317c8d3ed72e2aa2cb9166d6349c623190418617
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 /* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64 #ifndef TRUNCATION_TOWARDS_ZERO
65 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66 #endif
67
68 static void extract_string (CORE_ADDR addr, char *buf);
69
70 static void modify_general_field (struct type *, char *, LONGEST, int, int);
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static struct value *ensure_lval (struct value *,
105 struct gdbarch *, CORE_ADDR *);
106
107 static struct value *make_array_descriptor (struct type *, struct value *,
108 struct gdbarch *, CORE_ADDR *);
109
110 static void ada_add_block_symbols (struct obstack *,
111 struct block *, const char *,
112 domain_enum, struct objfile *, int);
113
114 static int is_nonfunction (struct ada_symbol_info *, int);
115
116 static void add_defn_to_vec (struct obstack *, struct symbol *,
117 struct block *);
118
119 static int num_defns_collected (struct obstack *);
120
121 static struct ada_symbol_info *defns_collected (struct obstack *, int);
122
123 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
124 *, const char *, int,
125 domain_enum, int);
126
127 static struct value *resolve_subexp (struct expression **, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (struct expression **, int, int, int,
131 struct symbol *, struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
156 int, int, int *);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (char *, struct value *,
172 struct type *);
173
174 static struct type *to_static_fixed_type (struct type *);
175 static struct type *static_unwrap_type (struct type *type);
176
177 static struct value *unwrap_value (struct value *);
178
179 static struct type *constrained_packed_array_type (struct type *, long *);
180
181 static struct type *decode_constrained_packed_array_type (struct type *);
182
183 static long decode_packed_array_bitsize (struct type *);
184
185 static struct value *decode_constrained_packed_array (struct value *);
186
187 static int ada_is_packed_array_type (struct type *);
188
189 static int ada_is_unconstrained_packed_array_type (struct type *);
190
191 static struct value *value_subscript_packed (struct value *, int,
192 struct value **);
193
194 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
195
196 static struct value *coerce_unspec_val_to_type (struct value *,
197 struct type *);
198
199 static struct value *get_var_value (char *, char *);
200
201 static int lesseq_defined_than (struct symbol *, struct symbol *);
202
203 static int equiv_types (struct type *, struct type *);
204
205 static int is_name_suffix (const char *);
206
207 static int wild_match (const char *, int, const char *);
208
209 static struct value *ada_coerce_ref (struct value *);
210
211 static LONGEST pos_atr (struct value *);
212
213 static struct value *value_pos_atr (struct type *, struct value *);
214
215 static struct value *value_val_atr (struct type *, struct value *);
216
217 static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220 static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226 static int find_struct_field (char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232 static struct value *ada_to_fixed_value (struct value *);
233
234 static int ada_resolve_function (struct ada_symbol_info *, int,
235 struct value **, int, const char *,
236 struct type *);
237
238 static struct value *ada_coerce_to_simple_array (struct value *);
239
240 static int ada_is_direct_array_type (struct type *);
241
242 static void ada_language_arch_info (struct gdbarch *,
243 struct language_arch_info *);
244
245 static void check_size (const struct type *);
246
247 static struct value *ada_index_struct_field (int, struct value *, int,
248 struct type *);
249
250 static struct value *assign_aggregate (struct value *, struct value *,
251 struct expression *, int *, enum noside);
252
253 static void aggregate_assign_from_choices (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int *,
256 int, LONGEST, LONGEST);
257
258 static void aggregate_assign_positional (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int *, int,
261 LONGEST, LONGEST);
262
263
264 static void aggregate_assign_others (struct value *, struct value *,
265 struct expression *,
266 int *, LONGEST *, int, LONGEST, LONGEST);
267
268
269 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
270
271
272 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
273 int *, enum noside);
274
275 static void ada_forward_operator_length (struct expression *, int, int *,
276 int *);
277 \f
278
279
280 /* Maximum-sized dynamic type. */
281 static unsigned int varsize_limit;
282
283 /* FIXME: brobecker/2003-09-17: No longer a const because it is
284 returned by a function that does not return a const char *. */
285 static char *ada_completer_word_break_characters =
286 #ifdef VMS
287 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
288 #else
289 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
290 #endif
291
292 /* The name of the symbol to use to get the name of the main subprogram. */
293 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
294 = "__gnat_ada_main_program_name";
295
296 /* Limit on the number of warnings to raise per expression evaluation. */
297 static int warning_limit = 2;
298
299 /* Number of warning messages issued; reset to 0 by cleanups after
300 expression evaluation. */
301 static int warnings_issued = 0;
302
303 static const char *known_runtime_file_name_patterns[] = {
304 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
305 };
306
307 static const char *known_auxiliary_function_name_patterns[] = {
308 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
309 };
310
311 /* Space for allocating results of ada_lookup_symbol_list. */
312 static struct obstack symbol_list_obstack;
313
314 /* Utilities */
315
316 /* Given DECODED_NAME a string holding a symbol name in its
317 decoded form (ie using the Ada dotted notation), returns
318 its unqualified name. */
319
320 static const char *
321 ada_unqualified_name (const char *decoded_name)
322 {
323 const char *result = strrchr (decoded_name, '.');
324
325 if (result != NULL)
326 result++; /* Skip the dot... */
327 else
328 result = decoded_name;
329
330 return result;
331 }
332
333 /* Return a string starting with '<', followed by STR, and '>'.
334 The result is good until the next call. */
335
336 static char *
337 add_angle_brackets (const char *str)
338 {
339 static char *result = NULL;
340
341 xfree (result);
342 result = xstrprintf ("<%s>", str);
343 return result;
344 }
345
346 static char *
347 ada_get_gdb_completer_word_break_characters (void)
348 {
349 return ada_completer_word_break_characters;
350 }
351
352 /* Print an array element index using the Ada syntax. */
353
354 static void
355 ada_print_array_index (struct value *index_value, struct ui_file *stream,
356 const struct value_print_options *options)
357 {
358 LA_VALUE_PRINT (index_value, stream, options);
359 fprintf_filtered (stream, " => ");
360 }
361
362 /* Read the string located at ADDR from the inferior and store the
363 result into BUF. */
364
365 static void
366 extract_string (CORE_ADDR addr, char *buf)
367 {
368 int char_index = 0;
369
370 /* Loop, reading one byte at a time, until we reach the '\000'
371 end-of-string marker. */
372 do
373 {
374 target_read_memory (addr + char_index * sizeof (char),
375 buf + char_index * sizeof (char), sizeof (char));
376 char_index++;
377 }
378 while (buf[char_index - 1] != '\000');
379 }
380
381 /* Assuming VECT points to an array of *SIZE objects of size
382 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
383 updating *SIZE as necessary and returning the (new) array. */
384
385 void *
386 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
387 {
388 if (*size < min_size)
389 {
390 *size *= 2;
391 if (*size < min_size)
392 *size = min_size;
393 vect = xrealloc (vect, *size * element_size);
394 }
395 return vect;
396 }
397
398 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
399 suffix of FIELD_NAME beginning "___". */
400
401 static int
402 field_name_match (const char *field_name, const char *target)
403 {
404 int len = strlen (target);
405 return
406 (strncmp (field_name, target, len) == 0
407 && (field_name[len] == '\0'
408 || (strncmp (field_name + len, "___", 3) == 0
409 && strcmp (field_name + strlen (field_name) - 6,
410 "___XVN") != 0)));
411 }
412
413
414 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
415 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
416 and return its index. This function also handles fields whose name
417 have ___ suffixes because the compiler sometimes alters their name
418 by adding such a suffix to represent fields with certain constraints.
419 If the field could not be found, return a negative number if
420 MAYBE_MISSING is set. Otherwise raise an error. */
421
422 int
423 ada_get_field_index (const struct type *type, const char *field_name,
424 int maybe_missing)
425 {
426 int fieldno;
427 struct type *struct_type = check_typedef ((struct type *) type);
428
429 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
430 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
431 return fieldno;
432
433 if (!maybe_missing)
434 error (_("Unable to find field %s in struct %s. Aborting"),
435 field_name, TYPE_NAME (struct_type));
436
437 return -1;
438 }
439
440 /* The length of the prefix of NAME prior to any "___" suffix. */
441
442 int
443 ada_name_prefix_len (const char *name)
444 {
445 if (name == NULL)
446 return 0;
447 else
448 {
449 const char *p = strstr (name, "___");
450 if (p == NULL)
451 return strlen (name);
452 else
453 return p - name;
454 }
455 }
456
457 /* Return non-zero if SUFFIX is a suffix of STR.
458 Return zero if STR is null. */
459
460 static int
461 is_suffix (const char *str, const char *suffix)
462 {
463 int len1, len2;
464 if (str == NULL)
465 return 0;
466 len1 = strlen (str);
467 len2 = strlen (suffix);
468 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
469 }
470
471 /* The contents of value VAL, treated as a value of type TYPE. The
472 result is an lval in memory if VAL is. */
473
474 static struct value *
475 coerce_unspec_val_to_type (struct value *val, struct type *type)
476 {
477 type = ada_check_typedef (type);
478 if (value_type (val) == type)
479 return val;
480 else
481 {
482 struct value *result;
483
484 /* Make sure that the object size is not unreasonable before
485 trying to allocate some memory for it. */
486 check_size (type);
487
488 result = allocate_value (type);
489 set_value_component_location (result, val);
490 set_value_bitsize (result, value_bitsize (val));
491 set_value_bitpos (result, value_bitpos (val));
492 set_value_address (result, value_address (val));
493 if (value_lazy (val)
494 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
495 set_value_lazy (result, 1);
496 else
497 memcpy (value_contents_raw (result), value_contents (val),
498 TYPE_LENGTH (type));
499 return result;
500 }
501 }
502
503 static const gdb_byte *
504 cond_offset_host (const gdb_byte *valaddr, long offset)
505 {
506 if (valaddr == NULL)
507 return NULL;
508 else
509 return valaddr + offset;
510 }
511
512 static CORE_ADDR
513 cond_offset_target (CORE_ADDR address, long offset)
514 {
515 if (address == 0)
516 return 0;
517 else
518 return address + offset;
519 }
520
521 /* Issue a warning (as for the definition of warning in utils.c, but
522 with exactly one argument rather than ...), unless the limit on the
523 number of warnings has passed during the evaluation of the current
524 expression. */
525
526 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
527 provided by "complaint". */
528 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
529
530 static void
531 lim_warning (const char *format, ...)
532 {
533 va_list args;
534 va_start (args, format);
535
536 warnings_issued += 1;
537 if (warnings_issued <= warning_limit)
538 vwarning (format, args);
539
540 va_end (args);
541 }
542
543 /* Issue an error if the size of an object of type T is unreasonable,
544 i.e. if it would be a bad idea to allocate a value of this type in
545 GDB. */
546
547 static void
548 check_size (const struct type *type)
549 {
550 if (TYPE_LENGTH (type) > varsize_limit)
551 error (_("object size is larger than varsize-limit"));
552 }
553
554
555 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
556 gdbtypes.h, but some of the necessary definitions in that file
557 seem to have gone missing. */
558
559 /* Maximum value of a SIZE-byte signed integer type. */
560 static LONGEST
561 max_of_size (int size)
562 {
563 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
564 return top_bit | (top_bit - 1);
565 }
566
567 /* Minimum value of a SIZE-byte signed integer type. */
568 static LONGEST
569 min_of_size (int size)
570 {
571 return -max_of_size (size) - 1;
572 }
573
574 /* Maximum value of a SIZE-byte unsigned integer type. */
575 static ULONGEST
576 umax_of_size (int size)
577 {
578 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
579 return top_bit | (top_bit - 1);
580 }
581
582 /* Maximum value of integral type T, as a signed quantity. */
583 static LONGEST
584 max_of_type (struct type *t)
585 {
586 if (TYPE_UNSIGNED (t))
587 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
588 else
589 return max_of_size (TYPE_LENGTH (t));
590 }
591
592 /* Minimum value of integral type T, as a signed quantity. */
593 static LONGEST
594 min_of_type (struct type *t)
595 {
596 if (TYPE_UNSIGNED (t))
597 return 0;
598 else
599 return min_of_size (TYPE_LENGTH (t));
600 }
601
602 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
603 LONGEST
604 ada_discrete_type_high_bound (struct type *type)
605 {
606 switch (TYPE_CODE (type))
607 {
608 case TYPE_CODE_RANGE:
609 return TYPE_HIGH_BOUND (type);
610 case TYPE_CODE_ENUM:
611 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
612 case TYPE_CODE_BOOL:
613 return 1;
614 case TYPE_CODE_CHAR:
615 case TYPE_CODE_INT:
616 return max_of_type (type);
617 default:
618 error (_("Unexpected type in ada_discrete_type_high_bound."));
619 }
620 }
621
622 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
623 LONGEST
624 ada_discrete_type_low_bound (struct type *type)
625 {
626 switch (TYPE_CODE (type))
627 {
628 case TYPE_CODE_RANGE:
629 return TYPE_LOW_BOUND (type);
630 case TYPE_CODE_ENUM:
631 return TYPE_FIELD_BITPOS (type, 0);
632 case TYPE_CODE_BOOL:
633 return 0;
634 case TYPE_CODE_CHAR:
635 case TYPE_CODE_INT:
636 return min_of_type (type);
637 default:
638 error (_("Unexpected type in ada_discrete_type_low_bound."));
639 }
640 }
641
642 /* The identity on non-range types. For range types, the underlying
643 non-range scalar type. */
644
645 static struct type *
646 base_type (struct type *type)
647 {
648 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
649 {
650 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
651 return type;
652 type = TYPE_TARGET_TYPE (type);
653 }
654 return type;
655 }
656 \f
657
658 /* Language Selection */
659
660 /* If the main program is in Ada, return language_ada, otherwise return LANG
661 (the main program is in Ada iif the adainit symbol is found).
662
663 MAIN_PST is not used. */
664
665 enum language
666 ada_update_initial_language (enum language lang,
667 struct partial_symtab *main_pst)
668 {
669 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
670 (struct objfile *) NULL) != NULL)
671 return language_ada;
672
673 return lang;
674 }
675
676 /* If the main procedure is written in Ada, then return its name.
677 The result is good until the next call. Return NULL if the main
678 procedure doesn't appear to be in Ada. */
679
680 char *
681 ada_main_name (void)
682 {
683 struct minimal_symbol *msym;
684 static char *main_program_name = NULL;
685
686 /* For Ada, the name of the main procedure is stored in a specific
687 string constant, generated by the binder. Look for that symbol,
688 extract its address, and then read that string. If we didn't find
689 that string, then most probably the main procedure is not written
690 in Ada. */
691 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
692
693 if (msym != NULL)
694 {
695 CORE_ADDR main_program_name_addr;
696 int err_code;
697
698 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
699 if (main_program_name_addr == 0)
700 error (_("Invalid address for Ada main program name."));
701
702 xfree (main_program_name);
703 target_read_string (main_program_name_addr, &main_program_name,
704 1024, &err_code);
705
706 if (err_code != 0)
707 return NULL;
708 return main_program_name;
709 }
710
711 /* The main procedure doesn't seem to be in Ada. */
712 return NULL;
713 }
714 \f
715 /* Symbols */
716
717 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
718 of NULLs. */
719
720 const struct ada_opname_map ada_opname_table[] = {
721 {"Oadd", "\"+\"", BINOP_ADD},
722 {"Osubtract", "\"-\"", BINOP_SUB},
723 {"Omultiply", "\"*\"", BINOP_MUL},
724 {"Odivide", "\"/\"", BINOP_DIV},
725 {"Omod", "\"mod\"", BINOP_MOD},
726 {"Orem", "\"rem\"", BINOP_REM},
727 {"Oexpon", "\"**\"", BINOP_EXP},
728 {"Olt", "\"<\"", BINOP_LESS},
729 {"Ole", "\"<=\"", BINOP_LEQ},
730 {"Ogt", "\">\"", BINOP_GTR},
731 {"Oge", "\">=\"", BINOP_GEQ},
732 {"Oeq", "\"=\"", BINOP_EQUAL},
733 {"One", "\"/=\"", BINOP_NOTEQUAL},
734 {"Oand", "\"and\"", BINOP_BITWISE_AND},
735 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
736 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
737 {"Oconcat", "\"&\"", BINOP_CONCAT},
738 {"Oabs", "\"abs\"", UNOP_ABS},
739 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
740 {"Oadd", "\"+\"", UNOP_PLUS},
741 {"Osubtract", "\"-\"", UNOP_NEG},
742 {NULL, NULL}
743 };
744
745 /* The "encoded" form of DECODED, according to GNAT conventions.
746 The result is valid until the next call to ada_encode. */
747
748 char *
749 ada_encode (const char *decoded)
750 {
751 static char *encoding_buffer = NULL;
752 static size_t encoding_buffer_size = 0;
753 const char *p;
754 int k;
755
756 if (decoded == NULL)
757 return NULL;
758
759 GROW_VECT (encoding_buffer, encoding_buffer_size,
760 2 * strlen (decoded) + 10);
761
762 k = 0;
763 for (p = decoded; *p != '\0'; p += 1)
764 {
765 if (*p == '.')
766 {
767 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
768 k += 2;
769 }
770 else if (*p == '"')
771 {
772 const struct ada_opname_map *mapping;
773
774 for (mapping = ada_opname_table;
775 mapping->encoded != NULL
776 && strncmp (mapping->decoded, p,
777 strlen (mapping->decoded)) != 0; mapping += 1)
778 ;
779 if (mapping->encoded == NULL)
780 error (_("invalid Ada operator name: %s"), p);
781 strcpy (encoding_buffer + k, mapping->encoded);
782 k += strlen (mapping->encoded);
783 break;
784 }
785 else
786 {
787 encoding_buffer[k] = *p;
788 k += 1;
789 }
790 }
791
792 encoding_buffer[k] = '\0';
793 return encoding_buffer;
794 }
795
796 /* Return NAME folded to lower case, or, if surrounded by single
797 quotes, unfolded, but with the quotes stripped away. Result good
798 to next call. */
799
800 char *
801 ada_fold_name (const char *name)
802 {
803 static char *fold_buffer = NULL;
804 static size_t fold_buffer_size = 0;
805
806 int len = strlen (name);
807 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
808
809 if (name[0] == '\'')
810 {
811 strncpy (fold_buffer, name + 1, len - 2);
812 fold_buffer[len - 2] = '\000';
813 }
814 else
815 {
816 int i;
817 for (i = 0; i <= len; i += 1)
818 fold_buffer[i] = tolower (name[i]);
819 }
820
821 return fold_buffer;
822 }
823
824 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
825
826 static int
827 is_lower_alphanum (const char c)
828 {
829 return (isdigit (c) || (isalpha (c) && islower (c)));
830 }
831
832 /* Remove either of these suffixes:
833 . .{DIGIT}+
834 . ${DIGIT}+
835 . ___{DIGIT}+
836 . __{DIGIT}+.
837 These are suffixes introduced by the compiler for entities such as
838 nested subprogram for instance, in order to avoid name clashes.
839 They do not serve any purpose for the debugger. */
840
841 static void
842 ada_remove_trailing_digits (const char *encoded, int *len)
843 {
844 if (*len > 1 && isdigit (encoded[*len - 1]))
845 {
846 int i = *len - 2;
847 while (i > 0 && isdigit (encoded[i]))
848 i--;
849 if (i >= 0 && encoded[i] == '.')
850 *len = i;
851 else if (i >= 0 && encoded[i] == '$')
852 *len = i;
853 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
854 *len = i - 2;
855 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
856 *len = i - 1;
857 }
858 }
859
860 /* Remove the suffix introduced by the compiler for protected object
861 subprograms. */
862
863 static void
864 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
865 {
866 /* Remove trailing N. */
867
868 /* Protected entry subprograms are broken into two
869 separate subprograms: The first one is unprotected, and has
870 a 'N' suffix; the second is the protected version, and has
871 the 'P' suffix. The second calls the first one after handling
872 the protection. Since the P subprograms are internally generated,
873 we leave these names undecoded, giving the user a clue that this
874 entity is internal. */
875
876 if (*len > 1
877 && encoded[*len - 1] == 'N'
878 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
879 *len = *len - 1;
880 }
881
882 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
883
884 static void
885 ada_remove_Xbn_suffix (const char *encoded, int *len)
886 {
887 int i = *len - 1;
888
889 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
890 i--;
891
892 if (encoded[i] != 'X')
893 return;
894
895 if (i == 0)
896 return;
897
898 if (isalnum (encoded[i-1]))
899 *len = i;
900 }
901
902 /* If ENCODED follows the GNAT entity encoding conventions, then return
903 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
904 replaced by ENCODED.
905
906 The resulting string is valid until the next call of ada_decode.
907 If the string is unchanged by decoding, the original string pointer
908 is returned. */
909
910 const char *
911 ada_decode (const char *encoded)
912 {
913 int i, j;
914 int len0;
915 const char *p;
916 char *decoded;
917 int at_start_name;
918 static char *decoding_buffer = NULL;
919 static size_t decoding_buffer_size = 0;
920
921 /* The name of the Ada main procedure starts with "_ada_".
922 This prefix is not part of the decoded name, so skip this part
923 if we see this prefix. */
924 if (strncmp (encoded, "_ada_", 5) == 0)
925 encoded += 5;
926
927 /* If the name starts with '_', then it is not a properly encoded
928 name, so do not attempt to decode it. Similarly, if the name
929 starts with '<', the name should not be decoded. */
930 if (encoded[0] == '_' || encoded[0] == '<')
931 goto Suppress;
932
933 len0 = strlen (encoded);
934
935 ada_remove_trailing_digits (encoded, &len0);
936 ada_remove_po_subprogram_suffix (encoded, &len0);
937
938 /* Remove the ___X.* suffix if present. Do not forget to verify that
939 the suffix is located before the current "end" of ENCODED. We want
940 to avoid re-matching parts of ENCODED that have previously been
941 marked as discarded (by decrementing LEN0). */
942 p = strstr (encoded, "___");
943 if (p != NULL && p - encoded < len0 - 3)
944 {
945 if (p[3] == 'X')
946 len0 = p - encoded;
947 else
948 goto Suppress;
949 }
950
951 /* Remove any trailing TKB suffix. It tells us that this symbol
952 is for the body of a task, but that information does not actually
953 appear in the decoded name. */
954
955 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
956 len0 -= 3;
957
958 /* Remove any trailing TB suffix. The TB suffix is slightly different
959 from the TKB suffix because it is used for non-anonymous task
960 bodies. */
961
962 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
963 len0 -= 2;
964
965 /* Remove trailing "B" suffixes. */
966 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
967
968 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
969 len0 -= 1;
970
971 /* Make decoded big enough for possible expansion by operator name. */
972
973 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
974 decoded = decoding_buffer;
975
976 /* Remove trailing __{digit}+ or trailing ${digit}+. */
977
978 if (len0 > 1 && isdigit (encoded[len0 - 1]))
979 {
980 i = len0 - 2;
981 while ((i >= 0 && isdigit (encoded[i]))
982 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
983 i -= 1;
984 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
985 len0 = i - 1;
986 else if (encoded[i] == '$')
987 len0 = i;
988 }
989
990 /* The first few characters that are not alphabetic are not part
991 of any encoding we use, so we can copy them over verbatim. */
992
993 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
994 decoded[j] = encoded[i];
995
996 at_start_name = 1;
997 while (i < len0)
998 {
999 /* Is this a symbol function? */
1000 if (at_start_name && encoded[i] == 'O')
1001 {
1002 int k;
1003 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1004 {
1005 int op_len = strlen (ada_opname_table[k].encoded);
1006 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1007 op_len - 1) == 0)
1008 && !isalnum (encoded[i + op_len]))
1009 {
1010 strcpy (decoded + j, ada_opname_table[k].decoded);
1011 at_start_name = 0;
1012 i += op_len;
1013 j += strlen (ada_opname_table[k].decoded);
1014 break;
1015 }
1016 }
1017 if (ada_opname_table[k].encoded != NULL)
1018 continue;
1019 }
1020 at_start_name = 0;
1021
1022 /* Replace "TK__" with "__", which will eventually be translated
1023 into "." (just below). */
1024
1025 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1026 i += 2;
1027
1028 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1029 be translated into "." (just below). These are internal names
1030 generated for anonymous blocks inside which our symbol is nested. */
1031
1032 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1033 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1034 && isdigit (encoded [i+4]))
1035 {
1036 int k = i + 5;
1037
1038 while (k < len0 && isdigit (encoded[k]))
1039 k++; /* Skip any extra digit. */
1040
1041 /* Double-check that the "__B_{DIGITS}+" sequence we found
1042 is indeed followed by "__". */
1043 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1044 i = k;
1045 }
1046
1047 /* Remove _E{DIGITS}+[sb] */
1048
1049 /* Just as for protected object subprograms, there are 2 categories
1050 of subprograms created by the compiler for each entry. The first
1051 one implements the actual entry code, and has a suffix following
1052 the convention above; the second one implements the barrier and
1053 uses the same convention as above, except that the 'E' is replaced
1054 by a 'B'.
1055
1056 Just as above, we do not decode the name of barrier functions
1057 to give the user a clue that the code he is debugging has been
1058 internally generated. */
1059
1060 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1061 && isdigit (encoded[i+2]))
1062 {
1063 int k = i + 3;
1064
1065 while (k < len0 && isdigit (encoded[k]))
1066 k++;
1067
1068 if (k < len0
1069 && (encoded[k] == 'b' || encoded[k] == 's'))
1070 {
1071 k++;
1072 /* Just as an extra precaution, make sure that if this
1073 suffix is followed by anything else, it is a '_'.
1074 Otherwise, we matched this sequence by accident. */
1075 if (k == len0
1076 || (k < len0 && encoded[k] == '_'))
1077 i = k;
1078 }
1079 }
1080
1081 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1082 the GNAT front-end in protected object subprograms. */
1083
1084 if (i < len0 + 3
1085 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1086 {
1087 /* Backtrack a bit up until we reach either the begining of
1088 the encoded name, or "__". Make sure that we only find
1089 digits or lowercase characters. */
1090 const char *ptr = encoded + i - 1;
1091
1092 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1093 ptr--;
1094 if (ptr < encoded
1095 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1096 i++;
1097 }
1098
1099 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1100 {
1101 /* This is a X[bn]* sequence not separated from the previous
1102 part of the name with a non-alpha-numeric character (in other
1103 words, immediately following an alpha-numeric character), then
1104 verify that it is placed at the end of the encoded name. If
1105 not, then the encoding is not valid and we should abort the
1106 decoding. Otherwise, just skip it, it is used in body-nested
1107 package names. */
1108 do
1109 i += 1;
1110 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1111 if (i < len0)
1112 goto Suppress;
1113 }
1114 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1115 {
1116 /* Replace '__' by '.'. */
1117 decoded[j] = '.';
1118 at_start_name = 1;
1119 i += 2;
1120 j += 1;
1121 }
1122 else
1123 {
1124 /* It's a character part of the decoded name, so just copy it
1125 over. */
1126 decoded[j] = encoded[i];
1127 i += 1;
1128 j += 1;
1129 }
1130 }
1131 decoded[j] = '\000';
1132
1133 /* Decoded names should never contain any uppercase character.
1134 Double-check this, and abort the decoding if we find one. */
1135
1136 for (i = 0; decoded[i] != '\0'; i += 1)
1137 if (isupper (decoded[i]) || decoded[i] == ' ')
1138 goto Suppress;
1139
1140 if (strcmp (decoded, encoded) == 0)
1141 return encoded;
1142 else
1143 return decoded;
1144
1145 Suppress:
1146 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1147 decoded = decoding_buffer;
1148 if (encoded[0] == '<')
1149 strcpy (decoded, encoded);
1150 else
1151 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1152 return decoded;
1153
1154 }
1155
1156 /* Table for keeping permanent unique copies of decoded names. Once
1157 allocated, names in this table are never released. While this is a
1158 storage leak, it should not be significant unless there are massive
1159 changes in the set of decoded names in successive versions of a
1160 symbol table loaded during a single session. */
1161 static struct htab *decoded_names_store;
1162
1163 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1164 in the language-specific part of GSYMBOL, if it has not been
1165 previously computed. Tries to save the decoded name in the same
1166 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1167 in any case, the decoded symbol has a lifetime at least that of
1168 GSYMBOL).
1169 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1170 const, but nevertheless modified to a semantically equivalent form
1171 when a decoded name is cached in it.
1172 */
1173
1174 char *
1175 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1176 {
1177 char **resultp =
1178 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1179 if (*resultp == NULL)
1180 {
1181 const char *decoded = ada_decode (gsymbol->name);
1182 if (gsymbol->obj_section != NULL)
1183 {
1184 struct objfile *objf = gsymbol->obj_section->objfile;
1185 *resultp = obsavestring (decoded, strlen (decoded),
1186 &objf->objfile_obstack);
1187 }
1188 /* Sometimes, we can't find a corresponding objfile, in which
1189 case, we put the result on the heap. Since we only decode
1190 when needed, we hope this usually does not cause a
1191 significant memory leak (FIXME). */
1192 if (*resultp == NULL)
1193 {
1194 char **slot = (char **) htab_find_slot (decoded_names_store,
1195 decoded, INSERT);
1196 if (*slot == NULL)
1197 *slot = xstrdup (decoded);
1198 *resultp = *slot;
1199 }
1200 }
1201
1202 return *resultp;
1203 }
1204
1205 static char *
1206 ada_la_decode (const char *encoded, int options)
1207 {
1208 return xstrdup (ada_decode (encoded));
1209 }
1210
1211 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1212 suffixes that encode debugging information or leading _ada_ on
1213 SYM_NAME (see is_name_suffix commentary for the debugging
1214 information that is ignored). If WILD, then NAME need only match a
1215 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1216 either argument is NULL. */
1217
1218 static int
1219 ada_match_name (const char *sym_name, const char *name, int wild)
1220 {
1221 if (sym_name == NULL || name == NULL)
1222 return 0;
1223 else if (wild)
1224 return wild_match (name, strlen (name), sym_name);
1225 else
1226 {
1227 int len_name = strlen (name);
1228 return (strncmp (sym_name, name, len_name) == 0
1229 && is_name_suffix (sym_name + len_name))
1230 || (strncmp (sym_name, "_ada_", 5) == 0
1231 && strncmp (sym_name + 5, name, len_name) == 0
1232 && is_name_suffix (sym_name + len_name + 5));
1233 }
1234 }
1235 \f
1236
1237 /* Arrays */
1238
1239 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1240
1241 static char *bound_name[] = {
1242 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1243 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1244 };
1245
1246 /* Maximum number of array dimensions we are prepared to handle. */
1247
1248 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1249
1250 /* Like modify_field, but allows bitpos > wordlength. */
1251
1252 static void
1253 modify_general_field (struct type *type, char *addr,
1254 LONGEST fieldval, int bitpos, int bitsize)
1255 {
1256 modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1257 }
1258
1259
1260 /* The desc_* routines return primitive portions of array descriptors
1261 (fat pointers). */
1262
1263 /* The descriptor or array type, if any, indicated by TYPE; removes
1264 level of indirection, if needed. */
1265
1266 static struct type *
1267 desc_base_type (struct type *type)
1268 {
1269 if (type == NULL)
1270 return NULL;
1271 type = ada_check_typedef (type);
1272 if (type != NULL
1273 && (TYPE_CODE (type) == TYPE_CODE_PTR
1274 || TYPE_CODE (type) == TYPE_CODE_REF))
1275 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1276 else
1277 return type;
1278 }
1279
1280 /* True iff TYPE indicates a "thin" array pointer type. */
1281
1282 static int
1283 is_thin_pntr (struct type *type)
1284 {
1285 return
1286 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1287 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1288 }
1289
1290 /* The descriptor type for thin pointer type TYPE. */
1291
1292 static struct type *
1293 thin_descriptor_type (struct type *type)
1294 {
1295 struct type *base_type = desc_base_type (type);
1296 if (base_type == NULL)
1297 return NULL;
1298 if (is_suffix (ada_type_name (base_type), "___XVE"))
1299 return base_type;
1300 else
1301 {
1302 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1303 if (alt_type == NULL)
1304 return base_type;
1305 else
1306 return alt_type;
1307 }
1308 }
1309
1310 /* A pointer to the array data for thin-pointer value VAL. */
1311
1312 static struct value *
1313 thin_data_pntr (struct value *val)
1314 {
1315 struct type *type = value_type (val);
1316 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1317 data_type = lookup_pointer_type (data_type);
1318
1319 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1320 return value_cast (data_type, value_copy (val));
1321 else
1322 return value_from_longest (data_type, value_address (val));
1323 }
1324
1325 /* True iff TYPE indicates a "thick" array pointer type. */
1326
1327 static int
1328 is_thick_pntr (struct type *type)
1329 {
1330 type = desc_base_type (type);
1331 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1332 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1333 }
1334
1335 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1336 pointer to one, the type of its bounds data; otherwise, NULL. */
1337
1338 static struct type *
1339 desc_bounds_type (struct type *type)
1340 {
1341 struct type *r;
1342
1343 type = desc_base_type (type);
1344
1345 if (type == NULL)
1346 return NULL;
1347 else if (is_thin_pntr (type))
1348 {
1349 type = thin_descriptor_type (type);
1350 if (type == NULL)
1351 return NULL;
1352 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1353 if (r != NULL)
1354 return ada_check_typedef (r);
1355 }
1356 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1357 {
1358 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1359 if (r != NULL)
1360 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1361 }
1362 return NULL;
1363 }
1364
1365 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1366 one, a pointer to its bounds data. Otherwise NULL. */
1367
1368 static struct value *
1369 desc_bounds (struct value *arr)
1370 {
1371 struct type *type = ada_check_typedef (value_type (arr));
1372 if (is_thin_pntr (type))
1373 {
1374 struct type *bounds_type =
1375 desc_bounds_type (thin_descriptor_type (type));
1376 LONGEST addr;
1377
1378 if (bounds_type == NULL)
1379 error (_("Bad GNAT array descriptor"));
1380
1381 /* NOTE: The following calculation is not really kosher, but
1382 since desc_type is an XVE-encoded type (and shouldn't be),
1383 the correct calculation is a real pain. FIXME (and fix GCC). */
1384 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1385 addr = value_as_long (arr);
1386 else
1387 addr = value_address (arr);
1388
1389 return
1390 value_from_longest (lookup_pointer_type (bounds_type),
1391 addr - TYPE_LENGTH (bounds_type));
1392 }
1393
1394 else if (is_thick_pntr (type))
1395 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1396 _("Bad GNAT array descriptor"));
1397 else
1398 return NULL;
1399 }
1400
1401 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1402 position of the field containing the address of the bounds data. */
1403
1404 static int
1405 fat_pntr_bounds_bitpos (struct type *type)
1406 {
1407 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1408 }
1409
1410 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1411 size of the field containing the address of the bounds data. */
1412
1413 static int
1414 fat_pntr_bounds_bitsize (struct type *type)
1415 {
1416 type = desc_base_type (type);
1417
1418 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1419 return TYPE_FIELD_BITSIZE (type, 1);
1420 else
1421 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1422 }
1423
1424 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1425 pointer to one, the type of its array data (a array-with-no-bounds type);
1426 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1427 data. */
1428
1429 static struct type *
1430 desc_data_target_type (struct type *type)
1431 {
1432 type = desc_base_type (type);
1433
1434 /* NOTE: The following is bogus; see comment in desc_bounds. */
1435 if (is_thin_pntr (type))
1436 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1437 else if (is_thick_pntr (type))
1438 {
1439 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1440
1441 if (data_type
1442 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1443 return TYPE_TARGET_TYPE (data_type);
1444 }
1445
1446 return NULL;
1447 }
1448
1449 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1450 its array data. */
1451
1452 static struct value *
1453 desc_data (struct value *arr)
1454 {
1455 struct type *type = value_type (arr);
1456 if (is_thin_pntr (type))
1457 return thin_data_pntr (arr);
1458 else if (is_thick_pntr (type))
1459 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1460 _("Bad GNAT array descriptor"));
1461 else
1462 return NULL;
1463 }
1464
1465
1466 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1467 position of the field containing the address of the data. */
1468
1469 static int
1470 fat_pntr_data_bitpos (struct type *type)
1471 {
1472 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1473 }
1474
1475 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1476 size of the field containing the address of the data. */
1477
1478 static int
1479 fat_pntr_data_bitsize (struct type *type)
1480 {
1481 type = desc_base_type (type);
1482
1483 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1484 return TYPE_FIELD_BITSIZE (type, 0);
1485 else
1486 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1487 }
1488
1489 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1490 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1491 bound, if WHICH is 1. The first bound is I=1. */
1492
1493 static struct value *
1494 desc_one_bound (struct value *bounds, int i, int which)
1495 {
1496 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1497 _("Bad GNAT array descriptor bounds"));
1498 }
1499
1500 /* If BOUNDS is an array-bounds structure type, return the bit position
1501 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1502 bound, if WHICH is 1. The first bound is I=1. */
1503
1504 static int
1505 desc_bound_bitpos (struct type *type, int i, int which)
1506 {
1507 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1508 }
1509
1510 /* If BOUNDS is an array-bounds structure type, return the bit field size
1511 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1512 bound, if WHICH is 1. The first bound is I=1. */
1513
1514 static int
1515 desc_bound_bitsize (struct type *type, int i, int which)
1516 {
1517 type = desc_base_type (type);
1518
1519 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1520 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1521 else
1522 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1523 }
1524
1525 /* If TYPE is the type of an array-bounds structure, the type of its
1526 Ith bound (numbering from 1). Otherwise, NULL. */
1527
1528 static struct type *
1529 desc_index_type (struct type *type, int i)
1530 {
1531 type = desc_base_type (type);
1532
1533 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1534 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1535 else
1536 return NULL;
1537 }
1538
1539 /* The number of index positions in the array-bounds type TYPE.
1540 Return 0 if TYPE is NULL. */
1541
1542 static int
1543 desc_arity (struct type *type)
1544 {
1545 type = desc_base_type (type);
1546
1547 if (type != NULL)
1548 return TYPE_NFIELDS (type) / 2;
1549 return 0;
1550 }
1551
1552 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1553 an array descriptor type (representing an unconstrained array
1554 type). */
1555
1556 static int
1557 ada_is_direct_array_type (struct type *type)
1558 {
1559 if (type == NULL)
1560 return 0;
1561 type = ada_check_typedef (type);
1562 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1563 || ada_is_array_descriptor_type (type));
1564 }
1565
1566 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1567 * to one. */
1568
1569 static int
1570 ada_is_array_type (struct type *type)
1571 {
1572 while (type != NULL
1573 && (TYPE_CODE (type) == TYPE_CODE_PTR
1574 || TYPE_CODE (type) == TYPE_CODE_REF))
1575 type = TYPE_TARGET_TYPE (type);
1576 return ada_is_direct_array_type (type);
1577 }
1578
1579 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1580
1581 int
1582 ada_is_simple_array_type (struct type *type)
1583 {
1584 if (type == NULL)
1585 return 0;
1586 type = ada_check_typedef (type);
1587 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1588 || (TYPE_CODE (type) == TYPE_CODE_PTR
1589 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1590 }
1591
1592 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1593
1594 int
1595 ada_is_array_descriptor_type (struct type *type)
1596 {
1597 struct type *data_type = desc_data_target_type (type);
1598
1599 if (type == NULL)
1600 return 0;
1601 type = ada_check_typedef (type);
1602 return (data_type != NULL
1603 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1604 && desc_arity (desc_bounds_type (type)) > 0);
1605 }
1606
1607 /* Non-zero iff type is a partially mal-formed GNAT array
1608 descriptor. FIXME: This is to compensate for some problems with
1609 debugging output from GNAT. Re-examine periodically to see if it
1610 is still needed. */
1611
1612 int
1613 ada_is_bogus_array_descriptor (struct type *type)
1614 {
1615 return
1616 type != NULL
1617 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1618 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1619 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1620 && !ada_is_array_descriptor_type (type);
1621 }
1622
1623
1624 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1625 (fat pointer) returns the type of the array data described---specifically,
1626 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1627 in from the descriptor; otherwise, they are left unspecified. If
1628 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1629 returns NULL. The result is simply the type of ARR if ARR is not
1630 a descriptor. */
1631 struct type *
1632 ada_type_of_array (struct value *arr, int bounds)
1633 {
1634 if (ada_is_constrained_packed_array_type (value_type (arr)))
1635 return decode_constrained_packed_array_type (value_type (arr));
1636
1637 if (!ada_is_array_descriptor_type (value_type (arr)))
1638 return value_type (arr);
1639
1640 if (!bounds)
1641 {
1642 struct type *array_type =
1643 ada_check_typedef (desc_data_target_type (value_type (arr)));
1644
1645 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1646 TYPE_FIELD_BITSIZE (array_type, 0) =
1647 decode_packed_array_bitsize (value_type (arr));
1648
1649 return array_type;
1650 }
1651 else
1652 {
1653 struct type *elt_type;
1654 int arity;
1655 struct value *descriptor;
1656
1657 elt_type = ada_array_element_type (value_type (arr), -1);
1658 arity = ada_array_arity (value_type (arr));
1659
1660 if (elt_type == NULL || arity == 0)
1661 return ada_check_typedef (value_type (arr));
1662
1663 descriptor = desc_bounds (arr);
1664 if (value_as_long (descriptor) == 0)
1665 return NULL;
1666 while (arity > 0)
1667 {
1668 struct type *range_type = alloc_type_copy (value_type (arr));
1669 struct type *array_type = alloc_type_copy (value_type (arr));
1670 struct value *low = desc_one_bound (descriptor, arity, 0);
1671 struct value *high = desc_one_bound (descriptor, arity, 1);
1672 arity -= 1;
1673
1674 create_range_type (range_type, value_type (low),
1675 longest_to_int (value_as_long (low)),
1676 longest_to_int (value_as_long (high)));
1677 elt_type = create_array_type (array_type, elt_type, range_type);
1678
1679 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1680 TYPE_FIELD_BITSIZE (elt_type, 0) =
1681 decode_packed_array_bitsize (value_type (arr));
1682 }
1683
1684 return lookup_pointer_type (elt_type);
1685 }
1686 }
1687
1688 /* If ARR does not represent an array, returns ARR unchanged.
