341db4a196a454d1cf1280af2d9ae1598b70c810
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60
61 #include "psymtab.h"
62 #include "value.h"
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static int full_match (const char *, const char *);
105
106 static struct value *make_array_descriptor (struct type *, struct value *);
107
108 static void ada_add_block_symbols (struct obstack *,
109 struct block *, const char *,
110 domain_enum, struct objfile *, int);
111
112 static int is_nonfunction (struct ada_symbol_info *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct ada_symbol_info *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (struct expression **, int *, int,
122 struct type *);
123
124 static void replace_operator_with_call (struct expression **, int, int, int,
125 struct symbol *, struct block *);
126
127 static int possible_user_operator_p (enum exp_opcode, struct value **);
128
129 static char *ada_op_name (enum exp_opcode);
130
131 static const char *ada_decoded_op_name (enum exp_opcode);
132
133 static int numeric_type_p (struct type *);
134
135 static int integer_type_p (struct type *);
136
137 static int scalar_type_p (struct type *);
138
139 static int discrete_type_p (struct type *);
140
141 static enum ada_renaming_category parse_old_style_renaming (struct type *,
142 const char **,
143 int *,
144 const char **);
145
146 static struct symbol *find_old_style_renaming_symbol (const char *,
147 struct block *);
148
149 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
150 int, int, int *);
151
152 static struct value *evaluate_subexp_type (struct expression *, int *);
153
154 static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
157 static int is_dynamic_field (struct type *, int);
158
159 static struct type *to_fixed_variant_branch_type (struct type *,
160 const gdb_byte *,
161 CORE_ADDR, struct value *);
162
163 static struct type *to_fixed_array_type (struct type *, struct value *, int);
164
165 static struct type *to_fixed_range_type (struct type *, struct value *);
166
167 static struct type *to_static_fixed_type (struct type *);
168 static struct type *static_unwrap_type (struct type *type);
169
170 static struct value *unwrap_value (struct value *);
171
172 static struct type *constrained_packed_array_type (struct type *, long *);
173
174 static struct type *decode_constrained_packed_array_type (struct type *);
175
176 static long decode_packed_array_bitsize (struct type *);
177
178 static struct value *decode_constrained_packed_array (struct value *);
179
180 static int ada_is_packed_array_type (struct type *);
181
182 static int ada_is_unconstrained_packed_array_type (struct type *);
183
184 static struct value *value_subscript_packed (struct value *, int,
185 struct value **);
186
187 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
188
189 static struct value *coerce_unspec_val_to_type (struct value *,
190 struct type *);
191
192 static struct value *get_var_value (char *, char *);
193
194 static int lesseq_defined_than (struct symbol *, struct symbol *);
195
196 static int equiv_types (struct type *, struct type *);
197
198 static int is_name_suffix (const char *);
199
200 static int advance_wild_match (const char **, const char *, int);
201
202 static int wild_match (const char *, const char *);
203
204 static struct value *ada_coerce_ref (struct value *);
205
206 static LONGEST pos_atr (struct value *);
207
208 static struct value *value_pos_atr (struct type *, struct value *);
209
210 static struct value *value_val_atr (struct type *, struct value *);
211
212 static struct symbol *standard_lookup (const char *, const struct block *,
213 domain_enum);
214
215 static struct value *ada_search_struct_field (char *, struct value *, int,
216 struct type *);
217
218 static struct value *ada_value_primitive_field (struct value *, int, int,
219 struct type *);
220
221 static int find_struct_field (char *, struct type *, int,
222 struct type **, int *, int *, int *, int *);
223
224 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
225 struct value *);
226
227 static int ada_resolve_function (struct ada_symbol_info *, int,
228 struct value **, int, const char *,
229 struct type *);
230
231 static struct value *ada_coerce_to_simple_array (struct value *);
232
233 static int ada_is_direct_array_type (struct type *);
234
235 static void ada_language_arch_info (struct gdbarch *,
236 struct language_arch_info *);
237
238 static void check_size (const struct type *);
239
240 static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243 static struct value *assign_aggregate (struct value *, struct value *,
244 struct expression *, int *, enum noside);
245
246 static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251 static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257 static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268 static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
270 \f
271
272
273 /* Maximum-sized dynamic type. */
274 static unsigned int varsize_limit;
275
276 /* FIXME: brobecker/2003-09-17: No longer a const because it is
277 returned by a function that does not return a const char *. */
278 static char *ada_completer_word_break_characters =
279 #ifdef VMS
280 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
281 #else
282 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
283 #endif
284
285 /* The name of the symbol to use to get the name of the main subprogram. */
286 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
287 = "__gnat_ada_main_program_name";
288
289 /* Limit on the number of warnings to raise per expression evaluation. */
290 static int warning_limit = 2;
291
292 /* Number of warning messages issued; reset to 0 by cleanups after
293 expression evaluation. */
294 static int warnings_issued = 0;
295
296 static const char *known_runtime_file_name_patterns[] = {
297 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
298 };
299
300 static const char *known_auxiliary_function_name_patterns[] = {
301 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
302 };
303
304 /* Space for allocating results of ada_lookup_symbol_list. */
305 static struct obstack symbol_list_obstack;
306
307 /* Inferior-specific data. */
308
309 /* Per-inferior data for this module. */
310
311 struct ada_inferior_data
312 {
313 /* The ada__tags__type_specific_data type, which is used when decoding
314 tagged types. With older versions of GNAT, this type was directly
315 accessible through a component ("tsd") in the object tag. But this
316 is no longer the case, so we cache it for each inferior. */
317 struct type *tsd_type;
318 };
319
320 /* Our key to this module's inferior data. */
321 static const struct inferior_data *ada_inferior_data;
322
323 /* A cleanup routine for our inferior data. */
324 static void
325 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
326 {
327 struct ada_inferior_data *data;
328
329 data = inferior_data (inf, ada_inferior_data);
330 if (data != NULL)
331 xfree (data);
332 }
333
334 /* Return our inferior data for the given inferior (INF).
335
336 This function always returns a valid pointer to an allocated
337 ada_inferior_data structure. If INF's inferior data has not
338 been previously set, this functions creates a new one with all
339 fields set to zero, sets INF's inferior to it, and then returns
340 a pointer to that newly allocated ada_inferior_data. */
341
342 static struct ada_inferior_data *
343 get_ada_inferior_data (struct inferior *inf)
344 {
345 struct ada_inferior_data *data;
346
347 data = inferior_data (inf, ada_inferior_data);
348 if (data == NULL)
349 {
350 data = XZALLOC (struct ada_inferior_data);
351 set_inferior_data (inf, ada_inferior_data, data);
352 }
353
354 return data;
355 }
356
357 /* Perform all necessary cleanups regarding our module's inferior data
358 that is required after the inferior INF just exited. */
359
360 static void
361 ada_inferior_exit (struct inferior *inf)
362 {
363 ada_inferior_data_cleanup (inf, NULL);
364 set_inferior_data (inf, ada_inferior_data, NULL);
365 }
366
367 /* Utilities */
368
369 /* Given DECODED_NAME a string holding a symbol name in its
370 decoded form (ie using the Ada dotted notation), returns
371 its unqualified name. */
372
373 static const char *
374 ada_unqualified_name (const char *decoded_name)
375 {
376 const char *result = strrchr (decoded_name, '.');
377
378 if (result != NULL)
379 result++; /* Skip the dot... */
380 else
381 result = decoded_name;
382
383 return result;
384 }
385
386 /* Return a string starting with '<', followed by STR, and '>'.
387 The result is good until the next call. */
388
389 static char *
390 add_angle_brackets (const char *str)
391 {
392 static char *result = NULL;
393
394 xfree (result);
395 result = xstrprintf ("<%s>", str);
396 return result;
397 }
398
399 static char *
400 ada_get_gdb_completer_word_break_characters (void)
401 {
402 return ada_completer_word_break_characters;
403 }
404
405 /* Print an array element index using the Ada syntax. */
406
407 static void
408 ada_print_array_index (struct value *index_value, struct ui_file *stream,
409 const struct value_print_options *options)
410 {
411 LA_VALUE_PRINT (index_value, stream, options);
412 fprintf_filtered (stream, " => ");
413 }
414
415 /* Assuming VECT points to an array of *SIZE objects of size
416 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
417 updating *SIZE as necessary and returning the (new) array. */
418
419 void *
420 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
421 {
422 if (*size < min_size)
423 {
424 *size *= 2;
425 if (*size < min_size)
426 *size = min_size;
427 vect = xrealloc (vect, *size * element_size);
428 }
429 return vect;
430 }
431
432 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
433 suffix of FIELD_NAME beginning "___". */
434
435 static int
436 field_name_match (const char *field_name, const char *target)
437 {
438 int len = strlen (target);
439
440 return
441 (strncmp (field_name, target, len) == 0
442 && (field_name[len] == '\0'
443 || (strncmp (field_name + len, "___", 3) == 0
444 && strcmp (field_name + strlen (field_name) - 6,
445 "___XVN") != 0)));
446 }
447
448
449 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
450 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
451 and return its index. This function also handles fields whose name
452 have ___ suffixes because the compiler sometimes alters their name
453 by adding such a suffix to represent fields with certain constraints.
454 If the field could not be found, return a negative number if
455 MAYBE_MISSING is set. Otherwise raise an error. */
456
457 int
458 ada_get_field_index (const struct type *type, const char *field_name,
459 int maybe_missing)
460 {
461 int fieldno;
462 struct type *struct_type = check_typedef ((struct type *) type);
463
464 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
465 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
466 return fieldno;
467
468 if (!maybe_missing)
469 error (_("Unable to find field %s in struct %s. Aborting"),
470 field_name, TYPE_NAME (struct_type));
471
472 return -1;
473 }
474
475 /* The length of the prefix of NAME prior to any "___" suffix. */
476
477 int
478 ada_name_prefix_len (const char *name)
479 {
480 if (name == NULL)
481 return 0;
482 else
483 {
484 const char *p = strstr (name, "___");
485
486 if (p == NULL)
487 return strlen (name);
488 else
489 return p - name;
490 }
491 }
492
493 /* Return non-zero if SUFFIX is a suffix of STR.
494 Return zero if STR is null. */
495
496 static int
497 is_suffix (const char *str, const char *suffix)
498 {
499 int len1, len2;
500
501 if (str == NULL)
502 return 0;
503 len1 = strlen (str);
504 len2 = strlen (suffix);
505 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
506 }
507
508 /* The contents of value VAL, treated as a value of type TYPE. The
509 result is an lval in memory if VAL is. */
510
511 static struct value *
512 coerce_unspec_val_to_type (struct value *val, struct type *type)
513 {
514 type = ada_check_typedef (type);
515 if (value_type (val) == type)
516 return val;
517 else
518 {
519 struct value *result;
520
521 /* Make sure that the object size is not unreasonable before
522 trying to allocate some memory for it. */
523 check_size (type);
524
525 result = allocate_value (type);
526 set_value_component_location (result, val);
527 set_value_bitsize (result, value_bitsize (val));
528 set_value_bitpos (result, value_bitpos (val));
529 set_value_address (result, value_address (val));
530 if (value_lazy (val)
531 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
532 set_value_lazy (result, 1);
533 else
534 memcpy (value_contents_raw (result), value_contents (val),
535 TYPE_LENGTH (type));
536 return result;
537 }
538 }
539
540 static const gdb_byte *
541 cond_offset_host (const gdb_byte *valaddr, long offset)
542 {
543 if (valaddr == NULL)
544 return NULL;
545 else
546 return valaddr + offset;
547 }
548
549 static CORE_ADDR
550 cond_offset_target (CORE_ADDR address, long offset)
551 {
552 if (address == 0)
553 return 0;
554 else
555 return address + offset;
556 }
557
558 /* Issue a warning (as for the definition of warning in utils.c, but
559 with exactly one argument rather than ...), unless the limit on the
560 number of warnings has passed during the evaluation of the current
561 expression. */
562
563 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
564 provided by "complaint". */
565 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
566
567 static void
568 lim_warning (const char *format, ...)
569 {
570 va_list args;
571
572 va_start (args, format);
573 warnings_issued += 1;
574 if (warnings_issued <= warning_limit)
575 vwarning (format, args);
576
577 va_end (args);
578 }
579
580 /* Issue an error if the size of an object of type T is unreasonable,
581 i.e. if it would be a bad idea to allocate a value of this type in
582 GDB. */
583
584 static void
585 check_size (const struct type *type)
586 {
587 if (TYPE_LENGTH (type) > varsize_limit)
588 error (_("object size is larger than varsize-limit"));
589 }
590
591 /* Maximum value of a SIZE-byte signed integer type. */
592 static LONGEST
593 max_of_size (int size)
594 {
595 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
596
597 return top_bit | (top_bit - 1);
598 }
599
600 /* Minimum value of a SIZE-byte signed integer type. */
601 static LONGEST
602 min_of_size (int size)
603 {
604 return -max_of_size (size) - 1;
605 }
606
607 /* Maximum value of a SIZE-byte unsigned integer type. */
608 static ULONGEST
609 umax_of_size (int size)
610 {
611 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
612
613 return top_bit | (top_bit - 1);
614 }
615
616 /* Maximum value of integral type T, as a signed quantity. */
617 static LONGEST
618 max_of_type (struct type *t)
619 {
620 if (TYPE_UNSIGNED (t))
621 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
622 else
623 return max_of_size (TYPE_LENGTH (t));
624 }
625
626 /* Minimum value of integral type T, as a signed quantity. */
627 static LONGEST
628 min_of_type (struct type *t)
629 {
630 if (TYPE_UNSIGNED (t))
631 return 0;
632 else
633 return min_of_size (TYPE_LENGTH (t));
634 }
635
636 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
637 LONGEST
638 ada_discrete_type_high_bound (struct type *type)
639 {
640 switch (TYPE_CODE (type))
641 {
642 case TYPE_CODE_RANGE:
643 return TYPE_HIGH_BOUND (type);
644 case TYPE_CODE_ENUM:
645 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
646 case TYPE_CODE_BOOL:
647 return 1;
648 case TYPE_CODE_CHAR:
649 case TYPE_CODE_INT:
650 return max_of_type (type);
651 default:
652 error (_("Unexpected type in ada_discrete_type_high_bound."));
653 }
654 }
655
656 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
657 LONGEST
658 ada_discrete_type_low_bound (struct type *type)
659 {
660 switch (TYPE_CODE (type))
661 {
662 case TYPE_CODE_RANGE:
663 return TYPE_LOW_BOUND (type);
664 case TYPE_CODE_ENUM:
665 return TYPE_FIELD_BITPOS (type, 0);
666 case TYPE_CODE_BOOL:
667 return 0;
668 case TYPE_CODE_CHAR:
669 case TYPE_CODE_INT:
670 return min_of_type (type);
671 default:
672 error (_("Unexpected type in ada_discrete_type_low_bound."));
673 }
674 }
675
676 /* The identity on non-range types. For range types, the underlying
677 non-range scalar type. */
678
679 static struct type *
680 base_type (struct type *type)
681 {
682 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
683 {
684 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
685 return type;
686 type = TYPE_TARGET_TYPE (type);
687 }
688 return type;
689 }
690 \f
691
692 /* Language Selection */
693
694 /* If the main program is in Ada, return language_ada, otherwise return LANG
695 (the main program is in Ada iif the adainit symbol is found). */
696
697 enum language
698 ada_update_initial_language (enum language lang)
699 {
700 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
701 (struct objfile *) NULL) != NULL)
702 return language_ada;
703
704 return lang;
705 }
706
707 /* If the main procedure is written in Ada, then return its name.
708 The result is good until the next call. Return NULL if the main
709 procedure doesn't appear to be in Ada. */
710
711 char *
712 ada_main_name (void)
713 {
714 struct minimal_symbol *msym;
715 static char *main_program_name = NULL;
716
717 /* For Ada, the name of the main procedure is stored in a specific
718 string constant, generated by the binder. Look for that symbol,
719 extract its address, and then read that string. If we didn't find
720 that string, then most probably the main procedure is not written
721 in Ada. */
722 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
723
724 if (msym != NULL)
725 {
726 CORE_ADDR main_program_name_addr;
727 int err_code;
728
729 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
730 if (main_program_name_addr == 0)
731 error (_("Invalid address for Ada main program name."));
732
733 xfree (main_program_name);
734 target_read_string (main_program_name_addr, &main_program_name,
735 1024, &err_code);
736
737 if (err_code != 0)
738 return NULL;
739 return main_program_name;
740 }
741
742 /* The main procedure doesn't seem to be in Ada. */
743 return NULL;
744 }
745 \f
746 /* Symbols */
747
748 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
749 of NULLs. */
750
751 const struct ada_opname_map ada_opname_table[] = {
752 {"Oadd", "\"+\"", BINOP_ADD},
753 {"Osubtract", "\"-\"", BINOP_SUB},
754 {"Omultiply", "\"*\"", BINOP_MUL},
755 {"Odivide", "\"/\"", BINOP_DIV},
756 {"Omod", "\"mod\"", BINOP_MOD},
757 {"Orem", "\"rem\"", BINOP_REM},
758 {"Oexpon", "\"**\"", BINOP_EXP},
759 {"Olt", "\"<\"", BINOP_LESS},
760 {"Ole", "\"<=\"", BINOP_LEQ},
761 {"Ogt", "\">\"", BINOP_GTR},
762 {"Oge", "\">=\"", BINOP_GEQ},
763 {"Oeq", "\"=\"", BINOP_EQUAL},
764 {"One", "\"/=\"", BINOP_NOTEQUAL},
765 {"Oand", "\"and\"", BINOP_BITWISE_AND},
766 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
767 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
768 {"Oconcat", "\"&\"", BINOP_CONCAT},
769 {"Oabs", "\"abs\"", UNOP_ABS},
770 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
771 {"Oadd", "\"+\"", UNOP_PLUS},
772 {"Osubtract", "\"-\"", UNOP_NEG},
773 {NULL, NULL}
774 };
775
776 /* The "encoded" form of DECODED, according to GNAT conventions.
777 The result is valid until the next call to ada_encode. */
778
779 char *
780 ada_encode (const char *decoded)
781 {
782 static char *encoding_buffer = NULL;
783 static size_t encoding_buffer_size = 0;
784 const char *p;
785 int k;
786
787 if (decoded == NULL)
788 return NULL;
789
790 GROW_VECT (encoding_buffer, encoding_buffer_size,
791 2 * strlen (decoded) + 10);
792
793 k = 0;
794 for (p = decoded; *p != '\0'; p += 1)
795 {
796 if (*p == '.')
797 {
798 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
799 k += 2;
800 }
801 else if (*p == '"')
802 {
803 const struct ada_opname_map *mapping;
804
805 for (mapping = ada_opname_table;
806 mapping->encoded != NULL
807 && strncmp (mapping->decoded, p,
808 strlen (mapping->decoded)) != 0; mapping += 1)
809 ;
810 if (mapping->encoded == NULL)
811 error (_("invalid Ada operator name: %s"), p);
812 strcpy (encoding_buffer + k, mapping->encoded);
813 k += strlen (mapping->encoded);
814 break;
815 }
816 else
817 {
818 encoding_buffer[k] = *p;
819 k += 1;
820 }
821 }
822
823 encoding_buffer[k] = '\0';
824 return encoding_buffer;
825 }
826
827 /* Return NAME folded to lower case, or, if surrounded by single
828 quotes, unfolded, but with the quotes stripped away. Result good
829 to next call. */
830
831 char *
832 ada_fold_name (const char *name)
833 {
834 static char *fold_buffer = NULL;
835 static size_t fold_buffer_size = 0;
836
837 int len = strlen (name);
838 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
839
840 if (name[0] == '\'')
841 {
842 strncpy (fold_buffer, name + 1, len - 2);
843 fold_buffer[len - 2] = '\000';
844 }
845 else
846 {
847 int i;
848
849 for (i = 0; i <= len; i += 1)
850 fold_buffer[i] = tolower (name[i]);
851 }
852
853 return fold_buffer;
854 }
855
856 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
857
858 static int
859 is_lower_alphanum (const char c)
860 {
861 return (isdigit (c) || (isalpha (c) && islower (c)));
862 }
863
864 /* Remove either of these suffixes:
865 . .{DIGIT}+
866 . ${DIGIT}+
867 . ___{DIGIT}+
868 . __{DIGIT}+.
869 These are suffixes introduced by the compiler for entities such as
870 nested subprogram for instance, in order to avoid name clashes.
871 They do not serve any purpose for the debugger. */
872
873 static void
874 ada_remove_trailing_digits (const char *encoded, int *len)
875 {
876 if (*len > 1 && isdigit (encoded[*len - 1]))
877 {
878 int i = *len - 2;
879
880 while (i > 0 && isdigit (encoded[i]))
881 i--;
882 if (i >= 0 && encoded[i] == '.')
883 *len = i;
884 else if (i >= 0 && encoded[i] == '$')
885 *len = i;
886 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
887 *len = i - 2;
888 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
889 *len = i - 1;
890 }
891 }
892
893 /* Remove the suffix introduced by the compiler for protected object
894 subprograms. */
895
896 static void
897 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
898 {
899 /* Remove trailing N. */
900
901 /* Protected entry subprograms are broken into two
902 separate subprograms: The first one is unprotected, and has
903 a 'N' suffix; the second is the protected version, and has
904 the 'P' suffix. The second calls the first one after handling
905 the protection. Since the P subprograms are internally generated,
906 we leave these names undecoded, giving the user a clue that this
907 entity is internal. */
908
909 if (*len > 1
910 && encoded[*len - 1] == 'N'
911 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
912 *len = *len - 1;
913 }
914
915 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
916
917 static void
918 ada_remove_Xbn_suffix (const char *encoded, int *len)
919 {
920 int i = *len - 1;
921
922 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
923 i--;
924
925 if (encoded[i] != 'X')
926 return;
927
928 if (i == 0)
929 return;
930
931 if (isalnum (encoded[i-1]))
932 *len = i;
933 }
934
935 /* If ENCODED follows the GNAT entity encoding conventions, then return
936 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
937 replaced by ENCODED.
938
939 The resulting string is valid until the next call of ada_decode.
940 If the string is unchanged by decoding, the original string pointer
941 is returned. */
942
943 const char *
944 ada_decode (const char *encoded)
945 {
946 int i, j;
947 int len0;
948 const char *p;
949 char *decoded;
950 int at_start_name;
951 static char *decoding_buffer = NULL;
952 static size_t decoding_buffer_size = 0;
953
954 /* The name of the Ada main procedure starts with "_ada_".
955 This prefix is not part of the decoded name, so skip this part
956 if we see this prefix. */
957 if (strncmp (encoded, "_ada_", 5) == 0)
958 encoded += 5;
959
960 /* If the name starts with '_', then it is not a properly encoded
961 name, so do not attempt to decode it. Similarly, if the name
962 starts with '<', the name should not be decoded. */
963 if (encoded[0] == '_' || encoded[0] == '<')
964 goto Suppress;
965
966 len0 = strlen (encoded);
967
968 ada_remove_trailing_digits (encoded, &len0);
969 ada_remove_po_subprogram_suffix (encoded, &len0);
970
971 /* Remove the ___X.* suffix if present. Do not forget to verify that
972 the suffix is located before the current "end" of ENCODED. We want
973 to avoid re-matching parts of ENCODED that have previously been
974 marked as discarded (by decrementing LEN0). */
975 p = strstr (encoded, "___");
976 if (p != NULL && p - encoded < len0 - 3)
977 {
978 if (p[3] == 'X')
979 len0 = p - encoded;
980 else
981 goto Suppress;
982 }
983
984 /* Remove any trailing TKB suffix. It tells us that this symbol
985 is for the body of a task, but that information does not actually
986 appear in the decoded name. */
987
988 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
989 len0 -= 3;
990
991 /* Remove any trailing TB suffix. The TB suffix is slightly different
992 from the TKB suffix because it is used for non-anonymous task
993 bodies. */
994
995 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
996 len0 -= 2;
997
998 /* Remove trailing "B" suffixes. */
999 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1000
1001 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1002 len0 -= 1;
1003
1004 /* Make decoded big enough for possible expansion by operator name. */
1005
1006 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1007 decoded = decoding_buffer;
1008
1009 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1010
1011 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1012 {
1013 i = len0 - 2;
1014 while ((i >= 0 && isdigit (encoded[i]))
1015 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1016 i -= 1;
1017 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1018 len0 = i - 1;
1019 else if (encoded[i] == '$')
1020 len0 = i;
1021 }
1022
1023 /* The first few characters that are not alphabetic are not part
1024 of any encoding we use, so we can copy them over verbatim. */
1025
1026 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1027 decoded[j] = encoded[i];
1028
1029 at_start_name = 1;
1030 while (i < len0)
1031 {
1032 /* Is this a symbol function? */
1033 if (at_start_name && encoded[i] == 'O')
1034 {
1035 int k;
1036
1037 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1038 {
1039 int op_len = strlen (ada_opname_table[k].encoded);
1040 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1041 op_len - 1) == 0)
1042 && !isalnum (encoded[i + op_len]))
1043 {
1044 strcpy (decoded + j, ada_opname_table[k].decoded);
1045 at_start_name = 0;
1046 i += op_len;
1047 j += strlen (ada_opname_table[k].decoded);
1048 break;
1049 }
1050 }
1051 if (ada_opname_table[k].encoded != NULL)
1052 continue;
1053 }
1054 at_start_name = 0;
1055
1056 /* Replace "TK__" with "__", which will eventually be translated
1057 into "." (just below). */
1058
1059 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1060 i += 2;
1061
1062 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1063 be translated into "." (just below). These are internal names
1064 generated for anonymous blocks inside which our symbol is nested. */
1065
1066 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1067 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1068 && isdigit (encoded [i+4]))
1069 {
1070 int k = i + 5;
1071
1072 while (k < len0 && isdigit (encoded[k]))
1073 k++; /* Skip any extra digit. */
1074
1075 /* Double-check that the "__B_{DIGITS}+" sequence we found
1076 is indeed followed by "__". */
1077 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1078 i = k;
1079 }
1080
1081 /* Remove _E{DIGITS}+[sb] */
1082
1083 /* Just as for protected object subprograms, there are 2 categories
1084 of subprograms created by the compiler for each entry. The first
1085 one implements the actual entry code, and has a suffix following
1086 the convention above; the second one implements the barrier and
1087 uses the same convention as above, except that the 'E' is replaced
1088 by a 'B'.
1089
1090 Just as above, we do not decode the name of barrier functions
1091 to give the user a clue that the code he is debugging has been
1092 internally generated. */
1093
1094 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1095 && isdigit (encoded[i+2]))
1096 {
1097 int k = i + 3;
1098
1099 while (k < len0 && isdigit (encoded[k]))
1100 k++;
1101
1102 if (k < len0
1103 && (encoded[k] == 'b' || encoded[k] == 's'))
1104 {
1105 k++;
1106 /* Just as an extra precaution, make sure that if this
1107 suffix is followed by anything else, it is a '_'.
1108 Otherwise, we matched this sequence by accident. */
1109 if (k == len0
1110 || (k < len0 && encoded[k] == '_'))
1111 i = k;
1112 }
1113 }
1114
1115 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1116 the GNAT front-end in protected object subprograms. */
1117
1118 if (i < len0 + 3
1119 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1120 {
1121 /* Backtrack a bit up until we reach either the begining of
1122 the encoded name, or "__". Make sure that we only find
1123 digits or lowercase characters. */
1124 const char *ptr = encoded + i - 1;
1125
1126 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1127 ptr--;
1128 if (ptr < encoded
1129 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1130 i++;
1131 }
1132
1133 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1134 {
1135 /* This is a X[bn]* sequence not separated from the previous
1136 part of the name with a non-alpha-numeric character (in other
1137 words, immediately following an alpha-numeric character), then
1138 verify that it is placed at the end of the encoded name. If
1139 not, then the encoding is not valid and we should abort the
1140 decoding. Otherwise, just skip it, it is used in body-nested
1141 package names. */
1142 do
1143 i += 1;
1144 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1145 if (i < len0)
1146 goto Suppress;
1147 }
1148 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1149 {
1150 /* Replace '__' by '.'. */
1151 decoded[j] = '.';
1152 at_start_name = 1;
1153 i += 2;
1154 j += 1;
1155 }
1156 else
1157 {
1158 /* It's a character part of the decoded name, so just copy it
1159 over. */
1160 decoded[j] = encoded[i];
1161 i += 1;
1162 j += 1;
1163 }
1164 }
1165 decoded[j] = '\000';
1166
1167 /* Decoded names should never contain any uppercase character.
1168 Double-check this, and abort the decoding if we find one. */
1169
1170 for (i = 0; decoded[i] != '\0'; i += 1)
1171 if (isupper (decoded[i]) || decoded[i] == ' ')
1172 goto Suppress;
1173
1174 if (strcmp (decoded, encoded) == 0)
1175 return encoded;
1176 else
1177 return decoded;
1178
1179 Suppress:
1180 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1181 decoded = decoding_buffer;
1182 if (encoded[0] == '<')
1183 strcpy (decoded, encoded);
1184 else
1185 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1186 return decoded;
1187
1188 }
1189
1190 /* Table for keeping permanent unique copies of decoded names. Once
1191 allocated, names in this table are never released. While this is a
1192 storage leak, it should not be significant unless there are massive
1193 changes in the set of decoded names in successive versions of a
1194 symbol table loaded during a single session. */
1195 static struct htab *decoded_names_store;
1196
1197 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1198 in the language-specific part of GSYMBOL, if it has not been
1199 previously computed. Tries to save the decoded name in the same
1200 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1201 in any case, the decoded symbol has a lifetime at least that of
1202 GSYMBOL).
1203 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1204 const, but nevertheless modified to a semantically equivalent form
1205 when a decoded name is cached in it.
1206 */
1207
1208 char *
1209 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1210 {
1211 char **resultp =
1212 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1213
1214 if (*resultp == NULL)
1215 {
1216 const char *decoded = ada_decode (gsymbol->name);
1217
1218 if (gsymbol->obj_section != NULL)
1219 {
1220 struct objfile *objf = gsymbol->obj_section->objfile;
1221
1222 *resultp = obsavestring (decoded, strlen (decoded),
1223 &objf->objfile_obstack);
1224 }
1225 /* Sometimes, we can't find a corresponding objfile, in which
1226 case, we put the result on the heap. Since we only decode
1227 when needed, we hope this usually does not cause a
1228 significant memory leak (FIXME). */
1229 if (*resultp == NULL)
1230 {
1231 char **slot = (char **) htab_find_slot (decoded_names_store,
1232 decoded, INSERT);
1233
1234 if (*slot == NULL)
1235 *slot = xstrdup (decoded);
1236 *resultp = *slot;
1237 }
1238 }
1239
1240 return *resultp;
1241 }
1242
1243 static char *
1244 ada_la_decode (const char *encoded, int options)
1245 {
1246 return xstrdup (ada_decode (encoded));
1247 }
1248
1249 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1250 suffixes that encode debugging information or leading _ada_ on
1251 SYM_NAME (see is_name_suffix commentary for the debugging
1252 information that is ignored). If WILD, then NAME need only match a
1253 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1254 either argument is NULL. */
1255
1256 static int
1257 match_name (const char *sym_name, const char *name, int wild)
1258 {
1259 if (sym_name == NULL || name == NULL)
1260 return 0;
1261 else if (wild)
1262 return wild_match (sym_name, name) == 0;
1263 else
1264 {
1265 int len_name = strlen (name);
1266
1267 return (strncmp (sym_name, name, len_name) == 0
1268 && is_name_suffix (sym_name + len_name))
1269 || (strncmp (sym_name, "_ada_", 5) == 0
1270 && strncmp (sym_name + 5, name, len_name) == 0
1271 && is_name_suffix (sym_name + len_name + 5));
1272 }
1273 }
1274 \f
1275
1276 /* Arrays */
1277
1278 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1279 generated by the GNAT compiler to describe the index type used
1280 for each dimension of an array, check whether it follows the latest
1281 known encoding. If not, fix it up to conform to the latest encoding.
1282 Otherwise, do nothing. This function also does nothing if
1283 INDEX_DESC_TYPE is NULL.
1284
1285 The GNAT encoding used to describle the array index type evolved a bit.
1286 Initially, the information would be provided through the name of each
1287 field of the structure type only, while the type of these fields was
1288 described as unspecified and irrelevant. The debugger was then expected
1289 to perform a global type lookup using the name of that field in order
1290 to get access to the full index type description. Because these global
1291 lookups can be very expensive, the encoding was later enhanced to make
1292 the global lookup unnecessary by defining the field type as being
1293 the full index type description.
1294
1295 The purpose of this routine is to allow us to support older versions
1296 of the compiler by detecting the use of the older encoding, and by
1297 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1298 we essentially replace each field's meaningless type by the associated
1299 index subtype). */
1300
1301 void
1302 ada_fixup_array_indexes_type (struct type *index_desc_type)
1303 {
1304 int i;
1305
1306 if (index_desc_type == NULL)
1307 return;
1308 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1309
1310 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1311 to check one field only, no need to check them all). If not, return
1312 now.
1313
1314 If our INDEX_DESC_TYPE was generated using the older encoding,
1315 the field type should be a meaningless integer type whose name
1316 is not equal to the field name. */
1317 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1318 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1319 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1320 return;
1321
1322 /* Fixup each field of INDEX_DESC_TYPE. */
1323 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1324 {
1325 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1326 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1327
1328 if (raw_type)
1329 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1330 }
1331 }
1332
1333 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1334
1335 static char *bound_name[] = {
1336 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1337 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1338 };
1339
1340 /* Maximum number of array dimensions we are prepared to handle. */
1341
1342 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1343
1344
1345 /* The desc_* routines return primitive portions of array descriptors
1346 (fat pointers). */
1347
1348 /* The descriptor or array type, if any, indicated by TYPE; removes
1349 level of indirection, if needed. */
1350
1351 static struct type *
1352 desc_base_type (struct type *type)
1353 {
1354 if (type == NULL)
1355 return NULL;
1356 type = ada_check_typedef (type);
1357 if (type != NULL
1358 && (TYPE_CODE (type) == TYPE_CODE_PTR
1359 || TYPE_CODE (type) == TYPE_CODE_REF))
1360 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1361 else
1362 return type;
1363 }
1364
1365 /* True iff TYPE indicates a "thin" array pointer type. */
1366
1367 static int
1368 is_thin_pntr (struct type *type)
1369 {
1370 return
1371 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1372 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1373 }
1374
1375 /* The descriptor type for thin pointer type TYPE. */
1376
1377 static struct type *
1378 thin_descriptor_type (struct type *type)
1379 {
1380 struct type *base_type = desc_base_type (type);
1381
1382 if (base_type == NULL)
1383 return NULL;
1384 if (is_suffix (ada_type_name (base_type), "___XVE"))
1385 return base_type;
1386 else
1387 {
1388 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1389
1390 if (alt_type == NULL)
1391 return base_type;
1392 else
1393 return alt_type;
1394 }
1395 }
1396
1397 /* A pointer to the array data for thin-pointer value VAL. */
1398
1399 static struct value *
1400 thin_data_pntr (struct value *val)
1401 {
1402 struct type *type = value_type (val);
1403 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1404
1405 data_type = lookup_pointer_type (data_type);
1406
1407 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1408 return value_cast (data_type, value_copy (val));
1409 else
1410 return value_from_longest (data_type, value_address (val));
1411 }
1412
1413 /* True iff TYPE indicates a "thick" array pointer type. */
1414
1415 static int
1416 is_thick_pntr (struct type *type)
1417 {
1418 type = desc_base_type (type);
1419 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1420 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1421 }
1422
1423 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1424 pointer to one, the type of its bounds data; otherwise, NULL. */
1425
1426 static struct type *
1427 desc_bounds_type (struct type *type)
1428 {
1429 struct type *r;
1430
1431 type = desc_base_type (type);
1432
1433 if (type == NULL)
1434 return NULL;
1435 else if (is_thin_pntr (type))
1436 {
1437 type = thin_descriptor_type (type);
1438 if (type == NULL)
1439 return NULL;
1440 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1441 if (r != NULL)
1442 return ada_check_typedef (r);
1443 }
1444 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1445 {
1446 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1447 if (r != NULL)
1448 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1449 }
1450 return NULL;
1451 }
1452
1453 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1454 one, a pointer to its bounds data. Otherwise NULL. */
1455
1456 static struct value *
1457 desc_bounds (struct value *arr)
1458 {
1459 struct type *type = ada_check_typedef (value_type (arr));
1460
1461 if (is_thin_pntr (type))
1462 {
1463 struct type *bounds_type =
1464 desc_bounds_type (thin_descriptor_type (type));
1465 LONGEST addr;
1466
1467 if (bounds_type == NULL)
1468 error (_("Bad GNAT array descriptor"));
1469
1470 /* NOTE: The following calculation is not really kosher, but
1471 since desc_type is an XVE-encoded type (and shouldn't be),
1472 the correct calculation is a real pain. FIXME (and fix GCC). */
1473 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1474 addr = value_as_long (arr);
1475 else
1476 addr = value_address (arr);
1477
1478 return
1479 value_from_longest (lookup_pointer_type (bounds_type),
1480 addr - TYPE_LENGTH (bounds_type));
1481 }
1482
1483 else if (is_thick_pntr (type))
1484 {
1485 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1486 _("Bad GNAT array descriptor"));
1487 struct type *p_bounds_type = value_type (p_bounds);
1488
1489 if (p_bounds_type
1490 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1491 {
1492 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1493
1494 if (TYPE_STUB (target_type))
1495 p_bounds = value_cast (lookup_pointer_type
1496 (ada_check_typedef (target_type)),
1497 p_bounds);
1498 }
1499 else
1500 error (_("Bad GNAT array descriptor"));
1501
1502 return p_bounds;
1503 }
1504 else
1505 return NULL;
1506 }
1507
1508 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1509 position of the field containing the address of the bounds data. */
1510
1511 static int
1512 fat_pntr_bounds_bitpos (struct type *type)
1513 {
1514 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1515 }
1516
1517 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1518 size of the field containing the address of the bounds data. */
1519
1520 static int
1521 fat_pntr_bounds_bitsize (struct type *type)
1522 {
1523 type = desc_base_type (type);
1524
1525 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1526 return TYPE_FIELD_BITSIZE (type, 1);
1527 else
1528 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1529 }
1530
1531 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1532 pointer to one, the type of its array data (a array-with-no-bounds type);
1533 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1534 data. */
1535
1536 static struct type *
1537 desc_data_target_type (struct type *type)
1538 {
1539 type = desc_base_type (type);
1540
1541 /* NOTE: The following is bogus; see comment in desc_bounds. */
1542 if (is_thin_pntr (type))
1543 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1544 else if (is_thick_pntr (type))
1545 {
1546 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1547
1548 if (data_type
1549 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1550 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1551 }
1552
1553 return NULL;
1554 }
1555
1556 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1557 its array data. */
1558
1559 static struct value *
1560 desc_data (struct value *arr)
1561 {
1562 struct type *type = value_type (arr);
1563
1564 if (is_thin_pntr (type))
1565 return thin_data_pntr (arr);
1566 else if (is_thick_pntr (type))
1567 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1568 _("Bad GNAT array descriptor"));
1569 else
1570 return NULL;
1571 }
1572
1573
1574 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1575 position of the field containing the address of the data. */
1576
1577 static int
1578 fat_pntr_data_bitpos (struct type *type)
1579 {
1580 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1581 }
1582
1583 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1584 size of the field containing the address of the data. */
1585
1586 static int
1587 fat_pntr_data_bitsize (struct type *type)
1588 {
1589 type = desc_base_type (type);
1590
1591 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1592 return TYPE_FIELD_BITSIZE (type, 0);
1593 else
1594 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1595 }
1596
1597 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1598 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1599 bound, if WHICH is 1. The first bound is I=1. */
1600
1601 static struct value *
1602 desc_one_bound (struct value *bounds, int i, int which)
1603 {
1604 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1605 _("Bad GNAT array descriptor bounds"));
1606 }
1607
1608 /* If BOUNDS is an array-bounds structure type, return the bit position
1609 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1610 bound, if WHICH is 1. The first bound is I=1. */
1611
1612 static int
1613 desc_bound_bitpos (struct type *type, int i, int which)
1614 {
1615 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1616 }
1617
1618 /* If BOUNDS is an array-bounds structure type, return the bit field size
1619 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1620 bound, if WHICH is 1. The first bound is I=1. */
1621
1622 static int
1623 desc_bound_bitsize (struct type *type, int i, int which)
1624 {
1625 type = desc_base_type (type);
1626
1627 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1628 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1629 else
1630 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1631 }
1632
1633 /* If TYPE is the type of an array-bounds structure, the type of its
1634 Ith bound (numbering from 1). Otherwise, NULL. */
1635
1636 static struct type *
1637 desc_index_type (struct type *type, int i)
1638 {
1639 type = desc_base_type (type);
1640
1641 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1642 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1643 else
1644 return NULL;
1645 }
1646
1647 /* The number of index positions in the array-bounds type TYPE.
