Add constructor and destructor to demangle_parse_info
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static int full_match (const char *, const char *);
105
106 static struct value *make_array_descriptor (struct type *, struct value *);
107
108 static void ada_add_block_symbols (struct obstack *,
109 const struct block *, const char *,
110 domain_enum, struct objfile *, int);
111
112 static void ada_add_all_symbols (struct obstack *, const struct block *,
113 const char *, domain_enum, int, int *);
114
115 static int is_nonfunction (struct block_symbol *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 const struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct block_symbol *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, const struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 const struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (struct type *, struct value *);
169
170 static struct type *to_static_fixed_type (struct type *);
171 static struct type *static_unwrap_type (struct type *type);
172
173 static struct value *unwrap_value (struct value *);
174
175 static struct type *constrained_packed_array_type (struct type *, long *);
176
177 static struct type *decode_constrained_packed_array_type (struct type *);
178
179 static long decode_packed_array_bitsize (struct type *);
180
181 static struct value *decode_constrained_packed_array (struct value *);
182
183 static int ada_is_packed_array_type (struct type *);
184
185 static int ada_is_unconstrained_packed_array_type (struct type *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int advance_wild_match (const char **, const char *, int);
204
205 static int wild_match (const char *, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (const char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (const char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static int ada_resolve_function (struct block_symbol *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234 static int ada_is_direct_array_type (struct type *);
235
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
238
239 static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242 static struct value *assign_aggregate (struct value *, struct value *,
243 struct expression *,
244 int *, enum noside);
245
246 static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251 static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257 static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268 static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
270
271 static struct type *ada_find_any_type (const char *name);
272 \f
273
274 /* The result of a symbol lookup to be stored in our symbol cache. */
275
276 struct cache_entry
277 {
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
281 domain_enum domain;
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290 };
291
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301 #define HASH_SIZE 1009
302
303 struct ada_symbol_cache
304 {
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310 };
311
312 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
313
314 /* Maximum-sized dynamic type. */
315 static unsigned int varsize_limit;
316
317 /* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319 static char *ada_completer_word_break_characters =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Space for allocating results of ada_lookup_symbol_list. */
346 static struct obstack symbol_list_obstack;
347
348 /* Maintenance-related settings for this module. */
349
350 static struct cmd_list_element *maint_set_ada_cmdlist;
351 static struct cmd_list_element *maint_show_ada_cmdlist;
352
353 /* Implement the "maintenance set ada" (prefix) command. */
354
355 static void
356 maint_set_ada_cmd (char *args, int from_tty)
357 {
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
360 }
361
362 /* Implement the "maintenance show ada" (prefix) command. */
363
364 static void
365 maint_show_ada_cmd (char *args, int from_tty)
366 {
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368 }
369
370 /* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372 static int ada_ignore_descriptive_types_p = 0;
373
374 /* Inferior-specific data. */
375
376 /* Per-inferior data for this module. */
377
378 struct ada_inferior_data
379 {
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
390 };
391
392 /* Our key to this module's inferior data. */
393 static const struct inferior_data *ada_inferior_data;
394
395 /* A cleanup routine for our inferior data. */
396 static void
397 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398 {
399 struct ada_inferior_data *data;
400
401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
402 if (data != NULL)
403 xfree (data);
404 }
405
406 /* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414 static struct ada_inferior_data *
415 get_ada_inferior_data (struct inferior *inf)
416 {
417 struct ada_inferior_data *data;
418
419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
420 if (data == NULL)
421 {
422 data = XCNEW (struct ada_inferior_data);
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427 }
428
429 /* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432 static void
433 ada_inferior_exit (struct inferior *inf)
434 {
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437 }
438
439
440 /* program-space-specific data. */
441
442 /* This module's per-program-space data. */
443 struct ada_pspace_data
444 {
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447 };
448
449 /* Key to our per-program-space data. */
450 static const struct program_space_data *ada_pspace_data_handle;
451
452 /* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457 static struct ada_pspace_data *
458 get_ada_pspace_data (struct program_space *pspace)
459 {
460 struct ada_pspace_data *data;
461
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471 }
472
473 /* The cleanup callback for this module's per-program-space data. */
474
475 static void
476 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477 {
478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483 }
484
485 /* Utilities */
486
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514 static struct type *
515 ada_typedef_target_type (struct type *type)
516 {
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520 }
521
522 /* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526 static const char *
527 ada_unqualified_name (const char *decoded_name)
528 {
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545 }
546
547 /* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550 static char *
551 add_angle_brackets (const char *str)
552 {
553 static char *result = NULL;
554
555 xfree (result);
556 result = xstrprintf ("<%s>", str);
557 return result;
558 }
559
560 static char *
561 ada_get_gdb_completer_word_break_characters (void)
562 {
563 return ada_completer_word_break_characters;
564 }
565
566 /* Print an array element index using the Ada syntax. */
567
568 static void
569 ada_print_array_index (struct value *index_value, struct ui_file *stream,
570 const struct value_print_options *options)
571 {
572 LA_VALUE_PRINT (index_value, stream, options);
573 fprintf_filtered (stream, " => ");
574 }
575
576 /* Assuming VECT points to an array of *SIZE objects of size
577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
578 updating *SIZE as necessary and returning the (new) array. */
579
580 void *
581 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
582 {
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
587 *size = min_size;
588 vect = xrealloc (vect, *size * element_size);
589 }
590 return vect;
591 }
592
593 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
594 suffix of FIELD_NAME beginning "___". */
595
596 static int
597 field_name_match (const char *field_name, const char *target)
598 {
599 int len = strlen (target);
600
601 return
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
604 || (startswith (field_name + len, "___")
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
607 }
608
609
610 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
617
618 int
619 ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621 {
622 int fieldno;
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
627 return fieldno;
628
629 if (!maybe_missing)
630 error (_("Unable to find field %s in struct %s. Aborting"),
631 field_name, TYPE_NAME (struct_type));
632
633 return -1;
634 }
635
636 /* The length of the prefix of NAME prior to any "___" suffix. */
637
638 int
639 ada_name_prefix_len (const char *name)
640 {
641 if (name == NULL)
642 return 0;
643 else
644 {
645 const char *p = strstr (name, "___");
646
647 if (p == NULL)
648 return strlen (name);
649 else
650 return p - name;
651 }
652 }
653
654 /* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
657 static int
658 is_suffix (const char *str, const char *suffix)
659 {
660 int len1, len2;
661
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
667 }
668
669 /* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
671
672 static struct value *
673 coerce_unspec_val_to_type (struct value *val, struct type *type)
674 {
675 type = ada_check_typedef (type);
676 if (value_type (val) == type)
677 return val;
678 else
679 {
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
684 ada_ensure_varsize_limit (type);
685
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
693 }
694 set_value_component_location (result, val);
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
697 set_value_address (result, value_address (val));
698 return result;
699 }
700 }
701
702 static const gdb_byte *
703 cond_offset_host (const gdb_byte *valaddr, long offset)
704 {
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709 }
710
711 static CORE_ADDR
712 cond_offset_target (CORE_ADDR address, long offset)
713 {
714 if (address == 0)
715 return 0;
716 else
717 return address + offset;
718 }
719
720 /* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
724
725 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
727 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
728
729 static void
730 lim_warning (const char *format, ...)
731 {
732 va_list args;
733
734 va_start (args, format);
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
737 vwarning (format, args);
738
739 va_end (args);
740 }
741
742 /* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
746 void
747 ada_ensure_varsize_limit (const struct type *type)
748 {
749 if (TYPE_LENGTH (type) > varsize_limit)
750 error (_("object size is larger than varsize-limit"));
751 }
752
753 /* Maximum value of a SIZE-byte signed integer type. */
754 static LONGEST
755 max_of_size (int size)
756 {
757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
758
759 return top_bit | (top_bit - 1);
760 }
761
762 /* Minimum value of a SIZE-byte signed integer type. */
763 static LONGEST
764 min_of_size (int size)
765 {
766 return -max_of_size (size) - 1;
767 }
768
769 /* Maximum value of a SIZE-byte unsigned integer type. */
770 static ULONGEST
771 umax_of_size (int size)
772 {
773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
774
775 return top_bit | (top_bit - 1);
776 }
777
778 /* Maximum value of integral type T, as a signed quantity. */
779 static LONGEST
780 max_of_type (struct type *t)
781 {
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786 }
787
788 /* Minimum value of integral type T, as a signed quantity. */
789 static LONGEST
790 min_of_type (struct type *t)
791 {
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
796 }
797
798 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
799 LONGEST
800 ada_discrete_type_high_bound (struct type *type)
801 {
802 type = resolve_dynamic_type (type, NULL, 0);
803 switch (TYPE_CODE (type))
804 {
805 case TYPE_CODE_RANGE:
806 return TYPE_HIGH_BOUND (type);
807 case TYPE_CODE_ENUM:
808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
812 case TYPE_CODE_INT:
813 return max_of_type (type);
814 default:
815 error (_("Unexpected type in ada_discrete_type_high_bound."));
816 }
817 }
818
819 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
820 LONGEST
821 ada_discrete_type_low_bound (struct type *type)
822 {
823 type = resolve_dynamic_type (type, NULL, 0);
824 switch (TYPE_CODE (type))
825 {
826 case TYPE_CODE_RANGE:
827 return TYPE_LOW_BOUND (type);
828 case TYPE_CODE_ENUM:
829 return TYPE_FIELD_ENUMVAL (type, 0);
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
833 case TYPE_CODE_INT:
834 return min_of_type (type);
835 default:
836 error (_("Unexpected type in ada_discrete_type_low_bound."));
837 }
838 }
839
840 /* The identity on non-range types. For range types, the underlying
841 non-range scalar type. */
842
843 static struct type *
844 get_base_type (struct type *type)
845 {
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
853 }
854
855 /* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860 struct value *
861 ada_get_decoded_value (struct value *value)
862 {
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878 }
879
880 /* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885 struct type *
886 ada_get_decoded_type (struct type *type)
887 {
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892 }
893
894 \f
895
896 /* Language Selection */
897
898 /* If the main program is in Ada, return language_ada, otherwise return LANG
899 (the main program is in Ada iif the adainit symbol is found). */
900
901 enum language
902 ada_update_initial_language (enum language lang)
903 {
904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
905 (struct objfile *) NULL).minsym != NULL)
906 return language_ada;
907
908 return lang;
909 }
910
911 /* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915 char *
916 ada_main_name (void)
917 {
918 struct bound_minimal_symbol msym;
919 static char *main_program_name = NULL;
920
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
928 if (msym.minsym != NULL)
929 {
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
934 if (main_program_name_addr == 0)
935 error (_("Invalid address for Ada main program name."));
936
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948 }
949 \f
950 /* Symbols */
951
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
954
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
978 };
979
980 /* The "encoded" form of DECODED, according to GNAT conventions.
981 The result is valid until the next call to ada_encode. */
982
983 char *
984 ada_encode (const char *decoded)
985 {
986 static char *encoding_buffer = NULL;
987 static size_t encoding_buffer_size = 0;
988 const char *p;
989 int k;
990
991 if (decoded == NULL)
992 return NULL;
993
994 GROW_VECT (encoding_buffer, encoding_buffer_size,
995 2 * strlen (decoded) + 10);
996
997 k = 0;
998 for (p = decoded; *p != '\0'; p += 1)
999 {
1000 if (*p == '.')
1001 {
1002 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1003 k += 2;
1004 }
1005 else if (*p == '"')
1006 {
1007 const struct ada_opname_map *mapping;
1008
1009 for (mapping = ada_opname_table;
1010 mapping->encoded != NULL
1011 && !startswith (p, mapping->decoded); mapping += 1)
1012 ;
1013 if (mapping->encoded == NULL)
1014 error (_("invalid Ada operator name: %s"), p);
1015 strcpy (encoding_buffer + k, mapping->encoded);
1016 k += strlen (mapping->encoded);
1017 break;
1018 }
1019 else
1020 {
1021 encoding_buffer[k] = *p;
1022 k += 1;
1023 }
1024 }
1025
1026 encoding_buffer[k] = '\0';
1027 return encoding_buffer;
1028 }
1029
1030 /* Return NAME folded to lower case, or, if surrounded by single
1031 quotes, unfolded, but with the quotes stripped away. Result good
1032 to next call. */
1033
1034 char *
1035 ada_fold_name (const char *name)
1036 {
1037 static char *fold_buffer = NULL;
1038 static size_t fold_buffer_size = 0;
1039
1040 int len = strlen (name);
1041 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1042
1043 if (name[0] == '\'')
1044 {
1045 strncpy (fold_buffer, name + 1, len - 2);
1046 fold_buffer[len - 2] = '\000';
1047 }
1048 else
1049 {
1050 int i;
1051
1052 for (i = 0; i <= len; i += 1)
1053 fold_buffer[i] = tolower (name[i]);
1054 }
1055
1056 return fold_buffer;
1057 }
1058
1059 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1060
1061 static int
1062 is_lower_alphanum (const char c)
1063 {
1064 return (isdigit (c) || (isalpha (c) && islower (c)));
1065 }
1066
1067 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1068 This function saves in LEN the length of that same symbol name but
1069 without either of these suffixes:
1070 . .{DIGIT}+
1071 . ${DIGIT}+
1072 . ___{DIGIT}+
1073 . __{DIGIT}+.
1074
1075 These are suffixes introduced by the compiler for entities such as
1076 nested subprogram for instance, in order to avoid name clashes.
1077 They do not serve any purpose for the debugger. */
1078
1079 static void
1080 ada_remove_trailing_digits (const char *encoded, int *len)
1081 {
1082 if (*len > 1 && isdigit (encoded[*len - 1]))
1083 {
1084 int i = *len - 2;
1085
1086 while (i > 0 && isdigit (encoded[i]))
1087 i--;
1088 if (i >= 0 && encoded[i] == '.')
1089 *len = i;
1090 else if (i >= 0 && encoded[i] == '$')
1091 *len = i;
1092 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1093 *len = i - 2;
1094 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1095 *len = i - 1;
1096 }
1097 }
1098
1099 /* Remove the suffix introduced by the compiler for protected object
1100 subprograms. */
1101
1102 static void
1103 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1104 {
1105 /* Remove trailing N. */
1106
1107 /* Protected entry subprograms are broken into two
1108 separate subprograms: The first one is unprotected, and has
1109 a 'N' suffix; the second is the protected version, and has
1110 the 'P' suffix. The second calls the first one after handling
1111 the protection. Since the P subprograms are internally generated,
1112 we leave these names undecoded, giving the user a clue that this
1113 entity is internal. */
1114
1115 if (*len > 1
1116 && encoded[*len - 1] == 'N'
1117 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1118 *len = *len - 1;
1119 }
1120
1121 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1122
1123 static void
1124 ada_remove_Xbn_suffix (const char *encoded, int *len)
1125 {
1126 int i = *len - 1;
1127
1128 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1129 i--;
1130
1131 if (encoded[i] != 'X')
1132 return;
1133
1134 if (i == 0)
1135 return;
1136
1137 if (isalnum (encoded[i-1]))
1138 *len = i;
1139 }
1140
1141 /* If ENCODED follows the GNAT entity encoding conventions, then return
1142 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1143 replaced by ENCODED.
1144
1145 The resulting string is valid until the next call of ada_decode.
1146 If the string is unchanged by decoding, the original string pointer
1147 is returned. */
1148
1149 const char *
1150 ada_decode (const char *encoded)
1151 {
1152 int i, j;
1153 int len0;
1154 const char *p;
1155 char *decoded;
1156 int at_start_name;
1157 static char *decoding_buffer = NULL;
1158 static size_t decoding_buffer_size = 0;
1159
1160 /* The name of the Ada main procedure starts with "_ada_".
1161 This prefix is not part of the decoded name, so skip this part
1162 if we see this prefix. */
1163 if (startswith (encoded, "_ada_"))
1164 encoded += 5;
1165
1166 /* If the name starts with '_', then it is not a properly encoded
1167 name, so do not attempt to decode it. Similarly, if the name
1168 starts with '<', the name should not be decoded. */
1169 if (encoded[0] == '_' || encoded[0] == '<')
1170 goto Suppress;
1171
1172 len0 = strlen (encoded);
1173
1174 ada_remove_trailing_digits (encoded, &len0);
1175 ada_remove_po_subprogram_suffix (encoded, &len0);
1176
1177 /* Remove the ___X.* suffix if present. Do not forget to verify that
1178 the suffix is located before the current "end" of ENCODED. We want
1179 to avoid re-matching parts of ENCODED that have previously been
1180 marked as discarded (by decrementing LEN0). */
1181 p = strstr (encoded, "___");
1182 if (p != NULL && p - encoded < len0 - 3)
1183 {
1184 if (p[3] == 'X')
1185 len0 = p - encoded;
1186 else
1187 goto Suppress;
1188 }
1189
1190 /* Remove any trailing TKB suffix. It tells us that this symbol
1191 is for the body of a task, but that information does not actually
1192 appear in the decoded name. */
1193
1194 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1195 len0 -= 3;
1196
1197 /* Remove any trailing TB suffix. The TB suffix is slightly different
1198 from the TKB suffix because it is used for non-anonymous task
1199 bodies. */
1200
1201 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1202 len0 -= 2;
1203
1204 /* Remove trailing "B" suffixes. */
1205 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1206
1207 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1208 len0 -= 1;
1209
1210 /* Make decoded big enough for possible expansion by operator name. */
1211
1212 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1213 decoded = decoding_buffer;
1214
1215 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1216
1217 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1218 {
1219 i = len0 - 2;
1220 while ((i >= 0 && isdigit (encoded[i]))
1221 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1222 i -= 1;
1223 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1224 len0 = i - 1;
1225 else if (encoded[i] == '$')
1226 len0 = i;
1227 }
1228
1229 /* The first few characters that are not alphabetic are not part
1230 of any encoding we use, so we can copy them over verbatim. */
1231
1232 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1233 decoded[j] = encoded[i];
1234
1235 at_start_name = 1;
1236 while (i < len0)
1237 {
1238 /* Is this a symbol function? */
1239 if (at_start_name && encoded[i] == 'O')
1240 {
1241 int k;
1242
1243 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1244 {
1245 int op_len = strlen (ada_opname_table[k].encoded);
1246 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1247 op_len - 1) == 0)
1248 && !isalnum (encoded[i + op_len]))
1249 {
1250 strcpy (decoded + j, ada_opname_table[k].decoded);
1251 at_start_name = 0;
1252 i += op_len;
1253 j += strlen (ada_opname_table[k].decoded);
1254 break;
1255 }
1256 }
1257 if (ada_opname_table[k].encoded != NULL)
1258 continue;
1259 }
1260 at_start_name = 0;
1261
1262 /* Replace "TK__" with "__", which will eventually be translated
1263 into "." (just below). */
1264
1265 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1266 i += 2;
1267
1268 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269 be translated into "." (just below). These are internal names
1270 generated for anonymous blocks inside which our symbol is nested. */
1271
1272 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1273 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1274 && isdigit (encoded [i+4]))
1275 {
1276 int k = i + 5;
1277
1278 while (k < len0 && isdigit (encoded[k]))
1279 k++; /* Skip any extra digit. */
1280
1281 /* Double-check that the "__B_{DIGITS}+" sequence we found
1282 is indeed followed by "__". */
1283 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1284 i = k;
1285 }
1286
1287 /* Remove _E{DIGITS}+[sb] */
1288
1289 /* Just as for protected object subprograms, there are 2 categories
1290 of subprograms created by the compiler for each entry. The first
1291 one implements the actual entry code, and has a suffix following
1292 the convention above; the second one implements the barrier and
1293 uses the same convention as above, except that the 'E' is replaced
1294 by a 'B'.
1295
1296 Just as above, we do not decode the name of barrier functions
1297 to give the user a clue that the code he is debugging has been
1298 internally generated. */
1299
1300 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1301 && isdigit (encoded[i+2]))
1302 {
1303 int k = i + 3;
1304
1305 while (k < len0 && isdigit (encoded[k]))
1306 k++;
1307
1308 if (k < len0
1309 && (encoded[k] == 'b' || encoded[k] == 's'))
1310 {
1311 k++;
1312 /* Just as an extra precaution, make sure that if this
1313 suffix is followed by anything else, it is a '_'.
1314 Otherwise, we matched this sequence by accident. */
1315 if (k == len0
1316 || (k < len0 && encoded[k] == '_'))
1317 i = k;
1318 }
1319 }
1320
1321 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1322 the GNAT front-end in protected object subprograms. */
1323
1324 if (i < len0 + 3
1325 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1326 {
1327 /* Backtrack a bit up until we reach either the begining of
1328 the encoded name, or "__". Make sure that we only find
1329 digits or lowercase characters. */
1330 const char *ptr = encoded + i - 1;
1331
1332 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1333 ptr--;
1334 if (ptr < encoded
1335 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1336 i++;
1337 }
1338
1339 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1340 {
1341 /* This is a X[bn]* sequence not separated from the previous
1342 part of the name with a non-alpha-numeric character (in other
1343 words, immediately following an alpha-numeric character), then
1344 verify that it is placed at the end of the encoded name. If
1345 not, then the encoding is not valid and we should abort the
1346 decoding. Otherwise, just skip it, it is used in body-nested
1347 package names. */
1348 do
1349 i += 1;
1350 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1351 if (i < len0)
1352 goto Suppress;
1353 }
1354 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1355 {
1356 /* Replace '__' by '.'. */
1357 decoded[j] = '.';
1358 at_start_name = 1;
1359 i += 2;
1360 j += 1;
1361 }
1362 else
1363 {
1364 /* It's a character part of the decoded name, so just copy it
1365 over. */
1366 decoded[j] = encoded[i];
1367 i += 1;
1368 j += 1;
1369 }
1370 }
1371 decoded[j] = '\000';
1372
1373 /* Decoded names should never contain any uppercase character.
1374 Double-check this, and abort the decoding if we find one. */
1375
1376 for (i = 0; decoded[i] != '\0'; i += 1)
1377 if (isupper (decoded[i]) || decoded[i] == ' ')
1378 goto Suppress;
1379
1380 if (strcmp (decoded, encoded) == 0)
1381 return encoded;
1382 else
1383 return decoded;
1384
1385 Suppress:
1386 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1387 decoded = decoding_buffer;
1388 if (encoded[0] == '<')
1389 strcpy (decoded, encoded);
1390 else
1391 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1392 return decoded;
1393
1394 }
1395
1396 /* Table for keeping permanent unique copies of decoded names. Once
1397 allocated, names in this table are never released. While this is a
1398 storage leak, it should not be significant unless there are massive
1399 changes in the set of decoded names in successive versions of a
1400 symbol table loaded during a single session. */
1401 static struct htab *decoded_names_store;
1402
1403 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404 in the language-specific part of GSYMBOL, if it has not been
1405 previously computed. Tries to save the decoded name in the same
1406 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407 in any case, the decoded symbol has a lifetime at least that of
1408 GSYMBOL).
1409 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410 const, but nevertheless modified to a semantically equivalent form
1411 when a decoded name is cached in it. */
1412
1413 const char *
1414 ada_decode_symbol (const struct general_symbol_info *arg)
1415 {
1416 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1417 const char **resultp =
1418 &gsymbol->language_specific.demangled_name;
1419
1420 if (!gsymbol->ada_mangled)
1421 {
1422 const char *decoded = ada_decode (gsymbol->name);
1423 struct obstack *obstack = gsymbol->language_specific.obstack;
1424
1425 gsymbol->ada_mangled = 1;
1426
1427 if (obstack != NULL)
1428 *resultp
1429 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1430 else
1431 {
1432 /* Sometimes, we can't find a corresponding objfile, in
1433 which case, we put the result on the heap. Since we only
1434 decode when needed, we hope this usually does not cause a
1435 significant memory leak (FIXME). */
1436
1437 char **slot = (char **) htab_find_slot (decoded_names_store,
1438 decoded, INSERT);
1439
1440 if (*slot == NULL)
1441 *slot = xstrdup (decoded);
1442 *resultp = *slot;
1443 }
1444 }
1445
1446 return *resultp;
1447 }
1448
1449 static char *
1450 ada_la_decode (const char *encoded, int options)
1451 {
1452 return xstrdup (ada_decode (encoded));
1453 }
1454
1455 /* Implement la_sniff_from_mangled_name for Ada. */
1456
1457 static int
1458 ada_sniff_from_mangled_name (const char *mangled, char **out)
1459 {
1460 const char *demangled = ada_decode (mangled);
1461
1462 *out = NULL;
1463
1464 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1465 {
1466 /* Set the gsymbol language to Ada, but still return 0.
1467 Two reasons for that:
1468
1469 1. For Ada, we prefer computing the symbol's decoded name
1470 on the fly rather than pre-compute it, in order to save
1471 memory (Ada projects are typically very large).
1472
1473 2. There are some areas in the definition of the GNAT
1474 encoding where, with a bit of bad luck, we might be able
1475 to decode a non-Ada symbol, generating an incorrect
1476 demangled name (Eg: names ending with "TB" for instance
1477 are identified as task bodies and so stripped from
1478 the decoded name returned).
1479
1480 Returning 1, here, but not setting *DEMANGLED, helps us get a
1481 little bit of the best of both worlds. Because we're last,
1482 we should not affect any of the other languages that were
1483 able to demangle the symbol before us; we get to correctly
1484 tag Ada symbols as such; and even if we incorrectly tagged a
1485 non-Ada symbol, which should be rare, any routing through the
1486 Ada language should be transparent (Ada tries to behave much
1487 like C/C++ with non-Ada symbols). */
1488 return 1;
1489 }
1490
1491 return 0;
1492 }
1493
1494 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1495 suffixes that encode debugging information or leading _ada_ on
1496 SYM_NAME (see is_name_suffix commentary for the debugging
1497 information that is ignored). If WILD, then NAME need only match a
1498 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1499 either argument is NULL. */
1500
1501 static int
1502 match_name (const char *sym_name, const char *name, int wild)
1503 {
1504 if (sym_name == NULL || name == NULL)
1505 return 0;
1506 else if (wild)
1507 return wild_match (sym_name, name) == 0;
1508 else
1509 {
1510 int len_name = strlen (name);
1511
1512 return (strncmp (sym_name, name, len_name) == 0
1513 && is_name_suffix (sym_name + len_name))
1514 || (startswith (sym_name, "_ada_")
1515 && strncmp (sym_name + 5, name, len_name) == 0
1516 && is_name_suffix (sym_name + len_name + 5));
1517 }
1518 }
1519 \f
1520
1521 /* Arrays */
1522
1523 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1524 generated by the GNAT compiler to describe the index type used
1525 for each dimension of an array, check whether it follows the latest
1526 known encoding. If not, fix it up to conform to the latest encoding.
1527 Otherwise, do nothing. This function also does nothing if
1528 INDEX_DESC_TYPE is NULL.
1529
1530 The GNAT encoding used to describle the array index type evolved a bit.
1531 Initially, the information would be provided through the name of each
1532 field of the structure type only, while the type of these fields was
1533 described as unspecified and irrelevant. The debugger was then expected
1534 to perform a global type lookup using the name of that field in order
1535 to get access to the full index type description. Because these global
1536 lookups can be very expensive, the encoding was later enhanced to make
1537 the global lookup unnecessary by defining the field type as being
1538 the full index type description.
1539
1540 The purpose of this routine is to allow us to support older versions
1541 of the compiler by detecting the use of the older encoding, and by
1542 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1543 we essentially replace each field's meaningless type by the associated
1544 index subtype). */
1545
1546 void
1547 ada_fixup_array_indexes_type (struct type *index_desc_type)
1548 {
1549 int i;
1550
1551 if (index_desc_type == NULL)
1552 return;
1553 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1554
1555 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1556 to check one field only, no need to check them all). If not, return
1557 now.
1558
1559 If our INDEX_DESC_TYPE was generated using the older encoding,
1560 the field type should be a meaningless integer type whose name
1561 is not equal to the field name. */
1562 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1563 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1564 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1565 return;
1566
1567 /* Fixup each field of INDEX_DESC_TYPE. */
1568 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1569 {
1570 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1571 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1572
1573 if (raw_type)
1574 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1575 }
1576 }
1577
1578 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1579
1580 static char *bound_name[] = {
1581 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1582 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1583 };
1584
1585 /* Maximum number of array dimensions we are prepared to handle. */
1586
1587 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1588
1589
1590 /* The desc_* routines return primitive portions of array descriptors
1591 (fat pointers). */
1592
1593 /* The descriptor or array type, if any, indicated by TYPE; removes
1594 level of indirection, if needed. */
1595
1596 static struct type *
1597 desc_base_type (struct type *type)
1598 {
1599 if (type == NULL)
1600 return NULL;
1601 type = ada_check_typedef (type);
1602 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1603 type = ada_typedef_target_type (type);
1604
1605 if (type != NULL
1606 && (TYPE_CODE (type) == TYPE_CODE_PTR
1607 || TYPE_CODE (type) == TYPE_CODE_REF))
1608 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1609 else
1610 return type;
1611 }
1612
1613 /* True iff TYPE indicates a "thin" array pointer type. */
1614
1615 static int
1616 is_thin_pntr (struct type *type)
1617 {
1618 return
1619 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1620 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1621 }
1622
1623 /* The descriptor type for thin pointer type TYPE. */
1624
1625 static struct type *
1626 thin_descriptor_type (struct type *type)
1627 {
1628 struct type *base_type = desc_base_type (type);
1629
1630 if (base_type == NULL)
1631 return NULL;
1632 if (is_suffix (ada_type_name (base_type), "___XVE"))
1633 return base_type;
1634 else
1635 {
1636 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1637
1638 if (alt_type == NULL)
1639 return base_type;
1640 else
1641 return alt_type;
1642 }
1643 }
1644
1645 /* A pointer to the array data for thin-pointer value VAL. */
1646
1647 static struct value *
1648 thin_data_pntr (struct value *val)
1649 {
1650 struct type *type = ada_check_typedef (value_type (val));
1651 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1652
1653 data_type = lookup_pointer_type (data_type);
1654
1655 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1656 return value_cast (data_type, value_copy (val));
1657 else
1658 return value_from_longest (data_type, value_address (val));
1659 }
1660
1661 /* True iff TYPE indicates a "thick" array pointer type. */
1662
1663 static int
1664 is_thick_pntr (struct type *type)
1665 {
1666 type = desc_base_type (type);
1667 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1668 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1669 }
1670
1671 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1672 pointer to one, the type of its bounds data; otherwise, NULL. */
1673
1674 static struct type *
1675 desc_bounds_type (struct type *type)
1676 {
1677 struct type *r;
1678
1679 type = desc_base_type (type);
1680
1681 if (type == NULL)
1682 return NULL;
1683 else if (is_thin_pntr (type))
1684 {
1685 type = thin_descriptor_type (type);
1686 if (type == NULL)
1687 return NULL;
1688 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1689 if (r != NULL)
1690 return ada_check_typedef (r);
1691 }
1692 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1693 {
1694 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1695 if (r != NULL)
1696 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1697 }
1698 return NULL;
1699 }
1700
1701 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1702 one, a pointer to its bounds data. Otherwise NULL. */
1703
1704 static struct value *
1705 desc_bounds (struct value *arr)
1706 {
1707 struct type *type = ada_check_typedef (value_type (arr));
1708
1709 if (is_thin_pntr (type))
1710 {
1711 struct type *bounds_type =
1712 desc_bounds_type (thin_descriptor_type (type));
1713 LONGEST addr;
1714
1715 if (bounds_type == NULL)
1716 error (_("Bad GNAT array descriptor"));
1717
1718 /* NOTE: The following calculation is not really kosher, but
1719 since desc_type is an XVE-encoded type (and shouldn't be),
1720 the correct calculation is a real pain. FIXME (and fix GCC). */
1721 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1722 addr = value_as_long (arr);
1723 else
1724 addr = value_address (arr);
1725
1726 return
1727 value_from_longest (lookup_pointer_type (bounds_type),
1728 addr - TYPE_LENGTH (bounds_type));
1729 }
1730
1731 else if (is_thick_pntr (type))
1732 {
1733 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1734 _("Bad GNAT array descriptor"));
1735 struct type *p_bounds_type = value_type (p_bounds);
1736
1737 if (p_bounds_type
1738 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1739 {
1740 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1741
1742 if (TYPE_STUB (target_type))
1743 p_bounds = value_cast (lookup_pointer_type
1744 (ada_check_typedef (target_type)),
1745 p_bounds);
1746 }
1747 else
1748 error (_("Bad GNAT array descriptor"));
1749
1750 return p_bounds;
1751 }
1752 else
1753 return NULL;
1754 }
1755
1756 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1757 position of the field containing the address of the bounds data. */
1758
1759 static int
1760 fat_pntr_bounds_bitpos (struct type *type)
1761 {
1762 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1763 }
1764
1765 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1766 size of the field containing the address of the bounds data. */
1767
1768 static int
1769 fat_pntr_bounds_bitsize (struct type *type)
1770 {
1771 type = desc_base_type (type);
1772
1773 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1774 return TYPE_FIELD_BITSIZE (type, 1);
1775 else
1776 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1777 }
1778
1779 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1780 pointer to one, the type of its array data (a array-with-no-bounds type);
1781 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1782 data. */
1783
1784 static struct type *
1785 desc_data_target_type (struct type *type)
1786 {
1787 type = desc_base_type (type);
1788
1789 /* NOTE: The following is bogus; see comment in desc_bounds. */
1790 if (is_thin_pntr (type))
1791 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1792 else if (is_thick_pntr (type))
1793 {
1794 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1795
1796 if (data_type
1797 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1798 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1799 }
1800
1801 return NULL;
1802 }
1803
1804 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1805 its array data. */
1806
1807 static struct value *
1808 desc_data (struct value *arr)
1809 {
1810 struct type *type = value_type (arr);
1811
1812 if (is_thin_pntr (type))
1813 return thin_data_pntr (arr);
1814 else if (is_thick_pntr (type))
1815 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1816 _("Bad GNAT array descriptor"));
1817 else
1818 return NULL;
1819 }
1820
1821
1822 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1823 position of the field containing the address of the data. */
1824
1825 static int
1826 fat_pntr_data_bitpos (struct type *type)
1827 {
1828 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1829 }
1830
1831 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1832 size of the field containing the address of the data. */
1833
1834 static int
1835 fat_pntr_data_bitsize (struct type *type)
1836 {
1837 type = desc_base_type (type);
1838
1839 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1840 return TYPE_FIELD_BITSIZE (type, 0);
1841 else
1842 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1843 }
1844
1845 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1846 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1847 bound, if WHICH is 1. The first bound is I=1. */
1848
1849 static struct value *
1850 desc_one_bound (struct value *bounds, int i, int which)
1851 {
1852 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1853 _("Bad GNAT array descriptor bounds"));
1854 }
1855
1856 /* If BOUNDS is an array-bounds structure type, return the bit position
1857 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1858 bound, if WHICH is 1. The first bound is I=1. */
1859
1860 static int
1861 desc_bound_bitpos (struct type *type, int i, int which)
1862 {
1863 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1864 }
1865
1866 /* If BOUNDS is an array-bounds structure type, return the bit field size
1867 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1868 bound, if WHICH is 1. The first bound is I=1. */
1869
1870 static int
1871 desc_bound_bitsize (struct type *type, int i, int which)
1872 {
1873 type = desc_base_type (type);
1874
1875 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1876 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1877 else
1878 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1879 }
1880
1881 /* If TYPE is the type of an array-bounds structure, the type of its
1882 Ith bound (numbering from 1). Otherwise, NULL. */
1883
1884 static struct type *
1885 desc_index_type (struct type *type, int i)
1886 {
1887 type = desc_base_type (type);
1888
1889 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1890 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1891 else
1892 return NULL;
1893 }
1894
1895 /* The number of index positions in the array-bounds type TYPE.
1896 Return 0 if TYPE is NULL. */
1897
1898 static int
1899 desc_arity (struct type *type)
1900 {
1901 type = desc_base_type (type);
1902
1903 if (type != NULL)
1904 return TYPE_NFIELDS (type) / 2;
1905 return 0;
1906 }
1907
1908 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1909 an array descriptor type (representing an unconstrained array
1910 type). */
1911
1912 static int
1913 ada_is_direct_array_type (struct type *type)
1914 {
1915 if (type == NULL)
1916 return 0;
1917 type = ada_check_typedef (type);
1918 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1919 || ada_is_array_descriptor_type (type));
1920 }
1921
1922 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1923 * to one. */
1924
1925 static int
1926 ada_is_array_type (struct type *type)
1927 {
1928 while (type != NULL
1929 && (TYPE_CODE (type) == TYPE_CODE_PTR
1930 || TYPE_CODE (type) == TYPE_CODE_REF))
1931 type = TYPE_TARGET_TYPE (type);
1932 return ada_is_direct_array_type (type);
1933 }
1934
1935 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1936
1937 int
1938 ada_is_simple_array_type (struct type *type)
1939 {
1940 if (type == NULL)
1941 return 0;
1942 type = ada_check_typedef (type);
1943 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1944 || (TYPE_CODE (type) == TYPE_CODE_PTR
1945 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1946 == TYPE_CODE_ARRAY));
1947 }
1948
1949 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1950
1951 int
1952 ada_is_array_descriptor_type (struct type *type)
1953 {
1954 struct type *data_type = desc_data_target_type (type);
1955
1956 if (type == NULL)
1957 return 0;
1958 type = ada_check_typedef (type);
1959 return (data_type != NULL
1960 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1961 && desc_arity (desc_bounds_type (type)) > 0);
1962 }
1963
1964 /* Non-zero iff type is a partially mal-formed GNAT array
1965 descriptor. FIXME: This is to compensate for some problems with
1966 debugging output from GNAT. Re-examine periodically to see if it
1967 is still needed. */
1968
1969 int
1970 ada_is_bogus_array_descriptor (struct type *type)
1971 {
1972 return
1973 type != NULL
1974 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1975 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1976 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1977 && !ada_is_array_descriptor_type (type);
1978 }
1979
1980
1981 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1982 (fat pointer) returns the type of the array data described---specifically,
1983 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1984 in from the descriptor; otherwise, they are left unspecified. If
1985 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1986 returns NULL. The result is simply the type of ARR if ARR is not
1987 a descriptor. */
1988 struct type *
1989 ada_type_of_array (struct value *arr, int bounds)
1990 {
1991 if (ada_is_constrained_packed_array_type (value_type (arr)))
1992 return decode_constrained_packed_array_type (value_type (arr));
1993
1994 if (!ada_is_array_descriptor_type (value_type (arr)))
1995 return value_type (arr);
1996
1997 if (!bounds)
1998 {
1999 struct type *array_type =
2000 ada_check_typedef (desc_data_target_type (value_type (arr)));
2001
2002 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2003 TYPE_FIELD_BITSIZE (array_type, 0) =
2004 decode_packed_array_bitsize (value_type (arr));
2005
2006 return array_type;
2007 }
2008 else
2009 {
2010 struct type *elt_type;
2011 int arity;
2012 struct value *descriptor;
2013
2014 elt_type = ada_array_element_type (value_type (arr), -1);
2015 arity = ada_array_arity (value_type (arr));
2016
2017 if (elt_type == NULL || arity == 0)
2018 return ada_check_typedef (value_type (arr));
2019
2020 descriptor = desc_bounds (arr);
2021 if (value_as_long (descriptor) == 0)
2022 return NULL;
2023 while (arity > 0)
2024 {
2025 struct type *range_type = alloc_type_copy (value_type (arr));
2026 struct type *array_type = alloc_type_copy (value_type (arr));
2027 struct value *low = desc_one_bound (descriptor, arity, 0);
2028 struct value *high = desc_one_bound (descriptor, arity, 1);
2029
2030 arity -= 1;
2031 create_static_range_type (range_type, value_type (low),
2032 longest_to_int (value_as_long (low)),
2033 longest_to_int (value_as_long (high)));
2034 elt_type = create_array_type (array_type, elt_type, range_type);
2035
2036 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2037 {
2038 /* We need to store the element packed bitsize, as well as
2039 recompute the array size, because it was previously
2040 computed based on the unpacked element size. */
2041 LONGEST lo = value_as_long (low);
2042 LONGEST hi = value_as_long (high);
2043
2044 TYPE_FIELD_BITSIZE (elt_type, 0) =
2045 decode_packed_array_bitsize (value_type (arr));
2046 /* If the array has no element, then the size is already
2047 zero, and does not need to be recomputed. */
2048 if (lo < hi)
2049 {
2050 int array_bitsize =
2051 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2052
2053 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2054 }
2055 }
2056 }
2057
2058 return lookup_pointer_type (elt_type);
2059 }
2060 }
2061
2062 /* If ARR does not represent an array, returns ARR unchanged.
2063 Otherwise, returns either a standard GDB array with bounds set
2064 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2065 GDB array. Returns NULL if ARR is a null fat pointer. */
2066
2067 struct value *
2068 ada_coerce_to_simple_array_ptr (struct value *arr)
2069 {
2070 if (ada_is_array_descriptor_type (value_type (arr)))
2071 {
2072 struct type *arrType = ada_type_of_array (arr, 1);
2073
2074 if (arrType == NULL)
2075 return NULL;
2076 return value_cast (arrType, value_copy (desc_data (arr)));
2077 }
2078 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2079 return decode_constrained_packed_array (arr);
2080 else
2081 return arr;
2082 }
2083
2084 /* If ARR does not represent an array, returns ARR unchanged.