1689 Otherwise, returns either a standard GDB array with bounds set
1690 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1691 GDB array. Returns NULL if ARR is a null fat pointer. */
1692
1693 struct value *
1694 ada_coerce_to_simple_array_ptr (struct value *arr)
1695 {
1696 if (ada_is_array_descriptor_type (value_type (arr)))
1697 {
1698 struct type *arrType = ada_type_of_array (arr, 1);
1699 if (arrType == NULL)
1700 return NULL;
1701 return value_cast (arrType, value_copy (desc_data (arr)));
1702 }
1703 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1704 return decode_constrained_packed_array (arr);
1705 else
1706 return arr;
1707 }
1708
1709 /* If ARR does not represent an array, returns ARR unchanged.
1710 Otherwise, returns a standard GDB array describing ARR (which may
1711 be ARR itself if it already is in the proper form). */
1712
1713 static struct value *
1714 ada_coerce_to_simple_array (struct value *arr)
1715 {
1716 if (ada_is_array_descriptor_type (value_type (arr)))
1717 {
1718 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1719 if (arrVal == NULL)
1720 error (_("Bounds unavailable for null array pointer."));
1721 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1722 return value_ind (arrVal);
1723 }
1724 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1725 return decode_constrained_packed_array (arr);
1726 else
1727 return arr;
1728 }
1729
1730 /* If TYPE represents a GNAT array type, return it translated to an
1731 ordinary GDB array type (possibly with BITSIZE fields indicating
1732 packing). For other types, is the identity. */
1733
1734 struct type *
1735 ada_coerce_to_simple_array_type (struct type *type)
1736 {
1737 if (ada_is_constrained_packed_array_type (type))
1738 return decode_constrained_packed_array_type (type);
1739
1740 if (ada_is_array_descriptor_type (type))
1741 return ada_check_typedef (desc_data_target_type (type));
1742
1743 return type;
1744 }
1745
1746 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1747
1748 static int
1749 ada_is_packed_array_type (struct type *type)
1750 {
1751 if (type == NULL)
1752 return 0;
1753 type = desc_base_type (type);
1754 type = ada_check_typedef (type);
1755 return
1756 ada_type_name (type) != NULL
1757 && strstr (ada_type_name (type), "___XP") != NULL;
1758 }
1759
1760 /* Non-zero iff TYPE represents a standard GNAT constrained
1761 packed-array type. */
1762
1763 int
1764 ada_is_constrained_packed_array_type (struct type *type)
1765 {
1766 return ada_is_packed_array_type (type)
1767 && !ada_is_array_descriptor_type (type);
1768 }
1769
1770 /* Non-zero iff TYPE represents an array descriptor for a
1771 unconstrained packed-array type. */
1772
1773 static int
1774 ada_is_unconstrained_packed_array_type (struct type *type)
1775 {
1776 return ada_is_packed_array_type (type)
1777 && ada_is_array_descriptor_type (type);
1778 }
1779
1780 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1781 return the size of its elements in bits. */
1782
1783 static long
1784 decode_packed_array_bitsize (struct type *type)
1785 {
1786 char *raw_name = ada_type_name (ada_check_typedef (type));
1787 char *tail;
1788 long bits;
1789
1790 if (!raw_name)
1791 raw_name = ada_type_name (desc_base_type (type));
1792
1793 if (!raw_name)
1794 return 0;
1795
1796 tail = strstr (raw_name, "___XP");
1797
1798 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1799 {
1800 lim_warning
1801 (_("could not understand bit size information on packed array"));
1802 return 0;
1803 }
1804
1805 return bits;
1806 }
1807
1808 /* Given that TYPE is a standard GDB array type with all bounds filled
1809 in, and that the element size of its ultimate scalar constituents
1810 (that is, either its elements, or, if it is an array of arrays, its
1811 elements' elements, etc.) is *ELT_BITS, return an identical type,
1812 but with the bit sizes of its elements (and those of any
1813 constituent arrays) recorded in the BITSIZE components of its
1814 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1815 in bits. */
1816
1817 static struct type *
1818 constrained_packed_array_type (struct type *type, long *elt_bits)
1819 {
1820 struct type *new_elt_type;
1821 struct type *new_type;
1822 LONGEST low_bound, high_bound;
1823
1824 type = ada_check_typedef (type);
1825 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1826 return type;
1827
1828 new_type = alloc_type_copy (type);
1829 new_elt_type =
1830 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1831 elt_bits);
1832 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1833 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1834 TYPE_NAME (new_type) = ada_type_name (type);
1835
1836 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1837 &low_bound, &high_bound) < 0)
1838 low_bound = high_bound = 0;
1839 if (high_bound < low_bound)
1840 *elt_bits = TYPE_LENGTH (new_type) = 0;
1841 else
1842 {
1843 *elt_bits *= (high_bound - low_bound + 1);
1844 TYPE_LENGTH (new_type) =
1845 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1846 }
1847
1848 TYPE_FIXED_INSTANCE (new_type) = 1;
1849 return new_type;
1850 }
1851
1852 /* The array type encoded by TYPE, where
1853 ada_is_constrained_packed_array_type (TYPE). */
1854
1855 static struct type *
1856 decode_constrained_packed_array_type (struct type *type)
1857 {
1858 struct symbol *sym;
1859 struct block **blocks;
1860 char *raw_name = ada_type_name (ada_check_typedef (type));
1861 char *name;
1862 char *tail;
1863 struct type *shadow_type;
1864 long bits;
1865 int i, n;
1866
1867 if (!raw_name)
1868 raw_name = ada_type_name (desc_base_type (type));
1869
1870 if (!raw_name)
1871 return NULL;
1872
1873 name = (char *) alloca (strlen (raw_name) + 1);
1874 tail = strstr (raw_name, "___XP");
1875 type = desc_base_type (type);
1876
1877 memcpy (name, raw_name, tail - raw_name);
1878 name[tail - raw_name] = '\000';
1879
1880 shadow_type = ada_find_parallel_type_with_name (type, name);
1881
1882 if (shadow_type == NULL)
1883 {
1884 lim_warning (_("could not find bounds information on packed array"));
1885 return NULL;
1886 }
1887 CHECK_TYPEDEF (shadow_type);
1888
1889 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1890 {
1891 lim_warning (_("could not understand bounds information on packed array"));
1892 return NULL;
1893 }
1894
1895 bits = decode_packed_array_bitsize (type);
1896 return constrained_packed_array_type (shadow_type, &bits);
1897 }
1898
1899 /* Given that ARR is a struct value *indicating a GNAT constrained packed
1900 array, returns a simple array that denotes that array. Its type is a
1901 standard GDB array type except that the BITSIZEs of the array
1902 target types are set to the number of bits in each element, and the
1903 type length is set appropriately. */
1904
1905 static struct value *
1906 decode_constrained_packed_array (struct value *arr)
1907 {
1908 struct type *type;
1909
1910 arr = ada_coerce_ref (arr);
1911
1912 /* If our value is a pointer, then dererence it. Make sure that
1913 this operation does not cause the target type to be fixed, as
1914 this would indirectly cause this array to be decoded. The rest
1915 of the routine assumes that the array hasn't been decoded yet,
1916 so we use the basic "value_ind" routine to perform the dereferencing,
1917 as opposed to using "ada_value_ind". */
1918 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1919 arr = value_ind (arr);
1920
1921 type = decode_constrained_packed_array_type (value_type (arr));
1922 if (type == NULL)
1923 {
1924 error (_("can't unpack array"));
1925 return NULL;
1926 }
1927
1928 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
1929 && ada_is_modular_type (value_type (arr)))
1930 {
1931 /* This is a (right-justified) modular type representing a packed
1932 array with no wrapper. In order to interpret the value through
1933 the (left-justified) packed array type we just built, we must
1934 first left-justify it. */
1935 int bit_size, bit_pos;
1936 ULONGEST mod;
1937
1938 mod = ada_modulus (value_type (arr)) - 1;
1939 bit_size = 0;
1940 while (mod > 0)
1941 {
1942 bit_size += 1;
1943 mod >>= 1;
1944 }
1945 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1946 arr = ada_value_primitive_packed_val (arr, NULL,
1947 bit_pos / HOST_CHAR_BIT,
1948 bit_pos % HOST_CHAR_BIT,
1949 bit_size,
1950 type);
1951 }
1952
1953 return coerce_unspec_val_to_type (arr, type);
1954 }
1955
1956
1957 /* The value of the element of packed array ARR at the ARITY indices
1958 given in IND. ARR must be a simple array. */
1959
1960 static struct value *
1961 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1962 {
1963 int i;
1964 int bits, elt_off, bit_off;
1965 long elt_total_bit_offset;
1966 struct type *elt_type;
1967 struct value *v;
1968
1969 bits = 0;
1970 elt_total_bit_offset = 0;
1971 elt_type = ada_check_typedef (value_type (arr));
1972 for (i = 0; i < arity; i += 1)
1973 {
1974 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1975 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1976 error
1977 (_("attempt to do packed indexing of something other than a packed array"));
1978 else
1979 {
1980 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1981 LONGEST lowerbound, upperbound;
1982 LONGEST idx;
1983
1984 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1985 {
1986 lim_warning (_("don't know bounds of array"));
1987 lowerbound = upperbound = 0;
1988 }
1989
1990 idx = pos_atr (ind[i]);
1991 if (idx < lowerbound || idx > upperbound)
1992 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1993 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1994 elt_total_bit_offset += (idx - lowerbound) * bits;
1995 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1996 }
1997 }
1998 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1999 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2000
2001 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2002 bits, elt_type);
2003 return v;
2004 }
2005
2006 /* Non-zero iff TYPE includes negative integer values. */
2007
2008 static int
2009 has_negatives (struct type *type)
2010 {
2011 switch (TYPE_CODE (type))
2012 {
2013 default:
2014 return 0;
2015 case TYPE_CODE_INT:
2016 return !TYPE_UNSIGNED (type);
2017 case TYPE_CODE_RANGE:
2018 return TYPE_LOW_BOUND (type) < 0;
2019 }
2020 }
2021
2022
2023 /* Create a new value of type TYPE from the contents of OBJ starting
2024 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2025 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2026 assigning through the result will set the field fetched from.
2027 VALADDR is ignored unless OBJ is NULL, in which case,
2028 VALADDR+OFFSET must address the start of storage containing the
2029 packed value. The value returned in this case is never an lval.
2030 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2031
2032 struct value *
2033 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2034 long offset, int bit_offset, int bit_size,
2035 struct type *type)
2036 {
2037 struct value *v;
2038 int src, /* Index into the source area */
2039 targ, /* Index into the target area */
2040 srcBitsLeft, /* Number of source bits left to move */
2041 nsrc, ntarg, /* Number of source and target bytes */
2042 unusedLS, /* Number of bits in next significant
2043 byte of source that are unused */
2044 accumSize; /* Number of meaningful bits in accum */
2045 unsigned char *bytes; /* First byte containing data to unpack */
2046 unsigned char *unpacked;
2047 unsigned long accum; /* Staging area for bits being transferred */
2048 unsigned char sign;
2049 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2050 /* Transmit bytes from least to most significant; delta is the direction
2051 the indices move. */
2052 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2053
2054 type = ada_check_typedef (type);
2055
2056 if (obj == NULL)
2057 {
2058 v = allocate_value (type);
2059 bytes = (unsigned char *) (valaddr + offset);
2060 }
2061 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2062 {
2063 v = value_at (type,
2064 value_address (obj) + offset);
2065 bytes = (unsigned char *) alloca (len);
2066 read_memory (value_address (v), bytes, len);
2067 }
2068 else
2069 {
2070 v = allocate_value (type);
2071 bytes = (unsigned char *) value_contents (obj) + offset;
2072 }
2073
2074 if (obj != NULL)
2075 {
2076 CORE_ADDR new_addr;
2077 set_value_component_location (v, obj);
2078 new_addr = value_address (obj) + offset;
2079 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2080 set_value_bitsize (v, bit_size);
2081 if (value_bitpos (v) >= HOST_CHAR_BIT)
2082 {
2083 ++new_addr;
2084 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2085 }
2086 set_value_address (v, new_addr);
2087 }
2088 else
2089 set_value_bitsize (v, bit_size);
2090 unpacked = (unsigned char *) value_contents (v);
2091
2092 srcBitsLeft = bit_size;
2093 nsrc = len;
2094 ntarg = TYPE_LENGTH (type);
2095 sign = 0;
2096 if (bit_size == 0)
2097 {
2098 memset (unpacked, 0, TYPE_LENGTH (type));
2099 return v;
2100 }
2101 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2102 {
2103 src = len - 1;
2104 if (has_negatives (type)
2105 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2106 sign = ~0;
2107
2108 unusedLS =
2109 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2110 % HOST_CHAR_BIT;
2111
2112 switch (TYPE_CODE (type))
2113 {
2114 case TYPE_CODE_ARRAY:
2115 case TYPE_CODE_UNION:
2116 case TYPE_CODE_STRUCT:
2117 /* Non-scalar values must be aligned at a byte boundary... */
2118 accumSize =
2119 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2120 /* ... And are placed at the beginning (most-significant) bytes
2121 of the target. */
2122 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2123 ntarg = targ + 1;
2124 break;
2125 default:
2126 accumSize = 0;
2127 targ = TYPE_LENGTH (type) - 1;
2128 break;
2129 }
2130 }
2131 else
2132 {
2133 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2134
2135 src = targ = 0;
2136 unusedLS = bit_offset;
2137 accumSize = 0;
2138
2139 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2140 sign = ~0;
2141 }
2142
2143 accum = 0;
2144 while (nsrc > 0)
2145 {
2146 /* Mask for removing bits of the next source byte that are not
2147 part of the value. */
2148 unsigned int unusedMSMask =
2149 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2150 1;
2151 /* Sign-extend bits for this byte. */
2152 unsigned int signMask = sign & ~unusedMSMask;
2153 accum |=
2154 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2155 accumSize += HOST_CHAR_BIT - unusedLS;
2156 if (accumSize >= HOST_CHAR_BIT)
2157 {
2158 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2159 accumSize -= HOST_CHAR_BIT;
2160 accum >>= HOST_CHAR_BIT;
2161 ntarg -= 1;
2162 targ += delta;
2163 }
2164 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2165 unusedLS = 0;
2166 nsrc -= 1;
2167 src += delta;
2168 }
2169 while (ntarg > 0)
2170 {
2171 accum |= sign << accumSize;
2172 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2173 accumSize -= HOST_CHAR_BIT;
2174 accum >>= HOST_CHAR_BIT;
2175 ntarg -= 1;
2176 targ += delta;
2177 }
2178
2179 return v;
2180 }
2181
2182 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2183 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2184 not overlap. */
2185 static void
2186 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2187 int src_offset, int n, int bits_big_endian_p)
2188 {
2189 unsigned int accum, mask;
2190 int accum_bits, chunk_size;
2191
2192 target += targ_offset / HOST_CHAR_BIT;
2193 targ_offset %= HOST_CHAR_BIT;
2194 source += src_offset / HOST_CHAR_BIT;
2195 src_offset %= HOST_CHAR_BIT;
2196 if (bits_big_endian_p)
2197 {
2198 accum = (unsigned char) *source;
2199 source += 1;
2200 accum_bits = HOST_CHAR_BIT - src_offset;
2201
2202 while (n > 0)
2203 {
2204 int unused_right;
2205 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2206 accum_bits += HOST_CHAR_BIT;
2207 source += 1;
2208 chunk_size = HOST_CHAR_BIT - targ_offset;
2209 if (chunk_size > n)
2210 chunk_size = n;
2211 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2212 mask = ((1 << chunk_size) - 1) << unused_right;
2213 *target =
2214 (*target & ~mask)
2215 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2216 n -= chunk_size;
2217 accum_bits -= chunk_size;
2218 target += 1;
2219 targ_offset = 0;
2220 }
2221 }
2222 else
2223 {
2224 accum = (unsigned char) *source >> src_offset;
2225 source += 1;
2226 accum_bits = HOST_CHAR_BIT - src_offset;
2227
2228 while (n > 0)
2229 {
2230 accum = accum + ((unsigned char) *source << accum_bits);
2231 accum_bits += HOST_CHAR_BIT;
2232 source += 1;
2233 chunk_size = HOST_CHAR_BIT - targ_offset;
2234 if (chunk_size > n)
2235 chunk_size = n;
2236 mask = ((1 << chunk_size) - 1) << targ_offset;
2237 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2238 n -= chunk_size;
2239 accum_bits -= chunk_size;
2240 accum >>= chunk_size;
2241 target += 1;
2242 targ_offset = 0;
2243 }
2244 }
2245 }
2246
2247 /* Store the contents of FROMVAL into the location of TOVAL.
2248 Return a new value with the location of TOVAL and contents of
2249 FROMVAL. Handles assignment into packed fields that have
2250 floating-point or non-scalar types. */
2251
2252 static struct value *
2253 ada_value_assign (struct value *toval, struct value *fromval)
2254 {
2255 struct type *type = value_type (toval);
2256 int bits = value_bitsize (toval);
2257
2258 toval = ada_coerce_ref (toval);
2259 fromval = ada_coerce_ref (fromval);
2260
2261 if (ada_is_direct_array_type (value_type (toval)))
2262 toval = ada_coerce_to_simple_array (toval);
2263 if (ada_is_direct_array_type (value_type (fromval)))
2264 fromval = ada_coerce_to_simple_array (fromval);
2265
2266 if (!deprecated_value_modifiable (toval))
2267 error (_("Left operand of assignment is not a modifiable lvalue."));
2268
2269 if (VALUE_LVAL (toval) == lval_memory
2270 && bits > 0
2271 && (TYPE_CODE (type) == TYPE_CODE_FLT
2272 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2273 {
2274 int len = (value_bitpos (toval)
2275 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2276 int from_size;
2277 char *buffer = (char *) alloca (len);
2278 struct value *val;
2279 CORE_ADDR to_addr = value_address (toval);
2280
2281 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2282 fromval = value_cast (type, fromval);
2283
2284 read_memory (to_addr, buffer, len);
2285 from_size = value_bitsize (fromval);
2286 if (from_size == 0)
2287 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2288 if (gdbarch_bits_big_endian (get_type_arch (type)))
2289 move_bits (buffer, value_bitpos (toval),
2290 value_contents (fromval), from_size - bits, bits, 1);
2291 else
2292 move_bits (buffer, value_bitpos (toval),
2293 value_contents (fromval), 0, bits, 0);
2294 write_memory (to_addr, buffer, len);
2295 observer_notify_memory_changed (to_addr, len, buffer);
2296
2297 val = value_copy (toval);
2298 memcpy (value_contents_raw (val), value_contents (fromval),
2299 TYPE_LENGTH (type));
2300 deprecated_set_value_type (val, type);
2301
2302 return val;
2303 }
2304
2305 return value_assign (toval, fromval);
2306 }
2307
2308
2309 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2310 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2311 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2312 * COMPONENT, and not the inferior's memory. The current contents
2313 * of COMPONENT are ignored. */
2314 static void
2315 value_assign_to_component (struct value *container, struct value *component,
2316 struct value *val)
2317 {
2318 LONGEST offset_in_container =
2319 (LONGEST) (value_address (component) - value_address (container));
2320 int bit_offset_in_container =
2321 value_bitpos (component) - value_bitpos (container);
2322 int bits;
2323
2324 val = value_cast (value_type (component), val);
2325
2326 if (value_bitsize (component) == 0)
2327 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2328 else
2329 bits = value_bitsize (component);
2330
2331 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2332 move_bits (value_contents_writeable (container) + offset_in_container,
2333 value_bitpos (container) + bit_offset_in_container,
2334 value_contents (val),
2335 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2336 bits, 1);
2337 else
2338 move_bits (value_contents_writeable (container) + offset_in_container,
2339 value_bitpos (container) + bit_offset_in_container,
2340 value_contents (val), 0, bits, 0);
2341 }
2342
2343 /* The value of the element of array ARR at the ARITY indices given in IND.
2344 ARR may be either a simple array, GNAT array descriptor, or pointer
2345 thereto. */
2346
2347 struct value *
2348 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2349 {
2350 int k;
2351 struct value *elt;
2352 struct type *elt_type;
2353
2354 elt = ada_coerce_to_simple_array (arr);
2355
2356 elt_type = ada_check_typedef (value_type (elt));
2357 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2358 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2359 return value_subscript_packed (elt, arity, ind);
2360
2361 for (k = 0; k < arity; k += 1)
2362 {
2363 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2364 error (_("too many subscripts (%d expected)"), k);
2365 elt = value_subscript (elt, pos_atr (ind[k]));
2366 }
2367 return elt;
2368 }
2369
2370 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2371 value of the element of *ARR at the ARITY indices given in
2372 IND. Does not read the entire array into memory. */
2373
2374 static struct value *
2375 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2376 struct value **ind)
2377 {
2378 int k;
2379
2380 for (k = 0; k < arity; k += 1)
2381 {
2382 LONGEST lwb, upb;
2383
2384 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2385 error (_("too many subscripts (%d expected)"), k);
2386 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2387 value_copy (arr));
2388 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2389 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2390 type = TYPE_TARGET_TYPE (type);
2391 }
2392
2393 return value_ind (arr);
2394 }
2395
2396 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2397 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2398 elements starting at index LOW. The lower bound of this array is LOW, as
2399 per Ada rules. */
2400 static struct value *
2401 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2402 int low, int high)
2403 {
2404 CORE_ADDR base = value_as_address (array_ptr)
2405 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
2406 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2407 struct type *index_type =
2408 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2409 low, high);
2410 struct type *slice_type =
2411 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2412 return value_at_lazy (slice_type, base);
2413 }
2414
2415
2416 static struct value *
2417 ada_value_slice (struct value *array, int low, int high)
2418 {
2419 struct type *type = value_type (array);
2420 struct type *index_type =
2421 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2422 struct type *slice_type =
2423 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2424 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2425 }
2426
2427 /* If type is a record type in the form of a standard GNAT array
2428 descriptor, returns the number of dimensions for type. If arr is a
2429 simple array, returns the number of "array of"s that prefix its
2430 type designation. Otherwise, returns 0. */
2431
2432 int
2433 ada_array_arity (struct type *type)
2434 {
2435 int arity;
2436
2437 if (type == NULL)
2438 return 0;
2439
2440 type = desc_base_type (type);
2441
2442 arity = 0;
2443 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2444 return desc_arity (desc_bounds_type (type));
2445 else
2446 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2447 {
2448 arity += 1;
2449 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2450 }
2451
2452 return arity;
2453 }
2454
2455 /* If TYPE is a record type in the form of a standard GNAT array
2456 descriptor or a simple array type, returns the element type for
2457 TYPE after indexing by NINDICES indices, or by all indices if
2458 NINDICES is -1. Otherwise, returns NULL. */
2459
2460 struct type *
2461 ada_array_element_type (struct type *type, int nindices)
2462 {
2463 type = desc_base_type (type);
2464
2465 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2466 {
2467 int k;
2468 struct type *p_array_type;
2469
2470 p_array_type = desc_data_target_type (type);
2471
2472 k = ada_array_arity (type);
2473 if (k == 0)
2474 return NULL;
2475
2476 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2477 if (nindices >= 0 && k > nindices)
2478 k = nindices;
2479 while (k > 0 && p_array_type != NULL)
2480 {
2481 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2482 k -= 1;
2483 }
2484 return p_array_type;
2485 }
2486 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2487 {
2488 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2489 {
2490 type = TYPE_TARGET_TYPE (type);
2491 nindices -= 1;
2492 }
2493 return type;
2494 }
2495
2496 return NULL;
2497 }
2498
2499 /* The type of nth index in arrays of given type (n numbering from 1).
2500 Does not examine memory. Throws an error if N is invalid or TYPE
2501 is not an array type. NAME is the name of the Ada attribute being
2502 evaluated ('range, 'first, 'last, or 'length); it is used in building
2503 the error message. */
2504
2505 static struct type *
2506 ada_index_type (struct type *type, int n, const char *name)
2507 {
2508 struct type *result_type;
2509
2510 type = desc_base_type (type);
2511
2512 if (n < 0 || n > ada_array_arity (type))
2513 error (_("invalid dimension number to '%s"), name);
2514
2515 if (ada_is_simple_array_type (type))
2516 {
2517 int i;
2518
2519 for (i = 1; i < n; i += 1)
2520 type = TYPE_TARGET_TYPE (type);
2521 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2522 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2523 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2524 perhaps stabsread.c would make more sense. */
2525 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2526 result_type = NULL;
2527 }
2528 else
2529 {
2530 result_type = desc_index_type (desc_bounds_type (type), n);
2531 if (result_type == NULL)
2532 error (_("attempt to take bound of something that is not an array"));
2533 }
2534
2535 return result_type;
2536 }
2537
2538 /* Given that arr is an array type, returns the lower bound of the
2539 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2540 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2541 array-descriptor type. It works for other arrays with bounds supplied
2542 by run-time quantities other than discriminants. */
2543
2544 static LONGEST
2545 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2546 {
2547 struct type *type, *elt_type, *index_type_desc, *index_type;
2548 int i;
2549
2550 gdb_assert (which == 0 || which == 1);
2551
2552 if (ada_is_constrained_packed_array_type (arr_type))
2553 arr_type = decode_constrained_packed_array_type (arr_type);
2554
2555 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2556 return (LONGEST) - which;
2557
2558 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2559 type = TYPE_TARGET_TYPE (arr_type);
2560 else
2561 type = arr_type;
2562
2563 elt_type = type;
2564 for (i = n; i > 1; i--)
2565 elt_type = TYPE_TARGET_TYPE (type);
2566
2567 index_type_desc = ada_find_parallel_type (type, "___XA");
2568 if (index_type_desc != NULL)
2569 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2570 NULL, TYPE_INDEX_TYPE (elt_type));
2571 else
2572 index_type = TYPE_INDEX_TYPE (elt_type);
2573
2574 return
2575 (LONGEST) (which == 0
2576 ? ada_discrete_type_low_bound (index_type)
2577 : ada_discrete_type_high_bound (index_type));
2578 }
2579
2580 /* Given that arr is an array value, returns the lower bound of the
2581 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2582 WHICH is 1. This routine will also work for arrays with bounds
2583 supplied by run-time quantities other than discriminants. */
2584
2585 static LONGEST
2586 ada_array_bound (struct value *arr, int n, int which)
2587 {
2588 struct type *arr_type = value_type (arr);
2589
2590 if (ada_is_constrained_packed_array_type (arr_type))
2591 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2592 else if (ada_is_simple_array_type (arr_type))
2593 return ada_array_bound_from_type (arr_type, n, which);
2594 else
2595 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2596 }
2597
2598 /* Given that arr is an array value, returns the length of the
2599 nth index. This routine will also work for arrays with bounds
2600 supplied by run-time quantities other than discriminants.
2601 Does not work for arrays indexed by enumeration types with representation
2602 clauses at the moment. */
2603
2604 static LONGEST
2605 ada_array_length (struct value *arr, int n)
2606 {
2607 struct type *arr_type = ada_check_typedef (value_type (arr));
2608
2609 if (ada_is_constrained_packed_array_type (arr_type))
2610 return ada_array_length (decode_constrained_packed_array (arr), n);
2611
2612 if (ada_is_simple_array_type (arr_type))
2613 return (ada_array_bound_from_type (arr_type, n, 1)
2614 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2615 else
2616 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2617 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2618 }
2619
2620 /* An empty array whose type is that of ARR_TYPE (an array type),
2621 with bounds LOW to LOW-1. */
2622
2623 static struct value *
2624 empty_array (struct type *arr_type, int low)
2625 {
2626 struct type *index_type =
2627 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2628 low, low - 1);
2629 struct type *elt_type = ada_array_element_type (arr_type, 1);
2630 return allocate_value (create_array_type (NULL, elt_type, index_type));
2631 }
2632 \f
2633
2634 /* Name resolution */
2635
2636 /* The "decoded" name for the user-definable Ada operator corresponding
2637 to OP. */
2638
2639 static const char *
2640 ada_decoded_op_name (enum exp_opcode op)
2641 {
2642 int i;
2643
2644 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2645 {
2646 if (ada_opname_table[i].op == op)
2647 return ada_opname_table[i].decoded;
2648 }
2649 error (_("Could not find operator name for opcode"));
2650 }
2651
2652
2653 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2654 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2655 undefined namespace) and converts operators that are
2656 user-defined into appropriate function calls. If CONTEXT_TYPE is
2657 non-null, it provides a preferred result type [at the moment, only
2658 type void has any effect---causing procedures to be preferred over
2659 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2660 return type is preferred. May change (expand) *EXP. */
2661
2662 static void
2663 resolve (struct expression **expp, int void_context_p)
2664 {
2665 struct type *context_type = NULL;
2666 int pc = 0;
2667
2668 if (void_context_p)
2669 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2670
2671 resolve_subexp (expp, &pc, 1, context_type);
2672 }
2673
2674 /* Resolve the operator of the subexpression beginning at
2675 position *POS of *EXPP. "Resolving" consists of replacing
2676 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2677 with their resolutions, replacing built-in operators with
2678 function calls to user-defined operators, where appropriate, and,
2679 when DEPROCEDURE_P is non-zero, converting function-valued variables
2680 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2681 are as in ada_resolve, above. */
2682
2683 static struct value *
2684 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2685 struct type *context_type)
2686 {
2687 int pc = *pos;
2688 int i;
2689 struct expression *exp; /* Convenience: == *expp. */
2690 enum exp_opcode op = (*expp)->elts[pc].opcode;
2691 struct value **argvec; /* Vector of operand types (alloca'ed). */
2692 int nargs; /* Number of operands. */
2693 int oplen;
2694
2695 argvec = NULL;
2696 nargs = 0;
2697 exp = *expp;
2698
2699 /* Pass one: resolve operands, saving their types and updating *pos,
2700 if needed. */
2701 switch (op)
2702 {
2703 case OP_FUNCALL:
2704 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2705 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2706 *pos += 7;
2707 else
2708 {
2709 *pos += 3;
2710 resolve_subexp (expp, pos, 0, NULL);
2711 }
2712 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2713 break;
2714
2715 case UNOP_ADDR:
2716 *pos += 1;
2717 resolve_subexp (expp, pos, 0, NULL);
2718 break;
2719
2720 case UNOP_QUAL:
2721 *pos += 3;
2722 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2723 break;
2724
2725 case OP_ATR_MODULUS:
2726 case OP_ATR_SIZE:
2727 case OP_ATR_TAG:
2728 case OP_ATR_FIRST:
2729 case OP_ATR_LAST:
2730 case OP_ATR_LENGTH:
2731 case OP_ATR_POS:
2732 case OP_ATR_VAL:
2733 case OP_ATR_MIN:
2734 case OP_ATR_MAX:
2735 case TERNOP_IN_RANGE:
2736 case BINOP_IN_BOUNDS:
2737 case UNOP_IN_RANGE:
2738 case OP_AGGREGATE:
2739 case OP_OTHERS:
2740 case OP_CHOICES:
2741 case OP_POSITIONAL:
2742 case OP_DISCRETE_RANGE:
2743 case OP_NAME:
2744 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2745 *pos += oplen;
2746 break;
2747
2748 case BINOP_ASSIGN:
2749 {
2750 struct value *arg1;
2751
2752 *pos += 1;
2753 arg1 = resolve_subexp (expp, pos, 0, NULL);
2754 if (arg1 == NULL)
2755 resolve_subexp (expp, pos, 1, NULL);
2756 else
2757 resolve_subexp (expp, pos, 1, value_type (arg1));
2758 break;
2759 }
2760
2761 case UNOP_CAST:
2762 *pos += 3;
2763 nargs = 1;
2764 break;
2765
2766 case BINOP_ADD:
2767 case BINOP_SUB:
2768 case BINOP_MUL:
2769 case BINOP_DIV:
2770 case BINOP_REM:
2771 case BINOP_MOD:
2772 case BINOP_EXP:
2773 case BINOP_CONCAT:
2774 case BINOP_LOGICAL_AND:
2775 case BINOP_LOGICAL_OR:
2776 case BINOP_BITWISE_AND:
2777 case BINOP_BITWISE_IOR:
2778 case BINOP_BITWISE_XOR:
2779
2780 case BINOP_EQUAL:
2781 case BINOP_NOTEQUAL:
2782 case BINOP_LESS:
2783 case BINOP_GTR:
2784 case BINOP_LEQ:
2785 case BINOP_GEQ:
2786
2787 case BINOP_REPEAT:
2788 case BINOP_SUBSCRIPT:
2789 case BINOP_COMMA:
2790 *pos += 1;
2791 nargs = 2;
2792 break;
2793
2794 case UNOP_NEG:
2795 case UNOP_PLUS:
2796 case UNOP_LOGICAL_NOT:
2797 case UNOP_ABS:
2798 case UNOP_IND:
2799 *pos += 1;
2800 nargs = 1;
2801 break;
2802
2803 case OP_LONG:
2804 case OP_DOUBLE:
2805 case OP_VAR_VALUE:
2806 *pos += 4;
2807 break;
2808
2809 case OP_TYPE:
2810 case OP_BOOL:
2811 case OP_LAST:
2812 case OP_INTERNALVAR:
2813 *pos += 3;
2814 break;
2815
2816 case UNOP_MEMVAL:
2817 *pos += 3;
2818 nargs = 1;
2819 break;
2820
2821 case OP_REGISTER:
2822 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2823 break;
2824
2825 case STRUCTOP_STRUCT:
2826 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2827 nargs = 1;
2828 break;
2829
2830 case TERNOP_SLICE:
2831 *pos += 1;
2832 nargs = 3;
2833 break;
2834
2835 case OP_STRING:
2836 break;
2837
2838 default:
2839 error (_("Unexpected operator during name resolution"));
2840 }
2841
2842 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2843 for (i = 0; i < nargs; i += 1)
2844 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2845 argvec[i] = NULL;
2846 exp = *expp;
2847
2848 /* Pass two: perform any resolution on principal operator. */
2849 switch (op)
2850 {
2851 default:
2852 break;
2853
2854 case OP_VAR_VALUE:
2855 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2856 {
2857 struct ada_symbol_info *candidates;
2858 int n_candidates;
2859
2860 n_candidates =
2861 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2862 (exp->elts[pc + 2].symbol),
2863 exp->elts[pc + 1].block, VAR_DOMAIN,
2864 &candidates);
2865
2866 if (n_candidates > 1)
2867 {
2868 /* Types tend to get re-introduced locally, so if there
2869 are any local symbols that are not types, first filter
2870 out all types. */
2871 int j;
2872 for (j = 0; j < n_candidates; j += 1)
2873 switch (SYMBOL_CLASS (candidates[j].sym))
2874 {
2875 case LOC_REGISTER:
2876 case LOC_ARG:
2877 case LOC_REF_ARG:
2878 case LOC_REGPARM_ADDR:
2879 case LOC_LOCAL:
2880 case LOC_COMPUTED:
2881 goto FoundNonType;
2882 default:
2883 break;
2884 }
2885 FoundNonType:
2886 if (j < n_candidates)
2887 {
2888 j = 0;
2889 while (j < n_candidates)
2890 {
2891 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2892 {
2893 candidates[j] = candidates[n_candidates - 1];
2894 n_candidates -= 1;
2895 }
2896 else
2897 j += 1;
2898 }
2899 }
2900 }
2901
2902 if (n_candidates == 0)
2903 error (_("No definition found for %s"),
2904 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2905 else if (n_candidates == 1)
2906 i = 0;
2907 else if (deprocedure_p
2908 && !is_nonfunction (candidates, n_candidates))
2909 {
2910 i = ada_resolve_function
2911 (candidates, n_candidates, NULL, 0,
2912 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2913 context_type);
2914 if (i < 0)
2915 error (_("Could not find a match for %s"),
2916 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2917 }
2918 else
2919 {
2920 printf_filtered (_("Multiple matches for %s\n"),
2921 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2922 user_select_syms (candidates, n_candidates, 1);
2923 i = 0;
2924 }
2925
2926 exp->elts[pc + 1].block = candidates[i].block;
2927 exp->elts[pc + 2].symbol = candidates[i].sym;
2928 if (innermost_block == NULL
2929 || contained_in (candidates[i].block, innermost_block))
2930 innermost_block = candidates[i].block;
2931 }
2932
2933 if (deprocedure_p
2934 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2935 == TYPE_CODE_FUNC))
2936 {
2937 replace_operator_with_call (expp, pc, 0, 0,
2938 exp->elts[pc + 2].symbol,
2939 exp->elts[pc + 1].block);
2940 exp = *expp;
2941 }
2942 break;
2943
2944 case OP_FUNCALL:
2945 {
2946 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2947 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2948 {
2949 struct ada_symbol_info *candidates;
2950 int n_candidates;
2951
2952 n_candidates =
2953 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2954 (exp->elts[pc + 5].symbol),
2955 exp->elts[pc + 4].block, VAR_DOMAIN,
2956 &candidates);
2957 if (n_candidates == 1)
2958 i = 0;
2959 else
2960 {
2961 i = ada_resolve_function
2962 (candidates, n_candidates,
2963 argvec, nargs,
2964 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2965 context_type);
2966 if (i < 0)
2967 error (_("Could not find a match for %s"),
2968 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2969 }
2970
2971 exp->elts[pc + 4].block = candidates[i].block;
2972 exp->elts[pc + 5].symbol = candidates[i].sym;
2973 if (innermost_block == NULL
2974 || contained_in (candidates[i].block, innermost_block))
2975 innermost_block = candidates[i].block;
2976 }
2977 }
2978 break;
2979 case BINOP_ADD:
2980 case BINOP_SUB:
2981 case BINOP_MUL:
2982 case BINOP_DIV:
2983 case BINOP_REM:
2984 case BINOP_MOD:
2985 case BINOP_CONCAT:
2986 case BINOP_BITWISE_AND:
2987 case BINOP_BITWISE_IOR:
2988 case BINOP_BITWISE_XOR:
2989 case BINOP_EQUAL:
2990 case BINOP_NOTEQUAL:
2991 case BINOP_LESS:
2992 case BINOP_GTR:
2993 case BINOP_LEQ:
2994 case BINOP_GEQ:
2995 case BINOP_EXP:
2996 case UNOP_NEG:
2997 case UNOP_PLUS:
2998 case UNOP_LOGICAL_NOT:
2999 case UNOP_ABS:
3000 if (possible_user_operator_p (op, argvec))
3001 {
3002 struct ada_symbol_info *candidates;
3003 int n_candidates;
3004
3005 n_candidates =
3006 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3007 (struct block *) NULL, VAR_DOMAIN,
3008 &candidates);
3009 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3010 ada_decoded_op_name (op), NULL);
3011 if (i < 0)
3012 break;
3013
3014 replace_operator_with_call (expp, pc, nargs, 1,
3015 candidates[i].sym, candidates[i].block);
3016 exp = *expp;
3017 }
3018 break;
3019
3020 case OP_TYPE:
3021 case OP_REGISTER:
3022 return NULL;
3023 }
3024
3025 *pos = pc;
3026 return evaluate_subexp_type (exp, pos);
3027 }
3028
3029 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3030 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3031 a non-pointer. */
3032 /* The term "match" here is rather loose. The match is heuristic and
3033 liberal. */
3034
3035 static int
3036 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3037 {
3038 ftype = ada_check_typedef (ftype);
3039 atype = ada_check_typedef (atype);
3040
3041 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3042 ftype = TYPE_TARGET_TYPE (ftype);
3043 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3044 atype = TYPE_TARGET_TYPE (atype);
3045
3046 switch (TYPE_CODE (ftype))
3047 {
3048 default:
3049 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3050 case TYPE_CODE_PTR:
3051 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3052 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3053 TYPE_TARGET_TYPE (atype), 0);
3054 else
3055 return (may_deref
3056 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3057 case TYPE_CODE_INT:
3058 case TYPE_CODE_ENUM:
3059 case TYPE_CODE_RANGE:
3060 switch (TYPE_CODE (atype))
3061 {
3062 case TYPE_CODE_INT:
3063 case TYPE_CODE_ENUM:
3064 case TYPE_CODE_RANGE:
3065 return 1;
3066 default:
3067 return 0;
3068 }
3069
3070 case TYPE_CODE_ARRAY:
3071 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3072 || ada_is_array_descriptor_type (atype));
3073
3074 case TYPE_CODE_STRUCT:
3075 if (ada_is_array_descriptor_type (ftype))
3076 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3077 || ada_is_array_descriptor_type (atype));
3078 else
3079 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3080 && !ada_is_array_descriptor_type (atype));
3081
3082 case TYPE_CODE_UNION:
3083 case TYPE_CODE_FLT:
3084 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3085 }
3086 }
3087
3088 /* Return non-zero if the formals of FUNC "sufficiently match" the
3089 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3090 may also be an enumeral, in which case it is treated as a 0-
3091 argument function. */
3092
3093 static int
3094 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3095 {
3096 int i;
3097 struct type *func_type = SYMBOL_TYPE (func);
3098
3099 if (SYMBOL_CLASS (func) == LOC_CONST
3100 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3101 return (n_actuals == 0);
3102 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3103 return 0;
3104
3105 if (TYPE_NFIELDS (func_type) != n_actuals)
3106 return 0;
3107
3108 for (i = 0; i < n_actuals; i += 1)
3109 {
3110 if (actuals[i] == NULL)
3111 return 0;
3112 else
3113 {
3114 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3115 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3116
3117 if (!ada_type_match (ftype, atype, 1))
3118 return 0;
3119 }
3120 }
3121 return 1;
3122 }
3123
3124 /* False iff function type FUNC_TYPE definitely does not produce a value
3125 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3126 FUNC_TYPE is not a valid function type with a non-null return type
3127 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3128
3129 static int
3130 return_match (struct type *func_type, struct type *context_type)
3131 {
3132 struct type *return_type;
3133
3134 if (func_type == NULL)
3135 return 1;
3136
3137 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3138 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3139 else
3140 return_type = base_type (func_type);
3141 if (return_type == NULL)
3142 return 1;
3143
3144 context_type = base_type (context_type);
3145
3146 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3147 return context_type == NULL || return_type == context_type;
3148 else if (context_type == NULL)
3149 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3150 else
3151 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3152 }
3153
3154
3155 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3156 function (if any) that matches the types of the NARGS arguments in
3157 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3158 that returns that type, then eliminate matches that don't. If
3159 CONTEXT_TYPE is void and there is at least one match that does not
3160 return void, eliminate all matches that do.
