3714 if (return_type == NULL)
3715 return 1;
3716
3717 context_type = get_base_type (context_type);
3718
3719 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3720 return context_type == NULL || return_type == context_type;
3721 else if (context_type == NULL)
3722 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3723 else
3724 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3725 }
3726
3727
3728 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3729 function (if any) that matches the types of the NARGS arguments in
3730 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3731 that returns that type, then eliminate matches that don't. If
3732 CONTEXT_TYPE is void and there is at least one match that does not
3733 return void, eliminate all matches that do.
3734
3735 Asks the user if there is more than one match remaining. Returns -1
3736 if there is no such symbol or none is selected. NAME is used
3737 solely for messages. May re-arrange and modify SYMS in
3738 the process; the index returned is for the modified vector. */
3739
3740 static int
3741 ada_resolve_function (struct block_symbol syms[],
3742 int nsyms, struct value **args, int nargs,
3743 const char *name, struct type *context_type,
3744 int parse_completion)
3745 {
3746 int fallback;
3747 int k;
3748 int m; /* Number of hits */
3749
3750 m = 0;
3751 /* In the first pass of the loop, we only accept functions matching
3752 context_type. If none are found, we add a second pass of the loop
3753 where every function is accepted. */
3754 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3755 {
3756 for (k = 0; k < nsyms; k += 1)
3757 {
3758 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3759
3760 if (ada_args_match (syms[k].symbol, args, nargs)
3761 && (fallback || return_match (type, context_type)))
3762 {
3763 syms[m] = syms[k];
3764 m += 1;
3765 }
3766 }
3767 }
3768
3769 /* If we got multiple matches, ask the user which one to use. Don't do this
3770 interactive thing during completion, though, as the purpose of the
3771 completion is providing a list of all possible matches. Prompting the
3772 user to filter it down would be completely unexpected in this case. */
3773 if (m == 0)
3774 return -1;
3775 else if (m > 1 && !parse_completion)
3776 {
3777 printf_filtered (_("Multiple matches for %s\n"), name);
3778 user_select_syms (syms, m, 1);
3779 return 0;
3780 }
3781 return 0;
3782 }
3783
3784 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3785 in a listing of choices during disambiguation (see sort_choices, below).
3786 The idea is that overloadings of a subprogram name from the
3787 same package should sort in their source order. We settle for ordering
3788 such symbols by their trailing number (__N or $N). */
3789
3790 static int
3791 encoded_ordered_before (const char *N0, const char *N1)
3792 {
3793 if (N1 == NULL)
3794 return 0;
3795 else if (N0 == NULL)
3796 return 1;
3797 else
3798 {
3799 int k0, k1;
3800
3801 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3802 ;
3803 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3804 ;
3805 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3806 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3807 {
3808 int n0, n1;
3809
3810 n0 = k0;
3811 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3812 n0 -= 1;
3813 n1 = k1;
3814 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3815 n1 -= 1;
3816 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3817 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3818 }
3819 return (strcmp (N0, N1) < 0);
3820 }
3821 }
3822
3823 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3824 encoded names. */
3825
3826 static void
3827 sort_choices (struct block_symbol syms[], int nsyms)
3828 {
3829 int i;
3830
3831 for (i = 1; i < nsyms; i += 1)
3832 {
3833 struct block_symbol sym = syms[i];
3834 int j;
3835
3836 for (j = i - 1; j >= 0; j -= 1)
3837 {
3838 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3839 SYMBOL_LINKAGE_NAME (sym.symbol)))
3840 break;
3841 syms[j + 1] = syms[j];
3842 }
3843 syms[j + 1] = sym;
3844 }
3845 }
3846
3847 /* Whether GDB should display formals and return types for functions in the
3848 overloads selection menu. */
3849 static int print_signatures = 1;
3850
3851 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3852 all but functions, the signature is just the name of the symbol. For
3853 functions, this is the name of the function, the list of types for formals
3854 and the return type (if any). */
3855
3856 static void
3857 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3858 const struct type_print_options *flags)
3859 {
3860 struct type *type = SYMBOL_TYPE (sym);
3861
3862 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3863 if (!print_signatures
3864 || type == NULL
3865 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3866 return;
3867
3868 if (TYPE_NFIELDS (type) > 0)
3869 {
3870 int i;
3871
3872 fprintf_filtered (stream, " (");
3873 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3874 {
3875 if (i > 0)
3876 fprintf_filtered (stream, "; ");
3877 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3878 flags);
3879 }
3880 fprintf_filtered (stream, ")");
3881 }
3882 if (TYPE_TARGET_TYPE (type) != NULL
3883 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3884 {
3885 fprintf_filtered (stream, " return ");
3886 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3887 }
3888 }
3889
3890 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3891 by asking the user (if necessary), returning the number selected,
3892 and setting the first elements of SYMS items. Error if no symbols
3893 selected. */
3894
3895 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3896 to be re-integrated one of these days. */
3897
3898 int
3899 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3900 {
3901 int i;
3902 int *chosen = XALLOCAVEC (int , nsyms);
3903 int n_chosen;
3904 int first_choice = (max_results == 1) ? 1 : 2;
3905 const char *select_mode = multiple_symbols_select_mode ();
3906
3907 if (max_results < 1)
3908 error (_("Request to select 0 symbols!"));
3909 if (nsyms <= 1)
3910 return nsyms;
3911
3912 if (select_mode == multiple_symbols_cancel)
3913 error (_("\
3914 canceled because the command is ambiguous\n\
3915 See set/show multiple-symbol."));
3916
3917 /* If select_mode is "all", then return all possible symbols.
3918 Only do that if more than one symbol can be selected, of course.
3919 Otherwise, display the menu as usual. */
3920 if (select_mode == multiple_symbols_all && max_results > 1)
3921 return nsyms;
3922
3923 printf_filtered (_("[0] cancel\n"));
3924 if (max_results > 1)
3925 printf_filtered (_("[1] all\n"));
3926
3927 sort_choices (syms, nsyms);
3928
3929 for (i = 0; i < nsyms; i += 1)
3930 {
3931 if (syms[i].symbol == NULL)
3932 continue;
3933
3934 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3935 {
3936 struct symtab_and_line sal =
3937 find_function_start_sal (syms[i].symbol, 1);
3938
3939 printf_filtered ("[%d] ", i + first_choice);
3940 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3941 &type_print_raw_options);
3942 if (sal.symtab == NULL)
3943 printf_filtered (_(" at <no source file available>:%d\n"),
3944 sal.line);
3945 else
3946 printf_filtered (_(" at %s:%d\n"),
3947 symtab_to_filename_for_display (sal.symtab),
3948 sal.line);
3949 continue;
3950 }
3951 else
3952 {
3953 int is_enumeral =
3954 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3955 && SYMBOL_TYPE (syms[i].symbol) != NULL
3956 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3957 struct symtab *symtab = NULL;
3958
3959 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3960 symtab = symbol_symtab (syms[i].symbol);
3961
3962 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3963 {
3964 printf_filtered ("[%d] ", i + first_choice);
3965 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3966 &type_print_raw_options);
3967 printf_filtered (_(" at %s:%d\n"),
3968 symtab_to_filename_for_display (symtab),
3969 SYMBOL_LINE (syms[i].symbol));
3970 }
3971 else if (is_enumeral
3972 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3973 {
3974 printf_filtered (("[%d] "), i + first_choice);
3975 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3976 gdb_stdout, -1, 0, &type_print_raw_options);
3977 printf_filtered (_("'(%s) (enumeral)\n"),
3978 SYMBOL_PRINT_NAME (syms[i].symbol));
3979 }
3980 else
3981 {
3982 printf_filtered ("[%d] ", i + first_choice);
3983 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3984 &type_print_raw_options);
3985
3986 if (symtab != NULL)
3987 printf_filtered (is_enumeral
3988 ? _(" in %s (enumeral)\n")
3989 : _(" at %s:?\n"),
3990 symtab_to_filename_for_display (symtab));
3991 else
3992 printf_filtered (is_enumeral
3993 ? _(" (enumeral)\n")
3994 : _(" at ?\n"));
3995 }
3996 }
3997 }
3998
3999 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4000 "overload-choice");
4001
4002 for (i = 0; i < n_chosen; i += 1)
4003 syms[i] = syms[chosen[i]];
4004
4005 return n_chosen;
4006 }
4007
4008 /* Read and validate a set of numeric choices from the user in the
4009 range 0 .. N_CHOICES-1. Place the results in increasing
4010 order in CHOICES[0 .. N-1], and return N.
4011
4012 The user types choices as a sequence of numbers on one line
4013 separated by blanks, encoding them as follows:
4014
4015 + A choice of 0 means to cancel the selection, throwing an error.
4016 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4017 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4018
4019 The user is not allowed to choose more than MAX_RESULTS values.
4020
4021 ANNOTATION_SUFFIX, if present, is used to annotate the input
4022 prompts (for use with the -f switch). */
4023
4024 int
4025 get_selections (int *choices, int n_choices, int max_results,
4026 int is_all_choice, const char *annotation_suffix)
4027 {
4028 char *args;
4029 const char *prompt;
4030 int n_chosen;
4031 int first_choice = is_all_choice ? 2 : 1;
4032
4033 prompt = getenv ("PS2");
4034 if (prompt == NULL)
4035 prompt = "> ";
4036
4037 args = command_line_input (prompt, annotation_suffix);
4038
4039 if (args == NULL)
4040 error_no_arg (_("one or more choice numbers"));
4041
4042 n_chosen = 0;
4043
4044 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4045 order, as given in args. Choices are validated. */
4046 while (1)
4047 {
4048 char *args2;
4049 int choice, j;
4050
4051 args = skip_spaces (args);
4052 if (*args == '\0' && n_chosen == 0)
4053 error_no_arg (_("one or more choice numbers"));
4054 else if (*args == '\0')
4055 break;
4056
4057 choice = strtol (args, &args2, 10);
4058 if (args == args2 || choice < 0
4059 || choice > n_choices + first_choice - 1)
4060 error (_("Argument must be choice number"));
4061 args = args2;
4062
4063 if (choice == 0)
4064 error (_("cancelled"));
4065
4066 if (choice < first_choice)
4067 {
4068 n_chosen = n_choices;
4069 for (j = 0; j < n_choices; j += 1)
4070 choices[j] = j;
4071 break;
4072 }
4073 choice -= first_choice;
4074
4075 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4076 {
4077 }
4078
4079 if (j < 0 || choice != choices[j])
4080 {
4081 int k;
4082
4083 for (k = n_chosen - 1; k > j; k -= 1)
4084 choices[k + 1] = choices[k];
4085 choices[j + 1] = choice;
4086 n_chosen += 1;
4087 }
4088 }
4089
4090 if (n_chosen > max_results)
4091 error (_("Select no more than %d of the above"), max_results);
4092
4093 return n_chosen;
4094 }
4095
4096 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4097 on the function identified by SYM and BLOCK, and taking NARGS
4098 arguments. Update *EXPP as needed to hold more space. */
4099
4100 static void
4101 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4102 int oplen, struct symbol *sym,
4103 const struct block *block)
4104 {
4105 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4106 symbol, -oplen for operator being replaced). */
4107 struct expression *newexp = (struct expression *)
4108 xzalloc (sizeof (struct expression)
4109 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4110 struct expression *exp = expp->get ();
4111
4112 newexp->nelts = exp->nelts + 7 - oplen;
4113 newexp->language_defn = exp->language_defn;
4114 newexp->gdbarch = exp->gdbarch;
4115 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4116 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4117 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4118
4119 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4120 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4121
4122 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4123 newexp->elts[pc + 4].block = block;
4124 newexp->elts[pc + 5].symbol = sym;
4125
4126 expp->reset (newexp);
4127 }
4128
4129 /* Type-class predicates */
4130
4131 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4132 or FLOAT). */
4133
4134 static int
4135 numeric_type_p (struct type *type)
4136 {
4137 if (type == NULL)
4138 return 0;
4139 else
4140 {
4141 switch (TYPE_CODE (type))
4142 {
4143 case TYPE_CODE_INT:
4144 case TYPE_CODE_FLT:
4145 return 1;
4146 case TYPE_CODE_RANGE:
4147 return (type == TYPE_TARGET_TYPE (type)
4148 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4149 default:
4150 return 0;
4151 }
4152 }
4153 }
4154
4155 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4156
4157 static int
4158 integer_type_p (struct type *type)
4159 {
4160 if (type == NULL)
4161 return 0;
4162 else
4163 {
4164 switch (TYPE_CODE (type))
4165 {
4166 case TYPE_CODE_INT:
4167 return 1;
4168 case TYPE_CODE_RANGE:
4169 return (type == TYPE_TARGET_TYPE (type)
4170 || integer_type_p (TYPE_TARGET_TYPE (type)));
4171 default:
4172 return 0;
4173 }
4174 }
4175 }
4176
4177 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4178
4179 static int
4180 scalar_type_p (struct type *type)
4181 {
4182 if (type == NULL)
4183 return 0;
4184 else
4185 {
4186 switch (TYPE_CODE (type))
4187 {
4188 case TYPE_CODE_INT:
4189 case TYPE_CODE_RANGE:
4190 case TYPE_CODE_ENUM:
4191 case TYPE_CODE_FLT:
4192 return 1;
4193 default:
4194 return 0;
4195 }
4196 }
4197 }
4198
4199 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4200
4201 static int
4202 discrete_type_p (struct type *type)
4203 {
4204 if (type == NULL)
4205 return 0;
4206 else
4207 {
4208 switch (TYPE_CODE (type))
4209 {
4210 case TYPE_CODE_INT:
4211 case TYPE_CODE_RANGE:
4212 case TYPE_CODE_ENUM:
4213 case TYPE_CODE_BOOL:
4214 return 1;
4215 default:
4216 return 0;
4217 }
4218 }
4219 }
4220
4221 /* Returns non-zero if OP with operands in the vector ARGS could be
4222 a user-defined function. Errs on the side of pre-defined operators
4223 (i.e., result 0). */
4224
4225 static int
4226 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4227 {
4228 struct type *type0 =
4229 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4230 struct type *type1 =
4231 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4232
4233 if (type0 == NULL)
4234 return 0;
4235
4236 switch (op)
4237 {
4238 default:
4239 return 0;
4240
4241 case BINOP_ADD:
4242 case BINOP_SUB:
4243 case BINOP_MUL:
4244 case BINOP_DIV:
4245 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4246
4247 case BINOP_REM:
4248 case BINOP_MOD:
4249 case BINOP_BITWISE_AND:
4250 case BINOP_BITWISE_IOR:
4251 case BINOP_BITWISE_XOR:
4252 return (!(integer_type_p (type0) && integer_type_p (type1)));
4253
4254 case BINOP_EQUAL:
4255 case BINOP_NOTEQUAL:
4256 case BINOP_LESS:
4257 case BINOP_GTR:
4258 case BINOP_LEQ:
4259 case BINOP_GEQ:
4260 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4261
4262 case BINOP_CONCAT:
4263 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4264
4265 case BINOP_EXP:
4266 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4267
4268 case UNOP_NEG:
4269 case UNOP_PLUS:
4270 case UNOP_LOGICAL_NOT:
4271 case UNOP_ABS:
4272 return (!numeric_type_p (type0));
4273
4274 }
4275 }
4276 \f
4277 /* Renaming */
4278
4279 /* NOTES:
4280
4281 1. In the following, we assume that a renaming type's name may
4282 have an ___XD suffix. It would be nice if this went away at some
4283 point.
4284 2. We handle both the (old) purely type-based representation of
4285 renamings and the (new) variable-based encoding. At some point,
4286 it is devoutly to be hoped that the former goes away
4287 (FIXME: hilfinger-2007-07-09).
4288 3. Subprogram renamings are not implemented, although the XRS
4289 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4290
4291 /* If SYM encodes a renaming,
4292
4293 <renaming> renames <renamed entity>,
4294
4295 sets *LEN to the length of the renamed entity's name,
4296 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4297 the string describing the subcomponent selected from the renamed
4298 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4299 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4300 are undefined). Otherwise, returns a value indicating the category
4301 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4302 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4303 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4304 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4305 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4306 may be NULL, in which case they are not assigned.
4307
4308 [Currently, however, GCC does not generate subprogram renamings.] */
4309
4310 enum ada_renaming_category
4311 ada_parse_renaming (struct symbol *sym,
4312 const char **renamed_entity, int *len,
4313 const char **renaming_expr)
4314 {
4315 enum ada_renaming_category kind;
4316 const char *info;
4317 const char *suffix;
4318
4319 if (sym == NULL)
4320 return ADA_NOT_RENAMING;
4321 switch (SYMBOL_CLASS (sym))
4322 {
4323 default:
4324 return ADA_NOT_RENAMING;
4325 case LOC_TYPEDEF:
4326 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4327 renamed_entity, len, renaming_expr);
4328 case LOC_LOCAL:
4329 case LOC_STATIC:
4330 case LOC_COMPUTED:
4331 case LOC_OPTIMIZED_OUT:
4332 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4333 if (info == NULL)
4334 return ADA_NOT_RENAMING;
4335 switch (info[5])
4336 {
4337 case '_':
4338 kind = ADA_OBJECT_RENAMING;
4339 info += 6;
4340 break;
4341 case 'E':
4342 kind = ADA_EXCEPTION_RENAMING;
4343 info += 7;
4344 break;
4345 case 'P':
4346 kind = ADA_PACKAGE_RENAMING;
4347 info += 7;
4348 break;
4349 case 'S':
4350 kind = ADA_SUBPROGRAM_RENAMING;
4351 info += 7;
4352 break;
4353 default:
4354 return ADA_NOT_RENAMING;
4355 }
4356 }
4357
4358 if (renamed_entity != NULL)
4359 *renamed_entity = info;
4360 suffix = strstr (info, "___XE");
4361 if (suffix == NULL || suffix == info)
4362 return ADA_NOT_RENAMING;
4363 if (len != NULL)
4364 *len = strlen (info) - strlen (suffix);
4365 suffix += 5;
4366 if (renaming_expr != NULL)
4367 *renaming_expr = suffix;
4368 return kind;
4369 }
4370
4371 /* Assuming TYPE encodes a renaming according to the old encoding in
4372 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4373 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4374 ADA_NOT_RENAMING otherwise. */
4375 static enum ada_renaming_category
4376 parse_old_style_renaming (struct type *type,
4377 const char **renamed_entity, int *len,
4378 const char **renaming_expr)
4379 {
4380 enum ada_renaming_category kind;
4381 const char *name;
4382 const char *info;
4383 const char *suffix;
4384
4385 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4386 || TYPE_NFIELDS (type) != 1)
4387 return ADA_NOT_RENAMING;
4388
4389 name = TYPE_NAME (type);
4390 if (name == NULL)
4391 return ADA_NOT_RENAMING;
4392
4393 name = strstr (name, "___XR");
4394 if (name == NULL)
4395 return ADA_NOT_RENAMING;
4396 switch (name[5])
4397 {
4398 case '\0':
4399 case '_':
4400 kind = ADA_OBJECT_RENAMING;
4401 break;
4402 case 'E':
4403 kind = ADA_EXCEPTION_RENAMING;
4404 break;
4405 case 'P':
4406 kind = ADA_PACKAGE_RENAMING;
4407 break;
4408 case 'S':
4409 kind = ADA_SUBPROGRAM_RENAMING;
4410 break;
4411 default:
4412 return ADA_NOT_RENAMING;
4413 }
4414
4415 info = TYPE_FIELD_NAME (type, 0);
4416 if (info == NULL)
4417 return ADA_NOT_RENAMING;
4418 if (renamed_entity != NULL)
4419 *renamed_entity = info;
4420 suffix = strstr (info, "___XE");
4421 if (renaming_expr != NULL)
4422 *renaming_expr = suffix + 5;
4423 if (suffix == NULL || suffix == info)
4424 return ADA_NOT_RENAMING;
4425 if (len != NULL)
4426 *len = suffix - info;
4427 return kind;
4428 }
4429
4430 /* Compute the value of the given RENAMING_SYM, which is expected to
4431 be a symbol encoding a renaming expression. BLOCK is the block
4432 used to evaluate the renaming. */
4433
4434 static struct value *
4435 ada_read_renaming_var_value (struct symbol *renaming_sym,
4436 const struct block *block)
4437 {
4438 const char *sym_name;
4439
4440 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4441 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4442 return evaluate_expression (expr.get ());
4443 }
4444 \f
4445
4446 /* Evaluation: Function Calls */
4447
4448 /* Return an lvalue containing the value VAL. This is the identity on
4449 lvalues, and otherwise has the side-effect of allocating memory
4450 in the inferior where a copy of the value contents is copied. */
4451
4452 static struct value *
4453 ensure_lval (struct value *val)
4454 {
4455 if (VALUE_LVAL (val) == not_lval
4456 || VALUE_LVAL (val) == lval_internalvar)
4457 {
4458 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4459 const CORE_ADDR addr =
4460 value_as_long (value_allocate_space_in_inferior (len));
4461
4462 VALUE_LVAL (val) = lval_memory;
4463 set_value_address (val, addr);
4464 write_memory (addr, value_contents (val), len);
4465 }
4466
4467 return val;
4468 }
4469
4470 /* Return the value ACTUAL, converted to be an appropriate value for a
4471 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4472 allocating any necessary descriptors (fat pointers), or copies of
4473 values not residing in memory, updating it as needed. */
4474
4475 struct value *
4476 ada_convert_actual (struct value *actual, struct type *formal_type0)
4477 {
4478 struct type *actual_type = ada_check_typedef (value_type (actual));
4479 struct type *formal_type = ada_check_typedef (formal_type0);
4480 struct type *formal_target =
4481 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4482 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4483 struct type *actual_target =
4484 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4485 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4486
4487 if (ada_is_array_descriptor_type (formal_target)
4488 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4489 return make_array_descriptor (formal_type, actual);
4490 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4491 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4492 {
4493 struct value *result;
4494
4495 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4496 && ada_is_array_descriptor_type (actual_target))
4497 result = desc_data (actual);
4498 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4499 {
4500 if (VALUE_LVAL (actual) != lval_memory)
4501 {
4502 struct value *val;
4503
4504 actual_type = ada_check_typedef (value_type (actual));
4505 val = allocate_value (actual_type);
4506 memcpy ((char *) value_contents_raw (val),
4507 (char *) value_contents (actual),
4508 TYPE_LENGTH (actual_type));
4509 actual = ensure_lval (val);
4510 }
4511 result = value_addr (actual);
4512 }
4513 else
4514 return actual;
4515 return value_cast_pointers (formal_type, result, 0);
4516 }
4517 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4518 return ada_value_ind (actual);
4519 else if (ada_is_aligner_type (formal_type))
4520 {
4521 /* We need to turn this parameter into an aligner type
4522 as well. */
4523 struct value *aligner = allocate_value (formal_type);
4524 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4525
4526 value_assign_to_component (aligner, component, actual);
4527 return aligner;
4528 }
4529
4530 return actual;
4531 }
4532
4533 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4534 type TYPE. This is usually an inefficient no-op except on some targets
4535 (such as AVR) where the representation of a pointer and an address
4536 differs. */
4537
4538 static CORE_ADDR
4539 value_pointer (struct value *value, struct type *type)
4540 {
4541 struct gdbarch *gdbarch = get_type_arch (type);
4542 unsigned len = TYPE_LENGTH (type);
4543 gdb_byte *buf = (gdb_byte *) alloca (len);
4544 CORE_ADDR addr;
4545
4546 addr = value_address (value);
4547 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4548 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4549 return addr;
4550 }
4551
4552
4553 /* Push a descriptor of type TYPE for array value ARR on the stack at
4554 *SP, updating *SP to reflect the new descriptor. Return either
4555 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4556 to-descriptor type rather than a descriptor type), a struct value *
4557 representing a pointer to this descriptor. */
4558
4559 static struct value *
4560 make_array_descriptor (struct type *type, struct value *arr)
4561 {
4562 struct type *bounds_type = desc_bounds_type (type);
4563 struct type *desc_type = desc_base_type (type);
4564 struct value *descriptor = allocate_value (desc_type);
4565 struct value *bounds = allocate_value (bounds_type);
4566 int i;
4567
4568 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4569 i > 0; i -= 1)
4570 {
4571 modify_field (value_type (bounds), value_contents_writeable (bounds),
4572 ada_array_bound (arr, i, 0),
4573 desc_bound_bitpos (bounds_type, i, 0),
4574 desc_bound_bitsize (bounds_type, i, 0));
4575 modify_field (value_type (bounds), value_contents_writeable (bounds),
4576 ada_array_bound (arr, i, 1),
4577 desc_bound_bitpos (bounds_type, i, 1),
4578 desc_bound_bitsize (bounds_type, i, 1));
4579 }
4580
4581 bounds = ensure_lval (bounds);
4582
4583 modify_field (value_type (descriptor),
4584 value_contents_writeable (descriptor),
4585 value_pointer (ensure_lval (arr),
4586 TYPE_FIELD_TYPE (desc_type, 0)),
4587 fat_pntr_data_bitpos (desc_type),
4588 fat_pntr_data_bitsize (desc_type));
4589
4590 modify_field (value_type (descriptor),
4591 value_contents_writeable (descriptor),
4592 value_pointer (bounds,
4593 TYPE_FIELD_TYPE (desc_type, 1)),
4594 fat_pntr_bounds_bitpos (desc_type),
4595 fat_pntr_bounds_bitsize (desc_type));
4596
4597 descriptor = ensure_lval (descriptor);
4598
4599 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4600 return value_addr (descriptor);
4601 else
4602 return descriptor;
4603 }
4604 \f
4605 /* Symbol Cache Module */
4606
4607 /* Performance measurements made as of 2010-01-15 indicate that
4608 this cache does bring some noticeable improvements. Depending
4609 on the type of entity being printed, the cache can make it as much
4610 as an order of magnitude faster than without it.
4611
4612 The descriptive type DWARF extension has significantly reduced
4613 the need for this cache, at least when DWARF is being used. However,
4614 even in this case, some expensive name-based symbol searches are still
4615 sometimes necessary - to find an XVZ variable, mostly. */
4616
4617 /* Initialize the contents of SYM_CACHE. */
4618
4619 static void
4620 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4621 {
4622 obstack_init (&sym_cache->cache_space);
4623 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4624 }
4625
4626 /* Free the memory used by SYM_CACHE. */
4627
4628 static void
4629 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4630 {
4631 obstack_free (&sym_cache->cache_space, NULL);
4632 xfree (sym_cache);
4633 }
4634
4635 /* Return the symbol cache associated to the given program space PSPACE.
4636 If not allocated for this PSPACE yet, allocate and initialize one. */
4637
4638 static struct ada_symbol_cache *
4639 ada_get_symbol_cache (struct program_space *pspace)
4640 {
4641 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4642
4643 if (pspace_data->sym_cache == NULL)
4644 {
4645 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4646 ada_init_symbol_cache (pspace_data->sym_cache);
4647 }
4648
4649 return pspace_data->sym_cache;
4650 }
4651
4652 /* Clear all entries from the symbol cache. */
4653
4654 static void
4655 ada_clear_symbol_cache (void)
4656 {
4657 struct ada_symbol_cache *sym_cache
4658 = ada_get_symbol_cache (current_program_space);
4659
4660 obstack_free (&sym_cache->cache_space, NULL);
4661 ada_init_symbol_cache (sym_cache);
4662 }
4663
4664 /* Search our cache for an entry matching NAME and DOMAIN.
4665 Return it if found, or NULL otherwise. */
4666
4667 static struct cache_entry **
4668 find_entry (const char *name, domain_enum domain)
4669 {
4670 struct ada_symbol_cache *sym_cache
4671 = ada_get_symbol_cache (current_program_space);
4672 int h = msymbol_hash (name) % HASH_SIZE;
4673 struct cache_entry **e;
4674
4675 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4676 {
4677 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4678 return e;
4679 }
4680 return NULL;
4681 }
4682
4683 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4684 Return 1 if found, 0 otherwise.
4685
4686 If an entry was found and SYM is not NULL, set *SYM to the entry's
4687 SYM. Same principle for BLOCK if not NULL. */
4688
4689 static int
4690 lookup_cached_symbol (const char *name, domain_enum domain,
4691 struct symbol **sym, const struct block **block)
4692 {
4693 struct cache_entry **e = find_entry (name, domain);
4694
4695 if (e == NULL)
4696 return 0;
4697 if (sym != NULL)
4698 *sym = (*e)->sym;
4699 if (block != NULL)
4700 *block = (*e)->block;
4701 return 1;
4702 }
4703
4704 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4705 in domain DOMAIN, save this result in our symbol cache. */
4706
4707 static void
4708 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4709 const struct block *block)
4710 {
4711 struct ada_symbol_cache *sym_cache
4712 = ada_get_symbol_cache (current_program_space);
4713 int h;
4714 char *copy;
4715 struct cache_entry *e;
4716
4717 /* Symbols for builtin types don't have a block.
4718 For now don't cache such symbols. */
4719 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4720 return;
4721
4722 /* If the symbol is a local symbol, then do not cache it, as a search
4723 for that symbol depends on the context. To determine whether
4724 the symbol is local or not, we check the block where we found it
4725 against the global and static blocks of its associated symtab. */
4726 if (sym
4727 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4728 GLOBAL_BLOCK) != block
4729 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4730 STATIC_BLOCK) != block)
4731 return;
4732
4733 h = msymbol_hash (name) % HASH_SIZE;
4734 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4735 e->next = sym_cache->root[h];
4736 sym_cache->root[h] = e;
4737 e->name = copy
4738 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4739 strcpy (copy, name);
4740 e->sym = sym;
4741 e->domain = domain;
4742 e->block = block;
4743 }
4744 \f
4745 /* Symbol Lookup */
4746
4747 /* Return the symbol name match type that should be used used when
4748 searching for all symbols matching LOOKUP_NAME.
4749
4750 LOOKUP_NAME is expected to be a symbol name after transformation
4751 for Ada lookups. */
4752
4753 static symbol_name_match_type
4754 name_match_type_from_name (const char *lookup_name)
4755 {
4756 return (strstr (lookup_name, "__") == NULL
4757 ? symbol_name_match_type::WILD
4758 : symbol_name_match_type::FULL);
4759 }
4760
4761 /* Return the result of a standard (literal, C-like) lookup of NAME in
4762 given DOMAIN, visible from lexical block BLOCK. */
4763
4764 static struct symbol *
4765 standard_lookup (const char *name, const struct block *block,
4766 domain_enum domain)
4767 {
4768 /* Initialize it just to avoid a GCC false warning. */
4769 struct block_symbol sym = {};
4770
4771 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4772 return sym.symbol;
4773 ada_lookup_encoded_symbol (name, block, domain, &sym);
4774 cache_symbol (name, domain, sym.symbol, sym.block);
4775 return sym.symbol;
4776 }
4777
4778
4779 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4780 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4781 since they contend in overloading in the same way. */
4782 static int
4783 is_nonfunction (struct block_symbol syms[], int n)
4784 {
4785 int i;
4786
4787 for (i = 0; i < n; i += 1)
4788 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4789 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4790 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4791 return 1;
4792
4793 return 0;
4794 }
4795
4796 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4797 struct types. Otherwise, they may not. */
4798
4799 static int
4800 equiv_types (struct type *type0, struct type *type1)
4801 {
4802 if (type0 == type1)
4803 return 1;
4804 if (type0 == NULL || type1 == NULL
4805 || TYPE_CODE (type0) != TYPE_CODE (type1))
4806 return 0;
4807 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4808 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4809 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4810 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4811 return 1;
4812
4813 return 0;
4814 }
4815
4816 /* True iff SYM0 represents the same entity as SYM1, or one that is
4817 no more defined than that of SYM1. */
4818
4819 static int
4820 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4821 {
4822 if (sym0 == sym1)
4823 return 1;
4824 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4825 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4826 return 0;
4827
4828 switch (SYMBOL_CLASS (sym0))
4829 {
4830 case LOC_UNDEF:
4831 return 1;
4832 case LOC_TYPEDEF:
4833 {
4834 struct type *type0 = SYMBOL_TYPE (sym0);
4835 struct type *type1 = SYMBOL_TYPE (sym1);
4836 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4837 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4838 int len0 = strlen (name0);
4839
4840 return
4841 TYPE_CODE (type0) == TYPE_CODE (type1)
4842 && (equiv_types (type0, type1)
4843 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4844 && startswith (name1 + len0, "___XV")));
4845 }
4846 case LOC_CONST:
4847 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4848 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4849 default:
4850 return 0;
4851 }
4852 }
4853
4854 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4855 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4856
4857 static void
4858 add_defn_to_vec (struct obstack *obstackp,
4859 struct symbol *sym,
4860 const struct block *block)
4861 {
4862 int i;
4863 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4864
4865 /* Do not try to complete stub types, as the debugger is probably
4866 already scanning all symbols matching a certain name at the
4867 time when this function is called. Trying to replace the stub
4868 type by its associated full type will cause us to restart a scan
4869 which may lead to an infinite recursion. Instead, the client
4870 collecting the matching symbols will end up collecting several
4871 matches, with at least one of them complete. It can then filter
4872 out the stub ones if needed. */
4873
4874 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4875 {
4876 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4877 return;
4878 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4879 {
4880 prevDefns[i].symbol = sym;
4881 prevDefns[i].block = block;
4882 return;
4883 }
4884 }
4885
4886 {
4887 struct block_symbol info;
4888
4889 info.symbol = sym;
4890 info.block = block;
4891 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4892 }
4893 }
4894
4895 /* Number of block_symbol structures currently collected in current vector in
4896 OBSTACKP. */
4897
4898 static int
4899 num_defns_collected (struct obstack *obstackp)
4900 {
4901 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4902 }
4903
4904 /* Vector of block_symbol structures currently collected in current vector in
4905 OBSTACKP. If FINISH, close off the vector and return its final address. */
4906
4907 static struct block_symbol *
4908 defns_collected (struct obstack *obstackp, int finish)
4909 {
4910 if (finish)
4911 return (struct block_symbol *) obstack_finish (obstackp);
4912 else
4913 return (struct block_symbol *) obstack_base (obstackp);
4914 }
4915
4916 /* Return a bound minimal symbol matching NAME according to Ada
4917 decoding rules. Returns an invalid symbol if there is no such
4918 minimal symbol. Names prefixed with "standard__" are handled
4919 specially: "standard__" is first stripped off, and only static and
4920 global symbols are searched. */
4921
4922 struct bound_minimal_symbol
4923 ada_lookup_simple_minsym (const char *name)
4924 {
4925 struct bound_minimal_symbol result;
4926
4927 memset (&result, 0, sizeof (result));
4928
4929 symbol_name_match_type match_type = name_match_type_from_name (name);
4930 lookup_name_info lookup_name (name, match_type);
4931
4932 symbol_name_matcher_ftype *match_name
4933 = ada_get_symbol_name_matcher (lookup_name);
4934
4935 for (objfile *objfile : current_program_space->objfiles ())
4936 {
4937 for (minimal_symbol *msymbol : objfile->msymbols ())
4938 {
4939 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4940 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4941 {
4942 result.minsym = msymbol;
4943 result.objfile = objfile;
4944 break;
4945 }
4946 }
4947 }
4948
4949 return result;
4950 }
4951
4952 /* For all subprograms that statically enclose the subprogram of the
4953 selected frame, add symbols matching identifier NAME in DOMAIN
4954 and their blocks to the list of data in OBSTACKP, as for
4955 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4956 with a wildcard prefix. */
4957
4958 static void
4959 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4960 const lookup_name_info &lookup_name,
4961 domain_enum domain)
4962 {
4963 }
4964
4965 /* True if TYPE is definitely an artificial type supplied to a symbol
4966 for which no debugging information was given in the symbol file. */
4967
4968 static int
4969 is_nondebugging_type (struct type *type)
4970 {
4971 const char *name = ada_type_name (type);
4972
4973 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4974 }
4975
4976 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4977 that are deemed "identical" for practical purposes.
4978
4979 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4980 types and that their number of enumerals is identical (in other
4981 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4982
4983 static int
4984 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4985 {
4986 int i;
4987
4988 /* The heuristic we use here is fairly conservative. We consider
4989 that 2 enumerate types are identical if they have the same
4990 number of enumerals and that all enumerals have the same
4991 underlying value and name. */
4992
4993 /* All enums in the type should have an identical underlying value. */
4994 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4995 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4996 return 0;
4997
4998 /* All enumerals should also have the same name (modulo any numerical
4999 suffix). */
5000 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5001 {
5002 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5003 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5004 int len_1 = strlen (name_1);
5005 int len_2 = strlen (name_2);
5006
5007 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5008 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5009 if (len_1 != len_2
5010 || strncmp (TYPE_FIELD_NAME (type1, i),
5011 TYPE_FIELD_NAME (type2, i),
5012 len_1) != 0)
5013 return 0;
5014 }
5015
5016 return 1;
5017 }
5018
5019 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5020 that are deemed "identical" for practical purposes. Sometimes,
5021 enumerals are not strictly identical, but their types are so similar
5022 that they can be considered identical.
5023
5024 For instance, consider the following code:
5025
5026 type Color is (Black, Red, Green, Blue, White);
5027 type RGB_Color is new Color range Red .. Blue;
5028
5029 Type RGB_Color is a subrange of an implicit type which is a copy
5030 of type Color. If we call that implicit type RGB_ColorB ("B" is
5031 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5032 As a result, when an expression references any of the enumeral
5033 by name (Eg. "print green"), the expression is technically
5034 ambiguous and the user should be asked to disambiguate. But
5035 doing so would only hinder the user, since it wouldn't matter
5036 what choice he makes, the outcome would always be the same.
5037 So, for practical purposes, we consider them as the same. */
5038
5039 static int
5040 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5041 {
5042 int i;
5043
5044 /* Before performing a thorough comparison check of each type,
5045 we perform a series of inexpensive checks. We expect that these
5046 checks will quickly fail in the vast majority of cases, and thus
5047 help prevent the unnecessary use of a more expensive comparison.
5048 Said comparison also expects us to make some of these checks
5049 (see ada_identical_enum_types_p). */
5050
5051 /* Quick check: All symbols should have an enum type. */
5052 for (i = 0; i < syms.size (); i++)
5053 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5054 return 0;
5055
5056 /* Quick check: They should all have the same value. */
5057 for (i = 1; i < syms.size (); i++)
5058 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5059 return 0;
5060
5061 /* Quick check: They should all have the same number of enumerals. */
5062 for (i = 1; i < syms.size (); i++)
5063 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5064 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5065 return 0;
5066
5067 /* All the sanity checks passed, so we might have a set of
5068 identical enumeration types. Perform a more complete
5069 comparison of the type of each symbol. */
5070 for (i = 1; i < syms.size (); i++)
5071 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5072 SYMBOL_TYPE (syms[0].symbol)))
5073 return 0;
5074
5075 return 1;
5076 }
5077
5078 /* Remove any non-debugging symbols in SYMS that definitely
5079 duplicate other symbols in the list (The only case I know of where
5080 this happens is when object files containing stabs-in-ecoff are
5081 linked with files containing ordinary ecoff debugging symbols (or no
5082 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5083 Returns the number of items in the modified list. */
5084
5085 static int
5086 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5087 {
5088 int i, j;
5089
5090 /* We should never be called with less than 2 symbols, as there
5091 cannot be any extra symbol in that case. But it's easy to
5092 handle, since we have nothing to do in that case. */
5093 if (syms->size () < 2)
5094 return syms->size ();
5095
5096 i = 0;
5097 while (i < syms->size ())
5098 {
5099 int remove_p = 0;
5100
5101 /* If two symbols have the same name and one of them is a stub type,
5102 the get rid of the stub. */
5103
5104 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5105 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5106 {
5107 for (j = 0; j < syms->size (); j++)
5108 {
5109 if (j != i
5110 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5111 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5112 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5113 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5114 remove_p = 1;
5115 }
5116 }
5117
5118 /* Two symbols with the same name, same class and same address
5119 should be identical. */
5120
5121 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5122 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5123 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5124 {
5125 for (j = 0; j < syms->size (); j += 1)
5126 {
5127 if (i != j
5128 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5129 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5130 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5131 && SYMBOL_CLASS ((*syms)[i].symbol)
5132 == SYMBOL_CLASS ((*syms)[j].symbol)
5133 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5134 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5135 remove_p = 1;
5136 }
5137 }
5138
5139 if (remove_p)
5140 syms->erase (syms->begin () + i);
5141
5142 i += 1;
5143 }
5144
5145 /* If all the remaining symbols are identical enumerals, then
5146 just keep the first one and discard the rest.