1648 Return 0 if TYPE is NULL. */
1649
1650 static int
1651 desc_arity (struct type *type)
1652 {
1653 type = desc_base_type (type);
1654
1655 if (type != NULL)
1656 return TYPE_NFIELDS (type) / 2;
1657 return 0;
1658 }
1659
1660 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1661 an array descriptor type (representing an unconstrained array
1662 type). */
1663
1664 static int
1665 ada_is_direct_array_type (struct type *type)
1666 {
1667 if (type == NULL)
1668 return 0;
1669 type = ada_check_typedef (type);
1670 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1671 || ada_is_array_descriptor_type (type));
1672 }
1673
1674 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1675 * to one. */
1676
1677 static int
1678 ada_is_array_type (struct type *type)
1679 {
1680 while (type != NULL
1681 && (TYPE_CODE (type) == TYPE_CODE_PTR
1682 || TYPE_CODE (type) == TYPE_CODE_REF))
1683 type = TYPE_TARGET_TYPE (type);
1684 return ada_is_direct_array_type (type);
1685 }
1686
1687 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1688
1689 int
1690 ada_is_simple_array_type (struct type *type)
1691 {
1692 if (type == NULL)
1693 return 0;
1694 type = ada_check_typedef (type);
1695 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1696 || (TYPE_CODE (type) == TYPE_CODE_PTR
1697 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1698 }
1699
1700 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1701
1702 int
1703 ada_is_array_descriptor_type (struct type *type)
1704 {
1705 struct type *data_type = desc_data_target_type (type);
1706
1707 if (type == NULL)
1708 return 0;
1709 type = ada_check_typedef (type);
1710 return (data_type != NULL
1711 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1712 && desc_arity (desc_bounds_type (type)) > 0);
1713 }
1714
1715 /* Non-zero iff type is a partially mal-formed GNAT array
1716 descriptor. FIXME: This is to compensate for some problems with
1717 debugging output from GNAT. Re-examine periodically to see if it
1718 is still needed. */
1719
1720 int
1721 ada_is_bogus_array_descriptor (struct type *type)
1722 {
1723 return
1724 type != NULL
1725 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1726 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1727 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1728 && !ada_is_array_descriptor_type (type);
1729 }
1730
1731
1732 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1733 (fat pointer) returns the type of the array data described---specifically,
1734 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1735 in from the descriptor; otherwise, they are left unspecified. If
1736 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1737 returns NULL. The result is simply the type of ARR if ARR is not
1738 a descriptor. */
1739 struct type *
1740 ada_type_of_array (struct value *arr, int bounds)
1741 {
1742 if (ada_is_constrained_packed_array_type (value_type (arr)))
1743 return decode_constrained_packed_array_type (value_type (arr));
1744
1745 if (!ada_is_array_descriptor_type (value_type (arr)))
1746 return value_type (arr);
1747
1748 if (!bounds)
1749 {
1750 struct type *array_type =
1751 ada_check_typedef (desc_data_target_type (value_type (arr)));
1752
1753 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1754 TYPE_FIELD_BITSIZE (array_type, 0) =
1755 decode_packed_array_bitsize (value_type (arr));
1756
1757 return array_type;
1758 }
1759 else
1760 {
1761 struct type *elt_type;
1762 int arity;
1763 struct value *descriptor;
1764
1765 elt_type = ada_array_element_type (value_type (arr), -1);
1766 arity = ada_array_arity (value_type (arr));
1767
1768 if (elt_type == NULL || arity == 0)
1769 return ada_check_typedef (value_type (arr));
1770
1771 descriptor = desc_bounds (arr);
1772 if (value_as_long (descriptor) == 0)
1773 return NULL;
1774 while (arity > 0)
1775 {
1776 struct type *range_type = alloc_type_copy (value_type (arr));
1777 struct type *array_type = alloc_type_copy (value_type (arr));
1778 struct value *low = desc_one_bound (descriptor, arity, 0);
1779 struct value *high = desc_one_bound (descriptor, arity, 1);
1780
1781 arity -= 1;
1782 create_range_type (range_type, value_type (low),
1783 longest_to_int (value_as_long (low)),
1784 longest_to_int (value_as_long (high)));
1785 elt_type = create_array_type (array_type, elt_type, range_type);
1786
1787 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1788 TYPE_FIELD_BITSIZE (elt_type, 0) =
1789 decode_packed_array_bitsize (value_type (arr));
1790 }
1791
1792 return lookup_pointer_type (elt_type);
1793 }
1794 }
1795
1796 /* If ARR does not represent an array, returns ARR unchanged.
1797 Otherwise, returns either a standard GDB array with bounds set
1798 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1799 GDB array. Returns NULL if ARR is a null fat pointer. */
1800
1801 struct value *
1802 ada_coerce_to_simple_array_ptr (struct value *arr)
1803 {
1804 if (ada_is_array_descriptor_type (value_type (arr)))
1805 {
1806 struct type *arrType = ada_type_of_array (arr, 1);
1807
1808 if (arrType == NULL)
1809 return NULL;
1810 return value_cast (arrType, value_copy (desc_data (arr)));
1811 }
1812 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1813 return decode_constrained_packed_array (arr);
1814 else
1815 return arr;
1816 }
1817
1818 /* If ARR does not represent an array, returns ARR unchanged.
1819 Otherwise, returns a standard GDB array describing ARR (which may
1820 be ARR itself if it already is in the proper form). */
1821
1822 static struct value *
1823 ada_coerce_to_simple_array (struct value *arr)
1824 {
1825 if (ada_is_array_descriptor_type (value_type (arr)))
1826 {
1827 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1828
1829 if (arrVal == NULL)
1830 error (_("Bounds unavailable for null array pointer."));
1831 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1832 return value_ind (arrVal);
1833 }
1834 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1835 return decode_constrained_packed_array (arr);
1836 else
1837 return arr;
1838 }
1839
1840 /* If TYPE represents a GNAT array type, return it translated to an
1841 ordinary GDB array type (possibly with BITSIZE fields indicating
1842 packing). For other types, is the identity. */
1843
1844 struct type *
1845 ada_coerce_to_simple_array_type (struct type *type)
1846 {
1847 if (ada_is_constrained_packed_array_type (type))
1848 return decode_constrained_packed_array_type (type);
1849
1850 if (ada_is_array_descriptor_type (type))
1851 return ada_check_typedef (desc_data_target_type (type));
1852
1853 return type;
1854 }
1855
1856 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1857
1858 static int
1859 ada_is_packed_array_type (struct type *type)
1860 {
1861 if (type == NULL)
1862 return 0;
1863 type = desc_base_type (type);
1864 type = ada_check_typedef (type);
1865 return
1866 ada_type_name (type) != NULL
1867 && strstr (ada_type_name (type), "___XP") != NULL;
1868 }
1869
1870 /* Non-zero iff TYPE represents a standard GNAT constrained
1871 packed-array type. */
1872
1873 int
1874 ada_is_constrained_packed_array_type (struct type *type)
1875 {
1876 return ada_is_packed_array_type (type)
1877 && !ada_is_array_descriptor_type (type);
1878 }
1879
1880 /* Non-zero iff TYPE represents an array descriptor for a
1881 unconstrained packed-array type. */
1882
1883 static int
1884 ada_is_unconstrained_packed_array_type (struct type *type)
1885 {
1886 return ada_is_packed_array_type (type)
1887 && ada_is_array_descriptor_type (type);
1888 }
1889
1890 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1891 return the size of its elements in bits. */
1892
1893 static long
1894 decode_packed_array_bitsize (struct type *type)
1895 {
1896 char *raw_name = ada_type_name (ada_check_typedef (type));
1897 char *tail;
1898 long bits;
1899
1900 if (!raw_name)
1901 raw_name = ada_type_name (desc_base_type (type));
1902
1903 if (!raw_name)
1904 return 0;
1905
1906 tail = strstr (raw_name, "___XP");
1907
1908 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1909 {
1910 lim_warning
1911 (_("could not understand bit size information on packed array"));
1912 return 0;
1913 }
1914
1915 return bits;
1916 }
1917
1918 /* Given that TYPE is a standard GDB array type with all bounds filled
1919 in, and that the element size of its ultimate scalar constituents
1920 (that is, either its elements, or, if it is an array of arrays, its
1921 elements' elements, etc.) is *ELT_BITS, return an identical type,
1922 but with the bit sizes of its elements (and those of any
1923 constituent arrays) recorded in the BITSIZE components of its
1924 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1925 in bits. */
1926
1927 static struct type *
1928 constrained_packed_array_type (struct type *type, long *elt_bits)
1929 {
1930 struct type *new_elt_type;
1931 struct type *new_type;
1932 LONGEST low_bound, high_bound;
1933
1934 type = ada_check_typedef (type);
1935 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1936 return type;
1937
1938 new_type = alloc_type_copy (type);
1939 new_elt_type =
1940 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1941 elt_bits);
1942 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1943 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1944 TYPE_NAME (new_type) = ada_type_name (type);
1945
1946 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1947 &low_bound, &high_bound) < 0)
1948 low_bound = high_bound = 0;
1949 if (high_bound < low_bound)
1950 *elt_bits = TYPE_LENGTH (new_type) = 0;
1951 else
1952 {
1953 *elt_bits *= (high_bound - low_bound + 1);
1954 TYPE_LENGTH (new_type) =
1955 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1956 }
1957
1958 TYPE_FIXED_INSTANCE (new_type) = 1;
1959 return new_type;
1960 }
1961
1962 /* The array type encoded by TYPE, where
1963 ada_is_constrained_packed_array_type (TYPE). */
1964
1965 static struct type *
1966 decode_constrained_packed_array_type (struct type *type)
1967 {
1968 char *raw_name = ada_type_name (ada_check_typedef (type));
1969 char *name;
1970 char *tail;
1971 struct type *shadow_type;
1972 long bits;
1973
1974 if (!raw_name)
1975 raw_name = ada_type_name (desc_base_type (type));
1976
1977 if (!raw_name)
1978 return NULL;
1979
1980 name = (char *) alloca (strlen (raw_name) + 1);
1981 tail = strstr (raw_name, "___XP");
1982 type = desc_base_type (type);
1983
1984 memcpy (name, raw_name, tail - raw_name);
1985 name[tail - raw_name] = '\000';
1986
1987 shadow_type = ada_find_parallel_type_with_name (type, name);
1988
1989 if (shadow_type == NULL)
1990 {
1991 lim_warning (_("could not find bounds information on packed array"));
1992 return NULL;
1993 }
1994 CHECK_TYPEDEF (shadow_type);
1995
1996 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1997 {
1998 lim_warning (_("could not understand bounds information on packed array"));
1999 return NULL;
2000 }
2001
2002 bits = decode_packed_array_bitsize (type);
2003 return constrained_packed_array_type (shadow_type, &bits);
2004 }
2005
2006 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2007 array, returns a simple array that denotes that array. Its type is a
2008 standard GDB array type except that the BITSIZEs of the array
2009 target types are set to the number of bits in each element, and the
2010 type length is set appropriately. */
2011
2012 static struct value *
2013 decode_constrained_packed_array (struct value *arr)
2014 {
2015 struct type *type;
2016
2017 arr = ada_coerce_ref (arr);
2018
2019 /* If our value is a pointer, then dererence it. Make sure that
2020 this operation does not cause the target type to be fixed, as
2021 this would indirectly cause this array to be decoded. The rest
2022 of the routine assumes that the array hasn't been decoded yet,
2023 so we use the basic "value_ind" routine to perform the dereferencing,
2024 as opposed to using "ada_value_ind". */
2025 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
2026 arr = value_ind (arr);
2027
2028 type = decode_constrained_packed_array_type (value_type (arr));
2029 if (type == NULL)
2030 {
2031 error (_("can't unpack array"));
2032 return NULL;
2033 }
2034
2035 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2036 && ada_is_modular_type (value_type (arr)))
2037 {
2038 /* This is a (right-justified) modular type representing a packed
2039 array with no wrapper. In order to interpret the value through
2040 the (left-justified) packed array type we just built, we must
2041 first left-justify it. */
2042 int bit_size, bit_pos;
2043 ULONGEST mod;
2044
2045 mod = ada_modulus (value_type (arr)) - 1;
2046 bit_size = 0;
2047 while (mod > 0)
2048 {
2049 bit_size += 1;
2050 mod >>= 1;
2051 }
2052 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2053 arr = ada_value_primitive_packed_val (arr, NULL,
2054 bit_pos / HOST_CHAR_BIT,
2055 bit_pos % HOST_CHAR_BIT,
2056 bit_size,
2057 type);
2058 }
2059
2060 return coerce_unspec_val_to_type (arr, type);
2061 }
2062
2063
2064 /* The value of the element of packed array ARR at the ARITY indices
2065 given in IND. ARR must be a simple array. */
2066
2067 static struct value *
2068 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2069 {
2070 int i;
2071 int bits, elt_off, bit_off;
2072 long elt_total_bit_offset;
2073 struct type *elt_type;
2074 struct value *v;
2075
2076 bits = 0;
2077 elt_total_bit_offset = 0;
2078 elt_type = ada_check_typedef (value_type (arr));
2079 for (i = 0; i < arity; i += 1)
2080 {
2081 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2082 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2083 error
2084 (_("attempt to do packed indexing of something other than a packed array"));
2085 else
2086 {
2087 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2088 LONGEST lowerbound, upperbound;
2089 LONGEST idx;
2090
2091 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2092 {
2093 lim_warning (_("don't know bounds of array"));
2094 lowerbound = upperbound = 0;
2095 }
2096
2097 idx = pos_atr (ind[i]);
2098 if (idx < lowerbound || idx > upperbound)
2099 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
2100 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2101 elt_total_bit_offset += (idx - lowerbound) * bits;
2102 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2103 }
2104 }
2105 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2106 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2107
2108 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2109 bits, elt_type);
2110 return v;
2111 }
2112
2113 /* Non-zero iff TYPE includes negative integer values. */
2114
2115 static int
2116 has_negatives (struct type *type)
2117 {
2118 switch (TYPE_CODE (type))
2119 {
2120 default:
2121 return 0;
2122 case TYPE_CODE_INT:
2123 return !TYPE_UNSIGNED (type);
2124 case TYPE_CODE_RANGE:
2125 return TYPE_LOW_BOUND (type) < 0;
2126 }
2127 }
2128
2129
2130 /* Create a new value of type TYPE from the contents of OBJ starting
2131 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2132 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2133 assigning through the result will set the field fetched from.
2134 VALADDR is ignored unless OBJ is NULL, in which case,
2135 VALADDR+OFFSET must address the start of storage containing the
2136 packed value. The value returned in this case is never an lval.
2137 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2138
2139 struct value *
2140 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2141 long offset, int bit_offset, int bit_size,
2142 struct type *type)
2143 {
2144 struct value *v;
2145 int src, /* Index into the source area */
2146 targ, /* Index into the target area */
2147 srcBitsLeft, /* Number of source bits left to move */
2148 nsrc, ntarg, /* Number of source and target bytes */
2149 unusedLS, /* Number of bits in next significant
2150 byte of source that are unused */
2151 accumSize; /* Number of meaningful bits in accum */
2152 unsigned char *bytes; /* First byte containing data to unpack */
2153 unsigned char *unpacked;
2154 unsigned long accum; /* Staging area for bits being transferred */
2155 unsigned char sign;
2156 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2157 /* Transmit bytes from least to most significant; delta is the direction
2158 the indices move. */
2159 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2160
2161 type = ada_check_typedef (type);
2162
2163 if (obj == NULL)
2164 {
2165 v = allocate_value (type);
2166 bytes = (unsigned char *) (valaddr + offset);
2167 }
2168 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2169 {
2170 v = value_at (type,
2171 value_address (obj) + offset);
2172 bytes = (unsigned char *) alloca (len);
2173 read_memory (value_address (v), bytes, len);
2174 }
2175 else
2176 {
2177 v = allocate_value (type);
2178 bytes = (unsigned char *) value_contents (obj) + offset;
2179 }
2180
2181 if (obj != NULL)
2182 {
2183 CORE_ADDR new_addr;
2184
2185 set_value_component_location (v, obj);
2186 new_addr = value_address (obj) + offset;
2187 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2188 set_value_bitsize (v, bit_size);
2189 if (value_bitpos (v) >= HOST_CHAR_BIT)
2190 {
2191 ++new_addr;
2192 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2193 }
2194 set_value_address (v, new_addr);
2195 }
2196 else
2197 set_value_bitsize (v, bit_size);
2198 unpacked = (unsigned char *) value_contents (v);
2199
2200 srcBitsLeft = bit_size;
2201 nsrc = len;
2202 ntarg = TYPE_LENGTH (type);
2203 sign = 0;
2204 if (bit_size == 0)
2205 {
2206 memset (unpacked, 0, TYPE_LENGTH (type));
2207 return v;
2208 }
2209 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2210 {
2211 src = len - 1;
2212 if (has_negatives (type)
2213 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2214 sign = ~0;
2215
2216 unusedLS =
2217 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2218 % HOST_CHAR_BIT;
2219
2220 switch (TYPE_CODE (type))
2221 {
2222 case TYPE_CODE_ARRAY:
2223 case TYPE_CODE_UNION:
2224 case TYPE_CODE_STRUCT:
2225 /* Non-scalar values must be aligned at a byte boundary... */
2226 accumSize =
2227 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2228 /* ... And are placed at the beginning (most-significant) bytes
2229 of the target. */
2230 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2231 ntarg = targ + 1;
2232 break;
2233 default:
2234 accumSize = 0;
2235 targ = TYPE_LENGTH (type) - 1;
2236 break;
2237 }
2238 }
2239 else
2240 {
2241 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2242
2243 src = targ = 0;
2244 unusedLS = bit_offset;
2245 accumSize = 0;
2246
2247 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2248 sign = ~0;
2249 }
2250
2251 accum = 0;
2252 while (nsrc > 0)
2253 {
2254 /* Mask for removing bits of the next source byte that are not
2255 part of the value. */
2256 unsigned int unusedMSMask =
2257 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2258 1;
2259 /* Sign-extend bits for this byte. */
2260 unsigned int signMask = sign & ~unusedMSMask;
2261
2262 accum |=
2263 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2264 accumSize += HOST_CHAR_BIT - unusedLS;
2265 if (accumSize >= HOST_CHAR_BIT)
2266 {
2267 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2268 accumSize -= HOST_CHAR_BIT;
2269 accum >>= HOST_CHAR_BIT;
2270 ntarg -= 1;
2271 targ += delta;
2272 }
2273 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2274 unusedLS = 0;
2275 nsrc -= 1;
2276 src += delta;
2277 }
2278 while (ntarg > 0)
2279 {
2280 accum |= sign << accumSize;
2281 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2282 accumSize -= HOST_CHAR_BIT;
2283 accum >>= HOST_CHAR_BIT;
2284 ntarg -= 1;
2285 targ += delta;
2286 }
2287
2288 return v;
2289 }
2290
2291 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2292 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2293 not overlap. */
2294 static void
2295 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2296 int src_offset, int n, int bits_big_endian_p)
2297 {
2298 unsigned int accum, mask;
2299 int accum_bits, chunk_size;
2300
2301 target += targ_offset / HOST_CHAR_BIT;
2302 targ_offset %= HOST_CHAR_BIT;
2303 source += src_offset / HOST_CHAR_BIT;
2304 src_offset %= HOST_CHAR_BIT;
2305 if (bits_big_endian_p)
2306 {
2307 accum = (unsigned char) *source;
2308 source += 1;
2309 accum_bits = HOST_CHAR_BIT - src_offset;
2310
2311 while (n > 0)
2312 {
2313 int unused_right;
2314
2315 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2316 accum_bits += HOST_CHAR_BIT;
2317 source += 1;
2318 chunk_size = HOST_CHAR_BIT - targ_offset;
2319 if (chunk_size > n)
2320 chunk_size = n;
2321 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2322 mask = ((1 << chunk_size) - 1) << unused_right;
2323 *target =
2324 (*target & ~mask)
2325 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2326 n -= chunk_size;
2327 accum_bits -= chunk_size;
2328 target += 1;
2329 targ_offset = 0;
2330 }
2331 }
2332 else
2333 {
2334 accum = (unsigned char) *source >> src_offset;
2335 source += 1;
2336 accum_bits = HOST_CHAR_BIT - src_offset;
2337
2338 while (n > 0)
2339 {
2340 accum = accum + ((unsigned char) *source << accum_bits);
2341 accum_bits += HOST_CHAR_BIT;
2342 source += 1;
2343 chunk_size = HOST_CHAR_BIT - targ_offset;
2344 if (chunk_size > n)
2345 chunk_size = n;
2346 mask = ((1 << chunk_size) - 1) << targ_offset;
2347 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2348 n -= chunk_size;
2349 accum_bits -= chunk_size;
2350 accum >>= chunk_size;
2351 target += 1;
2352 targ_offset = 0;
2353 }
2354 }
2355 }
2356
2357 /* Store the contents of FROMVAL into the location of TOVAL.
2358 Return a new value with the location of TOVAL and contents of
2359 FROMVAL. Handles assignment into packed fields that have
2360 floating-point or non-scalar types. */
2361
2362 static struct value *
2363 ada_value_assign (struct value *toval, struct value *fromval)
2364 {
2365 struct type *type = value_type (toval);
2366 int bits = value_bitsize (toval);
2367
2368 toval = ada_coerce_ref (toval);
2369 fromval = ada_coerce_ref (fromval);
2370
2371 if (ada_is_direct_array_type (value_type (toval)))
2372 toval = ada_coerce_to_simple_array (toval);
2373 if (ada_is_direct_array_type (value_type (fromval)))
2374 fromval = ada_coerce_to_simple_array (fromval);
2375
2376 if (!deprecated_value_modifiable (toval))
2377 error (_("Left operand of assignment is not a modifiable lvalue."));
2378
2379 if (VALUE_LVAL (toval) == lval_memory
2380 && bits > 0
2381 && (TYPE_CODE (type) == TYPE_CODE_FLT
2382 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2383 {
2384 int len = (value_bitpos (toval)
2385 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2386 int from_size;
2387 char *buffer = (char *) alloca (len);
2388 struct value *val;
2389 CORE_ADDR to_addr = value_address (toval);
2390
2391 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2392 fromval = value_cast (type, fromval);
2393
2394 read_memory (to_addr, buffer, len);
2395 from_size = value_bitsize (fromval);
2396 if (from_size == 0)
2397 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2398 if (gdbarch_bits_big_endian (get_type_arch (type)))
2399 move_bits (buffer, value_bitpos (toval),
2400 value_contents (fromval), from_size - bits, bits, 1);
2401 else
2402 move_bits (buffer, value_bitpos (toval),
2403 value_contents (fromval), 0, bits, 0);
2404 write_memory (to_addr, buffer, len);
2405 observer_notify_memory_changed (to_addr, len, buffer);
2406
2407 val = value_copy (toval);
2408 memcpy (value_contents_raw (val), value_contents (fromval),
2409 TYPE_LENGTH (type));
2410 deprecated_set_value_type (val, type);
2411
2412 return val;
2413 }
2414
2415 return value_assign (toval, fromval);
2416 }
2417
2418
2419 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2420 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2421 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2422 * COMPONENT, and not the inferior's memory. The current contents
2423 * of COMPONENT are ignored. */
2424 static void
2425 value_assign_to_component (struct value *container, struct value *component,
2426 struct value *val)
2427 {
2428 LONGEST offset_in_container =
2429 (LONGEST) (value_address (component) - value_address (container));
2430 int bit_offset_in_container =
2431 value_bitpos (component) - value_bitpos (container);
2432 int bits;
2433
2434 val = value_cast (value_type (component), val);
2435
2436 if (value_bitsize (component) == 0)
2437 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2438 else
2439 bits = value_bitsize (component);
2440
2441 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2442 move_bits (value_contents_writeable (container) + offset_in_container,
2443 value_bitpos (container) + bit_offset_in_container,
2444 value_contents (val),
2445 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2446 bits, 1);
2447 else
2448 move_bits (value_contents_writeable (container) + offset_in_container,
2449 value_bitpos (container) + bit_offset_in_container,
2450 value_contents (val), 0, bits, 0);
2451 }
2452
2453 /* The value of the element of array ARR at the ARITY indices given in IND.
2454 ARR may be either a simple array, GNAT array descriptor, or pointer
2455 thereto. */
2456
2457 struct value *
2458 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2459 {
2460 int k;
2461 struct value *elt;
2462 struct type *elt_type;
2463
2464 elt = ada_coerce_to_simple_array (arr);
2465
2466 elt_type = ada_check_typedef (value_type (elt));
2467 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2468 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2469 return value_subscript_packed (elt, arity, ind);
2470
2471 for (k = 0; k < arity; k += 1)
2472 {
2473 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2474 error (_("too many subscripts (%d expected)"), k);
2475 elt = value_subscript (elt, pos_atr (ind[k]));
2476 }
2477 return elt;
2478 }
2479
2480 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2481 value of the element of *ARR at the ARITY indices given in
2482 IND. Does not read the entire array into memory. */
2483
2484 static struct value *
2485 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2486 struct value **ind)
2487 {
2488 int k;
2489
2490 for (k = 0; k < arity; k += 1)
2491 {
2492 LONGEST lwb, upb;
2493
2494 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2495 error (_("too many subscripts (%d expected)"), k);
2496 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2497 value_copy (arr));
2498 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2499 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2500 type = TYPE_TARGET_TYPE (type);
2501 }
2502
2503 return value_ind (arr);
2504 }
2505
2506 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2507 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2508 elements starting at index LOW. The lower bound of this array is LOW, as
2509 per Ada rules. */
2510 static struct value *
2511 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2512 int low, int high)
2513 {
2514 CORE_ADDR base = value_as_address (array_ptr)
2515 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
2516 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2517 struct type *index_type =
2518 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2519 low, high);
2520 struct type *slice_type =
2521 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2522
2523 return value_at_lazy (slice_type, base);
2524 }
2525
2526
2527 static struct value *
2528 ada_value_slice (struct value *array, int low, int high)
2529 {
2530 struct type *type = value_type (array);
2531 struct type *index_type =
2532 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2533 struct type *slice_type =
2534 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2535
2536 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2537 }
2538
2539 /* If type is a record type in the form of a standard GNAT array
2540 descriptor, returns the number of dimensions for type. If arr is a
2541 simple array, returns the number of "array of"s that prefix its
2542 type designation. Otherwise, returns 0. */
2543
2544 int
2545 ada_array_arity (struct type *type)
2546 {
2547 int arity;
2548
2549 if (type == NULL)
2550 return 0;
2551
2552 type = desc_base_type (type);
2553
2554 arity = 0;
2555 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2556 return desc_arity (desc_bounds_type (type));
2557 else
2558 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2559 {
2560 arity += 1;
2561 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2562 }
2563
2564 return arity;
2565 }
2566
2567 /* If TYPE is a record type in the form of a standard GNAT array
2568 descriptor or a simple array type, returns the element type for
2569 TYPE after indexing by NINDICES indices, or by all indices if
2570 NINDICES is -1. Otherwise, returns NULL. */
2571
2572 struct type *
2573 ada_array_element_type (struct type *type, int nindices)
2574 {
2575 type = desc_base_type (type);
2576
2577 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2578 {
2579 int k;
2580 struct type *p_array_type;
2581
2582 p_array_type = desc_data_target_type (type);
2583
2584 k = ada_array_arity (type);
2585 if (k == 0)
2586 return NULL;
2587
2588 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2589 if (nindices >= 0 && k > nindices)
2590 k = nindices;
2591 while (k > 0 && p_array_type != NULL)
2592 {
2593 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2594 k -= 1;
2595 }
2596 return p_array_type;
2597 }
2598 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2599 {
2600 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2601 {
2602 type = TYPE_TARGET_TYPE (type);
2603 nindices -= 1;
2604 }
2605 return type;
2606 }
2607
2608 return NULL;
2609 }
2610
2611 /* The type of nth index in arrays of given type (n numbering from 1).
2612 Does not examine memory. Throws an error if N is invalid or TYPE
2613 is not an array type. NAME is the name of the Ada attribute being
2614 evaluated ('range, 'first, 'last, or 'length); it is used in building
2615 the error message. */
2616
2617 static struct type *
2618 ada_index_type (struct type *type, int n, const char *name)
2619 {
2620 struct type *result_type;
2621
2622 type = desc_base_type (type);
2623
2624 if (n < 0 || n > ada_array_arity (type))
2625 error (_("invalid dimension number to '%s"), name);
2626
2627 if (ada_is_simple_array_type (type))
2628 {
2629 int i;
2630
2631 for (i = 1; i < n; i += 1)
2632 type = TYPE_TARGET_TYPE (type);
2633 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2634 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2635 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2636 perhaps stabsread.c would make more sense. */
2637 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2638 result_type = NULL;
2639 }
2640 else
2641 {
2642 result_type = desc_index_type (desc_bounds_type (type), n);
2643 if (result_type == NULL)
2644 error (_("attempt to take bound of something that is not an array"));
2645 }
2646
2647 return result_type;
2648 }
2649
2650 /* Given that arr is an array type, returns the lower bound of the
2651 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2652 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2653 array-descriptor type. It works for other arrays with bounds supplied
2654 by run-time quantities other than discriminants. */
2655
2656 static LONGEST
2657 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2658 {
2659 struct type *type, *elt_type, *index_type_desc, *index_type;
2660 int i;
2661
2662 gdb_assert (which == 0 || which == 1);
2663
2664 if (ada_is_constrained_packed_array_type (arr_type))
2665 arr_type = decode_constrained_packed_array_type (arr_type);
2666
2667 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2668 return (LONGEST) - which;
2669
2670 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2671 type = TYPE_TARGET_TYPE (arr_type);
2672 else
2673 type = arr_type;
2674
2675 elt_type = type;
2676 for (i = n; i > 1; i--)
2677 elt_type = TYPE_TARGET_TYPE (type);
2678
2679 index_type_desc = ada_find_parallel_type (type, "___XA");
2680 ada_fixup_array_indexes_type (index_type_desc);
2681 if (index_type_desc != NULL)
2682 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2683 NULL);
2684 else
2685 index_type = TYPE_INDEX_TYPE (elt_type);
2686
2687 return
2688 (LONGEST) (which == 0
2689 ? ada_discrete_type_low_bound (index_type)
2690 : ada_discrete_type_high_bound (index_type));
2691 }
2692
2693 /* Given that arr is an array value, returns the lower bound of the
2694 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2695 WHICH is 1. This routine will also work for arrays with bounds
2696 supplied by run-time quantities other than discriminants. */
2697
2698 static LONGEST
2699 ada_array_bound (struct value *arr, int n, int which)
2700 {
2701 struct type *arr_type = value_type (arr);
2702
2703 if (ada_is_constrained_packed_array_type (arr_type))
2704 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2705 else if (ada_is_simple_array_type (arr_type))
2706 return ada_array_bound_from_type (arr_type, n, which);
2707 else
2708 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2709 }
2710
2711 /* Given that arr is an array value, returns the length of the
2712 nth index. This routine will also work for arrays with bounds
2713 supplied by run-time quantities other than discriminants.
2714 Does not work for arrays indexed by enumeration types with representation
2715 clauses at the moment. */
2716
2717 static LONGEST
2718 ada_array_length (struct value *arr, int n)
2719 {
2720 struct type *arr_type = ada_check_typedef (value_type (arr));
2721
2722 if (ada_is_constrained_packed_array_type (arr_type))
2723 return ada_array_length (decode_constrained_packed_array (arr), n);
2724
2725 if (ada_is_simple_array_type (arr_type))
2726 return (ada_array_bound_from_type (arr_type, n, 1)
2727 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2728 else
2729 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2730 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2731 }
2732
2733 /* An empty array whose type is that of ARR_TYPE (an array type),
2734 with bounds LOW to LOW-1. */
2735
2736 static struct value *
2737 empty_array (struct type *arr_type, int low)
2738 {
2739 struct type *index_type =
2740 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2741 low, low - 1);
2742 struct type *elt_type = ada_array_element_type (arr_type, 1);
2743
2744 return allocate_value (create_array_type (NULL, elt_type, index_type));
2745 }
2746 \f
2747
2748 /* Name resolution */
2749
2750 /* The "decoded" name for the user-definable Ada operator corresponding
2751 to OP. */
2752
2753 static const char *
2754 ada_decoded_op_name (enum exp_opcode op)
2755 {
2756 int i;
2757
2758 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2759 {
2760 if (ada_opname_table[i].op == op)
2761 return ada_opname_table[i].decoded;
2762 }
2763 error (_("Could not find operator name for opcode"));
2764 }
2765
2766
2767 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2768 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2769 undefined namespace) and converts operators that are
2770 user-defined into appropriate function calls. If CONTEXT_TYPE is
2771 non-null, it provides a preferred result type [at the moment, only
2772 type void has any effect---causing procedures to be preferred over
2773 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2774 return type is preferred. May change (expand) *EXP. */
2775
2776 static void
2777 resolve (struct expression **expp, int void_context_p)
2778 {
2779 struct type *context_type = NULL;
2780 int pc = 0;
2781
2782 if (void_context_p)
2783 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2784
2785 resolve_subexp (expp, &pc, 1, context_type);
2786 }
2787
2788 /* Resolve the operator of the subexpression beginning at
2789 position *POS of *EXPP. "Resolving" consists of replacing
2790 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2791 with their resolutions, replacing built-in operators with
2792 function calls to user-defined operators, where appropriate, and,
2793 when DEPROCEDURE_P is non-zero, converting function-valued variables
2794 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2795 are as in ada_resolve, above. */
2796
2797 static struct value *
2798 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2799 struct type *context_type)
2800 {
2801 int pc = *pos;
2802 int i;
2803 struct expression *exp; /* Convenience: == *expp. */
2804 enum exp_opcode op = (*expp)->elts[pc].opcode;
2805 struct value **argvec; /* Vector of operand types (alloca'ed). */
2806 int nargs; /* Number of operands. */
2807 int oplen;
2808
2809 argvec = NULL;
2810 nargs = 0;
2811 exp = *expp;
2812
2813 /* Pass one: resolve operands, saving their types and updating *pos,
2814 if needed. */
2815 switch (op)
2816 {
2817 case OP_FUNCALL:
2818 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2819 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2820 *pos += 7;
2821 else
2822 {
2823 *pos += 3;
2824 resolve_subexp (expp, pos, 0, NULL);
2825 }
2826 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2827 break;
2828
2829 case UNOP_ADDR:
2830 *pos += 1;
2831 resolve_subexp (expp, pos, 0, NULL);
2832 break;
2833
2834 case UNOP_QUAL:
2835 *pos += 3;
2836 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2837 break;
2838
2839 case OP_ATR_MODULUS:
2840 case OP_ATR_SIZE:
2841 case OP_ATR_TAG:
2842 case OP_ATR_FIRST:
2843 case OP_ATR_LAST:
2844 case OP_ATR_LENGTH:
2845 case OP_ATR_POS:
2846 case OP_ATR_VAL:
2847 case OP_ATR_MIN:
2848 case OP_ATR_MAX:
2849 case TERNOP_IN_RANGE:
2850 case BINOP_IN_BOUNDS:
2851 case UNOP_IN_RANGE:
2852 case OP_AGGREGATE:
2853 case OP_OTHERS:
2854 case OP_CHOICES:
2855 case OP_POSITIONAL:
2856 case OP_DISCRETE_RANGE:
2857 case OP_NAME:
2858 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2859 *pos += oplen;
2860 break;
2861
2862 case BINOP_ASSIGN:
2863 {
2864 struct value *arg1;
2865
2866 *pos += 1;
2867 arg1 = resolve_subexp (expp, pos, 0, NULL);
2868 if (arg1 == NULL)
2869 resolve_subexp (expp, pos, 1, NULL);
2870 else
2871 resolve_subexp (expp, pos, 1, value_type (arg1));
2872 break;
2873 }
2874
2875 case UNOP_CAST:
2876 *pos += 3;
2877 nargs = 1;
2878 break;
2879
2880 case BINOP_ADD:
2881 case BINOP_SUB:
2882 case BINOP_MUL:
2883 case BINOP_DIV:
2884 case BINOP_REM:
2885 case BINOP_MOD:
2886 case BINOP_EXP:
2887 case BINOP_CONCAT:
2888 case BINOP_LOGICAL_AND:
2889 case BINOP_LOGICAL_OR:
2890 case BINOP_BITWISE_AND:
2891 case BINOP_BITWISE_IOR:
2892 case BINOP_BITWISE_XOR:
2893
2894 case BINOP_EQUAL:
2895 case BINOP_NOTEQUAL:
2896 case BINOP_LESS:
2897 case BINOP_GTR:
2898 case BINOP_LEQ:
2899 case BINOP_GEQ:
2900
2901 case BINOP_REPEAT:
2902 case BINOP_SUBSCRIPT:
2903 case BINOP_COMMA:
2904 *pos += 1;
2905 nargs = 2;
2906 break;
2907
2908 case UNOP_NEG:
2909 case UNOP_PLUS:
2910 case UNOP_LOGICAL_NOT:
2911 case UNOP_ABS:
2912 case UNOP_IND:
2913 *pos += 1;
2914 nargs = 1;
2915 break;
2916
2917 case OP_LONG:
2918 case OP_DOUBLE:
2919 case OP_VAR_VALUE:
2920 *pos += 4;
2921 break;
2922
2923 case OP_TYPE:
2924 case OP_BOOL:
2925 case OP_LAST:
2926 case OP_INTERNALVAR:
2927 *pos += 3;
2928 break;
2929
2930 case UNOP_MEMVAL:
2931 *pos += 3;
2932 nargs = 1;
2933 break;
2934
2935 case OP_REGISTER:
2936 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2937 break;
2938
2939 case STRUCTOP_STRUCT:
2940 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2941 nargs = 1;
2942 break;
2943
2944 case TERNOP_SLICE:
2945 *pos += 1;
2946 nargs = 3;
2947 break;
2948
2949 case OP_STRING:
2950 break;
2951
2952 default:
2953 error (_("Unexpected operator during name resolution"));
2954 }
2955
2956 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2957 for (i = 0; i < nargs; i += 1)
2958 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2959 argvec[i] = NULL;
2960 exp = *expp;
2961
2962 /* Pass two: perform any resolution on principal operator. */
2963 switch (op)
2964 {
2965 default:
2966 break;
2967
2968 case OP_VAR_VALUE:
2969 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2970 {
2971 struct ada_symbol_info *candidates;
2972 int n_candidates;
2973
2974 n_candidates =
2975 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2976 (exp->elts[pc + 2].symbol),
2977 exp->elts[pc + 1].block, VAR_DOMAIN,
2978 &candidates);
2979
2980 if (n_candidates > 1)
2981 {
2982 /* Types tend to get re-introduced locally, so if there
2983 are any local symbols that are not types, first filter
2984 out all types. */
2985 int j;
2986 for (j = 0; j < n_candidates; j += 1)
2987 switch (SYMBOL_CLASS (candidates[j].sym))
2988 {
2989 case LOC_REGISTER:
2990 case LOC_ARG:
2991 case LOC_REF_ARG:
2992 case LOC_REGPARM_ADDR:
2993 case LOC_LOCAL:
2994 case LOC_COMPUTED:
2995 goto FoundNonType;
2996 default:
2997 break;
2998 }
2999 FoundNonType:
3000 if (j < n_candidates)
3001 {
3002 j = 0;
3003 while (j < n_candidates)
3004 {
3005 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3006 {
3007 candidates[j] = candidates[n_candidates - 1];
3008 n_candidates -= 1;
3009 }
3010 else
3011 j += 1;
3012 }
3013 }
3014 }
3015
3016 if (n_candidates == 0)
3017 error (_("No definition found for %s"),
3018 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3019 else if (n_candidates == 1)
3020 i = 0;
3021 else if (deprocedure_p
3022 && !is_nonfunction (candidates, n_candidates))
3023 {
3024 i = ada_resolve_function
3025 (candidates, n_candidates, NULL, 0,
3026 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3027 context_type);
3028 if (i < 0)
3029 error (_("Could not find a match for %s"),
3030 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3031 }
3032 else
3033 {
3034 printf_filtered (_("Multiple matches for %s\n"),
3035 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3036 user_select_syms (candidates, n_candidates, 1);
3037 i = 0;
3038 }
3039
3040 exp->elts[pc + 1].block = candidates[i].block;
3041 exp->elts[pc + 2].symbol = candidates[i].sym;
3042 if (innermost_block == NULL
3043 || contained_in (candidates[i].block, innermost_block))
3044 innermost_block = candidates[i].block;
3045 }
3046
3047 if (deprocedure_p
3048 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3049 == TYPE_CODE_FUNC))
3050 {
3051 replace_operator_with_call (expp, pc, 0, 0,
3052 exp->elts[pc + 2].symbol,
3053 exp->elts[pc + 1].block);
3054 exp = *expp;
3055 }
3056 break;
3057
3058 case OP_FUNCALL:
3059 {
3060 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3061 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3062 {
3063 struct ada_symbol_info *candidates;
3064 int n_candidates;
3065
3066 n_candidates =
3067 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3068 (exp->elts[pc + 5].symbol),
3069 exp->elts[pc + 4].block, VAR_DOMAIN,
3070 &candidates);
3071 if (n_candidates == 1)
3072 i = 0;
3073 else
3074 {
3075 i = ada_resolve_function
3076 (candidates, n_candidates,
3077 argvec, nargs,
3078 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3079 context_type);
3080 if (i < 0)
3081 error (_("Could not find a match for %s"),
3082 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3083 }
3084
3085 exp->elts[pc + 4].block = candidates[i].block;
3086 exp->elts[pc + 5].symbol = candidates[i].sym;
3087 if (innermost_block == NULL
3088 || contained_in (candidates[i].block, innermost_block))
3089 innermost_block = candidates[i].block;
3090 }
3091 }
3092 break;
3093 case BINOP_ADD:
3094 case BINOP_SUB:
3095 case BINOP_MUL:
3096 case BINOP_DIV:
3097 case BINOP_REM:
3098 case BINOP_MOD:
3099 case BINOP_CONCAT:
3100 case BINOP_BITWISE_AND:
3101 case BINOP_BITWISE_IOR:
3102 case BINOP_BITWISE_XOR:
3103 case BINOP_EQUAL:
3104 case BINOP_NOTEQUAL:
3105 case BINOP_LESS:
3106 case BINOP_GTR:
3107 case BINOP_LEQ:
3108 case BINOP_GEQ:
3109 case BINOP_EXP:
3110 case UNOP_NEG:
3111 case UNOP_PLUS:
3112 case UNOP_LOGICAL_NOT:
3113 case UNOP_ABS:
3114 if (possible_user_operator_p (op, argvec))
3115 {
3116 struct ada_symbol_info *candidates;
3117 int n_candidates;
3118
3119 n_candidates =
3120 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3121 (struct block *) NULL, VAR_DOMAIN,
3122 &candidates);
3123 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3124 ada_decoded_op_name (op), NULL);
3125 if (i < 0)
3126 break;
3127
3128 replace_operator_with_call (expp, pc, nargs, 1,
3129 candidates[i].sym, candidates[i].block);
3130 exp = *expp;
3131 }
3132 break;
3133
3134 case OP_TYPE:
3135 case OP_REGISTER:
3136 return NULL;
3137 }
3138
3139 *pos = pc;
3140 return evaluate_subexp_type (exp, pos);
3141 }
3142
3143 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3144 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3145 a non-pointer. */
3146 /* The term "match" here is rather loose. The match is heuristic and
3147 liberal. */
3148
3149 static int
3150 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3151 {
3152 ftype = ada_check_typedef (ftype);
3153 atype = ada_check_typedef (atype);
3154
3155 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3156 ftype = TYPE_TARGET_TYPE (ftype);
3157 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3158 atype = TYPE_TARGET_TYPE (atype);
3159
3160 switch (TYPE_CODE (ftype))
3161 {
3162 default:
3163 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3164 case TYPE_CODE_PTR:
3165 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3166 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3167 TYPE_TARGET_TYPE (atype), 0);
3168 else
3169 return (may_deref
3170 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3171 case TYPE_CODE_INT:
3172 case TYPE_CODE_ENUM:
3173 case TYPE_CODE_RANGE:
3174 switch (TYPE_CODE (atype))
3175 {
3176 case TYPE_CODE_INT:
3177 case TYPE_CODE_ENUM:
3178 case TYPE_CODE_RANGE:
3179 return 1;
3180 default:
3181 return 0;
3182 }
3183
3184 case TYPE_CODE_ARRAY:
3185 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3186 || ada_is_array_descriptor_type (atype));
3187
3188 case TYPE_CODE_STRUCT:
3189 if (ada_is_array_descriptor_type (ftype))
3190 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3191 || ada_is_array_descriptor_type (atype));
3192 else
3193 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3194 && !ada_is_array_descriptor_type (atype));
3195
3196 case TYPE_CODE_UNION:
3197 case TYPE_CODE_FLT:
3198 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3199 }
3200 }
3201
3202 /* Return non-zero if the formals of FUNC "sufficiently match" the
3203 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3204 may also be an enumeral, in which case it is treated as a 0-
3205 argument function. */
3206
3207 static int
3208 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3209 {
3210 int i;
3211 struct type *func_type = SYMBOL_TYPE (func);
3212
3213 if (SYMBOL_CLASS (func) == LOC_CONST
3214 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3215 return (n_actuals == 0);
3216 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3217 return 0;
3218
3219 if (TYPE_NFIELDS (func_type) != n_actuals)
3220 return 0;
3221
3222 for (i = 0; i < n_actuals; i += 1)
3223 {
3224 if (actuals[i] == NULL)
3225 return 0;
3226 else
3227 {
3228 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3229 i));
3230 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3231
3232 if (!ada_type_match (ftype, atype, 1))
3233 return 0;
3234 }
3235 }
3236 return 1;
3237 }
3238
3239 /* False iff function type FUNC_TYPE definitely does not produce a value
3240 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3241 FUNC_TYPE is not a valid function type with a non-null return type
3242 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3243
3244 static int
3245 return_match (struct type *func_type, struct type *context_type)
3246 {
3247 struct type *return_type;
3248
3249 if (func_type == NULL)
3250 return 1;
3251
3252 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3253 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3254 else
3255 return_type = base_type (func_type);
3256 if (return_type == NULL)
3257 return 1;
3258
3259 context_type = base_type (context_type);
3260
3261 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3262 return context_type == NULL || return_type == context_type;
3263 else if (context_type == NULL)
3264 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3265 else
3266 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3267 }
3268
3269
3270 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3271 function (if any) that matches the types of the NARGS arguments in
3272 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3273 that returns that type, then eliminate matches that don't. If
3274 CONTEXT_TYPE is void and there is at least one match that does not
3275 return void, eliminate all matches that do.
