* configure.tgt (i[3456]86-*-openbsd*): Set gdb_target to obds.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright
2 1992, 1993, 1994, 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include <stdio.h>
21 #include "gdb_string.h"
22 #include <ctype.h>
23 #include <stdarg.h>
24 #include "demangle.h"
25 #include "defs.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "c-lang.h"
33 #include "inferior.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "breakpoint.h"
37 #include "gdbcore.h"
38 #include "ada-lang.h"
39 #ifdef UI_OUT
40 #include "ui-out.h"
41 #endif
42
43 struct cleanup *unresolved_names;
44
45 void extract_string (CORE_ADDR addr, char *buf);
46
47 static struct type *ada_create_fundamental_type (struct objfile *, int);
48
49 static void modify_general_field (char *, LONGEST, int, int);
50
51 static struct type *desc_base_type (struct type *);
52
53 static struct type *desc_bounds_type (struct type *);
54
55 static struct value *desc_bounds (struct value *);
56
57 static int fat_pntr_bounds_bitpos (struct type *);
58
59 static int fat_pntr_bounds_bitsize (struct type *);
60
61 static struct type *desc_data_type (struct type *);
62
63 static struct value *desc_data (struct value *);
64
65 static int fat_pntr_data_bitpos (struct type *);
66
67 static int fat_pntr_data_bitsize (struct type *);
68
69 static struct value *desc_one_bound (struct value *, int, int);
70
71 static int desc_bound_bitpos (struct type *, int, int);
72
73 static int desc_bound_bitsize (struct type *, int, int);
74
75 static struct type *desc_index_type (struct type *, int);
76
77 static int desc_arity (struct type *);
78
79 static int ada_type_match (struct type *, struct type *, int);
80
81 static int ada_args_match (struct symbol *, struct value **, int);
82
83 static struct value *place_on_stack (struct value *, CORE_ADDR *);
84
85 static struct value *convert_actual (struct value *, struct type *,
86 CORE_ADDR *);
87
88 static struct value *make_array_descriptor (struct type *, struct value *,
89 CORE_ADDR *);
90
91 static void ada_add_block_symbols (struct block *, const char *,
92 namespace_enum, struct objfile *, int);
93
94 static void fill_in_ada_prototype (struct symbol *);
95
96 static int is_nonfunction (struct symbol **, int);
97
98 static void add_defn_to_vec (struct symbol *, struct block *);
99
100 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
101 *, const char *, int,
102 namespace_enum, int);
103
104 static struct symtab *symtab_for_sym (struct symbol *);
105
106 static struct value *ada_resolve_subexp (struct expression **, int *, int,
107 struct type *);
108
109 static void replace_operator_with_call (struct expression **, int, int, int,
110 struct symbol *, struct block *);
111
112 static int possible_user_operator_p (enum exp_opcode, struct value **);
113
114 static const char *ada_op_name (enum exp_opcode);
115
116 static int numeric_type_p (struct type *);
117
118 static int integer_type_p (struct type *);
119
120 static int scalar_type_p (struct type *);
121
122 static int discrete_type_p (struct type *);
123
124 static char *extended_canonical_line_spec (struct symtab_and_line,
125 const char *);
126
127 static struct value *evaluate_subexp (struct type *, struct expression *,
128 int *, enum noside);
129
130 static struct value *evaluate_subexp_type (struct expression *, int *);
131
132 static struct type *ada_create_fundamental_type (struct objfile *, int);
133
134 static int is_dynamic_field (struct type *, int);
135
136 static struct type *to_fixed_variant_branch_type (struct type *, char *,
137 CORE_ADDR, struct value *);
138
139 static struct type *to_fixed_range_type (char *, struct value *,
140 struct objfile *);
141
142 static struct type *to_static_fixed_type (struct type *);
143
144 static struct value *unwrap_value (struct value *);
145
146 static struct type *packed_array_type (struct type *, long *);
147
148 static struct type *decode_packed_array_type (struct type *);
149
150 static struct value *decode_packed_array (struct value *);
151
152 static struct value *value_subscript_packed (struct value *, int,
153 struct value **);
154
155 static struct value *coerce_unspec_val_to_type (struct value *, long,
156 struct type *);
157
158 static struct value *get_var_value (char *, char *);
159
160 static int lesseq_defined_than (struct symbol *, struct symbol *);
161
162 static int equiv_types (struct type *, struct type *);
163
164 static int is_name_suffix (const char *);
165
166 static int wild_match (const char *, int, const char *);
167
168 static struct symtabs_and_lines find_sal_from_funcs_and_line (const char *,
169 int,
170 struct symbol
171 **, int);
172
173 static int find_line_in_linetable (struct linetable *, int, struct symbol **,
174 int, int *);
175
176 static int find_next_line_in_linetable (struct linetable *, int, int, int);
177
178 static struct symtabs_and_lines all_sals_for_line (const char *, int,
179 char ***);
180
181 static void read_all_symtabs (const char *);
182
183 static int is_plausible_func_for_line (struct symbol *, int);
184
185 static struct value *ada_coerce_ref (struct value *);
186
187 static struct value *value_pos_atr (struct value *);
188
189 static struct value *value_val_atr (struct type *, struct value *);
190
191 static struct symbol *standard_lookup (const char *, namespace_enum);
192
193 extern void markTimeStart (int index);
194 extern void markTimeStop (int index);
195 \f
196
197
198 /* Maximum-sized dynamic type. */
199 static unsigned int varsize_limit;
200
201 static const char *ada_completer_word_break_characters =
202 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
203
204 /* The name of the symbol to use to get the name of the main subprogram */
205 #define ADA_MAIN_PROGRAM_SYMBOL_NAME "__gnat_ada_main_program_name"
206
207 /* Utilities */
208
209 /* extract_string
210 *
211 * read the string located at ADDR from the inferior and store the
212 * result into BUF
213 */
214 void
215 extract_string (CORE_ADDR addr, char *buf)
216 {
217 int char_index = 0;
218
219 /* Loop, reading one byte at a time, until we reach the '\000'
220 end-of-string marker */
221 do
222 {
223 target_read_memory (addr + char_index * sizeof (char),
224 buf + char_index * sizeof (char), sizeof (char));
225 char_index++;
226 }
227 while (buf[char_index - 1] != '\000');
228 }
229
230 /* Assuming *OLD_VECT points to an array of *SIZE objects of size
231 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
232 updating *OLD_VECT and *SIZE as necessary. */
233
234 void
235 grow_vect (void **old_vect, size_t * size, size_t min_size, int element_size)
236 {
237 if (*size < min_size)
238 {
239 *size *= 2;
240 if (*size < min_size)
241 *size = min_size;
242 *old_vect = xrealloc (*old_vect, *size * element_size);
243 }
244 }
245
246 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
247 suffix of FIELD_NAME beginning "___" */
248
249 static int
250 field_name_match (const char *field_name, const char *target)
251 {
252 int len = strlen (target);
253 return
254 STREQN (field_name, target, len)
255 && (field_name[len] == '\0'
256 || (STREQN (field_name + len, "___", 3)
257 && !STREQ (field_name + strlen (field_name) - 6, "___XVN")));
258 }
259
260
261 /* The length of the prefix of NAME prior to any "___" suffix. */
262
263 int
264 ada_name_prefix_len (const char *name)
265 {
266 if (name == NULL)
267 return 0;
268 else
269 {
270 const char *p = strstr (name, "___");
271 if (p == NULL)
272 return strlen (name);
273 else
274 return p - name;
275 }
276 }
277
278 /* SUFFIX is a suffix of STR. False if STR is null. */
279 static int
280 is_suffix (const char *str, const char *suffix)
281 {
282 int len1, len2;
283 if (str == NULL)
284 return 0;
285 len1 = strlen (str);
286 len2 = strlen (suffix);
287 return (len1 >= len2 && STREQ (str + len1 - len2, suffix));
288 }
289
290 /* Create a value of type TYPE whose contents come from VALADDR, if it
291 * is non-null, and whose memory address (in the inferior) is
292 * ADDRESS. */
293 struct value *
294 value_from_contents_and_address (struct type *type, char *valaddr,
295 CORE_ADDR address)
296 {
297 struct value *v = allocate_value (type);
298 if (valaddr == NULL)
299 VALUE_LAZY (v) = 1;
300 else
301 memcpy (VALUE_CONTENTS_RAW (v), valaddr, TYPE_LENGTH (type));
302 VALUE_ADDRESS (v) = address;
303 if (address != 0)
304 VALUE_LVAL (v) = lval_memory;
305 return v;
306 }
307
308 /* The contents of value VAL, beginning at offset OFFSET, treated as a
309 value of type TYPE. The result is an lval in memory if VAL is. */
310
311 static struct value *
312 coerce_unspec_val_to_type (struct value *val, long offset, struct type *type)
313 {
314 CHECK_TYPEDEF (type);
315 if (VALUE_LVAL (val) == lval_memory)
316 return value_at_lazy (type,
317 VALUE_ADDRESS (val) + VALUE_OFFSET (val) + offset,
318 NULL);
319 else
320 {
321 struct value *result = allocate_value (type);
322 VALUE_LVAL (result) = not_lval;
323 if (VALUE_ADDRESS (val) == 0)
324 memcpy (VALUE_CONTENTS_RAW (result), VALUE_CONTENTS (val) + offset,
325 TYPE_LENGTH (type) > TYPE_LENGTH (VALUE_TYPE (val))
326 ? TYPE_LENGTH (VALUE_TYPE (val)) : TYPE_LENGTH (type));
327 else
328 {
329 VALUE_ADDRESS (result) =
330 VALUE_ADDRESS (val) + VALUE_OFFSET (val) + offset;
331 VALUE_LAZY (result) = 1;
332 }
333 return result;
334 }
335 }
336
337 static char *
338 cond_offset_host (char *valaddr, long offset)
339 {
340 if (valaddr == NULL)
341 return NULL;
342 else
343 return valaddr + offset;
344 }
345
346 static CORE_ADDR
347 cond_offset_target (CORE_ADDR address, long offset)
348 {
349 if (address == 0)
350 return 0;
351 else
352 return address + offset;
353 }
354
355 /* Perform execute_command on the result of concatenating all
356 arguments up to NULL. */
357 static void
358 do_command (const char *arg, ...)
359 {
360 int len;
361 char *cmd;
362 const char *s;
363 va_list ap;
364
365 va_start (ap, arg);
366 len = 0;
367 s = arg;
368 cmd = "";
369 for (; s != NULL; s = va_arg (ap, const char *))
370 {
371 char *cmd1;
372 len += strlen (s);
373 cmd1 = alloca (len + 1);
374 strcpy (cmd1, cmd);
375 strcat (cmd1, s);
376 cmd = cmd1;
377 }
378 va_end (ap);
379 execute_command (cmd, 0);
380 }
381 \f
382
383 /* Language Selection */
384
385 /* If the main program is in Ada, return language_ada, otherwise return LANG
386 (the main program is in Ada iif the adainit symbol is found).
387
388 MAIN_PST is not used. */
389
390 enum language
391 ada_update_initial_language (enum language lang,
392 struct partial_symtab *main_pst)
393 {
394 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
395 (struct objfile *) NULL) != NULL)
396 /* return language_ada; */
397 /* FIXME: language_ada should be defined in defs.h */
398 return language_unknown;
399
400 return lang;
401 }
402 \f
403
404 /* Symbols */
405
406 /* Table of Ada operators and their GNAT-mangled names. Last entry is pair
407 of NULLs. */
408
409 const struct ada_opname_map ada_opname_table[] = {
410 {"Oadd", "\"+\"", BINOP_ADD},
411 {"Osubtract", "\"-\"", BINOP_SUB},
412 {"Omultiply", "\"*\"", BINOP_MUL},
413 {"Odivide", "\"/\"", BINOP_DIV},
414 {"Omod", "\"mod\"", BINOP_MOD},
415 {"Orem", "\"rem\"", BINOP_REM},
416 {"Oexpon", "\"**\"", BINOP_EXP},
417 {"Olt", "\"<\"", BINOP_LESS},
418 {"Ole", "\"<=\"", BINOP_LEQ},
419 {"Ogt", "\">\"", BINOP_GTR},
420 {"Oge", "\">=\"", BINOP_GEQ},
421 {"Oeq", "\"=\"", BINOP_EQUAL},
422 {"One", "\"/=\"", BINOP_NOTEQUAL},
423 {"Oand", "\"and\"", BINOP_BITWISE_AND},
424 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
425 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
426 {"Oconcat", "\"&\"", BINOP_CONCAT},
427 {"Oabs", "\"abs\"", UNOP_ABS},
428 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
429 {"Oadd", "\"+\"", UNOP_PLUS},
430 {"Osubtract", "\"-\"", UNOP_NEG},
431 {NULL, NULL}
432 };
433
434 /* True if STR should be suppressed in info listings. */
435 static int
436 is_suppressed_name (const char *str)
437 {
438 if (STREQN (str, "_ada_", 5))
439 str += 5;
440 if (str[0] == '_' || str[0] == '\000')
441 return 1;
442 else
443 {
444 const char *p;
445 const char *suffix = strstr (str, "___");
446 if (suffix != NULL && suffix[3] != 'X')
447 return 1;
448 if (suffix == NULL)
449 suffix = str + strlen (str);
450 for (p = suffix - 1; p != str; p -= 1)
451 if (isupper (*p))
452 {
453 int i;
454 if (p[0] == 'X' && p[-1] != '_')
455 goto OK;
456 if (*p != 'O')
457 return 1;
458 for (i = 0; ada_opname_table[i].mangled != NULL; i += 1)
459 if (STREQN (ada_opname_table[i].mangled, p,
460 strlen (ada_opname_table[i].mangled)))
461 goto OK;
462 return 1;
463 OK:;
464 }
465 return 0;
466 }
467 }
468
469 /* The "mangled" form of DEMANGLED, according to GNAT conventions.
470 * The result is valid until the next call to ada_mangle. */
471 char *
472 ada_mangle (const char *demangled)
473 {
474 static char *mangling_buffer = NULL;
475 static size_t mangling_buffer_size = 0;
476 const char *p;
477 int k;
478
479 if (demangled == NULL)
480 return NULL;
481
482 GROW_VECT (mangling_buffer, mangling_buffer_size,
483 2 * strlen (demangled) + 10);
484
485 k = 0;
486 for (p = demangled; *p != '\0'; p += 1)
487 {
488 if (*p == '.')
489 {
490 mangling_buffer[k] = mangling_buffer[k + 1] = '_';
491 k += 2;
492 }
493 else if (*p == '"')
494 {
495 const struct ada_opname_map *mapping;
496
497 for (mapping = ada_opname_table;
498 mapping->mangled != NULL &&
499 !STREQN (mapping->demangled, p, strlen (mapping->demangled));
500 p += 1)
501 ;
502 if (mapping->mangled == NULL)
503 error ("invalid Ada operator name: %s", p);
504 strcpy (mangling_buffer + k, mapping->mangled);
505 k += strlen (mapping->mangled);
506 break;
507 }
508 else
509 {
510 mangling_buffer[k] = *p;
511 k += 1;
512 }
513 }
514
515 mangling_buffer[k] = '\0';
516 return mangling_buffer;
517 }
518
519 /* Return NAME folded to lower case, or, if surrounded by single
520 * quotes, unfolded, but with the quotes stripped away. Result good
521 * to next call. */
522 char *
523 ada_fold_name (const char *name)
524 {
525 static char *fold_buffer = NULL;
526 static size_t fold_buffer_size = 0;
527
528 int len = strlen (name);
529 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
530
531 if (name[0] == '\'')
532 {
533 strncpy (fold_buffer, name + 1, len - 2);
534 fold_buffer[len - 2] = '\000';
535 }
536 else
537 {
538 int i;
539 for (i = 0; i <= len; i += 1)
540 fold_buffer[i] = tolower (name[i]);
541 }
542
543 return fold_buffer;
544 }
545
546 /* Demangle:
547 1. Discard final __{DIGIT}+ or ${DIGIT}+
548 2. Convert other instances of embedded "__" to `.'.
549 3. Discard leading _ada_.
550 4. Convert operator names to the appropriate quoted symbols.
551 5. Remove everything after first ___ if it is followed by
552 'X'.
553 6. Replace TK__ with __, and a trailing B or TKB with nothing.
554 7. Put symbols that should be suppressed in <...> brackets.
555 8. Remove trailing X[bn]* suffix (indicating names in package bodies).
556 The resulting string is valid until the next call of ada_demangle.
557 */
558
559 char *
560 ada_demangle (const char *mangled)
561 {
562 int i, j;
563 int len0;
564 const char *p;
565 char *demangled;
566 int at_start_name;
567 static char *demangling_buffer = NULL;
568 static size_t demangling_buffer_size = 0;
569
570 if (STREQN (mangled, "_ada_", 5))
571 mangled += 5;
572
573 if (mangled[0] == '_' || mangled[0] == '<')
574 goto Suppress;
575
576 p = strstr (mangled, "___");
577 if (p == NULL)
578 len0 = strlen (mangled);
579 else
580 {
581 if (p[3] == 'X')
582 len0 = p - mangled;
583 else
584 goto Suppress;
585 }
586 if (len0 > 3 && STREQ (mangled + len0 - 3, "TKB"))
587 len0 -= 3;
588 if (len0 > 1 && STREQ (mangled + len0 - 1, "B"))
589 len0 -= 1;
590
591 /* Make demangled big enough for possible expansion by operator name. */
592 GROW_VECT (demangling_buffer, demangling_buffer_size, 2 * len0 + 1);
593 demangled = demangling_buffer;
594
595 if (isdigit (mangled[len0 - 1]))
596 {
597 for (i = len0 - 2; i >= 0 && isdigit (mangled[i]); i -= 1)
598 ;
599 if (i > 1 && mangled[i] == '_' && mangled[i - 1] == '_')
600 len0 = i - 1;
601 else if (mangled[i] == '$')
602 len0 = i;
603 }
604
605 for (i = 0, j = 0; i < len0 && !isalpha (mangled[i]); i += 1, j += 1)
606 demangled[j] = mangled[i];
607
608 at_start_name = 1;
609 while (i < len0)
610 {
611 if (at_start_name && mangled[i] == 'O')
612 {
613 int k;
614 for (k = 0; ada_opname_table[k].mangled != NULL; k += 1)
615 {
616 int op_len = strlen (ada_opname_table[k].mangled);
617 if (STREQN
618 (ada_opname_table[k].mangled + 1, mangled + i + 1,
619 op_len - 1) && !isalnum (mangled[i + op_len]))
620 {
621 strcpy (demangled + j, ada_opname_table[k].demangled);
622 at_start_name = 0;
623 i += op_len;
624 j += strlen (ada_opname_table[k].demangled);
625 break;
626 }
627 }
628 if (ada_opname_table[k].mangled != NULL)
629 continue;
630 }
631 at_start_name = 0;
632
633 if (i < len0 - 4 && STREQN (mangled + i, "TK__", 4))
634 i += 2;
635 if (mangled[i] == 'X' && i != 0 && isalnum (mangled[i - 1]))
636 {
637 do
638 i += 1;
639 while (i < len0 && (mangled[i] == 'b' || mangled[i] == 'n'));
640 if (i < len0)
641 goto Suppress;
642 }
643 else if (i < len0 - 2 && mangled[i] == '_' && mangled[i + 1] == '_')
644 {
645 demangled[j] = '.';
646 at_start_name = 1;
647 i += 2;
648 j += 1;
649 }
650 else
651 {
652 demangled[j] = mangled[i];
653 i += 1;
654 j += 1;
655 }
656 }
657 demangled[j] = '\000';
658
659 for (i = 0; demangled[i] != '\0'; i += 1)
660 if (isupper (demangled[i]) || demangled[i] == ' ')
661 goto Suppress;
662
663 return demangled;
664
665 Suppress:
666 GROW_VECT (demangling_buffer, demangling_buffer_size, strlen (mangled) + 3);
667 demangled = demangling_buffer;
668 if (mangled[0] == '<')
669 strcpy (demangled, mangled);
670 else
671 sprintf (demangled, "<%s>", mangled);
672 return demangled;
673
674 }
675
676 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
677 * suffixes that encode debugging information or leading _ada_ on
678 * SYM_NAME (see is_name_suffix commentary for the debugging
679 * information that is ignored). If WILD, then NAME need only match a
680 * suffix of SYM_NAME minus the same suffixes. Also returns 0 if
681 * either argument is NULL. */
682
683 int
684 ada_match_name (const char *sym_name, const char *name, int wild)
685 {
686 if (sym_name == NULL || name == NULL)
687 return 0;
688 else if (wild)
689 return wild_match (name, strlen (name), sym_name);
690 else
691 {
692 int len_name = strlen (name);
693 return (STREQN (sym_name, name, len_name)
694 && is_name_suffix (sym_name + len_name))
695 || (STREQN (sym_name, "_ada_", 5)
696 && STREQN (sym_name + 5, name, len_name)
697 && is_name_suffix (sym_name + len_name + 5));
698 }
699 }
700
701 /* True (non-zero) iff in Ada mode, the symbol SYM should be
702 suppressed in info listings. */
703
704 int
705 ada_suppress_symbol_printing (struct symbol *sym)
706 {
707 if (SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE)
708 return 1;
709 else
710 return is_suppressed_name (SYMBOL_NAME (sym));
711 }
712 \f
713
714 /* Arrays */
715
716 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of
717 array descriptors. */
718
719 static char *bound_name[] = {
720 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
721 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
722 };
723
724 /* Maximum number of array dimensions we are prepared to handle. */
725
726 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char*)))
727
728 /* Like modify_field, but allows bitpos > wordlength. */
729
730 static void
731 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
732 {
733 modify_field (addr + sizeof (LONGEST) * bitpos / (8 * sizeof (LONGEST)),
734 fieldval, bitpos % (8 * sizeof (LONGEST)), bitsize);
735 }
736
737
738 /* The desc_* routines return primitive portions of array descriptors
739 (fat pointers). */
740
741 /* The descriptor or array type, if any, indicated by TYPE; removes
742 level of indirection, if needed. */
743 static struct type *
744 desc_base_type (struct type *type)
745 {
746 if (type == NULL)
747 return NULL;
748 CHECK_TYPEDEF (type);
749 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_PTR)
750 return check_typedef (TYPE_TARGET_TYPE (type));
751 else
752 return type;
753 }
754
755 /* True iff TYPE indicates a "thin" array pointer type. */
756 static int
757 is_thin_pntr (struct type *type)
758 {
759 return
760 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
761 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
762 }
763
764 /* The descriptor type for thin pointer type TYPE. */
765 static struct type *
766 thin_descriptor_type (struct type *type)
767 {
768 struct type *base_type = desc_base_type (type);
769 if (base_type == NULL)
770 return NULL;
771 if (is_suffix (ada_type_name (base_type), "___XVE"))
772 return base_type;
773 else
774 {
775 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
776 if (alt_type == NULL)
777 return base_type;
778 else
779 return alt_type;
780 }
781 }
782
783 /* A pointer to the array data for thin-pointer value VAL. */
784 static struct value *
785 thin_data_pntr (struct value *val)
786 {
787 struct type *type = VALUE_TYPE (val);
788 if (TYPE_CODE (type) == TYPE_CODE_PTR)
789 return value_cast (desc_data_type (thin_descriptor_type (type)),
790 value_copy (val));
791 else
792 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
793 VALUE_ADDRESS (val) + VALUE_OFFSET (val));
794 }
795
796 /* True iff TYPE indicates a "thick" array pointer type. */
797 static int
798 is_thick_pntr (struct type *type)
799 {
800 type = desc_base_type (type);
801 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
802 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
803 }
804
805 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
806 pointer to one, the type of its bounds data; otherwise, NULL. */
807 static struct type *
808 desc_bounds_type (struct type *type)
809 {
810 struct type *r;
811
812 type = desc_base_type (type);
813
814 if (type == NULL)
815 return NULL;
816 else if (is_thin_pntr (type))
817 {
818 type = thin_descriptor_type (type);
819 if (type == NULL)
820 return NULL;
821 r = lookup_struct_elt_type (type, "BOUNDS", 1);
822 if (r != NULL)
823 return check_typedef (r);
824 }
825 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
826 {
827 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
828 if (r != NULL)
829 return check_typedef (TYPE_TARGET_TYPE (check_typedef (r)));
830 }
831 return NULL;
832 }
833
834 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
835 one, a pointer to its bounds data. Otherwise NULL. */
836 static struct value *
837 desc_bounds (struct value *arr)
838 {
839 struct type *type = check_typedef (VALUE_TYPE (arr));
840 if (is_thin_pntr (type))
841 {
842 struct type *bounds_type =
843 desc_bounds_type (thin_descriptor_type (type));
844 LONGEST addr;
845
846 if (desc_bounds_type == NULL)
847 error ("Bad GNAT array descriptor");
848
849 /* NOTE: The following calculation is not really kosher, but
850 since desc_type is an XVE-encoded type (and shouldn't be),
851 the correct calculation is a real pain. FIXME (and fix GCC). */
852 if (TYPE_CODE (type) == TYPE_CODE_PTR)
853 addr = value_as_long (arr);
854 else
855 addr = VALUE_ADDRESS (arr) + VALUE_OFFSET (arr);
856
857 return
858 value_from_longest (lookup_pointer_type (bounds_type),
859 addr - TYPE_LENGTH (bounds_type));
860 }
861
862 else if (is_thick_pntr (type))
863 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
864 "Bad GNAT array descriptor");
865 else
866 return NULL;
867 }
868
869 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
870 position of the field containing the address of the bounds data. */
871 static int
872 fat_pntr_bounds_bitpos (struct type *type)
873 {
874 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
875 }
876
877 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
878 size of the field containing the address of the bounds data. */
879 static int
880 fat_pntr_bounds_bitsize (struct type *type)
881 {
882 type = desc_base_type (type);
883
884 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
885 return TYPE_FIELD_BITSIZE (type, 1);
886 else
887 return 8 * TYPE_LENGTH (check_typedef (TYPE_FIELD_TYPE (type, 1)));
888 }
889
890 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
891 pointer to one, the type of its array data (a
892 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
893 ada_type_of_array to get an array type with bounds data. */
894 static struct type *
895 desc_data_type (struct type *type)
896 {
897 type = desc_base_type (type);
898
899 /* NOTE: The following is bogus; see comment in desc_bounds. */
900 if (is_thin_pntr (type))
901 return lookup_pointer_type
902 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
903 else if (is_thick_pntr (type))
904 return lookup_struct_elt_type (type, "P_ARRAY", 1);
905 else
906 return NULL;
907 }
908
909 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
910 its array data. */
911 static struct value *
912 desc_data (struct value *arr)
913 {
914 struct type *type = VALUE_TYPE (arr);
915 if (is_thin_pntr (type))
916 return thin_data_pntr (arr);
917 else if (is_thick_pntr (type))
918 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
919 "Bad GNAT array descriptor");
920 else
921 return NULL;
922 }
923
924
925 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
926 position of the field containing the address of the data. */
927 static int
928 fat_pntr_data_bitpos (struct type *type)
929 {
930 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
931 }
932
933 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
934 size of the field containing the address of the data. */
935 static int
936 fat_pntr_data_bitsize (struct type *type)
937 {
938 type = desc_base_type (type);
939
940 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
941 return TYPE_FIELD_BITSIZE (type, 0);
942 else
943 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
944 }
945
946 /* If BOUNDS is an array-bounds structure (or pointer to one), return
947 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
948 bound, if WHICH is 1. The first bound is I=1. */
949 static struct value *
950 desc_one_bound (struct value *bounds, int i, int which)
951 {
952 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
953 "Bad GNAT array descriptor bounds");
954 }
955
956 /* If BOUNDS is an array-bounds structure type, return the bit position
957 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
958 bound, if WHICH is 1. The first bound is I=1. */
959 static int
960 desc_bound_bitpos (struct type *type, int i, int which)
961 {
962 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
963 }
964
965 /* If BOUNDS is an array-bounds structure type, return the bit field size
966 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
967 bound, if WHICH is 1. The first bound is I=1. */
968 static int
969 desc_bound_bitsize (struct type *type, int i, int which)
970 {
971 type = desc_base_type (type);
972
973 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
974 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
975 else
976 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
977 }
978
979 /* If TYPE is the type of an array-bounds structure, the type of its
980 Ith bound (numbering from 1). Otherwise, NULL. */
981 static struct type *
982 desc_index_type (struct type *type, int i)
983 {
984 type = desc_base_type (type);
985
986 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
987 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
988 else
989 return NULL;
990 }
991
992 /* The number of index positions in the array-bounds type TYPE. 0
993 if TYPE is NULL. */
994 static int
995 desc_arity (struct type *type)
996 {
997 type = desc_base_type (type);
998
999 if (type != NULL)
1000 return TYPE_NFIELDS (type) / 2;
1001 return 0;
1002 }
1003
1004
1005 /* Non-zero iff type is a simple array type (or pointer to one). */
1006 int
1007 ada_is_simple_array (struct type *type)
1008 {
1009 if (type == NULL)
1010 return 0;
1011 CHECK_TYPEDEF (type);
1012 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1013 || (TYPE_CODE (type) == TYPE_CODE_PTR
1014 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1015 }
1016
1017 /* Non-zero iff type belongs to a GNAT array descriptor. */
1018 int
1019 ada_is_array_descriptor (struct type *type)
1020 {
1021 struct type *data_type = desc_data_type (type);
1022
1023 if (type == NULL)
1024 return 0;
1025 CHECK_TYPEDEF (type);
1026 return
1027 data_type != NULL
1028 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1029 && TYPE_TARGET_TYPE (data_type) != NULL
1030 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1031 ||
1032 TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1033 && desc_arity (desc_bounds_type (type)) > 0;
1034 }
1035
1036 /* Non-zero iff type is a partially mal-formed GNAT array
1037 descriptor. (FIXME: This is to compensate for some problems with
1038 debugging output from GNAT. Re-examine periodically to see if it
1039 is still needed. */
1040 int
1041 ada_is_bogus_array_descriptor (struct type *type)
1042 {
1043 return
1044 type != NULL
1045 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1046 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1047 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1048 && !ada_is_array_descriptor (type);
1049 }
1050
1051
1052 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1053 (fat pointer) returns the type of the array data described---specifically,
1054 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1055 in from the descriptor; otherwise, they are left unspecified. If
1056 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1057 returns NULL. The result is simply the type of ARR if ARR is not
1058 a descriptor. */
1059 struct type *
1060 ada_type_of_array (struct value *arr, int bounds)
1061 {
1062 if (ada_is_packed_array_type (VALUE_TYPE (arr)))
1063 return decode_packed_array_type (VALUE_TYPE (arr));
1064
1065 if (!ada_is_array_descriptor (VALUE_TYPE (arr)))
1066 return VALUE_TYPE (arr);
1067
1068 if (!bounds)
1069 return
1070 check_typedef (TYPE_TARGET_TYPE (desc_data_type (VALUE_TYPE (arr))));
1071 else
1072 {
1073 struct type *elt_type;
1074 int arity;
1075 struct value *descriptor;
1076 struct objfile *objf = TYPE_OBJFILE (VALUE_TYPE (arr));
1077
1078 elt_type = ada_array_element_type (VALUE_TYPE (arr), -1);
1079 arity = ada_array_arity (VALUE_TYPE (arr));
1080
1081 if (elt_type == NULL || arity == 0)
1082 return check_typedef (VALUE_TYPE (arr));
1083
1084 descriptor = desc_bounds (arr);
1085 if (value_as_long (descriptor) == 0)
1086 return NULL;
1087 while (arity > 0)
1088 {
1089 struct type *range_type = alloc_type (objf);
1090 struct type *array_type = alloc_type (objf);
1091 struct value *low = desc_one_bound (descriptor, arity, 0);
1092 struct value *high = desc_one_bound (descriptor, arity, 1);
1093 arity -= 1;
1094
1095 create_range_type (range_type, VALUE_TYPE (low),
1096 (int) value_as_long (low),
1097 (int) value_as_long (high));
1098 elt_type = create_array_type (array_type, elt_type, range_type);
1099 }
1100
1101 return lookup_pointer_type (elt_type);
1102 }
1103 }
1104
1105 /* If ARR does not represent an array, returns ARR unchanged.
1106 Otherwise, returns either a standard GDB array with bounds set
1107 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1108 GDB array. Returns NULL if ARR is a null fat pointer. */
1109 struct value *
1110 ada_coerce_to_simple_array_ptr (struct value *arr)
1111 {
1112 if (ada_is_array_descriptor (VALUE_TYPE (arr)))
1113 {
1114 struct type *arrType = ada_type_of_array (arr, 1);
1115 if (arrType == NULL)
1116 return NULL;
1117 return value_cast (arrType, value_copy (desc_data (arr)));
1118 }
1119 else if (ada_is_packed_array_type (VALUE_TYPE (arr)))
1120 return decode_packed_array (arr);
1121 else
1122 return arr;
1123 }
1124
1125 /* If ARR does not represent an array, returns ARR unchanged.