5147
5148 Unlike what we did previously, we do not discard any entry
5149 unless they are ALL identical. This is because the symbol
5150 comparison is not a strict comparison, but rather a practical
5151 comparison. If all symbols are considered identical, then
5152 we can just go ahead and use the first one and discard the rest.
5153 But if we cannot reduce the list to a single element, we have
5154 to ask the user to disambiguate anyways. And if we have to
5155 present a multiple-choice menu, it's less confusing if the list
5156 isn't missing some choices that were identical and yet distinct. */
5157 if (symbols_are_identical_enums (*syms))
5158 syms->resize (1);
5159
5160 return syms->size ();
5161 }
5162
5163 /* Given a type that corresponds to a renaming entity, use the type name
5164 to extract the scope (package name or function name, fully qualified,
5165 and following the GNAT encoding convention) where this renaming has been
5166 defined. */
5167
5168 static std::string
5169 xget_renaming_scope (struct type *renaming_type)
5170 {
5171 /* The renaming types adhere to the following convention:
5172 <scope>__<rename>___<XR extension>.
5173 So, to extract the scope, we search for the "___XR" extension,
5174 and then backtrack until we find the first "__". */
5175
5176 const char *name = TYPE_NAME (renaming_type);
5177 const char *suffix = strstr (name, "___XR");
5178 const char *last;
5179
5180 /* Now, backtrack a bit until we find the first "__". Start looking
5181 at suffix - 3, as the <rename> part is at least one character long. */
5182
5183 for (last = suffix - 3; last > name; last--)
5184 if (last[0] == '_' && last[1] == '_')
5185 break;
5186
5187 /* Make a copy of scope and return it. */
5188 return std::string (name, last);
5189 }
5190
5191 /* Return nonzero if NAME corresponds to a package name. */
5192
5193 static int
5194 is_package_name (const char *name)
5195 {
5196 /* Here, We take advantage of the fact that no symbols are generated
5197 for packages, while symbols are generated for each function.
5198 So the condition for NAME represent a package becomes equivalent
5199 to NAME not existing in our list of symbols. There is only one
5200 small complication with library-level functions (see below). */
5201
5202 /* If it is a function that has not been defined at library level,
5203 then we should be able to look it up in the symbols. */
5204 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5205 return 0;
5206
5207 /* Library-level function names start with "_ada_". See if function
5208 "_ada_" followed by NAME can be found. */
5209
5210 /* Do a quick check that NAME does not contain "__", since library-level
5211 functions names cannot contain "__" in them. */
5212 if (strstr (name, "__") != NULL)
5213 return 0;
5214
5215 std::string fun_name = string_printf ("_ada_%s", name);
5216
5217 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5218 }
5219
5220 /* Return nonzero if SYM corresponds to a renaming entity that is
5221 not visible from FUNCTION_NAME. */
5222
5223 static int
5224 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5225 {
5226 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5227 return 0;
5228
5229 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5230
5231 /* If the rename has been defined in a package, then it is visible. */
5232 if (is_package_name (scope.c_str ()))
5233 return 0;
5234
5235 /* Check that the rename is in the current function scope by checking
5236 that its name starts with SCOPE. */
5237
5238 /* If the function name starts with "_ada_", it means that it is
5239 a library-level function. Strip this prefix before doing the
5240 comparison, as the encoding for the renaming does not contain
5241 this prefix. */
5242 if (startswith (function_name, "_ada_"))
5243 function_name += 5;
5244
5245 return !startswith (function_name, scope.c_str ());
5246 }
5247
5248 /* Remove entries from SYMS that corresponds to a renaming entity that
5249 is not visible from the function associated with CURRENT_BLOCK or
5250 that is superfluous due to the presence of more specific renaming
5251 information. Places surviving symbols in the initial entries of
5252 SYMS and returns the number of surviving symbols.
5253
5254 Rationale:
5255 First, in cases where an object renaming is implemented as a
5256 reference variable, GNAT may produce both the actual reference
5257 variable and the renaming encoding. In this case, we discard the
5258 latter.
5259
5260 Second, GNAT emits a type following a specified encoding for each renaming
5261 entity. Unfortunately, STABS currently does not support the definition
5262 of types that are local to a given lexical block, so all renamings types
5263 are emitted at library level. As a consequence, if an application
5264 contains two renaming entities using the same name, and a user tries to
5265 print the value of one of these entities, the result of the ada symbol
5266 lookup will also contain the wrong renaming type.
5267
5268 This function partially covers for this limitation by attempting to
5269 remove from the SYMS list renaming symbols that should be visible
5270 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5271 method with the current information available. The implementation
5272 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5273
5274 - When the user tries to print a rename in a function while there
5275 is another rename entity defined in a package: Normally, the
5276 rename in the function has precedence over the rename in the
5277 package, so the latter should be removed from the list. This is
5278 currently not the case.
5279
5280 - This function will incorrectly remove valid renames if
5281 the CURRENT_BLOCK corresponds to a function which symbol name
5282 has been changed by an "Export" pragma. As a consequence,
5283 the user will be unable to print such rename entities. */
5284
5285 static int
5286 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5287 const struct block *current_block)
5288 {
5289 struct symbol *current_function;
5290 const char *current_function_name;
5291 int i;
5292 int is_new_style_renaming;
5293
5294 /* If there is both a renaming foo___XR... encoded as a variable and
5295 a simple variable foo in the same block, discard the latter.
5296 First, zero out such symbols, then compress. */
5297 is_new_style_renaming = 0;
5298 for (i = 0; i < syms->size (); i += 1)
5299 {
5300 struct symbol *sym = (*syms)[i].symbol;
5301 const struct block *block = (*syms)[i].block;
5302 const char *name;
5303 const char *suffix;
5304
5305 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5306 continue;
5307 name = SYMBOL_LINKAGE_NAME (sym);
5308 suffix = strstr (name, "___XR");
5309
5310 if (suffix != NULL)
5311 {
5312 int name_len = suffix - name;
5313 int j;
5314
5315 is_new_style_renaming = 1;
5316 for (j = 0; j < syms->size (); j += 1)
5317 if (i != j && (*syms)[j].symbol != NULL
5318 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5319 name_len) == 0
5320 && block == (*syms)[j].block)
5321 (*syms)[j].symbol = NULL;
5322 }
5323 }
5324 if (is_new_style_renaming)
5325 {
5326 int j, k;
5327
5328 for (j = k = 0; j < syms->size (); j += 1)
5329 if ((*syms)[j].symbol != NULL)
5330 {
5331 (*syms)[k] = (*syms)[j];
5332 k += 1;
5333 }
5334 return k;
5335 }
5336
5337 /* Extract the function name associated to CURRENT_BLOCK.
5338 Abort if unable to do so. */
5339
5340 if (current_block == NULL)
5341 return syms->size ();
5342
5343 current_function = block_linkage_function (current_block);
5344 if (current_function == NULL)
5345 return syms->size ();
5346
5347 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5348 if (current_function_name == NULL)
5349 return syms->size ();
5350
5351 /* Check each of the symbols, and remove it from the list if it is
5352 a type corresponding to a renaming that is out of the scope of
5353 the current block. */
5354
5355 i = 0;
5356 while (i < syms->size ())
5357 {
5358 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5359 == ADA_OBJECT_RENAMING
5360 && old_renaming_is_invisible ((*syms)[i].symbol,
5361 current_function_name))
5362 syms->erase (syms->begin () + i);
5363 else
5364 i += 1;
5365 }
5366
5367 return syms->size ();
5368 }
5369
5370 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5371 whose name and domain match NAME and DOMAIN respectively.
5372 If no match was found, then extend the search to "enclosing"
5373 routines (in other words, if we're inside a nested function,
5374 search the symbols defined inside the enclosing functions).
5375 If WILD_MATCH_P is nonzero, perform the naming matching in
5376 "wild" mode (see function "wild_match" for more info).
5377
5378 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5379
5380 static void
5381 ada_add_local_symbols (struct obstack *obstackp,
5382 const lookup_name_info &lookup_name,
5383 const struct block *block, domain_enum domain)
5384 {
5385 int block_depth = 0;
5386
5387 while (block != NULL)
5388 {
5389 block_depth += 1;
5390 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5391
5392 /* If we found a non-function match, assume that's the one. */
5393 if (is_nonfunction (defns_collected (obstackp, 0),
5394 num_defns_collected (obstackp)))
5395 return;
5396
5397 block = BLOCK_SUPERBLOCK (block);
5398 }
5399
5400 /* If no luck so far, try to find NAME as a local symbol in some lexically
5401 enclosing subprogram. */
5402 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5403 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5404 }
5405
5406 /* An object of this type is used as the user_data argument when
5407 calling the map_matching_symbols method. */
5408
5409 struct match_data
5410 {
5411 struct objfile *objfile;
5412 struct obstack *obstackp;
5413 struct symbol *arg_sym;
5414 int found_sym;
5415 };
5416
5417 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5418 to a list of symbols. DATA0 is a pointer to a struct match_data *
5419 containing the obstack that collects the symbol list, the file that SYM
5420 must come from, a flag indicating whether a non-argument symbol has
5421 been found in the current block, and the last argument symbol
5422 passed in SYM within the current block (if any). When SYM is null,
5423 marking the end of a block, the argument symbol is added if no
5424 other has been found. */
5425
5426 static int
5427 aux_add_nonlocal_symbols (const struct block *block, struct symbol *sym,
5428 void *data0)
5429 {
5430 struct match_data *data = (struct match_data *) data0;
5431
5432 if (sym == NULL)
5433 {
5434 if (!data->found_sym && data->arg_sym != NULL)
5435 add_defn_to_vec (data->obstackp,
5436 fixup_symbol_section (data->arg_sym, data->objfile),
5437 block);
5438 data->found_sym = 0;
5439 data->arg_sym = NULL;
5440 }
5441 else
5442 {
5443 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5444 return 0;
5445 else if (SYMBOL_IS_ARGUMENT (sym))
5446 data->arg_sym = sym;
5447 else
5448 {
5449 data->found_sym = 1;
5450 add_defn_to_vec (data->obstackp,
5451 fixup_symbol_section (sym, data->objfile),
5452 block);
5453 }
5454 }
5455 return 0;
5456 }
5457
5458 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5459 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5460 symbols to OBSTACKP. Return whether we found such symbols. */
5461
5462 static int
5463 ada_add_block_renamings (struct obstack *obstackp,
5464 const struct block *block,
5465 const lookup_name_info &lookup_name,
5466 domain_enum domain)
5467 {
5468 struct using_direct *renaming;
5469 int defns_mark = num_defns_collected (obstackp);
5470
5471 symbol_name_matcher_ftype *name_match
5472 = ada_get_symbol_name_matcher (lookup_name);
5473
5474 for (renaming = block_using (block);
5475 renaming != NULL;
5476 renaming = renaming->next)
5477 {
5478 const char *r_name;
5479
5480 /* Avoid infinite recursions: skip this renaming if we are actually
5481 already traversing it.
5482
5483 Currently, symbol lookup in Ada don't use the namespace machinery from
5484 C++/Fortran support: skip namespace imports that use them. */
5485 if (renaming->searched
5486 || (renaming->import_src != NULL
5487 && renaming->import_src[0] != '\0')
5488 || (renaming->import_dest != NULL
5489 && renaming->import_dest[0] != '\0'))
5490 continue;
5491 renaming->searched = 1;
5492
5493 /* TODO: here, we perform another name-based symbol lookup, which can
5494 pull its own multiple overloads. In theory, we should be able to do
5495 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5496 not a simple name. But in order to do this, we would need to enhance
5497 the DWARF reader to associate a symbol to this renaming, instead of a
5498 name. So, for now, we do something simpler: re-use the C++/Fortran
5499 namespace machinery. */
5500 r_name = (renaming->alias != NULL
5501 ? renaming->alias
5502 : renaming->declaration);
5503 if (name_match (r_name, lookup_name, NULL))
5504 {
5505 lookup_name_info decl_lookup_name (renaming->declaration,
5506 lookup_name.match_type ());
5507 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5508 1, NULL);
5509 }
5510 renaming->searched = 0;
5511 }
5512 return num_defns_collected (obstackp) != defns_mark;
5513 }
5514
5515 /* Implements compare_names, but only applying the comparision using
5516 the given CASING. */
5517
5518 static int
5519 compare_names_with_case (const char *string1, const char *string2,
5520 enum case_sensitivity casing)
5521 {
5522 while (*string1 != '\0' && *string2 != '\0')
5523 {
5524 char c1, c2;
5525
5526 if (isspace (*string1) || isspace (*string2))
5527 return strcmp_iw_ordered (string1, string2);
5528
5529 if (casing == case_sensitive_off)
5530 {
5531 c1 = tolower (*string1);
5532 c2 = tolower (*string2);
5533 }
5534 else
5535 {
5536 c1 = *string1;
5537 c2 = *string2;
5538 }
5539 if (c1 != c2)
5540 break;
5541
5542 string1 += 1;
5543 string2 += 1;
5544 }
5545
5546 switch (*string1)
5547 {
5548 case '(':
5549 return strcmp_iw_ordered (string1, string2);
5550 case '_':
5551 if (*string2 == '\0')
5552 {
5553 if (is_name_suffix (string1))
5554 return 0;
5555 else
5556 return 1;
5557 }
5558 /* FALLTHROUGH */
5559 default:
5560 if (*string2 == '(')
5561 return strcmp_iw_ordered (string1, string2);
5562 else
5563 {
5564 if (casing == case_sensitive_off)
5565 return tolower (*string1) - tolower (*string2);
5566 else
5567 return *string1 - *string2;
5568 }
5569 }
5570 }
5571
5572 /* Compare STRING1 to STRING2, with results as for strcmp.
5573 Compatible with strcmp_iw_ordered in that...
5574
5575 strcmp_iw_ordered (STRING1, STRING2) <= 0
5576
5577 ... implies...
5578
5579 compare_names (STRING1, STRING2) <= 0
5580
5581 (they may differ as to what symbols compare equal). */
5582
5583 static int
5584 compare_names (const char *string1, const char *string2)
5585 {
5586 int result;
5587
5588 /* Similar to what strcmp_iw_ordered does, we need to perform
5589 a case-insensitive comparison first, and only resort to
5590 a second, case-sensitive, comparison if the first one was
5591 not sufficient to differentiate the two strings. */
5592
5593 result = compare_names_with_case (string1, string2, case_sensitive_off);
5594 if (result == 0)
5595 result = compare_names_with_case (string1, string2, case_sensitive_on);
5596
5597 return result;
5598 }
5599
5600 /* Convenience function to get at the Ada encoded lookup name for
5601 LOOKUP_NAME, as a C string. */
5602
5603 static const char *
5604 ada_lookup_name (const lookup_name_info &lookup_name)
5605 {
5606 return lookup_name.ada ().lookup_name ().c_str ();
5607 }
5608
5609 /* Add to OBSTACKP all non-local symbols whose name and domain match
5610 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5611 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5612 symbols otherwise. */
5613
5614 static void
5615 add_nonlocal_symbols (struct obstack *obstackp,
5616 const lookup_name_info &lookup_name,
5617 domain_enum domain, int global)
5618 {
5619 struct match_data data;
5620
5621 memset (&data, 0, sizeof data);
5622 data.obstackp = obstackp;
5623
5624 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5625
5626 for (objfile *objfile : current_program_space->objfiles ())
5627 {
5628 data.objfile = objfile;
5629
5630 if (is_wild_match)
5631 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5632 domain, global,
5633 aux_add_nonlocal_symbols, &data,
5634 symbol_name_match_type::WILD,
5635 NULL);
5636 else
5637 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5638 domain, global,
5639 aux_add_nonlocal_symbols, &data,
5640 symbol_name_match_type::FULL,
5641 compare_names);
5642
5643 for (compunit_symtab *cu : objfile->compunits ())
5644 {
5645 const struct block *global_block
5646 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5647
5648 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5649 domain))
5650 data.found_sym = 1;
5651 }
5652 }
5653
5654 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5655 {
5656 const char *name = ada_lookup_name (lookup_name);
5657 std::string name1 = std::string ("<_ada_") + name + '>';
5658
5659 for (objfile *objfile : current_program_space->objfiles ())
5660 {
5661 data.objfile = objfile;
5662 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5663 domain, global,
5664 aux_add_nonlocal_symbols,
5665 &data,
5666 symbol_name_match_type::FULL,
5667 compare_names);
5668 }
5669 }
5670 }
5671
5672 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5673 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5674 returning the number of matches. Add these to OBSTACKP.
5675
5676 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5677 symbol match within the nest of blocks whose innermost member is BLOCK,
5678 is the one match returned (no other matches in that or
5679 enclosing blocks is returned). If there are any matches in or
5680 surrounding BLOCK, then these alone are returned.
5681
5682 Names prefixed with "standard__" are handled specially:
5683 "standard__" is first stripped off (by the lookup_name
5684 constructor), and only static and global symbols are searched.
5685
5686 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5687 to lookup global symbols. */
5688
5689 static void
5690 ada_add_all_symbols (struct obstack *obstackp,
5691 const struct block *block,
5692 const lookup_name_info &lookup_name,
5693 domain_enum domain,
5694 int full_search,
5695 int *made_global_lookup_p)
5696 {
5697 struct symbol *sym;
5698
5699 if (made_global_lookup_p)
5700 *made_global_lookup_p = 0;
5701
5702 /* Special case: If the user specifies a symbol name inside package
5703 Standard, do a non-wild matching of the symbol name without
5704 the "standard__" prefix. This was primarily introduced in order
5705 to allow the user to specifically access the standard exceptions
5706 using, for instance, Standard.Constraint_Error when Constraint_Error
5707 is ambiguous (due to the user defining its own Constraint_Error
5708 entity inside its program). */
5709 if (lookup_name.ada ().standard_p ())
5710 block = NULL;
5711
5712 /* Check the non-global symbols. If we have ANY match, then we're done. */
5713
5714 if (block != NULL)
5715 {
5716 if (full_search)
5717 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5718 else
5719 {
5720 /* In the !full_search case we're are being called by
5721 ada_iterate_over_symbols, and we don't want to search
5722 superblocks. */
5723 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5724 }
5725 if (num_defns_collected (obstackp) > 0 || !full_search)
5726 return;
5727 }
5728
5729 /* No non-global symbols found. Check our cache to see if we have
5730 already performed this search before. If we have, then return
5731 the same result. */
5732
5733 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5734 domain, &sym, &block))
5735 {
5736 if (sym != NULL)
5737 add_defn_to_vec (obstackp, sym, block);
5738 return;
5739 }
5740
5741 if (made_global_lookup_p)
5742 *made_global_lookup_p = 1;
5743
5744 /* Search symbols from all global blocks. */
5745
5746 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5747
5748 /* Now add symbols from all per-file blocks if we've gotten no hits
5749 (not strictly correct, but perhaps better than an error). */
5750
5751 if (num_defns_collected (obstackp) == 0)
5752 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5753 }
5754
5755 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5756 is non-zero, enclosing scope and in global scopes, returning the number of
5757 matches.
5758 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5759 found and the blocks and symbol tables (if any) in which they were
5760 found.
5761
5762 When full_search is non-zero, any non-function/non-enumeral
5763 symbol match within the nest of blocks whose innermost member is BLOCK,
5764 is the one match returned (no other matches in that or
5765 enclosing blocks is returned). If there are any matches in or
5766 surrounding BLOCK, then these alone are returned.
5767
5768 Names prefixed with "standard__" are handled specially: "standard__"
5769 is first stripped off, and only static and global symbols are searched. */
5770
5771 static int
5772 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5773 const struct block *block,
5774 domain_enum domain,
5775 std::vector<struct block_symbol> *results,
5776 int full_search)
5777 {
5778 int syms_from_global_search;
5779 int ndefns;
5780 auto_obstack obstack;
5781
5782 ada_add_all_symbols (&obstack, block, lookup_name,
5783 domain, full_search, &syms_from_global_search);
5784
5785 ndefns = num_defns_collected (&obstack);
5786
5787 struct block_symbol *base = defns_collected (&obstack, 1);
5788 for (int i = 0; i < ndefns; ++i)
5789 results->push_back (base[i]);
5790
5791 ndefns = remove_extra_symbols (results);
5792
5793 if (ndefns == 0 && full_search && syms_from_global_search)
5794 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5795
5796 if (ndefns == 1 && full_search && syms_from_global_search)
5797 cache_symbol (ada_lookup_name (lookup_name), domain,
5798 (*results)[0].symbol, (*results)[0].block);
5799
5800 ndefns = remove_irrelevant_renamings (results, block);
5801
5802 return ndefns;
5803 }
5804
5805 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5806 in global scopes, returning the number of matches, and filling *RESULTS
5807 with (SYM,BLOCK) tuples.
5808
5809 See ada_lookup_symbol_list_worker for further details. */
5810
5811 int
5812 ada_lookup_symbol_list (const char *name, const struct block *block,
5813 domain_enum domain,
5814 std::vector<struct block_symbol> *results)
5815 {
5816 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5817 lookup_name_info lookup_name (name, name_match_type);
5818
5819 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5820 }
5821
5822 /* Implementation of the la_iterate_over_symbols method. */
5823
5824 static void
5825 ada_iterate_over_symbols
5826 (const struct block *block, const lookup_name_info &name,
5827 domain_enum domain,
5828 gdb::function_view<symbol_found_callback_ftype> callback)
5829 {
5830 int ndefs, i;
5831 std::vector<struct block_symbol> results;
5832
5833 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5834
5835 for (i = 0; i < ndefs; ++i)
5836 {
5837 if (!callback (&results[i]))
5838 break;
5839 }
5840 }
5841
5842 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5843 to 1, but choosing the first symbol found if there are multiple
5844 choices.
5845
5846 The result is stored in *INFO, which must be non-NULL.
5847 If no match is found, INFO->SYM is set to NULL. */
5848
5849 void
5850 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5851 domain_enum domain,
5852 struct block_symbol *info)
5853 {
5854 /* Since we already have an encoded name, wrap it in '<>' to force a
5855 verbatim match. Otherwise, if the name happens to not look like
5856 an encoded name (because it doesn't include a "__"),
5857 ada_lookup_name_info would re-encode/fold it again, and that
5858 would e.g., incorrectly lowercase object renaming names like
5859 "R28b" -> "r28b". */
5860 std::string verbatim = std::string ("<") + name + '>';
5861
5862 gdb_assert (info != NULL);
5863 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5864 }
5865
5866 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5867 scope and in global scopes, or NULL if none. NAME is folded and
5868 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5869 choosing the first symbol if there are multiple choices.
5870 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5871
5872 struct block_symbol
5873 ada_lookup_symbol (const char *name, const struct block *block0,
5874 domain_enum domain, int *is_a_field_of_this)
5875 {
5876 if (is_a_field_of_this != NULL)
5877 *is_a_field_of_this = 0;
5878
5879 std::vector<struct block_symbol> candidates;
5880 int n_candidates;
5881
5882 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5883
5884 if (n_candidates == 0)
5885 return {};
5886
5887 block_symbol info = candidates[0];
5888 info.symbol = fixup_symbol_section (info.symbol, NULL);
5889 return info;
5890 }
5891
5892 static struct block_symbol
5893 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5894 const char *name,
5895 const struct block *block,
5896 const domain_enum domain)
5897 {
5898 struct block_symbol sym;
5899
5900 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5901 if (sym.symbol != NULL)
5902 return sym;
5903
5904 /* If we haven't found a match at this point, try the primitive
5905 types. In other languages, this search is performed before
5906 searching for global symbols in order to short-circuit that
5907 global-symbol search if it happens that the name corresponds
5908 to a primitive type. But we cannot do the same in Ada, because
5909 it is perfectly legitimate for a program to declare a type which
5910 has the same name as a standard type. If looking up a type in
5911 that situation, we have traditionally ignored the primitive type
5912 in favor of user-defined types. This is why, unlike most other
5913 languages, we search the primitive types this late and only after
5914 having searched the global symbols without success. */
5915
5916 if (domain == VAR_DOMAIN)
5917 {
5918 struct gdbarch *gdbarch;
5919
5920 if (block == NULL)
5921 gdbarch = target_gdbarch ();
5922 else
5923 gdbarch = block_gdbarch (block);
5924 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5925 if (sym.symbol != NULL)
5926 return sym;
5927 }
5928
5929 return {};
5930 }
5931
5932
5933 /* True iff STR is a possible encoded suffix of a normal Ada name
5934 that is to be ignored for matching purposes. Suffixes of parallel
5935 names (e.g., XVE) are not included here. Currently, the possible suffixes
5936 are given by any of the regular expressions:
5937
5938 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5939 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5940 TKB [subprogram suffix for task bodies]
5941 _E[0-9]+[bs]$ [protected object entry suffixes]
5942 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5943
5944 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5945 match is performed. This sequence is used to differentiate homonyms,
5946 is an optional part of a valid name suffix. */
5947
5948 static int
5949 is_name_suffix (const char *str)
5950 {
5951 int k;
5952 const char *matching;
5953 const int len = strlen (str);
5954
5955 /* Skip optional leading __[0-9]+. */
5956
5957 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5958 {
5959 str += 3;
5960 while (isdigit (str[0]))
5961 str += 1;
5962 }
5963
5964 /* [.$][0-9]+ */
5965
5966 if (str[0] == '.' || str[0] == '$')
5967 {
5968 matching = str + 1;
5969 while (isdigit (matching[0]))
5970 matching += 1;
5971 if (matching[0] == '\0')
5972 return 1;
5973 }
5974
5975 /* ___[0-9]+ */
5976
5977 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5978 {
5979 matching = str + 3;
5980 while (isdigit (matching[0]))
5981 matching += 1;
5982 if (matching[0] == '\0')
5983 return 1;
5984 }
5985
5986 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5987
5988 if (strcmp (str, "TKB") == 0)
5989 return 1;
5990
5991 #if 0
5992 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5993 with a N at the end. Unfortunately, the compiler uses the same
5994 convention for other internal types it creates. So treating
5995 all entity names that end with an "N" as a name suffix causes
5996 some regressions. For instance, consider the case of an enumerated
5997 type. To support the 'Image attribute, it creates an array whose
5998 name ends with N.
5999 Having a single character like this as a suffix carrying some
6000 information is a bit risky. Perhaps we should change the encoding
6001 to be something like "_N" instead. In the meantime, do not do
6002 the following check. */
6003 /* Protected Object Subprograms */
6004 if (len == 1 && str [0] == 'N')
6005 return 1;
6006 #endif
6007
6008 /* _E[0-9]+[bs]$ */
6009 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6010 {
6011 matching = str + 3;
6012 while (isdigit (matching[0]))
6013 matching += 1;
6014 if ((matching[0] == 'b' || matching[0] == 's')
6015 && matching [1] == '\0')
6016 return 1;
6017 }
6018
6019 /* ??? We should not modify STR directly, as we are doing below. This
6020 is fine in this case, but may become problematic later if we find
6021 that this alternative did not work, and want to try matching
6022 another one from the begining of STR. Since we modified it, we
6023 won't be able to find the begining of the string anymore! */
6024 if (str[0] == 'X')
6025 {
6026 str += 1;
6027 while (str[0] != '_' && str[0] != '\0')
6028 {
6029 if (str[0] != 'n' && str[0] != 'b')
6030 return 0;
6031 str += 1;
6032 }
6033 }
6034
6035 if (str[0] == '\000')
6036 return 1;
6037
6038 if (str[0] == '_')
6039 {
6040 if (str[1] != '_' || str[2] == '\000')
6041 return 0;
6042 if (str[2] == '_')
6043 {
6044 if (strcmp (str + 3, "JM") == 0)
6045 return 1;
6046 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6047 the LJM suffix in favor of the JM one. But we will
6048 still accept LJM as a valid suffix for a reasonable
6049 amount of time, just to allow ourselves to debug programs
6050 compiled using an older version of GNAT. */
6051 if (strcmp (str + 3, "LJM") == 0)
6052 return 1;
6053 if (str[3] != 'X')
6054 return 0;
6055 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6056 || str[4] == 'U' || str[4] == 'P')
6057 return 1;
6058 if (str[4] == 'R' && str[5] != 'T')
6059 return 1;
6060 return 0;
6061 }
6062 if (!isdigit (str[2]))
6063 return 0;
6064 for (k = 3; str[k] != '\0'; k += 1)
6065 if (!isdigit (str[k]) && str[k] != '_')
6066 return 0;
6067 return 1;
6068 }
6069 if (str[0] == '$' && isdigit (str[1]))
6070 {
6071 for (k = 2; str[k] != '\0'; k += 1)
6072 if (!isdigit (str[k]) && str[k] != '_')
6073 return 0;
6074 return 1;
6075 }
6076 return 0;
6077 }
6078
6079 /* Return non-zero if the string starting at NAME and ending before
6080 NAME_END contains no capital letters. */
6081
6082 static int
6083 is_valid_name_for_wild_match (const char *name0)
6084 {
6085 const char *decoded_name = ada_decode (name0);
6086 int i;
6087
6088 /* If the decoded name starts with an angle bracket, it means that
6089 NAME0 does not follow the GNAT encoding format. It should then
6090 not be allowed as a possible wild match. */
6091 if (decoded_name[0] == '<')
6092 return 0;
6093
6094 for (i=0; decoded_name[i] != '\0'; i++)
6095 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6096 return 0;
6097
6098 return 1;
6099 }
6100
6101 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6102 that could start a simple name. Assumes that *NAMEP points into
6103 the string beginning at NAME0. */
6104
6105 static int
6106 advance_wild_match (const char **namep, const char *name0, int target0)
6107 {
6108 const char *name = *namep;
6109
6110 while (1)
6111 {
6112 int t0, t1;
6113
6114 t0 = *name;
6115 if (t0 == '_')
6116 {
6117 t1 = name[1];
6118 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6119 {
6120 name += 1;
6121 if (name == name0 + 5 && startswith (name0, "_ada"))
6122 break;
6123 else
6124 name += 1;
6125 }
6126 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6127 || name[2] == target0))
6128 {
6129 name += 2;
6130 break;
6131 }
6132 else
6133 return 0;
6134 }
6135 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6136 name += 1;
6137 else
6138 return 0;
6139 }
6140
6141 *namep = name;
6142 return 1;
6143 }
6144
6145 /* Return true iff NAME encodes a name of the form prefix.PATN.
6146 Ignores any informational suffixes of NAME (i.e., for which
6147 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6148 simple name. */
6149
6150 static bool
6151 wild_match (const char *name, const char *patn)
6152 {
6153 const char *p;
6154 const char *name0 = name;
6155
6156 while (1)
6157 {
6158 const char *match = name;
6159
6160 if (*name == *patn)
6161 {
6162 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6163 if (*p != *name)
6164 break;
6165 if (*p == '\0' && is_name_suffix (name))
6166 return match == name0 || is_valid_name_for_wild_match (name0);
6167
6168 if (name[-1] == '_')
6169 name -= 1;
6170 }
6171 if (!advance_wild_match (&name, name0, *patn))
6172 return false;
6173 }
6174 }
6175
6176 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6177 any trailing suffixes that encode debugging information or leading
6178 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6179 information that is ignored). */
6180
6181 static bool
6182 full_match (const char *sym_name, const char *search_name)
6183 {
6184 size_t search_name_len = strlen (search_name);
6185
6186 if (strncmp (sym_name, search_name, search_name_len) == 0
6187 && is_name_suffix (sym_name + search_name_len))
6188 return true;
6189
6190 if (startswith (sym_name, "_ada_")
6191 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6192 && is_name_suffix (sym_name + search_name_len + 5))
6193 return true;
6194
6195 return false;
6196 }
6197
6198 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6199 *defn_symbols, updating the list of symbols in OBSTACKP (if
6200 necessary). OBJFILE is the section containing BLOCK. */
6201
6202 static void
6203 ada_add_block_symbols (struct obstack *obstackp,
6204 const struct block *block,
6205 const lookup_name_info &lookup_name,
6206 domain_enum domain, struct objfile *objfile)
6207 {
6208 struct block_iterator iter;
6209 /* A matching argument symbol, if any. */
6210 struct symbol *arg_sym;
6211 /* Set true when we find a matching non-argument symbol. */
6212 int found_sym;
6213 struct symbol *sym;
6214
6215 arg_sym = NULL;
6216 found_sym = 0;
6217 for (sym = block_iter_match_first (block, lookup_name, &iter);
6218 sym != NULL;
6219 sym = block_iter_match_next (lookup_name, &iter))
6220 {
6221 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6222 SYMBOL_DOMAIN (sym), domain))
6223 {
6224 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6225 {
6226 if (SYMBOL_IS_ARGUMENT (sym))
6227 arg_sym = sym;
6228 else
6229 {
6230 found_sym = 1;
6231 add_defn_to_vec (obstackp,
6232 fixup_symbol_section (sym, objfile),
6233 block);
6234 }
6235 }
6236 }
6237 }
6238
6239 /* Handle renamings. */
6240
6241 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6242 found_sym = 1;
6243
6244 if (!found_sym && arg_sym != NULL)
6245 {
6246 add_defn_to_vec (obstackp,
6247 fixup_symbol_section (arg_sym, objfile),
6248 block);
6249 }
6250
6251 if (!lookup_name.ada ().wild_match_p ())
6252 {
6253 arg_sym = NULL;
6254 found_sym = 0;
6255 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6256 const char *name = ada_lookup_name.c_str ();
6257 size_t name_len = ada_lookup_name.size ();
6258
6259 ALL_BLOCK_SYMBOLS (block, iter, sym)
6260 {
6261 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6262 SYMBOL_DOMAIN (sym), domain))
6263 {
6264 int cmp;
6265
6266 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6267 if (cmp == 0)
6268 {
6269 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6270 if (cmp == 0)
6271 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6272 name_len);
6273 }
6274
6275 if (cmp == 0
6276 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6277 {
6278 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6279 {
6280 if (SYMBOL_IS_ARGUMENT (sym))
6281 arg_sym = sym;
6282 else
6283 {
6284 found_sym = 1;
6285 add_defn_to_vec (obstackp,
6286 fixup_symbol_section (sym, objfile),
6287 block);
6288 }
6289 }
6290 }
6291 }
6292 }
6293
6294 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6295 They aren't parameters, right? */
6296 if (!found_sym && arg_sym != NULL)
6297 {
6298 add_defn_to_vec (obstackp,
6299 fixup_symbol_section (arg_sym, objfile),
6300 block);
6301 }
6302 }
6303 }
6304 \f
6305
6306 /* Symbol Completion */
6307
6308 /* See symtab.h. */
6309
6310 bool
6311 ada_lookup_name_info::matches
6312 (const char *sym_name,
6313 symbol_name_match_type match_type,
6314 completion_match_result *comp_match_res) const
6315 {
6316 bool match = false;
6317 const char *text = m_encoded_name.c_str ();
6318 size_t text_len = m_encoded_name.size ();
6319
6320 /* First, test against the fully qualified name of the symbol. */
6321
6322 if (strncmp (sym_name, text, text_len) == 0)
6323 match = true;
6324
6325 if (match && !m_encoded_p)
6326 {
6327 /* One needed check before declaring a positive match is to verify
6328 that iff we are doing a verbatim match, the decoded version
6329 of the symbol name starts with '<'. Otherwise, this symbol name
6330 is not a suitable completion. */
6331 const char *sym_name_copy = sym_name;
6332 bool has_angle_bracket;
6333
6334 sym_name = ada_decode (sym_name);
6335 has_angle_bracket = (sym_name[0] == '<');
6336 match = (has_angle_bracket == m_verbatim_p);
6337 sym_name = sym_name_copy;
6338 }
6339
6340 if (match && !m_verbatim_p)
6341 {
6342 /* When doing non-verbatim match, another check that needs to
6343 be done is to verify that the potentially matching symbol name
6344 does not include capital letters, because the ada-mode would
6345 not be able to understand these symbol names without the
6346 angle bracket notation. */
6347 const char *tmp;
6348
6349 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6350 if (*tmp != '\0')
6351 match = false;
6352 }
6353
6354 /* Second: Try wild matching... */
6355
6356 if (!match && m_wild_match_p)
6357 {
6358 /* Since we are doing wild matching, this means that TEXT
6359 may represent an unqualified symbol name. We therefore must
6360 also compare TEXT against the unqualified name of the symbol. */
6361 sym_name = ada_unqualified_name (ada_decode (sym_name));
6362
6363 if (strncmp (sym_name, text, text_len) == 0)
6364 match = true;
6365 }
6366
6367 /* Finally: If we found a match, prepare the result to return. */
6368
6369 if (!match)
6370 return false;
6371
6372 if (comp_match_res != NULL)
6373 {
6374 std::string &match_str = comp_match_res->match.storage ();
6375
6376 if (!m_encoded_p)
6377 match_str = ada_decode (sym_name);
6378 else
6379 {
6380 if (m_verbatim_p)
6381 match_str = add_angle_brackets (sym_name);
6382 else
6383 match_str = sym_name;
6384
6385 }
6386
6387 comp_match_res->set_match (match_str.c_str ());
6388 }
6389
6390 return true;
6391 }
6392
6393 /* Add the list of possible symbol names completing TEXT to TRACKER.
6394 WORD is the entire command on which completion is made. */
6395
6396 static void
6397 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6398 complete_symbol_mode mode,
6399 symbol_name_match_type name_match_type,
6400 const char *text, const char *word,
6401 enum type_code code)
6402 {
6403 struct symbol *sym;
6404 const struct block *b, *surrounding_static_block = 0;
6405 struct block_iterator iter;
6406
6407 gdb_assert (code == TYPE_CODE_UNDEF);
6408
6409 lookup_name_info lookup_name (text, name_match_type, true);
6410
6411 /* First, look at the partial symtab symbols. */
6412 expand_symtabs_matching (NULL,
6413 lookup_name,
6414 NULL,
6415 NULL,
6416 ALL_DOMAIN);
6417
6418 /* At this point scan through the misc symbol vectors and add each
6419 symbol you find to the list. Eventually we want to ignore
6420 anything that isn't a text symbol (everything else will be
6421 handled by the psymtab code above). */
6422
6423 for (objfile *objfile : current_program_space->objfiles ())
6424 {
6425 for (minimal_symbol *msymbol : objfile->msymbols ())
6426 {
6427 QUIT;
6428
6429 if (completion_skip_symbol (mode, msymbol))
6430 continue;
6431
6432 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6433
6434 /* Ada minimal symbols won't have their language set to Ada. If
6435 we let completion_list_add_name compare using the
6436 default/C-like matcher, then when completing e.g., symbols in a
6437 package named "pck", we'd match internal Ada symbols like
6438 "pckS", which are invalid in an Ada expression, unless you wrap
6439 them in '<' '>' to request a verbatim match.
6440
6441 Unfortunately, some Ada encoded names successfully demangle as
6442 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6443 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6444 with the wrong language set. Paper over that issue here. */
6445 if (symbol_language == language_auto
6446 || symbol_language == language_cplus)
6447 symbol_language = language_ada;
6448
6449 completion_list_add_name (tracker,
6450 symbol_language,
6451 MSYMBOL_LINKAGE_NAME (msymbol),
6452 lookup_name, text, word);
6453 }
6454 }
6455
6456 /* Search upwards from currently selected frame (so that we can
6457 complete on local vars. */
6458
6459 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6460 {
6461 if (!BLOCK_SUPERBLOCK (b))
6462 surrounding_static_block = b; /* For elmin of dups */
6463
6464 ALL_BLOCK_SYMBOLS (b, iter, sym)
6465 {
6466 if (completion_skip_symbol (mode, sym))
6467 continue;
6468
6469 completion_list_add_name (tracker,
6470 SYMBOL_LANGUAGE (sym),
6471 SYMBOL_LINKAGE_NAME (sym),
6472 lookup_name, text, word);
6473 }
6474 }
6475
6476 /* Go through the symtabs and check the externs and statics for
6477 symbols which match. */
6478
6479 for (objfile *objfile : current_program_space->objfiles ())
6480 {
6481 for (compunit_symtab *s : objfile->compunits ())
6482 {
6483 QUIT;
6484 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6485 ALL_BLOCK_SYMBOLS (b, iter, sym)
6486 {
6487 if (completion_skip_symbol (mode, sym))
6488 continue;
6489
6490 completion_list_add_name (tracker,
6491 SYMBOL_LANGUAGE (sym),
6492 SYMBOL_LINKAGE_NAME (sym),
6493 lookup_name, text, word);
6494 }
6495 }
6496 }
6497
6498 for (objfile *objfile : current_program_space->objfiles ())
6499 {
6500 for (compunit_symtab *s : objfile->compunits ())
6501 {
6502 QUIT;
6503 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6504 /* Don't do this block twice. */
6505 if (b == surrounding_static_block)
6506 continue;
6507 ALL_BLOCK_SYMBOLS (b, iter, sym)
6508 {
6509 if (completion_skip_symbol (mode, sym))
6510 continue;
6511
6512 completion_list_add_name (tracker,
6513 SYMBOL_LANGUAGE (sym),
6514 SYMBOL_LINKAGE_NAME (sym),
6515 lookup_name, text, word);
6516 }
6517 }
6518 }
6519 }
6520
6521 /* Field Access */
6522
6523 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6524 for tagged types. */
6525
6526 static int
6527 ada_is_dispatch_table_ptr_type (struct type *type)
6528 {
6529 const char *name;
6530
6531 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6532 return 0;
6533
6534 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6535 if (name == NULL)
6536 return 0;
6537
6538 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6539 }
6540
6541 /* Return non-zero if TYPE is an interface tag. */
6542
6543 static int
6544 ada_is_interface_tag (struct type *type)
6545 {
6546 const char *name = TYPE_NAME (type);
6547
6548 if (name == NULL)
6549 return 0;
6550
6551 return (strcmp (name, "ada__tags__interface_tag") == 0);
6552 }
6553
6554 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6555 to be invisible to users. */
6556
6557 int
6558 ada_is_ignored_field (struct type *type, int field_num)
6559 {
6560 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6561 return 1;
6562
6563 /* Check the name of that field. */
6564 {
6565 const char *name = TYPE_FIELD_NAME (type, field_num);
6566
6567 /* Anonymous field names should not be printed.