3161
3162 Asks the user if there is more than one match remaining. Returns -1
3163 if there is no such symbol or none is selected. NAME is used
3164 solely for messages. May re-arrange and modify SYMS in
3165 the process; the index returned is for the modified vector. */
3166
3167 static int
3168 ada_resolve_function (struct ada_symbol_info syms[],
3169 int nsyms, struct value **args, int nargs,
3170 const char *name, struct type *context_type)
3171 {
3172 int fallback;
3173 int k;
3174 int m; /* Number of hits */
3175
3176 m = 0;
3177 /* In the first pass of the loop, we only accept functions matching
3178 context_type. If none are found, we add a second pass of the loop
3179 where every function is accepted. */
3180 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3181 {
3182 for (k = 0; k < nsyms; k += 1)
3183 {
3184 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3185
3186 if (ada_args_match (syms[k].sym, args, nargs)
3187 && (fallback || return_match (type, context_type)))
3188 {
3189 syms[m] = syms[k];
3190 m += 1;
3191 }
3192 }
3193 }
3194
3195 if (m == 0)
3196 return -1;
3197 else if (m > 1)
3198 {
3199 printf_filtered (_("Multiple matches for %s\n"), name);
3200 user_select_syms (syms, m, 1);
3201 return 0;
3202 }
3203 return 0;
3204 }
3205
3206 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3207 in a listing of choices during disambiguation (see sort_choices, below).
3208 The idea is that overloadings of a subprogram name from the
3209 same package should sort in their source order. We settle for ordering
3210 such symbols by their trailing number (__N or $N). */
3211
3212 static int
3213 encoded_ordered_before (char *N0, char *N1)
3214 {
3215 if (N1 == NULL)
3216 return 0;
3217 else if (N0 == NULL)
3218 return 1;
3219 else
3220 {
3221 int k0, k1;
3222 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3223 ;
3224 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3225 ;
3226 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3227 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3228 {
3229 int n0, n1;
3230 n0 = k0;
3231 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3232 n0 -= 1;
3233 n1 = k1;
3234 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3235 n1 -= 1;
3236 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3237 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3238 }
3239 return (strcmp (N0, N1) < 0);
3240 }
3241 }
3242
3243 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3244 encoded names. */
3245
3246 static void
3247 sort_choices (struct ada_symbol_info syms[], int nsyms)
3248 {
3249 int i;
3250 for (i = 1; i < nsyms; i += 1)
3251 {
3252 struct ada_symbol_info sym = syms[i];
3253 int j;
3254
3255 for (j = i - 1; j >= 0; j -= 1)
3256 {
3257 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3258 SYMBOL_LINKAGE_NAME (sym.sym)))
3259 break;
3260 syms[j + 1] = syms[j];
3261 }
3262 syms[j + 1] = sym;
3263 }
3264 }
3265
3266 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3267 by asking the user (if necessary), returning the number selected,
3268 and setting the first elements of SYMS items. Error if no symbols
3269 selected. */
3270
3271 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3272 to be re-integrated one of these days. */
3273
3274 int
3275 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3276 {
3277 int i;
3278 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3279 int n_chosen;
3280 int first_choice = (max_results == 1) ? 1 : 2;
3281 const char *select_mode = multiple_symbols_select_mode ();
3282
3283 if (max_results < 1)
3284 error (_("Request to select 0 symbols!"));
3285 if (nsyms <= 1)
3286 return nsyms;
3287
3288 if (select_mode == multiple_symbols_cancel)
3289 error (_("\
3290 canceled because the command is ambiguous\n\
3291 See set/show multiple-symbol."));
3292
3293 /* If select_mode is "all", then return all possible symbols.
3294 Only do that if more than one symbol can be selected, of course.
3295 Otherwise, display the menu as usual. */
3296 if (select_mode == multiple_symbols_all && max_results > 1)
3297 return nsyms;
3298
3299 printf_unfiltered (_("[0] cancel\n"));
3300 if (max_results > 1)
3301 printf_unfiltered (_("[1] all\n"));
3302
3303 sort_choices (syms, nsyms);
3304
3305 for (i = 0; i < nsyms; i += 1)
3306 {
3307 if (syms[i].sym == NULL)
3308 continue;
3309
3310 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3311 {
3312 struct symtab_and_line sal =
3313 find_function_start_sal (syms[i].sym, 1);
3314 if (sal.symtab == NULL)
3315 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3316 i + first_choice,
3317 SYMBOL_PRINT_NAME (syms[i].sym),
3318 sal.line);
3319 else
3320 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3321 SYMBOL_PRINT_NAME (syms[i].sym),
3322 sal.symtab->filename, sal.line);
3323 continue;
3324 }
3325 else
3326 {
3327 int is_enumeral =
3328 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3329 && SYMBOL_TYPE (syms[i].sym) != NULL
3330 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3331 struct symtab *symtab = syms[i].sym->symtab;
3332
3333 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3334 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3335 i + first_choice,
3336 SYMBOL_PRINT_NAME (syms[i].sym),
3337 symtab->filename, SYMBOL_LINE (syms[i].sym));
3338 else if (is_enumeral
3339 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3340 {
3341 printf_unfiltered (("[%d] "), i + first_choice);
3342 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3343 gdb_stdout, -1, 0);
3344 printf_unfiltered (_("'(%s) (enumeral)\n"),
3345 SYMBOL_PRINT_NAME (syms[i].sym));
3346 }
3347 else if (symtab != NULL)
3348 printf_unfiltered (is_enumeral
3349 ? _("[%d] %s in %s (enumeral)\n")
3350 : _("[%d] %s at %s:?\n"),
3351 i + first_choice,
3352 SYMBOL_PRINT_NAME (syms[i].sym),
3353 symtab->filename);
3354 else
3355 printf_unfiltered (is_enumeral
3356 ? _("[%d] %s (enumeral)\n")
3357 : _("[%d] %s at ?\n"),
3358 i + first_choice,
3359 SYMBOL_PRINT_NAME (syms[i].sym));
3360 }
3361 }
3362
3363 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3364 "overload-choice");
3365
3366 for (i = 0; i < n_chosen; i += 1)
3367 syms[i] = syms[chosen[i]];
3368
3369 return n_chosen;
3370 }
3371
3372 /* Read and validate a set of numeric choices from the user in the
3373 range 0 .. N_CHOICES-1. Place the results in increasing
3374 order in CHOICES[0 .. N-1], and return N.
3375
3376 The user types choices as a sequence of numbers on one line
3377 separated by blanks, encoding them as follows:
3378
3379 + A choice of 0 means to cancel the selection, throwing an error.
3380 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3381 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3382
3383 The user is not allowed to choose more than MAX_RESULTS values.
3384
3385 ANNOTATION_SUFFIX, if present, is used to annotate the input
3386 prompts (for use with the -f switch). */
3387
3388 int
3389 get_selections (int *choices, int n_choices, int max_results,
3390 int is_all_choice, char *annotation_suffix)
3391 {
3392 char *args;
3393 char *prompt;
3394 int n_chosen;
3395 int first_choice = is_all_choice ? 2 : 1;
3396
3397 prompt = getenv ("PS2");
3398 if (prompt == NULL)
3399 prompt = "> ";
3400
3401 args = command_line_input (prompt, 0, annotation_suffix);
3402
3403 if (args == NULL)
3404 error_no_arg (_("one or more choice numbers"));
3405
3406 n_chosen = 0;
3407
3408 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3409 order, as given in args. Choices are validated. */
3410 while (1)
3411 {
3412 char *args2;
3413 int choice, j;
3414
3415 while (isspace (*args))
3416 args += 1;
3417 if (*args == '\0' && n_chosen == 0)
3418 error_no_arg (_("one or more choice numbers"));
3419 else if (*args == '\0')
3420 break;
3421
3422 choice = strtol (args, &args2, 10);
3423 if (args == args2 || choice < 0
3424 || choice > n_choices + first_choice - 1)
3425 error (_("Argument must be choice number"));
3426 args = args2;
3427
3428 if (choice == 0)
3429 error (_("cancelled"));
3430
3431 if (choice < first_choice)
3432 {
3433 n_chosen = n_choices;
3434 for (j = 0; j < n_choices; j += 1)
3435 choices[j] = j;
3436 break;
3437 }
3438 choice -= first_choice;
3439
3440 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3441 {
3442 }
3443
3444 if (j < 0 || choice != choices[j])
3445 {
3446 int k;
3447 for (k = n_chosen - 1; k > j; k -= 1)
3448 choices[k + 1] = choices[k];
3449 choices[j + 1] = choice;
3450 n_chosen += 1;
3451 }
3452 }
3453
3454 if (n_chosen > max_results)
3455 error (_("Select no more than %d of the above"), max_results);
3456
3457 return n_chosen;
3458 }
3459
3460 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3461 on the function identified by SYM and BLOCK, and taking NARGS
3462 arguments. Update *EXPP as needed to hold more space. */
3463
3464 static void
3465 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3466 int oplen, struct symbol *sym,
3467 struct block *block)
3468 {
3469 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3470 symbol, -oplen for operator being replaced). */
3471 struct expression *newexp = (struct expression *)
3472 xmalloc (sizeof (struct expression)
3473 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3474 struct expression *exp = *expp;
3475
3476 newexp->nelts = exp->nelts + 7 - oplen;
3477 newexp->language_defn = exp->language_defn;
3478 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3479 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3480 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3481
3482 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3483 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3484
3485 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3486 newexp->elts[pc + 4].block = block;
3487 newexp->elts[pc + 5].symbol = sym;
3488
3489 *expp = newexp;
3490 xfree (exp);
3491 }
3492
3493 /* Type-class predicates */
3494
3495 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3496 or FLOAT). */
3497
3498 static int
3499 numeric_type_p (struct type *type)
3500 {
3501 if (type == NULL)
3502 return 0;
3503 else
3504 {
3505 switch (TYPE_CODE (type))
3506 {
3507 case TYPE_CODE_INT:
3508 case TYPE_CODE_FLT:
3509 return 1;
3510 case TYPE_CODE_RANGE:
3511 return (type == TYPE_TARGET_TYPE (type)
3512 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3513 default:
3514 return 0;
3515 }
3516 }
3517 }
3518
3519 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3520
3521 static int
3522 integer_type_p (struct type *type)
3523 {
3524 if (type == NULL)
3525 return 0;
3526 else
3527 {
3528 switch (TYPE_CODE (type))
3529 {
3530 case TYPE_CODE_INT:
3531 return 1;
3532 case TYPE_CODE_RANGE:
3533 return (type == TYPE_TARGET_TYPE (type)
3534 || integer_type_p (TYPE_TARGET_TYPE (type)));
3535 default:
3536 return 0;
3537 }
3538 }
3539 }
3540
3541 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3542
3543 static int
3544 scalar_type_p (struct type *type)
3545 {
3546 if (type == NULL)
3547 return 0;
3548 else
3549 {
3550 switch (TYPE_CODE (type))
3551 {
3552 case TYPE_CODE_INT:
3553 case TYPE_CODE_RANGE:
3554 case TYPE_CODE_ENUM:
3555 case TYPE_CODE_FLT:
3556 return 1;
3557 default:
3558 return 0;
3559 }
3560 }
3561 }
3562
3563 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3564
3565 static int
3566 discrete_type_p (struct type *type)
3567 {
3568 if (type == NULL)
3569 return 0;
3570 else
3571 {
3572 switch (TYPE_CODE (type))
3573 {
3574 case TYPE_CODE_INT:
3575 case TYPE_CODE_RANGE:
3576 case TYPE_CODE_ENUM:
3577 case TYPE_CODE_BOOL:
3578 return 1;
3579 default:
3580 return 0;
3581 }
3582 }
3583 }
3584
3585 /* Returns non-zero if OP with operands in the vector ARGS could be
3586 a user-defined function. Errs on the side of pre-defined operators
3587 (i.e., result 0). */
3588
3589 static int
3590 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3591 {
3592 struct type *type0 =
3593 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3594 struct type *type1 =
3595 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3596
3597 if (type0 == NULL)
3598 return 0;
3599
3600 switch (op)
3601 {
3602 default:
3603 return 0;
3604
3605 case BINOP_ADD:
3606 case BINOP_SUB:
3607 case BINOP_MUL:
3608 case BINOP_DIV:
3609 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3610
3611 case BINOP_REM:
3612 case BINOP_MOD:
3613 case BINOP_BITWISE_AND:
3614 case BINOP_BITWISE_IOR:
3615 case BINOP_BITWISE_XOR:
3616 return (!(integer_type_p (type0) && integer_type_p (type1)));
3617
3618 case BINOP_EQUAL:
3619 case BINOP_NOTEQUAL:
3620 case BINOP_LESS:
3621 case BINOP_GTR:
3622 case BINOP_LEQ:
3623 case BINOP_GEQ:
3624 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3625
3626 case BINOP_CONCAT:
3627 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3628
3629 case BINOP_EXP:
3630 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3631
3632 case UNOP_NEG:
3633 case UNOP_PLUS:
3634 case UNOP_LOGICAL_NOT:
3635 case UNOP_ABS:
3636 return (!numeric_type_p (type0));
3637
3638 }
3639 }
3640 \f
3641 /* Renaming */
3642
3643 /* NOTES:
3644
3645 1. In the following, we assume that a renaming type's name may
3646 have an ___XD suffix. It would be nice if this went away at some
3647 point.
3648 2. We handle both the (old) purely type-based representation of
3649 renamings and the (new) variable-based encoding. At some point,
3650 it is devoutly to be hoped that the former goes away
3651 (FIXME: hilfinger-2007-07-09).
3652 3. Subprogram renamings are not implemented, although the XRS
3653 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3654
3655 /* If SYM encodes a renaming,
3656
3657 <renaming> renames <renamed entity>,
3658
3659 sets *LEN to the length of the renamed entity's name,
3660 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3661 the string describing the subcomponent selected from the renamed
3662 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3663 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3664 are undefined). Otherwise, returns a value indicating the category
3665 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3666 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3667 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3668 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3669 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3670 may be NULL, in which case they are not assigned.
3671
3672 [Currently, however, GCC does not generate subprogram renamings.] */
3673
3674 enum ada_renaming_category
3675 ada_parse_renaming (struct symbol *sym,
3676 const char **renamed_entity, int *len,
3677 const char **renaming_expr)
3678 {
3679 enum ada_renaming_category kind;
3680 const char *info;
3681 const char *suffix;
3682
3683 if (sym == NULL)
3684 return ADA_NOT_RENAMING;
3685 switch (SYMBOL_CLASS (sym))
3686 {
3687 default:
3688 return ADA_NOT_RENAMING;
3689 case LOC_TYPEDEF:
3690 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3691 renamed_entity, len, renaming_expr);
3692 case LOC_LOCAL:
3693 case LOC_STATIC:
3694 case LOC_COMPUTED:
3695 case LOC_OPTIMIZED_OUT:
3696 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3697 if (info == NULL)
3698 return ADA_NOT_RENAMING;
3699 switch (info[5])
3700 {
3701 case '_':
3702 kind = ADA_OBJECT_RENAMING;
3703 info += 6;
3704 break;
3705 case 'E':
3706 kind = ADA_EXCEPTION_RENAMING;
3707 info += 7;
3708 break;
3709 case 'P':
3710 kind = ADA_PACKAGE_RENAMING;
3711 info += 7;
3712 break;
3713 case 'S':
3714 kind = ADA_SUBPROGRAM_RENAMING;
3715 info += 7;
3716 break;
3717 default:
3718 return ADA_NOT_RENAMING;
3719 }
3720 }
3721
3722 if (renamed_entity != NULL)
3723 *renamed_entity = info;
3724 suffix = strstr (info, "___XE");
3725 if (suffix == NULL || suffix == info)
3726 return ADA_NOT_RENAMING;
3727 if (len != NULL)
3728 *len = strlen (info) - strlen (suffix);
3729 suffix += 5;
3730 if (renaming_expr != NULL)
3731 *renaming_expr = suffix;
3732 return kind;
3733 }
3734
3735 /* Assuming TYPE encodes a renaming according to the old encoding in
3736 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3737 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3738 ADA_NOT_RENAMING otherwise. */
3739 static enum ada_renaming_category
3740 parse_old_style_renaming (struct type *type,
3741 const char **renamed_entity, int *len,
3742 const char **renaming_expr)
3743 {
3744 enum ada_renaming_category kind;
3745 const char *name;
3746 const char *info;
3747 const char *suffix;
3748
3749 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3750 || TYPE_NFIELDS (type) != 1)
3751 return ADA_NOT_RENAMING;
3752
3753 name = type_name_no_tag (type);
3754 if (name == NULL)
3755 return ADA_NOT_RENAMING;
3756
3757 name = strstr (name, "___XR");
3758 if (name == NULL)
3759 return ADA_NOT_RENAMING;
3760 switch (name[5])
3761 {
3762 case '\0':
3763 case '_':
3764 kind = ADA_OBJECT_RENAMING;
3765 break;
3766 case 'E':
3767 kind = ADA_EXCEPTION_RENAMING;
3768 break;
3769 case 'P':
3770 kind = ADA_PACKAGE_RENAMING;
3771 break;
3772 case 'S':
3773 kind = ADA_SUBPROGRAM_RENAMING;
3774 break;
3775 default:
3776 return ADA_NOT_RENAMING;
3777 }
3778
3779 info = TYPE_FIELD_NAME (type, 0);
3780 if (info == NULL)
3781 return ADA_NOT_RENAMING;
3782 if (renamed_entity != NULL)
3783 *renamed_entity = info;
3784 suffix = strstr (info, "___XE");
3785 if (renaming_expr != NULL)
3786 *renaming_expr = suffix + 5;
3787 if (suffix == NULL || suffix == info)
3788 return ADA_NOT_RENAMING;
3789 if (len != NULL)
3790 *len = suffix - info;
3791 return kind;
3792 }
3793
3794 \f
3795
3796 /* Evaluation: Function Calls */
3797
3798 /* Return an lvalue containing the value VAL. This is the identity on
3799 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3800 on the stack, using and updating *SP as the stack pointer, and
3801 returning an lvalue whose value_address points to the copy. */
3802
3803 static struct value *
3804 ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
3805 {
3806 if (! VALUE_LVAL (val))
3807 {
3808 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3809
3810 /* The following is taken from the structure-return code in
3811 call_function_by_hand. FIXME: Therefore, some refactoring seems
3812 indicated. */
3813 if (gdbarch_inner_than (gdbarch, 1, 2))
3814 {
3815 /* Stack grows downward. Align SP and value_address (val) after
3816 reserving sufficient space. */
3817 *sp -= len;
3818 if (gdbarch_frame_align_p (gdbarch))
3819 *sp = gdbarch_frame_align (gdbarch, *sp);
3820 set_value_address (val, *sp);
3821 }
3822 else
3823 {
3824 /* Stack grows upward. Align the frame, allocate space, and
3825 then again, re-align the frame. */
3826 if (gdbarch_frame_align_p (gdbarch))
3827 *sp = gdbarch_frame_align (gdbarch, *sp);
3828 set_value_address (val, *sp);
3829 *sp += len;
3830 if (gdbarch_frame_align_p (gdbarch))
3831 *sp = gdbarch_frame_align (gdbarch, *sp);
3832 }
3833 VALUE_LVAL (val) = lval_memory;
3834
3835 write_memory (value_address (val), value_contents_raw (val), len);
3836 }
3837
3838 return val;
3839 }
3840
3841 /* Return the value ACTUAL, converted to be an appropriate value for a
3842 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3843 allocating any necessary descriptors (fat pointers), or copies of
3844 values not residing in memory, updating it as needed. */
3845
3846 struct value *
3847 ada_convert_actual (struct value *actual, struct type *formal_type0,
3848 struct gdbarch *gdbarch, CORE_ADDR *sp)
3849 {
3850 struct type *actual_type = ada_check_typedef (value_type (actual));
3851 struct type *formal_type = ada_check_typedef (formal_type0);
3852 struct type *formal_target =
3853 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3854 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3855 struct type *actual_target =
3856 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3857 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3858
3859 if (ada_is_array_descriptor_type (formal_target)
3860 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3861 return make_array_descriptor (formal_type, actual, gdbarch, sp);
3862 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3863 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3864 {
3865 struct value *result;
3866 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3867 && ada_is_array_descriptor_type (actual_target))
3868 result = desc_data (actual);
3869 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3870 {
3871 if (VALUE_LVAL (actual) != lval_memory)
3872 {
3873 struct value *val;
3874 actual_type = ada_check_typedef (value_type (actual));
3875 val = allocate_value (actual_type);
3876 memcpy ((char *) value_contents_raw (val),
3877 (char *) value_contents (actual),
3878 TYPE_LENGTH (actual_type));
3879 actual = ensure_lval (val, gdbarch, sp);
3880 }
3881 result = value_addr (actual);
3882 }
3883 else
3884 return actual;
3885 return value_cast_pointers (formal_type, result);
3886 }
3887 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3888 return ada_value_ind (actual);
3889
3890 return actual;
3891 }
3892
3893
3894 /* Push a descriptor of type TYPE for array value ARR on the stack at
3895 *SP, updating *SP to reflect the new descriptor. Return either
3896 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3897 to-descriptor type rather than a descriptor type), a struct value *
3898 representing a pointer to this descriptor. */
3899
3900 static struct value *
3901 make_array_descriptor (struct type *type, struct value *arr,
3902 struct gdbarch *gdbarch, CORE_ADDR *sp)
3903 {
3904 struct type *bounds_type = desc_bounds_type (type);
3905 struct type *desc_type = desc_base_type (type);
3906 struct value *descriptor = allocate_value (desc_type);
3907 struct value *bounds = allocate_value (bounds_type);
3908 int i;
3909
3910 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3911 {
3912 modify_general_field (value_type (bounds),
3913 value_contents_writeable (bounds),
3914 ada_array_bound (arr, i, 0),
3915 desc_bound_bitpos (bounds_type, i, 0),
3916 desc_bound_bitsize (bounds_type, i, 0));
3917 modify_general_field (value_type (bounds),
3918 value_contents_writeable (bounds),
3919 ada_array_bound (arr, i, 1),
3920 desc_bound_bitpos (bounds_type, i, 1),
3921 desc_bound_bitsize (bounds_type, i, 1));
3922 }
3923
3924 bounds = ensure_lval (bounds, gdbarch, sp);
3925
3926 modify_general_field (value_type (descriptor),
3927 value_contents_writeable (descriptor),
3928 value_address (ensure_lval (arr, gdbarch, sp)),
3929 fat_pntr_data_bitpos (desc_type),
3930 fat_pntr_data_bitsize (desc_type));
3931
3932 modify_general_field (value_type (descriptor),
3933 value_contents_writeable (descriptor),
3934 value_address (bounds),
3935 fat_pntr_bounds_bitpos (desc_type),
3936 fat_pntr_bounds_bitsize (desc_type));
3937
3938 descriptor = ensure_lval (descriptor, gdbarch, sp);
3939
3940 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3941 return value_addr (descriptor);
3942 else
3943 return descriptor;
3944 }
3945 \f
3946 /* Dummy definitions for an experimental caching module that is not
3947 * used in the public sources. */
3948
3949 static int
3950 lookup_cached_symbol (const char *name, domain_enum namespace,
3951 struct symbol **sym, struct block **block)
3952 {
3953 return 0;
3954 }
3955
3956 static void
3957 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3958 struct block *block)
3959 {
3960 }
3961 \f
3962 /* Symbol Lookup */
3963
3964 /* Return the result of a standard (literal, C-like) lookup of NAME in
3965 given DOMAIN, visible from lexical block BLOCK. */
3966
3967 static struct symbol *
3968 standard_lookup (const char *name, const struct block *block,
3969 domain_enum domain)
3970 {
3971 struct symbol *sym;
3972
3973 if (lookup_cached_symbol (name, domain, &sym, NULL))
3974 return sym;
3975 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3976 cache_symbol (name, domain, sym, block_found);
3977 return sym;
3978 }
3979
3980
3981 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3982 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3983 since they contend in overloading in the same way. */
3984 static int
3985 is_nonfunction (struct ada_symbol_info syms[], int n)
3986 {
3987 int i;
3988
3989 for (i = 0; i < n; i += 1)
3990 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3991 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3992 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3993 return 1;
3994
3995 return 0;
3996 }
3997
3998 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3999 struct types. Otherwise, they may not. */
4000
4001 static int
4002 equiv_types (struct type *type0, struct type *type1)
4003 {
4004 if (type0 == type1)
4005 return 1;
4006 if (type0 == NULL || type1 == NULL
4007 || TYPE_CODE (type0) != TYPE_CODE (type1))
4008 return 0;
4009 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4010 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4011 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4012 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4013 return 1;
4014
4015 return 0;
4016 }
4017
4018 /* True iff SYM0 represents the same entity as SYM1, or one that is
4019 no more defined than that of SYM1. */
4020
4021 static int
4022 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4023 {
4024 if (sym0 == sym1)
4025 return 1;
4026 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4027 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4028 return 0;
4029
4030 switch (SYMBOL_CLASS (sym0))
4031 {
4032 case LOC_UNDEF:
4033 return 1;
4034 case LOC_TYPEDEF:
4035 {
4036 struct type *type0 = SYMBOL_TYPE (sym0);
4037 struct type *type1 = SYMBOL_TYPE (sym1);
4038 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4039 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4040 int len0 = strlen (name0);
4041 return
4042 TYPE_CODE (type0) == TYPE_CODE (type1)
4043 && (equiv_types (type0, type1)
4044 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4045 && strncmp (name1 + len0, "___XV", 5) == 0));
4046 }
4047 case LOC_CONST:
4048 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4049 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4050 default:
4051 return 0;
4052 }
4053 }
4054
4055 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4056 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4057
4058 static void
4059 add_defn_to_vec (struct obstack *obstackp,
4060 struct symbol *sym,
4061 struct block *block)
4062 {
4063 int i;
4064 size_t tmp;
4065 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4066
4067 /* Do not try to complete stub types, as the debugger is probably
4068 already scanning all symbols matching a certain name at the
4069 time when this function is called. Trying to replace the stub
4070 type by its associated full type will cause us to restart a scan
4071 which may lead to an infinite recursion. Instead, the client
4072 collecting the matching symbols will end up collecting several
4073 matches, with at least one of them complete. It can then filter
4074 out the stub ones if needed. */
4075
4076 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4077 {
4078 if (lesseq_defined_than (sym, prevDefns[i].sym))
4079 return;
4080 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4081 {
4082 prevDefns[i].sym = sym;
4083 prevDefns[i].block = block;
4084 return;
4085 }
4086 }
4087
4088 {
4089 struct ada_symbol_info info;
4090
4091 info.sym = sym;
4092 info.block = block;
4093 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4094 }
4095 }
4096
4097 /* Number of ada_symbol_info structures currently collected in
4098 current vector in *OBSTACKP. */
4099
4100 static int
4101 num_defns_collected (struct obstack *obstackp)
4102 {
4103 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4104 }
4105
4106 /* Vector of ada_symbol_info structures currently collected in current
4107 vector in *OBSTACKP. If FINISH, close off the vector and return
4108 its final address. */
4109
4110 static struct ada_symbol_info *
4111 defns_collected (struct obstack *obstackp, int finish)
4112 {
4113 if (finish)
4114 return obstack_finish (obstackp);
4115 else
4116 return (struct ada_symbol_info *) obstack_base (obstackp);
4117 }
4118
4119 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4120 Check the global symbols if GLOBAL, the static symbols if not.
4121 Do wild-card match if WILD. */
4122
4123 static struct partial_symbol *
4124 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4125 int global, domain_enum namespace, int wild)
4126 {
4127 struct partial_symbol **start;
4128 int name_len = strlen (name);
4129 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4130 int i;
4131
4132 if (length == 0)
4133 {
4134 return (NULL);
4135 }
4136
4137 start = (global ?
4138 pst->objfile->global_psymbols.list + pst->globals_offset :
4139 pst->objfile->static_psymbols.list + pst->statics_offset);
4140
4141 if (wild)
4142 {
4143 for (i = 0; i < length; i += 1)
4144 {
4145 struct partial_symbol *psym = start[i];
4146
4147 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4148 SYMBOL_DOMAIN (psym), namespace)
4149 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4150 return psym;
4151 }
4152 return NULL;
4153 }
4154 else
4155 {
4156 if (global)
4157 {
4158 int U;
4159 i = 0;
4160 U = length - 1;
4161 while (U - i > 4)
4162 {
4163 int M = (U + i) >> 1;
4164 struct partial_symbol *psym = start[M];
4165 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4166 i = M + 1;
4167 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4168 U = M - 1;
4169 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4170 i = M + 1;
4171 else
4172 U = M;
4173 }
4174 }
4175 else
4176 i = 0;
4177
4178 while (i < length)
4179 {
4180 struct partial_symbol *psym = start[i];
4181
4182 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4183 SYMBOL_DOMAIN (psym), namespace))
4184 {
4185 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4186
4187 if (cmp < 0)
4188 {
4189 if (global)
4190 break;
4191 }
4192 else if (cmp == 0
4193 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4194 + name_len))
4195 return psym;
4196 }
4197 i += 1;
4198 }
4199
4200 if (global)
4201 {
4202 int U;
4203 i = 0;
4204 U = length - 1;
4205 while (U - i > 4)
4206 {
4207 int M = (U + i) >> 1;
4208 struct partial_symbol *psym = start[M];
4209 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4210 i = M + 1;
4211 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4212 U = M - 1;
4213 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4214 i = M + 1;
4215 else
4216 U = M;
4217 }
4218 }
4219 else
4220 i = 0;
4221
4222 while (i < length)
4223 {
4224 struct partial_symbol *psym = start[i];
4225
4226 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4227 SYMBOL_DOMAIN (psym), namespace))
4228 {
4229 int cmp;
4230
4231 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4232 if (cmp == 0)
4233 {
4234 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4235 if (cmp == 0)
4236 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4237 name_len);
4238 }
4239
4240 if (cmp < 0)
4241 {
4242 if (global)
4243 break;
4244 }
4245 else if (cmp == 0
4246 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4247 + name_len + 5))
4248 return psym;
4249 }
4250 i += 1;
4251 }
4252 }
4253 return NULL;
4254 }
4255
4256 /* Return a minimal symbol matching NAME according to Ada decoding
4257 rules. Returns NULL if there is no such minimal symbol. Names
4258 prefixed with "standard__" are handled specially: "standard__" is
4259 first stripped off, and only static and global symbols are searched. */
4260
4261 struct minimal_symbol *
4262 ada_lookup_simple_minsym (const char *name)
4263 {
4264 struct objfile *objfile;
4265 struct minimal_symbol *msymbol;
4266 int wild_match;
4267
4268 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4269 {
4270 name += sizeof ("standard__") - 1;
4271 wild_match = 0;
4272 }
4273 else
4274 wild_match = (strstr (name, "__") == NULL);
4275
4276 ALL_MSYMBOLS (objfile, msymbol)
4277 {
4278 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4279 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4280 return msymbol;
4281 }
4282
4283 return NULL;
4284 }
4285
4286 /* For all subprograms that statically enclose the subprogram of the
4287 selected frame, add symbols matching identifier NAME in DOMAIN
4288 and their blocks to the list of data in OBSTACKP, as for
4289 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4290 wildcard prefix. */
4291
4292 static void
4293 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4294 const char *name, domain_enum namespace,
4295 int wild_match)
4296 {
4297 }
4298
4299 /* True if TYPE is definitely an artificial type supplied to a symbol
4300 for which no debugging information was given in the symbol file. */
4301
4302 static int
4303 is_nondebugging_type (struct type *type)
4304 {
4305 char *name = ada_type_name (type);
4306 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4307 }
4308
4309 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4310 duplicate other symbols in the list (The only case I know of where
4311 this happens is when object files containing stabs-in-ecoff are
4312 linked with files containing ordinary ecoff debugging symbols (or no
4313 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4314 Returns the number of items in the modified list. */
4315
4316 static int
4317 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4318 {
4319 int i, j;
4320
4321 i = 0;
4322 while (i < nsyms)
4323 {
4324 int remove = 0;
4325
4326 /* If two symbols have the same name and one of them is a stub type,
4327 the get rid of the stub. */
4328
4329 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4330 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4331 {
4332 for (j = 0; j < nsyms; j++)
4333 {
4334 if (j != i
4335 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4336 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4337 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4338 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4339 remove = 1;
4340 }
4341 }
4342
4343 /* Two symbols with the same name, same class and same address
4344 should be identical. */
4345
4346 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4347 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4348 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4349 {
4350 for (j = 0; j < nsyms; j += 1)
4351 {
4352 if (i != j
4353 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4354 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4355 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4356 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4357 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4358 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4359 remove = 1;
4360 }
4361 }
4362
4363 if (remove)
4364 {
4365 for (j = i + 1; j < nsyms; j += 1)
4366 syms[j - 1] = syms[j];
4367 nsyms -= 1;
4368 }
4369
4370 i += 1;
4371 }
4372 return nsyms;
4373 }
4374
4375 /* Given a type that corresponds to a renaming entity, use the type name
4376 to extract the scope (package name or function name, fully qualified,
4377 and following the GNAT encoding convention) where this renaming has been
4378 defined. The string returned needs to be deallocated after use. */
4379
4380 static char *
4381 xget_renaming_scope (struct type *renaming_type)
4382 {
4383 /* The renaming types adhere to the following convention:
4384 <scope>__<rename>___<XR extension>.
4385 So, to extract the scope, we search for the "___XR" extension,
4386 and then backtrack until we find the first "__". */
4387
4388 const char *name = type_name_no_tag (renaming_type);
4389 char *suffix = strstr (name, "___XR");
4390 char *last;
4391 int scope_len;
4392 char *scope;
4393
4394 /* Now, backtrack a bit until we find the first "__". Start looking
4395 at suffix - 3, as the <rename> part is at least one character long. */
4396
4397 for (last = suffix - 3; last > name; last--)
4398 if (last[0] == '_' && last[1] == '_')
4399 break;
4400
4401 /* Make a copy of scope and return it. */
4402
4403 scope_len = last - name;
4404 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4405
4406 strncpy (scope, name, scope_len);
4407 scope[scope_len] = '\0';
4408
4409 return scope;
4410 }
4411
4412 /* Return nonzero if NAME corresponds to a package name. */
4413
4414 static int
4415 is_package_name (const char *name)
4416 {
4417 /* Here, We take advantage of the fact that no symbols are generated
4418 for packages, while symbols are generated for each function.
4419 So the condition for NAME represent a package becomes equivalent
4420 to NAME not existing in our list of symbols. There is only one
4421 small complication with library-level functions (see below). */
4422
4423 char *fun_name;
4424
4425 /* If it is a function that has not been defined at library level,
4426 then we should be able to look it up in the symbols. */
4427 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4428 return 0;
4429
4430 /* Library-level function names start with "_ada_". See if function
4431 "_ada_" followed by NAME can be found. */
4432
4433 /* Do a quick check that NAME does not contain "__", since library-level
4434 functions names cannot contain "__" in them. */
4435 if (strstr (name, "__") != NULL)
4436 return 0;
4437
4438 fun_name = xstrprintf ("_ada_%s", name);
4439
4440 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4441 }
4442
4443 /* Return nonzero if SYM corresponds to a renaming entity that is
4444 not visible from FUNCTION_NAME. */
4445
4446 static int
4447 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4448 {
4449 char *scope;
4450
4451 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4452 return 0;
4453
4454 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4455
4456 make_cleanup (xfree, scope);
4457
4458 /* If the rename has been defined in a package, then it is visible. */
4459 if (is_package_name (scope))
4460 return 0;
4461
4462 /* Check that the rename is in the current function scope by checking
4463 that its name starts with SCOPE. */
4464
4465 /* If the function name starts with "_ada_", it means that it is
4466 a library-level function. Strip this prefix before doing the
4467 comparison, as the encoding for the renaming does not contain
4468 this prefix. */
4469 if (strncmp (function_name, "_ada_", 5) == 0)
4470 function_name += 5;
4471
4472 return (strncmp (function_name, scope, strlen (scope)) != 0);
4473 }
4474
4475 /* Remove entries from SYMS that corresponds to a renaming entity that
4476 is not visible from the function associated with CURRENT_BLOCK or
4477 that is superfluous due to the presence of more specific renaming
4478 information. Places surviving symbols in the initial entries of
4479 SYMS and returns the number of surviving symbols.
4480
4481 Rationale:
4482 First, in cases where an object renaming is implemented as a
4483 reference variable, GNAT may produce both the actual reference
4484 variable and the renaming encoding. In this case, we discard the
4485 latter.
4486
4487 Second, GNAT emits a type following a specified encoding for each renaming
4488 entity. Unfortunately, STABS currently does not support the definition
4489 of types that are local to a given lexical block, so all renamings types
4490 are emitted at library level. As a consequence, if an application
4491 contains two renaming entities using the same name, and a user tries to
4492 print the value of one of these entities, the result of the ada symbol
4493 lookup will also contain the wrong renaming type.
4494
4495 This function partially covers for this limitation by attempting to
4496 remove from the SYMS list renaming symbols that should be visible
4497 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4498 method with the current information available. The implementation
4499 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4500
4501 - When the user tries to print a rename in a function while there
4502 is another rename entity defined in a package: Normally, the
4503 rename in the function has precedence over the rename in the
4504 package, so the latter should be removed from the list. This is
4505 currently not the case.
4506
4507 - This function will incorrectly remove valid renames if
4508 the CURRENT_BLOCK corresponds to a function which symbol name
4509 has been changed by an "Export" pragma. As a consequence,
4510 the user will be unable to print such rename entities. */
4511
4512 static int
4513 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4514 int nsyms, const struct block *current_block)
4515 {
4516 struct symbol *current_function;
4517 char *current_function_name;
4518 int i;
4519 int is_new_style_renaming;
4520
4521 /* If there is both a renaming foo___XR... encoded as a variable and
4522 a simple variable foo in the same block, discard the latter.