1126 Otherwise, returns a standard GDB array describing ARR (which may
1127 be ARR itself if it already is in the proper form). */
1128 struct value *
1129 ada_coerce_to_simple_array (struct value *arr)
1130 {
1131 if (ada_is_array_descriptor (VALUE_TYPE (arr)))
1132 {
1133 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1134 if (arrVal == NULL)
1135 error ("Bounds unavailable for null array pointer.");
1136 return value_ind (arrVal);
1137 }
1138 else if (ada_is_packed_array_type (VALUE_TYPE (arr)))
1139 return decode_packed_array (arr);
1140 else
1141 return arr;
1142 }
1143
1144 /* If TYPE represents a GNAT array type, return it translated to an
1145 ordinary GDB array type (possibly with BITSIZE fields indicating
1146 packing). For other types, is the identity. */
1147 struct type *
1148 ada_coerce_to_simple_array_type (struct type *type)
1149 {
1150 struct value *mark = value_mark ();
1151 struct value *dummy = value_from_longest (builtin_type_long, 0);
1152 struct type *result;
1153 VALUE_TYPE (dummy) = type;
1154 result = ada_type_of_array (dummy, 0);
1155 value_free_to_mark (dummy);
1156 return result;
1157 }
1158
1159 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1160 int
1161 ada_is_packed_array_type (struct type *type)
1162 {
1163 if (type == NULL)
1164 return 0;
1165 CHECK_TYPEDEF (type);
1166 return
1167 ada_type_name (type) != NULL
1168 && strstr (ada_type_name (type), "___XP") != NULL;
1169 }
1170
1171 /* Given that TYPE is a standard GDB array type with all bounds filled
1172 in, and that the element size of its ultimate scalar constituents
1173 (that is, either its elements, or, if it is an array of arrays, its
1174 elements' elements, etc.) is *ELT_BITS, return an identical type,
1175 but with the bit sizes of its elements (and those of any
1176 constituent arrays) recorded in the BITSIZE components of its
1177 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1178 in bits. */
1179 static struct type *
1180 packed_array_type (struct type *type, long *elt_bits)
1181 {
1182 struct type *new_elt_type;
1183 struct type *new_type;
1184 LONGEST low_bound, high_bound;
1185
1186 CHECK_TYPEDEF (type);
1187 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1188 return type;
1189
1190 new_type = alloc_type (TYPE_OBJFILE (type));
1191 new_elt_type = packed_array_type (check_typedef (TYPE_TARGET_TYPE (type)),
1192 elt_bits);
1193 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1194 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1195 TYPE_NAME (new_type) = ada_type_name (type);
1196
1197 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1198 &low_bound, &high_bound) < 0)
1199 low_bound = high_bound = 0;
1200 if (high_bound < low_bound)
1201 *elt_bits = TYPE_LENGTH (new_type) = 0;
1202 else
1203 {
1204 *elt_bits *= (high_bound - low_bound + 1);
1205 TYPE_LENGTH (new_type) =
1206 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1207 }
1208
1209 /* TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE; */
1210 /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
1211 return new_type;
1212 }
1213
1214 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE).
1215 */
1216 static struct type *
1217 decode_packed_array_type (struct type *type)
1218 {
1219 struct symbol **syms;
1220 struct block **blocks;
1221 const char *raw_name = ada_type_name (check_typedef (type));
1222 char *name = (char *) alloca (strlen (raw_name) + 1);
1223 char *tail = strstr (raw_name, "___XP");
1224 struct type *shadow_type;
1225 long bits;
1226 int i, n;
1227
1228 memcpy (name, raw_name, tail - raw_name);
1229 name[tail - raw_name] = '\000';
1230
1231 /* NOTE: Use ada_lookup_symbol_list because of bug in some versions
1232 * of gcc (Solaris, e.g.). FIXME when compiler is fixed. */
1233 n = ada_lookup_symbol_list (name, get_selected_block (NULL),
1234 VAR_NAMESPACE, &syms, &blocks);
1235 for (i = 0; i < n; i += 1)
1236 if (syms[i] != NULL && SYMBOL_CLASS (syms[i]) == LOC_TYPEDEF
1237 && STREQ (name, ada_type_name (SYMBOL_TYPE (syms[i]))))
1238 break;
1239 if (i >= n)
1240 {
1241 warning ("could not find bounds information on packed array");
1242 return NULL;
1243 }
1244 shadow_type = SYMBOL_TYPE (syms[i]);
1245
1246 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1247 {
1248 warning ("could not understand bounds information on packed array");
1249 return NULL;
1250 }
1251
1252 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1253 {
1254 warning ("could not understand bit size information on packed array");
1255 return NULL;
1256 }
1257
1258 return packed_array_type (shadow_type, &bits);
1259 }
1260
1261 /* Given that ARR is a struct value* indicating a GNAT packed array,
1262 returns a simple array that denotes that array. Its type is a
1263 standard GDB array type except that the BITSIZEs of the array
1264 target types are set to the number of bits in each element, and the
1265 type length is set appropriately. */
1266
1267 static struct value *
1268 decode_packed_array (struct value *arr)
1269 {
1270 struct type *type = decode_packed_array_type (VALUE_TYPE (arr));
1271
1272 if (type == NULL)
1273 {
1274 error ("can't unpack array");
1275 return NULL;
1276 }
1277 else
1278 return coerce_unspec_val_to_type (arr, 0, type);
1279 }
1280
1281
1282 /* The value of the element of packed array ARR at the ARITY indices
1283 given in IND. ARR must be a simple array. */
1284
1285 static struct value *
1286 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1287 {
1288 int i;
1289 int bits, elt_off, bit_off;
1290 long elt_total_bit_offset;
1291 struct type *elt_type;
1292 struct value *v;
1293
1294 bits = 0;
1295 elt_total_bit_offset = 0;
1296 elt_type = check_typedef (VALUE_TYPE (arr));
1297 for (i = 0; i < arity; i += 1)
1298 {
1299 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1300 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1301 error
1302 ("attempt to do packed indexing of something other than a packed array");
1303 else
1304 {
1305 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1306 LONGEST lowerbound, upperbound;
1307 LONGEST idx;
1308
1309 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1310 {
1311 warning ("don't know bounds of array");
1312 lowerbound = upperbound = 0;
1313 }
1314
1315 idx = value_as_long (value_pos_atr (ind[i]));
1316 if (idx < lowerbound || idx > upperbound)
1317 warning ("packed array index %ld out of bounds", (long) idx);
1318 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1319 elt_total_bit_offset += (idx - lowerbound) * bits;
1320 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
1321 }
1322 }
1323 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1324 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1325
1326 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1327 bits, elt_type);
1328 if (VALUE_LVAL (arr) == lval_internalvar)
1329 VALUE_LVAL (v) = lval_internalvar_component;
1330 else
1331 VALUE_LVAL (v) = VALUE_LVAL (arr);
1332 return v;
1333 }
1334
1335 /* Non-zero iff TYPE includes negative integer values. */
1336
1337 static int
1338 has_negatives (struct type *type)
1339 {
1340 switch (TYPE_CODE (type))
1341 {
1342 default:
1343 return 0;
1344 case TYPE_CODE_INT:
1345 return !TYPE_UNSIGNED (type);
1346 case TYPE_CODE_RANGE:
1347 return TYPE_LOW_BOUND (type) < 0;
1348 }
1349 }
1350
1351
1352 /* Create a new value of type TYPE from the contents of OBJ starting
1353 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1354 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1355 assigning through the result will set the field fetched from. OBJ
1356 may also be NULL, in which case, VALADDR+OFFSET must address the
1357 start of storage containing the packed value. The value returned
1358 in this case is never an lval.
1359 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1360
1361 struct value *
1362 ada_value_primitive_packed_val (struct value *obj, char *valaddr, long offset,
1363 int bit_offset, int bit_size,
1364 struct type *type)
1365 {
1366 struct value *v;
1367 int src, /* Index into the source area. */
1368 targ, /* Index into the target area. */
1369 i, srcBitsLeft, /* Number of source bits left to move. */
1370 nsrc, ntarg, /* Number of source and target bytes. */
1371 unusedLS, /* Number of bits in next significant
1372 * byte of source that are unused. */
1373 accumSize; /* Number of meaningful bits in accum */
1374 unsigned char *bytes; /* First byte containing data to unpack. */
1375 unsigned char *unpacked;
1376 unsigned long accum; /* Staging area for bits being transferred */
1377 unsigned char sign;
1378 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1379 /* Transmit bytes from least to most significant; delta is the
1380 * direction the indices move. */
1381 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1382
1383 CHECK_TYPEDEF (type);
1384
1385 if (obj == NULL)
1386 {
1387 v = allocate_value (type);
1388 bytes = (unsigned char *) (valaddr + offset);
1389 }
1390 else if (VALUE_LAZY (obj))
1391 {
1392 v = value_at (type,
1393 VALUE_ADDRESS (obj) + VALUE_OFFSET (obj) + offset, NULL);
1394 bytes = (unsigned char *) alloca (len);
1395 read_memory (VALUE_ADDRESS (v), bytes, len);
1396 }
1397 else
1398 {
1399 v = allocate_value (type);
1400 bytes = (unsigned char *) VALUE_CONTENTS (obj) + offset;
1401 }
1402
1403 if (obj != NULL)
1404 {
1405 VALUE_LVAL (v) = VALUE_LVAL (obj);
1406 if (VALUE_LVAL (obj) == lval_internalvar)
1407 VALUE_LVAL (v) = lval_internalvar_component;
1408 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + VALUE_OFFSET (obj) + offset;
1409 VALUE_BITPOS (v) = bit_offset + VALUE_BITPOS (obj);
1410 VALUE_BITSIZE (v) = bit_size;
1411 if (VALUE_BITPOS (v) >= HOST_CHAR_BIT)
1412 {
1413 VALUE_ADDRESS (v) += 1;
1414 VALUE_BITPOS (v) -= HOST_CHAR_BIT;
1415 }
1416 }
1417 else
1418 VALUE_BITSIZE (v) = bit_size;
1419 unpacked = (unsigned char *) VALUE_CONTENTS (v);
1420
1421 srcBitsLeft = bit_size;
1422 nsrc = len;
1423 ntarg = TYPE_LENGTH (type);
1424 sign = 0;
1425 if (bit_size == 0)
1426 {
1427 memset (unpacked, 0, TYPE_LENGTH (type));
1428 return v;
1429 }
1430 else if (BITS_BIG_ENDIAN)
1431 {
1432 src = len - 1;
1433 if (has_negatives (type) &&
1434 ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
1435 sign = ~0;
1436
1437 unusedLS =
1438 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
1439 % HOST_CHAR_BIT;
1440
1441 switch (TYPE_CODE (type))
1442 {
1443 case TYPE_CODE_ARRAY:
1444 case TYPE_CODE_UNION:
1445 case TYPE_CODE_STRUCT:
1446 /* Non-scalar values must be aligned at a byte boundary. */
1447 accumSize =
1448 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
1449 /* And are placed at the beginning (most-significant) bytes
1450 * of the target. */
1451 targ = src;
1452 break;
1453 default:
1454 accumSize = 0;
1455 targ = TYPE_LENGTH (type) - 1;
1456 break;
1457 }
1458 }
1459 else
1460 {
1461 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
1462
1463 src = targ = 0;
1464 unusedLS = bit_offset;
1465 accumSize = 0;
1466
1467 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
1468 sign = ~0;
1469 }
1470
1471 accum = 0;
1472 while (nsrc > 0)
1473 {
1474 /* Mask for removing bits of the next source byte that are not
1475 * part of the value. */
1476 unsigned int unusedMSMask =
1477 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
1478 1;
1479 /* Sign-extend bits for this byte. */
1480 unsigned int signMask = sign & ~unusedMSMask;
1481 accum |=
1482 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
1483 accumSize += HOST_CHAR_BIT - unusedLS;
1484 if (accumSize >= HOST_CHAR_BIT)
1485 {
1486 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
1487 accumSize -= HOST_CHAR_BIT;
1488 accum >>= HOST_CHAR_BIT;
1489 ntarg -= 1;
1490 targ += delta;
1491 }
1492 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
1493 unusedLS = 0;
1494 nsrc -= 1;
1495 src += delta;
1496 }
1497 while (ntarg > 0)
1498 {
1499 accum |= sign << accumSize;
1500 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
1501 accumSize -= HOST_CHAR_BIT;
1502 accum >>= HOST_CHAR_BIT;
1503 ntarg -= 1;
1504 targ += delta;
1505 }
1506
1507 return v;
1508 }
1509
1510 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
1511 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
1512 not overlap. */
1513 static void
1514 move_bits (char *target, int targ_offset, char *source, int src_offset, int n)
1515 {
1516 unsigned int accum, mask;
1517 int accum_bits, chunk_size;
1518
1519 target += targ_offset / HOST_CHAR_BIT;
1520 targ_offset %= HOST_CHAR_BIT;
1521 source += src_offset / HOST_CHAR_BIT;
1522 src_offset %= HOST_CHAR_BIT;
1523 if (BITS_BIG_ENDIAN)
1524 {
1525 accum = (unsigned char) *source;
1526 source += 1;
1527 accum_bits = HOST_CHAR_BIT - src_offset;
1528
1529 while (n > 0)
1530 {
1531 int unused_right;
1532 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
1533 accum_bits += HOST_CHAR_BIT;
1534 source += 1;
1535 chunk_size = HOST_CHAR_BIT - targ_offset;
1536 if (chunk_size > n)
1537 chunk_size = n;
1538 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
1539 mask = ((1 << chunk_size) - 1) << unused_right;
1540 *target =
1541 (*target & ~mask)
1542 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
1543 n -= chunk_size;
1544 accum_bits -= chunk_size;
1545 target += 1;
1546 targ_offset = 0;
1547 }
1548 }
1549 else
1550 {
1551 accum = (unsigned char) *source >> src_offset;
1552 source += 1;
1553 accum_bits = HOST_CHAR_BIT - src_offset;
1554
1555 while (n > 0)
1556 {
1557 accum = accum + ((unsigned char) *source << accum_bits);
1558 accum_bits += HOST_CHAR_BIT;
1559 source += 1;
1560 chunk_size = HOST_CHAR_BIT - targ_offset;
1561 if (chunk_size > n)
1562 chunk_size = n;
1563 mask = ((1 << chunk_size) - 1) << targ_offset;
1564 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
1565 n -= chunk_size;
1566 accum_bits -= chunk_size;
1567 accum >>= chunk_size;
1568 target += 1;
1569 targ_offset = 0;
1570 }
1571 }
1572 }
1573
1574
1575 /* Store the contents of FROMVAL into the location of TOVAL.
1576 Return a new value with the location of TOVAL and contents of
1577 FROMVAL. Handles assignment into packed fields that have
1578 floating-point or non-scalar types. */
1579
1580 static struct value *
1581 ada_value_assign (struct value *toval, struct value *fromval)
1582 {
1583 struct type *type = VALUE_TYPE (toval);
1584 int bits = VALUE_BITSIZE (toval);
1585
1586 if (!toval->modifiable)
1587 error ("Left operand of assignment is not a modifiable lvalue.");
1588
1589 COERCE_REF (toval);
1590
1591 if (VALUE_LVAL (toval) == lval_memory
1592 && bits > 0
1593 && (TYPE_CODE (type) == TYPE_CODE_FLT
1594 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
1595 {
1596 int len =
1597 (VALUE_BITPOS (toval) + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1598 char *buffer = (char *) alloca (len);
1599 struct value *val;
1600
1601 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1602 fromval = value_cast (type, fromval);
1603
1604 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), buffer, len);
1605 if (BITS_BIG_ENDIAN)
1606 move_bits (buffer, VALUE_BITPOS (toval),
1607 VALUE_CONTENTS (fromval),
1608 TYPE_LENGTH (VALUE_TYPE (fromval)) * TARGET_CHAR_BIT -
1609 bits, bits);
1610 else
1611 move_bits (buffer, VALUE_BITPOS (toval), VALUE_CONTENTS (fromval),
1612 0, bits);
1613 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), buffer,
1614 len);
1615
1616 val = value_copy (toval);
1617 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
1618 TYPE_LENGTH (type));
1619 VALUE_TYPE (val) = type;
1620
1621 return val;
1622 }
1623
1624 return value_assign (toval, fromval);
1625 }
1626
1627
1628 /* The value of the element of array ARR at the ARITY indices given in IND.
1629 ARR may be either a simple array, GNAT array descriptor, or pointer
1630 thereto. */
1631
1632 struct value *
1633 ada_value_subscript (struct value *arr, int arity, struct value **ind)
1634 {
1635 int k;
1636 struct value *elt;
1637 struct type *elt_type;
1638
1639 elt = ada_coerce_to_simple_array (arr);
1640
1641 elt_type = check_typedef (VALUE_TYPE (elt));
1642 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
1643 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
1644 return value_subscript_packed (elt, arity, ind);
1645
1646 for (k = 0; k < arity; k += 1)
1647 {
1648 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
1649 error ("too many subscripts (%d expected)", k);
1650 elt = value_subscript (elt, value_pos_atr (ind[k]));
1651 }
1652 return elt;
1653 }
1654
1655 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
1656 value of the element of *ARR at the ARITY indices given in
1657 IND. Does not read the entire array into memory. */
1658
1659 struct value *
1660 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
1661 struct value **ind)
1662 {
1663 int k;
1664
1665 for (k = 0; k < arity; k += 1)
1666 {
1667 LONGEST lwb, upb;
1668 struct value *idx;
1669
1670 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1671 error ("too many subscripts (%d expected)", k);
1672 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1673 value_copy (arr));
1674 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
1675 if (lwb == 0)
1676 idx = ind[k];
1677 else
1678 idx = value_sub (ind[k], value_from_longest (builtin_type_int, lwb));
1679 arr = value_add (arr, idx);
1680 type = TYPE_TARGET_TYPE (type);
1681 }
1682
1683 return value_ind (arr);
1684 }
1685
1686 /* If type is a record type in the form of a standard GNAT array
1687 descriptor, returns the number of dimensions for type. If arr is a
1688 simple array, returns the number of "array of"s that prefix its
1689 type designation. Otherwise, returns 0. */
1690
1691 int
1692 ada_array_arity (struct type *type)
1693 {
1694 int arity;
1695
1696 if (type == NULL)
1697 return 0;
1698
1699 type = desc_base_type (type);
1700
1701 arity = 0;
1702 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1703 return desc_arity (desc_bounds_type (type));
1704 else
1705 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1706 {
1707 arity += 1;
1708 type = check_typedef (TYPE_TARGET_TYPE (type));
1709 }
1710
1711 return arity;
1712 }
1713
1714 /* If TYPE is a record type in the form of a standard GNAT array
1715 descriptor or a simple array type, returns the element type for
1716 TYPE after indexing by NINDICES indices, or by all indices if
1717 NINDICES is -1. Otherwise, returns NULL. */
1718
1719 struct type *
1720 ada_array_element_type (struct type *type, int nindices)
1721 {
1722 type = desc_base_type (type);
1723
1724 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1725 {
1726 int k;
1727 struct type *p_array_type;
1728
1729 p_array_type = desc_data_type (type);
1730
1731 k = ada_array_arity (type);
1732 if (k == 0)
1733 return NULL;
1734
1735 /* Initially p_array_type = elt_type(*)[]...(k times)...[] */
1736 if (nindices >= 0 && k > nindices)
1737 k = nindices;
1738 p_array_type = TYPE_TARGET_TYPE (p_array_type);
1739 while (k > 0 && p_array_type != NULL)
1740 {
1741 p_array_type = check_typedef (TYPE_TARGET_TYPE (p_array_type));
1742 k -= 1;
1743 }
1744 return p_array_type;
1745 }
1746 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1747 {
1748 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
1749 {
1750 type = TYPE_TARGET_TYPE (type);
1751 nindices -= 1;
1752 }
1753 return type;
1754 }
1755
1756 return NULL;
1757 }
1758
1759 /* The type of nth index in arrays of given type (n numbering from 1). Does
1760 not examine memory. */
1761
1762 struct type *
1763 ada_index_type (struct type *type, int n)
1764 {
1765 type = desc_base_type (type);
1766
1767 if (n > ada_array_arity (type))
1768 return NULL;
1769
1770 if (ada_is_simple_array (type))
1771 {
1772 int i;
1773
1774 for (i = 1; i < n; i += 1)
1775 type = TYPE_TARGET_TYPE (type);
1776
1777 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
1778 }
1779 else
1780 return desc_index_type (desc_bounds_type (type), n);
1781 }
1782
1783 /* Given that arr is an array type, returns the lower bound of the
1784 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
1785 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1786 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
1787 bounds type. It works for other arrays with bounds supplied by
1788 run-time quantities other than discriminants. */
1789
1790 LONGEST
1791 ada_array_bound_from_type (struct type * arr_type, int n, int which,
1792 struct type ** typep)
1793 {
1794 struct type *type;
1795 struct type *index_type_desc;
1796
1797 if (ada_is_packed_array_type (arr_type))
1798 arr_type = decode_packed_array_type (arr_type);
1799
1800 if (arr_type == NULL || !ada_is_simple_array (arr_type))
1801 {
1802 if (typep != NULL)
1803 *typep = builtin_type_int;
1804 return (LONGEST) - which;
1805 }
1806
1807 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
1808 type = TYPE_TARGET_TYPE (arr_type);
1809 else
1810 type = arr_type;
1811
1812 index_type_desc = ada_find_parallel_type (type, "___XA");
1813 if (index_type_desc == NULL)
1814 {
1815 struct type *range_type;
1816 struct type *index_type;
1817
1818 while (n > 1)
1819 {
1820 type = TYPE_TARGET_TYPE (type);
1821 n -= 1;
1822 }
1823
1824 range_type = TYPE_INDEX_TYPE (type);
1825 index_type = TYPE_TARGET_TYPE (range_type);
1826 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
1827 index_type = builtin_type_long;
1828 if (typep != NULL)
1829 *typep = index_type;
1830 return
1831 (LONGEST) (which == 0
1832 ? TYPE_LOW_BOUND (range_type)
1833 : TYPE_HIGH_BOUND (range_type));
1834 }
1835 else
1836 {
1837 struct type *index_type =
1838 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
1839 NULL, TYPE_OBJFILE (arr_type));
1840 if (typep != NULL)
1841 *typep = TYPE_TARGET_TYPE (index_type);
1842 return
1843 (LONGEST) (which == 0
1844 ? TYPE_LOW_BOUND (index_type)
1845 : TYPE_HIGH_BOUND (index_type));
1846 }
1847 }
1848
1849 /* Given that arr is an array value, returns the lower bound of the
1850 nth index (numbering from 1) if which is 0, and the upper bound if
1851 which is 1. This routine will also work for arrays with bounds
1852 supplied by run-time quantities other than discriminants. */
1853
1854 struct value *
1855 ada_array_bound (struct value *arr, int n, int which)
1856 {
1857 struct type *arr_type = VALUE_TYPE (arr);
1858
1859 if (ada_is_packed_array_type (arr_type))
1860 return ada_array_bound (decode_packed_array (arr), n, which);
1861 else if (ada_is_simple_array (arr_type))
1862 {
1863 struct type *type;
1864 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
1865 return value_from_longest (type, v);
1866 }
1867 else
1868 return desc_one_bound (desc_bounds (arr), n, which);
1869 }
1870
1871 /* Given that arr is an array value, returns the length of the
1872 nth index. This routine will also work for arrays with bounds
1873 supplied by run-time quantities other than discriminants. Does not
1874 work for arrays indexed by enumeration types with representation
1875 clauses at the moment. */
1876
1877 struct value *
1878 ada_array_length (struct value *arr, int n)
1879 {
1880 struct type *arr_type = check_typedef (VALUE_TYPE (arr));
1881 struct type *index_type_desc;
1882
1883 if (ada_is_packed_array_type (arr_type))
1884 return ada_array_length (decode_packed_array (arr), n);
1885
1886 if (ada_is_simple_array (arr_type))
1887 {
1888 struct type *type;
1889 LONGEST v =
1890 ada_array_bound_from_type (arr_type, n, 1, &type) -
1891 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
1892 return value_from_longest (type, v);
1893 }
1894 else
1895 return
1896 value_from_longest (builtin_type_ada_int,
1897 value_as_long (desc_one_bound (desc_bounds (arr),
1898 n, 1))
1899 - value_as_long (desc_one_bound (desc_bounds (arr),
1900 n, 0)) + 1);
1901 }
1902 \f
1903
1904 /* Name resolution */
1905
1906 /* The "demangled" name for the user-definable Ada operator corresponding
1907 to op. */
1908
1909 static const char *
1910 ada_op_name (enum exp_opcode op)
1911 {
1912 int i;
1913
1914 for (i = 0; ada_opname_table[i].mangled != NULL; i += 1)
1915 {
1916 if (ada_opname_table[i].op == op)
1917 return ada_opname_table[i].demangled;
1918 }
1919 error ("Could not find operator name for opcode");
1920 }
1921
1922
1923 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
1924 references (OP_UNRESOLVED_VALUES) and converts operators that are
1925 user-defined into appropriate function calls. If CONTEXT_TYPE is
1926 non-null, it provides a preferred result type [at the moment, only
1927 type void has any effect---causing procedures to be preferred over
1928 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
1929 return type is preferred. The variable unresolved_names contains a list
1930 of character strings referenced by expout that should be freed.
1931 May change (expand) *EXP. */
1932
1933 void
1934 ada_resolve (struct expression **expp, struct type *context_type)
1935 {
1936 int pc;
1937 pc = 0;
1938 ada_resolve_subexp (expp, &pc, 1, context_type);
1939 }
1940
1941 /* Resolve the operator of the subexpression beginning at
1942 position *POS of *EXPP. "Resolving" consists of replacing
1943 OP_UNRESOLVED_VALUE with an appropriate OP_VAR_VALUE, replacing
1944 built-in operators with function calls to user-defined operators,
1945 where appropriate, and (when DEPROCEDURE_P is non-zero), converting
1946 function-valued variables into parameterless calls. May expand
1947 EXP. The CONTEXT_TYPE functions as in ada_resolve, above. */
1948
1949 static struct value *
1950 ada_resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
1951 struct type *context_type)
1952 {
1953 int pc = *pos;
1954 int i;
1955 struct expression *exp; /* Convenience: == *expp */
1956 enum exp_opcode op = (*expp)->elts[pc].opcode;
1957 struct value **argvec; /* Vector of operand types (alloca'ed). */
1958 int nargs; /* Number of operands */
1959
1960 argvec = NULL;
1961 nargs = 0;
1962 exp = *expp;
1963
1964 /* Pass one: resolve operands, saving their types and updating *pos. */
1965 switch (op)
1966 {
1967 case OP_VAR_VALUE:
1968 /* case OP_UNRESOLVED_VALUE: */
1969 /* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */
1970 *pos += 4;
1971 break;
1972
1973 case OP_FUNCALL:
1974 nargs = longest_to_int (exp->elts[pc + 1].longconst) + 1;
1975 /* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */
1976 /* if (exp->elts[pc+3].opcode == OP_UNRESOLVED_VALUE)
1977 {
1978 *pos += 7;
1979
1980 argvec = (struct value* *) alloca (sizeof (struct value*) * (nargs + 1));
1981 for (i = 0; i < nargs-1; i += 1)
1982 argvec[i] = ada_resolve_subexp (expp, pos, 1, NULL);
1983 argvec[i] = NULL;
1984 }
1985 else
1986 {
1987 *pos += 3;
1988 ada_resolve_subexp (expp, pos, 0, NULL);
1989 for (i = 1; i < nargs; i += 1)
1990 ada_resolve_subexp (expp, pos, 1, NULL);
1991 }
1992 */
1993 exp = *expp;
1994 break;
1995
1996 /* FIXME: UNOP_QUAL should be defined in expression.h */
1997 /* case UNOP_QUAL:
1998 nargs = 1;
1999 *pos += 3;
2000 ada_resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2001 exp = *expp;
2002 break;
2003 */
2004 /* FIXME: OP_ATTRIBUTE should be defined in expression.h */
2005 /* case OP_ATTRIBUTE:
2006 nargs = longest_to_int (exp->elts[pc + 1].longconst) + 1;
2007 *pos += 4;
2008 for (i = 0; i < nargs; i += 1)
2009 ada_resolve_subexp (expp, pos, 1, NULL);
2010 exp = *expp;
2011 break;
2012 */
2013 case UNOP_ADDR:
2014 nargs = 1;
2015 *pos += 1;
2016 ada_resolve_subexp (expp, pos, 0, NULL);
2017 exp = *expp;
2018 break;
2019
2020 case BINOP_ASSIGN:
2021 {
2022 struct value *arg1;
2023 nargs = 2;
2024 *pos += 1;
2025 arg1 = ada_resolve_subexp (expp, pos, 0, NULL);
2026 if (arg1 == NULL)
2027 ada_resolve_subexp (expp, pos, 1, NULL);
2028 else
2029 ada_resolve_subexp (expp, pos, 1, VALUE_TYPE (arg1));
2030 break;
2031 }
2032
2033 default:
2034 switch (op)
2035 {
2036 default:
2037 error ("Unexpected operator during name resolution");
2038 case UNOP_CAST:
2039 /* case UNOP_MBR:
2040 nargs = 1;
2041 *pos += 3;
2042 break;
2043 */
2044 case BINOP_ADD:
2045 case BINOP_SUB:
2046 case BINOP_MUL:
2047 case BINOP_DIV:
2048 case BINOP_REM:
2049 case BINOP_MOD:
2050 case BINOP_EXP:
2051 case BINOP_CONCAT:
2052 case BINOP_LOGICAL_AND:
2053 case BINOP_LOGICAL_OR:
2054 case BINOP_BITWISE_AND:
2055 case BINOP_BITWISE_IOR:
2056 case BINOP_BITWISE_XOR:
2057
2058 case BINOP_EQUAL:
2059 case BINOP_NOTEQUAL:
2060 case BINOP_LESS:
2061 case BINOP_GTR:
2062 case BINOP_LEQ:
2063 case BINOP_GEQ:
2064
2065 case BINOP_REPEAT:
2066 case BINOP_SUBSCRIPT:
2067 case BINOP_COMMA:
2068 nargs = 2;
2069 *pos += 1;
2070 break;
2071
2072 case UNOP_NEG:
2073 case UNOP_PLUS:
2074 case UNOP_LOGICAL_NOT:
2075 case UNOP_ABS:
2076 case UNOP_IND:
2077 nargs = 1;
2078 *pos += 1;
2079 break;
2080
2081 case OP_LONG:
2082 case OP_DOUBLE:
2083 case OP_VAR_VALUE:
2084 *pos += 4;
2085 break;
2086
2087 case OP_TYPE:
2088 case OP_BOOL:
2089 case OP_LAST:
2090 case OP_REGISTER:
2091 case OP_INTERNALVAR:
2092 *pos += 3;
2093 break;
2094
2095 case UNOP_MEMVAL:
2096 *pos += 3;
2097 nargs = 1;
2098 break;
2099
2100 case STRUCTOP_STRUCT:
2101 case STRUCTOP_PTR:
2102 nargs = 1;
2103 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2104 break;
2105
2106 case OP_ARRAY:
2107 *pos += 4;
2108 nargs = longest_to_int (exp->elts[pc + 2].longconst) + 1;
2109 nargs -= longest_to_int (exp->elts[pc + 1].longconst);
2110 /* A null array contains one dummy element to give the type. */
2111 /* if (nargs == 0)
2112 nargs = 1;
2113 break; */
2114
2115 case TERNOP_SLICE:
2116 /* FIXME: TERNOP_MBR should be defined in expression.h */
2117 /* case TERNOP_MBR:
2118 *pos += 1;
2119 nargs = 3;
2120 break;
2121 */
2122 /* FIXME: BINOP_MBR should be defined in expression.h */
2123 /* case BINOP_MBR:
2124 *pos += 3;
2125 nargs = 2;
2126 break; */
2127 }
2128
2129 argvec =
2130 (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2131 for (i = 0; i < nargs; i += 1)
2132 argvec[i] = ada_resolve_subexp (expp, pos, 1, NULL);
2133 argvec[i] = NULL;
2134 exp = *expp;
2135 break;
2136 }
2137
2138 /* Pass two: perform any resolution on principal operator. */
2139 switch (op)
2140 {
2141 default:
2142 break;
2143
2144 /* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */
2145 /* case OP_UNRESOLVED_VALUE:
2146 {
2147 struct symbol** candidate_syms;
2148 struct block** candidate_blocks;
2149 int n_candidates;
2150
2151 n_candidates = ada_lookup_symbol_list (exp->elts[pc + 2].name,
2152 exp->elts[pc + 1].block,
2153 VAR_NAMESPACE,
2154 &candidate_syms,
2155 &candidate_blocks);
2156
2157 if (n_candidates > 1)
2158 { */
2159 /* Types tend to get re-introduced locally, so if there
2160 are any local symbols that are not types, first filter
2161 out all types. *//*
2162 int j;
2163 for (j = 0; j < n_candidates; j += 1)
2164 switch (SYMBOL_CLASS (candidate_syms[j]))
2165 {
2166 case LOC_REGISTER:
2167 case LOC_ARG:
2168 case LOC_REF_ARG:
2169 case LOC_REGPARM:
2170 case LOC_REGPARM_ADDR:
2171 case LOC_LOCAL:
2172 case LOC_LOCAL_ARG:
2173 case LOC_BASEREG:
2174 case LOC_BASEREG_ARG:
2175 goto FoundNonType;
2176 default:
2177 break;
2178 }
2179 FoundNonType:
2180 if (j < n_candidates)
2181 {
2182 j = 0;
2183 while (j < n_candidates)
2184 {
2185 if (SYMBOL_CLASS (candidate_syms[j]) == LOC_TYPEDEF)
2186 {
2187 candidate_syms[j] = candidate_syms[n_candidates-1];
2188 candidate_blocks[j] = candidate_blocks[n_candidates-1];
2189 n_candidates -= 1;
2190 }
2191 else
2192 j += 1;
2193 }
2194 }
2195 }
2196
2197 if (n_candidates == 0)
2198 error ("No definition found for %s",
2199 ada_demangle (exp->elts[pc + 2].name));
2200 else if (n_candidates == 1)
2201 i = 0;
2202 else if (deprocedure_p
2203 && ! is_nonfunction (candidate_syms, n_candidates))
2204 {
2205 i = ada_resolve_function (candidate_syms, candidate_blocks,
2206 n_candidates, NULL, 0,
2207 exp->elts[pc + 2].name, context_type);
2208 if (i < 0)
2209 error ("Could not find a match for %s",
2210 ada_demangle (exp->elts[pc + 2].name));
2211 }
2212 else
2213 {
2214 printf_filtered ("Multiple matches for %s\n",
2215 ada_demangle (exp->elts[pc+2].name));
2216 user_select_syms (candidate_syms, candidate_blocks,
2217 n_candidates, 1);
2218 i = 0;
2219 }
2220
2221 exp->elts[pc].opcode = exp->elts[pc + 3].opcode = OP_VAR_VALUE;
2222 exp->elts[pc + 1].block = candidate_blocks[i];
2223 exp->elts[pc + 2].symbol = candidate_syms[i];
2224 if (innermost_block == NULL ||
2225 contained_in (candidate_blocks[i], innermost_block))
2226 innermost_block = candidate_blocks[i];
2227 } */
2228 /* FALL THROUGH */
2229
2230 case OP_VAR_VALUE:
2231 if (deprocedure_p &&
2232 TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) ==
2233 TYPE_CODE_FUNC)
2234 {
2235 replace_operator_with_call (expp, pc, 0, 0,
2236 exp->elts[pc + 2].symbol,
2237 exp->elts[pc + 1].block);
2238 exp = *expp;
2239 }
2240 break;
2241
2242 case OP_FUNCALL:
2243 {
2244 /* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */
2245 /* if (exp->elts[pc+3].opcode == OP_UNRESOLVED_VALUE)
2246 {
2247 struct symbol** candidate_syms;
2248 struct block** candidate_blocks;
2249 int n_candidates;
2250
2251 n_candidates = ada_lookup_symbol_list (exp->elts[pc + 5].name,
2252 exp->elts[pc + 4].block,
2253 VAR_NAMESPACE,
2254 &candidate_syms,
2255 &candidate_blocks);
2256 if (n_candidates == 1)
2257 i = 0;
2258 else
2259 {
2260 i = ada_resolve_function (candidate_syms, candidate_blocks,
2261 n_candidates, argvec, nargs-1,
2262 exp->elts[pc + 5].name, context_type);
2263 if (i < 0)
2264 error ("Could not find a match for %s",
2265 ada_demangle (exp->elts[pc + 5].name));
2266 }
2267
2268 exp->elts[pc + 3].opcode = exp->elts[pc + 6].opcode = OP_VAR_VALUE;
2269 exp->elts[pc + 4].block = candidate_blocks[i];
2270 exp->elts[pc + 5].symbol = candidate_syms[i];
2271 if (innermost_block == NULL ||
2272 contained_in (candidate_blocks[i], innermost_block))
2273 innermost_block = candidate_blocks[i];
2274 } */
2275
2276 }
2277 break;
2278 case BINOP_ADD:
2279 case BINOP_SUB:
2280 case BINOP_MUL:
2281 case BINOP_DIV:
2282 case BINOP_REM:
2283 case BINOP_MOD:
2284 case BINOP_CONCAT:
2285 case BINOP_BITWISE_AND:
2286 case BINOP_BITWISE_IOR:
2287 case BINOP_BITWISE_XOR:
2288 case BINOP_EQUAL:
2289 case BINOP_NOTEQUAL:
2290 case BINOP_LESS:
2291 case BINOP_GTR:
2292 case BINOP_LEQ:
2293 case BINOP_GEQ:
2294 case BINOP_EXP:
2295 case UNOP_NEG:
2296 case UNOP_PLUS:
2297 case UNOP_LOGICAL_NOT:
2298 case UNOP_ABS:
2299 if (possible_user_operator_p (op, argvec))
2300 {
2301 struct symbol **candidate_syms;
2302 struct block **candidate_blocks;
2303 int n_candidates;
2304
2305 n_candidates =
2306 ada_lookup_symbol_list (ada_mangle (ada_op_name (op)),
2307 (struct block *) NULL, VAR_NAMESPACE,
2308 &candidate_syms, &candidate_blocks);
2309 i =
2310 ada_resolve_function (candidate_syms, candidate_blocks,
2311 n_candidates, argvec, nargs,
2312 ada_op_name (op), NULL);
2313 if (i < 0)
2314 break;
2315
2316 replace_operator_with_call (expp, pc, nargs, 1,
2317 candidate_syms[i], candidate_blocks[i]);
2318 exp = *expp;
2319 }
2320 break;
2321 }
2322
2323 *pos = pc;
2324 return evaluate_subexp_type (exp, pos);
2325 }
2326
2327 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2328 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2329 a non-pointer. */
2330 /* The term "match" here is rather loose. The match is heuristic and
2331 liberal. FIXME: TOO liberal, in fact. */
2332
2333 static int
2334 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2335 {
2336 CHECK_TYPEDEF (ftype);
2337 CHECK_TYPEDEF (atype);
2338
2339 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2340 ftype = TYPE_TARGET_TYPE (ftype);
2341 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2342 atype = TYPE_TARGET_TYPE (atype);
2343
2344 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2345 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2346 return 1;
2347
2348 switch (TYPE_CODE (ftype))
2349 {
2350 default:
2351 return 1;
2352 case TYPE_CODE_PTR:
2353 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2354 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2355 TYPE_TARGET_TYPE (atype), 0);
2356 else
2357 return (may_deref &&
2358 ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2359 case TYPE_CODE_INT:
2360 case TYPE_CODE_ENUM:
2361 case TYPE_CODE_RANGE:
2362 switch (TYPE_CODE (atype))
2363 {
2364 case TYPE_CODE_INT:
2365 case TYPE_CODE_ENUM:
2366 case TYPE_CODE_RANGE:
2367 return 1;
2368 default:
2369 return 0;
2370 }
2371
2372 case TYPE_CODE_ARRAY:
2373 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2374 || ada_is_array_descriptor (atype));
2375
2376 case TYPE_CODE_STRUCT:
2377 if (ada_is_array_descriptor (ftype))
2378 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2379 || ada_is_array_descriptor (atype));
2380 else
2381 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
2382 && !ada_is_array_descriptor (atype));
2383
2384 case TYPE_CODE_UNION:
2385 case TYPE_CODE_FLT:
2386 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
2387 }
2388 }
2389
2390 /* Return non-zero if the formals of FUNC "sufficiently match" the
2391 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
2392 may also be an enumeral, in which case it is treated as a 0-
2393 argument function. */
2394
2395 static int
2396 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
2397 {
2398 int i;
2399 struct type *func_type = SYMBOL_TYPE (func);
2400
2401 if (SYMBOL_CLASS (func) == LOC_CONST &&
2402 TYPE_CODE (func_type) == TYPE_CODE_ENUM)
2403 return (n_actuals == 0);
2404 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
2405 return 0;
2406
2407 if (TYPE_NFIELDS (func_type) != n_actuals)
2408 return 0;
2409
2410 for (i = 0; i < n_actuals; i += 1)
2411 {
2412 struct type *ftype = check_typedef (TYPE_FIELD_TYPE (func_type, i));
2413 struct type *atype = check_typedef (VALUE_TYPE (actuals[i]));
2414
2415 if (!ada_type_match (TYPE_FIELD_TYPE (func_type, i),
2416 VALUE_TYPE (actuals[i]), 1))
2417 return 0;
2418 }
2419 return 1;
2420 }
2421
2422 /* False iff function type FUNC_TYPE definitely does not produce a value
2423 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
2424 FUNC_TYPE is not a valid function type with a non-null return type
2425 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
2426
2427 static int
2428 return_match (struct type *func_type, struct type *context_type)
2429 {
2430 struct type *return_type;
2431
2432 if (func_type == NULL)
2433 return 1;
2434
2435 /* FIXME: base_type should be declared in gdbtypes.h, implemented in valarith.c */
2436 /* if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
2437 return_type = base_type (TYPE_TARGET_TYPE (func_type));
2438 else
2439 return_type = base_type (func_type); */
2440 if (return_type == NULL)
2441 return 1;
2442
2443 /* FIXME: base_type should be declared in gdbtypes.h, implemented in valarith.c */
2444 /* context_type = base_type (context_type); */
2445
2446 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
2447 return context_type == NULL || return_type == context_type;
2448 else if (context_type == NULL)