6568 brobecker/2007-02-20: I don't think this can actually happen
6569 but we don't want to print the value of annonymous fields anyway. */
6570 if (name == NULL)
6571 return 1;
6572
6573 /* Normally, fields whose name start with an underscore ("_")
6574 are fields that have been internally generated by the compiler,
6575 and thus should not be printed. The "_parent" field is special,
6576 however: This is a field internally generated by the compiler
6577 for tagged types, and it contains the components inherited from
6578 the parent type. This field should not be printed as is, but
6579 should not be ignored either. */
6580 if (name[0] == '_' && !startswith (name, "_parent"))
6581 return 1;
6582 }
6583
6584 /* If this is the dispatch table of a tagged type or an interface tag,
6585 then ignore. */
6586 if (ada_is_tagged_type (type, 1)
6587 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6588 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6589 return 1;
6590
6591 /* Not a special field, so it should not be ignored. */
6592 return 0;
6593 }
6594
6595 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6596 pointer or reference type whose ultimate target has a tag field. */
6597
6598 int
6599 ada_is_tagged_type (struct type *type, int refok)
6600 {
6601 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6602 }
6603
6604 /* True iff TYPE represents the type of X'Tag */
6605
6606 int
6607 ada_is_tag_type (struct type *type)
6608 {
6609 type = ada_check_typedef (type);
6610
6611 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6612 return 0;
6613 else
6614 {
6615 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6616
6617 return (name != NULL
6618 && strcmp (name, "ada__tags__dispatch_table") == 0);
6619 }
6620 }
6621
6622 /* The type of the tag on VAL. */
6623
6624 struct type *
6625 ada_tag_type (struct value *val)
6626 {
6627 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6628 }
6629
6630 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6631 retired at Ada 05). */
6632
6633 static int
6634 is_ada95_tag (struct value *tag)
6635 {
6636 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6637 }
6638
6639 /* The value of the tag on VAL. */
6640
6641 struct value *
6642 ada_value_tag (struct value *val)
6643 {
6644 return ada_value_struct_elt (val, "_tag", 0);
6645 }
6646
6647 /* The value of the tag on the object of type TYPE whose contents are
6648 saved at VALADDR, if it is non-null, or is at memory address
6649 ADDRESS. */
6650
6651 static struct value *
6652 value_tag_from_contents_and_address (struct type *type,
6653 const gdb_byte *valaddr,
6654 CORE_ADDR address)
6655 {
6656 int tag_byte_offset;
6657 struct type *tag_type;
6658
6659 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6660 NULL, NULL, NULL))
6661 {
6662 const gdb_byte *valaddr1 = ((valaddr == NULL)
6663 ? NULL
6664 : valaddr + tag_byte_offset);
6665 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6666
6667 return value_from_contents_and_address (tag_type, valaddr1, address1);
6668 }
6669 return NULL;
6670 }
6671
6672 static struct type *
6673 type_from_tag (struct value *tag)
6674 {
6675 const char *type_name = ada_tag_name (tag);
6676
6677 if (type_name != NULL)
6678 return ada_find_any_type (ada_encode (type_name));
6679 return NULL;
6680 }
6681
6682 /* Given a value OBJ of a tagged type, return a value of this
6683 type at the base address of the object. The base address, as
6684 defined in Ada.Tags, it is the address of the primary tag of
6685 the object, and therefore where the field values of its full
6686 view can be fetched. */
6687
6688 struct value *
6689 ada_tag_value_at_base_address (struct value *obj)
6690 {
6691 struct value *val;
6692 LONGEST offset_to_top = 0;
6693 struct type *ptr_type, *obj_type;
6694 struct value *tag;
6695 CORE_ADDR base_address;
6696
6697 obj_type = value_type (obj);
6698
6699 /* It is the responsability of the caller to deref pointers. */
6700
6701 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6702 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6703 return obj;
6704
6705 tag = ada_value_tag (obj);
6706 if (!tag)
6707 return obj;
6708
6709 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6710
6711 if (is_ada95_tag (tag))
6712 return obj;
6713
6714 ptr_type = language_lookup_primitive_type
6715 (language_def (language_ada), target_gdbarch(), "storage_offset");
6716 ptr_type = lookup_pointer_type (ptr_type);
6717 val = value_cast (ptr_type, tag);
6718 if (!val)
6719 return obj;
6720
6721 /* It is perfectly possible that an exception be raised while
6722 trying to determine the base address, just like for the tag;
6723 see ada_tag_name for more details. We do not print the error
6724 message for the same reason. */
6725
6726 try
6727 {
6728 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6729 }
6730
6731 catch (const gdb_exception_error &e)
6732 {
6733 return obj;
6734 }
6735
6736 /* If offset is null, nothing to do. */
6737
6738 if (offset_to_top == 0)
6739 return obj;
6740
6741 /* -1 is a special case in Ada.Tags; however, what should be done
6742 is not quite clear from the documentation. So do nothing for
6743 now. */
6744
6745 if (offset_to_top == -1)
6746 return obj;
6747
6748 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6749 from the base address. This was however incompatible with
6750 C++ dispatch table: C++ uses a *negative* value to *add*
6751 to the base address. Ada's convention has therefore been
6752 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6753 use the same convention. Here, we support both cases by
6754 checking the sign of OFFSET_TO_TOP. */
6755
6756 if (offset_to_top > 0)
6757 offset_to_top = -offset_to_top;
6758
6759 base_address = value_address (obj) + offset_to_top;
6760 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6761
6762 /* Make sure that we have a proper tag at the new address.
6763 Otherwise, offset_to_top is bogus (which can happen when
6764 the object is not initialized yet). */
6765
6766 if (!tag)
6767 return obj;
6768
6769 obj_type = type_from_tag (tag);
6770
6771 if (!obj_type)
6772 return obj;
6773
6774 return value_from_contents_and_address (obj_type, NULL, base_address);
6775 }
6776
6777 /* Return the "ada__tags__type_specific_data" type. */
6778
6779 static struct type *
6780 ada_get_tsd_type (struct inferior *inf)
6781 {
6782 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6783
6784 if (data->tsd_type == 0)
6785 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6786 return data->tsd_type;
6787 }
6788
6789 /* Return the TSD (type-specific data) associated to the given TAG.
6790 TAG is assumed to be the tag of a tagged-type entity.
6791
6792 May return NULL if we are unable to get the TSD. */
6793
6794 static struct value *
6795 ada_get_tsd_from_tag (struct value *tag)
6796 {
6797 struct value *val;
6798 struct type *type;
6799
6800 /* First option: The TSD is simply stored as a field of our TAG.
6801 Only older versions of GNAT would use this format, but we have
6802 to test it first, because there are no visible markers for
6803 the current approach except the absence of that field. */
6804
6805 val = ada_value_struct_elt (tag, "tsd", 1);
6806 if (val)
6807 return val;
6808
6809 /* Try the second representation for the dispatch table (in which
6810 there is no explicit 'tsd' field in the referent of the tag pointer,
6811 and instead the tsd pointer is stored just before the dispatch
6812 table. */
6813
6814 type = ada_get_tsd_type (current_inferior());
6815 if (type == NULL)
6816 return NULL;
6817 type = lookup_pointer_type (lookup_pointer_type (type));
6818 val = value_cast (type, tag);
6819 if (val == NULL)
6820 return NULL;
6821 return value_ind (value_ptradd (val, -1));
6822 }
6823
6824 /* Given the TSD of a tag (type-specific data), return a string
6825 containing the name of the associated type.
6826
6827 The returned value is good until the next call. May return NULL
6828 if we are unable to determine the tag name. */
6829
6830 static char *
6831 ada_tag_name_from_tsd (struct value *tsd)
6832 {
6833 static char name[1024];
6834 char *p;
6835 struct value *val;
6836
6837 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6838 if (val == NULL)
6839 return NULL;
6840 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6841 for (p = name; *p != '\0'; p += 1)
6842 if (isalpha (*p))
6843 *p = tolower (*p);
6844 return name;
6845 }
6846
6847 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6848 a C string.
6849
6850 Return NULL if the TAG is not an Ada tag, or if we were unable to
6851 determine the name of that tag. The result is good until the next
6852 call. */
6853
6854 const char *
6855 ada_tag_name (struct value *tag)
6856 {
6857 char *name = NULL;
6858
6859 if (!ada_is_tag_type (value_type (tag)))
6860 return NULL;
6861
6862 /* It is perfectly possible that an exception be raised while trying
6863 to determine the TAG's name, even under normal circumstances:
6864 The associated variable may be uninitialized or corrupted, for
6865 instance. We do not let any exception propagate past this point.
6866 instead we return NULL.
6867
6868 We also do not print the error message either (which often is very
6869 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6870 the caller print a more meaningful message if necessary. */
6871 try
6872 {
6873 struct value *tsd = ada_get_tsd_from_tag (tag);
6874
6875 if (tsd != NULL)
6876 name = ada_tag_name_from_tsd (tsd);
6877 }
6878 catch (const gdb_exception_error &e)
6879 {
6880 }
6881
6882 return name;
6883 }
6884
6885 /* The parent type of TYPE, or NULL if none. */
6886
6887 struct type *
6888 ada_parent_type (struct type *type)
6889 {
6890 int i;
6891
6892 type = ada_check_typedef (type);
6893
6894 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6895 return NULL;
6896
6897 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6898 if (ada_is_parent_field (type, i))
6899 {
6900 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6901
6902 /* If the _parent field is a pointer, then dereference it. */
6903 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6904 parent_type = TYPE_TARGET_TYPE (parent_type);
6905 /* If there is a parallel XVS type, get the actual base type. */
6906 parent_type = ada_get_base_type (parent_type);
6907
6908 return ada_check_typedef (parent_type);
6909 }
6910
6911 return NULL;
6912 }
6913
6914 /* True iff field number FIELD_NUM of structure type TYPE contains the
6915 parent-type (inherited) fields of a derived type. Assumes TYPE is
6916 a structure type with at least FIELD_NUM+1 fields. */
6917
6918 int
6919 ada_is_parent_field (struct type *type, int field_num)
6920 {
6921 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6922
6923 return (name != NULL
6924 && (startswith (name, "PARENT")
6925 || startswith (name, "_parent")));
6926 }
6927
6928 /* True iff field number FIELD_NUM of structure type TYPE is a
6929 transparent wrapper field (which should be silently traversed when doing
6930 field selection and flattened when printing). Assumes TYPE is a
6931 structure type with at least FIELD_NUM+1 fields. Such fields are always
6932 structures. */
6933
6934 int
6935 ada_is_wrapper_field (struct type *type, int field_num)
6936 {
6937 const char *name = TYPE_FIELD_NAME (type, field_num);
6938
6939 if (name != NULL && strcmp (name, "RETVAL") == 0)
6940 {
6941 /* This happens in functions with "out" or "in out" parameters
6942 which are passed by copy. For such functions, GNAT describes
6943 the function's return type as being a struct where the return
6944 value is in a field called RETVAL, and where the other "out"
6945 or "in out" parameters are fields of that struct. This is not
6946 a wrapper. */
6947 return 0;
6948 }
6949
6950 return (name != NULL
6951 && (startswith (name, "PARENT")
6952 || strcmp (name, "REP") == 0
6953 || startswith (name, "_parent")
6954 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6955 }
6956
6957 /* True iff field number FIELD_NUM of structure or union type TYPE
6958 is a variant wrapper. Assumes TYPE is a structure type with at least
6959 FIELD_NUM+1 fields. */
6960
6961 int
6962 ada_is_variant_part (struct type *type, int field_num)
6963 {
6964 /* Only Ada types are eligible. */
6965 if (!ADA_TYPE_P (type))
6966 return 0;
6967
6968 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6969
6970 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6971 || (is_dynamic_field (type, field_num)
6972 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6973 == TYPE_CODE_UNION)));
6974 }
6975
6976 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6977 whose discriminants are contained in the record type OUTER_TYPE,
6978 returns the type of the controlling discriminant for the variant.
6979 May return NULL if the type could not be found. */
6980
6981 struct type *
6982 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6983 {
6984 const char *name = ada_variant_discrim_name (var_type);
6985
6986 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6987 }
6988
6989 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6990 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6991 represents a 'when others' clause; otherwise 0. */
6992
6993 int
6994 ada_is_others_clause (struct type *type, int field_num)
6995 {
6996 const char *name = TYPE_FIELD_NAME (type, field_num);
6997
6998 return (name != NULL && name[0] == 'O');
6999 }
7000
7001 /* Assuming that TYPE0 is the type of the variant part of a record,
7002 returns the name of the discriminant controlling the variant.
7003 The value is valid until the next call to ada_variant_discrim_name. */
7004
7005 const char *
7006 ada_variant_discrim_name (struct type *type0)
7007 {
7008 static char *result = NULL;
7009 static size_t result_len = 0;
7010 struct type *type;
7011 const char *name;
7012 const char *discrim_end;
7013 const char *discrim_start;
7014
7015 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7016 type = TYPE_TARGET_TYPE (type0);
7017 else
7018 type = type0;
7019
7020 name = ada_type_name (type);
7021
7022 if (name == NULL || name[0] == '\000')
7023 return "";
7024
7025 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7026 discrim_end -= 1)
7027 {
7028 if (startswith (discrim_end, "___XVN"))
7029 break;
7030 }
7031 if (discrim_end == name)
7032 return "";
7033
7034 for (discrim_start = discrim_end; discrim_start != name + 3;
7035 discrim_start -= 1)
7036 {
7037 if (discrim_start == name + 1)
7038 return "";
7039 if ((discrim_start > name + 3
7040 && startswith (discrim_start - 3, "___"))
7041 || discrim_start[-1] == '.')
7042 break;
7043 }
7044
7045 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7046 strncpy (result, discrim_start, discrim_end - discrim_start);
7047 result[discrim_end - discrim_start] = '\0';
7048 return result;
7049 }
7050
7051 /* Scan STR for a subtype-encoded number, beginning at position K.
7052 Put the position of the character just past the number scanned in
7053 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7054 Return 1 if there was a valid number at the given position, and 0
7055 otherwise. A "subtype-encoded" number consists of the absolute value
7056 in decimal, followed by the letter 'm' to indicate a negative number.
7057 Assumes 0m does not occur. */
7058
7059 int
7060 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7061 {
7062 ULONGEST RU;
7063
7064 if (!isdigit (str[k]))
7065 return 0;
7066
7067 /* Do it the hard way so as not to make any assumption about
7068 the relationship of unsigned long (%lu scan format code) and
7069 LONGEST. */
7070 RU = 0;
7071 while (isdigit (str[k]))
7072 {
7073 RU = RU * 10 + (str[k] - '0');
7074 k += 1;
7075 }
7076
7077 if (str[k] == 'm')
7078 {
7079 if (R != NULL)
7080 *R = (-(LONGEST) (RU - 1)) - 1;
7081 k += 1;
7082 }
7083 else if (R != NULL)
7084 *R = (LONGEST) RU;
7085
7086 /* NOTE on the above: Technically, C does not say what the results of
7087 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7088 number representable as a LONGEST (although either would probably work
7089 in most implementations). When RU>0, the locution in the then branch
7090 above is always equivalent to the negative of RU. */
7091
7092 if (new_k != NULL)
7093 *new_k = k;
7094 return 1;
7095 }
7096
7097 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7098 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7099 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7100
7101 int
7102 ada_in_variant (LONGEST val, struct type *type, int field_num)
7103 {
7104 const char *name = TYPE_FIELD_NAME (type, field_num);
7105 int p;
7106
7107 p = 0;
7108 while (1)
7109 {
7110 switch (name[p])
7111 {
7112 case '\0':
7113 return 0;
7114 case 'S':
7115 {
7116 LONGEST W;
7117
7118 if (!ada_scan_number (name, p + 1, &W, &p))
7119 return 0;
7120 if (val == W)
7121 return 1;
7122 break;
7123 }
7124 case 'R':
7125 {
7126 LONGEST L, U;
7127
7128 if (!ada_scan_number (name, p + 1, &L, &p)
7129 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7130 return 0;
7131 if (val >= L && val <= U)
7132 return 1;
7133 break;
7134 }
7135 case 'O':
7136 return 1;
7137 default:
7138 return 0;
7139 }
7140 }
7141 }
7142
7143 /* FIXME: Lots of redundancy below. Try to consolidate. */
7144
7145 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7146 ARG_TYPE, extract and return the value of one of its (non-static)
7147 fields. FIELDNO says which field. Differs from value_primitive_field
7148 only in that it can handle packed values of arbitrary type. */
7149
7150 static struct value *
7151 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7152 struct type *arg_type)
7153 {
7154 struct type *type;
7155
7156 arg_type = ada_check_typedef (arg_type);
7157 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7158
7159 /* Handle packed fields. */
7160
7161 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7162 {
7163 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7164 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7165
7166 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7167 offset + bit_pos / 8,
7168 bit_pos % 8, bit_size, type);
7169 }
7170 else
7171 return value_primitive_field (arg1, offset, fieldno, arg_type);
7172 }
7173
7174 /* Find field with name NAME in object of type TYPE. If found,
7175 set the following for each argument that is non-null:
7176 - *FIELD_TYPE_P to the field's type;
7177 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7178 an object of that type;
7179 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7180 - *BIT_SIZE_P to its size in bits if the field is packed, and
7181 0 otherwise;
7182 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7183 fields up to but not including the desired field, or by the total
7184 number of fields if not found. A NULL value of NAME never
7185 matches; the function just counts visible fields in this case.
7186
7187 Notice that we need to handle when a tagged record hierarchy
7188 has some components with the same name, like in this scenario:
7189
7190 type Top_T is tagged record
7191 N : Integer := 1;
7192 U : Integer := 974;
7193 A : Integer := 48;
7194 end record;
7195
7196 type Middle_T is new Top.Top_T with record
7197 N : Character := 'a';
7198 C : Integer := 3;
7199 end record;
7200
7201 type Bottom_T is new Middle.Middle_T with record
7202 N : Float := 4.0;
7203 C : Character := '5';
7204 X : Integer := 6;
7205 A : Character := 'J';
7206 end record;
7207
7208 Let's say we now have a variable declared and initialized as follow:
7209
7210 TC : Top_A := new Bottom_T;
7211
7212 And then we use this variable to call this function
7213
7214 procedure Assign (Obj: in out Top_T; TV : Integer);
7215
7216 as follow:
7217
7218 Assign (Top_T (B), 12);
7219
7220 Now, we're in the debugger, and we're inside that procedure
7221 then and we want to print the value of obj.c:
7222
7223 Usually, the tagged record or one of the parent type owns the
7224 component to print and there's no issue but in this particular
7225 case, what does it mean to ask for Obj.C? Since the actual
7226 type for object is type Bottom_T, it could mean two things: type
7227 component C from the Middle_T view, but also component C from
7228 Bottom_T. So in that "undefined" case, when the component is
7229 not found in the non-resolved type (which includes all the
7230 components of the parent type), then resolve it and see if we
7231 get better luck once expanded.
7232
7233 In the case of homonyms in the derived tagged type, we don't
7234 guaranty anything, and pick the one that's easiest for us
7235 to program.
7236
7237 Returns 1 if found, 0 otherwise. */
7238
7239 static int
7240 find_struct_field (const char *name, struct type *type, int offset,
7241 struct type **field_type_p,
7242 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7243 int *index_p)
7244 {
7245 int i;
7246 int parent_offset = -1;
7247
7248 type = ada_check_typedef (type);
7249
7250 if (field_type_p != NULL)
7251 *field_type_p = NULL;
7252 if (byte_offset_p != NULL)
7253 *byte_offset_p = 0;
7254 if (bit_offset_p != NULL)
7255 *bit_offset_p = 0;
7256 if (bit_size_p != NULL)
7257 *bit_size_p = 0;
7258
7259 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7260 {
7261 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7262 int fld_offset = offset + bit_pos / 8;
7263 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7264
7265 if (t_field_name == NULL)
7266 continue;
7267
7268 else if (ada_is_parent_field (type, i))
7269 {
7270 /* This is a field pointing us to the parent type of a tagged
7271 type. As hinted in this function's documentation, we give
7272 preference to fields in the current record first, so what
7273 we do here is just record the index of this field before
7274 we skip it. If it turns out we couldn't find our field
7275 in the current record, then we'll get back to it and search
7276 inside it whether the field might exist in the parent. */
7277
7278 parent_offset = i;
7279 continue;
7280 }
7281
7282 else if (name != NULL && field_name_match (t_field_name, name))
7283 {
7284 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7285
7286 if (field_type_p != NULL)
7287 *field_type_p = TYPE_FIELD_TYPE (type, i);
7288 if (byte_offset_p != NULL)
7289 *byte_offset_p = fld_offset;
7290 if (bit_offset_p != NULL)
7291 *bit_offset_p = bit_pos % 8;
7292 if (bit_size_p != NULL)
7293 *bit_size_p = bit_size;
7294 return 1;
7295 }
7296 else if (ada_is_wrapper_field (type, i))
7297 {
7298 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7299 field_type_p, byte_offset_p, bit_offset_p,
7300 bit_size_p, index_p))
7301 return 1;
7302 }
7303 else if (ada_is_variant_part (type, i))
7304 {
7305 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7306 fixed type?? */
7307 int j;
7308 struct type *field_type
7309 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7310
7311 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7312 {
7313 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7314 fld_offset
7315 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7316 field_type_p, byte_offset_p,
7317 bit_offset_p, bit_size_p, index_p))
7318 return 1;
7319 }
7320 }
7321 else if (index_p != NULL)
7322 *index_p += 1;
7323 }
7324
7325 /* Field not found so far. If this is a tagged type which
7326 has a parent, try finding that field in the parent now. */
7327
7328 if (parent_offset != -1)
7329 {
7330 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7331 int fld_offset = offset + bit_pos / 8;
7332
7333 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7334 fld_offset, field_type_p, byte_offset_p,
7335 bit_offset_p, bit_size_p, index_p))
7336 return 1;
7337 }
7338
7339 return 0;
7340 }
7341
7342 /* Number of user-visible fields in record type TYPE. */
7343
7344 static int
7345 num_visible_fields (struct type *type)
7346 {
7347 int n;
7348
7349 n = 0;
7350 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7351 return n;
7352 }
7353
7354 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7355 and search in it assuming it has (class) type TYPE.
7356 If found, return value, else return NULL.
7357
7358 Searches recursively through wrapper fields (e.g., '_parent').
7359
7360 In the case of homonyms in the tagged types, please refer to the
7361 long explanation in find_struct_field's function documentation. */
7362
7363 static struct value *
7364 ada_search_struct_field (const char *name, struct value *arg, int offset,
7365 struct type *type)
7366 {
7367 int i;
7368 int parent_offset = -1;
7369
7370 type = ada_check_typedef (type);
7371 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7372 {
7373 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7374
7375 if (t_field_name == NULL)
7376 continue;
7377
7378 else if (ada_is_parent_field (type, i))
7379 {
7380 /* This is a field pointing us to the parent type of a tagged
7381 type. As hinted in this function's documentation, we give
7382 preference to fields in the current record first, so what
7383 we do here is just record the index of this field before
7384 we skip it. If it turns out we couldn't find our field
7385 in the current record, then we'll get back to it and search
7386 inside it whether the field might exist in the parent. */
7387
7388 parent_offset = i;
7389 continue;
7390 }
7391
7392 else if (field_name_match (t_field_name, name))
7393 return ada_value_primitive_field (arg, offset, i, type);
7394
7395 else if (ada_is_wrapper_field (type, i))
7396 {
7397 struct value *v = /* Do not let indent join lines here. */
7398 ada_search_struct_field (name, arg,
7399 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7400 TYPE_FIELD_TYPE (type, i));
7401
7402 if (v != NULL)
7403 return v;
7404 }
7405
7406 else if (ada_is_variant_part (type, i))
7407 {
7408 /* PNH: Do we ever get here? See find_struct_field. */
7409 int j;
7410 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7411 i));
7412 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7413
7414 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7415 {
7416 struct value *v = ada_search_struct_field /* Force line
7417 break. */
7418 (name, arg,
7419 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7420 TYPE_FIELD_TYPE (field_type, j));
7421
7422 if (v != NULL)
7423 return v;
7424 }
7425 }
7426 }
7427
7428 /* Field not found so far. If this is a tagged type which
7429 has a parent, try finding that field in the parent now. */
7430
7431 if (parent_offset != -1)
7432 {
7433 struct value *v = ada_search_struct_field (
7434 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7435 TYPE_FIELD_TYPE (type, parent_offset));
7436
7437 if (v != NULL)
7438 return v;
7439 }
7440
7441 return NULL;
7442 }
7443
7444 static struct value *ada_index_struct_field_1 (int *, struct value *,
7445 int, struct type *);
7446
7447
7448 /* Return field #INDEX in ARG, where the index is that returned by
7449 * find_struct_field through its INDEX_P argument. Adjust the address
7450 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7451 * If found, return value, else return NULL. */
7452
7453 static struct value *
7454 ada_index_struct_field (int index, struct value *arg, int offset,
7455 struct type *type)
7456 {
7457 return ada_index_struct_field_1 (&index, arg, offset, type);
7458 }
7459
7460
7461 /* Auxiliary function for ada_index_struct_field. Like
7462 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7463 * *INDEX_P. */
7464
7465 static struct value *
7466 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7467 struct type *type)
7468 {
7469 int i;
7470 type = ada_check_typedef (type);
7471
7472 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7473 {
7474 if (TYPE_FIELD_NAME (type, i) == NULL)
7475 continue;
7476 else if (ada_is_wrapper_field (type, i))
7477 {
7478 struct value *v = /* Do not let indent join lines here. */
7479 ada_index_struct_field_1 (index_p, arg,
7480 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7481 TYPE_FIELD_TYPE (type, i));
7482
7483 if (v != NULL)
7484 return v;
7485 }
7486
7487 else if (ada_is_variant_part (type, i))
7488 {
7489 /* PNH: Do we ever get here? See ada_search_struct_field,
7490 find_struct_field. */
7491 error (_("Cannot assign this kind of variant record"));
7492 }
7493 else if (*index_p == 0)
7494 return ada_value_primitive_field (arg, offset, i, type);
7495 else
7496 *index_p -= 1;
7497 }
7498 return NULL;
7499 }
7500
7501 /* Given ARG, a value of type (pointer or reference to a)*
7502 structure/union, extract the component named NAME from the ultimate
7503 target structure/union and return it as a value with its
7504 appropriate type.
7505
7506 The routine searches for NAME among all members of the structure itself
7507 and (recursively) among all members of any wrapper members
7508 (e.g., '_parent').
7509
7510 If NO_ERR, then simply return NULL in case of error, rather than
7511 calling error. */
7512
7513 struct value *
7514 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7515 {
7516 struct type *t, *t1;
7517 struct value *v;
7518 int check_tag;
7519
7520 v = NULL;
7521 t1 = t = ada_check_typedef (value_type (arg));
7522 if (TYPE_CODE (t) == TYPE_CODE_REF)
7523 {
7524 t1 = TYPE_TARGET_TYPE (t);
7525 if (t1 == NULL)
7526 goto BadValue;
7527 t1 = ada_check_typedef (t1);
7528 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7529 {
7530 arg = coerce_ref (arg);
7531 t = t1;
7532 }
7533 }
7534
7535 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7536 {
7537 t1 = TYPE_TARGET_TYPE (t);
7538 if (t1 == NULL)
7539 goto BadValue;
7540 t1 = ada_check_typedef (t1);
7541 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7542 {
7543 arg = value_ind (arg);
7544 t = t1;
7545 }
7546 else
7547 break;
7548 }
7549
7550 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7551 goto BadValue;
7552
7553 if (t1 == t)
7554 v = ada_search_struct_field (name, arg, 0, t);
7555 else
7556 {
7557 int bit_offset, bit_size, byte_offset;
7558 struct type *field_type;
7559 CORE_ADDR address;
7560
7561 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7562 address = value_address (ada_value_ind (arg));
7563 else
7564 address = value_address (ada_coerce_ref (arg));
7565
7566 /* Check to see if this is a tagged type. We also need to handle
7567 the case where the type is a reference to a tagged type, but
7568 we have to be careful to exclude pointers to tagged types.
7569 The latter should be shown as usual (as a pointer), whereas
7570 a reference should mostly be transparent to the user. */
7571
7572 if (ada_is_tagged_type (t1, 0)
7573 || (TYPE_CODE (t1) == TYPE_CODE_REF
7574 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7575 {
7576 /* We first try to find the searched field in the current type.
7577 If not found then let's look in the fixed type. */
7578
7579 if (!find_struct_field (name, t1, 0,
7580 &field_type, &byte_offset, &bit_offset,
7581 &bit_size, NULL))
7582 check_tag = 1;
7583 else
7584 check_tag = 0;
7585 }
7586 else
7587 check_tag = 0;
7588
7589 /* Convert to fixed type in all cases, so that we have proper
7590 offsets to each field in unconstrained record types. */
7591 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7592 address, NULL, check_tag);
7593
7594 if (find_struct_field (name, t1, 0,
7595 &field_type, &byte_offset, &bit_offset,
7596 &bit_size, NULL))
7597 {
7598 if (bit_size != 0)
7599 {
7600 if (TYPE_CODE (t) == TYPE_CODE_REF)
7601 arg = ada_coerce_ref (arg);
7602 else
7603 arg = ada_value_ind (arg);
7604 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7605 bit_offset, bit_size,
7606 field_type);
7607 }
7608 else
7609 v = value_at_lazy (field_type, address + byte_offset);
7610 }
7611 }
7612
7613 if (v != NULL || no_err)
7614 return v;
7615 else
7616 error (_("There is no member named %s."), name);
7617
7618 BadValue:
7619 if (no_err)
7620 return NULL;
7621 else
7622 error (_("Attempt to extract a component of "
7623 "a value that is not a record."));
7624 }
7625
7626 /* Return a string representation of type TYPE. */
7627
7628 static std::string
7629 type_as_string (struct type *type)
7630 {
7631 string_file tmp_stream;
7632
7633 type_print (type, "", &tmp_stream, -1);
7634
7635 return std::move (tmp_stream.string ());
7636 }
7637
7638 /* Given a type TYPE, look up the type of the component of type named NAME.
7639 If DISPP is non-null, add its byte displacement from the beginning of a
7640 structure (pointed to by a value) of type TYPE to *DISPP (does not
7641 work for packed fields).
7642
7643 Matches any field whose name has NAME as a prefix, possibly
7644 followed by "___".
7645
7646 TYPE can be either a struct or union. If REFOK, TYPE may also
7647 be a (pointer or reference)+ to a struct or union, and the
7648 ultimate target type will be searched.
7649
7650 Looks recursively into variant clauses and parent types.
7651
7652 In the case of homonyms in the tagged types, please refer to the
7653 long explanation in find_struct_field's function documentation.
7654
7655 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7656 TYPE is not a type of the right kind. */
7657
7658 static struct type *
7659 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7660 int noerr)
7661 {
7662 int i;
7663 int parent_offset = -1;
7664
7665 if (name == NULL)
7666 goto BadName;
7667
7668 if (refok && type != NULL)
7669 while (1)
7670 {
7671 type = ada_check_typedef (type);
7672 if (TYPE_CODE (type) != TYPE_CODE_PTR
7673 && TYPE_CODE (type) != TYPE_CODE_REF)
7674 break;
7675 type = TYPE_TARGET_TYPE (type);
7676 }
7677
7678 if (type == NULL
7679 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7680 && TYPE_CODE (type) != TYPE_CODE_UNION))
7681 {
7682 if (noerr)
7683 return NULL;
7684
7685 error (_("Type %s is not a structure or union type"),
7686 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7687 }
7688
7689 type = to_static_fixed_type (type);
7690
7691 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7692 {
7693 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7694 struct type *t;
7695
7696 if (t_field_name == NULL)
7697 continue;
7698
7699 else if (ada_is_parent_field (type, i))
7700 {
7701 /* This is a field pointing us to the parent type of a tagged
7702 type. As hinted in this function's documentation, we give
7703 preference to fields in the current record first, so what
7704 we do here is just record the index of this field before
7705 we skip it. If it turns out we couldn't find our field
7706 in the current record, then we'll get back to it and search
7707 inside it whether the field might exist in the parent. */
7708
7709 parent_offset = i;
7710 continue;
7711 }
7712
7713 else if (field_name_match (t_field_name, name))
7714 return TYPE_FIELD_TYPE (type, i);
7715
7716 else if (ada_is_wrapper_field (type, i))
7717 {
7718 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7719 0, 1);
7720 if (t != NULL)
7721 return t;
7722 }
7723
7724 else if (ada_is_variant_part (type, i))
7725 {
7726 int j;
7727 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7728 i));
7729
7730 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7731 {
7732 /* FIXME pnh 2008/01/26: We check for a field that is
7733 NOT wrapped in a struct, since the compiler sometimes
7734 generates these for unchecked variant types. Revisit
7735 if the compiler changes this practice. */
7736 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7737
7738 if (v_field_name != NULL
7739 && field_name_match (v_field_name, name))
7740 t = TYPE_FIELD_TYPE (field_type, j);
7741 else
7742 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7743 j),
7744 name, 0, 1);
7745
7746 if (t != NULL)
7747 return t;
7748 }
7749 }
7750
7751 }
7752
7753 /* Field not found so far. If this is a tagged type which
7754 has a parent, try finding that field in the parent now. */
7755
7756 if (parent_offset != -1)
7757 {
7758 struct type *t;
7759
7760 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7761 name, 0, 1);
7762 if (t != NULL)
7763 return t;
7764 }
7765
7766 BadName:
7767 if (!noerr)
7768 {
7769 const char *name_str = name != NULL ? name : _("<null>");
7770
7771 error (_("Type %s has no component named %s"),
7772 type_as_string (type).c_str (), name_str);
7773 }
7774
7775 return NULL;
7776 }
7777
7778 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7779 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7780 represents an unchecked union (that is, the variant part of a
7781 record that is named in an Unchecked_Union pragma). */
7782
7783 static int
7784 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7785 {
7786 const char *discrim_name = ada_variant_discrim_name (var_type);
7787
7788 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7789 }
7790
7791
7792 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7793 within a value of type OUTER_TYPE that is stored in GDB at
7794 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7795 numbering from 0) is applicable. Returns -1 if none are. */
7796
7797 int
7798 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7799 const gdb_byte *outer_valaddr)
7800 {
7801 int others_clause;
7802 int i;
7803 const char *discrim_name = ada_variant_discrim_name (var_type);
7804 struct value *outer;
7805 struct value *discrim;
7806 LONGEST discrim_val;
7807
7808 /* Using plain value_from_contents_and_address here causes problems
7809 because we will end up trying to resolve a type that is currently
7810 being constructed. */
7811 outer = value_from_contents_and_address_unresolved (outer_type,
7812 outer_valaddr, 0);
7813 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7814 if (discrim == NULL)
7815 return -1;
7816 discrim_val = value_as_long (discrim);
7817
7818 others_clause = -1;
7819 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7820 {
7821 if (ada_is_others_clause (var_type, i))
7822 others_clause = i;
7823 else if (ada_in_variant (discrim_val, var_type, i))
7824 return i;
7825 }
7826
7827 return others_clause;
7828 }
7829 \f
7830
7831
7832 /* Dynamic-Sized Records */
7833
7834 /* Strategy: The type ostensibly attached to a value with dynamic size
7835 (i.e., a size that is not statically recorded in the debugging
7836 data) does not accurately reflect the size or layout of the value.
7837 Our strategy is to convert these values to values with accurate,
7838 conventional types that are constructed on the fly. */
7839
7840 /* There is a subtle and tricky problem here. In general, we cannot
7841 determine the size of dynamic records without its data. However,
7842 the 'struct value' data structure, which GDB uses to represent
7843 quantities in the inferior process (the target), requires the size
7844 of the type at the time of its allocation in order to reserve space
7845 for GDB's internal copy of the data. That's why the
7846 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7847 rather than struct value*s.
7848
7849 However, GDB's internal history variables ($1, $2, etc.) are
7850 struct value*s containing internal copies of the data that are not, in
7851 general, the same as the data at their corresponding addresses in
7852 the target. Fortunately, the types we give to these values are all
7853 conventional, fixed-size types (as per the strategy described
7854 above), so that we don't usually have to perform the
7855 'to_fixed_xxx_type' conversions to look at their values.
7856 Unfortunately, there is one exception: if one of the internal
7857 history variables is an array whose elements are unconstrained
7858 records, then we will need to create distinct fixed types for each
7859 element selected. */
7860
7861 /* The upshot of all of this is that many routines take a (type, host
7862 address, target address) triple as arguments to represent a value.
7863 The host address, if non-null, is supposed to contain an internal
7864 copy of the relevant data; otherwise, the program is to consult the
7865 target at the target address. */
7866
7867 /* Assuming that VAL0 represents a pointer value, the result of
7868 dereferencing it. Differs from value_ind in its treatment of
7869 dynamic-sized types. */
7870
7871 struct value *
7872 ada_value_ind (struct value *val0)
7873 {
7874 struct value *val = value_ind (val0);
7875
7876 if (ada_is_tagged_type (value_type (val), 0))
7877 val = ada_tag_value_at_base_address (val);
7878
7879 return ada_to_fixed_value (val);
7880 }
7881
7882 /* The value resulting from dereferencing any "reference to"
7883 qualifiers on VAL0. */
7884
7885 static struct value *
7886 ada_coerce_ref (struct value *val0)
7887 {
7888 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7889 {
7890 struct value *val = val0;
7891
7892 val = coerce_ref (val);
7893
7894 if (ada_is_tagged_type (value_type (val), 0))
7895 val = ada_tag_value_at_base_address (val);
7896
7897 return ada_to_fixed_value (val);
7898 }
7899 else
7900 return val0;
7901 }
7902
7903 /* Return OFF rounded upward if necessary to a multiple of
7904 ALIGNMENT (a power of 2). */
7905
7906 static unsigned int
7907 align_value (unsigned int off, unsigned int alignment)
7908 {
7909 return (off + alignment - 1) & ~(alignment - 1);
7910 }
7911
7912 /* Return the bit alignment required for field #F of template type TYPE. */
7913
7914 static unsigned int
7915 field_alignment (struct type *type, int f)
7916 {
7917 const char *name = TYPE_FIELD_NAME (type, f);
7918 int len;
7919 int align_offset;
7920
7921 /* The field name should never be null, unless the debugging information
7922 is somehow malformed. In this case, we assume the field does not
7923 require any alignment. */
7924 if (name == NULL)
7925 return 1;
7926
7927 len = strlen (name);
7928
7929 if (!isdigit (name[len - 1]))
7930 return 1;
7931
7932 if (isdigit (name[len - 2]))
7933 align_offset = len - 2;
7934 else
7935 align_offset = len - 1;
7936
7937 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7938 return TARGET_CHAR_BIT;
7939
7940 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7941 }
7942
7943 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7944
7945 static struct symbol *
7946 ada_find_any_type_symbol (const char *name)
7947 {
7948 struct symbol *sym;
7949
7950 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7951 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7952 return sym;
7953
7954 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7955 return sym;
7956 }
7957
7958 /* Find a type named NAME. Ignores ambiguity. This routine will look
7959 solely for types defined by debug info, it will not search the GDB
7960 primitive types. */
7961
7962 static struct type *
7963 ada_find_any_type (const char *name)
7964 {
7965 struct symbol *sym = ada_find_any_type_symbol (name);
7966
7967 if (sym != NULL)
7968 return SYMBOL_TYPE (sym);
7969
7970 return NULL;
7971 }
7972
7973 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7974 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7975 symbol, in which case it is returned. Otherwise, this looks for
7976 symbols whose name is that of NAME_SYM suffixed with "___XR".