3276
3277 Asks the user if there is more than one match remaining. Returns -1
3278 if there is no such symbol or none is selected. NAME is used
3279 solely for messages. May re-arrange and modify SYMS in
3280 the process; the index returned is for the modified vector. */
3281
3282 static int
3283 ada_resolve_function (struct ada_symbol_info syms[],
3284 int nsyms, struct value **args, int nargs,
3285 const char *name, struct type *context_type)
3286 {
3287 int fallback;
3288 int k;
3289 int m; /* Number of hits */
3290
3291 m = 0;
3292 /* In the first pass of the loop, we only accept functions matching
3293 context_type. If none are found, we add a second pass of the loop
3294 where every function is accepted. */
3295 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3296 {
3297 for (k = 0; k < nsyms; k += 1)
3298 {
3299 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3300
3301 if (ada_args_match (syms[k].sym, args, nargs)
3302 && (fallback || return_match (type, context_type)))
3303 {
3304 syms[m] = syms[k];
3305 m += 1;
3306 }
3307 }
3308 }
3309
3310 if (m == 0)
3311 return -1;
3312 else if (m > 1)
3313 {
3314 printf_filtered (_("Multiple matches for %s\n"), name);
3315 user_select_syms (syms, m, 1);
3316 return 0;
3317 }
3318 return 0;
3319 }
3320
3321 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3322 in a listing of choices during disambiguation (see sort_choices, below).
3323 The idea is that overloadings of a subprogram name from the
3324 same package should sort in their source order. We settle for ordering
3325 such symbols by their trailing number (__N or $N). */
3326
3327 static int
3328 encoded_ordered_before (char *N0, char *N1)
3329 {
3330 if (N1 == NULL)
3331 return 0;
3332 else if (N0 == NULL)
3333 return 1;
3334 else
3335 {
3336 int k0, k1;
3337
3338 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3339 ;
3340 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3341 ;
3342 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3343 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3344 {
3345 int n0, n1;
3346
3347 n0 = k0;
3348 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3349 n0 -= 1;
3350 n1 = k1;
3351 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3352 n1 -= 1;
3353 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3354 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3355 }
3356 return (strcmp (N0, N1) < 0);
3357 }
3358 }
3359
3360 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3361 encoded names. */
3362
3363 static void
3364 sort_choices (struct ada_symbol_info syms[], int nsyms)
3365 {
3366 int i;
3367
3368 for (i = 1; i < nsyms; i += 1)
3369 {
3370 struct ada_symbol_info sym = syms[i];
3371 int j;
3372
3373 for (j = i - 1; j >= 0; j -= 1)
3374 {
3375 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3376 SYMBOL_LINKAGE_NAME (sym.sym)))
3377 break;
3378 syms[j + 1] = syms[j];
3379 }
3380 syms[j + 1] = sym;
3381 }
3382 }
3383
3384 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3385 by asking the user (if necessary), returning the number selected,
3386 and setting the first elements of SYMS items. Error if no symbols
3387 selected. */
3388
3389 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3390 to be re-integrated one of these days. */
3391
3392 int
3393 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3394 {
3395 int i;
3396 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3397 int n_chosen;
3398 int first_choice = (max_results == 1) ? 1 : 2;
3399 const char *select_mode = multiple_symbols_select_mode ();
3400
3401 if (max_results < 1)
3402 error (_("Request to select 0 symbols!"));
3403 if (nsyms <= 1)
3404 return nsyms;
3405
3406 if (select_mode == multiple_symbols_cancel)
3407 error (_("\
3408 canceled because the command is ambiguous\n\
3409 See set/show multiple-symbol."));
3410
3411 /* If select_mode is "all", then return all possible symbols.
3412 Only do that if more than one symbol can be selected, of course.
3413 Otherwise, display the menu as usual. */
3414 if (select_mode == multiple_symbols_all && max_results > 1)
3415 return nsyms;
3416
3417 printf_unfiltered (_("[0] cancel\n"));
3418 if (max_results > 1)
3419 printf_unfiltered (_("[1] all\n"));
3420
3421 sort_choices (syms, nsyms);
3422
3423 for (i = 0; i < nsyms; i += 1)
3424 {
3425 if (syms[i].sym == NULL)
3426 continue;
3427
3428 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3429 {
3430 struct symtab_and_line sal =
3431 find_function_start_sal (syms[i].sym, 1);
3432
3433 if (sal.symtab == NULL)
3434 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3435 i + first_choice,
3436 SYMBOL_PRINT_NAME (syms[i].sym),
3437 sal.line);
3438 else
3439 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3440 SYMBOL_PRINT_NAME (syms[i].sym),
3441 sal.symtab->filename, sal.line);
3442 continue;
3443 }
3444 else
3445 {
3446 int is_enumeral =
3447 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3448 && SYMBOL_TYPE (syms[i].sym) != NULL
3449 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3450 struct symtab *symtab = syms[i].sym->symtab;
3451
3452 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3453 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3454 i + first_choice,
3455 SYMBOL_PRINT_NAME (syms[i].sym),
3456 symtab->filename, SYMBOL_LINE (syms[i].sym));
3457 else if (is_enumeral
3458 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3459 {
3460 printf_unfiltered (("[%d] "), i + first_choice);
3461 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3462 gdb_stdout, -1, 0);
3463 printf_unfiltered (_("'(%s) (enumeral)\n"),
3464 SYMBOL_PRINT_NAME (syms[i].sym));
3465 }
3466 else if (symtab != NULL)
3467 printf_unfiltered (is_enumeral
3468 ? _("[%d] %s in %s (enumeral)\n")
3469 : _("[%d] %s at %s:?\n"),
3470 i + first_choice,
3471 SYMBOL_PRINT_NAME (syms[i].sym),
3472 symtab->filename);
3473 else
3474 printf_unfiltered (is_enumeral
3475 ? _("[%d] %s (enumeral)\n")
3476 : _("[%d] %s at ?\n"),
3477 i + first_choice,
3478 SYMBOL_PRINT_NAME (syms[i].sym));
3479 }
3480 }
3481
3482 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3483 "overload-choice");
3484
3485 for (i = 0; i < n_chosen; i += 1)
3486 syms[i] = syms[chosen[i]];
3487
3488 return n_chosen;
3489 }
3490
3491 /* Read and validate a set of numeric choices from the user in the
3492 range 0 .. N_CHOICES-1. Place the results in increasing
3493 order in CHOICES[0 .. N-1], and return N.
3494
3495 The user types choices as a sequence of numbers on one line
3496 separated by blanks, encoding them as follows:
3497
3498 + A choice of 0 means to cancel the selection, throwing an error.
3499 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3500 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3501
3502 The user is not allowed to choose more than MAX_RESULTS values.
3503
3504 ANNOTATION_SUFFIX, if present, is used to annotate the input
3505 prompts (for use with the -f switch). */
3506
3507 int
3508 get_selections (int *choices, int n_choices, int max_results,
3509 int is_all_choice, char *annotation_suffix)
3510 {
3511 char *args;
3512 char *prompt;
3513 int n_chosen;
3514 int first_choice = is_all_choice ? 2 : 1;
3515
3516 prompt = getenv ("PS2");
3517 if (prompt == NULL)
3518 prompt = "> ";
3519
3520 args = command_line_input (prompt, 0, annotation_suffix);
3521
3522 if (args == NULL)
3523 error_no_arg (_("one or more choice numbers"));
3524
3525 n_chosen = 0;
3526
3527 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3528 order, as given in args. Choices are validated. */
3529 while (1)
3530 {
3531 char *args2;
3532 int choice, j;
3533
3534 while (isspace (*args))
3535 args += 1;
3536 if (*args == '\0' && n_chosen == 0)
3537 error_no_arg (_("one or more choice numbers"));
3538 else if (*args == '\0')
3539 break;
3540
3541 choice = strtol (args, &args2, 10);
3542 if (args == args2 || choice < 0
3543 || choice > n_choices + first_choice - 1)
3544 error (_("Argument must be choice number"));
3545 args = args2;
3546
3547 if (choice == 0)
3548 error (_("cancelled"));
3549
3550 if (choice < first_choice)
3551 {
3552 n_chosen = n_choices;
3553 for (j = 0; j < n_choices; j += 1)
3554 choices[j] = j;
3555 break;
3556 }
3557 choice -= first_choice;
3558
3559 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3560 {
3561 }
3562
3563 if (j < 0 || choice != choices[j])
3564 {
3565 int k;
3566
3567 for (k = n_chosen - 1; k > j; k -= 1)
3568 choices[k + 1] = choices[k];
3569 choices[j + 1] = choice;
3570 n_chosen += 1;
3571 }
3572 }
3573
3574 if (n_chosen > max_results)
3575 error (_("Select no more than %d of the above"), max_results);
3576
3577 return n_chosen;
3578 }
3579
3580 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3581 on the function identified by SYM and BLOCK, and taking NARGS
3582 arguments. Update *EXPP as needed to hold more space. */
3583
3584 static void
3585 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3586 int oplen, struct symbol *sym,
3587 struct block *block)
3588 {
3589 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3590 symbol, -oplen for operator being replaced). */
3591 struct expression *newexp = (struct expression *)
3592 xmalloc (sizeof (struct expression)
3593 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3594 struct expression *exp = *expp;
3595
3596 newexp->nelts = exp->nelts + 7 - oplen;
3597 newexp->language_defn = exp->language_defn;
3598 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3599 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3600 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3601
3602 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3603 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3604
3605 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3606 newexp->elts[pc + 4].block = block;
3607 newexp->elts[pc + 5].symbol = sym;
3608
3609 *expp = newexp;
3610 xfree (exp);
3611 }
3612
3613 /* Type-class predicates */
3614
3615 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3616 or FLOAT). */
3617
3618 static int
3619 numeric_type_p (struct type *type)
3620 {
3621 if (type == NULL)
3622 return 0;
3623 else
3624 {
3625 switch (TYPE_CODE (type))
3626 {
3627 case TYPE_CODE_INT:
3628 case TYPE_CODE_FLT:
3629 return 1;
3630 case TYPE_CODE_RANGE:
3631 return (type == TYPE_TARGET_TYPE (type)
3632 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3633 default:
3634 return 0;
3635 }
3636 }
3637 }
3638
3639 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3640
3641 static int
3642 integer_type_p (struct type *type)
3643 {
3644 if (type == NULL)
3645 return 0;
3646 else
3647 {
3648 switch (TYPE_CODE (type))
3649 {
3650 case TYPE_CODE_INT:
3651 return 1;
3652 case TYPE_CODE_RANGE:
3653 return (type == TYPE_TARGET_TYPE (type)
3654 || integer_type_p (TYPE_TARGET_TYPE (type)));
3655 default:
3656 return 0;
3657 }
3658 }
3659 }
3660
3661 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3662
3663 static int
3664 scalar_type_p (struct type *type)
3665 {
3666 if (type == NULL)
3667 return 0;
3668 else
3669 {
3670 switch (TYPE_CODE (type))
3671 {
3672 case TYPE_CODE_INT:
3673 case TYPE_CODE_RANGE:
3674 case TYPE_CODE_ENUM:
3675 case TYPE_CODE_FLT:
3676 return 1;
3677 default:
3678 return 0;
3679 }
3680 }
3681 }
3682
3683 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3684
3685 static int
3686 discrete_type_p (struct type *type)
3687 {
3688 if (type == NULL)
3689 return 0;
3690 else
3691 {
3692 switch (TYPE_CODE (type))
3693 {
3694 case TYPE_CODE_INT:
3695 case TYPE_CODE_RANGE:
3696 case TYPE_CODE_ENUM:
3697 case TYPE_CODE_BOOL:
3698 return 1;
3699 default:
3700 return 0;
3701 }
3702 }
3703 }
3704
3705 /* Returns non-zero if OP with operands in the vector ARGS could be
3706 a user-defined function. Errs on the side of pre-defined operators
3707 (i.e., result 0). */
3708
3709 static int
3710 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3711 {
3712 struct type *type0 =
3713 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3714 struct type *type1 =
3715 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3716
3717 if (type0 == NULL)
3718 return 0;
3719
3720 switch (op)
3721 {
3722 default:
3723 return 0;
3724
3725 case BINOP_ADD:
3726 case BINOP_SUB:
3727 case BINOP_MUL:
3728 case BINOP_DIV:
3729 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3730
3731 case BINOP_REM:
3732 case BINOP_MOD:
3733 case BINOP_BITWISE_AND:
3734 case BINOP_BITWISE_IOR:
3735 case BINOP_BITWISE_XOR:
3736 return (!(integer_type_p (type0) && integer_type_p (type1)));
3737
3738 case BINOP_EQUAL:
3739 case BINOP_NOTEQUAL:
3740 case BINOP_LESS:
3741 case BINOP_GTR:
3742 case BINOP_LEQ:
3743 case BINOP_GEQ:
3744 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3745
3746 case BINOP_CONCAT:
3747 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3748
3749 case BINOP_EXP:
3750 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3751
3752 case UNOP_NEG:
3753 case UNOP_PLUS:
3754 case UNOP_LOGICAL_NOT:
3755 case UNOP_ABS:
3756 return (!numeric_type_p (type0));
3757
3758 }
3759 }
3760 \f
3761 /* Renaming */
3762
3763 /* NOTES:
3764
3765 1. In the following, we assume that a renaming type's name may
3766 have an ___XD suffix. It would be nice if this went away at some
3767 point.
3768 2. We handle both the (old) purely type-based representation of
3769 renamings and the (new) variable-based encoding. At some point,
3770 it is devoutly to be hoped that the former goes away
3771 (FIXME: hilfinger-2007-07-09).
3772 3. Subprogram renamings are not implemented, although the XRS
3773 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3774
3775 /* If SYM encodes a renaming,
3776
3777 <renaming> renames <renamed entity>,
3778
3779 sets *LEN to the length of the renamed entity's name,
3780 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3781 the string describing the subcomponent selected from the renamed
3782 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3783 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3784 are undefined). Otherwise, returns a value indicating the category
3785 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3786 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3787 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3788 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3789 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3790 may be NULL, in which case they are not assigned.
3791
3792 [Currently, however, GCC does not generate subprogram renamings.] */
3793
3794 enum ada_renaming_category
3795 ada_parse_renaming (struct symbol *sym,
3796 const char **renamed_entity, int *len,
3797 const char **renaming_expr)
3798 {
3799 enum ada_renaming_category kind;
3800 const char *info;
3801 const char *suffix;
3802
3803 if (sym == NULL)
3804 return ADA_NOT_RENAMING;
3805 switch (SYMBOL_CLASS (sym))
3806 {
3807 default:
3808 return ADA_NOT_RENAMING;
3809 case LOC_TYPEDEF:
3810 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3811 renamed_entity, len, renaming_expr);
3812 case LOC_LOCAL:
3813 case LOC_STATIC:
3814 case LOC_COMPUTED:
3815 case LOC_OPTIMIZED_OUT:
3816 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3817 if (info == NULL)
3818 return ADA_NOT_RENAMING;
3819 switch (info[5])
3820 {
3821 case '_':
3822 kind = ADA_OBJECT_RENAMING;
3823 info += 6;
3824 break;
3825 case 'E':
3826 kind = ADA_EXCEPTION_RENAMING;
3827 info += 7;
3828 break;
3829 case 'P':
3830 kind = ADA_PACKAGE_RENAMING;
3831 info += 7;
3832 break;
3833 case 'S':
3834 kind = ADA_SUBPROGRAM_RENAMING;
3835 info += 7;
3836 break;
3837 default:
3838 return ADA_NOT_RENAMING;
3839 }
3840 }
3841
3842 if (renamed_entity != NULL)
3843 *renamed_entity = info;
3844 suffix = strstr (info, "___XE");
3845 if (suffix == NULL || suffix == info)
3846 return ADA_NOT_RENAMING;
3847 if (len != NULL)
3848 *len = strlen (info) - strlen (suffix);
3849 suffix += 5;
3850 if (renaming_expr != NULL)
3851 *renaming_expr = suffix;
3852 return kind;
3853 }
3854
3855 /* Assuming TYPE encodes a renaming according to the old encoding in
3856 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3857 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3858 ADA_NOT_RENAMING otherwise. */
3859 static enum ada_renaming_category
3860 parse_old_style_renaming (struct type *type,
3861 const char **renamed_entity, int *len,
3862 const char **renaming_expr)
3863 {
3864 enum ada_renaming_category kind;
3865 const char *name;
3866 const char *info;
3867 const char *suffix;
3868
3869 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3870 || TYPE_NFIELDS (type) != 1)
3871 return ADA_NOT_RENAMING;
3872
3873 name = type_name_no_tag (type);
3874 if (name == NULL)
3875 return ADA_NOT_RENAMING;
3876
3877 name = strstr (name, "___XR");
3878 if (name == NULL)
3879 return ADA_NOT_RENAMING;
3880 switch (name[5])
3881 {
3882 case '\0':
3883 case '_':
3884 kind = ADA_OBJECT_RENAMING;
3885 break;
3886 case 'E':
3887 kind = ADA_EXCEPTION_RENAMING;
3888 break;
3889 case 'P':
3890 kind = ADA_PACKAGE_RENAMING;
3891 break;
3892 case 'S':
3893 kind = ADA_SUBPROGRAM_RENAMING;
3894 break;
3895 default:
3896 return ADA_NOT_RENAMING;
3897 }
3898
3899 info = TYPE_FIELD_NAME (type, 0);
3900 if (info == NULL)
3901 return ADA_NOT_RENAMING;
3902 if (renamed_entity != NULL)
3903 *renamed_entity = info;
3904 suffix = strstr (info, "___XE");
3905 if (renaming_expr != NULL)
3906 *renaming_expr = suffix + 5;
3907 if (suffix == NULL || suffix == info)
3908 return ADA_NOT_RENAMING;
3909 if (len != NULL)
3910 *len = suffix - info;
3911 return kind;
3912 }
3913
3914 \f
3915
3916 /* Evaluation: Function Calls */
3917
3918 /* Return an lvalue containing the value VAL. This is the identity on
3919 lvalues, and otherwise has the side-effect of allocating memory
3920 in the inferior where a copy of the value contents is copied. */
3921
3922 static struct value *
3923 ensure_lval (struct value *val)
3924 {
3925 if (VALUE_LVAL (val) == not_lval
3926 || VALUE_LVAL (val) == lval_internalvar)
3927 {
3928 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3929 const CORE_ADDR addr =
3930 value_as_long (value_allocate_space_in_inferior (len));
3931
3932 set_value_address (val, addr);
3933 VALUE_LVAL (val) = lval_memory;
3934 write_memory (addr, value_contents (val), len);
3935 }
3936
3937 return val;
3938 }
3939
3940 /* Return the value ACTUAL, converted to be an appropriate value for a
3941 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3942 allocating any necessary descriptors (fat pointers), or copies of
3943 values not residing in memory, updating it as needed. */
3944
3945 struct value *
3946 ada_convert_actual (struct value *actual, struct type *formal_type0)
3947 {
3948 struct type *actual_type = ada_check_typedef (value_type (actual));
3949 struct type *formal_type = ada_check_typedef (formal_type0);
3950 struct type *formal_target =
3951 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3952 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3953 struct type *actual_target =
3954 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3955 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3956
3957 if (ada_is_array_descriptor_type (formal_target)
3958 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3959 return make_array_descriptor (formal_type, actual);
3960 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3961 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3962 {
3963 struct value *result;
3964
3965 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3966 && ada_is_array_descriptor_type (actual_target))
3967 result = desc_data (actual);
3968 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3969 {
3970 if (VALUE_LVAL (actual) != lval_memory)
3971 {
3972 struct value *val;
3973
3974 actual_type = ada_check_typedef (value_type (actual));
3975 val = allocate_value (actual_type);
3976 memcpy ((char *) value_contents_raw (val),
3977 (char *) value_contents (actual),
3978 TYPE_LENGTH (actual_type));
3979 actual = ensure_lval (val);
3980 }
3981 result = value_addr (actual);
3982 }
3983 else
3984 return actual;
3985 return value_cast_pointers (formal_type, result);
3986 }
3987 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3988 return ada_value_ind (actual);
3989
3990 return actual;
3991 }
3992
3993 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
3994 type TYPE. This is usually an inefficient no-op except on some targets
3995 (such as AVR) where the representation of a pointer and an address
3996 differs. */
3997
3998 static CORE_ADDR
3999 value_pointer (struct value *value, struct type *type)
4000 {
4001 struct gdbarch *gdbarch = get_type_arch (type);
4002 unsigned len = TYPE_LENGTH (type);
4003 gdb_byte *buf = alloca (len);
4004 CORE_ADDR addr;
4005
4006 addr = value_address (value);
4007 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4008 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4009 return addr;
4010 }
4011
4012
4013 /* Push a descriptor of type TYPE for array value ARR on the stack at
4014 *SP, updating *SP to reflect the new descriptor. Return either
4015 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4016 to-descriptor type rather than a descriptor type), a struct value *
4017 representing a pointer to this descriptor. */
4018
4019 static struct value *
4020 make_array_descriptor (struct type *type, struct value *arr)
4021 {
4022 struct type *bounds_type = desc_bounds_type (type);
4023 struct type *desc_type = desc_base_type (type);
4024 struct value *descriptor = allocate_value (desc_type);
4025 struct value *bounds = allocate_value (bounds_type);
4026 int i;
4027
4028 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
4029 {
4030 modify_field (value_type (bounds), value_contents_writeable (bounds),
4031 ada_array_bound (arr, i, 0),
4032 desc_bound_bitpos (bounds_type, i, 0),
4033 desc_bound_bitsize (bounds_type, i, 0));
4034 modify_field (value_type (bounds), value_contents_writeable (bounds),
4035 ada_array_bound (arr, i, 1),
4036 desc_bound_bitpos (bounds_type, i, 1),
4037 desc_bound_bitsize (bounds_type, i, 1));
4038 }
4039
4040 bounds = ensure_lval (bounds);
4041
4042 modify_field (value_type (descriptor),
4043 value_contents_writeable (descriptor),
4044 value_pointer (ensure_lval (arr),
4045 TYPE_FIELD_TYPE (desc_type, 0)),
4046 fat_pntr_data_bitpos (desc_type),
4047 fat_pntr_data_bitsize (desc_type));
4048
4049 modify_field (value_type (descriptor),
4050 value_contents_writeable (descriptor),
4051 value_pointer (bounds,
4052 TYPE_FIELD_TYPE (desc_type, 1)),
4053 fat_pntr_bounds_bitpos (desc_type),
4054 fat_pntr_bounds_bitsize (desc_type));
4055
4056 descriptor = ensure_lval (descriptor);
4057
4058 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4059 return value_addr (descriptor);
4060 else
4061 return descriptor;
4062 }
4063 \f
4064 /* Dummy definitions for an experimental caching module that is not
4065 * used in the public sources. */
4066
4067 static int
4068 lookup_cached_symbol (const char *name, domain_enum namespace,
4069 struct symbol **sym, struct block **block)
4070 {
4071 return 0;
4072 }
4073
4074 static void
4075 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4076 struct block *block)
4077 {
4078 }
4079 \f
4080 /* Symbol Lookup */
4081
4082 /* Return the result of a standard (literal, C-like) lookup of NAME in
4083 given DOMAIN, visible from lexical block BLOCK. */
4084
4085 static struct symbol *
4086 standard_lookup (const char *name, const struct block *block,
4087 domain_enum domain)
4088 {
4089 struct symbol *sym;
4090
4091 if (lookup_cached_symbol (name, domain, &sym, NULL))
4092 return sym;
4093 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4094 cache_symbol (name, domain, sym, block_found);
4095 return sym;
4096 }
4097
4098
4099 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4100 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4101 since they contend in overloading in the same way. */
4102 static int
4103 is_nonfunction (struct ada_symbol_info syms[], int n)
4104 {
4105 int i;
4106
4107 for (i = 0; i < n; i += 1)
4108 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4109 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4110 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4111 return 1;
4112
4113 return 0;
4114 }
4115
4116 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4117 struct types. Otherwise, they may not. */
4118
4119 static int
4120 equiv_types (struct type *type0, struct type *type1)
4121 {
4122 if (type0 == type1)
4123 return 1;
4124 if (type0 == NULL || type1 == NULL
4125 || TYPE_CODE (type0) != TYPE_CODE (type1))
4126 return 0;
4127 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4128 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4129 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4130 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4131 return 1;
4132
4133 return 0;
4134 }
4135
4136 /* True iff SYM0 represents the same entity as SYM1, or one that is
4137 no more defined than that of SYM1. */
4138
4139 static int
4140 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4141 {
4142 if (sym0 == sym1)
4143 return 1;
4144 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4145 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4146 return 0;
4147
4148 switch (SYMBOL_CLASS (sym0))
4149 {
4150 case LOC_UNDEF:
4151 return 1;
4152 case LOC_TYPEDEF:
4153 {
4154 struct type *type0 = SYMBOL_TYPE (sym0);
4155 struct type *type1 = SYMBOL_TYPE (sym1);
4156 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4157 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4158 int len0 = strlen (name0);
4159
4160 return
4161 TYPE_CODE (type0) == TYPE_CODE (type1)
4162 && (equiv_types (type0, type1)
4163 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4164 && strncmp (name1 + len0, "___XV", 5) == 0));
4165 }
4166 case LOC_CONST:
4167 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4168 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4169 default:
4170 return 0;
4171 }
4172 }
4173
4174 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4175 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4176
4177 static void
4178 add_defn_to_vec (struct obstack *obstackp,
4179 struct symbol *sym,
4180 struct block *block)
4181 {
4182 int i;
4183 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4184
4185 /* Do not try to complete stub types, as the debugger is probably
4186 already scanning all symbols matching a certain name at the
4187 time when this function is called. Trying to replace the stub
4188 type by its associated full type will cause us to restart a scan
4189 which may lead to an infinite recursion. Instead, the client
4190 collecting the matching symbols will end up collecting several
4191 matches, with at least one of them complete. It can then filter
4192 out the stub ones if needed. */
4193
4194 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4195 {
4196 if (lesseq_defined_than (sym, prevDefns[i].sym))
4197 return;
4198 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4199 {
4200 prevDefns[i].sym = sym;
4201 prevDefns[i].block = block;
4202 return;
4203 }
4204 }
4205
4206 {
4207 struct ada_symbol_info info;
4208
4209 info.sym = sym;
4210 info.block = block;
4211 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4212 }
4213 }
4214
4215 /* Number of ada_symbol_info structures currently collected in
4216 current vector in *OBSTACKP. */
4217
4218 static int
4219 num_defns_collected (struct obstack *obstackp)
4220 {
4221 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4222 }
4223
4224 /* Vector of ada_symbol_info structures currently collected in current
4225 vector in *OBSTACKP. If FINISH, close off the vector and return
4226 its final address. */
4227
4228 static struct ada_symbol_info *
4229 defns_collected (struct obstack *obstackp, int finish)
4230 {
4231 if (finish)
4232 return obstack_finish (obstackp);
4233 else
4234 return (struct ada_symbol_info *) obstack_base (obstackp);
4235 }
4236
4237 /* Return a minimal symbol matching NAME according to Ada decoding
4238 rules. Returns NULL if there is no such minimal symbol. Names
4239 prefixed with "standard__" are handled specially: "standard__" is
4240 first stripped off, and only static and global symbols are searched. */
4241
4242 struct minimal_symbol *
4243 ada_lookup_simple_minsym (const char *name)
4244 {
4245 struct objfile *objfile;
4246 struct minimal_symbol *msymbol;
4247 int wild_match;
4248
4249 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4250 {
4251 name += sizeof ("standard__") - 1;
4252 wild_match = 0;
4253 }
4254 else
4255 wild_match = (strstr (name, "__") == NULL);
4256
4257 ALL_MSYMBOLS (objfile, msymbol)
4258 {
4259 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4260 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4261 return msymbol;
4262 }
4263
4264 return NULL;
4265 }
4266
4267 /* For all subprograms that statically enclose the subprogram of the
4268 selected frame, add symbols matching identifier NAME in DOMAIN
4269 and their blocks to the list of data in OBSTACKP, as for
4270 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4271 wildcard prefix. */
4272
4273 static void
4274 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4275 const char *name, domain_enum namespace,
4276 int wild_match)
4277 {
4278 }
4279
4280 /* True if TYPE is definitely an artificial type supplied to a symbol
4281 for which no debugging information was given in the symbol file. */
4282
4283 static int
4284 is_nondebugging_type (struct type *type)
4285 {
4286 char *name = ada_type_name (type);
4287
4288 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4289 }
4290
4291 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4292 duplicate other symbols in the list (The only case I know of where
4293 this happens is when object files containing stabs-in-ecoff are
4294 linked with files containing ordinary ecoff debugging symbols (or no
4295 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4296 Returns the number of items in the modified list. */
4297
4298 static int
4299 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4300 {
4301 int i, j;
4302
4303 i = 0;
4304 while (i < nsyms)
4305 {
4306 int remove = 0;
4307
4308 /* If two symbols have the same name and one of them is a stub type,
4309 the get rid of the stub. */
4310
4311 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4312 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4313 {
4314 for (j = 0; j < nsyms; j++)
4315 {
4316 if (j != i
4317 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4318 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4319 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4320 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4321 remove = 1;
4322 }
4323 }
4324
4325 /* Two symbols with the same name, same class and same address
4326 should be identical. */
4327
4328 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4329 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4330 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4331 {
4332 for (j = 0; j < nsyms; j += 1)
4333 {
4334 if (i != j
4335 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4336 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4337 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4338 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4339 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4340 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4341 remove = 1;
4342 }
4343 }
4344
4345 if (remove)
4346 {
4347 for (j = i + 1; j < nsyms; j += 1)
4348 syms[j - 1] = syms[j];
4349 nsyms -= 1;
4350 }
4351
4352 i += 1;
4353 }
4354 return nsyms;
4355 }
4356
4357 /* Given a type that corresponds to a renaming entity, use the type name
4358 to extract the scope (package name or function name, fully qualified,
4359 and following the GNAT encoding convention) where this renaming has been
4360 defined. The string returned needs to be deallocated after use. */
4361
4362 static char *
4363 xget_renaming_scope (struct type *renaming_type)
4364 {
4365 /* The renaming types adhere to the following convention:
4366 <scope>__<rename>___<XR extension>.
4367 So, to extract the scope, we search for the "___XR" extension,
4368 and then backtrack until we find the first "__". */
4369
4370 const char *name = type_name_no_tag (renaming_type);
4371 char *suffix = strstr (name, "___XR");
4372 char *last;
4373 int scope_len;
4374 char *scope;
4375
4376 /* Now, backtrack a bit until we find the first "__". Start looking
4377 at suffix - 3, as the <rename> part is at least one character long. */
4378
4379 for (last = suffix - 3; last > name; last--)
4380 if (last[0] == '_' && last[1] == '_')
4381 break;
4382
4383 /* Make a copy of scope and return it. */
4384
4385 scope_len = last - name;
4386 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4387
4388 strncpy (scope, name, scope_len);
4389 scope[scope_len] = '\0';
4390
4391 return scope;
4392 }
4393
4394 /* Return nonzero if NAME corresponds to a package name. */
4395
4396 static int
4397 is_package_name (const char *name)
4398 {
4399 /* Here, We take advantage of the fact that no symbols are generated
4400 for packages, while symbols are generated for each function.
4401 So the condition for NAME represent a package becomes equivalent
4402 to NAME not existing in our list of symbols. There is only one
4403 small complication with library-level functions (see below). */
4404
4405 char *fun_name;
4406
4407 /* If it is a function that has not been defined at library level,
4408 then we should be able to look it up in the symbols. */
4409 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4410 return 0;
4411
4412 /* Library-level function names start with "_ada_". See if function
4413 "_ada_" followed by NAME can be found. */
4414
4415 /* Do a quick check that NAME does not contain "__", since library-level
4416 functions names cannot contain "__" in them. */
4417 if (strstr (name, "__") != NULL)
4418 return 0;
4419
4420 fun_name = xstrprintf ("_ada_%s", name);
4421
4422 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4423 }
4424
4425 /* Return nonzero if SYM corresponds to a renaming entity that is
4426 not visible from FUNCTION_NAME. */
4427
4428 static int
4429 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4430 {
4431 char *scope;
4432
4433 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4434 return 0;
4435
4436 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4437
4438 make_cleanup (xfree, scope);
4439
4440 /* If the rename has been defined in a package, then it is visible. */
4441 if (is_package_name (scope))
4442 return 0;
4443
4444 /* Check that the rename is in the current function scope by checking
4445 that its name starts with SCOPE. */
4446
4447 /* If the function name starts with "_ada_", it means that it is
4448 a library-level function. Strip this prefix before doing the
4449 comparison, as the encoding for the renaming does not contain
4450 this prefix. */
4451 if (strncmp (function_name, "_ada_", 5) == 0)
4452 function_name += 5;
4453
4454 return (strncmp (function_name, scope, strlen (scope)) != 0);
4455 }
4456
4457 /* Remove entries from SYMS that corresponds to a renaming entity that
4458 is not visible from the function associated with CURRENT_BLOCK or
4459 that is superfluous due to the presence of more specific renaming
4460 information. Places surviving symbols in the initial entries of
4461 SYMS and returns the number of surviving symbols.
4462
4463 Rationale:
4464 First, in cases where an object renaming is implemented as a
4465 reference variable, GNAT may produce both the actual reference
4466 variable and the renaming encoding. In this case, we discard the
4467 latter.
4468
4469 Second, GNAT emits a type following a specified encoding for each renaming
4470 entity. Unfortunately, STABS currently does not support the definition
4471 of types that are local to a given lexical block, so all renamings types
4472 are emitted at library level. As a consequence, if an application
4473 contains two renaming entities using the same name, and a user tries to
4474 print the value of one of these entities, the result of the ada symbol
4475 lookup will also contain the wrong renaming type.
4476
4477 This function partially covers for this limitation by attempting to
4478 remove from the SYMS list renaming symbols that should be visible
4479 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4480 method with the current information available. The implementation
4481 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4482
4483 - When the user tries to print a rename in a function while there
4484 is another rename entity defined in a package: Normally, the
4485 rename in the function has precedence over the rename in the
4486 package, so the latter should be removed from the list. This is
4487 currently not the case.
4488
4489 - This function will incorrectly remove valid renames if
4490 the CURRENT_BLOCK corresponds to a function which symbol name
4491 has been changed by an "Export" pragma. As a consequence,
4492 the user will be unable to print such rename entities. */
4493
4494 static int
4495 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4496 int nsyms, const struct block *current_block)
4497 {
4498 struct symbol *current_function;
4499 char *current_function_name;
4500 int i;
4501 int is_new_style_renaming;
4502
4503 /* If there is both a renaming foo___XR... encoded as a variable and
4504 a simple variable foo in the same block, discard the latter.
4505 First, zero out such symbols, then compress. */
4506 is_new_style_renaming = 0;
4507 for (i = 0; i < nsyms; i += 1)
4508 {
4509 struct symbol *sym = syms[i].sym;
4510 struct block *block = syms[i].block;
4511 const char *name;
4512 const char *suffix;
4513
4514 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4515 continue;
4516 name = SYMBOL_LINKAGE_NAME (sym);
4517 suffix = strstr (name, "___XR");
4518
4519 if (suffix != NULL)
4520 {
4521 int name_len = suffix - name;
4522 int j;
4523
4524 is_new_style_renaming = 1;
4525 for (j = 0; j < nsyms; j += 1)
4526 if (i != j && syms[j].sym != NULL
4527 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4528 name_len) == 0
4529 && block == syms[j].block)
4530 syms[j].sym = NULL;
4531 }
4532 }
4533 if (is_new_style_renaming)
4534 {
4535 int j, k;
4536
4537 for (j = k = 0; j < nsyms; j += 1)
4538 if (syms[j].sym != NULL)
4539 {
4540 syms[k] = syms[j];
4541 k += 1;
4542 }
4543 return k;
4544 }
4545
4546 /* Extract the function name associated to CURRENT_BLOCK.
4547 Abort if unable to do so. */
4548
4549 if (current_block == NULL)
4550 return nsyms;
4551
4552 current_function = block_linkage_function (current_block);
4553 if (current_function == NULL)
4554 return nsyms;
4555
4556 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4557 if (current_function_name == NULL)
4558 return nsyms;
4559
4560 /* Check each of the symbols, and remove it from the list if it is
4561 a type corresponding to a renaming that is out of the scope of
4562 the current block. */
4563
4564 i = 0;
4565 while (i < nsyms)
4566 {
4567 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4568 == ADA_OBJECT_RENAMING
4569 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4570 {
4571 int j;
4572
4573 for (j = i + 1; j < nsyms; j += 1)
4574 syms[j - 1] = syms[j];
4575 nsyms -= 1;
4576 }
4577 else
4578 i += 1;
4579 }
4580
4581 return nsyms;
4582 }
4583
4584 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4585 whose name and domain match NAME and DOMAIN respectively.
4586 If no match was found, then extend the search to "enclosing"
4587 routines (in other words, if we're inside a nested function,
4588 search the symbols defined inside the enclosing functions).
4589
4590 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4591
4592 static void
4593 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4594 struct block *block, domain_enum domain,
4595 int wild_match)
4596 {
4597 int block_depth = 0;
4598
4599 while (block != NULL)
4600 {
4601 block_depth += 1;
4602 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4603
4604 /* If we found a non-function match, assume that's the one. */
4605 if (is_nonfunction (defns_collected (obstackp, 0),
4606 num_defns_collected (obstackp)))
4607 return;
4608
4609 block = BLOCK_SUPERBLOCK (block);
4610 }
4611
4612 /* If no luck so far, try to find NAME as a local symbol in some lexically
4613 enclosing subprogram. */
4614 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4615 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4616 }
4617
4618 /* An object of this type is used as the user_data argument when
4619 calling the map_matching_symbols method. */
4620
4621 struct match_data
4622 {
4623 struct objfile *objfile;
4624 struct obstack *obstackp;
4625 struct symbol *arg_sym;
4626 int found_sym;
4627 };
4628
4629 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4630 to a list of symbols. DATA0 is a pointer to a struct match_data *
4631 containing the obstack that collects the symbol list, the file that SYM
4632 must come from, a flag indicating whether a non-argument symbol has
4633 been found in the current block, and the last argument symbol
4634 passed in SYM within the current block (if any). When SYM is null,
4635 marking the end of a block, the argument symbol is added if no
4636 other has been found. */
4637
4638 static int
4639 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4640 {
4641 struct match_data *data = (struct match_data *) data0;
4642
4643 if (sym == NULL)
4644 {
4645 if (!data->found_sym && data->arg_sym != NULL)
4646 add_defn_to_vec (data->obstackp,
4647 fixup_symbol_section (data->arg_sym, data->objfile),
4648 block);
4649 data->found_sym = 0;
4650 data->arg_sym = NULL;
4651 }
4652 else
4653 {
4654 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4655 return 0;
4656 else if (SYMBOL_IS_ARGUMENT (sym))
4657 data->arg_sym = sym;
4658 else
4659 {
4660 data->found_sym = 1;
4661 add_defn_to_vec (data->obstackp,
4662 fixup_symbol_section (sym, data->objfile),
4663 block);
4664 }
4665 }
4666 return 0;
4667 }
4668
4669 /* Compare STRING1 to STRING2, with results as for strcmp.