2449 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
2450 else
2451 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
2452 }
2453
2454
2455 /* Return the index in SYMS[0..NSYMS-1] of symbol for the
2456 function (if any) that matches the types of the NARGS arguments in
2457 ARGS. If CONTEXT_TYPE is non-null, and there is at least one match
2458 that returns type CONTEXT_TYPE, then eliminate other matches. If
2459 CONTEXT_TYPE is null, prefer a non-void-returning function.
2460 Asks the user if there is more than one match remaining. Returns -1
2461 if there is no such symbol or none is selected. NAME is used
2462 solely for messages. May re-arrange and modify SYMS in
2463 the process; the index returned is for the modified vector. BLOCKS
2464 is modified in parallel to SYMS. */
2465
2466 int
2467 ada_resolve_function (struct symbol *syms[], struct block *blocks[],
2468 int nsyms, struct value **args, int nargs,
2469 const char *name, struct type *context_type)
2470 {
2471 int k;
2472 int m; /* Number of hits */
2473 struct type *fallback;
2474 struct type *return_type;
2475
2476 return_type = context_type;
2477 if (context_type == NULL)
2478 fallback = builtin_type_void;
2479 else
2480 fallback = NULL;
2481
2482 m = 0;
2483 while (1)
2484 {
2485 for (k = 0; k < nsyms; k += 1)
2486 {
2487 struct type *type = check_typedef (SYMBOL_TYPE (syms[k]));
2488
2489 if (ada_args_match (syms[k], args, nargs)
2490 && return_match (SYMBOL_TYPE (syms[k]), return_type))
2491 {
2492 syms[m] = syms[k];
2493 if (blocks != NULL)
2494 blocks[m] = blocks[k];
2495 m += 1;
2496 }
2497 }
2498 if (m > 0 || return_type == fallback)
2499 break;
2500 else
2501 return_type = fallback;
2502 }
2503
2504 if (m == 0)
2505 return -1;
2506 else if (m > 1)
2507 {
2508 printf_filtered ("Multiple matches for %s\n", name);
2509 user_select_syms (syms, blocks, m, 1);
2510 return 0;
2511 }
2512 return 0;
2513 }
2514
2515 /* Returns true (non-zero) iff demangled name N0 should appear before N1 */
2516 /* in a listing of choices during disambiguation (see sort_choices, below). */
2517 /* The idea is that overloadings of a subprogram name from the */
2518 /* same package should sort in their source order. We settle for ordering */
2519 /* such symbols by their trailing number (__N or $N). */
2520 static int
2521 mangled_ordered_before (char *N0, char *N1)
2522 {
2523 if (N1 == NULL)
2524 return 0;
2525 else if (N0 == NULL)
2526 return 1;
2527 else
2528 {
2529 int k0, k1;
2530 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
2531 ;
2532 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
2533 ;
2534 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
2535 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
2536 {
2537 int n0, n1;
2538 n0 = k0;
2539 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
2540 n0 -= 1;
2541 n1 = k1;
2542 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
2543 n1 -= 1;
2544 if (n0 == n1 && STREQN (N0, N1, n0))
2545 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
2546 }
2547 return (strcmp (N0, N1) < 0);
2548 }
2549 }
2550
2551 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by their */
2552 /* mangled names, rearranging BLOCKS[0..NSYMS-1] according to the same */
2553 /* permutation. */
2554 static void
2555 sort_choices (struct symbol *syms[], struct block *blocks[], int nsyms)
2556 {
2557 int i, j;
2558 for (i = 1; i < nsyms; i += 1)
2559 {
2560 struct symbol *sym = syms[i];
2561 struct block *block = blocks[i];
2562 int j;
2563
2564 for (j = i - 1; j >= 0; j -= 1)
2565 {
2566 if (mangled_ordered_before (SYMBOL_NAME (syms[j]),
2567 SYMBOL_NAME (sym)))
2568 break;
2569 syms[j + 1] = syms[j];
2570 blocks[j + 1] = blocks[j];
2571 }
2572 syms[j + 1] = sym;
2573 blocks[j + 1] = block;
2574 }
2575 }
2576
2577 /* Given a list of NSYMS symbols in SYMS and corresponding blocks in */
2578 /* BLOCKS, select up to MAX_RESULTS>0 by asking the user (if */
2579 /* necessary), returning the number selected, and setting the first */
2580 /* elements of SYMS and BLOCKS to the selected symbols and */
2581 /* corresponding blocks. Error if no symbols selected. BLOCKS may */
2582 /* be NULL, in which case it is ignored. */
2583
2584 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
2585 to be re-integrated one of these days. */
2586
2587 int
2588 user_select_syms (struct symbol *syms[], struct block *blocks[], int nsyms,
2589 int max_results)
2590 {
2591 int i;
2592 int *chosen = (int *) alloca (sizeof (int) * nsyms);
2593 int n_chosen;
2594 int first_choice = (max_results == 1) ? 1 : 2;
2595
2596 if (max_results < 1)
2597 error ("Request to select 0 symbols!");
2598 if (nsyms <= 1)
2599 return nsyms;
2600
2601 printf_unfiltered ("[0] cancel\n");
2602 if (max_results > 1)
2603 printf_unfiltered ("[1] all\n");
2604
2605 sort_choices (syms, blocks, nsyms);
2606
2607 for (i = 0; i < nsyms; i += 1)
2608 {
2609 if (syms[i] == NULL)
2610 continue;
2611
2612 if (SYMBOL_CLASS (syms[i]) == LOC_BLOCK)
2613 {
2614 struct symtab_and_line sal = find_function_start_sal (syms[i], 1);
2615 printf_unfiltered ("[%d] %s at %s:%d\n",
2616 i + first_choice,
2617 SYMBOL_SOURCE_NAME (syms[i]),
2618 sal.symtab == NULL
2619 ? "<no source file available>"
2620 : sal.symtab->filename, sal.line);
2621 continue;
2622 }
2623 else
2624 {
2625 int is_enumeral =
2626 (SYMBOL_CLASS (syms[i]) == LOC_CONST
2627 && SYMBOL_TYPE (syms[i]) != NULL
2628 && TYPE_CODE (SYMBOL_TYPE (syms[i])) == TYPE_CODE_ENUM);
2629 struct symtab *symtab = symtab_for_sym (syms[i]);
2630
2631 if (SYMBOL_LINE (syms[i]) != 0 && symtab != NULL)
2632 printf_unfiltered ("[%d] %s at %s:%d\n",
2633 i + first_choice,
2634 SYMBOL_SOURCE_NAME (syms[i]),
2635 symtab->filename, SYMBOL_LINE (syms[i]));
2636 else if (is_enumeral && TYPE_NAME (SYMBOL_TYPE (syms[i])) != NULL)
2637 {
2638 printf_unfiltered ("[%d] ", i + first_choice);
2639 ada_print_type (SYMBOL_TYPE (syms[i]), NULL, gdb_stdout, -1, 0);
2640 printf_unfiltered ("'(%s) (enumeral)\n",
2641 SYMBOL_SOURCE_NAME (syms[i]));
2642 }
2643 else if (symtab != NULL)
2644 printf_unfiltered (is_enumeral
2645 ? "[%d] %s in %s (enumeral)\n"
2646 : "[%d] %s at %s:?\n",
2647 i + first_choice,
2648 SYMBOL_SOURCE_NAME (syms[i]),
2649 symtab->filename);
2650 else
2651 printf_unfiltered (is_enumeral
2652 ? "[%d] %s (enumeral)\n"
2653 : "[%d] %s at ?\n",
2654 i + first_choice,
2655 SYMBOL_SOURCE_NAME (syms[i]));
2656 }
2657 }
2658
2659 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
2660 "overload-choice");
2661
2662 for (i = 0; i < n_chosen; i += 1)
2663 {
2664 syms[i] = syms[chosen[i]];
2665 if (blocks != NULL)
2666 blocks[i] = blocks[chosen[i]];
2667 }
2668
2669 return n_chosen;
2670 }
2671
2672 /* Read and validate a set of numeric choices from the user in the
2673 range 0 .. N_CHOICES-1. Place the results in increasing
2674 order in CHOICES[0 .. N-1], and return N.
2675
2676 The user types choices as a sequence of numbers on one line
2677 separated by blanks, encoding them as follows:
2678
2679 + A choice of 0 means to cancel the selection, throwing an error.
2680 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
2681 + The user chooses k by typing k+IS_ALL_CHOICE+1.
2682
2683 The user is not allowed to choose more than MAX_RESULTS values.
2684
2685 ANNOTATION_SUFFIX, if present, is used to annotate the input
2686 prompts (for use with the -f switch). */
2687
2688 int
2689 get_selections (int *choices, int n_choices, int max_results,
2690 int is_all_choice, char *annotation_suffix)
2691 {
2692 int i;
2693 char *args;
2694 const char *prompt;
2695 int n_chosen;
2696 int first_choice = is_all_choice ? 2 : 1;
2697
2698 prompt = getenv ("PS2");
2699 if (prompt == NULL)
2700 prompt = ">";
2701
2702 printf_unfiltered ("%s ", prompt);
2703 gdb_flush (gdb_stdout);
2704
2705 args = command_line_input ((char *) NULL, 0, annotation_suffix);
2706
2707 if (args == NULL)
2708 error_no_arg ("one or more choice numbers");
2709
2710 n_chosen = 0;
2711
2712 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
2713 order, as given in args. Choices are validated. */
2714 while (1)
2715 {
2716 char *args2;
2717 int choice, j;
2718
2719 while (isspace (*args))
2720 args += 1;
2721 if (*args == '\0' && n_chosen == 0)
2722 error_no_arg ("one or more choice numbers");
2723 else if (*args == '\0')
2724 break;
2725
2726 choice = strtol (args, &args2, 10);
2727 if (args == args2 || choice < 0
2728 || choice > n_choices + first_choice - 1)
2729 error ("Argument must be choice number");
2730 args = args2;
2731
2732 if (choice == 0)
2733 error ("cancelled");
2734
2735 if (choice < first_choice)
2736 {
2737 n_chosen = n_choices;
2738 for (j = 0; j < n_choices; j += 1)
2739 choices[j] = j;
2740 break;
2741 }
2742 choice -= first_choice;
2743
2744 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
2745 {
2746 }
2747
2748 if (j < 0 || choice != choices[j])
2749 {
2750 int k;
2751 for (k = n_chosen - 1; k > j; k -= 1)
2752 choices[k + 1] = choices[k];
2753 choices[j + 1] = choice;
2754 n_chosen += 1;
2755 }
2756 }
2757
2758 if (n_chosen > max_results)
2759 error ("Select no more than %d of the above", max_results);
2760
2761 return n_chosen;
2762 }
2763
2764 /* Replace the operator of length OPLEN at position PC in *EXPP with a call */
2765 /* on the function identified by SYM and BLOCK, and taking NARGS */
2766 /* arguments. Update *EXPP as needed to hold more space. */
2767
2768 static void
2769 replace_operator_with_call (struct expression **expp, int pc, int nargs,
2770 int oplen, struct symbol *sym,
2771 struct block *block)
2772 {
2773 /* A new expression, with 6 more elements (3 for funcall, 4 for function
2774 symbol, -oplen for operator being replaced). */
2775 struct expression *newexp = (struct expression *)
2776 xmalloc (sizeof (struct expression)
2777 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
2778 struct expression *exp = *expp;
2779
2780 newexp->nelts = exp->nelts + 7 - oplen;
2781 newexp->language_defn = exp->language_defn;
2782 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
2783 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
2784 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
2785
2786 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
2787 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
2788
2789 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
2790 newexp->elts[pc + 4].block = block;
2791 newexp->elts[pc + 5].symbol = sym;
2792
2793 *expp = newexp;
2794 xfree (exp);
2795 }
2796
2797 /* Type-class predicates */
2798
2799 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), or */
2800 /* FLOAT.) */
2801
2802 static int
2803 numeric_type_p (struct type *type)
2804 {
2805 if (type == NULL)
2806 return 0;
2807 else
2808 {
2809 switch (TYPE_CODE (type))
2810 {
2811 case TYPE_CODE_INT:
2812 case TYPE_CODE_FLT:
2813 return 1;
2814 case TYPE_CODE_RANGE:
2815 return (type == TYPE_TARGET_TYPE (type)
2816 || numeric_type_p (TYPE_TARGET_TYPE (type)));
2817 default:
2818 return 0;
2819 }
2820 }
2821 }
2822
2823 /* True iff TYPE is integral (an INT or RANGE of INTs). */
2824
2825 static int
2826 integer_type_p (struct type *type)
2827 {
2828 if (type == NULL)
2829 return 0;
2830 else
2831 {
2832 switch (TYPE_CODE (type))
2833 {
2834 case TYPE_CODE_INT:
2835 return 1;
2836 case TYPE_CODE_RANGE:
2837 return (type == TYPE_TARGET_TYPE (type)
2838 || integer_type_p (TYPE_TARGET_TYPE (type)));
2839 default:
2840 return 0;
2841 }
2842 }
2843 }
2844
2845 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
2846
2847 static int
2848 scalar_type_p (struct type *type)
2849 {
2850 if (type == NULL)
2851 return 0;
2852 else
2853 {
2854 switch (TYPE_CODE (type))
2855 {
2856 case TYPE_CODE_INT:
2857 case TYPE_CODE_RANGE:
2858 case TYPE_CODE_ENUM:
2859 case TYPE_CODE_FLT:
2860 return 1;
2861 default:
2862 return 0;
2863 }
2864 }
2865 }
2866
2867 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
2868
2869 static int
2870 discrete_type_p (struct type *type)
2871 {
2872 if (type == NULL)
2873 return 0;
2874 else
2875 {
2876 switch (TYPE_CODE (type))
2877 {
2878 case TYPE_CODE_INT:
2879 case TYPE_CODE_RANGE:
2880 case TYPE_CODE_ENUM:
2881 return 1;
2882 default:
2883 return 0;
2884 }
2885 }
2886 }
2887
2888 /* Returns non-zero if OP with operatands in the vector ARGS could be
2889 a user-defined function. Errs on the side of pre-defined operators
2890 (i.e., result 0). */
2891
2892 static int
2893 possible_user_operator_p (enum exp_opcode op, struct value *args[])
2894 {
2895 struct type *type0 = check_typedef (VALUE_TYPE (args[0]));
2896 struct type *type1 =
2897 (args[1] == NULL) ? NULL : check_typedef (VALUE_TYPE (args[1]));
2898
2899 switch (op)
2900 {
2901 default:
2902 return 0;
2903
2904 case BINOP_ADD:
2905 case BINOP_SUB:
2906 case BINOP_MUL:
2907 case BINOP_DIV:
2908 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
2909
2910 case BINOP_REM:
2911 case BINOP_MOD:
2912 case BINOP_BITWISE_AND:
2913 case BINOP_BITWISE_IOR:
2914 case BINOP_BITWISE_XOR:
2915 return (!(integer_type_p (type0) && integer_type_p (type1)));
2916
2917 case BINOP_EQUAL:
2918 case BINOP_NOTEQUAL:
2919 case BINOP_LESS:
2920 case BINOP_GTR:
2921 case BINOP_LEQ:
2922 case BINOP_GEQ:
2923 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
2924
2925 case BINOP_CONCAT:
2926 return ((TYPE_CODE (type0) != TYPE_CODE_ARRAY &&
2927 (TYPE_CODE (type0) != TYPE_CODE_PTR ||
2928 TYPE_CODE (TYPE_TARGET_TYPE (type0))
2929 != TYPE_CODE_ARRAY))
2930 || (TYPE_CODE (type1) != TYPE_CODE_ARRAY &&
2931 (TYPE_CODE (type1) != TYPE_CODE_PTR ||
2932 TYPE_CODE (TYPE_TARGET_TYPE (type1)) != TYPE_CODE_ARRAY)));
2933
2934 case BINOP_EXP:
2935 return (!(numeric_type_p (type0) && integer_type_p (type1)));
2936
2937 case UNOP_NEG:
2938 case UNOP_PLUS:
2939 case UNOP_LOGICAL_NOT:
2940 case UNOP_ABS:
2941 return (!numeric_type_p (type0));
2942
2943 }
2944 }
2945 \f
2946 /* Renaming */
2947
2948 /** NOTE: In the following, we assume that a renaming type's name may
2949 * have an ___XD suffix. It would be nice if this went away at some
2950 * point. */
2951
2952 /* If TYPE encodes a renaming, returns the renaming suffix, which
2953 * is XR for an object renaming, XRP for a procedure renaming, XRE for
2954 * an exception renaming, and XRS for a subprogram renaming. Returns
2955 * NULL if NAME encodes none of these. */
2956 const char *
2957 ada_renaming_type (struct type *type)
2958 {
2959 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
2960 {
2961 const char *name = type_name_no_tag (type);
2962 const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
2963 if (suffix == NULL
2964 || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
2965 return NULL;
2966 else
2967 return suffix + 3;
2968 }
2969 else
2970 return NULL;
2971 }
2972
2973 /* Return non-zero iff SYM encodes an object renaming. */
2974 int
2975 ada_is_object_renaming (struct symbol *sym)
2976 {
2977 const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
2978 return renaming_type != NULL
2979 && (renaming_type[2] == '\0' || renaming_type[2] == '_');
2980 }
2981
2982 /* Assuming that SYM encodes a non-object renaming, returns the original
2983 * name of the renamed entity. The name is good until the end of
2984 * parsing. */
2985 const char *
2986 ada_simple_renamed_entity (struct symbol *sym)
2987 {
2988 struct type *type;
2989 const char *raw_name;
2990 int len;
2991 char *result;
2992
2993 type = SYMBOL_TYPE (sym);
2994 if (type == NULL || TYPE_NFIELDS (type) < 1)
2995 error ("Improperly encoded renaming.");
2996
2997 raw_name = TYPE_FIELD_NAME (type, 0);
2998 len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
2999 if (len <= 0)
3000 error ("Improperly encoded renaming.");
3001
3002 result = xmalloc (len + 1);
3003 /* FIXME: add_name_string_cleanup should be defined in parse.c */
3004 /* add_name_string_cleanup (result); */
3005 strncpy (result, raw_name, len);
3006 result[len] = '\000';
3007 return result;
3008 }
3009 \f
3010
3011 /* Evaluation: Function Calls */
3012
3013 /* Copy VAL onto the stack, using and updating *SP as the stack
3014 pointer. Return VAL as an lvalue. */
3015
3016 static struct value *
3017 place_on_stack (struct value *val, CORE_ADDR *sp)
3018 {
3019 CORE_ADDR old_sp = *sp;
3020
3021 #ifdef STACK_ALIGN
3022 *sp = push_bytes (*sp, VALUE_CONTENTS_RAW (val),
3023 STACK_ALIGN (TYPE_LENGTH
3024 (check_typedef (VALUE_TYPE (val)))));
3025 #else
3026 *sp = push_bytes (*sp, VALUE_CONTENTS_RAW (val),
3027 TYPE_LENGTH (check_typedef (VALUE_TYPE (val))));
3028 #endif
3029
3030 VALUE_LVAL (val) = lval_memory;
3031 if (INNER_THAN (1, 2))
3032 VALUE_ADDRESS (val) = *sp;
3033 else
3034 VALUE_ADDRESS (val) = old_sp;
3035
3036 return val;
3037 }
3038
3039 /* Return the value ACTUAL, converted to be an appropriate value for a
3040 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3041 allocating any necessary descriptors (fat pointers), or copies of
3042 values not residing in memory, updating it as needed. */
3043
3044 static struct value *
3045 convert_actual (struct value *actual, struct type *formal_type0,
3046 CORE_ADDR *sp)
3047 {
3048 struct type *actual_type = check_typedef (VALUE_TYPE (actual));
3049 struct type *formal_type = check_typedef (formal_type0);
3050 struct type *formal_target =
3051 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3052 ? check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3053 struct type *actual_target =
3054 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3055 ? check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3056
3057 if (ada_is_array_descriptor (formal_target)
3058 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3059 return make_array_descriptor (formal_type, actual, sp);
3060 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3061 {
3062 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3063 && ada_is_array_descriptor (actual_target))
3064 return desc_data (actual);
3065 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3066 {
3067 if (VALUE_LVAL (actual) != lval_memory)
3068 {
3069 struct value *val;
3070 actual_type = check_typedef (VALUE_TYPE (actual));
3071 val = allocate_value (actual_type);
3072 memcpy ((char *) VALUE_CONTENTS_RAW (val),
3073 (char *) VALUE_CONTENTS (actual),
3074 TYPE_LENGTH (actual_type));
3075 actual = place_on_stack (val, sp);
3076 }
3077 return value_addr (actual);
3078 }
3079 }
3080 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3081 return ada_value_ind (actual);
3082
3083 return actual;
3084 }
3085
3086
3087 /* Push a descriptor of type TYPE for array value ARR on the stack at
3088 *SP, updating *SP to reflect the new descriptor. Return either
3089 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3090 to-descriptor type rather than a descriptor type), a struct value*
3091 representing a pointer to this descriptor. */
3092
3093 static struct value *
3094 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3095 {
3096 struct type *bounds_type = desc_bounds_type (type);
3097 struct type *desc_type = desc_base_type (type);
3098 struct value *descriptor = allocate_value (desc_type);
3099 struct value *bounds = allocate_value (bounds_type);
3100 CORE_ADDR bounds_addr;
3101 int i;
3102
3103 for (i = ada_array_arity (check_typedef (VALUE_TYPE (arr))); i > 0; i -= 1)
3104 {
3105 modify_general_field (VALUE_CONTENTS (bounds),
3106 value_as_long (ada_array_bound (arr, i, 0)),
3107 desc_bound_bitpos (bounds_type, i, 0),
3108 desc_bound_bitsize (bounds_type, i, 0));
3109 modify_general_field (VALUE_CONTENTS (bounds),
3110 value_as_long (ada_array_bound (arr, i, 1)),
3111 desc_bound_bitpos (bounds_type, i, 1),
3112 desc_bound_bitsize (bounds_type, i, 1));
3113 }
3114
3115 bounds = place_on_stack (bounds, sp);
3116
3117 modify_general_field (VALUE_CONTENTS (descriptor),
3118 arr,
3119 fat_pntr_data_bitpos (desc_type),
3120 fat_pntr_data_bitsize (desc_type));
3121 modify_general_field (VALUE_CONTENTS (descriptor),
3122 VALUE_ADDRESS (bounds),
3123 fat_pntr_bounds_bitpos (desc_type),
3124 fat_pntr_bounds_bitsize (desc_type));
3125
3126 descriptor = place_on_stack (descriptor, sp);
3127
3128 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3129 return value_addr (descriptor);
3130 else
3131 return descriptor;
3132 }
3133
3134
3135 /* Assuming a dummy frame has been established on the target, perform any
3136 conversions needed for calling function FUNC on the NARGS actual
3137 parameters in ARGS, other than standard C conversions. Does
3138 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3139 does not match the number of arguments expected. Use *SP as a
3140 stack pointer for additional data that must be pushed, updating its
3141 value as needed. */
3142
3143 void
3144 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3145 CORE_ADDR *sp)
3146 {
3147 int i;
3148
3149 if (TYPE_NFIELDS (VALUE_TYPE (func)) == 0
3150 || nargs != TYPE_NFIELDS (VALUE_TYPE (func)))
3151 return;
3152
3153 for (i = 0; i < nargs; i += 1)
3154 args[i] =
3155 convert_actual (args[i], TYPE_FIELD_TYPE (VALUE_TYPE (func), i), sp);
3156 }
3157 \f
3158
3159 /* Symbol Lookup */
3160
3161
3162 /* The vectors of symbols and blocks ultimately returned from */
3163 /* ada_lookup_symbol_list. */
3164
3165 /* Current size of defn_symbols and defn_blocks */
3166 static size_t defn_vector_size = 0;
3167
3168 /* Current number of symbols found. */
3169 static int ndefns = 0;
3170
3171 static struct symbol **defn_symbols = NULL;
3172 static struct block **defn_blocks = NULL;
3173
3174 /* Return the result of a standard (literal, C-like) lookup of NAME in
3175 * given NAMESPACE. */
3176
3177 static struct symbol *
3178 standard_lookup (const char *name, namespace_enum namespace)
3179 {
3180 struct symbol *sym;
3181 struct symtab *symtab;
3182 sym = lookup_symbol (name, (struct block *) NULL, namespace, 0, &symtab);
3183 return sym;
3184 }
3185
3186
3187 /* Non-zero iff there is at least one non-function/non-enumeral symbol */
3188 /* in SYMS[0..N-1]. We treat enumerals as functions, since they */
3189 /* contend in overloading in the same way. */
3190 static int
3191 is_nonfunction (struct symbol *syms[], int n)
3192 {
3193 int i;
3194
3195 for (i = 0; i < n; i += 1)
3196 if (TYPE_CODE (SYMBOL_TYPE (syms[i])) != TYPE_CODE_FUNC
3197 && TYPE_CODE (SYMBOL_TYPE (syms[i])) != TYPE_CODE_ENUM)
3198 return 1;
3199
3200 return 0;
3201 }
3202
3203 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3204 struct types. Otherwise, they may not. */
3205
3206 static int
3207 equiv_types (struct type *type0, struct type *type1)
3208 {
3209 if (type0 == type1)
3210 return 1;
3211 if (type0 == NULL || type1 == NULL
3212 || TYPE_CODE (type0) != TYPE_CODE (type1))
3213 return 0;
3214 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3215 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3216 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3217 && STREQ (ada_type_name (type0), ada_type_name (type1)))
3218 return 1;
3219
3220 return 0;
3221 }
3222
3223 /* True iff SYM0 represents the same entity as SYM1, or one that is
3224 no more defined than that of SYM1. */
3225
3226 static int
3227 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3228 {
3229 if (sym0 == sym1)
3230 return 1;
3231 if (SYMBOL_NAMESPACE (sym0) != SYMBOL_NAMESPACE (sym1)
3232 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3233 return 0;
3234
3235 switch (SYMBOL_CLASS (sym0))
3236 {
3237 case LOC_UNDEF:
3238 return 1;
3239 case LOC_TYPEDEF:
3240 {
3241 struct type *type0 = SYMBOL_TYPE (sym0);
3242 struct type *type1 = SYMBOL_TYPE (sym1);
3243 char *name0 = SYMBOL_NAME (sym0);
3244 char *name1 = SYMBOL_NAME (sym1);
3245 int len0 = strlen (name0);
3246 return
3247 TYPE_CODE (type0) == TYPE_CODE (type1)
3248 && (equiv_types (type0, type1)
3249 || (len0 < strlen (name1) && STREQN (name0, name1, len0)
3250 && STREQN (name1 + len0, "___XV", 5)));
3251 }
3252 case LOC_CONST:
3253 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3254 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3255 default:
3256 return 0;
3257 }
3258 }
3259
3260 /* Append SYM to the end of defn_symbols, and BLOCK to the end of
3261 defn_blocks, updating ndefns, and expanding defn_symbols and
3262 defn_blocks as needed. Do not include SYM if it is a duplicate. */
3263
3264 static void
3265 add_defn_to_vec (struct symbol *sym, struct block *block)
3266 {
3267 int i;
3268 size_t tmp;
3269
3270 if (SYMBOL_TYPE (sym) != NULL)
3271 CHECK_TYPEDEF (SYMBOL_TYPE (sym));
3272 for (i = 0; i < ndefns; i += 1)
3273 {
3274 if (lesseq_defined_than (sym, defn_symbols[i]))
3275 return;
3276 else if (lesseq_defined_than (defn_symbols[i], sym))
3277 {
3278 defn_symbols[i] = sym;
3279 defn_blocks[i] = block;
3280 return;
3281 }
3282 }
3283
3284 tmp = defn_vector_size;
3285 GROW_VECT (defn_symbols, tmp, ndefns + 2);
3286 GROW_VECT (defn_blocks, defn_vector_size, ndefns + 2);
3287
3288 defn_symbols[ndefns] = sym;
3289 defn_blocks[ndefns] = block;
3290 ndefns += 1;
3291 }
3292
3293 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
3294 Check the global symbols if GLOBAL, the static symbols if not. Do
3295 wild-card match if WILD. */
3296
3297 static struct partial_symbol *
3298 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
3299 int global, namespace_enum namespace, int wild)
3300 {
3301 struct partial_symbol **start;
3302 int name_len = strlen (name);
3303 int length = (global ? pst->n_global_syms : pst->n_static_syms);
3304 int i;
3305
3306 if (length == 0)
3307 {
3308 return (NULL);
3309 }
3310
3311 start = (global ?