2085 Otherwise, returns a standard GDB array describing ARR (which may
2086 be ARR itself if it already is in the proper form). */
2087
2088 struct value *
2089 ada_coerce_to_simple_array (struct value *arr)
2090 {
2091 if (ada_is_array_descriptor_type (value_type (arr)))
2092 {
2093 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2094
2095 if (arrVal == NULL)
2096 error (_("Bounds unavailable for null array pointer."));
2097 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2098 return value_ind (arrVal);
2099 }
2100 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2101 return decode_constrained_packed_array (arr);
2102 else
2103 return arr;
2104 }
2105
2106 /* If TYPE represents a GNAT array type, return it translated to an
2107 ordinary GDB array type (possibly with BITSIZE fields indicating
2108 packing). For other types, is the identity. */
2109
2110 struct type *
2111 ada_coerce_to_simple_array_type (struct type *type)
2112 {
2113 if (ada_is_constrained_packed_array_type (type))
2114 return decode_constrained_packed_array_type (type);
2115
2116 if (ada_is_array_descriptor_type (type))
2117 return ada_check_typedef (desc_data_target_type (type));
2118
2119 return type;
2120 }
2121
2122 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2123
2124 static int
2125 ada_is_packed_array_type (struct type *type)
2126 {
2127 if (type == NULL)
2128 return 0;
2129 type = desc_base_type (type);
2130 type = ada_check_typedef (type);
2131 return
2132 ada_type_name (type) != NULL
2133 && strstr (ada_type_name (type), "___XP") != NULL;
2134 }
2135
2136 /* Non-zero iff TYPE represents a standard GNAT constrained
2137 packed-array type. */
2138
2139 int
2140 ada_is_constrained_packed_array_type (struct type *type)
2141 {
2142 return ada_is_packed_array_type (type)
2143 && !ada_is_array_descriptor_type (type);
2144 }
2145
2146 /* Non-zero iff TYPE represents an array descriptor for a
2147 unconstrained packed-array type. */
2148
2149 static int
2150 ada_is_unconstrained_packed_array_type (struct type *type)
2151 {
2152 return ada_is_packed_array_type (type)
2153 && ada_is_array_descriptor_type (type);
2154 }
2155
2156 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2157 return the size of its elements in bits. */
2158
2159 static long
2160 decode_packed_array_bitsize (struct type *type)
2161 {
2162 const char *raw_name;
2163 const char *tail;
2164 long bits;
2165
2166 /* Access to arrays implemented as fat pointers are encoded as a typedef
2167 of the fat pointer type. We need the name of the fat pointer type
2168 to do the decoding, so strip the typedef layer. */
2169 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2170 type = ada_typedef_target_type (type);
2171
2172 raw_name = ada_type_name (ada_check_typedef (type));
2173 if (!raw_name)
2174 raw_name = ada_type_name (desc_base_type (type));
2175
2176 if (!raw_name)
2177 return 0;
2178
2179 tail = strstr (raw_name, "___XP");
2180 gdb_assert (tail != NULL);
2181
2182 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2183 {
2184 lim_warning
2185 (_("could not understand bit size information on packed array"));
2186 return 0;
2187 }
2188
2189 return bits;
2190 }
2191
2192 /* Given that TYPE is a standard GDB array type with all bounds filled
2193 in, and that the element size of its ultimate scalar constituents
2194 (that is, either its elements, or, if it is an array of arrays, its
2195 elements' elements, etc.) is *ELT_BITS, return an identical type,
2196 but with the bit sizes of its elements (and those of any
2197 constituent arrays) recorded in the BITSIZE components of its
2198 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2199 in bits.
2200
2201 Note that, for arrays whose index type has an XA encoding where
2202 a bound references a record discriminant, getting that discriminant,
2203 and therefore the actual value of that bound, is not possible
2204 because none of the given parameters gives us access to the record.
2205 This function assumes that it is OK in the context where it is being
2206 used to return an array whose bounds are still dynamic and where
2207 the length is arbitrary. */
2208
2209 static struct type *
2210 constrained_packed_array_type (struct type *type, long *elt_bits)
2211 {
2212 struct type *new_elt_type;
2213 struct type *new_type;
2214 struct type *index_type_desc;
2215 struct type *index_type;
2216 LONGEST low_bound, high_bound;
2217
2218 type = ada_check_typedef (type);
2219 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2220 return type;
2221
2222 index_type_desc = ada_find_parallel_type (type, "___XA");
2223 if (index_type_desc)
2224 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2225 NULL);
2226 else
2227 index_type = TYPE_INDEX_TYPE (type);
2228
2229 new_type = alloc_type_copy (type);
2230 new_elt_type =
2231 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2232 elt_bits);
2233 create_array_type (new_type, new_elt_type, index_type);
2234 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2235 TYPE_NAME (new_type) = ada_type_name (type);
2236
2237 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2238 && is_dynamic_type (check_typedef (index_type)))
2239 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2240 low_bound = high_bound = 0;
2241 if (high_bound < low_bound)
2242 *elt_bits = TYPE_LENGTH (new_type) = 0;
2243 else
2244 {
2245 *elt_bits *= (high_bound - low_bound + 1);
2246 TYPE_LENGTH (new_type) =
2247 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2248 }
2249
2250 TYPE_FIXED_INSTANCE (new_type) = 1;
2251 return new_type;
2252 }
2253
2254 /* The array type encoded by TYPE, where
2255 ada_is_constrained_packed_array_type (TYPE). */
2256
2257 static struct type *
2258 decode_constrained_packed_array_type (struct type *type)
2259 {
2260 const char *raw_name = ada_type_name (ada_check_typedef (type));
2261 char *name;
2262 const char *tail;
2263 struct type *shadow_type;
2264 long bits;
2265
2266 if (!raw_name)
2267 raw_name = ada_type_name (desc_base_type (type));
2268
2269 if (!raw_name)
2270 return NULL;
2271
2272 name = (char *) alloca (strlen (raw_name) + 1);
2273 tail = strstr (raw_name, "___XP");
2274 type = desc_base_type (type);
2275
2276 memcpy (name, raw_name, tail - raw_name);
2277 name[tail - raw_name] = '\000';
2278
2279 shadow_type = ada_find_parallel_type_with_name (type, name);
2280
2281 if (shadow_type == NULL)
2282 {
2283 lim_warning (_("could not find bounds information on packed array"));
2284 return NULL;
2285 }
2286 shadow_type = check_typedef (shadow_type);
2287
2288 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2289 {
2290 lim_warning (_("could not understand bounds "
2291 "information on packed array"));
2292 return NULL;
2293 }
2294
2295 bits = decode_packed_array_bitsize (type);
2296 return constrained_packed_array_type (shadow_type, &bits);
2297 }
2298
2299 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2300 array, returns a simple array that denotes that array. Its type is a
2301 standard GDB array type except that the BITSIZEs of the array
2302 target types are set to the number of bits in each element, and the
2303 type length is set appropriately. */
2304
2305 static struct value *
2306 decode_constrained_packed_array (struct value *arr)
2307 {
2308 struct type *type;
2309
2310 /* If our value is a pointer, then dereference it. Likewise if
2311 the value is a reference. Make sure that this operation does not
2312 cause the target type to be fixed, as this would indirectly cause
2313 this array to be decoded. The rest of the routine assumes that
2314 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2315 and "value_ind" routines to perform the dereferencing, as opposed
2316 to using "ada_coerce_ref" or "ada_value_ind". */
2317 arr = coerce_ref (arr);
2318 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2319 arr = value_ind (arr);
2320
2321 type = decode_constrained_packed_array_type (value_type (arr));
2322 if (type == NULL)
2323 {
2324 error (_("can't unpack array"));
2325 return NULL;
2326 }
2327
2328 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2329 && ada_is_modular_type (value_type (arr)))
2330 {
2331 /* This is a (right-justified) modular type representing a packed
2332 array with no wrapper. In order to interpret the value through
2333 the (left-justified) packed array type we just built, we must
2334 first left-justify it. */
2335 int bit_size, bit_pos;
2336 ULONGEST mod;
2337
2338 mod = ada_modulus (value_type (arr)) - 1;
2339 bit_size = 0;
2340 while (mod > 0)
2341 {
2342 bit_size += 1;
2343 mod >>= 1;
2344 }
2345 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2346 arr = ada_value_primitive_packed_val (arr, NULL,
2347 bit_pos / HOST_CHAR_BIT,
2348 bit_pos % HOST_CHAR_BIT,
2349 bit_size,
2350 type);
2351 }
2352
2353 return coerce_unspec_val_to_type (arr, type);
2354 }
2355
2356
2357 /* The value of the element of packed array ARR at the ARITY indices
2358 given in IND. ARR must be a simple array. */
2359
2360 static struct value *
2361 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2362 {
2363 int i;
2364 int bits, elt_off, bit_off;
2365 long elt_total_bit_offset;
2366 struct type *elt_type;
2367 struct value *v;
2368
2369 bits = 0;
2370 elt_total_bit_offset = 0;
2371 elt_type = ada_check_typedef (value_type (arr));
2372 for (i = 0; i < arity; i += 1)
2373 {
2374 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2375 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2376 error
2377 (_("attempt to do packed indexing of "
2378 "something other than a packed array"));
2379 else
2380 {
2381 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2382 LONGEST lowerbound, upperbound;
2383 LONGEST idx;
2384
2385 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2386 {
2387 lim_warning (_("don't know bounds of array"));
2388 lowerbound = upperbound = 0;
2389 }
2390
2391 idx = pos_atr (ind[i]);
2392 if (idx < lowerbound || idx > upperbound)
2393 lim_warning (_("packed array index %ld out of bounds"),
2394 (long) idx);
2395 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2396 elt_total_bit_offset += (idx - lowerbound) * bits;
2397 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2398 }
2399 }
2400 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2401 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2402
2403 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2404 bits, elt_type);
2405 return v;
2406 }
2407
2408 /* Non-zero iff TYPE includes negative integer values. */
2409
2410 static int
2411 has_negatives (struct type *type)
2412 {
2413 switch (TYPE_CODE (type))
2414 {
2415 default:
2416 return 0;
2417 case TYPE_CODE_INT:
2418 return !TYPE_UNSIGNED (type);
2419 case TYPE_CODE_RANGE:
2420 return TYPE_LOW_BOUND (type) < 0;
2421 }
2422 }
2423
2424 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2425 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2426 the unpacked buffer.
2427
2428 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2429 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2430
2431 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2432 zero otherwise.
2433
2434 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2435
2436 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2437
2438 static void
2439 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2440 gdb_byte *unpacked, int unpacked_len,
2441 int is_big_endian, int is_signed_type,
2442 int is_scalar)
2443 {
2444 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2445 int src_idx; /* Index into the source area */
2446 int src_bytes_left; /* Number of source bytes left to process. */
2447 int srcBitsLeft; /* Number of source bits left to move */
2448 int unusedLS; /* Number of bits in next significant
2449 byte of source that are unused */
2450
2451 int unpacked_idx; /* Index into the unpacked buffer */
2452 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2453
2454 unsigned long accum; /* Staging area for bits being transferred */
2455 int accumSize; /* Number of meaningful bits in accum */
2456 unsigned char sign;
2457
2458 /* Transmit bytes from least to most significant; delta is the direction
2459 the indices move. */
2460 int delta = is_big_endian ? -1 : 1;
2461
2462 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2463 bits from SRC. .*/
2464 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2465 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2466 bit_size, unpacked_len);
2467
2468 srcBitsLeft = bit_size;
2469 src_bytes_left = src_len;
2470 unpacked_bytes_left = unpacked_len;
2471 sign = 0;
2472
2473 if (is_big_endian)
2474 {
2475 src_idx = src_len - 1;
2476 if (is_signed_type
2477 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2478 sign = ~0;
2479
2480 unusedLS =
2481 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2482 % HOST_CHAR_BIT;
2483
2484 if (is_scalar)
2485 {
2486 accumSize = 0;
2487 unpacked_idx = unpacked_len - 1;
2488 }
2489 else
2490 {
2491 /* Non-scalar values must be aligned at a byte boundary... */
2492 accumSize =
2493 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2494 /* ... And are placed at the beginning (most-significant) bytes
2495 of the target. */
2496 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2497 unpacked_bytes_left = unpacked_idx + 1;
2498 }
2499 }
2500 else
2501 {
2502 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2503
2504 src_idx = unpacked_idx = 0;
2505 unusedLS = bit_offset;
2506 accumSize = 0;
2507
2508 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2509 sign = ~0;
2510 }
2511
2512 accum = 0;
2513 while (src_bytes_left > 0)
2514 {
2515 /* Mask for removing bits of the next source byte that are not
2516 part of the value. */
2517 unsigned int unusedMSMask =
2518 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2519 1;
2520 /* Sign-extend bits for this byte. */
2521 unsigned int signMask = sign & ~unusedMSMask;
2522
2523 accum |=
2524 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2525 accumSize += HOST_CHAR_BIT - unusedLS;
2526 if (accumSize >= HOST_CHAR_BIT)
2527 {
2528 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2529 accumSize -= HOST_CHAR_BIT;
2530 accum >>= HOST_CHAR_BIT;
2531 unpacked_bytes_left -= 1;
2532 unpacked_idx += delta;
2533 }
2534 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2535 unusedLS = 0;
2536 src_bytes_left -= 1;
2537 src_idx += delta;
2538 }
2539 while (unpacked_bytes_left > 0)
2540 {
2541 accum |= sign << accumSize;
2542 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2543 accumSize -= HOST_CHAR_BIT;
2544 if (accumSize < 0)
2545 accumSize = 0;
2546 accum >>= HOST_CHAR_BIT;
2547 unpacked_bytes_left -= 1;
2548 unpacked_idx += delta;
2549 }
2550 }
2551
2552 /* Create a new value of type TYPE from the contents of OBJ starting
2553 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2554 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2555 assigning through the result will set the field fetched from.
2556 VALADDR is ignored unless OBJ is NULL, in which case,
2557 VALADDR+OFFSET must address the start of storage containing the
2558 packed value. The value returned in this case is never an lval.
2559 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2560
2561 struct value *
2562 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2563 long offset, int bit_offset, int bit_size,
2564 struct type *type)
2565 {
2566 struct value *v;
2567 const gdb_byte *src; /* First byte containing data to unpack */
2568 gdb_byte *unpacked;
2569 const int is_scalar = is_scalar_type (type);
2570 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2571 std::unique_ptr<gdb_byte[]> staging;
2572 int staging_len = 0;
2573
2574 type = ada_check_typedef (type);
2575
2576 if (obj == NULL)
2577 src = valaddr + offset;
2578 else
2579 src = value_contents (obj) + offset;
2580
2581 if (is_dynamic_type (type))
2582 {
2583 /* The length of TYPE might by dynamic, so we need to resolve
2584 TYPE in order to know its actual size, which we then use
2585 to create the contents buffer of the value we return.
2586 The difficulty is that the data containing our object is
2587 packed, and therefore maybe not at a byte boundary. So, what
2588 we do, is unpack the data into a byte-aligned buffer, and then
2589 use that buffer as our object's value for resolving the type. */
2590 staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2591 staging.reset (new gdb_byte[staging_len]);
2592
2593 ada_unpack_from_contents (src, bit_offset, bit_size,
2594 staging.get (), staging_len,
2595 is_big_endian, has_negatives (type),
2596 is_scalar);
2597 type = resolve_dynamic_type (type, staging.get (), 0);
2598 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2599 {
2600 /* This happens when the length of the object is dynamic,
2601 and is actually smaller than the space reserved for it.
2602 For instance, in an array of variant records, the bit_size
2603 we're given is the array stride, which is constant and
2604 normally equal to the maximum size of its element.
2605 But, in reality, each element only actually spans a portion
2606 of that stride. */
2607 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2608 }
2609 }
2610
2611 if (obj == NULL)
2612 {
2613 v = allocate_value (type);
2614 src = valaddr + offset;
2615 }
2616 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2617 {
2618 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2619 gdb_byte *buf;
2620
2621 v = value_at (type, value_address (obj) + offset);
2622 buf = (gdb_byte *) alloca (src_len);
2623 read_memory (value_address (v), buf, src_len);
2624 src = buf;
2625 }
2626 else
2627 {
2628 v = allocate_value (type);
2629 src = value_contents (obj) + offset;
2630 }
2631
2632 if (obj != NULL)
2633 {
2634 long new_offset = offset;
2635
2636 set_value_component_location (v, obj);
2637 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2638 set_value_bitsize (v, bit_size);
2639 if (value_bitpos (v) >= HOST_CHAR_BIT)
2640 {
2641 ++new_offset;
2642 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2643 }
2644 set_value_offset (v, new_offset);
2645
2646 /* Also set the parent value. This is needed when trying to
2647 assign a new value (in inferior memory). */
2648 set_value_parent (v, obj);
2649 }
2650 else
2651 set_value_bitsize (v, bit_size);
2652 unpacked = value_contents_writeable (v);
2653
2654 if (bit_size == 0)
2655 {
2656 memset (unpacked, 0, TYPE_LENGTH (type));
2657 return v;
2658 }
2659
2660 if (staging != NULL && staging_len == TYPE_LENGTH (type))
2661 {
2662 /* Small short-cut: If we've unpacked the data into a buffer
2663 of the same size as TYPE's length, then we can reuse that,
2664 instead of doing the unpacking again. */
2665 memcpy (unpacked, staging.get (), staging_len);
2666 }
2667 else
2668 ada_unpack_from_contents (src, bit_offset, bit_size,
2669 unpacked, TYPE_LENGTH (type),
2670 is_big_endian, has_negatives (type), is_scalar);
2671
2672 return v;
2673 }
2674
2675 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2676 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2677 not overlap. */
2678 static void
2679 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2680 int src_offset, int n, int bits_big_endian_p)
2681 {
2682 unsigned int accum, mask;
2683 int accum_bits, chunk_size;
2684
2685 target += targ_offset / HOST_CHAR_BIT;
2686 targ_offset %= HOST_CHAR_BIT;
2687 source += src_offset / HOST_CHAR_BIT;
2688 src_offset %= HOST_CHAR_BIT;
2689 if (bits_big_endian_p)
2690 {
2691 accum = (unsigned char) *source;
2692 source += 1;
2693 accum_bits = HOST_CHAR_BIT - src_offset;
2694
2695 while (n > 0)
2696 {
2697 int unused_right;
2698
2699 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2700 accum_bits += HOST_CHAR_BIT;
2701 source += 1;
2702 chunk_size = HOST_CHAR_BIT - targ_offset;
2703 if (chunk_size > n)
2704 chunk_size = n;
2705 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2706 mask = ((1 << chunk_size) - 1) << unused_right;
2707 *target =
2708 (*target & ~mask)
2709 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2710 n -= chunk_size;
2711 accum_bits -= chunk_size;
2712 target += 1;
2713 targ_offset = 0;
2714 }
2715 }
2716 else
2717 {
2718 accum = (unsigned char) *source >> src_offset;
2719 source += 1;
2720 accum_bits = HOST_CHAR_BIT - src_offset;
2721
2722 while (n > 0)
2723 {
2724 accum = accum + ((unsigned char) *source << accum_bits);
2725 accum_bits += HOST_CHAR_BIT;
2726 source += 1;
2727 chunk_size = HOST_CHAR_BIT - targ_offset;
2728 if (chunk_size > n)
2729 chunk_size = n;
2730 mask = ((1 << chunk_size) - 1) << targ_offset;
2731 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2732 n -= chunk_size;
2733 accum_bits -= chunk_size;
2734 accum >>= chunk_size;
2735 target += 1;
2736 targ_offset = 0;
2737 }
2738 }
2739 }
2740
2741 /* Store the contents of FROMVAL into the location of TOVAL.
2742 Return a new value with the location of TOVAL and contents of
2743 FROMVAL. Handles assignment into packed fields that have
2744 floating-point or non-scalar types. */
2745
2746 static struct value *
2747 ada_value_assign (struct value *toval, struct value *fromval)
2748 {
2749 struct type *type = value_type (toval);
2750 int bits = value_bitsize (toval);
2751
2752 toval = ada_coerce_ref (toval);
2753 fromval = ada_coerce_ref (fromval);
2754
2755 if (ada_is_direct_array_type (value_type (toval)))
2756 toval = ada_coerce_to_simple_array (toval);
2757 if (ada_is_direct_array_type (value_type (fromval)))
2758 fromval = ada_coerce_to_simple_array (fromval);
2759
2760 if (!deprecated_value_modifiable (toval))
2761 error (_("Left operand of assignment is not a modifiable lvalue."));
2762
2763 if (VALUE_LVAL (toval) == lval_memory
2764 && bits > 0
2765 && (TYPE_CODE (type) == TYPE_CODE_FLT
2766 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2767 {
2768 int len = (value_bitpos (toval)
2769 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2770 int from_size;
2771 gdb_byte *buffer = (gdb_byte *) alloca (len);
2772 struct value *val;
2773 CORE_ADDR to_addr = value_address (toval);
2774
2775 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2776 fromval = value_cast (type, fromval);
2777
2778 read_memory (to_addr, buffer, len);
2779 from_size = value_bitsize (fromval);
2780 if (from_size == 0)
2781 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2782 if (gdbarch_bits_big_endian (get_type_arch (type)))
2783 move_bits (buffer, value_bitpos (toval),
2784 value_contents (fromval), from_size - bits, bits, 1);
2785 else
2786 move_bits (buffer, value_bitpos (toval),
2787 value_contents (fromval), 0, bits, 0);
2788 write_memory_with_notification (to_addr, buffer, len);
2789
2790 val = value_copy (toval);
2791 memcpy (value_contents_raw (val), value_contents (fromval),
2792 TYPE_LENGTH (type));
2793 deprecated_set_value_type (val, type);
2794
2795 return val;
2796 }
2797
2798 return value_assign (toval, fromval);
2799 }
2800
2801
2802 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2803 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2804 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2805 COMPONENT, and not the inferior's memory. The current contents
2806 of COMPONENT are ignored.
2807
2808 Although not part of the initial design, this function also works
2809 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2810 had a null address, and COMPONENT had an address which is equal to
2811 its offset inside CONTAINER. */
2812
2813 static void
2814 value_assign_to_component (struct value *container, struct value *component,
2815 struct value *val)
2816 {
2817 LONGEST offset_in_container =
2818 (LONGEST) (value_address (component) - value_address (container));
2819 int bit_offset_in_container =
2820 value_bitpos (component) - value_bitpos (container);
2821 int bits;
2822
2823 val = value_cast (value_type (component), val);
2824
2825 if (value_bitsize (component) == 0)
2826 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2827 else
2828 bits = value_bitsize (component);
2829
2830 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2831 move_bits (value_contents_writeable (container) + offset_in_container,
2832 value_bitpos (container) + bit_offset_in_container,
2833 value_contents (val),
2834 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2835 bits, 1);
2836 else
2837 move_bits (value_contents_writeable (container) + offset_in_container,
2838 value_bitpos (container) + bit_offset_in_container,
2839 value_contents (val), 0, bits, 0);
2840 }
2841
2842 /* The value of the element of array ARR at the ARITY indices given in IND.
2843 ARR may be either a simple array, GNAT array descriptor, or pointer
2844 thereto. */
2845
2846 struct value *
2847 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2848 {
2849 int k;
2850 struct value *elt;
2851 struct type *elt_type;
2852
2853 elt = ada_coerce_to_simple_array (arr);
2854
2855 elt_type = ada_check_typedef (value_type (elt));
2856 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2857 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2858 return value_subscript_packed (elt, arity, ind);
2859
2860 for (k = 0; k < arity; k += 1)
2861 {
2862 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2863 error (_("too many subscripts (%d expected)"), k);
2864 elt = value_subscript (elt, pos_atr (ind[k]));
2865 }
2866 return elt;
2867 }
2868
2869 /* Assuming ARR is a pointer to a GDB array, the value of the element
2870 of *ARR at the ARITY indices given in IND.
2871 Does not read the entire array into memory.
2872
2873 Note: Unlike what one would expect, this function is used instead of
2874 ada_value_subscript for basically all non-packed array types. The reason
2875 for this is that a side effect of doing our own pointer arithmetics instead
2876 of relying on value_subscript is that there is no implicit typedef peeling.
2877 This is important for arrays of array accesses, where it allows us to
2878 preserve the fact that the array's element is an array access, where the
2879 access part os encoded in a typedef layer. */
2880
2881 static struct value *
2882 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2883 {
2884 int k;
2885 struct value *array_ind = ada_value_ind (arr);
2886 struct type *type
2887 = check_typedef (value_enclosing_type (array_ind));
2888
2889 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2890 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2891 return value_subscript_packed (array_ind, arity, ind);
2892
2893 for (k = 0; k < arity; k += 1)
2894 {
2895 LONGEST lwb, upb;
2896 struct value *lwb_value;
2897
2898 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2899 error (_("too many subscripts (%d expected)"), k);
2900 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2901 value_copy (arr));
2902 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2903 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2904 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2905 type = TYPE_TARGET_TYPE (type);
2906 }
2907
2908 return value_ind (arr);
2909 }
2910
2911 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2912 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2913 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2914 this array is LOW, as per Ada rules. */
2915 static struct value *
2916 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2917 int low, int high)
2918 {
2919 struct type *type0 = ada_check_typedef (type);
2920 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2921 struct type *index_type
2922 = create_static_range_type (NULL, base_index_type, low, high);
2923 struct type *slice_type =
2924 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2925 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2926 LONGEST base_low_pos, low_pos;
2927 CORE_ADDR base;
2928
2929 if (!discrete_position (base_index_type, low, &low_pos)
2930 || !discrete_position (base_index_type, base_low, &base_low_pos))
2931 {
2932 warning (_("unable to get positions in slice, use bounds instead"));
2933 low_pos = low;
2934 base_low_pos = base_low;
2935 }
2936
2937 base = value_as_address (array_ptr)
2938 + ((low_pos - base_low_pos)
2939 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2940 return value_at_lazy (slice_type, base);
2941 }
2942
2943
2944 static struct value *
2945 ada_value_slice (struct value *array, int low, int high)
2946 {
2947 struct type *type = ada_check_typedef (value_type (array));
2948 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2949 struct type *index_type
2950 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2951 struct type *slice_type =
2952 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2953 LONGEST low_pos, high_pos;
2954
2955 if (!discrete_position (base_index_type, low, &low_pos)
2956 || !discrete_position (base_index_type, high, &high_pos))
2957 {
2958 warning (_("unable to get positions in slice, use bounds instead"));
2959 low_pos = low;
2960 high_pos = high;
2961 }
2962
2963 return value_cast (slice_type,
2964 value_slice (array, low, high_pos - low_pos + 1));
2965 }
2966
2967 /* If type is a record type in the form of a standard GNAT array
2968 descriptor, returns the number of dimensions for type. If arr is a
2969 simple array, returns the number of "array of"s that prefix its
2970 type designation. Otherwise, returns 0. */
2971
2972 int
2973 ada_array_arity (struct type *type)
2974 {
2975 int arity;
2976
2977 if (type == NULL)
2978 return 0;
2979
2980 type = desc_base_type (type);
2981
2982 arity = 0;
2983 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2984 return desc_arity (desc_bounds_type (type));
2985 else
2986 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2987 {
2988 arity += 1;
2989 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2990 }
2991
2992 return arity;
2993 }
2994
2995 /* If TYPE is a record type in the form of a standard GNAT array
2996 descriptor or a simple array type, returns the element type for
2997 TYPE after indexing by NINDICES indices, or by all indices if
2998 NINDICES is -1. Otherwise, returns NULL. */
2999
3000 struct type *
3001 ada_array_element_type (struct type *type, int nindices)
3002 {
3003 type = desc_base_type (type);
3004
3005 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
3006 {
3007 int k;
3008 struct type *p_array_type;
3009
3010 p_array_type = desc_data_target_type (type);
3011
3012 k = ada_array_arity (type);
3013 if (k == 0)
3014 return NULL;
3015
3016 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3017 if (nindices >= 0 && k > nindices)
3018 k = nindices;
3019 while (k > 0 && p_array_type != NULL)
3020 {
3021 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3022 k -= 1;
3023 }
3024 return p_array_type;
3025 }
3026 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3027 {
3028 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3029 {
3030 type = TYPE_TARGET_TYPE (type);
3031 nindices -= 1;
3032 }
3033 return type;
3034 }
3035
3036 return NULL;
3037 }
3038
3039 /* The type of nth index in arrays of given type (n numbering from 1).
3040 Does not examine memory. Throws an error if N is invalid or TYPE
3041 is not an array type. NAME is the name of the Ada attribute being
3042 evaluated ('range, 'first, 'last, or 'length); it is used in building
3043 the error message. */
3044
3045 static struct type *
3046 ada_index_type (struct type *type, int n, const char *name)
3047 {
3048 struct type *result_type;
3049
3050 type = desc_base_type (type);
3051
3052 if (n < 0 || n > ada_array_arity (type))
3053 error (_("invalid dimension number to '%s"), name);
3054
3055 if (ada_is_simple_array_type (type))
3056 {
3057 int i;
3058
3059 for (i = 1; i < n; i += 1)
3060 type = TYPE_TARGET_TYPE (type);
3061 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3062 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3063 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3064 perhaps stabsread.c would make more sense. */
3065 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3066 result_type = NULL;
3067 }
3068 else
3069 {
3070 result_type = desc_index_type (desc_bounds_type (type), n);
3071 if (result_type == NULL)
3072 error (_("attempt to take bound of something that is not an array"));
3073 }
3074
3075 return result_type;
3076 }
3077
3078 /* Given that arr is an array type, returns the lower bound of the
3079 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3080 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3081 array-descriptor type. It works for other arrays with bounds supplied
3082 by run-time quantities other than discriminants. */
3083
3084 static LONGEST
3085 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3086 {
3087 struct type *type, *index_type_desc, *index_type;
3088 int i;
3089
3090 gdb_assert (which == 0 || which == 1);
3091
3092 if (ada_is_constrained_packed_array_type (arr_type))
3093 arr_type = decode_constrained_packed_array_type (arr_type);
3094
3095 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3096 return (LONGEST) - which;
3097
3098 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3099 type = TYPE_TARGET_TYPE (arr_type);
3100 else
3101 type = arr_type;
3102
3103 if (TYPE_FIXED_INSTANCE (type))
3104 {
3105 /* The array has already been fixed, so we do not need to
3106 check the parallel ___XA type again. That encoding has
3107 already been applied, so ignore it now. */
3108 index_type_desc = NULL;
3109 }
3110 else
3111 {
3112 index_type_desc = ada_find_parallel_type (type, "___XA");
3113 ada_fixup_array_indexes_type (index_type_desc);
3114 }
3115
3116 if (index_type_desc != NULL)
3117 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3118 NULL);
3119 else
3120 {
3121 struct type *elt_type = check_typedef (type);
3122
3123 for (i = 1; i < n; i++)
3124 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3125
3126 index_type = TYPE_INDEX_TYPE (elt_type);
3127 }
3128
3129 return
3130 (LONGEST) (which == 0
3131 ? ada_discrete_type_low_bound (index_type)
3132 : ada_discrete_type_high_bound (index_type));
3133 }
3134
3135 /* Given that arr is an array value, returns the lower bound of the
3136 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3137 WHICH is 1. This routine will also work for arrays with bounds
3138 supplied by run-time quantities other than discriminants. */
3139
3140 static LONGEST
3141 ada_array_bound (struct value *arr, int n, int which)
3142 {
3143 struct type *arr_type;
3144
3145 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3146 arr = value_ind (arr);
3147 arr_type = value_enclosing_type (arr);
3148
3149 if (ada_is_constrained_packed_array_type (arr_type))
3150 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3151 else if (ada_is_simple_array_type (arr_type))
3152 return ada_array_bound_from_type (arr_type, n, which);
3153 else
3154 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3155 }
3156
3157 /* Given that arr is an array value, returns the length of the
3158 nth index. This routine will also work for arrays with bounds
3159 supplied by run-time quantities other than discriminants.
3160 Does not work for arrays indexed by enumeration types with representation
3161 clauses at the moment. */
3162
3163 static LONGEST
3164 ada_array_length (struct value *arr, int n)
3165 {
3166 struct type *arr_type, *index_type;
3167 int low, high;
3168
3169 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3170 arr = value_ind (arr);
3171 arr_type = value_enclosing_type (arr);
3172
3173 if (ada_is_constrained_packed_array_type (arr_type))
3174 return ada_array_length (decode_constrained_packed_array (arr), n);
3175
3176 if (ada_is_simple_array_type (arr_type))
3177 {
3178 low = ada_array_bound_from_type (arr_type, n, 0);
3179 high = ada_array_bound_from_type (arr_type, n, 1);
3180 }
3181 else
3182 {
3183 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3184 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3185 }
3186
3187 arr_type = check_typedef (arr_type);
3188 index_type = TYPE_INDEX_TYPE (arr_type);
3189 if (index_type != NULL)
3190 {
3191 struct type *base_type;
3192 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3193 base_type = TYPE_TARGET_TYPE (index_type);
3194 else
3195 base_type = index_type;
3196
3197 low = pos_atr (value_from_longest (base_type, low));
3198 high = pos_atr (value_from_longest (base_type, high));
3199 }
3200 return high - low + 1;
3201 }
3202
3203 /* An empty array whose type is that of ARR_TYPE (an array type),
3204 with bounds LOW to LOW-1. */
3205
3206 static struct value *
3207 empty_array (struct type *arr_type, int low)
3208 {
3209 struct type *arr_type0 = ada_check_typedef (arr_type);
3210 struct type *index_type
3211 = create_static_range_type
3212 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3213 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3214
3215 return allocate_value (create_array_type (NULL, elt_type, index_type));
3216 }
3217 \f
3218
3219 /* Name resolution */
3220
3221 /* The "decoded" name for the user-definable Ada operator corresponding
3222 to OP. */
3223
3224 static const char *
3225 ada_decoded_op_name (enum exp_opcode op)
3226 {
3227 int i;
3228
3229 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3230 {
3231 if (ada_opname_table[i].op == op)
3232 return ada_opname_table[i].decoded;
3233 }
3234 error (_("Could not find operator name for opcode"));
3235 }
3236
3237
3238 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3239 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3240 undefined namespace) and converts operators that are
3241 user-defined into appropriate function calls. If CONTEXT_TYPE is
3242 non-null, it provides a preferred result type [at the moment, only
3243 type void has any effect---causing procedures to be preferred over
3244 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3245 return type is preferred. May change (expand) *EXP. */
3246
3247 static void
3248 resolve (struct expression **expp, int void_context_p)
3249 {
3250 struct type *context_type = NULL;
3251 int pc = 0;
3252
3253 if (void_context_p)
3254 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3255
3256 resolve_subexp (expp, &pc, 1, context_type);
3257 }
3258
3259 /* Resolve the operator of the subexpression beginning at
3260 position *POS of *EXPP. "Resolving" consists of replacing
3261 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3262 with their resolutions, replacing built-in operators with
3263 function calls to user-defined operators, where appropriate, and,
3264 when DEPROCEDURE_P is non-zero, converting function-valued variables
3265 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3266 are as in ada_resolve, above. */
3267
3268 static struct value *
3269 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3270 struct type *context_type)
3271 {
3272 int pc = *pos;
3273 int i;
3274 struct expression *exp; /* Convenience: == *expp. */
3275 enum exp_opcode op = (*expp)->elts[pc].opcode;
3276 struct value **argvec; /* Vector of operand types (alloca'ed). */
3277 int nargs; /* Number of operands. */
3278 int oplen;
3279
3280 argvec = NULL;
3281 nargs = 0;
3282 exp = *expp;
3283
3284 /* Pass one: resolve operands, saving their types and updating *pos,
3285 if needed. */
3286 switch (op)
3287 {
3288 case OP_FUNCALL:
3289 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3290 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3291 *pos += 7;
3292 else
3293 {
3294 *pos += 3;
3295 resolve_subexp (expp, pos, 0, NULL);
3296 }
3297 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3298 break;
3299
3300 case UNOP_ADDR:
3301 *pos += 1;
3302 resolve_subexp (expp, pos, 0, NULL);
3303 break;
3304
3305 case UNOP_QUAL:
3306 *pos += 3;
3307 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3308 break;
3309
3310 case OP_ATR_MODULUS:
3311 case OP_ATR_SIZE:
3312 case OP_ATR_TAG:
3313 case OP_ATR_FIRST:
3314 case OP_ATR_LAST:
3315 case OP_ATR_LENGTH:
3316 case OP_ATR_POS:
3317 case OP_ATR_VAL:
3318 case OP_ATR_MIN:
3319 case OP_ATR_MAX:
3320 case TERNOP_IN_RANGE:
3321 case BINOP_IN_BOUNDS:
3322 case UNOP_IN_RANGE:
3323 case OP_AGGREGATE:
3324 case OP_OTHERS:
3325 case OP_CHOICES:
3326 case OP_POSITIONAL:
3327 case OP_DISCRETE_RANGE:
3328 case OP_NAME:
3329 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3330 *pos += oplen;
3331 break;
3332
3333 case BINOP_ASSIGN:
3334 {
3335 struct value *arg1;
3336
3337 *pos += 1;
3338 arg1 = resolve_subexp (expp, pos, 0, NULL);
3339 if (arg1 == NULL)
3340 resolve_subexp (expp, pos, 1, NULL);
3341 else
3342 resolve_subexp (expp, pos, 1, value_type (arg1));
3343 break;
3344 }
3345
3346 case UNOP_CAST:
3347 *pos += 3;
3348 nargs = 1;
3349 break;
3350
3351 case BINOP_ADD:
3352 case BINOP_SUB:
3353 case BINOP_MUL:
3354 case BINOP_DIV:
3355 case BINOP_REM:
3356 case BINOP_MOD:
3357 case BINOP_EXP:
3358 case BINOP_CONCAT:
3359 case BINOP_LOGICAL_AND:
3360 case BINOP_LOGICAL_OR:
3361 case BINOP_BITWISE_AND:
3362 case BINOP_BITWISE_IOR:
3363 case BINOP_BITWISE_XOR:
3364
3365 case BINOP_EQUAL:
3366 case BINOP_NOTEQUAL:
3367 case BINOP_LESS:
3368 case BINOP_GTR:
3369 case BINOP_LEQ:
3370 case BINOP_GEQ:
3371
3372 case BINOP_REPEAT:
3373 case BINOP_SUBSCRIPT:
3374 case BINOP_COMMA:
3375 *pos += 1;
3376 nargs = 2;
3377 break;
3378
3379 case UNOP_NEG:
3380 case UNOP_PLUS:
3381 case UNOP_LOGICAL_NOT:
3382 case UNOP_ABS:
3383 case UNOP_IND:
3384 *pos += 1;
3385 nargs = 1;
3386 break;
3387
3388 case OP_LONG:
3389 case OP_DOUBLE:
3390 case OP_VAR_VALUE:
3391 *pos += 4;
3392 break;
3393
3394 case OP_TYPE:
3395 case OP_BOOL:
3396 case OP_LAST:
3397 case OP_INTERNALVAR:
3398 *pos += 3;
3399 break;
3400
3401 case UNOP_MEMVAL:
3402 *pos += 3;
3403 nargs = 1;
3404 break;
3405
3406 case OP_REGISTER:
3407 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3408 break;
3409
3410 case STRUCTOP_STRUCT:
3411 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3412 nargs = 1;
3413 break;
3414
3415 case TERNOP_SLICE:
3416 *pos += 1;
3417 nargs = 3;
3418 break;
3419
3420 case OP_STRING:
3421 break;
3422
3423 default:
3424 error (_("Unexpected operator during name resolution"));
3425 }
3426
3427 argvec = XALLOCAVEC (struct value *, nargs + 1);
3428 for (i = 0; i < nargs; i += 1)
3429 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3430 argvec[i] = NULL;
3431 exp = *expp;
3432
3433 /* Pass two: perform any resolution on principal operator. */
3434 switch (op)
3435 {
3436 default:
3437 break;
3438
3439 case OP_VAR_VALUE:
3440 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3441 {
3442 struct block_symbol *candidates;
3443 int n_candidates;
3444
3445 n_candidates =
3446 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3447 (exp->elts[pc + 2].symbol),
3448 exp->elts[pc + 1].block, VAR_DOMAIN,
3449 &candidates);
3450
3451 if (n_candidates > 1)
3452 {
3453 /* Types tend to get re-introduced locally, so if there
3454 are any local symbols that are not types, first filter
3455 out all types. */
3456 int j;
3457 for (j = 0; j < n_candidates; j += 1)
3458 switch (SYMBOL_CLASS (candidates[j].symbol))
3459 {
3460 case LOC_REGISTER:
3461 case LOC_ARG:
3462 case LOC_REF_ARG:
3463 case LOC_REGPARM_ADDR:
3464 case LOC_LOCAL:
3465 case LOC_COMPUTED:
3466 goto FoundNonType;
3467 default:
3468 break;
3469 }
3470 FoundNonType:
3471 if (j < n_candidates)
3472 {
3473 j = 0;
3474 while (j < n_candidates)
3475 {
3476 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3477 {
3478 candidates[j] = candidates[n_candidates - 1];
3479 n_candidates -= 1;
3480 }
3481 else
3482 j += 1;
3483 }
3484 }
3485 }
3486
3487 if (n_candidates == 0)
3488 error (_("No definition found for %s"),
3489 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3490 else if (n_candidates == 1)
3491 i = 0;
3492 else if (deprocedure_p
3493 && !is_nonfunction (candidates, n_candidates))
3494 {
3495 i = ada_resolve_function
3496 (candidates, n_candidates, NULL, 0,
3497 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3498 context_type);
3499 if (i < 0)
3500 error (_("Could not find a match for %s"),
3501 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3502 }
3503 else
3504 {
3505 printf_filtered (_("Multiple matches for %s\n"),
3506 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3507 user_select_syms (candidates, n_candidates, 1);
3508 i = 0;
3509 }
3510
3511 exp->elts[pc + 1].block = candidates[i].block;
3512 exp->elts[pc + 2].symbol = candidates[i].symbol;
3513 if (innermost_block == NULL
3514 || contained_in (candidates[i].block, innermost_block))
3515 innermost_block = candidates[i].block;
3516 }
3517
3518 if (deprocedure_p
3519 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3520 == TYPE_CODE_FUNC))
3521 {
3522 replace_operator_with_call (expp, pc, 0, 0,
3523 exp->elts[pc + 2].symbol,
3524 exp->elts[pc + 1].block);
3525 exp = *expp;
3526 }
3527 break;
3528
3529 case OP_FUNCALL:
3530 {
3531 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3532 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3533 {
3534 struct block_symbol *candidates;
3535 int n_candidates;
3536
3537 n_candidates =
3538 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3539 (exp->elts[pc + 5].symbol),
3540 exp->elts[pc + 4].block, VAR_DOMAIN,
3541 &candidates);
3542 if (n_candidates == 1)
3543 i = 0;
3544 else
3545 {
3546 i = ada_resolve_function
3547 (candidates, n_candidates,
3548 argvec, nargs,
3549 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3550 context_type);
3551 if (i < 0)
3552 error (_("Could not find a match for %s"),
3553 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3554 }
3555
3556 exp->elts[pc + 4].block = candidates[i].block;
3557 exp->elts[pc + 5].symbol = candidates[i].symbol;
3558 if (innermost_block == NULL
3559 || contained_in (candidates[i].block, innermost_block))
3560 innermost_block = candidates[i].block;
3561 }
3562 }
3563 break;
3564 case BINOP_ADD:
3565 case BINOP_SUB:
3566 case BINOP_MUL:
3567 case BINOP_DIV:
3568 case BINOP_REM:
3569 case BINOP_MOD:
3570 case BINOP_CONCAT:
3571 case BINOP_BITWISE_AND:
3572 case BINOP_BITWISE_IOR:
3573 case BINOP_BITWISE_XOR:
3574 case BINOP_EQUAL:
3575 case BINOP_NOTEQUAL:
3576 case BINOP_LESS:
3577 case BINOP_GTR:
3578 case BINOP_LEQ:
3579 case BINOP_GEQ:
3580 case BINOP_EXP:
3581 case UNOP_NEG:
3582 case UNOP_PLUS:
3583 case UNOP_LOGICAL_NOT:
3584 case UNOP_ABS:
3585 if (possible_user_operator_p (op, argvec))
3586 {
3587 struct block_symbol *candidates;
3588 int n_candidates;
3589
3590 n_candidates =
3591 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3592 (struct block *) NULL, VAR_DOMAIN,
3593 &candidates);
3594 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3595 ada_decoded_op_name (op), NULL);
3596 if (i < 0)
3597 break;
3598
3599 replace_operator_with_call (expp, pc, nargs, 1,
3600 candidates[i].symbol,
3601 candidates[i].block);
3602 exp = *expp;
3603 }
3604 break;
3605
3606 case OP_TYPE:
3607 case OP_REGISTER:
3608 return NULL;
3609 }
3610
3611 *pos = pc;
3612 return evaluate_subexp_type (exp, pos);
3613 }
3614
3615 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3616 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3617 a non-pointer. */
3618 /* The term "match" here is rather loose. The match is heuristic and
3619 liberal. */
3620
3621 static int
3622 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3623 {
3624 ftype = ada_check_typedef (ftype);
3625 atype = ada_check_typedef (atype);
3626
3627 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3628 ftype = TYPE_TARGET_TYPE (ftype);
3629 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3630 atype = TYPE_TARGET_TYPE (atype);
3631
3632 switch (TYPE_CODE (ftype))
3633 {
3634 default:
3635 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3636 case TYPE_CODE_PTR:
3637 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3638 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3639 TYPE_TARGET_TYPE (atype), 0);
3640 else
3641 return (may_deref
3642 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3643 case TYPE_CODE_INT:
3644 case TYPE_CODE_ENUM:
3645 case TYPE_CODE_RANGE:
3646 switch (TYPE_CODE (atype))
3647 {
3648 case TYPE_CODE_INT:
3649 case TYPE_CODE_ENUM:
3650 case TYPE_CODE_RANGE:
3651 return 1;
3652 default:
3653 return 0;
3654 }
3655
3656 case TYPE_CODE_ARRAY:
3657 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3658 || ada_is_array_descriptor_type (atype));
3659
3660 case TYPE_CODE_STRUCT:
3661 if (ada_is_array_descriptor_type (ftype))
3662 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3663 || ada_is_array_descriptor_type (atype));
3664 else
3665 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3666 && !ada_is_array_descriptor_type (atype));
3667
3668 case TYPE_CODE_UNION:
3669 case TYPE_CODE_FLT:
3670 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3671 }
3672 }
3673
3674 /* Return non-zero if the formals of FUNC "sufficiently match" the
3675 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3676 may also be an enumeral, in which case it is treated as a 0-
3677 argument function. */
3678
3679 static int
3680 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3681 {
3682 int i;
3683 struct type *func_type = SYMBOL_TYPE (func);
3684
3685 if (SYMBOL_CLASS (func) == LOC_CONST
3686 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3687 return (n_actuals == 0);
3688 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3689 return 0;
3690
3691 if (TYPE_NFIELDS (func_type) != n_actuals)
3692 return 0;
3693
3694 for (i = 0; i < n_actuals; i += 1)
3695 {
3696 if (actuals[i] == NULL)
3697 return 0;
3698 else
3699 {
3700 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3701 i));
3702 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3703
3704 if (!ada_type_match (ftype, atype, 1))
3705 return 0;
3706 }
3707 }
3708 return 1;
3709 }
3710
3711 /* False iff function type FUNC_TYPE definitely does not produce a value
3712 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3713 FUNC_TYPE is not a valid function type with a non-null return type
3714 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3715
3716 static int
3717 return_match (struct type *func_type, struct type *context_type)
3718 {
3719 struct type *return_type;
3720
3721 if (func_type == NULL)
3722 return 1;
3723
3724 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3725 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3726 else
3727 return_type = get_base_type (func_type);
3728 if (return_type == NULL)
3729 return 1;
3730
3731 context_type = get_base_type (context_type);
3732
3733 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3734 return context_type == NULL || return_type == context_type;
3735 else if (context_type == NULL)
3736 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3737 else
3738 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3739 }
3740
3741
3742 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3743 function (if any) that matches the types of the NARGS arguments in
3744 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3745 that returns that type, then eliminate matches that don't. If
3746 CONTEXT_TYPE is void and there is at least one match that does not
3747 return void, eliminate all matches that do.