7977 Return symbol if found, and NULL otherwise. */
7978
7979 struct symbol *
7980 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7981 {
7982 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7983 struct symbol *sym;
7984
7985 if (strstr (name, "___XR") != NULL)
7986 return name_sym;
7987
7988 sym = find_old_style_renaming_symbol (name, block);
7989
7990 if (sym != NULL)
7991 return sym;
7992
7993 /* Not right yet. FIXME pnh 7/20/2007. */
7994 sym = ada_find_any_type_symbol (name);
7995 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7996 return sym;
7997 else
7998 return NULL;
7999 }
8000
8001 static struct symbol *
8002 find_old_style_renaming_symbol (const char *name, const struct block *block)
8003 {
8004 const struct symbol *function_sym = block_linkage_function (block);
8005 char *rename;
8006
8007 if (function_sym != NULL)
8008 {
8009 /* If the symbol is defined inside a function, NAME is not fully
8010 qualified. This means we need to prepend the function name
8011 as well as adding the ``___XR'' suffix to build the name of
8012 the associated renaming symbol. */
8013 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8014 /* Function names sometimes contain suffixes used
8015 for instance to qualify nested subprograms. When building
8016 the XR type name, we need to make sure that this suffix is
8017 not included. So do not include any suffix in the function
8018 name length below. */
8019 int function_name_len = ada_name_prefix_len (function_name);
8020 const int rename_len = function_name_len + 2 /* "__" */
8021 + strlen (name) + 6 /* "___XR\0" */ ;
8022
8023 /* Strip the suffix if necessary. */
8024 ada_remove_trailing_digits (function_name, &function_name_len);
8025 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8026 ada_remove_Xbn_suffix (function_name, &function_name_len);
8027
8028 /* Library-level functions are a special case, as GNAT adds
8029 a ``_ada_'' prefix to the function name to avoid namespace
8030 pollution. However, the renaming symbols themselves do not
8031 have this prefix, so we need to skip this prefix if present. */
8032 if (function_name_len > 5 /* "_ada_" */
8033 && strstr (function_name, "_ada_") == function_name)
8034 {
8035 function_name += 5;
8036 function_name_len -= 5;
8037 }
8038
8039 rename = (char *) alloca (rename_len * sizeof (char));
8040 strncpy (rename, function_name, function_name_len);
8041 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8042 "__%s___XR", name);
8043 }
8044 else
8045 {
8046 const int rename_len = strlen (name) + 6;
8047
8048 rename = (char *) alloca (rename_len * sizeof (char));
8049 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8050 }
8051
8052 return ada_find_any_type_symbol (rename);
8053 }
8054
8055 /* Because of GNAT encoding conventions, several GDB symbols may match a
8056 given type name. If the type denoted by TYPE0 is to be preferred to
8057 that of TYPE1 for purposes of type printing, return non-zero;
8058 otherwise return 0. */
8059
8060 int
8061 ada_prefer_type (struct type *type0, struct type *type1)
8062 {
8063 if (type1 == NULL)
8064 return 1;
8065 else if (type0 == NULL)
8066 return 0;
8067 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8068 return 1;
8069 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8070 return 0;
8071 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8072 return 1;
8073 else if (ada_is_constrained_packed_array_type (type0))
8074 return 1;
8075 else if (ada_is_array_descriptor_type (type0)
8076 && !ada_is_array_descriptor_type (type1))
8077 return 1;
8078 else
8079 {
8080 const char *type0_name = TYPE_NAME (type0);
8081 const char *type1_name = TYPE_NAME (type1);
8082
8083 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8084 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8085 return 1;
8086 }
8087 return 0;
8088 }
8089
8090 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8091 null. */
8092
8093 const char *
8094 ada_type_name (struct type *type)
8095 {
8096 if (type == NULL)
8097 return NULL;
8098 return TYPE_NAME (type);
8099 }
8100
8101 /* Search the list of "descriptive" types associated to TYPE for a type
8102 whose name is NAME. */
8103
8104 static struct type *
8105 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8106 {
8107 struct type *result, *tmp;
8108
8109 if (ada_ignore_descriptive_types_p)
8110 return NULL;
8111
8112 /* If there no descriptive-type info, then there is no parallel type
8113 to be found. */
8114 if (!HAVE_GNAT_AUX_INFO (type))
8115 return NULL;
8116
8117 result = TYPE_DESCRIPTIVE_TYPE (type);
8118 while (result != NULL)
8119 {
8120 const char *result_name = ada_type_name (result);
8121
8122 if (result_name == NULL)
8123 {
8124 warning (_("unexpected null name on descriptive type"));
8125 return NULL;
8126 }
8127
8128 /* If the names match, stop. */
8129 if (strcmp (result_name, name) == 0)
8130 break;
8131
8132 /* Otherwise, look at the next item on the list, if any. */
8133 if (HAVE_GNAT_AUX_INFO (result))
8134 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8135 else
8136 tmp = NULL;
8137
8138 /* If not found either, try after having resolved the typedef. */
8139 if (tmp != NULL)
8140 result = tmp;
8141 else
8142 {
8143 result = check_typedef (result);
8144 if (HAVE_GNAT_AUX_INFO (result))
8145 result = TYPE_DESCRIPTIVE_TYPE (result);
8146 else
8147 result = NULL;
8148 }
8149 }
8150
8151 /* If we didn't find a match, see whether this is a packed array. With
8152 older compilers, the descriptive type information is either absent or
8153 irrelevant when it comes to packed arrays so the above lookup fails.
8154 Fall back to using a parallel lookup by name in this case. */
8155 if (result == NULL && ada_is_constrained_packed_array_type (type))
8156 return ada_find_any_type (name);
8157
8158 return result;
8159 }
8160
8161 /* Find a parallel type to TYPE with the specified NAME, using the
8162 descriptive type taken from the debugging information, if available,
8163 and otherwise using the (slower) name-based method. */
8164
8165 static struct type *
8166 ada_find_parallel_type_with_name (struct type *type, const char *name)
8167 {
8168 struct type *result = NULL;
8169
8170 if (HAVE_GNAT_AUX_INFO (type))
8171 result = find_parallel_type_by_descriptive_type (type, name);
8172 else
8173 result = ada_find_any_type (name);
8174
8175 return result;
8176 }
8177
8178 /* Same as above, but specify the name of the parallel type by appending
8179 SUFFIX to the name of TYPE. */
8180
8181 struct type *
8182 ada_find_parallel_type (struct type *type, const char *suffix)
8183 {
8184 char *name;
8185 const char *type_name = ada_type_name (type);
8186 int len;
8187
8188 if (type_name == NULL)
8189 return NULL;
8190
8191 len = strlen (type_name);
8192
8193 name = (char *) alloca (len + strlen (suffix) + 1);
8194
8195 strcpy (name, type_name);
8196 strcpy (name + len, suffix);
8197
8198 return ada_find_parallel_type_with_name (type, name);
8199 }
8200
8201 /* If TYPE is a variable-size record type, return the corresponding template
8202 type describing its fields. Otherwise, return NULL. */
8203
8204 static struct type *
8205 dynamic_template_type (struct type *type)
8206 {
8207 type = ada_check_typedef (type);
8208
8209 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8210 || ada_type_name (type) == NULL)
8211 return NULL;
8212 else
8213 {
8214 int len = strlen (ada_type_name (type));
8215
8216 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8217 return type;
8218 else
8219 return ada_find_parallel_type (type, "___XVE");
8220 }
8221 }
8222
8223 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8224 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8225
8226 static int
8227 is_dynamic_field (struct type *templ_type, int field_num)
8228 {
8229 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8230
8231 return name != NULL
8232 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8233 && strstr (name, "___XVL") != NULL;
8234 }
8235
8236 /* The index of the variant field of TYPE, or -1 if TYPE does not
8237 represent a variant record type. */
8238
8239 static int
8240 variant_field_index (struct type *type)
8241 {
8242 int f;
8243
8244 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8245 return -1;
8246
8247 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8248 {
8249 if (ada_is_variant_part (type, f))
8250 return f;
8251 }
8252 return -1;
8253 }
8254
8255 /* A record type with no fields. */
8256
8257 static struct type *
8258 empty_record (struct type *templ)
8259 {
8260 struct type *type = alloc_type_copy (templ);
8261
8262 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8263 TYPE_NFIELDS (type) = 0;
8264 TYPE_FIELDS (type) = NULL;
8265 INIT_NONE_SPECIFIC (type);
8266 TYPE_NAME (type) = "<empty>";
8267 TYPE_LENGTH (type) = 0;
8268 return type;
8269 }
8270
8271 /* An ordinary record type (with fixed-length fields) that describes
8272 the value of type TYPE at VALADDR or ADDRESS (see comments at
8273 the beginning of this section) VAL according to GNAT conventions.
8274 DVAL0 should describe the (portion of a) record that contains any
8275 necessary discriminants. It should be NULL if value_type (VAL) is
8276 an outer-level type (i.e., as opposed to a branch of a variant.) A
8277 variant field (unless unchecked) is replaced by a particular branch
8278 of the variant.
8279
8280 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8281 length are not statically known are discarded. As a consequence,
8282 VALADDR, ADDRESS and DVAL0 are ignored.
8283
8284 NOTE: Limitations: For now, we assume that dynamic fields and
8285 variants occupy whole numbers of bytes. However, they need not be
8286 byte-aligned. */
8287
8288 struct type *
8289 ada_template_to_fixed_record_type_1 (struct type *type,
8290 const gdb_byte *valaddr,
8291 CORE_ADDR address, struct value *dval0,
8292 int keep_dynamic_fields)
8293 {
8294 struct value *mark = value_mark ();
8295 struct value *dval;
8296 struct type *rtype;
8297 int nfields, bit_len;
8298 int variant_field;
8299 long off;
8300 int fld_bit_len;
8301 int f;
8302
8303 /* Compute the number of fields in this record type that are going
8304 to be processed: unless keep_dynamic_fields, this includes only
8305 fields whose position and length are static will be processed. */
8306 if (keep_dynamic_fields)
8307 nfields = TYPE_NFIELDS (type);
8308 else
8309 {
8310 nfields = 0;
8311 while (nfields < TYPE_NFIELDS (type)
8312 && !ada_is_variant_part (type, nfields)
8313 && !is_dynamic_field (type, nfields))
8314 nfields++;
8315 }
8316
8317 rtype = alloc_type_copy (type);
8318 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8319 INIT_NONE_SPECIFIC (rtype);
8320 TYPE_NFIELDS (rtype) = nfields;
8321 TYPE_FIELDS (rtype) = (struct field *)
8322 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8323 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8324 TYPE_NAME (rtype) = ada_type_name (type);
8325 TYPE_FIXED_INSTANCE (rtype) = 1;
8326
8327 off = 0;
8328 bit_len = 0;
8329 variant_field = -1;
8330
8331 for (f = 0; f < nfields; f += 1)
8332 {
8333 off = align_value (off, field_alignment (type, f))
8334 + TYPE_FIELD_BITPOS (type, f);
8335 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8336 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8337
8338 if (ada_is_variant_part (type, f))
8339 {
8340 variant_field = f;
8341 fld_bit_len = 0;
8342 }
8343 else if (is_dynamic_field (type, f))
8344 {
8345 const gdb_byte *field_valaddr = valaddr;
8346 CORE_ADDR field_address = address;
8347 struct type *field_type =
8348 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8349
8350 if (dval0 == NULL)
8351 {
8352 /* rtype's length is computed based on the run-time
8353 value of discriminants. If the discriminants are not
8354 initialized, the type size may be completely bogus and
8355 GDB may fail to allocate a value for it. So check the
8356 size first before creating the value. */
8357 ada_ensure_varsize_limit (rtype);
8358 /* Using plain value_from_contents_and_address here
8359 causes problems because we will end up trying to
8360 resolve a type that is currently being
8361 constructed. */
8362 dval = value_from_contents_and_address_unresolved (rtype,
8363 valaddr,
8364 address);
8365 rtype = value_type (dval);
8366 }
8367 else
8368 dval = dval0;
8369
8370 /* If the type referenced by this field is an aligner type, we need
8371 to unwrap that aligner type, because its size might not be set.
8372 Keeping the aligner type would cause us to compute the wrong
8373 size for this field, impacting the offset of the all the fields
8374 that follow this one. */
8375 if (ada_is_aligner_type (field_type))
8376 {
8377 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8378
8379 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8380 field_address = cond_offset_target (field_address, field_offset);
8381 field_type = ada_aligned_type (field_type);
8382 }
8383
8384 field_valaddr = cond_offset_host (field_valaddr,
8385 off / TARGET_CHAR_BIT);
8386 field_address = cond_offset_target (field_address,
8387 off / TARGET_CHAR_BIT);
8388
8389 /* Get the fixed type of the field. Note that, in this case,
8390 we do not want to get the real type out of the tag: if
8391 the current field is the parent part of a tagged record,
8392 we will get the tag of the object. Clearly wrong: the real
8393 type of the parent is not the real type of the child. We
8394 would end up in an infinite loop. */
8395 field_type = ada_get_base_type (field_type);
8396 field_type = ada_to_fixed_type (field_type, field_valaddr,
8397 field_address, dval, 0);
8398 /* If the field size is already larger than the maximum
8399 object size, then the record itself will necessarily
8400 be larger than the maximum object size. We need to make
8401 this check now, because the size might be so ridiculously
8402 large (due to an uninitialized variable in the inferior)
8403 that it would cause an overflow when adding it to the
8404 record size. */
8405 ada_ensure_varsize_limit (field_type);
8406
8407 TYPE_FIELD_TYPE (rtype, f) = field_type;
8408 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8409 /* The multiplication can potentially overflow. But because
8410 the field length has been size-checked just above, and
8411 assuming that the maximum size is a reasonable value,
8412 an overflow should not happen in practice. So rather than
8413 adding overflow recovery code to this already complex code,
8414 we just assume that it's not going to happen. */
8415 fld_bit_len =
8416 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8417 }
8418 else
8419 {
8420 /* Note: If this field's type is a typedef, it is important
8421 to preserve the typedef layer.
8422
8423 Otherwise, we might be transforming a typedef to a fat
8424 pointer (encoding a pointer to an unconstrained array),
8425 into a basic fat pointer (encoding an unconstrained
8426 array). As both types are implemented using the same
8427 structure, the typedef is the only clue which allows us
8428 to distinguish between the two options. Stripping it
8429 would prevent us from printing this field appropriately. */
8430 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8431 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8432 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8433 fld_bit_len =
8434 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8435 else
8436 {
8437 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8438
8439 /* We need to be careful of typedefs when computing
8440 the length of our field. If this is a typedef,
8441 get the length of the target type, not the length
8442 of the typedef. */
8443 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8444 field_type = ada_typedef_target_type (field_type);
8445
8446 fld_bit_len =
8447 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8448 }
8449 }
8450 if (off + fld_bit_len > bit_len)
8451 bit_len = off + fld_bit_len;
8452 off += fld_bit_len;
8453 TYPE_LENGTH (rtype) =
8454 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8455 }
8456
8457 /* We handle the variant part, if any, at the end because of certain
8458 odd cases in which it is re-ordered so as NOT to be the last field of
8459 the record. This can happen in the presence of representation
8460 clauses. */
8461 if (variant_field >= 0)
8462 {
8463 struct type *branch_type;
8464
8465 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8466
8467 if (dval0 == NULL)
8468 {
8469 /* Using plain value_from_contents_and_address here causes
8470 problems because we will end up trying to resolve a type
8471 that is currently being constructed. */
8472 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8473 address);
8474 rtype = value_type (dval);
8475 }
8476 else
8477 dval = dval0;
8478
8479 branch_type =
8480 to_fixed_variant_branch_type
8481 (TYPE_FIELD_TYPE (type, variant_field),
8482 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8483 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8484 if (branch_type == NULL)
8485 {
8486 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8487 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8488 TYPE_NFIELDS (rtype) -= 1;
8489 }
8490 else
8491 {
8492 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8493 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8494 fld_bit_len =
8495 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8496 TARGET_CHAR_BIT;
8497 if (off + fld_bit_len > bit_len)
8498 bit_len = off + fld_bit_len;
8499 TYPE_LENGTH (rtype) =
8500 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8501 }
8502 }
8503
8504 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8505 should contain the alignment of that record, which should be a strictly
8506 positive value. If null or negative, then something is wrong, most
8507 probably in the debug info. In that case, we don't round up the size
8508 of the resulting type. If this record is not part of another structure,
8509 the current RTYPE length might be good enough for our purposes. */
8510 if (TYPE_LENGTH (type) <= 0)
8511 {
8512 if (TYPE_NAME (rtype))
8513 warning (_("Invalid type size for `%s' detected: %s."),
8514 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
8515 else
8516 warning (_("Invalid type size for <unnamed> detected: %s."),
8517 pulongest (TYPE_LENGTH (type)));
8518 }
8519 else
8520 {
8521 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8522 TYPE_LENGTH (type));
8523 }
8524
8525 value_free_to_mark (mark);
8526 if (TYPE_LENGTH (rtype) > varsize_limit)
8527 error (_("record type with dynamic size is larger than varsize-limit"));
8528 return rtype;
8529 }
8530
8531 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8532 of 1. */
8533
8534 static struct type *
8535 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8536 CORE_ADDR address, struct value *dval0)
8537 {
8538 return ada_template_to_fixed_record_type_1 (type, valaddr,
8539 address, dval0, 1);
8540 }
8541
8542 /* An ordinary record type in which ___XVL-convention fields and
8543 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8544 static approximations, containing all possible fields. Uses
8545 no runtime values. Useless for use in values, but that's OK,
8546 since the results are used only for type determinations. Works on both
8547 structs and unions. Representation note: to save space, we memorize
8548 the result of this function in the TYPE_TARGET_TYPE of the
8549 template type. */
8550
8551 static struct type *
8552 template_to_static_fixed_type (struct type *type0)
8553 {
8554 struct type *type;
8555 int nfields;
8556 int f;
8557
8558 /* No need no do anything if the input type is already fixed. */
8559 if (TYPE_FIXED_INSTANCE (type0))
8560 return type0;
8561
8562 /* Likewise if we already have computed the static approximation. */
8563 if (TYPE_TARGET_TYPE (type0) != NULL)
8564 return TYPE_TARGET_TYPE (type0);
8565
8566 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8567 type = type0;
8568 nfields = TYPE_NFIELDS (type0);
8569
8570 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8571 recompute all over next time. */
8572 TYPE_TARGET_TYPE (type0) = type;
8573
8574 for (f = 0; f < nfields; f += 1)
8575 {
8576 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8577 struct type *new_type;
8578
8579 if (is_dynamic_field (type0, f))
8580 {
8581 field_type = ada_check_typedef (field_type);
8582 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8583 }
8584 else
8585 new_type = static_unwrap_type (field_type);
8586
8587 if (new_type != field_type)
8588 {
8589 /* Clone TYPE0 only the first time we get a new field type. */
8590 if (type == type0)
8591 {
8592 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8593 TYPE_CODE (type) = TYPE_CODE (type0);
8594 INIT_NONE_SPECIFIC (type);
8595 TYPE_NFIELDS (type) = nfields;
8596 TYPE_FIELDS (type) = (struct field *)
8597 TYPE_ALLOC (type, nfields * sizeof (struct field));
8598 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8599 sizeof (struct field) * nfields);
8600 TYPE_NAME (type) = ada_type_name (type0);
8601 TYPE_FIXED_INSTANCE (type) = 1;
8602 TYPE_LENGTH (type) = 0;
8603 }
8604 TYPE_FIELD_TYPE (type, f) = new_type;
8605 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8606 }
8607 }
8608
8609 return type;
8610 }
8611
8612 /* Given an object of type TYPE whose contents are at VALADDR and
8613 whose address in memory is ADDRESS, returns a revision of TYPE,
8614 which should be a non-dynamic-sized record, in which the variant
8615 part, if any, is replaced with the appropriate branch. Looks
8616 for discriminant values in DVAL0, which can be NULL if the record
8617 contains the necessary discriminant values. */
8618
8619 static struct type *
8620 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8621 CORE_ADDR address, struct value *dval0)
8622 {
8623 struct value *mark = value_mark ();
8624 struct value *dval;
8625 struct type *rtype;
8626 struct type *branch_type;
8627 int nfields = TYPE_NFIELDS (type);
8628 int variant_field = variant_field_index (type);
8629
8630 if (variant_field == -1)
8631 return type;
8632
8633 if (dval0 == NULL)
8634 {
8635 dval = value_from_contents_and_address (type, valaddr, address);
8636 type = value_type (dval);
8637 }
8638 else
8639 dval = dval0;
8640
8641 rtype = alloc_type_copy (type);
8642 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8643 INIT_NONE_SPECIFIC (rtype);
8644 TYPE_NFIELDS (rtype) = nfields;
8645 TYPE_FIELDS (rtype) =
8646 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8647 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8648 sizeof (struct field) * nfields);
8649 TYPE_NAME (rtype) = ada_type_name (type);
8650 TYPE_FIXED_INSTANCE (rtype) = 1;
8651 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8652
8653 branch_type = to_fixed_variant_branch_type
8654 (TYPE_FIELD_TYPE (type, variant_field),
8655 cond_offset_host (valaddr,
8656 TYPE_FIELD_BITPOS (type, variant_field)
8657 / TARGET_CHAR_BIT),
8658 cond_offset_target (address,
8659 TYPE_FIELD_BITPOS (type, variant_field)
8660 / TARGET_CHAR_BIT), dval);
8661 if (branch_type == NULL)
8662 {
8663 int f;
8664
8665 for (f = variant_field + 1; f < nfields; f += 1)
8666 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8667 TYPE_NFIELDS (rtype) -= 1;
8668 }
8669 else
8670 {
8671 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8672 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8673 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8674 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8675 }
8676 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8677
8678 value_free_to_mark (mark);
8679 return rtype;
8680 }
8681
8682 /* An ordinary record type (with fixed-length fields) that describes
8683 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8684 beginning of this section]. Any necessary discriminants' values
8685 should be in DVAL, a record value; it may be NULL if the object
8686 at ADDR itself contains any necessary discriminant values.
8687 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8688 values from the record are needed. Except in the case that DVAL,
8689 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8690 unchecked) is replaced by a particular branch of the variant.
8691
8692 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8693 is questionable and may be removed. It can arise during the
8694 processing of an unconstrained-array-of-record type where all the
8695 variant branches have exactly the same size. This is because in
8696 such cases, the compiler does not bother to use the XVS convention
8697 when encoding the record. I am currently dubious of this
8698 shortcut and suspect the compiler should be altered. FIXME. */
8699
8700 static struct type *
8701 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8702 CORE_ADDR address, struct value *dval)
8703 {
8704 struct type *templ_type;
8705
8706 if (TYPE_FIXED_INSTANCE (type0))
8707 return type0;
8708
8709 templ_type = dynamic_template_type (type0);
8710
8711 if (templ_type != NULL)
8712 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8713 else if (variant_field_index (type0) >= 0)
8714 {
8715 if (dval == NULL && valaddr == NULL && address == 0)
8716 return type0;
8717 return to_record_with_fixed_variant_part (type0, valaddr, address,
8718 dval);
8719 }
8720 else
8721 {
8722 TYPE_FIXED_INSTANCE (type0) = 1;
8723 return type0;
8724 }
8725
8726 }
8727
8728 /* An ordinary record type (with fixed-length fields) that describes
8729 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8730 union type. Any necessary discriminants' values should be in DVAL,
8731 a record value. That is, this routine selects the appropriate
8732 branch of the union at ADDR according to the discriminant value
8733 indicated in the union's type name. Returns VAR_TYPE0 itself if
8734 it represents a variant subject to a pragma Unchecked_Union. */
8735
8736 static struct type *
8737 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8738 CORE_ADDR address, struct value *dval)
8739 {
8740 int which;
8741 struct type *templ_type;
8742 struct type *var_type;
8743
8744 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8745 var_type = TYPE_TARGET_TYPE (var_type0);
8746 else
8747 var_type = var_type0;
8748
8749 templ_type = ada_find_parallel_type (var_type, "___XVU");
8750
8751 if (templ_type != NULL)
8752 var_type = templ_type;
8753
8754 if (is_unchecked_variant (var_type, value_type (dval)))
8755 return var_type0;
8756 which =
8757 ada_which_variant_applies (var_type,
8758 value_type (dval), value_contents (dval));
8759
8760 if (which < 0)
8761 return empty_record (var_type);
8762 else if (is_dynamic_field (var_type, which))
8763 return to_fixed_record_type
8764 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8765 valaddr, address, dval);
8766 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8767 return
8768 to_fixed_record_type
8769 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8770 else
8771 return TYPE_FIELD_TYPE (var_type, which);
8772 }
8773
8774 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8775 ENCODING_TYPE, a type following the GNAT conventions for discrete
8776 type encodings, only carries redundant information. */
8777
8778 static int
8779 ada_is_redundant_range_encoding (struct type *range_type,
8780 struct type *encoding_type)
8781 {
8782 const char *bounds_str;
8783 int n;
8784 LONGEST lo, hi;
8785
8786 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8787
8788 if (TYPE_CODE (get_base_type (range_type))
8789 != TYPE_CODE (get_base_type (encoding_type)))
8790 {
8791 /* The compiler probably used a simple base type to describe
8792 the range type instead of the range's actual base type,
8793 expecting us to get the real base type from the encoding
8794 anyway. In this situation, the encoding cannot be ignored
8795 as redundant. */
8796 return 0;
8797 }
8798
8799 if (is_dynamic_type (range_type))
8800 return 0;
8801
8802 if (TYPE_NAME (encoding_type) == NULL)
8803 return 0;
8804
8805 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8806 if (bounds_str == NULL)
8807 return 0;
8808
8809 n = 8; /* Skip "___XDLU_". */
8810 if (!ada_scan_number (bounds_str, n, &lo, &n))
8811 return 0;
8812 if (TYPE_LOW_BOUND (range_type) != lo)
8813 return 0;
8814
8815 n += 2; /* Skip the "__" separator between the two bounds. */
8816 if (!ada_scan_number (bounds_str, n, &hi, &n))
8817 return 0;
8818 if (TYPE_HIGH_BOUND (range_type) != hi)
8819 return 0;
8820
8821 return 1;
8822 }
8823
8824 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8825 a type following the GNAT encoding for describing array type
8826 indices, only carries redundant information. */
8827
8828 static int
8829 ada_is_redundant_index_type_desc (struct type *array_type,
8830 struct type *desc_type)
8831 {
8832 struct type *this_layer = check_typedef (array_type);
8833 int i;
8834
8835 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8836 {
8837 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8838 TYPE_FIELD_TYPE (desc_type, i)))
8839 return 0;
8840 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8841 }
8842
8843 return 1;
8844 }
8845
8846 /* Assuming that TYPE0 is an array type describing the type of a value
8847 at ADDR, and that DVAL describes a record containing any
8848 discriminants used in TYPE0, returns a type for the value that
8849 contains no dynamic components (that is, no components whose sizes
8850 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8851 true, gives an error message if the resulting type's size is over
8852 varsize_limit. */
8853
8854 static struct type *
8855 to_fixed_array_type (struct type *type0, struct value *dval,
8856 int ignore_too_big)
8857 {
8858 struct type *index_type_desc;
8859 struct type *result;
8860 int constrained_packed_array_p;
8861 static const char *xa_suffix = "___XA";
8862
8863 type0 = ada_check_typedef (type0);
8864 if (TYPE_FIXED_INSTANCE (type0))
8865 return type0;
8866
8867 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8868 if (constrained_packed_array_p)
8869 type0 = decode_constrained_packed_array_type (type0);
8870
8871 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8872
8873 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8874 encoding suffixed with 'P' may still be generated. If so,
8875 it should be used to find the XA type. */
8876
8877 if (index_type_desc == NULL)
8878 {
8879 const char *type_name = ada_type_name (type0);
8880
8881 if (type_name != NULL)
8882 {
8883 const int len = strlen (type_name);
8884 char *name = (char *) alloca (len + strlen (xa_suffix));
8885
8886 if (type_name[len - 1] == 'P')
8887 {
8888 strcpy (name, type_name);
8889 strcpy (name + len - 1, xa_suffix);
8890 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8891 }
8892 }
8893 }
8894
8895 ada_fixup_array_indexes_type (index_type_desc);
8896 if (index_type_desc != NULL
8897 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8898 {
8899 /* Ignore this ___XA parallel type, as it does not bring any
8900 useful information. This allows us to avoid creating fixed
8901 versions of the array's index types, which would be identical
8902 to the original ones. This, in turn, can also help avoid
8903 the creation of fixed versions of the array itself. */
8904 index_type_desc = NULL;
8905 }
8906
8907 if (index_type_desc == NULL)
8908 {
8909 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8910
8911 /* NOTE: elt_type---the fixed version of elt_type0---should never
8912 depend on the contents of the array in properly constructed
8913 debugging data. */
8914 /* Create a fixed version of the array element type.
8915 We're not providing the address of an element here,
8916 and thus the actual object value cannot be inspected to do
8917 the conversion. This should not be a problem, since arrays of
8918 unconstrained objects are not allowed. In particular, all
8919 the elements of an array of a tagged type should all be of
8920 the same type specified in the debugging info. No need to
8921 consult the object tag. */
8922 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8923
8924 /* Make sure we always create a new array type when dealing with
8925 packed array types, since we're going to fix-up the array
8926 type length and element bitsize a little further down. */
8927 if (elt_type0 == elt_type && !constrained_packed_array_p)
8928 result = type0;
8929 else
8930 result = create_array_type (alloc_type_copy (type0),
8931 elt_type, TYPE_INDEX_TYPE (type0));
8932 }
8933 else
8934 {
8935 int i;
8936 struct type *elt_type0;
8937
8938 elt_type0 = type0;
8939 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8940 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8941
8942 /* NOTE: result---the fixed version of elt_type0---should never
8943 depend on the contents of the array in properly constructed
8944 debugging data. */
8945 /* Create a fixed version of the array element type.
8946 We're not providing the address of an element here,
8947 and thus the actual object value cannot be inspected to do
8948 the conversion. This should not be a problem, since arrays of
8949 unconstrained objects are not allowed. In particular, all
8950 the elements of an array of a tagged type should all be of
8951 the same type specified in the debugging info. No need to
8952 consult the object tag. */
8953 result =
8954 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8955
8956 elt_type0 = type0;
8957 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8958 {
8959 struct type *range_type =
8960 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8961
8962 result = create_array_type (alloc_type_copy (elt_type0),
8963 result, range_type);
8964 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8965 }
8966 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8967 error (_("array type with dynamic size is larger than varsize-limit"));
8968 }
8969
8970 /* We want to preserve the type name. This can be useful when
8971 trying to get the type name of a value that has already been
8972 printed (for instance, if the user did "print VAR; whatis $". */
8973 TYPE_NAME (result) = TYPE_NAME (type0);
8974
8975 if (constrained_packed_array_p)
8976 {
8977 /* So far, the resulting type has been created as if the original
8978 type was a regular (non-packed) array type. As a result, the
8979 bitsize of the array elements needs to be set again, and the array
8980 length needs to be recomputed based on that bitsize. */
8981 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8982 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8983
8984 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8985 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8986 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8987 TYPE_LENGTH (result)++;
8988 }
8989
8990 TYPE_FIXED_INSTANCE (result) = 1;
8991 return result;
8992 }
8993
8994
8995 /* A standard type (containing no dynamically sized components)
8996 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8997 DVAL describes a record containing any discriminants used in TYPE0,
8998 and may be NULL if there are none, or if the object of type TYPE at
8999 ADDRESS or in VALADDR contains these discriminants.
9000
9001 If CHECK_TAG is not null, in the case of tagged types, this function
9002 attempts to locate the object's tag and use it to compute the actual
9003 type. However, when ADDRESS is null, we cannot use it to determine the
9004 location of the tag, and therefore compute the tagged type's actual type.
9005 So we return the tagged type without consulting the tag. */
9006
9007 static struct type *
9008 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9009 CORE_ADDR address, struct value *dval, int check_tag)
9010 {
9011 type = ada_check_typedef (type);
9012
9013 /* Only un-fixed types need to be handled here. */
9014 if (!HAVE_GNAT_AUX_INFO (type))
9015 return type;
9016
9017 switch (TYPE_CODE (type))
9018 {
9019 default:
9020 return type;
9021 case TYPE_CODE_STRUCT:
9022 {
9023 struct type *static_type = to_static_fixed_type (type);
9024 struct type *fixed_record_type =
9025 to_fixed_record_type (type, valaddr, address, NULL);
9026
9027 /* If STATIC_TYPE is a tagged type and we know the object's address,
9028 then we can determine its tag, and compute the object's actual
9029 type from there. Note that we have to use the fixed record
9030 type (the parent part of the record may have dynamic fields
9031 and the way the location of _tag is expressed may depend on
9032 them). */
9033
9034 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9035 {
9036 struct value *tag =
9037 value_tag_from_contents_and_address
9038 (fixed_record_type,
9039 valaddr,
9040 address);
9041 struct type *real_type = type_from_tag (tag);
9042 struct value *obj =
9043 value_from_contents_and_address (fixed_record_type,
9044 valaddr,
9045 address);
9046 fixed_record_type = value_type (obj);
9047 if (real_type != NULL)
9048 return to_fixed_record_type
9049 (real_type, NULL,
9050 value_address (ada_tag_value_at_base_address (obj)), NULL);
9051 }
9052
9053 /* Check to see if there is a parallel ___XVZ variable.
9054 If there is, then it provides the actual size of our type. */
9055 else if (ada_type_name (fixed_record_type) != NULL)
9056 {
9057 const char *name = ada_type_name (fixed_record_type);
9058 char *xvz_name
9059 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9060 bool xvz_found = false;
9061 LONGEST size;
9062
9063 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9064 try
9065 {
9066 xvz_found = get_int_var_value (xvz_name, size);
9067 }
9068 catch (const gdb_exception_error &except)
9069 {
9070 /* We found the variable, but somehow failed to read
9071 its value. Rethrow the same error, but with a little
9072 bit more information, to help the user understand
9073 what went wrong (Eg: the variable might have been
9074 optimized out). */
9075 throw_error (except.error,
9076 _("unable to read value of %s (%s)"),
9077 xvz_name, except.what ());
9078 }
9079
9080 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9081 {
9082 fixed_record_type = copy_type (fixed_record_type);
9083 TYPE_LENGTH (fixed_record_type) = size;
9084
9085 /* The FIXED_RECORD_TYPE may have be a stub. We have
9086 observed this when the debugging info is STABS, and
9087 apparently it is something that is hard to fix.
9088
9089 In practice, we don't need the actual type definition
9090 at all, because the presence of the XVZ variable allows us
9091 to assume that there must be a XVS type as well, which we
9092 should be able to use later, when we need the actual type
9093 definition.
9094
9095 In the meantime, pretend that the "fixed" type we are
9096 returning is NOT a stub, because this can cause trouble
9097 when using this type to create new types targeting it.
9098 Indeed, the associated creation routines often check
9099 whether the target type is a stub and will try to replace
9100 it, thus using a type with the wrong size. This, in turn,
9101 might cause the new type to have the wrong size too.
9102 Consider the case of an array, for instance, where the size
9103 of the array is computed from the number of elements in
9104 our array multiplied by the size of its element. */
9105 TYPE_STUB (fixed_record_type) = 0;
9106 }
9107 }
9108 return fixed_record_type;
9109 }
9110 case TYPE_CODE_ARRAY:
9111 return to_fixed_array_type (type, dval, 1);
9112 case TYPE_CODE_UNION:
9113 if (dval == NULL)
9114 return type;
9115 else
9116 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9117 }
9118 }
9119
9120 /* The same as ada_to_fixed_type_1, except that it preserves the type
9121 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9122
9123 The typedef layer needs be preserved in order to differentiate between
9124 arrays and array pointers when both types are implemented using the same
9125 fat pointer. In the array pointer case, the pointer is encoded as
9126 a typedef of the pointer type. For instance, considering:
9127
9128 type String_Access is access String;
9129 S1 : String_Access := null;
9130
9131 To the debugger, S1 is defined as a typedef of type String. But
9132 to the user, it is a pointer. So if the user tries to print S1,
9133 we should not dereference the array, but print the array address
9134 instead.
9135
9136 If we didn't preserve the typedef layer, we would lose the fact that
9137 the type is to be presented as a pointer (needs de-reference before
9138 being printed). And we would also use the source-level type name. */
9139
9140 struct type *
9141 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9142 CORE_ADDR address, struct value *dval, int check_tag)
9143
9144 {
9145 struct type *fixed_type =
9146 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9147
9148 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9149 then preserve the typedef layer.
9150
9151 Implementation note: We can only check the main-type portion of
9152 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9153 from TYPE now returns a type that has the same instance flags
9154 as TYPE. For instance, if TYPE is a "typedef const", and its
9155 target type is a "struct", then the typedef elimination will return
9156 a "const" version of the target type. See check_typedef for more
9157 details about how the typedef layer elimination is done.
9158
9159 brobecker/2010-11-19: It seems to me that the only case where it is
9160 useful to preserve the typedef layer is when dealing with fat pointers.
9161 Perhaps, we could add a check for that and preserve the typedef layer
9162 only in that situation. But this seems unecessary so far, probably
9163 because we call check_typedef/ada_check_typedef pretty much everywhere.
9164 */
9165 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9166 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9167 == TYPE_MAIN_TYPE (fixed_type)))
9168 return type;
9169
9170 return fixed_type;
9171 }
9172
9173 /* A standard (static-sized) type corresponding as well as possible to
9174 TYPE0, but based on no runtime data. */
9175
9176 static struct type *
9177 to_static_fixed_type (struct type *type0)
9178 {
9179 struct type *type;
9180
9181 if (type0 == NULL)
9182 return NULL;
9183
9184 if (TYPE_FIXED_INSTANCE (type0))
9185 return type0;
9186
9187 type0 = ada_check_typedef (type0);
9188
9189 switch (TYPE_CODE (type0))
9190 {
9191 default:
9192 return type0;
9193 case TYPE_CODE_STRUCT:
9194 type = dynamic_template_type (type0);
9195 if (type != NULL)
9196 return template_to_static_fixed_type (type);
9197 else
9198 return template_to_static_fixed_type (type0);
9199 case TYPE_CODE_UNION:
9200 type = ada_find_parallel_type (type0, "___XVU");
9201 if (type != NULL)
9202 return template_to_static_fixed_type (type);
9203 else
9204 return template_to_static_fixed_type (type0);
9205 }
9206 }
9207
9208 /* A static approximation of TYPE with all type wrappers removed. */
9209
9210 static struct type *
9211 static_unwrap_type (struct type *type)
9212 {
9213 if (ada_is_aligner_type (type))
9214 {
9215 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9216 if (ada_type_name (type1) == NULL)
9217 TYPE_NAME (type1) = ada_type_name (type);
9218
9219 return static_unwrap_type (type1);
9220 }
9221 else
9222 {
9223 struct type *raw_real_type = ada_get_base_type (type);
9224
9225 if (raw_real_type == type)
9226 return type;
9227 else
9228 return to_static_fixed_type (raw_real_type);
9229 }
9230 }
9231
9232 /* In some cases, incomplete and private types require
9233 cross-references that are not resolved as records (for example,
9234 type Foo;
9235 type FooP is access Foo;
9236 V: FooP;
9237 type Foo is array ...;
9238 ). In these cases, since there is no mechanism for producing
9239 cross-references to such types, we instead substitute for FooP a
9240 stub enumeration type that is nowhere resolved, and whose tag is
9241 the name of the actual type. Call these types "non-record stubs". */
9242
9243 /* A type equivalent to TYPE that is not a non-record stub, if one
9244 exists, otherwise TYPE. */
9245
9246 struct type *
9247 ada_check_typedef (struct type *type)
9248 {
9249 if (type == NULL)
9250 return NULL;
9251
9252 /* If our type is an access to an unconstrained array, which is encoded
9253 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9254 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9255 what allows us to distinguish between fat pointers that represent
9256 array types, and fat pointers that represent array access types
9257 (in both cases, the compiler implements them as fat pointers). */
9258 if (ada_is_access_to_unconstrained_array (type))
9259 return type;
9260
9261 type = check_typedef (type);
9262 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9263 || !TYPE_STUB (type)
9264 || TYPE_NAME (type) == NULL)
9265 return type;
9266 else
9267 {
9268 const char *name = TYPE_NAME (type);
9269 struct type *type1 = ada_find_any_type (name);
9270
9271 if (type1 == NULL)
9272 return type;
9273
9274 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9275 stubs pointing to arrays, as we don't create symbols for array
9276 types, only for the typedef-to-array types). If that's the case,
9277 strip the typedef layer. */
9278 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9279 type1 = ada_check_typedef (type1);
9280
9281 return type1;
9282 }
9283 }
9284
9285 /* A value representing the data at VALADDR/ADDRESS as described by
9286 type TYPE0, but with a standard (static-sized) type that correctly
9287 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9288 type, then return VAL0 [this feature is simply to avoid redundant
9289 creation of struct values]. */
9290
9291 static struct value *
9292 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9293 struct value *val0)
9294 {
9295 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9296
9297 if (type == type0 && val0 != NULL)
9298 return val0;
9299
9300 if (VALUE_LVAL (val0) != lval_memory)
9301 {
9302 /* Our value does not live in memory; it could be a convenience
9303 variable, for instance. Create a not_lval value using val0's
9304 contents. */
9305 return value_from_contents (type, value_contents (val0));
9306 }
9307
9308 return value_from_contents_and_address (type, 0, address);
9309 }
9310
9311 /* A value representing VAL, but with a standard (static-sized) type
9312 that correctly describes it. Does not necessarily create a new
9313 value. */
9314
9315 struct value *
9316 ada_to_fixed_value (struct value *val)
9317 {
9318 val = unwrap_value (val);
9319 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9320 return val;
9321 }
9322 \f
9323
9324 /* Attributes */
9325
9326 /* Table mapping attribute numbers to names.