3312 pst->objfile->global_psymbols.list + pst->globals_offset :
3313 pst->objfile->static_psymbols.list + pst->statics_offset);
3314
3315 if (wild)
3316 {
3317 for (i = 0; i < length; i += 1)
3318 {
3319 struct partial_symbol *psym = start[i];
3320
3321 if (SYMBOL_NAMESPACE (psym) == namespace &&
3322 wild_match (name, name_len, SYMBOL_NAME (psym)))
3323 return psym;
3324 }
3325 return NULL;
3326 }
3327 else
3328 {
3329 if (global)
3330 {
3331 int U;
3332 i = 0;
3333 U = length - 1;
3334 while (U - i > 4)
3335 {
3336 int M = (U + i) >> 1;
3337 struct partial_symbol *psym = start[M];
3338 if (SYMBOL_NAME (psym)[0] < name[0])
3339 i = M + 1;
3340 else if (SYMBOL_NAME (psym)[0] > name[0])
3341 U = M - 1;
3342 else if (strcmp (SYMBOL_NAME (psym), name) < 0)
3343 i = M + 1;
3344 else
3345 U = M;
3346 }
3347 }
3348 else
3349 i = 0;
3350
3351 while (i < length)
3352 {
3353 struct partial_symbol *psym = start[i];
3354
3355 if (SYMBOL_NAMESPACE (psym) == namespace)
3356 {
3357 int cmp = strncmp (name, SYMBOL_NAME (psym), name_len);
3358
3359 if (cmp < 0)
3360 {
3361 if (global)
3362 break;
3363 }
3364 else if (cmp == 0
3365 && is_name_suffix (SYMBOL_NAME (psym) + name_len))
3366 return psym;
3367 }
3368 i += 1;
3369 }
3370
3371 if (global)
3372 {
3373 int U;
3374 i = 0;
3375 U = length - 1;
3376 while (U - i > 4)
3377 {
3378 int M = (U + i) >> 1;
3379 struct partial_symbol *psym = start[M];
3380 if (SYMBOL_NAME (psym)[0] < '_')
3381 i = M + 1;
3382 else if (SYMBOL_NAME (psym)[0] > '_')
3383 U = M - 1;
3384 else if (strcmp (SYMBOL_NAME (psym), "_ada_") < 0)
3385 i = M + 1;
3386 else
3387 U = M;
3388 }
3389 }
3390 else
3391 i = 0;
3392
3393 while (i < length)
3394 {
3395 struct partial_symbol *psym = start[i];
3396
3397 if (SYMBOL_NAMESPACE (psym) == namespace)
3398 {
3399 int cmp;
3400
3401 cmp = (int) '_' - (int) SYMBOL_NAME (psym)[0];
3402 if (cmp == 0)
3403 {
3404 cmp = strncmp ("_ada_", SYMBOL_NAME (psym), 5);
3405 if (cmp == 0)
3406 cmp = strncmp (name, SYMBOL_NAME (psym) + 5, name_len);
3407 }
3408
3409 if (cmp < 0)
3410 {
3411 if (global)
3412 break;
3413 }
3414 else if (cmp == 0
3415 && is_name_suffix (SYMBOL_NAME (psym) + name_len + 5))
3416 return psym;
3417 }
3418 i += 1;
3419 }
3420
3421 }
3422 return NULL;
3423 }
3424
3425
3426 /* Find a symbol table containing symbol SYM or NULL if none. */
3427 static struct symtab *
3428 symtab_for_sym (struct symbol *sym)
3429 {
3430 struct symtab *s;
3431 struct objfile *objfile;
3432 struct block *b;
3433 struct symbol *tmp_sym;
3434 int i, j;
3435
3436 ALL_SYMTABS (objfile, s)
3437 {
3438 switch (SYMBOL_CLASS (sym))
3439 {
3440 case LOC_CONST:
3441 case LOC_STATIC:
3442 case LOC_TYPEDEF:
3443 case LOC_REGISTER:
3444 case LOC_LABEL:
3445 case LOC_BLOCK:
3446 case LOC_CONST_BYTES:
3447 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3448 ALL_BLOCK_SYMBOLS (b, i, tmp_sym) if (sym == tmp_sym)
3449 return s;
3450 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3451 ALL_BLOCK_SYMBOLS (b, i, tmp_sym) if (sym == tmp_sym)
3452 return s;
3453 break;
3454 default:
3455 break;
3456 }
3457 switch (SYMBOL_CLASS (sym))
3458 {
3459 case LOC_REGISTER:
3460 case LOC_ARG:
3461 case LOC_REF_ARG:
3462 case LOC_REGPARM:
3463 case LOC_REGPARM_ADDR:
3464 case LOC_LOCAL:
3465 case LOC_TYPEDEF:
3466 case LOC_LOCAL_ARG:
3467 case LOC_BASEREG:
3468 case LOC_BASEREG_ARG:
3469 for (j = FIRST_LOCAL_BLOCK;
3470 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
3471 {
3472 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
3473 ALL_BLOCK_SYMBOLS (b, i, tmp_sym) if (sym == tmp_sym)
3474 return s;
3475 }
3476 break;
3477 default:
3478 break;
3479 }
3480 }
3481 return NULL;
3482 }
3483
3484 /* Return a minimal symbol matching NAME according to Ada demangling
3485 rules. Returns NULL if there is no such minimal symbol. */
3486
3487 struct minimal_symbol *
3488 ada_lookup_minimal_symbol (const char *name)
3489 {
3490 struct objfile *objfile;
3491 struct minimal_symbol *msymbol;
3492 int wild_match = (strstr (name, "__") == NULL);
3493
3494 ALL_MSYMBOLS (objfile, msymbol)
3495 {
3496 if (ada_match_name (SYMBOL_NAME (msymbol), name, wild_match)
3497 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
3498 return msymbol;
3499 }
3500
3501 return NULL;
3502 }
3503
3504 /* For all subprograms that statically enclose the subprogram of the
3505 * selected frame, add symbols matching identifier NAME in NAMESPACE
3506 * and their blocks to vectors *defn_symbols and *defn_blocks, as for
3507 * ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
3508 * wildcard prefix. At the moment, this function uses a heuristic to
3509 * find the frames of enclosing subprograms: it treats the
3510 * pointer-sized value at location 0 from the local-variable base of a
3511 * frame as a static link, and then searches up the call stack for a
3512 * frame with that same local-variable base. */
3513 static void
3514 add_symbols_from_enclosing_procs (const char *name, namespace_enum namespace,
3515 int wild_match)
3516 {
3517 #ifdef i386
3518 static struct symbol static_link_sym;
3519 static struct symbol *static_link;
3520
3521 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3522 struct frame_info *frame;
3523 struct frame_info *target_frame;
3524
3525 if (static_link == NULL)
3526 {
3527 /* Initialize the local variable symbol that stands for the
3528 * static link (when it exists). */
3529 static_link = &static_link_sym;
3530 SYMBOL_NAME (static_link) = "";
3531 SYMBOL_LANGUAGE (static_link) = language_unknown;
3532 SYMBOL_CLASS (static_link) = LOC_LOCAL;
3533 SYMBOL_NAMESPACE (static_link) = VAR_NAMESPACE;
3534 SYMBOL_TYPE (static_link) = lookup_pointer_type (builtin_type_void);
3535 SYMBOL_VALUE (static_link) =
3536 -(long) TYPE_LENGTH (SYMBOL_TYPE (static_link));
3537 }
3538
3539 frame = selected_frame;
3540 while (frame != NULL && ndefns == 0)
3541 {
3542 struct block *block;
3543 struct value *target_link_val = read_var_value (static_link, frame);
3544 CORE_ADDR target_link;
3545
3546 if (target_link_val == NULL)
3547 break;
3548 QUIT;
3549
3550 target_link = target_link_val;
3551 do
3552 {
3553 QUIT;
3554 frame = get_prev_frame (frame);
3555 }
3556 while (frame != NULL && FRAME_LOCALS_ADDRESS (frame) != target_link);
3557
3558 if (frame == NULL)
3559 break;
3560
3561 block = get_frame_block (frame, 0);
3562 while (block != NULL && block_function (block) != NULL && ndefns == 0)
3563 {
3564 ada_add_block_symbols (block, name, namespace, NULL, wild_match);
3565
3566 block = BLOCK_SUPERBLOCK (block);
3567 }
3568 }
3569
3570 do_cleanups (old_chain);
3571 #endif
3572 }
3573
3574 /* True if TYPE is definitely an artificial type supplied to a symbol
3575 * for which no debugging information was given in the symbol file. */
3576 static int
3577 is_nondebugging_type (struct type *type)
3578 {
3579 char *name = ada_type_name (type);
3580 return (name != NULL && STREQ (name, "<variable, no debug info>"));
3581 }
3582
3583 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
3584 * duplicate other symbols in the list. (The only case I know of where
3585 * this happens is when object files containing stabs-in-ecoff are
3586 * linked with files containing ordinary ecoff debugging symbols (or no
3587 * debugging symbols)). Modifies SYMS to squeeze out deleted symbols,
3588 * and applies the same modification to BLOCKS to maintain the
3589 * correspondence between SYMS[i] and BLOCKS[i]. Returns the number
3590 * of symbols in the modified list. */
3591 static int
3592 remove_extra_symbols (struct symbol **syms, struct block **blocks, int nsyms)
3593 {
3594 int i, j;
3595
3596 i = 0;
3597 while (i < nsyms)
3598 {
3599 if (SYMBOL_NAME (syms[i]) != NULL
3600 && SYMBOL_CLASS (syms[i]) == LOC_STATIC
3601 && is_nondebugging_type (SYMBOL_TYPE (syms[i])))
3602 {
3603 for (j = 0; j < nsyms; j += 1)
3604 {
3605 if (i != j
3606 && SYMBOL_NAME (syms[j]) != NULL
3607 && STREQ (SYMBOL_NAME (syms[i]), SYMBOL_NAME (syms[j]))
3608 && SYMBOL_CLASS (syms[i]) == SYMBOL_CLASS (syms[j])
3609 && SYMBOL_VALUE_ADDRESS (syms[i])
3610 == SYMBOL_VALUE_ADDRESS (syms[j]))
3611 {
3612 int k;
3613 for (k = i + 1; k < nsyms; k += 1)
3614 {
3615 syms[k - 1] = syms[k];
3616 blocks[k - 1] = blocks[k];
3617 }
3618 nsyms -= 1;
3619 goto NextSymbol;
3620 }
3621 }
3622 }
3623 i += 1;
3624 NextSymbol:
3625 ;
3626 }
3627 return nsyms;
3628 }
3629
3630 /* Find symbols in NAMESPACE matching NAME, in BLOCK0 and enclosing
3631 scope and in global scopes, returning the number of matches. Sets
3632 *SYMS to point to a vector of matching symbols, with *BLOCKS
3633 pointing to the vector of corresponding blocks in which those
3634 symbols reside. These two vectors are transient---good only to the
3635 next call of ada_lookup_symbol_list. Any non-function/non-enumeral symbol
3636 match within the nest of blocks whose innermost member is BLOCK0,
3637 is the outermost match returned (no other matches in that or
3638 enclosing blocks is returned). If there are any matches in or
3639 surrounding BLOCK0, then these alone are returned. */
3640
3641 int
3642 ada_lookup_symbol_list (const char *name, struct block *block0,
3643 namespace_enum namespace, struct symbol ***syms,
3644 struct block ***blocks)
3645 {
3646 struct symbol *sym;
3647 struct symtab *s;
3648 struct partial_symtab *ps;
3649 struct blockvector *bv;
3650 struct objfile *objfile;
3651 struct block *b;
3652 struct block *block;
3653 struct minimal_symbol *msymbol;
3654 int wild_match = (strstr (name, "__") == NULL);
3655 int cacheIfUnique;
3656
3657 #ifdef TIMING
3658 markTimeStart (0);
3659 #endif
3660
3661 ndefns = 0;
3662 cacheIfUnique = 0;
3663
3664 /* Search specified block and its superiors. */
3665
3666 block = block0;
3667 while (block != NULL)
3668 {
3669 ada_add_block_symbols (block, name, namespace, NULL, wild_match);
3670
3671 /* If we found a non-function match, assume that's the one. */
3672 if (is_nonfunction (defn_symbols, ndefns))
3673 goto done;
3674
3675 block = BLOCK_SUPERBLOCK (block);
3676 }
3677
3678 /* If we found ANY matches in the specified BLOCK, we're done. */
3679
3680 if (ndefns > 0)
3681 goto done;
3682
3683 cacheIfUnique = 1;
3684
3685 /* Now add symbols from all global blocks: symbol tables, minimal symbol
3686 tables, and psymtab's */
3687
3688 ALL_SYMTABS (objfile, s)
3689 {
3690 QUIT;
3691 if (!s->primary)
3692 continue;
3693 bv = BLOCKVECTOR (s);
3694 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3695 ada_add_block_symbols (block, name, namespace, objfile, wild_match);
3696 }
3697
3698 if (namespace == VAR_NAMESPACE)
3699 {
3700 ALL_MSYMBOLS (objfile, msymbol)
3701 {
3702 if (ada_match_name (SYMBOL_NAME (msymbol), name, wild_match))
3703 {
3704 switch (MSYMBOL_TYPE (msymbol))
3705 {
3706 case mst_solib_trampoline:
3707 break;
3708 default:
3709 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
3710 if (s != NULL)
3711 {
3712 int old_ndefns = ndefns;
3713 QUIT;
3714 bv = BLOCKVECTOR (s);
3715 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3716 ada_add_block_symbols (block,
3717 SYMBOL_NAME (msymbol),
3718 namespace, objfile, wild_match);
3719 if (ndefns == old_ndefns)
3720 {
3721 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
3722 ada_add_block_symbols (block,
3723 SYMBOL_NAME (msymbol),
3724 namespace, objfile,
3725 wild_match);
3726 }
3727 }
3728 }
3729 }
3730 }
3731 }
3732
3733 ALL_PSYMTABS (objfile, ps)
3734 {
3735 QUIT;
3736 if (!ps->readin
3737 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
3738 {
3739 s = PSYMTAB_TO_SYMTAB (ps);
3740 if (!s->primary)
3741 continue;
3742 bv = BLOCKVECTOR (s);
3743 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3744 ada_add_block_symbols (block, name, namespace, objfile, wild_match);
3745 }
3746 }
3747
3748 /* Now add symbols from all per-file blocks if we've gotten no hits.
3749 (Not strictly correct, but perhaps better than an error).
3750 Do the symtabs first, then check the psymtabs */
3751
3752 if (ndefns == 0)
3753 {
3754
3755 ALL_SYMTABS (objfile, s)
3756 {
3757 QUIT;
3758 if (!s->primary)
3759 continue;
3760 bv = BLOCKVECTOR (s);
3761 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
3762 ada_add_block_symbols (block, name, namespace, objfile, wild_match);
3763 }
3764
3765 ALL_PSYMTABS (objfile, ps)
3766 {
3767 QUIT;
3768 if (!ps->readin
3769 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
3770 {
3771 s = PSYMTAB_TO_SYMTAB (ps);
3772 bv = BLOCKVECTOR (s);
3773 if (!s->primary)
3774 continue;
3775 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
3776 ada_add_block_symbols (block, name, namespace,
3777 objfile, wild_match);
3778 }
3779 }
3780 }
3781
3782 /* Finally, we try to find NAME as a local symbol in some lexically
3783 enclosing block. We do this last, expecting this case to be
3784 rare. */
3785 if (ndefns == 0)
3786 {
3787 add_symbols_from_enclosing_procs (name, namespace, wild_match);
3788 if (ndefns > 0)
3789 goto done;
3790 }
3791
3792 done:
3793 ndefns = remove_extra_symbols (defn_symbols, defn_blocks, ndefns);
3794
3795
3796 *syms = defn_symbols;
3797 *blocks = defn_blocks;
3798 #ifdef TIMING
3799 markTimeStop (0);
3800 #endif
3801 return ndefns;
3802 }
3803
3804 /* Return a symbol in NAMESPACE matching NAME, in BLOCK0 and enclosing
3805 * scope and in global scopes, or NULL if none. NAME is folded to
3806 * lower case first, unless it is surrounded in single quotes.
3807 * Otherwise, the result is as for ada_lookup_symbol_list, but is
3808 * disambiguated by user query if needed. */
3809
3810 struct symbol *
3811 ada_lookup_symbol (const char *name, struct block *block0,
3812 namespace_enum namespace)
3813 {
3814 struct symbol **candidate_syms;
3815 struct block **candidate_blocks;
3816 int n_candidates;
3817
3818 n_candidates = ada_lookup_symbol_list (name,
3819 block0, namespace,
3820 &candidate_syms, &candidate_blocks);
3821
3822 if (n_candidates == 0)
3823 return NULL;
3824 else if (n_candidates != 1)
3825 user_select_syms (candidate_syms, candidate_blocks, n_candidates, 1);
3826
3827 return candidate_syms[0];
3828 }
3829
3830
3831 /* True iff STR is a possible encoded suffix of a normal Ada name
3832 * that is to be ignored for matching purposes. Suffixes of parallel
3833 * names (e.g., XVE) are not included here. Currently, the possible suffixes
3834 * are given by the regular expression:
3835 * (X[nb]*)?(__[0-9]+|\$[0-9]+|___(LJM|X([FDBUP].*|R[^T]?)))?$
3836 *
3837 */
3838 static int
3839 is_name_suffix (const char *str)
3840 {
3841 int k;
3842 if (str[0] == 'X')
3843 {
3844 str += 1;
3845 while (str[0] != '_' && str[0] != '\0')
3846 {
3847 if (str[0] != 'n' && str[0] != 'b')
3848 return 0;
3849 str += 1;
3850 }
3851 }
3852 if (str[0] == '\000')
3853 return 1;
3854 if (str[0] == '_')
3855 {
3856 if (str[1] != '_' || str[2] == '\000')
3857 return 0;
3858 if (str[2] == '_')
3859 {
3860 if (STREQ (str + 3, "LJM"))
3861 return 1;
3862 if (str[3] != 'X')
3863 return 0;
3864 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' ||
3865 str[4] == 'U' || str[4] == 'P')
3866 return 1;
3867 if (str[4] == 'R' && str[5] != 'T')
3868 return 1;
3869 return 0;
3870 }
3871 for (k = 2; str[k] != '\0'; k += 1)
3872 if (!isdigit (str[k]))
3873 return 0;
3874 return 1;
3875 }
3876 if (str[0] == '$' && str[1] != '\000')
3877 {
3878 for (k = 1; str[k] != '\0'; k += 1)
3879 if (!isdigit (str[k]))
3880 return 0;
3881 return 1;
3882 }
3883 return 0;
3884 }
3885
3886 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
3887 * PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
3888 * informational suffixes of NAME (i.e., for which is_name_suffix is
3889 * true). */
3890 static int
3891 wild_match (const char *patn, int patn_len, const char *name)
3892 {
3893 int name_len;
3894 int s, e;
3895
3896 name_len = strlen (name);
3897 if (name_len >= patn_len + 5 && STREQN (name, "_ada_", 5)
3898 && STREQN (patn, name + 5, patn_len)
3899 && is_name_suffix (name + patn_len + 5))
3900 return 1;
3901
3902 while (name_len >= patn_len)
3903 {
3904 if (STREQN (patn, name, patn_len) && is_name_suffix (name + patn_len))
3905 return 1;
3906 do
3907 {
3908 name += 1;
3909 name_len -= 1;
3910 }
3911 while (name_len > 0
3912 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
3913 if (name_len <= 0)
3914 return 0;
3915 if (name[0] == '_')
3916 {
3917 if (!islower (name[2]))
3918 return 0;
3919 name += 2;
3920 name_len -= 2;
3921 }
3922 else
3923 {
3924 if (!islower (name[1]))
3925 return 0;
3926 name += 1;
3927 name_len -= 1;
3928 }
3929 }
3930
3931 return 0;
3932 }
3933
3934
3935 /* Add symbols from BLOCK matching identifier NAME in NAMESPACE to
3936 vector *defn_symbols, updating *defn_symbols (if necessary), *SZ (the size of
3937 the vector *defn_symbols), and *ndefns (the number of symbols
3938 currently stored in *defn_symbols). If WILD, treat as NAME with a
3939 wildcard prefix. OBJFILE is the section containing BLOCK. */
3940
3941 static void
3942 ada_add_block_symbols (struct block *block, const char *name,
3943 namespace_enum namespace, struct objfile *objfile,
3944 int wild)
3945 {
3946 int i;
3947 int name_len = strlen (name);
3948 /* A matching argument symbol, if any. */
3949 struct symbol *arg_sym;
3950 /* Set true when we find a matching non-argument symbol */
3951 int found_sym;
3952 int is_sorted = BLOCK_SHOULD_SORT (block);
3953 struct symbol *sym;
3954
3955 arg_sym = NULL;
3956 found_sym = 0;
3957 if (wild)
3958 {
3959 struct symbol *sym;
3960 ALL_BLOCK_SYMBOLS (block, i, sym)
3961 {
3962 if (SYMBOL_NAMESPACE (sym) == namespace &&
3963 wild_match (name, name_len, SYMBOL_NAME (sym)))
3964 {
3965 switch (SYMBOL_CLASS (sym))
3966 {
3967 case LOC_ARG:
3968 case LOC_LOCAL_ARG:
3969 case LOC_REF_ARG:
3970 case LOC_REGPARM:
3971 case LOC_REGPARM_ADDR:
3972 case LOC_BASEREG_ARG:
3973 arg_sym = sym;
3974 break;
3975 case LOC_UNRESOLVED:
3976 continue;
3977 default:
3978 found_sym = 1;
3979 fill_in_ada_prototype (sym);
3980 add_defn_to_vec (fixup_symbol_section (sym, objfile), block);
3981 break;
3982 }
3983 }
3984 }
3985 }
3986 else
3987 {
3988 if (is_sorted)
3989 {
3990 int U;
3991 i = 0;
3992 U = BLOCK_NSYMS (block) - 1;
3993 while (U - i > 4)
3994 {
3995 int M = (U + i) >> 1;
3996 struct symbol *sym = BLOCK_SYM (block, M);
3997 if (SYMBOL_NAME (sym)[0] < name[0])
3998 i = M + 1;
3999 else if (SYMBOL_NAME (sym)[0] > name[0])
4000 U = M - 1;
4001 else if (strcmp (SYMBOL_NAME (sym), name) < 0)
4002 i = M + 1;
4003 else
4004 U = M;
4005 }
4006 }
4007 else
4008 i = 0;
4009
4010 for (; i < BLOCK_BUCKETS (block); i += 1)
4011 for (sym = BLOCK_BUCKET (block, i); sym != NULL; sym = sym->hash_next)
4012 {
4013 if (SYMBOL_NAMESPACE (sym) == namespace)
4014 {
4015 int cmp = strncmp (name, SYMBOL_NAME (sym), name_len);
4016
4017 if (cmp < 0)
4018 {
4019 if (is_sorted)
4020 {
4021 i = BLOCK_BUCKETS (block);
4022 break;
4023 }
4024 }
4025 else if (cmp == 0
4026 && is_name_suffix (SYMBOL_NAME (sym) + name_len))
4027 {
4028 switch (SYMBOL_CLASS (sym))
4029 {
4030 case LOC_ARG:
4031 case LOC_LOCAL_ARG:
4032 case LOC_REF_ARG:
4033 case LOC_REGPARM:
4034 case LOC_REGPARM_ADDR:
4035 case LOC_BASEREG_ARG:
4036 arg_sym = sym;
4037 break;
4038 case LOC_UNRESOLVED:
4039 break;
4040 default:
4041 found_sym = 1;
4042 fill_in_ada_prototype (sym);
4043 add_defn_to_vec (fixup_symbol_section (sym, objfile),
4044 block);
4045 break;
4046 }
4047 }
4048 }
4049 }
4050 }
4051
4052 if (!found_sym && arg_sym != NULL)
4053 {
4054 fill_in_ada_prototype (arg_sym);
4055 add_defn_to_vec (fixup_symbol_section (arg_sym, objfile), block);
4056 }
4057
4058 if (!wild)
4059 {
4060 arg_sym = NULL;
4061 found_sym = 0;
4062 if (is_sorted)
4063 {
4064 int U;
4065 i = 0;
4066 U = BLOCK_NSYMS (block) - 1;
4067 while (U - i > 4)
4068 {
4069 int M = (U + i) >> 1;
4070 struct symbol *sym = BLOCK_SYM (block, M);
4071 if (SYMBOL_NAME (sym)[0] < '_')
4072 i = M + 1;
4073 else if (SYMBOL_NAME (sym)[0] > '_')
4074 U = M - 1;
4075 else if (strcmp (SYMBOL_NAME (sym), "_ada_") < 0)
4076 i = M + 1;
4077 else
4078 U = M;
4079 }
4080 }
4081 else
4082 i = 0;
4083
4084 for (; i < BLOCK_BUCKETS (block); i += 1)
4085 for (sym = BLOCK_BUCKET (block, i); sym != NULL; sym = sym->hash_next)
4086 {
4087 struct symbol *sym = BLOCK_SYM (block, i);
4088
4089 if (SYMBOL_NAMESPACE (sym) == namespace)
4090 {
4091 int cmp;
4092
4093 cmp = (int) '_' - (int) SYMBOL_NAME (sym)[0];
4094 if (cmp == 0)
4095 {
4096 cmp = strncmp ("_ada_", SYMBOL_NAME (sym), 5);
4097 if (cmp == 0)
4098 cmp = strncmp (name, SYMBOL_NAME (sym) + 5, name_len);
4099 }
4100
4101 if (cmp < 0)
4102 {
4103 if (is_sorted)
4104 {
4105 i = BLOCK_BUCKETS (block);
4106 break;
4107 }
4108 }
4109 else if (cmp == 0
4110 && is_name_suffix (SYMBOL_NAME (sym) + name_len + 5))
4111 {
4112 switch (SYMBOL_CLASS (sym))
4113 {
4114 case LOC_ARG:
4115 case LOC_LOCAL_ARG:
4116 case LOC_REF_ARG:
4117 case LOC_REGPARM:
4118 case LOC_REGPARM_ADDR:
4119 case LOC_BASEREG_ARG:
4120 arg_sym = sym;
4121 break;
4122 case LOC_UNRESOLVED:
4123 break;
4124 default:
4125 found_sym = 1;
4126 fill_in_ada_prototype (sym);
4127 add_defn_to_vec (fixup_symbol_section (sym, objfile),
4128 block);
4129 break;
4130 }
4131 }
4132 }
4133 }
4134
4135 /* NOTE: This really shouldn't be needed for _ada_ symbols.
4136 They aren't parameters, right? */
4137 if (!found_sym && arg_sym != NULL)
4138 {
4139 fill_in_ada_prototype (arg_sym);
4140 add_defn_to_vec (fixup_symbol_section (arg_sym, objfile), block);
4141 }
4142 }
4143 }
4144 \f
4145
4146 /* Function Types */
4147
4148 /* Assuming that SYM is the symbol for a function, fill in its type
4149 with prototype information, if it is not already there. */
4150
4151 static void
4152 fill_in_ada_prototype (struct symbol *func)
4153 {
4154 struct block *b;
4155 int nargs, nsyms;
4156 int i;
4157 struct type *ftype;
4158 struct type *rtype;
4159 size_t max_fields;
4160 struct symbol *sym;
4161
4162 if (func == NULL
4163 || TYPE_CODE (SYMBOL_TYPE (func)) != TYPE_CODE_FUNC
4164 || TYPE_FIELDS (SYMBOL_TYPE (func)) != NULL)
4165 return;
4166
4167 /* We make each function type unique, so that each may have its own */
4168 /* parameter types. This particular way of doing so wastes space: */
4169 /* it would be nicer to build the argument types while the original */
4170 /* function type is being built (FIXME). */
4171 rtype = check_typedef (TYPE_TARGET_TYPE (SYMBOL_TYPE (func)));
4172 ftype = alloc_type (TYPE_OBJFILE (SYMBOL_TYPE (func)));
4173 make_function_type (rtype, &ftype);
4174 SYMBOL_TYPE (func) = ftype;
4175
4176 b = SYMBOL_BLOCK_VALUE (func);
4177
4178 nargs = 0;
4179 max_fields = 8;
4180 TYPE_FIELDS (ftype) =
4181 (struct field *) xmalloc (sizeof (struct field) * max_fields);
4182 ALL_BLOCK_SYMBOLS (b, i, sym)
4183 {
4184 GROW_VECT (TYPE_FIELDS (ftype), max_fields, nargs + 1);
4185
4186 switch (SYMBOL_CLASS (sym))
4187 {
4188 case LOC_REF_ARG:
4189 case LOC_REGPARM_ADDR:
4190 TYPE_FIELD_BITPOS (ftype, nargs) = nargs;
4191 TYPE_FIELD_BITSIZE (ftype, nargs) = 0;
4192 TYPE_FIELD_TYPE (ftype, nargs) =
4193 lookup_pointer_type (check_typedef (SYMBOL_TYPE (sym)));
4194 TYPE_FIELD_NAME (ftype, nargs) = SYMBOL_NAME (sym);
4195 nargs += 1;
4196
4197 break;
4198
4199 case LOC_ARG:
4200 case LOC_REGPARM:
4201 case LOC_LOCAL_ARG:
4202 case LOC_BASEREG_ARG:
4203 TYPE_FIELD_BITPOS (ftype, nargs) = nargs;
4204 TYPE_FIELD_BITSIZE (ftype, nargs) = 0;
4205 TYPE_FIELD_TYPE (ftype, nargs) = check_typedef (SYMBOL_TYPE (sym));
4206 TYPE_FIELD_NAME (ftype, nargs) = SYMBOL_NAME (sym);
4207 nargs += 1;
4208
4209 break;
4210
4211 default:
4212 break;
4213 }
4214 }
4215
4216 /* Re-allocate fields vector; if there are no fields, make the */
4217 /* fields pointer non-null anyway, to mark that this function type */
4218 /* has been filled in. */
4219
4220 TYPE_NFIELDS (ftype) = nargs;
4221 if (nargs == 0)
4222 {
4223 static struct field dummy_field = { 0, 0, 0, 0 };
4224 xfree (TYPE_FIELDS (ftype));
4225 TYPE_FIELDS (ftype) = &dummy_field;
4226 }
4227 else
4228 {
4229 struct field *fields =
4230 (struct field *) TYPE_ALLOC (ftype, nargs * sizeof (struct field));
4231 memcpy ((char *) fields,
4232 (char *) TYPE_FIELDS (ftype), nargs * sizeof (struct field));
4233 xfree (TYPE_FIELDS (ftype));
4234 TYPE_FIELDS (ftype) = fields;
4235 }
4236 }
4237 \f
4238
4239 /* Breakpoint-related */
4240
4241 char no_symtab_msg[] =
4242 "No symbol table is loaded. Use the \"file\" command.";
4243
4244 /* Assuming that LINE is pointing at the beginning of an argument to
4245 'break', return a pointer to the delimiter for the initial segment
4246 of that name. This is the first ':', ' ', or end of LINE.