3748
3749 Asks the user if there is more than one match remaining. Returns -1
3750 if there is no such symbol or none is selected. NAME is used
3751 solely for messages. May re-arrange and modify SYMS in
3752 the process; the index returned is for the modified vector. */
3753
3754 static int
3755 ada_resolve_function (struct block_symbol syms[],
3756 int nsyms, struct value **args, int nargs,
3757 const char *name, struct type *context_type)
3758 {
3759 int fallback;
3760 int k;
3761 int m; /* Number of hits */
3762
3763 m = 0;
3764 /* In the first pass of the loop, we only accept functions matching
3765 context_type. If none are found, we add a second pass of the loop
3766 where every function is accepted. */
3767 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3768 {
3769 for (k = 0; k < nsyms; k += 1)
3770 {
3771 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3772
3773 if (ada_args_match (syms[k].symbol, args, nargs)
3774 && (fallback || return_match (type, context_type)))
3775 {
3776 syms[m] = syms[k];
3777 m += 1;
3778 }
3779 }
3780 }
3781
3782 /* If we got multiple matches, ask the user which one to use. Don't do this
3783 interactive thing during completion, though, as the purpose of the
3784 completion is providing a list of all possible matches. Prompting the
3785 user to filter it down would be completely unexpected in this case. */
3786 if (m == 0)
3787 return -1;
3788 else if (m > 1 && !parse_completion)
3789 {
3790 printf_filtered (_("Multiple matches for %s\n"), name);
3791 user_select_syms (syms, m, 1);
3792 return 0;
3793 }
3794 return 0;
3795 }
3796
3797 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3798 in a listing of choices during disambiguation (see sort_choices, below).
3799 The idea is that overloadings of a subprogram name from the
3800 same package should sort in their source order. We settle for ordering
3801 such symbols by their trailing number (__N or $N). */
3802
3803 static int
3804 encoded_ordered_before (const char *N0, const char *N1)
3805 {
3806 if (N1 == NULL)
3807 return 0;
3808 else if (N0 == NULL)
3809 return 1;
3810 else
3811 {
3812 int k0, k1;
3813
3814 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3815 ;
3816 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3817 ;
3818 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3819 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3820 {
3821 int n0, n1;
3822
3823 n0 = k0;
3824 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3825 n0 -= 1;
3826 n1 = k1;
3827 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3828 n1 -= 1;
3829 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3830 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3831 }
3832 return (strcmp (N0, N1) < 0);
3833 }
3834 }
3835
3836 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3837 encoded names. */
3838
3839 static void
3840 sort_choices (struct block_symbol syms[], int nsyms)
3841 {
3842 int i;
3843
3844 for (i = 1; i < nsyms; i += 1)
3845 {
3846 struct block_symbol sym = syms[i];
3847 int j;
3848
3849 for (j = i - 1; j >= 0; j -= 1)
3850 {
3851 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3852 SYMBOL_LINKAGE_NAME (sym.symbol)))
3853 break;
3854 syms[j + 1] = syms[j];
3855 }
3856 syms[j + 1] = sym;
3857 }
3858 }
3859
3860 /* Whether GDB should display formals and return types for functions in the
3861 overloads selection menu. */
3862 static int print_signatures = 1;
3863
3864 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3865 all but functions, the signature is just the name of the symbol. For
3866 functions, this is the name of the function, the list of types for formals
3867 and the return type (if any). */
3868
3869 static void
3870 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3871 const struct type_print_options *flags)
3872 {
3873 struct type *type = SYMBOL_TYPE (sym);
3874
3875 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3876 if (!print_signatures
3877 || type == NULL
3878 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3879 return;
3880
3881 if (TYPE_NFIELDS (type) > 0)
3882 {
3883 int i;
3884
3885 fprintf_filtered (stream, " (");
3886 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3887 {
3888 if (i > 0)
3889 fprintf_filtered (stream, "; ");
3890 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3891 flags);
3892 }
3893 fprintf_filtered (stream, ")");
3894 }
3895 if (TYPE_TARGET_TYPE (type) != NULL
3896 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3897 {
3898 fprintf_filtered (stream, " return ");
3899 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3900 }
3901 }
3902
3903 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3904 by asking the user (if necessary), returning the number selected,
3905 and setting the first elements of SYMS items. Error if no symbols
3906 selected. */
3907
3908 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3909 to be re-integrated one of these days. */
3910
3911 int
3912 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3913 {
3914 int i;
3915 int *chosen = XALLOCAVEC (int , nsyms);
3916 int n_chosen;
3917 int first_choice = (max_results == 1) ? 1 : 2;
3918 const char *select_mode = multiple_symbols_select_mode ();
3919
3920 if (max_results < 1)
3921 error (_("Request to select 0 symbols!"));
3922 if (nsyms <= 1)
3923 return nsyms;
3924
3925 if (select_mode == multiple_symbols_cancel)
3926 error (_("\
3927 canceled because the command is ambiguous\n\
3928 See set/show multiple-symbol."));
3929
3930 /* If select_mode is "all", then return all possible symbols.
3931 Only do that if more than one symbol can be selected, of course.
3932 Otherwise, display the menu as usual. */
3933 if (select_mode == multiple_symbols_all && max_results > 1)
3934 return nsyms;
3935
3936 printf_unfiltered (_("[0] cancel\n"));
3937 if (max_results > 1)
3938 printf_unfiltered (_("[1] all\n"));
3939
3940 sort_choices (syms, nsyms);
3941
3942 for (i = 0; i < nsyms; i += 1)
3943 {
3944 if (syms[i].symbol == NULL)
3945 continue;
3946
3947 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3948 {
3949 struct symtab_and_line sal =
3950 find_function_start_sal (syms[i].symbol, 1);
3951
3952 printf_unfiltered ("[%d] ", i + first_choice);
3953 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3954 &type_print_raw_options);
3955 if (sal.symtab == NULL)
3956 printf_unfiltered (_(" at <no source file available>:%d\n"),
3957 sal.line);
3958 else
3959 printf_unfiltered (_(" at %s:%d\n"),
3960 symtab_to_filename_for_display (sal.symtab),
3961 sal.line);
3962 continue;
3963 }
3964 else
3965 {
3966 int is_enumeral =
3967 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3968 && SYMBOL_TYPE (syms[i].symbol) != NULL
3969 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3970 struct symtab *symtab = NULL;
3971
3972 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3973 symtab = symbol_symtab (syms[i].symbol);
3974
3975 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3976 {
3977 printf_unfiltered ("[%d] ", i + first_choice);
3978 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3979 &type_print_raw_options);
3980 printf_unfiltered (_(" at %s:%d\n"),
3981 symtab_to_filename_for_display (symtab),
3982 SYMBOL_LINE (syms[i].symbol));
3983 }
3984 else if (is_enumeral
3985 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3986 {
3987 printf_unfiltered (("[%d] "), i + first_choice);
3988 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3989 gdb_stdout, -1, 0, &type_print_raw_options);
3990 printf_unfiltered (_("'(%s) (enumeral)\n"),
3991 SYMBOL_PRINT_NAME (syms[i].symbol));
3992 }
3993 else
3994 {
3995 printf_unfiltered ("[%d] ", i + first_choice);
3996 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3997 &type_print_raw_options);
3998
3999 if (symtab != NULL)
4000 printf_unfiltered (is_enumeral
4001 ? _(" in %s (enumeral)\n")
4002 : _(" at %s:?\n"),
4003 symtab_to_filename_for_display (symtab));
4004 else
4005 printf_unfiltered (is_enumeral
4006 ? _(" (enumeral)\n")
4007 : _(" at ?\n"));
4008 }
4009 }
4010 }
4011
4012 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4013 "overload-choice");
4014
4015 for (i = 0; i < n_chosen; i += 1)
4016 syms[i] = syms[chosen[i]];
4017
4018 return n_chosen;
4019 }
4020
4021 /* Read and validate a set of numeric choices from the user in the
4022 range 0 .. N_CHOICES-1. Place the results in increasing
4023 order in CHOICES[0 .. N-1], and return N.
4024
4025 The user types choices as a sequence of numbers on one line
4026 separated by blanks, encoding them as follows:
4027
4028 + A choice of 0 means to cancel the selection, throwing an error.
4029 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4030 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4031
4032 The user is not allowed to choose more than MAX_RESULTS values.
4033
4034 ANNOTATION_SUFFIX, if present, is used to annotate the input
4035 prompts (for use with the -f switch). */
4036
4037 int
4038 get_selections (int *choices, int n_choices, int max_results,
4039 int is_all_choice, char *annotation_suffix)
4040 {
4041 char *args;
4042 char *prompt;
4043 int n_chosen;
4044 int first_choice = is_all_choice ? 2 : 1;
4045
4046 prompt = getenv ("PS2");
4047 if (prompt == NULL)
4048 prompt = "> ";
4049
4050 args = command_line_input (prompt, 0, annotation_suffix);
4051
4052 if (args == NULL)
4053 error_no_arg (_("one or more choice numbers"));
4054
4055 n_chosen = 0;
4056
4057 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4058 order, as given in args. Choices are validated. */
4059 while (1)
4060 {
4061 char *args2;
4062 int choice, j;
4063
4064 args = skip_spaces (args);
4065 if (*args == '\0' && n_chosen == 0)
4066 error_no_arg (_("one or more choice numbers"));
4067 else if (*args == '\0')
4068 break;
4069
4070 choice = strtol (args, &args2, 10);
4071 if (args == args2 || choice < 0
4072 || choice > n_choices + first_choice - 1)
4073 error (_("Argument must be choice number"));
4074 args = args2;
4075
4076 if (choice == 0)
4077 error (_("cancelled"));
4078
4079 if (choice < first_choice)
4080 {
4081 n_chosen = n_choices;
4082 for (j = 0; j < n_choices; j += 1)
4083 choices[j] = j;
4084 break;
4085 }
4086 choice -= first_choice;
4087
4088 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4089 {
4090 }
4091
4092 if (j < 0 || choice != choices[j])
4093 {
4094 int k;
4095
4096 for (k = n_chosen - 1; k > j; k -= 1)
4097 choices[k + 1] = choices[k];
4098 choices[j + 1] = choice;
4099 n_chosen += 1;
4100 }
4101 }
4102
4103 if (n_chosen > max_results)
4104 error (_("Select no more than %d of the above"), max_results);
4105
4106 return n_chosen;
4107 }
4108
4109 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4110 on the function identified by SYM and BLOCK, and taking NARGS
4111 arguments. Update *EXPP as needed to hold more space. */
4112
4113 static void
4114 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4115 int oplen, struct symbol *sym,
4116 const struct block *block)
4117 {
4118 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4119 symbol, -oplen for operator being replaced). */
4120 struct expression *newexp = (struct expression *)
4121 xzalloc (sizeof (struct expression)
4122 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4123 struct expression *exp = *expp;
4124
4125 newexp->nelts = exp->nelts + 7 - oplen;
4126 newexp->language_defn = exp->language_defn;
4127 newexp->gdbarch = exp->gdbarch;
4128 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4129 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4130 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4131
4132 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4133 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4134
4135 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4136 newexp->elts[pc + 4].block = block;
4137 newexp->elts[pc + 5].symbol = sym;
4138
4139 *expp = newexp;
4140 xfree (exp);
4141 }
4142
4143 /* Type-class predicates */
4144
4145 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4146 or FLOAT). */
4147
4148 static int
4149 numeric_type_p (struct type *type)
4150 {
4151 if (type == NULL)
4152 return 0;
4153 else
4154 {
4155 switch (TYPE_CODE (type))
4156 {
4157 case TYPE_CODE_INT:
4158 case TYPE_CODE_FLT:
4159 return 1;
4160 case TYPE_CODE_RANGE:
4161 return (type == TYPE_TARGET_TYPE (type)
4162 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4163 default:
4164 return 0;
4165 }
4166 }
4167 }
4168
4169 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4170
4171 static int
4172 integer_type_p (struct type *type)
4173 {
4174 if (type == NULL)
4175 return 0;
4176 else
4177 {
4178 switch (TYPE_CODE (type))
4179 {
4180 case TYPE_CODE_INT:
4181 return 1;
4182 case TYPE_CODE_RANGE:
4183 return (type == TYPE_TARGET_TYPE (type)
4184 || integer_type_p (TYPE_TARGET_TYPE (type)));
4185 default:
4186 return 0;
4187 }
4188 }
4189 }
4190
4191 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4192
4193 static int
4194 scalar_type_p (struct type *type)
4195 {
4196 if (type == NULL)
4197 return 0;
4198 else
4199 {
4200 switch (TYPE_CODE (type))
4201 {
4202 case TYPE_CODE_INT:
4203 case TYPE_CODE_RANGE:
4204 case TYPE_CODE_ENUM:
4205 case TYPE_CODE_FLT:
4206 return 1;
4207 default:
4208 return 0;
4209 }
4210 }
4211 }
4212
4213 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4214
4215 static int
4216 discrete_type_p (struct type *type)
4217 {
4218 if (type == NULL)
4219 return 0;
4220 else
4221 {
4222 switch (TYPE_CODE (type))
4223 {
4224 case TYPE_CODE_INT:
4225 case TYPE_CODE_RANGE:
4226 case TYPE_CODE_ENUM:
4227 case TYPE_CODE_BOOL:
4228 return 1;
4229 default:
4230 return 0;
4231 }
4232 }
4233 }
4234
4235 /* Returns non-zero if OP with operands in the vector ARGS could be
4236 a user-defined function. Errs on the side of pre-defined operators
4237 (i.e., result 0). */
4238
4239 static int
4240 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4241 {
4242 struct type *type0 =
4243 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4244 struct type *type1 =
4245 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4246
4247 if (type0 == NULL)
4248 return 0;
4249
4250 switch (op)
4251 {
4252 default:
4253 return 0;
4254
4255 case BINOP_ADD:
4256 case BINOP_SUB:
4257 case BINOP_MUL:
4258 case BINOP_DIV:
4259 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4260
4261 case BINOP_REM:
4262 case BINOP_MOD:
4263 case BINOP_BITWISE_AND:
4264 case BINOP_BITWISE_IOR:
4265 case BINOP_BITWISE_XOR:
4266 return (!(integer_type_p (type0) && integer_type_p (type1)));
4267
4268 case BINOP_EQUAL:
4269 case BINOP_NOTEQUAL:
4270 case BINOP_LESS:
4271 case BINOP_GTR:
4272 case BINOP_LEQ:
4273 case BINOP_GEQ:
4274 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4275
4276 case BINOP_CONCAT:
4277 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4278
4279 case BINOP_EXP:
4280 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4281
4282 case UNOP_NEG:
4283 case UNOP_PLUS:
4284 case UNOP_LOGICAL_NOT:
4285 case UNOP_ABS:
4286 return (!numeric_type_p (type0));
4287
4288 }
4289 }
4290 \f
4291 /* Renaming */
4292
4293 /* NOTES:
4294
4295 1. In the following, we assume that a renaming type's name may
4296 have an ___XD suffix. It would be nice if this went away at some
4297 point.
4298 2. We handle both the (old) purely type-based representation of
4299 renamings and the (new) variable-based encoding. At some point,
4300 it is devoutly to be hoped that the former goes away
4301 (FIXME: hilfinger-2007-07-09).
4302 3. Subprogram renamings are not implemented, although the XRS
4303 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4304
4305 /* If SYM encodes a renaming,
4306
4307 <renaming> renames <renamed entity>,
4308
4309 sets *LEN to the length of the renamed entity's name,
4310 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4311 the string describing the subcomponent selected from the renamed
4312 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4313 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4314 are undefined). Otherwise, returns a value indicating the category
4315 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4316 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4317 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4318 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4319 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4320 may be NULL, in which case they are not assigned.
4321
4322 [Currently, however, GCC does not generate subprogram renamings.] */
4323
4324 enum ada_renaming_category
4325 ada_parse_renaming (struct symbol *sym,
4326 const char **renamed_entity, int *len,
4327 const char **renaming_expr)
4328 {
4329 enum ada_renaming_category kind;
4330 const char *info;
4331 const char *suffix;
4332
4333 if (sym == NULL)
4334 return ADA_NOT_RENAMING;
4335 switch (SYMBOL_CLASS (sym))
4336 {
4337 default:
4338 return ADA_NOT_RENAMING;
4339 case LOC_TYPEDEF:
4340 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4341 renamed_entity, len, renaming_expr);
4342 case LOC_LOCAL:
4343 case LOC_STATIC:
4344 case LOC_COMPUTED:
4345 case LOC_OPTIMIZED_OUT:
4346 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4347 if (info == NULL)
4348 return ADA_NOT_RENAMING;
4349 switch (info[5])
4350 {
4351 case '_':
4352 kind = ADA_OBJECT_RENAMING;
4353 info += 6;
4354 break;
4355 case 'E':
4356 kind = ADA_EXCEPTION_RENAMING;
4357 info += 7;
4358 break;
4359 case 'P':
4360 kind = ADA_PACKAGE_RENAMING;
4361 info += 7;
4362 break;
4363 case 'S':
4364 kind = ADA_SUBPROGRAM_RENAMING;
4365 info += 7;
4366 break;
4367 default:
4368 return ADA_NOT_RENAMING;
4369 }
4370 }
4371
4372 if (renamed_entity != NULL)
4373 *renamed_entity = info;
4374 suffix = strstr (info, "___XE");
4375 if (suffix == NULL || suffix == info)
4376 return ADA_NOT_RENAMING;
4377 if (len != NULL)
4378 *len = strlen (info) - strlen (suffix);
4379 suffix += 5;
4380 if (renaming_expr != NULL)
4381 *renaming_expr = suffix;
4382 return kind;
4383 }
4384
4385 /* Assuming TYPE encodes a renaming according to the old encoding in
4386 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4387 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4388 ADA_NOT_RENAMING otherwise. */
4389 static enum ada_renaming_category
4390 parse_old_style_renaming (struct type *type,
4391 const char **renamed_entity, int *len,
4392 const char **renaming_expr)
4393 {
4394 enum ada_renaming_category kind;
4395 const char *name;
4396 const char *info;
4397 const char *suffix;
4398
4399 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4400 || TYPE_NFIELDS (type) != 1)
4401 return ADA_NOT_RENAMING;
4402
4403 name = type_name_no_tag (type);
4404 if (name == NULL)
4405 return ADA_NOT_RENAMING;
4406
4407 name = strstr (name, "___XR");
4408 if (name == NULL)
4409 return ADA_NOT_RENAMING;
4410 switch (name[5])
4411 {
4412 case '\0':
4413 case '_':
4414 kind = ADA_OBJECT_RENAMING;
4415 break;
4416 case 'E':
4417 kind = ADA_EXCEPTION_RENAMING;
4418 break;
4419 case 'P':
4420 kind = ADA_PACKAGE_RENAMING;
4421 break;
4422 case 'S':
4423 kind = ADA_SUBPROGRAM_RENAMING;
4424 break;
4425 default:
4426 return ADA_NOT_RENAMING;
4427 }
4428
4429 info = TYPE_FIELD_NAME (type, 0);
4430 if (info == NULL)
4431 return ADA_NOT_RENAMING;
4432 if (renamed_entity != NULL)
4433 *renamed_entity = info;
4434 suffix = strstr (info, "___XE");
4435 if (renaming_expr != NULL)
4436 *renaming_expr = suffix + 5;
4437 if (suffix == NULL || suffix == info)
4438 return ADA_NOT_RENAMING;
4439 if (len != NULL)
4440 *len = suffix - info;
4441 return kind;
4442 }
4443
4444 /* Compute the value of the given RENAMING_SYM, which is expected to
4445 be a symbol encoding a renaming expression. BLOCK is the block
4446 used to evaluate the renaming. */
4447
4448 static struct value *
4449 ada_read_renaming_var_value (struct symbol *renaming_sym,
4450 const struct block *block)
4451 {
4452 const char *sym_name;
4453
4454 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4455 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4456 return evaluate_expression (expr.get ());
4457 }
4458 \f
4459
4460 /* Evaluation: Function Calls */
4461
4462 /* Return an lvalue containing the value VAL. This is the identity on
4463 lvalues, and otherwise has the side-effect of allocating memory
4464 in the inferior where a copy of the value contents is copied. */
4465
4466 static struct value *
4467 ensure_lval (struct value *val)
4468 {
4469 if (VALUE_LVAL (val) == not_lval
4470 || VALUE_LVAL (val) == lval_internalvar)
4471 {
4472 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4473 const CORE_ADDR addr =
4474 value_as_long (value_allocate_space_in_inferior (len));
4475
4476 VALUE_LVAL (val) = lval_memory;
4477 set_value_address (val, addr);
4478 write_memory (addr, value_contents (val), len);
4479 }
4480
4481 return val;
4482 }
4483
4484 /* Return the value ACTUAL, converted to be an appropriate value for a
4485 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4486 allocating any necessary descriptors (fat pointers), or copies of
4487 values not residing in memory, updating it as needed. */
4488
4489 struct value *
4490 ada_convert_actual (struct value *actual, struct type *formal_type0)
4491 {
4492 struct type *actual_type = ada_check_typedef (value_type (actual));
4493 struct type *formal_type = ada_check_typedef (formal_type0);
4494 struct type *formal_target =
4495 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4496 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4497 struct type *actual_target =
4498 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4499 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4500
4501 if (ada_is_array_descriptor_type (formal_target)
4502 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4503 return make_array_descriptor (formal_type, actual);
4504 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4505 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4506 {
4507 struct value *result;
4508
4509 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4510 && ada_is_array_descriptor_type (actual_target))
4511 result = desc_data (actual);
4512 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4513 {
4514 if (VALUE_LVAL (actual) != lval_memory)
4515 {
4516 struct value *val;
4517
4518 actual_type = ada_check_typedef (value_type (actual));
4519 val = allocate_value (actual_type);
4520 memcpy ((char *) value_contents_raw (val),
4521 (char *) value_contents (actual),
4522 TYPE_LENGTH (actual_type));
4523 actual = ensure_lval (val);
4524 }
4525 result = value_addr (actual);
4526 }
4527 else
4528 return actual;
4529 return value_cast_pointers (formal_type, result, 0);
4530 }
4531 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4532 return ada_value_ind (actual);
4533 else if (ada_is_aligner_type (formal_type))
4534 {
4535 /* We need to turn this parameter into an aligner type
4536 as well. */
4537 struct value *aligner = allocate_value (formal_type);
4538 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4539
4540 value_assign_to_component (aligner, component, actual);
4541 return aligner;
4542 }
4543
4544 return actual;
4545 }
4546
4547 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4548 type TYPE. This is usually an inefficient no-op except on some targets
4549 (such as AVR) where the representation of a pointer and an address
4550 differs. */
4551
4552 static CORE_ADDR
4553 value_pointer (struct value *value, struct type *type)
4554 {
4555 struct gdbarch *gdbarch = get_type_arch (type);
4556 unsigned len = TYPE_LENGTH (type);
4557 gdb_byte *buf = (gdb_byte *) alloca (len);
4558 CORE_ADDR addr;
4559
4560 addr = value_address (value);
4561 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4562 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4563 return addr;
4564 }
4565
4566
4567 /* Push a descriptor of type TYPE for array value ARR on the stack at
4568 *SP, updating *SP to reflect the new descriptor. Return either
4569 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4570 to-descriptor type rather than a descriptor type), a struct value *
4571 representing a pointer to this descriptor. */
4572
4573 static struct value *
4574 make_array_descriptor (struct type *type, struct value *arr)
4575 {
4576 struct type *bounds_type = desc_bounds_type (type);
4577 struct type *desc_type = desc_base_type (type);
4578 struct value *descriptor = allocate_value (desc_type);
4579 struct value *bounds = allocate_value (bounds_type);
4580 int i;
4581
4582 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4583 i > 0; i -= 1)
4584 {
4585 modify_field (value_type (bounds), value_contents_writeable (bounds),
4586 ada_array_bound (arr, i, 0),
4587 desc_bound_bitpos (bounds_type, i, 0),
4588 desc_bound_bitsize (bounds_type, i, 0));
4589 modify_field (value_type (bounds), value_contents_writeable (bounds),
4590 ada_array_bound (arr, i, 1),
4591 desc_bound_bitpos (bounds_type, i, 1),
4592 desc_bound_bitsize (bounds_type, i, 1));
4593 }
4594
4595 bounds = ensure_lval (bounds);
4596
4597 modify_field (value_type (descriptor),
4598 value_contents_writeable (descriptor),
4599 value_pointer (ensure_lval (arr),
4600 TYPE_FIELD_TYPE (desc_type, 0)),
4601 fat_pntr_data_bitpos (desc_type),
4602 fat_pntr_data_bitsize (desc_type));
4603
4604 modify_field (value_type (descriptor),
4605 value_contents_writeable (descriptor),
4606 value_pointer (bounds,
4607 TYPE_FIELD_TYPE (desc_type, 1)),
4608 fat_pntr_bounds_bitpos (desc_type),
4609 fat_pntr_bounds_bitsize (desc_type));
4610
4611 descriptor = ensure_lval (descriptor);
4612
4613 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4614 return value_addr (descriptor);
4615 else
4616 return descriptor;
4617 }
4618 \f
4619 /* Symbol Cache Module */
4620
4621 /* Performance measurements made as of 2010-01-15 indicate that
4622 this cache does bring some noticeable improvements. Depending
4623 on the type of entity being printed, the cache can make it as much
4624 as an order of magnitude faster than without it.
4625
4626 The descriptive type DWARF extension has significantly reduced
4627 the need for this cache, at least when DWARF is being used. However,
4628 even in this case, some expensive name-based symbol searches are still
4629 sometimes necessary - to find an XVZ variable, mostly. */
4630
4631 /* Initialize the contents of SYM_CACHE. */
4632
4633 static void
4634 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4635 {
4636 obstack_init (&sym_cache->cache_space);
4637 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4638 }
4639
4640 /* Free the memory used by SYM_CACHE. */
4641
4642 static void
4643 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4644 {
4645 obstack_free (&sym_cache->cache_space, NULL);
4646 xfree (sym_cache);
4647 }
4648
4649 /* Return the symbol cache associated to the given program space PSPACE.
4650 If not allocated for this PSPACE yet, allocate and initialize one. */
4651
4652 static struct ada_symbol_cache *
4653 ada_get_symbol_cache (struct program_space *pspace)
4654 {
4655 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4656
4657 if (pspace_data->sym_cache == NULL)
4658 {
4659 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4660 ada_init_symbol_cache (pspace_data->sym_cache);
4661 }
4662
4663 return pspace_data->sym_cache;
4664 }
4665
4666 /* Clear all entries from the symbol cache. */
4667
4668 static void
4669 ada_clear_symbol_cache (void)
4670 {
4671 struct ada_symbol_cache *sym_cache
4672 = ada_get_symbol_cache (current_program_space);
4673
4674 obstack_free (&sym_cache->cache_space, NULL);
4675 ada_init_symbol_cache (sym_cache);
4676 }
4677
4678 /* Search our cache for an entry matching NAME and DOMAIN.
4679 Return it if found, or NULL otherwise. */
4680
4681 static struct cache_entry **
4682 find_entry (const char *name, domain_enum domain)
4683 {
4684 struct ada_symbol_cache *sym_cache
4685 = ada_get_symbol_cache (current_program_space);
4686 int h = msymbol_hash (name) % HASH_SIZE;
4687 struct cache_entry **e;
4688
4689 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4690 {
4691 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4692 return e;
4693 }
4694 return NULL;
4695 }
4696
4697 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4698 Return 1 if found, 0 otherwise.
4699
4700 If an entry was found and SYM is not NULL, set *SYM to the entry's
4701 SYM. Same principle for BLOCK if not NULL. */
4702
4703 static int
4704 lookup_cached_symbol (const char *name, domain_enum domain,
4705 struct symbol **sym, const struct block **block)
4706 {
4707 struct cache_entry **e = find_entry (name, domain);
4708
4709 if (e == NULL)
4710 return 0;
4711 if (sym != NULL)
4712 *sym = (*e)->sym;
4713 if (block != NULL)
4714 *block = (*e)->block;
4715 return 1;
4716 }
4717
4718 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4719 in domain DOMAIN, save this result in our symbol cache. */
4720
4721 static void
4722 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4723 const struct block *block)
4724 {
4725 struct ada_symbol_cache *sym_cache
4726 = ada_get_symbol_cache (current_program_space);
4727 int h;
4728 char *copy;
4729 struct cache_entry *e;
4730
4731 /* Symbols for builtin types don't have a block.
4732 For now don't cache such symbols. */
4733 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4734 return;
4735
4736 /* If the symbol is a local symbol, then do not cache it, as a search
4737 for that symbol depends on the context. To determine whether
4738 the symbol is local or not, we check the block where we found it
4739 against the global and static blocks of its associated symtab. */
4740 if (sym
4741 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4742 GLOBAL_BLOCK) != block
4743 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4744 STATIC_BLOCK) != block)
4745 return;
4746
4747 h = msymbol_hash (name) % HASH_SIZE;
4748 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4749 sizeof (*e));
4750 e->next = sym_cache->root[h];
4751 sym_cache->root[h] = e;
4752 e->name = copy
4753 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4754 strcpy (copy, name);
4755 e->sym = sym;
4756 e->domain = domain;
4757 e->block = block;
4758 }
4759 \f
4760 /* Symbol Lookup */
4761
4762 /* Return nonzero if wild matching should be used when searching for
4763 all symbols matching LOOKUP_NAME.
4764
4765 LOOKUP_NAME is expected to be a symbol name after transformation
4766 for Ada lookups (see ada_name_for_lookup). */
4767
4768 static int
4769 should_use_wild_match (const char *lookup_name)
4770 {
4771 return (strstr (lookup_name, "__") == NULL);
4772 }
4773
4774 /* Return the result of a standard (literal, C-like) lookup of NAME in
4775 given DOMAIN, visible from lexical block BLOCK. */
4776
4777 static struct symbol *
4778 standard_lookup (const char *name, const struct block *block,
4779 domain_enum domain)
4780 {
4781 /* Initialize it just to avoid a GCC false warning. */
4782 struct block_symbol sym = {NULL, NULL};
4783
4784 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4785 return sym.symbol;
4786 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4787 cache_symbol (name, domain, sym.symbol, sym.block);
4788 return sym.symbol;
4789 }
4790
4791
4792 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4793 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4794 since they contend in overloading in the same way. */
4795 static int
4796 is_nonfunction (struct block_symbol syms[], int n)
4797 {
4798 int i;
4799
4800 for (i = 0; i < n; i += 1)
4801 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4802 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4803 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4804 return 1;
4805
4806 return 0;
4807 }
4808
4809 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4810 struct types. Otherwise, they may not. */
4811
4812 static int
4813 equiv_types (struct type *type0, struct type *type1)
4814 {
4815 if (type0 == type1)
4816 return 1;
4817 if (type0 == NULL || type1 == NULL
4818 || TYPE_CODE (type0) != TYPE_CODE (type1))
4819 return 0;
4820 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4821 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4822 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4823 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4824 return 1;
4825
4826 return 0;
4827 }
4828
4829 /* True iff SYM0 represents the same entity as SYM1, or one that is
4830 no more defined than that of SYM1. */
4831
4832 static int
4833 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4834 {
4835 if (sym0 == sym1)
4836 return 1;
4837 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4838 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4839 return 0;
4840
4841 switch (SYMBOL_CLASS (sym0))
4842 {
4843 case LOC_UNDEF:
4844 return 1;
4845 case LOC_TYPEDEF:
4846 {
4847 struct type *type0 = SYMBOL_TYPE (sym0);
4848 struct type *type1 = SYMBOL_TYPE (sym1);
4849 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4850 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4851 int len0 = strlen (name0);
4852
4853 return
4854 TYPE_CODE (type0) == TYPE_CODE (type1)
4855 && (equiv_types (type0, type1)
4856 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4857 && startswith (name1 + len0, "___XV")));
4858 }
4859 case LOC_CONST:
4860 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4861 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4862 default:
4863 return 0;
4864 }
4865 }
4866
4867 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4868 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4869
4870 static void
4871 add_defn_to_vec (struct obstack *obstackp,
4872 struct symbol *sym,
4873 const struct block *block)
4874 {
4875 int i;
4876 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4877
4878 /* Do not try to complete stub types, as the debugger is probably
4879 already scanning all symbols matching a certain name at the
4880 time when this function is called. Trying to replace the stub
4881 type by its associated full type will cause us to restart a scan
4882 which may lead to an infinite recursion. Instead, the client
4883 collecting the matching symbols will end up collecting several
4884 matches, with at least one of them complete. It can then filter
4885 out the stub ones if needed. */
4886
4887 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4888 {
4889 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4890 return;
4891 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4892 {
4893 prevDefns[i].symbol = sym;
4894 prevDefns[i].block = block;
4895 return;
4896 }
4897 }
4898
4899 {
4900 struct block_symbol info;
4901
4902 info.symbol = sym;
4903 info.block = block;
4904 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4905 }
4906 }
4907
4908 /* Number of block_symbol structures currently collected in current vector in
4909 OBSTACKP. */
4910
4911 static int
4912 num_defns_collected (struct obstack *obstackp)
4913 {
4914 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4915 }
4916
4917 /* Vector of block_symbol structures currently collected in current vector in
4918 OBSTACKP. If FINISH, close off the vector and return its final address. */
4919
4920 static struct block_symbol *
4921 defns_collected (struct obstack *obstackp, int finish)
4922 {
4923 if (finish)
4924 return (struct block_symbol *) obstack_finish (obstackp);
4925 else
4926 return (struct block_symbol *) obstack_base (obstackp);
4927 }
4928
4929 /* Return a bound minimal symbol matching NAME according to Ada
4930 decoding rules. Returns an invalid symbol if there is no such
4931 minimal symbol. Names prefixed with "standard__" are handled
4932 specially: "standard__" is first stripped off, and only static and
4933 global symbols are searched. */
4934
4935 struct bound_minimal_symbol
4936 ada_lookup_simple_minsym (const char *name)
4937 {
4938 struct bound_minimal_symbol result;
4939 struct objfile *objfile;
4940 struct minimal_symbol *msymbol;
4941 const int wild_match_p = should_use_wild_match (name);
4942
4943 memset (&result, 0, sizeof (result));
4944
4945 /* Special case: If the user specifies a symbol name inside package
4946 Standard, do a non-wild matching of the symbol name without
4947 the "standard__" prefix. This was primarily introduced in order
4948 to allow the user to specifically access the standard exceptions
4949 using, for instance, Standard.Constraint_Error when Constraint_Error
4950 is ambiguous (due to the user defining its own Constraint_Error
4951 entity inside its program). */
4952 if (startswith (name, "standard__"))
4953 name += sizeof ("standard__") - 1;
4954
4955 ALL_MSYMBOLS (objfile, msymbol)
4956 {
4957 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4958 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4959 {
4960 result.minsym = msymbol;
4961 result.objfile = objfile;
4962 break;
4963 }
4964 }
4965
4966 return result;
4967 }
4968
4969 /* For all subprograms that statically enclose the subprogram of the
4970 selected frame, add symbols matching identifier NAME in DOMAIN
4971 and their blocks to the list of data in OBSTACKP, as for
4972 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4973 with a wildcard prefix. */
4974
4975 static void
4976 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4977 const char *name, domain_enum domain,
4978 int wild_match_p)
4979 {
4980 }
4981
4982 /* True if TYPE is definitely an artificial type supplied to a symbol
4983 for which no debugging information was given in the symbol file. */
4984
4985 static int
4986 is_nondebugging_type (struct type *type)
4987 {
4988 const char *name = ada_type_name (type);
4989
4990 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4991 }
4992
4993 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4994 that are deemed "identical" for practical purposes.