4523 First, zero out such symbols, then compress. */
4524 is_new_style_renaming = 0;
4525 for (i = 0; i < nsyms; i += 1)
4526 {
4527 struct symbol *sym = syms[i].sym;
4528 struct block *block = syms[i].block;
4529 const char *name;
4530 const char *suffix;
4531
4532 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4533 continue;
4534 name = SYMBOL_LINKAGE_NAME (sym);
4535 suffix = strstr (name, "___XR");
4536
4537 if (suffix != NULL)
4538 {
4539 int name_len = suffix - name;
4540 int j;
4541 is_new_style_renaming = 1;
4542 for (j = 0; j < nsyms; j += 1)
4543 if (i != j && syms[j].sym != NULL
4544 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4545 name_len) == 0
4546 && block == syms[j].block)
4547 syms[j].sym = NULL;
4548 }
4549 }
4550 if (is_new_style_renaming)
4551 {
4552 int j, k;
4553
4554 for (j = k = 0; j < nsyms; j += 1)
4555 if (syms[j].sym != NULL)
4556 {
4557 syms[k] = syms[j];
4558 k += 1;
4559 }
4560 return k;
4561 }
4562
4563 /* Extract the function name associated to CURRENT_BLOCK.
4564 Abort if unable to do so. */
4565
4566 if (current_block == NULL)
4567 return nsyms;
4568
4569 current_function = block_linkage_function (current_block);
4570 if (current_function == NULL)
4571 return nsyms;
4572
4573 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4574 if (current_function_name == NULL)
4575 return nsyms;
4576
4577 /* Check each of the symbols, and remove it from the list if it is
4578 a type corresponding to a renaming that is out of the scope of
4579 the current block. */
4580
4581 i = 0;
4582 while (i < nsyms)
4583 {
4584 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4585 == ADA_OBJECT_RENAMING
4586 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4587 {
4588 int j;
4589 for (j = i + 1; j < nsyms; j += 1)
4590 syms[j - 1] = syms[j];
4591 nsyms -= 1;
4592 }
4593 else
4594 i += 1;
4595 }
4596
4597 return nsyms;
4598 }
4599
4600 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4601 whose name and domain match NAME and DOMAIN respectively.
4602 If no match was found, then extend the search to "enclosing"
4603 routines (in other words, if we're inside a nested function,
4604 search the symbols defined inside the enclosing functions).
4605
4606 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4607
4608 static void
4609 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4610 struct block *block, domain_enum domain,
4611 int wild_match)
4612 {
4613 int block_depth = 0;
4614
4615 while (block != NULL)
4616 {
4617 block_depth += 1;
4618 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4619
4620 /* If we found a non-function match, assume that's the one. */
4621 if (is_nonfunction (defns_collected (obstackp, 0),
4622 num_defns_collected (obstackp)))
4623 return;
4624
4625 block = BLOCK_SUPERBLOCK (block);
4626 }
4627
4628 /* If no luck so far, try to find NAME as a local symbol in some lexically
4629 enclosing subprogram. */
4630 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4631 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4632 }
4633
4634 /* Add to OBSTACKP all non-local symbols whose name and domain match
4635 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4636 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4637
4638 static void
4639 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4640 domain_enum domain, int global,
4641 int wild_match)
4642 {
4643 struct objfile *objfile;
4644 struct partial_symtab *ps;
4645
4646 ALL_PSYMTABS (objfile, ps)
4647 {
4648 QUIT;
4649 if (ps->readin
4650 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4651 {
4652 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4653 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4654
4655 if (s == NULL || !s->primary)
4656 continue;
4657 ada_add_block_symbols (obstackp,
4658 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4659 name, domain, objfile, wild_match);
4660 }
4661 }
4662 }
4663
4664 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4665 scope and in global scopes, returning the number of matches. Sets
4666 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4667 indicating the symbols found and the blocks and symbol tables (if
4668 any) in which they were found. This vector are transient---good only to
4669 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4670 symbol match within the nest of blocks whose innermost member is BLOCK0,
4671 is the one match returned (no other matches in that or
4672 enclosing blocks is returned). If there are any matches in or
4673 surrounding BLOCK0, then these alone are returned. Otherwise, the
4674 search extends to global and file-scope (static) symbol tables.
4675 Names prefixed with "standard__" are handled specially: "standard__"
4676 is first stripped off, and only static and global symbols are searched. */
4677
4678 int
4679 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4680 domain_enum namespace,
4681 struct ada_symbol_info **results)
4682 {
4683 struct symbol *sym;
4684 struct block *block;
4685 const char *name;
4686 int wild_match;
4687 int cacheIfUnique;
4688 int ndefns;
4689
4690 obstack_free (&symbol_list_obstack, NULL);
4691 obstack_init (&symbol_list_obstack);
4692
4693 cacheIfUnique = 0;
4694
4695 /* Search specified block and its superiors. */
4696
4697 wild_match = (strstr (name0, "__") == NULL);
4698 name = name0;
4699 block = (struct block *) block0; /* FIXME: No cast ought to be
4700 needed, but adding const will
4701 have a cascade effect. */
4702
4703 /* Special case: If the user specifies a symbol name inside package
4704 Standard, do a non-wild matching of the symbol name without
4705 the "standard__" prefix. This was primarily introduced in order
4706 to allow the user to specifically access the standard exceptions
4707 using, for instance, Standard.Constraint_Error when Constraint_Error
4708 is ambiguous (due to the user defining its own Constraint_Error
4709 entity inside its program). */
4710 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4711 {
4712 wild_match = 0;
4713 block = NULL;
4714 name = name0 + sizeof ("standard__") - 1;
4715 }
4716
4717 /* Check the non-global symbols. If we have ANY match, then we're done. */
4718
4719 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4720 wild_match);
4721 if (num_defns_collected (&symbol_list_obstack) > 0)
4722 goto done;
4723
4724 /* No non-global symbols found. Check our cache to see if we have
4725 already performed this search before. If we have, then return
4726 the same result. */
4727
4728 cacheIfUnique = 1;
4729 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4730 {
4731 if (sym != NULL)
4732 add_defn_to_vec (&symbol_list_obstack, sym, block);
4733 goto done;
4734 }
4735
4736 /* Search symbols from all global blocks. */
4737
4738 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4739 wild_match);
4740
4741 /* Now add symbols from all per-file blocks if we've gotten no hits
4742 (not strictly correct, but perhaps better than an error). */
4743
4744 if (num_defns_collected (&symbol_list_obstack) == 0)
4745 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4746 wild_match);
4747
4748 done:
4749 ndefns = num_defns_collected (&symbol_list_obstack);
4750 *results = defns_collected (&symbol_list_obstack, 1);
4751
4752 ndefns = remove_extra_symbols (*results, ndefns);
4753
4754 if (ndefns == 0)
4755 cache_symbol (name0, namespace, NULL, NULL);
4756
4757 if (ndefns == 1 && cacheIfUnique)
4758 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4759
4760 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4761
4762 return ndefns;
4763 }
4764
4765 struct symbol *
4766 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4767 domain_enum namespace, struct block **block_found)
4768 {
4769 struct ada_symbol_info *candidates;
4770 int n_candidates;
4771
4772 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4773
4774 if (n_candidates == 0)
4775 return NULL;
4776
4777 if (block_found != NULL)
4778 *block_found = candidates[0].block;
4779
4780 return fixup_symbol_section (candidates[0].sym, NULL);
4781 }
4782
4783 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4784 scope and in global scopes, or NULL if none. NAME is folded and
4785 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4786 choosing the first symbol if there are multiple choices.
4787 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4788 table in which the symbol was found (in both cases, these
4789 assignments occur only if the pointers are non-null). */
4790 struct symbol *
4791 ada_lookup_symbol (const char *name, const struct block *block0,
4792 domain_enum namespace, int *is_a_field_of_this)
4793 {
4794 if (is_a_field_of_this != NULL)
4795 *is_a_field_of_this = 0;
4796
4797 return
4798 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4799 block0, namespace, NULL);
4800 }
4801
4802 static struct symbol *
4803 ada_lookup_symbol_nonlocal (const char *name,
4804 const char *linkage_name,
4805 const struct block *block,
4806 const domain_enum domain)
4807 {
4808 if (linkage_name == NULL)
4809 linkage_name = name;
4810 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4811 NULL);
4812 }
4813
4814
4815 /* True iff STR is a possible encoded suffix of a normal Ada name
4816 that is to be ignored for matching purposes. Suffixes of parallel
4817 names (e.g., XVE) are not included here. Currently, the possible suffixes
4818 are given by any of the regular expressions:
4819
4820 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4821 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4822 _E[0-9]+[bs]$ [protected object entry suffixes]
4823 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4824
4825 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4826 match is performed. This sequence is used to differentiate homonyms,
4827 is an optional part of a valid name suffix. */
4828
4829 static int
4830 is_name_suffix (const char *str)
4831 {
4832 int k;
4833 const char *matching;
4834 const int len = strlen (str);
4835
4836 /* Skip optional leading __[0-9]+. */
4837
4838 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4839 {
4840 str += 3;
4841 while (isdigit (str[0]))
4842 str += 1;
4843 }
4844
4845 /* [.$][0-9]+ */
4846
4847 if (str[0] == '.' || str[0] == '$')
4848 {
4849 matching = str + 1;
4850 while (isdigit (matching[0]))
4851 matching += 1;
4852 if (matching[0] == '\0')
4853 return 1;
4854 }
4855
4856 /* ___[0-9]+ */
4857
4858 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4859 {
4860 matching = str + 3;
4861 while (isdigit (matching[0]))
4862 matching += 1;
4863 if (matching[0] == '\0')
4864 return 1;
4865 }
4866
4867 #if 0
4868 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4869 with a N at the end. Unfortunately, the compiler uses the same
4870 convention for other internal types it creates. So treating
4871 all entity names that end with an "N" as a name suffix causes
4872 some regressions. For instance, consider the case of an enumerated
4873 type. To support the 'Image attribute, it creates an array whose
4874 name ends with N.
4875 Having a single character like this as a suffix carrying some
4876 information is a bit risky. Perhaps we should change the encoding
4877 to be something like "_N" instead. In the meantime, do not do
4878 the following check. */
4879 /* Protected Object Subprograms */
4880 if (len == 1 && str [0] == 'N')
4881 return 1;
4882 #endif
4883
4884 /* _E[0-9]+[bs]$ */
4885 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4886 {
4887 matching = str + 3;
4888 while (isdigit (matching[0]))
4889 matching += 1;
4890 if ((matching[0] == 'b' || matching[0] == 's')
4891 && matching [1] == '\0')
4892 return 1;
4893 }
4894
4895 /* ??? We should not modify STR directly, as we are doing below. This
4896 is fine in this case, but may become problematic later if we find
4897 that this alternative did not work, and want to try matching
4898 another one from the begining of STR. Since we modified it, we
4899 won't be able to find the begining of the string anymore! */
4900 if (str[0] == 'X')
4901 {
4902 str += 1;
4903 while (str[0] != '_' && str[0] != '\0')
4904 {
4905 if (str[0] != 'n' && str[0] != 'b')
4906 return 0;
4907 str += 1;
4908 }
4909 }
4910
4911 if (str[0] == '\000')
4912 return 1;
4913
4914 if (str[0] == '_')
4915 {
4916 if (str[1] != '_' || str[2] == '\000')
4917 return 0;
4918 if (str[2] == '_')
4919 {
4920 if (strcmp (str + 3, "JM") == 0)
4921 return 1;
4922 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4923 the LJM suffix in favor of the JM one. But we will
4924 still accept LJM as a valid suffix for a reasonable
4925 amount of time, just to allow ourselves to debug programs
4926 compiled using an older version of GNAT. */
4927 if (strcmp (str + 3, "LJM") == 0)
4928 return 1;
4929 if (str[3] != 'X')
4930 return 0;
4931 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4932 || str[4] == 'U' || str[4] == 'P')
4933 return 1;
4934 if (str[4] == 'R' && str[5] != 'T')
4935 return 1;
4936 return 0;
4937 }
4938 if (!isdigit (str[2]))
4939 return 0;
4940 for (k = 3; str[k] != '\0'; k += 1)
4941 if (!isdigit (str[k]) && str[k] != '_')
4942 return 0;
4943 return 1;
4944 }
4945 if (str[0] == '$' && isdigit (str[1]))
4946 {
4947 for (k = 2; str[k] != '\0'; k += 1)
4948 if (!isdigit (str[k]) && str[k] != '_')
4949 return 0;
4950 return 1;
4951 }
4952 return 0;
4953 }
4954
4955 /* Return non-zero if the string starting at NAME and ending before
4956 NAME_END contains no capital letters. */
4957
4958 static int
4959 is_valid_name_for_wild_match (const char *name0)
4960 {
4961 const char *decoded_name = ada_decode (name0);
4962 int i;
4963
4964 /* If the decoded name starts with an angle bracket, it means that
4965 NAME0 does not follow the GNAT encoding format. It should then
4966 not be allowed as a possible wild match. */
4967 if (decoded_name[0] == '<')
4968 return 0;
4969
4970 for (i=0; decoded_name[i] != '\0'; i++)
4971 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4972 return 0;
4973
4974 return 1;
4975 }
4976
4977 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4978 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4979 informational suffixes of NAME (i.e., for which is_name_suffix is
4980 true). */
4981
4982 static int
4983 wild_match (const char *patn0, int patn_len, const char *name0)
4984 {
4985 char* match;
4986 const char* start;
4987 start = name0;
4988 while (1)
4989 {
4990 match = strstr (start, patn0);
4991 if (match == NULL)
4992 return 0;
4993 if ((match == name0
4994 || match[-1] == '.'
4995 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4996 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4997 && is_name_suffix (match + patn_len))
4998 return (match == name0 || is_valid_name_for_wild_match (name0));
4999 start = match + 1;
5000 }
5001 }
5002
5003 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5004 vector *defn_symbols, updating the list of symbols in OBSTACKP
5005 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5006 OBJFILE is the section containing BLOCK.
5007 SYMTAB is recorded with each symbol added. */
5008
5009 static void
5010 ada_add_block_symbols (struct obstack *obstackp,
5011 struct block *block, const char *name,
5012 domain_enum domain, struct objfile *objfile,
5013 int wild)
5014 {
5015 struct dict_iterator iter;
5016 int name_len = strlen (name);
5017 /* A matching argument symbol, if any. */
5018 struct symbol *arg_sym;
5019 /* Set true when we find a matching non-argument symbol. */
5020 int found_sym;
5021 struct symbol *sym;
5022
5023 arg_sym = NULL;
5024 found_sym = 0;
5025 if (wild)
5026 {
5027 struct symbol *sym;
5028 ALL_BLOCK_SYMBOLS (block, iter, sym)
5029 {
5030 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5031 SYMBOL_DOMAIN (sym), domain)
5032 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5033 {
5034 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5035 continue;
5036 else if (SYMBOL_IS_ARGUMENT (sym))
5037 arg_sym = sym;
5038 else
5039 {
5040 found_sym = 1;
5041 add_defn_to_vec (obstackp,
5042 fixup_symbol_section (sym, objfile),
5043 block);
5044 }
5045 }
5046 }
5047 }
5048 else
5049 {
5050 ALL_BLOCK_SYMBOLS (block, iter, sym)
5051 {
5052 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5053 SYMBOL_DOMAIN (sym), domain))
5054 {
5055 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5056 if (cmp == 0
5057 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5058 {
5059 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5060 {
5061 if (SYMBOL_IS_ARGUMENT (sym))
5062 arg_sym = sym;
5063 else
5064 {
5065 found_sym = 1;
5066 add_defn_to_vec (obstackp,
5067 fixup_symbol_section (sym, objfile),
5068 block);
5069 }
5070 }
5071 }
5072 }
5073 }
5074 }
5075
5076 if (!found_sym && arg_sym != NULL)
5077 {
5078 add_defn_to_vec (obstackp,
5079 fixup_symbol_section (arg_sym, objfile),
5080 block);
5081 }
5082
5083 if (!wild)
5084 {
5085 arg_sym = NULL;
5086 found_sym = 0;
5087
5088 ALL_BLOCK_SYMBOLS (block, iter, sym)
5089 {
5090 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5091 SYMBOL_DOMAIN (sym), domain))
5092 {
5093 int cmp;
5094
5095 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5096 if (cmp == 0)
5097 {
5098 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5099 if (cmp == 0)
5100 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5101 name_len);
5102 }
5103
5104 if (cmp == 0
5105 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5106 {
5107 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5108 {
5109 if (SYMBOL_IS_ARGUMENT (sym))
5110 arg_sym = sym;
5111 else
5112 {
5113 found_sym = 1;
5114 add_defn_to_vec (obstackp,
5115 fixup_symbol_section (sym, objfile),
5116 block);
5117 }
5118 }
5119 }
5120 }
5121 }
5122
5123 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5124 They aren't parameters, right? */
5125 if (!found_sym && arg_sym != NULL)
5126 {
5127 add_defn_to_vec (obstackp,
5128 fixup_symbol_section (arg_sym, objfile),
5129 block);
5130 }
5131 }
5132 }
5133 \f
5134
5135 /* Symbol Completion */
5136
5137 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5138 name in a form that's appropriate for the completion. The result
5139 does not need to be deallocated, but is only good until the next call.
5140
5141 TEXT_LEN is equal to the length of TEXT.
5142 Perform a wild match if WILD_MATCH is set.
5143 ENCODED should be set if TEXT represents the start of a symbol name
5144 in its encoded form. */
5145
5146 static const char *
5147 symbol_completion_match (const char *sym_name,
5148 const char *text, int text_len,
5149 int wild_match, int encoded)
5150 {
5151 char *result;
5152 const int verbatim_match = (text[0] == '<');
5153 int match = 0;
5154
5155 if (verbatim_match)
5156 {
5157 /* Strip the leading angle bracket. */
5158 text = text + 1;
5159 text_len--;
5160 }
5161
5162 /* First, test against the fully qualified name of the symbol. */
5163
5164 if (strncmp (sym_name, text, text_len) == 0)
5165 match = 1;
5166
5167 if (match && !encoded)
5168 {
5169 /* One needed check before declaring a positive match is to verify
5170 that iff we are doing a verbatim match, the decoded version
5171 of the symbol name starts with '<'. Otherwise, this symbol name
5172 is not a suitable completion. */
5173 const char *sym_name_copy = sym_name;
5174 int has_angle_bracket;
5175
5176 sym_name = ada_decode (sym_name);
5177 has_angle_bracket = (sym_name[0] == '<');
5178 match = (has_angle_bracket == verbatim_match);
5179 sym_name = sym_name_copy;
5180 }
5181
5182 if (match && !verbatim_match)
5183 {
5184 /* When doing non-verbatim match, another check that needs to
5185 be done is to verify that the potentially matching symbol name
5186 does not include capital letters, because the ada-mode would
5187 not be able to understand these symbol names without the
5188 angle bracket notation. */
5189 const char *tmp;
5190
5191 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5192 if (*tmp != '\0')
5193 match = 0;
5194 }
5195
5196 /* Second: Try wild matching... */
5197
5198 if (!match && wild_match)
5199 {
5200 /* Since we are doing wild matching, this means that TEXT
5201 may represent an unqualified symbol name. We therefore must
5202 also compare TEXT against the unqualified name of the symbol. */
5203 sym_name = ada_unqualified_name (ada_decode (sym_name));
5204
5205 if (strncmp (sym_name, text, text_len) == 0)
5206 match = 1;
5207 }
5208
5209 /* Finally: If we found a mach, prepare the result to return. */
5210
5211 if (!match)
5212 return NULL;
5213
5214 if (verbatim_match)
5215 sym_name = add_angle_brackets (sym_name);
5216
5217 if (!encoded)
5218 sym_name = ada_decode (sym_name);
5219
5220 return sym_name;
5221 }
5222
5223 typedef char *char_ptr;
5224 DEF_VEC_P (char_ptr);
5225
5226 /* A companion function to ada_make_symbol_completion_list().
5227 Check if SYM_NAME represents a symbol which name would be suitable
5228 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5229 it is appended at the end of the given string vector SV.
5230
5231 ORIG_TEXT is the string original string from the user command
5232 that needs to be completed. WORD is the entire command on which
5233 completion should be performed. These two parameters are used to
5234 determine which part of the symbol name should be added to the
5235 completion vector.
5236 if WILD_MATCH is set, then wild matching is performed.
5237 ENCODED should be set if TEXT represents a symbol name in its
5238 encoded formed (in which case the completion should also be
5239 encoded). */
5240
5241 static void
5242 symbol_completion_add (VEC(char_ptr) **sv,
5243 const char *sym_name,
5244 const char *text, int text_len,
5245 const char *orig_text, const char *word,
5246 int wild_match, int encoded)
5247 {
5248 const char *match = symbol_completion_match (sym_name, text, text_len,
5249 wild_match, encoded);
5250 char *completion;
5251
5252 if (match == NULL)
5253 return;
5254
5255 /* We found a match, so add the appropriate completion to the given
5256 string vector. */
5257
5258 if (word == orig_text)
5259 {
5260 completion = xmalloc (strlen (match) + 5);
5261 strcpy (completion, match);
5262 }
5263 else if (word > orig_text)
5264 {
5265 /* Return some portion of sym_name. */
5266 completion = xmalloc (strlen (match) + 5);
5267 strcpy (completion, match + (word - orig_text));
5268 }
5269 else
5270 {
5271 /* Return some of ORIG_TEXT plus sym_name. */
5272 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5273 strncpy (completion, word, orig_text - word);
5274 completion[orig_text - word] = '\0';
5275 strcat (completion, match);
5276 }
5277
5278 VEC_safe_push (char_ptr, *sv, completion);
5279 }
5280
5281 /* Return a list of possible symbol names completing TEXT0. The list
5282 is NULL terminated. WORD is the entire command on which completion
5283 is made. */
5284
5285 static char **
5286 ada_make_symbol_completion_list (char *text0, char *word)
5287 {
5288 char *text;
5289 int text_len;
5290 int wild_match;
5291 int encoded;
5292 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5293 struct symbol *sym;
5294 struct symtab *s;
5295 struct partial_symtab *ps;
5296 struct minimal_symbol *msymbol;
5297 struct objfile *objfile;
5298 struct block *b, *surrounding_static_block = 0;
5299 int i;
5300 struct dict_iterator iter;
5301
5302 if (text0[0] == '<')
5303 {
5304 text = xstrdup (text0);
5305 make_cleanup (xfree, text);
5306 text_len = strlen (text);
5307 wild_match = 0;
5308 encoded = 1;
5309 }
5310 else
5311 {
5312 text = xstrdup (ada_encode (text0));
5313 make_cleanup (xfree, text);
5314 text_len = strlen (text);
5315 for (i = 0; i < text_len; i++)
5316 text[i] = tolower (text[i]);
5317
5318 encoded = (strstr (text0, "__") != NULL);
5319 /* If the name contains a ".", then the user is entering a fully
5320 qualified entity name, and the match must not be done in wild
5321 mode. Similarly, if the user wants to complete what looks like
5322 an encoded name, the match must not be done in wild mode. */
5323 wild_match = (strchr (text0, '.') == NULL && !encoded);
5324 }
5325
5326 /* First, look at the partial symtab symbols. */
5327 ALL_PSYMTABS (objfile, ps)
5328 {
5329 struct partial_symbol **psym;
5330
5331 /* If the psymtab's been read in we'll get it when we search
5332 through the blockvector. */
5333 if (ps->readin)
5334 continue;
5335
5336 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5337 psym < (objfile->global_psymbols.list + ps->globals_offset
5338 + ps->n_global_syms); psym++)
5339 {
5340 QUIT;
5341 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5342 text, text_len, text0, word,
5343 wild_match, encoded);
5344 }
5345
5346 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5347 psym < (objfile->static_psymbols.list + ps->statics_offset
5348 + ps->n_static_syms); psym++)
5349 {
5350 QUIT;
5351 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5352 text, text_len, text0, word,
5353 wild_match, encoded);
5354 }
5355 }
5356
5357 /* At this point scan through the misc symbol vectors and add each
5358 symbol you find to the list. Eventually we want to ignore
5359 anything that isn't a text symbol (everything else will be
5360 handled by the psymtab code above). */
5361
5362 ALL_MSYMBOLS (objfile, msymbol)
5363 {
5364 QUIT;
5365 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5366 text, text_len, text0, word, wild_match, encoded);
5367 }
5368
5369 /* Search upwards from currently selected frame (so that we can
5370 complete on local vars. */
5371
5372 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5373 {
5374 if (!BLOCK_SUPERBLOCK (b))
5375 surrounding_static_block = b; /* For elmin of dups */
5376
5377 ALL_BLOCK_SYMBOLS (b, iter, sym)
5378 {
5379 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5380 text, text_len, text0, word,
5381 wild_match, encoded);
5382 }
5383 }
5384
5385 /* Go through the symtabs and check the externs and statics for
5386 symbols which match. */
5387
5388 ALL_SYMTABS (objfile, s)
5389 {
5390 QUIT;
5391 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5392 ALL_BLOCK_SYMBOLS (b, iter, sym)
5393 {
5394 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5395 text, text_len, text0, word,
5396 wild_match, encoded);
5397 }
5398 }
5399
5400 ALL_SYMTABS (objfile, s)
5401 {
5402 QUIT;
5403 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5404 /* Don't do this block twice. */
5405 if (b == surrounding_static_block)
5406 continue;
5407 ALL_BLOCK_SYMBOLS (b, iter, sym)
5408 {
5409 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5410 text, text_len, text0, word,
5411 wild_match, encoded);
5412 }
5413 }
5414
5415 /* Append the closing NULL entry. */
5416 VEC_safe_push (char_ptr, completions, NULL);
5417
5418 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5419 return the copy. It's unfortunate that we have to make a copy
5420 of an array that we're about to destroy, but there is nothing much
5421 we can do about it. Fortunately, it's typically not a very large
5422 array. */
5423 {
5424 const size_t completions_size =
5425 VEC_length (char_ptr, completions) * sizeof (char *);
5426 char **result = malloc (completions_size);
5427
5428 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5429
5430 VEC_free (char_ptr, completions);
5431 return result;
5432 }
5433 }
5434
5435 /* Field Access */
5436
5437 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5438 for tagged types. */
5439
5440 static int
5441 ada_is_dispatch_table_ptr_type (struct type *type)
5442 {
5443 char *name;
5444
5445 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5446 return 0;
5447
5448 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5449 if (name == NULL)
5450 return 0;
5451
5452 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5453 }
5454
5455 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5456 to be invisible to users. */
5457
5458 int
5459 ada_is_ignored_field (struct type *type, int field_num)
5460 {
5461 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5462 return 1;
5463
5464 /* Check the name of that field. */
5465 {
5466 const char *name = TYPE_FIELD_NAME (type, field_num);
5467
5468 /* Anonymous field names should not be printed.
5469 brobecker/2007-02-20: I don't think this can actually happen
5470 but we don't want to print the value of annonymous fields anyway. */
5471 if (name == NULL)
5472 return 1;
5473
5474 /* A field named "_parent" is internally generated by GNAT for
5475 tagged types, and should not be printed either. */
5476 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5477 return 1;
5478 }
5479
5480 /* If this is the dispatch table of a tagged type, then ignore. */
5481 if (ada_is_tagged_type (type, 1)
5482 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5483 return 1;
5484
5485 /* Not a special field, so it should not be ignored. */
5486 return 0;
5487 }
5488
5489 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5490 pointer or reference type whose ultimate target has a tag field. */
5491
5492 int
5493 ada_is_tagged_type (struct type *type, int refok)
5494 {
5495 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5496 }
5497
5498 /* True iff TYPE represents the type of X'Tag */
5499
5500 int
5501 ada_is_tag_type (struct type *type)
5502 {
5503 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5504 return 0;
5505 else
5506 {
5507 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5508 return (name != NULL
5509 && strcmp (name, "ada__tags__dispatch_table") == 0);
5510 }
5511 }
5512
5513 /* The type of the tag on VAL. */
5514
5515 struct type *
5516 ada_tag_type (struct value *val)
5517 {
5518 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5519 }
5520
5521 /* The value of the tag on VAL. */
5522
5523 struct value *
5524 ada_value_tag (struct value *val)
5525 {
5526 return ada_value_struct_elt (val, "_tag", 0);
5527 }
5528
5529 /* The value of the tag on the object of type TYPE whose contents are
5530 saved at VALADDR, if it is non-null, or is at memory address
5531 ADDRESS. */
5532
5533 static struct value *
5534 value_tag_from_contents_and_address (struct type *type,
5535 const gdb_byte *valaddr,
5536 CORE_ADDR address)
5537 {
5538 int tag_byte_offset, dummy1, dummy2;
5539 struct type *tag_type;
5540 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5541 NULL, NULL, NULL))
5542 {
5543 const gdb_byte *valaddr1 = ((valaddr == NULL)
5544 ? NULL
5545 : valaddr + tag_byte_offset);
5546 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5547
5548 return value_from_contents_and_address (tag_type, valaddr1, address1);
5549 }
5550 return NULL;
5551 }
5552
5553 static struct type *
5554 type_from_tag (struct value *tag)
5555 {
5556 const char *type_name = ada_tag_name (tag);
5557 if (type_name != NULL)
5558 return ada_find_any_type (ada_encode (type_name));
5559 return NULL;
5560 }
5561
5562 struct tag_args
5563 {
5564 struct value *tag;
5565 char *name;
5566 };
5567
5568
5569 static int ada_tag_name_1 (void *);
5570 static int ada_tag_name_2 (struct tag_args *);
5571
5572 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5573 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5574 The value stored in ARGS->name is valid until the next call to
5575 ada_tag_name_1. */
5576
5577 static int
5578 ada_tag_name_1 (void *args0)
5579 {
5580 struct tag_args *args = (struct tag_args *) args0;
5581 static char name[1024];
5582 char *p;
5583 struct value *val;
5584 args->name = NULL;
5585 val = ada_value_struct_elt (args->tag, "tsd", 1);
5586 if (val == NULL)
5587 return ada_tag_name_2 (args);
5588 val = ada_value_struct_elt (val, "expanded_name", 1);
5589 if (val == NULL)
5590 return 0;
5591 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5592 for (p = name; *p != '\0'; p += 1)
5593 if (isalpha (*p))
5594 *p = tolower (*p);
5595 args->name = name;
5596 return 0;
5597 }
5598
5599 /* Utility function for ada_tag_name_1 that tries the second
5600 representation for the dispatch table (in which there is no
5601 explicit 'tsd' field in the referent of the tag pointer, and instead
5602 the tsd pointer is stored just before the dispatch table. */
5603
5604 static int
5605 ada_tag_name_2 (struct tag_args *args)
5606 {
5607 struct type *info_type;
5608 static char name[1024];
5609 char *p;
5610 struct value *val, *valp;
5611
5612 args->name = NULL;
5613 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5614 if (info_type == NULL)
5615 return 0;
5616 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5617 valp = value_cast (info_type, args->tag);
5618 if (valp == NULL)
5619 return 0;
5620 val = value_ind (value_ptradd (valp, -1));
5621 if (val == NULL)
5622 return 0;
5623 val = ada_value_struct_elt (val, "expanded_name", 1);
5624 if (val == NULL)
5625 return 0;
5626 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5627 for (p = name; *p != '\0'; p += 1)
5628 if (isalpha (*p))
5629 *p = tolower (*p);
5630 args->name = name;
5631 return 0;
5632 }
5633
5634 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5635 * a C string. */
5636
5637 const char *
5638 ada_tag_name (struct value *tag)
5639 {
5640 struct tag_args args;
5641 if (!ada_is_tag_type (value_type (tag)))
5642 return NULL;
5643 args.tag = tag;
5644 args.name = NULL;
5645 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5646 return args.name;
5647 }
5648
5649 /* The parent type of TYPE, or NULL if none. */
5650
5651 struct type *
5652 ada_parent_type (struct type *type)
5653 {
5654 int i;
5655
5656 type = ada_check_typedef (type);
5657
5658 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5659 return NULL;
5660
5661 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5662 if (ada_is_parent_field (type, i))
5663 {
5664 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5665
5666 /* If the _parent field is a pointer, then dereference it. */
5667 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5668 parent_type = TYPE_TARGET_TYPE (parent_type);
5669 /* If there is a parallel XVS type, get the actual base type. */
5670 parent_type = ada_get_base_type (parent_type);
5671
5672 return ada_check_typedef (parent_type);
5673 }
5674
5675 return NULL;
5676 }
5677
5678 /* True iff field number FIELD_NUM of structure type TYPE contains the
5679 parent-type (inherited) fields of a derived type. Assumes TYPE is
5680 a structure type with at least FIELD_NUM+1 fields. */
5681
5682 int
5683 ada_is_parent_field (struct type *type, int field_num)
5684 {
5685 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5686 return (name != NULL
5687 && (strncmp (name, "PARENT", 6) == 0
5688 || strncmp (name, "_parent", 7) == 0));
5689 }
5690
5691 /* True iff field number FIELD_NUM of structure type TYPE is a
5692 transparent wrapper field (which should be silently traversed when doing
5693 field selection and flattened when printing). Assumes TYPE is a
5694 structure type with at least FIELD_NUM+1 fields. Such fields are always
5695 structures. */
5696
5697 int
5698 ada_is_wrapper_field (struct type *type, int field_num)
5699 {
5700 const char *name = TYPE_FIELD_NAME (type, field_num);
5701 return (name != NULL
5702 && (strncmp (name, "PARENT", 6) == 0
5703 || strcmp (name, "REP") == 0
5704 || strncmp (name, "_parent", 7) == 0
5705 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5706 }
5707
5708 /* True iff field number FIELD_NUM of structure or union type TYPE
5709 is a variant wrapper. Assumes TYPE is a structure type with at least
5710 FIELD_NUM+1 fields. */
5711
5712 int
5713 ada_is_variant_part (struct type *type, int field_num)
5714 {
5715 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5716 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5717 || (is_dynamic_field (type, field_num)
5718 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5719 == TYPE_CODE_UNION)));
5720 }
5721
5722 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5723 whose discriminants are contained in the record type OUTER_TYPE,
5724 returns the type of the controlling discriminant for the variant.
5725 May return NULL if the type could not be found. */
5726
5727 struct type *
5728 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5729 {
5730 char *name = ada_variant_discrim_name (var_type);
5731 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5732 }
5733
5734 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5735 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5736 represents a 'when others' clause; otherwise 0. */
5737
5738 int
5739 ada_is_others_clause (struct type *type, int field_num)
5740 {
5741 const char *name = TYPE_FIELD_NAME (type, field_num);
5742 return (name != NULL && name[0] == 'O');
5743 }
5744
5745 /* Assuming that TYPE0 is the type of the variant part of a record,
5746 returns the name of the discriminant controlling the variant.
5747 The value is valid until the next call to ada_variant_discrim_name. */
5748
5749 char *
5750 ada_variant_discrim_name (struct type *type0)
5751 {
5752 static char *result = NULL;
5753 static size_t result_len = 0;
5754 struct type *type;
5755 const char *name;
5756 const char *discrim_end;
5757 const char *discrim_start;
5758
5759 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5760 type = TYPE_TARGET_TYPE (type0);
5761 else
5762 type = type0;
5763
5764 name = ada_type_name (type);
5765
5766 if (name == NULL || name[0] == '\000')
5767 return "";
5768
5769 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5770 discrim_end -= 1)
5771 {
5772 if (strncmp (discrim_end, "___XVN", 6) == 0)
5773 break;
5774 }
5775 if (discrim_end == name)
5776 return "";
5777
5778 for (discrim_start = discrim_end; discrim_start != name + 3;
5779 discrim_start -= 1)
5780 {
5781 if (discrim_start == name + 1)
5782 return "";
5783 if ((discrim_start > name + 3
5784 && strncmp (discrim_start - 3, "___", 3) == 0)
5785 || discrim_start[-1] == '.')
5786 break;
5787 }
5788
5789 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5790 strncpy (result, discrim_start, discrim_end - discrim_start);
5791 result[discrim_end - discrim_start] = '\0';
5792 return result;
5793 }
5794
5795 /* Scan STR for a subtype-encoded number, beginning at position K.
5796 Put the position of the character just past the number scanned in
5797 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5798 Return 1 if there was a valid number at the given position, and 0
5799 otherwise. A "subtype-encoded" number consists of the absolute value
5800 in decimal, followed by the letter 'm' to indicate a negative number.
5801 Assumes 0m does not occur. */
5802
5803 int
5804 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5805 {
5806 ULONGEST RU;
5807
5808 if (!isdigit (str[k]))
5809 return 0;
5810
5811 /* Do it the hard way so as not to make any assumption about
5812 the relationship of unsigned long (%lu scan format code) and
5813 LONGEST. */
5814 RU = 0;
5815 while (isdigit (str[k]))
5816 {
5817 RU = RU * 10 + (str[k] - '0');
5818 k += 1;
5819 }
5820
5821 if (str[k] == 'm')
5822 {
5823 if (R != NULL)
5824 *R = (-(LONGEST) (RU - 1)) - 1;
5825 k += 1;
5826 }
5827 else if (R != NULL)
5828 *R = (LONGEST) RU;
5829
5830 /* NOTE on the above: Technically, C does not say what the results of
5831 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5832 number representable as a LONGEST (although either would probably work
5833 in most implementations). When RU>0, the locution in the then branch
5834 above is always equivalent to the negative of RU. */
5835
5836 if (new_k != NULL)
5837 *new_k = k;
5838 return 1;
5839 }
5840
5841 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5842 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5843 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5844
5845 int
5846 ada_in_variant (LONGEST val, struct type *type, int field_num)
5847 {
5848 const char *name = TYPE_FIELD_NAME (type, field_num);
5849 int p;
5850
5851 p = 0;
5852 while (1)
5853 {
5854 switch (name[p])
5855 {
5856 case '\0':
5857 return 0;
5858 case 'S':
5859 {
5860 LONGEST W;
5861 if (!ada_scan_number (name, p + 1, &W, &p))
5862 return 0;
5863 if (val == W)
5864 return 1;
5865 break;
5866 }
5867 case 'R':
5868 {
5869 LONGEST L, U;
5870 if (!ada_scan_number (name, p + 1, &L, &p)
5871 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5872 return 0;
5873 if (val >= L && val <= U)
5874 return 1;
5875 break;
5876 }
5877 case 'O':
5878 return 1;
5879 default:
5880 return 0;
5881 }
5882 }
5883 }
5884
5885 /* FIXME: Lots of redundancy below. Try to consolidate. */
5886
5887 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5888 ARG_TYPE, extract and return the value of one of its (non-static)
5889 fields. FIELDNO says which field. Differs from value_primitive_field
5890 only in that it can handle packed values of arbitrary type. */
5891
5892 static struct value *
5893 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5894 struct type *arg_type)
5895 {
5896 struct type *type;
5897
5898 arg_type = ada_check_typedef (arg_type);
5899 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5900
5901 /* Handle packed fields. */
5902
5903 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5904 {
5905 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5906 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5907
5908 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5909 offset + bit_pos / 8,
5910 bit_pos % 8, bit_size, type);
5911 }
5912 else
5913 return value_primitive_field (arg1, offset, fieldno, arg_type);
5914 }
5915
5916 /* Find field with name NAME in object of type TYPE. If found,
5917 set the following for each argument that is non-null:
5918 - *FIELD_TYPE_P to the field's type;
5919 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5920 an object of that type;
5921 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5922 - *BIT_SIZE_P to its size in bits if the field is packed, and
5923 0 otherwise;
5924 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5925 fields up to but not including the desired field, or by the total
5926 number of fields if not found. A NULL value of NAME never
5927 matches; the function just counts visible fields in this case.
5928
5929 Returns 1 if found, 0 otherwise. */
5930
5931 static int
5932 find_struct_field (char *name, struct type *type, int offset,
5933 struct type **field_type_p,
5934 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5935 int *index_p)
5936 {
5937 int i;
5938
5939 type = ada_check_typedef (type);
5940
5941 if (field_type_p != NULL)
5942 *field_type_p = NULL;
5943 if (byte_offset_p != NULL)
5944 *byte_offset_p = 0;
5945 if (bit_offset_p != NULL)
5946 *bit_offset_p = 0;
5947 if (bit_size_p != NULL)
5948 *bit_size_p = 0;
5949
5950 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5951 {
5952 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5953 int fld_offset = offset + bit_pos / 8;
5954 char *t_field_name = TYPE_FIELD_NAME (type, i);
5955
5956 if (t_field_name == NULL)
5957 continue;
5958
5959 else if (name != NULL && field_name_match (t_field_name, name))
5960 {
5961 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5962 if (field_type_p != NULL)
5963 *field_type_p = TYPE_FIELD_TYPE (type, i);
5964 if (byte_offset_p != NULL)
5965 *byte_offset_p = fld_offset;
5966 if (bit_offset_p != NULL)
5967 *bit_offset_p = bit_pos % 8;
5968 if (bit_size_p != NULL)
5969 *bit_size_p = bit_size;
5970 return 1;
5971 }
5972 else if (ada_is_wrapper_field (type, i))
5973 {
5974 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5975 field_type_p, byte_offset_p, bit_offset_p,
5976 bit_size_p, index_p))
5977 return 1;
5978 }
5979 else if (ada_is_variant_part (type, i))
5980 {
5981 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5982 fixed type?? */
5983 int j;
5984 struct type *field_type
5985 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5986
5987 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5988 {
5989 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5990 fld_offset
5991 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5992 field_type_p, byte_offset_p,
5993 bit_offset_p, bit_size_p, index_p))
5994 return 1;
5995 }
5996 }
5997 else if (index_p != NULL)
5998 *index_p += 1;
5999 }
6000 return 0;
6001 }
6002
6003 /* Number of user-visible fields in record type TYPE. */
6004
6005 static int
6006 num_visible_fields (struct type *type)
6007 {
6008 int n;
6009 n = 0;
6010 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6011 return n;
6012 }
6013
6014 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6015 and search in it assuming it has (class) type TYPE.