4247 */
4248 char *
4249 ada_start_decode_line_1 (char *line)
4250 {
4251 /* [NOTE: strpbrk would be more elegant, but I am reluctant to be
4252 the first to use such a library function in GDB code.] */
4253 char *p;
4254 for (p = line; *p != '\000' && *p != ' ' && *p != ':'; p += 1)
4255 ;
4256 return p;
4257 }
4258
4259 /* *SPEC points to a function and line number spec (as in a break
4260 command), following any initial file name specification.
4261
4262 Return all symbol table/line specfications (sals) consistent with the
4263 information in *SPEC and FILE_TABLE in the
4264 following sense:
4265 + FILE_TABLE is null, or the sal refers to a line in the file
4266 named by FILE_TABLE.
4267 + If *SPEC points to an argument with a trailing ':LINENUM',
4268 then the sal refers to that line (or one following it as closely as
4269 possible).
4270 + If *SPEC does not start with '*', the sal is in a function with
4271 that name.
4272
4273 Returns with 0 elements if no matching non-minimal symbols found.
4274
4275 If *SPEC begins with a function name of the form <NAME>, then NAME
4276 is taken as a literal name; otherwise the function name is subject
4277 to the usual mangling.
4278
4279 *SPEC is updated to point after the function/line number specification.
4280
4281 FUNFIRSTLINE is non-zero if we desire the first line of real code
4282 in each function (this is ignored in the presence of a LINENUM spec.).
4283
4284 If CANONICAL is non-NULL, and if any of the sals require a
4285 'canonical line spec', then *CANONICAL is set to point to an array
4286 of strings, corresponding to and equal in length to the returned
4287 list of sals, such that (*CANONICAL)[i] is non-null and contains a
4288 canonical line spec for the ith returned sal, if needed. If no
4289 canonical line specs are required and CANONICAL is non-null,
4290 *CANONICAL is set to NULL.
4291
4292 A 'canonical line spec' is simply a name (in the format of the
4293 breakpoint command) that uniquely identifies a breakpoint position,
4294 with no further contextual information or user selection. It is
4295 needed whenever the file name, function name, and line number
4296 information supplied is insufficient for this unique
4297 identification. Currently overloaded functions, the name '*',
4298 or static functions without a filename yield a canonical line spec.
4299 The array and the line spec strings are allocated on the heap; it
4300 is the caller's responsibility to free them. */
4301
4302 struct symtabs_and_lines
4303 ada_finish_decode_line_1 (char **spec, struct symtab *file_table,
4304 int funfirstline, char ***canonical)
4305 {
4306 struct symbol **symbols;
4307 struct block **blocks;
4308 struct block *block;
4309 int n_matches, i, line_num;
4310 struct symtabs_and_lines selected;
4311 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4312 char *name;
4313
4314 int len;
4315 char *lower_name;
4316 char *unquoted_name;
4317
4318 if (file_table == NULL)
4319 block = get_selected_block (NULL);
4320 else
4321 block = BLOCKVECTOR_BLOCK (BLOCKVECTOR (file_table), STATIC_BLOCK);
4322
4323 if (canonical != NULL)
4324 *canonical = (char **) NULL;
4325
4326 name = *spec;
4327 if (**spec == '*')
4328 *spec += 1;
4329 else
4330 {
4331 while (**spec != '\000' &&
4332 !strchr (ada_completer_word_break_characters, **spec))
4333 *spec += 1;
4334 }
4335 len = *spec - name;
4336
4337 line_num = -1;
4338 if (file_table != NULL && (*spec)[0] == ':' && isdigit ((*spec)[1]))
4339 {
4340 line_num = strtol (*spec + 1, spec, 10);
4341 while (**spec == ' ' || **spec == '\t')
4342 *spec += 1;
4343 }
4344
4345 if (name[0] == '*')
4346 {
4347 if (line_num == -1)
4348 error ("Wild-card function with no line number or file name.");
4349
4350 return all_sals_for_line (file_table->filename, line_num, canonical);
4351 }
4352
4353 if (name[0] == '\'')
4354 {
4355 name += 1;
4356 len -= 2;
4357 }
4358
4359 if (name[0] == '<')
4360 {
4361 unquoted_name = (char *) alloca (len - 1);
4362 memcpy (unquoted_name, name + 1, len - 2);
4363 unquoted_name[len - 2] = '\000';
4364 lower_name = NULL;
4365 }
4366 else
4367 {
4368 unquoted_name = (char *) alloca (len + 1);
4369 memcpy (unquoted_name, name, len);
4370 unquoted_name[len] = '\000';
4371 lower_name = (char *) alloca (len + 1);
4372 for (i = 0; i < len; i += 1)
4373 lower_name[i] = tolower (name[i]);
4374 lower_name[len] = '\000';
4375 }
4376
4377 n_matches = 0;
4378 if (lower_name != NULL)
4379 n_matches = ada_lookup_symbol_list (ada_mangle (lower_name), block,
4380 VAR_NAMESPACE, &symbols, &blocks);
4381 if (n_matches == 0)
4382 n_matches = ada_lookup_symbol_list (unquoted_name, block,
4383 VAR_NAMESPACE, &symbols, &blocks);
4384 if (n_matches == 0 && line_num >= 0)
4385 error ("No line number information found for %s.", unquoted_name);
4386 else if (n_matches == 0)
4387 {
4388 #ifdef HPPA_COMPILER_BUG
4389 /* FIXME: See comment in symtab.c::decode_line_1 */
4390 #undef volatile
4391 volatile struct symtab_and_line val;
4392 #define volatile /*nothing */
4393 #else
4394 struct symtab_and_line val;
4395 #endif
4396 struct minimal_symbol *msymbol;
4397
4398 INIT_SAL (&val);
4399
4400 msymbol = NULL;
4401 if (lower_name != NULL)
4402 msymbol = ada_lookup_minimal_symbol (ada_mangle (lower_name));
4403 if (msymbol == NULL)
4404 msymbol = ada_lookup_minimal_symbol (unquoted_name);
4405 if (msymbol != NULL)
4406 {
4407 val.pc = SYMBOL_VALUE_ADDRESS (msymbol);
4408 val.section = SYMBOL_BFD_SECTION (msymbol);
4409 if (funfirstline)
4410 {
4411 val.pc += FUNCTION_START_OFFSET;
4412 SKIP_PROLOGUE (val.pc);
4413 }
4414 selected.sals = (struct symtab_and_line *)
4415 xmalloc (sizeof (struct symtab_and_line));
4416 selected.sals[0] = val;
4417 selected.nelts = 1;
4418 return selected;
4419 }
4420
4421 if (!have_full_symbols () &&
4422 !have_partial_symbols () && !have_minimal_symbols ())
4423 error (no_symtab_msg);
4424
4425 error ("Function \"%s\" not defined.", unquoted_name);
4426 return selected; /* for lint */
4427 }
4428
4429 if (line_num >= 0)
4430 {
4431 return
4432 find_sal_from_funcs_and_line (file_table->filename, line_num,
4433 symbols, n_matches);
4434 }
4435 else
4436 {
4437 selected.nelts =
4438 user_select_syms (symbols, blocks, n_matches, n_matches);
4439 }
4440
4441 selected.sals = (struct symtab_and_line *)
4442 xmalloc (sizeof (struct symtab_and_line) * selected.nelts);
4443 memset (selected.sals, 0, selected.nelts * sizeof (selected.sals[i]));
4444 make_cleanup (xfree, selected.sals);
4445
4446 i = 0;
4447 while (i < selected.nelts)
4448 {
4449 if (SYMBOL_CLASS (symbols[i]) == LOC_BLOCK)
4450 selected.sals[i] = find_function_start_sal (symbols[i], funfirstline);
4451 else if (SYMBOL_LINE (symbols[i]) != 0)
4452 {
4453 selected.sals[i].symtab = symtab_for_sym (symbols[i]);
4454 selected.sals[i].line = SYMBOL_LINE (symbols[i]);
4455 }
4456 else if (line_num >= 0)
4457 {
4458 /* Ignore this choice */
4459 symbols[i] = symbols[selected.nelts - 1];
4460 blocks[i] = blocks[selected.nelts - 1];
4461 selected.nelts -= 1;
4462 continue;
4463 }
4464 else
4465 error ("Line number not known for symbol \"%s\"", unquoted_name);
4466 i += 1;
4467 }
4468
4469 if (canonical != NULL && (line_num >= 0 || n_matches > 1))
4470 {
4471 *canonical = (char **) xmalloc (sizeof (char *) * selected.nelts);
4472 for (i = 0; i < selected.nelts; i += 1)
4473 (*canonical)[i] =
4474 extended_canonical_line_spec (selected.sals[i],
4475 SYMBOL_SOURCE_NAME (symbols[i]));
4476 }
4477
4478 discard_cleanups (old_chain);
4479 return selected;
4480 }
4481
4482 /* The (single) sal corresponding to line LINE_NUM in a symbol table
4483 with file name FILENAME that occurs in one of the functions listed
4484 in SYMBOLS[0 .. NSYMS-1]. */
4485 static struct symtabs_and_lines
4486 find_sal_from_funcs_and_line (const char *filename, int line_num,
4487 struct symbol **symbols, int nsyms)
4488 {
4489 struct symtabs_and_lines sals;
4490 int best_index, best;
4491 struct linetable *best_linetable;
4492 struct objfile *objfile;
4493 struct symtab *s;
4494 struct symtab *best_symtab;
4495
4496 read_all_symtabs (filename);
4497
4498 best_index = 0;
4499 best_linetable = NULL;
4500 best_symtab = NULL;
4501 best = 0;
4502 ALL_SYMTABS (objfile, s)
4503 {
4504 struct linetable *l;
4505 int ind, exact;
4506
4507 QUIT;
4508
4509 if (!STREQ (filename, s->filename))
4510 continue;
4511 l = LINETABLE (s);
4512 ind = find_line_in_linetable (l, line_num, symbols, nsyms, &exact);
4513 if (ind >= 0)
4514 {
4515 if (exact)
4516 {
4517 best_index = ind;
4518 best_linetable = l;
4519 best_symtab = s;
4520 goto done;
4521 }
4522 if (best == 0 || l->item[ind].line < best)
4523 {
4524 best = l->item[ind].line;
4525 best_index = ind;
4526 best_linetable = l;
4527 best_symtab = s;
4528 }
4529 }
4530 }
4531
4532 if (best == 0)
4533 error ("Line number not found in designated function.");
4534
4535 done:
4536
4537 sals.nelts = 1;
4538 sals.sals = (struct symtab_and_line *) xmalloc (sizeof (sals.sals[0]));
4539
4540 INIT_SAL (&sals.sals[0]);
4541
4542 sals.sals[0].line = best_linetable->item[best_index].line;
4543 sals.sals[0].pc = best_linetable->item[best_index].pc;
4544 sals.sals[0].symtab = best_symtab;
4545
4546 return sals;
4547 }
4548
4549 /* Return the index in LINETABLE of the best match for LINE_NUM whose
4550 pc falls within one of the functions denoted by SYMBOLS[0..NSYMS-1].
4551 Set *EXACTP to the 1 if the match is exact, and 0 otherwise. */
4552 static int
4553 find_line_in_linetable (struct linetable *linetable, int line_num,
4554 struct symbol **symbols, int nsyms, int *exactp)
4555 {
4556 int i, len, best_index, best;
4557
4558 if (line_num <= 0 || linetable == NULL)
4559 return -1;
4560
4561 len = linetable->nitems;
4562 for (i = 0, best_index = -1, best = 0; i < len; i += 1)
4563 {
4564 int k;
4565 struct linetable_entry *item = &(linetable->item[i]);
4566
4567 for (k = 0; k < nsyms; k += 1)
4568 {
4569 if (symbols[k] != NULL && SYMBOL_CLASS (symbols[k]) == LOC_BLOCK
4570 && item->pc >= BLOCK_START (SYMBOL_BLOCK_VALUE (symbols[k]))
4571 && item->pc < BLOCK_END (SYMBOL_BLOCK_VALUE (symbols[k])))
4572 goto candidate;
4573 }
4574 continue;
4575
4576 candidate:
4577
4578 if (item->line == line_num)
4579 {
4580 *exactp = 1;
4581 return i;
4582 }
4583
4584 if (item->line > line_num && (best == 0 || item->line < best))
4585 {
4586 best = item->line;
4587 best_index = i;
4588 }
4589 }
4590
4591 *exactp = 0;
4592 return best_index;
4593 }
4594
4595 /* Find the smallest k >= LINE_NUM such that k is a line number in
4596 LINETABLE, and k falls strictly within a named function that begins at
4597 or before LINE_NUM. Return -1 if there is no such k. */
4598 static int
4599 nearest_line_number_in_linetable (struct linetable *linetable, int line_num)
4600 {
4601 int i, len, best;
4602
4603 if (line_num <= 0 || linetable == NULL || linetable->nitems == 0)
4604 return -1;
4605 len = linetable->nitems;
4606
4607 i = 0;
4608 best = INT_MAX;
4609 while (i < len)
4610 {
4611 int k;
4612 struct linetable_entry *item = &(linetable->item[i]);
4613
4614 if (item->line >= line_num && item->line < best)
4615 {
4616 char *func_name;
4617 CORE_ADDR start, end;
4618
4619 func_name = NULL;
4620 find_pc_partial_function (item->pc, &func_name, &start, &end);
4621
4622 if (func_name != NULL && item->pc < end)
4623 {
4624 if (item->line == line_num)
4625 return line_num;
4626 else
4627 {
4628 struct symbol *sym =
4629 standard_lookup (func_name, VAR_NAMESPACE);
4630 if (is_plausible_func_for_line (sym, line_num))
4631 best = item->line;
4632 else
4633 {
4634 do
4635 i += 1;
4636 while (i < len && linetable->item[i].pc < end);
4637 continue;
4638 }
4639 }
4640 }
4641 }
4642
4643 i += 1;
4644 }
4645
4646 return (best == INT_MAX) ? -1 : best;
4647 }
4648
4649
4650 /* Return the next higher index, k, into LINETABLE such that k > IND,
4651 entry k in LINETABLE has a line number equal to LINE_NUM, k
4652 corresponds to a PC that is in a function different from that
4653 corresponding to IND, and falls strictly within a named function
4654 that begins at a line at or preceding STARTING_LINE.
4655 Return -1 if there is no such k.
4656 IND == -1 corresponds to no function. */
4657
4658 static int
4659 find_next_line_in_linetable (struct linetable *linetable, int line_num,
4660 int starting_line, int ind)
4661 {
4662 int i, len;
4663
4664 if (line_num <= 0 || linetable == NULL || ind >= linetable->nitems)
4665 return -1;
4666 len = linetable->nitems;
4667
4668 if (ind >= 0)
4669 {
4670 CORE_ADDR start, end;
4671
4672 if (find_pc_partial_function (linetable->item[ind].pc,
4673 (char **) NULL, &start, &end))
4674 {
4675 while (ind < len && linetable->item[ind].pc < end)
4676 ind += 1;
4677 }
4678 else
4679 ind += 1;
4680 }
4681 else
4682 ind = 0;
4683
4684 i = ind;
4685 while (i < len)
4686 {
4687 int k;
4688 struct linetable_entry *item = &(linetable->item[i]);
4689
4690 if (item->line >= line_num)
4691 {
4692 char *func_name;
4693 CORE_ADDR start, end;
4694
4695 func_name = NULL;
4696 find_pc_partial_function (item->pc, &func_name, &start, &end);
4697
4698 if (func_name != NULL && item->pc < end)
4699 {
4700 if (item->line == line_num)
4701 {
4702 struct symbol *sym =
4703 standard_lookup (func_name, VAR_NAMESPACE);
4704 if (is_plausible_func_for_line (sym, starting_line))
4705 return i;
4706 else
4707 {
4708 while ((i + 1) < len && linetable->item[i + 1].pc < end)
4709 i += 1;
4710 }
4711 }
4712 }
4713 }
4714 i += 1;
4715 }
4716
4717 return -1;
4718 }
4719
4720 /* True iff function symbol SYM starts somewhere at or before line #
4721 LINE_NUM. */
4722 static int
4723 is_plausible_func_for_line (struct symbol *sym, int line_num)
4724 {
4725 struct symtab_and_line start_sal;
4726
4727 if (sym == NULL)
4728 return 0;
4729
4730 start_sal = find_function_start_sal (sym, 0);
4731
4732 return (start_sal.line != 0 && line_num >= start_sal.line);
4733 }
4734
4735 static void
4736 debug_print_lines (struct linetable *lt)
4737 {
4738 int i;
4739
4740 if (lt == NULL)
4741 return;
4742
4743 fprintf (stderr, "\t");
4744 for (i = 0; i < lt->nitems; i += 1)
4745 fprintf (stderr, "(%d->%p) ", lt->item[i].line, (void *) lt->item[i].pc);
4746 fprintf (stderr, "\n");
4747 }
4748
4749 static void
4750 debug_print_block (struct block *b)
4751 {
4752 int i;
4753 struct symbol *i;
4754
4755 fprintf (stderr, "Block: %p; [0x%lx, 0x%lx]",
4756 b, BLOCK_START (b), BLOCK_END (b));
4757 if (BLOCK_FUNCTION (b) != NULL)
4758 fprintf (stderr, " Function: %s", SYMBOL_NAME (BLOCK_FUNCTION (b)));
4759 fprintf (stderr, "\n");
4760 fprintf (stderr, "\t Superblock: %p\n", BLOCK_SUPERBLOCK (b));
4761 fprintf (stderr, "\t Symbols:");
4762 ALL_BLOCK_SYMBOLS (b, i, sym)
4763 {
4764 if (i > 0 && i % 4 == 0)
4765 fprintf (stderr, "\n\t\t ");
4766 fprintf (stderr, " %s", SYMBOL_NAME (sym));
4767 }
4768 fprintf (stderr, "\n");
4769 }
4770
4771 static void
4772 debug_print_blocks (struct blockvector *bv)
4773 {
4774 int i;
4775
4776 if (bv == NULL)
4777 return;
4778 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); i += 1)
4779 {
4780 fprintf (stderr, "%6d. ", i);
4781 debug_print_block (BLOCKVECTOR_BLOCK (bv, i));
4782 }
4783 }
4784
4785 static void
4786 debug_print_symtab (struct symtab *s)
4787 {
4788 fprintf (stderr, "Symtab %p\n File: %s; Dir: %s\n", s,
4789 s->filename, s->dirname);
4790 fprintf (stderr, " Blockvector: %p, Primary: %d\n",
4791 BLOCKVECTOR (s), s->primary);
4792 debug_print_blocks (BLOCKVECTOR (s));
4793 fprintf (stderr, " Line table: %p\n", LINETABLE (s));
4794 debug_print_lines (LINETABLE (s));
4795 }
4796
4797 /* Read in all symbol tables corresponding to partial symbol tables
4798 with file name FILENAME. */
4799 static void
4800 read_all_symtabs (const char *filename)
4801 {
4802 struct partial_symtab *ps;
4803 struct objfile *objfile;
4804
4805 ALL_PSYMTABS (objfile, ps)
4806 {
4807 QUIT;
4808
4809 if (STREQ (filename, ps->filename))
4810 PSYMTAB_TO_SYMTAB (ps);
4811 }
4812 }
4813
4814 /* All sals corresponding to line LINE_NUM in a symbol table from file
4815 FILENAME, as filtered by the user. If CANONICAL is not null, set
4816 it to a corresponding array of canonical line specs. */
4817 static struct symtabs_and_lines
4818 all_sals_for_line (const char *filename, int line_num, char ***canonical)
4819 {
4820 struct symtabs_and_lines result;
4821 struct objfile *objfile;
4822 struct symtab *s;
4823 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4824 size_t len;
4825
4826 read_all_symtabs (filename);
4827
4828 result.sals =
4829 (struct symtab_and_line *) xmalloc (4 * sizeof (result.sals[0]));
4830 result.nelts = 0;
4831 len = 4;
4832 make_cleanup (free_current_contents, &result.sals);
4833
4834 ALL_SYMTABS (objfile, s)
4835 {
4836 int ind, target_line_num;
4837
4838 QUIT;
4839
4840 if (!STREQ (s->filename, filename))
4841 continue;
4842
4843 target_line_num =
4844 nearest_line_number_in_linetable (LINETABLE (s), line_num);
4845 if (target_line_num == -1)
4846 continue;
4847
4848 ind = -1;
4849 while (1)
4850 {
4851 ind =
4852 find_next_line_in_linetable (LINETABLE (s),
4853 target_line_num, line_num, ind);
4854
4855 if (ind < 0)
4856 break;
4857
4858 GROW_VECT (result.sals, len, result.nelts + 1);
4859 INIT_SAL (&result.sals[result.nelts]);
4860 result.sals[result.nelts].line = LINETABLE (s)->item[ind].line;
4861 result.sals[result.nelts].pc = LINETABLE (s)->item[ind].pc;
4862 result.sals[result.nelts].symtab = s;
4863 result.nelts += 1;
4864 }
4865 }
4866
4867 if (canonical != NULL || result.nelts > 1)
4868 {
4869 int k;
4870 char **func_names = (char **) alloca (result.nelts * sizeof (char *));
4871 int first_choice = (result.nelts > 1) ? 2 : 1;
4872 int n;
4873 int *choices = (int *) alloca (result.nelts * sizeof (int));
4874
4875 for (k = 0; k < result.nelts; k += 1)
4876 {
4877 find_pc_partial_function (result.sals[k].pc, &func_names[k],
4878 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
4879 if (func_names[k] == NULL)
4880 error ("Could not find function for one or more breakpoints.");
4881 }
4882
4883 if (result.nelts > 1)
4884 {
4885 printf_unfiltered ("[0] cancel\n");
4886 if (result.nelts > 1)
4887 printf_unfiltered ("[1] all\n");
4888 for (k = 0; k < result.nelts; k += 1)
4889 printf_unfiltered ("[%d] %s\n", k + first_choice,
4890 ada_demangle (func_names[k]));
4891
4892 n = get_selections (choices, result.nelts, result.nelts,
4893 result.nelts > 1, "instance-choice");
4894
4895 for (k = 0; k < n; k += 1)
4896 {
4897 result.sals[k] = result.sals[choices[k]];
4898 func_names[k] = func_names[choices[k]];
4899 }
4900 result.nelts = n;
4901 }
4902
4903 if (canonical != NULL)
4904 {
4905 *canonical = (char **) xmalloc (result.nelts * sizeof (char **));
4906 make_cleanup (xfree, *canonical);
4907 for (k = 0; k < result.nelts; k += 1)
4908 {
4909 (*canonical)[k] =
4910 extended_canonical_line_spec (result.sals[k], func_names[k]);
4911 if ((*canonical)[k] == NULL)
4912 error ("Could not locate one or more breakpoints.");
4913 make_cleanup (xfree, (*canonical)[k]);
4914 }
4915 }
4916 }
4917
4918 discard_cleanups (old_chain);
4919 return result;
4920 }
4921
4922
4923 /* A canonical line specification of the form FILE:NAME:LINENUM for
4924 symbol table and line data SAL. NULL if insufficient
4925 information. The caller is responsible for releasing any space
4926 allocated. */
4927
4928 static char *
4929 extended_canonical_line_spec (struct symtab_and_line sal, const char *name)
4930 {
4931 char *r;
4932
4933 if (sal.symtab == NULL || sal.symtab->filename == NULL || sal.line <= 0)
4934 return NULL;
4935
4936 r = (char *) xmalloc (strlen (name) + strlen (sal.symtab->filename)
4937 + sizeof (sal.line) * 3 + 3);
4938 sprintf (r, "%s:'%s':%d", sal.symtab->filename, name, sal.line);
4939 return r;
4940 }
4941
4942 #if 0
4943 int begin_bnum = -1;
4944 #endif
4945 int begin_annotate_level = 0;
4946
4947 static void
4948 begin_cleanup (void *dummy)
4949 {
4950 begin_annotate_level = 0;
4951 }
4952
4953 static void
4954 begin_command (char *args, int from_tty)
4955 {
4956 struct minimal_symbol *msym;
4957 CORE_ADDR main_program_name_addr;
4958 char main_program_name[1024];
4959 struct cleanup *old_chain = make_cleanup (begin_cleanup, NULL);
4960 begin_annotate_level = 2;
4961
4962 /* Check that there is a program to debug */
4963 if (!have_full_symbols () && !have_partial_symbols ())
4964 error ("No symbol table is loaded. Use the \"file\" command.");
4965
4966 /* Check that we are debugging an Ada program */
4967 /* if (ada_update_initial_language (language_unknown, NULL) != language_ada)
4968 error ("Cannot find the Ada initialization procedure. Is this an Ada main program?");
4969 */
4970 /* FIXME: language_ada should be defined in defs.h */
4971
4972 /* Get the address of the name of the main procedure */
4973 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
4974
4975 if (msym != NULL)
4976 {
4977 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
4978 if (main_program_name_addr == 0)
4979 error ("Invalid address for Ada main program name.");
4980
4981 /* Read the name of the main procedure */
4982 extract_string (main_program_name_addr, main_program_name);
4983
4984 /* Put a temporary breakpoint in the Ada main program and run */
4985 do_command ("tbreak ", main_program_name, 0);
4986 do_command ("run ", args, 0);
4987 }
4988 else
4989 {
4990 /* If we could not find the symbol containing the name of the
4991 main program, that means that the compiler that was used to build
4992 was not recent enough. In that case, we fallback to the previous
4993 mechanism, which is a little bit less reliable, but has proved to work
4994 in most cases. The only cases where it will fail is when the user
4995 has set some breakpoints which will be hit before the end of the
4996 begin command processing (eg in the initialization code).
4997
4998 The begining of the main Ada subprogram is located by breaking
4999 on the adainit procedure. Since we know that the binder generates
5000 the call to this procedure exactly 2 calls before the call to the
5001 Ada main subprogram, it is then easy to put a breakpoint on this
5002 Ada main subprogram once we hit adainit.
5003 */
5004 do_command ("tbreak adainit", 0);
5005 do_command ("run ", args, 0);
5006 do_command ("up", 0);
5007 do_command ("tbreak +2", 0);
5008 do_command ("continue", 0);
5009 do_command ("step", 0);
5010 }
5011
5012 do_cleanups (old_chain);
5013 }
5014
5015 int
5016 is_ada_runtime_file (char *filename)
5017 {
5018 return (STREQN (filename, "s-", 2) ||
5019 STREQN (filename, "a-", 2) ||
5020 STREQN (filename, "g-", 2) || STREQN (filename, "i-", 2));
5021 }
5022
5023 /* find the first frame that contains debugging information and that is not
5024 part of the Ada run-time, starting from fi and moving upward. */
5025
5026 int
5027 find_printable_frame (struct frame_info *fi, int level)
5028 {
5029 struct symtab_and_line sal;
5030
5031 for (; fi != NULL; level += 1, fi = get_prev_frame (fi))
5032 {
5033 /* If fi is not the innermost frame, that normally means that fi->pc
5034 points to *after* the call instruction, and we want to get the line
5035 containing the call, never the next line. But if the next frame is
5036 a signal_handler_caller or a dummy frame, then the next frame was
5037 not entered as the result of a call, and we want to get the line
5038 containing fi->pc. */
5039 sal =
5040 find_pc_line (fi->pc,
5041 fi->next != NULL
5042 && !fi->next->signal_handler_caller
5043 && !frame_in_dummy (fi->next));
5044 if (sal.symtab && !is_ada_runtime_file (sal.symtab->filename))
5045 {
5046 #if defined(__alpha__) && defined(__osf__) && !defined(VXWORKS_TARGET)
5047 /* libpthread.so contains some debugging information that prevents us
5048 from finding the right frame */
5049
5050 if (sal.symtab->objfile &&
5051 STREQ (sal.symtab->objfile->name, "/usr/shlib/libpthread.so"))
5052 continue;
5053 #endif
5054 selected_frame = fi;
5055 break;
5056 }
5057 }
5058
5059 return level;
5060 }
5061
5062 void
5063 ada_report_exception_break (struct breakpoint *b)
5064 {
5065 #ifdef UI_OUT
5066 /* FIXME: break_on_exception should be defined in breakpoint.h */
5067 /* if (b->break_on_exception == 1)
5068 {
5069 /* Assume that cond has 16 elements, the 15th
5070 being the exception *//*
5071 if (b->cond && b->cond->nelts == 16)
5072 {
5073 ui_out_text (uiout, "on ");
5074 ui_out_field_string (uiout, "exception",
5075 SYMBOL_NAME (b->cond->elts[14].symbol));
5076 }
5077 else
5078 ui_out_text (uiout, "on all exceptions");
5079 }
5080 else if (b->break_on_exception == 2)
5081 ui_out_text (uiout, "on unhandled exception");
5082 else if (b->break_on_exception == 3)
5083 ui_out_text (uiout, "on assert failure");
5084 #else
5085 if (b->break_on_exception == 1)
5086 { */
5087 /* Assume that cond has 16 elements, the 15th
5088 being the exception *//*
5089 if (b->cond && b->cond->nelts == 16)
5090 {
5091 fputs_filtered ("on ", gdb_stdout);
5092 fputs_filtered (SYMBOL_NAME
5093 (b->cond->elts[14].symbol), gdb_stdout);
5094 }
5095 else
5096 fputs_filtered ("on all exceptions", gdb_stdout);
5097 }
5098 else if (b->break_on_exception == 2)
5099 fputs_filtered ("on unhandled exception", gdb_stdout);
5100 else if (b->break_on_exception == 3)
5101 fputs_filtered ("on assert failure", gdb_stdout);
5102 */
5103 #endif
5104 }
5105
5106 int
5107 ada_is_exception_sym (struct symbol *sym)
5108 {
5109 char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
5110
5111 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
5112 && SYMBOL_CLASS (sym) != LOC_BLOCK
5113 && SYMBOL_CLASS (sym) != LOC_CONST
5114 && type_name != NULL && STREQ (type_name, "exception"));
5115 }
5116
5117 int
5118 ada_maybe_exception_partial_symbol (struct partial_symbol *sym)
5119 {
5120 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
5121 && SYMBOL_CLASS (sym) != LOC_BLOCK
5122 && SYMBOL_CLASS (sym) != LOC_CONST);
5123 }
5124
5125 /* If ARG points to an Ada exception or assert breakpoint, rewrite
5126 into equivalent form. Return resulting argument string. Set
5127 *BREAK_ON_EXCEPTIONP to 1 for ordinary break on exception, 2 for
5128 break on unhandled, 3 for assert, 0 otherwise. */
5129 char *
5130 ada_breakpoint_rewrite (char *arg, int *break_on_exceptionp)
5131 {
5132 if (arg == NULL)
5133 return arg;
5134 *break_on_exceptionp = 0;
5135 /* FIXME: language_ada should be defined in defs.h */
5136 /* if (current_language->la_language == language_ada
5137 && STREQN (arg, "exception", 9) &&
5138 (arg[9] == ' ' || arg[9] == '\t' || arg[9] == '\0'))
5139 {
5140 char *tok, *end_tok;
5141 int toklen;
5142
5143 *break_on_exceptionp = 1;
5144
5145 tok = arg+9;
5146 while (*tok == ' ' || *tok == '\t')
5147 tok += 1;
5148
5149 end_tok = tok;
5150
5151 while (*end_tok != ' ' && *end_tok != '\t' && *end_tok != '\000')
5152 end_tok += 1;
5153
5154 toklen = end_tok - tok;
5155
5156 arg = (char*) xmalloc (sizeof ("__gnat_raise_nodefer_with_msg if "
5157 "long_integer(e) = long_integer(&)")
5158 + toklen + 1);
5159 make_cleanup (xfree, arg);
5160 if (toklen == 0)
5161 strcpy (arg, "__gnat_raise_nodefer_with_msg");
5162 else if (STREQN (tok, "unhandled", toklen))
5163 {
5164 *break_on_exceptionp = 2;
5165 strcpy (arg, "__gnat_unhandled_exception");
5166 }
5167 else
5168 {
5169 sprintf (arg, "__gnat_raise_nodefer_with_msg if "
5170 "long_integer(e) = long_integer(&%.*s)",
5171 toklen, tok);
5172 }
5173 }
5174 else if (current_language->la_language == language_ada
5175 && STREQN (arg, "assert", 6) &&
5176 (arg[6] == ' ' || arg[6] == '\t' || arg[6] == '\0'))
5177 {
5178 char *tok = arg + 6;
5179
5180 *break_on_exceptionp = 3;
5181
5182 arg = (char*)
5183 xmalloc (sizeof ("system__assertions__raise_assert_failure")
5184 + strlen (tok) + 1);
5185 make_cleanup (xfree, arg);
5186 sprintf (arg, "system__assertions__raise_assert_failure%s", tok);
5187 }
5188 */
5189 return arg;
5190 }
5191 \f
5192
5193 /* Field Access */
5194
5195 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5196 to be invisible to users. */
5197
5198 int
5199 ada_is_ignored_field (struct type *type, int field_num)
5200 {
5201 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5202 return 1;
5203 else
5204 {
5205 const char *name = TYPE_FIELD_NAME (type, field_num);
5206 return (name == NULL
5207 || (name[0] == '_' && !STREQN (name, "_parent", 7)));
5208 }
5209 }
5210
5211 /* True iff structure type TYPE has a tag field. */
5212
5213 int
5214 ada_is_tagged_type (struct type *type)
5215 {
5216 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5217 return 0;
5218
5219 return (ada_lookup_struct_elt_type (type, "_tag", 1, NULL) != NULL);
5220 }
5221
5222 /* The type of the tag on VAL. */
5223
5224 struct type *
5225 ada_tag_type (struct value *val)
5226 {
5227 return ada_lookup_struct_elt_type (VALUE_TYPE (val), "_tag", 0, NULL);
5228 }
5229
5230 /* The value of the tag on VAL. */
5231
5232 struct value *
5233 ada_value_tag (struct value *val)
5234 {
5235 return ada_value_struct_elt (val, "_tag", "record");
5236 }
5237
5238 /* The parent type of TYPE, or NULL if none. */
5239
5240 struct type *
5241 ada_parent_type (struct type *type)
5242 {
5243 int i;
5244
5245 CHECK_TYPEDEF (type);
5246
5247 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5248 return NULL;
5249
5250 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5251 if (ada_is_parent_field (type, i))
5252 return check_typedef (TYPE_FIELD_TYPE (type, i));
5253
5254 return NULL;
5255 }
5256
5257 /* True iff field number FIELD_NUM of structure type TYPE contains the
5258 parent-type (inherited) fields of a derived type. Assumes TYPE is
5259 a structure type with at least FIELD_NUM+1 fields. */
5260
5261 int
5262 ada_is_parent_field (struct type *type, int field_num)
5263 {
5264 const char *name = TYPE_FIELD_NAME (check_typedef (type), field_num);
5265 return (name != NULL &&
5266 (STREQN (name, "PARENT", 6) || STREQN (name, "_parent", 7)));
5267 }
5268
5269 /* True iff field number FIELD_NUM of structure type TYPE is a
5270 transparent wrapper field (which should be silently traversed when doing
5271 field selection and flattened when printing). Assumes TYPE is a
5272 structure type with at least FIELD_NUM+1 fields. Such fields are always
5273 structures. */
5274
5275 int
5276 ada_is_wrapper_field (struct type *type, int field_num)
5277 {
5278 const char *name = TYPE_FIELD_NAME (type, field_num);
5279 return (name != NULL
5280 && (STREQN (name, "PARENT", 6) || STREQ (name, "REP")
5281 || STREQN (name, "_parent", 7)
5282 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5283 }
5284
5285 /* True iff field number FIELD_NUM of structure or union type TYPE
5286 is a variant wrapper. Assumes TYPE is a structure type with at least
5287 FIELD_NUM+1 fields. */
5288
5289 int
5290 ada_is_variant_part (struct type *type, int field_num)
5291 {
5292 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5293 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5294 || (is_dynamic_field (type, field_num)
5295 && TYPE_CODE (TYPE_TARGET_TYPE (field_type)) ==
5296 TYPE_CODE_UNION));
5297 }
5298
5299 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5300 whose discriminants are contained in the record type OUTER_TYPE,
5301 returns the type of the controlling discriminant for the variant. */
5302
5303 struct type *
5304 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5305 {
5306 char *name = ada_variant_discrim_name (var_type);
5307 struct type *type = ada_lookup_struct_elt_type (outer_type, name, 1, NULL);
5308 if (type == NULL)
5309 return builtin_type_int;
5310 else
5311 return type;
5312 }
5313
5314 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5315 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5316 represents a 'when others' clause; otherwise 0. */
5317
5318 int
5319 ada_is_others_clause (struct type *type, int field_num)
5320 {
5321 const char *name = TYPE_FIELD_NAME (type, field_num);
5322 return (name != NULL && name[0] == 'O');
5323 }
5324
5325 /* Assuming that TYPE0 is the type of the variant part of a record,
5326 returns the name of the discriminant controlling the variant. The
5327 value is valid until the next call to ada_variant_discrim_name. */
5328
5329 char *
5330 ada_variant_discrim_name (struct type *type0)
5331 {
5332 static char *result = NULL;
5333 static size_t result_len = 0;
5334 struct type *type;
5335 const char *name;
5336 const char *discrim_end;
5337 const char *discrim_start;
5338
5339 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5340 type = TYPE_TARGET_TYPE (type0);
5341 else
5342 type = type0;
5343
5344 name = ada_type_name (type);
5345
5346 if (name == NULL || name[0] == '\000')
5347 return "";
5348
5349 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5350 discrim_end -= 1)
5351 {
5352 if (STREQN (discrim_end, "___XVN", 6))
5353 break;
5354 }
5355 if (discrim_end == name)
5356 return "";
5357
5358 for (discrim_start = discrim_end; discrim_start != name + 3;
5359 discrim_start -= 1)
5360 {
5361 if (discrim_start == name + 1)
5362 return "";
5363 if ((discrim_start > name + 3 && STREQN (discrim_start - 3, "___", 3))
5364 || discrim_start[-1] == '.')