4995
4996 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4997 types and that their number of enumerals is identical (in other
4998 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4999
5000 static int
5001 ada_identical_enum_types_p (struct type *type1, struct type *type2)
5002 {
5003 int i;
5004
5005 /* The heuristic we use here is fairly conservative. We consider
5006 that 2 enumerate types are identical if they have the same
5007 number of enumerals and that all enumerals have the same
5008 underlying value and name. */
5009
5010 /* All enums in the type should have an identical underlying value. */
5011 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5012 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5013 return 0;
5014
5015 /* All enumerals should also have the same name (modulo any numerical
5016 suffix). */
5017 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5018 {
5019 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5020 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5021 int len_1 = strlen (name_1);
5022 int len_2 = strlen (name_2);
5023
5024 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5025 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5026 if (len_1 != len_2
5027 || strncmp (TYPE_FIELD_NAME (type1, i),
5028 TYPE_FIELD_NAME (type2, i),
5029 len_1) != 0)
5030 return 0;
5031 }
5032
5033 return 1;
5034 }
5035
5036 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5037 that are deemed "identical" for practical purposes. Sometimes,
5038 enumerals are not strictly identical, but their types are so similar
5039 that they can be considered identical.
5040
5041 For instance, consider the following code:
5042
5043 type Color is (Black, Red, Green, Blue, White);
5044 type RGB_Color is new Color range Red .. Blue;
5045
5046 Type RGB_Color is a subrange of an implicit type which is a copy
5047 of type Color. If we call that implicit type RGB_ColorB ("B" is
5048 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5049 As a result, when an expression references any of the enumeral
5050 by name (Eg. "print green"), the expression is technically
5051 ambiguous and the user should be asked to disambiguate. But
5052 doing so would only hinder the user, since it wouldn't matter
5053 what choice he makes, the outcome would always be the same.
5054 So, for practical purposes, we consider them as the same. */
5055
5056 static int
5057 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5058 {
5059 int i;
5060
5061 /* Before performing a thorough comparison check of each type,
5062 we perform a series of inexpensive checks. We expect that these
5063 checks will quickly fail in the vast majority of cases, and thus
5064 help prevent the unnecessary use of a more expensive comparison.
5065 Said comparison also expects us to make some of these checks
5066 (see ada_identical_enum_types_p). */
5067
5068 /* Quick check: All symbols should have an enum type. */
5069 for (i = 0; i < nsyms; i++)
5070 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5071 return 0;
5072
5073 /* Quick check: They should all have the same value. */
5074 for (i = 1; i < nsyms; i++)
5075 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5076 return 0;
5077
5078 /* Quick check: They should all have the same number of enumerals. */
5079 for (i = 1; i < nsyms; i++)
5080 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5081 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5082 return 0;
5083
5084 /* All the sanity checks passed, so we might have a set of
5085 identical enumeration types. Perform a more complete
5086 comparison of the type of each symbol. */
5087 for (i = 1; i < nsyms; i++)
5088 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5089 SYMBOL_TYPE (syms[0].symbol)))
5090 return 0;
5091
5092 return 1;
5093 }
5094
5095 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5096 duplicate other symbols in the list (The only case I know of where
5097 this happens is when object files containing stabs-in-ecoff are
5098 linked with files containing ordinary ecoff debugging symbols (or no
5099 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5100 Returns the number of items in the modified list. */
5101
5102 static int
5103 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5104 {
5105 int i, j;
5106
5107 /* We should never be called with less than 2 symbols, as there
5108 cannot be any extra symbol in that case. But it's easy to
5109 handle, since we have nothing to do in that case. */
5110 if (nsyms < 2)
5111 return nsyms;
5112
5113 i = 0;
5114 while (i < nsyms)
5115 {
5116 int remove_p = 0;
5117
5118 /* If two symbols have the same name and one of them is a stub type,
5119 the get rid of the stub. */
5120
5121 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5122 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5123 {
5124 for (j = 0; j < nsyms; j++)
5125 {
5126 if (j != i
5127 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5128 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5129 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5130 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5131 remove_p = 1;
5132 }
5133 }
5134
5135 /* Two symbols with the same name, same class and same address
5136 should be identical. */
5137
5138 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5139 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5140 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5141 {
5142 for (j = 0; j < nsyms; j += 1)
5143 {
5144 if (i != j
5145 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5146 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5147 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5148 && SYMBOL_CLASS (syms[i].symbol)
5149 == SYMBOL_CLASS (syms[j].symbol)
5150 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5151 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5152 remove_p = 1;
5153 }
5154 }
5155
5156 if (remove_p)
5157 {
5158 for (j = i + 1; j < nsyms; j += 1)
5159 syms[j - 1] = syms[j];
5160 nsyms -= 1;
5161 }
5162
5163 i += 1;
5164 }
5165
5166 /* If all the remaining symbols are identical enumerals, then
5167 just keep the first one and discard the rest.
5168
5169 Unlike what we did previously, we do not discard any entry
5170 unless they are ALL identical. This is because the symbol
5171 comparison is not a strict comparison, but rather a practical
5172 comparison. If all symbols are considered identical, then
5173 we can just go ahead and use the first one and discard the rest.
5174 But if we cannot reduce the list to a single element, we have
5175 to ask the user to disambiguate anyways. And if we have to
5176 present a multiple-choice menu, it's less confusing if the list
5177 isn't missing some choices that were identical and yet distinct. */
5178 if (symbols_are_identical_enums (syms, nsyms))
5179 nsyms = 1;
5180
5181 return nsyms;
5182 }
5183
5184 /* Given a type that corresponds to a renaming entity, use the type name
5185 to extract the scope (package name or function name, fully qualified,
5186 and following the GNAT encoding convention) where this renaming has been
5187 defined. The string returned needs to be deallocated after use. */
5188
5189 static char *
5190 xget_renaming_scope (struct type *renaming_type)
5191 {
5192 /* The renaming types adhere to the following convention:
5193 <scope>__<rename>___<XR extension>.
5194 So, to extract the scope, we search for the "___XR" extension,
5195 and then backtrack until we find the first "__". */
5196
5197 const char *name = type_name_no_tag (renaming_type);
5198 const char *suffix = strstr (name, "___XR");
5199 const char *last;
5200 int scope_len;
5201 char *scope;
5202
5203 /* Now, backtrack a bit until we find the first "__". Start looking
5204 at suffix - 3, as the <rename> part is at least one character long. */
5205
5206 for (last = suffix - 3; last > name; last--)
5207 if (last[0] == '_' && last[1] == '_')
5208 break;
5209
5210 /* Make a copy of scope and return it. */
5211
5212 scope_len = last - name;
5213 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5214
5215 strncpy (scope, name, scope_len);
5216 scope[scope_len] = '\0';
5217
5218 return scope;
5219 }
5220
5221 /* Return nonzero if NAME corresponds to a package name. */
5222
5223 static int
5224 is_package_name (const char *name)
5225 {
5226 /* Here, We take advantage of the fact that no symbols are generated
5227 for packages, while symbols are generated for each function.
5228 So the condition for NAME represent a package becomes equivalent
5229 to NAME not existing in our list of symbols. There is only one
5230 small complication with library-level functions (see below). */
5231
5232 char *fun_name;
5233
5234 /* If it is a function that has not been defined at library level,
5235 then we should be able to look it up in the symbols. */
5236 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5237 return 0;
5238
5239 /* Library-level function names start with "_ada_". See if function
5240 "_ada_" followed by NAME can be found. */
5241
5242 /* Do a quick check that NAME does not contain "__", since library-level
5243 functions names cannot contain "__" in them. */
5244 if (strstr (name, "__") != NULL)
5245 return 0;
5246
5247 fun_name = xstrprintf ("_ada_%s", name);
5248
5249 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5250 }
5251
5252 /* Return nonzero if SYM corresponds to a renaming entity that is
5253 not visible from FUNCTION_NAME. */
5254
5255 static int
5256 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5257 {
5258 char *scope;
5259 struct cleanup *old_chain;
5260
5261 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5262 return 0;
5263
5264 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5265 old_chain = make_cleanup (xfree, scope);
5266
5267 /* If the rename has been defined in a package, then it is visible. */
5268 if (is_package_name (scope))
5269 {
5270 do_cleanups (old_chain);
5271 return 0;
5272 }
5273
5274 /* Check that the rename is in the current function scope by checking
5275 that its name starts with SCOPE. */
5276
5277 /* If the function name starts with "_ada_", it means that it is
5278 a library-level function. Strip this prefix before doing the
5279 comparison, as the encoding for the renaming does not contain
5280 this prefix. */
5281 if (startswith (function_name, "_ada_"))
5282 function_name += 5;
5283
5284 {
5285 int is_invisible = !startswith (function_name, scope);
5286
5287 do_cleanups (old_chain);
5288 return is_invisible;
5289 }
5290 }
5291
5292 /* Remove entries from SYMS that corresponds to a renaming entity that
5293 is not visible from the function associated with CURRENT_BLOCK or
5294 that is superfluous due to the presence of more specific renaming
5295 information. Places surviving symbols in the initial entries of
5296 SYMS and returns the number of surviving symbols.
5297
5298 Rationale:
5299 First, in cases where an object renaming is implemented as a
5300 reference variable, GNAT may produce both the actual reference
5301 variable and the renaming encoding. In this case, we discard the
5302 latter.
5303
5304 Second, GNAT emits a type following a specified encoding for each renaming
5305 entity. Unfortunately, STABS currently does not support the definition
5306 of types that are local to a given lexical block, so all renamings types
5307 are emitted at library level. As a consequence, if an application
5308 contains two renaming entities using the same name, and a user tries to
5309 print the value of one of these entities, the result of the ada symbol
5310 lookup will also contain the wrong renaming type.
5311
5312 This function partially covers for this limitation by attempting to
5313 remove from the SYMS list renaming symbols that should be visible
5314 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5315 method with the current information available. The implementation
5316 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5317
5318 - When the user tries to print a rename in a function while there
5319 is another rename entity defined in a package: Normally, the
5320 rename in the function has precedence over the rename in the
5321 package, so the latter should be removed from the list. This is
5322 currently not the case.
5323
5324 - This function will incorrectly remove valid renames if
5325 the CURRENT_BLOCK corresponds to a function which symbol name
5326 has been changed by an "Export" pragma. As a consequence,
5327 the user will be unable to print such rename entities. */
5328
5329 static int
5330 remove_irrelevant_renamings (struct block_symbol *syms,
5331 int nsyms, const struct block *current_block)
5332 {
5333 struct symbol *current_function;
5334 const char *current_function_name;
5335 int i;
5336 int is_new_style_renaming;
5337
5338 /* If there is both a renaming foo___XR... encoded as a variable and
5339 a simple variable foo in the same block, discard the latter.
5340 First, zero out such symbols, then compress. */
5341 is_new_style_renaming = 0;
5342 for (i = 0; i < nsyms; i += 1)
5343 {
5344 struct symbol *sym = syms[i].symbol;
5345 const struct block *block = syms[i].block;
5346 const char *name;
5347 const char *suffix;
5348
5349 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5350 continue;
5351 name = SYMBOL_LINKAGE_NAME (sym);
5352 suffix = strstr (name, "___XR");
5353
5354 if (suffix != NULL)
5355 {
5356 int name_len = suffix - name;
5357 int j;
5358
5359 is_new_style_renaming = 1;
5360 for (j = 0; j < nsyms; j += 1)
5361 if (i != j && syms[j].symbol != NULL
5362 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5363 name_len) == 0
5364 && block == syms[j].block)
5365 syms[j].symbol = NULL;
5366 }
5367 }
5368 if (is_new_style_renaming)
5369 {
5370 int j, k;
5371
5372 for (j = k = 0; j < nsyms; j += 1)
5373 if (syms[j].symbol != NULL)
5374 {
5375 syms[k] = syms[j];
5376 k += 1;
5377 }
5378 return k;
5379 }
5380
5381 /* Extract the function name associated to CURRENT_BLOCK.
5382 Abort if unable to do so. */
5383
5384 if (current_block == NULL)
5385 return nsyms;
5386
5387 current_function = block_linkage_function (current_block);
5388 if (current_function == NULL)
5389 return nsyms;
5390
5391 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5392 if (current_function_name == NULL)
5393 return nsyms;
5394
5395 /* Check each of the symbols, and remove it from the list if it is
5396 a type corresponding to a renaming that is out of the scope of
5397 the current block. */
5398
5399 i = 0;
5400 while (i < nsyms)
5401 {
5402 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5403 == ADA_OBJECT_RENAMING
5404 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5405 {
5406 int j;
5407
5408 for (j = i + 1; j < nsyms; j += 1)
5409 syms[j - 1] = syms[j];
5410 nsyms -= 1;
5411 }
5412 else
5413 i += 1;
5414 }
5415
5416 return nsyms;
5417 }
5418
5419 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5420 whose name and domain match NAME and DOMAIN respectively.
5421 If no match was found, then extend the search to "enclosing"
5422 routines (in other words, if we're inside a nested function,
5423 search the symbols defined inside the enclosing functions).
5424 If WILD_MATCH_P is nonzero, perform the naming matching in
5425 "wild" mode (see function "wild_match" for more info).
5426
5427 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5428
5429 static void
5430 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5431 const struct block *block, domain_enum domain,
5432 int wild_match_p)
5433 {
5434 int block_depth = 0;
5435
5436 while (block != NULL)
5437 {
5438 block_depth += 1;
5439 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5440 wild_match_p);
5441
5442 /* If we found a non-function match, assume that's the one. */
5443 if (is_nonfunction (defns_collected (obstackp, 0),
5444 num_defns_collected (obstackp)))
5445 return;
5446
5447 block = BLOCK_SUPERBLOCK (block);
5448 }
5449
5450 /* If no luck so far, try to find NAME as a local symbol in some lexically
5451 enclosing subprogram. */
5452 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5453 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5454 }
5455
5456 /* An object of this type is used as the user_data argument when
5457 calling the map_matching_symbols method. */
5458
5459 struct match_data
5460 {
5461 struct objfile *objfile;
5462 struct obstack *obstackp;
5463 struct symbol *arg_sym;
5464 int found_sym;
5465 };
5466
5467 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5468 to a list of symbols. DATA0 is a pointer to a struct match_data *
5469 containing the obstack that collects the symbol list, the file that SYM
5470 must come from, a flag indicating whether a non-argument symbol has
5471 been found in the current block, and the last argument symbol
5472 passed in SYM within the current block (if any). When SYM is null,
5473 marking the end of a block, the argument symbol is added if no
5474 other has been found. */
5475
5476 static int
5477 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5478 {
5479 struct match_data *data = (struct match_data *) data0;
5480
5481 if (sym == NULL)
5482 {
5483 if (!data->found_sym && data->arg_sym != NULL)
5484 add_defn_to_vec (data->obstackp,
5485 fixup_symbol_section (data->arg_sym, data->objfile),
5486 block);
5487 data->found_sym = 0;
5488 data->arg_sym = NULL;
5489 }
5490 else
5491 {
5492 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5493 return 0;
5494 else if (SYMBOL_IS_ARGUMENT (sym))
5495 data->arg_sym = sym;
5496 else
5497 {
5498 data->found_sym = 1;
5499 add_defn_to_vec (data->obstackp,
5500 fixup_symbol_section (sym, data->objfile),
5501 block);
5502 }
5503 }
5504 return 0;
5505 }
5506
5507 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5508 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5509 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5510 function "wild_match" for more information). Return whether we found such
5511 symbols. */
5512
5513 static int
5514 ada_add_block_renamings (struct obstack *obstackp,
5515 const struct block *block,
5516 const char *name,
5517 domain_enum domain,
5518 int wild_match_p)
5519 {
5520 struct using_direct *renaming;
5521 int defns_mark = num_defns_collected (obstackp);
5522
5523 for (renaming = block_using (block);
5524 renaming != NULL;
5525 renaming = renaming->next)
5526 {
5527 const char *r_name;
5528 int name_match;
5529
5530 /* Avoid infinite recursions: skip this renaming if we are actually
5531 already traversing it.
5532
5533 Currently, symbol lookup in Ada don't use the namespace machinery from
5534 C++/Fortran support: skip namespace imports that use them. */
5535 if (renaming->searched
5536 || (renaming->import_src != NULL
5537 && renaming->import_src[0] != '\0')
5538 || (renaming->import_dest != NULL
5539 && renaming->import_dest[0] != '\0'))
5540 continue;
5541 renaming->searched = 1;
5542
5543 /* TODO: here, we perform another name-based symbol lookup, which can
5544 pull its own multiple overloads. In theory, we should be able to do
5545 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5546 not a simple name. But in order to do this, we would need to enhance
5547 the DWARF reader to associate a symbol to this renaming, instead of a
5548 name. So, for now, we do something simpler: re-use the C++/Fortran
5549 namespace machinery. */
5550 r_name = (renaming->alias != NULL
5551 ? renaming->alias
5552 : renaming->declaration);
5553 name_match
5554 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5555 if (name_match == 0)
5556 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5557 1, NULL);
5558 renaming->searched = 0;
5559 }
5560 return num_defns_collected (obstackp) != defns_mark;
5561 }
5562
5563 /* Implements compare_names, but only applying the comparision using
5564 the given CASING. */
5565
5566 static int
5567 compare_names_with_case (const char *string1, const char *string2,
5568 enum case_sensitivity casing)
5569 {
5570 while (*string1 != '\0' && *string2 != '\0')
5571 {
5572 char c1, c2;
5573
5574 if (isspace (*string1) || isspace (*string2))
5575 return strcmp_iw_ordered (string1, string2);
5576
5577 if (casing == case_sensitive_off)
5578 {
5579 c1 = tolower (*string1);
5580 c2 = tolower (*string2);
5581 }
5582 else
5583 {
5584 c1 = *string1;
5585 c2 = *string2;
5586 }
5587 if (c1 != c2)
5588 break;
5589
5590 string1 += 1;
5591 string2 += 1;
5592 }
5593
5594 switch (*string1)
5595 {
5596 case '(':
5597 return strcmp_iw_ordered (string1, string2);
5598 case '_':
5599 if (*string2 == '\0')
5600 {
5601 if (is_name_suffix (string1))
5602 return 0;
5603 else
5604 return 1;
5605 }
5606 /* FALLTHROUGH */
5607 default:
5608 if (*string2 == '(')
5609 return strcmp_iw_ordered (string1, string2);
5610 else
5611 {
5612 if (casing == case_sensitive_off)
5613 return tolower (*string1) - tolower (*string2);
5614 else
5615 return *string1 - *string2;
5616 }
5617 }
5618 }
5619
5620 /* Compare STRING1 to STRING2, with results as for strcmp.
5621 Compatible with strcmp_iw_ordered in that...
5622
5623 strcmp_iw_ordered (STRING1, STRING2) <= 0
5624
5625 ... implies...
5626
5627 compare_names (STRING1, STRING2) <= 0
5628
5629 (they may differ as to what symbols compare equal). */
5630
5631 static int
5632 compare_names (const char *string1, const char *string2)
5633 {
5634 int result;
5635
5636 /* Similar to what strcmp_iw_ordered does, we need to perform
5637 a case-insensitive comparison first, and only resort to
5638 a second, case-sensitive, comparison if the first one was
5639 not sufficient to differentiate the two strings. */
5640
5641 result = compare_names_with_case (string1, string2, case_sensitive_off);
5642 if (result == 0)
5643 result = compare_names_with_case (string1, string2, case_sensitive_on);
5644
5645 return result;
5646 }
5647
5648 /* Add to OBSTACKP all non-local symbols whose name and domain match
5649 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5650 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5651
5652 static void
5653 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5654 domain_enum domain, int global,
5655 int is_wild_match)
5656 {
5657 struct objfile *objfile;
5658 struct compunit_symtab *cu;
5659 struct match_data data;
5660
5661 memset (&data, 0, sizeof data);
5662 data.obstackp = obstackp;
5663
5664 ALL_OBJFILES (objfile)
5665 {
5666 data.objfile = objfile;
5667
5668 if (is_wild_match)
5669 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5670 aux_add_nonlocal_symbols, &data,
5671 wild_match, NULL);
5672 else
5673 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5674 aux_add_nonlocal_symbols, &data,
5675 full_match, compare_names);
5676
5677 ALL_OBJFILE_COMPUNITS (objfile, cu)
5678 {
5679 const struct block *global_block
5680 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5681
5682 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5683 is_wild_match))
5684 data.found_sym = 1;
5685 }
5686 }
5687
5688 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5689 {
5690 ALL_OBJFILES (objfile)
5691 {
5692 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
5693 strcpy (name1, "_ada_");
5694 strcpy (name1 + sizeof ("_ada_") - 1, name);
5695 data.objfile = objfile;
5696 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5697 global,
5698 aux_add_nonlocal_symbols,
5699 &data,
5700 full_match, compare_names);
5701 }
5702 }
5703 }
5704
5705 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
5706 non-zero, enclosing scope and in global scopes, returning the number of
5707 matches. Add these to OBSTACKP.
5708
5709 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5710 symbol match within the nest of blocks whose innermost member is BLOCK,
5711 is the one match returned (no other matches in that or
5712 enclosing blocks is returned). If there are any matches in or
5713 surrounding BLOCK, then these alone are returned.
5714
5715 Names prefixed with "standard__" are handled specially: "standard__"
5716 is first stripped off, and only static and global symbols are searched.
5717
5718 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5719 to lookup global symbols. */
5720
5721 static void
5722 ada_add_all_symbols (struct obstack *obstackp,
5723 const struct block *block,
5724 const char *name,
5725 domain_enum domain,
5726 int full_search,
5727 int *made_global_lookup_p)
5728 {
5729 struct symbol *sym;
5730 const int wild_match_p = should_use_wild_match (name);
5731
5732 if (made_global_lookup_p)
5733 *made_global_lookup_p = 0;
5734
5735 /* Special case: If the user specifies a symbol name inside package
5736 Standard, do a non-wild matching of the symbol name without
5737 the "standard__" prefix. This was primarily introduced in order
5738 to allow the user to specifically access the standard exceptions
5739 using, for instance, Standard.Constraint_Error when Constraint_Error
5740 is ambiguous (due to the user defining its own Constraint_Error
5741 entity inside its program). */
5742 if (startswith (name, "standard__"))
5743 {
5744 block = NULL;
5745 name = name + sizeof ("standard__") - 1;
5746 }
5747
5748 /* Check the non-global symbols. If we have ANY match, then we're done. */
5749
5750 if (block != NULL)
5751 {
5752 if (full_search)
5753 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
5754 else
5755 {
5756 /* In the !full_search case we're are being called by
5757 ada_iterate_over_symbols, and we don't want to search
5758 superblocks. */
5759 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5760 wild_match_p);
5761 }
5762 if (num_defns_collected (obstackp) > 0 || !full_search)
5763 return;
5764 }
5765
5766 /* No non-global symbols found. Check our cache to see if we have
5767 already performed this search before. If we have, then return
5768 the same result. */
5769
5770 if (lookup_cached_symbol (name, domain, &sym, &block))
5771 {
5772 if (sym != NULL)
5773 add_defn_to_vec (obstackp, sym, block);
5774 return;
5775 }
5776
5777 if (made_global_lookup_p)
5778 *made_global_lookup_p = 1;
5779
5780 /* Search symbols from all global blocks. */
5781
5782 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
5783
5784 /* Now add symbols from all per-file blocks if we've gotten no hits
5785 (not strictly correct, but perhaps better than an error). */
5786
5787 if (num_defns_collected (obstackp) == 0)
5788 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5789 }
5790
5791 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5792 non-zero, enclosing scope and in global scopes, returning the number of
5793 matches.
5794 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5795 indicating the symbols found and the blocks and symbol tables (if
5796 any) in which they were found. This vector is transient---good only to
5797 the next call of ada_lookup_symbol_list.
5798
5799 When full_search is non-zero, any non-function/non-enumeral
5800 symbol match within the nest of blocks whose innermost member is BLOCK,
5801 is the one match returned (no other matches in that or
5802 enclosing blocks is returned). If there are any matches in or
5803 surrounding BLOCK, then these alone are returned.
5804
5805 Names prefixed with "standard__" are handled specially: "standard__"
5806 is first stripped off, and only static and global symbols are searched. */
5807
5808 static int
5809 ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5810 domain_enum domain,
5811 struct block_symbol **results,
5812 int full_search)
5813 {
5814 const int wild_match_p = should_use_wild_match (name);
5815 int syms_from_global_search;
5816 int ndefns;
5817
5818 obstack_free (&symbol_list_obstack, NULL);
5819 obstack_init (&symbol_list_obstack);
5820 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5821 full_search, &syms_from_global_search);
5822
5823 ndefns = num_defns_collected (&symbol_list_obstack);
5824 *results = defns_collected (&symbol_list_obstack, 1);
5825
5826 ndefns = remove_extra_symbols (*results, ndefns);
5827
5828 if (ndefns == 0 && full_search && syms_from_global_search)
5829 cache_symbol (name, domain, NULL, NULL);
5830
5831 if (ndefns == 1 && full_search && syms_from_global_search)
5832 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
5833
5834 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5835 return ndefns;
5836 }
5837
5838 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5839 in global scopes, returning the number of matches, and setting *RESULTS
5840 to a vector of (SYM,BLOCK) tuples.
5841 See ada_lookup_symbol_list_worker for further details. */
5842
5843 int
5844 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5845 domain_enum domain, struct block_symbol **results)
5846 {
5847 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5848 }
5849
5850 /* Implementation of the la_iterate_over_symbols method. */
5851
5852 static void
5853 ada_iterate_over_symbols (const struct block *block,
5854 const char *name, domain_enum domain,
5855 symbol_found_callback_ftype *callback,
5856 void *data)
5857 {
5858 int ndefs, i;
5859 struct block_symbol *results;
5860
5861 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5862 for (i = 0; i < ndefs; ++i)
5863 {
5864 if (! (*callback) (results[i].symbol, data))
5865 break;
5866 }
5867 }
5868
5869 /* If NAME is the name of an entity, return a string that should
5870 be used to look that entity up in Ada units.
5871
5872 NAME can have any form that the "break" or "print" commands might
5873 recognize. In other words, it does not have to be the "natural"
5874 name, or the "encoded" name. */
5875
5876 std::string
5877 ada_name_for_lookup (const char *name)
5878 {
5879 int nlen = strlen (name);
5880
5881 if (name[0] == '<' && name[nlen - 1] == '>')
5882 return std::string (name + 1, nlen - 2);
5883 else
5884 return ada_encode (ada_fold_name (name));
5885 }
5886
5887 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5888 to 1, but choosing the first symbol found if there are multiple
5889 choices.
5890
5891 The result is stored in *INFO, which must be non-NULL.
5892 If no match is found, INFO->SYM is set to NULL. */
5893
5894 void
5895 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5896 domain_enum domain,
5897 struct block_symbol *info)
5898 {
5899 struct block_symbol *candidates;
5900 int n_candidates;
5901
5902 gdb_assert (info != NULL);
5903 memset (info, 0, sizeof (struct block_symbol));
5904
5905 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5906 if (n_candidates == 0)
5907 return;
5908
5909 *info = candidates[0];
5910 info->symbol = fixup_symbol_section (info->symbol, NULL);
5911 }
5912
5913 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5914 scope and in global scopes, or NULL if none. NAME is folded and
5915 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5916 choosing the first symbol if there are multiple choices.
5917 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5918
5919 struct block_symbol
5920 ada_lookup_symbol (const char *name, const struct block *block0,
5921 domain_enum domain, int *is_a_field_of_this)
5922 {
5923 struct block_symbol info;
5924
5925 if (is_a_field_of_this != NULL)
5926 *is_a_field_of_this = 0;
5927
5928 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5929 block0, domain, &info);
5930 return info;
5931 }
5932
5933 static struct block_symbol
5934 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5935 const char *name,
5936 const struct block *block,
5937 const domain_enum domain)
5938 {
5939 struct block_symbol sym;
5940
5941 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5942 if (sym.symbol != NULL)
5943 return sym;
5944
5945 /* If we haven't found a match at this point, try the primitive
5946 types. In other languages, this search is performed before
5947 searching for global symbols in order to short-circuit that
5948 global-symbol search if it happens that the name corresponds
5949 to a primitive type. But we cannot do the same in Ada, because
5950 it is perfectly legitimate for a program to declare a type which
5951 has the same name as a standard type. If looking up a type in
5952 that situation, we have traditionally ignored the primitive type
5953 in favor of user-defined types. This is why, unlike most other
5954 languages, we search the primitive types this late and only after
5955 having searched the global symbols without success. */
5956
5957 if (domain == VAR_DOMAIN)
5958 {
5959 struct gdbarch *gdbarch;
5960
5961 if (block == NULL)
5962 gdbarch = target_gdbarch ();
5963 else
5964 gdbarch = block_gdbarch (block);
5965 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5966 if (sym.symbol != NULL)
5967 return sym;
5968 }
5969
5970 return (struct block_symbol) {NULL, NULL};
5971 }
5972
5973
5974 /* True iff STR is a possible encoded suffix of a normal Ada name
5975 that is to be ignored for matching purposes. Suffixes of parallel
5976 names (e.g., XVE) are not included here. Currently, the possible suffixes
5977 are given by any of the regular expressions:
5978
5979 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5980 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5981 TKB [subprogram suffix for task bodies]
5982 _E[0-9]+[bs]$ [protected object entry suffixes]
5983 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5984
5985 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5986 match is performed. This sequence is used to differentiate homonyms,
5987 is an optional part of a valid name suffix. */
5988
5989 static int
5990 is_name_suffix (const char *str)
5991 {
5992 int k;
5993 const char *matching;
5994 const int len = strlen (str);
5995
5996 /* Skip optional leading __[0-9]+. */
5997
5998 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5999 {
6000 str += 3;
6001 while (isdigit (str[0]))
6002 str += 1;
6003 }
6004
6005 /* [.$][0-9]+ */
6006
6007 if (str[0] == '.' || str[0] == '$')
6008 {
6009 matching = str + 1;
6010 while (isdigit (matching[0]))
6011 matching += 1;
6012 if (matching[0] == '\0')
6013 return 1;
6014 }
6015
6016 /* ___[0-9]+ */
6017
6018 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6019 {
6020 matching = str + 3;
6021 while (isdigit (matching[0]))
6022 matching += 1;
6023 if (matching[0] == '\0')
6024 return 1;
6025 }
6026
6027 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6028
6029 if (strcmp (str, "TKB") == 0)
6030 return 1;
6031
6032 #if 0
6033 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6034 with a N at the end. Unfortunately, the compiler uses the same
6035 convention for other internal types it creates. So treating
6036 all entity names that end with an "N" as a name suffix causes
6037 some regressions. For instance, consider the case of an enumerated
6038 type. To support the 'Image attribute, it creates an array whose
6039 name ends with N.
6040 Having a single character like this as a suffix carrying some
6041 information is a bit risky. Perhaps we should change the encoding
6042 to be something like "_N" instead. In the meantime, do not do
6043 the following check. */
6044 /* Protected Object Subprograms */
6045 if (len == 1 && str [0] == 'N')
6046 return 1;
6047 #endif
6048
6049 /* _E[0-9]+[bs]$ */
6050 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6051 {
6052 matching = str + 3;
6053 while (isdigit (matching[0]))
6054 matching += 1;
6055 if ((matching[0] == 'b' || matching[0] == 's')
6056 && matching [1] == '\0')
6057 return 1;
6058 }
6059
6060 /* ??? We should not modify STR directly, as we are doing below. This
6061 is fine in this case, but may become problematic later if we find
6062 that this alternative did not work, and want to try matching
6063 another one from the begining of STR. Since we modified it, we
6064 won't be able to find the begining of the string anymore! */
6065 if (str[0] == 'X')
6066 {
6067 str += 1;
6068 while (str[0] != '_' && str[0] != '\0')
6069 {
6070 if (str[0] != 'n' && str[0] != 'b')
6071 return 0;
6072 str += 1;
6073 }
6074 }
6075
6076 if (str[0] == '\000')
6077 return 1;
6078
6079 if (str[0] == '_')
6080 {
6081 if (str[1] != '_' || str[2] == '\000')
6082 return 0;
6083 if (str[2] == '_')
6084 {
6085 if (strcmp (str + 3, "JM") == 0)
6086 return 1;
6087 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6088 the LJM suffix in favor of the JM one. But we will
6089 still accept LJM as a valid suffix for a reasonable
6090 amount of time, just to allow ourselves to debug programs
6091 compiled using an older version of GNAT. */
6092 if (strcmp (str + 3, "LJM") == 0)
6093 return 1;
6094 if (str[3] != 'X')
6095 return 0;
6096 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6097 || str[4] == 'U' || str[4] == 'P')
6098 return 1;
6099 if (str[4] == 'R' && str[5] != 'T')
6100 return 1;
6101 return 0;
6102 }
6103 if (!isdigit (str[2]))
6104 return 0;
6105 for (k = 3; str[k] != '\0'; k += 1)
6106 if (!isdigit (str[k]) && str[k] != '_')
6107 return 0;
6108 return 1;
6109 }
6110 if (str[0] == '$' && isdigit (str[1]))
6111 {
6112 for (k = 2; str[k] != '\0'; k += 1)
6113 if (!isdigit (str[k]) && str[k] != '_')
6114 return 0;
6115 return 1;
6116 }
6117 return 0;
6118 }
6119
6120 /* Return non-zero if the string starting at NAME and ending before
6121 NAME_END contains no capital letters. */
6122
6123 static int
6124 is_valid_name_for_wild_match (const char *name0)
6125 {
6126 const char *decoded_name = ada_decode (name0);
6127 int i;
6128
6129 /* If the decoded name starts with an angle bracket, it means that
6130 NAME0 does not follow the GNAT encoding format. It should then
6131 not be allowed as a possible wild match. */
6132 if (decoded_name[0] == '<')
6133 return 0;
6134
6135 for (i=0; decoded_name[i] != '\0'; i++)
6136 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6137 return 0;
6138
6139 return 1;
6140 }
6141
6142 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6143 that could start a simple name. Assumes that *NAMEP points into
6144 the string beginning at NAME0. */
6145
6146 static int
6147 advance_wild_match (const char **namep, const char *name0, int target0)
6148 {
6149 const char *name = *namep;
6150
6151 while (1)
6152 {
6153 int t0, t1;
6154
6155 t0 = *name;
6156 if (t0 == '_')
6157 {
6158 t1 = name[1];
6159 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6160 {
6161 name += 1;
6162 if (name == name0 + 5 && startswith (name0, "_ada"))
6163 break;
6164 else
6165 name += 1;
6166 }
6167 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6168 || name[2] == target0))
6169 {
6170 name += 2;
6171 break;
6172 }
6173 else
6174 return 0;
6175 }
6176 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6177 name += 1;
6178 else
6179 return 0;
6180 }
6181
6182 *namep = name;
6183 return 1;
6184 }
6185
6186 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6187 informational suffixes of NAME (i.e., for which is_name_suffix is
6188 true). Assumes that PATN is a lower-cased Ada simple name. */
6189
6190 static int
6191 wild_match (const char *name, const char *patn)
6192 {
6193 const char *p;
6194 const char *name0 = name;
6195
6196 while (1)
6197 {
6198 const char *match = name;
6199
6200 if (*name == *patn)
6201 {
6202 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6203 if (*p != *name)
6204 break;
6205 if (*p == '\0' && is_name_suffix (name))
6206 return match != name0 && !is_valid_name_for_wild_match (name0);
6207
6208 if (name[-1] == '_')
6209 name -= 1;
6210 }
6211 if (!advance_wild_match (&name, name0, *patn))
6212 return 1;
6213 }
6214 }
6215
6216 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6217 informational suffix. */
6218
6219 static int
6220 full_match (const char *sym_name, const char *search_name)
6221 {
6222 return !match_name (sym_name, search_name, 0);
6223 }
6224
6225
6226 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6227 vector *defn_symbols, updating the list of symbols in OBSTACKP
6228 (if necessary). If WILD, treat as NAME with a wildcard prefix.
6229 OBJFILE is the section containing BLOCK. */
6230
6231 static void
6232 ada_add_block_symbols (struct obstack *obstackp,
6233 const struct block *block, const char *name,
6234 domain_enum domain, struct objfile *objfile,
6235 int wild)
6236 {
6237 struct block_iterator iter;
6238 int name_len = strlen (name);
6239 /* A matching argument symbol, if any. */
6240 struct symbol *arg_sym;
6241 /* Set true when we find a matching non-argument symbol. */
6242 int found_sym;
6243 struct symbol *sym;
6244
6245 arg_sym = NULL;
6246 found_sym = 0;
6247 if (wild)
6248 {
6249 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6250 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
6251 {
6252 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6253 SYMBOL_DOMAIN (sym), domain)
6254 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
6255 {
6256 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6257 continue;
6258 else if (SYMBOL_IS_ARGUMENT (sym))
6259 arg_sym = sym;
6260 else
6261 {
6262 found_sym = 1;
6263 add_defn_to_vec (obstackp,
6264 fixup_symbol_section (sym, objfile),
6265 block);
6266 }
6267 }
6268 }
6269 }
6270 else
6271 {
6272 for (sym = block_iter_match_first (block, name, full_match, &iter);
6273 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
6274 {
6275 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6276 SYMBOL_DOMAIN (sym), domain))
6277 {
6278 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6279 {
6280 if (SYMBOL_IS_ARGUMENT (sym))
6281 arg_sym = sym;
6282 else
6283 {
6284 found_sym = 1;
6285 add_defn_to_vec (obstackp,
6286 fixup_symbol_section (sym, objfile),
6287 block);
6288 }
6289 }
6290 }
6291 }
6292 }
6293
6294 /* Handle renamings. */
6295
6296 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6297 found_sym = 1;
6298
6299 if (!found_sym && arg_sym != NULL)
6300 {
6301 add_defn_to_vec (obstackp,
6302 fixup_symbol_section (arg_sym, objfile),
6303 block);
6304 }
6305
6306 if (!wild)
6307 {
6308 arg_sym = NULL;
6309 found_sym = 0;
6310
6311 ALL_BLOCK_SYMBOLS (block, iter, sym)
6312 {
6313 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6314 SYMBOL_DOMAIN (sym), domain))
6315 {
6316 int cmp;
6317
6318 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6319 if (cmp == 0)
6320 {
6321 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6322 if (cmp == 0)
6323 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6324 name_len);
6325 }
6326
6327 if (cmp == 0
6328 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6329 {
6330 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6331 {
6332 if (SYMBOL_IS_ARGUMENT (sym))
6333 arg_sym = sym;
6334 else
6335 {
6336 found_sym = 1;
6337 add_defn_to_vec (obstackp,
6338 fixup_symbol_section (sym, objfile),
6339 block);
6340 }
6341 }
6342 }
6343 }
6344 }
6345
6346 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6347 They aren't parameters, right? */
6348 if (!found_sym && arg_sym != NULL)
6349 {
6350 add_defn_to_vec (obstackp,
6351 fixup_symbol_section (arg_sym, objfile),
6352 block);
6353 }
6354 }
6355 }
6356 \f
6357
6358 /* Symbol Completion */
6359
6360 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6361 name in a form that's appropriate for the completion. The result
6362 does not need to be deallocated, but is only good until the next call.
6363
6364 TEXT_LEN is equal to the length of TEXT.
6365 Perform a wild match if WILD_MATCH_P is set.
6366 ENCODED_P should be set if TEXT represents the start of a symbol name
6367 in its encoded form. */
6368
6369 static const char *
6370 symbol_completion_match (const char *sym_name,
6371 const char *text, int text_len,
6372 int wild_match_p, int encoded_p)
6373 {
6374 const int verbatim_match = (text[0] == '<');
6375 int match = 0;
6376
6377 if (verbatim_match)
6378 {
6379 /* Strip the leading angle bracket. */
6380 text = text + 1;
6381 text_len--;
6382 }
6383
6384 /* First, test against the fully qualified name of the symbol. */
6385
6386 if (strncmp (sym_name, text, text_len) == 0)
6387 match = 1;
6388
6389 if (match && !encoded_p)
6390 {
6391 /* One needed check before declaring a positive match is to verify
6392 that iff we are doing a verbatim match, the decoded version
6393 of the symbol name starts with '<'. Otherwise, this symbol name
6394 is not a suitable completion. */
6395 const char *sym_name_copy = sym_name;
6396 int has_angle_bracket;
6397
6398 sym_name = ada_decode (sym_name);
6399 has_angle_bracket = (sym_name[0] == '<');
6400 match = (has_angle_bracket == verbatim_match);
6401 sym_name = sym_name_copy;
6402 }
6403
6404 if (match && !verbatim_match)
6405 {
6406 /* When doing non-verbatim match, another check that needs to
6407 be done is to verify that the potentially matching symbol name
6408 does not include capital letters, because the ada-mode would
6409 not be able to understand these symbol names without the
6410 angle bracket notation. */
6411 const char *tmp;
6412
6413 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6414 if (*tmp != '\0')
6415 match = 0;
6416 }
6417
6418 /* Second: Try wild matching... */
6419
6420 if (!match && wild_match_p)
6421 {
6422 /* Since we are doing wild matching, this means that TEXT
6423 may represent an unqualified symbol name. We therefore must
6424 also compare TEXT against the unqualified name of the symbol. */
6425 sym_name = ada_unqualified_name (ada_decode (sym_name));
6426
6427 if (strncmp (sym_name, text, text_len) == 0)
6428 match = 1;
6429 }
6430
6431 /* Finally: If we found a mach, prepare the result to return. */
6432
6433 if (!match)
6434 return NULL;
6435
6436 if (verbatim_match)
6437 sym_name = add_angle_brackets (sym_name);
6438
6439 if (!encoded_p)
6440 sym_name = ada_decode (sym_name);
6441
6442 return sym_name;
6443 }
6444
6445 /* A companion function to ada_make_symbol_completion_list().