4670 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4671 implies compare_names (STRING1, STRING2) (they may differ as to
4672 what symbols compare equal). */
4673
4674 static int
4675 compare_names (const char *string1, const char *string2)
4676 {
4677 while (*string1 != '\0' && *string2 != '\0')
4678 {
4679 if (isspace (*string1) || isspace (*string2))
4680 return strcmp_iw_ordered (string1, string2);
4681 if (*string1 != *string2)
4682 break;
4683 string1 += 1;
4684 string2 += 1;
4685 }
4686 switch (*string1)
4687 {
4688 case '(':
4689 return strcmp_iw_ordered (string1, string2);
4690 case '_':
4691 if (*string2 == '\0')
4692 {
4693 if (is_name_suffix (string2))
4694 return 0;
4695 else
4696 return -1;
4697 }
4698 default:
4699 if (*string2 == '(')
4700 return strcmp_iw_ordered (string1, string2);
4701 else
4702 return *string1 - *string2;
4703 }
4704 }
4705
4706 /* Add to OBSTACKP all non-local symbols whose name and domain match
4707 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4708 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4709
4710 static void
4711 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4712 domain_enum domain, int global,
4713 int is_wild_match)
4714 {
4715 struct objfile *objfile;
4716 struct match_data data;
4717
4718 data.obstackp = obstackp;
4719 data.arg_sym = NULL;
4720
4721 ALL_OBJFILES (objfile)
4722 {
4723 data.objfile = objfile;
4724
4725 if (is_wild_match)
4726 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4727 aux_add_nonlocal_symbols, &data,
4728 wild_match, NULL);
4729 else
4730 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4731 aux_add_nonlocal_symbols, &data,
4732 full_match, compare_names);
4733 }
4734
4735 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4736 {
4737 ALL_OBJFILES (objfile)
4738 {
4739 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4740 strcpy (name1, "_ada_");
4741 strcpy (name1 + sizeof ("_ada_") - 1, name);
4742 data.objfile = objfile;
4743 objfile->sf->qf->map_matching_symbols (name1, domain, objfile, global,
4744 aux_add_nonlocal_symbols, &data,
4745 full_match, compare_names);
4746 }
4747 }
4748 }
4749
4750 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4751 scope and in global scopes, returning the number of matches. Sets
4752 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4753 indicating the symbols found and the blocks and symbol tables (if
4754 any) in which they were found. This vector are transient---good only to
4755 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4756 symbol match within the nest of blocks whose innermost member is BLOCK0,
4757 is the one match returned (no other matches in that or
4758 enclosing blocks is returned). If there are any matches in or
4759 surrounding BLOCK0, then these alone are returned. Otherwise, the
4760 search extends to global and file-scope (static) symbol tables.
4761 Names prefixed with "standard__" are handled specially: "standard__"
4762 is first stripped off, and only static and global symbols are searched. */
4763
4764 int
4765 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4766 domain_enum namespace,
4767 struct ada_symbol_info **results)
4768 {
4769 struct symbol *sym;
4770 struct block *block;
4771 const char *name;
4772 int wild_match;
4773 int cacheIfUnique;
4774 int ndefns;
4775
4776 obstack_free (&symbol_list_obstack, NULL);
4777 obstack_init (&symbol_list_obstack);
4778
4779 cacheIfUnique = 0;
4780
4781 /* Search specified block and its superiors. */
4782
4783 wild_match = (strstr (name0, "__") == NULL);
4784 name = name0;
4785 block = (struct block *) block0; /* FIXME: No cast ought to be
4786 needed, but adding const will
4787 have a cascade effect. */
4788
4789 /* Special case: If the user specifies a symbol name inside package
4790 Standard, do a non-wild matching of the symbol name without
4791 the "standard__" prefix. This was primarily introduced in order
4792 to allow the user to specifically access the standard exceptions
4793 using, for instance, Standard.Constraint_Error when Constraint_Error
4794 is ambiguous (due to the user defining its own Constraint_Error
4795 entity inside its program). */
4796 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4797 {
4798 wild_match = 0;
4799 block = NULL;
4800 name = name0 + sizeof ("standard__") - 1;
4801 }
4802
4803 /* Check the non-global symbols. If we have ANY match, then we're done. */
4804
4805 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4806 wild_match);
4807 if (num_defns_collected (&symbol_list_obstack) > 0)
4808 goto done;
4809
4810 /* No non-global symbols found. Check our cache to see if we have
4811 already performed this search before. If we have, then return
4812 the same result. */
4813
4814 cacheIfUnique = 1;
4815 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4816 {
4817 if (sym != NULL)
4818 add_defn_to_vec (&symbol_list_obstack, sym, block);
4819 goto done;
4820 }
4821
4822 /* Search symbols from all global blocks. */
4823
4824 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
4825 wild_match);
4826
4827 /* Now add symbols from all per-file blocks if we've gotten no hits
4828 (not strictly correct, but perhaps better than an error). */
4829
4830 if (num_defns_collected (&symbol_list_obstack) == 0)
4831 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
4832 wild_match);
4833
4834 done:
4835 ndefns = num_defns_collected (&symbol_list_obstack);
4836 *results = defns_collected (&symbol_list_obstack, 1);
4837
4838 ndefns = remove_extra_symbols (*results, ndefns);
4839
4840 if (ndefns == 0)
4841 cache_symbol (name0, namespace, NULL, NULL);
4842
4843 if (ndefns == 1 && cacheIfUnique)
4844 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4845
4846 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4847
4848 return ndefns;
4849 }
4850
4851 struct symbol *
4852 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4853 domain_enum namespace, struct block **block_found)
4854 {
4855 struct ada_symbol_info *candidates;
4856 int n_candidates;
4857
4858 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4859
4860 if (n_candidates == 0)
4861 return NULL;
4862
4863 if (block_found != NULL)
4864 *block_found = candidates[0].block;
4865
4866 return fixup_symbol_section (candidates[0].sym, NULL);
4867 }
4868
4869 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4870 scope and in global scopes, or NULL if none. NAME is folded and
4871 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4872 choosing the first symbol if there are multiple choices.
4873 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4874 table in which the symbol was found (in both cases, these
4875 assignments occur only if the pointers are non-null). */
4876 struct symbol *
4877 ada_lookup_symbol (const char *name, const struct block *block0,
4878 domain_enum namespace, int *is_a_field_of_this)
4879 {
4880 if (is_a_field_of_this != NULL)
4881 *is_a_field_of_this = 0;
4882
4883 return
4884 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4885 block0, namespace, NULL);
4886 }
4887
4888 static struct symbol *
4889 ada_lookup_symbol_nonlocal (const char *name,
4890 const struct block *block,
4891 const domain_enum domain)
4892 {
4893 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
4894 }
4895
4896
4897 /* True iff STR is a possible encoded suffix of a normal Ada name
4898 that is to be ignored for matching purposes. Suffixes of parallel
4899 names (e.g., XVE) are not included here. Currently, the possible suffixes
4900 are given by any of the regular expressions:
4901
4902 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4903 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4904 _E[0-9]+[bs]$ [protected object entry suffixes]
4905 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4906
4907 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4908 match is performed. This sequence is used to differentiate homonyms,
4909 is an optional part of a valid name suffix. */
4910
4911 static int
4912 is_name_suffix (const char *str)
4913 {
4914 int k;
4915 const char *matching;
4916 const int len = strlen (str);
4917
4918 /* Skip optional leading __[0-9]+. */
4919
4920 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4921 {
4922 str += 3;
4923 while (isdigit (str[0]))
4924 str += 1;
4925 }
4926
4927 /* [.$][0-9]+ */
4928
4929 if (str[0] == '.' || str[0] == '$')
4930 {
4931 matching = str + 1;
4932 while (isdigit (matching[0]))
4933 matching += 1;
4934 if (matching[0] == '\0')
4935 return 1;
4936 }
4937
4938 /* ___[0-9]+ */
4939
4940 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4941 {
4942 matching = str + 3;
4943 while (isdigit (matching[0]))
4944 matching += 1;
4945 if (matching[0] == '\0')
4946 return 1;
4947 }
4948
4949 #if 0
4950 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4951 with a N at the end. Unfortunately, the compiler uses the same
4952 convention for other internal types it creates. So treating
4953 all entity names that end with an "N" as a name suffix causes
4954 some regressions. For instance, consider the case of an enumerated
4955 type. To support the 'Image attribute, it creates an array whose
4956 name ends with N.
4957 Having a single character like this as a suffix carrying some
4958 information is a bit risky. Perhaps we should change the encoding
4959 to be something like "_N" instead. In the meantime, do not do
4960 the following check. */
4961 /* Protected Object Subprograms */
4962 if (len == 1 && str [0] == 'N')
4963 return 1;
4964 #endif
4965
4966 /* _E[0-9]+[bs]$ */
4967 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4968 {
4969 matching = str + 3;
4970 while (isdigit (matching[0]))
4971 matching += 1;
4972 if ((matching[0] == 'b' || matching[0] == 's')
4973 && matching [1] == '\0')
4974 return 1;
4975 }
4976
4977 /* ??? We should not modify STR directly, as we are doing below. This
4978 is fine in this case, but may become problematic later if we find
4979 that this alternative did not work, and want to try matching
4980 another one from the begining of STR. Since we modified it, we
4981 won't be able to find the begining of the string anymore! */
4982 if (str[0] == 'X')
4983 {
4984 str += 1;
4985 while (str[0] != '_' && str[0] != '\0')
4986 {
4987 if (str[0] != 'n' && str[0] != 'b')
4988 return 0;
4989 str += 1;
4990 }
4991 }
4992
4993 if (str[0] == '\000')
4994 return 1;
4995
4996 if (str[0] == '_')
4997 {
4998 if (str[1] != '_' || str[2] == '\000')
4999 return 0;
5000 if (str[2] == '_')
5001 {
5002 if (strcmp (str + 3, "JM") == 0)
5003 return 1;
5004 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5005 the LJM suffix in favor of the JM one. But we will
5006 still accept LJM as a valid suffix for a reasonable
5007 amount of time, just to allow ourselves to debug programs
5008 compiled using an older version of GNAT. */
5009 if (strcmp (str + 3, "LJM") == 0)
5010 return 1;
5011 if (str[3] != 'X')
5012 return 0;
5013 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5014 || str[4] == 'U' || str[4] == 'P')
5015 return 1;
5016 if (str[4] == 'R' && str[5] != 'T')
5017 return 1;
5018 return 0;
5019 }
5020 if (!isdigit (str[2]))
5021 return 0;
5022 for (k = 3; str[k] != '\0'; k += 1)
5023 if (!isdigit (str[k]) && str[k] != '_')
5024 return 0;
5025 return 1;
5026 }
5027 if (str[0] == '$' && isdigit (str[1]))
5028 {
5029 for (k = 2; str[k] != '\0'; k += 1)
5030 if (!isdigit (str[k]) && str[k] != '_')
5031 return 0;
5032 return 1;
5033 }
5034 return 0;
5035 }
5036
5037 /* Return non-zero if the string starting at NAME and ending before
5038 NAME_END contains no capital letters. */
5039
5040 static int
5041 is_valid_name_for_wild_match (const char *name0)
5042 {
5043 const char *decoded_name = ada_decode (name0);
5044 int i;
5045
5046 /* If the decoded name starts with an angle bracket, it means that
5047 NAME0 does not follow the GNAT encoding format. It should then
5048 not be allowed as a possible wild match. */
5049 if (decoded_name[0] == '<')
5050 return 0;
5051
5052 for (i=0; decoded_name[i] != '\0'; i++)
5053 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5054 return 0;
5055
5056 return 1;
5057 }
5058
5059 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5060 that could start a simple name. Assumes that *NAMEP points into
5061 the string beginning at NAME0. */
5062
5063 static int
5064 advance_wild_match (const char **namep, const char *name0, int target0)
5065 {
5066 const char *name = *namep;
5067
5068 while (1)
5069 {
5070 int t0, t1;
5071
5072 t0 = *name;
5073 if (t0 == '_')
5074 {
5075 t1 = name[1];
5076 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5077 {
5078 name += 1;
5079 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5080 break;
5081 else
5082 name += 1;
5083 }
5084 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5085 || name[2] == target0))
5086 {
5087 name += 2;
5088 break;
5089 }
5090 else
5091 return 0;
5092 }
5093 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5094 name += 1;
5095 else
5096 return 0;
5097 }
5098
5099 *namep = name;
5100 return 1;
5101 }
5102
5103 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5104 informational suffixes of NAME (i.e., for which is_name_suffix is
5105 true). Assumes that PATN is a lower-cased Ada simple name. */
5106
5107 static int
5108 wild_match (const char *name, const char *patn)
5109 {
5110 const char *p, *n;
5111 const char *name0 = name;
5112
5113 while (1)
5114 {
5115 const char *match = name;
5116
5117 if (*name == *patn)
5118 {
5119 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5120 if (*p != *name)
5121 break;
5122 if (*p == '\0' && is_name_suffix (name))
5123 return match != name0 && !is_valid_name_for_wild_match (name0);
5124
5125 if (name[-1] == '_')
5126 name -= 1;
5127 }
5128 if (!advance_wild_match (&name, name0, *patn))
5129 return 1;
5130 }
5131 }
5132
5133 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5134 informational suffix. */
5135
5136 static int
5137 full_match (const char *sym_name, const char *search_name)
5138 {
5139 return !match_name (sym_name, search_name, 0);
5140 }
5141
5142
5143 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5144 vector *defn_symbols, updating the list of symbols in OBSTACKP
5145 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5146 OBJFILE is the section containing BLOCK.
5147 SYMTAB is recorded with each symbol added. */
5148
5149 static void
5150 ada_add_block_symbols (struct obstack *obstackp,
5151 struct block *block, const char *name,
5152 domain_enum domain, struct objfile *objfile,
5153 int wild)
5154 {
5155 struct dict_iterator iter;
5156 int name_len = strlen (name);
5157 /* A matching argument symbol, if any. */
5158 struct symbol *arg_sym;
5159 /* Set true when we find a matching non-argument symbol. */
5160 int found_sym;
5161 struct symbol *sym;
5162
5163 arg_sym = NULL;
5164 found_sym = 0;
5165 if (wild)
5166 {
5167 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5168 wild_match, &iter);
5169 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5170 {
5171 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5172 SYMBOL_DOMAIN (sym), domain)
5173 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5174 {
5175 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5176 continue;
5177 else if (SYMBOL_IS_ARGUMENT (sym))
5178 arg_sym = sym;
5179 else
5180 {
5181 found_sym = 1;
5182 add_defn_to_vec (obstackp,
5183 fixup_symbol_section (sym, objfile),
5184 block);
5185 }
5186 }
5187 }
5188 }
5189 else
5190 {
5191 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5192 full_match, &iter);
5193 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5194 {
5195 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5196 SYMBOL_DOMAIN (sym), domain))
5197 {
5198 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5199 {
5200 if (SYMBOL_IS_ARGUMENT (sym))
5201 arg_sym = sym;
5202 else
5203 {
5204 found_sym = 1;
5205 add_defn_to_vec (obstackp,
5206 fixup_symbol_section (sym, objfile),
5207 block);
5208 }
5209 }
5210 }
5211 }
5212 }
5213
5214 if (!found_sym && arg_sym != NULL)
5215 {
5216 add_defn_to_vec (obstackp,
5217 fixup_symbol_section (arg_sym, objfile),
5218 block);
5219 }
5220
5221 if (!wild)
5222 {
5223 arg_sym = NULL;
5224 found_sym = 0;
5225
5226 ALL_BLOCK_SYMBOLS (block, iter, sym)
5227 {
5228 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5229 SYMBOL_DOMAIN (sym), domain))
5230 {
5231 int cmp;
5232
5233 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5234 if (cmp == 0)
5235 {
5236 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5237 if (cmp == 0)
5238 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5239 name_len);
5240 }
5241
5242 if (cmp == 0
5243 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5244 {
5245 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5246 {
5247 if (SYMBOL_IS_ARGUMENT (sym))
5248 arg_sym = sym;
5249 else
5250 {
5251 found_sym = 1;
5252 add_defn_to_vec (obstackp,
5253 fixup_symbol_section (sym, objfile),
5254 block);
5255 }
5256 }
5257 }
5258 }
5259 }
5260
5261 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5262 They aren't parameters, right? */
5263 if (!found_sym && arg_sym != NULL)
5264 {
5265 add_defn_to_vec (obstackp,
5266 fixup_symbol_section (arg_sym, objfile),
5267 block);
5268 }
5269 }
5270 }
5271 \f
5272
5273 /* Symbol Completion */
5274
5275 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5276 name in a form that's appropriate for the completion. The result
5277 does not need to be deallocated, but is only good until the next call.
5278
5279 TEXT_LEN is equal to the length of TEXT.
5280 Perform a wild match if WILD_MATCH is set.
5281 ENCODED should be set if TEXT represents the start of a symbol name
5282 in its encoded form. */
5283
5284 static const char *
5285 symbol_completion_match (const char *sym_name,
5286 const char *text, int text_len,
5287 int wild_match, int encoded)
5288 {
5289 const int verbatim_match = (text[0] == '<');
5290 int match = 0;
5291
5292 if (verbatim_match)
5293 {
5294 /* Strip the leading angle bracket. */
5295 text = text + 1;
5296 text_len--;
5297 }
5298
5299 /* First, test against the fully qualified name of the symbol. */
5300
5301 if (strncmp (sym_name, text, text_len) == 0)
5302 match = 1;
5303
5304 if (match && !encoded)
5305 {
5306 /* One needed check before declaring a positive match is to verify
5307 that iff we are doing a verbatim match, the decoded version
5308 of the symbol name starts with '<'. Otherwise, this symbol name
5309 is not a suitable completion. */
5310 const char *sym_name_copy = sym_name;
5311 int has_angle_bracket;
5312
5313 sym_name = ada_decode (sym_name);
5314 has_angle_bracket = (sym_name[0] == '<');
5315 match = (has_angle_bracket == verbatim_match);
5316 sym_name = sym_name_copy;
5317 }
5318
5319 if (match && !verbatim_match)
5320 {
5321 /* When doing non-verbatim match, another check that needs to
5322 be done is to verify that the potentially matching symbol name
5323 does not include capital letters, because the ada-mode would
5324 not be able to understand these symbol names without the
5325 angle bracket notation. */
5326 const char *tmp;
5327
5328 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5329 if (*tmp != '\0')
5330 match = 0;
5331 }
5332
5333 /* Second: Try wild matching... */
5334
5335 if (!match && wild_match)
5336 {
5337 /* Since we are doing wild matching, this means that TEXT
5338 may represent an unqualified symbol name. We therefore must
5339 also compare TEXT against the unqualified name of the symbol. */
5340 sym_name = ada_unqualified_name (ada_decode (sym_name));
5341
5342 if (strncmp (sym_name, text, text_len) == 0)
5343 match = 1;
5344 }
5345
5346 /* Finally: If we found a mach, prepare the result to return. */
5347
5348 if (!match)
5349 return NULL;
5350
5351 if (verbatim_match)
5352 sym_name = add_angle_brackets (sym_name);
5353
5354 if (!encoded)
5355 sym_name = ada_decode (sym_name);
5356
5357 return sym_name;
5358 }
5359
5360 DEF_VEC_P (char_ptr);
5361
5362 /* A companion function to ada_make_symbol_completion_list().
5363 Check if SYM_NAME represents a symbol which name would be suitable
5364 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5365 it is appended at the end of the given string vector SV.
5366
5367 ORIG_TEXT is the string original string from the user command
5368 that needs to be completed. WORD is the entire command on which
5369 completion should be performed. These two parameters are used to
5370 determine which part of the symbol name should be added to the
5371 completion vector.
5372 if WILD_MATCH is set, then wild matching is performed.
5373 ENCODED should be set if TEXT represents a symbol name in its
5374 encoded formed (in which case the completion should also be
5375 encoded). */
5376
5377 static void
5378 symbol_completion_add (VEC(char_ptr) **sv,
5379 const char *sym_name,
5380 const char *text, int text_len,
5381 const char *orig_text, const char *word,
5382 int wild_match, int encoded)
5383 {
5384 const char *match = symbol_completion_match (sym_name, text, text_len,
5385 wild_match, encoded);
5386 char *completion;
5387
5388 if (match == NULL)
5389 return;
5390
5391 /* We found a match, so add the appropriate completion to the given
5392 string vector. */
5393
5394 if (word == orig_text)
5395 {
5396 completion = xmalloc (strlen (match) + 5);
5397 strcpy (completion, match);
5398 }
5399 else if (word > orig_text)
5400 {
5401 /* Return some portion of sym_name. */
5402 completion = xmalloc (strlen (match) + 5);
5403 strcpy (completion, match + (word - orig_text));
5404 }
5405 else
5406 {
5407 /* Return some of ORIG_TEXT plus sym_name. */
5408 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5409 strncpy (completion, word, orig_text - word);
5410 completion[orig_text - word] = '\0';
5411 strcat (completion, match);
5412 }
5413
5414 VEC_safe_push (char_ptr, *sv, completion);
5415 }
5416
5417 /* An object of this type is passed as the user_data argument to the
5418 map_partial_symbol_names method. */
5419 struct add_partial_datum
5420 {
5421 VEC(char_ptr) **completions;
5422 char *text;
5423 int text_len;
5424 char *text0;
5425 char *word;
5426 int wild_match;
5427 int encoded;
5428 };
5429
5430 /* A callback for map_partial_symbol_names. */
5431 static void
5432 ada_add_partial_symbol_completions (const char *name, void *user_data)
5433 {
5434 struct add_partial_datum *data = user_data;
5435
5436 symbol_completion_add (data->completions, name,
5437 data->text, data->text_len, data->text0, data->word,
5438 data->wild_match, data->encoded);
5439 }
5440
5441 /* Return a list of possible symbol names completing TEXT0. The list
5442 is NULL terminated. WORD is the entire command on which completion
5443 is made. */
5444
5445 static char **
5446 ada_make_symbol_completion_list (char *text0, char *word)
5447 {
5448 char *text;
5449 int text_len;
5450 int wild_match;
5451 int encoded;
5452 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5453 struct symbol *sym;
5454 struct symtab *s;
5455 struct minimal_symbol *msymbol;
5456 struct objfile *objfile;
5457 struct block *b, *surrounding_static_block = 0;
5458 int i;
5459 struct dict_iterator iter;
5460
5461 if (text0[0] == '<')
5462 {
5463 text = xstrdup (text0);
5464 make_cleanup (xfree, text);
5465 text_len = strlen (text);
5466 wild_match = 0;
5467 encoded = 1;
5468 }
5469 else
5470 {
5471 text = xstrdup (ada_encode (text0));
5472 make_cleanup (xfree, text);
5473 text_len = strlen (text);
5474 for (i = 0; i < text_len; i++)
5475 text[i] = tolower (text[i]);
5476
5477 encoded = (strstr (text0, "__") != NULL);
5478 /* If the name contains a ".", then the user is entering a fully
5479 qualified entity name, and the match must not be done in wild
5480 mode. Similarly, if the user wants to complete what looks like
5481 an encoded name, the match must not be done in wild mode. */
5482 wild_match = (strchr (text0, '.') == NULL && !encoded);
5483 }
5484
5485 /* First, look at the partial symtab symbols. */
5486 {
5487 struct add_partial_datum data;
5488
5489 data.completions = &completions;
5490 data.text = text;
5491 data.text_len = text_len;
5492 data.text0 = text0;
5493 data.word = word;
5494 data.wild_match = wild_match;
5495 data.encoded = encoded;
5496 map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
5497 }
5498
5499 /* At this point scan through the misc symbol vectors and add each
5500 symbol you find to the list. Eventually we want to ignore
5501 anything that isn't a text symbol (everything else will be
5502 handled by the psymtab code above). */
5503
5504 ALL_MSYMBOLS (objfile, msymbol)
5505 {
5506 QUIT;
5507 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5508 text, text_len, text0, word, wild_match, encoded);
5509 }
5510
5511 /* Search upwards from currently selected frame (so that we can
5512 complete on local vars. */
5513
5514 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5515 {
5516 if (!BLOCK_SUPERBLOCK (b))
5517 surrounding_static_block = b; /* For elmin of dups */
5518
5519 ALL_BLOCK_SYMBOLS (b, iter, sym)
5520 {
5521 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5522 text, text_len, text0, word,
5523 wild_match, encoded);
5524 }
5525 }
5526
5527 /* Go through the symtabs and check the externs and statics for
5528 symbols which match. */
5529
5530 ALL_SYMTABS (objfile, s)
5531 {
5532 QUIT;
5533 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5534 ALL_BLOCK_SYMBOLS (b, iter, sym)
5535 {
5536 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5537 text, text_len, text0, word,
5538 wild_match, encoded);
5539 }
5540 }
5541
5542 ALL_SYMTABS (objfile, s)
5543 {
5544 QUIT;
5545 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5546 /* Don't do this block twice. */
5547 if (b == surrounding_static_block)
5548 continue;
5549 ALL_BLOCK_SYMBOLS (b, iter, sym)
5550 {
5551 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5552 text, text_len, text0, word,
5553 wild_match, encoded);
5554 }
5555 }
5556
5557 /* Append the closing NULL entry. */
5558 VEC_safe_push (char_ptr, completions, NULL);
5559
5560 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5561 return the copy. It's unfortunate that we have to make a copy
5562 of an array that we're about to destroy, but there is nothing much
5563 we can do about it. Fortunately, it's typically not a very large
5564 array. */
5565 {
5566 const size_t completions_size =
5567 VEC_length (char_ptr, completions) * sizeof (char *);
5568 char **result = malloc (completions_size);
5569
5570 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5571
5572 VEC_free (char_ptr, completions);
5573 return result;
5574 }
5575 }
5576
5577 /* Field Access */
5578
5579 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5580 for tagged types. */
5581
5582 static int
5583 ada_is_dispatch_table_ptr_type (struct type *type)
5584 {
5585 char *name;
5586
5587 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5588 return 0;
5589
5590 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5591 if (name == NULL)
5592 return 0;
5593
5594 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5595 }
5596
5597 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5598 to be invisible to users. */
5599
5600 int
5601 ada_is_ignored_field (struct type *type, int field_num)
5602 {
5603 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5604 return 1;
5605
5606 /* Check the name of that field. */
5607 {
5608 const char *name = TYPE_FIELD_NAME (type, field_num);
5609
5610 /* Anonymous field names should not be printed.
5611 brobecker/2007-02-20: I don't think this can actually happen
5612 but we don't want to print the value of annonymous fields anyway. */
5613 if (name == NULL)
5614 return 1;
5615
5616 /* A field named "_parent" is internally generated by GNAT for
5617 tagged types, and should not be printed either. */
5618 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5619 return 1;
5620 }
5621
5622 /* If this is the dispatch table of a tagged type, then ignore. */
5623 if (ada_is_tagged_type (type, 1)
5624 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5625 return 1;
5626
5627 /* Not a special field, so it should not be ignored. */
5628 return 0;
5629 }
5630
5631 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5632 pointer or reference type whose ultimate target has a tag field. */
5633
5634 int
5635 ada_is_tagged_type (struct type *type, int refok)
5636 {
5637 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5638 }
5639
5640 /* True iff TYPE represents the type of X'Tag */
5641
5642 int
5643 ada_is_tag_type (struct type *type)
5644 {
5645 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5646 return 0;
5647 else
5648 {
5649 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5650
5651 return (name != NULL
5652 && strcmp (name, "ada__tags__dispatch_table") == 0);
5653 }
5654 }
5655
5656 /* The type of the tag on VAL. */
5657
5658 struct type *
5659 ada_tag_type (struct value *val)
5660 {
5661 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5662 }
5663
5664 /* The value of the tag on VAL. */
5665
5666 struct value *
5667 ada_value_tag (struct value *val)
5668 {
5669 return ada_value_struct_elt (val, "_tag", 0);
5670 }
5671
5672 /* The value of the tag on the object of type TYPE whose contents are
5673 saved at VALADDR, if it is non-null, or is at memory address
5674 ADDRESS. */
5675
5676 static struct value *
5677 value_tag_from_contents_and_address (struct type *type,
5678 const gdb_byte *valaddr,
5679 CORE_ADDR address)
5680 {
5681 int tag_byte_offset;
5682 struct type *tag_type;
5683
5684 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5685 NULL, NULL, NULL))
5686 {
5687 const gdb_byte *valaddr1 = ((valaddr == NULL)
5688 ? NULL
5689 : valaddr + tag_byte_offset);
5690 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5691
5692 return value_from_contents_and_address (tag_type, valaddr1, address1);
5693 }
5694 return NULL;
5695 }
5696
5697 static struct type *
5698 type_from_tag (struct value *tag)
5699 {
5700 const char *type_name = ada_tag_name (tag);
5701
5702 if (type_name != NULL)
5703 return ada_find_any_type (ada_encode (type_name));
5704 return NULL;
5705 }
5706
5707 struct tag_args
5708 {
5709 struct value *tag;
5710 char *name;
5711 };
5712
5713
5714 static int ada_tag_name_1 (void *);
5715 static int ada_tag_name_2 (struct tag_args *);
5716
5717 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5718 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5719 The value stored in ARGS->name is valid until the next call to
5720 ada_tag_name_1. */
5721
5722 static int
5723 ada_tag_name_1 (void *args0)
5724 {
5725 struct tag_args *args = (struct tag_args *) args0;
5726 static char name[1024];
5727 char *p;
5728 struct value *val;
5729
5730 args->name = NULL;
5731 val = ada_value_struct_elt (args->tag, "tsd", 1);
5732 if (val == NULL)
5733 return ada_tag_name_2 (args);
5734 val = ada_value_struct_elt (val, "expanded_name", 1);
5735 if (val == NULL)
5736 return 0;
5737 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5738 for (p = name; *p != '\0'; p += 1)
5739 if (isalpha (*p))
5740 *p = tolower (*p);
5741 args->name = name;
5742 return 0;
5743 }
5744
5745 /* Return the "ada__tags__type_specific_data" type. */
5746
5747 static struct type *
5748 ada_get_tsd_type (struct inferior *inf)
5749 {
5750 struct ada_inferior_data *data = get_ada_inferior_data (inf);
5751
5752 if (data->tsd_type == 0)
5753 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
5754 return data->tsd_type;
5755 }
5756
5757 /* Utility function for ada_tag_name_1 that tries the second
5758 representation for the dispatch table (in which there is no
5759 explicit 'tsd' field in the referent of the tag pointer, and instead
5760 the tsd pointer is stored just before the dispatch table. */
5761
5762 static int
5763 ada_tag_name_2 (struct tag_args *args)
5764 {
5765 struct type *info_type;
5766 static char name[1024];
5767 char *p;
5768 struct value *val, *valp;
5769
5770 args->name = NULL;
5771 info_type = ada_get_tsd_type (current_inferior());
5772 if (info_type == NULL)
5773 return 0;
5774 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5775 valp = value_cast (info_type, args->tag);
5776 if (valp == NULL)
5777 return 0;
5778 val = value_ind (value_ptradd (valp, -1));
5779 if (val == NULL)
5780 return 0;
5781 val = ada_value_struct_elt (val, "expanded_name", 1);
5782 if (val == NULL)
5783 return 0;
5784 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5785 for (p = name; *p != '\0'; p += 1)
5786 if (isalpha (*p))
5787 *p = tolower (*p);
5788 args->name = name;
5789 return 0;
5790 }
5791
5792 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5793 a C string. */
5794
5795 const char *
5796 ada_tag_name (struct value *tag)
5797 {
5798 struct tag_args args;
5799
5800 if (!ada_is_tag_type (value_type (tag)))
5801 return NULL;
5802 args.tag = tag;
5803 args.name = NULL;
5804 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5805 return args.name;
5806 }
5807
5808 /* The parent type of TYPE, or NULL if none. */
5809
5810 struct type *
5811 ada_parent_type (struct type *type)
5812 {
5813 int i;
5814
5815 type = ada_check_typedef (type);
5816
5817 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5818 return NULL;
5819
5820 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5821 if (ada_is_parent_field (type, i))
5822 {
5823 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5824
5825 /* If the _parent field is a pointer, then dereference it. */
5826 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5827 parent_type = TYPE_TARGET_TYPE (parent_type);
5828 /* If there is a parallel XVS type, get the actual base type. */
5829 parent_type = ada_get_base_type (parent_type);
5830
5831 return ada_check_typedef (parent_type);
5832 }
5833
5834 return NULL;
5835 }
5836
5837 /* True iff field number FIELD_NUM of structure type TYPE contains the
5838 parent-type (inherited) fields of a derived type. Assumes TYPE is
5839 a structure type with at least FIELD_NUM+1 fields. */
5840
5841 int
5842 ada_is_parent_field (struct type *type, int field_num)
5843 {
5844 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5845
5846 return (name != NULL
5847 && (strncmp (name, "PARENT", 6) == 0
5848 || strncmp (name, "_parent", 7) == 0));
5849 }
5850
5851 /* True iff field number FIELD_NUM of structure type TYPE is a
5852 transparent wrapper field (which should be silently traversed when doing
5853 field selection and flattened when printing). Assumes TYPE is a
5854 structure type with at least FIELD_NUM+1 fields. Such fields are always
5855 structures. */
5856
5857 int
5858 ada_is_wrapper_field (struct type *type, int field_num)
5859 {
5860 const char *name = TYPE_FIELD_NAME (type, field_num);
5861
5862 return (name != NULL
5863 && (strncmp (name, "PARENT", 6) == 0
5864 || strcmp (name, "REP") == 0
5865 || strncmp (name, "_parent", 7) == 0
5866 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5867 }
5868
5869 /* True iff field number FIELD_NUM of structure or union type TYPE
5870 is a variant wrapper. Assumes TYPE is a structure type with at least
5871 FIELD_NUM+1 fields. */
5872
5873 int
5874 ada_is_variant_part (struct type *type, int field_num)
5875 {
5876 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5877
5878 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5879 || (is_dynamic_field (type, field_num)
5880 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5881 == TYPE_CODE_UNION)));
5882 }
5883
5884 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5885 whose discriminants are contained in the record type OUTER_TYPE,
5886 returns the type of the controlling discriminant for the variant.
5887 May return NULL if the type could not be found. */
5888
5889 struct type *
5890 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5891 {
5892 char *name = ada_variant_discrim_name (var_type);
5893
5894 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5895 }
5896
5897 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5898 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5899 represents a 'when others' clause; otherwise 0. */
5900
5901 int
5902 ada_is_others_clause (struct type *type, int field_num)
5903 {
5904 const char *name = TYPE_FIELD_NAME (type, field_num);
5905
5906 return (name != NULL && name[0] == 'O');
5907 }
5908
5909 /* Assuming that TYPE0 is the type of the variant part of a record,
5910 returns the name of the discriminant controlling the variant.
5911 The value is valid until the next call to ada_variant_discrim_name. */
5912
5913 char *
5914 ada_variant_discrim_name (struct type *type0)
5915 {
5916 static char *result = NULL;
5917 static size_t result_len = 0;
5918 struct type *type;
5919 const char *name;
5920 const char *discrim_end;
5921 const char *discrim_start;
5922
5923 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5924 type = TYPE_TARGET_TYPE (type0);
5925 else
5926 type = type0;
5927
5928 name = ada_type_name (type);
5929
5930 if (name == NULL || name[0] == '\000')
5931 return "";
5932
5933 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5934 discrim_end -= 1)
5935 {
5936 if (strncmp (discrim_end, "___XVN", 6) == 0)
5937 break;
5938 }
5939 if (discrim_end == name)
5940 return "";
5941
5942 for (discrim_start = discrim_end; discrim_start != name + 3;
5943 discrim_start -= 1)
5944 {
5945 if (discrim_start == name + 1)
5946 return "";
5947 if ((discrim_start > name + 3
5948 && strncmp (discrim_start - 3, "___", 3) == 0)
5949 || discrim_start[-1] == '.')
5950 break;
5951 }
5952
5953 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5954 strncpy (result, discrim_start, discrim_end - discrim_start);
5955 result[discrim_end - discrim_start] = '\0';
5956 return result;
5957 }
5958
5959 /* Scan STR for a subtype-encoded number, beginning at position K.
5960 Put the position of the character just past the number scanned in
5961 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5962 Return 1 if there was a valid number at the given position, and 0
5963 otherwise. A "subtype-encoded" number consists of the absolute value
5964 in decimal, followed by the letter 'm' to indicate a negative number.
5965 Assumes 0m does not occur. */
5966
5967 int
5968 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5969 {
5970 ULONGEST RU;
5971
5972 if (!isdigit (str[k]))
5973 return 0;
5974
5975 /* Do it the hard way so as not to make any assumption about
5976 the relationship of unsigned long (%lu scan format code) and
5977 LONGEST. */
5978 RU = 0;
5979 while (isdigit (str[k]))
5980 {
5981 RU = RU * 10 + (str[k] - '0');
5982 k += 1;
5983 }
5984
5985 if (str[k] == 'm')
5986 {
5987 if (R != NULL)
5988 *R = (-(LONGEST) (RU - 1)) - 1;
5989 k += 1;
5990 }
5991 else if (R != NULL)
5992 *R = (LONGEST) RU;
5993
5994 /* NOTE on the above: Technically, C does not say what the results of
5995 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5996 number representable as a LONGEST (although either would probably work
5997 in most implementations). When RU>0, the locution in the then branch
5998 above is always equivalent to the negative of RU. */
5999
6000 if (new_k != NULL)
6001 *new_k = k;
6002 return 1;
6003 }
6004
6005 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6006 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6007 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6008
6009 int
6010 ada_in_variant (LONGEST val, struct type *type, int field_num)
6011 {
6012 const char *name = TYPE_FIELD_NAME (type, field_num);
6013 int p;
6014
6015 p = 0;
6016 while (1)
6017 {
6018 switch (name[p])
6019 {
6020 case '\0':
6021 return 0;
6022 case 'S':
6023 {
6024 LONGEST W;
6025
6026 if (!ada_scan_number (name, p + 1, &W, &p))
6027 return 0;
6028 if (val == W)
6029 return 1;
6030 break;
6031 }
6032 case 'R':
6033 {
6034 LONGEST L, U;
6035
6036 if (!ada_scan_number (name, p + 1, &L, &p)
6037 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6038 return 0;
6039 if (val >= L && val <= U)
6040 return 1;
6041 break;
6042 }
6043 case 'O':
6044 return 1;
6045 default:
6046 return 0;
6047 }
6048 }
6049 }
6050
6051 /* FIXME: Lots of redundancy below. Try to consolidate. */
6052
6053 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6054 ARG_TYPE, extract and return the value of one of its (non-static)
6055 fields. FIELDNO says which field. Differs from value_primitive_field
6056 only in that it can handle packed values of arbitrary type. */
6057
6058 static struct value *
6059 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6060 struct type *arg_type)
6061 {
6062 struct type *type;
6063
6064 arg_type = ada_check_typedef (arg_type);
6065 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6066
6067 /* Handle packed fields. */
6068
6069 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6070 {
6071 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6072 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6073
6074 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6075 offset + bit_pos / 8,
6076 bit_pos % 8, bit_size, type);
6077 }
6078 else
6079 return value_primitive_field (arg1, offset, fieldno, arg_type);
6080 }
6081
6082 /* Find field with name NAME in object of type TYPE. If found,
6083 set the following for each argument that is non-null:
6084 - *FIELD_TYPE_P to the field's type;
6085 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6086 an object of that type;
6087 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6088 - *BIT_SIZE_P to its size in bits if the field is packed, and
6089 0 otherwise;
6090 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6091 fields up to but not including the desired field, or by the total
6092 number of fields if not found. A NULL value of NAME never
6093 matches; the function just counts visible fields in this case.
6094
6095 Returns 1 if found, 0 otherwise. */
6096
6097 static int
6098 find_struct_field (char *name, struct type *type, int offset,
6099 struct type **field_type_p,
6100 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6101 int *index_p)
6102 {
6103 int i;
6104
6105 type = ada_check_typedef (type);
6106
6107 if (field_type_p != NULL)
6108 *field_type_p = NULL;
6109 if (byte_offset_p != NULL)
6110 *byte_offset_p = 0;
6111 if (bit_offset_p != NULL)
6112 *bit_offset_p = 0;
6113 if (bit_size_p != NULL)
6114 *bit_size_p = 0;
6115
6116 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6117 {
6118 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6119 int fld_offset = offset + bit_pos / 8;
6120 char *t_field_name = TYPE_FIELD_NAME (type, i);
6121
6122 if (t_field_name == NULL)
6123 continue;
6124
6125 else if (name != NULL && field_name_match (t_field_name, name))
6126 {
6127 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6128
6129 if (field_type_p != NULL)
6130 *field_type_p = TYPE_FIELD_TYPE (type, i);
6131 if (byte_offset_p != NULL)
6132 *byte_offset_p = fld_offset;
6133 if (bit_offset_p != NULL)
6134 *bit_offset_p = bit_pos % 8;
6135 if (bit_size_p != NULL)
6136 *bit_size_p = bit_size;
6137 return 1;
6138 }
6139 else if (ada_is_wrapper_field (type, i))
6140 {
6141 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6142 field_type_p, byte_offset_p, bit_offset_p,
6143 bit_size_p, index_p))
6144 return 1;
6145 }
6146 else if (ada_is_variant_part (type, i))
6147 {
6148 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6149 fixed type?? */
6150 int j;
6151 struct type *field_type
6152 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6153
6154 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6155 {
6156 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6157 fld_offset
6158 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6159 field_type_p, byte_offset_p,
6160 bit_offset_p, bit_size_p, index_p))
6161 return 1;
6162 }
6163 }
6164 else if (index_p != NULL)
6165 *index_p += 1;
6166 }
6167 return 0;
6168 }
6169
6170 /* Number of user-visible fields in record type TYPE. */
6171
6172 static int
6173 num_visible_fields (struct type *type)
6174 {
6175 int n;
6176
6177 n = 0;
6178 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6179 return n;
6180 }
6181
6182 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6183 and search in it assuming it has (class) type TYPE.