5365 break;
5366 }
5367
5368 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5369 strncpy (result, discrim_start, discrim_end - discrim_start);
5370 result[discrim_end - discrim_start] = '\0';
5371 return result;
5372 }
5373
5374 /* Scan STR for a subtype-encoded number, beginning at position K. Put the
5375 position of the character just past the number scanned in *NEW_K,
5376 if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. Return 1
5377 if there was a valid number at the given position, and 0 otherwise. A
5378 "subtype-encoded" number consists of the absolute value in decimal,
5379 followed by the letter 'm' to indicate a negative number. Assumes 0m
5380 does not occur. */
5381
5382 int
5383 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5384 {
5385 ULONGEST RU;
5386
5387 if (!isdigit (str[k]))
5388 return 0;
5389
5390 /* Do it the hard way so as not to make any assumption about
5391 the relationship of unsigned long (%lu scan format code) and
5392 LONGEST. */
5393 RU = 0;
5394 while (isdigit (str[k]))
5395 {
5396 RU = RU * 10 + (str[k] - '0');
5397 k += 1;
5398 }
5399
5400 if (str[k] == 'm')
5401 {
5402 if (R != NULL)
5403 *R = (-(LONGEST) (RU - 1)) - 1;
5404 k += 1;
5405 }
5406 else if (R != NULL)
5407 *R = (LONGEST) RU;
5408
5409 /* NOTE on the above: Technically, C does not say what the results of
5410 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5411 number representable as a LONGEST (although either would probably work
5412 in most implementations). When RU>0, the locution in the then branch
5413 above is always equivalent to the negative of RU. */
5414
5415 if (new_k != NULL)
5416 *new_k = k;
5417 return 1;
5418 }
5419
5420 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5421 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5422 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5423
5424 int
5425 ada_in_variant (LONGEST val, struct type *type, int field_num)
5426 {
5427 const char *name = TYPE_FIELD_NAME (type, field_num);
5428 int p;
5429
5430 p = 0;
5431 while (1)
5432 {
5433 switch (name[p])
5434 {
5435 case '\0':
5436 return 0;
5437 case 'S':
5438 {
5439 LONGEST W;
5440 if (!ada_scan_number (name, p + 1, &W, &p))
5441 return 0;
5442 if (val == W)
5443 return 1;
5444 break;
5445 }
5446 case 'R':
5447 {
5448 LONGEST L, U;
5449 if (!ada_scan_number (name, p + 1, &L, &p)
5450 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5451 return 0;
5452 if (val >= L && val <= U)
5453 return 1;
5454 break;
5455 }
5456 case 'O':
5457 return 1;
5458 default:
5459 return 0;
5460 }
5461 }
5462 }
5463
5464 /* Given a value ARG1 (offset by OFFSET bytes)
5465 of a struct or union type ARG_TYPE,
5466 extract and return the value of one of its (non-static) fields.
5467 FIELDNO says which field. Differs from value_primitive_field only
5468 in that it can handle packed values of arbitrary type. */
5469
5470 struct value *
5471 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5472 struct type *arg_type)
5473 {
5474 struct value *v;
5475 struct type *type;
5476
5477 CHECK_TYPEDEF (arg_type);
5478 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5479
5480 /* Handle packed fields */
5481
5482 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5483 {
5484 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5485 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5486
5487 return ada_value_primitive_packed_val (arg1, VALUE_CONTENTS (arg1),
5488 offset + bit_pos / 8,
5489 bit_pos % 8, bit_size, type);
5490 }
5491 else
5492 return value_primitive_field (arg1, offset, fieldno, arg_type);
5493 }
5494
5495
5496 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5497 and search in it assuming it has (class) type TYPE.
5498 If found, return value, else return NULL.
5499
5500 Searches recursively through wrapper fields (e.g., '_parent'). */
5501
5502 struct value *
5503 ada_search_struct_field (char *name, struct value *arg, int offset,
5504 struct type *type)
5505 {
5506 int i;
5507 CHECK_TYPEDEF (type);
5508
5509 for (i = TYPE_NFIELDS (type) - 1; i >= 0; i -= 1)
5510 {
5511 char *t_field_name = TYPE_FIELD_NAME (type, i);
5512
5513 if (t_field_name == NULL)
5514 continue;
5515
5516 else if (field_name_match (t_field_name, name))
5517 return ada_value_primitive_field (arg, offset, i, type);
5518
5519 else if (ada_is_wrapper_field (type, i))
5520 {
5521 struct value *v = ada_search_struct_field (name, arg,
5522 offset +
5523 TYPE_FIELD_BITPOS (type,
5524 i) /
5525 8,
5526 TYPE_FIELD_TYPE (type,
5527 i));
5528 if (v != NULL)
5529 return v;
5530 }
5531
5532 else if (ada_is_variant_part (type, i))
5533 {
5534 int j;
5535 struct type *field_type = check_typedef (TYPE_FIELD_TYPE (type, i));
5536 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5537
5538 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
5539 {
5540 struct value *v = ada_search_struct_field (name, arg,
5541 var_offset
5542 +
5543 TYPE_FIELD_BITPOS
5544 (field_type, j) / 8,
5545 TYPE_FIELD_TYPE
5546 (field_type, j));
5547 if (v != NULL)
5548 return v;
5549 }
5550 }
5551 }
5552 return NULL;
5553 }
5554
5555 /* Given ARG, a value of type (pointer to a)* structure/union,
5556 extract the component named NAME from the ultimate target structure/union
5557 and return it as a value with its appropriate type.
5558
5559 The routine searches for NAME among all members of the structure itself
5560 and (recursively) among all members of any wrapper members
5561 (e.g., '_parent').
5562
5563 ERR is a name (for use in error messages) that identifies the class
5564 of entity that ARG is supposed to be. */
5565
5566 struct value *
5567 ada_value_struct_elt (struct value *arg, char *name, char *err)
5568 {
5569 struct type *t;
5570 struct value *v;
5571
5572 arg = ada_coerce_ref (arg);
5573 t = check_typedef (VALUE_TYPE (arg));
5574
5575 /* Follow pointers until we get to a non-pointer. */
5576
5577 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
5578 {
5579 arg = ada_value_ind (arg);
5580 t = check_typedef (VALUE_TYPE (arg));
5581 }
5582
5583 if (TYPE_CODE (t) != TYPE_CODE_STRUCT && TYPE_CODE (t) != TYPE_CODE_UNION)
5584 error ("Attempt to extract a component of a value that is not a %s.",
5585 err);
5586
5587 v = ada_search_struct_field (name, arg, 0, t);
5588 if (v == NULL)
5589 error ("There is no member named %s.", name);
5590
5591 return v;
5592 }
5593
5594 /* Given a type TYPE, look up the type of the component of type named NAME.
5595 If DISPP is non-null, add its byte displacement from the beginning of a
5596 structure (pointed to by a value) of type TYPE to *DISPP (does not
5597 work for packed fields).
5598
5599 Matches any field whose name has NAME as a prefix, possibly
5600 followed by "___".
5601
5602 TYPE can be either a struct or union, or a pointer or reference to
5603 a struct or union. If it is a pointer or reference, its target
5604 type is automatically used.
5605
5606 Looks recursively into variant clauses and parent types.
5607
5608 If NOERR is nonzero, return NULL if NAME is not suitably defined. */
5609
5610 struct type *
5611 ada_lookup_struct_elt_type (struct type *type, char *name, int noerr,
5612 int *dispp)
5613 {
5614 int i;
5615
5616 if (name == NULL)
5617 goto BadName;
5618
5619 while (1)
5620 {
5621 CHECK_TYPEDEF (type);
5622 if (TYPE_CODE (type) != TYPE_CODE_PTR
5623 && TYPE_CODE (type) != TYPE_CODE_REF)
5624 break;
5625 type = TYPE_TARGET_TYPE (type);
5626 }
5627
5628 if (TYPE_CODE (type) != TYPE_CODE_STRUCT &&
5629 TYPE_CODE (type) != TYPE_CODE_UNION)
5630 {
5631 target_terminal_ours ();
5632 gdb_flush (gdb_stdout);
5633 fprintf_unfiltered (gdb_stderr, "Type ");
5634 type_print (type, "", gdb_stderr, -1);
5635 error (" is not a structure or union type");
5636 }
5637
5638 type = to_static_fixed_type (type);
5639
5640 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5641 {
5642 char *t_field_name = TYPE_FIELD_NAME (type, i);
5643 struct type *t;
5644 int disp;
5645
5646 if (t_field_name == NULL)
5647 continue;
5648
5649 else if (field_name_match (t_field_name, name))
5650 {
5651 if (dispp != NULL)
5652 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
5653 return check_typedef (TYPE_FIELD_TYPE (type, i));
5654 }
5655
5656 else if (ada_is_wrapper_field (type, i))
5657 {
5658 disp = 0;
5659 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
5660 1, &disp);
5661 if (t != NULL)
5662 {
5663 if (dispp != NULL)
5664 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5665 return t;
5666 }
5667 }
5668
5669 else if (ada_is_variant_part (type, i))
5670 {
5671 int j;
5672 struct type *field_type = check_typedef (TYPE_FIELD_TYPE (type, i));
5673
5674 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
5675 {
5676 disp = 0;
5677 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
5678 name, 1, &disp);
5679 if (t != NULL)
5680 {
5681 if (dispp != NULL)
5682 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5683 return t;
5684 }
5685 }
5686 }
5687
5688 }
5689
5690 BadName:
5691 if (!noerr)
5692 {
5693 target_terminal_ours ();
5694 gdb_flush (gdb_stdout);
5695 fprintf_unfiltered (gdb_stderr, "Type ");
5696 type_print (type, "", gdb_stderr, -1);
5697 fprintf_unfiltered (gdb_stderr, " has no component named ");
5698 error ("%s", name == NULL ? "<null>" : name);
5699 }
5700
5701 return NULL;
5702 }
5703
5704 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
5705 within a value of type OUTER_TYPE that is stored in GDB at
5706 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
5707 numbering from 0) is applicable. Returns -1 if none are. */
5708
5709 int
5710 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
5711 char *outer_valaddr)
5712 {
5713 int others_clause;
5714 int i;
5715 int disp;
5716 struct type *discrim_type;
5717 char *discrim_name = ada_variant_discrim_name (var_type);
5718 LONGEST discrim_val;
5719
5720 disp = 0;
5721 discrim_type =
5722 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, &disp);
5723 if (discrim_type == NULL)
5724 return -1;
5725 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
5726
5727 others_clause = -1;
5728 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
5729 {
5730 if (ada_is_others_clause (var_type, i))
5731 others_clause = i;
5732 else if (ada_in_variant (discrim_val, var_type, i))
5733 return i;
5734 }
5735
5736 return others_clause;
5737 }
5738 \f
5739
5740
5741 /* Dynamic-Sized Records */
5742
5743 /* Strategy: The type ostensibly attached to a value with dynamic size
5744 (i.e., a size that is not statically recorded in the debugging
5745 data) does not accurately reflect the size or layout of the value.
5746 Our strategy is to convert these values to values with accurate,
5747 conventional types that are constructed on the fly. */
5748
5749 /* There is a subtle and tricky problem here. In general, we cannot
5750 determine the size of dynamic records without its data. However,
5751 the 'struct value' data structure, which GDB uses to represent
5752 quantities in the inferior process (the target), requires the size
5753 of the type at the time of its allocation in order to reserve space
5754 for GDB's internal copy of the data. That's why the
5755 'to_fixed_xxx_type' routines take (target) addresses as parameters,
5756 rather than struct value*s.
5757
5758 However, GDB's internal history variables ($1, $2, etc.) are
5759 struct value*s containing internal copies of the data that are not, in
5760 general, the same as the data at their corresponding addresses in
5761 the target. Fortunately, the types we give to these values are all
5762 conventional, fixed-size types (as per the strategy described
5763 above), so that we don't usually have to perform the
5764 'to_fixed_xxx_type' conversions to look at their values.
5765 Unfortunately, there is one exception: if one of the internal
5766 history variables is an array whose elements are unconstrained
5767 records, then we will need to create distinct fixed types for each
5768 element selected. */
5769
5770 /* The upshot of all of this is that many routines take a (type, host
5771 address, target address) triple as arguments to represent a value.
5772 The host address, if non-null, is supposed to contain an internal
5773 copy of the relevant data; otherwise, the program is to consult the
5774 target at the target address. */
5775
5776 /* Assuming that VAL0 represents a pointer value, the result of
5777 dereferencing it. Differs from value_ind in its treatment of
5778 dynamic-sized types. */
5779
5780 struct value *
5781 ada_value_ind (struct value *val0)
5782 {
5783 struct value *val = unwrap_value (value_ind (val0));
5784 return ada_to_fixed_value (VALUE_TYPE (val), 0,
5785 VALUE_ADDRESS (val) + VALUE_OFFSET (val), val);
5786 }
5787
5788 /* The value resulting from dereferencing any "reference to"
5789 * qualifiers on VAL0. */
5790 static struct value *
5791 ada_coerce_ref (struct value *val0)
5792 {
5793 if (TYPE_CODE (VALUE_TYPE (val0)) == TYPE_CODE_REF)
5794 {
5795 struct value *val = val0;
5796 COERCE_REF (val);
5797 val = unwrap_value (val);
5798 return ada_to_fixed_value (VALUE_TYPE (val), 0,
5799 VALUE_ADDRESS (val) + VALUE_OFFSET (val),
5800 val);
5801 }
5802 else
5803 return val0;
5804 }
5805
5806 /* Return OFF rounded upward if necessary to a multiple of
5807 ALIGNMENT (a power of 2). */
5808
5809 static unsigned int
5810 align_value (unsigned int off, unsigned int alignment)
5811 {
5812 return (off + alignment - 1) & ~(alignment - 1);
5813 }
5814
5815 /* Return the additional bit offset required by field F of template
5816 type TYPE. */
5817
5818 static unsigned int
5819 field_offset (struct type *type, int f)
5820 {
5821 int n = TYPE_FIELD_BITPOS (type, f);
5822 /* Kludge (temporary?) to fix problem with dwarf output. */
5823 if (n < 0)
5824 return (unsigned int) n & 0xffff;
5825 else
5826 return n;
5827 }
5828
5829
5830 /* Return the bit alignment required for field #F of template type TYPE. */
5831
5832 static unsigned int
5833 field_alignment (struct type *type, int f)
5834 {
5835 const char *name = TYPE_FIELD_NAME (type, f);
5836 int len = (name == NULL) ? 0 : strlen (name);
5837 int align_offset;
5838
5839 if (len < 8 || !isdigit (name[len - 1]))
5840 return TARGET_CHAR_BIT;
5841
5842 if (isdigit (name[len - 2]))
5843 align_offset = len - 2;
5844 else
5845 align_offset = len - 1;
5846
5847 if (align_offset < 7 || !STREQN ("___XV", name + align_offset - 6, 5))
5848 return TARGET_CHAR_BIT;
5849
5850 return atoi (name + align_offset) * TARGET_CHAR_BIT;
5851 }
5852
5853 /* Find a type named NAME. Ignores ambiguity. */
5854 struct type *
5855 ada_find_any_type (const char *name)
5856 {
5857 struct symbol *sym;
5858
5859 sym = standard_lookup (name, VAR_NAMESPACE);
5860 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5861 return SYMBOL_TYPE (sym);
5862
5863 sym = standard_lookup (name, STRUCT_NAMESPACE);
5864 if (sym != NULL)
5865 return SYMBOL_TYPE (sym);
5866
5867 return NULL;
5868 }
5869
5870 /* Because of GNAT encoding conventions, several GDB symbols may match a
5871 given type name. If the type denoted by TYPE0 is to be preferred to
5872 that of TYPE1 for purposes of type printing, return non-zero;
5873 otherwise return 0. */
5874 int
5875 ada_prefer_type (struct type *type0, struct type *type1)
5876 {
5877 if (type1 == NULL)
5878 return 1;
5879 else if (type0 == NULL)
5880 return 0;
5881 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
5882 return 1;
5883 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
5884 return 0;
5885 else if (ada_is_packed_array_type (type0))
5886 return 1;
5887 else if (ada_is_array_descriptor (type0)
5888 && !ada_is_array_descriptor (type1))
5889 return 1;
5890 else if (ada_renaming_type (type0) != NULL
5891 && ada_renaming_type (type1) == NULL)
5892 return 1;
5893 return 0;
5894 }
5895
5896 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
5897 null, its TYPE_TAG_NAME. Null if TYPE is null. */
5898 char *
5899 ada_type_name (struct type *type)
5900 {
5901 if (type == NULL)
5902 return NULL;
5903 else if (TYPE_NAME (type) != NULL)
5904 return TYPE_NAME (type);
5905 else
5906 return TYPE_TAG_NAME (type);
5907 }
5908
5909 /* Find a parallel type to TYPE whose name is formed by appending
5910 SUFFIX to the name of TYPE. */
5911
5912 struct type *
5913 ada_find_parallel_type (struct type *type, const char *suffix)
5914 {
5915 static char *name;
5916 static size_t name_len = 0;
5917 struct symbol **syms;
5918 struct block **blocks;
5919 int nsyms;
5920 int len;
5921 char *typename = ada_type_name (type);
5922
5923 if (typename == NULL)
5924 return NULL;
5925
5926 len = strlen (typename);
5927
5928 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
5929
5930 strcpy (name, typename);
5931 strcpy (name + len, suffix);
5932
5933 return ada_find_any_type (name);
5934 }
5935
5936
5937 /* If TYPE is a variable-size record type, return the corresponding template
5938 type describing its fields. Otherwise, return NULL. */
5939
5940 static struct type *
5941 dynamic_template_type (struct type *type)
5942 {
5943 CHECK_TYPEDEF (type);
5944
5945 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
5946 || ada_type_name (type) == NULL)
5947 return NULL;
5948 else
5949 {
5950 int len = strlen (ada_type_name (type));
5951 if (len > 6 && STREQ (ada_type_name (type) + len - 6, "___XVE"))
5952 return type;
5953 else
5954 return ada_find_parallel_type (type, "___XVE");
5955 }
5956 }
5957
5958 /* Assuming that TEMPL_TYPE is a union or struct type, returns
5959 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
5960
5961 static int
5962 is_dynamic_field (struct type *templ_type, int field_num)
5963 {
5964 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5965 return name != NULL
5966 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
5967 && strstr (name, "___XVL") != NULL;
5968 }
5969
5970 /* Assuming that TYPE is a struct type, returns non-zero iff TYPE
5971 contains a variant part. */
5972
5973 static int
5974 contains_variant_part (struct type *type)
5975 {
5976 int f;
5977
5978 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
5979 || TYPE_NFIELDS (type) <= 0)
5980 return 0;
5981 return ada_is_variant_part (type, TYPE_NFIELDS (type) - 1);
5982 }
5983
5984 /* A record type with no fields, . */
5985 static struct type *
5986 empty_record (struct objfile *objfile)
5987 {
5988 struct type *type = alloc_type (objfile);
5989 TYPE_CODE (type) = TYPE_CODE_STRUCT;
5990 TYPE_NFIELDS (type) = 0;
5991 TYPE_FIELDS (type) = NULL;
5992 TYPE_NAME (type) = "<empty>";
5993 TYPE_TAG_NAME (type) = NULL;
5994 TYPE_FLAGS (type) = 0;
5995 TYPE_LENGTH (type) = 0;
5996 return type;
5997 }
5998
5999 /* An ordinary record type (with fixed-length fields) that describes
6000 the value of type TYPE at VALADDR or ADDRESS (see comments at
6001 the beginning of this section) VAL according to GNAT conventions.
6002 DVAL0 should describe the (portion of a) record that contains any
6003 necessary discriminants. It should be NULL if VALUE_TYPE (VAL) is
6004 an outer-level type (i.e., as opposed to a branch of a variant.) A
6005 variant field (unless unchecked) is replaced by a particular branch
6006 of the variant. */
6007 /* NOTE: Limitations: For now, we assume that dynamic fields and
6008 * variants occupy whole numbers of bytes. However, they need not be
6009 * byte-aligned. */
6010
6011 static struct type *
6012 template_to_fixed_record_type (struct type *type, char *valaddr,
6013 CORE_ADDR address, struct value *dval0)
6014 {
6015 struct value *mark = value_mark ();
6016 struct value *dval;
6017 struct type *rtype;
6018 int nfields, bit_len;
6019 long off;
6020 int f;
6021
6022 nfields = TYPE_NFIELDS (type);
6023 rtype = alloc_type (TYPE_OBJFILE (type));
6024 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6025 INIT_CPLUS_SPECIFIC (rtype);
6026 TYPE_NFIELDS (rtype) = nfields;
6027 TYPE_FIELDS (rtype) = (struct field *)
6028 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6029 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6030 TYPE_NAME (rtype) = ada_type_name (type);
6031 TYPE_TAG_NAME (rtype) = NULL;
6032 /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in
6033 gdbtypes.h */
6034 /* TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE; */
6035
6036 off = 0;
6037 bit_len = 0;
6038 for (f = 0; f < nfields; f += 1)
6039 {
6040 int fld_bit_len, bit_incr;
6041 off =
6042 align_value (off,
6043 field_alignment (type, f)) + TYPE_FIELD_BITPOS (type, f);
6044 /* NOTE: used to use field_offset above, but that causes
6045 * problems with really negative bit positions. So, let's
6046 * rediscover why we needed field_offset and fix it properly. */
6047 TYPE_FIELD_BITPOS (rtype, f) = off;
6048 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6049
6050 if (ada_is_variant_part (type, f))
6051 {
6052 struct type *branch_type;
6053
6054 if (dval0 == NULL)
6055 dval = value_from_contents_and_address (rtype, valaddr, address);
6056 else
6057 dval = dval0;
6058
6059 branch_type =
6060 to_fixed_variant_branch_type
6061 (TYPE_FIELD_TYPE (type, f),
6062 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6063 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6064 if (branch_type == NULL)
6065 TYPE_NFIELDS (rtype) -= 1;
6066 else
6067 {
6068 TYPE_FIELD_TYPE (rtype, f) = branch_type;
6069 TYPE_FIELD_NAME (rtype, f) = "S";
6070 }
6071 bit_incr = 0;
6072 fld_bit_len =
6073 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6074 }
6075 else if (is_dynamic_field (type, f))
6076 {
6077 if (dval0 == NULL)
6078 dval = value_from_contents_and_address (rtype, valaddr, address);
6079 else
6080 dval = dval0;
6081
6082 TYPE_FIELD_TYPE (rtype, f) =
6083 ada_to_fixed_type
6084 (ada_get_base_type
6085 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6086 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6087 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6088 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6089 bit_incr = fld_bit_len =
6090 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6091 }
6092 else
6093 {
6094 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6095 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6096 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6097 bit_incr = fld_bit_len =
6098 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6099 else
6100 bit_incr = fld_bit_len =
6101 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6102 }
6103 if (off + fld_bit_len > bit_len)
6104 bit_len = off + fld_bit_len;
6105 off += bit_incr;
6106 TYPE_LENGTH (rtype) = bit_len / TARGET_CHAR_BIT;
6107 }
6108 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), TYPE_LENGTH (type));
6109
6110 value_free_to_mark (mark);
6111 if (TYPE_LENGTH (rtype) > varsize_limit)
6112 error ("record type with dynamic size is larger than varsize-limit");
6113 return rtype;
6114 }
6115
6116 /* As for template_to_fixed_record_type, but uses no run-time values.
6117 As a result, this type can only be approximate, but that's OK,
6118 since it is used only for type determinations. Works on both
6119 structs and unions.
6120 Representation note: to save space, we memoize the result of this
6121 function in the TYPE_TARGET_TYPE of the template type. */
6122
6123 static struct type *
6124 template_to_static_fixed_type (struct type *templ_type)
6125 {
6126 struct type *type;
6127 int nfields;
6128 int f;
6129
6130 if (TYPE_TARGET_TYPE (templ_type) != NULL)
6131 return TYPE_TARGET_TYPE (templ_type);
6132
6133 nfields = TYPE_NFIELDS (templ_type);
6134 TYPE_TARGET_TYPE (templ_type) = type =
6135 alloc_type (TYPE_OBJFILE (templ_type));
6136 TYPE_CODE (type) = TYPE_CODE (templ_type);
6137 INIT_CPLUS_SPECIFIC (type);
6138 TYPE_NFIELDS (type) = nfields;
6139 TYPE_FIELDS (type) = (struct field *)
6140 TYPE_ALLOC (type, nfields * sizeof (struct field));
6141 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
6142 TYPE_NAME (type) = ada_type_name (templ_type);
6143 TYPE_TAG_NAME (type) = NULL;
6144 /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
6145 /* TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE; */
6146 TYPE_LENGTH (type) = 0;
6147
6148 for (f = 0; f < nfields; f += 1)
6149 {
6150 TYPE_FIELD_BITPOS (type, f) = 0;
6151 TYPE_FIELD_BITSIZE (type, f) = 0;
6152
6153 if (is_dynamic_field (templ_type, f))
6154 {
6155 TYPE_FIELD_TYPE (type, f) =
6156 to_static_fixed_type (TYPE_TARGET_TYPE
6157 (TYPE_FIELD_TYPE (templ_type, f)));
6158 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (templ_type, f);
6159 }
6160 else
6161 {
6162 TYPE_FIELD_TYPE (type, f) =
6163 check_typedef (TYPE_FIELD_TYPE (templ_type, f));
6164 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (templ_type, f);
6165 }
6166 }
6167
6168 return type;
6169 }
6170
6171 /* A revision of TYPE0 -- a non-dynamic-sized record with a variant
6172 part -- in which the variant part is replaced with the appropriate
6173 branch. */
6174 static struct type *
6175 to_record_with_fixed_variant_part (struct type *type, char *valaddr,
6176 CORE_ADDR address, struct value *dval)
6177 {
6178 struct value *mark = value_mark ();
6179 struct type *rtype;
6180 struct type *branch_type;
6181 int nfields = TYPE_NFIELDS (type);
6182
6183 if (dval == NULL)
6184 return type;
6185
6186 rtype = alloc_type (TYPE_OBJFILE (type));
6187 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6188 INIT_CPLUS_SPECIFIC (type);
6189 TYPE_NFIELDS (rtype) = TYPE_NFIELDS (type);
6190 TYPE_FIELDS (rtype) =
6191 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6192 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6193 sizeof (struct field) * nfields);
6194 TYPE_NAME (rtype) = ada_type_name (type);
6195 TYPE_TAG_NAME (rtype) = NULL;
6196 /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
6197 /* TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE; */
6198 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6199
6200 branch_type =
6201 to_fixed_variant_branch_type
6202 (TYPE_FIELD_TYPE (type, nfields - 1),
6203 cond_offset_host (valaddr,
6204 TYPE_FIELD_BITPOS (type,
6205 nfields - 1) / TARGET_CHAR_BIT),
6206 cond_offset_target (address,
6207 TYPE_FIELD_BITPOS (type,
6208 nfields - 1) / TARGET_CHAR_BIT),
6209 dval);
6210 if (branch_type == NULL)
6211 {
6212 TYPE_NFIELDS (rtype) -= 1;
6213 TYPE_LENGTH (rtype) -=
6214 TYPE_LENGTH (TYPE_FIELD_TYPE (type, nfields - 1));
6215 }
6216 else
6217 {
6218 TYPE_FIELD_TYPE (rtype, nfields - 1) = branch_type;
6219 TYPE_FIELD_NAME (rtype, nfields - 1) = "S";
6220 TYPE_FIELD_BITSIZE (rtype, nfields - 1) = 0;
6221 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6222 -TYPE_LENGTH (TYPE_FIELD_TYPE (type, nfields - 1));
6223 }
6224
6225 return rtype;
6226 }
6227
6228 /* An ordinary record type (with fixed-length fields) that describes
6229 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6230 beginning of this section]. Any necessary discriminants' values
6231 should be in DVAL, a record value; it should be NULL if the object
6232 at ADDR itself contains any necessary discriminant values. A
6233 variant field (unless unchecked) is replaced by a particular branch
6234 of the variant. */
6235
6236 static struct type *
6237 to_fixed_record_type (struct type *type0, char *valaddr, CORE_ADDR address,
6238 struct value *dval)
6239 {
6240 struct type *templ_type;
6241
6242 /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
6243 /* if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6244 return type0;
6245 */
6246 templ_type = dynamic_template_type (type0);
6247
6248 if (templ_type != NULL)
6249 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6250 else if (contains_variant_part (type0))
6251 return to_record_with_fixed_variant_part (type0, valaddr, address, dval);
6252 else
6253 {
6254 /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
6255 /* TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE; */
6256 return type0;
6257 }
6258
6259 }
6260
6261 /* An ordinary record type (with fixed-length fields) that describes
6262 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6263 union type. Any necessary discriminants' values should be in DVAL,
6264 a record value. That is, this routine selects the appropriate
6265 branch of the union at ADDR according to the discriminant value
6266 indicated in the union's type name. */
6267
6268 static struct type *
6269 to_fixed_variant_branch_type (struct type *var_type0, char *valaddr,
6270 CORE_ADDR address, struct value *dval)
6271 {
6272 int which;
6273 struct type *templ_type;
6274 struct type *var_type;
6275
6276 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
6277 var_type = TYPE_TARGET_TYPE (var_type0);
6278 else
6279 var_type = var_type0;
6280
6281 templ_type = ada_find_parallel_type (var_type, "___XVU");
6282
6283 if (templ_type != NULL)
6284 var_type = templ_type;
6285
6286 which =
6287 ada_which_variant_applies (var_type,
6288 VALUE_TYPE (dval), VALUE_CONTENTS (dval));
6289
6290 if (which < 0)
6291 return empty_record (TYPE_OBJFILE (var_type));
6292 else if (is_dynamic_field (var_type, which))
6293 return
6294 to_fixed_record_type
6295 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
6296 valaddr, address, dval);
6297 else if (contains_variant_part (TYPE_FIELD_TYPE (var_type, which)))
6298 return
6299 to_fixed_record_type
6300 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
6301 else
6302 return TYPE_FIELD_TYPE (var_type, which);
6303 }
6304
6305 /* Assuming that TYPE0 is an array type describing the type of a value
6306 at ADDR, and that DVAL describes a record containing any
6307 discriminants used in TYPE0, returns a type for the value that
6308 contains no dynamic components (that is, no components whose sizes
6309 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6310 true, gives an error message if the resulting type's size is over
6311 varsize_limit.