6016 If found, return value, else return NULL.
6017
6018 Searches recursively through wrapper fields (e.g., '_parent'). */
6019
6020 static struct value *
6021 ada_search_struct_field (char *name, struct value *arg, int offset,
6022 struct type *type)
6023 {
6024 int i;
6025 type = ada_check_typedef (type);
6026
6027 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6028 {
6029 char *t_field_name = TYPE_FIELD_NAME (type, i);
6030
6031 if (t_field_name == NULL)
6032 continue;
6033
6034 else if (field_name_match (t_field_name, name))
6035 return ada_value_primitive_field (arg, offset, i, type);
6036
6037 else if (ada_is_wrapper_field (type, i))
6038 {
6039 struct value *v = /* Do not let indent join lines here. */
6040 ada_search_struct_field (name, arg,
6041 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6042 TYPE_FIELD_TYPE (type, i));
6043 if (v != NULL)
6044 return v;
6045 }
6046
6047 else if (ada_is_variant_part (type, i))
6048 {
6049 /* PNH: Do we ever get here? See find_struct_field. */
6050 int j;
6051 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6052 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6053
6054 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6055 {
6056 struct value *v = ada_search_struct_field /* Force line break. */
6057 (name, arg,
6058 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6059 TYPE_FIELD_TYPE (field_type, j));
6060 if (v != NULL)
6061 return v;
6062 }
6063 }
6064 }
6065 return NULL;
6066 }
6067
6068 static struct value *ada_index_struct_field_1 (int *, struct value *,
6069 int, struct type *);
6070
6071
6072 /* Return field #INDEX in ARG, where the index is that returned by
6073 * find_struct_field through its INDEX_P argument. Adjust the address
6074 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6075 * If found, return value, else return NULL. */
6076
6077 static struct value *
6078 ada_index_struct_field (int index, struct value *arg, int offset,
6079 struct type *type)
6080 {
6081 return ada_index_struct_field_1 (&index, arg, offset, type);
6082 }
6083
6084
6085 /* Auxiliary function for ada_index_struct_field. Like
6086 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6087 * *INDEX_P. */
6088
6089 static struct value *
6090 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6091 struct type *type)
6092 {
6093 int i;
6094 type = ada_check_typedef (type);
6095
6096 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6097 {
6098 if (TYPE_FIELD_NAME (type, i) == NULL)
6099 continue;
6100 else if (ada_is_wrapper_field (type, i))
6101 {
6102 struct value *v = /* Do not let indent join lines here. */
6103 ada_index_struct_field_1 (index_p, arg,
6104 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6105 TYPE_FIELD_TYPE (type, i));
6106 if (v != NULL)
6107 return v;
6108 }
6109
6110 else if (ada_is_variant_part (type, i))
6111 {
6112 /* PNH: Do we ever get here? See ada_search_struct_field,
6113 find_struct_field. */
6114 error (_("Cannot assign this kind of variant record"));
6115 }
6116 else if (*index_p == 0)
6117 return ada_value_primitive_field (arg, offset, i, type);
6118 else
6119 *index_p -= 1;
6120 }
6121 return NULL;
6122 }
6123
6124 /* Given ARG, a value of type (pointer or reference to a)*
6125 structure/union, extract the component named NAME from the ultimate
6126 target structure/union and return it as a value with its
6127 appropriate type.
6128
6129 The routine searches for NAME among all members of the structure itself
6130 and (recursively) among all members of any wrapper members
6131 (e.g., '_parent').
6132
6133 If NO_ERR, then simply return NULL in case of error, rather than
6134 calling error. */
6135
6136 struct value *
6137 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6138 {
6139 struct type *t, *t1;
6140 struct value *v;
6141
6142 v = NULL;
6143 t1 = t = ada_check_typedef (value_type (arg));
6144 if (TYPE_CODE (t) == TYPE_CODE_REF)
6145 {
6146 t1 = TYPE_TARGET_TYPE (t);
6147 if (t1 == NULL)
6148 goto BadValue;
6149 t1 = ada_check_typedef (t1);
6150 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6151 {
6152 arg = coerce_ref (arg);
6153 t = t1;
6154 }
6155 }
6156
6157 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6158 {
6159 t1 = TYPE_TARGET_TYPE (t);
6160 if (t1 == NULL)
6161 goto BadValue;
6162 t1 = ada_check_typedef (t1);
6163 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6164 {
6165 arg = value_ind (arg);
6166 t = t1;
6167 }
6168 else
6169 break;
6170 }
6171
6172 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6173 goto BadValue;
6174
6175 if (t1 == t)
6176 v = ada_search_struct_field (name, arg, 0, t);
6177 else
6178 {
6179 int bit_offset, bit_size, byte_offset;
6180 struct type *field_type;
6181 CORE_ADDR address;
6182
6183 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6184 address = value_as_address (arg);
6185 else
6186 address = unpack_pointer (t, value_contents (arg));
6187
6188 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6189 if (find_struct_field (name, t1, 0,
6190 &field_type, &byte_offset, &bit_offset,
6191 &bit_size, NULL))
6192 {
6193 if (bit_size != 0)
6194 {
6195 if (TYPE_CODE (t) == TYPE_CODE_REF)
6196 arg = ada_coerce_ref (arg);
6197 else
6198 arg = ada_value_ind (arg);
6199 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6200 bit_offset, bit_size,
6201 field_type);
6202 }
6203 else
6204 v = value_at_lazy (field_type, address + byte_offset);
6205 }
6206 }
6207
6208 if (v != NULL || no_err)
6209 return v;
6210 else
6211 error (_("There is no member named %s."), name);
6212
6213 BadValue:
6214 if (no_err)
6215 return NULL;
6216 else
6217 error (_("Attempt to extract a component of a value that is not a record."));
6218 }
6219
6220 /* Given a type TYPE, look up the type of the component of type named NAME.
6221 If DISPP is non-null, add its byte displacement from the beginning of a
6222 structure (pointed to by a value) of type TYPE to *DISPP (does not
6223 work for packed fields).
6224
6225 Matches any field whose name has NAME as a prefix, possibly
6226 followed by "___".
6227
6228 TYPE can be either a struct or union. If REFOK, TYPE may also
6229 be a (pointer or reference)+ to a struct or union, and the
6230 ultimate target type will be searched.
6231
6232 Looks recursively into variant clauses and parent types.
6233
6234 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6235 TYPE is not a type of the right kind. */
6236
6237 static struct type *
6238 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6239 int noerr, int *dispp)
6240 {
6241 int i;
6242
6243 if (name == NULL)
6244 goto BadName;
6245
6246 if (refok && type != NULL)
6247 while (1)
6248 {
6249 type = ada_check_typedef (type);
6250 if (TYPE_CODE (type) != TYPE_CODE_PTR
6251 && TYPE_CODE (type) != TYPE_CODE_REF)
6252 break;
6253 type = TYPE_TARGET_TYPE (type);
6254 }
6255
6256 if (type == NULL
6257 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6258 && TYPE_CODE (type) != TYPE_CODE_UNION))
6259 {
6260 if (noerr)
6261 return NULL;
6262 else
6263 {
6264 target_terminal_ours ();
6265 gdb_flush (gdb_stdout);
6266 if (type == NULL)
6267 error (_("Type (null) is not a structure or union type"));
6268 else
6269 {
6270 /* XXX: type_sprint */
6271 fprintf_unfiltered (gdb_stderr, _("Type "));
6272 type_print (type, "", gdb_stderr, -1);
6273 error (_(" is not a structure or union type"));
6274 }
6275 }
6276 }
6277
6278 type = to_static_fixed_type (type);
6279
6280 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6281 {
6282 char *t_field_name = TYPE_FIELD_NAME (type, i);
6283 struct type *t;
6284 int disp;
6285
6286 if (t_field_name == NULL)
6287 continue;
6288
6289 else if (field_name_match (t_field_name, name))
6290 {
6291 if (dispp != NULL)
6292 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6293 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6294 }
6295
6296 else if (ada_is_wrapper_field (type, i))
6297 {
6298 disp = 0;
6299 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6300 0, 1, &disp);
6301 if (t != NULL)
6302 {
6303 if (dispp != NULL)
6304 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6305 return t;
6306 }
6307 }
6308
6309 else if (ada_is_variant_part (type, i))
6310 {
6311 int j;
6312 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6313
6314 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6315 {
6316 /* FIXME pnh 2008/01/26: We check for a field that is
6317 NOT wrapped in a struct, since the compiler sometimes
6318 generates these for unchecked variant types. Revisit
6319 if the compiler changes this practice. */
6320 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6321 disp = 0;
6322 if (v_field_name != NULL
6323 && field_name_match (v_field_name, name))
6324 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6325 else
6326 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6327 name, 0, 1, &disp);
6328
6329 if (t != NULL)
6330 {
6331 if (dispp != NULL)
6332 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6333 return t;
6334 }
6335 }
6336 }
6337
6338 }
6339
6340 BadName:
6341 if (!noerr)
6342 {
6343 target_terminal_ours ();
6344 gdb_flush (gdb_stdout);
6345 if (name == NULL)
6346 {
6347 /* XXX: type_sprint */
6348 fprintf_unfiltered (gdb_stderr, _("Type "));
6349 type_print (type, "", gdb_stderr, -1);
6350 error (_(" has no component named <null>"));
6351 }
6352 else
6353 {
6354 /* XXX: type_sprint */
6355 fprintf_unfiltered (gdb_stderr, _("Type "));
6356 type_print (type, "", gdb_stderr, -1);
6357 error (_(" has no component named %s"), name);
6358 }
6359 }
6360
6361 return NULL;
6362 }
6363
6364 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6365 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6366 represents an unchecked union (that is, the variant part of a
6367 record that is named in an Unchecked_Union pragma). */
6368
6369 static int
6370 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6371 {
6372 char *discrim_name = ada_variant_discrim_name (var_type);
6373 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6374 == NULL);
6375 }
6376
6377
6378 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6379 within a value of type OUTER_TYPE that is stored in GDB at
6380 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6381 numbering from 0) is applicable. Returns -1 if none are. */
6382
6383 int
6384 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6385 const gdb_byte *outer_valaddr)
6386 {
6387 int others_clause;
6388 int i;
6389 char *discrim_name = ada_variant_discrim_name (var_type);
6390 struct value *outer;
6391 struct value *discrim;
6392 LONGEST discrim_val;
6393
6394 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6395 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6396 if (discrim == NULL)
6397 return -1;
6398 discrim_val = value_as_long (discrim);
6399
6400 others_clause = -1;
6401 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6402 {
6403 if (ada_is_others_clause (var_type, i))
6404 others_clause = i;
6405 else if (ada_in_variant (discrim_val, var_type, i))
6406 return i;
6407 }
6408
6409 return others_clause;
6410 }
6411 \f
6412
6413
6414 /* Dynamic-Sized Records */
6415
6416 /* Strategy: The type ostensibly attached to a value with dynamic size
6417 (i.e., a size that is not statically recorded in the debugging
6418 data) does not accurately reflect the size or layout of the value.
6419 Our strategy is to convert these values to values with accurate,
6420 conventional types that are constructed on the fly. */
6421
6422 /* There is a subtle and tricky problem here. In general, we cannot
6423 determine the size of dynamic records without its data. However,
6424 the 'struct value' data structure, which GDB uses to represent
6425 quantities in the inferior process (the target), requires the size
6426 of the type at the time of its allocation in order to reserve space
6427 for GDB's internal copy of the data. That's why the
6428 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6429 rather than struct value*s.
6430
6431 However, GDB's internal history variables ($1, $2, etc.) are
6432 struct value*s containing internal copies of the data that are not, in
6433 general, the same as the data at their corresponding addresses in
6434 the target. Fortunately, the types we give to these values are all
6435 conventional, fixed-size types (as per the strategy described
6436 above), so that we don't usually have to perform the
6437 'to_fixed_xxx_type' conversions to look at their values.
6438 Unfortunately, there is one exception: if one of the internal
6439 history variables is an array whose elements are unconstrained
6440 records, then we will need to create distinct fixed types for each
6441 element selected. */
6442
6443 /* The upshot of all of this is that many routines take a (type, host
6444 address, target address) triple as arguments to represent a value.
6445 The host address, if non-null, is supposed to contain an internal
6446 copy of the relevant data; otherwise, the program is to consult the
6447 target at the target address. */
6448
6449 /* Assuming that VAL0 represents a pointer value, the result of
6450 dereferencing it. Differs from value_ind in its treatment of
6451 dynamic-sized types. */
6452
6453 struct value *
6454 ada_value_ind (struct value *val0)
6455 {
6456 struct value *val = unwrap_value (value_ind (val0));
6457 return ada_to_fixed_value (val);
6458 }
6459
6460 /* The value resulting from dereferencing any "reference to"
6461 qualifiers on VAL0. */
6462
6463 static struct value *
6464 ada_coerce_ref (struct value *val0)
6465 {
6466 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6467 {
6468 struct value *val = val0;
6469 val = coerce_ref (val);
6470 val = unwrap_value (val);
6471 return ada_to_fixed_value (val);
6472 }
6473 else
6474 return val0;
6475 }
6476
6477 /* Return OFF rounded upward if necessary to a multiple of
6478 ALIGNMENT (a power of 2). */
6479
6480 static unsigned int
6481 align_value (unsigned int off, unsigned int alignment)
6482 {
6483 return (off + alignment - 1) & ~(alignment - 1);
6484 }
6485
6486 /* Return the bit alignment required for field #F of template type TYPE. */
6487
6488 static unsigned int
6489 field_alignment (struct type *type, int f)
6490 {
6491 const char *name = TYPE_FIELD_NAME (type, f);
6492 int len;
6493 int align_offset;
6494
6495 /* The field name should never be null, unless the debugging information
6496 is somehow malformed. In this case, we assume the field does not
6497 require any alignment. */
6498 if (name == NULL)
6499 return 1;
6500
6501 len = strlen (name);
6502
6503 if (!isdigit (name[len - 1]))
6504 return 1;
6505
6506 if (isdigit (name[len - 2]))
6507 align_offset = len - 2;
6508 else
6509 align_offset = len - 1;
6510
6511 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6512 return TARGET_CHAR_BIT;
6513
6514 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6515 }
6516
6517 /* Find a symbol named NAME. Ignores ambiguity. */
6518
6519 struct symbol *
6520 ada_find_any_symbol (const char *name)
6521 {
6522 struct symbol *sym;
6523
6524 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6525 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6526 return sym;
6527
6528 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6529 return sym;
6530 }
6531
6532 /* Find a type named NAME. Ignores ambiguity. This routine will look
6533 solely for types defined by debug info, it will not search the GDB
6534 primitive types. */
6535
6536 struct type *
6537 ada_find_any_type (const char *name)
6538 {
6539 struct symbol *sym = ada_find_any_symbol (name);
6540
6541 if (sym != NULL)
6542 return SYMBOL_TYPE (sym);
6543
6544 return NULL;
6545 }
6546
6547 /* Given NAME and an associated BLOCK, search all symbols for
6548 NAME suffixed with "___XR", which is the ``renaming'' symbol
6549 associated to NAME. Return this symbol if found, return
6550 NULL otherwise. */
6551
6552 struct symbol *
6553 ada_find_renaming_symbol (const char *name, struct block *block)
6554 {
6555 struct symbol *sym;
6556
6557 sym = find_old_style_renaming_symbol (name, block);
6558
6559 if (sym != NULL)
6560 return sym;
6561
6562 /* Not right yet. FIXME pnh 7/20/2007. */
6563 sym = ada_find_any_symbol (name);
6564 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6565 return sym;
6566 else
6567 return NULL;
6568 }
6569
6570 static struct symbol *
6571 find_old_style_renaming_symbol (const char *name, struct block *block)
6572 {
6573 const struct symbol *function_sym = block_linkage_function (block);
6574 char *rename;
6575
6576 if (function_sym != NULL)
6577 {
6578 /* If the symbol is defined inside a function, NAME is not fully
6579 qualified. This means we need to prepend the function name
6580 as well as adding the ``___XR'' suffix to build the name of
6581 the associated renaming symbol. */
6582 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6583 /* Function names sometimes contain suffixes used
6584 for instance to qualify nested subprograms. When building
6585 the XR type name, we need to make sure that this suffix is
6586 not included. So do not include any suffix in the function
6587 name length below. */
6588 int function_name_len = ada_name_prefix_len (function_name);
6589 const int rename_len = function_name_len + 2 /* "__" */
6590 + strlen (name) + 6 /* "___XR\0" */ ;
6591
6592 /* Strip the suffix if necessary. */
6593 ada_remove_trailing_digits (function_name, &function_name_len);
6594 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6595 ada_remove_Xbn_suffix (function_name, &function_name_len);
6596
6597 /* Library-level functions are a special case, as GNAT adds
6598 a ``_ada_'' prefix to the function name to avoid namespace
6599 pollution. However, the renaming symbols themselves do not
6600 have this prefix, so we need to skip this prefix if present. */
6601 if (function_name_len > 5 /* "_ada_" */
6602 && strstr (function_name, "_ada_") == function_name)
6603 {
6604 function_name += 5;
6605 function_name_len -= 5;
6606 }
6607
6608 rename = (char *) alloca (rename_len * sizeof (char));
6609 strncpy (rename, function_name, function_name_len);
6610 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6611 "__%s___XR", name);
6612 }
6613 else
6614 {
6615 const int rename_len = strlen (name) + 6;
6616 rename = (char *) alloca (rename_len * sizeof (char));
6617 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6618 }
6619
6620 return ada_find_any_symbol (rename);
6621 }
6622
6623 /* Because of GNAT encoding conventions, several GDB symbols may match a
6624 given type name. If the type denoted by TYPE0 is to be preferred to
6625 that of TYPE1 for purposes of type printing, return non-zero;
6626 otherwise return 0. */
6627
6628 int
6629 ada_prefer_type (struct type *type0, struct type *type1)
6630 {
6631 if (type1 == NULL)
6632 return 1;
6633 else if (type0 == NULL)
6634 return 0;
6635 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6636 return 1;
6637 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6638 return 0;
6639 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6640 return 1;
6641 else if (ada_is_constrained_packed_array_type (type0))
6642 return 1;
6643 else if (ada_is_array_descriptor_type (type0)
6644 && !ada_is_array_descriptor_type (type1))
6645 return 1;
6646 else
6647 {
6648 const char *type0_name = type_name_no_tag (type0);
6649 const char *type1_name = type_name_no_tag (type1);
6650
6651 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6652 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6653 return 1;
6654 }
6655 return 0;
6656 }
6657
6658 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6659 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6660
6661 char *
6662 ada_type_name (struct type *type)
6663 {
6664 if (type == NULL)
6665 return NULL;
6666 else if (TYPE_NAME (type) != NULL)
6667 return TYPE_NAME (type);
6668 else
6669 return TYPE_TAG_NAME (type);
6670 }
6671
6672 /* Search the list of "descriptive" types associated to TYPE for a type
6673 whose name is NAME. */
6674
6675 static struct type *
6676 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6677 {
6678 struct type *result;
6679
6680 /* If there no descriptive-type info, then there is no parallel type
6681 to be found. */
6682 if (!HAVE_GNAT_AUX_INFO (type))
6683 return NULL;
6684
6685 result = TYPE_DESCRIPTIVE_TYPE (type);
6686 while (result != NULL)
6687 {
6688 char *result_name = ada_type_name (result);
6689
6690 if (result_name == NULL)
6691 {
6692 warning (_("unexpected null name on descriptive type"));
6693 return NULL;
6694 }
6695
6696 /* If the names match, stop. */
6697 if (strcmp (result_name, name) == 0)
6698 break;
6699
6700 /* Otherwise, look at the next item on the list, if any. */
6701 if (HAVE_GNAT_AUX_INFO (result))
6702 result = TYPE_DESCRIPTIVE_TYPE (result);
6703 else
6704 result = NULL;
6705 }
6706
6707 /* If we didn't find a match, see whether this is a packed array. With
6708 older compilers, the descriptive type information is either absent or
6709 irrelevant when it comes to packed arrays so the above lookup fails.
6710 Fall back to using a parallel lookup by name in this case. */
6711 if (result == NULL && ada_is_packed_array_type (type))
6712 return ada_find_any_type (name);
6713
6714 return result;
6715 }
6716
6717 /* Find a parallel type to TYPE with the specified NAME, using the
6718 descriptive type taken from the debugging information, if available,
6719 and otherwise using the (slower) name-based method. */
6720
6721 static struct type *
6722 ada_find_parallel_type_with_name (struct type *type, const char *name)
6723 {
6724 struct type *result = NULL;
6725
6726 if (HAVE_GNAT_AUX_INFO (type))
6727 result = find_parallel_type_by_descriptive_type (type, name);
6728 else
6729 result = ada_find_any_type (name);
6730
6731 return result;
6732 }
6733
6734 /* Same as above, but specify the name of the parallel type by appending
6735 SUFFIX to the name of TYPE. */
6736
6737 struct type *
6738 ada_find_parallel_type (struct type *type, const char *suffix)
6739 {
6740 char *name, *typename = ada_type_name (type);
6741 int len;
6742
6743 if (typename == NULL)
6744 return NULL;
6745
6746 len = strlen (typename);
6747
6748 name = (char *) alloca (len + strlen (suffix) + 1);
6749
6750 strcpy (name, typename);
6751 strcpy (name + len, suffix);
6752
6753 return ada_find_parallel_type_with_name (type, name);
6754 }
6755
6756 /* If TYPE is a variable-size record type, return the corresponding template
6757 type describing its fields. Otherwise, return NULL. */
6758
6759 static struct type *
6760 dynamic_template_type (struct type *type)
6761 {
6762 type = ada_check_typedef (type);
6763
6764 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6765 || ada_type_name (type) == NULL)
6766 return NULL;
6767 else
6768 {
6769 int len = strlen (ada_type_name (type));
6770 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6771 return type;
6772 else
6773 return ada_find_parallel_type (type, "___XVE");
6774 }
6775 }
6776
6777 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6778 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6779
6780 static int
6781 is_dynamic_field (struct type *templ_type, int field_num)
6782 {
6783 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6784 return name != NULL
6785 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6786 && strstr (name, "___XVL") != NULL;
6787 }
6788
6789 /* The index of the variant field of TYPE, or -1 if TYPE does not
6790 represent a variant record type. */
6791
6792 static int
6793 variant_field_index (struct type *type)
6794 {
6795 int f;
6796
6797 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6798 return -1;
6799
6800 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6801 {
6802 if (ada_is_variant_part (type, f))
6803 return f;
6804 }
6805 return -1;
6806 }
6807
6808 /* A record type with no fields. */
6809
6810 static struct type *
6811 empty_record (struct type *template)
6812 {
6813 struct type *type = alloc_type_copy (template);
6814 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6815 TYPE_NFIELDS (type) = 0;
6816 TYPE_FIELDS (type) = NULL;
6817 INIT_CPLUS_SPECIFIC (type);
6818 TYPE_NAME (type) = "<empty>";
6819 TYPE_TAG_NAME (type) = NULL;
6820 TYPE_LENGTH (type) = 0;
6821 return type;
6822 }
6823
6824 /* An ordinary record type (with fixed-length fields) that describes
6825 the value of type TYPE at VALADDR or ADDRESS (see comments at
6826 the beginning of this section) VAL according to GNAT conventions.
6827 DVAL0 should describe the (portion of a) record that contains any
6828 necessary discriminants. It should be NULL if value_type (VAL) is
6829 an outer-level type (i.e., as opposed to a branch of a variant.) A
6830 variant field (unless unchecked) is replaced by a particular branch
6831 of the variant.
6832
6833 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6834 length are not statically known are discarded. As a consequence,
6835 VALADDR, ADDRESS and DVAL0 are ignored.
6836
6837 NOTE: Limitations: For now, we assume that dynamic fields and
6838 variants occupy whole numbers of bytes. However, they need not be
6839 byte-aligned. */
6840
6841 struct type *
6842 ada_template_to_fixed_record_type_1 (struct type *type,
6843 const gdb_byte *valaddr,
6844 CORE_ADDR address, struct value *dval0,
6845 int keep_dynamic_fields)
6846 {
6847 struct value *mark = value_mark ();
6848 struct value *dval;
6849 struct type *rtype;
6850 int nfields, bit_len;
6851 int variant_field;
6852 long off;
6853 int fld_bit_len, bit_incr;
6854 int f;
6855
6856 /* Compute the number of fields in this record type that are going
6857 to be processed: unless keep_dynamic_fields, this includes only
6858 fields whose position and length are static will be processed. */
6859 if (keep_dynamic_fields)
6860 nfields = TYPE_NFIELDS (type);
6861 else
6862 {
6863 nfields = 0;
6864 while (nfields < TYPE_NFIELDS (type)
6865 && !ada_is_variant_part (type, nfields)
6866 && !is_dynamic_field (type, nfields))
6867 nfields++;
6868 }
6869
6870 rtype = alloc_type_copy (type);
6871 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6872 INIT_CPLUS_SPECIFIC (rtype);
6873 TYPE_NFIELDS (rtype) = nfields;
6874 TYPE_FIELDS (rtype) = (struct field *)
6875 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6876 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6877 TYPE_NAME (rtype) = ada_type_name (type);
6878 TYPE_TAG_NAME (rtype) = NULL;
6879 TYPE_FIXED_INSTANCE (rtype) = 1;
6880
6881 off = 0;
6882 bit_len = 0;
6883 variant_field = -1;
6884
6885 for (f = 0; f < nfields; f += 1)
6886 {
6887 off = align_value (off, field_alignment (type, f))
6888 + TYPE_FIELD_BITPOS (type, f);
6889 TYPE_FIELD_BITPOS (rtype, f) = off;
6890 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6891
6892 if (ada_is_variant_part (type, f))
6893 {
6894 variant_field = f;
6895 fld_bit_len = bit_incr = 0;
6896 }
6897 else if (is_dynamic_field (type, f))
6898 {
6899 const gdb_byte *field_valaddr = valaddr;
6900 CORE_ADDR field_address = address;
6901 struct type *field_type =
6902 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6903
6904 if (dval0 == NULL)
6905 {
6906 /* rtype's length is computed based on the run-time
6907 value of discriminants. If the discriminants are not
6908 initialized, the type size may be completely bogus and
6909 GDB may fail to allocate a value for it. So check the
6910 size first before creating the value. */
6911 check_size (rtype);
6912 dval = value_from_contents_and_address (rtype, valaddr, address);
6913 }
6914 else
6915 dval = dval0;
6916
6917 /* If the type referenced by this field is an aligner type, we need
6918 to unwrap that aligner type, because its size might not be set.
6919 Keeping the aligner type would cause us to compute the wrong
6920 size for this field, impacting the offset of the all the fields
6921 that follow this one. */
6922 if (ada_is_aligner_type (field_type))
6923 {
6924 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6925
6926 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6927 field_address = cond_offset_target (field_address, field_offset);
6928 field_type = ada_aligned_type (field_type);
6929 }
6930
6931 field_valaddr = cond_offset_host (field_valaddr,
6932 off / TARGET_CHAR_BIT);
6933 field_address = cond_offset_target (field_address,
6934 off / TARGET_CHAR_BIT);
6935
6936 /* Get the fixed type of the field. Note that, in this case,
6937 we do not want to get the real type out of the tag: if
6938 the current field is the parent part of a tagged record,
6939 we will get the tag of the object. Clearly wrong: the real
6940 type of the parent is not the real type of the child. We
6941 would end up in an infinite loop. */
6942 field_type = ada_get_base_type (field_type);
6943 field_type = ada_to_fixed_type (field_type, field_valaddr,
6944 field_address, dval, 0);
6945
6946 TYPE_FIELD_TYPE (rtype, f) = field_type;
6947 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6948 bit_incr = fld_bit_len =
6949 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6950 }
6951 else
6952 {
6953 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6954 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6955 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6956 bit_incr = fld_bit_len =
6957 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6958 else
6959 bit_incr = fld_bit_len =
6960 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6961 }
6962 if (off + fld_bit_len > bit_len)
6963 bit_len = off + fld_bit_len;
6964 off += bit_incr;
6965 TYPE_LENGTH (rtype) =
6966 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6967 }
6968
6969 /* We handle the variant part, if any, at the end because of certain
6970 odd cases in which it is re-ordered so as NOT to be the last field of
6971 the record. This can happen in the presence of representation
6972 clauses. */
6973 if (variant_field >= 0)
6974 {
6975 struct type *branch_type;
6976
6977 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6978
6979 if (dval0 == NULL)
6980 dval = value_from_contents_and_address (rtype, valaddr, address);
6981 else
6982 dval = dval0;
6983
6984 branch_type =
6985 to_fixed_variant_branch_type
6986 (TYPE_FIELD_TYPE (type, variant_field),
6987 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6988 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6989 if (branch_type == NULL)
6990 {
6991 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6992 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6993 TYPE_NFIELDS (rtype) -= 1;
6994 }
6995 else
6996 {
6997 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6998 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6999 fld_bit_len =
7000 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7001 TARGET_CHAR_BIT;
7002 if (off + fld_bit_len > bit_len)
7003 bit_len = off + fld_bit_len;
7004 TYPE_LENGTH (rtype) =
7005 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7006 }
7007 }
7008
7009 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7010 should contain the alignment of that record, which should be a strictly
7011 positive value. If null or negative, then something is wrong, most
7012 probably in the debug info. In that case, we don't round up the size
7013 of the resulting type. If this record is not part of another structure,
7014 the current RTYPE length might be good enough for our purposes. */
7015 if (TYPE_LENGTH (type) <= 0)
7016 {
7017 if (TYPE_NAME (rtype))
7018 warning (_("Invalid type size for `%s' detected: %d."),
7019 TYPE_NAME (rtype), TYPE_LENGTH (type));
7020 else
7021 warning (_("Invalid type size for <unnamed> detected: %d."),
7022 TYPE_LENGTH (type));
7023 }
7024 else
7025 {
7026 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7027 TYPE_LENGTH (type));
7028 }
7029
7030 value_free_to_mark (mark);
7031 if (TYPE_LENGTH (rtype) > varsize_limit)
7032 error (_("record type with dynamic size is larger than varsize-limit"));
7033 return rtype;
7034 }
7035
7036 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7037 of 1. */
7038
7039 static struct type *
7040 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7041 CORE_ADDR address, struct value *dval0)
7042 {
7043 return ada_template_to_fixed_record_type_1 (type, valaddr,
7044 address, dval0, 1);
7045 }
7046
7047 /* An ordinary record type in which ___XVL-convention fields and
7048 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7049 static approximations, containing all possible fields. Uses
7050 no runtime values. Useless for use in values, but that's OK,
7051 since the results are used only for type determinations. Works on both
7052 structs and unions. Representation note: to save space, we memorize
7053 the result of this function in the TYPE_TARGET_TYPE of the
7054 template type. */
7055
7056 static struct type *
7057 template_to_static_fixed_type (struct type *type0)
7058 {
7059 struct type *type;
7060 int nfields;
7061 int f;
7062
7063 if (TYPE_TARGET_TYPE (type0) != NULL)
7064 return TYPE_TARGET_TYPE (type0);
7065
7066 nfields = TYPE_NFIELDS (type0);
7067 type = type0;
7068
7069 for (f = 0; f < nfields; f += 1)
7070 {
7071 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7072 struct type *new_type;
7073
7074 if (is_dynamic_field (type0, f))
7075 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7076 else
7077 new_type = static_unwrap_type (field_type);
7078 if (type == type0 && new_type != field_type)
7079 {
7080 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7081 TYPE_CODE (type) = TYPE_CODE (type0);
7082 INIT_CPLUS_SPECIFIC (type);
7083 TYPE_NFIELDS (type) = nfields;
7084 TYPE_FIELDS (type) = (struct field *)
7085 TYPE_ALLOC (type, nfields * sizeof (struct field));
7086 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7087 sizeof (struct field) * nfields);
7088 TYPE_NAME (type) = ada_type_name (type0);
7089 TYPE_TAG_NAME (type) = NULL;
7090 TYPE_FIXED_INSTANCE (type) = 1;
7091 TYPE_LENGTH (type) = 0;
7092 }
7093 TYPE_FIELD_TYPE (type, f) = new_type;
7094 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7095 }
7096 return type;
7097 }
7098
7099 /* Given an object of type TYPE whose contents are at VALADDR and
7100 whose address in memory is ADDRESS, returns a revision of TYPE,
7101 which should be a non-dynamic-sized record, in which the variant
7102 part, if any, is replaced with the appropriate branch. Looks
7103 for discriminant values in DVAL0, which can be NULL if the record
7104 contains the necessary discriminant values. */
7105
7106 static struct type *
7107 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7108 CORE_ADDR address, struct value *dval0)
7109 {
7110 struct value *mark = value_mark ();
7111 struct value *dval;
7112 struct type *rtype;
7113 struct type *branch_type;
7114 int nfields = TYPE_NFIELDS (type);
7115 int variant_field = variant_field_index (type);
7116
7117 if (variant_field == -1)
7118 return type;
7119
7120 if (dval0 == NULL)
7121 dval = value_from_contents_and_address (type, valaddr, address);
7122 else
7123 dval = dval0;
7124
7125 rtype = alloc_type_copy (type);
7126 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7127 INIT_CPLUS_SPECIFIC (rtype);
7128 TYPE_NFIELDS (rtype) = nfields;
7129 TYPE_FIELDS (rtype) =
7130 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7131 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7132 sizeof (struct field) * nfields);
7133 TYPE_NAME (rtype) = ada_type_name (type);
7134 TYPE_TAG_NAME (rtype) = NULL;
7135 TYPE_FIXED_INSTANCE (rtype) = 1;
7136 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7137
7138 branch_type = to_fixed_variant_branch_type
7139 (TYPE_FIELD_TYPE (type, variant_field),
7140 cond_offset_host (valaddr,
7141 TYPE_FIELD_BITPOS (type, variant_field)
7142 / TARGET_CHAR_BIT),
7143 cond_offset_target (address,
7144 TYPE_FIELD_BITPOS (type, variant_field)
7145 / TARGET_CHAR_BIT), dval);
7146 if (branch_type == NULL)
7147 {
7148 int f;
7149 for (f = variant_field + 1; f < nfields; f += 1)
7150 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7151 TYPE_NFIELDS (rtype) -= 1;
7152 }
7153 else
7154 {
7155 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7156 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7157 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7158 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7159 }
7160 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7161
7162 value_free_to_mark (mark);
7163 return rtype;
7164 }
7165
7166 /* An ordinary record type (with fixed-length fields) that describes
7167 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7168 beginning of this section]. Any necessary discriminants' values
7169 should be in DVAL, a record value; it may be NULL if the object
7170 at ADDR itself contains any necessary discriminant values.
7171 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7172 values from the record are needed. Except in the case that DVAL,
7173 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7174 unchecked) is replaced by a particular branch of the variant.
7175
7176 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7177 is questionable and may be removed. It can arise during the
7178 processing of an unconstrained-array-of-record type where all the
7179 variant branches have exactly the same size. This is because in
7180 such cases, the compiler does not bother to use the XVS convention
7181 when encoding the record. I am currently dubious of this
7182 shortcut and suspect the compiler should be altered. FIXME. */
7183
7184 static struct type *
7185 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7186 CORE_ADDR address, struct value *dval)
7187 {
7188 struct type *templ_type;
7189
7190 if (TYPE_FIXED_INSTANCE (type0))
7191 return type0;
7192
7193 templ_type = dynamic_template_type (type0);
7194
7195 if (templ_type != NULL)
7196 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7197 else if (variant_field_index (type0) >= 0)
7198 {
7199 if (dval == NULL && valaddr == NULL && address == 0)
7200 return type0;
7201 return to_record_with_fixed_variant_part (type0, valaddr, address,
7202 dval);
7203 }
7204 else
7205 {
7206 TYPE_FIXED_INSTANCE (type0) = 1;
7207 return type0;
7208 }
7209
7210 }
7211
7212 /* An ordinary record type (with fixed-length fields) that describes
7213 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7214 union type. Any necessary discriminants' values should be in DVAL,
7215 a record value. That is, this routine selects the appropriate
7216 branch of the union at ADDR according to the discriminant value
7217 indicated in the union's type name. Returns VAR_TYPE0 itself if
7218 it represents a variant subject to a pragma Unchecked_Union. */
7219
7220 static struct type *
7221 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7222 CORE_ADDR address, struct value *dval)
7223 {
7224 int which;
7225 struct type *templ_type;
7226 struct type *var_type;
7227
7228 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7229 var_type = TYPE_TARGET_TYPE (var_type0);
7230 else
7231 var_type = var_type0;
7232
7233 templ_type = ada_find_parallel_type (var_type, "___XVU");
7234
7235 if (templ_type != NULL)
7236 var_type = templ_type;
7237
7238 if (is_unchecked_variant (var_type, value_type (dval)))
7239 return var_type0;
7240 which =
7241 ada_which_variant_applies (var_type,
7242 value_type (dval), value_contents (dval));
7243
7244 if (which < 0)
7245 return empty_record (var_type);
7246 else if (is_dynamic_field (var_type, which))
7247 return to_fixed_record_type
7248 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7249 valaddr, address, dval);
7250 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7251 return
7252 to_fixed_record_type
7253 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7254 else
7255 return TYPE_FIELD_TYPE (var_type, which);
7256 }
7257
7258 /* Assuming that TYPE0 is an array type describing the type of a value
7259 at ADDR, and that DVAL describes a record containing any
7260 discriminants used in TYPE0, returns a type for the value that
7261 contains no dynamic components (that is, no components whose sizes
7262 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7263 true, gives an error message if the resulting type's size is over
7264 varsize_limit. */
7265
7266 static struct type *
7267 to_fixed_array_type (struct type *type0, struct value *dval,
7268 int ignore_too_big)
7269 {
7270 struct type *index_type_desc;
7271 struct type *result;
7272 int constrained_packed_array_p;
7273
7274 if (TYPE_FIXED_INSTANCE (type0))
7275 return type0;
7276
7277 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7278 if (constrained_packed_array_p)
7279 type0 = decode_constrained_packed_array_type (type0);
7280
7281 index_type_desc = ada_find_parallel_type (type0, "___XA");
7282 if (index_type_desc == NULL)
7283 {
7284 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7285 /* NOTE: elt_type---the fixed version of elt_type0---should never
7286 depend on the contents of the array in properly constructed
7287 debugging data. */
7288 /* Create a fixed version of the array element type.
7289 We're not providing the address of an element here,
7290 and thus the actual object value cannot be inspected to do
7291 the conversion. This should not be a problem, since arrays of
7292 unconstrained objects are not allowed. In particular, all
7293 the elements of an array of a tagged type should all be of
7294 the same type specified in the debugging info. No need to
7295 consult the object tag. */
7296 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7297
7298 /* Make sure we always create a new array type when dealing with
7299 packed array types, since we're going to fix-up the array
7300 type length and element bitsize a little further down. */
7301 if (elt_type0 == elt_type && !constrained_packed_array_p)
7302 result = type0;
7303 else
7304 result = create_array_type (alloc_type_copy (type0),
7305 elt_type, TYPE_INDEX_TYPE (type0));
7306 }
7307 else
7308 {
7309 int i;
7310 struct type *elt_type0;
7311
7312 elt_type0 = type0;
7313 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7314 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7315
7316 /* NOTE: result---the fixed version of elt_type0---should never
7317 depend on the contents of the array in properly constructed
7318 debugging data. */
7319 /* Create a fixed version of the array element type.