6184 If found, return value, else return NULL.
6185
6186 Searches recursively through wrapper fields (e.g., '_parent'). */
6187
6188 static struct value *
6189 ada_search_struct_field (char *name, struct value *arg, int offset,
6190 struct type *type)
6191 {
6192 int i;
6193
6194 type = ada_check_typedef (type);
6195 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6196 {
6197 char *t_field_name = TYPE_FIELD_NAME (type, i);
6198
6199 if (t_field_name == NULL)
6200 continue;
6201
6202 else if (field_name_match (t_field_name, name))
6203 return ada_value_primitive_field (arg, offset, i, type);
6204
6205 else if (ada_is_wrapper_field (type, i))
6206 {
6207 struct value *v = /* Do not let indent join lines here. */
6208 ada_search_struct_field (name, arg,
6209 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6210 TYPE_FIELD_TYPE (type, i));
6211
6212 if (v != NULL)
6213 return v;
6214 }
6215
6216 else if (ada_is_variant_part (type, i))
6217 {
6218 /* PNH: Do we ever get here? See find_struct_field. */
6219 int j;
6220 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6221 i));
6222 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6223
6224 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6225 {
6226 struct value *v = ada_search_struct_field /* Force line break. */
6227 (name, arg,
6228 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6229 TYPE_FIELD_TYPE (field_type, j));
6230
6231 if (v != NULL)
6232 return v;
6233 }
6234 }
6235 }
6236 return NULL;
6237 }
6238
6239 static struct value *ada_index_struct_field_1 (int *, struct value *,
6240 int, struct type *);
6241
6242
6243 /* Return field #INDEX in ARG, where the index is that returned by
6244 * find_struct_field through its INDEX_P argument. Adjust the address
6245 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6246 * If found, return value, else return NULL. */
6247
6248 static struct value *
6249 ada_index_struct_field (int index, struct value *arg, int offset,
6250 struct type *type)
6251 {
6252 return ada_index_struct_field_1 (&index, arg, offset, type);
6253 }
6254
6255
6256 /* Auxiliary function for ada_index_struct_field. Like
6257 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6258 * *INDEX_P. */
6259
6260 static struct value *
6261 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6262 struct type *type)
6263 {
6264 int i;
6265 type = ada_check_typedef (type);
6266
6267 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6268 {
6269 if (TYPE_FIELD_NAME (type, i) == NULL)
6270 continue;
6271 else if (ada_is_wrapper_field (type, i))
6272 {
6273 struct value *v = /* Do not let indent join lines here. */
6274 ada_index_struct_field_1 (index_p, arg,
6275 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6276 TYPE_FIELD_TYPE (type, i));
6277
6278 if (v != NULL)
6279 return v;
6280 }
6281
6282 else if (ada_is_variant_part (type, i))
6283 {
6284 /* PNH: Do we ever get here? See ada_search_struct_field,
6285 find_struct_field. */
6286 error (_("Cannot assign this kind of variant record"));
6287 }
6288 else if (*index_p == 0)
6289 return ada_value_primitive_field (arg, offset, i, type);
6290 else
6291 *index_p -= 1;
6292 }
6293 return NULL;
6294 }
6295
6296 /* Given ARG, a value of type (pointer or reference to a)*
6297 structure/union, extract the component named NAME from the ultimate
6298 target structure/union and return it as a value with its
6299 appropriate type.
6300
6301 The routine searches for NAME among all members of the structure itself
6302 and (recursively) among all members of any wrapper members
6303 (e.g., '_parent').
6304
6305 If NO_ERR, then simply return NULL in case of error, rather than
6306 calling error. */
6307
6308 struct value *
6309 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6310 {
6311 struct type *t, *t1;
6312 struct value *v;
6313
6314 v = NULL;
6315 t1 = t = ada_check_typedef (value_type (arg));
6316 if (TYPE_CODE (t) == TYPE_CODE_REF)
6317 {
6318 t1 = TYPE_TARGET_TYPE (t);
6319 if (t1 == NULL)
6320 goto BadValue;
6321 t1 = ada_check_typedef (t1);
6322 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6323 {
6324 arg = coerce_ref (arg);
6325 t = t1;
6326 }
6327 }
6328
6329 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6330 {
6331 t1 = TYPE_TARGET_TYPE (t);
6332 if (t1 == NULL)
6333 goto BadValue;
6334 t1 = ada_check_typedef (t1);
6335 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6336 {
6337 arg = value_ind (arg);
6338 t = t1;
6339 }
6340 else
6341 break;
6342 }
6343
6344 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6345 goto BadValue;
6346
6347 if (t1 == t)
6348 v = ada_search_struct_field (name, arg, 0, t);
6349 else
6350 {
6351 int bit_offset, bit_size, byte_offset;
6352 struct type *field_type;
6353 CORE_ADDR address;
6354
6355 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6356 address = value_as_address (arg);
6357 else
6358 address = unpack_pointer (t, value_contents (arg));
6359
6360 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6361 if (find_struct_field (name, t1, 0,
6362 &field_type, &byte_offset, &bit_offset,
6363 &bit_size, NULL))
6364 {
6365 if (bit_size != 0)
6366 {
6367 if (TYPE_CODE (t) == TYPE_CODE_REF)
6368 arg = ada_coerce_ref (arg);
6369 else
6370 arg = ada_value_ind (arg);
6371 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6372 bit_offset, bit_size,
6373 field_type);
6374 }
6375 else
6376 v = value_at_lazy (field_type, address + byte_offset);
6377 }
6378 }
6379
6380 if (v != NULL || no_err)
6381 return v;
6382 else
6383 error (_("There is no member named %s."), name);
6384
6385 BadValue:
6386 if (no_err)
6387 return NULL;
6388 else
6389 error (_("Attempt to extract a component of a value that is not a record."));
6390 }
6391
6392 /* Given a type TYPE, look up the type of the component of type named NAME.
6393 If DISPP is non-null, add its byte displacement from the beginning of a
6394 structure (pointed to by a value) of type TYPE to *DISPP (does not
6395 work for packed fields).
6396
6397 Matches any field whose name has NAME as a prefix, possibly
6398 followed by "___".
6399
6400 TYPE can be either a struct or union. If REFOK, TYPE may also
6401 be a (pointer or reference)+ to a struct or union, and the
6402 ultimate target type will be searched.
6403
6404 Looks recursively into variant clauses and parent types.
6405
6406 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6407 TYPE is not a type of the right kind. */
6408
6409 static struct type *
6410 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6411 int noerr, int *dispp)
6412 {
6413 int i;
6414
6415 if (name == NULL)
6416 goto BadName;
6417
6418 if (refok && type != NULL)
6419 while (1)
6420 {
6421 type = ada_check_typedef (type);
6422 if (TYPE_CODE (type) != TYPE_CODE_PTR
6423 && TYPE_CODE (type) != TYPE_CODE_REF)
6424 break;
6425 type = TYPE_TARGET_TYPE (type);
6426 }
6427
6428 if (type == NULL
6429 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6430 && TYPE_CODE (type) != TYPE_CODE_UNION))
6431 {
6432 if (noerr)
6433 return NULL;
6434 else
6435 {
6436 target_terminal_ours ();
6437 gdb_flush (gdb_stdout);
6438 if (type == NULL)
6439 error (_("Type (null) is not a structure or union type"));
6440 else
6441 {
6442 /* XXX: type_sprint */
6443 fprintf_unfiltered (gdb_stderr, _("Type "));
6444 type_print (type, "", gdb_stderr, -1);
6445 error (_(" is not a structure or union type"));
6446 }
6447 }
6448 }
6449
6450 type = to_static_fixed_type (type);
6451
6452 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6453 {
6454 char *t_field_name = TYPE_FIELD_NAME (type, i);
6455 struct type *t;
6456 int disp;
6457
6458 if (t_field_name == NULL)
6459 continue;
6460
6461 else if (field_name_match (t_field_name, name))
6462 {
6463 if (dispp != NULL)
6464 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6465 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6466 }
6467
6468 else if (ada_is_wrapper_field (type, i))
6469 {
6470 disp = 0;
6471 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6472 0, 1, &disp);
6473 if (t != NULL)
6474 {
6475 if (dispp != NULL)
6476 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6477 return t;
6478 }
6479 }
6480
6481 else if (ada_is_variant_part (type, i))
6482 {
6483 int j;
6484 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6485 i));
6486
6487 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6488 {
6489 /* FIXME pnh 2008/01/26: We check for a field that is
6490 NOT wrapped in a struct, since the compiler sometimes
6491 generates these for unchecked variant types. Revisit
6492 if the compiler changes this practice. */
6493 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6494 disp = 0;
6495 if (v_field_name != NULL
6496 && field_name_match (v_field_name, name))
6497 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6498 else
6499 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6500 name, 0, 1, &disp);
6501
6502 if (t != NULL)
6503 {
6504 if (dispp != NULL)
6505 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6506 return t;
6507 }
6508 }
6509 }
6510
6511 }
6512
6513 BadName:
6514 if (!noerr)
6515 {
6516 target_terminal_ours ();
6517 gdb_flush (gdb_stdout);
6518 if (name == NULL)
6519 {
6520 /* XXX: type_sprint */
6521 fprintf_unfiltered (gdb_stderr, _("Type "));
6522 type_print (type, "", gdb_stderr, -1);
6523 error (_(" has no component named <null>"));
6524 }
6525 else
6526 {
6527 /* XXX: type_sprint */
6528 fprintf_unfiltered (gdb_stderr, _("Type "));
6529 type_print (type, "", gdb_stderr, -1);
6530 error (_(" has no component named %s"), name);
6531 }
6532 }
6533
6534 return NULL;
6535 }
6536
6537 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6538 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6539 represents an unchecked union (that is, the variant part of a
6540 record that is named in an Unchecked_Union pragma). */
6541
6542 static int
6543 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6544 {
6545 char *discrim_name = ada_variant_discrim_name (var_type);
6546
6547 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6548 == NULL);
6549 }
6550
6551
6552 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6553 within a value of type OUTER_TYPE that is stored in GDB at
6554 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6555 numbering from 0) is applicable. Returns -1 if none are. */
6556
6557 int
6558 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6559 const gdb_byte *outer_valaddr)
6560 {
6561 int others_clause;
6562 int i;
6563 char *discrim_name = ada_variant_discrim_name (var_type);
6564 struct value *outer;
6565 struct value *discrim;
6566 LONGEST discrim_val;
6567
6568 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6569 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6570 if (discrim == NULL)
6571 return -1;
6572 discrim_val = value_as_long (discrim);
6573
6574 others_clause = -1;
6575 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6576 {
6577 if (ada_is_others_clause (var_type, i))
6578 others_clause = i;
6579 else if (ada_in_variant (discrim_val, var_type, i))
6580 return i;
6581 }
6582
6583 return others_clause;
6584 }
6585 \f
6586
6587
6588 /* Dynamic-Sized Records */
6589
6590 /* Strategy: The type ostensibly attached to a value with dynamic size
6591 (i.e., a size that is not statically recorded in the debugging
6592 data) does not accurately reflect the size or layout of the value.
6593 Our strategy is to convert these values to values with accurate,
6594 conventional types that are constructed on the fly. */
6595
6596 /* There is a subtle and tricky problem here. In general, we cannot
6597 determine the size of dynamic records without its data. However,
6598 the 'struct value' data structure, which GDB uses to represent
6599 quantities in the inferior process (the target), requires the size
6600 of the type at the time of its allocation in order to reserve space
6601 for GDB's internal copy of the data. That's why the
6602 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6603 rather than struct value*s.
6604
6605 However, GDB's internal history variables ($1, $2, etc.) are
6606 struct value*s containing internal copies of the data that are not, in
6607 general, the same as the data at their corresponding addresses in
6608 the target. Fortunately, the types we give to these values are all
6609 conventional, fixed-size types (as per the strategy described
6610 above), so that we don't usually have to perform the
6611 'to_fixed_xxx_type' conversions to look at their values.
6612 Unfortunately, there is one exception: if one of the internal
6613 history variables is an array whose elements are unconstrained
6614 records, then we will need to create distinct fixed types for each
6615 element selected. */
6616
6617 /* The upshot of all of this is that many routines take a (type, host
6618 address, target address) triple as arguments to represent a value.
6619 The host address, if non-null, is supposed to contain an internal
6620 copy of the relevant data; otherwise, the program is to consult the
6621 target at the target address. */
6622
6623 /* Assuming that VAL0 represents a pointer value, the result of
6624 dereferencing it. Differs from value_ind in its treatment of
6625 dynamic-sized types. */
6626
6627 struct value *
6628 ada_value_ind (struct value *val0)
6629 {
6630 struct value *val = unwrap_value (value_ind (val0));
6631
6632 return ada_to_fixed_value (val);
6633 }
6634
6635 /* The value resulting from dereferencing any "reference to"
6636 qualifiers on VAL0. */
6637
6638 static struct value *
6639 ada_coerce_ref (struct value *val0)
6640 {
6641 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6642 {
6643 struct value *val = val0;
6644
6645 val = coerce_ref (val);
6646 val = unwrap_value (val);
6647 return ada_to_fixed_value (val);
6648 }
6649 else
6650 return val0;
6651 }
6652
6653 /* Return OFF rounded upward if necessary to a multiple of
6654 ALIGNMENT (a power of 2). */
6655
6656 static unsigned int
6657 align_value (unsigned int off, unsigned int alignment)
6658 {
6659 return (off + alignment - 1) & ~(alignment - 1);
6660 }
6661
6662 /* Return the bit alignment required for field #F of template type TYPE. */
6663
6664 static unsigned int
6665 field_alignment (struct type *type, int f)
6666 {
6667 const char *name = TYPE_FIELD_NAME (type, f);
6668 int len;
6669 int align_offset;
6670
6671 /* The field name should never be null, unless the debugging information
6672 is somehow malformed. In this case, we assume the field does not
6673 require any alignment. */
6674 if (name == NULL)
6675 return 1;
6676
6677 len = strlen (name);
6678
6679 if (!isdigit (name[len - 1]))
6680 return 1;
6681
6682 if (isdigit (name[len - 2]))
6683 align_offset = len - 2;
6684 else
6685 align_offset = len - 1;
6686
6687 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6688 return TARGET_CHAR_BIT;
6689
6690 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6691 }
6692
6693 /* Find a symbol named NAME. Ignores ambiguity. */
6694
6695 struct symbol *
6696 ada_find_any_symbol (const char *name)
6697 {
6698 struct symbol *sym;
6699
6700 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6701 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6702 return sym;
6703
6704 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6705 return sym;
6706 }
6707
6708 /* Find a type named NAME. Ignores ambiguity. This routine will look
6709 solely for types defined by debug info, it will not search the GDB
6710 primitive types. */
6711
6712 struct type *
6713 ada_find_any_type (const char *name)
6714 {
6715 struct symbol *sym = ada_find_any_symbol (name);
6716
6717 if (sym != NULL)
6718 return SYMBOL_TYPE (sym);
6719
6720 return NULL;
6721 }
6722
6723 /* Given NAME and an associated BLOCK, search all symbols for
6724 NAME suffixed with "___XR", which is the ``renaming'' symbol
6725 associated to NAME. Return this symbol if found, return
6726 NULL otherwise. */
6727
6728 struct symbol *
6729 ada_find_renaming_symbol (const char *name, struct block *block)
6730 {
6731 struct symbol *sym;
6732
6733 sym = find_old_style_renaming_symbol (name, block);
6734
6735 if (sym != NULL)
6736 return sym;
6737
6738 /* Not right yet. FIXME pnh 7/20/2007. */
6739 sym = ada_find_any_symbol (name);
6740 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6741 return sym;
6742 else
6743 return NULL;
6744 }
6745
6746 static struct symbol *
6747 find_old_style_renaming_symbol (const char *name, struct block *block)
6748 {
6749 const struct symbol *function_sym = block_linkage_function (block);
6750 char *rename;
6751
6752 if (function_sym != NULL)
6753 {
6754 /* If the symbol is defined inside a function, NAME is not fully
6755 qualified. This means we need to prepend the function name
6756 as well as adding the ``___XR'' suffix to build the name of
6757 the associated renaming symbol. */
6758 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6759 /* Function names sometimes contain suffixes used
6760 for instance to qualify nested subprograms. When building
6761 the XR type name, we need to make sure that this suffix is
6762 not included. So do not include any suffix in the function
6763 name length below. */
6764 int function_name_len = ada_name_prefix_len (function_name);
6765 const int rename_len = function_name_len + 2 /* "__" */
6766 + strlen (name) + 6 /* "___XR\0" */ ;
6767
6768 /* Strip the suffix if necessary. */
6769 ada_remove_trailing_digits (function_name, &function_name_len);
6770 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6771 ada_remove_Xbn_suffix (function_name, &function_name_len);
6772
6773 /* Library-level functions are a special case, as GNAT adds
6774 a ``_ada_'' prefix to the function name to avoid namespace
6775 pollution. However, the renaming symbols themselves do not
6776 have this prefix, so we need to skip this prefix if present. */
6777 if (function_name_len > 5 /* "_ada_" */
6778 && strstr (function_name, "_ada_") == function_name)
6779 {
6780 function_name += 5;
6781 function_name_len -= 5;
6782 }
6783
6784 rename = (char *) alloca (rename_len * sizeof (char));
6785 strncpy (rename, function_name, function_name_len);
6786 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6787 "__%s___XR", name);
6788 }
6789 else
6790 {
6791 const int rename_len = strlen (name) + 6;
6792
6793 rename = (char *) alloca (rename_len * sizeof (char));
6794 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6795 }
6796
6797 return ada_find_any_symbol (rename);
6798 }
6799
6800 /* Because of GNAT encoding conventions, several GDB symbols may match a
6801 given type name. If the type denoted by TYPE0 is to be preferred to
6802 that of TYPE1 for purposes of type printing, return non-zero;
6803 otherwise return 0. */
6804
6805 int
6806 ada_prefer_type (struct type *type0, struct type *type1)
6807 {
6808 if (type1 == NULL)
6809 return 1;
6810 else if (type0 == NULL)
6811 return 0;
6812 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6813 return 1;
6814 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6815 return 0;
6816 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6817 return 1;
6818 else if (ada_is_constrained_packed_array_type (type0))
6819 return 1;
6820 else if (ada_is_array_descriptor_type (type0)
6821 && !ada_is_array_descriptor_type (type1))
6822 return 1;
6823 else
6824 {
6825 const char *type0_name = type_name_no_tag (type0);
6826 const char *type1_name = type_name_no_tag (type1);
6827
6828 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6829 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6830 return 1;
6831 }
6832 return 0;
6833 }
6834
6835 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6836 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6837
6838 char *
6839 ada_type_name (struct type *type)
6840 {
6841 if (type == NULL)
6842 return NULL;
6843 else if (TYPE_NAME (type) != NULL)
6844 return TYPE_NAME (type);
6845 else
6846 return TYPE_TAG_NAME (type);
6847 }
6848
6849 /* Search the list of "descriptive" types associated to TYPE for a type
6850 whose name is NAME. */
6851
6852 static struct type *
6853 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6854 {
6855 struct type *result;
6856
6857 /* If there no descriptive-type info, then there is no parallel type
6858 to be found. */
6859 if (!HAVE_GNAT_AUX_INFO (type))
6860 return NULL;
6861
6862 result = TYPE_DESCRIPTIVE_TYPE (type);
6863 while (result != NULL)
6864 {
6865 char *result_name = ada_type_name (result);
6866
6867 if (result_name == NULL)
6868 {
6869 warning (_("unexpected null name on descriptive type"));
6870 return NULL;
6871 }
6872
6873 /* If the names match, stop. */
6874 if (strcmp (result_name, name) == 0)
6875 break;
6876
6877 /* Otherwise, look at the next item on the list, if any. */
6878 if (HAVE_GNAT_AUX_INFO (result))
6879 result = TYPE_DESCRIPTIVE_TYPE (result);
6880 else
6881 result = NULL;
6882 }
6883
6884 /* If we didn't find a match, see whether this is a packed array. With
6885 older compilers, the descriptive type information is either absent or
6886 irrelevant when it comes to packed arrays so the above lookup fails.
6887 Fall back to using a parallel lookup by name in this case. */
6888 if (result == NULL && ada_is_constrained_packed_array_type (type))
6889 return ada_find_any_type (name);
6890
6891 return result;
6892 }
6893
6894 /* Find a parallel type to TYPE with the specified NAME, using the
6895 descriptive type taken from the debugging information, if available,
6896 and otherwise using the (slower) name-based method. */
6897
6898 static struct type *
6899 ada_find_parallel_type_with_name (struct type *type, const char *name)
6900 {
6901 struct type *result = NULL;
6902
6903 if (HAVE_GNAT_AUX_INFO (type))
6904 result = find_parallel_type_by_descriptive_type (type, name);
6905 else
6906 result = ada_find_any_type (name);
6907
6908 return result;
6909 }
6910
6911 /* Same as above, but specify the name of the parallel type by appending
6912 SUFFIX to the name of TYPE. */
6913
6914 struct type *
6915 ada_find_parallel_type (struct type *type, const char *suffix)
6916 {
6917 char *name, *typename = ada_type_name (type);
6918 int len;
6919
6920 if (typename == NULL)
6921 return NULL;
6922
6923 len = strlen (typename);
6924
6925 name = (char *) alloca (len + strlen (suffix) + 1);
6926
6927 strcpy (name, typename);
6928 strcpy (name + len, suffix);
6929
6930 return ada_find_parallel_type_with_name (type, name);
6931 }
6932
6933 /* If TYPE is a variable-size record type, return the corresponding template
6934 type describing its fields. Otherwise, return NULL. */
6935
6936 static struct type *
6937 dynamic_template_type (struct type *type)
6938 {
6939 type = ada_check_typedef (type);
6940
6941 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6942 || ada_type_name (type) == NULL)
6943 return NULL;
6944 else
6945 {
6946 int len = strlen (ada_type_name (type));
6947
6948 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6949 return type;
6950 else
6951 return ada_find_parallel_type (type, "___XVE");
6952 }
6953 }
6954
6955 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6956 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6957
6958 static int
6959 is_dynamic_field (struct type *templ_type, int field_num)
6960 {
6961 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6962
6963 return name != NULL
6964 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6965 && strstr (name, "___XVL") != NULL;
6966 }
6967
6968 /* The index of the variant field of TYPE, or -1 if TYPE does not
6969 represent a variant record type. */
6970
6971 static int
6972 variant_field_index (struct type *type)
6973 {
6974 int f;
6975
6976 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6977 return -1;
6978
6979 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6980 {
6981 if (ada_is_variant_part (type, f))
6982 return f;
6983 }
6984 return -1;
6985 }
6986
6987 /* A record type with no fields. */
6988
6989 static struct type *
6990 empty_record (struct type *template)
6991 {
6992 struct type *type = alloc_type_copy (template);
6993
6994 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6995 TYPE_NFIELDS (type) = 0;
6996 TYPE_FIELDS (type) = NULL;
6997 INIT_CPLUS_SPECIFIC (type);
6998 TYPE_NAME (type) = "<empty>";
6999 TYPE_TAG_NAME (type) = NULL;
7000 TYPE_LENGTH (type) = 0;
7001 return type;
7002 }
7003
7004 /* An ordinary record type (with fixed-length fields) that describes
7005 the value of type TYPE at VALADDR or ADDRESS (see comments at
7006 the beginning of this section) VAL according to GNAT conventions.
7007 DVAL0 should describe the (portion of a) record that contains any
7008 necessary discriminants. It should be NULL if value_type (VAL) is
7009 an outer-level type (i.e., as opposed to a branch of a variant.) A
7010 variant field (unless unchecked) is replaced by a particular branch
7011 of the variant.
7012
7013 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7014 length are not statically known are discarded. As a consequence,
7015 VALADDR, ADDRESS and DVAL0 are ignored.
7016
7017 NOTE: Limitations: For now, we assume that dynamic fields and
7018 variants occupy whole numbers of bytes. However, they need not be
7019 byte-aligned. */
7020
7021 struct type *
7022 ada_template_to_fixed_record_type_1 (struct type *type,
7023 const gdb_byte *valaddr,
7024 CORE_ADDR address, struct value *dval0,
7025 int keep_dynamic_fields)
7026 {
7027 struct value *mark = value_mark ();
7028 struct value *dval;
7029 struct type *rtype;
7030 int nfields, bit_len;
7031 int variant_field;
7032 long off;
7033 int fld_bit_len, bit_incr;
7034 int f;
7035
7036 /* Compute the number of fields in this record type that are going
7037 to be processed: unless keep_dynamic_fields, this includes only
7038 fields whose position and length are static will be processed. */
7039 if (keep_dynamic_fields)
7040 nfields = TYPE_NFIELDS (type);
7041 else
7042 {
7043 nfields = 0;
7044 while (nfields < TYPE_NFIELDS (type)
7045 && !ada_is_variant_part (type, nfields)
7046 && !is_dynamic_field (type, nfields))
7047 nfields++;
7048 }
7049
7050 rtype = alloc_type_copy (type);
7051 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7052 INIT_CPLUS_SPECIFIC (rtype);
7053 TYPE_NFIELDS (rtype) = nfields;
7054 TYPE_FIELDS (rtype) = (struct field *)
7055 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7056 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7057 TYPE_NAME (rtype) = ada_type_name (type);
7058 TYPE_TAG_NAME (rtype) = NULL;
7059 TYPE_FIXED_INSTANCE (rtype) = 1;
7060
7061 off = 0;
7062 bit_len = 0;
7063 variant_field = -1;
7064
7065 for (f = 0; f < nfields; f += 1)
7066 {
7067 off = align_value (off, field_alignment (type, f))
7068 + TYPE_FIELD_BITPOS (type, f);
7069 TYPE_FIELD_BITPOS (rtype, f) = off;
7070 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7071
7072 if (ada_is_variant_part (type, f))
7073 {
7074 variant_field = f;
7075 fld_bit_len = bit_incr = 0;
7076 }
7077 else if (is_dynamic_field (type, f))
7078 {
7079 const gdb_byte *field_valaddr = valaddr;
7080 CORE_ADDR field_address = address;
7081 struct type *field_type =
7082 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7083
7084 if (dval0 == NULL)
7085 {
7086 /* rtype's length is computed based on the run-time
7087 value of discriminants. If the discriminants are not
7088 initialized, the type size may be completely bogus and
7089 GDB may fail to allocate a value for it. So check the
7090 size first before creating the value. */
7091 check_size (rtype);
7092 dval = value_from_contents_and_address (rtype, valaddr, address);
7093 }
7094 else
7095 dval = dval0;
7096
7097 /* If the type referenced by this field is an aligner type, we need
7098 to unwrap that aligner type, because its size might not be set.
7099 Keeping the aligner type would cause us to compute the wrong
7100 size for this field, impacting the offset of the all the fields
7101 that follow this one. */
7102 if (ada_is_aligner_type (field_type))
7103 {
7104 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7105
7106 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7107 field_address = cond_offset_target (field_address, field_offset);
7108 field_type = ada_aligned_type (field_type);
7109 }
7110
7111 field_valaddr = cond_offset_host (field_valaddr,
7112 off / TARGET_CHAR_BIT);
7113 field_address = cond_offset_target (field_address,
7114 off / TARGET_CHAR_BIT);
7115
7116 /* Get the fixed type of the field. Note that, in this case,
7117 we do not want to get the real type out of the tag: if
7118 the current field is the parent part of a tagged record,
7119 we will get the tag of the object. Clearly wrong: the real
7120 type of the parent is not the real type of the child. We
7121 would end up in an infinite loop. */
7122 field_type = ada_get_base_type (field_type);
7123 field_type = ada_to_fixed_type (field_type, field_valaddr,
7124 field_address, dval, 0);
7125 /* If the field size is already larger than the maximum
7126 object size, then the record itself will necessarily
7127 be larger than the maximum object size. We need to make
7128 this check now, because the size might be so ridiculously
7129 large (due to an uninitialized variable in the inferior)
7130 that it would cause an overflow when adding it to the
7131 record size. */
7132 check_size (field_type);
7133
7134 TYPE_FIELD_TYPE (rtype, f) = field_type;
7135 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7136 /* The multiplication can potentially overflow. But because
7137 the field length has been size-checked just above, and
7138 assuming that the maximum size is a reasonable value,
7139 an overflow should not happen in practice. So rather than
7140 adding overflow recovery code to this already complex code,
7141 we just assume that it's not going to happen. */
7142 bit_incr = fld_bit_len =
7143 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7144 }
7145 else
7146 {
7147 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7148
7149 TYPE_FIELD_TYPE (rtype, f) = field_type;
7150 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7151 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7152 bit_incr = fld_bit_len =
7153 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7154 else
7155 bit_incr = fld_bit_len =
7156 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7157 }
7158 if (off + fld_bit_len > bit_len)
7159 bit_len = off + fld_bit_len;
7160 off += bit_incr;
7161 TYPE_LENGTH (rtype) =
7162 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7163 }
7164
7165 /* We handle the variant part, if any, at the end because of certain
7166 odd cases in which it is re-ordered so as NOT to be the last field of
7167 the record. This can happen in the presence of representation
7168 clauses. */
7169 if (variant_field >= 0)
7170 {
7171 struct type *branch_type;
7172
7173 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7174
7175 if (dval0 == NULL)
7176 dval = value_from_contents_and_address (rtype, valaddr, address);
7177 else
7178 dval = dval0;
7179
7180 branch_type =
7181 to_fixed_variant_branch_type
7182 (TYPE_FIELD_TYPE (type, variant_field),
7183 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7184 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7185 if (branch_type == NULL)
7186 {
7187 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7188 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7189 TYPE_NFIELDS (rtype) -= 1;
7190 }
7191 else
7192 {
7193 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7194 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7195 fld_bit_len =
7196 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7197 TARGET_CHAR_BIT;
7198 if (off + fld_bit_len > bit_len)
7199 bit_len = off + fld_bit_len;
7200 TYPE_LENGTH (rtype) =
7201 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7202 }
7203 }
7204
7205 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7206 should contain the alignment of that record, which should be a strictly
7207 positive value. If null or negative, then something is wrong, most
7208 probably in the debug info. In that case, we don't round up the size
7209 of the resulting type. If this record is not part of another structure,
7210 the current RTYPE length might be good enough for our purposes. */
7211 if (TYPE_LENGTH (type) <= 0)
7212 {
7213 if (TYPE_NAME (rtype))
7214 warning (_("Invalid type size for `%s' detected: %d."),
7215 TYPE_NAME (rtype), TYPE_LENGTH (type));
7216 else
7217 warning (_("Invalid type size for <unnamed> detected: %d."),
7218 TYPE_LENGTH (type));
7219 }
7220 else
7221 {
7222 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7223 TYPE_LENGTH (type));
7224 }
7225
7226 value_free_to_mark (mark);
7227 if (TYPE_LENGTH (rtype) > varsize_limit)
7228 error (_("record type with dynamic size is larger than varsize-limit"));
7229 return rtype;
7230 }
7231
7232 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7233 of 1. */
7234
7235 static struct type *
7236 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7237 CORE_ADDR address, struct value *dval0)
7238 {
7239 return ada_template_to_fixed_record_type_1 (type, valaddr,
7240 address, dval0, 1);
7241 }
7242
7243 /* An ordinary record type in which ___XVL-convention fields and
7244 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7245 static approximations, containing all possible fields. Uses
7246 no runtime values. Useless for use in values, but that's OK,
7247 since the results are used only for type determinations. Works on both
7248 structs and unions. Representation note: to save space, we memorize
7249 the result of this function in the TYPE_TARGET_TYPE of the
7250 template type. */
7251
7252 static struct type *
7253 template_to_static_fixed_type (struct type *type0)
7254 {
7255 struct type *type;
7256 int nfields;
7257 int f;
7258
7259 if (TYPE_TARGET_TYPE (type0) != NULL)
7260 return TYPE_TARGET_TYPE (type0);
7261
7262 nfields = TYPE_NFIELDS (type0);
7263 type = type0;
7264
7265 for (f = 0; f < nfields; f += 1)
7266 {
7267 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7268 struct type *new_type;
7269
7270 if (is_dynamic_field (type0, f))
7271 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7272 else
7273 new_type = static_unwrap_type (field_type);
7274 if (type == type0 && new_type != field_type)
7275 {
7276 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7277 TYPE_CODE (type) = TYPE_CODE (type0);
7278 INIT_CPLUS_SPECIFIC (type);
7279 TYPE_NFIELDS (type) = nfields;
7280 TYPE_FIELDS (type) = (struct field *)
7281 TYPE_ALLOC (type, nfields * sizeof (struct field));
7282 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7283 sizeof (struct field) * nfields);
7284 TYPE_NAME (type) = ada_type_name (type0);
7285 TYPE_TAG_NAME (type) = NULL;
7286 TYPE_FIXED_INSTANCE (type) = 1;
7287 TYPE_LENGTH (type) = 0;
7288 }
7289 TYPE_FIELD_TYPE (type, f) = new_type;
7290 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7291 }
7292 return type;
7293 }
7294
7295 /* Given an object of type TYPE whose contents are at VALADDR and
7296 whose address in memory is ADDRESS, returns a revision of TYPE,
7297 which should be a non-dynamic-sized record, in which the variant
7298 part, if any, is replaced with the appropriate branch. Looks
7299 for discriminant values in DVAL0, which can be NULL if the record
7300 contains the necessary discriminant values. */
7301
7302 static struct type *
7303 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7304 CORE_ADDR address, struct value *dval0)
7305 {
7306 struct value *mark = value_mark ();
7307 struct value *dval;
7308 struct type *rtype;
7309 struct type *branch_type;
7310 int nfields = TYPE_NFIELDS (type);
7311 int variant_field = variant_field_index (type);
7312
7313 if (variant_field == -1)
7314 return type;
7315
7316 if (dval0 == NULL)
7317 dval = value_from_contents_and_address (type, valaddr, address);
7318 else
7319 dval = dval0;
7320
7321 rtype = alloc_type_copy (type);
7322 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7323 INIT_CPLUS_SPECIFIC (rtype);
7324 TYPE_NFIELDS (rtype) = nfields;
7325 TYPE_FIELDS (rtype) =
7326 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7327 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7328 sizeof (struct field) * nfields);
7329 TYPE_NAME (rtype) = ada_type_name (type);
7330 TYPE_TAG_NAME (rtype) = NULL;
7331 TYPE_FIXED_INSTANCE (rtype) = 1;
7332 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7333
7334 branch_type = to_fixed_variant_branch_type
7335 (TYPE_FIELD_TYPE (type, variant_field),
7336 cond_offset_host (valaddr,
7337 TYPE_FIELD_BITPOS (type, variant_field)
7338 / TARGET_CHAR_BIT),
7339 cond_offset_target (address,
7340 TYPE_FIELD_BITPOS (type, variant_field)
7341 / TARGET_CHAR_BIT), dval);
7342 if (branch_type == NULL)
7343 {
7344 int f;
7345
7346 for (f = variant_field + 1; f < nfields; f += 1)
7347 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7348 TYPE_NFIELDS (rtype) -= 1;
7349 }
7350 else
7351 {
7352 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7353 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7354 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7355 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7356 }
7357 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7358
7359 value_free_to_mark (mark);
7360 return rtype;
7361 }
7362
7363 /* An ordinary record type (with fixed-length fields) that describes
7364 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7365 beginning of this section]. Any necessary discriminants' values
7366 should be in DVAL, a record value; it may be NULL if the object
7367 at ADDR itself contains any necessary discriminant values.
7368 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7369 values from the record are needed. Except in the case that DVAL,
7370 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7371 unchecked) is replaced by a particular branch of the variant.
7372
7373 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7374 is questionable and may be removed. It can arise during the
7375 processing of an unconstrained-array-of-record type where all the
7376 variant branches have exactly the same size. This is because in
7377 such cases, the compiler does not bother to use the XVS convention
7378 when encoding the record. I am currently dubious of this
7379 shortcut and suspect the compiler should be altered. FIXME. */
7380
7381 static struct type *
7382 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7383 CORE_ADDR address, struct value *dval)
7384 {
7385 struct type *templ_type;
7386
7387 if (TYPE_FIXED_INSTANCE (type0))
7388 return type0;
7389
7390 templ_type = dynamic_template_type (type0);
7391
7392 if (templ_type != NULL)
7393 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7394 else if (variant_field_index (type0) >= 0)
7395 {
7396 if (dval == NULL && valaddr == NULL && address == 0)
7397 return type0;
7398 return to_record_with_fixed_variant_part (type0, valaddr, address,
7399 dval);
7400 }
7401 else
7402 {
7403 TYPE_FIXED_INSTANCE (type0) = 1;
7404 return type0;
7405 }
7406
7407 }
7408
7409 /* An ordinary record type (with fixed-length fields) that describes
7410 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7411 union type. Any necessary discriminants' values should be in DVAL,
7412 a record value. That is, this routine selects the appropriate
7413 branch of the union at ADDR according to the discriminant value
7414 indicated in the union's type name. Returns VAR_TYPE0 itself if
7415 it represents a variant subject to a pragma Unchecked_Union. */
7416
7417 static struct type *
7418 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7419 CORE_ADDR address, struct value *dval)
7420 {
7421 int which;
7422 struct type *templ_type;
7423 struct type *var_type;
7424
7425 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7426 var_type = TYPE_TARGET_TYPE (var_type0);
7427 else
7428 var_type = var_type0;
7429
7430 templ_type = ada_find_parallel_type (var_type, "___XVU");
7431
7432 if (templ_type != NULL)
7433 var_type = templ_type;
7434
7435 if (is_unchecked_variant (var_type, value_type (dval)))
7436 return var_type0;
7437 which =
7438 ada_which_variant_applies (var_type,
7439 value_type (dval), value_contents (dval));
7440
7441 if (which < 0)
7442 return empty_record (var_type);
7443 else if (is_dynamic_field (var_type, which))
7444 return to_fixed_record_type
7445 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7446 valaddr, address, dval);
7447 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7448 return
7449 to_fixed_record_type
7450 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7451 else
7452 return TYPE_FIELD_TYPE (var_type, which);
7453 }
7454
7455 /* Assuming that TYPE0 is an array type describing the type of a value
7456 at ADDR, and that DVAL describes a record containing any
7457 discriminants used in TYPE0, returns a type for the value that
7458 contains no dynamic components (that is, no components whose sizes
7459 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7460 true, gives an error message if the resulting type's size is over
7461 varsize_limit. */
7462
7463 static struct type *
7464 to_fixed_array_type (struct type *type0, struct value *dval,
7465 int ignore_too_big)
7466 {
7467 struct type *index_type_desc;
7468 struct type *result;
7469 int constrained_packed_array_p;
7470
7471 if (TYPE_FIXED_INSTANCE (type0))
7472 return type0;
7473
7474 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7475 if (constrained_packed_array_p)
7476 type0 = decode_constrained_packed_array_type (type0);
7477
7478 index_type_desc = ada_find_parallel_type (type0, "___XA");
7479 ada_fixup_array_indexes_type (index_type_desc);
7480 if (index_type_desc == NULL)
7481 {
7482 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7483
7484 /* NOTE: elt_type---the fixed version of elt_type0---should never
7485 depend on the contents of the array in properly constructed
7486 debugging data. */
7487 /* Create a fixed version of the array element type.
7488 We're not providing the address of an element here,
7489 and thus the actual object value cannot be inspected to do
7490 the conversion. This should not be a problem, since arrays of
7491 unconstrained objects are not allowed. In particular, all
7492 the elements of an array of a tagged type should all be of
7493 the same type specified in the debugging info. No need to
7494 consult the object tag. */
7495 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7496
7497 /* Make sure we always create a new array type when dealing with
7498 packed array types, since we're going to fix-up the array
7499 type length and element bitsize a little further down. */
7500 if (elt_type0 == elt_type && !constrained_packed_array_p)
7501 result = type0;
7502 else
7503 result = create_array_type (alloc_type_copy (type0),
7504 elt_type, TYPE_INDEX_TYPE (type0));
7505 }
7506 else
7507 {
7508 int i;
7509 struct type *elt_type0;
7510
7511 elt_type0 = type0;
7512 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7513 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7514
7515 /* NOTE: result---the fixed version of elt_type0---should never
7516 depend on the contents of the array in properly constructed
7517 debugging data. */
7518 /* Create a fixed version of the array element type.
7519 We're not providing the address of an element here,
7520 and thus the actual object value cannot be inspected to do
7521 the conversion. This should not be a problem, since arrays of
7522 unconstrained objects are not allowed. In particular, all
7523 the elements of an array of a tagged type should all be of
7524 the same type specified in the debugging info. No need to
7525 consult the object tag. */
7526 result =
7527 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7528
7529 elt_type0 = type0;
7530 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7531 {
7532 struct type *range_type =
7533 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7534
7535 result = create_array_type (alloc_type_copy (elt_type0),
7536 result, range_type);
7537 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7538 }
7539 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7540 error (_("array type with dynamic size is larger than varsize-limit"));
7541 }
7542
7543 if (constrained_packed_array_p)
7544 {
7545 /* So far, the resulting type has been created as if the original
7546 type was a regular (non-packed) array type. As a result, the
7547 bitsize of the array elements needs to be set again, and the array
7548 length needs to be recomputed based on that bitsize. */
7549 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7550 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7551
7552 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7553 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7554 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7555 TYPE_LENGTH (result)++;
7556 }
7557
7558 TYPE_FIXED_INSTANCE (result) = 1;
7559 return result;
7560 }
7561
7562
7563 /* A standard type (containing no dynamically sized components)
7564 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7565 DVAL describes a record containing any discriminants used in TYPE0,
7566 and may be NULL if there are none, or if the object of type TYPE at
7567 ADDRESS or in VALADDR contains these discriminants.
7568
7569 If CHECK_TAG is not null, in the case of tagged types, this function
7570 attempts to locate the object's tag and use it to compute the actual
7571 type. However, when ADDRESS is null, we cannot use it to determine the
7572 location of the tag, and therefore compute the tagged type's actual type.