9327 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9328
9329 static const char *attribute_names[] = {
9330 "<?>",
9331
9332 "first",
9333 "last",
9334 "length",
9335 "image",
9336 "max",
9337 "min",
9338 "modulus",
9339 "pos",
9340 "size",
9341 "tag",
9342 "val",
9343 0
9344 };
9345
9346 const char *
9347 ada_attribute_name (enum exp_opcode n)
9348 {
9349 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9350 return attribute_names[n - OP_ATR_FIRST + 1];
9351 else
9352 return attribute_names[0];
9353 }
9354
9355 /* Evaluate the 'POS attribute applied to ARG. */
9356
9357 static LONGEST
9358 pos_atr (struct value *arg)
9359 {
9360 struct value *val = coerce_ref (arg);
9361 struct type *type = value_type (val);
9362 LONGEST result;
9363
9364 if (!discrete_type_p (type))
9365 error (_("'POS only defined on discrete types"));
9366
9367 if (!discrete_position (type, value_as_long (val), &result))
9368 error (_("enumeration value is invalid: can't find 'POS"));
9369
9370 return result;
9371 }
9372
9373 static struct value *
9374 value_pos_atr (struct type *type, struct value *arg)
9375 {
9376 return value_from_longest (type, pos_atr (arg));
9377 }
9378
9379 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9380
9381 static struct value *
9382 value_val_atr (struct type *type, struct value *arg)
9383 {
9384 if (!discrete_type_p (type))
9385 error (_("'VAL only defined on discrete types"));
9386 if (!integer_type_p (value_type (arg)))
9387 error (_("'VAL requires integral argument"));
9388
9389 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9390 {
9391 long pos = value_as_long (arg);
9392
9393 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9394 error (_("argument to 'VAL out of range"));
9395 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9396 }
9397 else
9398 return value_from_longest (type, value_as_long (arg));
9399 }
9400 \f
9401
9402 /* Evaluation */
9403
9404 /* True if TYPE appears to be an Ada character type.
9405 [At the moment, this is true only for Character and Wide_Character;
9406 It is a heuristic test that could stand improvement]. */
9407
9408 int
9409 ada_is_character_type (struct type *type)
9410 {
9411 const char *name;
9412
9413 /* If the type code says it's a character, then assume it really is,
9414 and don't check any further. */
9415 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9416 return 1;
9417
9418 /* Otherwise, assume it's a character type iff it is a discrete type
9419 with a known character type name. */
9420 name = ada_type_name (type);
9421 return (name != NULL
9422 && (TYPE_CODE (type) == TYPE_CODE_INT
9423 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9424 && (strcmp (name, "character") == 0
9425 || strcmp (name, "wide_character") == 0
9426 || strcmp (name, "wide_wide_character") == 0
9427 || strcmp (name, "unsigned char") == 0));
9428 }
9429
9430 /* True if TYPE appears to be an Ada string type. */
9431
9432 int
9433 ada_is_string_type (struct type *type)
9434 {
9435 type = ada_check_typedef (type);
9436 if (type != NULL
9437 && TYPE_CODE (type) != TYPE_CODE_PTR
9438 && (ada_is_simple_array_type (type)
9439 || ada_is_array_descriptor_type (type))
9440 && ada_array_arity (type) == 1)
9441 {
9442 struct type *elttype = ada_array_element_type (type, 1);
9443
9444 return ada_is_character_type (elttype);
9445 }
9446 else
9447 return 0;
9448 }
9449
9450 /* The compiler sometimes provides a parallel XVS type for a given
9451 PAD type. Normally, it is safe to follow the PAD type directly,
9452 but older versions of the compiler have a bug that causes the offset
9453 of its "F" field to be wrong. Following that field in that case
9454 would lead to incorrect results, but this can be worked around
9455 by ignoring the PAD type and using the associated XVS type instead.
9456
9457 Set to True if the debugger should trust the contents of PAD types.
9458 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9459 static int trust_pad_over_xvs = 1;
9460
9461 /* True if TYPE is a struct type introduced by the compiler to force the
9462 alignment of a value. Such types have a single field with a
9463 distinctive name. */
9464
9465 int
9466 ada_is_aligner_type (struct type *type)
9467 {
9468 type = ada_check_typedef (type);
9469
9470 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9471 return 0;
9472
9473 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9474 && TYPE_NFIELDS (type) == 1
9475 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9476 }
9477
9478 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9479 the parallel type. */
9480
9481 struct type *
9482 ada_get_base_type (struct type *raw_type)
9483 {
9484 struct type *real_type_namer;
9485 struct type *raw_real_type;
9486
9487 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9488 return raw_type;
9489
9490 if (ada_is_aligner_type (raw_type))
9491 /* The encoding specifies that we should always use the aligner type.
9492 So, even if this aligner type has an associated XVS type, we should
9493 simply ignore it.
9494
9495 According to the compiler gurus, an XVS type parallel to an aligner
9496 type may exist because of a stabs limitation. In stabs, aligner
9497 types are empty because the field has a variable-sized type, and
9498 thus cannot actually be used as an aligner type. As a result,
9499 we need the associated parallel XVS type to decode the type.
9500 Since the policy in the compiler is to not change the internal
9501 representation based on the debugging info format, we sometimes
9502 end up having a redundant XVS type parallel to the aligner type. */
9503 return raw_type;
9504
9505 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9506 if (real_type_namer == NULL
9507 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9508 || TYPE_NFIELDS (real_type_namer) != 1)
9509 return raw_type;
9510
9511 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9512 {
9513 /* This is an older encoding form where the base type needs to be
9514 looked up by name. We prefer the newer enconding because it is
9515 more efficient. */
9516 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9517 if (raw_real_type == NULL)
9518 return raw_type;
9519 else
9520 return raw_real_type;
9521 }
9522
9523 /* The field in our XVS type is a reference to the base type. */
9524 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9525 }
9526
9527 /* The type of value designated by TYPE, with all aligners removed. */
9528
9529 struct type *
9530 ada_aligned_type (struct type *type)
9531 {
9532 if (ada_is_aligner_type (type))
9533 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9534 else
9535 return ada_get_base_type (type);
9536 }
9537
9538
9539 /* The address of the aligned value in an object at address VALADDR
9540 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9541
9542 const gdb_byte *
9543 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9544 {
9545 if (ada_is_aligner_type (type))
9546 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9547 valaddr +
9548 TYPE_FIELD_BITPOS (type,
9549 0) / TARGET_CHAR_BIT);
9550 else
9551 return valaddr;
9552 }
9553
9554
9555
9556 /* The printed representation of an enumeration literal with encoded
9557 name NAME. The value is good to the next call of ada_enum_name. */
9558 const char *
9559 ada_enum_name (const char *name)
9560 {
9561 static char *result;
9562 static size_t result_len = 0;
9563 const char *tmp;
9564
9565 /* First, unqualify the enumeration name:
9566 1. Search for the last '.' character. If we find one, then skip
9567 all the preceding characters, the unqualified name starts
9568 right after that dot.
9569 2. Otherwise, we may be debugging on a target where the compiler
9570 translates dots into "__". Search forward for double underscores,
9571 but stop searching when we hit an overloading suffix, which is
9572 of the form "__" followed by digits. */
9573
9574 tmp = strrchr (name, '.');
9575 if (tmp != NULL)
9576 name = tmp + 1;
9577 else
9578 {
9579 while ((tmp = strstr (name, "__")) != NULL)
9580 {
9581 if (isdigit (tmp[2]))
9582 break;
9583 else
9584 name = tmp + 2;
9585 }
9586 }
9587
9588 if (name[0] == 'Q')
9589 {
9590 int v;
9591
9592 if (name[1] == 'U' || name[1] == 'W')
9593 {
9594 if (sscanf (name + 2, "%x", &v) != 1)
9595 return name;
9596 }
9597 else
9598 return name;
9599
9600 GROW_VECT (result, result_len, 16);
9601 if (isascii (v) && isprint (v))
9602 xsnprintf (result, result_len, "'%c'", v);
9603 else if (name[1] == 'U')
9604 xsnprintf (result, result_len, "[\"%02x\"]", v);
9605 else
9606 xsnprintf (result, result_len, "[\"%04x\"]", v);
9607
9608 return result;
9609 }
9610 else
9611 {
9612 tmp = strstr (name, "__");
9613 if (tmp == NULL)
9614 tmp = strstr (name, "$");
9615 if (tmp != NULL)
9616 {
9617 GROW_VECT (result, result_len, tmp - name + 1);
9618 strncpy (result, name, tmp - name);
9619 result[tmp - name] = '\0';
9620 return result;
9621 }
9622
9623 return name;
9624 }
9625 }
9626
9627 /* Evaluate the subexpression of EXP starting at *POS as for
9628 evaluate_type, updating *POS to point just past the evaluated
9629 expression. */
9630
9631 static struct value *
9632 evaluate_subexp_type (struct expression *exp, int *pos)
9633 {
9634 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9635 }
9636
9637 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9638 value it wraps. */
9639
9640 static struct value *
9641 unwrap_value (struct value *val)
9642 {
9643 struct type *type = ada_check_typedef (value_type (val));
9644
9645 if (ada_is_aligner_type (type))
9646 {
9647 struct value *v = ada_value_struct_elt (val, "F", 0);
9648 struct type *val_type = ada_check_typedef (value_type (v));
9649
9650 if (ada_type_name (val_type) == NULL)
9651 TYPE_NAME (val_type) = ada_type_name (type);
9652
9653 return unwrap_value (v);
9654 }
9655 else
9656 {
9657 struct type *raw_real_type =
9658 ada_check_typedef (ada_get_base_type (type));
9659
9660 /* If there is no parallel XVS or XVE type, then the value is
9661 already unwrapped. Return it without further modification. */
9662 if ((type == raw_real_type)
9663 && ada_find_parallel_type (type, "___XVE") == NULL)
9664 return val;
9665
9666 return
9667 coerce_unspec_val_to_type
9668 (val, ada_to_fixed_type (raw_real_type, 0,
9669 value_address (val),
9670 NULL, 1));
9671 }
9672 }
9673
9674 static struct value *
9675 cast_from_fixed (struct type *type, struct value *arg)
9676 {
9677 struct value *scale = ada_scaling_factor (value_type (arg));
9678 arg = value_cast (value_type (scale), arg);
9679
9680 arg = value_binop (arg, scale, BINOP_MUL);
9681 return value_cast (type, arg);
9682 }
9683
9684 static struct value *
9685 cast_to_fixed (struct type *type, struct value *arg)
9686 {
9687 if (type == value_type (arg))
9688 return arg;
9689
9690 struct value *scale = ada_scaling_factor (type);
9691 if (ada_is_fixed_point_type (value_type (arg)))
9692 arg = cast_from_fixed (value_type (scale), arg);
9693 else
9694 arg = value_cast (value_type (scale), arg);
9695
9696 arg = value_binop (arg, scale, BINOP_DIV);
9697 return value_cast (type, arg);
9698 }
9699
9700 /* Given two array types T1 and T2, return nonzero iff both arrays
9701 contain the same number of elements. */
9702
9703 static int
9704 ada_same_array_size_p (struct type *t1, struct type *t2)
9705 {
9706 LONGEST lo1, hi1, lo2, hi2;
9707
9708 /* Get the array bounds in order to verify that the size of
9709 the two arrays match. */
9710 if (!get_array_bounds (t1, &lo1, &hi1)
9711 || !get_array_bounds (t2, &lo2, &hi2))
9712 error (_("unable to determine array bounds"));
9713
9714 /* To make things easier for size comparison, normalize a bit
9715 the case of empty arrays by making sure that the difference
9716 between upper bound and lower bound is always -1. */
9717 if (lo1 > hi1)
9718 hi1 = lo1 - 1;
9719 if (lo2 > hi2)
9720 hi2 = lo2 - 1;
9721
9722 return (hi1 - lo1 == hi2 - lo2);
9723 }
9724
9725 /* Assuming that VAL is an array of integrals, and TYPE represents
9726 an array with the same number of elements, but with wider integral
9727 elements, return an array "casted" to TYPE. In practice, this
9728 means that the returned array is built by casting each element
9729 of the original array into TYPE's (wider) element type. */
9730
9731 static struct value *
9732 ada_promote_array_of_integrals (struct type *type, struct value *val)
9733 {
9734 struct type *elt_type = TYPE_TARGET_TYPE (type);
9735 LONGEST lo, hi;
9736 struct value *res;
9737 LONGEST i;
9738
9739 /* Verify that both val and type are arrays of scalars, and
9740 that the size of val's elements is smaller than the size
9741 of type's element. */
9742 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9743 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9744 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9745 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9746 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9747 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9748
9749 if (!get_array_bounds (type, &lo, &hi))
9750 error (_("unable to determine array bounds"));
9751
9752 res = allocate_value (type);
9753
9754 /* Promote each array element. */
9755 for (i = 0; i < hi - lo + 1; i++)
9756 {
9757 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9758
9759 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9760 value_contents_all (elt), TYPE_LENGTH (elt_type));
9761 }
9762
9763 return res;
9764 }
9765
9766 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9767 return the converted value. */
9768
9769 static struct value *
9770 coerce_for_assign (struct type *type, struct value *val)
9771 {
9772 struct type *type2 = value_type (val);
9773
9774 if (type == type2)
9775 return val;
9776
9777 type2 = ada_check_typedef (type2);
9778 type = ada_check_typedef (type);
9779
9780 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9781 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9782 {
9783 val = ada_value_ind (val);
9784 type2 = value_type (val);
9785 }
9786
9787 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9788 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9789 {
9790 if (!ada_same_array_size_p (type, type2))
9791 error (_("cannot assign arrays of different length"));
9792
9793 if (is_integral_type (TYPE_TARGET_TYPE (type))
9794 && is_integral_type (TYPE_TARGET_TYPE (type2))
9795 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9796 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9797 {
9798 /* Allow implicit promotion of the array elements to
9799 a wider type. */
9800 return ada_promote_array_of_integrals (type, val);
9801 }
9802
9803 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9804 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9805 error (_("Incompatible types in assignment"));
9806 deprecated_set_value_type (val, type);
9807 }
9808 return val;
9809 }
9810
9811 static struct value *
9812 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9813 {
9814 struct value *val;
9815 struct type *type1, *type2;
9816 LONGEST v, v1, v2;
9817
9818 arg1 = coerce_ref (arg1);
9819 arg2 = coerce_ref (arg2);
9820 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9821 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9822
9823 if (TYPE_CODE (type1) != TYPE_CODE_INT
9824 || TYPE_CODE (type2) != TYPE_CODE_INT)
9825 return value_binop (arg1, arg2, op);
9826
9827 switch (op)
9828 {
9829 case BINOP_MOD:
9830 case BINOP_DIV:
9831 case BINOP_REM:
9832 break;
9833 default:
9834 return value_binop (arg1, arg2, op);
9835 }
9836
9837 v2 = value_as_long (arg2);
9838 if (v2 == 0)
9839 error (_("second operand of %s must not be zero."), op_string (op));
9840
9841 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9842 return value_binop (arg1, arg2, op);
9843
9844 v1 = value_as_long (arg1);
9845 switch (op)
9846 {
9847 case BINOP_DIV:
9848 v = v1 / v2;
9849 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9850 v += v > 0 ? -1 : 1;
9851 break;
9852 case BINOP_REM:
9853 v = v1 % v2;
9854 if (v * v1 < 0)
9855 v -= v2;
9856 break;
9857 default:
9858 /* Should not reach this point. */
9859 v = 0;
9860 }
9861
9862 val = allocate_value (type1);
9863 store_unsigned_integer (value_contents_raw (val),
9864 TYPE_LENGTH (value_type (val)),
9865 gdbarch_byte_order (get_type_arch (type1)), v);
9866 return val;
9867 }
9868
9869 static int
9870 ada_value_equal (struct value *arg1, struct value *arg2)
9871 {
9872 if (ada_is_direct_array_type (value_type (arg1))
9873 || ada_is_direct_array_type (value_type (arg2)))
9874 {
9875 struct type *arg1_type, *arg2_type;
9876
9877 /* Automatically dereference any array reference before
9878 we attempt to perform the comparison. */
9879 arg1 = ada_coerce_ref (arg1);
9880 arg2 = ada_coerce_ref (arg2);
9881
9882 arg1 = ada_coerce_to_simple_array (arg1);
9883 arg2 = ada_coerce_to_simple_array (arg2);
9884
9885 arg1_type = ada_check_typedef (value_type (arg1));
9886 arg2_type = ada_check_typedef (value_type (arg2));
9887
9888 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9889 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9890 error (_("Attempt to compare array with non-array"));
9891 /* FIXME: The following works only for types whose
9892 representations use all bits (no padding or undefined bits)
9893 and do not have user-defined equality. */
9894 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9895 && memcmp (value_contents (arg1), value_contents (arg2),
9896 TYPE_LENGTH (arg1_type)) == 0);
9897 }
9898 return value_equal (arg1, arg2);
9899 }
9900
9901 /* Total number of component associations in the aggregate starting at
9902 index PC in EXP. Assumes that index PC is the start of an
9903 OP_AGGREGATE. */
9904
9905 static int
9906 num_component_specs (struct expression *exp, int pc)
9907 {
9908 int n, m, i;
9909
9910 m = exp->elts[pc + 1].longconst;
9911 pc += 3;
9912 n = 0;
9913 for (i = 0; i < m; i += 1)
9914 {
9915 switch (exp->elts[pc].opcode)
9916 {
9917 default:
9918 n += 1;
9919 break;
9920 case OP_CHOICES:
9921 n += exp->elts[pc + 1].longconst;
9922 break;
9923 }
9924 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9925 }
9926 return n;
9927 }
9928
9929 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9930 component of LHS (a simple array or a record), updating *POS past
9931 the expression, assuming that LHS is contained in CONTAINER. Does
9932 not modify the inferior's memory, nor does it modify LHS (unless
9933 LHS == CONTAINER). */
9934
9935 static void
9936 assign_component (struct value *container, struct value *lhs, LONGEST index,
9937 struct expression *exp, int *pos)
9938 {
9939 struct value *mark = value_mark ();
9940 struct value *elt;
9941 struct type *lhs_type = check_typedef (value_type (lhs));
9942
9943 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9944 {
9945 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9946 struct value *index_val = value_from_longest (index_type, index);
9947
9948 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9949 }
9950 else
9951 {
9952 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9953 elt = ada_to_fixed_value (elt);
9954 }
9955
9956 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9957 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9958 else
9959 value_assign_to_component (container, elt,
9960 ada_evaluate_subexp (NULL, exp, pos,
9961 EVAL_NORMAL));
9962
9963 value_free_to_mark (mark);
9964 }
9965
9966 /* Assuming that LHS represents an lvalue having a record or array
9967 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9968 of that aggregate's value to LHS, advancing *POS past the
9969 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9970 lvalue containing LHS (possibly LHS itself). Does not modify
9971 the inferior's memory, nor does it modify the contents of
9972 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9973
9974 static struct value *
9975 assign_aggregate (struct value *container,
9976 struct value *lhs, struct expression *exp,
9977 int *pos, enum noside noside)
9978 {
9979 struct type *lhs_type;
9980 int n = exp->elts[*pos+1].longconst;
9981 LONGEST low_index, high_index;
9982 int num_specs;
9983 LONGEST *indices;
9984 int max_indices, num_indices;
9985 int i;
9986
9987 *pos += 3;
9988 if (noside != EVAL_NORMAL)
9989 {
9990 for (i = 0; i < n; i += 1)
9991 ada_evaluate_subexp (NULL, exp, pos, noside);
9992 return container;
9993 }
9994
9995 container = ada_coerce_ref (container);
9996 if (ada_is_direct_array_type (value_type (container)))
9997 container = ada_coerce_to_simple_array (container);
9998 lhs = ada_coerce_ref (lhs);
9999 if (!deprecated_value_modifiable (lhs))
10000 error (_("Left operand of assignment is not a modifiable lvalue."));
10001
10002 lhs_type = check_typedef (value_type (lhs));
10003 if (ada_is_direct_array_type (lhs_type))
10004 {
10005 lhs = ada_coerce_to_simple_array (lhs);
10006 lhs_type = check_typedef (value_type (lhs));
10007 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10008 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
10009 }
10010 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10011 {
10012 low_index = 0;
10013 high_index = num_visible_fields (lhs_type) - 1;
10014 }
10015 else
10016 error (_("Left-hand side must be array or record."));
10017
10018 num_specs = num_component_specs (exp, *pos - 3);
10019 max_indices = 4 * num_specs + 4;
10020 indices = XALLOCAVEC (LONGEST, max_indices);
10021 indices[0] = indices[1] = low_index - 1;
10022 indices[2] = indices[3] = high_index + 1;
10023 num_indices = 4;
10024
10025 for (i = 0; i < n; i += 1)
10026 {
10027 switch (exp->elts[*pos].opcode)
10028 {
10029 case OP_CHOICES:
10030 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10031 &num_indices, max_indices,
10032 low_index, high_index);
10033 break;
10034 case OP_POSITIONAL:
10035 aggregate_assign_positional (container, lhs, exp, pos, indices,
10036 &num_indices, max_indices,
10037 low_index, high_index);
10038 break;
10039 case OP_OTHERS:
10040 if (i != n-1)
10041 error (_("Misplaced 'others' clause"));
10042 aggregate_assign_others (container, lhs, exp, pos, indices,
10043 num_indices, low_index, high_index);
10044 break;
10045 default:
10046 error (_("Internal error: bad aggregate clause"));
10047 }
10048 }
10049
10050 return container;
10051 }
10052
10053 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10054 construct at *POS, updating *POS past the construct, given that
10055 the positions are relative to lower bound LOW, where HIGH is the
10056 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10057 updating *NUM_INDICES as needed. CONTAINER is as for
10058 assign_aggregate. */
10059 static void
10060 aggregate_assign_positional (struct value *container,
10061 struct value *lhs, struct expression *exp,
10062 int *pos, LONGEST *indices, int *num_indices,
10063 int max_indices, LONGEST low, LONGEST high)
10064 {
10065 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10066
10067 if (ind - 1 == high)
10068 warning (_("Extra components in aggregate ignored."));
10069 if (ind <= high)
10070 {
10071 add_component_interval (ind, ind, indices, num_indices, max_indices);
10072 *pos += 3;
10073 assign_component (container, lhs, ind, exp, pos);
10074 }
10075 else
10076 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10077 }
10078
10079 /* Assign into the components of LHS indexed by the OP_CHOICES
10080 construct at *POS, updating *POS past the construct, given that
10081 the allowable indices are LOW..HIGH. Record the indices assigned
10082 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10083 needed. CONTAINER is as for assign_aggregate. */
10084 static void
10085 aggregate_assign_from_choices (struct value *container,
10086 struct value *lhs, struct expression *exp,
10087 int *pos, LONGEST *indices, int *num_indices,
10088 int max_indices, LONGEST low, LONGEST high)
10089 {
10090 int j;
10091 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10092 int choice_pos, expr_pc;
10093 int is_array = ada_is_direct_array_type (value_type (lhs));
10094
10095 choice_pos = *pos += 3;
10096
10097 for (j = 0; j < n_choices; j += 1)
10098 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10099 expr_pc = *pos;
10100 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10101
10102 for (j = 0; j < n_choices; j += 1)
10103 {
10104 LONGEST lower, upper;
10105 enum exp_opcode op = exp->elts[choice_pos].opcode;
10106
10107 if (op == OP_DISCRETE_RANGE)
10108 {
10109 choice_pos += 1;
10110 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10111 EVAL_NORMAL));
10112 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10113 EVAL_NORMAL));
10114 }
10115 else if (is_array)
10116 {
10117 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10118 EVAL_NORMAL));
10119 upper = lower;
10120 }
10121 else
10122 {
10123 int ind;
10124 const char *name;
10125
10126 switch (op)
10127 {
10128 case OP_NAME:
10129 name = &exp->elts[choice_pos + 2].string;
10130 break;
10131 case OP_VAR_VALUE:
10132 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10133 break;
10134 default:
10135 error (_("Invalid record component association."));
10136 }
10137 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10138 ind = 0;
10139 if (! find_struct_field (name, value_type (lhs), 0,
10140 NULL, NULL, NULL, NULL, &ind))
10141 error (_("Unknown component name: %s."), name);
10142 lower = upper = ind;
10143 }
10144
10145 if (lower <= upper && (lower < low || upper > high))
10146 error (_("Index in component association out of bounds."));
10147
10148 add_component_interval (lower, upper, indices, num_indices,
10149 max_indices);
10150 while (lower <= upper)
10151 {
10152 int pos1;
10153
10154 pos1 = expr_pc;
10155 assign_component (container, lhs, lower, exp, &pos1);
10156 lower += 1;
10157 }
10158 }
10159 }
10160
10161 /* Assign the value of the expression in the OP_OTHERS construct in
10162 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10163 have not been previously assigned. The index intervals already assigned
10164 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10165 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10166 static void
10167 aggregate_assign_others (struct value *container,
10168 struct value *lhs, struct expression *exp,
10169 int *pos, LONGEST *indices, int num_indices,
10170 LONGEST low, LONGEST high)
10171 {
10172 int i;
10173 int expr_pc = *pos + 1;
10174
10175 for (i = 0; i < num_indices - 2; i += 2)
10176 {
10177 LONGEST ind;
10178
10179 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10180 {
10181 int localpos;
10182
10183 localpos = expr_pc;
10184 assign_component (container, lhs, ind, exp, &localpos);
10185 }
10186 }
10187 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10188 }
10189
10190 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10191 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10192 modifying *SIZE as needed. It is an error if *SIZE exceeds
10193 MAX_SIZE. The resulting intervals do not overlap. */
10194 static void
10195 add_component_interval (LONGEST low, LONGEST high,
10196 LONGEST* indices, int *size, int max_size)
10197 {
10198 int i, j;
10199
10200 for (i = 0; i < *size; i += 2) {
10201 if (high >= indices[i] && low <= indices[i + 1])
10202 {
10203 int kh;
10204
10205 for (kh = i + 2; kh < *size; kh += 2)
10206 if (high < indices[kh])
10207 break;
10208 if (low < indices[i])
10209 indices[i] = low;
10210 indices[i + 1] = indices[kh - 1];
10211 if (high > indices[i + 1])
10212 indices[i + 1] = high;
10213 memcpy (indices + i + 2, indices + kh, *size - kh);
10214 *size -= kh - i - 2;
10215 return;
10216 }
10217 else if (high < indices[i])
10218 break;
10219 }
10220
10221 if (*size == max_size)
10222 error (_("Internal error: miscounted aggregate components."));
10223 *size += 2;
10224 for (j = *size-1; j >= i+2; j -= 1)
10225 indices[j] = indices[j - 2];
10226 indices[i] = low;
10227 indices[i + 1] = high;
10228 }
10229
10230 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10231 is different. */
10232
10233 static struct value *
10234 ada_value_cast (struct type *type, struct value *arg2)
10235 {
10236 if (type == ada_check_typedef (value_type (arg2)))
10237 return arg2;
10238
10239 if (ada_is_fixed_point_type (type))
10240 return cast_to_fixed (type, arg2);
10241
10242 if (ada_is_fixed_point_type (value_type (arg2)))
10243 return cast_from_fixed (type, arg2);
10244
10245 return value_cast (type, arg2);
10246 }
10247
10248 /* Evaluating Ada expressions, and printing their result.
10249 ------------------------------------------------------
10250
10251 1. Introduction:
10252 ----------------
10253
10254 We usually evaluate an Ada expression in order to print its value.
10255 We also evaluate an expression in order to print its type, which
10256 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10257 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10258 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10259 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10260 similar.
10261
10262 Evaluating expressions is a little more complicated for Ada entities
10263 than it is for entities in languages such as C. The main reason for
10264 this is that Ada provides types whose definition might be dynamic.
10265 One example of such types is variant records. Or another example
10266 would be an array whose bounds can only be known at run time.
10267
10268 The following description is a general guide as to what should be
10269 done (and what should NOT be done) in order to evaluate an expression
10270 involving such types, and when. This does not cover how the semantic
10271 information is encoded by GNAT as this is covered separatly. For the
10272 document used as the reference for the GNAT encoding, see exp_dbug.ads
10273 in the GNAT sources.
10274
10275 Ideally, we should embed each part of this description next to its
10276 associated code. Unfortunately, the amount of code is so vast right
10277 now that it's hard to see whether the code handling a particular
10278 situation might be duplicated or not. One day, when the code is
10279 cleaned up, this guide might become redundant with the comments
10280 inserted in the code, and we might want to remove it.
10281
10282 2. ``Fixing'' an Entity, the Simple Case:
10283 -----------------------------------------
10284
10285 When evaluating Ada expressions, the tricky issue is that they may
10286 reference entities whose type contents and size are not statically
10287 known. Consider for instance a variant record:
10288
10289 type Rec (Empty : Boolean := True) is record
10290 case Empty is
10291 when True => null;
10292 when False => Value : Integer;
10293 end case;
10294 end record;
10295 Yes : Rec := (Empty => False, Value => 1);
10296 No : Rec := (empty => True);
10297
10298 The size and contents of that record depends on the value of the
10299 descriminant (Rec.Empty). At this point, neither the debugging
10300 information nor the associated type structure in GDB are able to
10301 express such dynamic types. So what the debugger does is to create
10302 "fixed" versions of the type that applies to the specific object.
10303 We also informally refer to this opperation as "fixing" an object,
10304 which means creating its associated fixed type.
10305
10306 Example: when printing the value of variable "Yes" above, its fixed
10307 type would look like this:
10308
10309 type Rec is record
10310 Empty : Boolean;
10311 Value : Integer;
10312 end record;
10313
10314 On the other hand, if we printed the value of "No", its fixed type
10315 would become:
10316
10317 type Rec is record
10318 Empty : Boolean;
10319 end record;
10320
10321 Things become a little more complicated when trying to fix an entity
10322 with a dynamic type that directly contains another dynamic type,
10323 such as an array of variant records, for instance. There are
10324 two possible cases: Arrays, and records.
10325
10326 3. ``Fixing'' Arrays:
10327 ---------------------
10328
10329 The type structure in GDB describes an array in terms of its bounds,
10330 and the type of its elements. By design, all elements in the array
10331 have the same type and we cannot represent an array of variant elements
10332 using the current type structure in GDB. When fixing an array,
10333 we cannot fix the array element, as we would potentially need one
10334 fixed type per element of the array. As a result, the best we can do
10335 when fixing an array is to produce an array whose bounds and size
10336 are correct (allowing us to read it from memory), but without having
10337 touched its element type. Fixing each element will be done later,
10338 when (if) necessary.
10339
10340 Arrays are a little simpler to handle than records, because the same
10341 amount of memory is allocated for each element of the array, even if
10342 the amount of space actually used by each element differs from element
10343 to element. Consider for instance the following array of type Rec:
10344
10345 type Rec_Array is array (1 .. 2) of Rec;
10346
10347 The actual amount of memory occupied by each element might be different
10348 from element to element, depending on the value of their discriminant.
10349 But the amount of space reserved for each element in the array remains
10350 fixed regardless. So we simply need to compute that size using
10351 the debugging information available, from which we can then determine
10352 the array size (we multiply the number of elements of the array by
10353 the size of each element).
10354
10355 The simplest case is when we have an array of a constrained element
10356 type. For instance, consider the following type declarations:
10357
10358 type Bounded_String (Max_Size : Integer) is
10359 Length : Integer;
10360 Buffer : String (1 .. Max_Size);
10361 end record;
10362 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10363
10364 In this case, the compiler describes the array as an array of
10365 variable-size elements (identified by its XVS suffix) for which
10366 the size can be read in the parallel XVZ variable.
10367
10368 In the case of an array of an unconstrained element type, the compiler
10369 wraps the array element inside a private PAD type. This type should not
10370 be shown to the user, and must be "unwrap"'ed before printing. Note
10371 that we also use the adjective "aligner" in our code to designate
10372 these wrapper types.
10373
10374 In some cases, the size allocated for each element is statically
10375 known. In that case, the PAD type already has the correct size,
10376 and the array element should remain unfixed.
10377
10378 But there are cases when this size is not statically known.
10379 For instance, assuming that "Five" is an integer variable:
10380
10381 type Dynamic is array (1 .. Five) of Integer;
10382 type Wrapper (Has_Length : Boolean := False) is record
10383 Data : Dynamic;
10384 case Has_Length is
10385 when True => Length : Integer;
10386 when False => null;
10387 end case;
10388 end record;
10389 type Wrapper_Array is array (1 .. 2) of Wrapper;
10390
10391 Hello : Wrapper_Array := (others => (Has_Length => True,
10392 Data => (others => 17),
10393 Length => 1));
10394
10395
10396 The debugging info would describe variable Hello as being an
10397 array of a PAD type. The size of that PAD type is not statically
10398 known, but can be determined using a parallel XVZ variable.
10399 In that case, a copy of the PAD type with the correct size should
10400 be used for the fixed array.
10401
10402 3. ``Fixing'' record type objects:
10403 ----------------------------------
10404
10405 Things are slightly different from arrays in the case of dynamic
10406 record types. In this case, in order to compute the associated
10407 fixed type, we need to determine the size and offset of each of
10408 its components. This, in turn, requires us to compute the fixed
10409 type of each of these components.
10410
10411 Consider for instance the example:
10412
10413 type Bounded_String (Max_Size : Natural) is record
10414 Str : String (1 .. Max_Size);
10415 Length : Natural;
10416 end record;
10417 My_String : Bounded_String (Max_Size => 10);
10418
10419 In that case, the position of field "Length" depends on the size
10420 of field Str, which itself depends on the value of the Max_Size
10421 discriminant. In order to fix the type of variable My_String,
10422 we need to fix the type of field Str. Therefore, fixing a variant
10423 record requires us to fix each of its components.
10424
10425 However, if a component does not have a dynamic size, the component
10426 should not be fixed. In particular, fields that use a PAD type
10427 should not fixed. Here is an example where this might happen
10428 (assuming type Rec above):
10429
10430 type Container (Big : Boolean) is record
10431 First : Rec;
10432 After : Integer;
10433 case Big is
10434 when True => Another : Integer;
10435 when False => null;
10436 end case;
10437 end record;
10438 My_Container : Container := (Big => False,
10439 First => (Empty => True),
10440 After => 42);
10441
10442 In that example, the compiler creates a PAD type for component First,
10443 whose size is constant, and then positions the component After just
10444 right after it. The offset of component After is therefore constant
10445 in this case.
10446
10447 The debugger computes the position of each field based on an algorithm
10448 that uses, among other things, the actual position and size of the field
10449 preceding it. Let's now imagine that the user is trying to print
10450 the value of My_Container. If the type fixing was recursive, we would
10451 end up computing the offset of field After based on the size of the
10452 fixed version of field First. And since in our example First has
10453 only one actual field, the size of the fixed type is actually smaller
10454 than the amount of space allocated to that field, and thus we would
10455 compute the wrong offset of field After.
10456
10457 To make things more complicated, we need to watch out for dynamic
10458 components of variant records (identified by the ___XVL suffix in
10459 the component name). Even if the target type is a PAD type, the size
10460 of that type might not be statically known. So the PAD type needs
10461 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10462 we might end up with the wrong size for our component. This can be
10463 observed with the following type declarations:
10464
10465 type Octal is new Integer range 0 .. 7;
10466 type Octal_Array is array (Positive range <>) of Octal;
10467 pragma Pack (Octal_Array);
10468
10469 type Octal_Buffer (Size : Positive) is record
10470 Buffer : Octal_Array (1 .. Size);
10471 Length : Integer;
10472 end record;
10473
10474 In that case, Buffer is a PAD type whose size is unset and needs
10475 to be computed by fixing the unwrapped type.
10476
10477 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10478 ----------------------------------------------------------
10479
10480 Lastly, when should the sub-elements of an entity that remained unfixed
10481 thus far, be actually fixed?
10482
10483 The answer is: Only when referencing that element. For instance
10484 when selecting one component of a record, this specific component
10485 should be fixed at that point in time. Or when printing the value
10486 of a record, each component should be fixed before its value gets
10487 printed. Similarly for arrays, the element of the array should be
10488 fixed when printing each element of the array, or when extracting
10489 one element out of that array. On the other hand, fixing should
10490 not be performed on the elements when taking a slice of an array!
10491
10492 Note that one of the side effects of miscomputing the offset and
10493 size of each field is that we end up also miscomputing the size
10494 of the containing type. This can have adverse results when computing
10495 the value of an entity. GDB fetches the value of an entity based
10496 on the size of its type, and thus a wrong size causes GDB to fetch
10497 the wrong amount of memory. In the case where the computed size is
10498 too small, GDB fetches too little data to print the value of our
10499 entity. Results in this case are unpredictable, as we usually read
10500 past the buffer containing the data =:-o. */
10501
10502 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10503 for that subexpression cast to TO_TYPE. Advance *POS over the
10504 subexpression. */
10505
10506 static value *
10507 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10508 enum noside noside, struct type *to_type)
10509 {
10510 int pc = *pos;
10511
10512 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10513 || exp->elts[pc].opcode == OP_VAR_VALUE)
10514 {
10515 (*pos) += 4;
10516
10517 value *val;
10518 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10519 {
10520 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10521 return value_zero (to_type, not_lval);
10522
10523 val = evaluate_var_msym_value (noside,
10524 exp->elts[pc + 1].objfile,
10525 exp->elts[pc + 2].msymbol);
10526 }
10527 else
10528 val = evaluate_var_value (noside,
10529 exp->elts[pc + 1].block,
10530 exp->elts[pc + 2].symbol);
10531
10532 if (noside == EVAL_SKIP)
10533 return eval_skip_value (exp);
10534
10535 val = ada_value_cast (to_type, val);
10536
10537 /* Follow the Ada language semantics that do not allow taking
10538 an address of the result of a cast (view conversion in Ada). */
10539 if (VALUE_LVAL (val) == lval_memory)
10540 {
10541 if (value_lazy (val))
10542 value_fetch_lazy (val);
10543 VALUE_LVAL (val) = not_lval;
10544 }
10545 return val;
10546 }
10547
10548 value *val = evaluate_subexp (to_type, exp, pos, noside);
10549 if (noside == EVAL_SKIP)
10550 return eval_skip_value (exp);
10551 return ada_value_cast (to_type, val);
10552 }
10553
10554 /* Implement the evaluate_exp routine in the exp_descriptor structure
10555 for the Ada language. */
10556
10557 static struct value *
10558 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10559 int *pos, enum noside noside)
10560 {
10561 enum exp_opcode op;
10562 int tem;
10563 int pc;
10564 int preeval_pos;
10565 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10566 struct type *type;
10567 int nargs, oplen;
10568 struct value **argvec;
10569
10570 pc = *pos;
10571 *pos += 1;
10572 op = exp->elts[pc].opcode;
10573
10574 switch (op)
10575 {
10576 default:
10577 *pos -= 1;
10578 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10579
10580 if (noside == EVAL_NORMAL)
10581 arg1 = unwrap_value (arg1);
10582
10583 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10584 then we need to perform the conversion manually, because
10585 evaluate_subexp_standard doesn't do it. This conversion is
10586 necessary in Ada because the different kinds of float/fixed
10587 types in Ada have different representations.