6446 Check if SYM_NAME represents a symbol which name would be suitable
6447 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6448 it is appended at the end of the given string vector SV.
6449
6450 ORIG_TEXT is the string original string from the user command
6451 that needs to be completed. WORD is the entire command on which
6452 completion should be performed. These two parameters are used to
6453 determine which part of the symbol name should be added to the
6454 completion vector.
6455 if WILD_MATCH_P is set, then wild matching is performed.
6456 ENCODED_P should be set if TEXT represents a symbol name in its
6457 encoded formed (in which case the completion should also be
6458 encoded). */
6459
6460 static void
6461 symbol_completion_add (VEC(char_ptr) **sv,
6462 const char *sym_name,
6463 const char *text, int text_len,
6464 const char *orig_text, const char *word,
6465 int wild_match_p, int encoded_p)
6466 {
6467 const char *match = symbol_completion_match (sym_name, text, text_len,
6468 wild_match_p, encoded_p);
6469 char *completion;
6470
6471 if (match == NULL)
6472 return;
6473
6474 /* We found a match, so add the appropriate completion to the given
6475 string vector. */
6476
6477 if (word == orig_text)
6478 {
6479 completion = (char *) xmalloc (strlen (match) + 5);
6480 strcpy (completion, match);
6481 }
6482 else if (word > orig_text)
6483 {
6484 /* Return some portion of sym_name. */
6485 completion = (char *) xmalloc (strlen (match) + 5);
6486 strcpy (completion, match + (word - orig_text));
6487 }
6488 else
6489 {
6490 /* Return some of ORIG_TEXT plus sym_name. */
6491 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
6492 strncpy (completion, word, orig_text - word);
6493 completion[orig_text - word] = '\0';
6494 strcat (completion, match);
6495 }
6496
6497 VEC_safe_push (char_ptr, *sv, completion);
6498 }
6499
6500 /* An object of this type is passed as the user_data argument to the
6501 expand_symtabs_matching method. */
6502 struct add_partial_datum
6503 {
6504 VEC(char_ptr) **completions;
6505 const char *text;
6506 int text_len;
6507 const char *text0;
6508 const char *word;
6509 int wild_match;
6510 int encoded;
6511 };
6512
6513 /* A callback for expand_symtabs_matching. */
6514
6515 static int
6516 ada_complete_symbol_matcher (const char *name, void *user_data)
6517 {
6518 struct add_partial_datum *data = (struct add_partial_datum *) user_data;
6519
6520 return symbol_completion_match (name, data->text, data->text_len,
6521 data->wild_match, data->encoded) != NULL;
6522 }
6523
6524 /* Return a list of possible symbol names completing TEXT0. WORD is
6525 the entire command on which completion is made. */
6526
6527 static VEC (char_ptr) *
6528 ada_make_symbol_completion_list (const char *text0, const char *word,
6529 enum type_code code)
6530 {
6531 char *text;
6532 int text_len;
6533 int wild_match_p;
6534 int encoded_p;
6535 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6536 struct symbol *sym;
6537 struct compunit_symtab *s;
6538 struct minimal_symbol *msymbol;
6539 struct objfile *objfile;
6540 const struct block *b, *surrounding_static_block = 0;
6541 int i;
6542 struct block_iterator iter;
6543 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6544
6545 gdb_assert (code == TYPE_CODE_UNDEF);
6546
6547 if (text0[0] == '<')
6548 {
6549 text = xstrdup (text0);
6550 make_cleanup (xfree, text);
6551 text_len = strlen (text);
6552 wild_match_p = 0;
6553 encoded_p = 1;
6554 }
6555 else
6556 {
6557 text = xstrdup (ada_encode (text0));
6558 make_cleanup (xfree, text);
6559 text_len = strlen (text);
6560 for (i = 0; i < text_len; i++)
6561 text[i] = tolower (text[i]);
6562
6563 encoded_p = (strstr (text0, "__") != NULL);
6564 /* If the name contains a ".", then the user is entering a fully
6565 qualified entity name, and the match must not be done in wild
6566 mode. Similarly, if the user wants to complete what looks like
6567 an encoded name, the match must not be done in wild mode. */
6568 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6569 }
6570
6571 /* First, look at the partial symtab symbols. */
6572 {
6573 struct add_partial_datum data;
6574
6575 data.completions = &completions;
6576 data.text = text;
6577 data.text_len = text_len;
6578 data.text0 = text0;
6579 data.word = word;
6580 data.wild_match = wild_match_p;
6581 data.encoded = encoded_p;
6582 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6583 ALL_DOMAIN, &data);
6584 }
6585
6586 /* At this point scan through the misc symbol vectors and add each
6587 symbol you find to the list. Eventually we want to ignore
6588 anything that isn't a text symbol (everything else will be
6589 handled by the psymtab code above). */
6590
6591 ALL_MSYMBOLS (objfile, msymbol)
6592 {
6593 QUIT;
6594 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6595 text, text_len, text0, word, wild_match_p,
6596 encoded_p);
6597 }
6598
6599 /* Search upwards from currently selected frame (so that we can
6600 complete on local vars. */
6601
6602 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6603 {
6604 if (!BLOCK_SUPERBLOCK (b))
6605 surrounding_static_block = b; /* For elmin of dups */
6606
6607 ALL_BLOCK_SYMBOLS (b, iter, sym)
6608 {
6609 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6610 text, text_len, text0, word,
6611 wild_match_p, encoded_p);
6612 }
6613 }
6614
6615 /* Go through the symtabs and check the externs and statics for
6616 symbols which match. */
6617
6618 ALL_COMPUNITS (objfile, s)
6619 {
6620 QUIT;
6621 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6622 ALL_BLOCK_SYMBOLS (b, iter, sym)
6623 {
6624 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6625 text, text_len, text0, word,
6626 wild_match_p, encoded_p);
6627 }
6628 }
6629
6630 ALL_COMPUNITS (objfile, s)
6631 {
6632 QUIT;
6633 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6634 /* Don't do this block twice. */
6635 if (b == surrounding_static_block)
6636 continue;
6637 ALL_BLOCK_SYMBOLS (b, iter, sym)
6638 {
6639 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6640 text, text_len, text0, word,
6641 wild_match_p, encoded_p);
6642 }
6643 }
6644
6645 do_cleanups (old_chain);
6646 return completions;
6647 }
6648
6649 /* Field Access */
6650
6651 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6652 for tagged types. */
6653
6654 static int
6655 ada_is_dispatch_table_ptr_type (struct type *type)
6656 {
6657 const char *name;
6658
6659 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6660 return 0;
6661
6662 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6663 if (name == NULL)
6664 return 0;
6665
6666 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6667 }
6668
6669 /* Return non-zero if TYPE is an interface tag. */
6670
6671 static int
6672 ada_is_interface_tag (struct type *type)
6673 {
6674 const char *name = TYPE_NAME (type);
6675
6676 if (name == NULL)
6677 return 0;
6678
6679 return (strcmp (name, "ada__tags__interface_tag") == 0);
6680 }
6681
6682 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6683 to be invisible to users. */
6684
6685 int
6686 ada_is_ignored_field (struct type *type, int field_num)
6687 {
6688 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6689 return 1;
6690
6691 /* Check the name of that field. */
6692 {
6693 const char *name = TYPE_FIELD_NAME (type, field_num);
6694
6695 /* Anonymous field names should not be printed.
6696 brobecker/2007-02-20: I don't think this can actually happen
6697 but we don't want to print the value of annonymous fields anyway. */
6698 if (name == NULL)
6699 return 1;
6700
6701 /* Normally, fields whose name start with an underscore ("_")
6702 are fields that have been internally generated by the compiler,
6703 and thus should not be printed. The "_parent" field is special,
6704 however: This is a field internally generated by the compiler
6705 for tagged types, and it contains the components inherited from
6706 the parent type. This field should not be printed as is, but
6707 should not be ignored either. */
6708 if (name[0] == '_' && !startswith (name, "_parent"))
6709 return 1;
6710 }
6711
6712 /* If this is the dispatch table of a tagged type or an interface tag,
6713 then ignore. */
6714 if (ada_is_tagged_type (type, 1)
6715 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6716 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6717 return 1;
6718
6719 /* Not a special field, so it should not be ignored. */
6720 return 0;
6721 }
6722
6723 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6724 pointer or reference type whose ultimate target has a tag field. */
6725
6726 int
6727 ada_is_tagged_type (struct type *type, int refok)
6728 {
6729 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6730 }
6731
6732 /* True iff TYPE represents the type of X'Tag */
6733
6734 int
6735 ada_is_tag_type (struct type *type)
6736 {
6737 type = ada_check_typedef (type);
6738
6739 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6740 return 0;
6741 else
6742 {
6743 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6744
6745 return (name != NULL
6746 && strcmp (name, "ada__tags__dispatch_table") == 0);
6747 }
6748 }
6749
6750 /* The type of the tag on VAL. */
6751
6752 struct type *
6753 ada_tag_type (struct value *val)
6754 {
6755 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6756 }
6757
6758 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6759 retired at Ada 05). */
6760
6761 static int
6762 is_ada95_tag (struct value *tag)
6763 {
6764 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6765 }
6766
6767 /* The value of the tag on VAL. */
6768
6769 struct value *
6770 ada_value_tag (struct value *val)
6771 {
6772 return ada_value_struct_elt (val, "_tag", 0);
6773 }
6774
6775 /* The value of the tag on the object of type TYPE whose contents are
6776 saved at VALADDR, if it is non-null, or is at memory address
6777 ADDRESS. */
6778
6779 static struct value *
6780 value_tag_from_contents_and_address (struct type *type,
6781 const gdb_byte *valaddr,
6782 CORE_ADDR address)
6783 {
6784 int tag_byte_offset;
6785 struct type *tag_type;
6786
6787 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6788 NULL, NULL, NULL))
6789 {
6790 const gdb_byte *valaddr1 = ((valaddr == NULL)
6791 ? NULL
6792 : valaddr + tag_byte_offset);
6793 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6794
6795 return value_from_contents_and_address (tag_type, valaddr1, address1);
6796 }
6797 return NULL;
6798 }
6799
6800 static struct type *
6801 type_from_tag (struct value *tag)
6802 {
6803 const char *type_name = ada_tag_name (tag);
6804
6805 if (type_name != NULL)
6806 return ada_find_any_type (ada_encode (type_name));
6807 return NULL;
6808 }
6809
6810 /* Given a value OBJ of a tagged type, return a value of this
6811 type at the base address of the object. The base address, as
6812 defined in Ada.Tags, it is the address of the primary tag of
6813 the object, and therefore where the field values of its full
6814 view can be fetched. */
6815
6816 struct value *
6817 ada_tag_value_at_base_address (struct value *obj)
6818 {
6819 struct value *val;
6820 LONGEST offset_to_top = 0;
6821 struct type *ptr_type, *obj_type;
6822 struct value *tag;
6823 CORE_ADDR base_address;
6824
6825 obj_type = value_type (obj);
6826
6827 /* It is the responsability of the caller to deref pointers. */
6828
6829 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6830 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6831 return obj;
6832
6833 tag = ada_value_tag (obj);
6834 if (!tag)
6835 return obj;
6836
6837 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6838
6839 if (is_ada95_tag (tag))
6840 return obj;
6841
6842 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6843 ptr_type = lookup_pointer_type (ptr_type);
6844 val = value_cast (ptr_type, tag);
6845 if (!val)
6846 return obj;
6847
6848 /* It is perfectly possible that an exception be raised while
6849 trying to determine the base address, just like for the tag;
6850 see ada_tag_name for more details. We do not print the error
6851 message for the same reason. */
6852
6853 TRY
6854 {
6855 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6856 }
6857
6858 CATCH (e, RETURN_MASK_ERROR)
6859 {
6860 return obj;
6861 }
6862 END_CATCH
6863
6864 /* If offset is null, nothing to do. */
6865
6866 if (offset_to_top == 0)
6867 return obj;
6868
6869 /* -1 is a special case in Ada.Tags; however, what should be done
6870 is not quite clear from the documentation. So do nothing for
6871 now. */
6872
6873 if (offset_to_top == -1)
6874 return obj;
6875
6876 base_address = value_address (obj) - offset_to_top;
6877 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6878
6879 /* Make sure that we have a proper tag at the new address.
6880 Otherwise, offset_to_top is bogus (which can happen when
6881 the object is not initialized yet). */
6882
6883 if (!tag)
6884 return obj;
6885
6886 obj_type = type_from_tag (tag);
6887
6888 if (!obj_type)
6889 return obj;
6890
6891 return value_from_contents_and_address (obj_type, NULL, base_address);
6892 }
6893
6894 /* Return the "ada__tags__type_specific_data" type. */
6895
6896 static struct type *
6897 ada_get_tsd_type (struct inferior *inf)
6898 {
6899 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6900
6901 if (data->tsd_type == 0)
6902 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6903 return data->tsd_type;
6904 }
6905
6906 /* Return the TSD (type-specific data) associated to the given TAG.
6907 TAG is assumed to be the tag of a tagged-type entity.
6908
6909 May return NULL if we are unable to get the TSD. */
6910
6911 static struct value *
6912 ada_get_tsd_from_tag (struct value *tag)
6913 {
6914 struct value *val;
6915 struct type *type;
6916
6917 /* First option: The TSD is simply stored as a field of our TAG.
6918 Only older versions of GNAT would use this format, but we have
6919 to test it first, because there are no visible markers for
6920 the current approach except the absence of that field. */
6921
6922 val = ada_value_struct_elt (tag, "tsd", 1);
6923 if (val)
6924 return val;
6925
6926 /* Try the second representation for the dispatch table (in which
6927 there is no explicit 'tsd' field in the referent of the tag pointer,
6928 and instead the tsd pointer is stored just before the dispatch
6929 table. */
6930
6931 type = ada_get_tsd_type (current_inferior());
6932 if (type == NULL)
6933 return NULL;
6934 type = lookup_pointer_type (lookup_pointer_type (type));
6935 val = value_cast (type, tag);
6936 if (val == NULL)
6937 return NULL;
6938 return value_ind (value_ptradd (val, -1));
6939 }
6940
6941 /* Given the TSD of a tag (type-specific data), return a string
6942 containing the name of the associated type.
6943
6944 The returned value is good until the next call. May return NULL
6945 if we are unable to determine the tag name. */
6946
6947 static char *
6948 ada_tag_name_from_tsd (struct value *tsd)
6949 {
6950 static char name[1024];
6951 char *p;
6952 struct value *val;
6953
6954 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6955 if (val == NULL)
6956 return NULL;
6957 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6958 for (p = name; *p != '\0'; p += 1)
6959 if (isalpha (*p))
6960 *p = tolower (*p);
6961 return name;
6962 }
6963
6964 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6965 a C string.
6966
6967 Return NULL if the TAG is not an Ada tag, or if we were unable to
6968 determine the name of that tag. The result is good until the next
6969 call. */
6970
6971 const char *
6972 ada_tag_name (struct value *tag)
6973 {
6974 char *name = NULL;
6975
6976 if (!ada_is_tag_type (value_type (tag)))
6977 return NULL;
6978
6979 /* It is perfectly possible that an exception be raised while trying
6980 to determine the TAG's name, even under normal circumstances:
6981 The associated variable may be uninitialized or corrupted, for
6982 instance. We do not let any exception propagate past this point.
6983 instead we return NULL.
6984
6985 We also do not print the error message either (which often is very
6986 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6987 the caller print a more meaningful message if necessary. */
6988 TRY
6989 {
6990 struct value *tsd = ada_get_tsd_from_tag (tag);
6991
6992 if (tsd != NULL)
6993 name = ada_tag_name_from_tsd (tsd);
6994 }
6995 CATCH (e, RETURN_MASK_ERROR)
6996 {
6997 }
6998 END_CATCH
6999
7000 return name;
7001 }
7002
7003 /* The parent type of TYPE, or NULL if none. */
7004
7005 struct type *
7006 ada_parent_type (struct type *type)
7007 {
7008 int i;
7009
7010 type = ada_check_typedef (type);
7011
7012 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7013 return NULL;
7014
7015 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7016 if (ada_is_parent_field (type, i))
7017 {
7018 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
7019
7020 /* If the _parent field is a pointer, then dereference it. */
7021 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
7022 parent_type = TYPE_TARGET_TYPE (parent_type);
7023 /* If there is a parallel XVS type, get the actual base type. */
7024 parent_type = ada_get_base_type (parent_type);
7025
7026 return ada_check_typedef (parent_type);
7027 }
7028
7029 return NULL;
7030 }
7031
7032 /* True iff field number FIELD_NUM of structure type TYPE contains the
7033 parent-type (inherited) fields of a derived type. Assumes TYPE is
7034 a structure type with at least FIELD_NUM+1 fields. */
7035
7036 int
7037 ada_is_parent_field (struct type *type, int field_num)
7038 {
7039 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
7040
7041 return (name != NULL
7042 && (startswith (name, "PARENT")
7043 || startswith (name, "_parent")));
7044 }
7045
7046 /* True iff field number FIELD_NUM of structure type TYPE is a
7047 transparent wrapper field (which should be silently traversed when doing
7048 field selection and flattened when printing). Assumes TYPE is a
7049 structure type with at least FIELD_NUM+1 fields. Such fields are always
7050 structures. */
7051
7052 int
7053 ada_is_wrapper_field (struct type *type, int field_num)
7054 {
7055 const char *name = TYPE_FIELD_NAME (type, field_num);
7056
7057 if (name != NULL && strcmp (name, "RETVAL") == 0)
7058 {
7059 /* This happens in functions with "out" or "in out" parameters
7060 which are passed by copy. For such functions, GNAT describes
7061 the function's return type as being a struct where the return
7062 value is in a field called RETVAL, and where the other "out"
7063 or "in out" parameters are fields of that struct. This is not
7064 a wrapper. */
7065 return 0;
7066 }
7067
7068 return (name != NULL
7069 && (startswith (name, "PARENT")
7070 || strcmp (name, "REP") == 0
7071 || startswith (name, "_parent")
7072 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7073 }
7074
7075 /* True iff field number FIELD_NUM of structure or union type TYPE
7076 is a variant wrapper. Assumes TYPE is a structure type with at least
7077 FIELD_NUM+1 fields. */
7078
7079 int
7080 ada_is_variant_part (struct type *type, int field_num)
7081 {
7082 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7083
7084 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7085 || (is_dynamic_field (type, field_num)
7086 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7087 == TYPE_CODE_UNION)));
7088 }
7089
7090 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7091 whose discriminants are contained in the record type OUTER_TYPE,
7092 returns the type of the controlling discriminant for the variant.
7093 May return NULL if the type could not be found. */
7094
7095 struct type *
7096 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7097 {
7098 char *name = ada_variant_discrim_name (var_type);
7099
7100 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
7101 }
7102
7103 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7104 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7105 represents a 'when others' clause; otherwise 0. */
7106
7107 int
7108 ada_is_others_clause (struct type *type, int field_num)
7109 {
7110 const char *name = TYPE_FIELD_NAME (type, field_num);
7111
7112 return (name != NULL && name[0] == 'O');
7113 }
7114
7115 /* Assuming that TYPE0 is the type of the variant part of a record,
7116 returns the name of the discriminant controlling the variant.
7117 The value is valid until the next call to ada_variant_discrim_name. */
7118
7119 char *
7120 ada_variant_discrim_name (struct type *type0)
7121 {
7122 static char *result = NULL;
7123 static size_t result_len = 0;
7124 struct type *type;
7125 const char *name;
7126 const char *discrim_end;
7127 const char *discrim_start;
7128
7129 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7130 type = TYPE_TARGET_TYPE (type0);
7131 else
7132 type = type0;
7133
7134 name = ada_type_name (type);
7135
7136 if (name == NULL || name[0] == '\000')
7137 return "";
7138
7139 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7140 discrim_end -= 1)
7141 {
7142 if (startswith (discrim_end, "___XVN"))
7143 break;
7144 }
7145 if (discrim_end == name)
7146 return "";
7147
7148 for (discrim_start = discrim_end; discrim_start != name + 3;
7149 discrim_start -= 1)
7150 {
7151 if (discrim_start == name + 1)
7152 return "";
7153 if ((discrim_start > name + 3
7154 && startswith (discrim_start - 3, "___"))
7155 || discrim_start[-1] == '.')
7156 break;
7157 }
7158
7159 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7160 strncpy (result, discrim_start, discrim_end - discrim_start);
7161 result[discrim_end - discrim_start] = '\0';
7162 return result;
7163 }
7164
7165 /* Scan STR for a subtype-encoded number, beginning at position K.
7166 Put the position of the character just past the number scanned in
7167 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7168 Return 1 if there was a valid number at the given position, and 0
7169 otherwise. A "subtype-encoded" number consists of the absolute value
7170 in decimal, followed by the letter 'm' to indicate a negative number.
7171 Assumes 0m does not occur. */
7172
7173 int
7174 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7175 {
7176 ULONGEST RU;
7177
7178 if (!isdigit (str[k]))
7179 return 0;
7180
7181 /* Do it the hard way so as not to make any assumption about
7182 the relationship of unsigned long (%lu scan format code) and
7183 LONGEST. */
7184 RU = 0;
7185 while (isdigit (str[k]))
7186 {
7187 RU = RU * 10 + (str[k] - '0');
7188 k += 1;
7189 }
7190
7191 if (str[k] == 'm')
7192 {
7193 if (R != NULL)
7194 *R = (-(LONGEST) (RU - 1)) - 1;
7195 k += 1;
7196 }
7197 else if (R != NULL)
7198 *R = (LONGEST) RU;
7199
7200 /* NOTE on the above: Technically, C does not say what the results of
7201 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7202 number representable as a LONGEST (although either would probably work
7203 in most implementations). When RU>0, the locution in the then branch
7204 above is always equivalent to the negative of RU. */
7205
7206 if (new_k != NULL)
7207 *new_k = k;
7208 return 1;
7209 }
7210
7211 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7212 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7213 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7214
7215 int
7216 ada_in_variant (LONGEST val, struct type *type, int field_num)
7217 {
7218 const char *name = TYPE_FIELD_NAME (type, field_num);
7219 int p;
7220
7221 p = 0;
7222 while (1)
7223 {
7224 switch (name[p])
7225 {
7226 case '\0':
7227 return 0;
7228 case 'S':
7229 {
7230 LONGEST W;
7231
7232 if (!ada_scan_number (name, p + 1, &W, &p))
7233 return 0;
7234 if (val == W)
7235 return 1;
7236 break;
7237 }
7238 case 'R':
7239 {
7240 LONGEST L, U;
7241
7242 if (!ada_scan_number (name, p + 1, &L, &p)
7243 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7244 return 0;
7245 if (val >= L && val <= U)
7246 return 1;
7247 break;
7248 }
7249 case 'O':
7250 return 1;
7251 default:
7252 return 0;
7253 }
7254 }
7255 }
7256
7257 /* FIXME: Lots of redundancy below. Try to consolidate. */
7258
7259 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7260 ARG_TYPE, extract and return the value of one of its (non-static)
7261 fields. FIELDNO says which field. Differs from value_primitive_field
7262 only in that it can handle packed values of arbitrary type. */
7263
7264 static struct value *
7265 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7266 struct type *arg_type)
7267 {
7268 struct type *type;
7269
7270 arg_type = ada_check_typedef (arg_type);
7271 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7272
7273 /* Handle packed fields. */
7274
7275 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7276 {
7277 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7278 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7279
7280 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7281 offset + bit_pos / 8,
7282 bit_pos % 8, bit_size, type);
7283 }
7284 else
7285 return value_primitive_field (arg1, offset, fieldno, arg_type);
7286 }
7287
7288 /* Find field with name NAME in object of type TYPE. If found,
7289 set the following for each argument that is non-null:
7290 - *FIELD_TYPE_P to the field's type;
7291 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7292 an object of that type;
7293 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7294 - *BIT_SIZE_P to its size in bits if the field is packed, and
7295 0 otherwise;
7296 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7297 fields up to but not including the desired field, or by the total
7298 number of fields if not found. A NULL value of NAME never
7299 matches; the function just counts visible fields in this case.
7300
7301 Returns 1 if found, 0 otherwise. */
7302
7303 static int
7304 find_struct_field (const char *name, struct type *type, int offset,
7305 struct type **field_type_p,
7306 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7307 int *index_p)
7308 {
7309 int i;
7310
7311 type = ada_check_typedef (type);
7312
7313 if (field_type_p != NULL)
7314 *field_type_p = NULL;
7315 if (byte_offset_p != NULL)
7316 *byte_offset_p = 0;
7317 if (bit_offset_p != NULL)
7318 *bit_offset_p = 0;
7319 if (bit_size_p != NULL)
7320 *bit_size_p = 0;
7321
7322 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7323 {
7324 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7325 int fld_offset = offset + bit_pos / 8;
7326 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7327
7328 if (t_field_name == NULL)
7329 continue;
7330
7331 else if (name != NULL && field_name_match (t_field_name, name))
7332 {
7333 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7334
7335 if (field_type_p != NULL)
7336 *field_type_p = TYPE_FIELD_TYPE (type, i);
7337 if (byte_offset_p != NULL)
7338 *byte_offset_p = fld_offset;
7339 if (bit_offset_p != NULL)
7340 *bit_offset_p = bit_pos % 8;
7341 if (bit_size_p != NULL)
7342 *bit_size_p = bit_size;
7343 return 1;
7344 }
7345 else if (ada_is_wrapper_field (type, i))
7346 {
7347 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7348 field_type_p, byte_offset_p, bit_offset_p,
7349 bit_size_p, index_p))
7350 return 1;
7351 }
7352 else if (ada_is_variant_part (type, i))
7353 {
7354 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7355 fixed type?? */
7356 int j;
7357 struct type *field_type
7358 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7359
7360 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7361 {
7362 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7363 fld_offset
7364 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7365 field_type_p, byte_offset_p,
7366 bit_offset_p, bit_size_p, index_p))
7367 return 1;
7368 }
7369 }
7370 else if (index_p != NULL)
7371 *index_p += 1;
7372 }
7373 return 0;
7374 }
7375
7376 /* Number of user-visible fields in record type TYPE. */
7377
7378 static int
7379 num_visible_fields (struct type *type)
7380 {
7381 int n;
7382
7383 n = 0;
7384 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7385 return n;
7386 }
7387
7388 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7389 and search in it assuming it has (class) type TYPE.
7390 If found, return value, else return NULL.
7391
7392 Searches recursively through wrapper fields (e.g., '_parent'). */
7393
7394 static struct value *
7395 ada_search_struct_field (const char *name, struct value *arg, int offset,
7396 struct type *type)
7397 {
7398 int i;
7399
7400 type = ada_check_typedef (type);
7401 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7402 {
7403 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7404
7405 if (t_field_name == NULL)
7406 continue;
7407
7408 else if (field_name_match (t_field_name, name))
7409 return ada_value_primitive_field (arg, offset, i, type);
7410
7411 else if (ada_is_wrapper_field (type, i))
7412 {
7413 struct value *v = /* Do not let indent join lines here. */
7414 ada_search_struct_field (name, arg,
7415 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7416 TYPE_FIELD_TYPE (type, i));
7417
7418 if (v != NULL)
7419 return v;
7420 }
7421
7422 else if (ada_is_variant_part (type, i))
7423 {
7424 /* PNH: Do we ever get here? See find_struct_field. */
7425 int j;
7426 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7427 i));
7428 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7429
7430 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7431 {
7432 struct value *v = ada_search_struct_field /* Force line
7433 break. */
7434 (name, arg,
7435 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7436 TYPE_FIELD_TYPE (field_type, j));
7437
7438 if (v != NULL)
7439 return v;
7440 }
7441 }
7442 }
7443 return NULL;
7444 }
7445
7446 static struct value *ada_index_struct_field_1 (int *, struct value *,
7447 int, struct type *);
7448
7449
7450 /* Return field #INDEX in ARG, where the index is that returned by
7451 * find_struct_field through its INDEX_P argument. Adjust the address
7452 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7453 * If found, return value, else return NULL. */
7454
7455 static struct value *
7456 ada_index_struct_field (int index, struct value *arg, int offset,
7457 struct type *type)
7458 {
7459 return ada_index_struct_field_1 (&index, arg, offset, type);
7460 }
7461
7462
7463 /* Auxiliary function for ada_index_struct_field. Like
7464 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7465 * *INDEX_P. */
7466
7467 static struct value *
7468 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7469 struct type *type)
7470 {
7471 int i;
7472 type = ada_check_typedef (type);
7473
7474 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7475 {
7476 if (TYPE_FIELD_NAME (type, i) == NULL)
7477 continue;
7478 else if (ada_is_wrapper_field (type, i))
7479 {
7480 struct value *v = /* Do not let indent join lines here. */
7481 ada_index_struct_field_1 (index_p, arg,
7482 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7483 TYPE_FIELD_TYPE (type, i));
7484
7485 if (v != NULL)
7486 return v;
7487 }
7488
7489 else if (ada_is_variant_part (type, i))
7490 {
7491 /* PNH: Do we ever get here? See ada_search_struct_field,
7492 find_struct_field. */
7493 error (_("Cannot assign this kind of variant record"));
7494 }
7495 else if (*index_p == 0)
7496 return ada_value_primitive_field (arg, offset, i, type);
7497 else
7498 *index_p -= 1;
7499 }
7500 return NULL;
7501 }
7502
7503 /* Given ARG, a value of type (pointer or reference to a)*
7504 structure/union, extract the component named NAME from the ultimate
7505 target structure/union and return it as a value with its
7506 appropriate type.
7507
7508 The routine searches for NAME among all members of the structure itself
7509 and (recursively) among all members of any wrapper members
7510 (e.g., '_parent').
7511
7512 If NO_ERR, then simply return NULL in case of error, rather than
7513 calling error. */
7514
7515 struct value *
7516 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7517 {
7518 struct type *t, *t1;
7519 struct value *v;
7520
7521 v = NULL;
7522 t1 = t = ada_check_typedef (value_type (arg));
7523 if (TYPE_CODE (t) == TYPE_CODE_REF)
7524 {
7525 t1 = TYPE_TARGET_TYPE (t);
7526 if (t1 == NULL)
7527 goto BadValue;
7528 t1 = ada_check_typedef (t1);
7529 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7530 {
7531 arg = coerce_ref (arg);
7532 t = t1;
7533 }
7534 }
7535
7536 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7537 {
7538 t1 = TYPE_TARGET_TYPE (t);
7539 if (t1 == NULL)
7540 goto BadValue;
7541 t1 = ada_check_typedef (t1);
7542 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7543 {
7544 arg = value_ind (arg);
7545 t = t1;
7546 }
7547 else
7548 break;
7549 }
7550
7551 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7552 goto BadValue;
7553
7554 if (t1 == t)
7555 v = ada_search_struct_field (name, arg, 0, t);
7556 else
7557 {
7558 int bit_offset, bit_size, byte_offset;
7559 struct type *field_type;
7560 CORE_ADDR address;
7561
7562 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7563 address = value_address (ada_value_ind (arg));
7564 else
7565 address = value_address (ada_coerce_ref (arg));
7566
7567 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7568 if (find_struct_field (name, t1, 0,
7569 &field_type, &byte_offset, &bit_offset,
7570 &bit_size, NULL))
7571 {
7572 if (bit_size != 0)
7573 {
7574 if (TYPE_CODE (t) == TYPE_CODE_REF)
7575 arg = ada_coerce_ref (arg);
7576 else
7577 arg = ada_value_ind (arg);
7578 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7579 bit_offset, bit_size,
7580 field_type);
7581 }
7582 else
7583 v = value_at_lazy (field_type, address + byte_offset);
7584 }
7585 }
7586
7587 if (v != NULL || no_err)
7588 return v;
7589 else
7590 error (_("There is no member named %s."), name);
7591
7592 BadValue:
7593 if (no_err)
7594 return NULL;
7595 else
7596 error (_("Attempt to extract a component of "
7597 "a value that is not a record."));
7598 }
7599
7600 /* Return a string representation of type TYPE. */
7601
7602 static std::string
7603 type_as_string (struct type *type)
7604 {
7605 struct ui_file *tmp_stream = mem_fileopen ();
7606 struct cleanup *old_chain;
7607
7608 tmp_stream = mem_fileopen ();
7609 old_chain = make_cleanup_ui_file_delete (tmp_stream);
7610
7611 type_print (type, "", tmp_stream, -1);
7612 std::string str = ui_file_as_string (tmp_stream);
7613
7614 do_cleanups (old_chain);
7615 return str;
7616 }
7617
7618 /* Given a type TYPE, look up the type of the component of type named NAME.
7619 If DISPP is non-null, add its byte displacement from the beginning of a
7620 structure (pointed to by a value) of type TYPE to *DISPP (does not
7621 work for packed fields).
7622
7623 Matches any field whose name has NAME as a prefix, possibly
7624 followed by "___".
7625
7626 TYPE can be either a struct or union. If REFOK, TYPE may also
7627 be a (pointer or reference)+ to a struct or union, and the
7628 ultimate target type will be searched.
7629
7630 Looks recursively into variant clauses and parent types.
7631
7632 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7633 TYPE is not a type of the right kind. */
7634
7635 static struct type *
7636 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7637 int noerr, int *dispp)
7638 {
7639 int i;
7640
7641 if (name == NULL)
7642 goto BadName;
7643
7644 if (refok && type != NULL)
7645 while (1)
7646 {
7647 type = ada_check_typedef (type);
7648 if (TYPE_CODE (type) != TYPE_CODE_PTR
7649 && TYPE_CODE (type) != TYPE_CODE_REF)
7650 break;
7651 type = TYPE_TARGET_TYPE (type);
7652 }
7653
7654 if (type == NULL
7655 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7656 && TYPE_CODE (type) != TYPE_CODE_UNION))
7657 {
7658 if (noerr)
7659 return NULL;
7660
7661 error (_("Type %s is not a structure or union type"),
7662 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7663 }
7664
7665 type = to_static_fixed_type (type);
7666
7667 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7668 {
7669 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7670 struct type *t;
7671 int disp;
7672
7673 if (t_field_name == NULL)
7674 continue;
7675
7676 else if (field_name_match (t_field_name, name))
7677 {
7678 if (dispp != NULL)
7679 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7680 return TYPE_FIELD_TYPE (type, i);
7681 }
7682
7683 else if (ada_is_wrapper_field (type, i))
7684 {
7685 disp = 0;
7686 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7687 0, 1, &disp);
7688 if (t != NULL)
7689 {
7690 if (dispp != NULL)
7691 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7692 return t;
7693 }
7694 }
7695
7696 else if (ada_is_variant_part (type, i))
7697 {
7698 int j;
7699 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7700 i));
7701
7702 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7703 {
7704 /* FIXME pnh 2008/01/26: We check for a field that is
7705 NOT wrapped in a struct, since the compiler sometimes
7706 generates these for unchecked variant types. Revisit
7707 if the compiler changes this practice. */
7708 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7709 disp = 0;
7710 if (v_field_name != NULL
7711 && field_name_match (v_field_name, name))
7712 t = TYPE_FIELD_TYPE (field_type, j);
7713 else
7714 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7715 j),
7716 name, 0, 1, &disp);
7717
7718 if (t != NULL)
7719 {
7720 if (dispp != NULL)
7721 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7722 return t;
7723 }
7724 }
7725 }
7726
7727 }
7728
7729 BadName:
7730 if (!noerr)
7731 {
7732 const char *name_str = name != NULL ? name : _("<null>");
7733
7734 error (_("Type %s has no component named %s"),
7735 type_as_string (type).c_str (), name_str);
7736 }
7737
7738 return NULL;
7739 }
7740
7741 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7742 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7743 represents an unchecked union (that is, the variant part of a
7744 record that is named in an Unchecked_Union pragma). */
7745
7746 static int
7747 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7748 {
7749 char *discrim_name = ada_variant_discrim_name (var_type);
7750
7751 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7752 == NULL);
7753 }
7754
7755
7756 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7757 within a value of type OUTER_TYPE that is stored in GDB at
7758 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7759 numbering from 0) is applicable. Returns -1 if none are. */
7760
7761 int
7762 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7763 const gdb_byte *outer_valaddr)
7764 {
7765 int others_clause;
7766 int i;
7767 char *discrim_name = ada_variant_discrim_name (var_type);
7768 struct value *outer;
7769 struct value *discrim;
7770 LONGEST discrim_val;
7771
7772 /* Using plain value_from_contents_and_address here causes problems
7773 because we will end up trying to resolve a type that is currently
7774 being constructed. */
7775 outer = value_from_contents_and_address_unresolved (outer_type,
7776 outer_valaddr, 0);
7777 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7778 if (discrim == NULL)
7779 return -1;
7780 discrim_val = value_as_long (discrim);
7781
7782 others_clause = -1;
7783 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7784 {
7785 if (ada_is_others_clause (var_type, i))
7786 others_clause = i;
7787 else if (ada_in_variant (discrim_val, var_type, i))
7788 return i;
7789 }
7790
7791 return others_clause;
7792 }
7793 \f
7794
7795
7796 /* Dynamic-Sized Records */
7797
7798 /* Strategy: The type ostensibly attached to a value with dynamic size
7799 (i.e., a size that is not statically recorded in the debugging
7800 data) does not accurately reflect the size or layout of the value.
7801 Our strategy is to convert these values to values with accurate,
7802 conventional types that are constructed on the fly. */
7803
7804 /* There is a subtle and tricky problem here. In general, we cannot
7805 determine the size of dynamic records without its data. However,
7806 the 'struct value' data structure, which GDB uses to represent
7807 quantities in the inferior process (the target), requires the size
7808 of the type at the time of its allocation in order to reserve space
7809 for GDB's internal copy of the data. That's why the
7810 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7811 rather than struct value*s.
7812
7813 However, GDB's internal history variables ($1, $2, etc.) are
7814 struct value*s containing internal copies of the data that are not, in
7815 general, the same as the data at their corresponding addresses in
7816 the target. Fortunately, the types we give to these values are all
7817 conventional, fixed-size types (as per the strategy described
7818 above), so that we don't usually have to perform the
7819 'to_fixed_xxx_type' conversions to look at their values.
7820 Unfortunately, there is one exception: if one of the internal
7821 history variables is an array whose elements are unconstrained
7822 records, then we will need to create distinct fixed types for each
7823 element selected. */
7824
7825 /* The upshot of all of this is that many routines take a (type, host
7826 address, target address) triple as arguments to represent a value.
7827 The host address, if non-null, is supposed to contain an internal
7828 copy of the relevant data; otherwise, the program is to consult the
7829 target at the target address. */
7830
7831 /* Assuming that VAL0 represents a pointer value, the result of
7832 dereferencing it. Differs from value_ind in its treatment of
7833 dynamic-sized types. */
7834
7835 struct value *
7836 ada_value_ind (struct value *val0)
7837 {
7838 struct value *val = value_ind (val0);
7839
7840 if (ada_is_tagged_type (value_type (val), 0))
7841 val = ada_tag_value_at_base_address (val);
7842
7843 return ada_to_fixed_value (val);
7844 }
7845
7846 /* The value resulting from dereferencing any "reference to"
7847 qualifiers on VAL0. */
7848
7849 static struct value *
7850 ada_coerce_ref (struct value *val0)
7851 {
7852 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7853 {
7854 struct value *val = val0;
7855
7856 val = coerce_ref (val);
7857
7858 if (ada_is_tagged_type (value_type (val), 0))
7859 val = ada_tag_value_at_base_address (val);
7860
7861 return ada_to_fixed_value (val);
7862 }
7863 else
7864 return val0;
7865 }
7866
7867 /* Return OFF rounded upward if necessary to a multiple of
7868 ALIGNMENT (a power of 2). */
7869
7870 static unsigned int
7871 align_value (unsigned int off, unsigned int alignment)
7872 {
7873 return (off + alignment - 1) & ~(alignment - 1);
7874 }
7875
7876 /* Return the bit alignment required for field #F of template type TYPE. */
7877
7878 static unsigned int
7879 field_alignment (struct type *type, int f)
7880 {
7881 const char *name = TYPE_FIELD_NAME (type, f);
7882 int len;
7883 int align_offset;
7884
7885 /* The field name should never be null, unless the debugging information
7886 is somehow malformed. In this case, we assume the field does not
7887 require any alignment. */
7888 if (name == NULL)
7889 return 1;
7890
7891 len = strlen (name);
7892
7893 if (!isdigit (name[len - 1]))
7894 return 1;
7895
7896 if (isdigit (name[len - 2]))
7897 align_offset = len - 2;
7898 else
7899 align_offset = len - 1;
7900
7901 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7902 return TARGET_CHAR_BIT;
7903
7904 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7905 }
7906
7907 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7908
7909 static struct symbol *
7910 ada_find_any_type_symbol (const char *name)
7911 {
7912 struct symbol *sym;
7913
7914 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7915 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7916 return sym;
7917
7918 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7919 return sym;
7920 }
7921
7922 /* Find a type named NAME. Ignores ambiguity. This routine will look
7923 solely for types defined by debug info, it will not search the GDB
7924 primitive types. */
7925
7926 static struct type *
7927 ada_find_any_type (const char *name)
7928 {
7929 struct symbol *sym = ada_find_any_type_symbol (name);
7930
7931 if (sym != NULL)
7932 return SYMBOL_TYPE (sym);
7933
7934 return NULL;
7935 }
7936
7937 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7938 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7939 symbol, in which case it is returned. Otherwise, this looks for
7940 symbols whose name is that of NAME_SYM suffixed with "___XR".