7573 So we return the tagged type without consulting the tag. */
7574
7575 static struct type *
7576 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7577 CORE_ADDR address, struct value *dval, int check_tag)
7578 {
7579 type = ada_check_typedef (type);
7580 switch (TYPE_CODE (type))
7581 {
7582 default:
7583 return type;
7584 case TYPE_CODE_STRUCT:
7585 {
7586 struct type *static_type = to_static_fixed_type (type);
7587 struct type *fixed_record_type =
7588 to_fixed_record_type (type, valaddr, address, NULL);
7589
7590 /* If STATIC_TYPE is a tagged type and we know the object's address,
7591 then we can determine its tag, and compute the object's actual
7592 type from there. Note that we have to use the fixed record
7593 type (the parent part of the record may have dynamic fields
7594 and the way the location of _tag is expressed may depend on
7595 them). */
7596
7597 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7598 {
7599 struct type *real_type =
7600 type_from_tag (value_tag_from_contents_and_address
7601 (fixed_record_type,
7602 valaddr,
7603 address));
7604
7605 if (real_type != NULL)
7606 return to_fixed_record_type (real_type, valaddr, address, NULL);
7607 }
7608
7609 /* Check to see if there is a parallel ___XVZ variable.
7610 If there is, then it provides the actual size of our type. */
7611 else if (ada_type_name (fixed_record_type) != NULL)
7612 {
7613 char *name = ada_type_name (fixed_record_type);
7614 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7615 int xvz_found = 0;
7616 LONGEST size;
7617
7618 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7619 size = get_int_var_value (xvz_name, &xvz_found);
7620 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7621 {
7622 fixed_record_type = copy_type (fixed_record_type);
7623 TYPE_LENGTH (fixed_record_type) = size;
7624
7625 /* The FIXED_RECORD_TYPE may have be a stub. We have
7626 observed this when the debugging info is STABS, and
7627 apparently it is something that is hard to fix.
7628
7629 In practice, we don't need the actual type definition
7630 at all, because the presence of the XVZ variable allows us
7631 to assume that there must be a XVS type as well, which we
7632 should be able to use later, when we need the actual type
7633 definition.
7634
7635 In the meantime, pretend that the "fixed" type we are
7636 returning is NOT a stub, because this can cause trouble
7637 when using this type to create new types targeting it.
7638 Indeed, the associated creation routines often check
7639 whether the target type is a stub and will try to replace
7640 it, thus using a type with the wrong size. This, in turn,
7641 might cause the new type to have the wrong size too.
7642 Consider the case of an array, for instance, where the size
7643 of the array is computed from the number of elements in
7644 our array multiplied by the size of its element. */
7645 TYPE_STUB (fixed_record_type) = 0;
7646 }
7647 }
7648 return fixed_record_type;
7649 }
7650 case TYPE_CODE_ARRAY:
7651 return to_fixed_array_type (type, dval, 1);
7652 case TYPE_CODE_UNION:
7653 if (dval == NULL)
7654 return type;
7655 else
7656 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7657 }
7658 }
7659
7660 /* The same as ada_to_fixed_type_1, except that it preserves the type
7661 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7662 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7663
7664 struct type *
7665 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7666 CORE_ADDR address, struct value *dval, int check_tag)
7667
7668 {
7669 struct type *fixed_type =
7670 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7671
7672 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7673 && TYPE_TARGET_TYPE (type) == fixed_type)
7674 return type;
7675
7676 return fixed_type;
7677 }
7678
7679 /* A standard (static-sized) type corresponding as well as possible to
7680 TYPE0, but based on no runtime data. */
7681
7682 static struct type *
7683 to_static_fixed_type (struct type *type0)
7684 {
7685 struct type *type;
7686
7687 if (type0 == NULL)
7688 return NULL;
7689
7690 if (TYPE_FIXED_INSTANCE (type0))
7691 return type0;
7692
7693 type0 = ada_check_typedef (type0);
7694
7695 switch (TYPE_CODE (type0))
7696 {
7697 default:
7698 return type0;
7699 case TYPE_CODE_STRUCT:
7700 type = dynamic_template_type (type0);
7701 if (type != NULL)
7702 return template_to_static_fixed_type (type);
7703 else
7704 return template_to_static_fixed_type (type0);
7705 case TYPE_CODE_UNION:
7706 type = ada_find_parallel_type (type0, "___XVU");
7707 if (type != NULL)
7708 return template_to_static_fixed_type (type);
7709 else
7710 return template_to_static_fixed_type (type0);
7711 }
7712 }
7713
7714 /* A static approximation of TYPE with all type wrappers removed. */
7715
7716 static struct type *
7717 static_unwrap_type (struct type *type)
7718 {
7719 if (ada_is_aligner_type (type))
7720 {
7721 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7722 if (ada_type_name (type1) == NULL)
7723 TYPE_NAME (type1) = ada_type_name (type);
7724
7725 return static_unwrap_type (type1);
7726 }
7727 else
7728 {
7729 struct type *raw_real_type = ada_get_base_type (type);
7730
7731 if (raw_real_type == type)
7732 return type;
7733 else
7734 return to_static_fixed_type (raw_real_type);
7735 }
7736 }
7737
7738 /* In some cases, incomplete and private types require
7739 cross-references that are not resolved as records (for example,
7740 type Foo;
7741 type FooP is access Foo;
7742 V: FooP;
7743 type Foo is array ...;
7744 ). In these cases, since there is no mechanism for producing
7745 cross-references to such types, we instead substitute for FooP a
7746 stub enumeration type that is nowhere resolved, and whose tag is
7747 the name of the actual type. Call these types "non-record stubs". */
7748
7749 /* A type equivalent to TYPE that is not a non-record stub, if one
7750 exists, otherwise TYPE. */
7751
7752 struct type *
7753 ada_check_typedef (struct type *type)
7754 {
7755 if (type == NULL)
7756 return NULL;
7757
7758 CHECK_TYPEDEF (type);
7759 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7760 || !TYPE_STUB (type)
7761 || TYPE_TAG_NAME (type) == NULL)
7762 return type;
7763 else
7764 {
7765 char *name = TYPE_TAG_NAME (type);
7766 struct type *type1 = ada_find_any_type (name);
7767
7768 if (type1 == NULL)
7769 return type;
7770
7771 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
7772 stubs pointing to arrays, as we don't create symbols for array
7773 types, only for the typedef-to-array types). If that's the case,
7774 strip the typedef layer. */
7775 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
7776 type1 = ada_check_typedef (type1);
7777
7778 return type1;
7779 }
7780 }
7781
7782 /* A value representing the data at VALADDR/ADDRESS as described by
7783 type TYPE0, but with a standard (static-sized) type that correctly
7784 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7785 type, then return VAL0 [this feature is simply to avoid redundant
7786 creation of struct values]. */
7787
7788 static struct value *
7789 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7790 struct value *val0)
7791 {
7792 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7793
7794 if (type == type0 && val0 != NULL)
7795 return val0;
7796 else
7797 return value_from_contents_and_address (type, 0, address);
7798 }
7799
7800 /* A value representing VAL, but with a standard (static-sized) type
7801 that correctly describes it. Does not necessarily create a new
7802 value. */
7803
7804 struct value *
7805 ada_to_fixed_value (struct value *val)
7806 {
7807 return ada_to_fixed_value_create (value_type (val),
7808 value_address (val),
7809 val);
7810 }
7811 \f
7812
7813 /* Attributes */
7814
7815 /* Table mapping attribute numbers to names.
7816 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7817
7818 static const char *attribute_names[] = {
7819 "<?>",
7820
7821 "first",
7822 "last",
7823 "length",
7824 "image",
7825 "max",
7826 "min",
7827 "modulus",
7828 "pos",
7829 "size",
7830 "tag",
7831 "val",
7832 0
7833 };
7834
7835 const char *
7836 ada_attribute_name (enum exp_opcode n)
7837 {
7838 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7839 return attribute_names[n - OP_ATR_FIRST + 1];
7840 else
7841 return attribute_names[0];
7842 }
7843
7844 /* Evaluate the 'POS attribute applied to ARG. */
7845
7846 static LONGEST
7847 pos_atr (struct value *arg)
7848 {
7849 struct value *val = coerce_ref (arg);
7850 struct type *type = value_type (val);
7851
7852 if (!discrete_type_p (type))
7853 error (_("'POS only defined on discrete types"));
7854
7855 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7856 {
7857 int i;
7858 LONGEST v = value_as_long (val);
7859
7860 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7861 {
7862 if (v == TYPE_FIELD_BITPOS (type, i))
7863 return i;
7864 }
7865 error (_("enumeration value is invalid: can't find 'POS"));
7866 }
7867 else
7868 return value_as_long (val);
7869 }
7870
7871 static struct value *
7872 value_pos_atr (struct type *type, struct value *arg)
7873 {
7874 return value_from_longest (type, pos_atr (arg));
7875 }
7876
7877 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7878
7879 static struct value *
7880 value_val_atr (struct type *type, struct value *arg)
7881 {
7882 if (!discrete_type_p (type))
7883 error (_("'VAL only defined on discrete types"));
7884 if (!integer_type_p (value_type (arg)))
7885 error (_("'VAL requires integral argument"));
7886
7887 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7888 {
7889 long pos = value_as_long (arg);
7890
7891 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7892 error (_("argument to 'VAL out of range"));
7893 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7894 }
7895 else
7896 return value_from_longest (type, value_as_long (arg));
7897 }
7898 \f
7899
7900 /* Evaluation */
7901
7902 /* True if TYPE appears to be an Ada character type.
7903 [At the moment, this is true only for Character and Wide_Character;
7904 It is a heuristic test that could stand improvement]. */
7905
7906 int
7907 ada_is_character_type (struct type *type)
7908 {
7909 const char *name;
7910
7911 /* If the type code says it's a character, then assume it really is,
7912 and don't check any further. */
7913 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7914 return 1;
7915
7916 /* Otherwise, assume it's a character type iff it is a discrete type
7917 with a known character type name. */
7918 name = ada_type_name (type);
7919 return (name != NULL
7920 && (TYPE_CODE (type) == TYPE_CODE_INT
7921 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7922 && (strcmp (name, "character") == 0
7923 || strcmp (name, "wide_character") == 0
7924 || strcmp (name, "wide_wide_character") == 0
7925 || strcmp (name, "unsigned char") == 0));
7926 }
7927
7928 /* True if TYPE appears to be an Ada string type. */
7929
7930 int
7931 ada_is_string_type (struct type *type)
7932 {
7933 type = ada_check_typedef (type);
7934 if (type != NULL
7935 && TYPE_CODE (type) != TYPE_CODE_PTR
7936 && (ada_is_simple_array_type (type)
7937 || ada_is_array_descriptor_type (type))
7938 && ada_array_arity (type) == 1)
7939 {
7940 struct type *elttype = ada_array_element_type (type, 1);
7941
7942 return ada_is_character_type (elttype);
7943 }
7944 else
7945 return 0;
7946 }
7947
7948 /* The compiler sometimes provides a parallel XVS type for a given
7949 PAD type. Normally, it is safe to follow the PAD type directly,
7950 but older versions of the compiler have a bug that causes the offset
7951 of its "F" field to be wrong. Following that field in that case
7952 would lead to incorrect results, but this can be worked around
7953 by ignoring the PAD type and using the associated XVS type instead.
7954
7955 Set to True if the debugger should trust the contents of PAD types.
7956 Otherwise, ignore the PAD type if there is a parallel XVS type. */
7957 static int trust_pad_over_xvs = 1;
7958
7959 /* True if TYPE is a struct type introduced by the compiler to force the
7960 alignment of a value. Such types have a single field with a
7961 distinctive name. */
7962
7963 int
7964 ada_is_aligner_type (struct type *type)
7965 {
7966 type = ada_check_typedef (type);
7967
7968 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
7969 return 0;
7970
7971 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7972 && TYPE_NFIELDS (type) == 1
7973 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7974 }
7975
7976 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7977 the parallel type. */
7978
7979 struct type *
7980 ada_get_base_type (struct type *raw_type)
7981 {
7982 struct type *real_type_namer;
7983 struct type *raw_real_type;
7984
7985 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7986 return raw_type;
7987
7988 if (ada_is_aligner_type (raw_type))
7989 /* The encoding specifies that we should always use the aligner type.
7990 So, even if this aligner type has an associated XVS type, we should
7991 simply ignore it.
7992
7993 According to the compiler gurus, an XVS type parallel to an aligner
7994 type may exist because of a stabs limitation. In stabs, aligner
7995 types are empty because the field has a variable-sized type, and
7996 thus cannot actually be used as an aligner type. As a result,
7997 we need the associated parallel XVS type to decode the type.
7998 Since the policy in the compiler is to not change the internal
7999 representation based on the debugging info format, we sometimes
8000 end up having a redundant XVS type parallel to the aligner type. */
8001 return raw_type;
8002
8003 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8004 if (real_type_namer == NULL
8005 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8006 || TYPE_NFIELDS (real_type_namer) != 1)
8007 return raw_type;
8008
8009 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8010 {
8011 /* This is an older encoding form where the base type needs to be
8012 looked up by name. We prefer the newer enconding because it is
8013 more efficient. */
8014 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8015 if (raw_real_type == NULL)
8016 return raw_type;
8017 else
8018 return raw_real_type;
8019 }
8020
8021 /* The field in our XVS type is a reference to the base type. */
8022 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8023 }
8024
8025 /* The type of value designated by TYPE, with all aligners removed. */
8026
8027 struct type *
8028 ada_aligned_type (struct type *type)
8029 {
8030 if (ada_is_aligner_type (type))
8031 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8032 else
8033 return ada_get_base_type (type);
8034 }
8035
8036
8037 /* The address of the aligned value in an object at address VALADDR
8038 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8039
8040 const gdb_byte *
8041 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8042 {
8043 if (ada_is_aligner_type (type))
8044 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8045 valaddr +
8046 TYPE_FIELD_BITPOS (type,
8047 0) / TARGET_CHAR_BIT);
8048 else
8049 return valaddr;
8050 }
8051
8052
8053
8054 /* The printed representation of an enumeration literal with encoded
8055 name NAME. The value is good to the next call of ada_enum_name. */
8056 const char *
8057 ada_enum_name (const char *name)
8058 {
8059 static char *result;
8060 static size_t result_len = 0;
8061 char *tmp;
8062
8063 /* First, unqualify the enumeration name:
8064 1. Search for the last '.' character. If we find one, then skip
8065 all the preceeding characters, the unqualified name starts
8066 right after that dot.
8067 2. Otherwise, we may be debugging on a target where the compiler
8068 translates dots into "__". Search forward for double underscores,
8069 but stop searching when we hit an overloading suffix, which is
8070 of the form "__" followed by digits. */
8071
8072 tmp = strrchr (name, '.');
8073 if (tmp != NULL)
8074 name = tmp + 1;
8075 else
8076 {
8077 while ((tmp = strstr (name, "__")) != NULL)
8078 {
8079 if (isdigit (tmp[2]))
8080 break;
8081 else
8082 name = tmp + 2;
8083 }
8084 }
8085
8086 if (name[0] == 'Q')
8087 {
8088 int v;
8089
8090 if (name[1] == 'U' || name[1] == 'W')
8091 {
8092 if (sscanf (name + 2, "%x", &v) != 1)
8093 return name;
8094 }
8095 else
8096 return name;
8097
8098 GROW_VECT (result, result_len, 16);
8099 if (isascii (v) && isprint (v))
8100 xsnprintf (result, result_len, "'%c'", v);
8101 else if (name[1] == 'U')
8102 xsnprintf (result, result_len, "[\"%02x\"]", v);
8103 else
8104 xsnprintf (result, result_len, "[\"%04x\"]", v);
8105
8106 return result;
8107 }
8108 else
8109 {
8110 tmp = strstr (name, "__");
8111 if (tmp == NULL)
8112 tmp = strstr (name, "$");
8113 if (tmp != NULL)
8114 {
8115 GROW_VECT (result, result_len, tmp - name + 1);
8116 strncpy (result, name, tmp - name);
8117 result[tmp - name] = '\0';
8118 return result;
8119 }
8120
8121 return name;
8122 }
8123 }
8124
8125 /* Evaluate the subexpression of EXP starting at *POS as for
8126 evaluate_type, updating *POS to point just past the evaluated
8127 expression. */
8128
8129 static struct value *
8130 evaluate_subexp_type (struct expression *exp, int *pos)
8131 {
8132 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8133 }
8134
8135 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8136 value it wraps. */
8137
8138 static struct value *
8139 unwrap_value (struct value *val)
8140 {
8141 struct type *type = ada_check_typedef (value_type (val));
8142
8143 if (ada_is_aligner_type (type))
8144 {
8145 struct value *v = ada_value_struct_elt (val, "F", 0);
8146 struct type *val_type = ada_check_typedef (value_type (v));
8147
8148 if (ada_type_name (val_type) == NULL)
8149 TYPE_NAME (val_type) = ada_type_name (type);
8150
8151 return unwrap_value (v);
8152 }
8153 else
8154 {
8155 struct type *raw_real_type =
8156 ada_check_typedef (ada_get_base_type (type));
8157
8158 /* If there is no parallel XVS or XVE type, then the value is
8159 already unwrapped. Return it without further modification. */
8160 if ((type == raw_real_type)
8161 && ada_find_parallel_type (type, "___XVE") == NULL)
8162 return val;
8163
8164 return
8165 coerce_unspec_val_to_type
8166 (val, ada_to_fixed_type (raw_real_type, 0,
8167 value_address (val),
8168 NULL, 1));
8169 }
8170 }
8171
8172 static struct value *
8173 cast_to_fixed (struct type *type, struct value *arg)
8174 {
8175 LONGEST val;
8176
8177 if (type == value_type (arg))
8178 return arg;
8179 else if (ada_is_fixed_point_type (value_type (arg)))
8180 val = ada_float_to_fixed (type,
8181 ada_fixed_to_float (value_type (arg),
8182 value_as_long (arg)));
8183 else
8184 {
8185 DOUBLEST argd = value_as_double (arg);
8186
8187 val = ada_float_to_fixed (type, argd);
8188 }
8189
8190 return value_from_longest (type, val);
8191 }
8192
8193 static struct value *
8194 cast_from_fixed (struct type *type, struct value *arg)
8195 {
8196 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8197 value_as_long (arg));
8198
8199 return value_from_double (type, val);
8200 }
8201
8202 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8203 return the converted value. */
8204
8205 static struct value *
8206 coerce_for_assign (struct type *type, struct value *val)
8207 {
8208 struct type *type2 = value_type (val);
8209
8210 if (type == type2)
8211 return val;
8212
8213 type2 = ada_check_typedef (type2);
8214 type = ada_check_typedef (type);
8215
8216 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8217 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8218 {
8219 val = ada_value_ind (val);
8220 type2 = value_type (val);
8221 }
8222
8223 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8224 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8225 {
8226 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8227 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8228 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8229 error (_("Incompatible types in assignment"));
8230 deprecated_set_value_type (val, type);
8231 }
8232 return val;
8233 }
8234
8235 static struct value *
8236 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8237 {
8238 struct value *val;
8239 struct type *type1, *type2;
8240 LONGEST v, v1, v2;
8241
8242 arg1 = coerce_ref (arg1);
8243 arg2 = coerce_ref (arg2);
8244 type1 = base_type (ada_check_typedef (value_type (arg1)));
8245 type2 = base_type (ada_check_typedef (value_type (arg2)));
8246
8247 if (TYPE_CODE (type1) != TYPE_CODE_INT
8248 || TYPE_CODE (type2) != TYPE_CODE_INT)
8249 return value_binop (arg1, arg2, op);
8250
8251 switch (op)
8252 {
8253 case BINOP_MOD:
8254 case BINOP_DIV:
8255 case BINOP_REM:
8256 break;
8257 default:
8258 return value_binop (arg1, arg2, op);
8259 }
8260
8261 v2 = value_as_long (arg2);
8262 if (v2 == 0)
8263 error (_("second operand of %s must not be zero."), op_string (op));
8264
8265 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8266 return value_binop (arg1, arg2, op);
8267
8268 v1 = value_as_long (arg1);
8269 switch (op)
8270 {
8271 case BINOP_DIV:
8272 v = v1 / v2;
8273 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8274 v += v > 0 ? -1 : 1;
8275 break;
8276 case BINOP_REM:
8277 v = v1 % v2;
8278 if (v * v1 < 0)
8279 v -= v2;
8280 break;
8281 default:
8282 /* Should not reach this point. */
8283 v = 0;
8284 }
8285
8286 val = allocate_value (type1);
8287 store_unsigned_integer (value_contents_raw (val),
8288 TYPE_LENGTH (value_type (val)),
8289 gdbarch_byte_order (get_type_arch (type1)), v);
8290 return val;
8291 }
8292
8293 static int
8294 ada_value_equal (struct value *arg1, struct value *arg2)
8295 {
8296 if (ada_is_direct_array_type (value_type (arg1))
8297 || ada_is_direct_array_type (value_type (arg2)))
8298 {
8299 /* Automatically dereference any array reference before
8300 we attempt to perform the comparison. */
8301 arg1 = ada_coerce_ref (arg1);
8302 arg2 = ada_coerce_ref (arg2);
8303
8304 arg1 = ada_coerce_to_simple_array (arg1);
8305 arg2 = ada_coerce_to_simple_array (arg2);
8306 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8307 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8308 error (_("Attempt to compare array with non-array"));
8309 /* FIXME: The following works only for types whose
8310 representations use all bits (no padding or undefined bits)
8311 and do not have user-defined equality. */
8312 return
8313 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8314 && memcmp (value_contents (arg1), value_contents (arg2),
8315 TYPE_LENGTH (value_type (arg1))) == 0;
8316 }
8317 return value_equal (arg1, arg2);
8318 }
8319
8320 /* Total number of component associations in the aggregate starting at
8321 index PC in EXP. Assumes that index PC is the start of an
8322 OP_AGGREGATE. */
8323
8324 static int
8325 num_component_specs (struct expression *exp, int pc)
8326 {
8327 int n, m, i;
8328
8329 m = exp->elts[pc + 1].longconst;
8330 pc += 3;
8331 n = 0;
8332 for (i = 0; i < m; i += 1)
8333 {
8334 switch (exp->elts[pc].opcode)
8335 {
8336 default:
8337 n += 1;
8338 break;
8339 case OP_CHOICES:
8340 n += exp->elts[pc + 1].longconst;
8341 break;
8342 }
8343 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8344 }
8345 return n;
8346 }
8347
8348 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8349 component of LHS (a simple array or a record), updating *POS past
8350 the expression, assuming that LHS is contained in CONTAINER. Does
8351 not modify the inferior's memory, nor does it modify LHS (unless
8352 LHS == CONTAINER). */
8353
8354 static void
8355 assign_component (struct value *container, struct value *lhs, LONGEST index,
8356 struct expression *exp, int *pos)
8357 {
8358 struct value *mark = value_mark ();
8359 struct value *elt;
8360
8361 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8362 {
8363 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8364 struct value *index_val = value_from_longest (index_type, index);
8365
8366 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8367 }
8368 else
8369 {
8370 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8371 elt = ada_to_fixed_value (unwrap_value (elt));
8372 }
8373
8374 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8375 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8376 else
8377 value_assign_to_component (container, elt,
8378 ada_evaluate_subexp (NULL, exp, pos,
8379 EVAL_NORMAL));
8380
8381 value_free_to_mark (mark);
8382 }
8383
8384 /* Assuming that LHS represents an lvalue having a record or array
8385 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8386 of that aggregate's value to LHS, advancing *POS past the
8387 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8388 lvalue containing LHS (possibly LHS itself). Does not modify
8389 the inferior's memory, nor does it modify the contents of
8390 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8391
8392 static struct value *
8393 assign_aggregate (struct value *container,
8394 struct value *lhs, struct expression *exp,
8395 int *pos, enum noside noside)
8396 {
8397 struct type *lhs_type;
8398 int n = exp->elts[*pos+1].longconst;
8399 LONGEST low_index, high_index;
8400 int num_specs;
8401 LONGEST *indices;
8402 int max_indices, num_indices;
8403 int is_array_aggregate;
8404 int i;
8405
8406 *pos += 3;
8407 if (noside != EVAL_NORMAL)
8408 {
8409 int i;
8410
8411 for (i = 0; i < n; i += 1)
8412 ada_evaluate_subexp (NULL, exp, pos, noside);
8413 return container;
8414 }
8415
8416 container = ada_coerce_ref (container);
8417 if (ada_is_direct_array_type (value_type (container)))
8418 container = ada_coerce_to_simple_array (container);
8419 lhs = ada_coerce_ref (lhs);
8420 if (!deprecated_value_modifiable (lhs))
8421 error (_("Left operand of assignment is not a modifiable lvalue."));
8422
8423 lhs_type = value_type (lhs);
8424 if (ada_is_direct_array_type (lhs_type))
8425 {
8426 lhs = ada_coerce_to_simple_array (lhs);
8427 lhs_type = value_type (lhs);
8428 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8429 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8430 is_array_aggregate = 1;
8431 }
8432 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8433 {
8434 low_index = 0;
8435 high_index = num_visible_fields (lhs_type) - 1;
8436 is_array_aggregate = 0;
8437 }
8438 else
8439 error (_("Left-hand side must be array or record."));
8440
8441 num_specs = num_component_specs (exp, *pos - 3);
8442 max_indices = 4 * num_specs + 4;
8443 indices = alloca (max_indices * sizeof (indices[0]));
8444 indices[0] = indices[1] = low_index - 1;
8445 indices[2] = indices[3] = high_index + 1;
8446 num_indices = 4;
8447
8448 for (i = 0; i < n; i += 1)
8449 {
8450 switch (exp->elts[*pos].opcode)
8451 {
8452 case OP_CHOICES:
8453 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8454 &num_indices, max_indices,
8455 low_index, high_index);
8456 break;
8457 case OP_POSITIONAL:
8458 aggregate_assign_positional (container, lhs, exp, pos, indices,
8459 &num_indices, max_indices,
8460 low_index, high_index);
8461 break;
8462 case OP_OTHERS:
8463 if (i != n-1)
8464 error (_("Misplaced 'others' clause"));
8465 aggregate_assign_others (container, lhs, exp, pos, indices,
8466 num_indices, low_index, high_index);
8467 break;
8468 default:
8469 error (_("Internal error: bad aggregate clause"));
8470 }
8471 }
8472
8473 return container;
8474 }
8475
8476 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8477 construct at *POS, updating *POS past the construct, given that
8478 the positions are relative to lower bound LOW, where HIGH is the
8479 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8480 updating *NUM_INDICES as needed. CONTAINER is as for
8481 assign_aggregate. */
8482 static void
8483 aggregate_assign_positional (struct value *container,
8484 struct value *lhs, struct expression *exp,
8485 int *pos, LONGEST *indices, int *num_indices,
8486 int max_indices, LONGEST low, LONGEST high)
8487 {
8488 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8489
8490 if (ind - 1 == high)
8491 warning (_("Extra components in aggregate ignored."));
8492 if (ind <= high)
8493 {
8494 add_component_interval (ind, ind, indices, num_indices, max_indices);
8495 *pos += 3;
8496 assign_component (container, lhs, ind, exp, pos);
8497 }
8498 else
8499 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8500 }
8501
8502 /* Assign into the components of LHS indexed by the OP_CHOICES
8503 construct at *POS, updating *POS past the construct, given that
8504 the allowable indices are LOW..HIGH. Record the indices assigned
8505 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8506 needed. CONTAINER is as for assign_aggregate. */
8507 static void
8508 aggregate_assign_from_choices (struct value *container,
8509 struct value *lhs, struct expression *exp,
8510 int *pos, LONGEST *indices, int *num_indices,
8511 int max_indices, LONGEST low, LONGEST high)
8512 {
8513 int j;
8514 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8515 int choice_pos, expr_pc;
8516 int is_array = ada_is_direct_array_type (value_type (lhs));
8517
8518 choice_pos = *pos += 3;
8519
8520 for (j = 0; j < n_choices; j += 1)
8521 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8522 expr_pc = *pos;
8523 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8524
8525 for (j = 0; j < n_choices; j += 1)
8526 {
8527 LONGEST lower, upper;
8528 enum exp_opcode op = exp->elts[choice_pos].opcode;
8529
8530 if (op == OP_DISCRETE_RANGE)
8531 {
8532 choice_pos += 1;
8533 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8534 EVAL_NORMAL));
8535 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8536 EVAL_NORMAL));
8537 }
8538 else if (is_array)
8539 {
8540 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8541 EVAL_NORMAL));
8542 upper = lower;
8543 }
8544 else
8545 {
8546 int ind;
8547 char *name;
8548
8549 switch (op)
8550 {
8551 case OP_NAME:
8552 name = &exp->elts[choice_pos + 2].string;
8553 break;
8554 case OP_VAR_VALUE:
8555 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8556 break;
8557 default:
8558 error (_("Invalid record component association."));
8559 }
8560 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8561 ind = 0;
8562 if (! find_struct_field (name, value_type (lhs), 0,
8563 NULL, NULL, NULL, NULL, &ind))
8564 error (_("Unknown component name: %s."), name);
8565 lower = upper = ind;
8566 }
8567
8568 if (lower <= upper && (lower < low || upper > high))
8569 error (_("Index in component association out of bounds."));
8570
8571 add_component_interval (lower, upper, indices, num_indices,
8572 max_indices);
8573 while (lower <= upper)
8574 {
8575 int pos1;
8576
8577 pos1 = expr_pc;
8578 assign_component (container, lhs, lower, exp, &pos1);
8579 lower += 1;
8580 }
8581 }
8582 }
8583
8584 /* Assign the value of the expression in the OP_OTHERS construct in
8585 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8586 have not been previously assigned. The index intervals already assigned
8587 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8588 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8589 static void
8590 aggregate_assign_others (struct value *container,
8591 struct value *lhs, struct expression *exp,
8592 int *pos, LONGEST *indices, int num_indices,
8593 LONGEST low, LONGEST high)
8594 {
8595 int i;
8596 int expr_pc = *pos+1;
8597
8598 for (i = 0; i < num_indices - 2; i += 2)
8599 {
8600 LONGEST ind;
8601
8602 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8603 {
8604 int pos;
8605
8606 pos = expr_pc;
8607 assign_component (container, lhs, ind, exp, &pos);
8608 }
8609 }
8610 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8611 }
8612
8613 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8614 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8615 modifying *SIZE as needed. It is an error if *SIZE exceeds
8616 MAX_SIZE. The resulting intervals do not overlap. */
8617 static void
8618 add_component_interval (LONGEST low, LONGEST high,
8619 LONGEST* indices, int *size, int max_size)
8620 {
8621 int i, j;
8622
8623 for (i = 0; i < *size; i += 2) {
8624 if (high >= indices[i] && low <= indices[i + 1])
8625 {
8626 int kh;
8627
8628 for (kh = i + 2; kh < *size; kh += 2)
8629 if (high < indices[kh])
8630 break;
8631 if (low < indices[i])
8632 indices[i] = low;
8633 indices[i + 1] = indices[kh - 1];
8634 if (high > indices[i + 1])
8635 indices[i + 1] = high;
8636 memcpy (indices + i + 2, indices + kh, *size - kh);
8637 *size -= kh - i - 2;
8638 return;
8639 }
8640 else if (high < indices[i])
8641 break;
8642 }
8643
8644 if (*size == max_size)
8645 error (_("Internal error: miscounted aggregate components."));
8646 *size += 2;
8647 for (j = *size-1; j >= i+2; j -= 1)
8648 indices[j] = indices[j - 2];
8649 indices[i] = low;
8650 indices[i + 1] = high;
8651 }
8652
8653 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8654 is different. */
8655
8656 static struct value *
8657 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8658 {
8659 if (type == ada_check_typedef (value_type (arg2)))
8660 return arg2;
8661
8662 if (ada_is_fixed_point_type (type))
8663 return (cast_to_fixed (type, arg2));
8664
8665 if (ada_is_fixed_point_type (value_type (arg2)))
8666 return cast_from_fixed (type, arg2);
8667
8668 return value_cast (type, arg2);
8669 }
8670
8671 /* Evaluating Ada expressions, and printing their result.
8672 ------------------------------------------------------
8673
8674 1. Introduction:
8675 ----------------
8676
8677 We usually evaluate an Ada expression in order to print its value.
8678 We also evaluate an expression in order to print its type, which
8679 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8680 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8681 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8682 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8683 similar.
8684
8685 Evaluating expressions is a little more complicated for Ada entities
8686 than it is for entities in languages such as C. The main reason for
8687 this is that Ada provides types whose definition might be dynamic.
8688 One example of such types is variant records. Or another example
8689 would be an array whose bounds can only be known at run time.
8690
8691 The following description is a general guide as to what should be
8692 done (and what should NOT be done) in order to evaluate an expression
8693 involving such types, and when. This does not cover how the semantic
8694 information is encoded by GNAT as this is covered separatly. For the
8695 document used as the reference for the GNAT encoding, see exp_dbug.ads
8696 in the GNAT sources.
8697
8698 Ideally, we should embed each part of this description next to its
8699 associated code. Unfortunately, the amount of code is so vast right
8700 now that it's hard to see whether the code handling a particular
8701 situation might be duplicated or not. One day, when the code is
8702 cleaned up, this guide might become redundant with the comments
8703 inserted in the code, and we might want to remove it.
8704
8705 2. ``Fixing'' an Entity, the Simple Case:
8706 -----------------------------------------
8707
8708 When evaluating Ada expressions, the tricky issue is that they may
8709 reference entities whose type contents and size are not statically
8710 known. Consider for instance a variant record:
8711
8712 type Rec (Empty : Boolean := True) is record
8713 case Empty is
8714 when True => null;
8715 when False => Value : Integer;
8716 end case;
8717 end record;
8718 Yes : Rec := (Empty => False, Value => 1);
8719 No : Rec := (empty => True);
8720
8721 The size and contents of that record depends on the value of the
8722 descriminant (Rec.Empty). At this point, neither the debugging
8723 information nor the associated type structure in GDB are able to
8724 express such dynamic types. So what the debugger does is to create
8725 "fixed" versions of the type that applies to the specific object.
8726 We also informally refer to this opperation as "fixing" an object,
8727 which means creating its associated fixed type.
8728
8729 Example: when printing the value of variable "Yes" above, its fixed
8730 type would look like this:
8731
8732 type Rec is record
8733 Empty : Boolean;
8734 Value : Integer;
8735 end record;
8736
8737 On the other hand, if we printed the value of "No", its fixed type
8738 would become:
8739
8740 type Rec is record
8741 Empty : Boolean;
8742 end record;
8743
8744 Things become a little more complicated when trying to fix an entity
8745 with a dynamic type that directly contains another dynamic type,
8746 such as an array of variant records, for instance. There are
8747 two possible cases: Arrays, and records.
8748
8749 3. ``Fixing'' Arrays:
8750 ---------------------
8751
8752 The type structure in GDB describes an array in terms of its bounds,
8753 and the type of its elements. By design, all elements in the array
8754 have the same type and we cannot represent an array of variant elements
8755 using the current type structure in GDB. When fixing an array,
8756 we cannot fix the array element, as we would potentially need one
8757 fixed type per element of the array. As a result, the best we can do
8758 when fixing an array is to produce an array whose bounds and size
8759 are correct (allowing us to read it from memory), but without having
8760 touched its element type. Fixing each element will be done later,
8761 when (if) necessary.
8762
8763 Arrays are a little simpler to handle than records, because the same
8764 amount of memory is allocated for each element of the array, even if
8765 the amount of space actually used by each element differs from element
8766 to element. Consider for instance the following array of type Rec:
8767
8768 type Rec_Array is array (1 .. 2) of Rec;
8769
8770 The actual amount of memory occupied by each element might be different
8771 from element to element, depending on the value of their discriminant.
8772 But the amount of space reserved for each element in the array remains
8773 fixed regardless. So we simply need to compute that size using
8774 the debugging information available, from which we can then determine
8775 the array size (we multiply the number of elements of the array by
8776 the size of each element).
8777
8778 The simplest case is when we have an array of a constrained element
8779 type. For instance, consider the following type declarations:
8780
8781 type Bounded_String (Max_Size : Integer) is
8782 Length : Integer;
8783 Buffer : String (1 .. Max_Size);
8784 end record;
8785 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8786
8787 In this case, the compiler describes the array as an array of
8788 variable-size elements (identified by its XVS suffix) for which
8789 the size can be read in the parallel XVZ variable.
8790
8791 In the case of an array of an unconstrained element type, the compiler
8792 wraps the array element inside a private PAD type. This type should not
8793 be shown to the user, and must be "unwrap"'ed before printing. Note
8794 that we also use the adjective "aligner" in our code to designate
8795 these wrapper types.
8796
8797 In some cases, the size allocated for each element is statically
8798 known. In that case, the PAD type already has the correct size,
8799 and the array element should remain unfixed.
8800
8801 But there are cases when this size is not statically known.
8802 For instance, assuming that "Five" is an integer variable:
8803
8804 type Dynamic is array (1 .. Five) of Integer;
8805 type Wrapper (Has_Length : Boolean := False) is record
8806 Data : Dynamic;
8807 case Has_Length is
8808 when True => Length : Integer;
8809 when False => null;
8810 end case;
8811 end record;
8812 type Wrapper_Array is array (1 .. 2) of Wrapper;
8813
8814 Hello : Wrapper_Array := (others => (Has_Length => True,
8815 Data => (others => 17),
8816 Length => 1));
8817
8818
8819 The debugging info would describe variable Hello as being an
8820 array of a PAD type. The size of that PAD type is not statically
8821 known, but can be determined using a parallel XVZ variable.
8822 In that case, a copy of the PAD type with the correct size should
8823 be used for the fixed array.
8824
8825 3. ``Fixing'' record type objects:
8826 ----------------------------------
8827
8828 Things are slightly different from arrays in the case of dynamic
8829 record types. In this case, in order to compute the associated
8830 fixed type, we need to determine the size and offset of each of
8831 its components. This, in turn, requires us to compute the fixed
8832 type of each of these components.
8833
8834 Consider for instance the example:
8835
8836 type Bounded_String (Max_Size : Natural) is record
8837 Str : String (1 .. Max_Size);
8838 Length : Natural;
8839 end record;
8840 My_String : Bounded_String (Max_Size => 10);
8841
8842 In that case, the position of field "Length" depends on the size
8843 of field Str, which itself depends on the value of the Max_Size
8844 discriminant. In order to fix the type of variable My_String,
8845 we need to fix the type of field Str. Therefore, fixing a variant
8846 record requires us to fix each of its components.
8847
8848 However, if a component does not have a dynamic size, the component
8849 should not be fixed. In particular, fields that use a PAD type
8850 should not fixed. Here is an example where this might happen
8851 (assuming type Rec above):
8852
8853 type Container (Big : Boolean) is record
8854 First : Rec;
8855 After : Integer;
8856 case Big is
8857 when True => Another : Integer;
8858 when False => null;
8859 end case;
8860 end record;
8861 My_Container : Container := (Big => False,
8862 First => (Empty => True),
8863 After => 42);
8864
8865 In that example, the compiler creates a PAD type for component First,
8866 whose size is constant, and then positions the component After just
8867 right after it. The offset of component After is therefore constant
8868 in this case.
8869
8870 The debugger computes the position of each field based on an algorithm
8871 that uses, among other things, the actual position and size of the field
8872 preceding it. Let's now imagine that the user is trying to print
8873 the value of My_Container. If the type fixing was recursive, we would
8874 end up computing the offset of field After based on the size of the
8875 fixed version of field First. And since in our example First has
8876 only one actual field, the size of the fixed type is actually smaller
8877 than the amount of space allocated to that field, and thus we would
8878 compute the wrong offset of field After.
8879
8880 To make things more complicated, we need to watch out for dynamic
8881 components of variant records (identified by the ___XVL suffix in
8882 the component name). Even if the target type is a PAD type, the size
8883 of that type might not be statically known. So the PAD type needs
8884 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8885 we might end up with the wrong size for our component. This can be
8886 observed with the following type declarations:
8887
8888 type Octal is new Integer range 0 .. 7;
8889 type Octal_Array is array (Positive range <>) of Octal;
8890 pragma Pack (Octal_Array);
8891
8892 type Octal_Buffer (Size : Positive) is record
8893 Buffer : Octal_Array (1 .. Size);
8894 Length : Integer;
8895 end record;
8896
8897 In that case, Buffer is a PAD type whose size is unset and needs
8898 to be computed by fixing the unwrapped type.
8899
8900 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8901 ----------------------------------------------------------
8902
8903 Lastly, when should the sub-elements of an entity that remained unfixed
8904 thus far, be actually fixed?
8905
8906 The answer is: Only when referencing that element. For instance
8907 when selecting one component of a record, this specific component
8908 should be fixed at that point in time. Or when printing the value
8909 of a record, each component should be fixed before its value gets
8910 printed. Similarly for arrays, the element of the array should be
8911 fixed when printing each element of the array, or when extracting
8912 one element out of that array. On the other hand, fixing should
8913 not be performed on the elements when taking a slice of an array!
8914
8915 Note that one of the side-effects of miscomputing the offset and
8916 size of each field is that we end up also miscomputing the size
8917 of the containing type. This can have adverse results when computing
8918 the value of an entity. GDB fetches the value of an entity based
8919 on the size of its type, and thus a wrong size causes GDB to fetch
8920 the wrong amount of memory. In the case where the computed size is
8921 too small, GDB fetches too little data to print the value of our
8922 entiry. Results in this case as unpredicatble, as we usually read
8923 past the buffer containing the data =:-o. */
8924
8925 /* Implement the evaluate_exp routine in the exp_descriptor structure
8926 for the Ada language. */
8927
8928 static struct value *
8929 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8930 int *pos, enum noside noside)
8931 {
8932 enum exp_opcode op;
8933 int tem;
8934 int pc;
8935 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8936 struct type *type;
8937 int nargs, oplen;
8938 struct value **argvec;
8939
8940 pc = *pos;
8941 *pos += 1;
8942 op = exp->elts[pc].opcode;
8943
8944 switch (op)
8945 {
8946 default:
8947 *pos -= 1;
8948 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8949 arg1 = unwrap_value (arg1);
8950
8951 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8952 then we need to perform the conversion manually, because
8953 evaluate_subexp_standard doesn't do it. This conversion is
8954 necessary in Ada because the different kinds of float/fixed
8955 types in Ada have different representations.