7320 We're not providing the address of an element here,
7321 and thus the actual object value cannot be inspected to do
7322 the conversion. This should not be a problem, since arrays of
7323 unconstrained objects are not allowed. In particular, all
7324 the elements of an array of a tagged type should all be of
7325 the same type specified in the debugging info. No need to
7326 consult the object tag. */
7327 result =
7328 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7329
7330 elt_type0 = type0;
7331 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7332 {
7333 struct type *range_type =
7334 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7335 dval, TYPE_INDEX_TYPE (elt_type0));
7336 result = create_array_type (alloc_type_copy (elt_type0),
7337 result, range_type);
7338 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7339 }
7340 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7341 error (_("array type with dynamic size is larger than varsize-limit"));
7342 }
7343
7344 if (constrained_packed_array_p)
7345 {
7346 /* So far, the resulting type has been created as if the original
7347 type was a regular (non-packed) array type. As a result, the
7348 bitsize of the array elements needs to be set again, and the array
7349 length needs to be recomputed based on that bitsize. */
7350 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7351 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7352
7353 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7354 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7355 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7356 TYPE_LENGTH (result)++;
7357 }
7358
7359 TYPE_FIXED_INSTANCE (result) = 1;
7360 return result;
7361 }
7362
7363
7364 /* A standard type (containing no dynamically sized components)
7365 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7366 DVAL describes a record containing any discriminants used in TYPE0,
7367 and may be NULL if there are none, or if the object of type TYPE at
7368 ADDRESS or in VALADDR contains these discriminants.
7369
7370 If CHECK_TAG is not null, in the case of tagged types, this function
7371 attempts to locate the object's tag and use it to compute the actual
7372 type. However, when ADDRESS is null, we cannot use it to determine the
7373 location of the tag, and therefore compute the tagged type's actual type.
7374 So we return the tagged type without consulting the tag. */
7375
7376 static struct type *
7377 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7378 CORE_ADDR address, struct value *dval, int check_tag)
7379 {
7380 type = ada_check_typedef (type);
7381 switch (TYPE_CODE (type))
7382 {
7383 default:
7384 return type;
7385 case TYPE_CODE_STRUCT:
7386 {
7387 struct type *static_type = to_static_fixed_type (type);
7388 struct type *fixed_record_type =
7389 to_fixed_record_type (type, valaddr, address, NULL);
7390 /* If STATIC_TYPE is a tagged type and we know the object's address,
7391 then we can determine its tag, and compute the object's actual
7392 type from there. Note that we have to use the fixed record
7393 type (the parent part of the record may have dynamic fields
7394 and the way the location of _tag is expressed may depend on
7395 them). */
7396
7397 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7398 {
7399 struct type *real_type =
7400 type_from_tag (value_tag_from_contents_and_address
7401 (fixed_record_type,
7402 valaddr,
7403 address));
7404 if (real_type != NULL)
7405 return to_fixed_record_type (real_type, valaddr, address, NULL);
7406 }
7407
7408 /* Check to see if there is a parallel ___XVZ variable.
7409 If there is, then it provides the actual size of our type. */
7410 else if (ada_type_name (fixed_record_type) != NULL)
7411 {
7412 char *name = ada_type_name (fixed_record_type);
7413 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7414 int xvz_found = 0;
7415 LONGEST size;
7416
7417 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7418 size = get_int_var_value (xvz_name, &xvz_found);
7419 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7420 {
7421 fixed_record_type = copy_type (fixed_record_type);
7422 TYPE_LENGTH (fixed_record_type) = size;
7423
7424 /* The FIXED_RECORD_TYPE may have be a stub. We have
7425 observed this when the debugging info is STABS, and
7426 apparently it is something that is hard to fix.
7427
7428 In practice, we don't need the actual type definition
7429 at all, because the presence of the XVZ variable allows us
7430 to assume that there must be a XVS type as well, which we
7431 should be able to use later, when we need the actual type
7432 definition.
7433
7434 In the meantime, pretend that the "fixed" type we are
7435 returning is NOT a stub, because this can cause trouble
7436 when using this type to create new types targeting it.
7437 Indeed, the associated creation routines often check
7438 whether the target type is a stub and will try to replace
7439 it, thus using a type with the wrong size. This, in turn,
7440 might cause the new type to have the wrong size too.
7441 Consider the case of an array, for instance, where the size
7442 of the array is computed from the number of elements in
7443 our array multiplied by the size of its element. */
7444 TYPE_STUB (fixed_record_type) = 0;
7445 }
7446 }
7447 return fixed_record_type;
7448 }
7449 case TYPE_CODE_ARRAY:
7450 return to_fixed_array_type (type, dval, 1);
7451 case TYPE_CODE_UNION:
7452 if (dval == NULL)
7453 return type;
7454 else
7455 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7456 }
7457 }
7458
7459 /* The same as ada_to_fixed_type_1, except that it preserves the type
7460 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7461 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7462
7463 struct type *
7464 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7465 CORE_ADDR address, struct value *dval, int check_tag)
7466
7467 {
7468 struct type *fixed_type =
7469 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7470
7471 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7472 && TYPE_TARGET_TYPE (type) == fixed_type)
7473 return type;
7474
7475 return fixed_type;
7476 }
7477
7478 /* A standard (static-sized) type corresponding as well as possible to
7479 TYPE0, but based on no runtime data. */
7480
7481 static struct type *
7482 to_static_fixed_type (struct type *type0)
7483 {
7484 struct type *type;
7485
7486 if (type0 == NULL)
7487 return NULL;
7488
7489 if (TYPE_FIXED_INSTANCE (type0))
7490 return type0;
7491
7492 type0 = ada_check_typedef (type0);
7493
7494 switch (TYPE_CODE (type0))
7495 {
7496 default:
7497 return type0;
7498 case TYPE_CODE_STRUCT:
7499 type = dynamic_template_type (type0);
7500 if (type != NULL)
7501 return template_to_static_fixed_type (type);
7502 else
7503 return template_to_static_fixed_type (type0);
7504 case TYPE_CODE_UNION:
7505 type = ada_find_parallel_type (type0, "___XVU");
7506 if (type != NULL)
7507 return template_to_static_fixed_type (type);
7508 else
7509 return template_to_static_fixed_type (type0);
7510 }
7511 }
7512
7513 /* A static approximation of TYPE with all type wrappers removed. */
7514
7515 static struct type *
7516 static_unwrap_type (struct type *type)
7517 {
7518 if (ada_is_aligner_type (type))
7519 {
7520 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7521 if (ada_type_name (type1) == NULL)
7522 TYPE_NAME (type1) = ada_type_name (type);
7523
7524 return static_unwrap_type (type1);
7525 }
7526 else
7527 {
7528 struct type *raw_real_type = ada_get_base_type (type);
7529 if (raw_real_type == type)
7530 return type;
7531 else
7532 return to_static_fixed_type (raw_real_type);
7533 }
7534 }
7535
7536 /* In some cases, incomplete and private types require
7537 cross-references that are not resolved as records (for example,
7538 type Foo;
7539 type FooP is access Foo;
7540 V: FooP;
7541 type Foo is array ...;
7542 ). In these cases, since there is no mechanism for producing
7543 cross-references to such types, we instead substitute for FooP a
7544 stub enumeration type that is nowhere resolved, and whose tag is
7545 the name of the actual type. Call these types "non-record stubs". */
7546
7547 /* A type equivalent to TYPE that is not a non-record stub, if one
7548 exists, otherwise TYPE. */
7549
7550 struct type *
7551 ada_check_typedef (struct type *type)
7552 {
7553 if (type == NULL)
7554 return NULL;
7555
7556 CHECK_TYPEDEF (type);
7557 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7558 || !TYPE_STUB (type)
7559 || TYPE_TAG_NAME (type) == NULL)
7560 return type;
7561 else
7562 {
7563 char *name = TYPE_TAG_NAME (type);
7564 struct type *type1 = ada_find_any_type (name);
7565 return (type1 == NULL) ? type : type1;
7566 }
7567 }
7568
7569 /* A value representing the data at VALADDR/ADDRESS as described by
7570 type TYPE0, but with a standard (static-sized) type that correctly
7571 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7572 type, then return VAL0 [this feature is simply to avoid redundant
7573 creation of struct values]. */
7574
7575 static struct value *
7576 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7577 struct value *val0)
7578 {
7579 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7580 if (type == type0 && val0 != NULL)
7581 return val0;
7582 else
7583 return value_from_contents_and_address (type, 0, address);
7584 }
7585
7586 /* A value representing VAL, but with a standard (static-sized) type
7587 that correctly describes it. Does not necessarily create a new
7588 value. */
7589
7590 static struct value *
7591 ada_to_fixed_value (struct value *val)
7592 {
7593 return ada_to_fixed_value_create (value_type (val),
7594 value_address (val),
7595 val);
7596 }
7597
7598 /* A value representing VAL, but with a standard (static-sized) type
7599 chosen to approximate the real type of VAL as well as possible, but
7600 without consulting any runtime values. For Ada dynamic-sized
7601 types, therefore, the type of the result is likely to be inaccurate. */
7602
7603 static struct value *
7604 ada_to_static_fixed_value (struct value *val)
7605 {
7606 struct type *type =
7607 to_static_fixed_type (static_unwrap_type (value_type (val)));
7608 if (type == value_type (val))
7609 return val;
7610 else
7611 return coerce_unspec_val_to_type (val, type);
7612 }
7613 \f
7614
7615 /* Attributes */
7616
7617 /* Table mapping attribute numbers to names.
7618 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7619
7620 static const char *attribute_names[] = {
7621 "<?>",
7622
7623 "first",
7624 "last",
7625 "length",
7626 "image",
7627 "max",
7628 "min",
7629 "modulus",
7630 "pos",
7631 "size",
7632 "tag",
7633 "val",
7634 0
7635 };
7636
7637 const char *
7638 ada_attribute_name (enum exp_opcode n)
7639 {
7640 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7641 return attribute_names[n - OP_ATR_FIRST + 1];
7642 else
7643 return attribute_names[0];
7644 }
7645
7646 /* Evaluate the 'POS attribute applied to ARG. */
7647
7648 static LONGEST
7649 pos_atr (struct value *arg)
7650 {
7651 struct value *val = coerce_ref (arg);
7652 struct type *type = value_type (val);
7653
7654 if (!discrete_type_p (type))
7655 error (_("'POS only defined on discrete types"));
7656
7657 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7658 {
7659 int i;
7660 LONGEST v = value_as_long (val);
7661
7662 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7663 {
7664 if (v == TYPE_FIELD_BITPOS (type, i))
7665 return i;
7666 }
7667 error (_("enumeration value is invalid: can't find 'POS"));
7668 }
7669 else
7670 return value_as_long (val);
7671 }
7672
7673 static struct value *
7674 value_pos_atr (struct type *type, struct value *arg)
7675 {
7676 return value_from_longest (type, pos_atr (arg));
7677 }
7678
7679 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7680
7681 static struct value *
7682 value_val_atr (struct type *type, struct value *arg)
7683 {
7684 if (!discrete_type_p (type))
7685 error (_("'VAL only defined on discrete types"));
7686 if (!integer_type_p (value_type (arg)))
7687 error (_("'VAL requires integral argument"));
7688
7689 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7690 {
7691 long pos = value_as_long (arg);
7692 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7693 error (_("argument to 'VAL out of range"));
7694 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7695 }
7696 else
7697 return value_from_longest (type, value_as_long (arg));
7698 }
7699 \f
7700
7701 /* Evaluation */
7702
7703 /* True if TYPE appears to be an Ada character type.
7704 [At the moment, this is true only for Character and Wide_Character;
7705 It is a heuristic test that could stand improvement]. */
7706
7707 int
7708 ada_is_character_type (struct type *type)
7709 {
7710 const char *name;
7711
7712 /* If the type code says it's a character, then assume it really is,
7713 and don't check any further. */
7714 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7715 return 1;
7716
7717 /* Otherwise, assume it's a character type iff it is a discrete type
7718 with a known character type name. */
7719 name = ada_type_name (type);
7720 return (name != NULL
7721 && (TYPE_CODE (type) == TYPE_CODE_INT
7722 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7723 && (strcmp (name, "character") == 0
7724 || strcmp (name, "wide_character") == 0
7725 || strcmp (name, "wide_wide_character") == 0
7726 || strcmp (name, "unsigned char") == 0));
7727 }
7728
7729 /* True if TYPE appears to be an Ada string type. */
7730
7731 int
7732 ada_is_string_type (struct type *type)
7733 {
7734 type = ada_check_typedef (type);
7735 if (type != NULL
7736 && TYPE_CODE (type) != TYPE_CODE_PTR
7737 && (ada_is_simple_array_type (type)
7738 || ada_is_array_descriptor_type (type))
7739 && ada_array_arity (type) == 1)
7740 {
7741 struct type *elttype = ada_array_element_type (type, 1);
7742
7743 return ada_is_character_type (elttype);
7744 }
7745 else
7746 return 0;
7747 }
7748
7749
7750 /* True if TYPE is a struct type introduced by the compiler to force the
7751 alignment of a value. Such types have a single field with a
7752 distinctive name. */
7753
7754 int
7755 ada_is_aligner_type (struct type *type)
7756 {
7757 type = ada_check_typedef (type);
7758
7759 /* If we can find a parallel XVS type, then the XVS type should
7760 be used instead of this type. And hence, this is not an aligner
7761 type. */
7762 if (ada_find_parallel_type (type, "___XVS") != NULL)
7763 return 0;
7764
7765 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7766 && TYPE_NFIELDS (type) == 1
7767 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7768 }
7769
7770 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7771 the parallel type. */
7772
7773 struct type *
7774 ada_get_base_type (struct type *raw_type)
7775 {
7776 struct type *real_type_namer;
7777 struct type *raw_real_type;
7778
7779 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7780 return raw_type;
7781
7782 if (ada_is_aligner_type (raw_type))
7783 /* The encoding specifies that we should always use the aligner type.
7784 So, even if this aligner type has an associated XVS type, we should
7785 simply ignore it.
7786
7787 According to the compiler gurus, an XVS type parallel to an aligner
7788 type may exist because of a stabs limitation. In stabs, aligner
7789 types are empty because the field has a variable-sized type, and
7790 thus cannot actually be used as an aligner type. As a result,
7791 we need the associated parallel XVS type to decode the type.
7792 Since the policy in the compiler is to not change the internal
7793 representation based on the debugging info format, we sometimes
7794 end up having a redundant XVS type parallel to the aligner type. */
7795 return raw_type;
7796
7797 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7798 if (real_type_namer == NULL
7799 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7800 || TYPE_NFIELDS (real_type_namer) != 1)
7801 return raw_type;
7802
7803 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7804 if (raw_real_type == NULL)
7805 return raw_type;
7806 else
7807 return raw_real_type;
7808 }
7809
7810 /* The type of value designated by TYPE, with all aligners removed. */
7811
7812 struct type *
7813 ada_aligned_type (struct type *type)
7814 {
7815 if (ada_is_aligner_type (type))
7816 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7817 else
7818 return ada_get_base_type (type);
7819 }
7820
7821
7822 /* The address of the aligned value in an object at address VALADDR
7823 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7824
7825 const gdb_byte *
7826 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7827 {
7828 if (ada_is_aligner_type (type))
7829 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7830 valaddr +
7831 TYPE_FIELD_BITPOS (type,
7832 0) / TARGET_CHAR_BIT);
7833 else
7834 return valaddr;
7835 }
7836
7837
7838
7839 /* The printed representation of an enumeration literal with encoded
7840 name NAME. The value is good to the next call of ada_enum_name. */
7841 const char *
7842 ada_enum_name (const char *name)
7843 {
7844 static char *result;
7845 static size_t result_len = 0;
7846 char *tmp;
7847
7848 /* First, unqualify the enumeration name:
7849 1. Search for the last '.' character. If we find one, then skip
7850 all the preceeding characters, the unqualified name starts
7851 right after that dot.
7852 2. Otherwise, we may be debugging on a target where the compiler
7853 translates dots into "__". Search forward for double underscores,
7854 but stop searching when we hit an overloading suffix, which is
7855 of the form "__" followed by digits. */
7856
7857 tmp = strrchr (name, '.');
7858 if (tmp != NULL)
7859 name = tmp + 1;
7860 else
7861 {
7862 while ((tmp = strstr (name, "__")) != NULL)
7863 {
7864 if (isdigit (tmp[2]))
7865 break;
7866 else
7867 name = tmp + 2;
7868 }
7869 }
7870
7871 if (name[0] == 'Q')
7872 {
7873 int v;
7874 if (name[1] == 'U' || name[1] == 'W')
7875 {
7876 if (sscanf (name + 2, "%x", &v) != 1)
7877 return name;
7878 }
7879 else
7880 return name;
7881
7882 GROW_VECT (result, result_len, 16);
7883 if (isascii (v) && isprint (v))
7884 xsnprintf (result, result_len, "'%c'", v);
7885 else if (name[1] == 'U')
7886 xsnprintf (result, result_len, "[\"%02x\"]", v);
7887 else
7888 xsnprintf (result, result_len, "[\"%04x\"]", v);
7889
7890 return result;
7891 }
7892 else
7893 {
7894 tmp = strstr (name, "__");
7895 if (tmp == NULL)
7896 tmp = strstr (name, "$");
7897 if (tmp != NULL)
7898 {
7899 GROW_VECT (result, result_len, tmp - name + 1);
7900 strncpy (result, name, tmp - name);
7901 result[tmp - name] = '\0';
7902 return result;
7903 }
7904
7905 return name;
7906 }
7907 }
7908
7909 /* Evaluate the subexpression of EXP starting at *POS as for
7910 evaluate_type, updating *POS to point just past the evaluated
7911 expression. */
7912
7913 static struct value *
7914 evaluate_subexp_type (struct expression *exp, int *pos)
7915 {
7916 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7917 }
7918
7919 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7920 value it wraps. */
7921
7922 static struct value *
7923 unwrap_value (struct value *val)
7924 {
7925 struct type *type = ada_check_typedef (value_type (val));
7926 if (ada_is_aligner_type (type))
7927 {
7928 struct value *v = ada_value_struct_elt (val, "F", 0);
7929 struct type *val_type = ada_check_typedef (value_type (v));
7930 if (ada_type_name (val_type) == NULL)
7931 TYPE_NAME (val_type) = ada_type_name (type);
7932
7933 return unwrap_value (v);
7934 }
7935 else
7936 {
7937 struct type *raw_real_type =
7938 ada_check_typedef (ada_get_base_type (type));
7939
7940 if (type == raw_real_type)
7941 return val;
7942
7943 return
7944 coerce_unspec_val_to_type
7945 (val, ada_to_fixed_type (raw_real_type, 0,
7946 value_address (val),
7947 NULL, 1));
7948 }
7949 }
7950
7951 static struct value *
7952 cast_to_fixed (struct type *type, struct value *arg)
7953 {
7954 LONGEST val;
7955
7956 if (type == value_type (arg))
7957 return arg;
7958 else if (ada_is_fixed_point_type (value_type (arg)))
7959 val = ada_float_to_fixed (type,
7960 ada_fixed_to_float (value_type (arg),
7961 value_as_long (arg)));
7962 else
7963 {
7964 DOUBLEST argd = value_as_double (arg);
7965 val = ada_float_to_fixed (type, argd);
7966 }
7967
7968 return value_from_longest (type, val);
7969 }
7970
7971 static struct value *
7972 cast_from_fixed (struct type *type, struct value *arg)
7973 {
7974 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7975 value_as_long (arg));
7976 return value_from_double (type, val);
7977 }
7978
7979 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7980 return the converted value. */
7981
7982 static struct value *
7983 coerce_for_assign (struct type *type, struct value *val)
7984 {
7985 struct type *type2 = value_type (val);
7986 if (type == type2)
7987 return val;
7988
7989 type2 = ada_check_typedef (type2);
7990 type = ada_check_typedef (type);
7991
7992 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7993 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7994 {
7995 val = ada_value_ind (val);
7996 type2 = value_type (val);
7997 }
7998
7999 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8000 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8001 {
8002 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8003 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8004 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8005 error (_("Incompatible types in assignment"));
8006 deprecated_set_value_type (val, type);
8007 }
8008 return val;
8009 }
8010
8011 static struct value *
8012 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8013 {
8014 struct value *val;
8015 struct type *type1, *type2;
8016 LONGEST v, v1, v2;
8017
8018 arg1 = coerce_ref (arg1);
8019 arg2 = coerce_ref (arg2);
8020 type1 = base_type (ada_check_typedef (value_type (arg1)));
8021 type2 = base_type (ada_check_typedef (value_type (arg2)));
8022
8023 if (TYPE_CODE (type1) != TYPE_CODE_INT
8024 || TYPE_CODE (type2) != TYPE_CODE_INT)
8025 return value_binop (arg1, arg2, op);
8026
8027 switch (op)
8028 {
8029 case BINOP_MOD:
8030 case BINOP_DIV:
8031 case BINOP_REM:
8032 break;
8033 default:
8034 return value_binop (arg1, arg2, op);
8035 }
8036
8037 v2 = value_as_long (arg2);
8038 if (v2 == 0)
8039 error (_("second operand of %s must not be zero."), op_string (op));
8040
8041 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8042 return value_binop (arg1, arg2, op);
8043
8044 v1 = value_as_long (arg1);
8045 switch (op)
8046 {
8047 case BINOP_DIV:
8048 v = v1 / v2;
8049 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8050 v += v > 0 ? -1 : 1;
8051 break;
8052 case BINOP_REM:
8053 v = v1 % v2;
8054 if (v * v1 < 0)
8055 v -= v2;
8056 break;
8057 default:
8058 /* Should not reach this point. */
8059 v = 0;
8060 }
8061
8062 val = allocate_value (type1);
8063 store_unsigned_integer (value_contents_raw (val),
8064 TYPE_LENGTH (value_type (val)),
8065 gdbarch_byte_order (get_type_arch (type1)), v);
8066 return val;
8067 }
8068
8069 static int
8070 ada_value_equal (struct value *arg1, struct value *arg2)
8071 {
8072 if (ada_is_direct_array_type (value_type (arg1))
8073 || ada_is_direct_array_type (value_type (arg2)))
8074 {
8075 /* Automatically dereference any array reference before
8076 we attempt to perform the comparison. */
8077 arg1 = ada_coerce_ref (arg1);
8078 arg2 = ada_coerce_ref (arg2);
8079
8080 arg1 = ada_coerce_to_simple_array (arg1);
8081 arg2 = ada_coerce_to_simple_array (arg2);
8082 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8083 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8084 error (_("Attempt to compare array with non-array"));
8085 /* FIXME: The following works only for types whose
8086 representations use all bits (no padding or undefined bits)
8087 and do not have user-defined equality. */
8088 return
8089 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8090 && memcmp (value_contents (arg1), value_contents (arg2),
8091 TYPE_LENGTH (value_type (arg1))) == 0;
8092 }
8093 return value_equal (arg1, arg2);
8094 }
8095
8096 /* Total number of component associations in the aggregate starting at
8097 index PC in EXP. Assumes that index PC is the start of an
8098 OP_AGGREGATE. */
8099
8100 static int
8101 num_component_specs (struct expression *exp, int pc)
8102 {
8103 int n, m, i;
8104 m = exp->elts[pc + 1].longconst;
8105 pc += 3;
8106 n = 0;
8107 for (i = 0; i < m; i += 1)
8108 {
8109 switch (exp->elts[pc].opcode)
8110 {
8111 default:
8112 n += 1;
8113 break;
8114 case OP_CHOICES:
8115 n += exp->elts[pc + 1].longconst;
8116 break;
8117 }
8118 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8119 }
8120 return n;
8121 }
8122
8123 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8124 component of LHS (a simple array or a record), updating *POS past
8125 the expression, assuming that LHS is contained in CONTAINER. Does
8126 not modify the inferior's memory, nor does it modify LHS (unless
8127 LHS == CONTAINER). */
8128
8129 static void
8130 assign_component (struct value *container, struct value *lhs, LONGEST index,
8131 struct expression *exp, int *pos)
8132 {
8133 struct value *mark = value_mark ();
8134 struct value *elt;
8135 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8136 {
8137 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8138 struct value *index_val = value_from_longest (index_type, index);
8139 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8140 }
8141 else
8142 {
8143 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8144 elt = ada_to_fixed_value (unwrap_value (elt));
8145 }
8146
8147 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8148 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8149 else
8150 value_assign_to_component (container, elt,
8151 ada_evaluate_subexp (NULL, exp, pos,
8152 EVAL_NORMAL));
8153
8154 value_free_to_mark (mark);
8155 }
8156
8157 /* Assuming that LHS represents an lvalue having a record or array
8158 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8159 of that aggregate's value to LHS, advancing *POS past the
8160 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8161 lvalue containing LHS (possibly LHS itself). Does not modify
8162 the inferior's memory, nor does it modify the contents of
8163 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8164
8165 static struct value *
8166 assign_aggregate (struct value *container,
8167 struct value *lhs, struct expression *exp,
8168 int *pos, enum noside noside)
8169 {
8170 struct type *lhs_type;
8171 int n = exp->elts[*pos+1].longconst;
8172 LONGEST low_index, high_index;
8173 int num_specs;
8174 LONGEST *indices;
8175 int max_indices, num_indices;
8176 int is_array_aggregate;
8177 int i;
8178 struct value *mark = value_mark ();
8179
8180 *pos += 3;
8181 if (noside != EVAL_NORMAL)
8182 {
8183 int i;
8184 for (i = 0; i < n; i += 1)
8185 ada_evaluate_subexp (NULL, exp, pos, noside);
8186 return container;
8187 }
8188
8189 container = ada_coerce_ref (container);
8190 if (ada_is_direct_array_type (value_type (container)))
8191 container = ada_coerce_to_simple_array (container);
8192 lhs = ada_coerce_ref (lhs);
8193 if (!deprecated_value_modifiable (lhs))
8194 error (_("Left operand of assignment is not a modifiable lvalue."));
8195
8196 lhs_type = value_type (lhs);
8197 if (ada_is_direct_array_type (lhs_type))
8198 {
8199 lhs = ada_coerce_to_simple_array (lhs);
8200 lhs_type = value_type (lhs);
8201 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8202 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8203 is_array_aggregate = 1;
8204 }
8205 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8206 {
8207 low_index = 0;
8208 high_index = num_visible_fields (lhs_type) - 1;
8209 is_array_aggregate = 0;
8210 }
8211 else
8212 error (_("Left-hand side must be array or record."));
8213
8214 num_specs = num_component_specs (exp, *pos - 3);
8215 max_indices = 4 * num_specs + 4;
8216 indices = alloca (max_indices * sizeof (indices[0]));
8217 indices[0] = indices[1] = low_index - 1;
8218 indices[2] = indices[3] = high_index + 1;
8219 num_indices = 4;
8220
8221 for (i = 0; i < n; i += 1)
8222 {
8223 switch (exp->elts[*pos].opcode)
8224 {
8225 case OP_CHOICES:
8226 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8227 &num_indices, max_indices,
8228 low_index, high_index);
8229 break;
8230 case OP_POSITIONAL:
8231 aggregate_assign_positional (container, lhs, exp, pos, indices,
8232 &num_indices, max_indices,
8233 low_index, high_index);
8234 break;
8235 case OP_OTHERS:
8236 if (i != n-1)
8237 error (_("Misplaced 'others' clause"));
8238 aggregate_assign_others (container, lhs, exp, pos, indices,
8239 num_indices, low_index, high_index);
8240 break;
8241 default:
8242 error (_("Internal error: bad aggregate clause"));
8243 }
8244 }
8245
8246 return container;
8247 }
8248
8249 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8250 construct at *POS, updating *POS past the construct, given that
8251 the positions are relative to lower bound LOW, where HIGH is the
8252 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8253 updating *NUM_INDICES as needed. CONTAINER is as for
8254 assign_aggregate. */
8255 static void
8256 aggregate_assign_positional (struct value *container,
8257 struct value *lhs, struct expression *exp,
8258 int *pos, LONGEST *indices, int *num_indices,
8259 int max_indices, LONGEST low, LONGEST high)
8260 {
8261 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8262
8263 if (ind - 1 == high)
8264 warning (_("Extra components in aggregate ignored."));
8265 if (ind <= high)
8266 {
8267 add_component_interval (ind, ind, indices, num_indices, max_indices);
8268 *pos += 3;
8269 assign_component (container, lhs, ind, exp, pos);
8270 }
8271 else
8272 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8273 }
8274
8275 /* Assign into the components of LHS indexed by the OP_CHOICES
8276 construct at *POS, updating *POS past the construct, given that
8277 the allowable indices are LOW..HIGH. Record the indices assigned
8278 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8279 needed. CONTAINER is as for assign_aggregate. */
8280 static void
8281 aggregate_assign_from_choices (struct value *container,
8282 struct value *lhs, struct expression *exp,
8283 int *pos, LONGEST *indices, int *num_indices,
8284 int max_indices, LONGEST low, LONGEST high)
8285 {
8286 int j;
8287 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8288 int choice_pos, expr_pc;
8289 int is_array = ada_is_direct_array_type (value_type (lhs));
8290
8291 choice_pos = *pos += 3;
8292
8293 for (j = 0; j < n_choices; j += 1)
8294 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8295 expr_pc = *pos;
8296 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8297
8298 for (j = 0; j < n_choices; j += 1)
8299 {
8300 LONGEST lower, upper;
8301 enum exp_opcode op = exp->elts[choice_pos].opcode;
8302 if (op == OP_DISCRETE_RANGE)
8303 {
8304 choice_pos += 1;
8305 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8306 EVAL_NORMAL));
8307 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8308 EVAL_NORMAL));
8309 }
8310 else if (is_array)
8311 {
8312 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8313 EVAL_NORMAL));
8314 upper = lower;
8315 }
8316 else
8317 {
8318 int ind;
8319 char *name;
8320 switch (op)
8321 {
8322 case OP_NAME:
8323 name = &exp->elts[choice_pos + 2].string;
8324 break;
8325 case OP_VAR_VALUE:
8326 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8327 break;
8328 default:
8329 error (_("Invalid record component association."));
8330 }
8331 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8332 ind = 0;
8333 if (! find_struct_field (name, value_type (lhs), 0,
8334 NULL, NULL, NULL, NULL, &ind))
8335 error (_("Unknown component name: %s."), name);
8336 lower = upper = ind;
8337 }
8338
8339 if (lower <= upper && (lower < low || upper > high))
8340 error (_("Index in component association out of bounds."));
8341
8342 add_component_interval (lower, upper, indices, num_indices,
8343 max_indices);
8344 while (lower <= upper)
8345 {
8346 int pos1;
8347 pos1 = expr_pc;
8348 assign_component (container, lhs, lower, exp, &pos1);
8349 lower += 1;
8350 }
8351 }
8352 }
8353
8354 /* Assign the value of the expression in the OP_OTHERS construct in
8355 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8356 have not been previously assigned. The index intervals already assigned
8357 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8358 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8359 static void
8360 aggregate_assign_others (struct value *container,
8361 struct value *lhs, struct expression *exp,
8362 int *pos, LONGEST *indices, int num_indices,
8363 LONGEST low, LONGEST high)
8364 {
8365 int i;
8366 int expr_pc = *pos+1;
8367
8368 for (i = 0; i < num_indices - 2; i += 2)
8369 {
8370 LONGEST ind;
8371 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8372 {
8373 int pos;
8374 pos = expr_pc;
8375 assign_component (container, lhs, ind, exp, &pos);
8376 }
8377 }
8378 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8379 }
8380
8381 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8382 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8383 modifying *SIZE as needed. It is an error if *SIZE exceeds
8384 MAX_SIZE. The resulting intervals do not overlap. */
8385 static void
8386 add_component_interval (LONGEST low, LONGEST high,
8387 LONGEST* indices, int *size, int max_size)
8388 {
8389 int i, j;
8390 for (i = 0; i < *size; i += 2) {
8391 if (high >= indices[i] && low <= indices[i + 1])
8392 {
8393 int kh;
8394 for (kh = i + 2; kh < *size; kh += 2)
8395 if (high < indices[kh])
8396 break;
8397 if (low < indices[i])
8398 indices[i] = low;
8399 indices[i + 1] = indices[kh - 1];
8400 if (high > indices[i + 1])
8401 indices[i + 1] = high;
8402 memcpy (indices + i + 2, indices + kh, *size - kh);
8403 *size -= kh - i - 2;
8404 return;
8405 }
8406 else if (high < indices[i])
8407 break;
8408 }
8409
8410 if (*size == max_size)
8411 error (_("Internal error: miscounted aggregate components."));
8412 *size += 2;
8413 for (j = *size-1; j >= i+2; j -= 1)
8414 indices[j] = indices[j - 2];
8415 indices[i] = low;
8416 indices[i + 1] = high;
8417 }
8418
8419 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8420 is different. */
8421
8422 static struct value *
8423 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8424 {
8425 if (type == ada_check_typedef (value_type (arg2)))
8426 return arg2;
8427
8428 if (ada_is_fixed_point_type (type))
8429 return (cast_to_fixed (type, arg2));
8430
8431 if (ada_is_fixed_point_type (value_type (arg2)))
8432 return cast_from_fixed (type, arg2);
8433
8434 return value_cast (type, arg2);
8435 }
8436
8437 /* Evaluating Ada expressions, and printing their result.
8438 ------------------------------------------------------
8439
8440 1. Introduction:
8441 ----------------
8442
8443 We usually evaluate an Ada expression in order to print its value.
8444 We also evaluate an expression in order to print its type, which
8445 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8446 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8447 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8448 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8449 similar.
8450
8451 Evaluating expressions is a little more complicated for Ada entities
8452 than it is for entities in languages such as C. The main reason for
8453 this is that Ada provides types whose definition might be dynamic.
8454 One example of such types is variant records. Or another example
8455 would be an array whose bounds can only be known at run time.
8456
8457 The following description is a general guide as to what should be
8458 done (and what should NOT be done) in order to evaluate an expression
8459 involving such types, and when. This does not cover how the semantic
8460 information is encoded by GNAT as this is covered separatly. For the
8461 document used as the reference for the GNAT encoding, see exp_dbug.ads
8462 in the GNAT sources.
8463
8464 Ideally, we should embed each part of this description next to its
8465 associated code. Unfortunately, the amount of code is so vast right
8466 now that it's hard to see whether the code handling a particular
8467 situation might be duplicated or not. One day, when the code is
8468 cleaned up, this guide might become redundant with the comments
8469 inserted in the code, and we might want to remove it.
8470
8471 2. ``Fixing'' an Entity, the Simple Case:
8472 -----------------------------------------
8473
8474 When evaluating Ada expressions, the tricky issue is that they may
8475 reference entities whose type contents and size are not statically
8476 known. Consider for instance a variant record:
8477
8478 type Rec (Empty : Boolean := True) is record
8479 case Empty is
8480 when True => null;
8481 when False => Value : Integer;
8482 end case;
8483 end record;
8484 Yes : Rec := (Empty => False, Value => 1);
8485 No : Rec := (empty => True);
8486
8487 The size and contents of that record depends on the value of the
8488 descriminant (Rec.Empty). At this point, neither the debugging
8489 information nor the associated type structure in GDB are able to
8490 express such dynamic types. So what the debugger does is to create
8491 "fixed" versions of the type that applies to the specific object.
8492 We also informally refer to this opperation as "fixing" an object,
8493 which means creating its associated fixed type.
8494
8495 Example: when printing the value of variable "Yes" above, its fixed
8496 type would look like this:
8497
8498 type Rec is record
8499 Empty : Boolean;
8500 Value : Integer;
8501 end record;
8502
8503 On the other hand, if we printed the value of "No", its fixed type
8504 would become:
8505
8506 type Rec is record
8507 Empty : Boolean;
8508 end record;
8509
8510 Things become a little more complicated when trying to fix an entity
8511 with a dynamic type that directly contains another dynamic type,
8512 such as an array of variant records, for instance. There are
8513 two possible cases: Arrays, and records.
8514
8515 3. ``Fixing'' Arrays:
8516 ---------------------
8517
8518 The type structure in GDB describes an array in terms of its bounds,
8519 and the type of its elements. By design, all elements in the array
8520 have the same type and we cannot represent an array of variant elements
8521 using the current type structure in GDB. When fixing an array,
8522 we cannot fix the array element, as we would potentially need one
8523 fixed type per element of the array. As a result, the best we can do
8524 when fixing an array is to produce an array whose bounds and size
8525 are correct (allowing us to read it from memory), but without having
8526 touched its element type. Fixing each element will be done later,
8527 when (if) necessary.
8528
8529 Arrays are a little simpler to handle than records, because the same
8530 amount of memory is allocated for each element of the array, even if
8531 the amount of space actually used by each element differs from element
8532 to element. Consider for instance the following array of type Rec:
8533
8534 type Rec_Array is array (1 .. 2) of Rec;
8535
8536 The actual amount of memory occupied by each element might be different
8537 from element to element, depending on the value of their discriminant.
8538 But the amount of space reserved for each element in the array remains
8539 fixed regardless. So we simply need to compute that size using
8540 the debugging information available, from which we can then determine
8541 the array size (we multiply the number of elements of the array by
8542 the size of each element).
8543
8544 The simplest case is when we have an array of a constrained element
8545 type. For instance, consider the following type declarations:
8546
8547 type Bounded_String (Max_Size : Integer) is
8548 Length : Integer;
8549 Buffer : String (1 .. Max_Size);
8550 end record;
8551 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8552
8553 In this case, the compiler describes the array as an array of
8554 variable-size elements (identified by its XVS suffix) for which
8555 the size can be read in the parallel XVZ variable.
8556
8557 In the case of an array of an unconstrained element type, the compiler
8558 wraps the array element inside a private PAD type. This type should not
8559 be shown to the user, and must be "unwrap"'ed before printing. Note
8560 that we also use the adjective "aligner" in our code to designate
8561 these wrapper types.
8562
8563 In some cases, the size allocated for each element is statically
8564 known. In that case, the PAD type already has the correct size,
8565 and the array element should remain unfixed.
8566
8567 But there are cases when this size is not statically known.
8568 For instance, assuming that "Five" is an integer variable:
8569
8570 type Dynamic is array (1 .. Five) of Integer;
8571 type Wrapper (Has_Length : Boolean := False) is record
8572 Data : Dynamic;
8573 case Has_Length is
8574 when True => Length : Integer;
8575 when False => null;
8576 end case;
8577 end record;
8578 type Wrapper_Array is array (1 .. 2) of Wrapper;
8579
8580 Hello : Wrapper_Array := (others => (Has_Length => True,
8581 Data => (others => 17),
8582 Length => 1));
8583
8584
8585 The debugging info would describe variable Hello as being an
8586 array of a PAD type. The size of that PAD type is not statically
8587 known, but can be determined using a parallel XVZ variable.
8588 In that case, a copy of the PAD type with the correct size should
8589 be used for the fixed array.
8590
8591 3. ``Fixing'' record type objects:
8592 ----------------------------------
8593
8594 Things are slightly different from arrays in the case of dynamic
8595 record types. In this case, in order to compute the associated
8596 fixed type, we need to determine the size and offset of each of
8597 its components. This, in turn, requires us to compute the fixed
8598 type of each of these components.
8599
8600 Consider for instance the example:
8601
8602 type Bounded_String (Max_Size : Natural) is record
8603 Str : String (1 .. Max_Size);
8604 Length : Natural;
8605 end record;
8606 My_String : Bounded_String (Max_Size => 10);
8607
8608 In that case, the position of field "Length" depends on the size
8609 of field Str, which itself depends on the value of the Max_Size
8610 discriminant. In order to fix the type of variable My_String,
8611 we need to fix the type of field Str. Therefore, fixing a variant
8612 record requires us to fix each of its components.
8613
8614 However, if a component does not have a dynamic size, the component
8615 should not be fixed. In particular, fields that use a PAD type
8616 should not fixed. Here is an example where this might happen
8617 (assuming type Rec above):
8618
8619 type Container (Big : Boolean) is record
8620 First : Rec;
8621 After : Integer;
8622 case Big is
8623 when True => Another : Integer;
8624 when False => null;
8625 end case;
8626 end record;
8627 My_Container : Container := (Big => False,
8628 First => (Empty => True),
8629 After => 42);
8630
8631 In that example, the compiler creates a PAD type for component First,
8632 whose size is constant, and then positions the component After just
8633 right after it. The offset of component After is therefore constant
8634 in this case.
8635
8636 The debugger computes the position of each field based on an algorithm
8637 that uses, among other things, the actual position and size of the field
8638 preceding it. Let's now imagine that the user is trying to print
8639 the value of My_Container. If the type fixing was recursive, we would
8640 end up computing the offset of field After based on the size of the
8641 fixed version of field First. And since in our example First has
8642 only one actual field, the size of the fixed type is actually smaller
8643 than the amount of space allocated to that field, and thus we would
8644 compute the wrong offset of field After.
8645
8646 To make things more complicated, we need to watch out for dynamic
8647 components of variant records (identified by the ___XVL suffix in
8648 the component name). Even if the target type is a PAD type, the size
8649 of that type might not be statically known. So the PAD type needs
8650 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8651 we might end up with the wrong size for our component. This can be
8652 observed with the following type declarations:
8653
8654 type Octal is new Integer range 0 .. 7;
8655 type Octal_Array is array (Positive range <>) of Octal;
8656 pragma Pack (Octal_Array);
8657
8658 type Octal_Buffer (Size : Positive) is record
8659 Buffer : Octal_Array (1 .. Size);
8660 Length : Integer;
8661 end record;
8662
8663 In that case, Buffer is a PAD type whose size is unset and needs
8664 to be computed by fixing the unwrapped type.