7941 Return symbol if found, and NULL otherwise. */
7942
7943 struct symbol *
7944 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7945 {
7946 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7947 struct symbol *sym;
7948
7949 if (strstr (name, "___XR") != NULL)
7950 return name_sym;
7951
7952 sym = find_old_style_renaming_symbol (name, block);
7953
7954 if (sym != NULL)
7955 return sym;
7956
7957 /* Not right yet. FIXME pnh 7/20/2007. */
7958 sym = ada_find_any_type_symbol (name);
7959 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7960 return sym;
7961 else
7962 return NULL;
7963 }
7964
7965 static struct symbol *
7966 find_old_style_renaming_symbol (const char *name, const struct block *block)
7967 {
7968 const struct symbol *function_sym = block_linkage_function (block);
7969 char *rename;
7970
7971 if (function_sym != NULL)
7972 {
7973 /* If the symbol is defined inside a function, NAME is not fully
7974 qualified. This means we need to prepend the function name
7975 as well as adding the ``___XR'' suffix to build the name of
7976 the associated renaming symbol. */
7977 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7978 /* Function names sometimes contain suffixes used
7979 for instance to qualify nested subprograms. When building
7980 the XR type name, we need to make sure that this suffix is
7981 not included. So do not include any suffix in the function
7982 name length below. */
7983 int function_name_len = ada_name_prefix_len (function_name);
7984 const int rename_len = function_name_len + 2 /* "__" */
7985 + strlen (name) + 6 /* "___XR\0" */ ;
7986
7987 /* Strip the suffix if necessary. */
7988 ada_remove_trailing_digits (function_name, &function_name_len);
7989 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7990 ada_remove_Xbn_suffix (function_name, &function_name_len);
7991
7992 /* Library-level functions are a special case, as GNAT adds
7993 a ``_ada_'' prefix to the function name to avoid namespace
7994 pollution. However, the renaming symbols themselves do not
7995 have this prefix, so we need to skip this prefix if present. */
7996 if (function_name_len > 5 /* "_ada_" */
7997 && strstr (function_name, "_ada_") == function_name)
7998 {
7999 function_name += 5;
8000 function_name_len -= 5;
8001 }
8002
8003 rename = (char *) alloca (rename_len * sizeof (char));
8004 strncpy (rename, function_name, function_name_len);
8005 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8006 "__%s___XR", name);
8007 }
8008 else
8009 {
8010 const int rename_len = strlen (name) + 6;
8011
8012 rename = (char *) alloca (rename_len * sizeof (char));
8013 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8014 }
8015
8016 return ada_find_any_type_symbol (rename);
8017 }
8018
8019 /* Because of GNAT encoding conventions, several GDB symbols may match a
8020 given type name. If the type denoted by TYPE0 is to be preferred to
8021 that of TYPE1 for purposes of type printing, return non-zero;
8022 otherwise return 0. */
8023
8024 int
8025 ada_prefer_type (struct type *type0, struct type *type1)
8026 {
8027 if (type1 == NULL)
8028 return 1;
8029 else if (type0 == NULL)
8030 return 0;
8031 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8032 return 1;
8033 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8034 return 0;
8035 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8036 return 1;
8037 else if (ada_is_constrained_packed_array_type (type0))
8038 return 1;
8039 else if (ada_is_array_descriptor_type (type0)
8040 && !ada_is_array_descriptor_type (type1))
8041 return 1;
8042 else
8043 {
8044 const char *type0_name = type_name_no_tag (type0);
8045 const char *type1_name = type_name_no_tag (type1);
8046
8047 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8048 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8049 return 1;
8050 }
8051 return 0;
8052 }
8053
8054 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
8055 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8056
8057 const char *
8058 ada_type_name (struct type *type)
8059 {
8060 if (type == NULL)
8061 return NULL;
8062 else if (TYPE_NAME (type) != NULL)
8063 return TYPE_NAME (type);
8064 else
8065 return TYPE_TAG_NAME (type);
8066 }
8067
8068 /* Search the list of "descriptive" types associated to TYPE for a type
8069 whose name is NAME. */
8070
8071 static struct type *
8072 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8073 {
8074 struct type *result, *tmp;
8075
8076 if (ada_ignore_descriptive_types_p)
8077 return NULL;
8078
8079 /* If there no descriptive-type info, then there is no parallel type
8080 to be found. */
8081 if (!HAVE_GNAT_AUX_INFO (type))
8082 return NULL;
8083
8084 result = TYPE_DESCRIPTIVE_TYPE (type);
8085 while (result != NULL)
8086 {
8087 const char *result_name = ada_type_name (result);
8088
8089 if (result_name == NULL)
8090 {
8091 warning (_("unexpected null name on descriptive type"));
8092 return NULL;
8093 }
8094
8095 /* If the names match, stop. */
8096 if (strcmp (result_name, name) == 0)
8097 break;
8098
8099 /* Otherwise, look at the next item on the list, if any. */
8100 if (HAVE_GNAT_AUX_INFO (result))
8101 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8102 else
8103 tmp = NULL;
8104
8105 /* If not found either, try after having resolved the typedef. */
8106 if (tmp != NULL)
8107 result = tmp;
8108 else
8109 {
8110 result = check_typedef (result);
8111 if (HAVE_GNAT_AUX_INFO (result))
8112 result = TYPE_DESCRIPTIVE_TYPE (result);
8113 else
8114 result = NULL;
8115 }
8116 }
8117
8118 /* If we didn't find a match, see whether this is a packed array. With
8119 older compilers, the descriptive type information is either absent or
8120 irrelevant when it comes to packed arrays so the above lookup fails.
8121 Fall back to using a parallel lookup by name in this case. */
8122 if (result == NULL && ada_is_constrained_packed_array_type (type))
8123 return ada_find_any_type (name);
8124
8125 return result;
8126 }
8127
8128 /* Find a parallel type to TYPE with the specified NAME, using the
8129 descriptive type taken from the debugging information, if available,
8130 and otherwise using the (slower) name-based method. */
8131
8132 static struct type *
8133 ada_find_parallel_type_with_name (struct type *type, const char *name)
8134 {
8135 struct type *result = NULL;
8136
8137 if (HAVE_GNAT_AUX_INFO (type))
8138 result = find_parallel_type_by_descriptive_type (type, name);
8139 else
8140 result = ada_find_any_type (name);
8141
8142 return result;
8143 }
8144
8145 /* Same as above, but specify the name of the parallel type by appending
8146 SUFFIX to the name of TYPE. */
8147
8148 struct type *
8149 ada_find_parallel_type (struct type *type, const char *suffix)
8150 {
8151 char *name;
8152 const char *type_name = ada_type_name (type);
8153 int len;
8154
8155 if (type_name == NULL)
8156 return NULL;
8157
8158 len = strlen (type_name);
8159
8160 name = (char *) alloca (len + strlen (suffix) + 1);
8161
8162 strcpy (name, type_name);
8163 strcpy (name + len, suffix);
8164
8165 return ada_find_parallel_type_with_name (type, name);
8166 }
8167
8168 /* If TYPE is a variable-size record type, return the corresponding template
8169 type describing its fields. Otherwise, return NULL. */
8170
8171 static struct type *
8172 dynamic_template_type (struct type *type)
8173 {
8174 type = ada_check_typedef (type);
8175
8176 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8177 || ada_type_name (type) == NULL)
8178 return NULL;
8179 else
8180 {
8181 int len = strlen (ada_type_name (type));
8182
8183 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8184 return type;
8185 else
8186 return ada_find_parallel_type (type, "___XVE");
8187 }
8188 }
8189
8190 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8191 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8192
8193 static int
8194 is_dynamic_field (struct type *templ_type, int field_num)
8195 {
8196 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8197
8198 return name != NULL
8199 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8200 && strstr (name, "___XVL") != NULL;
8201 }
8202
8203 /* The index of the variant field of TYPE, or -1 if TYPE does not
8204 represent a variant record type. */
8205
8206 static int
8207 variant_field_index (struct type *type)
8208 {
8209 int f;
8210
8211 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8212 return -1;
8213
8214 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8215 {
8216 if (ada_is_variant_part (type, f))
8217 return f;
8218 }
8219 return -1;
8220 }
8221
8222 /* A record type with no fields. */
8223
8224 static struct type *
8225 empty_record (struct type *templ)
8226 {
8227 struct type *type = alloc_type_copy (templ);
8228
8229 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8230 TYPE_NFIELDS (type) = 0;
8231 TYPE_FIELDS (type) = NULL;
8232 INIT_CPLUS_SPECIFIC (type);
8233 TYPE_NAME (type) = "<empty>";
8234 TYPE_TAG_NAME (type) = NULL;
8235 TYPE_LENGTH (type) = 0;
8236 return type;
8237 }
8238
8239 /* An ordinary record type (with fixed-length fields) that describes
8240 the value of type TYPE at VALADDR or ADDRESS (see comments at
8241 the beginning of this section) VAL according to GNAT conventions.
8242 DVAL0 should describe the (portion of a) record that contains any
8243 necessary discriminants. It should be NULL if value_type (VAL) is
8244 an outer-level type (i.e., as opposed to a branch of a variant.) A
8245 variant field (unless unchecked) is replaced by a particular branch
8246 of the variant.
8247
8248 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8249 length are not statically known are discarded. As a consequence,
8250 VALADDR, ADDRESS and DVAL0 are ignored.
8251
8252 NOTE: Limitations: For now, we assume that dynamic fields and
8253 variants occupy whole numbers of bytes. However, they need not be
8254 byte-aligned. */
8255
8256 struct type *
8257 ada_template_to_fixed_record_type_1 (struct type *type,
8258 const gdb_byte *valaddr,
8259 CORE_ADDR address, struct value *dval0,
8260 int keep_dynamic_fields)
8261 {
8262 struct value *mark = value_mark ();
8263 struct value *dval;
8264 struct type *rtype;
8265 int nfields, bit_len;
8266 int variant_field;
8267 long off;
8268 int fld_bit_len;
8269 int f;
8270
8271 /* Compute the number of fields in this record type that are going
8272 to be processed: unless keep_dynamic_fields, this includes only
8273 fields whose position and length are static will be processed. */
8274 if (keep_dynamic_fields)
8275 nfields = TYPE_NFIELDS (type);
8276 else
8277 {
8278 nfields = 0;
8279 while (nfields < TYPE_NFIELDS (type)
8280 && !ada_is_variant_part (type, nfields)
8281 && !is_dynamic_field (type, nfields))
8282 nfields++;
8283 }
8284
8285 rtype = alloc_type_copy (type);
8286 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8287 INIT_CPLUS_SPECIFIC (rtype);
8288 TYPE_NFIELDS (rtype) = nfields;
8289 TYPE_FIELDS (rtype) = (struct field *)
8290 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8291 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8292 TYPE_NAME (rtype) = ada_type_name (type);
8293 TYPE_TAG_NAME (rtype) = NULL;
8294 TYPE_FIXED_INSTANCE (rtype) = 1;
8295
8296 off = 0;
8297 bit_len = 0;
8298 variant_field = -1;
8299
8300 for (f = 0; f < nfields; f += 1)
8301 {
8302 off = align_value (off, field_alignment (type, f))
8303 + TYPE_FIELD_BITPOS (type, f);
8304 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8305 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8306
8307 if (ada_is_variant_part (type, f))
8308 {
8309 variant_field = f;
8310 fld_bit_len = 0;
8311 }
8312 else if (is_dynamic_field (type, f))
8313 {
8314 const gdb_byte *field_valaddr = valaddr;
8315 CORE_ADDR field_address = address;
8316 struct type *field_type =
8317 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8318
8319 if (dval0 == NULL)
8320 {
8321 /* rtype's length is computed based on the run-time
8322 value of discriminants. If the discriminants are not
8323 initialized, the type size may be completely bogus and
8324 GDB may fail to allocate a value for it. So check the
8325 size first before creating the value. */
8326 ada_ensure_varsize_limit (rtype);
8327 /* Using plain value_from_contents_and_address here
8328 causes problems because we will end up trying to
8329 resolve a type that is currently being
8330 constructed. */
8331 dval = value_from_contents_and_address_unresolved (rtype,
8332 valaddr,
8333 address);
8334 rtype = value_type (dval);
8335 }
8336 else
8337 dval = dval0;
8338
8339 /* If the type referenced by this field is an aligner type, we need
8340 to unwrap that aligner type, because its size might not be set.
8341 Keeping the aligner type would cause us to compute the wrong
8342 size for this field, impacting the offset of the all the fields
8343 that follow this one. */
8344 if (ada_is_aligner_type (field_type))
8345 {
8346 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8347
8348 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8349 field_address = cond_offset_target (field_address, field_offset);
8350 field_type = ada_aligned_type (field_type);
8351 }
8352
8353 field_valaddr = cond_offset_host (field_valaddr,
8354 off / TARGET_CHAR_BIT);
8355 field_address = cond_offset_target (field_address,
8356 off / TARGET_CHAR_BIT);
8357
8358 /* Get the fixed type of the field. Note that, in this case,
8359 we do not want to get the real type out of the tag: if
8360 the current field is the parent part of a tagged record,
8361 we will get the tag of the object. Clearly wrong: the real
8362 type of the parent is not the real type of the child. We
8363 would end up in an infinite loop. */
8364 field_type = ada_get_base_type (field_type);
8365 field_type = ada_to_fixed_type (field_type, field_valaddr,
8366 field_address, dval, 0);
8367 /* If the field size is already larger than the maximum
8368 object size, then the record itself will necessarily
8369 be larger than the maximum object size. We need to make
8370 this check now, because the size might be so ridiculously
8371 large (due to an uninitialized variable in the inferior)
8372 that it would cause an overflow when adding it to the
8373 record size. */
8374 ada_ensure_varsize_limit (field_type);
8375
8376 TYPE_FIELD_TYPE (rtype, f) = field_type;
8377 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8378 /* The multiplication can potentially overflow. But because
8379 the field length has been size-checked just above, and
8380 assuming that the maximum size is a reasonable value,
8381 an overflow should not happen in practice. So rather than
8382 adding overflow recovery code to this already complex code,
8383 we just assume that it's not going to happen. */
8384 fld_bit_len =
8385 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8386 }
8387 else
8388 {
8389 /* Note: If this field's type is a typedef, it is important
8390 to preserve the typedef layer.
8391
8392 Otherwise, we might be transforming a typedef to a fat
8393 pointer (encoding a pointer to an unconstrained array),
8394 into a basic fat pointer (encoding an unconstrained
8395 array). As both types are implemented using the same
8396 structure, the typedef is the only clue which allows us
8397 to distinguish between the two options. Stripping it
8398 would prevent us from printing this field appropriately. */
8399 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8400 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8401 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8402 fld_bit_len =
8403 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8404 else
8405 {
8406 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8407
8408 /* We need to be careful of typedefs when computing
8409 the length of our field. If this is a typedef,
8410 get the length of the target type, not the length
8411 of the typedef. */
8412 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8413 field_type = ada_typedef_target_type (field_type);
8414
8415 fld_bit_len =
8416 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8417 }
8418 }
8419 if (off + fld_bit_len > bit_len)
8420 bit_len = off + fld_bit_len;
8421 off += fld_bit_len;
8422 TYPE_LENGTH (rtype) =
8423 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8424 }
8425
8426 /* We handle the variant part, if any, at the end because of certain
8427 odd cases in which it is re-ordered so as NOT to be the last field of
8428 the record. This can happen in the presence of representation
8429 clauses. */
8430 if (variant_field >= 0)
8431 {
8432 struct type *branch_type;
8433
8434 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8435
8436 if (dval0 == NULL)
8437 {
8438 /* Using plain value_from_contents_and_address here causes
8439 problems because we will end up trying to resolve a type
8440 that is currently being constructed. */
8441 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8442 address);
8443 rtype = value_type (dval);
8444 }
8445 else
8446 dval = dval0;
8447
8448 branch_type =
8449 to_fixed_variant_branch_type
8450 (TYPE_FIELD_TYPE (type, variant_field),
8451 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8452 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8453 if (branch_type == NULL)
8454 {
8455 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8456 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8457 TYPE_NFIELDS (rtype) -= 1;
8458 }
8459 else
8460 {
8461 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8462 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8463 fld_bit_len =
8464 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8465 TARGET_CHAR_BIT;
8466 if (off + fld_bit_len > bit_len)
8467 bit_len = off + fld_bit_len;
8468 TYPE_LENGTH (rtype) =
8469 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8470 }
8471 }
8472
8473 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8474 should contain the alignment of that record, which should be a strictly
8475 positive value. If null or negative, then something is wrong, most
8476 probably in the debug info. In that case, we don't round up the size
8477 of the resulting type. If this record is not part of another structure,
8478 the current RTYPE length might be good enough for our purposes. */
8479 if (TYPE_LENGTH (type) <= 0)
8480 {
8481 if (TYPE_NAME (rtype))
8482 warning (_("Invalid type size for `%s' detected: %d."),
8483 TYPE_NAME (rtype), TYPE_LENGTH (type));
8484 else
8485 warning (_("Invalid type size for <unnamed> detected: %d."),
8486 TYPE_LENGTH (type));
8487 }
8488 else
8489 {
8490 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8491 TYPE_LENGTH (type));
8492 }
8493
8494 value_free_to_mark (mark);
8495 if (TYPE_LENGTH (rtype) > varsize_limit)
8496 error (_("record type with dynamic size is larger than varsize-limit"));
8497 return rtype;
8498 }
8499
8500 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8501 of 1. */
8502
8503 static struct type *
8504 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8505 CORE_ADDR address, struct value *dval0)
8506 {
8507 return ada_template_to_fixed_record_type_1 (type, valaddr,
8508 address, dval0, 1);
8509 }
8510
8511 /* An ordinary record type in which ___XVL-convention fields and
8512 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8513 static approximations, containing all possible fields. Uses
8514 no runtime values. Useless for use in values, but that's OK,
8515 since the results are used only for type determinations. Works on both
8516 structs and unions. Representation note: to save space, we memorize
8517 the result of this function in the TYPE_TARGET_TYPE of the
8518 template type. */
8519
8520 static struct type *
8521 template_to_static_fixed_type (struct type *type0)
8522 {
8523 struct type *type;
8524 int nfields;
8525 int f;
8526
8527 /* No need no do anything if the input type is already fixed. */
8528 if (TYPE_FIXED_INSTANCE (type0))
8529 return type0;
8530
8531 /* Likewise if we already have computed the static approximation. */
8532 if (TYPE_TARGET_TYPE (type0) != NULL)
8533 return TYPE_TARGET_TYPE (type0);
8534
8535 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8536 type = type0;
8537 nfields = TYPE_NFIELDS (type0);
8538
8539 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8540 recompute all over next time. */
8541 TYPE_TARGET_TYPE (type0) = type;
8542
8543 for (f = 0; f < nfields; f += 1)
8544 {
8545 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8546 struct type *new_type;
8547
8548 if (is_dynamic_field (type0, f))
8549 {
8550 field_type = ada_check_typedef (field_type);
8551 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8552 }
8553 else
8554 new_type = static_unwrap_type (field_type);
8555
8556 if (new_type != field_type)
8557 {
8558 /* Clone TYPE0 only the first time we get a new field type. */
8559 if (type == type0)
8560 {
8561 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8562 TYPE_CODE (type) = TYPE_CODE (type0);
8563 INIT_CPLUS_SPECIFIC (type);
8564 TYPE_NFIELDS (type) = nfields;
8565 TYPE_FIELDS (type) = (struct field *)
8566 TYPE_ALLOC (type, nfields * sizeof (struct field));
8567 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8568 sizeof (struct field) * nfields);
8569 TYPE_NAME (type) = ada_type_name (type0);
8570 TYPE_TAG_NAME (type) = NULL;
8571 TYPE_FIXED_INSTANCE (type) = 1;
8572 TYPE_LENGTH (type) = 0;
8573 }
8574 TYPE_FIELD_TYPE (type, f) = new_type;
8575 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8576 }
8577 }
8578
8579 return type;
8580 }
8581
8582 /* Given an object of type TYPE whose contents are at VALADDR and
8583 whose address in memory is ADDRESS, returns a revision of TYPE,
8584 which should be a non-dynamic-sized record, in which the variant
8585 part, if any, is replaced with the appropriate branch. Looks
8586 for discriminant values in DVAL0, which can be NULL if the record
8587 contains the necessary discriminant values. */
8588
8589 static struct type *
8590 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8591 CORE_ADDR address, struct value *dval0)
8592 {
8593 struct value *mark = value_mark ();
8594 struct value *dval;
8595 struct type *rtype;
8596 struct type *branch_type;
8597 int nfields = TYPE_NFIELDS (type);
8598 int variant_field = variant_field_index (type);
8599
8600 if (variant_field == -1)
8601 return type;
8602
8603 if (dval0 == NULL)
8604 {
8605 dval = value_from_contents_and_address (type, valaddr, address);
8606 type = value_type (dval);
8607 }
8608 else
8609 dval = dval0;
8610
8611 rtype = alloc_type_copy (type);
8612 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8613 INIT_CPLUS_SPECIFIC (rtype);
8614 TYPE_NFIELDS (rtype) = nfields;
8615 TYPE_FIELDS (rtype) =
8616 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8617 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8618 sizeof (struct field) * nfields);
8619 TYPE_NAME (rtype) = ada_type_name (type);
8620 TYPE_TAG_NAME (rtype) = NULL;
8621 TYPE_FIXED_INSTANCE (rtype) = 1;
8622 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8623
8624 branch_type = to_fixed_variant_branch_type
8625 (TYPE_FIELD_TYPE (type, variant_field),
8626 cond_offset_host (valaddr,
8627 TYPE_FIELD_BITPOS (type, variant_field)
8628 / TARGET_CHAR_BIT),
8629 cond_offset_target (address,
8630 TYPE_FIELD_BITPOS (type, variant_field)
8631 / TARGET_CHAR_BIT), dval);
8632 if (branch_type == NULL)
8633 {
8634 int f;
8635
8636 for (f = variant_field + 1; f < nfields; f += 1)
8637 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8638 TYPE_NFIELDS (rtype) -= 1;
8639 }
8640 else
8641 {
8642 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8643 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8644 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8645 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8646 }
8647 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8648
8649 value_free_to_mark (mark);
8650 return rtype;
8651 }
8652
8653 /* An ordinary record type (with fixed-length fields) that describes
8654 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8655 beginning of this section]. Any necessary discriminants' values
8656 should be in DVAL, a record value; it may be NULL if the object
8657 at ADDR itself contains any necessary discriminant values.
8658 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8659 values from the record are needed. Except in the case that DVAL,
8660 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8661 unchecked) is replaced by a particular branch of the variant.
8662
8663 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8664 is questionable and may be removed. It can arise during the
8665 processing of an unconstrained-array-of-record type where all the
8666 variant branches have exactly the same size. This is because in
8667 such cases, the compiler does not bother to use the XVS convention
8668 when encoding the record. I am currently dubious of this
8669 shortcut and suspect the compiler should be altered. FIXME. */
8670
8671 static struct type *
8672 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8673 CORE_ADDR address, struct value *dval)
8674 {
8675 struct type *templ_type;
8676
8677 if (TYPE_FIXED_INSTANCE (type0))
8678 return type0;
8679
8680 templ_type = dynamic_template_type (type0);
8681
8682 if (templ_type != NULL)
8683 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8684 else if (variant_field_index (type0) >= 0)
8685 {
8686 if (dval == NULL && valaddr == NULL && address == 0)
8687 return type0;
8688 return to_record_with_fixed_variant_part (type0, valaddr, address,
8689 dval);
8690 }
8691 else
8692 {
8693 TYPE_FIXED_INSTANCE (type0) = 1;
8694 return type0;
8695 }
8696
8697 }
8698
8699 /* An ordinary record type (with fixed-length fields) that describes
8700 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8701 union type. Any necessary discriminants' values should be in DVAL,
8702 a record value. That is, this routine selects the appropriate
8703 branch of the union at ADDR according to the discriminant value
8704 indicated in the union's type name. Returns VAR_TYPE0 itself if
8705 it represents a variant subject to a pragma Unchecked_Union. */
8706
8707 static struct type *
8708 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8709 CORE_ADDR address, struct value *dval)
8710 {
8711 int which;
8712 struct type *templ_type;
8713 struct type *var_type;
8714
8715 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8716 var_type = TYPE_TARGET_TYPE (var_type0);
8717 else
8718 var_type = var_type0;
8719
8720 templ_type = ada_find_parallel_type (var_type, "___XVU");
8721
8722 if (templ_type != NULL)
8723 var_type = templ_type;
8724
8725 if (is_unchecked_variant (var_type, value_type (dval)))
8726 return var_type0;
8727 which =
8728 ada_which_variant_applies (var_type,
8729 value_type (dval), value_contents (dval));
8730
8731 if (which < 0)
8732 return empty_record (var_type);
8733 else if (is_dynamic_field (var_type, which))
8734 return to_fixed_record_type
8735 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8736 valaddr, address, dval);
8737 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8738 return
8739 to_fixed_record_type
8740 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8741 else
8742 return TYPE_FIELD_TYPE (var_type, which);
8743 }
8744
8745 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8746 ENCODING_TYPE, a type following the GNAT conventions for discrete
8747 type encodings, only carries redundant information. */
8748
8749 static int
8750 ada_is_redundant_range_encoding (struct type *range_type,
8751 struct type *encoding_type)
8752 {
8753 struct type *fixed_range_type;
8754 const char *bounds_str;
8755 int n;
8756 LONGEST lo, hi;
8757
8758 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8759
8760 if (TYPE_CODE (get_base_type (range_type))
8761 != TYPE_CODE (get_base_type (encoding_type)))
8762 {
8763 /* The compiler probably used a simple base type to describe
8764 the range type instead of the range's actual base type,
8765 expecting us to get the real base type from the encoding
8766 anyway. In this situation, the encoding cannot be ignored
8767 as redundant. */
8768 return 0;
8769 }
8770
8771 if (is_dynamic_type (range_type))
8772 return 0;
8773
8774 if (TYPE_NAME (encoding_type) == NULL)
8775 return 0;
8776
8777 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8778 if (bounds_str == NULL)
8779 return 0;
8780
8781 n = 8; /* Skip "___XDLU_". */
8782 if (!ada_scan_number (bounds_str, n, &lo, &n))
8783 return 0;
8784 if (TYPE_LOW_BOUND (range_type) != lo)
8785 return 0;
8786
8787 n += 2; /* Skip the "__" separator between the two bounds. */
8788 if (!ada_scan_number (bounds_str, n, &hi, &n))
8789 return 0;
8790 if (TYPE_HIGH_BOUND (range_type) != hi)
8791 return 0;
8792
8793 return 1;
8794 }
8795
8796 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8797 a type following the GNAT encoding for describing array type
8798 indices, only carries redundant information. */
8799
8800 static int
8801 ada_is_redundant_index_type_desc (struct type *array_type,
8802 struct type *desc_type)
8803 {
8804 struct type *this_layer = check_typedef (array_type);
8805 int i;
8806
8807 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8808 {
8809 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8810 TYPE_FIELD_TYPE (desc_type, i)))
8811 return 0;
8812 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8813 }
8814
8815 return 1;
8816 }
8817
8818 /* Assuming that TYPE0 is an array type describing the type of a value
8819 at ADDR, and that DVAL describes a record containing any
8820 discriminants used in TYPE0, returns a type for the value that
8821 contains no dynamic components (that is, no components whose sizes
8822 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8823 true, gives an error message if the resulting type's size is over
8824 varsize_limit. */
8825
8826 static struct type *
8827 to_fixed_array_type (struct type *type0, struct value *dval,
8828 int ignore_too_big)
8829 {
8830 struct type *index_type_desc;
8831 struct type *result;
8832 int constrained_packed_array_p;
8833 static const char *xa_suffix = "___XA";
8834
8835 type0 = ada_check_typedef (type0);
8836 if (TYPE_FIXED_INSTANCE (type0))
8837 return type0;
8838
8839 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8840 if (constrained_packed_array_p)
8841 type0 = decode_constrained_packed_array_type (type0);
8842
8843 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8844
8845 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8846 encoding suffixed with 'P' may still be generated. If so,
8847 it should be used to find the XA type. */
8848
8849 if (index_type_desc == NULL)
8850 {
8851 const char *type_name = ada_type_name (type0);
8852
8853 if (type_name != NULL)
8854 {
8855 const int len = strlen (type_name);
8856 char *name = (char *) alloca (len + strlen (xa_suffix));
8857
8858 if (type_name[len - 1] == 'P')
8859 {
8860 strcpy (name, type_name);
8861 strcpy (name + len - 1, xa_suffix);
8862 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8863 }
8864 }
8865 }
8866
8867 ada_fixup_array_indexes_type (index_type_desc);
8868 if (index_type_desc != NULL
8869 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8870 {
8871 /* Ignore this ___XA parallel type, as it does not bring any
8872 useful information. This allows us to avoid creating fixed
8873 versions of the array's index types, which would be identical
8874 to the original ones. This, in turn, can also help avoid
8875 the creation of fixed versions of the array itself. */
8876 index_type_desc = NULL;
8877 }
8878
8879 if (index_type_desc == NULL)
8880 {
8881 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8882
8883 /* NOTE: elt_type---the fixed version of elt_type0---should never
8884 depend on the contents of the array in properly constructed
8885 debugging data. */
8886 /* Create a fixed version of the array element type.
8887 We're not providing the address of an element here,
8888 and thus the actual object value cannot be inspected to do
8889 the conversion. This should not be a problem, since arrays of
8890 unconstrained objects are not allowed. In particular, all
8891 the elements of an array of a tagged type should all be of
8892 the same type specified in the debugging info. No need to
8893 consult the object tag. */
8894 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8895
8896 /* Make sure we always create a new array type when dealing with
8897 packed array types, since we're going to fix-up the array
8898 type length and element bitsize a little further down. */
8899 if (elt_type0 == elt_type && !constrained_packed_array_p)
8900 result = type0;
8901 else
8902 result = create_array_type (alloc_type_copy (type0),
8903 elt_type, TYPE_INDEX_TYPE (type0));
8904 }
8905 else
8906 {
8907 int i;
8908 struct type *elt_type0;
8909
8910 elt_type0 = type0;
8911 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8912 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8913
8914 /* NOTE: result---the fixed version of elt_type0---should never
8915 depend on the contents of the array in properly constructed
8916 debugging data. */
8917 /* Create a fixed version of the array element type.
8918 We're not providing the address of an element here,
8919 and thus the actual object value cannot be inspected to do
8920 the conversion. This should not be a problem, since arrays of
8921 unconstrained objects are not allowed. In particular, all
8922 the elements of an array of a tagged type should all be of
8923 the same type specified in the debugging info. No need to
8924 consult the object tag. */
8925 result =
8926 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8927
8928 elt_type0 = type0;
8929 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8930 {
8931 struct type *range_type =
8932 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8933
8934 result = create_array_type (alloc_type_copy (elt_type0),
8935 result, range_type);
8936 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8937 }
8938 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8939 error (_("array type with dynamic size is larger than varsize-limit"));
8940 }
8941
8942 /* We want to preserve the type name. This can be useful when
8943 trying to get the type name of a value that has already been
8944 printed (for instance, if the user did "print VAR; whatis $". */
8945 TYPE_NAME (result) = TYPE_NAME (type0);
8946
8947 if (constrained_packed_array_p)
8948 {
8949 /* So far, the resulting type has been created as if the original
8950 type was a regular (non-packed) array type. As a result, the
8951 bitsize of the array elements needs to be set again, and the array
8952 length needs to be recomputed based on that bitsize. */
8953 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8954 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8955
8956 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8957 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8958 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8959 TYPE_LENGTH (result)++;
8960 }
8961
8962 TYPE_FIXED_INSTANCE (result) = 1;
8963 return result;
8964 }
8965
8966
8967 /* A standard type (containing no dynamically sized components)
8968 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8969 DVAL describes a record containing any discriminants used in TYPE0,
8970 and may be NULL if there are none, or if the object of type TYPE at
8971 ADDRESS or in VALADDR contains these discriminants.
8972
8973 If CHECK_TAG is not null, in the case of tagged types, this function
8974 attempts to locate the object's tag and use it to compute the actual
8975 type. However, when ADDRESS is null, we cannot use it to determine the
8976 location of the tag, and therefore compute the tagged type's actual type.
8977 So we return the tagged type without consulting the tag. */
8978
8979 static struct type *
8980 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8981 CORE_ADDR address, struct value *dval, int check_tag)
8982 {
8983 type = ada_check_typedef (type);
8984 switch (TYPE_CODE (type))
8985 {
8986 default:
8987 return type;
8988 case TYPE_CODE_STRUCT:
8989 {
8990 struct type *static_type = to_static_fixed_type (type);
8991 struct type *fixed_record_type =
8992 to_fixed_record_type (type, valaddr, address, NULL);
8993
8994 /* If STATIC_TYPE is a tagged type and we know the object's address,
8995 then we can determine its tag, and compute the object's actual
8996 type from there. Note that we have to use the fixed record
8997 type (the parent part of the record may have dynamic fields
8998 and the way the location of _tag is expressed may depend on
8999 them). */
9000
9001 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9002 {
9003 struct value *tag =
9004 value_tag_from_contents_and_address
9005 (fixed_record_type,
9006 valaddr,
9007 address);
9008 struct type *real_type = type_from_tag (tag);
9009 struct value *obj =
9010 value_from_contents_and_address (fixed_record_type,
9011 valaddr,
9012 address);
9013 fixed_record_type = value_type (obj);
9014 if (real_type != NULL)
9015 return to_fixed_record_type
9016 (real_type, NULL,
9017 value_address (ada_tag_value_at_base_address (obj)), NULL);
9018 }
9019
9020 /* Check to see if there is a parallel ___XVZ variable.
9021 If there is, then it provides the actual size of our type. */
9022 else if (ada_type_name (fixed_record_type) != NULL)
9023 {
9024 const char *name = ada_type_name (fixed_record_type);
9025 char *xvz_name
9026 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9027 int xvz_found = 0;
9028 LONGEST size;
9029
9030 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9031 size = get_int_var_value (xvz_name, &xvz_found);
9032 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9033 {
9034 fixed_record_type = copy_type (fixed_record_type);
9035 TYPE_LENGTH (fixed_record_type) = size;
9036
9037 /* The FIXED_RECORD_TYPE may have be a stub. We have
9038 observed this when the debugging info is STABS, and
9039 apparently it is something that is hard to fix.
9040
9041 In practice, we don't need the actual type definition
9042 at all, because the presence of the XVZ variable allows us
9043 to assume that there must be a XVS type as well, which we
9044 should be able to use later, when we need the actual type
9045 definition.
9046
9047 In the meantime, pretend that the "fixed" type we are
9048 returning is NOT a stub, because this can cause trouble
9049 when using this type to create new types targeting it.
9050 Indeed, the associated creation routines often check
9051 whether the target type is a stub and will try to replace
9052 it, thus using a type with the wrong size. This, in turn,
9053 might cause the new type to have the wrong size too.
9054 Consider the case of an array, for instance, where the size
9055 of the array is computed from the number of elements in
9056 our array multiplied by the size of its element. */
9057 TYPE_STUB (fixed_record_type) = 0;
9058 }
9059 }
9060 return fixed_record_type;
9061 }
9062 case TYPE_CODE_ARRAY:
9063 return to_fixed_array_type (type, dval, 1);
9064 case TYPE_CODE_UNION:
9065 if (dval == NULL)
9066 return type;
9067 else
9068 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9069 }
9070 }
9071
9072 /* The same as ada_to_fixed_type_1, except that it preserves the type
9073 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9074
9075 The typedef layer needs be preserved in order to differentiate between
9076 arrays and array pointers when both types are implemented using the same
9077 fat pointer. In the array pointer case, the pointer is encoded as
9078 a typedef of the pointer type. For instance, considering:
9079
9080 type String_Access is access String;
9081 S1 : String_Access := null;
9082
9083 To the debugger, S1 is defined as a typedef of type String. But
9084 to the user, it is a pointer. So if the user tries to print S1,
9085 we should not dereference the array, but print the array address
9086 instead.
9087
9088 If we didn't preserve the typedef layer, we would lose the fact that
9089 the type is to be presented as a pointer (needs de-reference before
9090 being printed). And we would also use the source-level type name. */
9091
9092 struct type *
9093 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9094 CORE_ADDR address, struct value *dval, int check_tag)
9095
9096 {
9097 struct type *fixed_type =
9098 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9099
9100 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9101 then preserve the typedef layer.
9102
9103 Implementation note: We can only check the main-type portion of
9104 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9105 from TYPE now returns a type that has the same instance flags
9106 as TYPE. For instance, if TYPE is a "typedef const", and its
9107 target type is a "struct", then the typedef elimination will return
9108 a "const" version of the target type. See check_typedef for more
9109 details about how the typedef layer elimination is done.
9110
9111 brobecker/2010-11-19: It seems to me that the only case where it is
9112 useful to preserve the typedef layer is when dealing with fat pointers.
9113 Perhaps, we could add a check for that and preserve the typedef layer
9114 only in that situation. But this seems unecessary so far, probably
9115 because we call check_typedef/ada_check_typedef pretty much everywhere.
9116 */
9117 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9118 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9119 == TYPE_MAIN_TYPE (fixed_type)))
9120 return type;
9121
9122 return fixed_type;
9123 }
9124
9125 /* A standard (static-sized) type corresponding as well as possible to
9126 TYPE0, but based on no runtime data. */
9127
9128 static struct type *
9129 to_static_fixed_type (struct type *type0)
9130 {
9131 struct type *type;
9132
9133 if (type0 == NULL)
9134 return NULL;
9135
9136 if (TYPE_FIXED_INSTANCE (type0))
9137 return type0;
9138
9139 type0 = ada_check_typedef (type0);
9140
9141 switch (TYPE_CODE (type0))
9142 {
9143 default:
9144 return type0;
9145 case TYPE_CODE_STRUCT:
9146 type = dynamic_template_type (type0);
9147 if (type != NULL)
9148 return template_to_static_fixed_type (type);
9149 else
9150 return template_to_static_fixed_type (type0);
9151 case TYPE_CODE_UNION:
9152 type = ada_find_parallel_type (type0, "___XVU");
9153 if (type != NULL)
9154 return template_to_static_fixed_type (type);
9155 else
9156 return template_to_static_fixed_type (type0);
9157 }
9158 }
9159
9160 /* A static approximation of TYPE with all type wrappers removed. */
9161
9162 static struct type *
9163 static_unwrap_type (struct type *type)
9164 {
9165 if (ada_is_aligner_type (type))
9166 {
9167 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9168 if (ada_type_name (type1) == NULL)
9169 TYPE_NAME (type1) = ada_type_name (type);
9170
9171 return static_unwrap_type (type1);
9172 }
9173 else
9174 {
9175 struct type *raw_real_type = ada_get_base_type (type);
9176
9177 if (raw_real_type == type)
9178 return type;
9179 else
9180 return to_static_fixed_type (raw_real_type);
9181 }
9182 }
9183
9184 /* In some cases, incomplete and private types require
9185 cross-references that are not resolved as records (for example,
9186 type Foo;
9187 type FooP is access Foo;
9188 V: FooP;
9189 type Foo is array ...;
9190 ). In these cases, since there is no mechanism for producing
9191 cross-references to such types, we instead substitute for FooP a
9192 stub enumeration type that is nowhere resolved, and whose tag is
9193 the name of the actual type. Call these types "non-record stubs". */
9194
9195 /* A type equivalent to TYPE that is not a non-record stub, if one
9196 exists, otherwise TYPE. */
9197
9198 struct type *
9199 ada_check_typedef (struct type *type)
9200 {
9201 if (type == NULL)
9202 return NULL;
9203
9204 /* If our type is a typedef type of a fat pointer, then we're done.