8956
8957 Similarly, we need to perform the conversion from OP_LONG
8958 ourselves. */
8959 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8960 arg1 = ada_value_cast (expect_type, arg1, noside);
8961
8962 return arg1;
8963
8964 case OP_STRING:
8965 {
8966 struct value *result;
8967
8968 *pos -= 1;
8969 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8970 /* The result type will have code OP_STRING, bashed there from
8971 OP_ARRAY. Bash it back. */
8972 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8973 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8974 return result;
8975 }
8976
8977 case UNOP_CAST:
8978 (*pos) += 2;
8979 type = exp->elts[pc + 1].type;
8980 arg1 = evaluate_subexp (type, exp, pos, noside);
8981 if (noside == EVAL_SKIP)
8982 goto nosideret;
8983 arg1 = ada_value_cast (type, arg1, noside);
8984 return arg1;
8985
8986 case UNOP_QUAL:
8987 (*pos) += 2;
8988 type = exp->elts[pc + 1].type;
8989 return ada_evaluate_subexp (type, exp, pos, noside);
8990
8991 case BINOP_ASSIGN:
8992 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8993 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8994 {
8995 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8996 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8997 return arg1;
8998 return ada_value_assign (arg1, arg1);
8999 }
9000 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9001 except if the lhs of our assignment is a convenience variable.
9002 In the case of assigning to a convenience variable, the lhs
9003 should be exactly the result of the evaluation of the rhs. */
9004 type = value_type (arg1);
9005 if (VALUE_LVAL (arg1) == lval_internalvar)
9006 type = NULL;
9007 arg2 = evaluate_subexp (type, exp, pos, noside);
9008 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9009 return arg1;
9010 if (ada_is_fixed_point_type (value_type (arg1)))
9011 arg2 = cast_to_fixed (value_type (arg1), arg2);
9012 else if (ada_is_fixed_point_type (value_type (arg2)))
9013 error
9014 (_("Fixed-point values must be assigned to fixed-point variables"));
9015 else
9016 arg2 = coerce_for_assign (value_type (arg1), arg2);
9017 return ada_value_assign (arg1, arg2);
9018
9019 case BINOP_ADD:
9020 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9021 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9022 if (noside == EVAL_SKIP)
9023 goto nosideret;
9024 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9025 return (value_from_longest
9026 (value_type (arg1),
9027 value_as_long (arg1) + value_as_long (arg2)));
9028 if ((ada_is_fixed_point_type (value_type (arg1))
9029 || ada_is_fixed_point_type (value_type (arg2)))
9030 && value_type (arg1) != value_type (arg2))
9031 error (_("Operands of fixed-point addition must have the same type"));
9032 /* Do the addition, and cast the result to the type of the first
9033 argument. We cannot cast the result to a reference type, so if
9034 ARG1 is a reference type, find its underlying type. */
9035 type = value_type (arg1);
9036 while (TYPE_CODE (type) == TYPE_CODE_REF)
9037 type = TYPE_TARGET_TYPE (type);
9038 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9039 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9040
9041 case BINOP_SUB:
9042 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9043 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9044 if (noside == EVAL_SKIP)
9045 goto nosideret;
9046 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9047 return (value_from_longest
9048 (value_type (arg1),
9049 value_as_long (arg1) - value_as_long (arg2)));
9050 if ((ada_is_fixed_point_type (value_type (arg1))
9051 || ada_is_fixed_point_type (value_type (arg2)))
9052 && value_type (arg1) != value_type (arg2))
9053 error (_("Operands of fixed-point subtraction must have the same type"));
9054 /* Do the substraction, and cast the result to the type of the first
9055 argument. We cannot cast the result to a reference type, so if
9056 ARG1 is a reference type, find its underlying type. */
9057 type = value_type (arg1);
9058 while (TYPE_CODE (type) == TYPE_CODE_REF)
9059 type = TYPE_TARGET_TYPE (type);
9060 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9061 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9062
9063 case BINOP_MUL:
9064 case BINOP_DIV:
9065 case BINOP_REM:
9066 case BINOP_MOD:
9067 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9068 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9069 if (noside == EVAL_SKIP)
9070 goto nosideret;
9071 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9072 {
9073 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9074 return value_zero (value_type (arg1), not_lval);
9075 }
9076 else
9077 {
9078 type = builtin_type (exp->gdbarch)->builtin_double;
9079 if (ada_is_fixed_point_type (value_type (arg1)))
9080 arg1 = cast_from_fixed (type, arg1);
9081 if (ada_is_fixed_point_type (value_type (arg2)))
9082 arg2 = cast_from_fixed (type, arg2);
9083 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9084 return ada_value_binop (arg1, arg2, op);
9085 }
9086
9087 case BINOP_EQUAL:
9088 case BINOP_NOTEQUAL:
9089 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9090 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9091 if (noside == EVAL_SKIP)
9092 goto nosideret;
9093 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9094 tem = 0;
9095 else
9096 {
9097 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9098 tem = ada_value_equal (arg1, arg2);
9099 }
9100 if (op == BINOP_NOTEQUAL)
9101 tem = !tem;
9102 type = language_bool_type (exp->language_defn, exp->gdbarch);
9103 return value_from_longest (type, (LONGEST) tem);
9104
9105 case UNOP_NEG:
9106 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9107 if (noside == EVAL_SKIP)
9108 goto nosideret;
9109 else if (ada_is_fixed_point_type (value_type (arg1)))
9110 return value_cast (value_type (arg1), value_neg (arg1));
9111 else
9112 {
9113 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9114 return value_neg (arg1);
9115 }
9116
9117 case BINOP_LOGICAL_AND:
9118 case BINOP_LOGICAL_OR:
9119 case UNOP_LOGICAL_NOT:
9120 {
9121 struct value *val;
9122
9123 *pos -= 1;
9124 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9125 type = language_bool_type (exp->language_defn, exp->gdbarch);
9126 return value_cast (type, val);
9127 }
9128
9129 case BINOP_BITWISE_AND:
9130 case BINOP_BITWISE_IOR:
9131 case BINOP_BITWISE_XOR:
9132 {
9133 struct value *val;
9134
9135 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9136 *pos = pc;
9137 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9138
9139 return value_cast (value_type (arg1), val);
9140 }
9141
9142 case OP_VAR_VALUE:
9143 *pos -= 1;
9144
9145 if (noside == EVAL_SKIP)
9146 {
9147 *pos += 4;
9148 goto nosideret;
9149 }
9150 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9151 /* Only encountered when an unresolved symbol occurs in a
9152 context other than a function call, in which case, it is
9153 invalid. */
9154 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9155 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9156 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9157 {
9158 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9159 /* Check to see if this is a tagged type. We also need to handle
9160 the case where the type is a reference to a tagged type, but
9161 we have to be careful to exclude pointers to tagged types.
9162 The latter should be shown as usual (as a pointer), whereas
9163 a reference should mostly be transparent to the user. */
9164 if (ada_is_tagged_type (type, 0)
9165 || (TYPE_CODE(type) == TYPE_CODE_REF
9166 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9167 {
9168 /* Tagged types are a little special in the fact that the real
9169 type is dynamic and can only be determined by inspecting the
9170 object's tag. This means that we need to get the object's
9171 value first (EVAL_NORMAL) and then extract the actual object
9172 type from its tag.
9173
9174 Note that we cannot skip the final step where we extract
9175 the object type from its tag, because the EVAL_NORMAL phase
9176 results in dynamic components being resolved into fixed ones.
9177 This can cause problems when trying to print the type
9178 description of tagged types whose parent has a dynamic size:
9179 We use the type name of the "_parent" component in order
9180 to print the name of the ancestor type in the type description.
9181 If that component had a dynamic size, the resolution into
9182 a fixed type would result in the loss of that type name,
9183 thus preventing us from printing the name of the ancestor
9184 type in the type description. */
9185 struct type *actual_type;
9186
9187 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9188 actual_type = type_from_tag (ada_value_tag (arg1));
9189 if (actual_type == NULL)
9190 /* If, for some reason, we were unable to determine
9191 the actual type from the tag, then use the static
9192 approximation that we just computed as a fallback.
9193 This can happen if the debugging information is
9194 incomplete, for instance. */
9195 actual_type = type;
9196
9197 return value_zero (actual_type, not_lval);
9198 }
9199
9200 *pos += 4;
9201 return value_zero
9202 (to_static_fixed_type
9203 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9204 not_lval);
9205 }
9206 else
9207 {
9208 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9209 arg1 = unwrap_value (arg1);
9210 return ada_to_fixed_value (arg1);
9211 }
9212
9213 case OP_FUNCALL:
9214 (*pos) += 2;
9215
9216 /* Allocate arg vector, including space for the function to be
9217 called in argvec[0] and a terminating NULL. */
9218 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9219 argvec =
9220 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9221
9222 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9223 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9224 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9225 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9226 else
9227 {
9228 for (tem = 0; tem <= nargs; tem += 1)
9229 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9230 argvec[tem] = 0;
9231
9232 if (noside == EVAL_SKIP)
9233 goto nosideret;
9234 }
9235
9236 if (ada_is_constrained_packed_array_type
9237 (desc_base_type (value_type (argvec[0]))))
9238 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9239 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9240 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9241 /* This is a packed array that has already been fixed, and
9242 therefore already coerced to a simple array. Nothing further
9243 to do. */
9244 ;
9245 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9246 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9247 && VALUE_LVAL (argvec[0]) == lval_memory))
9248 argvec[0] = value_addr (argvec[0]);
9249
9250 type = ada_check_typedef (value_type (argvec[0]));
9251 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9252 {
9253 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9254 {
9255 case TYPE_CODE_FUNC:
9256 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9257 break;
9258 case TYPE_CODE_ARRAY:
9259 break;
9260 case TYPE_CODE_STRUCT:
9261 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9262 argvec[0] = ada_value_ind (argvec[0]);
9263 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9264 break;
9265 default:
9266 error (_("cannot subscript or call something of type `%s'"),
9267 ada_type_name (value_type (argvec[0])));
9268 break;
9269 }
9270 }
9271
9272 switch (TYPE_CODE (type))
9273 {
9274 case TYPE_CODE_FUNC:
9275 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9276 return allocate_value (TYPE_TARGET_TYPE (type));
9277 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9278 case TYPE_CODE_STRUCT:
9279 {
9280 int arity;
9281
9282 arity = ada_array_arity (type);
9283 type = ada_array_element_type (type, nargs);
9284 if (type == NULL)
9285 error (_("cannot subscript or call a record"));
9286 if (arity != nargs)
9287 error (_("wrong number of subscripts; expecting %d"), arity);
9288 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9289 return value_zero (ada_aligned_type (type), lval_memory);
9290 return
9291 unwrap_value (ada_value_subscript
9292 (argvec[0], nargs, argvec + 1));
9293 }
9294 case TYPE_CODE_ARRAY:
9295 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9296 {
9297 type = ada_array_element_type (type, nargs);
9298 if (type == NULL)
9299 error (_("element type of array unknown"));
9300 else
9301 return value_zero (ada_aligned_type (type), lval_memory);
9302 }
9303 return
9304 unwrap_value (ada_value_subscript
9305 (ada_coerce_to_simple_array (argvec[0]),
9306 nargs, argvec + 1));
9307 case TYPE_CODE_PTR: /* Pointer to array */
9308 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9309 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9310 {
9311 type = ada_array_element_type (type, nargs);
9312 if (type == NULL)
9313 error (_("element type of array unknown"));
9314 else
9315 return value_zero (ada_aligned_type (type), lval_memory);
9316 }
9317 return
9318 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9319 nargs, argvec + 1));
9320
9321 default:
9322 error (_("Attempt to index or call something other than an "
9323 "array or function"));
9324 }
9325
9326 case TERNOP_SLICE:
9327 {
9328 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9329 struct value *low_bound_val =
9330 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9331 struct value *high_bound_val =
9332 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9333 LONGEST low_bound;
9334 LONGEST high_bound;
9335
9336 low_bound_val = coerce_ref (low_bound_val);
9337 high_bound_val = coerce_ref (high_bound_val);
9338 low_bound = pos_atr (low_bound_val);
9339 high_bound = pos_atr (high_bound_val);
9340
9341 if (noside == EVAL_SKIP)
9342 goto nosideret;
9343
9344 /* If this is a reference to an aligner type, then remove all
9345 the aligners. */
9346 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9347 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9348 TYPE_TARGET_TYPE (value_type (array)) =
9349 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9350
9351 if (ada_is_constrained_packed_array_type (value_type (array)))
9352 error (_("cannot slice a packed array"));
9353
9354 /* If this is a reference to an array or an array lvalue,
9355 convert to a pointer. */
9356 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9357 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9358 && VALUE_LVAL (array) == lval_memory))
9359 array = value_addr (array);
9360
9361 if (noside == EVAL_AVOID_SIDE_EFFECTS
9362 && ada_is_array_descriptor_type (ada_check_typedef
9363 (value_type (array))))
9364 return empty_array (ada_type_of_array (array, 0), low_bound);
9365
9366 array = ada_coerce_to_simple_array_ptr (array);
9367
9368 /* If we have more than one level of pointer indirection,
9369 dereference the value until we get only one level. */
9370 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9371 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9372 == TYPE_CODE_PTR))
9373 array = value_ind (array);
9374
9375 /* Make sure we really do have an array type before going further,
9376 to avoid a SEGV when trying to get the index type or the target
9377 type later down the road if the debug info generated by
9378 the compiler is incorrect or incomplete. */
9379 if (!ada_is_simple_array_type (value_type (array)))
9380 error (_("cannot take slice of non-array"));
9381
9382 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9383 {
9384 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9385 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9386 low_bound);
9387 else
9388 {
9389 struct type *arr_type0 =
9390 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9391 NULL, 1);
9392
9393 return ada_value_slice_from_ptr (array, arr_type0,
9394 longest_to_int (low_bound),
9395 longest_to_int (high_bound));
9396 }
9397 }
9398 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9399 return array;
9400 else if (high_bound < low_bound)
9401 return empty_array (value_type (array), low_bound);
9402 else
9403 return ada_value_slice (array, longest_to_int (low_bound),
9404 longest_to_int (high_bound));
9405 }
9406
9407 case UNOP_IN_RANGE:
9408 (*pos) += 2;
9409 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9410 type = check_typedef (exp->elts[pc + 1].type);
9411
9412 if (noside == EVAL_SKIP)
9413 goto nosideret;
9414
9415 switch (TYPE_CODE (type))
9416 {
9417 default:
9418 lim_warning (_("Membership test incompletely implemented; "
9419 "always returns true"));
9420 type = language_bool_type (exp->language_defn, exp->gdbarch);
9421 return value_from_longest (type, (LONGEST) 1);
9422
9423 case TYPE_CODE_RANGE:
9424 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9425 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9426 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9427 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9428 type = language_bool_type (exp->language_defn, exp->gdbarch);
9429 return
9430 value_from_longest (type,
9431 (value_less (arg1, arg3)
9432 || value_equal (arg1, arg3))
9433 && (value_less (arg2, arg1)
9434 || value_equal (arg2, arg1)));
9435 }
9436
9437 case BINOP_IN_BOUNDS:
9438 (*pos) += 2;
9439 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9440 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9441
9442 if (noside == EVAL_SKIP)
9443 goto nosideret;
9444
9445 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9446 {
9447 type = language_bool_type (exp->language_defn, exp->gdbarch);
9448 return value_zero (type, not_lval);
9449 }
9450
9451 tem = longest_to_int (exp->elts[pc + 1].longconst);
9452
9453 type = ada_index_type (value_type (arg2), tem, "range");
9454 if (!type)
9455 type = value_type (arg1);
9456
9457 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9458 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9459
9460 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9461 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9462 type = language_bool_type (exp->language_defn, exp->gdbarch);
9463 return
9464 value_from_longest (type,
9465 (value_less (arg1, arg3)
9466 || value_equal (arg1, arg3))
9467 && (value_less (arg2, arg1)
9468 || value_equal (arg2, arg1)));
9469
9470 case TERNOP_IN_RANGE:
9471 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9472 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9473 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9474
9475 if (noside == EVAL_SKIP)
9476 goto nosideret;
9477
9478 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9479 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9480 type = language_bool_type (exp->language_defn, exp->gdbarch);
9481 return
9482 value_from_longest (type,
9483 (value_less (arg1, arg3)
9484 || value_equal (arg1, arg3))
9485 && (value_less (arg2, arg1)
9486 || value_equal (arg2, arg1)));
9487
9488 case OP_ATR_FIRST:
9489 case OP_ATR_LAST:
9490 case OP_ATR_LENGTH:
9491 {
9492 struct type *type_arg;
9493
9494 if (exp->elts[*pos].opcode == OP_TYPE)
9495 {
9496 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9497 arg1 = NULL;
9498 type_arg = check_typedef (exp->elts[pc + 2].type);
9499 }
9500 else
9501 {
9502 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9503 type_arg = NULL;
9504 }
9505
9506 if (exp->elts[*pos].opcode != OP_LONG)
9507 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9508 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9509 *pos += 4;
9510
9511 if (noside == EVAL_SKIP)
9512 goto nosideret;
9513
9514 if (type_arg == NULL)
9515 {
9516 arg1 = ada_coerce_ref (arg1);
9517
9518 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9519 arg1 = ada_coerce_to_simple_array (arg1);
9520
9521 type = ada_index_type (value_type (arg1), tem,
9522 ada_attribute_name (op));
9523 if (type == NULL)
9524 type = builtin_type (exp->gdbarch)->builtin_int;
9525
9526 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9527 return allocate_value (type);
9528
9529 switch (op)
9530 {
9531 default: /* Should never happen. */
9532 error (_("unexpected attribute encountered"));
9533 case OP_ATR_FIRST:
9534 return value_from_longest
9535 (type, ada_array_bound (arg1, tem, 0));
9536 case OP_ATR_LAST:
9537 return value_from_longest
9538 (type, ada_array_bound (arg1, tem, 1));
9539 case OP_ATR_LENGTH:
9540 return value_from_longest
9541 (type, ada_array_length (arg1, tem));
9542 }
9543 }
9544 else if (discrete_type_p (type_arg))
9545 {
9546 struct type *range_type;
9547 char *name = ada_type_name (type_arg);
9548
9549 range_type = NULL;
9550 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9551 range_type = to_fixed_range_type (type_arg, NULL);
9552 if (range_type == NULL)
9553 range_type = type_arg;
9554 switch (op)
9555 {
9556 default:
9557 error (_("unexpected attribute encountered"));
9558 case OP_ATR_FIRST:
9559 return value_from_longest
9560 (range_type, ada_discrete_type_low_bound (range_type));
9561 case OP_ATR_LAST:
9562 return value_from_longest
9563 (range_type, ada_discrete_type_high_bound (range_type));
9564 case OP_ATR_LENGTH:
9565 error (_("the 'length attribute applies only to array types"));
9566 }
9567 }
9568 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9569 error (_("unimplemented type attribute"));
9570 else
9571 {
9572 LONGEST low, high;
9573
9574 if (ada_is_constrained_packed_array_type (type_arg))
9575 type_arg = decode_constrained_packed_array_type (type_arg);
9576
9577 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9578 if (type == NULL)
9579 type = builtin_type (exp->gdbarch)->builtin_int;
9580
9581 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9582 return allocate_value (type);
9583
9584 switch (op)
9585 {
9586 default:
9587 error (_("unexpected attribute encountered"));
9588 case OP_ATR_FIRST:
9589 low = ada_array_bound_from_type (type_arg, tem, 0);
9590 return value_from_longest (type, low);
9591 case OP_ATR_LAST:
9592 high = ada_array_bound_from_type (type_arg, tem, 1);
9593 return value_from_longest (type, high);
9594 case OP_ATR_LENGTH:
9595 low = ada_array_bound_from_type (type_arg, tem, 0);
9596 high = ada_array_bound_from_type (type_arg, tem, 1);
9597 return value_from_longest (type, high - low + 1);
9598 }
9599 }
9600 }
9601
9602 case OP_ATR_TAG:
9603 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9604 if (noside == EVAL_SKIP)
9605 goto nosideret;
9606
9607 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9608 return value_zero (ada_tag_type (arg1), not_lval);
9609
9610 return ada_value_tag (arg1);
9611
9612 case OP_ATR_MIN:
9613 case OP_ATR_MAX:
9614 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9615 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9616 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9617 if (noside == EVAL_SKIP)
9618 goto nosideret;
9619 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9620 return value_zero (value_type (arg1), not_lval);
9621 else
9622 {
9623 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9624 return value_binop (arg1, arg2,
9625 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9626 }
9627
9628 case OP_ATR_MODULUS:
9629 {
9630 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9631
9632 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9633 if (noside == EVAL_SKIP)
9634 goto nosideret;
9635
9636 if (!ada_is_modular_type (type_arg))
9637 error (_("'modulus must be applied to modular type"));
9638
9639 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9640 ada_modulus (type_arg));
9641 }
9642
9643
9644 case OP_ATR_POS:
9645 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9646 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9647 if (noside == EVAL_SKIP)
9648 goto nosideret;
9649 type = builtin_type (exp->gdbarch)->builtin_int;
9650 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9651 return value_zero (type, not_lval);
9652 else
9653 return value_pos_atr (type, arg1);
9654
9655 case OP_ATR_SIZE:
9656 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9657 type = value_type (arg1);
9658
9659 /* If the argument is a reference, then dereference its type, since
9660 the user is really asking for the size of the actual object,
9661 not the size of the pointer. */
9662 if (TYPE_CODE (type) == TYPE_CODE_REF)
9663 type = TYPE_TARGET_TYPE (type);
9664
9665 if (noside == EVAL_SKIP)
9666 goto nosideret;
9667 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9668 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9669 else
9670 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9671 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9672
9673 case OP_ATR_VAL:
9674 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9675 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9676 type = exp->elts[pc + 2].type;
9677 if (noside == EVAL_SKIP)
9678 goto nosideret;
9679 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9680 return value_zero (type, not_lval);
9681 else
9682 return value_val_atr (type, arg1);
9683
9684 case BINOP_EXP:
9685 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9686 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9687 if (noside == EVAL_SKIP)
9688 goto nosideret;
9689 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9690 return value_zero (value_type (arg1), not_lval);
9691 else
9692 {
9693 /* For integer exponentiation operations,
9694 only promote the first argument. */
9695 if (is_integral_type (value_type (arg2)))
9696 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9697 else
9698 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9699
9700 return value_binop (arg1, arg2, op);
9701 }
9702
9703 case UNOP_PLUS:
9704 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9705 if (noside == EVAL_SKIP)
9706 goto nosideret;
9707 else
9708 return arg1;
9709
9710 case UNOP_ABS:
9711 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9712 if (noside == EVAL_SKIP)
9713 goto nosideret;
9714 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9715 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9716 return value_neg (arg1);
9717 else
9718 return arg1;
9719
9720 case UNOP_IND:
9721 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9722 if (noside == EVAL_SKIP)
9723 goto nosideret;
9724 type = ada_check_typedef (value_type (arg1));
9725 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9726 {
9727 if (ada_is_array_descriptor_type (type))
9728 /* GDB allows dereferencing GNAT array descriptors. */
9729 {
9730 struct type *arrType = ada_type_of_array (arg1, 0);
9731
9732 if (arrType == NULL)
9733 error (_("Attempt to dereference null array pointer."));
9734 return value_at_lazy (arrType, 0);
9735 }
9736 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9737 || TYPE_CODE (type) == TYPE_CODE_REF
9738 /* In C you can dereference an array to get the 1st elt. */
9739 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9740 {
9741 type = to_static_fixed_type
9742 (ada_aligned_type
9743 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9744 check_size (type);
9745 return value_zero (type, lval_memory);
9746 }
9747 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9748 {
9749 /* GDB allows dereferencing an int. */
9750 if (expect_type == NULL)
9751 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9752 lval_memory);
9753 else
9754 {
9755 expect_type =
9756 to_static_fixed_type (ada_aligned_type (expect_type));
9757 return value_zero (expect_type, lval_memory);
9758 }
9759 }
9760 else
9761 error (_("Attempt to take contents of a non-pointer value."));
9762 }
9763 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9764 type = ada_check_typedef (value_type (arg1));
9765
9766 if (TYPE_CODE (type) == TYPE_CODE_INT)
9767 /* GDB allows dereferencing an int. If we were given
9768 the expect_type, then use that as the target type.
9769 Otherwise, assume that the target type is an int. */
9770 {
9771 if (expect_type != NULL)
9772 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9773 arg1));
9774 else
9775 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9776 (CORE_ADDR) value_as_address (arg1));
9777 }
9778
9779 if (ada_is_array_descriptor_type (type))
9780 /* GDB allows dereferencing GNAT array descriptors. */
9781 return ada_coerce_to_simple_array (arg1);
9782 else
9783 return ada_value_ind (arg1);
9784
9785 case STRUCTOP_STRUCT:
9786 tem = longest_to_int (exp->elts[pc + 1].longconst);
9787 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9788 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9789 if (noside == EVAL_SKIP)
9790 goto nosideret;
9791 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9792 {
9793 struct type *type1 = value_type (arg1);
9794
9795 if (ada_is_tagged_type (type1, 1))
9796 {
9797 type = ada_lookup_struct_elt_type (type1,
9798 &exp->elts[pc + 2].string,
9799 1, 1, NULL);
9800 if (type == NULL)
9801 /* In this case, we assume that the field COULD exist
9802 in some extension of the type. Return an object of
9803 "type" void, which will match any formal
9804 (see ada_type_match). */
9805 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9806 lval_memory);
9807 }
9808 else
9809 type =
9810 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9811 0, NULL);
9812
9813 return value_zero (ada_aligned_type (type), lval_memory);
9814 }
9815 else
9816 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9817 arg1 = unwrap_value (arg1);
9818 return ada_to_fixed_value (arg1);
9819
9820 case OP_TYPE:
9821 /* The value is not supposed to be used. This is here to make it
9822 easier to accommodate expressions that contain types. */
9823 (*pos) += 2;
9824 if (noside == EVAL_SKIP)
9825 goto nosideret;
9826 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9827 return allocate_value (exp->elts[pc + 1].type);
9828 else
9829 error (_("Attempt to use a type name as an expression"));
9830
9831 case OP_AGGREGATE:
9832 case OP_CHOICES:
9833 case OP_OTHERS:
9834 case OP_DISCRETE_RANGE:
9835 case OP_POSITIONAL:
9836 case OP_NAME:
9837 if (noside == EVAL_NORMAL)
9838 switch (op)
9839 {
9840 case OP_NAME:
9841 error (_("Undefined name, ambiguous name, or renaming used in "
9842 "component association: %s."), &exp->elts[pc+2].string);
9843 case OP_AGGREGATE:
9844 error (_("Aggregates only allowed on the right of an assignment"));
9845 default:
9846 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9847 }
9848
9849 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9850 *pos += oplen - 1;
9851 for (tem = 0; tem < nargs; tem += 1)
9852 ada_evaluate_subexp (NULL, exp, pos, noside);
9853 goto nosideret;
9854 }
9855
9856 nosideret:
9857 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9858 }
9859 \f
9860
9861 /* Fixed point */
9862
9863 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9864 type name that encodes the 'small and 'delta information.
9865 Otherwise, return NULL. */
9866
9867 static const char *
9868 fixed_type_info (struct type *type)
9869 {
9870 const char *name = ada_type_name (type);
9871 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9872
9873 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9874 {
9875 const char *tail = strstr (name, "___XF_");
9876
9877 if (tail == NULL)
9878 return NULL;
9879 else
9880 return tail + 5;
9881 }
9882 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9883 return fixed_type_info (TYPE_TARGET_TYPE (type));
9884 else
9885 return NULL;
9886 }
9887
9888 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9889
9890 int
9891 ada_is_fixed_point_type (struct type *type)
9892 {
9893 return fixed_type_info (type) != NULL;
9894 }
9895
9896 /* Return non-zero iff TYPE represents a System.Address type. */
9897
9898 int
9899 ada_is_system_address_type (struct type *type)
9900 {
9901 return (TYPE_NAME (type)
9902 && strcmp (TYPE_NAME (type), "system__address") == 0);
9903 }
9904
9905 /* Assuming that TYPE is the representation of an Ada fixed-point
9906 type, return its delta, or -1 if the type is malformed and the
9907 delta cannot be determined. */
9908
9909 DOUBLEST
9910 ada_delta (struct type *type)
9911 {
9912 const char *encoding = fixed_type_info (type);
9913 DOUBLEST num, den;
9914
9915 /* Strictly speaking, num and den are encoded as integer. However,
9916 they may not fit into a long, and they will have to be converted
9917 to DOUBLEST anyway. So scan them as DOUBLEST. */
9918 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9919 &num, &den) < 2)
9920 return -1.0;
9921 else
9922 return num / den;
9923 }
9924
9925 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9926 factor ('SMALL value) associated with the type. */
9927
9928 static DOUBLEST
9929 scaling_factor (struct type *type)
9930 {
9931 const char *encoding = fixed_type_info (type);
9932 DOUBLEST num0, den0, num1, den1;
9933 int n;
9934
9935 /* Strictly speaking, num's and den's are encoded as integer. However,
9936 they may not fit into a long, and they will have to be converted
9937 to DOUBLEST anyway. So scan them as DOUBLEST. */
9938 n = sscanf (encoding,
9939 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9940 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9941 &num0, &den0, &num1, &den1);
9942
9943 if (n < 2)
9944 return 1.0;
9945 else if (n == 4)
9946 return num1 / den1;
9947 else
9948 return num0 / den0;
9949 }
9950
9951
9952 /* Assuming that X is the representation of a value of fixed-point
9953 type TYPE, return its floating-point equivalent. */
9954
9955 DOUBLEST
9956 ada_fixed_to_float (struct type *type, LONGEST x)
9957 {
9958 return (DOUBLEST) x *scaling_factor (type);
9959 }
9960
9961 /* The representation of a fixed-point value of type TYPE
9962 corresponding to the value X. */
9963
9964 LONGEST
9965 ada_float_to_fixed (struct type *type, DOUBLEST x)
9966 {
9967 return (LONGEST) (x / scaling_factor (type) + 0.5);
9968 }
9969
9970 \f
9971
9972 /* Range types */
9973
9974 /* Scan STR beginning at position K for a discriminant name, and
9975 return the value of that discriminant field of DVAL in *PX. If
9976 PNEW_K is not null, put the position of the character beyond the
9977 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9978 not alter *PX and *PNEW_K if unsuccessful. */
9979
9980 static int
9981 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9982 int *pnew_k)
9983 {
9984 static char *bound_buffer = NULL;
9985 static size_t bound_buffer_len = 0;
9986 char *bound;
9987 char *pend;
9988 struct value *bound_val;
9989
9990 if (dval == NULL || str == NULL || str[k] == '\0')
9991 return 0;
9992
9993 pend = strstr (str + k, "__");
9994 if (pend == NULL)
9995 {
9996 bound = str + k;
9997 k += strlen (bound);
9998 }
9999 else
10000 {
10001 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10002 bound = bound_buffer;
10003 strncpy (bound_buffer, str + k, pend - (str + k));
10004 bound[pend - (str + k)] = '\0';
10005 k = pend - str;
10006 }
10007
10008 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10009 if (bound_val == NULL)
10010 return 0;
10011
10012 *px = value_as_long (bound_val);
10013 if (pnew_k != NULL)
10014 *pnew_k = k;
10015 return 1;
10016 }
10017
10018 /* Value of variable named NAME in the current environment. If
10019 no such variable found, then if ERR_MSG is null, returns 0, and
10020 otherwise causes an error with message ERR_MSG. */
10021
10022 static struct value *
10023 get_var_value (char *name, char *err_msg)
10024 {
10025 struct ada_symbol_info *syms;
10026 int nsyms;
10027
10028 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10029 &syms);
10030
10031 if (nsyms != 1)
10032 {
10033 if (err_msg == NULL)
10034 return 0;
10035 else
10036 error (("%s"), err_msg);
10037 }
10038
10039 return value_of_variable (syms[0].sym, syms[0].block);
10040 }
10041
10042 /* Value of integer variable named NAME in the current environment. If
10043 no such variable found, returns 0, and sets *FLAG to 0. If
10044 successful, sets *FLAG to 1. */
10045
10046 LONGEST
10047 get_int_var_value (char *name, int *flag)
10048 {
10049 struct value *var_val = get_var_value (name, 0);
10050
10051 if (var_val == 0)
10052 {
10053 if (flag != NULL)
10054 *flag = 0;
10055 return 0;
10056 }
10057 else
10058 {
10059 if (flag != NULL)
10060 *flag = 1;
10061 return value_as_long (var_val);
10062 }
10063 }
10064
10065
10066 /* Return a range type whose base type is that of the range type named
10067 NAME in the current environment, and whose bounds are calculated
10068 from NAME according to the GNAT range encoding conventions.
10069 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10070 corresponding range type from debug information; fall back to using it
10071 if symbol lookup fails. If a new type must be created, allocate it
10072 like ORIG_TYPE was. The bounds information, in general, is encoded
10073 in NAME, the base type given in the named range type. */
10074
10075 static struct type *
10076 to_fixed_range_type (struct type *raw_type, struct value *dval)
10077 {
10078 char *name;
10079 struct type *base_type;
10080 char *subtype_info;
10081
10082 gdb_assert (raw_type != NULL);
10083 gdb_assert (TYPE_NAME (raw_type) != NULL);
10084
10085 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10086 base_type = TYPE_TARGET_TYPE (raw_type);
10087 else
10088 base_type = raw_type;
10089
10090 name = TYPE_NAME (raw_type);
10091 subtype_info = strstr (name, "___XD");
10092 if (subtype_info == NULL)
10093 {
10094 LONGEST L = ada_discrete_type_low_bound (raw_type);
10095 LONGEST U = ada_discrete_type_high_bound (raw_type);
10096
10097 if (L < INT_MIN || U > INT_MAX)
10098 return raw_type;
10099 else
10100 return create_range_type (alloc_type_copy (raw_type), raw_type,
10101 ada_discrete_type_low_bound (raw_type),
10102 ada_discrete_type_high_bound (raw_type));
10103 }
10104 else
10105 {
10106 static char *name_buf = NULL;
10107 static size_t name_len = 0;
10108 int prefix_len = subtype_info - name;
10109 LONGEST L, U;
10110 struct type *type;
10111 char *bounds_str;
10112 int n;
10113
10114 GROW_VECT (name_buf, name_len, prefix_len + 5);
10115 strncpy (name_buf, name, prefix_len);
10116 name_buf[prefix_len] = '\0';
10117
10118 subtype_info += 5;
10119 bounds_str = strchr (subtype_info, '_');
10120 n = 1;
10121
10122 if (*subtype_info == 'L')
10123 {
10124 if (!ada_scan_number (bounds_str, n, &L, &n)
10125 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10126 return raw_type;
10127 if (bounds_str[n] == '_')
10128 n += 2;
10129 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10130 n += 1;
10131 subtype_info += 1;
10132 }
10133 else
10134 {
10135 int ok;
10136
10137 strcpy (name_buf + prefix_len, "___L");
10138 L = get_int_var_value (name_buf, &ok);
10139 if (!ok)
10140 {
10141 lim_warning (_("Unknown lower bound, using 1."));
10142 L = 1;
10143 }
10144 }
10145
10146 if (*subtype_info == 'U')
10147 {
10148 if (!ada_scan_number (bounds_str, n, &U, &n)
10149 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10150 return raw_type;
10151 }
10152 else
10153 {
10154 int ok;
10155
10156 strcpy (name_buf + prefix_len, "___U");
10157 U = get_int_var_value (name_buf, &ok);
10158 if (!ok)
10159 {
10160 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10161 U = L;
10162 }
10163 }
10164
10165 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10166 TYPE_NAME (type) = name;
10167 return type;
10168 }
10169 }
10170
10171 /* True iff NAME is the name of a range type. */
10172
10173 int
10174 ada_is_range_type_name (const char *name)
10175 {
10176 return (name != NULL && strstr (name, "___XD"));
10177 }
10178 \f
10179
10180 /* Modular types */
10181
10182 /* True iff TYPE is an Ada modular type. */
10183
10184 int
10185 ada_is_modular_type (struct type *type)
10186 {
10187 struct type *subranged_type = base_type (type);
10188
10189 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10190 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10191 && TYPE_UNSIGNED (subranged_type));
10192 }
10193
10194 /* Try to determine the lower and upper bounds of the given modular type
10195 using the type name only. Return non-zero and set L and U as the lower
10196 and upper bounds (respectively) if successful. */
10197
10198 int
10199 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10200 {
10201 char *name = ada_type_name (type);
10202 char *suffix;
10203 int k;
10204 LONGEST U;
10205
10206 if (name == NULL)
10207 return 0;
10208
10209 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10210 we are looking for static bounds, which means an __XDLU suffix.
10211 Moreover, we know that the lower bound of modular types is always
10212 zero, so the actual suffix should start with "__XDLU_0__", and
10213 then be followed by the upper bound value. */
10214 suffix = strstr (name, "__XDLU_0__");
10215 if (suffix == NULL)
10216 return 0;
10217 k = 10;
10218 if (!ada_scan_number (suffix, k, &U, NULL))
10219 return 0;
10220
10221 *modulus = (ULONGEST) U + 1;
10222 return 1;
10223 }
10224
10225 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10226
10227 ULONGEST
10228 ada_modulus (struct type *type)
10229 {
10230 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10231 }
10232 \f
10233
10234 /* Ada exception catchpoint support:
10235 ---------------------------------
10236
10237 We support 3 kinds of exception catchpoints:
10238 . catchpoints on Ada exceptions
10239 . catchpoints on unhandled Ada exceptions
10240 . catchpoints on failed assertions
10241
10242 Exceptions raised during failed assertions, or unhandled exceptions
10243 could perfectly be caught with the general catchpoint on Ada exceptions.
10244 However, we can easily differentiate these two special cases, and having
10245 the option to distinguish these two cases from the rest can be useful
10246 to zero-in on certain situations.
10247
10248 Exception catchpoints are a specialized form of breakpoint,
10249 since they rely on inserting breakpoints inside known routines
10250 of the GNAT runtime. The implementation therefore uses a standard
10251 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10252 of breakpoint_ops.
10253
10254 Support in the runtime for exception catchpoints have been changed
10255 a few times already, and these changes affect the implementation
10256 of these catchpoints. In order to be able to support several
10257 variants of the runtime, we use a sniffer that will determine
10258 the runtime variant used by the program being debugged.
10259
10260 At this time, we do not support the use of conditions on Ada exception
10261 catchpoints. The COND and COND_STRING fields are therefore set
10262 to NULL (most of the time, see below).
10263
10264 Conditions where EXP_STRING, COND, and COND_STRING are used:
10265
10266 When a user specifies the name of a specific exception in the case
10267 of catchpoints on Ada exceptions, we store the name of that exception
10268 in the EXP_STRING. We then translate this request into an actual
10269 condition stored in COND_STRING, and then parse it into an expression
10270 stored in COND. */
10271
10272 /* The different types of catchpoints that we introduced for catching
10273 Ada exceptions. */
10274
10275 enum exception_catchpoint_kind
10276 {
10277 ex_catch_exception,
10278 ex_catch_exception_unhandled,
10279 ex_catch_assert
10280 };
10281
10282 /* Ada's standard exceptions. */
10283
10284 static char *standard_exc[] = {
10285 "constraint_error",
10286 "program_error",
10287 "storage_error",
10288 "tasking_error"
10289 };
10290
10291 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10292
10293 /* A structure that describes how to support exception catchpoints
10294 for a given executable. */
10295
10296 struct exception_support_info
10297 {
10298 /* The name of the symbol to break on in order to insert
10299 a catchpoint on exceptions. */
10300 const char *catch_exception_sym;
10301
10302 /* The name of the symbol to break on in order to insert
10303 a catchpoint on unhandled exceptions. */
10304 const char *catch_exception_unhandled_sym;
10305
10306 /* The name of the symbol to break on in order to insert
10307 a catchpoint on failed assertions. */
10308 const char *catch_assert_sym;
10309
10310 /* Assuming that the inferior just triggered an unhandled exception
10311 catchpoint, this function is responsible for returning the address
10312 in inferior memory where the name of that exception is stored.
10313 Return zero if the address could not be computed. */
10314 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10315 };
10316
10317 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10318 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10319
10320 /* The following exception support info structure describes how to
10321 implement exception catchpoints with the latest version of the
10322 Ada runtime (as of 2007-03-06). */
10323
10324 static const struct exception_support_info default_exception_support_info =
10325 {
10326 "__gnat_debug_raise_exception", /* catch_exception_sym */
10327 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10328 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10329 ada_unhandled_exception_name_addr
10330 };
10331
10332 /* The following exception support info structure describes how to
10333 implement exception catchpoints with a slightly older version
10334 of the Ada runtime. */
10335
10336 static const struct exception_support_info exception_support_info_fallback =
10337 {
10338 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10339 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10340 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10341 ada_unhandled_exception_name_addr_from_raise
10342 };
10343
10344 /* For each executable, we sniff which exception info structure to use
10345 and cache it in the following global variable. */
10346
10347 static const struct exception_support_info *exception_info = NULL;
10348
10349 /* Inspect the Ada runtime and determine which exception info structure
10350 should be used to provide support for exception catchpoints.