8665
8666 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8667 ----------------------------------------------------------
8668
8669 Lastly, when should the sub-elements of an entity that remained unfixed
8670 thus far, be actually fixed?
8671
8672 The answer is: Only when referencing that element. For instance
8673 when selecting one component of a record, this specific component
8674 should be fixed at that point in time. Or when printing the value
8675 of a record, each component should be fixed before its value gets
8676 printed. Similarly for arrays, the element of the array should be
8677 fixed when printing each element of the array, or when extracting
8678 one element out of that array. On the other hand, fixing should
8679 not be performed on the elements when taking a slice of an array!
8680
8681 Note that one of the side-effects of miscomputing the offset and
8682 size of each field is that we end up also miscomputing the size
8683 of the containing type. This can have adverse results when computing
8684 the value of an entity. GDB fetches the value of an entity based
8685 on the size of its type, and thus a wrong size causes GDB to fetch
8686 the wrong amount of memory. In the case where the computed size is
8687 too small, GDB fetches too little data to print the value of our
8688 entiry. Results in this case as unpredicatble, as we usually read
8689 past the buffer containing the data =:-o. */
8690
8691 /* Implement the evaluate_exp routine in the exp_descriptor structure
8692 for the Ada language. */
8693
8694 static struct value *
8695 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8696 int *pos, enum noside noside)
8697 {
8698 enum exp_opcode op;
8699 int tem, tem2, tem3;
8700 int pc;
8701 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8702 struct type *type;
8703 int nargs, oplen;
8704 struct value **argvec;
8705
8706 pc = *pos;
8707 *pos += 1;
8708 op = exp->elts[pc].opcode;
8709
8710 switch (op)
8711 {
8712 default:
8713 *pos -= 1;
8714 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8715 arg1 = unwrap_value (arg1);
8716
8717 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8718 then we need to perform the conversion manually, because
8719 evaluate_subexp_standard doesn't do it. This conversion is
8720 necessary in Ada because the different kinds of float/fixed
8721 types in Ada have different representations.
8722
8723 Similarly, we need to perform the conversion from OP_LONG
8724 ourselves. */
8725 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8726 arg1 = ada_value_cast (expect_type, arg1, noside);
8727
8728 return arg1;
8729
8730 case OP_STRING:
8731 {
8732 struct value *result;
8733 *pos -= 1;
8734 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8735 /* The result type will have code OP_STRING, bashed there from
8736 OP_ARRAY. Bash it back. */
8737 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8738 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8739 return result;
8740 }
8741
8742 case UNOP_CAST:
8743 (*pos) += 2;
8744 type = exp->elts[pc + 1].type;
8745 arg1 = evaluate_subexp (type, exp, pos, noside);
8746 if (noside == EVAL_SKIP)
8747 goto nosideret;
8748 arg1 = ada_value_cast (type, arg1, noside);
8749 return arg1;
8750
8751 case UNOP_QUAL:
8752 (*pos) += 2;
8753 type = exp->elts[pc + 1].type;
8754 return ada_evaluate_subexp (type, exp, pos, noside);
8755
8756 case BINOP_ASSIGN:
8757 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8758 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8759 {
8760 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8761 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8762 return arg1;
8763 return ada_value_assign (arg1, arg1);
8764 }
8765 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8766 except if the lhs of our assignment is a convenience variable.
8767 In the case of assigning to a convenience variable, the lhs
8768 should be exactly the result of the evaluation of the rhs. */
8769 type = value_type (arg1);
8770 if (VALUE_LVAL (arg1) == lval_internalvar)
8771 type = NULL;
8772 arg2 = evaluate_subexp (type, exp, pos, noside);
8773 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8774 return arg1;
8775 if (ada_is_fixed_point_type (value_type (arg1)))
8776 arg2 = cast_to_fixed (value_type (arg1), arg2);
8777 else if (ada_is_fixed_point_type (value_type (arg2)))
8778 error
8779 (_("Fixed-point values must be assigned to fixed-point variables"));
8780 else
8781 arg2 = coerce_for_assign (value_type (arg1), arg2);
8782 return ada_value_assign (arg1, arg2);
8783
8784 case BINOP_ADD:
8785 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8786 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8787 if (noside == EVAL_SKIP)
8788 goto nosideret;
8789 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8790 return (value_from_longest
8791 (value_type (arg1),
8792 value_as_long (arg1) + value_as_long (arg2)));
8793 if ((ada_is_fixed_point_type (value_type (arg1))
8794 || ada_is_fixed_point_type (value_type (arg2)))
8795 && value_type (arg1) != value_type (arg2))
8796 error (_("Operands of fixed-point addition must have the same type"));
8797 /* Do the addition, and cast the result to the type of the first
8798 argument. We cannot cast the result to a reference type, so if
8799 ARG1 is a reference type, find its underlying type. */
8800 type = value_type (arg1);
8801 while (TYPE_CODE (type) == TYPE_CODE_REF)
8802 type = TYPE_TARGET_TYPE (type);
8803 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8804 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8805
8806 case BINOP_SUB:
8807 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8808 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8809 if (noside == EVAL_SKIP)
8810 goto nosideret;
8811 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8812 return (value_from_longest
8813 (value_type (arg1),
8814 value_as_long (arg1) - value_as_long (arg2)));
8815 if ((ada_is_fixed_point_type (value_type (arg1))
8816 || ada_is_fixed_point_type (value_type (arg2)))
8817 && value_type (arg1) != value_type (arg2))
8818 error (_("Operands of fixed-point subtraction must have the same type"));
8819 /* Do the substraction, and cast the result to the type of the first
8820 argument. We cannot cast the result to a reference type, so if
8821 ARG1 is a reference type, find its underlying type. */
8822 type = value_type (arg1);
8823 while (TYPE_CODE (type) == TYPE_CODE_REF)
8824 type = TYPE_TARGET_TYPE (type);
8825 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8826 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8827
8828 case BINOP_MUL:
8829 case BINOP_DIV:
8830 case BINOP_REM:
8831 case BINOP_MOD:
8832 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8833 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8834 if (noside == EVAL_SKIP)
8835 goto nosideret;
8836 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8837 {
8838 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8839 return value_zero (value_type (arg1), not_lval);
8840 }
8841 else
8842 {
8843 type = builtin_type (exp->gdbarch)->builtin_double;
8844 if (ada_is_fixed_point_type (value_type (arg1)))
8845 arg1 = cast_from_fixed (type, arg1);
8846 if (ada_is_fixed_point_type (value_type (arg2)))
8847 arg2 = cast_from_fixed (type, arg2);
8848 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8849 return ada_value_binop (arg1, arg2, op);
8850 }
8851
8852 case BINOP_EQUAL:
8853 case BINOP_NOTEQUAL:
8854 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8855 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8856 if (noside == EVAL_SKIP)
8857 goto nosideret;
8858 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8859 tem = 0;
8860 else
8861 {
8862 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8863 tem = ada_value_equal (arg1, arg2);
8864 }
8865 if (op == BINOP_NOTEQUAL)
8866 tem = !tem;
8867 type = language_bool_type (exp->language_defn, exp->gdbarch);
8868 return value_from_longest (type, (LONGEST) tem);
8869
8870 case UNOP_NEG:
8871 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8872 if (noside == EVAL_SKIP)
8873 goto nosideret;
8874 else if (ada_is_fixed_point_type (value_type (arg1)))
8875 return value_cast (value_type (arg1), value_neg (arg1));
8876 else
8877 {
8878 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8879 return value_neg (arg1);
8880 }
8881
8882 case BINOP_LOGICAL_AND:
8883 case BINOP_LOGICAL_OR:
8884 case UNOP_LOGICAL_NOT:
8885 {
8886 struct value *val;
8887
8888 *pos -= 1;
8889 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8890 type = language_bool_type (exp->language_defn, exp->gdbarch);
8891 return value_cast (type, val);
8892 }
8893
8894 case BINOP_BITWISE_AND:
8895 case BINOP_BITWISE_IOR:
8896 case BINOP_BITWISE_XOR:
8897 {
8898 struct value *val;
8899
8900 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8901 *pos = pc;
8902 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8903
8904 return value_cast (value_type (arg1), val);
8905 }
8906
8907 case OP_VAR_VALUE:
8908 *pos -= 1;
8909
8910 if (noside == EVAL_SKIP)
8911 {
8912 *pos += 4;
8913 goto nosideret;
8914 }
8915 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8916 /* Only encountered when an unresolved symbol occurs in a
8917 context other than a function call, in which case, it is
8918 invalid. */
8919 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8920 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8921 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8922 {
8923 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8924 if (ada_is_tagged_type (type, 0))
8925 {
8926 /* Tagged types are a little special in the fact that the real
8927 type is dynamic and can only be determined by inspecting the
8928 object's tag. This means that we need to get the object's
8929 value first (EVAL_NORMAL) and then extract the actual object
8930 type from its tag.
8931
8932 Note that we cannot skip the final step where we extract
8933 the object type from its tag, because the EVAL_NORMAL phase
8934 results in dynamic components being resolved into fixed ones.
8935 This can cause problems when trying to print the type
8936 description of tagged types whose parent has a dynamic size:
8937 We use the type name of the "_parent" component in order
8938 to print the name of the ancestor type in the type description.
8939 If that component had a dynamic size, the resolution into
8940 a fixed type would result in the loss of that type name,
8941 thus preventing us from printing the name of the ancestor
8942 type in the type description. */
8943 struct type *actual_type;
8944
8945 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8946 actual_type = type_from_tag (ada_value_tag (arg1));
8947 if (actual_type == NULL)
8948 /* If, for some reason, we were unable to determine
8949 the actual type from the tag, then use the static
8950 approximation that we just computed as a fallback.
8951 This can happen if the debugging information is
8952 incomplete, for instance. */
8953 actual_type = type;
8954
8955 return value_zero (actual_type, not_lval);
8956 }
8957
8958 *pos += 4;
8959 return value_zero
8960 (to_static_fixed_type
8961 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8962 not_lval);
8963 }
8964 else
8965 {
8966 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8967 arg1 = unwrap_value (arg1);
8968 return ada_to_fixed_value (arg1);
8969 }
8970
8971 case OP_FUNCALL:
8972 (*pos) += 2;
8973
8974 /* Allocate arg vector, including space for the function to be
8975 called in argvec[0] and a terminating NULL. */
8976 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8977 argvec =
8978 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8979
8980 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8981 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8982 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8983 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8984 else
8985 {
8986 for (tem = 0; tem <= nargs; tem += 1)
8987 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8988 argvec[tem] = 0;
8989
8990 if (noside == EVAL_SKIP)
8991 goto nosideret;
8992 }
8993
8994 if (ada_is_constrained_packed_array_type
8995 (desc_base_type (value_type (argvec[0]))))
8996 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8997 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8998 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8999 /* This is a packed array that has already been fixed, and
9000 therefore already coerced to a simple array. Nothing further
9001 to do. */
9002 ;
9003 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9004 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9005 && VALUE_LVAL (argvec[0]) == lval_memory))
9006 argvec[0] = value_addr (argvec[0]);
9007
9008 type = ada_check_typedef (value_type (argvec[0]));
9009 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9010 {
9011 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9012 {
9013 case TYPE_CODE_FUNC:
9014 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9015 break;
9016 case TYPE_CODE_ARRAY:
9017 break;
9018 case TYPE_CODE_STRUCT:
9019 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9020 argvec[0] = ada_value_ind (argvec[0]);
9021 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9022 break;
9023 default:
9024 error (_("cannot subscript or call something of type `%s'"),
9025 ada_type_name (value_type (argvec[0])));
9026 break;
9027 }
9028 }
9029
9030 switch (TYPE_CODE (type))
9031 {
9032 case TYPE_CODE_FUNC:
9033 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9034 return allocate_value (TYPE_TARGET_TYPE (type));
9035 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9036 case TYPE_CODE_STRUCT:
9037 {
9038 int arity;
9039
9040 arity = ada_array_arity (type);
9041 type = ada_array_element_type (type, nargs);
9042 if (type == NULL)
9043 error (_("cannot subscript or call a record"));
9044 if (arity != nargs)
9045 error (_("wrong number of subscripts; expecting %d"), arity);
9046 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9047 return value_zero (ada_aligned_type (type), lval_memory);
9048 return
9049 unwrap_value (ada_value_subscript
9050 (argvec[0], nargs, argvec + 1));
9051 }
9052 case TYPE_CODE_ARRAY:
9053 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9054 {
9055 type = ada_array_element_type (type, nargs);
9056 if (type == NULL)
9057 error (_("element type of array unknown"));
9058 else
9059 return value_zero (ada_aligned_type (type), lval_memory);
9060 }
9061 return
9062 unwrap_value (ada_value_subscript
9063 (ada_coerce_to_simple_array (argvec[0]),
9064 nargs, argvec + 1));
9065 case TYPE_CODE_PTR: /* Pointer to array */
9066 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9067 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9068 {
9069 type = ada_array_element_type (type, nargs);
9070 if (type == NULL)
9071 error (_("element type of array unknown"));
9072 else
9073 return value_zero (ada_aligned_type (type), lval_memory);
9074 }
9075 return
9076 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9077 nargs, argvec + 1));
9078
9079 default:
9080 error (_("Attempt to index or call something other than an "
9081 "array or function"));
9082 }
9083
9084 case TERNOP_SLICE:
9085 {
9086 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9087 struct value *low_bound_val =
9088 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9089 struct value *high_bound_val =
9090 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9091 LONGEST low_bound;
9092 LONGEST high_bound;
9093 low_bound_val = coerce_ref (low_bound_val);
9094 high_bound_val = coerce_ref (high_bound_val);
9095 low_bound = pos_atr (low_bound_val);
9096 high_bound = pos_atr (high_bound_val);
9097
9098 if (noside == EVAL_SKIP)
9099 goto nosideret;
9100
9101 /* If this is a reference to an aligner type, then remove all
9102 the aligners. */
9103 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9104 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9105 TYPE_TARGET_TYPE (value_type (array)) =
9106 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9107
9108 if (ada_is_constrained_packed_array_type (value_type (array)))
9109 error (_("cannot slice a packed array"));
9110
9111 /* If this is a reference to an array or an array lvalue,
9112 convert to a pointer. */
9113 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9114 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9115 && VALUE_LVAL (array) == lval_memory))
9116 array = value_addr (array);
9117
9118 if (noside == EVAL_AVOID_SIDE_EFFECTS
9119 && ada_is_array_descriptor_type (ada_check_typedef
9120 (value_type (array))))
9121 return empty_array (ada_type_of_array (array, 0), low_bound);
9122
9123 array = ada_coerce_to_simple_array_ptr (array);
9124
9125 /* If we have more than one level of pointer indirection,
9126 dereference the value until we get only one level. */
9127 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9128 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9129 == TYPE_CODE_PTR))
9130 array = value_ind (array);
9131
9132 /* Make sure we really do have an array type before going further,
9133 to avoid a SEGV when trying to get the index type or the target
9134 type later down the road if the debug info generated by
9135 the compiler is incorrect or incomplete. */
9136 if (!ada_is_simple_array_type (value_type (array)))
9137 error (_("cannot take slice of non-array"));
9138
9139 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9140 {
9141 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9142 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9143 low_bound);
9144 else
9145 {
9146 struct type *arr_type0 =
9147 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9148 NULL, 1);
9149 return ada_value_slice_from_ptr (array, arr_type0,
9150 longest_to_int (low_bound),
9151 longest_to_int (high_bound));
9152 }
9153 }
9154 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9155 return array;
9156 else if (high_bound < low_bound)
9157 return empty_array (value_type (array), low_bound);
9158 else
9159 return ada_value_slice (array, longest_to_int (low_bound),
9160 longest_to_int (high_bound));
9161 }
9162
9163 case UNOP_IN_RANGE:
9164 (*pos) += 2;
9165 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9166 type = check_typedef (exp->elts[pc + 1].type);
9167
9168 if (noside == EVAL_SKIP)
9169 goto nosideret;
9170
9171 switch (TYPE_CODE (type))
9172 {
9173 default:
9174 lim_warning (_("Membership test incompletely implemented; "
9175 "always returns true"));
9176 type = language_bool_type (exp->language_defn, exp->gdbarch);
9177 return value_from_longest (type, (LONGEST) 1);
9178
9179 case TYPE_CODE_RANGE:
9180 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9181 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9182 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9183 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9184 type = language_bool_type (exp->language_defn, exp->gdbarch);
9185 return
9186 value_from_longest (type,
9187 (value_less (arg1, arg3)
9188 || value_equal (arg1, arg3))
9189 && (value_less (arg2, arg1)
9190 || value_equal (arg2, arg1)));
9191 }
9192
9193 case BINOP_IN_BOUNDS:
9194 (*pos) += 2;
9195 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9196 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9197
9198 if (noside == EVAL_SKIP)
9199 goto nosideret;
9200
9201 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9202 {
9203 type = language_bool_type (exp->language_defn, exp->gdbarch);
9204 return value_zero (type, not_lval);
9205 }
9206
9207 tem = longest_to_int (exp->elts[pc + 1].longconst);
9208
9209 type = ada_index_type (value_type (arg2), tem, "range");
9210 if (!type)
9211 type = value_type (arg1);
9212
9213 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9214 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9215
9216 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9217 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9218 type = language_bool_type (exp->language_defn, exp->gdbarch);
9219 return
9220 value_from_longest (type,
9221 (value_less (arg1, arg3)
9222 || value_equal (arg1, arg3))
9223 && (value_less (arg2, arg1)
9224 || value_equal (arg2, arg1)));
9225
9226 case TERNOP_IN_RANGE:
9227 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9228 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9229 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9230
9231 if (noside == EVAL_SKIP)
9232 goto nosideret;
9233
9234 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9235 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9236 type = language_bool_type (exp->language_defn, exp->gdbarch);
9237 return
9238 value_from_longest (type,
9239 (value_less (arg1, arg3)
9240 || value_equal (arg1, arg3))
9241 && (value_less (arg2, arg1)
9242 || value_equal (arg2, arg1)));
9243
9244 case OP_ATR_FIRST:
9245 case OP_ATR_LAST:
9246 case OP_ATR_LENGTH:
9247 {
9248 struct type *type_arg;
9249 if (exp->elts[*pos].opcode == OP_TYPE)
9250 {
9251 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9252 arg1 = NULL;
9253 type_arg = check_typedef (exp->elts[pc + 2].type);
9254 }
9255 else
9256 {
9257 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9258 type_arg = NULL;
9259 }
9260
9261 if (exp->elts[*pos].opcode != OP_LONG)
9262 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9263 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9264 *pos += 4;
9265
9266 if (noside == EVAL_SKIP)
9267 goto nosideret;
9268
9269 if (type_arg == NULL)
9270 {
9271 arg1 = ada_coerce_ref (arg1);
9272
9273 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9274 arg1 = ada_coerce_to_simple_array (arg1);
9275
9276 type = ada_index_type (value_type (arg1), tem,
9277 ada_attribute_name (op));
9278 if (type == NULL)
9279 type = builtin_type (exp->gdbarch)->builtin_int;
9280
9281 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9282 return allocate_value (type);
9283
9284 switch (op)
9285 {
9286 default: /* Should never happen. */
9287 error (_("unexpected attribute encountered"));
9288 case OP_ATR_FIRST:
9289 return value_from_longest
9290 (type, ada_array_bound (arg1, tem, 0));
9291 case OP_ATR_LAST:
9292 return value_from_longest
9293 (type, ada_array_bound (arg1, tem, 1));
9294 case OP_ATR_LENGTH:
9295 return value_from_longest
9296 (type, ada_array_length (arg1, tem));
9297 }
9298 }
9299 else if (discrete_type_p (type_arg))
9300 {
9301 struct type *range_type;
9302 char *name = ada_type_name (type_arg);
9303 range_type = NULL;
9304 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9305 range_type = to_fixed_range_type (name, NULL, type_arg);
9306 if (range_type == NULL)
9307 range_type = type_arg;
9308 switch (op)
9309 {
9310 default:
9311 error (_("unexpected attribute encountered"));
9312 case OP_ATR_FIRST:
9313 return value_from_longest
9314 (range_type, ada_discrete_type_low_bound (range_type));
9315 case OP_ATR_LAST:
9316 return value_from_longest
9317 (range_type, ada_discrete_type_high_bound (range_type));
9318 case OP_ATR_LENGTH:
9319 error (_("the 'length attribute applies only to array types"));
9320 }
9321 }
9322 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9323 error (_("unimplemented type attribute"));
9324 else
9325 {
9326 LONGEST low, high;
9327
9328 if (ada_is_constrained_packed_array_type (type_arg))
9329 type_arg = decode_constrained_packed_array_type (type_arg);
9330
9331 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9332 if (type == NULL)
9333 type = builtin_type (exp->gdbarch)->builtin_int;
9334
9335 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9336 return allocate_value (type);
9337
9338 switch (op)
9339 {
9340 default:
9341 error (_("unexpected attribute encountered"));
9342 case OP_ATR_FIRST:
9343 low = ada_array_bound_from_type (type_arg, tem, 0);
9344 return value_from_longest (type, low);
9345 case OP_ATR_LAST:
9346 high = ada_array_bound_from_type (type_arg, tem, 1);
9347 return value_from_longest (type, high);
9348 case OP_ATR_LENGTH:
9349 low = ada_array_bound_from_type (type_arg, tem, 0);
9350 high = ada_array_bound_from_type (type_arg, tem, 1);
9351 return value_from_longest (type, high - low + 1);
9352 }
9353 }
9354 }
9355
9356 case OP_ATR_TAG:
9357 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9358 if (noside == EVAL_SKIP)
9359 goto nosideret;
9360
9361 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9362 return value_zero (ada_tag_type (arg1), not_lval);
9363
9364 return ada_value_tag (arg1);
9365
9366 case OP_ATR_MIN:
9367 case OP_ATR_MAX:
9368 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9369 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9370 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9371 if (noside == EVAL_SKIP)
9372 goto nosideret;
9373 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9374 return value_zero (value_type (arg1), not_lval);
9375 else
9376 {
9377 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9378 return value_binop (arg1, arg2,
9379 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9380 }
9381
9382 case OP_ATR_MODULUS:
9383 {
9384 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9385 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9386
9387 if (noside == EVAL_SKIP)
9388 goto nosideret;
9389
9390 if (!ada_is_modular_type (type_arg))
9391 error (_("'modulus must be applied to modular type"));
9392
9393 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9394 ada_modulus (type_arg));
9395 }
9396
9397
9398 case OP_ATR_POS:
9399 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9400 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9401 if (noside == EVAL_SKIP)
9402 goto nosideret;
9403 type = builtin_type (exp->gdbarch)->builtin_int;
9404 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9405 return value_zero (type, not_lval);
9406 else
9407 return value_pos_atr (type, arg1);
9408
9409 case OP_ATR_SIZE:
9410 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9411 type = value_type (arg1);
9412
9413 /* If the argument is a reference, then dereference its type, since
9414 the user is really asking for the size of the actual object,
9415 not the size of the pointer. */
9416 if (TYPE_CODE (type) == TYPE_CODE_REF)
9417 type = TYPE_TARGET_TYPE (type);
9418
9419 if (noside == EVAL_SKIP)
9420 goto nosideret;
9421 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9422 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9423 else
9424 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9425 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9426
9427 case OP_ATR_VAL:
9428 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9429 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9430 type = exp->elts[pc + 2].type;
9431 if (noside == EVAL_SKIP)
9432 goto nosideret;
9433 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9434 return value_zero (type, not_lval);
9435 else
9436 return value_val_atr (type, arg1);
9437
9438 case BINOP_EXP:
9439 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9440 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9441 if (noside == EVAL_SKIP)
9442 goto nosideret;
9443 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9444 return value_zero (value_type (arg1), not_lval);
9445 else
9446 {
9447 /* For integer exponentiation operations,
9448 only promote the first argument. */
9449 if (is_integral_type (value_type (arg2)))
9450 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9451 else
9452 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9453
9454 return value_binop (arg1, arg2, op);
9455 }
9456
9457 case UNOP_PLUS:
9458 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9459 if (noside == EVAL_SKIP)
9460 goto nosideret;
9461 else
9462 return arg1;
9463
9464 case UNOP_ABS:
9465 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9466 if (noside == EVAL_SKIP)
9467 goto nosideret;
9468 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9469 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9470 return value_neg (arg1);
9471 else
9472 return arg1;
9473
9474 case UNOP_IND:
9475 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9476 if (noside == EVAL_SKIP)
9477 goto nosideret;
9478 type = ada_check_typedef (value_type (arg1));
9479 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9480 {
9481 if (ada_is_array_descriptor_type (type))
9482 /* GDB allows dereferencing GNAT array descriptors. */
9483 {
9484 struct type *arrType = ada_type_of_array (arg1, 0);
9485 if (arrType == NULL)
9486 error (_("Attempt to dereference null array pointer."));
9487 return value_at_lazy (arrType, 0);
9488 }
9489 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9490 || TYPE_CODE (type) == TYPE_CODE_REF
9491 /* In C you can dereference an array to get the 1st elt. */
9492 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9493 {
9494 type = to_static_fixed_type
9495 (ada_aligned_type
9496 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9497 check_size (type);
9498 return value_zero (type, lval_memory);
9499 }
9500 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9501 {
9502 /* GDB allows dereferencing an int. */
9503 if (expect_type == NULL)
9504 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9505 lval_memory);
9506 else
9507 {
9508 expect_type =
9509 to_static_fixed_type (ada_aligned_type (expect_type));
9510 return value_zero (expect_type, lval_memory);
9511 }
9512 }
9513 else
9514 error (_("Attempt to take contents of a non-pointer value."));
9515 }
9516 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9517 type = ada_check_typedef (value_type (arg1));
9518
9519 if (TYPE_CODE (type) == TYPE_CODE_INT)
9520 /* GDB allows dereferencing an int. If we were given
9521 the expect_type, then use that as the target type.
9522 Otherwise, assume that the target type is an int. */
9523 {
9524 if (expect_type != NULL)
9525 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9526 arg1));
9527 else
9528 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9529 (CORE_ADDR) value_as_address (arg1));
9530 }
9531
9532 if (ada_is_array_descriptor_type (type))
9533 /* GDB allows dereferencing GNAT array descriptors. */
9534 return ada_coerce_to_simple_array (arg1);
9535 else
9536 return ada_value_ind (arg1);
9537
9538 case STRUCTOP_STRUCT:
9539 tem = longest_to_int (exp->elts[pc + 1].longconst);
9540 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9541 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9542 if (noside == EVAL_SKIP)
9543 goto nosideret;
9544 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9545 {
9546 struct type *type1 = value_type (arg1);
9547 if (ada_is_tagged_type (type1, 1))
9548 {
9549 type = ada_lookup_struct_elt_type (type1,
9550 &exp->elts[pc + 2].string,
9551 1, 1, NULL);
9552 if (type == NULL)
9553 /* In this case, we assume that the field COULD exist
9554 in some extension of the type. Return an object of
9555 "type" void, which will match any formal
9556 (see ada_type_match). */
9557 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9558 lval_memory);
9559 }
9560 else
9561 type =
9562 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9563 0, NULL);
9564
9565 return value_zero (ada_aligned_type (type), lval_memory);
9566 }
9567 else
9568 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9569 arg1 = unwrap_value (arg1);
9570 return ada_to_fixed_value (arg1);
9571
9572 case OP_TYPE:
9573 /* The value is not supposed to be used. This is here to make it
9574 easier to accommodate expressions that contain types. */
9575 (*pos) += 2;
9576 if (noside == EVAL_SKIP)
9577 goto nosideret;
9578 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9579 return allocate_value (exp->elts[pc + 1].type);
9580 else
9581 error (_("Attempt to use a type name as an expression"));
9582
9583 case OP_AGGREGATE:
9584 case OP_CHOICES:
9585 case OP_OTHERS:
9586 case OP_DISCRETE_RANGE:
9587 case OP_POSITIONAL:
9588 case OP_NAME:
9589 if (noside == EVAL_NORMAL)
9590 switch (op)
9591 {
9592 case OP_NAME:
9593 error (_("Undefined name, ambiguous name, or renaming used in "
9594 "component association: %s."), &exp->elts[pc+2].string);
9595 case OP_AGGREGATE:
9596 error (_("Aggregates only allowed on the right of an assignment"));
9597 default:
9598 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9599 }
9600
9601 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9602 *pos += oplen - 1;
9603 for (tem = 0; tem < nargs; tem += 1)
9604 ada_evaluate_subexp (NULL, exp, pos, noside);
9605 goto nosideret;
9606 }
9607
9608 nosideret:
9609 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9610 }
9611 \f
9612
9613 /* Fixed point */
9614
9615 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9616 type name that encodes the 'small and 'delta information.
9617 Otherwise, return NULL. */
9618
9619 static const char *
9620 fixed_type_info (struct type *type)
9621 {
9622 const char *name = ada_type_name (type);
9623 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9624
9625 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9626 {
9627 const char *tail = strstr (name, "___XF_");
9628 if (tail == NULL)
9629 return NULL;
9630 else
9631 return tail + 5;
9632 }
9633 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9634 return fixed_type_info (TYPE_TARGET_TYPE (type));
9635 else
9636 return NULL;
9637 }
9638
9639 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9640
9641 int
9642 ada_is_fixed_point_type (struct type *type)
9643 {
9644 return fixed_type_info (type) != NULL;
9645 }
9646
9647 /* Return non-zero iff TYPE represents a System.Address type. */
9648
9649 int
9650 ada_is_system_address_type (struct type *type)
9651 {
9652 return (TYPE_NAME (type)
9653 && strcmp (TYPE_NAME (type), "system__address") == 0);
9654 }
9655
9656 /* Assuming that TYPE is the representation of an Ada fixed-point
9657 type, return its delta, or -1 if the type is malformed and the
9658 delta cannot be determined. */
9659
9660 DOUBLEST
9661 ada_delta (struct type *type)
9662 {
9663 const char *encoding = fixed_type_info (type);
9664 DOUBLEST num, den;
9665
9666 /* Strictly speaking, num and den are encoded as integer. However,
9667 they may not fit into a long, and they will have to be converted
9668 to DOUBLEST anyway. So scan them as DOUBLEST. */
9669 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9670 &num, &den) < 2)
9671 return -1.0;
9672 else
9673 return num / den;
9674 }
9675
9676 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9677 factor ('SMALL value) associated with the type. */
9678
9679 static DOUBLEST
9680 scaling_factor (struct type *type)
9681 {
9682 const char *encoding = fixed_type_info (type);
9683 DOUBLEST num0, den0, num1, den1;
9684 int n;
9685
9686 /* Strictly speaking, num's and den's are encoded as integer. However,
9687 they may not fit into a long, and they will have to be converted
9688 to DOUBLEST anyway. So scan them as DOUBLEST. */
9689 n = sscanf (encoding,
9690 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9691 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9692 &num0, &den0, &num1, &den1);
9693
9694 if (n < 2)
9695 return 1.0;
9696 else if (n == 4)
9697 return num1 / den1;
9698 else
9699 return num0 / den0;
9700 }
9701
9702
9703 /* Assuming that X is the representation of a value of fixed-point
9704 type TYPE, return its floating-point equivalent. */
9705
9706 DOUBLEST
9707 ada_fixed_to_float (struct type *type, LONGEST x)
9708 {
9709 return (DOUBLEST) x *scaling_factor (type);
9710 }
9711
9712 /* The representation of a fixed-point value of type TYPE
9713 corresponding to the value X. */
9714
9715 LONGEST
9716 ada_float_to_fixed (struct type *type, DOUBLEST x)
9717 {
9718 return (LONGEST) (x / scaling_factor (type) + 0.5);
9719 }
9720
9721 \f
9722
9723 /* Range types */
9724
9725 /* Scan STR beginning at position K for a discriminant name, and
9726 return the value of that discriminant field of DVAL in *PX. If
9727 PNEW_K is not null, put the position of the character beyond the
9728 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9729 not alter *PX and *PNEW_K if unsuccessful. */
9730
9731 static int
9732 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9733 int *pnew_k)
9734 {
9735 static char *bound_buffer = NULL;
9736 static size_t bound_buffer_len = 0;
9737 char *bound;
9738 char *pend;
9739 struct value *bound_val;
9740
9741 if (dval == NULL || str == NULL || str[k] == '\0')
9742 return 0;
9743
9744 pend = strstr (str + k, "__");
9745 if (pend == NULL)
9746 {
9747 bound = str + k;
9748 k += strlen (bound);
9749 }
9750 else
9751 {
9752 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9753 bound = bound_buffer;
9754 strncpy (bound_buffer, str + k, pend - (str + k));
9755 bound[pend - (str + k)] = '\0';
9756 k = pend - str;
9757 }
9758
9759 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9760 if (bound_val == NULL)
9761 return 0;
9762
9763 *px = value_as_long (bound_val);
9764 if (pnew_k != NULL)
9765 *pnew_k = k;
9766 return 1;
9767 }
9768
9769 /* Value of variable named NAME in the current environment. If
9770 no such variable found, then if ERR_MSG is null, returns 0, and
9771 otherwise causes an error with message ERR_MSG. */
9772
9773 static struct value *
9774 get_var_value (char *name, char *err_msg)
9775 {
9776 struct ada_symbol_info *syms;
9777 int nsyms;
9778
9779 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9780 &syms);
9781
9782 if (nsyms != 1)
9783 {
9784 if (err_msg == NULL)
9785 return 0;
9786 else
9787 error (("%s"), err_msg);
9788 }
9789
9790 return value_of_variable (syms[0].sym, syms[0].block);
9791 }
9792
9793 /* Value of integer variable named NAME in the current environment. If
9794 no such variable found, returns 0, and sets *FLAG to 0. If
9795 successful, sets *FLAG to 1. */
9796
9797 LONGEST
9798 get_int_var_value (char *name, int *flag)
9799 {
9800 struct value *var_val = get_var_value (name, 0);
9801
9802 if (var_val == 0)
9803 {
9804 if (flag != NULL)
9805 *flag = 0;
9806 return 0;
9807 }
9808 else
9809 {
9810 if (flag != NULL)
9811 *flag = 1;
9812 return value_as_long (var_val);
9813 }
9814 }
9815
9816
9817 /* Return a range type whose base type is that of the range type named
9818 NAME in the current environment, and whose bounds are calculated
9819 from NAME according to the GNAT range encoding conventions.
9820 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9821 corresponding range type from debug information; fall back to using it
9822 if symbol lookup fails. If a new type must be created, allocate it
9823 like ORIG_TYPE was. The bounds information, in general, is encoded
9824 in NAME, the base type given in the named range type. */
9825
9826 static struct type *
9827 to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
9828 {
9829 struct type *raw_type = ada_find_any_type (name);
9830 struct type *base_type;
9831 char *subtype_info;
9832
9833 /* Fall back to the original type if symbol lookup failed. */
9834 if (raw_type == NULL)
9835 raw_type = orig_type;
9836
9837 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9838 base_type = TYPE_TARGET_TYPE (raw_type);
9839 else
9840 base_type = raw_type;
9841
9842 subtype_info = strstr (name, "___XD");
9843 if (subtype_info == NULL)
9844 {
9845 LONGEST L = ada_discrete_type_low_bound (raw_type);
9846 LONGEST U = ada_discrete_type_high_bound (raw_type);
9847 if (L < INT_MIN || U > INT_MAX)
9848 return raw_type;
9849 else
9850 return create_range_type (alloc_type_copy (orig_type), raw_type,
9851 ada_discrete_type_low_bound (raw_type),
9852 ada_discrete_type_high_bound (raw_type));
9853 }
9854 else
9855 {
9856 static char *name_buf = NULL;
9857 static size_t name_len = 0;
9858 int prefix_len = subtype_info - name;
9859 LONGEST L, U;
9860 struct type *type;
9861 char *bounds_str;
9862 int n;
9863
9864 GROW_VECT (name_buf, name_len, prefix_len + 5);
9865 strncpy (name_buf, name, prefix_len);
9866 name_buf[prefix_len] = '\0';
9867
9868 subtype_info += 5;
9869 bounds_str = strchr (subtype_info, '_');
9870 n = 1;
9871
9872 if (*subtype_info == 'L')
9873 {
9874 if (!ada_scan_number (bounds_str, n, &L, &n)
9875 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9876 return raw_type;
9877 if (bounds_str[n] == '_')
9878 n += 2;
9879 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9880 n += 1;
9881 subtype_info += 1;
9882 }
9883 else
9884 {
9885 int ok;
9886 strcpy (name_buf + prefix_len, "___L");
9887 L = get_int_var_value (name_buf, &ok);
9888 if (!ok)
9889 {
9890 lim_warning (_("Unknown lower bound, using 1."));
9891 L = 1;
9892 }
9893 }
9894
9895 if (*subtype_info == 'U')
9896 {
9897 if (!ada_scan_number (bounds_str, n, &U, &n)
9898 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9899 return raw_type;
9900 }
9901 else
9902 {
9903 int ok;
9904 strcpy (name_buf + prefix_len, "___U");
9905 U = get_int_var_value (name_buf, &ok);
9906 if (!ok)
9907 {
9908 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9909 U = L;
9910 }
9911 }
9912
9913 type = create_range_type (alloc_type_copy (orig_type), base_type, L, U);
9914 TYPE_NAME (type) = name;
9915 return type;
9916 }
9917 }
9918
9919 /* True iff NAME is the name of a range type. */
9920
9921 int
9922 ada_is_range_type_name (const char *name)
9923 {
9924 return (name != NULL && strstr (name, "___XD"));
9925 }
9926 \f
9927
9928 /* Modular types */
9929
9930 /* True iff TYPE is an Ada modular type. */
9931
9932 int
9933 ada_is_modular_type (struct type *type)
9934 {
9935 struct type *subranged_type = base_type (type);
9936
9937 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9938 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9939 && TYPE_UNSIGNED (subranged_type));
9940 }
9941
9942 /* Try to determine the lower and upper bounds of the given modular type
9943 using the type name only. Return non-zero and set L and U as the lower
9944 and upper bounds (respectively) if successful. */
9945
9946 int
9947 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9948 {
9949 char *name = ada_type_name (type);
9950 char *suffix;
9951 int k;
9952 LONGEST U;
9953
9954 if (name == NULL)
9955 return 0;
9956
9957 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9958 we are looking for static bounds, which means an __XDLU suffix.
9959 Moreover, we know that the lower bound of modular types is always
9960 zero, so the actual suffix should start with "__XDLU_0__", and
9961 then be followed by the upper bound value. */
9962 suffix = strstr (name, "__XDLU_0__");
9963 if (suffix == NULL)
9964 return 0;
9965 k = 10;
9966 if (!ada_scan_number (suffix, k, &U, NULL))
9967 return 0;
9968
9969 *modulus = (ULONGEST) U + 1;
9970 return 1;
9971 }
9972
9973 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9974
9975 ULONGEST
9976 ada_modulus (struct type *type)
9977 {
9978 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9979 }
9980 \f
9981
9982 /* Ada exception catchpoint support:
9983 ---------------------------------
9984
9985 We support 3 kinds of exception catchpoints:
9986 . catchpoints on Ada exceptions
9987 . catchpoints on unhandled Ada exceptions
9988 . catchpoints on failed assertions
9989
9990 Exceptions raised during failed assertions, or unhandled exceptions
9991 could perfectly be caught with the general catchpoint on Ada exceptions.
9992 However, we can easily differentiate these two special cases, and having
9993 the option to distinguish these two cases from the rest can be useful
9994 to zero-in on certain situations.
9995
9996 Exception catchpoints are a specialized form of breakpoint,
9997 since they rely on inserting breakpoints inside known routines
9998 of the GNAT runtime. The implementation therefore uses a standard
9999 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10000 of breakpoint_ops.
10001
10002 Support in the runtime for exception catchpoints have been changed
10003 a few times already, and these changes affect the implementation
10004 of these catchpoints. In order to be able to support several
10005 variants of the runtime, we use a sniffer that will determine
10006 the runtime variant used by the program being debugged.
10007
10008 At this time, we do not support the use of conditions on Ada exception
10009 catchpoints. The COND and COND_STRING fields are therefore set
10010 to NULL (most of the time, see below).