9205 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9206 what allows us to distinguish between fat pointers that represent
9207 array types, and fat pointers that represent array access types
9208 (in both cases, the compiler implements them as fat pointers). */
9209 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9210 && is_thick_pntr (ada_typedef_target_type (type)))
9211 return type;
9212
9213 type = check_typedef (type);
9214 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9215 || !TYPE_STUB (type)
9216 || TYPE_TAG_NAME (type) == NULL)
9217 return type;
9218 else
9219 {
9220 const char *name = TYPE_TAG_NAME (type);
9221 struct type *type1 = ada_find_any_type (name);
9222
9223 if (type1 == NULL)
9224 return type;
9225
9226 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9227 stubs pointing to arrays, as we don't create symbols for array
9228 types, only for the typedef-to-array types). If that's the case,
9229 strip the typedef layer. */
9230 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9231 type1 = ada_check_typedef (type1);
9232
9233 return type1;
9234 }
9235 }
9236
9237 /* A value representing the data at VALADDR/ADDRESS as described by
9238 type TYPE0, but with a standard (static-sized) type that correctly
9239 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9240 type, then return VAL0 [this feature is simply to avoid redundant
9241 creation of struct values]. */
9242
9243 static struct value *
9244 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9245 struct value *val0)
9246 {
9247 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9248
9249 if (type == type0 && val0 != NULL)
9250 return val0;
9251 else
9252 return value_from_contents_and_address (type, 0, address);
9253 }
9254
9255 /* A value representing VAL, but with a standard (static-sized) type
9256 that correctly describes it. Does not necessarily create a new
9257 value. */
9258
9259 struct value *
9260 ada_to_fixed_value (struct value *val)
9261 {
9262 val = unwrap_value (val);
9263 val = ada_to_fixed_value_create (value_type (val),
9264 value_address (val),
9265 val);
9266 return val;
9267 }
9268 \f
9269
9270 /* Attributes */
9271
9272 /* Table mapping attribute numbers to names.
9273 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9274
9275 static const char *attribute_names[] = {
9276 "<?>",
9277
9278 "first",
9279 "last",
9280 "length",
9281 "image",
9282 "max",
9283 "min",
9284 "modulus",
9285 "pos",
9286 "size",
9287 "tag",
9288 "val",
9289 0
9290 };
9291
9292 const char *
9293 ada_attribute_name (enum exp_opcode n)
9294 {
9295 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9296 return attribute_names[n - OP_ATR_FIRST + 1];
9297 else
9298 return attribute_names[0];
9299 }
9300
9301 /* Evaluate the 'POS attribute applied to ARG. */
9302
9303 static LONGEST
9304 pos_atr (struct value *arg)
9305 {
9306 struct value *val = coerce_ref (arg);
9307 struct type *type = value_type (val);
9308 LONGEST result;
9309
9310 if (!discrete_type_p (type))
9311 error (_("'POS only defined on discrete types"));
9312
9313 if (!discrete_position (type, value_as_long (val), &result))
9314 error (_("enumeration value is invalid: can't find 'POS"));
9315
9316 return result;
9317 }
9318
9319 static struct value *
9320 value_pos_atr (struct type *type, struct value *arg)
9321 {
9322 return value_from_longest (type, pos_atr (arg));
9323 }
9324
9325 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9326
9327 static struct value *
9328 value_val_atr (struct type *type, struct value *arg)
9329 {
9330 if (!discrete_type_p (type))
9331 error (_("'VAL only defined on discrete types"));
9332 if (!integer_type_p (value_type (arg)))
9333 error (_("'VAL requires integral argument"));
9334
9335 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9336 {
9337 long pos = value_as_long (arg);
9338
9339 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9340 error (_("argument to 'VAL out of range"));
9341 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9342 }
9343 else
9344 return value_from_longest (type, value_as_long (arg));
9345 }
9346 \f
9347
9348 /* Evaluation */
9349
9350 /* True if TYPE appears to be an Ada character type.
9351 [At the moment, this is true only for Character and Wide_Character;
9352 It is a heuristic test that could stand improvement]. */
9353
9354 int
9355 ada_is_character_type (struct type *type)
9356 {
9357 const char *name;
9358
9359 /* If the type code says it's a character, then assume it really is,
9360 and don't check any further. */
9361 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9362 return 1;
9363
9364 /* Otherwise, assume it's a character type iff it is a discrete type
9365 with a known character type name. */
9366 name = ada_type_name (type);
9367 return (name != NULL
9368 && (TYPE_CODE (type) == TYPE_CODE_INT
9369 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9370 && (strcmp (name, "character") == 0
9371 || strcmp (name, "wide_character") == 0
9372 || strcmp (name, "wide_wide_character") == 0
9373 || strcmp (name, "unsigned char") == 0));
9374 }
9375
9376 /* True if TYPE appears to be an Ada string type. */
9377
9378 int
9379 ada_is_string_type (struct type *type)
9380 {
9381 type = ada_check_typedef (type);
9382 if (type != NULL
9383 && TYPE_CODE (type) != TYPE_CODE_PTR
9384 && (ada_is_simple_array_type (type)
9385 || ada_is_array_descriptor_type (type))
9386 && ada_array_arity (type) == 1)
9387 {
9388 struct type *elttype = ada_array_element_type (type, 1);
9389
9390 return ada_is_character_type (elttype);
9391 }
9392 else
9393 return 0;
9394 }
9395
9396 /* The compiler sometimes provides a parallel XVS type for a given
9397 PAD type. Normally, it is safe to follow the PAD type directly,
9398 but older versions of the compiler have a bug that causes the offset
9399 of its "F" field to be wrong. Following that field in that case
9400 would lead to incorrect results, but this can be worked around
9401 by ignoring the PAD type and using the associated XVS type instead.
9402
9403 Set to True if the debugger should trust the contents of PAD types.
9404 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9405 static int trust_pad_over_xvs = 1;
9406
9407 /* True if TYPE is a struct type introduced by the compiler to force the
9408 alignment of a value. Such types have a single field with a
9409 distinctive name. */
9410
9411 int
9412 ada_is_aligner_type (struct type *type)
9413 {
9414 type = ada_check_typedef (type);
9415
9416 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9417 return 0;
9418
9419 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9420 && TYPE_NFIELDS (type) == 1
9421 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9422 }
9423
9424 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9425 the parallel type. */
9426
9427 struct type *
9428 ada_get_base_type (struct type *raw_type)
9429 {
9430 struct type *real_type_namer;
9431 struct type *raw_real_type;
9432
9433 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9434 return raw_type;
9435
9436 if (ada_is_aligner_type (raw_type))
9437 /* The encoding specifies that we should always use the aligner type.
9438 So, even if this aligner type has an associated XVS type, we should
9439 simply ignore it.
9440
9441 According to the compiler gurus, an XVS type parallel to an aligner
9442 type may exist because of a stabs limitation. In stabs, aligner
9443 types are empty because the field has a variable-sized type, and
9444 thus cannot actually be used as an aligner type. As a result,
9445 we need the associated parallel XVS type to decode the type.
9446 Since the policy in the compiler is to not change the internal
9447 representation based on the debugging info format, we sometimes
9448 end up having a redundant XVS type parallel to the aligner type. */
9449 return raw_type;
9450
9451 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9452 if (real_type_namer == NULL
9453 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9454 || TYPE_NFIELDS (real_type_namer) != 1)
9455 return raw_type;
9456
9457 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9458 {
9459 /* This is an older encoding form where the base type needs to be
9460 looked up by name. We prefer the newer enconding because it is
9461 more efficient. */
9462 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9463 if (raw_real_type == NULL)
9464 return raw_type;
9465 else
9466 return raw_real_type;
9467 }
9468
9469 /* The field in our XVS type is a reference to the base type. */
9470 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9471 }
9472
9473 /* The type of value designated by TYPE, with all aligners removed. */
9474
9475 struct type *
9476 ada_aligned_type (struct type *type)
9477 {
9478 if (ada_is_aligner_type (type))
9479 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9480 else
9481 return ada_get_base_type (type);
9482 }
9483
9484
9485 /* The address of the aligned value in an object at address VALADDR
9486 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9487
9488 const gdb_byte *
9489 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9490 {
9491 if (ada_is_aligner_type (type))
9492 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9493 valaddr +
9494 TYPE_FIELD_BITPOS (type,
9495 0) / TARGET_CHAR_BIT);
9496 else
9497 return valaddr;
9498 }
9499
9500
9501
9502 /* The printed representation of an enumeration literal with encoded
9503 name NAME. The value is good to the next call of ada_enum_name. */
9504 const char *
9505 ada_enum_name (const char *name)
9506 {
9507 static char *result;
9508 static size_t result_len = 0;
9509 const char *tmp;
9510
9511 /* First, unqualify the enumeration name:
9512 1. Search for the last '.' character. If we find one, then skip
9513 all the preceding characters, the unqualified name starts
9514 right after that dot.
9515 2. Otherwise, we may be debugging on a target where the compiler
9516 translates dots into "__". Search forward for double underscores,
9517 but stop searching when we hit an overloading suffix, which is
9518 of the form "__" followed by digits. */
9519
9520 tmp = strrchr (name, '.');
9521 if (tmp != NULL)
9522 name = tmp + 1;
9523 else
9524 {
9525 while ((tmp = strstr (name, "__")) != NULL)
9526 {
9527 if (isdigit (tmp[2]))
9528 break;
9529 else
9530 name = tmp + 2;
9531 }
9532 }
9533
9534 if (name[0] == 'Q')
9535 {
9536 int v;
9537
9538 if (name[1] == 'U' || name[1] == 'W')
9539 {
9540 if (sscanf (name + 2, "%x", &v) != 1)
9541 return name;
9542 }
9543 else
9544 return name;
9545
9546 GROW_VECT (result, result_len, 16);
9547 if (isascii (v) && isprint (v))
9548 xsnprintf (result, result_len, "'%c'", v);
9549 else if (name[1] == 'U')
9550 xsnprintf (result, result_len, "[\"%02x\"]", v);
9551 else
9552 xsnprintf (result, result_len, "[\"%04x\"]", v);
9553
9554 return result;
9555 }
9556 else
9557 {
9558 tmp = strstr (name, "__");
9559 if (tmp == NULL)
9560 tmp = strstr (name, "$");
9561 if (tmp != NULL)
9562 {
9563 GROW_VECT (result, result_len, tmp - name + 1);
9564 strncpy (result, name, tmp - name);
9565 result[tmp - name] = '\0';
9566 return result;
9567 }
9568
9569 return name;
9570 }
9571 }
9572
9573 /* Evaluate the subexpression of EXP starting at *POS as for
9574 evaluate_type, updating *POS to point just past the evaluated
9575 expression. */
9576
9577 static struct value *
9578 evaluate_subexp_type (struct expression *exp, int *pos)
9579 {
9580 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9581 }
9582
9583 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9584 value it wraps. */
9585
9586 static struct value *
9587 unwrap_value (struct value *val)
9588 {
9589 struct type *type = ada_check_typedef (value_type (val));
9590
9591 if (ada_is_aligner_type (type))
9592 {
9593 struct value *v = ada_value_struct_elt (val, "F", 0);
9594 struct type *val_type = ada_check_typedef (value_type (v));
9595
9596 if (ada_type_name (val_type) == NULL)
9597 TYPE_NAME (val_type) = ada_type_name (type);
9598
9599 return unwrap_value (v);
9600 }
9601 else
9602 {
9603 struct type *raw_real_type =
9604 ada_check_typedef (ada_get_base_type (type));
9605
9606 /* If there is no parallel XVS or XVE type, then the value is
9607 already unwrapped. Return it without further modification. */
9608 if ((type == raw_real_type)
9609 && ada_find_parallel_type (type, "___XVE") == NULL)
9610 return val;
9611
9612 return
9613 coerce_unspec_val_to_type
9614 (val, ada_to_fixed_type (raw_real_type, 0,
9615 value_address (val),
9616 NULL, 1));
9617 }
9618 }
9619
9620 static struct value *
9621 cast_to_fixed (struct type *type, struct value *arg)
9622 {
9623 LONGEST val;
9624
9625 if (type == value_type (arg))
9626 return arg;
9627 else if (ada_is_fixed_point_type (value_type (arg)))
9628 val = ada_float_to_fixed (type,
9629 ada_fixed_to_float (value_type (arg),
9630 value_as_long (arg)));
9631 else
9632 {
9633 DOUBLEST argd = value_as_double (arg);
9634
9635 val = ada_float_to_fixed (type, argd);
9636 }
9637
9638 return value_from_longest (type, val);
9639 }
9640
9641 static struct value *
9642 cast_from_fixed (struct type *type, struct value *arg)
9643 {
9644 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9645 value_as_long (arg));
9646
9647 return value_from_double (type, val);
9648 }
9649
9650 /* Given two array types T1 and T2, return nonzero iff both arrays
9651 contain the same number of elements. */
9652
9653 static int
9654 ada_same_array_size_p (struct type *t1, struct type *t2)
9655 {
9656 LONGEST lo1, hi1, lo2, hi2;
9657
9658 /* Get the array bounds in order to verify that the size of
9659 the two arrays match. */
9660 if (!get_array_bounds (t1, &lo1, &hi1)
9661 || !get_array_bounds (t2, &lo2, &hi2))
9662 error (_("unable to determine array bounds"));
9663
9664 /* To make things easier for size comparison, normalize a bit
9665 the case of empty arrays by making sure that the difference
9666 between upper bound and lower bound is always -1. */
9667 if (lo1 > hi1)
9668 hi1 = lo1 - 1;
9669 if (lo2 > hi2)
9670 hi2 = lo2 - 1;
9671
9672 return (hi1 - lo1 == hi2 - lo2);
9673 }
9674
9675 /* Assuming that VAL is an array of integrals, and TYPE represents
9676 an array with the same number of elements, but with wider integral
9677 elements, return an array "casted" to TYPE. In practice, this
9678 means that the returned array is built by casting each element
9679 of the original array into TYPE's (wider) element type. */
9680
9681 static struct value *
9682 ada_promote_array_of_integrals (struct type *type, struct value *val)
9683 {
9684 struct type *elt_type = TYPE_TARGET_TYPE (type);
9685 LONGEST lo, hi;
9686 struct value *res;
9687 LONGEST i;
9688
9689 /* Verify that both val and type are arrays of scalars, and
9690 that the size of val's elements is smaller than the size
9691 of type's element. */
9692 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9693 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9694 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9695 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9696 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9697 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9698
9699 if (!get_array_bounds (type, &lo, &hi))
9700 error (_("unable to determine array bounds"));
9701
9702 res = allocate_value (type);
9703
9704 /* Promote each array element. */
9705 for (i = 0; i < hi - lo + 1; i++)
9706 {
9707 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9708
9709 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9710 value_contents_all (elt), TYPE_LENGTH (elt_type));
9711 }
9712
9713 return res;
9714 }
9715
9716 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9717 return the converted value. */
9718
9719 static struct value *
9720 coerce_for_assign (struct type *type, struct value *val)
9721 {
9722 struct type *type2 = value_type (val);
9723
9724 if (type == type2)
9725 return val;
9726
9727 type2 = ada_check_typedef (type2);
9728 type = ada_check_typedef (type);
9729
9730 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9731 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9732 {
9733 val = ada_value_ind (val);
9734 type2 = value_type (val);
9735 }
9736
9737 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9738 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9739 {
9740 if (!ada_same_array_size_p (type, type2))
9741 error (_("cannot assign arrays of different length"));
9742
9743 if (is_integral_type (TYPE_TARGET_TYPE (type))
9744 && is_integral_type (TYPE_TARGET_TYPE (type2))
9745 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9746 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9747 {
9748 /* Allow implicit promotion of the array elements to
9749 a wider type. */
9750 return ada_promote_array_of_integrals (type, val);
9751 }
9752
9753 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9754 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9755 error (_("Incompatible types in assignment"));
9756 deprecated_set_value_type (val, type);
9757 }
9758 return val;
9759 }
9760
9761 static struct value *
9762 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9763 {
9764 struct value *val;
9765 struct type *type1, *type2;
9766 LONGEST v, v1, v2;
9767
9768 arg1 = coerce_ref (arg1);
9769 arg2 = coerce_ref (arg2);
9770 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9771 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9772
9773 if (TYPE_CODE (type1) != TYPE_CODE_INT
9774 || TYPE_CODE (type2) != TYPE_CODE_INT)
9775 return value_binop (arg1, arg2, op);
9776
9777 switch (op)
9778 {
9779 case BINOP_MOD:
9780 case BINOP_DIV:
9781 case BINOP_REM:
9782 break;
9783 default:
9784 return value_binop (arg1, arg2, op);
9785 }
9786
9787 v2 = value_as_long (arg2);
9788 if (v2 == 0)
9789 error (_("second operand of %s must not be zero."), op_string (op));
9790
9791 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9792 return value_binop (arg1, arg2, op);
9793
9794 v1 = value_as_long (arg1);
9795 switch (op)
9796 {
9797 case BINOP_DIV:
9798 v = v1 / v2;
9799 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9800 v += v > 0 ? -1 : 1;
9801 break;
9802 case BINOP_REM:
9803 v = v1 % v2;
9804 if (v * v1 < 0)
9805 v -= v2;
9806 break;
9807 default:
9808 /* Should not reach this point. */
9809 v = 0;
9810 }
9811
9812 val = allocate_value (type1);
9813 store_unsigned_integer (value_contents_raw (val),
9814 TYPE_LENGTH (value_type (val)),
9815 gdbarch_byte_order (get_type_arch (type1)), v);
9816 return val;
9817 }
9818
9819 static int
9820 ada_value_equal (struct value *arg1, struct value *arg2)
9821 {
9822 if (ada_is_direct_array_type (value_type (arg1))
9823 || ada_is_direct_array_type (value_type (arg2)))
9824 {
9825 /* Automatically dereference any array reference before
9826 we attempt to perform the comparison. */
9827 arg1 = ada_coerce_ref (arg1);
9828 arg2 = ada_coerce_ref (arg2);
9829
9830 arg1 = ada_coerce_to_simple_array (arg1);
9831 arg2 = ada_coerce_to_simple_array (arg2);
9832 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9833 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9834 error (_("Attempt to compare array with non-array"));
9835 /* FIXME: The following works only for types whose
9836 representations use all bits (no padding or undefined bits)
9837 and do not have user-defined equality. */
9838 return
9839 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9840 && memcmp (value_contents (arg1), value_contents (arg2),
9841 TYPE_LENGTH (value_type (arg1))) == 0;
9842 }
9843 return value_equal (arg1, arg2);
9844 }
9845
9846 /* Total number of component associations in the aggregate starting at
9847 index PC in EXP. Assumes that index PC is the start of an
9848 OP_AGGREGATE. */
9849
9850 static int
9851 num_component_specs (struct expression *exp, int pc)
9852 {
9853 int n, m, i;
9854
9855 m = exp->elts[pc + 1].longconst;
9856 pc += 3;
9857 n = 0;
9858 for (i = 0; i < m; i += 1)
9859 {
9860 switch (exp->elts[pc].opcode)
9861 {
9862 default:
9863 n += 1;
9864 break;
9865 case OP_CHOICES:
9866 n += exp->elts[pc + 1].longconst;
9867 break;
9868 }
9869 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9870 }
9871 return n;
9872 }
9873
9874 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9875 component of LHS (a simple array or a record), updating *POS past
9876 the expression, assuming that LHS is contained in CONTAINER. Does
9877 not modify the inferior's memory, nor does it modify LHS (unless
9878 LHS == CONTAINER). */
9879
9880 static void
9881 assign_component (struct value *container, struct value *lhs, LONGEST index,
9882 struct expression *exp, int *pos)
9883 {
9884 struct value *mark = value_mark ();
9885 struct value *elt;
9886
9887 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9888 {
9889 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9890 struct value *index_val = value_from_longest (index_type, index);
9891
9892 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9893 }
9894 else
9895 {
9896 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9897 elt = ada_to_fixed_value (elt);
9898 }
9899
9900 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9901 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9902 else
9903 value_assign_to_component (container, elt,
9904 ada_evaluate_subexp (NULL, exp, pos,
9905 EVAL_NORMAL));
9906
9907 value_free_to_mark (mark);
9908 }
9909
9910 /* Assuming that LHS represents an lvalue having a record or array
9911 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9912 of that aggregate's value to LHS, advancing *POS past the
9913 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9914 lvalue containing LHS (possibly LHS itself). Does not modify
9915 the inferior's memory, nor does it modify the contents of
9916 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9917
9918 static struct value *
9919 assign_aggregate (struct value *container,
9920 struct value *lhs, struct expression *exp,
9921 int *pos, enum noside noside)
9922 {
9923 struct type *lhs_type;
9924 int n = exp->elts[*pos+1].longconst;
9925 LONGEST low_index, high_index;
9926 int num_specs;
9927 LONGEST *indices;
9928 int max_indices, num_indices;
9929 int i;
9930
9931 *pos += 3;
9932 if (noside != EVAL_NORMAL)
9933 {
9934 for (i = 0; i < n; i += 1)
9935 ada_evaluate_subexp (NULL, exp, pos, noside);
9936 return container;
9937 }
9938
9939 container = ada_coerce_ref (container);
9940 if (ada_is_direct_array_type (value_type (container)))
9941 container = ada_coerce_to_simple_array (container);
9942 lhs = ada_coerce_ref (lhs);
9943 if (!deprecated_value_modifiable (lhs))
9944 error (_("Left operand of assignment is not a modifiable lvalue."));
9945
9946 lhs_type = value_type (lhs);
9947 if (ada_is_direct_array_type (lhs_type))
9948 {
9949 lhs = ada_coerce_to_simple_array (lhs);
9950 lhs_type = value_type (lhs);
9951 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9952 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9953 }
9954 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9955 {
9956 low_index = 0;
9957 high_index = num_visible_fields (lhs_type) - 1;
9958 }
9959 else
9960 error (_("Left-hand side must be array or record."));
9961
9962 num_specs = num_component_specs (exp, *pos - 3);
9963 max_indices = 4 * num_specs + 4;
9964 indices = XALLOCAVEC (LONGEST, max_indices);
9965 indices[0] = indices[1] = low_index - 1;
9966 indices[2] = indices[3] = high_index + 1;
9967 num_indices = 4;
9968
9969 for (i = 0; i < n; i += 1)
9970 {
9971 switch (exp->elts[*pos].opcode)
9972 {
9973 case OP_CHOICES:
9974 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9975 &num_indices, max_indices,
9976 low_index, high_index);
9977 break;
9978 case OP_POSITIONAL:
9979 aggregate_assign_positional (container, lhs, exp, pos, indices,
9980 &num_indices, max_indices,
9981 low_index, high_index);
9982 break;
9983 case OP_OTHERS:
9984 if (i != n-1)
9985 error (_("Misplaced 'others' clause"));
9986 aggregate_assign_others (container, lhs, exp, pos, indices,
9987 num_indices, low_index, high_index);
9988 break;
9989 default:
9990 error (_("Internal error: bad aggregate clause"));
9991 }
9992 }
9993
9994 return container;
9995 }
9996
9997 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9998 construct at *POS, updating *POS past the construct, given that
9999 the positions are relative to lower bound LOW, where HIGH is the
10000 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10001 updating *NUM_INDICES as needed. CONTAINER is as for
10002 assign_aggregate. */
10003 static void
10004 aggregate_assign_positional (struct value *container,
10005 struct value *lhs, struct expression *exp,
10006 int *pos, LONGEST *indices, int *num_indices,
10007 int max_indices, LONGEST low, LONGEST high)
10008 {
10009 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10010
10011 if (ind - 1 == high)
10012 warning (_("Extra components in aggregate ignored."));
10013 if (ind <= high)
10014 {
10015 add_component_interval (ind, ind, indices, num_indices, max_indices);
10016 *pos += 3;
10017 assign_component (container, lhs, ind, exp, pos);
10018 }
10019 else
10020 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10021 }
10022
10023 /* Assign into the components of LHS indexed by the OP_CHOICES
10024 construct at *POS, updating *POS past the construct, given that
10025 the allowable indices are LOW..HIGH. Record the indices assigned
10026 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10027 needed. CONTAINER is as for assign_aggregate. */
10028 static void
10029 aggregate_assign_from_choices (struct value *container,
10030 struct value *lhs, struct expression *exp,
10031 int *pos, LONGEST *indices, int *num_indices,
10032 int max_indices, LONGEST low, LONGEST high)
10033 {
10034 int j;
10035 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10036 int choice_pos, expr_pc;
10037 int is_array = ada_is_direct_array_type (value_type (lhs));
10038
10039 choice_pos = *pos += 3;
10040
10041 for (j = 0; j < n_choices; j += 1)
10042 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10043 expr_pc = *pos;
10044 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10045
10046 for (j = 0; j < n_choices; j += 1)
10047 {
10048 LONGEST lower, upper;
10049 enum exp_opcode op = exp->elts[choice_pos].opcode;
10050
10051 if (op == OP_DISCRETE_RANGE)
10052 {
10053 choice_pos += 1;
10054 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10055 EVAL_NORMAL));
10056 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10057 EVAL_NORMAL));
10058 }
10059 else if (is_array)
10060 {
10061 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10062 EVAL_NORMAL));
10063 upper = lower;
10064 }
10065 else
10066 {
10067 int ind;
10068 const char *name;
10069
10070 switch (op)
10071 {
10072 case OP_NAME:
10073 name = &exp->elts[choice_pos + 2].string;
10074 break;
10075 case OP_VAR_VALUE:
10076 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10077 break;
10078 default:
10079 error (_("Invalid record component association."));
10080 }
10081 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10082 ind = 0;
10083 if (! find_struct_field (name, value_type (lhs), 0,
10084 NULL, NULL, NULL, NULL, &ind))
10085 error (_("Unknown component name: %s."), name);
10086 lower = upper = ind;
10087 }
10088
10089 if (lower <= upper && (lower < low || upper > high))
10090 error (_("Index in component association out of bounds."));
10091
10092 add_component_interval (lower, upper, indices, num_indices,
10093 max_indices);
10094 while (lower <= upper)
10095 {
10096 int pos1;
10097
10098 pos1 = expr_pc;
10099 assign_component (container, lhs, lower, exp, &pos1);
10100 lower += 1;
10101 }
10102 }
10103 }
10104
10105 /* Assign the value of the expression in the OP_OTHERS construct in
10106 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10107 have not been previously assigned. The index intervals already assigned
10108 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10109 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10110 static void
10111 aggregate_assign_others (struct value *container,
10112 struct value *lhs, struct expression *exp,
10113 int *pos, LONGEST *indices, int num_indices,
10114 LONGEST low, LONGEST high)
10115 {
10116 int i;
10117 int expr_pc = *pos + 1;
10118
10119 for (i = 0; i < num_indices - 2; i += 2)
10120 {
10121 LONGEST ind;
10122
10123 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10124 {
10125 int localpos;
10126
10127 localpos = expr_pc;
10128 assign_component (container, lhs, ind, exp, &localpos);
10129 }
10130 }
10131 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10132 }
10133
10134 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10135 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10136 modifying *SIZE as needed. It is an error if *SIZE exceeds
10137 MAX_SIZE. The resulting intervals do not overlap. */
10138 static void
10139 add_component_interval (LONGEST low, LONGEST high,
10140 LONGEST* indices, int *size, int max_size)
10141 {
10142 int i, j;
10143
10144 for (i = 0; i < *size; i += 2) {
10145 if (high >= indices[i] && low <= indices[i + 1])
10146 {
10147 int kh;
10148
10149 for (kh = i + 2; kh < *size; kh += 2)
10150 if (high < indices[kh])
10151 break;
10152 if (low < indices[i])
10153 indices[i] = low;
10154 indices[i + 1] = indices[kh - 1];
10155 if (high > indices[i + 1])
10156 indices[i + 1] = high;
10157 memcpy (indices + i + 2, indices + kh, *size - kh);
10158 *size -= kh - i - 2;
10159 return;
10160 }
10161 else if (high < indices[i])
10162 break;
10163 }
10164
10165 if (*size == max_size)
10166 error (_("Internal error: miscounted aggregate components."));
10167 *size += 2;
10168 for (j = *size-1; j >= i+2; j -= 1)
10169 indices[j] = indices[j - 2];
10170 indices[i] = low;
10171 indices[i + 1] = high;
10172 }
10173
10174 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10175 is different. */
10176
10177 static struct value *
10178 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10179 {
10180 if (type == ada_check_typedef (value_type (arg2)))
10181 return arg2;
10182
10183 if (ada_is_fixed_point_type (type))
10184 return (cast_to_fixed (type, arg2));
10185
10186 if (ada_is_fixed_point_type (value_type (arg2)))
10187 return cast_from_fixed (type, arg2);
10188
10189 return value_cast (type, arg2);
10190 }
10191
10192 /* Evaluating Ada expressions, and printing their result.
10193 ------------------------------------------------------
10194
10195 1. Introduction:
10196 ----------------
10197
10198 We usually evaluate an Ada expression in order to print its value.
10199 We also evaluate an expression in order to print its type, which
10200 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10201 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10202 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10203 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10204 similar.
10205
10206 Evaluating expressions is a little more complicated for Ada entities
10207 than it is for entities in languages such as C. The main reason for
10208 this is that Ada provides types whose definition might be dynamic.
10209 One example of such types is variant records. Or another example
10210 would be an array whose bounds can only be known at run time.
10211
10212 The following description is a general guide as to what should be
10213 done (and what should NOT be done) in order to evaluate an expression
10214 involving such types, and when. This does not cover how the semantic
10215 information is encoded by GNAT as this is covered separatly. For the
10216 document used as the reference for the GNAT encoding, see exp_dbug.ads
10217 in the GNAT sources.
10218
10219 Ideally, we should embed each part of this description next to its
10220 associated code. Unfortunately, the amount of code is so vast right
10221 now that it's hard to see whether the code handling a particular
10222 situation might be duplicated or not. One day, when the code is
10223 cleaned up, this guide might become redundant with the comments
10224 inserted in the code, and we might want to remove it.
10225
10226 2. ``Fixing'' an Entity, the Simple Case:
10227 -----------------------------------------
10228
10229 When evaluating Ada expressions, the tricky issue is that they may
10230 reference entities whose type contents and size are not statically
10231 known. Consider for instance a variant record:
10232
10233 type Rec (Empty : Boolean := True) is record
10234 case Empty is
10235 when True => null;
10236 when False => Value : Integer;
10237 end case;
10238 end record;
10239 Yes : Rec := (Empty => False, Value => 1);
10240 No : Rec := (empty => True);
10241
10242 The size and contents of that record depends on the value of the
10243 descriminant (Rec.Empty). At this point, neither the debugging
10244 information nor the associated type structure in GDB are able to
10245 express such dynamic types. So what the debugger does is to create
10246 "fixed" versions of the type that applies to the specific object.
10247 We also informally refer to this opperation as "fixing" an object,
10248 which means creating its associated fixed type.
10249
10250 Example: when printing the value of variable "Yes" above, its fixed
10251 type would look like this:
10252
10253 type Rec is record
10254 Empty : Boolean;
10255 Value : Integer;
10256 end record;
10257
10258 On the other hand, if we printed the value of "No", its fixed type
10259 would become:
10260
10261 type Rec is record
10262 Empty : Boolean;
10263 end record;
10264
10265 Things become a little more complicated when trying to fix an entity
10266 with a dynamic type that directly contains another dynamic type,
10267 such as an array of variant records, for instance. There are
10268 two possible cases: Arrays, and records.
10269
10270 3. ``Fixing'' Arrays:
10271 ---------------------
10272
10273 The type structure in GDB describes an array in terms of its bounds,
10274 and the type of its elements. By design, all elements in the array
10275 have the same type and we cannot represent an array of variant elements
10276 using the current type structure in GDB. When fixing an array,
10277 we cannot fix the array element, as we would potentially need one
10278 fixed type per element of the array. As a result, the best we can do
10279 when fixing an array is to produce an array whose bounds and size
10280 are correct (allowing us to read it from memory), but without having
10281 touched its element type. Fixing each element will be done later,
10282 when (if) necessary.
10283
10284 Arrays are a little simpler to handle than records, because the same
10285 amount of memory is allocated for each element of the array, even if
10286 the amount of space actually used by each element differs from element
10287 to element. Consider for instance the following array of type Rec:
10288
10289 type Rec_Array is array (1 .. 2) of Rec;
10290
10291 The actual amount of memory occupied by each element might be different
10292 from element to element, depending on the value of their discriminant.
10293 But the amount of space reserved for each element in the array remains
10294 fixed regardless. So we simply need to compute that size using
10295 the debugging information available, from which we can then determine
10296 the array size (we multiply the number of elements of the array by
10297 the size of each element).
10298
10299 The simplest case is when we have an array of a constrained element
10300 type. For instance, consider the following type declarations:
10301
10302 type Bounded_String (Max_Size : Integer) is
10303 Length : Integer;
10304 Buffer : String (1 .. Max_Size);
10305 end record;
10306 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10307
10308 In this case, the compiler describes the array as an array of
10309 variable-size elements (identified by its XVS suffix) for which
10310 the size can be read in the parallel XVZ variable.
10311
10312 In the case of an array of an unconstrained element type, the compiler
10313 wraps the array element inside a private PAD type. This type should not
10314 be shown to the user, and must be "unwrap"'ed before printing. Note
10315 that we also use the adjective "aligner" in our code to designate
10316 these wrapper types.
10317
10318 In some cases, the size allocated for each element is statically
10319 known. In that case, the PAD type already has the correct size,
10320 and the array element should remain unfixed.
10321
10322 But there are cases when this size is not statically known.
10323 For instance, assuming that "Five" is an integer variable:
10324
10325 type Dynamic is array (1 .. Five) of Integer;
10326 type Wrapper (Has_Length : Boolean := False) is record
10327 Data : Dynamic;
10328 case Has_Length is
10329 when True => Length : Integer;
10330 when False => null;
10331 end case;
10332 end record;
10333 type Wrapper_Array is array (1 .. 2) of Wrapper;
10334
10335 Hello : Wrapper_Array := (others => (Has_Length => True,
10336 Data => (others => 17),
10337 Length => 1));
10338
10339
10340 The debugging info would describe variable Hello as being an
10341 array of a PAD type. The size of that PAD type is not statically
10342 known, but can be determined using a parallel XVZ variable.
10343 In that case, a copy of the PAD type with the correct size should
10344 be used for the fixed array.
10345
10346 3. ``Fixing'' record type objects:
10347 ----------------------------------
10348
10349 Things are slightly different from arrays in the case of dynamic
10350 record types. In this case, in order to compute the associated
10351 fixed type, we need to determine the size and offset of each of
10352 its components. This, in turn, requires us to compute the fixed
10353 type of each of these components.
10354
10355 Consider for instance the example:
10356
10357 type Bounded_String (Max_Size : Natural) is record
10358 Str : String (1 .. Max_Size);
10359 Length : Natural;
10360 end record;
10361 My_String : Bounded_String (Max_Size => 10);
10362
10363 In that case, the position of field "Length" depends on the size
10364 of field Str, which itself depends on the value of the Max_Size
10365 discriminant. In order to fix the type of variable My_String,
10366 we need to fix the type of field Str. Therefore, fixing a variant
10367 record requires us to fix each of its components.
10368
10369 However, if a component does not have a dynamic size, the component
10370 should not be fixed. In particular, fields that use a PAD type
10371 should not fixed. Here is an example where this might happen
10372 (assuming type Rec above):
10373
10374 type Container (Big : Boolean) is record
10375 First : Rec;
10376 After : Integer;
10377 case Big is
10378 when True => Another : Integer;
10379 when False => null;
10380 end case;
10381 end record;
10382 My_Container : Container := (Big => False,
10383 First => (Empty => True),
10384 After => 42);
10385
10386 In that example, the compiler creates a PAD type for component First,
10387 whose size is constant, and then positions the component After just
10388 right after it. The offset of component After is therefore constant
10389 in this case.
10390
10391 The debugger computes the position of each field based on an algorithm
10392 that uses, among other things, the actual position and size of the field
10393 preceding it. Let's now imagine that the user is trying to print
10394 the value of My_Container. If the type fixing was recursive, we would
10395 end up computing the offset of field After based on the size of the
10396 fixed version of field First. And since in our example First has
10397 only one actual field, the size of the fixed type is actually smaller
10398 than the amount of space allocated to that field, and thus we would
10399 compute the wrong offset of field After.
10400
10401 To make things more complicated, we need to watch out for dynamic
10402 components of variant records (identified by the ___XVL suffix in
10403 the component name). Even if the target type is a PAD type, the size
10404 of that type might not be statically known. So the PAD type needs
10405 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10406 we might end up with the wrong size for our component. This can be
10407 observed with the following type declarations:
10408
10409 type Octal is new Integer range 0 .. 7;
10410 type Octal_Array is array (Positive range <>) of Octal;
10411 pragma Pack (Octal_Array);
10412
10413 type Octal_Buffer (Size : Positive) is record
10414 Buffer : Octal_Array (1 .. Size);
10415 Length : Integer;
10416 end record;
10417
10418 In that case, Buffer is a PAD type whose size is unset and needs
10419 to be computed by fixing the unwrapped type.
10420
10421 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10422 ----------------------------------------------------------
10423
10424 Lastly, when should the sub-elements of an entity that remained unfixed
10425 thus far, be actually fixed?
10426
10427 The answer is: Only when referencing that element. For instance
10428 when selecting one component of a record, this specific component
10429 should be fixed at that point in time. Or when printing the value
10430 of a record, each component should be fixed before its value gets
10431 printed. Similarly for arrays, the element of the array should be
10432 fixed when printing each element of the array, or when extracting
10433 one element out of that array. On the other hand, fixing should
10434 not be performed on the elements when taking a slice of an array!
10435
10436 Note that one of the side-effects of miscomputing the offset and
10437 size of each field is that we end up also miscomputing the size
10438 of the containing type. This can have adverse results when computing
10439 the value of an entity. GDB fetches the value of an entity based
10440 on the size of its type, and thus a wrong size causes GDB to fetch
10441 the wrong amount of memory. In the case where the computed size is
10442 too small, GDB fetches too little data to print the value of our
10443 entiry. Results in this case as unpredicatble, as we usually read
10444 past the buffer containing the data =:-o. */
10445
10446 /* Implement the evaluate_exp routine in the exp_descriptor structure
10447 for the Ada language. */
10448
10449 static struct value *
10450 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10451 int *pos, enum noside noside)
10452 {
10453 enum exp_opcode op;
10454 int tem;
10455 int pc;
10456 int preeval_pos;
10457 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10458 struct type *type;
10459 int nargs, oplen;
10460 struct value **argvec;
10461
10462 pc = *pos;
10463 *pos += 1;
10464 op = exp->elts[pc].opcode;
10465
10466 switch (op)
10467 {
10468 default:
10469 *pos -= 1;
10470 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10471
10472 if (noside == EVAL_NORMAL)
10473 arg1 = unwrap_value (arg1);
10474
10475 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10476 then we need to perform the conversion manually, because
10477 evaluate_subexp_standard doesn't do it. This conversion is
10478 necessary in Ada because the different kinds of float/fixed
10479 types in Ada have different representations.
10480
10481 Similarly, we need to perform the conversion from OP_LONG
10482 ourselves. */
10483 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10484 arg1 = ada_value_cast (expect_type, arg1, noside);
10485
10486 return arg1;
10487
10488 case OP_STRING:
10489 {
10490 struct value *result;
10491
10492 *pos -= 1;
10493 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10494 /* The result type will have code OP_STRING, bashed there from
10495 OP_ARRAY. Bash it back. */
10496 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10497 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10498 return result;
10499 }
10500
10501 case UNOP_CAST:
10502 (*pos) += 2;
10503 type = exp->elts[pc + 1].type;
10504 arg1 = evaluate_subexp (type, exp, pos, noside);
10505 if (noside == EVAL_SKIP)
10506 goto nosideret;
10507 arg1 = ada_value_cast (type, arg1, noside);
10508 return arg1;
10509
10510 case UNOP_QUAL:
10511 (*pos) += 2;
10512 type = exp->elts[pc + 1].type;
10513 return ada_evaluate_subexp (type, exp, pos, noside);
10514
10515 case BINOP_ASSIGN:
10516 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10517 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10518 {
10519 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10520 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10521 return arg1;
10522 return ada_value_assign (arg1, arg1);
10523 }
10524 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10525 except if the lhs of our assignment is a convenience variable.