10588
10589 Similarly, we need to perform the conversion from OP_LONG
10590 ourselves. */
10591 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10592 arg1 = ada_value_cast (expect_type, arg1);
10593
10594 return arg1;
10595
10596 case OP_STRING:
10597 {
10598 struct value *result;
10599
10600 *pos -= 1;
10601 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10602 /* The result type will have code OP_STRING, bashed there from
10603 OP_ARRAY. Bash it back. */
10604 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10605 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10606 return result;
10607 }
10608
10609 case UNOP_CAST:
10610 (*pos) += 2;
10611 type = exp->elts[pc + 1].type;
10612 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10613
10614 case UNOP_QUAL:
10615 (*pos) += 2;
10616 type = exp->elts[pc + 1].type;
10617 return ada_evaluate_subexp (type, exp, pos, noside);
10618
10619 case BINOP_ASSIGN:
10620 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10621 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10622 {
10623 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10624 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10625 return arg1;
10626 return ada_value_assign (arg1, arg1);
10627 }
10628 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10629 except if the lhs of our assignment is a convenience variable.
10630 In the case of assigning to a convenience variable, the lhs
10631 should be exactly the result of the evaluation of the rhs. */
10632 type = value_type (arg1);
10633 if (VALUE_LVAL (arg1) == lval_internalvar)
10634 type = NULL;
10635 arg2 = evaluate_subexp (type, exp, pos, noside);
10636 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10637 return arg1;
10638 if (ada_is_fixed_point_type (value_type (arg1)))
10639 arg2 = cast_to_fixed (value_type (arg1), arg2);
10640 else if (ada_is_fixed_point_type (value_type (arg2)))
10641 error
10642 (_("Fixed-point values must be assigned to fixed-point variables"));
10643 else
10644 arg2 = coerce_for_assign (value_type (arg1), arg2);
10645 return ada_value_assign (arg1, arg2);
10646
10647 case BINOP_ADD:
10648 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10649 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10650 if (noside == EVAL_SKIP)
10651 goto nosideret;
10652 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10653 return (value_from_longest
10654 (value_type (arg1),
10655 value_as_long (arg1) + value_as_long (arg2)));
10656 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10657 return (value_from_longest
10658 (value_type (arg2),
10659 value_as_long (arg1) + value_as_long (arg2)));
10660 if ((ada_is_fixed_point_type (value_type (arg1))
10661 || ada_is_fixed_point_type (value_type (arg2)))
10662 && value_type (arg1) != value_type (arg2))
10663 error (_("Operands of fixed-point addition must have the same type"));
10664 /* Do the addition, and cast the result to the type of the first
10665 argument. We cannot cast the result to a reference type, so if
10666 ARG1 is a reference type, find its underlying type. */
10667 type = value_type (arg1);
10668 while (TYPE_CODE (type) == TYPE_CODE_REF)
10669 type = TYPE_TARGET_TYPE (type);
10670 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10671 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10672
10673 case BINOP_SUB:
10674 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10675 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10676 if (noside == EVAL_SKIP)
10677 goto nosideret;
10678 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10679 return (value_from_longest
10680 (value_type (arg1),
10681 value_as_long (arg1) - value_as_long (arg2)));
10682 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10683 return (value_from_longest
10684 (value_type (arg2),
10685 value_as_long (arg1) - value_as_long (arg2)));
10686 if ((ada_is_fixed_point_type (value_type (arg1))
10687 || ada_is_fixed_point_type (value_type (arg2)))
10688 && value_type (arg1) != value_type (arg2))
10689 error (_("Operands of fixed-point subtraction "
10690 "must have the same type"));
10691 /* Do the substraction, and cast the result to the type of the first
10692 argument. We cannot cast the result to a reference type, so if
10693 ARG1 is a reference type, find its underlying type. */
10694 type = value_type (arg1);
10695 while (TYPE_CODE (type) == TYPE_CODE_REF)
10696 type = TYPE_TARGET_TYPE (type);
10697 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10698 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10699
10700 case BINOP_MUL:
10701 case BINOP_DIV:
10702 case BINOP_REM:
10703 case BINOP_MOD:
10704 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10705 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10706 if (noside == EVAL_SKIP)
10707 goto nosideret;
10708 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10709 {
10710 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10711 return value_zero (value_type (arg1), not_lval);
10712 }
10713 else
10714 {
10715 type = builtin_type (exp->gdbarch)->builtin_double;
10716 if (ada_is_fixed_point_type (value_type (arg1)))
10717 arg1 = cast_from_fixed (type, arg1);
10718 if (ada_is_fixed_point_type (value_type (arg2)))
10719 arg2 = cast_from_fixed (type, arg2);
10720 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10721 return ada_value_binop (arg1, arg2, op);
10722 }
10723
10724 case BINOP_EQUAL:
10725 case BINOP_NOTEQUAL:
10726 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10727 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10728 if (noside == EVAL_SKIP)
10729 goto nosideret;
10730 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10731 tem = 0;
10732 else
10733 {
10734 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10735 tem = ada_value_equal (arg1, arg2);
10736 }
10737 if (op == BINOP_NOTEQUAL)
10738 tem = !tem;
10739 type = language_bool_type (exp->language_defn, exp->gdbarch);
10740 return value_from_longest (type, (LONGEST) tem);
10741
10742 case UNOP_NEG:
10743 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10744 if (noside == EVAL_SKIP)
10745 goto nosideret;
10746 else if (ada_is_fixed_point_type (value_type (arg1)))
10747 return value_cast (value_type (arg1), value_neg (arg1));
10748 else
10749 {
10750 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10751 return value_neg (arg1);
10752 }
10753
10754 case BINOP_LOGICAL_AND:
10755 case BINOP_LOGICAL_OR:
10756 case UNOP_LOGICAL_NOT:
10757 {
10758 struct value *val;
10759
10760 *pos -= 1;
10761 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10762 type = language_bool_type (exp->language_defn, exp->gdbarch);
10763 return value_cast (type, val);
10764 }
10765
10766 case BINOP_BITWISE_AND:
10767 case BINOP_BITWISE_IOR:
10768 case BINOP_BITWISE_XOR:
10769 {
10770 struct value *val;
10771
10772 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10773 *pos = pc;
10774 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10775
10776 return value_cast (value_type (arg1), val);
10777 }
10778
10779 case OP_VAR_VALUE:
10780 *pos -= 1;
10781
10782 if (noside == EVAL_SKIP)
10783 {
10784 *pos += 4;
10785 goto nosideret;
10786 }
10787
10788 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10789 /* Only encountered when an unresolved symbol occurs in a
10790 context other than a function call, in which case, it is
10791 invalid. */
10792 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10793 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10794
10795 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10796 {
10797 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10798 /* Check to see if this is a tagged type. We also need to handle
10799 the case where the type is a reference to a tagged type, but
10800 we have to be careful to exclude pointers to tagged types.
10801 The latter should be shown as usual (as a pointer), whereas
10802 a reference should mostly be transparent to the user. */
10803 if (ada_is_tagged_type (type, 0)
10804 || (TYPE_CODE (type) == TYPE_CODE_REF
10805 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10806 {
10807 /* Tagged types are a little special in the fact that the real
10808 type is dynamic and can only be determined by inspecting the
10809 object's tag. This means that we need to get the object's
10810 value first (EVAL_NORMAL) and then extract the actual object
10811 type from its tag.
10812
10813 Note that we cannot skip the final step where we extract
10814 the object type from its tag, because the EVAL_NORMAL phase
10815 results in dynamic components being resolved into fixed ones.
10816 This can cause problems when trying to print the type
10817 description of tagged types whose parent has a dynamic size:
10818 We use the type name of the "_parent" component in order
10819 to print the name of the ancestor type in the type description.
10820 If that component had a dynamic size, the resolution into
10821 a fixed type would result in the loss of that type name,
10822 thus preventing us from printing the name of the ancestor
10823 type in the type description. */
10824 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10825
10826 if (TYPE_CODE (type) != TYPE_CODE_REF)
10827 {
10828 struct type *actual_type;
10829
10830 actual_type = type_from_tag (ada_value_tag (arg1));
10831 if (actual_type == NULL)
10832 /* If, for some reason, we were unable to determine
10833 the actual type from the tag, then use the static
10834 approximation that we just computed as a fallback.
10835 This can happen if the debugging information is
10836 incomplete, for instance. */
10837 actual_type = type;
10838 return value_zero (actual_type, not_lval);
10839 }
10840 else
10841 {
10842 /* In the case of a ref, ada_coerce_ref takes care
10843 of determining the actual type. But the evaluation
10844 should return a ref as it should be valid to ask
10845 for its address; so rebuild a ref after coerce. */
10846 arg1 = ada_coerce_ref (arg1);
10847 return value_ref (arg1, TYPE_CODE_REF);
10848 }
10849 }
10850
10851 /* Records and unions for which GNAT encodings have been
10852 generated need to be statically fixed as well.
10853 Otherwise, non-static fixing produces a type where
10854 all dynamic properties are removed, which prevents "ptype"
10855 from being able to completely describe the type.
10856 For instance, a case statement in a variant record would be
10857 replaced by the relevant components based on the actual
10858 value of the discriminants. */
10859 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10860 && dynamic_template_type (type) != NULL)
10861 || (TYPE_CODE (type) == TYPE_CODE_UNION
10862 && ada_find_parallel_type (type, "___XVU") != NULL))
10863 {
10864 *pos += 4;
10865 return value_zero (to_static_fixed_type (type), not_lval);
10866 }
10867 }
10868
10869 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10870 return ada_to_fixed_value (arg1);
10871
10872 case OP_FUNCALL:
10873 (*pos) += 2;
10874
10875 /* Allocate arg vector, including space for the function to be
10876 called in argvec[0] and a terminating NULL. */
10877 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10878 argvec = XALLOCAVEC (struct value *, nargs + 2);
10879
10880 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10881 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10882 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10883 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10884 else
10885 {
10886 for (tem = 0; tem <= nargs; tem += 1)
10887 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10888 argvec[tem] = 0;
10889
10890 if (noside == EVAL_SKIP)
10891 goto nosideret;
10892 }
10893
10894 if (ada_is_constrained_packed_array_type
10895 (desc_base_type (value_type (argvec[0]))))
10896 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10897 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10898 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10899 /* This is a packed array that has already been fixed, and
10900 therefore already coerced to a simple array. Nothing further
10901 to do. */
10902 ;
10903 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10904 {
10905 /* Make sure we dereference references so that all the code below
10906 feels like it's really handling the referenced value. Wrapping
10907 types (for alignment) may be there, so make sure we strip them as
10908 well. */
10909 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10910 }
10911 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10912 && VALUE_LVAL (argvec[0]) == lval_memory)
10913 argvec[0] = value_addr (argvec[0]);
10914
10915 type = ada_check_typedef (value_type (argvec[0]));
10916
10917 /* Ada allows us to implicitly dereference arrays when subscripting
10918 them. So, if this is an array typedef (encoding use for array
10919 access types encoded as fat pointers), strip it now. */
10920 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10921 type = ada_typedef_target_type (type);
10922
10923 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10924 {
10925 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10926 {
10927 case TYPE_CODE_FUNC:
10928 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10929 break;
10930 case TYPE_CODE_ARRAY:
10931 break;
10932 case TYPE_CODE_STRUCT:
10933 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10934 argvec[0] = ada_value_ind (argvec[0]);
10935 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10936 break;
10937 default:
10938 error (_("cannot subscript or call something of type `%s'"),
10939 ada_type_name (value_type (argvec[0])));
10940 break;
10941 }
10942 }
10943
10944 switch (TYPE_CODE (type))
10945 {
10946 case TYPE_CODE_FUNC:
10947 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10948 {
10949 if (TYPE_TARGET_TYPE (type) == NULL)
10950 error_call_unknown_return_type (NULL);
10951 return allocate_value (TYPE_TARGET_TYPE (type));
10952 }
10953 return call_function_by_hand (argvec[0], NULL,
10954 gdb::make_array_view (argvec + 1,
10955 nargs));
10956 case TYPE_CODE_INTERNAL_FUNCTION:
10957 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10958 /* We don't know anything about what the internal
10959 function might return, but we have to return
10960 something. */
10961 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10962 not_lval);
10963 else
10964 return call_internal_function (exp->gdbarch, exp->language_defn,
10965 argvec[0], nargs, argvec + 1);
10966
10967 case TYPE_CODE_STRUCT:
10968 {
10969 int arity;
10970
10971 arity = ada_array_arity (type);
10972 type = ada_array_element_type (type, nargs);
10973 if (type == NULL)
10974 error (_("cannot subscript or call a record"));
10975 if (arity != nargs)
10976 error (_("wrong number of subscripts; expecting %d"), arity);
10977 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10978 return value_zero (ada_aligned_type (type), lval_memory);
10979 return
10980 unwrap_value (ada_value_subscript
10981 (argvec[0], nargs, argvec + 1));
10982 }
10983 case TYPE_CODE_ARRAY:
10984 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10985 {
10986 type = ada_array_element_type (type, nargs);
10987 if (type == NULL)
10988 error (_("element type of array unknown"));
10989 else
10990 return value_zero (ada_aligned_type (type), lval_memory);
10991 }
10992 return
10993 unwrap_value (ada_value_subscript
10994 (ada_coerce_to_simple_array (argvec[0]),
10995 nargs, argvec + 1));
10996 case TYPE_CODE_PTR: /* Pointer to array */
10997 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10998 {
10999 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
11000 type = ada_array_element_type (type, nargs);
11001 if (type == NULL)
11002 error (_("element type of array unknown"));
11003 else
11004 return value_zero (ada_aligned_type (type), lval_memory);
11005 }
11006 return
11007 unwrap_value (ada_value_ptr_subscript (argvec[0],
11008 nargs, argvec + 1));
11009
11010 default:
11011 error (_("Attempt to index or call something other than an "
11012 "array or function"));
11013 }
11014
11015 case TERNOP_SLICE:
11016 {
11017 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11018 struct value *low_bound_val =
11019 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11020 struct value *high_bound_val =
11021 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11022 LONGEST low_bound;
11023 LONGEST high_bound;
11024
11025 low_bound_val = coerce_ref (low_bound_val);
11026 high_bound_val = coerce_ref (high_bound_val);
11027 low_bound = value_as_long (low_bound_val);
11028 high_bound = value_as_long (high_bound_val);
11029
11030 if (noside == EVAL_SKIP)
11031 goto nosideret;
11032
11033 /* If this is a reference to an aligner type, then remove all
11034 the aligners. */
11035 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11036 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11037 TYPE_TARGET_TYPE (value_type (array)) =
11038 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11039
11040 if (ada_is_constrained_packed_array_type (value_type (array)))
11041 error (_("cannot slice a packed array"));
11042
11043 /* If this is a reference to an array or an array lvalue,
11044 convert to a pointer. */
11045 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11046 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11047 && VALUE_LVAL (array) == lval_memory))
11048 array = value_addr (array);
11049
11050 if (noside == EVAL_AVOID_SIDE_EFFECTS
11051 && ada_is_array_descriptor_type (ada_check_typedef
11052 (value_type (array))))
11053 return empty_array (ada_type_of_array (array, 0), low_bound,
11054 high_bound);
11055
11056 array = ada_coerce_to_simple_array_ptr (array);
11057
11058 /* If we have more than one level of pointer indirection,
11059 dereference the value until we get only one level. */
11060 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11061 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11062 == TYPE_CODE_PTR))
11063 array = value_ind (array);
11064
11065 /* Make sure we really do have an array type before going further,
11066 to avoid a SEGV when trying to get the index type or the target
11067 type later down the road if the debug info generated by
11068 the compiler is incorrect or incomplete. */
11069 if (!ada_is_simple_array_type (value_type (array)))
11070 error (_("cannot take slice of non-array"));
11071
11072 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11073 == TYPE_CODE_PTR)
11074 {
11075 struct type *type0 = ada_check_typedef (value_type (array));
11076
11077 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11078 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
11079 else
11080 {
11081 struct type *arr_type0 =
11082 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11083
11084 return ada_value_slice_from_ptr (array, arr_type0,
11085 longest_to_int (low_bound),
11086 longest_to_int (high_bound));
11087 }
11088 }
11089 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11090 return array;
11091 else if (high_bound < low_bound)
11092 return empty_array (value_type (array), low_bound, high_bound);
11093 else
11094 return ada_value_slice (array, longest_to_int (low_bound),
11095 longest_to_int (high_bound));
11096 }
11097
11098 case UNOP_IN_RANGE:
11099 (*pos) += 2;
11100 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11101 type = check_typedef (exp->elts[pc + 1].type);
11102
11103 if (noside == EVAL_SKIP)
11104 goto nosideret;
11105
11106 switch (TYPE_CODE (type))
11107 {
11108 default:
11109 lim_warning (_("Membership test incompletely implemented; "
11110 "always returns true"));
11111 type = language_bool_type (exp->language_defn, exp->gdbarch);
11112 return value_from_longest (type, (LONGEST) 1);
11113
11114 case TYPE_CODE_RANGE:
11115 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11116 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11117 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11118 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11119 type = language_bool_type (exp->language_defn, exp->gdbarch);
11120 return
11121 value_from_longest (type,
11122 (value_less (arg1, arg3)
11123 || value_equal (arg1, arg3))
11124 && (value_less (arg2, arg1)
11125 || value_equal (arg2, arg1)));
11126 }
11127
11128 case BINOP_IN_BOUNDS:
11129 (*pos) += 2;
11130 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11131 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11132
11133 if (noside == EVAL_SKIP)
11134 goto nosideret;
11135
11136 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11137 {
11138 type = language_bool_type (exp->language_defn, exp->gdbarch);
11139 return value_zero (type, not_lval);
11140 }
11141
11142 tem = longest_to_int (exp->elts[pc + 1].longconst);
11143
11144 type = ada_index_type (value_type (arg2), tem, "range");
11145 if (!type)
11146 type = value_type (arg1);
11147
11148 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11149 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11150
11151 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11152 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11153 type = language_bool_type (exp->language_defn, exp->gdbarch);
11154 return
11155 value_from_longest (type,
11156 (value_less (arg1, arg3)
11157 || value_equal (arg1, arg3))
11158 && (value_less (arg2, arg1)
11159 || value_equal (arg2, arg1)));
11160
11161 case TERNOP_IN_RANGE:
11162 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11163 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11164 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11165
11166 if (noside == EVAL_SKIP)
11167 goto nosideret;
11168
11169 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11170 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11171 type = language_bool_type (exp->language_defn, exp->gdbarch);
11172 return
11173 value_from_longest (type,
11174 (value_less (arg1, arg3)
11175 || value_equal (arg1, arg3))
11176 && (value_less (arg2, arg1)
11177 || value_equal (arg2, arg1)));
11178
11179 case OP_ATR_FIRST:
11180 case OP_ATR_LAST:
11181 case OP_ATR_LENGTH:
11182 {
11183 struct type *type_arg;
11184
11185 if (exp->elts[*pos].opcode == OP_TYPE)
11186 {
11187 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11188 arg1 = NULL;
11189 type_arg = check_typedef (exp->elts[pc + 2].type);
11190 }
11191 else
11192 {
11193 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11194 type_arg = NULL;
11195 }
11196
11197 if (exp->elts[*pos].opcode != OP_LONG)
11198 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11199 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11200 *pos += 4;
11201
11202 if (noside == EVAL_SKIP)
11203 goto nosideret;
11204
11205 if (type_arg == NULL)
11206 {
11207 arg1 = ada_coerce_ref (arg1);
11208
11209 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11210 arg1 = ada_coerce_to_simple_array (arg1);
11211
11212 if (op == OP_ATR_LENGTH)
11213 type = builtin_type (exp->gdbarch)->builtin_int;
11214 else
11215 {
11216 type = ada_index_type (value_type (arg1), tem,
11217 ada_attribute_name (op));
11218 if (type == NULL)
11219 type = builtin_type (exp->gdbarch)->builtin_int;
11220 }
11221
11222 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11223 return allocate_value (type);
11224
11225 switch (op)
11226 {
11227 default: /* Should never happen. */
11228 error (_("unexpected attribute encountered"));
11229 case OP_ATR_FIRST:
11230 return value_from_longest
11231 (type, ada_array_bound (arg1, tem, 0));
11232 case OP_ATR_LAST:
11233 return value_from_longest
11234 (type, ada_array_bound (arg1, tem, 1));
11235 case OP_ATR_LENGTH:
11236 return value_from_longest
11237 (type, ada_array_length (arg1, tem));
11238 }
11239 }
11240 else if (discrete_type_p (type_arg))
11241 {
11242 struct type *range_type;
11243 const char *name = ada_type_name (type_arg);
11244
11245 range_type = NULL;
11246 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11247 range_type = to_fixed_range_type (type_arg, NULL);
11248 if (range_type == NULL)
11249 range_type = type_arg;
11250 switch (op)
11251 {
11252 default:
11253 error (_("unexpected attribute encountered"));
11254 case OP_ATR_FIRST:
11255 return value_from_longest
11256 (range_type, ada_discrete_type_low_bound (range_type));
11257 case OP_ATR_LAST:
11258 return value_from_longest
11259 (range_type, ada_discrete_type_high_bound (range_type));
11260 case OP_ATR_LENGTH:
11261 error (_("the 'length attribute applies only to array types"));
11262 }
11263 }
11264 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11265 error (_("unimplemented type attribute"));
11266 else
11267 {
11268 LONGEST low, high;
11269
11270 if (ada_is_constrained_packed_array_type (type_arg))
11271 type_arg = decode_constrained_packed_array_type (type_arg);
11272
11273 if (op == OP_ATR_LENGTH)
11274 type = builtin_type (exp->gdbarch)->builtin_int;
11275 else
11276 {
11277 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11278 if (type == NULL)
11279 type = builtin_type (exp->gdbarch)->builtin_int;
11280 }
11281
11282 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11283 return allocate_value (type);
11284
11285 switch (op)
11286 {
11287 default:
11288 error (_("unexpected attribute encountered"));
11289 case OP_ATR_FIRST:
11290 low = ada_array_bound_from_type (type_arg, tem, 0);
11291 return value_from_longest (type, low);
11292 case OP_ATR_LAST:
11293 high = ada_array_bound_from_type (type_arg, tem, 1);
11294 return value_from_longest (type, high);
11295 case OP_ATR_LENGTH:
11296 low = ada_array_bound_from_type (type_arg, tem, 0);
11297 high = ada_array_bound_from_type (type_arg, tem, 1);
11298 return value_from_longest (type, high - low + 1);
11299 }
11300 }
11301 }
11302
11303 case OP_ATR_TAG:
11304 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11305 if (noside == EVAL_SKIP)
11306 goto nosideret;
11307
11308 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11309 return value_zero (ada_tag_type (arg1), not_lval);
11310
11311 return ada_value_tag (arg1);
11312
11313 case OP_ATR_MIN:
11314 case OP_ATR_MAX:
11315 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11316 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11317 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11318 if (noside == EVAL_SKIP)
11319 goto nosideret;
11320 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11321 return value_zero (value_type (arg1), not_lval);
11322 else
11323 {
11324 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11325 return value_binop (arg1, arg2,
11326 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11327 }
11328
11329 case OP_ATR_MODULUS:
11330 {
11331 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11332
11333 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11334 if (noside == EVAL_SKIP)
11335 goto nosideret;
11336
11337 if (!ada_is_modular_type (type_arg))
11338 error (_("'modulus must be applied to modular type"));
11339
11340 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11341 ada_modulus (type_arg));
11342 }
11343
11344
11345 case OP_ATR_POS:
11346 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11347 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11348 if (noside == EVAL_SKIP)
11349 goto nosideret;
11350 type = builtin_type (exp->gdbarch)->builtin_int;
11351 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11352 return value_zero (type, not_lval);
11353 else
11354 return value_pos_atr (type, arg1);
11355
11356 case OP_ATR_SIZE:
11357 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11358 type = value_type (arg1);
11359
11360 /* If the argument is a reference, then dereference its type, since
11361 the user is really asking for the size of the actual object,
11362 not the size of the pointer. */
11363 if (TYPE_CODE (type) == TYPE_CODE_REF)
11364 type = TYPE_TARGET_TYPE (type);
11365
11366 if (noside == EVAL_SKIP)
11367 goto nosideret;
11368 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11369 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11370 else
11371 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11372 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11373
11374 case OP_ATR_VAL:
11375 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11376 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11377 type = exp->elts[pc + 2].type;
11378 if (noside == EVAL_SKIP)
11379 goto nosideret;
11380 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11381 return value_zero (type, not_lval);
11382 else
11383 return value_val_atr (type, arg1);
11384
11385 case BINOP_EXP:
11386 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11387 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11388 if (noside == EVAL_SKIP)
11389 goto nosideret;
11390 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11391 return value_zero (value_type (arg1), not_lval);
11392 else
11393 {
11394 /* For integer exponentiation operations,
11395 only promote the first argument. */
11396 if (is_integral_type (value_type (arg2)))
11397 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11398 else
11399 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11400
11401 return value_binop (arg1, arg2, op);
11402 }
11403
11404 case UNOP_PLUS:
11405 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11406 if (noside == EVAL_SKIP)
11407 goto nosideret;
11408 else
11409 return arg1;
11410
11411 case UNOP_ABS:
11412 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11413 if (noside == EVAL_SKIP)
11414 goto nosideret;
11415 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11416 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11417 return value_neg (arg1);
11418 else
11419 return arg1;
11420
11421 case UNOP_IND:
11422 preeval_pos = *pos;
11423 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11424 if (noside == EVAL_SKIP)
11425 goto nosideret;
11426 type = ada_check_typedef (value_type (arg1));
11427 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11428 {
11429 if (ada_is_array_descriptor_type (type))
11430 /* GDB allows dereferencing GNAT array descriptors. */
11431 {
11432 struct type *arrType = ada_type_of_array (arg1, 0);
11433
11434 if (arrType == NULL)
11435 error (_("Attempt to dereference null array pointer."));
11436 return value_at_lazy (arrType, 0);
11437 }
11438 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11439 || TYPE_CODE (type) == TYPE_CODE_REF
11440 /* In C you can dereference an array to get the 1st elt. */
11441 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11442 {
11443 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11444 only be determined by inspecting the object's tag.
11445 This means that we need to evaluate completely the
11446 expression in order to get its type. */
11447
11448 if ((TYPE_CODE (type) == TYPE_CODE_REF
11449 || TYPE_CODE (type) == TYPE_CODE_PTR)
11450 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11451 {
11452 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11453 EVAL_NORMAL);
11454 type = value_type (ada_value_ind (arg1));
11455 }
11456 else
11457 {
11458 type = to_static_fixed_type
11459 (ada_aligned_type
11460 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11461 }
11462 ada_ensure_varsize_limit (type);
11463 return value_zero (type, lval_memory);
11464 }
11465 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11466 {
11467 /* GDB allows dereferencing an int. */
11468 if (expect_type == NULL)
11469 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11470 lval_memory);
11471 else
11472 {
11473 expect_type =
11474 to_static_fixed_type (ada_aligned_type (expect_type));
11475 return value_zero (expect_type, lval_memory);
11476 }
11477 }
11478 else
11479 error (_("Attempt to take contents of a non-pointer value."));
11480 }
11481 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11482 type = ada_check_typedef (value_type (arg1));
11483
11484 if (TYPE_CODE (type) == TYPE_CODE_INT)
11485 /* GDB allows dereferencing an int. If we were given
11486 the expect_type, then use that as the target type.
11487 Otherwise, assume that the target type is an int. */
11488 {
11489 if (expect_type != NULL)
11490 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11491 arg1));
11492 else
11493 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11494 (CORE_ADDR) value_as_address (arg1));
11495 }
11496
11497 if (ada_is_array_descriptor_type (type))
11498 /* GDB allows dereferencing GNAT array descriptors. */
11499 return ada_coerce_to_simple_array (arg1);
11500 else
11501 return ada_value_ind (arg1);
11502
11503 case STRUCTOP_STRUCT:
11504 tem = longest_to_int (exp->elts[pc + 1].longconst);
11505 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11506 preeval_pos = *pos;
11507 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11508 if (noside == EVAL_SKIP)
11509 goto nosideret;
11510 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11511 {
11512 struct type *type1 = value_type (arg1);
11513
11514 if (ada_is_tagged_type (type1, 1))
11515 {
11516 type = ada_lookup_struct_elt_type (type1,
11517 &exp->elts[pc + 2].string,
11518 1, 1);
11519
11520 /* If the field is not found, check if it exists in the
11521 extension of this object's type. This means that we
11522 need to evaluate completely the expression. */
11523
11524 if (type == NULL)
11525 {
11526 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11527 EVAL_NORMAL);
11528 arg1 = ada_value_struct_elt (arg1,
11529 &exp->elts[pc + 2].string,
11530 0);
11531 arg1 = unwrap_value (arg1);
11532 type = value_type (ada_to_fixed_value (arg1));
11533 }
11534 }
11535 else
11536 type =
11537 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11538 0);
11539
11540 return value_zero (ada_aligned_type (type), lval_memory);
11541 }
11542 else
11543 {
11544 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11545 arg1 = unwrap_value (arg1);
11546 return ada_to_fixed_value (arg1);
11547 }
11548
11549 case OP_TYPE:
11550 /* The value is not supposed to be used. This is here to make it
11551 easier to accommodate expressions that contain types. */
11552 (*pos) += 2;
11553 if (noside == EVAL_SKIP)
11554 goto nosideret;
11555 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11556 return allocate_value (exp->elts[pc + 1].type);
11557 else
11558 error (_("Attempt to use a type name as an expression"));
11559
11560 case OP_AGGREGATE:
11561 case OP_CHOICES:
11562 case OP_OTHERS:
11563 case OP_DISCRETE_RANGE:
11564 case OP_POSITIONAL:
11565 case OP_NAME:
11566 if (noside == EVAL_NORMAL)
11567 switch (op)
11568 {
11569 case OP_NAME:
11570 error (_("Undefined name, ambiguous name, or renaming used in "
11571 "component association: %s."), &exp->elts[pc+2].string);
11572 case OP_AGGREGATE:
11573 error (_("Aggregates only allowed on the right of an assignment"));
11574 default:
11575 internal_error (__FILE__, __LINE__,
11576 _("aggregate apparently mangled"));
11577 }
11578
11579 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11580 *pos += oplen - 1;
11581 for (tem = 0; tem < nargs; tem += 1)
11582 ada_evaluate_subexp (NULL, exp, pos, noside);
11583 goto nosideret;
11584 }
11585
11586 nosideret:
11587 return eval_skip_value (exp);
11588 }
11589 \f
11590
11591 /* Fixed point */
11592
11593 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11594 type name that encodes the 'small and 'delta information.
11595 Otherwise, return NULL. */
11596
11597 static const char *
11598 fixed_type_info (struct type *type)
11599 {
11600 const char *name = ada_type_name (type);
11601 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11602
11603 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11604 {
11605 const char *tail = strstr (name, "___XF_");
11606
11607 if (tail == NULL)
11608 return NULL;
11609 else
11610 return tail + 5;
11611 }
11612 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11613 return fixed_type_info (TYPE_TARGET_TYPE (type));
11614 else
11615 return NULL;
11616 }
11617
11618 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11619
11620 int
11621 ada_is_fixed_point_type (struct type *type)
11622 {
11623 return fixed_type_info (type) != NULL;
11624 }
11625
11626 /* Return non-zero iff TYPE represents a System.Address type. */
11627
11628 int
11629 ada_is_system_address_type (struct type *type)
11630 {
11631 return (TYPE_NAME (type)
11632 && strcmp (TYPE_NAME (type), "system__address") == 0);
11633 }
11634
11635 /* Assuming that TYPE is the representation of an Ada fixed-point
11636 type, return the target floating-point type to be used to represent
11637 of this type during internal computation. */
11638
11639 static struct type *
11640 ada_scaling_type (struct type *type)
11641 {
11642 return builtin_type (get_type_arch (type))->builtin_long_double;
11643 }
11644
11645 /* Assuming that TYPE is the representation of an Ada fixed-point
11646 type, return its delta, or NULL if the type is malformed and the
11647 delta cannot be determined. */
11648
11649 struct value *
11650 ada_delta (struct type *type)
11651 {
11652 const char *encoding = fixed_type_info (type);
11653 struct type *scale_type = ada_scaling_type (type);
11654
11655 long long num, den;
11656
11657 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11658 return nullptr;
11659 else
11660 return value_binop (value_from_longest (scale_type, num),
11661 value_from_longest (scale_type, den), BINOP_DIV);
11662 }
11663
11664 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11665 factor ('SMALL value) associated with the type. */
11666
11667 struct value *
11668 ada_scaling_factor (struct type *type)
11669 {
11670 const char *encoding = fixed_type_info (type);
11671 struct type *scale_type = ada_scaling_type (type);
11672
11673 long long num0, den0, num1, den1;
11674 int n;
11675
11676 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11677 &num0, &den0, &num1, &den1);
11678
11679 if (n < 2)
11680 return value_from_longest (scale_type, 1);
11681 else if (n == 4)
11682 return value_binop (value_from_longest (scale_type, num1),
11683 value_from_longest (scale_type, den1), BINOP_DIV);
11684 else
11685 return value_binop (value_from_longest (scale_type, num0),
11686 value_from_longest (scale_type, den0), BINOP_DIV);
11687 }
11688
11689 \f
11690
11691 /* Range types */
11692
11693 /* Scan STR beginning at position K for a discriminant name, and
11694 return the value of that discriminant field of DVAL in *PX. If
11695 PNEW_K is not null, put the position of the character beyond the
11696 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11697 not alter *PX and *PNEW_K if unsuccessful. */
11698
11699 static int
11700 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11701 int *pnew_k)
11702 {
11703 static char *bound_buffer = NULL;
11704 static size_t bound_buffer_len = 0;
11705 const char *pstart, *pend, *bound;
11706 struct value *bound_val;
11707
11708 if (dval == NULL || str == NULL || str[k] == '\0')
11709 return 0;
11710
11711 pstart = str + k;
11712 pend = strstr (pstart, "__");
11713 if (pend == NULL)
11714 {
11715 bound = pstart;
11716 k += strlen (bound);
11717 }
11718 else
11719 {
11720 int len = pend - pstart;
11721
11722 /* Strip __ and beyond. */
11723 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11724 strncpy (bound_buffer, pstart, len);
11725 bound_buffer[len] = '\0';
11726
11727 bound = bound_buffer;
11728 k = pend - str;
11729 }
11730
11731 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11732 if (bound_val == NULL)
11733 return 0;
11734
11735 *px = value_as_long (bound_val);
11736 if (pnew_k != NULL)
11737 *pnew_k = k;
11738 return 1;
11739 }
11740
11741 /* Value of variable named NAME in the current environment. If
11742 no such variable found, then if ERR_MSG is null, returns 0, and
11743 otherwise causes an error with message ERR_MSG. */
11744
11745 static struct value *
11746 get_var_value (const char *name, const char *err_msg)
11747 {
11748 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11749
11750 std::vector<struct block_symbol> syms;
11751 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11752 get_selected_block (0),
11753 VAR_DOMAIN, &syms, 1);
11754
11755 if (nsyms != 1)
11756 {
11757 if (err_msg == NULL)
11758 return 0;
11759 else
11760 error (("%s"), err_msg);
11761 }
11762
11763 return value_of_variable (syms[0].symbol, syms[0].block);
11764 }
11765
11766 /* Value of integer variable named NAME in the current environment.
11767 If no such variable is found, returns false. Otherwise, sets VALUE
11768 to the variable's value and returns true. */
11769
11770 bool
11771 get_int_var_value (const char *name, LONGEST &value)
11772 {
11773 struct value *var_val = get_var_value (name, 0);
11774
11775 if (var_val == 0)
11776 return false;
11777
11778 value = value_as_long (var_val);
11779 return true;
11780 }
11781
11782
11783 /* Return a range type whose base type is that of the range type named
11784 NAME in the current environment, and whose bounds are calculated
11785 from NAME according to the GNAT range encoding conventions.
11786 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11787 corresponding range type from debug information; fall back to using it
11788 if symbol lookup fails. If a new type must be created, allocate it
11789 like ORIG_TYPE was. The bounds information, in general, is encoded
11790 in NAME, the base type given in the named range type. */
11791
11792 static struct type *
11793 to_fixed_range_type (struct type *raw_type, struct value *dval)
11794 {
11795 const char *name;
11796 struct type *base_type;
11797 const char *subtype_info;
11798
11799 gdb_assert (raw_type != NULL);
11800 gdb_assert (TYPE_NAME (raw_type) != NULL);
11801
11802 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11803 base_type = TYPE_TARGET_TYPE (raw_type);
11804 else
11805 base_type = raw_type;
11806
11807 name = TYPE_NAME (raw_type);
11808 subtype_info = strstr (name, "___XD");
11809 if (subtype_info == NULL)
11810 {
11811 LONGEST L = ada_discrete_type_low_bound (raw_type);
11812 LONGEST U = ada_discrete_type_high_bound (raw_type);
11813
11814 if (L < INT_MIN || U > INT_MAX)
11815 return raw_type;
11816 else
11817 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11818 L, U);
11819 }
11820 else
11821 {
11822 static char *name_buf = NULL;
11823 static size_t name_len = 0;
11824 int prefix_len = subtype_info - name;
11825 LONGEST L, U;
11826 struct type *type;
11827 const char *bounds_str;
11828 int n;
11829
11830 GROW_VECT (name_buf, name_len, prefix_len + 5);
11831 strncpy (name_buf, name, prefix_len);
11832 name_buf[prefix_len] = '\0';
11833
11834 subtype_info += 5;
11835 bounds_str = strchr (subtype_info, '_');
11836 n = 1;
11837
11838 if (*subtype_info == 'L')
11839 {
11840 if (!ada_scan_number (bounds_str, n, &L, &n)
11841 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11842 return raw_type;
11843 if (bounds_str[n] == '_')
11844 n += 2;
11845 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11846 n += 1;
11847 subtype_info += 1;
11848 }
11849 else
11850 {
11851 strcpy (name_buf + prefix_len, "___L");
11852 if (!get_int_var_value (name_buf, L))
11853 {
11854 lim_warning (_("Unknown lower bound, using 1."));
11855 L = 1;
11856 }
11857 }
11858
11859 if (*subtype_info == 'U')
11860 {
11861 if (!ada_scan_number (bounds_str, n, &U, &n)
11862 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11863 return raw_type;
11864 }
11865 else
11866 {
11867 strcpy (name_buf + prefix_len, "___U");
11868 if (!get_int_var_value (name_buf, U))
11869 {
11870 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11871 U = L;
11872 }
11873 }
11874
11875 type = create_static_range_type (alloc_type_copy (raw_type),
11876 base_type, L, U);
11877 /* create_static_range_type alters the resulting type's length
11878 to match the size of the base_type, which is not what we want.
11879 Set it back to the original range type's length. */
11880 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11881 TYPE_NAME (type) = name;
11882 return type;
11883 }
11884 }
11885
11886 /* True iff NAME is the name of a range type. */
11887
11888 int
11889 ada_is_range_type_name (const char *name)
11890 {
11891 return (name != NULL && strstr (name, "___XD"));
11892 }
11893 \f
11894
11895 /* Modular types */
11896
11897 /* True iff TYPE is an Ada modular type. */
11898
11899 int
11900 ada_is_modular_type (struct type *type)
11901 {
11902 struct type *subranged_type = get_base_type (type);
11903
11904 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11905 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11906 && TYPE_UNSIGNED (subranged_type));
11907 }
11908
11909 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11910
11911 ULONGEST
11912 ada_modulus (struct type *type)
11913 {
11914 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11915 }
11916 \f
11917
11918 /* Ada exception catchpoint support:
11919 ---------------------------------
11920
11921 We support 3 kinds of exception catchpoints:
11922 . catchpoints on Ada exceptions
11923 . catchpoints on unhandled Ada exceptions
11924 . catchpoints on failed assertions
11925
11926 Exceptions raised during failed assertions, or unhandled exceptions
11927 could perfectly be caught with the general catchpoint on Ada exceptions.