10351
10352 This function will always set exception_info, or raise an error. */
10353
10354 static void
10355 ada_exception_support_info_sniffer (void)
10356 {
10357 struct symbol *sym;
10358
10359 /* If the exception info is already known, then no need to recompute it. */
10360 if (exception_info != NULL)
10361 return;
10362
10363 /* Check the latest (default) exception support info. */
10364 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10365 NULL, VAR_DOMAIN);
10366 if (sym != NULL)
10367 {
10368 exception_info = &default_exception_support_info;
10369 return;
10370 }
10371
10372 /* Try our fallback exception suport info. */
10373 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10374 NULL, VAR_DOMAIN);
10375 if (sym != NULL)
10376 {
10377 exception_info = &exception_support_info_fallback;
10378 return;
10379 }
10380
10381 /* Sometimes, it is normal for us to not be able to find the routine
10382 we are looking for. This happens when the program is linked with
10383 the shared version of the GNAT runtime, and the program has not been
10384 started yet. Inform the user of these two possible causes if
10385 applicable. */
10386
10387 if (ada_update_initial_language (language_unknown) != language_ada)
10388 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10389
10390 /* If the symbol does not exist, then check that the program is
10391 already started, to make sure that shared libraries have been
10392 loaded. If it is not started, this may mean that the symbol is
10393 in a shared library. */
10394
10395 if (ptid_get_pid (inferior_ptid) == 0)
10396 error (_("Unable to insert catchpoint. Try to start the program first."));
10397
10398 /* At this point, we know that we are debugging an Ada program and
10399 that the inferior has been started, but we still are not able to
10400 find the run-time symbols. That can mean that we are in
10401 configurable run time mode, or that a-except as been optimized
10402 out by the linker... In any case, at this point it is not worth
10403 supporting this feature. */
10404
10405 error (_("Cannot insert catchpoints in this configuration."));
10406 }
10407
10408 /* An observer of "executable_changed" events.
10409 Its role is to clear certain cached values that need to be recomputed
10410 each time a new executable is loaded by GDB. */
10411
10412 static void
10413 ada_executable_changed_observer (void)
10414 {
10415 /* If the executable changed, then it is possible that the Ada runtime
10416 is different. So we need to invalidate the exception support info
10417 cache. */
10418 exception_info = NULL;
10419 }
10420
10421 /* True iff FRAME is very likely to be that of a function that is
10422 part of the runtime system. This is all very heuristic, but is
10423 intended to be used as advice as to what frames are uninteresting
10424 to most users. */
10425
10426 static int
10427 is_known_support_routine (struct frame_info *frame)
10428 {
10429 struct symtab_and_line sal;
10430 char *func_name;
10431 enum language func_lang;
10432 int i;
10433
10434 /* If this code does not have any debugging information (no symtab),
10435 This cannot be any user code. */
10436
10437 find_frame_sal (frame, &sal);
10438 if (sal.symtab == NULL)
10439 return 1;
10440
10441 /* If there is a symtab, but the associated source file cannot be
10442 located, then assume this is not user code: Selecting a frame
10443 for which we cannot display the code would not be very helpful
10444 for the user. This should also take care of case such as VxWorks
10445 where the kernel has some debugging info provided for a few units. */
10446
10447 if (symtab_to_fullname (sal.symtab) == NULL)
10448 return 1;
10449
10450 /* Check the unit filename againt the Ada runtime file naming.
10451 We also check the name of the objfile against the name of some
10452 known system libraries that sometimes come with debugging info
10453 too. */
10454
10455 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10456 {
10457 re_comp (known_runtime_file_name_patterns[i]);
10458 if (re_exec (sal.symtab->filename))
10459 return 1;
10460 if (sal.symtab->objfile != NULL
10461 && re_exec (sal.symtab->objfile->name))
10462 return 1;
10463 }
10464
10465 /* Check whether the function is a GNAT-generated entity. */
10466
10467 find_frame_funname (frame, &func_name, &func_lang, NULL);
10468 if (func_name == NULL)
10469 return 1;
10470
10471 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10472 {
10473 re_comp (known_auxiliary_function_name_patterns[i]);
10474 if (re_exec (func_name))
10475 return 1;
10476 }
10477
10478 return 0;
10479 }
10480
10481 /* Find the first frame that contains debugging information and that is not
10482 part of the Ada run-time, starting from FI and moving upward. */
10483
10484 void
10485 ada_find_printable_frame (struct frame_info *fi)
10486 {
10487 for (; fi != NULL; fi = get_prev_frame (fi))
10488 {
10489 if (!is_known_support_routine (fi))
10490 {
10491 select_frame (fi);
10492 break;
10493 }
10494 }
10495
10496 }
10497
10498 /* Assuming that the inferior just triggered an unhandled exception
10499 catchpoint, return the address in inferior memory where the name
10500 of the exception is stored.
10501
10502 Return zero if the address could not be computed. */
10503
10504 static CORE_ADDR
10505 ada_unhandled_exception_name_addr (void)
10506 {
10507 return parse_and_eval_address ("e.full_name");
10508 }
10509
10510 /* Same as ada_unhandled_exception_name_addr, except that this function
10511 should be used when the inferior uses an older version of the runtime,
10512 where the exception name needs to be extracted from a specific frame
10513 several frames up in the callstack. */
10514
10515 static CORE_ADDR
10516 ada_unhandled_exception_name_addr_from_raise (void)
10517 {
10518 int frame_level;
10519 struct frame_info *fi;
10520
10521 /* To determine the name of this exception, we need to select
10522 the frame corresponding to RAISE_SYM_NAME. This frame is
10523 at least 3 levels up, so we simply skip the first 3 frames
10524 without checking the name of their associated function. */
10525 fi = get_current_frame ();
10526 for (frame_level = 0; frame_level < 3; frame_level += 1)
10527 if (fi != NULL)
10528 fi = get_prev_frame (fi);
10529
10530 while (fi != NULL)
10531 {
10532 char *func_name;
10533 enum language func_lang;
10534
10535 find_frame_funname (fi, &func_name, &func_lang, NULL);
10536 if (func_name != NULL
10537 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10538 break; /* We found the frame we were looking for... */
10539 fi = get_prev_frame (fi);
10540 }
10541
10542 if (fi == NULL)
10543 return 0;
10544
10545 select_frame (fi);
10546 return parse_and_eval_address ("id.full_name");
10547 }
10548
10549 /* Assuming the inferior just triggered an Ada exception catchpoint
10550 (of any type), return the address in inferior memory where the name
10551 of the exception is stored, if applicable.
10552
10553 Return zero if the address could not be computed, or if not relevant. */
10554
10555 static CORE_ADDR
10556 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10557 struct breakpoint *b)
10558 {
10559 switch (ex)
10560 {
10561 case ex_catch_exception:
10562 return (parse_and_eval_address ("e.full_name"));
10563 break;
10564
10565 case ex_catch_exception_unhandled:
10566 return exception_info->unhandled_exception_name_addr ();
10567 break;
10568
10569 case ex_catch_assert:
10570 return 0; /* Exception name is not relevant in this case. */
10571 break;
10572
10573 default:
10574 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10575 break;
10576 }
10577
10578 return 0; /* Should never be reached. */
10579 }
10580
10581 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10582 any error that ada_exception_name_addr_1 might cause to be thrown.
10583 When an error is intercepted, a warning with the error message is printed,
10584 and zero is returned. */
10585
10586 static CORE_ADDR
10587 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10588 struct breakpoint *b)
10589 {
10590 struct gdb_exception e;
10591 CORE_ADDR result = 0;
10592
10593 TRY_CATCH (e, RETURN_MASK_ERROR)
10594 {
10595 result = ada_exception_name_addr_1 (ex, b);
10596 }
10597
10598 if (e.reason < 0)
10599 {
10600 warning (_("failed to get exception name: %s"), e.message);
10601 return 0;
10602 }
10603
10604 return result;
10605 }
10606
10607 /* Implement the PRINT_IT method in the breakpoint_ops structure
10608 for all exception catchpoint kinds. */
10609
10610 static enum print_stop_action
10611 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10612 {
10613 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10614 char exception_name[256];
10615
10616 if (addr != 0)
10617 {
10618 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10619 exception_name [sizeof (exception_name) - 1] = '\0';
10620 }
10621
10622 ada_find_printable_frame (get_current_frame ());
10623
10624 annotate_catchpoint (b->number);
10625 switch (ex)
10626 {
10627 case ex_catch_exception:
10628 if (addr != 0)
10629 printf_filtered (_("\nCatchpoint %d, %s at "),
10630 b->number, exception_name);
10631 else
10632 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10633 break;
10634 case ex_catch_exception_unhandled:
10635 if (addr != 0)
10636 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10637 b->number, exception_name);
10638 else
10639 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10640 b->number);
10641 break;
10642 case ex_catch_assert:
10643 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10644 b->number);
10645 break;
10646 }
10647
10648 return PRINT_SRC_AND_LOC;
10649 }
10650
10651 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10652 for all exception catchpoint kinds. */
10653
10654 static void
10655 print_one_exception (enum exception_catchpoint_kind ex,
10656 struct breakpoint *b, struct bp_location **last_loc)
10657 {
10658 struct value_print_options opts;
10659
10660 get_user_print_options (&opts);
10661 if (opts.addressprint)
10662 {
10663 annotate_field (4);
10664 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10665 }
10666
10667 annotate_field (5);
10668 *last_loc = b->loc;
10669 switch (ex)
10670 {
10671 case ex_catch_exception:
10672 if (b->exp_string != NULL)
10673 {
10674 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10675
10676 ui_out_field_string (uiout, "what", msg);
10677 xfree (msg);
10678 }
10679 else
10680 ui_out_field_string (uiout, "what", "all Ada exceptions");
10681
10682 break;
10683
10684 case ex_catch_exception_unhandled:
10685 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10686 break;
10687
10688 case ex_catch_assert:
10689 ui_out_field_string (uiout, "what", "failed Ada assertions");
10690 break;
10691
10692 default:
10693 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10694 break;
10695 }
10696 }
10697
10698 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10699 for all exception catchpoint kinds. */
10700
10701 static void
10702 print_mention_exception (enum exception_catchpoint_kind ex,
10703 struct breakpoint *b)
10704 {
10705 switch (ex)
10706 {
10707 case ex_catch_exception:
10708 if (b->exp_string != NULL)
10709 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10710 b->number, b->exp_string);
10711 else
10712 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10713
10714 break;
10715
10716 case ex_catch_exception_unhandled:
10717 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10718 b->number);
10719 break;
10720
10721 case ex_catch_assert:
10722 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10723 break;
10724
10725 default:
10726 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10727 break;
10728 }
10729 }
10730
10731 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10732 for all exception catchpoint kinds. */
10733
10734 static void
10735 print_recreate_exception (enum exception_catchpoint_kind ex,
10736 struct breakpoint *b, struct ui_file *fp)
10737 {
10738 switch (ex)
10739 {
10740 case ex_catch_exception:
10741 fprintf_filtered (fp, "catch exception");
10742 if (b->exp_string != NULL)
10743 fprintf_filtered (fp, " %s", b->exp_string);
10744 break;
10745
10746 case ex_catch_exception_unhandled:
10747 fprintf_filtered (fp, "catch exception unhandled");
10748 break;
10749
10750 case ex_catch_assert:
10751 fprintf_filtered (fp, "catch assert");
10752 break;
10753
10754 default:
10755 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10756 }
10757 }
10758
10759 /* Virtual table for "catch exception" breakpoints. */
10760
10761 static enum print_stop_action
10762 print_it_catch_exception (struct breakpoint *b)
10763 {
10764 return print_it_exception (ex_catch_exception, b);
10765 }
10766
10767 static void
10768 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10769 {
10770 print_one_exception (ex_catch_exception, b, last_loc);
10771 }
10772
10773 static void
10774 print_mention_catch_exception (struct breakpoint *b)
10775 {
10776 print_mention_exception (ex_catch_exception, b);
10777 }
10778
10779 static void
10780 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10781 {
10782 print_recreate_exception (ex_catch_exception, b, fp);
10783 }
10784
10785 static struct breakpoint_ops catch_exception_breakpoint_ops =
10786 {
10787 NULL, /* insert */
10788 NULL, /* remove */
10789 NULL, /* breakpoint_hit */
10790 print_it_catch_exception,
10791 print_one_catch_exception,
10792 print_mention_catch_exception,
10793 print_recreate_catch_exception
10794 };
10795
10796 /* Virtual table for "catch exception unhandled" breakpoints. */
10797
10798 static enum print_stop_action
10799 print_it_catch_exception_unhandled (struct breakpoint *b)
10800 {
10801 return print_it_exception (ex_catch_exception_unhandled, b);
10802 }
10803
10804 static void
10805 print_one_catch_exception_unhandled (struct breakpoint *b,
10806 struct bp_location **last_loc)
10807 {
10808 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10809 }
10810
10811 static void
10812 print_mention_catch_exception_unhandled (struct breakpoint *b)
10813 {
10814 print_mention_exception (ex_catch_exception_unhandled, b);
10815 }
10816
10817 static void
10818 print_recreate_catch_exception_unhandled (struct breakpoint *b,
10819 struct ui_file *fp)
10820 {
10821 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10822 }
10823
10824 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10825 NULL, /* insert */
10826 NULL, /* remove */
10827 NULL, /* breakpoint_hit */
10828 print_it_catch_exception_unhandled,
10829 print_one_catch_exception_unhandled,
10830 print_mention_catch_exception_unhandled,
10831 print_recreate_catch_exception_unhandled
10832 };
10833
10834 /* Virtual table for "catch assert" breakpoints. */
10835
10836 static enum print_stop_action
10837 print_it_catch_assert (struct breakpoint *b)
10838 {
10839 return print_it_exception (ex_catch_assert, b);
10840 }
10841
10842 static void
10843 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
10844 {
10845 print_one_exception (ex_catch_assert, b, last_loc);
10846 }
10847
10848 static void
10849 print_mention_catch_assert (struct breakpoint *b)
10850 {
10851 print_mention_exception (ex_catch_assert, b);
10852 }
10853
10854 static void
10855 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
10856 {
10857 print_recreate_exception (ex_catch_assert, b, fp);
10858 }
10859
10860 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10861 NULL, /* insert */
10862 NULL, /* remove */
10863 NULL, /* breakpoint_hit */
10864 print_it_catch_assert,
10865 print_one_catch_assert,
10866 print_mention_catch_assert,
10867 print_recreate_catch_assert
10868 };
10869
10870 /* Return non-zero if B is an Ada exception catchpoint. */
10871
10872 int
10873 ada_exception_catchpoint_p (struct breakpoint *b)
10874 {
10875 return (b->ops == &catch_exception_breakpoint_ops
10876 || b->ops == &catch_exception_unhandled_breakpoint_ops
10877 || b->ops == &catch_assert_breakpoint_ops);
10878 }
10879
10880 /* Return a newly allocated copy of the first space-separated token
10881 in ARGSP, and then adjust ARGSP to point immediately after that
10882 token.
10883
10884 Return NULL if ARGPS does not contain any more tokens. */
10885
10886 static char *
10887 ada_get_next_arg (char **argsp)
10888 {
10889 char *args = *argsp;
10890 char *end;
10891 char *result;
10892
10893 /* Skip any leading white space. */
10894
10895 while (isspace (*args))
10896 args++;
10897
10898 if (args[0] == '\0')
10899 return NULL; /* No more arguments. */
10900
10901 /* Find the end of the current argument. */
10902
10903 end = args;
10904 while (*end != '\0' && !isspace (*end))
10905 end++;
10906
10907 /* Adjust ARGSP to point to the start of the next argument. */
10908
10909 *argsp = end;
10910
10911 /* Make a copy of the current argument and return it. */
10912
10913 result = xmalloc (end - args + 1);
10914 strncpy (result, args, end - args);
10915 result[end - args] = '\0';
10916
10917 return result;
10918 }
10919
10920 /* Split the arguments specified in a "catch exception" command.
10921 Set EX to the appropriate catchpoint type.
10922 Set EXP_STRING to the name of the specific exception if
10923 specified by the user. */
10924
10925 static void
10926 catch_ada_exception_command_split (char *args,
10927 enum exception_catchpoint_kind *ex,
10928 char **exp_string)
10929 {
10930 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10931 char *exception_name;
10932
10933 exception_name = ada_get_next_arg (&args);
10934 make_cleanup (xfree, exception_name);
10935
10936 /* Check that we do not have any more arguments. Anything else
10937 is unexpected. */
10938
10939 while (isspace (*args))
10940 args++;
10941
10942 if (args[0] != '\0')
10943 error (_("Junk at end of expression"));
10944
10945 discard_cleanups (old_chain);
10946
10947 if (exception_name == NULL)
10948 {
10949 /* Catch all exceptions. */
10950 *ex = ex_catch_exception;
10951 *exp_string = NULL;
10952 }
10953 else if (strcmp (exception_name, "unhandled") == 0)
10954 {
10955 /* Catch unhandled exceptions. */
10956 *ex = ex_catch_exception_unhandled;
10957 *exp_string = NULL;
10958 }
10959 else
10960 {
10961 /* Catch a specific exception. */
10962 *ex = ex_catch_exception;
10963 *exp_string = exception_name;
10964 }
10965 }
10966
10967 /* Return the name of the symbol on which we should break in order to
10968 implement a catchpoint of the EX kind. */
10969
10970 static const char *
10971 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10972 {
10973 gdb_assert (exception_info != NULL);
10974
10975 switch (ex)
10976 {
10977 case ex_catch_exception:
10978 return (exception_info->catch_exception_sym);
10979 break;
10980 case ex_catch_exception_unhandled:
10981 return (exception_info->catch_exception_unhandled_sym);
10982 break;
10983 case ex_catch_assert:
10984 return (exception_info->catch_assert_sym);
10985 break;
10986 default:
10987 internal_error (__FILE__, __LINE__,
10988 _("unexpected catchpoint kind (%d)"), ex);
10989 }
10990 }
10991
10992 /* Return the breakpoint ops "virtual table" used for catchpoints
10993 of the EX kind. */
10994
10995 static struct breakpoint_ops *
10996 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10997 {
10998 switch (ex)
10999 {
11000 case ex_catch_exception:
11001 return (&catch_exception_breakpoint_ops);
11002 break;
11003 case ex_catch_exception_unhandled:
11004 return (&catch_exception_unhandled_breakpoint_ops);
11005 break;
11006 case ex_catch_assert:
11007 return (&catch_assert_breakpoint_ops);
11008 break;
11009 default:
11010 internal_error (__FILE__, __LINE__,
11011 _("unexpected catchpoint kind (%d)"), ex);
11012 }
11013 }
11014
11015 /* Return the condition that will be used to match the current exception
11016 being raised with the exception that the user wants to catch. This
11017 assumes that this condition is used when the inferior just triggered
11018 an exception catchpoint.
11019
11020 The string returned is a newly allocated string that needs to be
11021 deallocated later. */
11022
11023 static char *
11024 ada_exception_catchpoint_cond_string (const char *exp_string)
11025 {
11026 int i;
11027
11028 /* The standard exceptions are a special case. They are defined in
11029 runtime units that have been compiled without debugging info; if
11030 EXP_STRING is the not-fully-qualified name of a standard
11031 exception (e.g. "constraint_error") then, during the evaluation
11032 of the condition expression, the symbol lookup on this name would
11033 *not* return this standard exception. The catchpoint condition
11034 may then be set only on user-defined exceptions which have the
11035 same not-fully-qualified name (e.g. my_package.constraint_error).
11036
11037 To avoid this unexcepted behavior, these standard exceptions are
11038 systematically prefixed by "standard". This means that "catch
11039 exception constraint_error" is rewritten into "catch exception
11040 standard.constraint_error".
11041
11042 If an exception named contraint_error is defined in another package of
11043 the inferior program, then the only way to specify this exception as a
11044 breakpoint condition is to use its fully-qualified named:
11045 e.g. my_package.constraint_error. */
11046
11047 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11048 {
11049 if (strcmp (standard_exc [i], exp_string) == 0)
11050 {
11051 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11052 exp_string);
11053 }
11054 }
11055 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
11056 }
11057
11058 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
11059
11060 static struct expression *
11061 ada_parse_catchpoint_condition (char *cond_string,
11062 struct symtab_and_line sal)
11063 {
11064 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
11065 }
11066
11067 /* Return the symtab_and_line that should be used to insert an exception
11068 catchpoint of the TYPE kind.
11069
11070 EX_STRING should contain the name of a specific exception
11071 that the catchpoint should catch, or NULL otherwise.
11072
11073 The idea behind all the remaining parameters is that their names match
11074 the name of certain fields in the breakpoint structure that are used to
11075 handle exception catchpoints. This function returns the value to which
11076 these fields should be set, depending on the type of catchpoint we need
11077 to create.
11078
11079 If COND and COND_STRING are both non-NULL, any value they might
11080 hold will be free'ed, and then replaced by newly allocated ones.
11081 These parameters are left untouched otherwise. */
11082
11083 static struct symtab_and_line
11084 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
11085 char **addr_string, char **cond_string,
11086 struct expression **cond, struct breakpoint_ops **ops)
11087 {
11088 const char *sym_name;
11089 struct symbol *sym;
11090 struct symtab_and_line sal;
11091
11092 /* First, find out which exception support info to use. */
11093 ada_exception_support_info_sniffer ();
11094
11095 /* Then lookup the function on which we will break in order to catch
11096 the Ada exceptions requested by the user. */
11097
11098 sym_name = ada_exception_sym_name (ex);
11099 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11100
11101 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11102 that should be compiled with debugging information. As a result, we
11103 expect to find that symbol in the symtabs. If we don't find it, then
11104 the target most likely does not support Ada exceptions, or we cannot
11105 insert exception breakpoints yet, because the GNAT runtime hasn't been
11106 loaded yet. */
11107
11108 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
11109 in such a way that no debugging information is produced for the symbol
11110 we are looking for. In this case, we could search the minimal symbols
11111 as a fall-back mechanism. This would still be operating in degraded
11112 mode, however, as we would still be missing the debugging information
11113 that is needed in order to extract the name of the exception being
11114 raised (this name is printed in the catchpoint message, and is also
11115 used when trying to catch a specific exception). We do not handle
11116 this case for now. */
11117
11118 if (sym == NULL)
11119 error (_("Unable to break on '%s' in this configuration."), sym_name);
11120
11121 /* Make sure that the symbol we found corresponds to a function. */
11122 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11123 error (_("Symbol \"%s\" is not a function (class = %d)"),
11124 sym_name, SYMBOL_CLASS (sym));
11125
11126 sal = find_function_start_sal (sym, 1);
11127
11128 /* Set ADDR_STRING. */
11129
11130 *addr_string = xstrdup (sym_name);
11131
11132 /* Set the COND and COND_STRING (if not NULL). */
11133
11134 if (cond_string != NULL && cond != NULL)
11135 {
11136 if (*cond_string != NULL)
11137 {
11138 xfree (*cond_string);
11139 *cond_string = NULL;
11140 }
11141 if (*cond != NULL)
11142 {
11143 xfree (*cond);
11144 *cond = NULL;
11145 }
11146 if (exp_string != NULL)
11147 {
11148 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
11149 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
11150 }
11151 }
11152
11153 /* Set OPS. */
11154 *ops = ada_exception_breakpoint_ops (ex);
11155
11156 return sal;
11157 }
11158
11159 /* Parse the arguments (ARGS) of the "catch exception" command.
11160
11161 Set TYPE to the appropriate exception catchpoint type.
11162 If the user asked the catchpoint to catch only a specific
11163 exception, then save the exception name in ADDR_STRING.
11164
11165 See ada_exception_sal for a description of all the remaining
11166 function arguments of this function. */
11167
11168 struct symtab_and_line
11169 ada_decode_exception_location (char *args, char **addr_string,
11170 char **exp_string, char **cond_string,
11171 struct expression **cond,
11172 struct breakpoint_ops **ops)
11173 {
11174 enum exception_catchpoint_kind ex;
11175
11176 catch_ada_exception_command_split (args, &ex, exp_string);
11177 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
11178 cond, ops);
11179 }
11180
11181 struct symtab_and_line
11182 ada_decode_assert_location (char *args, char **addr_string,
11183 struct breakpoint_ops **ops)
11184 {
11185 /* Check that no argument where provided at the end of the command. */
11186
11187 if (args != NULL)
11188 {
11189 while (isspace (*args))
11190 args++;
11191 if (*args != '\0')
11192 error (_("Junk at end of arguments."));
11193 }
11194
11195 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
11196 ops);
11197 }
11198
11199 /* Operators */
11200 /* Information about operators given special treatment in functions
11201 below. */
11202 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11203
11204 #define ADA_OPERATORS \
11205 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11206 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11207 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11208 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11209 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11210 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11211 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11212 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11213 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11214 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11215 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11216 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11217 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11218 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11219 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11220 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11221 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11222 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11223 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11224
11225 static void
11226 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11227 int *argsp)
11228 {
11229 switch (exp->elts[pc - 1].opcode)
11230 {
11231 default:
11232 operator_length_standard (exp, pc, oplenp, argsp);
11233 break;
11234
11235 #define OP_DEFN(op, len, args, binop) \
11236 case op: *oplenp = len; *argsp = args; break;
11237 ADA_OPERATORS;
11238 #undef OP_DEFN
11239
11240 case OP_AGGREGATE:
11241 *oplenp = 3;
11242 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11243 break;
11244
11245 case OP_CHOICES:
11246 *oplenp = 3;
11247 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11248 break;
11249 }
11250 }
11251
11252 /* Implementation of the exp_descriptor method operator_check. */
11253
11254 static int
11255 ada_operator_check (struct expression *exp, int pos,
11256 int (*objfile_func) (struct objfile *objfile, void *data),
11257 void *data)
11258 {
11259 const union exp_element *const elts = exp->elts;
11260 struct type *type = NULL;
11261
11262 switch (elts[pos].opcode)
11263 {
11264 case UNOP_IN_RANGE:
11265 case UNOP_QUAL:
11266 type = elts[pos + 1].type;
11267 break;
11268
11269 default:
11270 return operator_check_standard (exp, pos, objfile_func, data);
11271 }
11272
11273 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11274
11275 if (type && TYPE_OBJFILE (type)
11276 && (*objfile_func) (TYPE_OBJFILE (type), data))
11277 return 1;
11278
11279 return 0;
11280 }
11281
11282 static char *
11283 ada_op_name (enum exp_opcode opcode)
11284 {
11285 switch (opcode)
11286 {
11287 default:
11288 return op_name_standard (opcode);
11289
11290 #define OP_DEFN(op, len, args, binop) case op: return #op;
11291 ADA_OPERATORS;
11292 #undef OP_DEFN
11293
11294 case OP_AGGREGATE:
11295 return "OP_AGGREGATE";
11296 case OP_CHOICES:
11297 return "OP_CHOICES";
11298 case OP_NAME:
11299 return "OP_NAME";
11300 }
11301 }
11302
11303 /* As for operator_length, but assumes PC is pointing at the first
11304 element of the operator, and gives meaningful results only for the
11305 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
11306
11307 static void
11308 ada_forward_operator_length (struct expression *exp, int pc,
11309 int *oplenp, int *argsp)
11310 {
11311 switch (exp->elts[pc].opcode)
11312 {
11313 default:
11314 *oplenp = *argsp = 0;
11315 break;
11316
11317 #define OP_DEFN(op, len, args, binop) \
11318 case op: *oplenp = len; *argsp = args; break;
11319 ADA_OPERATORS;
11320 #undef OP_DEFN
11321
11322 case OP_AGGREGATE:
11323 *oplenp = 3;
11324 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11325 break;
11326
11327 case OP_CHOICES:
11328 *oplenp = 3;
11329 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11330 break;
11331
11332 case OP_STRING:
11333 case OP_NAME:
11334 {
11335 int len = longest_to_int (exp->elts[pc + 1].longconst);
11336
11337 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11338 *argsp = 0;
11339 break;
11340 }
11341 }
11342 }
11343
11344 static int
11345 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11346 {
11347 enum exp_opcode op = exp->elts[elt].opcode;
11348 int oplen, nargs;
11349 int pc = elt;
11350 int i;
11351
11352 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11353
11354 switch (op)
11355 {
11356 /* Ada attributes ('Foo). */
11357 case OP_ATR_FIRST:
11358 case OP_ATR_LAST:
11359 case OP_ATR_LENGTH:
11360 case OP_ATR_IMAGE:
11361 case OP_ATR_MAX:
11362 case OP_ATR_MIN:
11363 case OP_ATR_MODULUS:
11364 case OP_ATR_POS:
11365 case OP_ATR_SIZE:
11366 case OP_ATR_TAG:
11367 case OP_ATR_VAL:
11368 break;
11369
11370 case UNOP_IN_RANGE:
11371 case UNOP_QUAL:
11372 /* XXX: gdb_sprint_host_address, type_sprint */
11373 fprintf_filtered (stream, _("Type @"));
11374 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11375 fprintf_filtered (stream, " (");
11376 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11377 fprintf_filtered (stream, ")");
11378 break;
11379 case BINOP_IN_BOUNDS:
11380 fprintf_filtered (stream, " (%d)",
11381 longest_to_int (exp->elts[pc + 2].longconst));
11382 break;
11383 case TERNOP_IN_RANGE:
11384 break;
11385
11386 case OP_AGGREGATE:
11387 case OP_OTHERS:
11388 case OP_DISCRETE_RANGE:
11389 case OP_POSITIONAL:
11390 case OP_CHOICES:
11391 break;
11392
11393 case OP_NAME:
11394 case OP_STRING:
11395 {
11396 char *name = &exp->elts[elt + 2].string;
11397 int len = longest_to_int (exp->elts[elt + 1].longconst);
11398
11399 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11400 break;
11401 }
11402
11403 default:
11404 return dump_subexp_body_standard (exp, stream, elt);
11405 }
11406
11407 elt += oplen;
11408 for (i = 0; i < nargs; i += 1)
11409 elt = dump_subexp (exp, stream, elt);
11410
11411 return elt;
11412 }
11413
11414 /* The Ada extension of print_subexp (q.v.). */
11415
11416 static void
11417 ada_print_subexp (struct expression *exp, int *pos,
11418 struct ui_file *stream, enum precedence prec)
11419 {
11420 int oplen, nargs, i;
11421 int pc = *pos;
11422 enum exp_opcode op = exp->elts[pc].opcode;
11423
11424 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11425
11426 *pos += oplen;
11427 switch (op)
11428 {
11429 default:
11430 *pos -= oplen;
11431 print_subexp_standard (exp, pos, stream, prec);
11432 return;
11433
11434 case OP_VAR_VALUE:
11435 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11436 return;
11437
11438 case BINOP_IN_BOUNDS:
11439 /* XXX: sprint_subexp */
11440 print_subexp (exp, pos, stream, PREC_SUFFIX);
11441 fputs_filtered (" in ", stream);
11442 print_subexp (exp, pos, stream, PREC_SUFFIX);
11443 fputs_filtered ("'range", stream);
11444 if (exp->elts[pc + 1].longconst > 1)
11445 fprintf_filtered (stream, "(%ld)",
11446 (long) exp->elts[pc + 1].longconst);
11447 return;
11448
11449 case TERNOP_IN_RANGE:
11450 if (prec >= PREC_EQUAL)
11451 fputs_filtered ("(", stream);
11452 /* XXX: sprint_subexp */
11453 print_subexp (exp, pos, stream, PREC_SUFFIX);
11454 fputs_filtered (" in ", stream);
11455 print_subexp (exp, pos, stream, PREC_EQUAL);
11456 fputs_filtered (" .. ", stream);
11457 print_subexp (exp, pos, stream, PREC_EQUAL);
11458 if (prec >= PREC_EQUAL)
11459 fputs_filtered (")", stream);
11460 return;
11461
11462 case OP_ATR_FIRST:
11463 case OP_ATR_LAST:
11464 case OP_ATR_LENGTH:
11465 case OP_ATR_IMAGE:
11466 case OP_ATR_MAX:
11467 case OP_ATR_MIN:
11468 case OP_ATR_MODULUS:
11469 case OP_ATR_POS:
11470 case OP_ATR_SIZE:
11471 case OP_ATR_TAG:
11472 case OP_ATR_VAL:
11473 if (exp->elts[*pos].opcode == OP_TYPE)
11474 {
11475 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11476 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11477 *pos += 3;
11478 }
11479 else
11480 print_subexp (exp, pos, stream, PREC_SUFFIX);
11481 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11482 if (nargs > 1)
11483 {
11484 int tem;
11485
11486 for (tem = 1; tem < nargs; tem += 1)
11487 {
11488 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11489 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11490 }
11491 fputs_filtered (")", stream);
11492 }
11493 return;
11494
11495 case UNOP_QUAL:
11496 type_print (exp->elts[pc + 1].type, "", stream, 0);
11497 fputs_filtered ("'(", stream);
11498 print_subexp (exp, pos, stream, PREC_PREFIX);
11499 fputs_filtered (")", stream);
11500 return;
11501
11502 case UNOP_IN_RANGE:
11503 /* XXX: sprint_subexp */
11504 print_subexp (exp, pos, stream, PREC_SUFFIX);
11505 fputs_filtered (" in ", stream);
11506 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11507 return;
11508
11509 case OP_DISCRETE_RANGE:
11510 print_subexp (exp, pos, stream, PREC_SUFFIX);
11511 fputs_filtered ("..", stream);
11512 print_subexp (exp, pos, stream, PREC_SUFFIX);
11513 return;
11514
11515 case OP_OTHERS:
11516 fputs_filtered ("others => ", stream);
11517 print_subexp (exp, pos, stream, PREC_SUFFIX);
11518 return;
11519
11520 case OP_CHOICES:
11521 for (i = 0; i < nargs-1; i += 1)
11522 {
11523 if (i > 0)
11524 fputs_filtered ("|", stream);
11525 print_subexp (exp, pos, stream, PREC_SUFFIX);
11526 }
11527 fputs_filtered (" => ", stream);
11528 print_subexp (exp, pos, stream, PREC_SUFFIX);
11529 return;
11530
11531 case OP_POSITIONAL:
11532 print_subexp (exp, pos, stream, PREC_SUFFIX);
11533 return;
11534
11535 case OP_AGGREGATE:
11536 fputs_filtered ("(", stream);
11537 for (i = 0; i < nargs; i += 1)
11538 {
11539 if (i > 0)
11540 fputs_filtered (", ", stream);
11541 print_subexp (exp, pos, stream, PREC_SUFFIX);
11542 }
11543 fputs_filtered (")", stream);
11544 return;
11545 }
11546 }
11547
11548 /* Table mapping opcodes into strings for printing operators
11549 and precedences of the operators. */
11550
11551 static const struct op_print ada_op_print_tab[] = {
11552 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11553 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11554 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11555 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11556 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11557 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11558 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11559 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11560 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11561 {">=", BINOP_GEQ, PREC_ORDER, 0},
11562 {">", BINOP_GTR, PREC_ORDER, 0},
11563 {"<", BINOP_LESS, PREC_ORDER, 0},
11564 {">>", BINOP_RSH, PREC_SHIFT, 0},
11565 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11566 {"+", BINOP_ADD, PREC_ADD, 0},
11567 {"-", BINOP_SUB, PREC_ADD, 0},
11568 {"&", BINOP_CONCAT, PREC_ADD, 0},
11569 {"*", BINOP_MUL, PREC_MUL, 0},
11570 {"/", BINOP_DIV, PREC_MUL, 0},
11571 {"rem", BINOP_REM, PREC_MUL, 0},
11572 {"mod", BINOP_MOD, PREC_MUL, 0},
11573 {"**", BINOP_EXP, PREC_REPEAT, 0},
11574 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11575 {"-", UNOP_NEG, PREC_PREFIX, 0},
11576 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11577 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11578 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11579 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11580 {".all", UNOP_IND, PREC_SUFFIX, 1},
11581 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11582 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11583 {NULL, 0, 0, 0}
11584 };
11585 \f
11586 enum ada_primitive_types {
11587 ada_primitive_type_int,
11588 ada_primitive_type_long,
11589 ada_primitive_type_short,
11590 ada_primitive_type_char,
11591 ada_primitive_type_float,
11592 ada_primitive_type_double,
11593 ada_primitive_type_void,
11594 ada_primitive_type_long_long,
11595 ada_primitive_type_long_double,
11596 ada_primitive_type_natural,
11597 ada_primitive_type_positive,
11598 ada_primitive_type_system_address,
11599 nr_ada_primitive_types
11600 };
11601
11602 static void
11603 ada_language_arch_info (struct gdbarch *gdbarch,
11604 struct language_arch_info *lai)
11605 {
11606 const struct builtin_type *builtin = builtin_type (gdbarch);
11607
11608 lai->primitive_type_vector
11609 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11610 struct type *);
11611
11612 lai->primitive_type_vector [ada_primitive_type_int]
11613 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11614 0, "integer");
11615 lai->primitive_type_vector [ada_primitive_type_long]
11616 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11617 0, "long_integer");
11618 lai->primitive_type_vector [ada_primitive_type_short]
11619 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11620 0, "short_integer");
11621 lai->string_char_type
11622 = lai->primitive_type_vector [ada_primitive_type_char]
11623 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11624 lai->primitive_type_vector [ada_primitive_type_float]
11625 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11626 "float", NULL);
11627 lai->primitive_type_vector [ada_primitive_type_double]
11628 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11629 "long_float", NULL);
11630 lai->primitive_type_vector [ada_primitive_type_long_long]
11631 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11632 0, "long_long_integer");
11633 lai->primitive_type_vector [ada_primitive_type_long_double]
11634 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11635 "long_long_float", NULL);
11636 lai->primitive_type_vector [ada_primitive_type_natural]
11637 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11638 0, "natural");
11639 lai->primitive_type_vector [ada_primitive_type_positive]
11640 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11641 0, "positive");
11642 lai->primitive_type_vector [ada_primitive_type_void]
11643 = builtin->builtin_void;
11644
11645 lai->primitive_type_vector [ada_primitive_type_system_address]
11646 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11647 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11648 = "system__address";
11649
11650 lai->bool_type_symbol = NULL;
11651 lai->bool_type_default = builtin->builtin_bool;
11652 }
11653 \f
11654 /* Language vector */
11655
11656 /* Not really used, but needed in the ada_language_defn. */
11657
11658 static void
11659 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11660 {
11661 ada_emit_char (c, type, stream, quoter, 1);
11662 }
11663
11664 static int
11665 parse (void)
11666 {
11667 warnings_issued = 0;
11668 return ada_parse ();
11669 }
11670
11671 static const struct exp_descriptor ada_exp_descriptor = {
11672 ada_print_subexp,
11673 ada_operator_length,
11674 ada_operator_check,
11675 ada_op_name,
11676 ada_dump_subexp_body,
11677 ada_evaluate_subexp
11678 };
11679
11680 const struct language_defn ada_language_defn = {
11681 "ada", /* Language name */
11682 language_ada,
11683 range_check_off,
11684 type_check_off,
11685 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11686 that's not quite what this means. */
11687 array_row_major,
11688 macro_expansion_no,
11689 &ada_exp_descriptor,
11690 parse,
11691 ada_error,
11692 resolve,
11693 ada_printchar, /* Print a character constant */
11694 ada_printstr, /* Function to print string constant */
11695 emit_char, /* Function to print single char (not used) */
11696 ada_print_type, /* Print a type using appropriate syntax */
11697 ada_print_typedef, /* Print a typedef using appropriate syntax */
11698 ada_val_print, /* Print a value using appropriate syntax */
11699 ada_value_print, /* Print a top-level value */
11700 NULL, /* Language specific skip_trampoline */
11701 NULL, /* name_of_this */
11702 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11703 basic_lookup_transparent_type, /* lookup_transparent_type */
11704 ada_la_decode, /* Language specific symbol demangler */
11705 NULL, /* Language specific class_name_from_physname */
11706 ada_op_print_tab, /* expression operators for printing */
11707 0, /* c-style arrays */
11708 1, /* String lower bound */
11709 ada_get_gdb_completer_word_break_characters,
11710 ada_make_symbol_completion_list,
11711 ada_language_arch_info,
11712 ada_print_array_index,
11713 default_pass_by_reference,
11714 c_get_string,
11715 LANG_MAGIC
11716 };
11717
11718 /* Provide a prototype to silence -Wmissing-prototypes. */
11719 extern initialize_file_ftype _initialize_ada_language;
11720
11721 /* Command-list for the "set/show ada" prefix command. */
11722 static struct cmd_list_element *set_ada_list;
11723 static struct cmd_list_element *show_ada_list;
11724
11725 /* Implement the "set ada" prefix command. */
11726
11727 static void
11728 set_ada_command (char *arg, int from_tty)
11729 {
11730 printf_unfiltered (_(\
11731 "\"set ada\" must be followed by the name of a setting.\n"));
11732 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11733 }
11734
11735 /* Implement the "show ada" prefix command. */
11736
11737 static void
11738 show_ada_command (char *args, int from_tty)
11739 {
11740 cmd_show_list (show_ada_list, from_tty, "");
11741 }
11742
11743 void
11744 _initialize_ada_language (void)
11745 {
11746 add_language (&ada_language_defn);
11747
11748 add_prefix_cmd ("ada", no_class, set_ada_command,
11749 _("Prefix command for changing Ada-specfic settings"),
11750 &set_ada_list, "set ada ", 0, &setlist);
11751
11752 add_prefix_cmd ("ada", no_class, show_ada_command,
11753 _("Generic command for showing Ada-specific settings."),
11754 &show_ada_list, "show ada ", 0, &showlist);
11755
11756 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11757 &trust_pad_over_xvs, _("\
11758 Enable or disable an optimization trusting PAD types over XVS types"), _("\
11759 Show whether an optimization trusting PAD types over XVS types is activated"),
11760 _("\
11761 This is related to the encoding used by the GNAT compiler. The debugger\n\
11762 should normally trust the contents of PAD types, but certain older versions\n\
11763 of GNAT have a bug that sometimes causes the information in the PAD type\n\
11764 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11765 work around this bug. It is always safe to turn this option \"off\", but\n\
11766 this incurs a slight performance penalty, so it is recommended to NOT change\n\
11767 this option to \"off\" unless necessary."),
11768 NULL, NULL, &set_ada_list, &show_ada_list);
11769
11770 varsize_limit = 65536;
11771
11772 obstack_init (&symbol_list_obstack);
11773
11774 decoded_names_store = htab_create_alloc
11775 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11776 NULL, xcalloc, xfree);
11777
11778 observer_attach_executable_changed (ada_executable_changed_observer);
11779
11780 /* Setup per-inferior data. */
11781 observer_attach_inferior_exit (ada_inferior_exit);
11782 ada_inferior_data
11783 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
11784 }
This page took 0.311136 seconds and 4 git commands to generate.