6312 */
6313
6314 static struct type *
6315 to_fixed_array_type (struct type *type0, struct value *dval,
6316 int ignore_too_big)
6317 {
6318 struct type *index_type_desc;
6319 struct type *result;
6320
6321 /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
6322 /* if (ada_is_packed_array_type (type0) /* revisit? *//*
6323 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
6324 return type0; */
6325
6326 index_type_desc = ada_find_parallel_type (type0, "___XA");
6327 if (index_type_desc == NULL)
6328 {
6329 struct type *elt_type0 = check_typedef (TYPE_TARGET_TYPE (type0));
6330 /* NOTE: elt_type---the fixed version of elt_type0---should never
6331 * depend on the contents of the array in properly constructed
6332 * debugging data. */
6333 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
6334
6335 if (elt_type0 == elt_type)
6336 result = type0;
6337 else
6338 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6339 elt_type, TYPE_INDEX_TYPE (type0));
6340 }
6341 else
6342 {
6343 int i;
6344 struct type *elt_type0;
6345
6346 elt_type0 = type0;
6347 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
6348 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
6349
6350 /* NOTE: result---the fixed version of elt_type0---should never
6351 * depend on the contents of the array in properly constructed
6352 * debugging data. */
6353 result = ada_to_fixed_type (check_typedef (elt_type0), 0, 0, dval);
6354 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
6355 {
6356 struct type *range_type =
6357 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
6358 dval, TYPE_OBJFILE (type0));
6359 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6360 result, range_type);
6361 }
6362 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
6363 error ("array type with dynamic size is larger than varsize-limit");
6364 }
6365
6366 /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
6367 /* TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE; */
6368 return result;
6369 }
6370
6371
6372 /* A standard type (containing no dynamically sized components)
6373 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
6374 DVAL describes a record containing any discriminants used in TYPE0,
6375 and may be NULL if there are none. */
6376
6377 struct type *
6378 ada_to_fixed_type (struct type *type, char *valaddr, CORE_ADDR address,
6379 struct value *dval)
6380 {
6381 CHECK_TYPEDEF (type);
6382 switch (TYPE_CODE (type))
6383 {
6384 default:
6385 return type;
6386 case TYPE_CODE_STRUCT:
6387 return to_fixed_record_type (type, valaddr, address, NULL);
6388 case TYPE_CODE_ARRAY:
6389 return to_fixed_array_type (type, dval, 0);
6390 case TYPE_CODE_UNION:
6391 if (dval == NULL)
6392 return type;
6393 else
6394 return to_fixed_variant_branch_type (type, valaddr, address, dval);
6395 }
6396 }
6397
6398 /* A standard (static-sized) type corresponding as well as possible to
6399 TYPE0, but based on no runtime data. */
6400
6401 static struct type *
6402 to_static_fixed_type (struct type *type0)
6403 {
6404 struct type *type;
6405
6406 if (type0 == NULL)
6407 return NULL;
6408
6409 /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
6410 /* if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6411 return type0;
6412 */
6413 CHECK_TYPEDEF (type0);
6414
6415 switch (TYPE_CODE (type0))
6416 {
6417 default:
6418 return type0;
6419 case TYPE_CODE_STRUCT:
6420 type = dynamic_template_type (type0);
6421 if (type != NULL)
6422 return template_to_static_fixed_type (type);
6423 return type0;
6424 case TYPE_CODE_UNION:
6425 type = ada_find_parallel_type (type0, "___XVU");
6426 if (type != NULL)
6427 return template_to_static_fixed_type (type);
6428 return type0;
6429 }
6430 }
6431
6432 /* A static approximation of TYPE with all type wrappers removed. */
6433 static struct type *
6434 static_unwrap_type (struct type *type)
6435 {
6436 if (ada_is_aligner_type (type))
6437 {
6438 struct type *type1 = TYPE_FIELD_TYPE (check_typedef (type), 0);
6439 if (ada_type_name (type1) == NULL)
6440 TYPE_NAME (type1) = ada_type_name (type);
6441
6442 return static_unwrap_type (type1);
6443 }
6444 else
6445 {
6446 struct type *raw_real_type = ada_get_base_type (type);
6447 if (raw_real_type == type)
6448 return type;
6449 else
6450 return to_static_fixed_type (raw_real_type);
6451 }
6452 }
6453
6454 /* In some cases, incomplete and private types require
6455 cross-references that are not resolved as records (for example,
6456 type Foo;
6457 type FooP is access Foo;
6458 V: FooP;
6459 type Foo is array ...;
6460 ). In these cases, since there is no mechanism for producing
6461 cross-references to such types, we instead substitute for FooP a
6462 stub enumeration type that is nowhere resolved, and whose tag is
6463 the name of the actual type. Call these types "non-record stubs". */
6464
6465 /* A type equivalent to TYPE that is not a non-record stub, if one
6466 exists, otherwise TYPE. */
6467 struct type *
6468 ada_completed_type (struct type *type)
6469 {
6470 CHECK_TYPEDEF (type);
6471 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
6472 || (TYPE_FLAGS (type) & TYPE_FLAG_STUB) == 0
6473 || TYPE_TAG_NAME (type) == NULL)
6474 return type;
6475 else
6476 {
6477 char *name = TYPE_TAG_NAME (type);
6478 struct type *type1 = ada_find_any_type (name);
6479 return (type1 == NULL) ? type : type1;
6480 }
6481 }
6482
6483 /* A value representing the data at VALADDR/ADDRESS as described by
6484 type TYPE0, but with a standard (static-sized) type that correctly
6485 describes it. If VAL0 is not NULL and TYPE0 already is a standard
6486 type, then return VAL0 [this feature is simply to avoid redundant
6487 creation of struct values]. */
6488
6489 struct value *
6490 ada_to_fixed_value (struct type *type0, char *valaddr, CORE_ADDR address,
6491 struct value *val0)
6492 {
6493 struct type *type = ada_to_fixed_type (type0, valaddr, address, NULL);
6494 if (type == type0 && val0 != NULL)
6495 return val0;
6496 else
6497 return value_from_contents_and_address (type, valaddr, address);
6498 }
6499
6500 /* A value representing VAL, but with a standard (static-sized) type
6501 chosen to approximate the real type of VAL as well as possible, but
6502 without consulting any runtime values. For Ada dynamic-sized
6503 types, therefore, the type of the result is likely to be inaccurate. */
6504
6505 struct value *
6506 ada_to_static_fixed_value (struct value *val)
6507 {
6508 struct type *type =
6509 to_static_fixed_type (static_unwrap_type (VALUE_TYPE (val)));
6510 if (type == VALUE_TYPE (val))
6511 return val;
6512 else
6513 return coerce_unspec_val_to_type (val, 0, type);
6514 }
6515 \f
6516
6517
6518
6519
6520 /* Attributes */
6521
6522 /* Table mapping attribute numbers to names */
6523 /* NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h */
6524
6525 static const char *attribute_names[] = {
6526 "<?>",
6527
6528 "first",
6529 "last",
6530 "length",
6531 "image",
6532 "img",
6533 "max",
6534 "min",
6535 "pos" "tag",
6536 "val",
6537
6538 0
6539 };
6540
6541 const char *
6542 ada_attribute_name (int n)
6543 {
6544 if (n > 0 && n < (int) ATR_END)
6545 return attribute_names[n];
6546 else
6547 return attribute_names[0];
6548 }
6549
6550 /* Evaluate the 'POS attribute applied to ARG. */
6551
6552 static struct value *
6553 value_pos_atr (struct value *arg)
6554 {
6555 struct type *type = VALUE_TYPE (arg);
6556
6557 if (!discrete_type_p (type))
6558 error ("'POS only defined on discrete types");
6559
6560 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
6561 {
6562 int i;
6563 LONGEST v = value_as_long (arg);
6564
6565 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6566 {
6567 if (v == TYPE_FIELD_BITPOS (type, i))
6568 return value_from_longest (builtin_type_ada_int, i);
6569 }
6570 error ("enumeration value is invalid: can't find 'POS");
6571 }
6572 else
6573 return value_from_longest (builtin_type_ada_int, value_as_long (arg));
6574 }
6575
6576 /* Evaluate the TYPE'VAL attribute applied to ARG. */
6577
6578 static struct value *
6579 value_val_atr (struct type *type, struct value *arg)
6580 {
6581 if (!discrete_type_p (type))
6582 error ("'VAL only defined on discrete types");
6583 if (!integer_type_p (VALUE_TYPE (arg)))
6584 error ("'VAL requires integral argument");
6585
6586 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
6587 {
6588 long pos = value_as_long (arg);
6589 if (pos < 0 || pos >= TYPE_NFIELDS (type))
6590 error ("argument to 'VAL out of range");
6591 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
6592 }
6593 else
6594 return value_from_longest (type, value_as_long (arg));
6595 }
6596 \f
6597
6598 /* Evaluation */
6599
6600 /* True if TYPE appears to be an Ada character type.
6601 * [At the moment, this is true only for Character and Wide_Character;
6602 * It is a heuristic test that could stand improvement]. */
6603
6604 int
6605 ada_is_character_type (struct type *type)
6606 {
6607 const char *name = ada_type_name (type);
6608 return
6609 name != NULL
6610 && (TYPE_CODE (type) == TYPE_CODE_CHAR
6611 || TYPE_CODE (type) == TYPE_CODE_INT
6612 || TYPE_CODE (type) == TYPE_CODE_RANGE)
6613 && (STREQ (name, "character") || STREQ (name, "wide_character")
6614 || STREQ (name, "unsigned char"));
6615 }
6616
6617 /* True if TYPE appears to be an Ada string type. */
6618
6619 int
6620 ada_is_string_type (struct type *type)
6621 {
6622 CHECK_TYPEDEF (type);
6623 if (type != NULL
6624 && TYPE_CODE (type) != TYPE_CODE_PTR
6625 && (ada_is_simple_array (type) || ada_is_array_descriptor (type))
6626 && ada_array_arity (type) == 1)
6627 {
6628 struct type *elttype = ada_array_element_type (type, 1);
6629
6630 return ada_is_character_type (elttype);
6631 }
6632 else
6633 return 0;
6634 }
6635
6636
6637 /* True if TYPE is a struct type introduced by the compiler to force the
6638 alignment of a value. Such types have a single field with a
6639 distinctive name. */
6640
6641 int
6642 ada_is_aligner_type (struct type *type)
6643 {
6644 CHECK_TYPEDEF (type);
6645 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
6646 && TYPE_NFIELDS (type) == 1
6647 && STREQ (TYPE_FIELD_NAME (type, 0), "F"));
6648 }
6649
6650 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
6651 the parallel type. */
6652
6653 struct type *
6654 ada_get_base_type (struct type *raw_type)
6655 {
6656 struct type *real_type_namer;
6657 struct type *raw_real_type;
6658 struct type *real_type;
6659
6660 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
6661 return raw_type;
6662
6663 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
6664 if (real_type_namer == NULL
6665 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
6666 || TYPE_NFIELDS (real_type_namer) != 1)
6667 return raw_type;
6668
6669 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
6670 if (raw_real_type == NULL)
6671 return raw_type;
6672 else
6673 return raw_real_type;
6674 }
6675
6676 /* The type of value designated by TYPE, with all aligners removed. */
6677
6678 struct type *
6679 ada_aligned_type (struct type *type)
6680 {
6681 if (ada_is_aligner_type (type))
6682 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
6683 else
6684 return ada_get_base_type (type);
6685 }
6686
6687
6688 /* The address of the aligned value in an object at address VALADDR
6689 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
6690
6691 char *
6692 ada_aligned_value_addr (struct type *type, char *valaddr)
6693 {
6694 if (ada_is_aligner_type (type))
6695 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
6696 valaddr +
6697 TYPE_FIELD_BITPOS (type,
6698 0) / TARGET_CHAR_BIT);
6699 else
6700 return valaddr;
6701 }
6702
6703 /* The printed representation of an enumeration literal with encoded
6704 name NAME. The value is good to the next call of ada_enum_name. */
6705 const char *
6706 ada_enum_name (const char *name)
6707 {
6708 char *tmp;
6709
6710 while (1)
6711 {
6712 if ((tmp = strstr (name, "__")) != NULL)
6713 name = tmp + 2;
6714 else if ((tmp = strchr (name, '.')) != NULL)
6715 name = tmp + 1;
6716 else
6717 break;
6718 }
6719
6720 if (name[0] == 'Q')
6721 {
6722 static char result[16];
6723 int v;
6724 if (name[1] == 'U' || name[1] == 'W')
6725 {
6726 if (sscanf (name + 2, "%x", &v) != 1)
6727 return name;
6728 }
6729 else
6730 return name;
6731
6732 if (isascii (v) && isprint (v))
6733 sprintf (result, "'%c'", v);
6734 else if (name[1] == 'U')
6735 sprintf (result, "[\"%02x\"]", v);
6736 else
6737 sprintf (result, "[\"%04x\"]", v);
6738
6739 return result;
6740 }
6741 else
6742 return name;
6743 }
6744
6745 static struct value *
6746 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
6747 enum noside noside)
6748 {
6749 return (*exp->language_defn->evaluate_exp) (expect_type, exp, pos, noside);
6750 }
6751
6752 /* Evaluate the subexpression of EXP starting at *POS as for
6753 evaluate_type, updating *POS to point just past the evaluated
6754 expression. */
6755
6756 static struct value *
6757 evaluate_subexp_type (struct expression *exp, int *pos)
6758 {
6759 return (*exp->language_defn->evaluate_exp)
6760 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
6761 }
6762
6763 /* If VAL is wrapped in an aligner or subtype wrapper, return the
6764 value it wraps. */
6765
6766 static struct value *
6767 unwrap_value (struct value *val)
6768 {
6769 struct type *type = check_typedef (VALUE_TYPE (val));
6770 if (ada_is_aligner_type (type))
6771 {
6772 struct value *v = value_struct_elt (&val, NULL, "F",
6773 NULL, "internal structure");
6774 struct type *val_type = check_typedef (VALUE_TYPE (v));
6775 if (ada_type_name (val_type) == NULL)
6776 TYPE_NAME (val_type) = ada_type_name (type);
6777
6778 return unwrap_value (v);
6779 }
6780 else
6781 {
6782 struct type *raw_real_type =
6783 ada_completed_type (ada_get_base_type (type));
6784
6785 if (type == raw_real_type)
6786 return val;
6787
6788 return
6789 coerce_unspec_val_to_type
6790 (val, 0, ada_to_fixed_type (raw_real_type, 0,
6791 VALUE_ADDRESS (val) + VALUE_OFFSET (val),
6792 NULL));
6793 }
6794 }
6795
6796 static struct value *
6797 cast_to_fixed (struct type *type, struct value *arg)
6798 {
6799 LONGEST val;
6800
6801 if (type == VALUE_TYPE (arg))
6802 return arg;
6803 else if (ada_is_fixed_point_type (VALUE_TYPE (arg)))
6804 val = ada_float_to_fixed (type,
6805 ada_fixed_to_float (VALUE_TYPE (arg),
6806 value_as_long (arg)));
6807 else
6808 {
6809 DOUBLEST argd =
6810 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
6811 val = ada_float_to_fixed (type, argd);
6812 }
6813
6814 return value_from_longest (type, val);
6815 }
6816
6817 static struct value *
6818 cast_from_fixed_to_double (struct value *arg)
6819 {
6820 DOUBLEST val = ada_fixed_to_float (VALUE_TYPE (arg),
6821 value_as_long (arg));
6822 return value_from_double (builtin_type_double, val);
6823 }
6824
6825 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
6826 * return the converted value. */
6827 static struct value *
6828 coerce_for_assign (struct type *type, struct value *val)
6829 {
6830 struct type *type2 = VALUE_TYPE (val);
6831 if (type == type2)
6832 return val;
6833
6834 CHECK_TYPEDEF (type2);
6835 CHECK_TYPEDEF (type);
6836
6837 if (TYPE_CODE (type2) == TYPE_CODE_PTR
6838 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
6839 {
6840 val = ada_value_ind (val);
6841 type2 = VALUE_TYPE (val);
6842 }
6843
6844 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
6845 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
6846 {
6847 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
6848 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
6849 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
6850 error ("Incompatible types in assignment");
6851 VALUE_TYPE (val) = type;
6852 }
6853 return val;
6854 }
6855
6856 struct value *
6857 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
6858 int *pos, enum noside noside)
6859 {
6860 enum exp_opcode op;
6861 enum ada_attribute atr;
6862 int tem, tem2, tem3;
6863 int pc;
6864 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
6865 struct type *type;
6866 int nargs;
6867 struct value **argvec;
6868
6869 pc = *pos;
6870 *pos += 1;
6871 op = exp->elts[pc].opcode;
6872
6873 switch (op)
6874 {
6875 default:
6876 *pos -= 1;
6877 return
6878 unwrap_value (evaluate_subexp_standard
6879 (expect_type, exp, pos, noside));
6880
6881 case UNOP_CAST:
6882 (*pos) += 2;
6883 type = exp->elts[pc + 1].type;
6884 arg1 = evaluate_subexp (type, exp, pos, noside);
6885 if (noside == EVAL_SKIP)
6886 goto nosideret;
6887 if (type != check_typedef (VALUE_TYPE (arg1)))
6888 {
6889 if (ada_is_fixed_point_type (type))
6890 arg1 = cast_to_fixed (type, arg1);
6891 else if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
6892 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
6893 else if (VALUE_LVAL (arg1) == lval_memory)
6894 {
6895 /* This is in case of the really obscure (and undocumented,
6896 but apparently expected) case of (Foo) Bar.all, where Bar
6897 is an integer constant and Foo is a dynamic-sized type.
6898 If we don't do this, ARG1 will simply be relabeled with
6899 TYPE. */
6900 if (noside == EVAL_AVOID_SIDE_EFFECTS)
6901 return value_zero (to_static_fixed_type (type), not_lval);
6902 arg1 =
6903 ada_to_fixed_value
6904 (type, 0, VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1), 0);
6905 }
6906 else
6907 arg1 = value_cast (type, arg1);
6908 }
6909 return arg1;
6910
6911 /* FIXME: UNOP_QUAL should be defined in expression.h */
6912 /* case UNOP_QUAL:
6913 (*pos) += 2;
6914 type = exp->elts[pc + 1].type;
6915 return ada_evaluate_subexp (type, exp, pos, noside);
6916 */
6917 case BINOP_ASSIGN:
6918 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
6919 arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
6920 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
6921 return arg1;
6922 if (binop_user_defined_p (op, arg1, arg2))
6923 return value_x_binop (arg1, arg2, op, OP_NULL, EVAL_NORMAL);
6924 else
6925 {
6926 if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
6927 arg2 = cast_to_fixed (VALUE_TYPE (arg1), arg2);
6928 else if (ada_is_fixed_point_type (VALUE_TYPE (arg2)))
6929 error
6930 ("Fixed-point values must be assigned to fixed-point variables");
6931 else
6932 arg2 = coerce_for_assign (VALUE_TYPE (arg1), arg2);
6933 return ada_value_assign (arg1, arg2);
6934 }
6935
6936 case BINOP_ADD:
6937 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
6938 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
6939 if (noside == EVAL_SKIP)
6940 goto nosideret;
6941 if (binop_user_defined_p (op, arg1, arg2))
6942 return value_x_binop (arg1, arg2, op, OP_NULL, EVAL_NORMAL);
6943 else
6944 {
6945 if ((ada_is_fixed_point_type (VALUE_TYPE (arg1))
6946 || ada_is_fixed_point_type (VALUE_TYPE (arg2)))
6947 && VALUE_TYPE (arg1) != VALUE_TYPE (arg2))
6948 error
6949 ("Operands of fixed-point addition must have the same type");
6950 return value_cast (VALUE_TYPE (arg1), value_add (arg1, arg2));
6951 }
6952
6953 case BINOP_SUB:
6954 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
6955 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
6956 if (noside == EVAL_SKIP)
6957 goto nosideret;
6958 if (binop_user_defined_p (op, arg1, arg2))
6959 return value_x_binop (arg1, arg2, op, OP_NULL, EVAL_NORMAL);
6960 else
6961 {
6962 if ((ada_is_fixed_point_type (VALUE_TYPE (arg1))
6963 || ada_is_fixed_point_type (VALUE_TYPE (arg2)))
6964 && VALUE_TYPE (arg1) != VALUE_TYPE (arg2))
6965 error
6966 ("Operands of fixed-point subtraction must have the same type");
6967 return value_cast (VALUE_TYPE (arg1), value_sub (arg1, arg2));
6968 }
6969
6970 case BINOP_MUL:
6971 case BINOP_DIV:
6972 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
6973 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
6974 if (noside == EVAL_SKIP)
6975 goto nosideret;
6976 if (binop_user_defined_p (op, arg1, arg2))
6977 return value_x_binop (arg1, arg2, op, OP_NULL, EVAL_NORMAL);
6978 else
6979 if (noside == EVAL_AVOID_SIDE_EFFECTS
6980 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
6981 return value_zero (VALUE_TYPE (arg1), not_lval);
6982 else
6983 {
6984 if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
6985 arg1 = cast_from_fixed_to_double (arg1);
6986 if (ada_is_fixed_point_type (VALUE_TYPE (arg2)))
6987 arg2 = cast_from_fixed_to_double (arg2);
6988 return value_binop (arg1, arg2, op);
6989 }
6990
6991 case UNOP_NEG:
6992 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
6993 if (noside == EVAL_SKIP)
6994 goto nosideret;
6995 if (unop_user_defined_p (op, arg1))
6996 return value_x_unop (arg1, op, EVAL_NORMAL);
6997 else if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
6998 return value_cast (VALUE_TYPE (arg1), value_neg (arg1));
6999 else
7000 return value_neg (arg1);
7001
7002 /* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */
7003 /* case OP_UNRESOLVED_VALUE:
7004 /* Only encountered when an unresolved symbol occurs in a
7005 context other than a function call, in which case, it is
7006 illegal. *//*
7007 (*pos) += 3;
7008 if (noside == EVAL_SKIP)
7009 goto nosideret;
7010 else
7011 error ("Unexpected unresolved symbol, %s, during evaluation",
7012 ada_demangle (exp->elts[pc + 2].name));
7013 */
7014 case OP_VAR_VALUE:
7015 *pos -= 1;
7016 if (noside == EVAL_SKIP)
7017 {
7018 *pos += 4;
7019 goto nosideret;
7020 }
7021 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7022 {
7023 *pos += 4;
7024 return value_zero
7025 (to_static_fixed_type
7026 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
7027 not_lval);
7028 }
7029 else
7030 {
7031 arg1 =
7032 unwrap_value (evaluate_subexp_standard
7033 (expect_type, exp, pos, noside));
7034 return ada_to_fixed_value (VALUE_TYPE (arg1), 0,
7035 VALUE_ADDRESS (arg1) +
7036 VALUE_OFFSET (arg1), arg1);
7037 }
7038
7039 case OP_ARRAY:
7040 (*pos) += 3;
7041 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
7042 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
7043 nargs = tem3 - tem2 + 1;
7044 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
7045
7046 argvec =
7047 (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
7048 for (tem = 0; tem == 0 || tem < nargs; tem += 1)
7049 /* At least one element gets inserted for the type */
7050 {
7051 /* Ensure that array expressions are coerced into pointer objects. */
7052 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
7053 }
7054 if (noside == EVAL_SKIP)
7055 goto nosideret;
7056 return value_array (tem2, tem3, argvec);
7057
7058 case OP_FUNCALL:
7059 (*pos) += 2;
7060
7061 /* Allocate arg vector, including space for the function to be
7062 called in argvec[0] and a terminating NULL */
7063 nargs = longest_to_int (exp->elts[pc + 1].longconst);
7064 argvec =
7065 (struct value * *) alloca (sizeof (struct value *) * (nargs + 2));
7066
7067 /* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */
7068 /* FIXME: name should be defined in expresion.h */
7069 /* if (exp->elts[*pos].opcode == OP_UNRESOLVED_VALUE)
7070 error ("Unexpected unresolved symbol, %s, during evaluation",
7071 ada_demangle (exp->elts[pc + 5].name));
7072 */
7073 if (0)
7074 {
7075 error ("unexpected code path, FIXME");
7076 }
7077 else
7078 {
7079 for (tem = 0; tem <= nargs; tem += 1)
7080 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7081 argvec[tem] = 0;
7082
7083 if (noside == EVAL_SKIP)
7084 goto nosideret;
7085 }
7086
7087 if (TYPE_CODE (VALUE_TYPE (argvec[0])) == TYPE_CODE_REF)
7088 argvec[0] = value_addr (argvec[0]);
7089
7090 if (ada_is_packed_array_type (VALUE_TYPE (argvec[0])))
7091 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
7092
7093 type = check_typedef (VALUE_TYPE (argvec[0]));
7094 if (TYPE_CODE (type) == TYPE_CODE_PTR)
7095 {
7096 switch (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (type))))
7097 {
7098 case TYPE_CODE_FUNC:
7099 type = check_typedef (TYPE_TARGET_TYPE (type));
7100 break;
7101 case TYPE_CODE_ARRAY:
7102 break;
7103 case TYPE_CODE_STRUCT:
7104 if (noside != EVAL_AVOID_SIDE_EFFECTS)
7105 argvec[0] = ada_value_ind (argvec[0]);
7106 type = check_typedef (TYPE_TARGET_TYPE (type));
7107 break;
7108 default:
7109 error ("cannot subscript or call something of type `%s'",
7110 ada_type_name (VALUE_TYPE (argvec[0])));
7111 break;
7112 }
7113 }
7114
7115 switch (TYPE_CODE (type))
7116 {
7117 case TYPE_CODE_FUNC:
7118 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7119 return allocate_value (TYPE_TARGET_TYPE (type));
7120 return call_function_by_hand (argvec[0], nargs, argvec + 1);
7121 case TYPE_CODE_STRUCT:
7122 {
7123 int arity = ada_array_arity (type);
7124 type = ada_array_element_type (type, nargs);
7125 if (type == NULL)
7126 error ("cannot subscript or call a record");
7127 if (arity != nargs)
7128 error ("wrong number of subscripts; expecting %d", arity);
7129 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7130 return allocate_value (ada_aligned_type (type));
7131 return
7132 unwrap_value (ada_value_subscript
7133 (argvec[0], nargs, argvec + 1));
7134 }
7135 case TYPE_CODE_ARRAY:
7136 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7137 {
7138 type = ada_array_element_type (type, nargs);
7139 if (type == NULL)
7140 error ("element type of array unknown");
7141 else
7142 return allocate_value (ada_aligned_type (type));
7143 }
7144 return
7145 unwrap_value (ada_value_subscript
7146 (ada_coerce_to_simple_array (argvec[0]),
7147 nargs, argvec + 1));
7148 case TYPE_CODE_PTR: /* Pointer to array */
7149 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
7150 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7151 {
7152 type = ada_array_element_type (type, nargs);
7153 if (type == NULL)
7154 error ("element type of array unknown");
7155 else
7156 return allocate_value (ada_aligned_type (type));
7157 }
7158 return
7159 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
7160 nargs, argvec + 1));
7161
7162 default:
7163 error ("Internal error in evaluate_subexp");
7164 }
7165
7166 case TERNOP_SLICE:
7167 {
7168 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7169 int lowbound
7170 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
7171 int upper
7172 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
7173 if (noside == EVAL_SKIP)
7174 goto nosideret;
7175
7176 /* If this is a reference to an array, then dereference it */
7177 if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_REF
7178 && TYPE_TARGET_TYPE (VALUE_TYPE (array)) != NULL
7179 && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (array))) ==
7180 TYPE_CODE_ARRAY
7181 && !ada_is_array_descriptor (check_typedef (VALUE_TYPE (array))))
7182 {
7183 array = ada_coerce_ref (array);
7184 }
7185
7186 if (noside == EVAL_AVOID_SIDE_EFFECTS &&
7187 ada_is_array_descriptor (check_typedef (VALUE_TYPE (array))))
7188 {
7189 /* Try to dereference the array, in case it is an access to array */
7190 struct type *arrType = ada_type_of_array (array, 0);
7191 if (arrType != NULL)
7192 array = value_at_lazy (arrType, 0, NULL);
7193 }
7194 if (ada_is_array_descriptor (VALUE_TYPE (array)))
7195 array = ada_coerce_to_simple_array (array);
7196
7197 /* If at this point we have a pointer to an array, it means that
7198 it is a pointer to a simple (non-ada) array. We just then
7199 dereference it */
7200 if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_PTR
7201 && TYPE_TARGET_TYPE (VALUE_TYPE (array)) != NULL
7202 && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (array))) ==
7203 TYPE_CODE_ARRAY)
7204 {
7205 array = ada_value_ind (array);
7206 }
7207
7208 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7209 /* The following will get the bounds wrong, but only in contexts
7210 where the value is not being requested (FIXME?). */
7211 return array;
7212 else
7213 return value_slice (array, lowbound, upper - lowbound + 1);
7214 }
7215
7216 /* FIXME: UNOP_MBR should be defined in expression.h */
7217 /* case UNOP_MBR:
7218 (*pos) += 2;
7219 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7220 type = exp->elts[pc + 1].type;
7221
7222 if (noside == EVAL_SKIP)
7223 goto nosideret;
7224
7225 switch (TYPE_CODE (type))
7226 {
7227 default:
7228 warning ("Membership test incompletely implemented; always returns true");
7229 return value_from_longest (builtin_type_int, (LONGEST) 1);
7230
7231 case TYPE_CODE_RANGE:
7232 arg2 = value_from_longest (builtin_type_int,
7233 (LONGEST) TYPE_LOW_BOUND (type));
7234 arg3 = value_from_longest (builtin_type_int,
7235 (LONGEST) TYPE_HIGH_BOUND (type));
7236 return
7237 value_from_longest (builtin_type_int,
7238 (value_less (arg1,arg3)
7239 || value_equal (arg1,arg3))
7240 && (value_less (arg2,arg1)
7241 || value_equal (arg2,arg1)));
7242 }
7243 */
7244 /* FIXME: BINOP_MBR should be defined in expression.h */
7245 /* case BINOP_MBR:
7246 (*pos) += 2;
7247 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7248 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7249
7250 if (noside == EVAL_SKIP)
7251 goto nosideret;
7252
7253 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7254 return value_zero (builtin_type_int, not_lval);
7255
7256 tem = longest_to_int (exp->elts[pc + 1].longconst);
7257
7258 if (tem < 1 || tem > ada_array_arity (VALUE_TYPE (arg2)))
7259 error ("invalid dimension number to '%s", "range");
7260
7261 arg3 = ada_array_bound (arg2, tem, 1);
7262 arg2 = ada_array_bound (arg2, tem, 0);
7263
7264 return
7265 value_from_longest (builtin_type_int,
7266 (value_less (arg1,arg3)
7267 || value_equal (arg1,arg3))
7268 && (value_less (arg2,arg1)
7269 || value_equal (arg2,arg1)));
7270 */
7271 /* FIXME: TERNOP_MBR should be defined in expression.h */
7272 /* case TERNOP_MBR:
7273 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7274 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7275 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7276
7277 if (noside == EVAL_SKIP)
7278 goto nosideret;
7279
7280 return
7281 value_from_longest (builtin_type_int,
7282 (value_less (arg1,arg3)
7283 || value_equal (arg1,arg3))
7284 && (value_less (arg2,arg1)
7285 || value_equal (arg2,arg1)));
7286 */
7287 /* FIXME: OP_ATTRIBUTE should be defined in expression.h */
7288 /* case OP_ATTRIBUTE:
7289 *pos += 3;
7290 atr = (enum ada_attribute) longest_to_int (exp->elts[pc + 2].longconst);
7291 switch (atr)
7292 {
7293 default:
7294 error ("unexpected attribute encountered");
7295
7296 case ATR_FIRST:
7297 case ATR_LAST:
7298 case ATR_LENGTH:
7299 {
7300 struct type* type_arg;
7301 if (exp->elts[*pos].opcode == OP_TYPE)
7302 {
7303 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7304 arg1 = NULL;
7305 type_arg = exp->elts[pc + 5].type;
7306 }
7307 else
7308 {
7309 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7310 type_arg = NULL;
7311 }
7312
7313 if (exp->elts[*pos].opcode != OP_LONG)
7314 error ("illegal operand to '%s", ada_attribute_name (atr));
7315 tem = longest_to_int (exp->elts[*pos+2].longconst);
7316 *pos += 4;
7317
7318 if (noside == EVAL_SKIP)
7319 goto nosideret;
7320
7321 if (type_arg == NULL)
7322 {
7323 arg1 = ada_coerce_ref (arg1);
7324
7325 if (ada_is_packed_array_type (VALUE_TYPE (arg1)))
7326 arg1 = ada_coerce_to_simple_array (arg1);
7327
7328 if (tem < 1 || tem > ada_array_arity (VALUE_TYPE (arg1)))
7329 error ("invalid dimension number to '%s",
7330 ada_attribute_name (atr));
7331
7332 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7333 {
7334 type = ada_index_type (VALUE_TYPE (arg1), tem);
7335 if (type == NULL)
7336 error ("attempt to take bound of something that is not an array");
7337 return allocate_value (type);
7338 }
7339
7340 switch (atr)
7341 {
7342 default:
7343 error ("unexpected attribute encountered");
7344 case ATR_FIRST:
7345 return ada_array_bound (arg1, tem, 0);
7346 case ATR_LAST:
7347 return ada_array_bound (arg1, tem, 1);
7348 case ATR_LENGTH:
7349 return ada_array_length (arg1, tem);
7350 }
7351 }
7352 else if (TYPE_CODE (type_arg) == TYPE_CODE_RANGE
7353 || TYPE_CODE (type_arg) == TYPE_CODE_INT)
7354 {
7355 struct type* range_type;
7356 char* name = ada_type_name (type_arg);
7357 if (name == NULL)
7358 {
7359 if (TYPE_CODE (type_arg) == TYPE_CODE_RANGE)
7360 range_type = type_arg;
7361 else
7362 error ("unimplemented type attribute");
7363 }
7364 else
7365 range_type =
7366 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
7367 switch (atr)
7368 {
7369 default:
7370 error ("unexpected attribute encountered");
7371 case ATR_FIRST:
7372 return value_from_longest (TYPE_TARGET_TYPE (range_type),
7373 TYPE_LOW_BOUND (range_type));
7374 case ATR_LAST:
7375 return value_from_longest (TYPE_TARGET_TYPE (range_type),
7376 TYPE_HIGH_BOUND (range_type));
7377 }
7378 }
7379 else if (TYPE_CODE (type_arg) == TYPE_CODE_ENUM)
7380 {
7381 switch (atr)
7382 {
7383 default:
7384 error ("unexpected attribute encountered");
7385 case ATR_FIRST:
7386 return value_from_longest
7387 (type_arg, TYPE_FIELD_BITPOS (type_arg, 0));
7388 case ATR_LAST:
7389 return value_from_longest
7390 (type_arg,
7391 TYPE_FIELD_BITPOS (type_arg,
7392 TYPE_NFIELDS (type_arg) - 1));
7393 }
7394 }
7395 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
7396 error ("unimplemented type attribute");
7397 else
7398 {
7399 LONGEST low, high;
7400
7401 if (ada_is_packed_array_type (type_arg))
7402 type_arg = decode_packed_array_type (type_arg);
7403
7404 if (tem < 1 || tem > ada_array_arity (type_arg))
7405 error ("invalid dimension number to '%s",
7406 ada_attribute_name (atr));
7407
7408 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7409 {
7410 type = ada_index_type (type_arg, tem);
7411 if (type == NULL)
7412 error ("attempt to take bound of something that is not an array");
7413 return allocate_value (type);
7414 }
7415
7416 switch (atr)
7417 {
7418 default:
7419 error ("unexpected attribute encountered");
7420 case ATR_FIRST:
7421 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
7422 return value_from_longest (type, low);
7423 case ATR_LAST:
7424 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
7425 return value_from_longest (type, high);
7426 case ATR_LENGTH:
7427 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
7428 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
7429 return value_from_longest (type, high-low+1);
7430 }
7431 }
7432 }
7433
7434 case ATR_TAG:
7435 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7436 if (noside == EVAL_SKIP)
7437 goto nosideret;
7438
7439 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7440 return
7441 value_zero (ada_tag_type (arg1), not_lval);
7442
7443 return ada_value_tag (arg1);
7444
7445 case ATR_MIN:
7446 case ATR_MAX:
7447 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7448 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7449 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7450 if (noside == EVAL_SKIP)
7451 goto nosideret;
7452 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7453 return value_zero (VALUE_TYPE (arg1), not_lval);
7454 else
7455 return value_binop (arg1, arg2,
7456 atr == ATR_MIN ? BINOP_MIN : BINOP_MAX);
7457
7458 case ATR_MODULUS:
7459 {
7460 struct type* type_arg = exp->elts[pc + 5].type;
7461 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7462 *pos += 4;
7463
7464 if (noside == EVAL_SKIP)
7465 goto nosideret;
7466
7467 if (! ada_is_modular_type (type_arg))
7468 error ("'modulus must be applied to modular type");
7469
7470 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
7471 ada_modulus (type_arg));
7472 }
7473
7474
7475 case ATR_POS:
7476 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7477 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7478 if (noside == EVAL_SKIP)
7479 goto nosideret;
7480 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7481 return value_zero (builtin_type_ada_int, not_lval);
7482 else
7483 return value_pos_atr (arg1);
7484
7485 case ATR_SIZE:
7486 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7487 if (noside == EVAL_SKIP)
7488 goto nosideret;
7489 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7490 return value_zero (builtin_type_ada_int, not_lval);
7491 else
7492 return value_from_longest (builtin_type_ada_int,
7493 TARGET_CHAR_BIT
7494 * TYPE_LENGTH (VALUE_TYPE (arg1)));
7495
7496 case ATR_VAL:
7497 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7498 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7499 type = exp->elts[pc + 5].type;
7500 if (noside == EVAL_SKIP)
7501 goto nosideret;
7502 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7503 return value_zero (type, not_lval);
7504 else
7505 return value_val_atr (type, arg1);
7506 } */
7507 case BINOP_EXP:
7508 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7509 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7510 if (noside == EVAL_SKIP)
7511 goto nosideret;
7512 if (binop_user_defined_p (op, arg1, arg2))
7513 return unwrap_value (value_x_binop (arg1, arg2, op, OP_NULL,
7514 EVAL_NORMAL));
7515 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7516 return value_zero (VALUE_TYPE (arg1), not_lval);
7517 else
7518 return value_binop (arg1, arg2, op);
7519
7520 case UNOP_PLUS:
7521 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7522 if (noside == EVAL_SKIP)
7523 goto nosideret;
7524 if (unop_user_defined_p (op, arg1))
7525 return unwrap_value (value_x_unop (arg1, op, EVAL_NORMAL));
7526 else
7527 return arg1;
7528
7529 case UNOP_ABS:
7530 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7531 if (noside == EVAL_SKIP)
7532 goto nosideret;
7533 if (value_less (arg1, value_zero (VALUE_TYPE (arg1), not_lval)))
7534 return value_neg (arg1);
7535 else
7536 return arg1;
7537
7538 case UNOP_IND:
7539 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
7540 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
7541 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
7542 if (noside == EVAL_SKIP)
7543 goto nosideret;
7544 type = check_typedef (VALUE_TYPE (arg1));
7545 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7546 {
7547 if (ada_is_array_descriptor (type))
7548 /* GDB allows dereferencing GNAT array descriptors. */
7549 {
7550 struct type *arrType = ada_type_of_array (arg1, 0);
7551 if (arrType == NULL)
7552 error ("Attempt to dereference null array pointer.");
7553 return value_at_lazy (arrType, 0, NULL);
7554 }
7555 else if (TYPE_CODE (type) == TYPE_CODE_PTR
7556 || TYPE_CODE (type) == TYPE_CODE_REF
7557 /* In C you can dereference an array to get the 1st elt. */
7558 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
7559 return
7560 value_zero
7561 (to_static_fixed_type
7562 (ada_aligned_type (check_typedef (TYPE_TARGET_TYPE (type)))),
7563 lval_memory);
7564 else if (TYPE_CODE (type) == TYPE_CODE_INT)
7565 /* GDB allows dereferencing an int. */
7566 return value_zero (builtin_type_int, lval_memory);
7567 else
7568 error ("Attempt to take contents of a non-pointer value.");
7569 }
7570 arg1 = ada_coerce_ref (arg1);
7571 type = check_typedef (VALUE_TYPE (arg1));
7572
7573 if (ada_is_array_descriptor (type))
7574 /* GDB allows dereferencing GNAT array descriptors. */
7575 return ada_coerce_to_simple_array (arg1);
7576 else
7577 return ada_value_ind (arg1);
7578
7579 case STRUCTOP_STRUCT:
7580 tem = longest_to_int (exp->elts[pc + 1].longconst);
7581 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
7582 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7583 if (noside == EVAL_SKIP)
7584 goto nosideret;
7585 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7586 return value_zero (ada_aligned_type
7587 (ada_lookup_struct_elt_type (VALUE_TYPE (arg1),
7588 &exp->elts[pc +
7589 2].string,
7590 0, NULL)),
7591 lval_memory);
7592 else
7593 return unwrap_value (ada_value_struct_elt (arg1,
7594 &exp->elts[pc + 2].string,
7595 "record"));
7596 case OP_TYPE:
7597 /* The value is not supposed to be used. This is here to make it
7598 easier to accommodate expressions that contain types. */
7599 (*pos) += 2;
7600 if (noside == EVAL_SKIP)
7601 goto nosideret;
7602 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7603 return allocate_value (builtin_type_void);
7604 else
7605 error ("Attempt to use a type name as an expression");
7606
7607 case STRUCTOP_PTR:
7608 tem = longest_to_int (exp->elts[pc + 1].longconst);
7609 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
7610 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7611 if (noside == EVAL_SKIP)
7612 goto nosideret;
7613 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7614 return value_zero (ada_aligned_type
7615 (ada_lookup_struct_elt_type (VALUE_TYPE (arg1),
7616 &exp->elts[pc +
7617 2].string,
7618 0, NULL)),
7619 lval_memory);
7620 else
7621 return unwrap_value (ada_value_struct_elt (arg1,
7622 &exp->elts[pc + 2].string,
7623 "record access"));
7624 }
7625
7626 nosideret:
7627 return value_from_longest (builtin_type_long, (LONGEST) 1);
7628 }
7629 \f
7630
7631 /* Fixed point */
7632
7633 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
7634 type name that encodes the 'small and 'delta information.
7635 Otherwise, return NULL. */
7636
7637 static const char *
7638 fixed_type_info (struct type *type)
7639 {
7640 const char *name = ada_type_name (type);
7641 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
7642
7643 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
7644 {
7645 const char *tail = strstr (name, "___XF_");
7646 if (tail == NULL)
7647 return NULL;
7648 else
7649 return tail + 5;
7650 }
7651 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
7652 return fixed_type_info (TYPE_TARGET_TYPE (type));
7653 else
7654 return NULL;
7655 }
7656
7657 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
7658
7659 int
7660 ada_is_fixed_point_type (struct type *type)
7661 {
7662 return fixed_type_info (type) != NULL;
7663 }
7664
7665 /* Assuming that TYPE is the representation of an Ada fixed-point
7666 type, return its delta, or -1 if the type is malformed and the
7667 delta cannot be determined. */
7668
7669 DOUBLEST
7670 ada_delta (struct type *type)
7671 {
7672 const char *encoding = fixed_type_info (type);
7673 long num, den;
7674
7675 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
7676 return -1.0;
7677 else
7678 return (DOUBLEST) num / (DOUBLEST) den;
7679 }
7680
7681 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
7682 factor ('SMALL value) associated with the type. */
7683
7684 static DOUBLEST
7685 scaling_factor (struct type *type)
7686 {
7687 const char *encoding = fixed_type_info (type);
7688 unsigned long num0, den0, num1, den1;
7689 int n;
7690
7691 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
7692
7693 if (n < 2)
7694 return 1.0;
7695 else if (n == 4)
7696 return (DOUBLEST) num1 / (DOUBLEST) den1;
7697 else
7698 return (DOUBLEST) num0 / (DOUBLEST) den0;
7699 }
7700
7701
7702 /* Assuming that X is the representation of a value of fixed-point
7703 type TYPE, return its floating-point equivalent. */
7704
7705 DOUBLEST
7706 ada_fixed_to_float (struct type *type, LONGEST x)
7707 {
7708 return (DOUBLEST) x *scaling_factor (type);
7709 }
7710
7711 /* The representation of a fixed-point value of type TYPE
7712 corresponding to the value X. */
7713
7714 LONGEST
7715 ada_float_to_fixed (struct type *type, DOUBLEST x)
7716 {
7717 return (LONGEST) (x / scaling_factor (type) + 0.5);
7718 }
7719
7720
7721 /* VAX floating formats */
7722
7723 /* Non-zero iff TYPE represents one of the special VAX floating-point
7724 types. */
7725 int
7726 ada_is_vax_floating_type (struct type *type)
7727 {
7728 int name_len =
7729 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
7730 return
7731 name_len > 6
7732 && (TYPE_CODE (type) == TYPE_CODE_INT
7733 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7734 && STREQN (ada_type_name (type) + name_len - 6, "___XF", 5);
7735 }
7736
7737 /* The type of special VAX floating-point type this is, assuming
7738 ada_is_vax_floating_point */
7739 int
7740 ada_vax_float_type_suffix (struct type *type)
7741 {
7742 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
7743 }
7744
7745 /* A value representing the special debugging function that outputs
7746 VAX floating-point values of the type represented by TYPE. Assumes
7747 ada_is_vax_floating_type (TYPE). */
7748 struct value *
7749 ada_vax_float_print_function (struct type *type)
7750 {
7751 switch (ada_vax_float_type_suffix (type))
7752 {
7753 case 'F':
7754 return get_var_value ("DEBUG_STRING_F", 0);
7755 case 'D':
7756 return get_var_value ("DEBUG_STRING_D", 0);
7757 case 'G':
7758 return get_var_value ("DEBUG_STRING_G", 0);
7759 default:
7760 error ("invalid VAX floating-point type");
7761 }
7762 }
7763 \f
7764
7765 /* Range types */
7766
7767 /* Scan STR beginning at position K for a discriminant name, and
7768 return the value of that discriminant field of DVAL in *PX. If
7769 PNEW_K is not null, put the position of the character beyond the
7770 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
7771 not alter *PX and *PNEW_K if unsuccessful. */
7772
7773 static int
7774 scan_discrim_bound (char *, int k, struct value *dval, LONGEST * px,
7775 int *pnew_k)
7776 {
7777 static char *bound_buffer = NULL;
7778 static size_t bound_buffer_len = 0;
7779 char *bound;
7780 char *pend;
7781 struct value *bound_val;
7782
7783 if (dval == NULL || str == NULL || str[k] == '\0')
7784 return 0;
7785
7786 pend = strstr (str + k, "__");
7787 if (pend == NULL)
7788 {
7789 bound = str + k;
7790 k += strlen (bound);
7791 }
7792 else
7793 {
7794 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
7795 bound = bound_buffer;
7796 strncpy (bound_buffer, str + k, pend - (str + k));
7797 bound[pend - (str + k)] = '\0';
7798 k = pend - str;
7799 }
7800
7801 bound_val = ada_search_struct_field (bound, dval, 0, VALUE_TYPE (dval));
7802 if (bound_val == NULL)
7803 return 0;
7804
7805 *px = value_as_long (bound_val);
7806 if (pnew_k != NULL)
7807 *pnew_k = k;
7808 return 1;
7809 }
7810
7811 /* Value of variable named NAME in the current environment. If
7812 no such variable found, then if ERR_MSG is null, returns 0, and
7813 otherwise causes an error with message ERR_MSG. */
7814 static struct value *
7815 get_var_value (char *name, char *err_msg)
7816 {
7817 struct symbol **syms;
7818 struct block **blocks;
7819 int nsyms;
7820
7821 nsyms =
7822 ada_lookup_symbol_list (name, get_selected_block (NULL), VAR_NAMESPACE,
7823 &syms, &blocks);
7824
7825 if (nsyms != 1)
7826 {
7827 if (err_msg == NULL)
7828 return 0;
7829 else
7830 error ("%s", err_msg);
7831 }
7832
7833 return value_of_variable (syms[0], blocks[0]);
7834 }
7835
7836 /* Value of integer variable named NAME in the current environment. If
7837 no such variable found, then if ERR_MSG is null, returns 0, and sets
7838 *FLAG to 0. If successful, sets *FLAG to 1. */
7839 LONGEST
7840 get_int_var_value (char *name, char *err_msg, int *flag)
7841 {
7842 struct value *var_val = get_var_value (name, err_msg);
7843
7844 if (var_val == 0)
7845 {
7846 if (flag != NULL)
7847 *flag = 0;
7848 return 0;
7849 }
7850 else
7851 {
7852 if (flag != NULL)
7853 *flag = 1;
7854 return value_as_long (var_val);
7855 }
7856 }
7857
7858
7859 /* Return a range type whose base type is that of the range type named
7860 NAME in the current environment, and whose bounds are calculated
7861 from NAME according to the GNAT range encoding conventions.
7862 Extract discriminant values, if needed, from DVAL. If a new type
7863 must be created, allocate in OBJFILE's space. The bounds
7864 information, in general, is encoded in NAME, the base type given in
7865 the named range type. */
7866
7867 static struct type *
7868 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
7869 {
7870 struct type *raw_type = ada_find_any_type (name);
7871 struct type *base_type;
7872 LONGEST low, high;
7873 char *subtype_info;
7874
7875 if (raw_type == NULL)
7876 base_type = builtin_type_int;
7877 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
7878 base_type = TYPE_TARGET_TYPE (raw_type);
7879 else
7880 base_type = raw_type;
7881
7882 subtype_info = strstr (name, "___XD");
7883 if (subtype_info == NULL)
7884 return raw_type;
7885 else
7886 {
7887 static char *name_buf = NULL;
7888 static size_t name_len = 0;
7889 int prefix_len = subtype_info - name;
7890 LONGEST L, U;
7891 struct type *type;
7892 char *bounds_str;
7893 int n;
7894
7895 GROW_VECT (name_buf, name_len, prefix_len + 5);
7896 strncpy (name_buf, name, prefix_len);
7897 name_buf[prefix_len] = '\0';
7898
7899 subtype_info += 5;
7900 bounds_str = strchr (subtype_info, '_');
7901 n = 1;
7902
7903 if (*subtype_info == 'L')
7904 {
7905 if (!ada_scan_number (bounds_str, n, &L, &n)
7906 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
7907 return raw_type;
7908 if (bounds_str[n] == '_')
7909 n += 2;
7910 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
7911 n += 1;
7912 subtype_info += 1;
7913 }
7914 else
7915 {
7916 strcpy (name_buf + prefix_len, "___L");
7917 L = get_int_var_value (name_buf, "Index bound unknown.", NULL);
7918 }
7919
7920 if (*subtype_info == 'U')
7921 {
7922 if (!ada_scan_number (bounds_str, n, &U, &n)
7923 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
7924 return raw_type;
7925 }
7926 else
7927 {
7928 strcpy (name_buf + prefix_len, "___U");
7929 U = get_int_var_value (name_buf, "Index bound unknown.", NULL);
7930 }
7931
7932 if (objfile == NULL)
7933 objfile = TYPE_OBJFILE (base_type);
7934 type = create_range_type (alloc_type (objfile), base_type, L, U);
7935 TYPE_NAME (type) = name;
7936 return type;
7937 }
7938 }
7939
7940 /* True iff NAME is the name of a range type. */
7941 int
7942 ada_is_range_type_name (const char *name)
7943 {
7944 return (name != NULL && strstr (name, "___XD"));
7945 }
7946 \f
7947
7948 /* Modular types */
7949
7950 /* True iff TYPE is an Ada modular type. */
7951 int
7952 ada_is_modular_type (struct type *type)
7953 {
7954 /* FIXME: base_type should be declared in gdbtypes.h, implemented in
7955 valarith.c */
7956 struct type *subranged_type; /* = base_type (type); */
7957
7958 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
7959 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
7960 && TYPE_UNSIGNED (subranged_type));
7961 }
7962
7963 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
7964 LONGEST
7965 ada_modulus (struct type * type)
7966 {
7967 return TYPE_HIGH_BOUND (type) + 1;
7968 }
7969 \f
7970
7971
7972 /* Operators */
7973
7974 /* Table mapping opcodes into strings for printing operators
7975 and precedences of the operators. */
7976
7977 static const struct op_print ada_op_print_tab[] = {
7978 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
7979 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
7980 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
7981 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
7982 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
7983 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
7984 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
7985 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
7986 {"<=", BINOP_LEQ, PREC_ORDER, 0},
7987 {">=", BINOP_GEQ, PREC_ORDER, 0},
7988 {">", BINOP_GTR, PREC_ORDER, 0},
7989 {"<", BINOP_LESS, PREC_ORDER, 0},
7990 {">>", BINOP_RSH, PREC_SHIFT, 0},
7991 {"<<", BINOP_LSH, PREC_SHIFT, 0},
7992 {"+", BINOP_ADD, PREC_ADD, 0},
7993 {"-", BINOP_SUB, PREC_ADD, 0},
7994 {"&", BINOP_CONCAT, PREC_ADD, 0},
7995 {"*", BINOP_MUL, PREC_MUL, 0},
7996 {"/", BINOP_DIV, PREC_MUL, 0},
7997 {"rem", BINOP_REM, PREC_MUL, 0},
7998 {"mod", BINOP_MOD, PREC_MUL, 0},
7999 {"**", BINOP_EXP, PREC_REPEAT, 0},
8000 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
8001 {"-", UNOP_NEG, PREC_PREFIX, 0},
8002 {"+", UNOP_PLUS, PREC_PREFIX, 0},
8003 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
8004 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
8005 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
8006 {".all", UNOP_IND, PREC_SUFFIX, 1}, /* FIXME: postfix .ALL */
8007 {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, /* FIXME: postfix 'ACCESS */
8008 {NULL, 0, 0, 0}
8009 };
8010 \f
8011 /* Assorted Types and Interfaces */
8012
8013 struct type *builtin_type_ada_int;
8014 struct type *builtin_type_ada_short;
8015 struct type *builtin_type_ada_long;
8016 struct type *builtin_type_ada_long_long;
8017 struct type *builtin_type_ada_char;
8018 struct type *builtin_type_ada_float;
8019 struct type *builtin_type_ada_double;
8020 struct type *builtin_type_ada_long_double;
8021 struct type *builtin_type_ada_natural;
8022 struct type *builtin_type_ada_positive;
8023 struct type *builtin_type_ada_system_address;
8024
8025 struct type **const (ada_builtin_types[]) =
8026 {
8027
8028 &builtin_type_ada_int,
8029 &builtin_type_ada_long,
8030 &builtin_type_ada_short,
8031 &builtin_type_ada_char,
8032 &builtin_type_ada_float,
8033 &builtin_type_ada_double,
8034 &builtin_type_ada_long_long,
8035 &builtin_type_ada_long_double,
8036 &builtin_type_ada_natural, &builtin_type_ada_positive,
8037 /* The following types are carried over from C for convenience. */
8038 &builtin_type_int,
8039 &builtin_type_long,
8040 &builtin_type_short,
8041 &builtin_type_char,
8042 &builtin_type_float,
8043 &builtin_type_double,
8044 &builtin_type_long_long,
8045 &builtin_type_void,
8046 &builtin_type_signed_char,
8047 &builtin_type_unsigned_char,
8048 &builtin_type_unsigned_short,
8049 &builtin_type_unsigned_int,
8050 &builtin_type_unsigned_long,
8051 &builtin_type_unsigned_long_long,
8052 &builtin_type_long_double,
8053 &builtin_type_complex, &builtin_type_double_complex, 0};
8054
8055 /* Not really used, but needed in the ada_language_defn. */
8056 static void
8057 emit_char (int c, struct ui_file *stream, int quoter)
8058 {
8059 ada_emit_char (c, stream, quoter, 1);
8060 }
8061
8062 const struct language_defn ada_language_defn = {
8063 "ada", /* Language name */
8064 /* language_ada, */
8065 language_unknown,
8066 /* FIXME: language_ada should be defined in defs.h */
8067 ada_builtin_types,
8068 range_check_off,
8069 type_check_off,
8070 case_sensitive_on, /* Yes, Ada is case-insensitive, but
8071 * that's not quite what this means. */
8072 ada_parse,
8073 ada_error,
8074 ada_evaluate_subexp,
8075 ada_printchar, /* Print a character constant */
8076 ada_printstr, /* Function to print string constant */
8077 emit_char, /* Function to print single char (not used) */
8078 ada_create_fundamental_type, /* Create fundamental type in this language */
8079 ada_print_type, /* Print a type using appropriate syntax */
8080 ada_val_print, /* Print a value using appropriate syntax */
8081 ada_value_print, /* Print a top-level value */
8082 {"", "", "", ""}, /* Binary format info */
8083 #if 0
8084 {"8#%lo#", "8#", "o", "#"}, /* Octal format info */
8085 {"%ld", "", "d", ""}, /* Decimal format info */
8086 {"16#%lx#", "16#", "x", "#"}, /* Hex format info */
8087 #else
8088 /* Copied from c-lang.c. */
8089 {"0%lo", "0", "o", ""}, /* Octal format info */
8090 {"%ld", "", "d", ""}, /* Decimal format info */
8091 {"0x%lx", "0x", "x", ""}, /* Hex format info */
8092 #endif
8093 ada_op_print_tab, /* expression operators for printing */
8094 1, /* c-style arrays (FIXME?) */
8095 0, /* String lower bound (FIXME?) */
8096 &builtin_type_ada_char,
8097 LANG_MAGIC
8098 };
8099
8100 void
8101 _initialize_ada_language (void)
8102 {
8103 builtin_type_ada_int =
8104 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
8105 0, "integer", (struct objfile *) NULL);
8106 builtin_type_ada_long =
8107 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
8108 0, "long_integer", (struct objfile *) NULL);
8109 builtin_type_ada_short =
8110 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
8111 0, "short_integer", (struct objfile *) NULL);
8112 builtin_type_ada_char =
8113 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8114 0, "character", (struct objfile *) NULL);
8115 builtin_type_ada_float =
8116 init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
8117 0, "float", (struct objfile *) NULL);
8118 builtin_type_ada_double =
8119 init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
8120 0, "long_float", (struct objfile *) NULL);
8121 builtin_type_ada_long_long =
8122 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
8123 0, "long_long_integer", (struct objfile *) NULL);
8124 builtin_type_ada_long_double =
8125 init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
8126 0, "long_long_float", (struct objfile *) NULL);
8127 builtin_type_ada_natural =
8128 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
8129 0, "natural", (struct objfile *) NULL);
8130 builtin_type_ada_positive =
8131 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
8132 0, "positive", (struct objfile *) NULL);
8133
8134
8135 builtin_type_ada_system_address =
8136 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
8137 (struct objfile *) NULL));
8138 TYPE_NAME (builtin_type_ada_system_address) = "system__address";
8139
8140 add_language (&ada_language_defn);
8141
8142 add_show_from_set
8143 (add_set_cmd ("varsize-limit", class_support, var_uinteger,
8144 (char *) &varsize_limit,
8145 "Set maximum bytes in dynamic-sized object.",
8146 &setlist), &showlist);
8147 varsize_limit = 65536;
8148
8149 add_com ("begin", class_breakpoint, begin_command,
8150 "Start the debugged program, stopping at the beginning of the\n\
8151 main program. You may specify command-line arguments to give it, as for\n\
8152 the \"run\" command (q.v.).");
8153 }
8154
8155
8156 /* Create a fundamental Ada type using default reasonable for the current
8157 target machine.
8158
8159 Some object/debugging file formats (DWARF version 1, COFF, etc) do not
8160 define fundamental types such as "int" or "double". Others (stabs or
8161 DWARF version 2, etc) do define fundamental types. For the formats which
8162 don't provide fundamental types, gdb can create such types using this
8163 function.
8164
8165 FIXME: Some compilers distinguish explicitly signed integral types
8166 (signed short, signed int, signed long) from "regular" integral types
8167 (short, int, long) in the debugging information. There is some dis-
8168 agreement as to how useful this feature is. In particular, gcc does
8169 not support this. Also, only some debugging formats allow the
8170 distinction to be passed on to a debugger. For now, we always just
8171 use "short", "int", or "long" as the type name, for both the implicit
8172 and explicitly signed types. This also makes life easier for the
8173 gdb test suite since we don't have to account for the differences
8174 in output depending upon what the compiler and debugging format
8175 support. We will probably have to re-examine the issue when gdb
8176 starts taking it's fundamental type information directly from the
8177 debugging information supplied by the compiler. fnf@cygnus.com */
8178
8179 static struct type *
8180 ada_create_fundamental_type (struct objfile *objfile, int typeid)
8181 {
8182 struct type *type = NULL;
8183
8184 switch (typeid)
8185 {
8186 default:
8187 /* FIXME: For now, if we are asked to produce a type not in this
8188 language, create the equivalent of a C integer type with the
8189 name "<?type?>". When all the dust settles from the type
8190 reconstruction work, this should probably become an error. */
8191 type = init_type (TYPE_CODE_INT,
8192 TARGET_INT_BIT / TARGET_CHAR_BIT,
8193 0, "<?type?>", objfile);
8194 warning ("internal error: no Ada fundamental type %d", typeid);
8195 break;
8196 case FT_VOID:
8197 type = init_type (TYPE_CODE_VOID,
8198 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8199 0, "void", objfile);
8200 break;
8201 case FT_CHAR:
8202 type = init_type (TYPE_CODE_INT,
8203 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8204 0, "character", objfile);
8205 break;
8206 case FT_SIGNED_CHAR:
8207 type = init_type (TYPE_CODE_INT,
8208 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8209 0, "signed char", objfile);
8210 break;
8211 case FT_UNSIGNED_CHAR:
8212 type = init_type (TYPE_CODE_INT,
8213 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8214 TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
8215 break;
8216 case FT_SHORT:
8217 type = init_type (TYPE_CODE_INT,
8218 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
8219 0, "short_integer", objfile);
8220 break;
8221 case FT_SIGNED_SHORT:
8222 type = init_type (TYPE_CODE_INT,
8223 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
8224 0, "short_integer", objfile);
8225 break;
8226 case FT_UNSIGNED_SHORT:
8227 type = init_type (TYPE_CODE_INT,
8228 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
8229 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
8230 break;
8231 case FT_INTEGER:
8232 type = init_type (TYPE_CODE_INT,
8233 TARGET_INT_BIT / TARGET_CHAR_BIT,
8234 0, "integer", objfile);
8235 break;
8236 case FT_SIGNED_INTEGER:
8237 type = init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, 0, "integer", objfile); /* FIXME -fnf */
8238 break;
8239 case FT_UNSIGNED_INTEGER:
8240 type = init_type (TYPE_CODE_INT,
8241 TARGET_INT_BIT / TARGET_CHAR_BIT,
8242 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
8243 break;
8244 case FT_LONG:
8245 type = init_type (TYPE_CODE_INT,
8246 TARGET_LONG_BIT / TARGET_CHAR_BIT,
8247 0, "long_integer", objfile);
8248 break;
8249 case FT_SIGNED_LONG:
8250 type = init_type (TYPE_CODE_INT,
8251 TARGET_LONG_BIT / TARGET_CHAR_BIT,
8252 0, "long_integer", objfile);
8253 break;
8254 case FT_UNSIGNED_LONG:
8255 type = init_type (TYPE_CODE_INT,
8256 TARGET_LONG_BIT / TARGET_CHAR_BIT,
8257 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
8258 break;
8259 case FT_LONG_LONG:
8260 type = init_type (TYPE_CODE_INT,
8261 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
8262 0, "long_long_integer", objfile);
8263 break;
8264 case FT_SIGNED_LONG_LONG:
8265 type = init_type (TYPE_CODE_INT,
8266 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
8267 0, "long_long_integer", objfile);
8268 break;
8269 case FT_UNSIGNED_LONG_LONG:
8270 type = init_type (TYPE_CODE_INT,
8271 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
8272 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
8273 break;
8274 case FT_FLOAT:
8275 type = init_type (TYPE_CODE_FLT,
8276 TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
8277 0, "float", objfile);
8278 break;
8279 case FT_DBL_PREC_FLOAT:
8280 type = init_type (TYPE_CODE_FLT,
8281 TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
8282 0, "long_float", objfile);
8283 break;
8284 case FT_EXT_PREC_FLOAT:
8285 type = init_type (TYPE_CODE_FLT,
8286 TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
8287 0, "long_long_float", objfile);
8288 break;
8289 }
8290 return (type);
8291 }
8292
8293 void
8294 ada_dump_symtab (struct symtab *s)
8295 {
8296 int i;
8297 fprintf (stderr, "New symtab: [\n");
8298 fprintf (stderr, " Name: %s/%s;\n",
8299 s->dirname ? s->dirname : "?", s->filename ? s->filename : "?");
8300 fprintf (stderr, " Format: %s;\n", s->debugformat);
8301 if (s->linetable != NULL)
8302 {
8303 fprintf (stderr, " Line table (section %d):\n", s->block_line_section);
8304 for (i = 0; i < s->linetable->nitems; i += 1)
8305 {
8306 struct linetable_entry *e = s->linetable->item + i;
8307 fprintf (stderr, " %4ld: %8lx\n", (long) e->line, (long) e->pc);
8308 }
8309 }
8310 fprintf (stderr, "]\n");
8311 }
This page took 0.211874 seconds and 4 git commands to generate.