11928 However, we can easily differentiate these two special cases, and having
11929 the option to distinguish these two cases from the rest can be useful
11930 to zero-in on certain situations.
11931
11932 Exception catchpoints are a specialized form of breakpoint,
11933 since they rely on inserting breakpoints inside known routines
11934 of the GNAT runtime. The implementation therefore uses a standard
11935 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11936 of breakpoint_ops.
11937
11938 Support in the runtime for exception catchpoints have been changed
11939 a few times already, and these changes affect the implementation
11940 of these catchpoints. In order to be able to support several
11941 variants of the runtime, we use a sniffer that will determine
11942 the runtime variant used by the program being debugged. */
11943
11944 /* Ada's standard exceptions.
11945
11946 The Ada 83 standard also defined Numeric_Error. But there so many
11947 situations where it was unclear from the Ada 83 Reference Manual
11948 (RM) whether Constraint_Error or Numeric_Error should be raised,
11949 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11950 Interpretation saying that anytime the RM says that Numeric_Error
11951 should be raised, the implementation may raise Constraint_Error.
11952 Ada 95 went one step further and pretty much removed Numeric_Error
11953 from the list of standard exceptions (it made it a renaming of
11954 Constraint_Error, to help preserve compatibility when compiling
11955 an Ada83 compiler). As such, we do not include Numeric_Error from
11956 this list of standard exceptions. */
11957
11958 static const char *standard_exc[] = {
11959 "constraint_error",
11960 "program_error",
11961 "storage_error",
11962 "tasking_error"
11963 };
11964
11965 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11966
11967 /* A structure that describes how to support exception catchpoints
11968 for a given executable. */
11969
11970 struct exception_support_info
11971 {
11972 /* The name of the symbol to break on in order to insert
11973 a catchpoint on exceptions. */
11974 const char *catch_exception_sym;
11975
11976 /* The name of the symbol to break on in order to insert
11977 a catchpoint on unhandled exceptions. */
11978 const char *catch_exception_unhandled_sym;
11979
11980 /* The name of the symbol to break on in order to insert
11981 a catchpoint on failed assertions. */
11982 const char *catch_assert_sym;
11983
11984 /* The name of the symbol to break on in order to insert
11985 a catchpoint on exception handling. */
11986 const char *catch_handlers_sym;
11987
11988 /* Assuming that the inferior just triggered an unhandled exception
11989 catchpoint, this function is responsible for returning the address
11990 in inferior memory where the name of that exception is stored.
11991 Return zero if the address could not be computed. */
11992 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11993 };
11994
11995 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11996 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11997
11998 /* The following exception support info structure describes how to
11999 implement exception catchpoints with the latest version of the
12000 Ada runtime (as of 2007-03-06). */
12001
12002 static const struct exception_support_info default_exception_support_info =
12003 {
12004 "__gnat_debug_raise_exception", /* catch_exception_sym */
12005 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12006 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
12007 "__gnat_begin_handler", /* catch_handlers_sym */
12008 ada_unhandled_exception_name_addr
12009 };
12010
12011 /* The following exception support info structure describes how to
12012 implement exception catchpoints with a slightly older version
12013 of the Ada runtime. */
12014
12015 static const struct exception_support_info exception_support_info_fallback =
12016 {
12017 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12018 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12019 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12020 "__gnat_begin_handler", /* catch_handlers_sym */
12021 ada_unhandled_exception_name_addr_from_raise
12022 };
12023
12024 /* Return nonzero if we can detect the exception support routines
12025 described in EINFO.
12026
12027 This function errors out if an abnormal situation is detected
12028 (for instance, if we find the exception support routines, but
12029 that support is found to be incomplete). */
12030
12031 static int
12032 ada_has_this_exception_support (const struct exception_support_info *einfo)
12033 {
12034 struct symbol *sym;
12035
12036 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12037 that should be compiled with debugging information. As a result, we
12038 expect to find that symbol in the symtabs. */
12039
12040 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12041 if (sym == NULL)
12042 {
12043 /* Perhaps we did not find our symbol because the Ada runtime was
12044 compiled without debugging info, or simply stripped of it.
12045 It happens on some GNU/Linux distributions for instance, where
12046 users have to install a separate debug package in order to get
12047 the runtime's debugging info. In that situation, let the user
12048 know why we cannot insert an Ada exception catchpoint.
12049
12050 Note: Just for the purpose of inserting our Ada exception
12051 catchpoint, we could rely purely on the associated minimal symbol.
12052 But we would be operating in degraded mode anyway, since we are
12053 still lacking the debugging info needed later on to extract
12054 the name of the exception being raised (this name is printed in
12055 the catchpoint message, and is also used when trying to catch
12056 a specific exception). We do not handle this case for now. */
12057 struct bound_minimal_symbol msym
12058 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12059
12060 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12061 error (_("Your Ada runtime appears to be missing some debugging "
12062 "information.\nCannot insert Ada exception catchpoint "
12063 "in this configuration."));
12064
12065 return 0;
12066 }
12067
12068 /* Make sure that the symbol we found corresponds to a function. */
12069
12070 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12071 error (_("Symbol \"%s\" is not a function (class = %d)"),
12072 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12073
12074 return 1;
12075 }
12076
12077 /* Inspect the Ada runtime and determine which exception info structure
12078 should be used to provide support for exception catchpoints.
12079
12080 This function will always set the per-inferior exception_info,
12081 or raise an error. */
12082
12083 static void
12084 ada_exception_support_info_sniffer (void)
12085 {
12086 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12087
12088 /* If the exception info is already known, then no need to recompute it. */
12089 if (data->exception_info != NULL)
12090 return;
12091
12092 /* Check the latest (default) exception support info. */
12093 if (ada_has_this_exception_support (&default_exception_support_info))
12094 {
12095 data->exception_info = &default_exception_support_info;
12096 return;
12097 }
12098
12099 /* Try our fallback exception suport info. */
12100 if (ada_has_this_exception_support (&exception_support_info_fallback))
12101 {
12102 data->exception_info = &exception_support_info_fallback;
12103 return;
12104 }
12105
12106 /* Sometimes, it is normal for us to not be able to find the routine
12107 we are looking for. This happens when the program is linked with
12108 the shared version of the GNAT runtime, and the program has not been
12109 started yet. Inform the user of these two possible causes if
12110 applicable. */
12111
12112 if (ada_update_initial_language (language_unknown) != language_ada)
12113 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12114
12115 /* If the symbol does not exist, then check that the program is
12116 already started, to make sure that shared libraries have been
12117 loaded. If it is not started, this may mean that the symbol is
12118 in a shared library. */
12119
12120 if (inferior_ptid.pid () == 0)
12121 error (_("Unable to insert catchpoint. Try to start the program first."));
12122
12123 /* At this point, we know that we are debugging an Ada program and
12124 that the inferior has been started, but we still are not able to
12125 find the run-time symbols. That can mean that we are in
12126 configurable run time mode, or that a-except as been optimized
12127 out by the linker... In any case, at this point it is not worth
12128 supporting this feature. */
12129
12130 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12131 }
12132
12133 /* True iff FRAME is very likely to be that of a function that is
12134 part of the runtime system. This is all very heuristic, but is
12135 intended to be used as advice as to what frames are uninteresting
12136 to most users. */
12137
12138 static int
12139 is_known_support_routine (struct frame_info *frame)
12140 {
12141 enum language func_lang;
12142 int i;
12143 const char *fullname;
12144
12145 /* If this code does not have any debugging information (no symtab),
12146 This cannot be any user code. */
12147
12148 symtab_and_line sal = find_frame_sal (frame);
12149 if (sal.symtab == NULL)
12150 return 1;
12151
12152 /* If there is a symtab, but the associated source file cannot be
12153 located, then assume this is not user code: Selecting a frame
12154 for which we cannot display the code would not be very helpful
12155 for the user. This should also take care of case such as VxWorks
12156 where the kernel has some debugging info provided for a few units. */
12157
12158 fullname = symtab_to_fullname (sal.symtab);
12159 if (access (fullname, R_OK) != 0)
12160 return 1;
12161
12162 /* Check the unit filename againt the Ada runtime file naming.
12163 We also check the name of the objfile against the name of some
12164 known system libraries that sometimes come with debugging info
12165 too. */
12166
12167 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12168 {
12169 re_comp (known_runtime_file_name_patterns[i]);
12170 if (re_exec (lbasename (sal.symtab->filename)))
12171 return 1;
12172 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12173 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12174 return 1;
12175 }
12176
12177 /* Check whether the function is a GNAT-generated entity. */
12178
12179 gdb::unique_xmalloc_ptr<char> func_name
12180 = find_frame_funname (frame, &func_lang, NULL);
12181 if (func_name == NULL)
12182 return 1;
12183
12184 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12185 {
12186 re_comp (known_auxiliary_function_name_patterns[i]);
12187 if (re_exec (func_name.get ()))
12188 return 1;
12189 }
12190
12191 return 0;
12192 }
12193
12194 /* Find the first frame that contains debugging information and that is not
12195 part of the Ada run-time, starting from FI and moving upward. */
12196
12197 void
12198 ada_find_printable_frame (struct frame_info *fi)
12199 {
12200 for (; fi != NULL; fi = get_prev_frame (fi))
12201 {
12202 if (!is_known_support_routine (fi))
12203 {
12204 select_frame (fi);
12205 break;
12206 }
12207 }
12208
12209 }
12210
12211 /* Assuming that the inferior just triggered an unhandled exception
12212 catchpoint, return the address in inferior memory where the name
12213 of the exception is stored.
12214
12215 Return zero if the address could not be computed. */
12216
12217 static CORE_ADDR
12218 ada_unhandled_exception_name_addr (void)
12219 {
12220 return parse_and_eval_address ("e.full_name");
12221 }
12222
12223 /* Same as ada_unhandled_exception_name_addr, except that this function
12224 should be used when the inferior uses an older version of the runtime,
12225 where the exception name needs to be extracted from a specific frame
12226 several frames up in the callstack. */
12227
12228 static CORE_ADDR
12229 ada_unhandled_exception_name_addr_from_raise (void)
12230 {
12231 int frame_level;
12232 struct frame_info *fi;
12233 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12234
12235 /* To determine the name of this exception, we need to select
12236 the frame corresponding to RAISE_SYM_NAME. This frame is
12237 at least 3 levels up, so we simply skip the first 3 frames
12238 without checking the name of their associated function. */
12239 fi = get_current_frame ();
12240 for (frame_level = 0; frame_level < 3; frame_level += 1)
12241 if (fi != NULL)
12242 fi = get_prev_frame (fi);
12243
12244 while (fi != NULL)
12245 {
12246 enum language func_lang;
12247
12248 gdb::unique_xmalloc_ptr<char> func_name
12249 = find_frame_funname (fi, &func_lang, NULL);
12250 if (func_name != NULL)
12251 {
12252 if (strcmp (func_name.get (),
12253 data->exception_info->catch_exception_sym) == 0)
12254 break; /* We found the frame we were looking for... */
12255 }
12256 fi = get_prev_frame (fi);
12257 }
12258
12259 if (fi == NULL)
12260 return 0;
12261
12262 select_frame (fi);
12263 return parse_and_eval_address ("id.full_name");
12264 }
12265
12266 /* Assuming the inferior just triggered an Ada exception catchpoint
12267 (of any type), return the address in inferior memory where the name
12268 of the exception is stored, if applicable.
12269
12270 Assumes the selected frame is the current frame.
12271
12272 Return zero if the address could not be computed, or if not relevant. */
12273
12274 static CORE_ADDR
12275 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12276 struct breakpoint *b)
12277 {
12278 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12279
12280 switch (ex)
12281 {
12282 case ada_catch_exception:
12283 return (parse_and_eval_address ("e.full_name"));
12284 break;
12285
12286 case ada_catch_exception_unhandled:
12287 return data->exception_info->unhandled_exception_name_addr ();
12288 break;
12289
12290 case ada_catch_handlers:
12291 return 0; /* The runtimes does not provide access to the exception
12292 name. */
12293 break;
12294
12295 case ada_catch_assert:
12296 return 0; /* Exception name is not relevant in this case. */
12297 break;
12298
12299 default:
12300 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12301 break;
12302 }
12303
12304 return 0; /* Should never be reached. */
12305 }
12306
12307 /* Assuming the inferior is stopped at an exception catchpoint,
12308 return the message which was associated to the exception, if
12309 available. Return NULL if the message could not be retrieved.
12310
12311 Note: The exception message can be associated to an exception
12312 either through the use of the Raise_Exception function, or
12313 more simply (Ada 2005 and later), via:
12314
12315 raise Exception_Name with "exception message";
12316
12317 */
12318
12319 static gdb::unique_xmalloc_ptr<char>
12320 ada_exception_message_1 (void)
12321 {
12322 struct value *e_msg_val;
12323 int e_msg_len;
12324
12325 /* For runtimes that support this feature, the exception message
12326 is passed as an unbounded string argument called "message". */
12327 e_msg_val = parse_and_eval ("message");
12328 if (e_msg_val == NULL)
12329 return NULL; /* Exception message not supported. */
12330
12331 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12332 gdb_assert (e_msg_val != NULL);
12333 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12334
12335 /* If the message string is empty, then treat it as if there was
12336 no exception message. */
12337 if (e_msg_len <= 0)
12338 return NULL;
12339
12340 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12341 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12342 e_msg.get ()[e_msg_len] = '\0';
12343
12344 return e_msg;
12345 }
12346
12347 /* Same as ada_exception_message_1, except that all exceptions are
12348 contained here (returning NULL instead). */
12349
12350 static gdb::unique_xmalloc_ptr<char>
12351 ada_exception_message (void)
12352 {
12353 gdb::unique_xmalloc_ptr<char> e_msg;
12354
12355 try
12356 {
12357 e_msg = ada_exception_message_1 ();
12358 }
12359 catch (const gdb_exception_error &e)
12360 {
12361 e_msg.reset (nullptr);
12362 }
12363
12364 return e_msg;
12365 }
12366
12367 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12368 any error that ada_exception_name_addr_1 might cause to be thrown.
12369 When an error is intercepted, a warning with the error message is printed,
12370 and zero is returned. */
12371
12372 static CORE_ADDR
12373 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12374 struct breakpoint *b)
12375 {
12376 CORE_ADDR result = 0;
12377
12378 try
12379 {
12380 result = ada_exception_name_addr_1 (ex, b);
12381 }
12382
12383 catch (const gdb_exception_error &e)
12384 {
12385 warning (_("failed to get exception name: %s"), e.what ());
12386 return 0;
12387 }
12388
12389 return result;
12390 }
12391
12392 static std::string ada_exception_catchpoint_cond_string
12393 (const char *excep_string,
12394 enum ada_exception_catchpoint_kind ex);
12395
12396 /* Ada catchpoints.
12397
12398 In the case of catchpoints on Ada exceptions, the catchpoint will
12399 stop the target on every exception the program throws. When a user
12400 specifies the name of a specific exception, we translate this
12401 request into a condition expression (in text form), and then parse
12402 it into an expression stored in each of the catchpoint's locations.
12403 We then use this condition to check whether the exception that was
12404 raised is the one the user is interested in. If not, then the
12405 target is resumed again. We store the name of the requested
12406 exception, in order to be able to re-set the condition expression
12407 when symbols change. */
12408
12409 /* An instance of this type is used to represent an Ada catchpoint
12410 breakpoint location. */
12411
12412 class ada_catchpoint_location : public bp_location
12413 {
12414 public:
12415 ada_catchpoint_location (breakpoint *owner)
12416 : bp_location (owner)
12417 {}
12418
12419 /* The condition that checks whether the exception that was raised
12420 is the specific exception the user specified on catchpoint
12421 creation. */
12422 expression_up excep_cond_expr;
12423 };
12424
12425 /* An instance of this type is used to represent an Ada catchpoint. */
12426
12427 struct ada_catchpoint : public breakpoint
12428 {
12429 /* The name of the specific exception the user specified. */
12430 std::string excep_string;
12431 };
12432
12433 /* Parse the exception condition string in the context of each of the
12434 catchpoint's locations, and store them for later evaluation. */
12435
12436 static void
12437 create_excep_cond_exprs (struct ada_catchpoint *c,
12438 enum ada_exception_catchpoint_kind ex)
12439 {
12440 struct bp_location *bl;
12441
12442 /* Nothing to do if there's no specific exception to catch. */
12443 if (c->excep_string.empty ())
12444 return;
12445
12446 /* Same if there are no locations... */
12447 if (c->loc == NULL)
12448 return;
12449
12450 /* Compute the condition expression in text form, from the specific
12451 expection we want to catch. */
12452 std::string cond_string
12453 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12454
12455 /* Iterate over all the catchpoint's locations, and parse an
12456 expression for each. */
12457 for (bl = c->loc; bl != NULL; bl = bl->next)
12458 {
12459 struct ada_catchpoint_location *ada_loc
12460 = (struct ada_catchpoint_location *) bl;
12461 expression_up exp;
12462
12463 if (!bl->shlib_disabled)
12464 {
12465 const char *s;
12466
12467 s = cond_string.c_str ();
12468 try
12469 {
12470 exp = parse_exp_1 (&s, bl->address,
12471 block_for_pc (bl->address),
12472 0);
12473 }
12474 catch (const gdb_exception_error &e)
12475 {
12476 warning (_("failed to reevaluate internal exception condition "
12477 "for catchpoint %d: %s"),
12478 c->number, e.what ());
12479 }
12480 }
12481
12482 ada_loc->excep_cond_expr = std::move (exp);
12483 }
12484 }
12485
12486 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12487 structure for all exception catchpoint kinds. */
12488
12489 static struct bp_location *
12490 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12491 struct breakpoint *self)
12492 {
12493 return new ada_catchpoint_location (self);
12494 }
12495
12496 /* Implement the RE_SET method in the breakpoint_ops structure for all
12497 exception catchpoint kinds. */
12498
12499 static void
12500 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12501 {
12502 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12503
12504 /* Call the base class's method. This updates the catchpoint's
12505 locations. */
12506 bkpt_breakpoint_ops.re_set (b);
12507
12508 /* Reparse the exception conditional expressions. One for each
12509 location. */
12510 create_excep_cond_exprs (c, ex);
12511 }
12512
12513 /* Returns true if we should stop for this breakpoint hit. If the
12514 user specified a specific exception, we only want to cause a stop
12515 if the program thrown that exception. */
12516
12517 static int
12518 should_stop_exception (const struct bp_location *bl)
12519 {
12520 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12521 const struct ada_catchpoint_location *ada_loc
12522 = (const struct ada_catchpoint_location *) bl;
12523 int stop;
12524
12525 /* With no specific exception, should always stop. */
12526 if (c->excep_string.empty ())
12527 return 1;
12528
12529 if (ada_loc->excep_cond_expr == NULL)
12530 {
12531 /* We will have a NULL expression if back when we were creating
12532 the expressions, this location's had failed to parse. */
12533 return 1;
12534 }
12535
12536 stop = 1;
12537 try
12538 {
12539 struct value *mark;
12540
12541 mark = value_mark ();
12542 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12543 value_free_to_mark (mark);
12544 }
12545 catch (const gdb_exception &ex)
12546 {
12547 exception_fprintf (gdb_stderr, ex,
12548 _("Error in testing exception condition:\n"));
12549 }
12550
12551 return stop;
12552 }
12553
12554 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12555 for all exception catchpoint kinds. */
12556
12557 static void
12558 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12559 {
12560 bs->stop = should_stop_exception (bs->bp_location_at);
12561 }
12562
12563 /* Implement the PRINT_IT method in the breakpoint_ops structure
12564 for all exception catchpoint kinds. */
12565
12566 static enum print_stop_action
12567 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12568 {
12569 struct ui_out *uiout = current_uiout;
12570 struct breakpoint *b = bs->breakpoint_at;
12571
12572 annotate_catchpoint (b->number);
12573
12574 if (uiout->is_mi_like_p ())
12575 {
12576 uiout->field_string ("reason",
12577 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12578 uiout->field_string ("disp", bpdisp_text (b->disposition));
12579 }
12580
12581 uiout->text (b->disposition == disp_del
12582 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12583 uiout->field_int ("bkptno", b->number);
12584 uiout->text (", ");
12585
12586 /* ada_exception_name_addr relies on the selected frame being the
12587 current frame. Need to do this here because this function may be
12588 called more than once when printing a stop, and below, we'll
12589 select the first frame past the Ada run-time (see
12590 ada_find_printable_frame). */
12591 select_frame (get_current_frame ());
12592
12593 switch (ex)
12594 {
12595 case ada_catch_exception:
12596 case ada_catch_exception_unhandled:
12597 case ada_catch_handlers:
12598 {
12599 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12600 char exception_name[256];
12601
12602 if (addr != 0)
12603 {
12604 read_memory (addr, (gdb_byte *) exception_name,
12605 sizeof (exception_name) - 1);
12606 exception_name [sizeof (exception_name) - 1] = '\0';
12607 }
12608 else
12609 {
12610 /* For some reason, we were unable to read the exception
12611 name. This could happen if the Runtime was compiled
12612 without debugging info, for instance. In that case,
12613 just replace the exception name by the generic string
12614 "exception" - it will read as "an exception" in the
12615 notification we are about to print. */
12616 memcpy (exception_name, "exception", sizeof ("exception"));
12617 }
12618 /* In the case of unhandled exception breakpoints, we print
12619 the exception name as "unhandled EXCEPTION_NAME", to make
12620 it clearer to the user which kind of catchpoint just got
12621 hit. We used ui_out_text to make sure that this extra
12622 info does not pollute the exception name in the MI case. */
12623 if (ex == ada_catch_exception_unhandled)
12624 uiout->text ("unhandled ");
12625 uiout->field_string ("exception-name", exception_name);
12626 }
12627 break;
12628 case ada_catch_assert:
12629 /* In this case, the name of the exception is not really
12630 important. Just print "failed assertion" to make it clearer
12631 that his program just hit an assertion-failure catchpoint.
12632 We used ui_out_text because this info does not belong in
12633 the MI output. */
12634 uiout->text ("failed assertion");
12635 break;
12636 }
12637
12638 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12639 if (exception_message != NULL)
12640 {
12641 uiout->text (" (");
12642 uiout->field_string ("exception-message", exception_message.get ());
12643 uiout->text (")");
12644 }
12645
12646 uiout->text (" at ");
12647 ada_find_printable_frame (get_current_frame ());
12648
12649 return PRINT_SRC_AND_LOC;
12650 }
12651
12652 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12653 for all exception catchpoint kinds. */
12654
12655 static void
12656 print_one_exception (enum ada_exception_catchpoint_kind ex,
12657 struct breakpoint *b, struct bp_location **last_loc)
12658 {
12659 struct ui_out *uiout = current_uiout;
12660 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12661 struct value_print_options opts;
12662
12663 get_user_print_options (&opts);
12664 if (opts.addressprint)
12665 {
12666 annotate_field (4);
12667 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12668 }
12669
12670 annotate_field (5);
12671 *last_loc = b->loc;
12672 switch (ex)
12673 {
12674 case ada_catch_exception:
12675 if (!c->excep_string.empty ())
12676 {
12677 std::string msg = string_printf (_("`%s' Ada exception"),
12678 c->excep_string.c_str ());
12679
12680 uiout->field_string ("what", msg);
12681 }
12682 else
12683 uiout->field_string ("what", "all Ada exceptions");
12684
12685 break;
12686
12687 case ada_catch_exception_unhandled:
12688 uiout->field_string ("what", "unhandled Ada exceptions");
12689 break;
12690
12691 case ada_catch_handlers:
12692 if (!c->excep_string.empty ())
12693 {
12694 uiout->field_fmt ("what",
12695 _("`%s' Ada exception handlers"),
12696 c->excep_string.c_str ());
12697 }
12698 else
12699 uiout->field_string ("what", "all Ada exceptions handlers");
12700 break;
12701
12702 case ada_catch_assert:
12703 uiout->field_string ("what", "failed Ada assertions");
12704 break;
12705
12706 default:
12707 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12708 break;
12709 }
12710 }
12711
12712 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12713 for all exception catchpoint kinds. */
12714
12715 static void
12716 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12717 struct breakpoint *b)
12718 {
12719 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12720 struct ui_out *uiout = current_uiout;
12721
12722 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12723 : _("Catchpoint "));
12724 uiout->field_int ("bkptno", b->number);
12725 uiout->text (": ");
12726
12727 switch (ex)
12728 {
12729 case ada_catch_exception:
12730 if (!c->excep_string.empty ())
12731 {
12732 std::string info = string_printf (_("`%s' Ada exception"),
12733 c->excep_string.c_str ());
12734 uiout->text (info.c_str ());
12735 }
12736 else
12737 uiout->text (_("all Ada exceptions"));
12738 break;
12739
12740 case ada_catch_exception_unhandled:
12741 uiout->text (_("unhandled Ada exceptions"));
12742 break;
12743
12744 case ada_catch_handlers:
12745 if (!c->excep_string.empty ())
12746 {
12747 std::string info
12748 = string_printf (_("`%s' Ada exception handlers"),
12749 c->excep_string.c_str ());
12750 uiout->text (info.c_str ());
12751 }
12752 else
12753 uiout->text (_("all Ada exceptions handlers"));
12754 break;
12755
12756 case ada_catch_assert:
12757 uiout->text (_("failed Ada assertions"));
12758 break;
12759
12760 default:
12761 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12762 break;
12763 }
12764 }
12765
12766 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12767 for all exception catchpoint kinds. */
12768
12769 static void
12770 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12771 struct breakpoint *b, struct ui_file *fp)
12772 {
12773 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12774
12775 switch (ex)
12776 {
12777 case ada_catch_exception:
12778 fprintf_filtered (fp, "catch exception");
12779 if (!c->excep_string.empty ())
12780 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12781 break;
12782
12783 case ada_catch_exception_unhandled:
12784 fprintf_filtered (fp, "catch exception unhandled");
12785 break;
12786
12787 case ada_catch_handlers:
12788 fprintf_filtered (fp, "catch handlers");
12789 break;
12790
12791 case ada_catch_assert:
12792 fprintf_filtered (fp, "catch assert");
12793 break;
12794
12795 default:
12796 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12797 }
12798 print_recreate_thread (b, fp);
12799 }
12800
12801 /* Virtual table for "catch exception" breakpoints. */
12802
12803 static struct bp_location *
12804 allocate_location_catch_exception (struct breakpoint *self)
12805 {
12806 return allocate_location_exception (ada_catch_exception, self);
12807 }
12808
12809 static void
12810 re_set_catch_exception (struct breakpoint *b)
12811 {
12812 re_set_exception (ada_catch_exception, b);
12813 }
12814
12815 static void
12816 check_status_catch_exception (bpstat bs)
12817 {
12818 check_status_exception (ada_catch_exception, bs);
12819 }
12820
12821 static enum print_stop_action
12822 print_it_catch_exception (bpstat bs)
12823 {
12824 return print_it_exception (ada_catch_exception, bs);
12825 }
12826
12827 static void
12828 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12829 {
12830 print_one_exception (ada_catch_exception, b, last_loc);
12831 }
12832
12833 static void
12834 print_mention_catch_exception (struct breakpoint *b)
12835 {
12836 print_mention_exception (ada_catch_exception, b);
12837 }
12838
12839 static void
12840 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12841 {
12842 print_recreate_exception (ada_catch_exception, b, fp);
12843 }
12844
12845 static struct breakpoint_ops catch_exception_breakpoint_ops;
12846
12847 /* Virtual table for "catch exception unhandled" breakpoints. */
12848
12849 static struct bp_location *
12850 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12851 {
12852 return allocate_location_exception (ada_catch_exception_unhandled, self);
12853 }
12854
12855 static void
12856 re_set_catch_exception_unhandled (struct breakpoint *b)
12857 {
12858 re_set_exception (ada_catch_exception_unhandled, b);
12859 }
12860
12861 static void
12862 check_status_catch_exception_unhandled (bpstat bs)
12863 {
12864 check_status_exception (ada_catch_exception_unhandled, bs);
12865 }
12866
12867 static enum print_stop_action
12868 print_it_catch_exception_unhandled (bpstat bs)
12869 {
12870 return print_it_exception (ada_catch_exception_unhandled, bs);
12871 }
12872
12873 static void
12874 print_one_catch_exception_unhandled (struct breakpoint *b,
12875 struct bp_location **last_loc)
12876 {
12877 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12878 }
12879
12880 static void
12881 print_mention_catch_exception_unhandled (struct breakpoint *b)
12882 {
12883 print_mention_exception (ada_catch_exception_unhandled, b);
12884 }
12885
12886 static void
12887 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12888 struct ui_file *fp)
12889 {
12890 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12891 }
12892
12893 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12894
12895 /* Virtual table for "catch assert" breakpoints. */
12896
12897 static struct bp_location *
12898 allocate_location_catch_assert (struct breakpoint *self)
12899 {
12900 return allocate_location_exception (ada_catch_assert, self);
12901 }
12902
12903 static void
12904 re_set_catch_assert (struct breakpoint *b)
12905 {
12906 re_set_exception (ada_catch_assert, b);
12907 }
12908
12909 static void
12910 check_status_catch_assert (bpstat bs)
12911 {
12912 check_status_exception (ada_catch_assert, bs);
12913 }
12914
12915 static enum print_stop_action
12916 print_it_catch_assert (bpstat bs)
12917 {
12918 return print_it_exception (ada_catch_assert, bs);
12919 }
12920
12921 static void
12922 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12923 {
12924 print_one_exception (ada_catch_assert, b, last_loc);
12925 }
12926
12927 static void
12928 print_mention_catch_assert (struct breakpoint *b)
12929 {
12930 print_mention_exception (ada_catch_assert, b);
12931 }
12932
12933 static void
12934 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12935 {
12936 print_recreate_exception (ada_catch_assert, b, fp);
12937 }
12938
12939 static struct breakpoint_ops catch_assert_breakpoint_ops;
12940
12941 /* Virtual table for "catch handlers" breakpoints. */
12942
12943 static struct bp_location *
12944 allocate_location_catch_handlers (struct breakpoint *self)
12945 {
12946 return allocate_location_exception (ada_catch_handlers, self);
12947 }
12948
12949 static void
12950 re_set_catch_handlers (struct breakpoint *b)
12951 {
12952 re_set_exception (ada_catch_handlers, b);
12953 }
12954
12955 static void
12956 check_status_catch_handlers (bpstat bs)
12957 {
12958 check_status_exception (ada_catch_handlers, bs);
12959 }
12960
12961 static enum print_stop_action
12962 print_it_catch_handlers (bpstat bs)
12963 {
12964 return print_it_exception (ada_catch_handlers, bs);
12965 }
12966
12967 static void
12968 print_one_catch_handlers (struct breakpoint *b,
12969 struct bp_location **last_loc)
12970 {
12971 print_one_exception (ada_catch_handlers, b, last_loc);
12972 }
12973
12974 static void
12975 print_mention_catch_handlers (struct breakpoint *b)
12976 {
12977 print_mention_exception (ada_catch_handlers, b);
12978 }
12979
12980 static void
12981 print_recreate_catch_handlers (struct breakpoint *b,
12982 struct ui_file *fp)
12983 {
12984 print_recreate_exception (ada_catch_handlers, b, fp);
12985 }
12986
12987 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12988
12989 /* Split the arguments specified in a "catch exception" command.
12990 Set EX to the appropriate catchpoint type.
12991 Set EXCEP_STRING to the name of the specific exception if
12992 specified by the user.
12993 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12994 "catch handlers" command. False otherwise.
12995 If a condition is found at the end of the arguments, the condition
12996 expression is stored in COND_STRING (memory must be deallocated
12997 after use). Otherwise COND_STRING is set to NULL. */
12998
12999 static void
13000 catch_ada_exception_command_split (const char *args,
13001 bool is_catch_handlers_cmd,
13002 enum ada_exception_catchpoint_kind *ex,
13003 std::string *excep_string,
13004 std::string *cond_string)
13005 {
13006 std::string exception_name;
13007
13008 exception_name = extract_arg (&args);
13009 if (exception_name == "if")
13010 {
13011 /* This is not an exception name; this is the start of a condition
13012 expression for a catchpoint on all exceptions. So, "un-get"
13013 this token, and set exception_name to NULL. */
13014 exception_name.clear ();
13015 args -= 2;
13016 }
13017
13018 /* Check to see if we have a condition. */
13019
13020 args = skip_spaces (args);
13021 if (startswith (args, "if")
13022 && (isspace (args[2]) || args[2] == '\0'))
13023 {
13024 args += 2;
13025 args = skip_spaces (args);
13026
13027 if (args[0] == '\0')
13028 error (_("Condition missing after `if' keyword"));
13029 *cond_string = args;
13030
13031 args += strlen (args);
13032 }
13033
13034 /* Check that we do not have any more arguments. Anything else
13035 is unexpected. */
13036
13037 if (args[0] != '\0')
13038 error (_("Junk at end of expression"));
13039
13040 if (is_catch_handlers_cmd)
13041 {
13042 /* Catch handling of exceptions. */
13043 *ex = ada_catch_handlers;
13044 *excep_string = exception_name;
13045 }
13046 else if (exception_name.empty ())
13047 {
13048 /* Catch all exceptions. */
13049 *ex = ada_catch_exception;
13050 excep_string->clear ();
13051 }
13052 else if (exception_name == "unhandled")
13053 {
13054 /* Catch unhandled exceptions. */
13055 *ex = ada_catch_exception_unhandled;
13056 excep_string->clear ();
13057 }
13058 else
13059 {
13060 /* Catch a specific exception. */
13061 *ex = ada_catch_exception;
13062 *excep_string = exception_name;
13063 }
13064 }
13065
13066 /* Return the name of the symbol on which we should break in order to
13067 implement a catchpoint of the EX kind. */
13068
13069 static const char *
13070 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13071 {
13072 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13073
13074 gdb_assert (data->exception_info != NULL);
13075
13076 switch (ex)
13077 {
13078 case ada_catch_exception:
13079 return (data->exception_info->catch_exception_sym);
13080 break;
13081 case ada_catch_exception_unhandled:
13082 return (data->exception_info->catch_exception_unhandled_sym);
13083 break;
13084 case ada_catch_assert:
13085 return (data->exception_info->catch_assert_sym);
13086 break;
13087 case ada_catch_handlers:
13088 return (data->exception_info->catch_handlers_sym);
13089 break;
13090 default:
13091 internal_error (__FILE__, __LINE__,
13092 _("unexpected catchpoint kind (%d)"), ex);
13093 }
13094 }
13095
13096 /* Return the breakpoint ops "virtual table" used for catchpoints
13097 of the EX kind. */
13098
13099 static const struct breakpoint_ops *
13100 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13101 {
13102 switch (ex)
13103 {
13104 case ada_catch_exception:
13105 return (&catch_exception_breakpoint_ops);
13106 break;
13107 case ada_catch_exception_unhandled:
13108 return (&catch_exception_unhandled_breakpoint_ops);
13109 break;
13110 case ada_catch_assert:
13111 return (&catch_assert_breakpoint_ops);
13112 break;
13113 case ada_catch_handlers:
13114 return (&catch_handlers_breakpoint_ops);
13115 break;
13116 default:
13117 internal_error (__FILE__, __LINE__,
13118 _("unexpected catchpoint kind (%d)"), ex);
13119 }
13120 }
13121
13122 /* Return the condition that will be used to match the current exception
13123 being raised with the exception that the user wants to catch. This
13124 assumes that this condition is used when the inferior just triggered
13125 an exception catchpoint.
13126 EX: the type of catchpoints used for catching Ada exceptions. */
13127
13128 static std::string
13129 ada_exception_catchpoint_cond_string (const char *excep_string,
13130 enum ada_exception_catchpoint_kind ex)
13131 {
13132 int i;
13133 bool is_standard_exc = false;
13134 std::string result;
13135
13136 if (ex == ada_catch_handlers)
13137 {
13138 /* For exception handlers catchpoints, the condition string does
13139 not use the same parameter as for the other exceptions. */
13140 result = ("long_integer (GNAT_GCC_exception_Access"
13141 "(gcc_exception).all.occurrence.id)");
13142 }
13143 else
13144 result = "long_integer (e)";
13145
13146 /* The standard exceptions are a special case. They are defined in
13147 runtime units that have been compiled without debugging info; if
13148 EXCEP_STRING is the not-fully-qualified name of a standard
13149 exception (e.g. "constraint_error") then, during the evaluation
13150 of the condition expression, the symbol lookup on this name would
13151 *not* return this standard exception. The catchpoint condition
13152 may then be set only on user-defined exceptions which have the
13153 same not-fully-qualified name (e.g. my_package.constraint_error).
13154
13155 To avoid this unexcepted behavior, these standard exceptions are
13156 systematically prefixed by "standard". This means that "catch
13157 exception constraint_error" is rewritten into "catch exception
13158 standard.constraint_error".
13159
13160 If an exception named contraint_error is defined in another package of
13161 the inferior program, then the only way to specify this exception as a
13162 breakpoint condition is to use its fully-qualified named:
13163 e.g. my_package.constraint_error. */
13164
13165 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13166 {
13167 if (strcmp (standard_exc [i], excep_string) == 0)
13168 {
13169 is_standard_exc = true;
13170 break;
13171 }
13172 }
13173
13174 result += " = ";
13175
13176 if (is_standard_exc)
13177 string_appendf (result, "long_integer (&standard.%s)", excep_string);
13178 else
13179 string_appendf (result, "long_integer (&%s)", excep_string);
13180
13181 return result;
13182 }
13183
13184 /* Return the symtab_and_line that should be used to insert an exception
13185 catchpoint of the TYPE kind.
13186
13187 ADDR_STRING returns the name of the function where the real
13188 breakpoint that implements the catchpoints is set, depending on the
13189 type of catchpoint we need to create. */
13190
13191 static struct symtab_and_line
13192 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13193 std::string *addr_string, const struct breakpoint_ops **ops)
13194 {
13195 const char *sym_name;
13196 struct symbol *sym;
13197
13198 /* First, find out which exception support info to use. */
13199 ada_exception_support_info_sniffer ();
13200
13201 /* Then lookup the function on which we will break in order to catch
13202 the Ada exceptions requested by the user. */
13203 sym_name = ada_exception_sym_name (ex);
13204 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13205
13206 if (sym == NULL)
13207 error (_("Catchpoint symbol not found: %s"), sym_name);
13208
13209 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13210 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13211
13212 /* Set ADDR_STRING. */
13213 *addr_string = sym_name;
13214
13215 /* Set OPS. */
13216 *ops = ada_exception_breakpoint_ops (ex);
13217
13218 return find_function_start_sal (sym, 1);
13219 }
13220
13221 /* Create an Ada exception catchpoint.
13222
13223 EX_KIND is the kind of exception catchpoint to be created.
13224
13225 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13226 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13227 of the exception to which this catchpoint applies.
13228
13229 COND_STRING, if not empty, is the catchpoint condition.
13230
13231 TEMPFLAG, if nonzero, means that the underlying breakpoint
13232 should be temporary.
13233
13234 FROM_TTY is the usual argument passed to all commands implementations. */
13235
13236 void
13237 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13238 enum ada_exception_catchpoint_kind ex_kind,
13239 const std::string &excep_string,
13240 const std::string &cond_string,
13241 int tempflag,
13242 int disabled,
13243 int from_tty)
13244 {
13245 std::string addr_string;
13246 const struct breakpoint_ops *ops = NULL;
13247 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13248
13249 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13250 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
13251 ops, tempflag, disabled, from_tty);
13252 c->excep_string = excep_string;
13253 create_excep_cond_exprs (c.get (), ex_kind);
13254 if (!cond_string.empty ())
13255 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13256 install_breakpoint (0, std::move (c), 1);
13257 }
13258
13259 /* Implement the "catch exception" command. */
13260
13261 static void
13262 catch_ada_exception_command (const char *arg_entry, int from_tty,
13263 struct cmd_list_element *command)
13264 {
13265 const char *arg = arg_entry;
13266 struct gdbarch *gdbarch = get_current_arch ();
13267 int tempflag;
13268 enum ada_exception_catchpoint_kind ex_kind;
13269 std::string excep_string;
13270 std::string cond_string;
13271
13272 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13273
13274 if (!arg)
13275 arg = "";
13276 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13277 &cond_string);
13278 create_ada_exception_catchpoint (gdbarch, ex_kind,
13279 excep_string, cond_string,
13280 tempflag, 1 /* enabled */,
13281 from_tty);
13282 }
13283
13284 /* Implement the "catch handlers" command. */
13285
13286 static void
13287 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13288 struct cmd_list_element *command)
13289 {
13290 const char *arg = arg_entry;
13291 struct gdbarch *gdbarch = get_current_arch ();
13292 int tempflag;
13293 enum ada_exception_catchpoint_kind ex_kind;
13294 std::string excep_string;
13295 std::string cond_string;
13296
13297 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13298
13299 if (!arg)
13300 arg = "";
13301 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13302 &cond_string);
13303 create_ada_exception_catchpoint (gdbarch, ex_kind,
13304 excep_string, cond_string,
13305 tempflag, 1 /* enabled */,
13306 from_tty);
13307 }
13308
13309 /* Split the arguments specified in a "catch assert" command.