10011
10012 Conditions where EXP_STRING, COND, and COND_STRING are used:
10013
10014 When a user specifies the name of a specific exception in the case
10015 of catchpoints on Ada exceptions, we store the name of that exception
10016 in the EXP_STRING. We then translate this request into an actual
10017 condition stored in COND_STRING, and then parse it into an expression
10018 stored in COND. */
10019
10020 /* The different types of catchpoints that we introduced for catching
10021 Ada exceptions. */
10022
10023 enum exception_catchpoint_kind
10024 {
10025 ex_catch_exception,
10026 ex_catch_exception_unhandled,
10027 ex_catch_assert
10028 };
10029
10030 /* Ada's standard exceptions. */
10031
10032 static char *standard_exc[] = {
10033 "constraint_error",
10034 "program_error",
10035 "storage_error",
10036 "tasking_error"
10037 };
10038
10039 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10040
10041 /* A structure that describes how to support exception catchpoints
10042 for a given executable. */
10043
10044 struct exception_support_info
10045 {
10046 /* The name of the symbol to break on in order to insert
10047 a catchpoint on exceptions. */
10048 const char *catch_exception_sym;
10049
10050 /* The name of the symbol to break on in order to insert
10051 a catchpoint on unhandled exceptions. */
10052 const char *catch_exception_unhandled_sym;
10053
10054 /* The name of the symbol to break on in order to insert
10055 a catchpoint on failed assertions. */
10056 const char *catch_assert_sym;
10057
10058 /* Assuming that the inferior just triggered an unhandled exception
10059 catchpoint, this function is responsible for returning the address
10060 in inferior memory where the name of that exception is stored.
10061 Return zero if the address could not be computed. */
10062 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10063 };
10064
10065 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10066 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10067
10068 /* The following exception support info structure describes how to
10069 implement exception catchpoints with the latest version of the
10070 Ada runtime (as of 2007-03-06). */
10071
10072 static const struct exception_support_info default_exception_support_info =
10073 {
10074 "__gnat_debug_raise_exception", /* catch_exception_sym */
10075 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10076 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10077 ada_unhandled_exception_name_addr
10078 };
10079
10080 /* The following exception support info structure describes how to
10081 implement exception catchpoints with a slightly older version
10082 of the Ada runtime. */
10083
10084 static const struct exception_support_info exception_support_info_fallback =
10085 {
10086 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10087 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10088 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10089 ada_unhandled_exception_name_addr_from_raise
10090 };
10091
10092 /* For each executable, we sniff which exception info structure to use
10093 and cache it in the following global variable. */
10094
10095 static const struct exception_support_info *exception_info = NULL;
10096
10097 /* Inspect the Ada runtime and determine which exception info structure
10098 should be used to provide support for exception catchpoints.
10099
10100 This function will always set exception_info, or raise an error. */
10101
10102 static void
10103 ada_exception_support_info_sniffer (void)
10104 {
10105 struct symbol *sym;
10106
10107 /* If the exception info is already known, then no need to recompute it. */
10108 if (exception_info != NULL)
10109 return;
10110
10111 /* Check the latest (default) exception support info. */
10112 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10113 NULL, VAR_DOMAIN);
10114 if (sym != NULL)
10115 {
10116 exception_info = &default_exception_support_info;
10117 return;
10118 }
10119
10120 /* Try our fallback exception suport info. */
10121 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10122 NULL, VAR_DOMAIN);
10123 if (sym != NULL)
10124 {
10125 exception_info = &exception_support_info_fallback;
10126 return;
10127 }
10128
10129 /* Sometimes, it is normal for us to not be able to find the routine
10130 we are looking for. This happens when the program is linked with
10131 the shared version of the GNAT runtime, and the program has not been
10132 started yet. Inform the user of these two possible causes if
10133 applicable. */
10134
10135 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
10136 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10137
10138 /* If the symbol does not exist, then check that the program is
10139 already started, to make sure that shared libraries have been
10140 loaded. If it is not started, this may mean that the symbol is
10141 in a shared library. */
10142
10143 if (ptid_get_pid (inferior_ptid) == 0)
10144 error (_("Unable to insert catchpoint. Try to start the program first."));
10145
10146 /* At this point, we know that we are debugging an Ada program and
10147 that the inferior has been started, but we still are not able to
10148 find the run-time symbols. That can mean that we are in
10149 configurable run time mode, or that a-except as been optimized
10150 out by the linker... In any case, at this point it is not worth
10151 supporting this feature. */
10152
10153 error (_("Cannot insert catchpoints in this configuration."));
10154 }
10155
10156 /* An observer of "executable_changed" events.
10157 Its role is to clear certain cached values that need to be recomputed
10158 each time a new executable is loaded by GDB. */
10159
10160 static void
10161 ada_executable_changed_observer (void)
10162 {
10163 /* If the executable changed, then it is possible that the Ada runtime
10164 is different. So we need to invalidate the exception support info
10165 cache. */
10166 exception_info = NULL;
10167 }
10168
10169 /* Return the name of the function at PC, NULL if could not find it.
10170 This function only checks the debugging information, not the symbol
10171 table. */
10172
10173 static char *
10174 function_name_from_pc (CORE_ADDR pc)
10175 {
10176 char *func_name;
10177
10178 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
10179 return NULL;
10180
10181 return func_name;
10182 }
10183
10184 /* True iff FRAME is very likely to be that of a function that is
10185 part of the runtime system. This is all very heuristic, but is
10186 intended to be used as advice as to what frames are uninteresting
10187 to most users. */
10188
10189 static int
10190 is_known_support_routine (struct frame_info *frame)
10191 {
10192 struct symtab_and_line sal;
10193 char *func_name;
10194 int i;
10195
10196 /* If this code does not have any debugging information (no symtab),
10197 This cannot be any user code. */
10198
10199 find_frame_sal (frame, &sal);
10200 if (sal.symtab == NULL)
10201 return 1;
10202
10203 /* If there is a symtab, but the associated source file cannot be
10204 located, then assume this is not user code: Selecting a frame
10205 for which we cannot display the code would not be very helpful
10206 for the user. This should also take care of case such as VxWorks
10207 where the kernel has some debugging info provided for a few units. */
10208
10209 if (symtab_to_fullname (sal.symtab) == NULL)
10210 return 1;
10211
10212 /* Check the unit filename againt the Ada runtime file naming.
10213 We also check the name of the objfile against the name of some
10214 known system libraries that sometimes come with debugging info
10215 too. */
10216
10217 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10218 {
10219 re_comp (known_runtime_file_name_patterns[i]);
10220 if (re_exec (sal.symtab->filename))
10221 return 1;
10222 if (sal.symtab->objfile != NULL
10223 && re_exec (sal.symtab->objfile->name))
10224 return 1;
10225 }
10226
10227 /* Check whether the function is a GNAT-generated entity. */
10228
10229 func_name = function_name_from_pc (get_frame_address_in_block (frame));
10230 if (func_name == NULL)
10231 return 1;
10232
10233 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10234 {
10235 re_comp (known_auxiliary_function_name_patterns[i]);
10236 if (re_exec (func_name))
10237 return 1;
10238 }
10239
10240 return 0;
10241 }
10242
10243 /* Find the first frame that contains debugging information and that is not
10244 part of the Ada run-time, starting from FI and moving upward. */
10245
10246 void
10247 ada_find_printable_frame (struct frame_info *fi)
10248 {
10249 for (; fi != NULL; fi = get_prev_frame (fi))
10250 {
10251 if (!is_known_support_routine (fi))
10252 {
10253 select_frame (fi);
10254 break;
10255 }
10256 }
10257
10258 }
10259
10260 /* Assuming that the inferior just triggered an unhandled exception
10261 catchpoint, return the address in inferior memory where the name
10262 of the exception is stored.
10263
10264 Return zero if the address could not be computed. */
10265
10266 static CORE_ADDR
10267 ada_unhandled_exception_name_addr (void)
10268 {
10269 return parse_and_eval_address ("e.full_name");
10270 }
10271
10272 /* Same as ada_unhandled_exception_name_addr, except that this function
10273 should be used when the inferior uses an older version of the runtime,
10274 where the exception name needs to be extracted from a specific frame
10275 several frames up in the callstack. */
10276
10277 static CORE_ADDR
10278 ada_unhandled_exception_name_addr_from_raise (void)
10279 {
10280 int frame_level;
10281 struct frame_info *fi;
10282
10283 /* To determine the name of this exception, we need to select
10284 the frame corresponding to RAISE_SYM_NAME. This frame is
10285 at least 3 levels up, so we simply skip the first 3 frames
10286 without checking the name of their associated function. */
10287 fi = get_current_frame ();
10288 for (frame_level = 0; frame_level < 3; frame_level += 1)
10289 if (fi != NULL)
10290 fi = get_prev_frame (fi);
10291
10292 while (fi != NULL)
10293 {
10294 const char *func_name =
10295 function_name_from_pc (get_frame_address_in_block (fi));
10296 if (func_name != NULL
10297 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10298 break; /* We found the frame we were looking for... */
10299 fi = get_prev_frame (fi);
10300 }
10301
10302 if (fi == NULL)
10303 return 0;
10304
10305 select_frame (fi);
10306 return parse_and_eval_address ("id.full_name");
10307 }
10308
10309 /* Assuming the inferior just triggered an Ada exception catchpoint
10310 (of any type), return the address in inferior memory where the name
10311 of the exception is stored, if applicable.
10312
10313 Return zero if the address could not be computed, or if not relevant. */
10314
10315 static CORE_ADDR
10316 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10317 struct breakpoint *b)
10318 {
10319 switch (ex)
10320 {
10321 case ex_catch_exception:
10322 return (parse_and_eval_address ("e.full_name"));
10323 break;
10324
10325 case ex_catch_exception_unhandled:
10326 return exception_info->unhandled_exception_name_addr ();
10327 break;
10328
10329 case ex_catch_assert:
10330 return 0; /* Exception name is not relevant in this case. */
10331 break;
10332
10333 default:
10334 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10335 break;
10336 }
10337
10338 return 0; /* Should never be reached. */
10339 }
10340
10341 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10342 any error that ada_exception_name_addr_1 might cause to be thrown.
10343 When an error is intercepted, a warning with the error message is printed,
10344 and zero is returned. */
10345
10346 static CORE_ADDR
10347 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10348 struct breakpoint *b)
10349 {
10350 struct gdb_exception e;
10351 CORE_ADDR result = 0;
10352
10353 TRY_CATCH (e, RETURN_MASK_ERROR)
10354 {
10355 result = ada_exception_name_addr_1 (ex, b);
10356 }
10357
10358 if (e.reason < 0)
10359 {
10360 warning (_("failed to get exception name: %s"), e.message);
10361 return 0;
10362 }
10363
10364 return result;
10365 }
10366
10367 /* Implement the PRINT_IT method in the breakpoint_ops structure
10368 for all exception catchpoint kinds. */
10369
10370 static enum print_stop_action
10371 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10372 {
10373 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10374 char exception_name[256];
10375
10376 if (addr != 0)
10377 {
10378 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10379 exception_name [sizeof (exception_name) - 1] = '\0';
10380 }
10381
10382 ada_find_printable_frame (get_current_frame ());
10383
10384 annotate_catchpoint (b->number);
10385 switch (ex)
10386 {
10387 case ex_catch_exception:
10388 if (addr != 0)
10389 printf_filtered (_("\nCatchpoint %d, %s at "),
10390 b->number, exception_name);
10391 else
10392 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10393 break;
10394 case ex_catch_exception_unhandled:
10395 if (addr != 0)
10396 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10397 b->number, exception_name);
10398 else
10399 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10400 b->number);
10401 break;
10402 case ex_catch_assert:
10403 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10404 b->number);
10405 break;
10406 }
10407
10408 return PRINT_SRC_AND_LOC;
10409 }
10410
10411 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10412 for all exception catchpoint kinds. */
10413
10414 static void
10415 print_one_exception (enum exception_catchpoint_kind ex,
10416 struct breakpoint *b, struct bp_location **last_loc)
10417 {
10418 struct value_print_options opts;
10419
10420 get_user_print_options (&opts);
10421 if (opts.addressprint)
10422 {
10423 annotate_field (4);
10424 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10425 }
10426
10427 annotate_field (5);
10428 *last_loc = b->loc;
10429 switch (ex)
10430 {
10431 case ex_catch_exception:
10432 if (b->exp_string != NULL)
10433 {
10434 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10435
10436 ui_out_field_string (uiout, "what", msg);
10437 xfree (msg);
10438 }
10439 else
10440 ui_out_field_string (uiout, "what", "all Ada exceptions");
10441
10442 break;
10443
10444 case ex_catch_exception_unhandled:
10445 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10446 break;
10447
10448 case ex_catch_assert:
10449 ui_out_field_string (uiout, "what", "failed Ada assertions");
10450 break;
10451
10452 default:
10453 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10454 break;
10455 }
10456 }
10457
10458 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10459 for all exception catchpoint kinds. */
10460
10461 static void
10462 print_mention_exception (enum exception_catchpoint_kind ex,
10463 struct breakpoint *b)
10464 {
10465 switch (ex)
10466 {
10467 case ex_catch_exception:
10468 if (b->exp_string != NULL)
10469 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10470 b->number, b->exp_string);
10471 else
10472 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10473
10474 break;
10475
10476 case ex_catch_exception_unhandled:
10477 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10478 b->number);
10479 break;
10480
10481 case ex_catch_assert:
10482 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10483 break;
10484
10485 default:
10486 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10487 break;
10488 }
10489 }
10490
10491 /* Virtual table for "catch exception" breakpoints. */
10492
10493 static enum print_stop_action
10494 print_it_catch_exception (struct breakpoint *b)
10495 {
10496 return print_it_exception (ex_catch_exception, b);
10497 }
10498
10499 static void
10500 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10501 {
10502 print_one_exception (ex_catch_exception, b, last_loc);
10503 }
10504
10505 static void
10506 print_mention_catch_exception (struct breakpoint *b)
10507 {
10508 print_mention_exception (ex_catch_exception, b);
10509 }
10510
10511 static struct breakpoint_ops catch_exception_breakpoint_ops =
10512 {
10513 NULL, /* insert */
10514 NULL, /* remove */
10515 NULL, /* breakpoint_hit */
10516 print_it_catch_exception,
10517 print_one_catch_exception,
10518 print_mention_catch_exception
10519 };
10520
10521 /* Virtual table for "catch exception unhandled" breakpoints. */
10522
10523 static enum print_stop_action
10524 print_it_catch_exception_unhandled (struct breakpoint *b)
10525 {
10526 return print_it_exception (ex_catch_exception_unhandled, b);
10527 }
10528
10529 static void
10530 print_one_catch_exception_unhandled (struct breakpoint *b,
10531 struct bp_location **last_loc)
10532 {
10533 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10534 }
10535
10536 static void
10537 print_mention_catch_exception_unhandled (struct breakpoint *b)
10538 {
10539 print_mention_exception (ex_catch_exception_unhandled, b);
10540 }
10541
10542 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10543 NULL, /* insert */
10544 NULL, /* remove */
10545 NULL, /* breakpoint_hit */
10546 print_it_catch_exception_unhandled,
10547 print_one_catch_exception_unhandled,
10548 print_mention_catch_exception_unhandled
10549 };
10550
10551 /* Virtual table for "catch assert" breakpoints. */
10552
10553 static enum print_stop_action
10554 print_it_catch_assert (struct breakpoint *b)
10555 {
10556 return print_it_exception (ex_catch_assert, b);
10557 }
10558
10559 static void
10560 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
10561 {
10562 print_one_exception (ex_catch_assert, b, last_loc);
10563 }
10564
10565 static void
10566 print_mention_catch_assert (struct breakpoint *b)
10567 {
10568 print_mention_exception (ex_catch_assert, b);
10569 }
10570
10571 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10572 NULL, /* insert */
10573 NULL, /* remove */
10574 NULL, /* breakpoint_hit */
10575 print_it_catch_assert,
10576 print_one_catch_assert,
10577 print_mention_catch_assert
10578 };
10579
10580 /* Return non-zero if B is an Ada exception catchpoint. */
10581
10582 int
10583 ada_exception_catchpoint_p (struct breakpoint *b)
10584 {
10585 return (b->ops == &catch_exception_breakpoint_ops
10586 || b->ops == &catch_exception_unhandled_breakpoint_ops
10587 || b->ops == &catch_assert_breakpoint_ops);
10588 }
10589
10590 /* Return a newly allocated copy of the first space-separated token
10591 in ARGSP, and then adjust ARGSP to point immediately after that
10592 token.
10593
10594 Return NULL if ARGPS does not contain any more tokens. */
10595
10596 static char *
10597 ada_get_next_arg (char **argsp)
10598 {
10599 char *args = *argsp;
10600 char *end;
10601 char *result;
10602
10603 /* Skip any leading white space. */
10604
10605 while (isspace (*args))
10606 args++;
10607
10608 if (args[0] == '\0')
10609 return NULL; /* No more arguments. */
10610
10611 /* Find the end of the current argument. */
10612
10613 end = args;
10614 while (*end != '\0' && !isspace (*end))
10615 end++;
10616
10617 /* Adjust ARGSP to point to the start of the next argument. */
10618
10619 *argsp = end;
10620
10621 /* Make a copy of the current argument and return it. */
10622
10623 result = xmalloc (end - args + 1);
10624 strncpy (result, args, end - args);
10625 result[end - args] = '\0';
10626
10627 return result;
10628 }
10629
10630 /* Split the arguments specified in a "catch exception" command.
10631 Set EX to the appropriate catchpoint type.
10632 Set EXP_STRING to the name of the specific exception if
10633 specified by the user. */
10634
10635 static void
10636 catch_ada_exception_command_split (char *args,
10637 enum exception_catchpoint_kind *ex,
10638 char **exp_string)
10639 {
10640 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10641 char *exception_name;
10642
10643 exception_name = ada_get_next_arg (&args);
10644 make_cleanup (xfree, exception_name);
10645
10646 /* Check that we do not have any more arguments. Anything else
10647 is unexpected. */
10648
10649 while (isspace (*args))
10650 args++;
10651
10652 if (args[0] != '\0')
10653 error (_("Junk at end of expression"));
10654
10655 discard_cleanups (old_chain);
10656
10657 if (exception_name == NULL)
10658 {
10659 /* Catch all exceptions. */
10660 *ex = ex_catch_exception;
10661 *exp_string = NULL;
10662 }
10663 else if (strcmp (exception_name, "unhandled") == 0)
10664 {
10665 /* Catch unhandled exceptions. */
10666 *ex = ex_catch_exception_unhandled;
10667 *exp_string = NULL;
10668 }
10669 else
10670 {
10671 /* Catch a specific exception. */
10672 *ex = ex_catch_exception;
10673 *exp_string = exception_name;
10674 }
10675 }
10676
10677 /* Return the name of the symbol on which we should break in order to
10678 implement a catchpoint of the EX kind. */
10679
10680 static const char *
10681 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10682 {
10683 gdb_assert (exception_info != NULL);
10684
10685 switch (ex)
10686 {
10687 case ex_catch_exception:
10688 return (exception_info->catch_exception_sym);
10689 break;
10690 case ex_catch_exception_unhandled:
10691 return (exception_info->catch_exception_unhandled_sym);
10692 break;
10693 case ex_catch_assert:
10694 return (exception_info->catch_assert_sym);
10695 break;
10696 default:
10697 internal_error (__FILE__, __LINE__,
10698 _("unexpected catchpoint kind (%d)"), ex);
10699 }
10700 }
10701
10702 /* Return the breakpoint ops "virtual table" used for catchpoints
10703 of the EX kind. */
10704
10705 static struct breakpoint_ops *
10706 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10707 {
10708 switch (ex)
10709 {
10710 case ex_catch_exception:
10711 return (&catch_exception_breakpoint_ops);
10712 break;
10713 case ex_catch_exception_unhandled:
10714 return (&catch_exception_unhandled_breakpoint_ops);
10715 break;
10716 case ex_catch_assert:
10717 return (&catch_assert_breakpoint_ops);
10718 break;
10719 default:
10720 internal_error (__FILE__, __LINE__,
10721 _("unexpected catchpoint kind (%d)"), ex);
10722 }
10723 }
10724
10725 /* Return the condition that will be used to match the current exception
10726 being raised with the exception that the user wants to catch. This
10727 assumes that this condition is used when the inferior just triggered
10728 an exception catchpoint.
10729
10730 The string returned is a newly allocated string that needs to be
10731 deallocated later. */
10732
10733 static char *
10734 ada_exception_catchpoint_cond_string (const char *exp_string)
10735 {
10736 int i;
10737
10738 /* The standard exceptions are a special case. They are defined in
10739 runtime units that have been compiled without debugging info; if
10740 EXP_STRING is the not-fully-qualified name of a standard
10741 exception (e.g. "constraint_error") then, during the evaluation
10742 of the condition expression, the symbol lookup on this name would
10743 *not* return this standard exception. The catchpoint condition
10744 may then be set only on user-defined exceptions which have the
10745 same not-fully-qualified name (e.g. my_package.constraint_error).
10746
10747 To avoid this unexcepted behavior, these standard exceptions are
10748 systematically prefixed by "standard". This means that "catch
10749 exception constraint_error" is rewritten into "catch exception
10750 standard.constraint_error".
10751
10752 If an exception named contraint_error is defined in another package of
10753 the inferior program, then the only way to specify this exception as a
10754 breakpoint condition is to use its fully-qualified named:
10755 e.g. my_package.constraint_error. */
10756
10757 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10758 {
10759 if (strcmp (standard_exc [i], exp_string) == 0)
10760 {
10761 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10762 exp_string);
10763 }
10764 }
10765 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10766 }
10767
10768 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10769
10770 static struct expression *
10771 ada_parse_catchpoint_condition (char *cond_string,
10772 struct symtab_and_line sal)
10773 {
10774 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10775 }
10776
10777 /* Return the symtab_and_line that should be used to insert an exception
10778 catchpoint of the TYPE kind.
10779
10780 EX_STRING should contain the name of a specific exception
10781 that the catchpoint should catch, or NULL otherwise.
10782
10783 The idea behind all the remaining parameters is that their names match
10784 the name of certain fields in the breakpoint structure that are used to
10785 handle exception catchpoints. This function returns the value to which
10786 these fields should be set, depending on the type of catchpoint we need
10787 to create.
10788
10789 If COND and COND_STRING are both non-NULL, any value they might
10790 hold will be free'ed, and then replaced by newly allocated ones.
10791 These parameters are left untouched otherwise. */
10792
10793 static struct symtab_and_line
10794 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10795 char **addr_string, char **cond_string,
10796 struct expression **cond, struct breakpoint_ops **ops)
10797 {
10798 const char *sym_name;
10799 struct symbol *sym;
10800 struct symtab_and_line sal;
10801
10802 /* First, find out which exception support info to use. */
10803 ada_exception_support_info_sniffer ();
10804
10805 /* Then lookup the function on which we will break in order to catch
10806 the Ada exceptions requested by the user. */
10807
10808 sym_name = ada_exception_sym_name (ex);
10809 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10810
10811 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10812 that should be compiled with debugging information. As a result, we
10813 expect to find that symbol in the symtabs. If we don't find it, then
10814 the target most likely does not support Ada exceptions, or we cannot
10815 insert exception breakpoints yet, because the GNAT runtime hasn't been
10816 loaded yet. */
10817
10818 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10819 in such a way that no debugging information is produced for the symbol
10820 we are looking for. In this case, we could search the minimal symbols
10821 as a fall-back mechanism. This would still be operating in degraded
10822 mode, however, as we would still be missing the debugging information
10823 that is needed in order to extract the name of the exception being
10824 raised (this name is printed in the catchpoint message, and is also
10825 used when trying to catch a specific exception). We do not handle
10826 this case for now. */
10827
10828 if (sym == NULL)
10829 error (_("Unable to break on '%s' in this configuration."), sym_name);
10830
10831 /* Make sure that the symbol we found corresponds to a function. */
10832 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10833 error (_("Symbol \"%s\" is not a function (class = %d)"),
10834 sym_name, SYMBOL_CLASS (sym));
10835
10836 sal = find_function_start_sal (sym, 1);
10837
10838 /* Set ADDR_STRING. */
10839
10840 *addr_string = xstrdup (sym_name);
10841
10842 /* Set the COND and COND_STRING (if not NULL). */
10843
10844 if (cond_string != NULL && cond != NULL)
10845 {
10846 if (*cond_string != NULL)
10847 {
10848 xfree (*cond_string);
10849 *cond_string = NULL;
10850 }
10851 if (*cond != NULL)
10852 {
10853 xfree (*cond);
10854 *cond = NULL;
10855 }
10856 if (exp_string != NULL)
10857 {
10858 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10859 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10860 }
10861 }
10862
10863 /* Set OPS. */
10864 *ops = ada_exception_breakpoint_ops (ex);
10865
10866 return sal;
10867 }
10868
10869 /* Parse the arguments (ARGS) of the "catch exception" command.
10870
10871 Set TYPE to the appropriate exception catchpoint type.
10872 If the user asked the catchpoint to catch only a specific
10873 exception, then save the exception name in ADDR_STRING.
10874
10875 See ada_exception_sal for a description of all the remaining
10876 function arguments of this function. */
10877
10878 struct symtab_and_line
10879 ada_decode_exception_location (char *args, char **addr_string,
10880 char **exp_string, char **cond_string,
10881 struct expression **cond,
10882 struct breakpoint_ops **ops)
10883 {
10884 enum exception_catchpoint_kind ex;
10885
10886 catch_ada_exception_command_split (args, &ex, exp_string);
10887 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10888 cond, ops);
10889 }
10890
10891 struct symtab_and_line
10892 ada_decode_assert_location (char *args, char **addr_string,
10893 struct breakpoint_ops **ops)
10894 {
10895 /* Check that no argument where provided at the end of the command. */
10896
10897 if (args != NULL)
10898 {
10899 while (isspace (*args))
10900 args++;
10901 if (*args != '\0')
10902 error (_("Junk at end of arguments."));
10903 }
10904
10905 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10906 ops);
10907 }
10908
10909 /* Operators */
10910 /* Information about operators given special treatment in functions
10911 below. */
10912 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10913
10914 #define ADA_OPERATORS \
10915 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10916 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10917 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10918 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10919 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10920 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10921 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10922 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10923 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10924 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10925 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10926 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10927 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10928 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10929 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10930 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10931 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10932 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10933 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10934
10935 static void
10936 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10937 {
10938 switch (exp->elts[pc - 1].opcode)
10939 {
10940 default:
10941 operator_length_standard (exp, pc, oplenp, argsp);
10942 break;
10943
10944 #define OP_DEFN(op, len, args, binop) \
10945 case op: *oplenp = len; *argsp = args; break;
10946 ADA_OPERATORS;
10947 #undef OP_DEFN
10948
10949 case OP_AGGREGATE:
10950 *oplenp = 3;
10951 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10952 break;
10953
10954 case OP_CHOICES:
10955 *oplenp = 3;
10956 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10957 break;
10958 }
10959 }
10960
10961 static char *
10962 ada_op_name (enum exp_opcode opcode)
10963 {
10964 switch (opcode)
10965 {
10966 default:
10967 return op_name_standard (opcode);
10968
10969 #define OP_DEFN(op, len, args, binop) case op: return #op;
10970 ADA_OPERATORS;
10971 #undef OP_DEFN
10972
10973 case OP_AGGREGATE:
10974 return "OP_AGGREGATE";
10975 case OP_CHOICES:
10976 return "OP_CHOICES";
10977 case OP_NAME:
10978 return "OP_NAME";
10979 }
10980 }
10981
10982 /* As for operator_length, but assumes PC is pointing at the first
10983 element of the operator, and gives meaningful results only for the
10984 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10985
10986 static void
10987 ada_forward_operator_length (struct expression *exp, int pc,
10988 int *oplenp, int *argsp)
10989 {
10990 switch (exp->elts[pc].opcode)
10991 {
10992 default:
10993 *oplenp = *argsp = 0;
10994 break;
10995
10996 #define OP_DEFN(op, len, args, binop) \
10997 case op: *oplenp = len; *argsp = args; break;
10998 ADA_OPERATORS;
10999 #undef OP_DEFN
11000
11001 case OP_AGGREGATE:
11002 *oplenp = 3;
11003 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11004 break;
11005
11006 case OP_CHOICES:
11007 *oplenp = 3;
11008 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11009 break;
11010
11011 case OP_STRING:
11012 case OP_NAME:
11013 {
11014 int len = longest_to_int (exp->elts[pc + 1].longconst);
11015 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11016 *argsp = 0;
11017 break;
11018 }
11019 }
11020 }
11021
11022 static int
11023 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11024 {
11025 enum exp_opcode op = exp->elts[elt].opcode;
11026 int oplen, nargs;
11027 int pc = elt;
11028 int i;
11029
11030 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11031
11032 switch (op)
11033 {
11034 /* Ada attributes ('Foo). */
11035 case OP_ATR_FIRST:
11036 case OP_ATR_LAST:
11037 case OP_ATR_LENGTH:
11038 case OP_ATR_IMAGE:
11039 case OP_ATR_MAX:
11040 case OP_ATR_MIN:
11041 case OP_ATR_MODULUS:
11042 case OP_ATR_POS:
11043 case OP_ATR_SIZE:
11044 case OP_ATR_TAG:
11045 case OP_ATR_VAL:
11046 break;
11047
11048 case UNOP_IN_RANGE:
11049 case UNOP_QUAL:
11050 /* XXX: gdb_sprint_host_address, type_sprint */
11051 fprintf_filtered (stream, _("Type @"));
11052 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11053 fprintf_filtered (stream, " (");
11054 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11055 fprintf_filtered (stream, ")");
11056 break;
11057 case BINOP_IN_BOUNDS:
11058 fprintf_filtered (stream, " (%d)",
11059 longest_to_int (exp->elts[pc + 2].longconst));
11060 break;
11061 case TERNOP_IN_RANGE:
11062 break;
11063
11064 case OP_AGGREGATE:
11065 case OP_OTHERS:
11066 case OP_DISCRETE_RANGE:
11067 case OP_POSITIONAL:
11068 case OP_CHOICES:
11069 break;
11070
11071 case OP_NAME:
11072 case OP_STRING:
11073 {
11074 char *name = &exp->elts[elt + 2].string;
11075 int len = longest_to_int (exp->elts[elt + 1].longconst);
11076 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11077 break;
11078 }
11079
11080 default:
11081 return dump_subexp_body_standard (exp, stream, elt);
11082 }
11083
11084 elt += oplen;
11085 for (i = 0; i < nargs; i += 1)
11086 elt = dump_subexp (exp, stream, elt);
11087
11088 return elt;
11089 }
11090
11091 /* The Ada extension of print_subexp (q.v.). */
11092
11093 static void
11094 ada_print_subexp (struct expression *exp, int *pos,
11095 struct ui_file *stream, enum precedence prec)
11096 {
11097 int oplen, nargs, i;
11098 int pc = *pos;
11099 enum exp_opcode op = exp->elts[pc].opcode;
11100
11101 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11102
11103 *pos += oplen;
11104 switch (op)
11105 {
11106 default:
11107 *pos -= oplen;
11108 print_subexp_standard (exp, pos, stream, prec);
11109 return;
11110
11111 case OP_VAR_VALUE:
11112 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11113 return;
11114
11115 case BINOP_IN_BOUNDS:
11116 /* XXX: sprint_subexp */
11117 print_subexp (exp, pos, stream, PREC_SUFFIX);
11118 fputs_filtered (" in ", stream);
11119 print_subexp (exp, pos, stream, PREC_SUFFIX);
11120 fputs_filtered ("'range", stream);
11121 if (exp->elts[pc + 1].longconst > 1)
11122 fprintf_filtered (stream, "(%ld)",
11123 (long) exp->elts[pc + 1].longconst);
11124 return;
11125
11126 case TERNOP_IN_RANGE:
11127 if (prec >= PREC_EQUAL)
11128 fputs_filtered ("(", stream);
11129 /* XXX: sprint_subexp */
11130 print_subexp (exp, pos, stream, PREC_SUFFIX);
11131 fputs_filtered (" in ", stream);
11132 print_subexp (exp, pos, stream, PREC_EQUAL);
11133 fputs_filtered (" .. ", stream);
11134 print_subexp (exp, pos, stream, PREC_EQUAL);
11135 if (prec >= PREC_EQUAL)
11136 fputs_filtered (")", stream);
11137 return;
11138
11139 case OP_ATR_FIRST:
11140 case OP_ATR_LAST:
11141 case OP_ATR_LENGTH:
11142 case OP_ATR_IMAGE:
11143 case OP_ATR_MAX:
11144 case OP_ATR_MIN:
11145 case OP_ATR_MODULUS:
11146 case OP_ATR_POS:
11147 case OP_ATR_SIZE:
11148 case OP_ATR_TAG:
11149 case OP_ATR_VAL:
11150 if (exp->elts[*pos].opcode == OP_TYPE)
11151 {
11152 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11153 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11154 *pos += 3;
11155 }
11156 else
11157 print_subexp (exp, pos, stream, PREC_SUFFIX);
11158 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11159 if (nargs > 1)
11160 {
11161 int tem;
11162 for (tem = 1; tem < nargs; tem += 1)
11163 {
11164 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11165 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11166 }
11167 fputs_filtered (")", stream);
11168 }
11169 return;
11170
11171 case UNOP_QUAL:
11172 type_print (exp->elts[pc + 1].type, "", stream, 0);
11173 fputs_filtered ("'(", stream);
11174 print_subexp (exp, pos, stream, PREC_PREFIX);
11175 fputs_filtered (")", stream);
11176 return;
11177
11178 case UNOP_IN_RANGE:
11179 /* XXX: sprint_subexp */
11180 print_subexp (exp, pos, stream, PREC_SUFFIX);
11181 fputs_filtered (" in ", stream);
11182 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11183 return;
11184
11185 case OP_DISCRETE_RANGE:
11186 print_subexp (exp, pos, stream, PREC_SUFFIX);
11187 fputs_filtered ("..", stream);
11188 print_subexp (exp, pos, stream, PREC_SUFFIX);
11189 return;
11190
11191 case OP_OTHERS:
11192 fputs_filtered ("others => ", stream);
11193 print_subexp (exp, pos, stream, PREC_SUFFIX);
11194 return;
11195
11196 case OP_CHOICES:
11197 for (i = 0; i < nargs-1; i += 1)
11198 {
11199 if (i > 0)
11200 fputs_filtered ("|", stream);
11201 print_subexp (exp, pos, stream, PREC_SUFFIX);
11202 }
11203 fputs_filtered (" => ", stream);
11204 print_subexp (exp, pos, stream, PREC_SUFFIX);
11205 return;
11206
11207 case OP_POSITIONAL:
11208 print_subexp (exp, pos, stream, PREC_SUFFIX);
11209 return;
11210
11211 case OP_AGGREGATE:
11212 fputs_filtered ("(", stream);
11213 for (i = 0; i < nargs; i += 1)
11214 {
11215 if (i > 0)
11216 fputs_filtered (", ", stream);
11217 print_subexp (exp, pos, stream, PREC_SUFFIX);
11218 }
11219 fputs_filtered (")", stream);
11220 return;
11221 }
11222 }
11223
11224 /* Table mapping opcodes into strings for printing operators
11225 and precedences of the operators. */
11226
11227 static const struct op_print ada_op_print_tab[] = {
11228 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11229 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11230 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11231 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11232 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11233 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11234 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11235 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11236 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11237 {">=", BINOP_GEQ, PREC_ORDER, 0},
11238 {">", BINOP_GTR, PREC_ORDER, 0},
11239 {"<", BINOP_LESS, PREC_ORDER, 0},
11240 {">>", BINOP_RSH, PREC_SHIFT, 0},
11241 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11242 {"+", BINOP_ADD, PREC_ADD, 0},
11243 {"-", BINOP_SUB, PREC_ADD, 0},
11244 {"&", BINOP_CONCAT, PREC_ADD, 0},
11245 {"*", BINOP_MUL, PREC_MUL, 0},
11246 {"/", BINOP_DIV, PREC_MUL, 0},
11247 {"rem", BINOP_REM, PREC_MUL, 0},
11248 {"mod", BINOP_MOD, PREC_MUL, 0},
11249 {"**", BINOP_EXP, PREC_REPEAT, 0},
11250 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11251 {"-", UNOP_NEG, PREC_PREFIX, 0},
11252 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11253 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11254 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11255 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11256 {".all", UNOP_IND, PREC_SUFFIX, 1},
11257 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11258 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11259 {NULL, 0, 0, 0}
11260 };
11261 \f
11262 enum ada_primitive_types {
11263 ada_primitive_type_int,
11264 ada_primitive_type_long,
11265 ada_primitive_type_short,
11266 ada_primitive_type_char,
11267 ada_primitive_type_float,
11268 ada_primitive_type_double,
11269 ada_primitive_type_void,
11270 ada_primitive_type_long_long,
11271 ada_primitive_type_long_double,
11272 ada_primitive_type_natural,
11273 ada_primitive_type_positive,
11274 ada_primitive_type_system_address,
11275 nr_ada_primitive_types
11276 };
11277
11278 static void
11279 ada_language_arch_info (struct gdbarch *gdbarch,
11280 struct language_arch_info *lai)
11281 {
11282 const struct builtin_type *builtin = builtin_type (gdbarch);
11283 lai->primitive_type_vector
11284 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11285 struct type *);
11286
11287 lai->primitive_type_vector [ada_primitive_type_int]
11288 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11289 0, "integer");
11290 lai->primitive_type_vector [ada_primitive_type_long]
11291 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11292 0, "long_integer");
11293 lai->primitive_type_vector [ada_primitive_type_short]
11294 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11295 0, "short_integer");
11296 lai->string_char_type
11297 = lai->primitive_type_vector [ada_primitive_type_char]
11298 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11299 lai->primitive_type_vector [ada_primitive_type_float]
11300 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11301 "float", NULL);
11302 lai->primitive_type_vector [ada_primitive_type_double]
11303 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11304 "long_float", NULL);
11305 lai->primitive_type_vector [ada_primitive_type_long_long]
11306 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11307 0, "long_long_integer");
11308 lai->primitive_type_vector [ada_primitive_type_long_double]
11309 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11310 "long_long_float", NULL);
11311 lai->primitive_type_vector [ada_primitive_type_natural]
11312 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11313 0, "natural");
11314 lai->primitive_type_vector [ada_primitive_type_positive]
11315 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11316 0, "positive");
11317 lai->primitive_type_vector [ada_primitive_type_void]
11318 = builtin->builtin_void;
11319
11320 lai->primitive_type_vector [ada_primitive_type_system_address]
11321 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11322 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11323 = "system__address";
11324
11325 lai->bool_type_symbol = NULL;
11326 lai->bool_type_default = builtin->builtin_bool;
11327 }
11328 \f
11329 /* Language vector */
11330
11331 /* Not really used, but needed in the ada_language_defn. */
11332
11333 static void
11334 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11335 {
11336 ada_emit_char (c, type, stream, quoter, 1);
11337 }
11338
11339 static int
11340 parse (void)
11341 {
11342 warnings_issued = 0;
11343 return ada_parse ();
11344 }
11345
11346 static const struct exp_descriptor ada_exp_descriptor = {
11347 ada_print_subexp,
11348 ada_operator_length,
11349 ada_op_name,
11350 ada_dump_subexp_body,
11351 ada_evaluate_subexp
11352 };
11353
11354 const struct language_defn ada_language_defn = {
11355 "ada", /* Language name */
11356 language_ada,
11357 range_check_off,
11358 type_check_off,
11359 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11360 that's not quite what this means. */
11361 array_row_major,
11362 macro_expansion_no,
11363 &ada_exp_descriptor,
11364 parse,
11365 ada_error,
11366 resolve,
11367 ada_printchar, /* Print a character constant */
11368 ada_printstr, /* Function to print string constant */
11369 emit_char, /* Function to print single char (not used) */
11370 ada_print_type, /* Print a type using appropriate syntax */
11371 default_print_typedef, /* Print a typedef using appropriate syntax */
11372 ada_val_print, /* Print a value using appropriate syntax */
11373 ada_value_print, /* Print a top-level value */
11374 NULL, /* Language specific skip_trampoline */
11375 NULL, /* name_of_this */
11376 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11377 basic_lookup_transparent_type, /* lookup_transparent_type */
11378 ada_la_decode, /* Language specific symbol demangler */
11379 NULL, /* Language specific class_name_from_physname */
11380 ada_op_print_tab, /* expression operators for printing */
11381 0, /* c-style arrays */
11382 1, /* String lower bound */
11383 ada_get_gdb_completer_word_break_characters,
11384 ada_make_symbol_completion_list,
11385 ada_language_arch_info,
11386 ada_print_array_index,
11387 default_pass_by_reference,
11388 c_get_string,
11389 LANG_MAGIC
11390 };
11391
11392 /* Provide a prototype to silence -Wmissing-prototypes. */
11393 extern initialize_file_ftype _initialize_ada_language;
11394
11395 void
11396 _initialize_ada_language (void)
11397 {
11398 add_language (&ada_language_defn);
11399
11400 varsize_limit = 65536;
11401
11402 obstack_init (&symbol_list_obstack);
11403
11404 decoded_names_store = htab_create_alloc
11405 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11406 NULL, xcalloc, xfree);
11407
11408 observer_attach_executable_changed (ada_executable_changed_observer);
11409 }
This page took 0.283485 seconds and 4 git commands to generate.