13310
13311 ARGS contains the command's arguments (or the empty string if
13312 no arguments were passed).
13313
13314 If ARGS contains a condition, set COND_STRING to that condition
13315 (the memory needs to be deallocated after use). */
13316
13317 static void
13318 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13319 {
13320 args = skip_spaces (args);
13321
13322 /* Check whether a condition was provided. */
13323 if (startswith (args, "if")
13324 && (isspace (args[2]) || args[2] == '\0'))
13325 {
13326 args += 2;
13327 args = skip_spaces (args);
13328 if (args[0] == '\0')
13329 error (_("condition missing after `if' keyword"));
13330 cond_string.assign (args);
13331 }
13332
13333 /* Otherwise, there should be no other argument at the end of
13334 the command. */
13335 else if (args[0] != '\0')
13336 error (_("Junk at end of arguments."));
13337 }
13338
13339 /* Implement the "catch assert" command. */
13340
13341 static void
13342 catch_assert_command (const char *arg_entry, int from_tty,
13343 struct cmd_list_element *command)
13344 {
13345 const char *arg = arg_entry;
13346 struct gdbarch *gdbarch = get_current_arch ();
13347 int tempflag;
13348 std::string cond_string;
13349
13350 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13351
13352 if (!arg)
13353 arg = "";
13354 catch_ada_assert_command_split (arg, cond_string);
13355 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13356 "", cond_string,
13357 tempflag, 1 /* enabled */,
13358 from_tty);
13359 }
13360
13361 /* Return non-zero if the symbol SYM is an Ada exception object. */
13362
13363 static int
13364 ada_is_exception_sym (struct symbol *sym)
13365 {
13366 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13367
13368 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13369 && SYMBOL_CLASS (sym) != LOC_BLOCK
13370 && SYMBOL_CLASS (sym) != LOC_CONST
13371 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13372 && type_name != NULL && strcmp (type_name, "exception") == 0);
13373 }
13374
13375 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13376 Ada exception object. This matches all exceptions except the ones
13377 defined by the Ada language. */
13378
13379 static int
13380 ada_is_non_standard_exception_sym (struct symbol *sym)
13381 {
13382 int i;
13383
13384 if (!ada_is_exception_sym (sym))
13385 return 0;
13386
13387 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13388 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13389 return 0; /* A standard exception. */
13390
13391 /* Numeric_Error is also a standard exception, so exclude it.
13392 See the STANDARD_EXC description for more details as to why
13393 this exception is not listed in that array. */
13394 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13395 return 0;
13396
13397 return 1;
13398 }
13399
13400 /* A helper function for std::sort, comparing two struct ada_exc_info
13401 objects.
13402
13403 The comparison is determined first by exception name, and then
13404 by exception address. */
13405
13406 bool
13407 ada_exc_info::operator< (const ada_exc_info &other) const
13408 {
13409 int result;
13410
13411 result = strcmp (name, other.name);
13412 if (result < 0)
13413 return true;
13414 if (result == 0 && addr < other.addr)
13415 return true;
13416 return false;
13417 }
13418
13419 bool
13420 ada_exc_info::operator== (const ada_exc_info &other) const
13421 {
13422 return addr == other.addr && strcmp (name, other.name) == 0;
13423 }
13424
13425 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13426 routine, but keeping the first SKIP elements untouched.
13427
13428 All duplicates are also removed. */
13429
13430 static void
13431 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13432 int skip)
13433 {
13434 std::sort (exceptions->begin () + skip, exceptions->end ());
13435 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13436 exceptions->end ());
13437 }
13438
13439 /* Add all exceptions defined by the Ada standard whose name match
13440 a regular expression.
13441
13442 If PREG is not NULL, then this regexp_t object is used to
13443 perform the symbol name matching. Otherwise, no name-based
13444 filtering is performed.
13445
13446 EXCEPTIONS is a vector of exceptions to which matching exceptions
13447 gets pushed. */
13448
13449 static void
13450 ada_add_standard_exceptions (compiled_regex *preg,
13451 std::vector<ada_exc_info> *exceptions)
13452 {
13453 int i;
13454
13455 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13456 {
13457 if (preg == NULL
13458 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13459 {
13460 struct bound_minimal_symbol msymbol
13461 = ada_lookup_simple_minsym (standard_exc[i]);
13462
13463 if (msymbol.minsym != NULL)
13464 {
13465 struct ada_exc_info info
13466 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13467
13468 exceptions->push_back (info);
13469 }
13470 }
13471 }
13472 }
13473
13474 /* Add all Ada exceptions defined locally and accessible from the given
13475 FRAME.
13476
13477 If PREG is not NULL, then this regexp_t object is used to
13478 perform the symbol name matching. Otherwise, no name-based
13479 filtering is performed.
13480
13481 EXCEPTIONS is a vector of exceptions to which matching exceptions
13482 gets pushed. */
13483
13484 static void
13485 ada_add_exceptions_from_frame (compiled_regex *preg,
13486 struct frame_info *frame,
13487 std::vector<ada_exc_info> *exceptions)
13488 {
13489 const struct block *block = get_frame_block (frame, 0);
13490
13491 while (block != 0)
13492 {
13493 struct block_iterator iter;
13494 struct symbol *sym;
13495
13496 ALL_BLOCK_SYMBOLS (block, iter, sym)
13497 {
13498 switch (SYMBOL_CLASS (sym))
13499 {
13500 case LOC_TYPEDEF:
13501 case LOC_BLOCK:
13502 case LOC_CONST:
13503 break;
13504 default:
13505 if (ada_is_exception_sym (sym))
13506 {
13507 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13508 SYMBOL_VALUE_ADDRESS (sym)};
13509
13510 exceptions->push_back (info);
13511 }
13512 }
13513 }
13514 if (BLOCK_FUNCTION (block) != NULL)
13515 break;
13516 block = BLOCK_SUPERBLOCK (block);
13517 }
13518 }
13519
13520 /* Return true if NAME matches PREG or if PREG is NULL. */
13521
13522 static bool
13523 name_matches_regex (const char *name, compiled_regex *preg)
13524 {
13525 return (preg == NULL
13526 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13527 }
13528
13529 /* Add all exceptions defined globally whose name name match
13530 a regular expression, excluding standard exceptions.
13531
13532 The reason we exclude standard exceptions is that they need
13533 to be handled separately: Standard exceptions are defined inside
13534 a runtime unit which is normally not compiled with debugging info,
13535 and thus usually do not show up in our symbol search. However,
13536 if the unit was in fact built with debugging info, we need to
13537 exclude them because they would duplicate the entry we found
13538 during the special loop that specifically searches for those
13539 standard exceptions.
13540
13541 If PREG is not NULL, then this regexp_t object is used to
13542 perform the symbol name matching. Otherwise, no name-based
13543 filtering is performed.
13544
13545 EXCEPTIONS is a vector of exceptions to which matching exceptions
13546 gets pushed. */
13547
13548 static void
13549 ada_add_global_exceptions (compiled_regex *preg,
13550 std::vector<ada_exc_info> *exceptions)
13551 {
13552 /* In Ada, the symbol "search name" is a linkage name, whereas the
13553 regular expression used to do the matching refers to the natural
13554 name. So match against the decoded name. */
13555 expand_symtabs_matching (NULL,
13556 lookup_name_info::match_any (),
13557 [&] (const char *search_name)
13558 {
13559 const char *decoded = ada_decode (search_name);
13560 return name_matches_regex (decoded, preg);
13561 },
13562 NULL,
13563 VARIABLES_DOMAIN);
13564
13565 for (objfile *objfile : current_program_space->objfiles ())
13566 {
13567 for (compunit_symtab *s : objfile->compunits ())
13568 {
13569 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13570 int i;
13571
13572 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13573 {
13574 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13575 struct block_iterator iter;
13576 struct symbol *sym;
13577
13578 ALL_BLOCK_SYMBOLS (b, iter, sym)
13579 if (ada_is_non_standard_exception_sym (sym)
13580 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13581 {
13582 struct ada_exc_info info
13583 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13584
13585 exceptions->push_back (info);
13586 }
13587 }
13588 }
13589 }
13590 }
13591
13592 /* Implements ada_exceptions_list with the regular expression passed
13593 as a regex_t, rather than a string.
13594
13595 If not NULL, PREG is used to filter out exceptions whose names
13596 do not match. Otherwise, all exceptions are listed. */
13597
13598 static std::vector<ada_exc_info>
13599 ada_exceptions_list_1 (compiled_regex *preg)
13600 {
13601 std::vector<ada_exc_info> result;
13602 int prev_len;
13603
13604 /* First, list the known standard exceptions. These exceptions
13605 need to be handled separately, as they are usually defined in
13606 runtime units that have been compiled without debugging info. */
13607
13608 ada_add_standard_exceptions (preg, &result);
13609
13610 /* Next, find all exceptions whose scope is local and accessible
13611 from the currently selected frame. */
13612
13613 if (has_stack_frames ())
13614 {
13615 prev_len = result.size ();
13616 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13617 &result);
13618 if (result.size () > prev_len)
13619 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13620 }
13621
13622 /* Add all exceptions whose scope is global. */
13623
13624 prev_len = result.size ();
13625 ada_add_global_exceptions (preg, &result);
13626 if (result.size () > prev_len)
13627 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13628
13629 return result;
13630 }
13631
13632 /* Return a vector of ada_exc_info.
13633
13634 If REGEXP is NULL, all exceptions are included in the result.
13635 Otherwise, it should contain a valid regular expression,
13636 and only the exceptions whose names match that regular expression
13637 are included in the result.
13638
13639 The exceptions are sorted in the following order:
13640 - Standard exceptions (defined by the Ada language), in
13641 alphabetical order;
13642 - Exceptions only visible from the current frame, in
13643 alphabetical order;
13644 - Exceptions whose scope is global, in alphabetical order. */
13645
13646 std::vector<ada_exc_info>
13647 ada_exceptions_list (const char *regexp)
13648 {
13649 if (regexp == NULL)
13650 return ada_exceptions_list_1 (NULL);
13651
13652 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13653 return ada_exceptions_list_1 (&reg);
13654 }
13655
13656 /* Implement the "info exceptions" command. */
13657
13658 static void
13659 info_exceptions_command (const char *regexp, int from_tty)
13660 {
13661 struct gdbarch *gdbarch = get_current_arch ();
13662
13663 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13664
13665 if (regexp != NULL)
13666 printf_filtered
13667 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13668 else
13669 printf_filtered (_("All defined Ada exceptions:\n"));
13670
13671 for (const ada_exc_info &info : exceptions)
13672 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13673 }
13674
13675 /* Operators */
13676 /* Information about operators given special treatment in functions
13677 below. */
13678 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13679
13680 #define ADA_OPERATORS \
13681 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13682 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13683 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13684 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13685 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13686 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13687 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13688 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13689 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13690 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13691 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13692 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13693 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13694 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13695 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13696 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13697 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13698 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13699 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13700
13701 static void
13702 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13703 int *argsp)
13704 {
13705 switch (exp->elts[pc - 1].opcode)
13706 {
13707 default:
13708 operator_length_standard (exp, pc, oplenp, argsp);
13709 break;
13710
13711 #define OP_DEFN(op, len, args, binop) \
13712 case op: *oplenp = len; *argsp = args; break;
13713 ADA_OPERATORS;
13714 #undef OP_DEFN
13715
13716 case OP_AGGREGATE:
13717 *oplenp = 3;
13718 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13719 break;
13720
13721 case OP_CHOICES:
13722 *oplenp = 3;
13723 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13724 break;
13725 }
13726 }
13727
13728 /* Implementation of the exp_descriptor method operator_check. */
13729
13730 static int
13731 ada_operator_check (struct expression *exp, int pos,
13732 int (*objfile_func) (struct objfile *objfile, void *data),
13733 void *data)
13734 {
13735 const union exp_element *const elts = exp->elts;
13736 struct type *type = NULL;
13737
13738 switch (elts[pos].opcode)
13739 {
13740 case UNOP_IN_RANGE:
13741 case UNOP_QUAL:
13742 type = elts[pos + 1].type;
13743 break;
13744
13745 default:
13746 return operator_check_standard (exp, pos, objfile_func, data);
13747 }
13748
13749 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13750
13751 if (type && TYPE_OBJFILE (type)
13752 && (*objfile_func) (TYPE_OBJFILE (type), data))
13753 return 1;
13754
13755 return 0;
13756 }
13757
13758 static const char *
13759 ada_op_name (enum exp_opcode opcode)
13760 {
13761 switch (opcode)
13762 {
13763 default:
13764 return op_name_standard (opcode);
13765
13766 #define OP_DEFN(op, len, args, binop) case op: return #op;
13767 ADA_OPERATORS;
13768 #undef OP_DEFN
13769
13770 case OP_AGGREGATE:
13771 return "OP_AGGREGATE";
13772 case OP_CHOICES:
13773 return "OP_CHOICES";
13774 case OP_NAME:
13775 return "OP_NAME";
13776 }
13777 }
13778
13779 /* As for operator_length, but assumes PC is pointing at the first
13780 element of the operator, and gives meaningful results only for the
13781 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13782
13783 static void
13784 ada_forward_operator_length (struct expression *exp, int pc,
13785 int *oplenp, int *argsp)
13786 {
13787 switch (exp->elts[pc].opcode)
13788 {
13789 default:
13790 *oplenp = *argsp = 0;
13791 break;
13792
13793 #define OP_DEFN(op, len, args, binop) \
13794 case op: *oplenp = len; *argsp = args; break;
13795 ADA_OPERATORS;
13796 #undef OP_DEFN
13797
13798 case OP_AGGREGATE:
13799 *oplenp = 3;
13800 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13801 break;
13802
13803 case OP_CHOICES:
13804 *oplenp = 3;
13805 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13806 break;
13807
13808 case OP_STRING:
13809 case OP_NAME:
13810 {
13811 int len = longest_to_int (exp->elts[pc + 1].longconst);
13812
13813 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13814 *argsp = 0;
13815 break;
13816 }
13817 }
13818 }
13819
13820 static int
13821 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13822 {
13823 enum exp_opcode op = exp->elts[elt].opcode;
13824 int oplen, nargs;
13825 int pc = elt;
13826 int i;
13827
13828 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13829
13830 switch (op)
13831 {
13832 /* Ada attributes ('Foo). */
13833 case OP_ATR_FIRST:
13834 case OP_ATR_LAST:
13835 case OP_ATR_LENGTH:
13836 case OP_ATR_IMAGE:
13837 case OP_ATR_MAX:
13838 case OP_ATR_MIN:
13839 case OP_ATR_MODULUS:
13840 case OP_ATR_POS:
13841 case OP_ATR_SIZE:
13842 case OP_ATR_TAG:
13843 case OP_ATR_VAL:
13844 break;
13845
13846 case UNOP_IN_RANGE:
13847 case UNOP_QUAL:
13848 /* XXX: gdb_sprint_host_address, type_sprint */
13849 fprintf_filtered (stream, _("Type @"));
13850 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13851 fprintf_filtered (stream, " (");
13852 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13853 fprintf_filtered (stream, ")");
13854 break;
13855 case BINOP_IN_BOUNDS:
13856 fprintf_filtered (stream, " (%d)",
13857 longest_to_int (exp->elts[pc + 2].longconst));
13858 break;
13859 case TERNOP_IN_RANGE:
13860 break;
13861
13862 case OP_AGGREGATE:
13863 case OP_OTHERS:
13864 case OP_DISCRETE_RANGE:
13865 case OP_POSITIONAL:
13866 case OP_CHOICES:
13867 break;
13868
13869 case OP_NAME:
13870 case OP_STRING:
13871 {
13872 char *name = &exp->elts[elt + 2].string;
13873 int len = longest_to_int (exp->elts[elt + 1].longconst);
13874
13875 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13876 break;
13877 }
13878
13879 default:
13880 return dump_subexp_body_standard (exp, stream, elt);
13881 }
13882
13883 elt += oplen;
13884 for (i = 0; i < nargs; i += 1)
13885 elt = dump_subexp (exp, stream, elt);
13886
13887 return elt;
13888 }
13889
13890 /* The Ada extension of print_subexp (q.v.). */
13891
13892 static void
13893 ada_print_subexp (struct expression *exp, int *pos,
13894 struct ui_file *stream, enum precedence prec)
13895 {
13896 int oplen, nargs, i;
13897 int pc = *pos;
13898 enum exp_opcode op = exp->elts[pc].opcode;
13899
13900 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13901
13902 *pos += oplen;
13903 switch (op)
13904 {
13905 default:
13906 *pos -= oplen;
13907 print_subexp_standard (exp, pos, stream, prec);
13908 return;
13909
13910 case OP_VAR_VALUE:
13911 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13912 return;
13913
13914 case BINOP_IN_BOUNDS:
13915 /* XXX: sprint_subexp */
13916 print_subexp (exp, pos, stream, PREC_SUFFIX);
13917 fputs_filtered (" in ", stream);
13918 print_subexp (exp, pos, stream, PREC_SUFFIX);
13919 fputs_filtered ("'range", stream);
13920 if (exp->elts[pc + 1].longconst > 1)
13921 fprintf_filtered (stream, "(%ld)",
13922 (long) exp->elts[pc + 1].longconst);
13923 return;
13924
13925 case TERNOP_IN_RANGE:
13926 if (prec >= PREC_EQUAL)
13927 fputs_filtered ("(", stream);
13928 /* XXX: sprint_subexp */
13929 print_subexp (exp, pos, stream, PREC_SUFFIX);
13930 fputs_filtered (" in ", stream);
13931 print_subexp (exp, pos, stream, PREC_EQUAL);
13932 fputs_filtered (" .. ", stream);
13933 print_subexp (exp, pos, stream, PREC_EQUAL);
13934 if (prec >= PREC_EQUAL)
13935 fputs_filtered (")", stream);
13936 return;
13937
13938 case OP_ATR_FIRST:
13939 case OP_ATR_LAST:
13940 case OP_ATR_LENGTH:
13941 case OP_ATR_IMAGE:
13942 case OP_ATR_MAX:
13943 case OP_ATR_MIN:
13944 case OP_ATR_MODULUS:
13945 case OP_ATR_POS:
13946 case OP_ATR_SIZE:
13947 case OP_ATR_TAG:
13948 case OP_ATR_VAL:
13949 if (exp->elts[*pos].opcode == OP_TYPE)
13950 {
13951 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13952 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13953 &type_print_raw_options);
13954 *pos += 3;
13955 }
13956 else
13957 print_subexp (exp, pos, stream, PREC_SUFFIX);
13958 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13959 if (nargs > 1)
13960 {
13961 int tem;
13962
13963 for (tem = 1; tem < nargs; tem += 1)
13964 {
13965 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13966 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13967 }
13968 fputs_filtered (")", stream);
13969 }
13970 return;
13971
13972 case UNOP_QUAL:
13973 type_print (exp->elts[pc + 1].type, "", stream, 0);
13974 fputs_filtered ("'(", stream);
13975 print_subexp (exp, pos, stream, PREC_PREFIX);
13976 fputs_filtered (")", stream);
13977 return;
13978
13979 case UNOP_IN_RANGE:
13980 /* XXX: sprint_subexp */
13981 print_subexp (exp, pos, stream, PREC_SUFFIX);
13982 fputs_filtered (" in ", stream);
13983 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13984 &type_print_raw_options);
13985 return;
13986
13987 case OP_DISCRETE_RANGE:
13988 print_subexp (exp, pos, stream, PREC_SUFFIX);
13989 fputs_filtered ("..", stream);
13990 print_subexp (exp, pos, stream, PREC_SUFFIX);
13991 return;
13992
13993 case OP_OTHERS:
13994 fputs_filtered ("others => ", stream);
13995 print_subexp (exp, pos, stream, PREC_SUFFIX);
13996 return;
13997
13998 case OP_CHOICES:
13999 for (i = 0; i < nargs-1; i += 1)
14000 {
14001 if (i > 0)
14002 fputs_filtered ("|", stream);
14003 print_subexp (exp, pos, stream, PREC_SUFFIX);
14004 }
14005 fputs_filtered (" => ", stream);
14006 print_subexp (exp, pos, stream, PREC_SUFFIX);
14007 return;
14008
14009 case OP_POSITIONAL:
14010 print_subexp (exp, pos, stream, PREC_SUFFIX);
14011 return;
14012
14013 case OP_AGGREGATE:
14014 fputs_filtered ("(", stream);
14015 for (i = 0; i < nargs; i += 1)
14016 {
14017 if (i > 0)
14018 fputs_filtered (", ", stream);
14019 print_subexp (exp, pos, stream, PREC_SUFFIX);
14020 }
14021 fputs_filtered (")", stream);
14022 return;
14023 }
14024 }
14025
14026 /* Table mapping opcodes into strings for printing operators
14027 and precedences of the operators. */
14028
14029 static const struct op_print ada_op_print_tab[] = {
14030 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14031 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14032 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14033 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14034 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14035 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14036 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14037 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14038 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14039 {">=", BINOP_GEQ, PREC_ORDER, 0},
14040 {">", BINOP_GTR, PREC_ORDER, 0},
14041 {"<", BINOP_LESS, PREC_ORDER, 0},
14042 {">>", BINOP_RSH, PREC_SHIFT, 0},
14043 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14044 {"+", BINOP_ADD, PREC_ADD, 0},
14045 {"-", BINOP_SUB, PREC_ADD, 0},
14046 {"&", BINOP_CONCAT, PREC_ADD, 0},
14047 {"*", BINOP_MUL, PREC_MUL, 0},
14048 {"/", BINOP_DIV, PREC_MUL, 0},
14049 {"rem", BINOP_REM, PREC_MUL, 0},
14050 {"mod", BINOP_MOD, PREC_MUL, 0},
14051 {"**", BINOP_EXP, PREC_REPEAT, 0},
14052 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14053 {"-", UNOP_NEG, PREC_PREFIX, 0},
14054 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14055 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14056 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14057 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14058 {".all", UNOP_IND, PREC_SUFFIX, 1},
14059 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14060 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14061 {NULL, OP_NULL, PREC_SUFFIX, 0}
14062 };
14063 \f
14064 enum ada_primitive_types {
14065 ada_primitive_type_int,
14066 ada_primitive_type_long,
14067 ada_primitive_type_short,
14068 ada_primitive_type_char,
14069 ada_primitive_type_float,
14070 ada_primitive_type_double,
14071 ada_primitive_type_void,
14072 ada_primitive_type_long_long,
14073 ada_primitive_type_long_double,
14074 ada_primitive_type_natural,
14075 ada_primitive_type_positive,
14076 ada_primitive_type_system_address,
14077 ada_primitive_type_storage_offset,
14078 nr_ada_primitive_types
14079 };
14080
14081 static void
14082 ada_language_arch_info (struct gdbarch *gdbarch,
14083 struct language_arch_info *lai)
14084 {
14085 const struct builtin_type *builtin = builtin_type (gdbarch);
14086
14087 lai->primitive_type_vector
14088 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14089 struct type *);
14090
14091 lai->primitive_type_vector [ada_primitive_type_int]
14092 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14093 0, "integer");
14094 lai->primitive_type_vector [ada_primitive_type_long]
14095 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14096 0, "long_integer");
14097 lai->primitive_type_vector [ada_primitive_type_short]
14098 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14099 0, "short_integer");
14100 lai->string_char_type
14101 = lai->primitive_type_vector [ada_primitive_type_char]
14102 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14103 lai->primitive_type_vector [ada_primitive_type_float]
14104 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14105 "float", gdbarch_float_format (gdbarch));
14106 lai->primitive_type_vector [ada_primitive_type_double]
14107 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14108 "long_float", gdbarch_double_format (gdbarch));
14109 lai->primitive_type_vector [ada_primitive_type_long_long]
14110 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14111 0, "long_long_integer");
14112 lai->primitive_type_vector [ada_primitive_type_long_double]
14113 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14114 "long_long_float", gdbarch_long_double_format (gdbarch));
14115 lai->primitive_type_vector [ada_primitive_type_natural]
14116 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14117 0, "natural");
14118 lai->primitive_type_vector [ada_primitive_type_positive]
14119 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14120 0, "positive");
14121 lai->primitive_type_vector [ada_primitive_type_void]
14122 = builtin->builtin_void;
14123
14124 lai->primitive_type_vector [ada_primitive_type_system_address]
14125 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14126 "void"));
14127 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14128 = "system__address";
14129
14130 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14131 type. This is a signed integral type whose size is the same as
14132 the size of addresses. */
14133 {
14134 unsigned int addr_length = TYPE_LENGTH
14135 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14136
14137 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14138 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14139 "storage_offset");
14140 }
14141
14142 lai->bool_type_symbol = NULL;
14143 lai->bool_type_default = builtin->builtin_bool;
14144 }
14145 \f
14146 /* Language vector */
14147
14148 /* Not really used, but needed in the ada_language_defn. */
14149
14150 static void
14151 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14152 {
14153 ada_emit_char (c, type, stream, quoter, 1);
14154 }
14155
14156 static int
14157 parse (struct parser_state *ps)
14158 {
14159 warnings_issued = 0;
14160 return ada_parse (ps);
14161 }
14162
14163 static const struct exp_descriptor ada_exp_descriptor = {
14164 ada_print_subexp,
14165 ada_operator_length,
14166 ada_operator_check,
14167 ada_op_name,
14168 ada_dump_subexp_body,
14169 ada_evaluate_subexp
14170 };
14171
14172 /* symbol_name_matcher_ftype adapter for wild_match. */
14173
14174 static bool
14175 do_wild_match (const char *symbol_search_name,
14176 const lookup_name_info &lookup_name,
14177 completion_match_result *comp_match_res)
14178 {
14179 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14180 }
14181
14182 /* symbol_name_matcher_ftype adapter for full_match. */
14183
14184 static bool
14185 do_full_match (const char *symbol_search_name,
14186 const lookup_name_info &lookup_name,
14187 completion_match_result *comp_match_res)
14188 {
14189 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14190 }
14191
14192 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
14193
14194 static bool
14195 do_exact_match (const char *symbol_search_name,
14196 const lookup_name_info &lookup_name,
14197 completion_match_result *comp_match_res)
14198 {
14199 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14200 }
14201
14202 /* Build the Ada lookup name for LOOKUP_NAME. */
14203
14204 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14205 {
14206 const std::string &user_name = lookup_name.name ();
14207
14208 if (user_name[0] == '<')
14209 {
14210 if (user_name.back () == '>')
14211 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14212 else
14213 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14214 m_encoded_p = true;
14215 m_verbatim_p = true;
14216 m_wild_match_p = false;
14217 m_standard_p = false;
14218 }
14219 else
14220 {
14221 m_verbatim_p = false;
14222
14223 m_encoded_p = user_name.find ("__") != std::string::npos;
14224
14225 if (!m_encoded_p)
14226 {
14227 const char *folded = ada_fold_name (user_name.c_str ());
14228 const char *encoded = ada_encode_1 (folded, false);
14229 if (encoded != NULL)
14230 m_encoded_name = encoded;
14231 else
14232 m_encoded_name = user_name;
14233 }
14234 else
14235 m_encoded_name = user_name;
14236
14237 /* Handle the 'package Standard' special case. See description
14238 of m_standard_p. */
14239 if (startswith (m_encoded_name.c_str (), "standard__"))
14240 {
14241 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14242 m_standard_p = true;
14243 }
14244 else
14245 m_standard_p = false;
14246
14247 /* If the name contains a ".", then the user is entering a fully
14248 qualified entity name, and the match must not be done in wild
14249 mode. Similarly, if the user wants to complete what looks
14250 like an encoded name, the match must not be done in wild
14251 mode. Also, in the standard__ special case always do
14252 non-wild matching. */
14253 m_wild_match_p
14254 = (lookup_name.match_type () != symbol_name_match_type::FULL
14255 && !m_encoded_p
14256 && !m_standard_p
14257 && user_name.find ('.') == std::string::npos);
14258 }
14259 }
14260
14261 /* symbol_name_matcher_ftype method for Ada. This only handles
14262 completion mode. */
14263
14264 static bool
14265 ada_symbol_name_matches (const char *symbol_search_name,
14266 const lookup_name_info &lookup_name,
14267 completion_match_result *comp_match_res)
14268 {
14269 return lookup_name.ada ().matches (symbol_search_name,
14270 lookup_name.match_type (),
14271 comp_match_res);
14272 }
14273
14274 /* A name matcher that matches the symbol name exactly, with
14275 strcmp. */
14276
14277 static bool
14278 literal_symbol_name_matcher (const char *symbol_search_name,
14279 const lookup_name_info &lookup_name,
14280 completion_match_result *comp_match_res)
14281 {
14282 const std::string &name = lookup_name.name ();
14283
14284 int cmp = (lookup_name.completion_mode ()
14285 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14286 : strcmp (symbol_search_name, name.c_str ()));
14287 if (cmp == 0)
14288 {
14289 if (comp_match_res != NULL)
14290 comp_match_res->set_match (symbol_search_name);
14291 return true;
14292 }
14293 else
14294 return false;
14295 }
14296
14297 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14298 Ada. */
14299
14300 static symbol_name_matcher_ftype *
14301 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14302 {
14303 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14304 return literal_symbol_name_matcher;
14305
14306 if (lookup_name.completion_mode ())
14307 return ada_symbol_name_matches;
14308 else
14309 {
14310 if (lookup_name.ada ().wild_match_p ())
14311 return do_wild_match;
14312 else if (lookup_name.ada ().verbatim_p ())
14313 return do_exact_match;
14314 else
14315 return do_full_match;
14316 }
14317 }
14318
14319 /* Implement the "la_read_var_value" language_defn method for Ada. */
14320
14321 static struct value *
14322 ada_read_var_value (struct symbol *var, const struct block *var_block,
14323 struct frame_info *frame)
14324 {
14325 const struct block *frame_block = NULL;
14326 struct symbol *renaming_sym = NULL;
14327
14328 /* The only case where default_read_var_value is not sufficient
14329 is when VAR is a renaming... */
14330 if (frame)
14331 frame_block = get_frame_block (frame, NULL);
14332 if (frame_block)
14333 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14334 if (renaming_sym != NULL)
14335 return ada_read_renaming_var_value (renaming_sym, frame_block);
14336
14337 /* This is a typical case where we expect the default_read_var_value
14338 function to work. */
14339 return default_read_var_value (var, var_block, frame);
14340 }
14341
14342 static const char *ada_extensions[] =
14343 {
14344 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14345 };
14346
14347 extern const struct language_defn ada_language_defn = {
14348 "ada", /* Language name */
14349 "Ada",
14350 language_ada,
14351 range_check_off,
14352 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14353 that's not quite what this means. */
14354 array_row_major,
14355 macro_expansion_no,
14356 ada_extensions,
14357 &ada_exp_descriptor,
14358 parse,
14359 resolve,
14360 ada_printchar, /* Print a character constant */
14361 ada_printstr, /* Function to print string constant */
14362 emit_char, /* Function to print single char (not used) */
14363 ada_print_type, /* Print a type using appropriate syntax */
14364 ada_print_typedef, /* Print a typedef using appropriate syntax */
14365 ada_val_print, /* Print a value using appropriate syntax */
14366 ada_value_print, /* Print a top-level value */
14367 ada_read_var_value, /* la_read_var_value */
14368 NULL, /* Language specific skip_trampoline */
14369 NULL, /* name_of_this */
14370 true, /* la_store_sym_names_in_linkage_form_p */
14371 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14372 basic_lookup_transparent_type, /* lookup_transparent_type */
14373 ada_la_decode, /* Language specific symbol demangler */
14374 ada_sniff_from_mangled_name,
14375 NULL, /* Language specific
14376 class_name_from_physname */
14377 ada_op_print_tab, /* expression operators for printing */
14378 0, /* c-style arrays */
14379 1, /* String lower bound */
14380 ada_get_gdb_completer_word_break_characters,
14381 ada_collect_symbol_completion_matches,
14382 ada_language_arch_info,
14383 ada_print_array_index,
14384 default_pass_by_reference,
14385 c_get_string,
14386 ada_watch_location_expression,
14387 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14388 ada_iterate_over_symbols,
14389 default_search_name_hash,
14390 &ada_varobj_ops,
14391 NULL,
14392 NULL
14393 };
14394
14395 /* Command-list for the "set/show ada" prefix command. */
14396 static struct cmd_list_element *set_ada_list;
14397 static struct cmd_list_element *show_ada_list;
14398
14399 /* Implement the "set ada" prefix command. */
14400
14401 static void
14402 set_ada_command (const char *arg, int from_tty)
14403 {
14404 printf_unfiltered (_(\
14405 "\"set ada\" must be followed by the name of a setting.\n"));
14406 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14407 }
14408
14409 /* Implement the "show ada" prefix command. */
14410
14411 static void
14412 show_ada_command (const char *args, int from_tty)
14413 {
14414 cmd_show_list (show_ada_list, from_tty, "");
14415 }
14416
14417 static void
14418 initialize_ada_catchpoint_ops (void)
14419 {
14420 struct breakpoint_ops *ops;
14421
14422 initialize_breakpoint_ops ();
14423
14424 ops = &catch_exception_breakpoint_ops;
14425 *ops = bkpt_breakpoint_ops;
14426 ops->allocate_location = allocate_location_catch_exception;
14427 ops->re_set = re_set_catch_exception;
14428 ops->check_status = check_status_catch_exception;
14429 ops->print_it = print_it_catch_exception;
14430 ops->print_one = print_one_catch_exception;
14431 ops->print_mention = print_mention_catch_exception;
14432 ops->print_recreate = print_recreate_catch_exception;
14433
14434 ops = &catch_exception_unhandled_breakpoint_ops;
14435 *ops = bkpt_breakpoint_ops;
14436 ops->allocate_location = allocate_location_catch_exception_unhandled;
14437 ops->re_set = re_set_catch_exception_unhandled;
14438 ops->check_status = check_status_catch_exception_unhandled;
14439 ops->print_it = print_it_catch_exception_unhandled;
14440 ops->print_one = print_one_catch_exception_unhandled;
14441 ops->print_mention = print_mention_catch_exception_unhandled;
14442 ops->print_recreate = print_recreate_catch_exception_unhandled;
14443
14444 ops = &catch_assert_breakpoint_ops;
14445 *ops = bkpt_breakpoint_ops;
14446 ops->allocate_location = allocate_location_catch_assert;
14447 ops->re_set = re_set_catch_assert;
14448 ops->check_status = check_status_catch_assert;
14449 ops->print_it = print_it_catch_assert;
14450 ops->print_one = print_one_catch_assert;
14451 ops->print_mention = print_mention_catch_assert;
14452 ops->print_recreate = print_recreate_catch_assert;
14453
14454 ops = &catch_handlers_breakpoint_ops;
14455 *ops = bkpt_breakpoint_ops;
14456 ops->allocate_location = allocate_location_catch_handlers;
14457 ops->re_set = re_set_catch_handlers;
14458 ops->check_status = check_status_catch_handlers;
14459 ops->print_it = print_it_catch_handlers;
14460 ops->print_one = print_one_catch_handlers;
14461 ops->print_mention = print_mention_catch_handlers;
14462 ops->print_recreate = print_recreate_catch_handlers;
14463 }
14464
14465 /* This module's 'new_objfile' observer. */
14466
14467 static void
14468 ada_new_objfile_observer (struct objfile *objfile)
14469 {
14470 ada_clear_symbol_cache ();
14471 }
14472
14473 /* This module's 'free_objfile' observer. */
14474
14475 static void
14476 ada_free_objfile_observer (struct objfile *objfile)
14477 {
14478 ada_clear_symbol_cache ();
14479 }
14480
14481 void
14482 _initialize_ada_language (void)
14483 {
14484 initialize_ada_catchpoint_ops ();
14485
14486 add_prefix_cmd ("ada", no_class, set_ada_command,
14487 _("Prefix command for changing Ada-specific settings"),
14488 &set_ada_list, "set ada ", 0, &setlist);
14489
14490 add_prefix_cmd ("ada", no_class, show_ada_command,
14491 _("Generic command for showing Ada-specific settings."),
14492 &show_ada_list, "show ada ", 0, &showlist);
14493
14494 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14495 &trust_pad_over_xvs, _("\
14496 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14497 Show whether an optimization trusting PAD types over XVS types is activated"),
14498 _("\
14499 This is related to the encoding used by the GNAT compiler. The debugger\n\
14500 should normally trust the contents of PAD types, but certain older versions\n\
14501 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14502 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14503 work around this bug. It is always safe to turn this option \"off\", but\n\
14504 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14505 this option to \"off\" unless necessary."),
14506 NULL, NULL, &set_ada_list, &show_ada_list);
14507
14508 add_setshow_boolean_cmd ("print-signatures", class_vars,
14509 &print_signatures, _("\
14510 Enable or disable the output of formal and return types for functions in the \
14511 overloads selection menu"), _("\
14512 Show whether the output of formal and return types for functions in the \
14513 overloads selection menu is activated"),
14514 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14515
14516 add_catch_command ("exception", _("\
14517 Catch Ada exceptions, when raised.\n\
14518 Usage: catch exception [ ARG ]\n\
14519 \n\
14520 Without any argument, stop when any Ada exception is raised.\n\
14521 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14522 being raised does not have a handler (and will therefore lead to the task's\n\
14523 termination).\n\
14524 Otherwise, the catchpoint only stops when the name of the exception being\n\
14525 raised is the same as ARG."),
14526 catch_ada_exception_command,
14527 NULL,
14528 CATCH_PERMANENT,
14529 CATCH_TEMPORARY);
14530
14531 add_catch_command ("handlers", _("\
14532 Catch Ada exceptions, when handled.\n\
14533 With an argument, catch only exceptions with the given name."),
14534 catch_ada_handlers_command,
14535 NULL,
14536 CATCH_PERMANENT,
14537 CATCH_TEMPORARY);
14538 add_catch_command ("assert", _("\
14539 Catch failed Ada assertions, when raised.\n\
14540 With an argument, catch only exceptions with the given name."),
14541 catch_assert_command,
14542 NULL,
14543 CATCH_PERMANENT,
14544 CATCH_TEMPORARY);
14545
14546 varsize_limit = 65536;
14547 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14548 &varsize_limit, _("\
14549 Set the maximum number of bytes allowed in a variable-size object."), _("\
14550 Show the maximum number of bytes allowed in a variable-size object."), _("\
14551 Attempts to access an object whose size is not a compile-time constant\n\
14552 and exceeds this limit will cause an error."),
14553 NULL, NULL, &setlist, &showlist);
14554
14555 add_info ("exceptions", info_exceptions_command,
14556 _("\
14557 List all Ada exception names.\n\
14558 If a regular expression is passed as an argument, only those matching\n\
14559 the regular expression are listed."));
14560
14561 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14562 _("Set Ada maintenance-related variables."),
14563 &maint_set_ada_cmdlist, "maintenance set ada ",
14564 0/*allow-unknown*/, &maintenance_set_cmdlist);
14565
14566 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14567 _("Show Ada maintenance-related variables"),
14568 &maint_show_ada_cmdlist, "maintenance show ada ",
14569 0/*allow-unknown*/, &maintenance_show_cmdlist);
14570
14571 add_setshow_boolean_cmd
14572 ("ignore-descriptive-types", class_maintenance,
14573 &ada_ignore_descriptive_types_p,
14574 _("Set whether descriptive types generated by GNAT should be ignored."),
14575 _("Show whether descriptive types generated by GNAT should be ignored."),
14576 _("\
14577 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14578 DWARF attribute."),
14579 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14580
14581 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14582 NULL, xcalloc, xfree);
14583
14584 /* The ada-lang observers. */
14585 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14586 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14587 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14588
14589 /* Setup various context-specific data. */
14590 ada_inferior_data
14591 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14592 ada_pspace_data_handle
14593 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14594 }
This page took 0.369903 seconds and 4 git commands to generate.