10526 In the case of assigning to a convenience variable, the lhs
10527 should be exactly the result of the evaluation of the rhs. */
10528 type = value_type (arg1);
10529 if (VALUE_LVAL (arg1) == lval_internalvar)
10530 type = NULL;
10531 arg2 = evaluate_subexp (type, exp, pos, noside);
10532 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10533 return arg1;
10534 if (ada_is_fixed_point_type (value_type (arg1)))
10535 arg2 = cast_to_fixed (value_type (arg1), arg2);
10536 else if (ada_is_fixed_point_type (value_type (arg2)))
10537 error
10538 (_("Fixed-point values must be assigned to fixed-point variables"));
10539 else
10540 arg2 = coerce_for_assign (value_type (arg1), arg2);
10541 return ada_value_assign (arg1, arg2);
10542
10543 case BINOP_ADD:
10544 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10545 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10546 if (noside == EVAL_SKIP)
10547 goto nosideret;
10548 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10549 return (value_from_longest
10550 (value_type (arg1),
10551 value_as_long (arg1) + value_as_long (arg2)));
10552 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10553 return (value_from_longest
10554 (value_type (arg2),
10555 value_as_long (arg1) + value_as_long (arg2)));
10556 if ((ada_is_fixed_point_type (value_type (arg1))
10557 || ada_is_fixed_point_type (value_type (arg2)))
10558 && value_type (arg1) != value_type (arg2))
10559 error (_("Operands of fixed-point addition must have the same type"));
10560 /* Do the addition, and cast the result to the type of the first
10561 argument. We cannot cast the result to a reference type, so if
10562 ARG1 is a reference type, find its underlying type. */
10563 type = value_type (arg1);
10564 while (TYPE_CODE (type) == TYPE_CODE_REF)
10565 type = TYPE_TARGET_TYPE (type);
10566 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10567 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10568
10569 case BINOP_SUB:
10570 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10571 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10572 if (noside == EVAL_SKIP)
10573 goto nosideret;
10574 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10575 return (value_from_longest
10576 (value_type (arg1),
10577 value_as_long (arg1) - value_as_long (arg2)));
10578 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10579 return (value_from_longest
10580 (value_type (arg2),
10581 value_as_long (arg1) - value_as_long (arg2)));
10582 if ((ada_is_fixed_point_type (value_type (arg1))
10583 || ada_is_fixed_point_type (value_type (arg2)))
10584 && value_type (arg1) != value_type (arg2))
10585 error (_("Operands of fixed-point subtraction "
10586 "must have the same type"));
10587 /* Do the substraction, and cast the result to the type of the first
10588 argument. We cannot cast the result to a reference type, so if
10589 ARG1 is a reference type, find its underlying type. */
10590 type = value_type (arg1);
10591 while (TYPE_CODE (type) == TYPE_CODE_REF)
10592 type = TYPE_TARGET_TYPE (type);
10593 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10594 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10595
10596 case BINOP_MUL:
10597 case BINOP_DIV:
10598 case BINOP_REM:
10599 case BINOP_MOD:
10600 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10601 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10602 if (noside == EVAL_SKIP)
10603 goto nosideret;
10604 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10605 {
10606 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10607 return value_zero (value_type (arg1), not_lval);
10608 }
10609 else
10610 {
10611 type = builtin_type (exp->gdbarch)->builtin_double;
10612 if (ada_is_fixed_point_type (value_type (arg1)))
10613 arg1 = cast_from_fixed (type, arg1);
10614 if (ada_is_fixed_point_type (value_type (arg2)))
10615 arg2 = cast_from_fixed (type, arg2);
10616 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10617 return ada_value_binop (arg1, arg2, op);
10618 }
10619
10620 case BINOP_EQUAL:
10621 case BINOP_NOTEQUAL:
10622 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10623 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10624 if (noside == EVAL_SKIP)
10625 goto nosideret;
10626 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10627 tem = 0;
10628 else
10629 {
10630 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10631 tem = ada_value_equal (arg1, arg2);
10632 }
10633 if (op == BINOP_NOTEQUAL)
10634 tem = !tem;
10635 type = language_bool_type (exp->language_defn, exp->gdbarch);
10636 return value_from_longest (type, (LONGEST) tem);
10637
10638 case UNOP_NEG:
10639 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10640 if (noside == EVAL_SKIP)
10641 goto nosideret;
10642 else if (ada_is_fixed_point_type (value_type (arg1)))
10643 return value_cast (value_type (arg1), value_neg (arg1));
10644 else
10645 {
10646 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10647 return value_neg (arg1);
10648 }
10649
10650 case BINOP_LOGICAL_AND:
10651 case BINOP_LOGICAL_OR:
10652 case UNOP_LOGICAL_NOT:
10653 {
10654 struct value *val;
10655
10656 *pos -= 1;
10657 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10658 type = language_bool_type (exp->language_defn, exp->gdbarch);
10659 return value_cast (type, val);
10660 }
10661
10662 case BINOP_BITWISE_AND:
10663 case BINOP_BITWISE_IOR:
10664 case BINOP_BITWISE_XOR:
10665 {
10666 struct value *val;
10667
10668 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10669 *pos = pc;
10670 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10671
10672 return value_cast (value_type (arg1), val);
10673 }
10674
10675 case OP_VAR_VALUE:
10676 *pos -= 1;
10677
10678 if (noside == EVAL_SKIP)
10679 {
10680 *pos += 4;
10681 goto nosideret;
10682 }
10683
10684 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10685 /* Only encountered when an unresolved symbol occurs in a
10686 context other than a function call, in which case, it is
10687 invalid. */
10688 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10689 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10690
10691 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10692 {
10693 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10694 /* Check to see if this is a tagged type. We also need to handle
10695 the case where the type is a reference to a tagged type, but
10696 we have to be careful to exclude pointers to tagged types.
10697 The latter should be shown as usual (as a pointer), whereas
10698 a reference should mostly be transparent to the user. */
10699 if (ada_is_tagged_type (type, 0)
10700 || (TYPE_CODE (type) == TYPE_CODE_REF
10701 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10702 {
10703 /* Tagged types are a little special in the fact that the real
10704 type is dynamic and can only be determined by inspecting the
10705 object's tag. This means that we need to get the object's
10706 value first (EVAL_NORMAL) and then extract the actual object
10707 type from its tag.
10708
10709 Note that we cannot skip the final step where we extract
10710 the object type from its tag, because the EVAL_NORMAL phase
10711 results in dynamic components being resolved into fixed ones.
10712 This can cause problems when trying to print the type
10713 description of tagged types whose parent has a dynamic size:
10714 We use the type name of the "_parent" component in order
10715 to print the name of the ancestor type in the type description.
10716 If that component had a dynamic size, the resolution into
10717 a fixed type would result in the loss of that type name,
10718 thus preventing us from printing the name of the ancestor
10719 type in the type description. */
10720 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10721
10722 if (TYPE_CODE (type) != TYPE_CODE_REF)
10723 {
10724 struct type *actual_type;
10725
10726 actual_type = type_from_tag (ada_value_tag (arg1));
10727 if (actual_type == NULL)
10728 /* If, for some reason, we were unable to determine
10729 the actual type from the tag, then use the static
10730 approximation that we just computed as a fallback.
10731 This can happen if the debugging information is
10732 incomplete, for instance. */
10733 actual_type = type;
10734 return value_zero (actual_type, not_lval);
10735 }
10736 else
10737 {
10738 /* In the case of a ref, ada_coerce_ref takes care
10739 of determining the actual type. But the evaluation
10740 should return a ref as it should be valid to ask
10741 for its address; so rebuild a ref after coerce. */
10742 arg1 = ada_coerce_ref (arg1);
10743 return value_ref (arg1);
10744 }
10745 }
10746
10747 /* Records and unions for which GNAT encodings have been
10748 generated need to be statically fixed as well.
10749 Otherwise, non-static fixing produces a type where
10750 all dynamic properties are removed, which prevents "ptype"
10751 from being able to completely describe the type.
10752 For instance, a case statement in a variant record would be
10753 replaced by the relevant components based on the actual
10754 value of the discriminants. */
10755 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10756 && dynamic_template_type (type) != NULL)
10757 || (TYPE_CODE (type) == TYPE_CODE_UNION
10758 && ada_find_parallel_type (type, "___XVU") != NULL))
10759 {
10760 *pos += 4;
10761 return value_zero (to_static_fixed_type (type), not_lval);
10762 }
10763 }
10764
10765 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10766 return ada_to_fixed_value (arg1);
10767
10768 case OP_FUNCALL:
10769 (*pos) += 2;
10770
10771 /* Allocate arg vector, including space for the function to be
10772 called in argvec[0] and a terminating NULL. */
10773 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10774 argvec = XALLOCAVEC (struct value *, nargs + 2);
10775
10776 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10777 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10778 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10779 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10780 else
10781 {
10782 for (tem = 0; tem <= nargs; tem += 1)
10783 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10784 argvec[tem] = 0;
10785
10786 if (noside == EVAL_SKIP)
10787 goto nosideret;
10788 }
10789
10790 if (ada_is_constrained_packed_array_type
10791 (desc_base_type (value_type (argvec[0]))))
10792 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10793 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10794 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10795 /* This is a packed array that has already been fixed, and
10796 therefore already coerced to a simple array. Nothing further
10797 to do. */
10798 ;
10799 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10800 {
10801 /* Make sure we dereference references so that all the code below
10802 feels like it's really handling the referenced value. Wrapping
10803 types (for alignment) may be there, so make sure we strip them as
10804 well. */
10805 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10806 }
10807 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10808 && VALUE_LVAL (argvec[0]) == lval_memory)
10809 argvec[0] = value_addr (argvec[0]);
10810
10811 type = ada_check_typedef (value_type (argvec[0]));
10812
10813 /* Ada allows us to implicitly dereference arrays when subscripting
10814 them. So, if this is an array typedef (encoding use for array
10815 access types encoded as fat pointers), strip it now. */
10816 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10817 type = ada_typedef_target_type (type);
10818
10819 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10820 {
10821 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10822 {
10823 case TYPE_CODE_FUNC:
10824 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10825 break;
10826 case TYPE_CODE_ARRAY:
10827 break;
10828 case TYPE_CODE_STRUCT:
10829 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10830 argvec[0] = ada_value_ind (argvec[0]);
10831 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10832 break;
10833 default:
10834 error (_("cannot subscript or call something of type `%s'"),
10835 ada_type_name (value_type (argvec[0])));
10836 break;
10837 }
10838 }
10839
10840 switch (TYPE_CODE (type))
10841 {
10842 case TYPE_CODE_FUNC:
10843 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10844 {
10845 struct type *rtype = TYPE_TARGET_TYPE (type);
10846
10847 if (TYPE_GNU_IFUNC (type))
10848 return allocate_value (TYPE_TARGET_TYPE (rtype));
10849 return allocate_value (rtype);
10850 }
10851 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10852 case TYPE_CODE_INTERNAL_FUNCTION:
10853 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10854 /* We don't know anything about what the internal
10855 function might return, but we have to return
10856 something. */
10857 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10858 not_lval);
10859 else
10860 return call_internal_function (exp->gdbarch, exp->language_defn,
10861 argvec[0], nargs, argvec + 1);
10862
10863 case TYPE_CODE_STRUCT:
10864 {
10865 int arity;
10866
10867 arity = ada_array_arity (type);
10868 type = ada_array_element_type (type, nargs);
10869 if (type == NULL)
10870 error (_("cannot subscript or call a record"));
10871 if (arity != nargs)
10872 error (_("wrong number of subscripts; expecting %d"), arity);
10873 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10874 return value_zero (ada_aligned_type (type), lval_memory);
10875 return
10876 unwrap_value (ada_value_subscript
10877 (argvec[0], nargs, argvec + 1));
10878 }
10879 case TYPE_CODE_ARRAY:
10880 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10881 {
10882 type = ada_array_element_type (type, nargs);
10883 if (type == NULL)
10884 error (_("element type of array unknown"));
10885 else
10886 return value_zero (ada_aligned_type (type), lval_memory);
10887 }
10888 return
10889 unwrap_value (ada_value_subscript
10890 (ada_coerce_to_simple_array (argvec[0]),
10891 nargs, argvec + 1));
10892 case TYPE_CODE_PTR: /* Pointer to array */
10893 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10894 {
10895 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10896 type = ada_array_element_type (type, nargs);
10897 if (type == NULL)
10898 error (_("element type of array unknown"));
10899 else
10900 return value_zero (ada_aligned_type (type), lval_memory);
10901 }
10902 return
10903 unwrap_value (ada_value_ptr_subscript (argvec[0],
10904 nargs, argvec + 1));
10905
10906 default:
10907 error (_("Attempt to index or call something other than an "
10908 "array or function"));
10909 }
10910
10911 case TERNOP_SLICE:
10912 {
10913 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10914 struct value *low_bound_val =
10915 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10916 struct value *high_bound_val =
10917 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10918 LONGEST low_bound;
10919 LONGEST high_bound;
10920
10921 low_bound_val = coerce_ref (low_bound_val);
10922 high_bound_val = coerce_ref (high_bound_val);
10923 low_bound = value_as_long (low_bound_val);
10924 high_bound = value_as_long (high_bound_val);
10925
10926 if (noside == EVAL_SKIP)
10927 goto nosideret;
10928
10929 /* If this is a reference to an aligner type, then remove all
10930 the aligners. */
10931 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10932 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10933 TYPE_TARGET_TYPE (value_type (array)) =
10934 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10935
10936 if (ada_is_constrained_packed_array_type (value_type (array)))
10937 error (_("cannot slice a packed array"));
10938
10939 /* If this is a reference to an array or an array lvalue,
10940 convert to a pointer. */
10941 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10942 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10943 && VALUE_LVAL (array) == lval_memory))
10944 array = value_addr (array);
10945
10946 if (noside == EVAL_AVOID_SIDE_EFFECTS
10947 && ada_is_array_descriptor_type (ada_check_typedef
10948 (value_type (array))))
10949 return empty_array (ada_type_of_array (array, 0), low_bound);
10950
10951 array = ada_coerce_to_simple_array_ptr (array);
10952
10953 /* If we have more than one level of pointer indirection,
10954 dereference the value until we get only one level. */
10955 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10956 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10957 == TYPE_CODE_PTR))
10958 array = value_ind (array);
10959
10960 /* Make sure we really do have an array type before going further,
10961 to avoid a SEGV when trying to get the index type or the target
10962 type later down the road if the debug info generated by
10963 the compiler is incorrect or incomplete. */
10964 if (!ada_is_simple_array_type (value_type (array)))
10965 error (_("cannot take slice of non-array"));
10966
10967 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10968 == TYPE_CODE_PTR)
10969 {
10970 struct type *type0 = ada_check_typedef (value_type (array));
10971
10972 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10973 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10974 else
10975 {
10976 struct type *arr_type0 =
10977 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10978
10979 return ada_value_slice_from_ptr (array, arr_type0,
10980 longest_to_int (low_bound),
10981 longest_to_int (high_bound));
10982 }
10983 }
10984 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10985 return array;
10986 else if (high_bound < low_bound)
10987 return empty_array (value_type (array), low_bound);
10988 else
10989 return ada_value_slice (array, longest_to_int (low_bound),
10990 longest_to_int (high_bound));
10991 }
10992
10993 case UNOP_IN_RANGE:
10994 (*pos) += 2;
10995 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10996 type = check_typedef (exp->elts[pc + 1].type);
10997
10998 if (noside == EVAL_SKIP)
10999 goto nosideret;
11000
11001 switch (TYPE_CODE (type))
11002 {
11003 default:
11004 lim_warning (_("Membership test incompletely implemented; "
11005 "always returns true"));
11006 type = language_bool_type (exp->language_defn, exp->gdbarch);
11007 return value_from_longest (type, (LONGEST) 1);
11008
11009 case TYPE_CODE_RANGE:
11010 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11011 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11012 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11013 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11014 type = language_bool_type (exp->language_defn, exp->gdbarch);
11015 return
11016 value_from_longest (type,
11017 (value_less (arg1, arg3)
11018 || value_equal (arg1, arg3))
11019 && (value_less (arg2, arg1)
11020 || value_equal (arg2, arg1)));
11021 }
11022
11023 case BINOP_IN_BOUNDS:
11024 (*pos) += 2;
11025 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11026 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11027
11028 if (noside == EVAL_SKIP)
11029 goto nosideret;
11030
11031 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11032 {
11033 type = language_bool_type (exp->language_defn, exp->gdbarch);
11034 return value_zero (type, not_lval);
11035 }
11036
11037 tem = longest_to_int (exp->elts[pc + 1].longconst);
11038
11039 type = ada_index_type (value_type (arg2), tem, "range");
11040 if (!type)
11041 type = value_type (arg1);
11042
11043 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11044 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11045
11046 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11047 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11048 type = language_bool_type (exp->language_defn, exp->gdbarch);
11049 return
11050 value_from_longest (type,
11051 (value_less (arg1, arg3)
11052 || value_equal (arg1, arg3))
11053 && (value_less (arg2, arg1)
11054 || value_equal (arg2, arg1)));
11055
11056 case TERNOP_IN_RANGE:
11057 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11058 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11059 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11060
11061 if (noside == EVAL_SKIP)
11062 goto nosideret;
11063
11064 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11065 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11066 type = language_bool_type (exp->language_defn, exp->gdbarch);
11067 return
11068 value_from_longest (type,
11069 (value_less (arg1, arg3)
11070 || value_equal (arg1, arg3))
11071 && (value_less (arg2, arg1)
11072 || value_equal (arg2, arg1)));
11073
11074 case OP_ATR_FIRST:
11075 case OP_ATR_LAST:
11076 case OP_ATR_LENGTH:
11077 {
11078 struct type *type_arg;
11079
11080 if (exp->elts[*pos].opcode == OP_TYPE)
11081 {
11082 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11083 arg1 = NULL;
11084 type_arg = check_typedef (exp->elts[pc + 2].type);
11085 }
11086 else
11087 {
11088 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11089 type_arg = NULL;
11090 }
11091
11092 if (exp->elts[*pos].opcode != OP_LONG)
11093 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11094 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11095 *pos += 4;
11096
11097 if (noside == EVAL_SKIP)
11098 goto nosideret;
11099
11100 if (type_arg == NULL)
11101 {
11102 arg1 = ada_coerce_ref (arg1);
11103
11104 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11105 arg1 = ada_coerce_to_simple_array (arg1);
11106
11107 if (op == OP_ATR_LENGTH)
11108 type = builtin_type (exp->gdbarch)->builtin_int;
11109 else
11110 {
11111 type = ada_index_type (value_type (arg1), tem,
11112 ada_attribute_name (op));
11113 if (type == NULL)
11114 type = builtin_type (exp->gdbarch)->builtin_int;
11115 }
11116
11117 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11118 return allocate_value (type);
11119
11120 switch (op)
11121 {
11122 default: /* Should never happen. */
11123 error (_("unexpected attribute encountered"));
11124 case OP_ATR_FIRST:
11125 return value_from_longest
11126 (type, ada_array_bound (arg1, tem, 0));
11127 case OP_ATR_LAST:
11128 return value_from_longest
11129 (type, ada_array_bound (arg1, tem, 1));
11130 case OP_ATR_LENGTH:
11131 return value_from_longest
11132 (type, ada_array_length (arg1, tem));
11133 }
11134 }
11135 else if (discrete_type_p (type_arg))
11136 {
11137 struct type *range_type;
11138 const char *name = ada_type_name (type_arg);
11139
11140 range_type = NULL;
11141 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11142 range_type = to_fixed_range_type (type_arg, NULL);
11143 if (range_type == NULL)
11144 range_type = type_arg;
11145 switch (op)
11146 {
11147 default:
11148 error (_("unexpected attribute encountered"));
11149 case OP_ATR_FIRST:
11150 return value_from_longest
11151 (range_type, ada_discrete_type_low_bound (range_type));
11152 case OP_ATR_LAST:
11153 return value_from_longest
11154 (range_type, ada_discrete_type_high_bound (range_type));
11155 case OP_ATR_LENGTH:
11156 error (_("the 'length attribute applies only to array types"));
11157 }
11158 }
11159 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11160 error (_("unimplemented type attribute"));
11161 else
11162 {
11163 LONGEST low, high;
11164
11165 if (ada_is_constrained_packed_array_type (type_arg))
11166 type_arg = decode_constrained_packed_array_type (type_arg);
11167
11168 if (op == OP_ATR_LENGTH)
11169 type = builtin_type (exp->gdbarch)->builtin_int;
11170 else
11171 {
11172 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11173 if (type == NULL)
11174 type = builtin_type (exp->gdbarch)->builtin_int;
11175 }
11176
11177 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11178 return allocate_value (type);
11179
11180 switch (op)
11181 {
11182 default:
11183 error (_("unexpected attribute encountered"));
11184 case OP_ATR_FIRST:
11185 low = ada_array_bound_from_type (type_arg, tem, 0);
11186 return value_from_longest (type, low);
11187 case OP_ATR_LAST:
11188 high = ada_array_bound_from_type (type_arg, tem, 1);
11189 return value_from_longest (type, high);
11190 case OP_ATR_LENGTH:
11191 low = ada_array_bound_from_type (type_arg, tem, 0);
11192 high = ada_array_bound_from_type (type_arg, tem, 1);
11193 return value_from_longest (type, high - low + 1);
11194 }
11195 }
11196 }
11197
11198 case OP_ATR_TAG:
11199 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11200 if (noside == EVAL_SKIP)
11201 goto nosideret;
11202
11203 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11204 return value_zero (ada_tag_type (arg1), not_lval);
11205
11206 return ada_value_tag (arg1);
11207
11208 case OP_ATR_MIN:
11209 case OP_ATR_MAX:
11210 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11211 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11212 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11213 if (noside == EVAL_SKIP)
11214 goto nosideret;
11215 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11216 return value_zero (value_type (arg1), not_lval);
11217 else
11218 {
11219 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11220 return value_binop (arg1, arg2,
11221 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11222 }
11223
11224 case OP_ATR_MODULUS:
11225 {
11226 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11227
11228 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11229 if (noside == EVAL_SKIP)
11230 goto nosideret;
11231
11232 if (!ada_is_modular_type (type_arg))
11233 error (_("'modulus must be applied to modular type"));
11234
11235 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11236 ada_modulus (type_arg));
11237 }
11238
11239
11240 case OP_ATR_POS:
11241 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11242 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11243 if (noside == EVAL_SKIP)
11244 goto nosideret;
11245 type = builtin_type (exp->gdbarch)->builtin_int;
11246 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11247 return value_zero (type, not_lval);
11248 else
11249 return value_pos_atr (type, arg1);
11250
11251 case OP_ATR_SIZE:
11252 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11253 type = value_type (arg1);
11254
11255 /* If the argument is a reference, then dereference its type, since
11256 the user is really asking for the size of the actual object,
11257 not the size of the pointer. */
11258 if (TYPE_CODE (type) == TYPE_CODE_REF)
11259 type = TYPE_TARGET_TYPE (type);
11260
11261 if (noside == EVAL_SKIP)
11262 goto nosideret;
11263 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11264 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11265 else
11266 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11267 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11268
11269 case OP_ATR_VAL:
11270 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11271 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11272 type = exp->elts[pc + 2].type;
11273 if (noside == EVAL_SKIP)
11274 goto nosideret;
11275 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11276 return value_zero (type, not_lval);
11277 else
11278 return value_val_atr (type, arg1);
11279
11280 case BINOP_EXP:
11281 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11282 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11283 if (noside == EVAL_SKIP)
11284 goto nosideret;
11285 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11286 return value_zero (value_type (arg1), not_lval);
11287 else
11288 {
11289 /* For integer exponentiation operations,
11290 only promote the first argument. */
11291 if (is_integral_type (value_type (arg2)))
11292 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11293 else
11294 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11295
11296 return value_binop (arg1, arg2, op);
11297 }
11298
11299 case UNOP_PLUS:
11300 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11301 if (noside == EVAL_SKIP)
11302 goto nosideret;
11303 else
11304 return arg1;
11305
11306 case UNOP_ABS:
11307 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11308 if (noside == EVAL_SKIP)
11309 goto nosideret;
11310 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11311 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11312 return value_neg (arg1);
11313 else
11314 return arg1;
11315
11316 case UNOP_IND:
11317 preeval_pos = *pos;
11318 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11319 if (noside == EVAL_SKIP)
11320 goto nosideret;
11321 type = ada_check_typedef (value_type (arg1));
11322 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11323 {
11324 if (ada_is_array_descriptor_type (type))
11325 /* GDB allows dereferencing GNAT array descriptors. */
11326 {
11327 struct type *arrType = ada_type_of_array (arg1, 0);
11328
11329 if (arrType == NULL)
11330 error (_("Attempt to dereference null array pointer."));
11331 return value_at_lazy (arrType, 0);
11332 }
11333 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11334 || TYPE_CODE (type) == TYPE_CODE_REF
11335 /* In C you can dereference an array to get the 1st elt. */
11336 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11337 {
11338 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11339 only be determined by inspecting the object's tag.
11340 This means that we need to evaluate completely the
11341 expression in order to get its type. */
11342
11343 if ((TYPE_CODE (type) == TYPE_CODE_REF
11344 || TYPE_CODE (type) == TYPE_CODE_PTR)
11345 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11346 {
11347 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11348 EVAL_NORMAL);
11349 type = value_type (ada_value_ind (arg1));
11350 }
11351 else
11352 {
11353 type = to_static_fixed_type
11354 (ada_aligned_type
11355 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11356 }
11357 ada_ensure_varsize_limit (type);
11358 return value_zero (type, lval_memory);
11359 }
11360 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11361 {
11362 /* GDB allows dereferencing an int. */
11363 if (expect_type == NULL)
11364 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11365 lval_memory);
11366 else
11367 {
11368 expect_type =
11369 to_static_fixed_type (ada_aligned_type (expect_type));
11370 return value_zero (expect_type, lval_memory);
11371 }
11372 }
11373 else
11374 error (_("Attempt to take contents of a non-pointer value."));
11375 }
11376 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11377 type = ada_check_typedef (value_type (arg1));
11378
11379 if (TYPE_CODE (type) == TYPE_CODE_INT)
11380 /* GDB allows dereferencing an int. If we were given
11381 the expect_type, then use that as the target type.
11382 Otherwise, assume that the target type is an int. */
11383 {
11384 if (expect_type != NULL)
11385 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11386 arg1));
11387 else
11388 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11389 (CORE_ADDR) value_as_address (arg1));
11390 }
11391
11392 if (ada_is_array_descriptor_type (type))
11393 /* GDB allows dereferencing GNAT array descriptors. */
11394 return ada_coerce_to_simple_array (arg1);
11395 else
11396 return ada_value_ind (arg1);
11397
11398 case STRUCTOP_STRUCT:
11399 tem = longest_to_int (exp->elts[pc + 1].longconst);
11400 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11401 preeval_pos = *pos;
11402 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11403 if (noside == EVAL_SKIP)
11404 goto nosideret;
11405 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11406 {
11407 struct type *type1 = value_type (arg1);
11408
11409 if (ada_is_tagged_type (type1, 1))
11410 {
11411 type = ada_lookup_struct_elt_type (type1,
11412 &exp->elts[pc + 2].string,
11413 1, 1, NULL);
11414
11415 /* If the field is not found, check if it exists in the
11416 extension of this object's type. This means that we
11417 need to evaluate completely the expression. */
11418
11419 if (type == NULL)
11420 {
11421 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11422 EVAL_NORMAL);
11423 arg1 = ada_value_struct_elt (arg1,
11424 &exp->elts[pc + 2].string,
11425 0);
11426 arg1 = unwrap_value (arg1);
11427 type = value_type (ada_to_fixed_value (arg1));
11428 }
11429 }
11430 else
11431 type =
11432 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11433 0, NULL);
11434
11435 return value_zero (ada_aligned_type (type), lval_memory);
11436 }
11437 else
11438 {
11439 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11440 arg1 = unwrap_value (arg1);
11441 return ada_to_fixed_value (arg1);
11442 }
11443
11444 case OP_TYPE:
11445 /* The value is not supposed to be used. This is here to make it
11446 easier to accommodate expressions that contain types. */
11447 (*pos) += 2;
11448 if (noside == EVAL_SKIP)
11449 goto nosideret;
11450 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11451 return allocate_value (exp->elts[pc + 1].type);
11452 else
11453 error (_("Attempt to use a type name as an expression"));
11454
11455 case OP_AGGREGATE:
11456 case OP_CHOICES:
11457 case OP_OTHERS:
11458 case OP_DISCRETE_RANGE:
11459 case OP_POSITIONAL:
11460 case OP_NAME:
11461 if (noside == EVAL_NORMAL)
11462 switch (op)
11463 {
11464 case OP_NAME:
11465 error (_("Undefined name, ambiguous name, or renaming used in "
11466 "component association: %s."), &exp->elts[pc+2].string);
11467 case OP_AGGREGATE:
11468 error (_("Aggregates only allowed on the right of an assignment"));
11469 default:
11470 internal_error (__FILE__, __LINE__,
11471 _("aggregate apparently mangled"));
11472 }
11473
11474 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11475 *pos += oplen - 1;
11476 for (tem = 0; tem < nargs; tem += 1)
11477 ada_evaluate_subexp (NULL, exp, pos, noside);
11478 goto nosideret;
11479 }
11480
11481 nosideret:
11482 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11483 }
11484 \f
11485
11486 /* Fixed point */
11487
11488 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11489 type name that encodes the 'small and 'delta information.
11490 Otherwise, return NULL. */
11491
11492 static const char *
11493 fixed_type_info (struct type *type)
11494 {
11495 const char *name = ada_type_name (type);
11496 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11497
11498 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11499 {
11500 const char *tail = strstr (name, "___XF_");
11501
11502 if (tail == NULL)
11503 return NULL;
11504 else
11505 return tail + 5;
11506 }
11507 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11508 return fixed_type_info (TYPE_TARGET_TYPE (type));
11509 else
11510 return NULL;
11511 }
11512
11513 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11514
11515 int
11516 ada_is_fixed_point_type (struct type *type)
11517 {
11518 return fixed_type_info (type) != NULL;
11519 }
11520
11521 /* Return non-zero iff TYPE represents a System.Address type. */
11522
11523 int
11524 ada_is_system_address_type (struct type *type)
11525 {
11526 return (TYPE_NAME (type)
11527 && strcmp (TYPE_NAME (type), "system__address") == 0);
11528 }
11529
11530 /* Assuming that TYPE is the representation of an Ada fixed-point
11531 type, return its delta, or -1 if the type is malformed and the
11532 delta cannot be determined. */
11533
11534 DOUBLEST
11535 ada_delta (struct type *type)
11536 {
11537 const char *encoding = fixed_type_info (type);
11538 DOUBLEST num, den;
11539
11540 /* Strictly speaking, num and den are encoded as integer. However,
11541 they may not fit into a long, and they will have to be converted
11542 to DOUBLEST anyway. So scan them as DOUBLEST. */
11543 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11544 &num, &den) < 2)
11545 return -1.0;
11546 else
11547 return num / den;
11548 }
11549
11550 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11551 factor ('SMALL value) associated with the type. */
11552
11553 static DOUBLEST
11554 scaling_factor (struct type *type)
11555 {
11556 const char *encoding = fixed_type_info (type);
11557 DOUBLEST num0, den0, num1, den1;
11558 int n;
11559
11560 /* Strictly speaking, num's and den's are encoded as integer. However,
11561 they may not fit into a long, and they will have to be converted
11562 to DOUBLEST anyway. So scan them as DOUBLEST. */
11563 n = sscanf (encoding,
11564 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11565 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11566 &num0, &den0, &num1, &den1);
11567
11568 if (n < 2)
11569 return 1.0;
11570 else if (n == 4)
11571 return num1 / den1;
11572 else
11573 return num0 / den0;
11574 }
11575
11576
11577 /* Assuming that X is the representation of a value of fixed-point
11578 type TYPE, return its floating-point equivalent. */
11579
11580 DOUBLEST
11581 ada_fixed_to_float (struct type *type, LONGEST x)
11582 {
11583 return (DOUBLEST) x *scaling_factor (type);
11584 }
11585
11586 /* The representation of a fixed-point value of type TYPE
11587 corresponding to the value X. */
11588
11589 LONGEST
11590 ada_float_to_fixed (struct type *type, DOUBLEST x)
11591 {
11592 return (LONGEST) (x / scaling_factor (type) + 0.5);
11593 }
11594
11595 \f
11596
11597 /* Range types */
11598
11599 /* Scan STR beginning at position K for a discriminant name, and
11600 return the value of that discriminant field of DVAL in *PX. If
11601 PNEW_K is not null, put the position of the character beyond the
11602 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11603 not alter *PX and *PNEW_K if unsuccessful. */
11604
11605 static int
11606 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11607 int *pnew_k)
11608 {
11609 static char *bound_buffer = NULL;
11610 static size_t bound_buffer_len = 0;
11611 const char *pstart, *pend, *bound;
11612 struct value *bound_val;
11613
11614 if (dval == NULL || str == NULL || str[k] == '\0')
11615 return 0;
11616
11617 pstart = str + k;
11618 pend = strstr (pstart, "__");
11619 if (pend == NULL)
11620 {
11621 bound = pstart;
11622 k += strlen (bound);
11623 }
11624 else
11625 {
11626 int len = pend - pstart;
11627
11628 /* Strip __ and beyond. */
11629 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11630 strncpy (bound_buffer, pstart, len);
11631 bound_buffer[len] = '\0';
11632
11633 bound = bound_buffer;
11634 k = pend - str;
11635 }
11636
11637 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11638 if (bound_val == NULL)
11639 return 0;
11640
11641 *px = value_as_long (bound_val);
11642 if (pnew_k != NULL)
11643 *pnew_k = k;
11644 return 1;
11645 }
11646
11647 /* Value of variable named NAME in the current environment. If
11648 no such variable found, then if ERR_MSG is null, returns 0, and
11649 otherwise causes an error with message ERR_MSG. */
11650
11651 static struct value *
11652 get_var_value (char *name, char *err_msg)
11653 {
11654 struct block_symbol *syms;
11655 int nsyms;
11656
11657 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11658 &syms);
11659
11660 if (nsyms != 1)
11661 {
11662 if (err_msg == NULL)
11663 return 0;
11664 else
11665 error (("%s"), err_msg);
11666 }
11667
11668 return value_of_variable (syms[0].symbol, syms[0].block);
11669 }
11670
11671 /* Value of integer variable named NAME in the current environment. If
11672 no such variable found, returns 0, and sets *FLAG to 0. If
11673 successful, sets *FLAG to 1. */
11674
11675 LONGEST
11676 get_int_var_value (char *name, int *flag)
11677 {
11678 struct value *var_val = get_var_value (name, 0);
11679
11680 if (var_val == 0)
11681 {
11682 if (flag != NULL)
11683 *flag = 0;
11684 return 0;
11685 }
11686 else
11687 {
11688 if (flag != NULL)
11689 *flag = 1;
11690 return value_as_long (var_val);
11691 }
11692 }
11693
11694
11695 /* Return a range type whose base type is that of the range type named
11696 NAME in the current environment, and whose bounds are calculated
11697 from NAME according to the GNAT range encoding conventions.
11698 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11699 corresponding range type from debug information; fall back to using it
11700 if symbol lookup fails. If a new type must be created, allocate it
11701 like ORIG_TYPE was. The bounds information, in general, is encoded
11702 in NAME, the base type given in the named range type. */
11703
11704 static struct type *
11705 to_fixed_range_type (struct type *raw_type, struct value *dval)
11706 {
11707 const char *name;
11708 struct type *base_type;
11709 const char *subtype_info;
11710
11711 gdb_assert (raw_type != NULL);
11712 gdb_assert (TYPE_NAME (raw_type) != NULL);
11713
11714 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11715 base_type = TYPE_TARGET_TYPE (raw_type);
11716 else
11717 base_type = raw_type;
11718
11719 name = TYPE_NAME (raw_type);
11720 subtype_info = strstr (name, "___XD");
11721 if (subtype_info == NULL)
11722 {
11723 LONGEST L = ada_discrete_type_low_bound (raw_type);
11724 LONGEST U = ada_discrete_type_high_bound (raw_type);
11725
11726 if (L < INT_MIN || U > INT_MAX)
11727 return raw_type;
11728 else
11729 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11730 L, U);
11731 }
11732 else
11733 {
11734 static char *name_buf = NULL;
11735 static size_t name_len = 0;
11736 int prefix_len = subtype_info - name;
11737 LONGEST L, U;
11738 struct type *type;
11739 const char *bounds_str;
11740 int n;
11741
11742 GROW_VECT (name_buf, name_len, prefix_len + 5);
11743 strncpy (name_buf, name, prefix_len);
11744 name_buf[prefix_len] = '\0';
11745
11746 subtype_info += 5;
11747 bounds_str = strchr (subtype_info, '_');
11748 n = 1;
11749
11750 if (*subtype_info == 'L')
11751 {
11752 if (!ada_scan_number (bounds_str, n, &L, &n)
11753 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11754 return raw_type;
11755 if (bounds_str[n] == '_')
11756 n += 2;
11757 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11758 n += 1;
11759 subtype_info += 1;
11760 }
11761 else
11762 {
11763 int ok;
11764
11765 strcpy (name_buf + prefix_len, "___L");
11766 L = get_int_var_value (name_buf, &ok);
11767 if (!ok)
11768 {
11769 lim_warning (_("Unknown lower bound, using 1."));
11770 L = 1;
11771 }
11772 }
11773
11774 if (*subtype_info == 'U')
11775 {
11776 if (!ada_scan_number (bounds_str, n, &U, &n)
11777 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11778 return raw_type;
11779 }
11780 else
11781 {
11782 int ok;
11783
11784 strcpy (name_buf + prefix_len, "___U");
11785 U = get_int_var_value (name_buf, &ok);
11786 if (!ok)
11787 {
11788 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11789 U = L;
11790 }
11791 }
11792
11793 type = create_static_range_type (alloc_type_copy (raw_type),
11794 base_type, L, U);
11795 TYPE_NAME (type) = name;
11796 return type;
11797 }
11798 }
11799
11800 /* True iff NAME is the name of a range type. */
11801
11802 int
11803 ada_is_range_type_name (const char *name)
11804 {
11805 return (name != NULL && strstr (name, "___XD"));
11806 }
11807 \f
11808
11809 /* Modular types */
11810
11811 /* True iff TYPE is an Ada modular type. */
11812
11813 int
11814 ada_is_modular_type (struct type *type)
11815 {
11816 struct type *subranged_type = get_base_type (type);
11817
11818 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11819 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11820 && TYPE_UNSIGNED (subranged_type));
11821 }
11822
11823 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11824
11825 ULONGEST
11826 ada_modulus (struct type *type)
11827 {
11828 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11829 }
11830 \f
11831
11832 /* Ada exception catchpoint support:
11833 ---------------------------------
11834
11835 We support 3 kinds of exception catchpoints:
11836 . catchpoints on Ada exceptions
11837 . catchpoints on unhandled Ada exceptions
11838 . catchpoints on failed assertions
11839
11840 Exceptions raised during failed assertions, or unhandled exceptions
11841 could perfectly be caught with the general catchpoint on Ada exceptions.
11842 However, we can easily differentiate these two special cases, and having
11843 the option to distinguish these two cases from the rest can be useful
11844 to zero-in on certain situations.
11845
11846 Exception catchpoints are a specialized form of breakpoint,
11847 since they rely on inserting breakpoints inside known routines
11848 of the GNAT runtime. The implementation therefore uses a standard
11849 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11850 of breakpoint_ops.
11851
11852 Support in the runtime for exception catchpoints have been changed
11853 a few times already, and these changes affect the implementation
11854 of these catchpoints. In order to be able to support several
11855 variants of the runtime, we use a sniffer that will determine
11856 the runtime variant used by the program being debugged. */
11857
11858 /* Ada's standard exceptions.
11859
11860 The Ada 83 standard also defined Numeric_Error. But there so many
11861 situations where it was unclear from the Ada 83 Reference Manual
11862 (RM) whether Constraint_Error or Numeric_Error should be raised,
11863 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11864 Interpretation saying that anytime the RM says that Numeric_Error
11865 should be raised, the implementation may raise Constraint_Error.
11866 Ada 95 went one step further and pretty much removed Numeric_Error
11867 from the list of standard exceptions (it made it a renaming of
11868 Constraint_Error, to help preserve compatibility when compiling
11869 an Ada83 compiler). As such, we do not include Numeric_Error from
11870 this list of standard exceptions. */
11871
11872 static char *standard_exc[] = {
11873 "constraint_error",
11874 "program_error",
11875 "storage_error",
11876 "tasking_error"
11877 };
11878
11879 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11880
11881 /* A structure that describes how to support exception catchpoints
11882 for a given executable. */
11883
11884 struct exception_support_info
11885 {
11886 /* The name of the symbol to break on in order to insert
11887 a catchpoint on exceptions. */
11888 const char *catch_exception_sym;
11889
11890 /* The name of the symbol to break on in order to insert
11891 a catchpoint on unhandled exceptions. */
11892 const char *catch_exception_unhandled_sym;
11893
11894 /* The name of the symbol to break on in order to insert
11895 a catchpoint on failed assertions. */
11896 const char *catch_assert_sym;
11897
11898 /* Assuming that the inferior just triggered an unhandled exception
11899 catchpoint, this function is responsible for returning the address
11900 in inferior memory where the name of that exception is stored.
11901 Return zero if the address could not be computed. */
11902 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11903 };
11904
11905 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11906 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11907
11908 /* The following exception support info structure describes how to
11909 implement exception catchpoints with the latest version of the
11910 Ada runtime (as of 2007-03-06). */
11911
11912 static const struct exception_support_info default_exception_support_info =
11913 {
11914 "__gnat_debug_raise_exception", /* catch_exception_sym */
11915 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11916 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11917 ada_unhandled_exception_name_addr
11918 };
11919
11920 /* The following exception support info structure describes how to
11921 implement exception catchpoints with a slightly older version
11922 of the Ada runtime. */
11923
11924 static const struct exception_support_info exception_support_info_fallback =
11925 {
11926 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11927 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11928 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11929 ada_unhandled_exception_name_addr_from_raise
11930 };
11931
11932 /* Return nonzero if we can detect the exception support routines
11933 described in EINFO.
11934
11935 This function errors out if an abnormal situation is detected
11936 (for instance, if we find the exception support routines, but
11937 that support is found to be incomplete). */
11938
11939 static int
11940 ada_has_this_exception_support (const struct exception_support_info *einfo)
11941 {
11942 struct symbol *sym;
11943
11944 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11945 that should be compiled with debugging information. As a result, we
11946 expect to find that symbol in the symtabs. */
11947
11948 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11949 if (sym == NULL)
11950 {
11951 /* Perhaps we did not find our symbol because the Ada runtime was
11952 compiled without debugging info, or simply stripped of it.
11953 It happens on some GNU/Linux distributions for instance, where
11954 users have to install a separate debug package in order to get
11955 the runtime's debugging info. In that situation, let the user
11956 know why we cannot insert an Ada exception catchpoint.
11957
11958 Note: Just for the purpose of inserting our Ada exception
11959 catchpoint, we could rely purely on the associated minimal symbol.
11960 But we would be operating in degraded mode anyway, since we are
11961 still lacking the debugging info needed later on to extract
11962 the name of the exception being raised (this name is printed in
11963 the catchpoint message, and is also used when trying to catch
11964 a specific exception). We do not handle this case for now. */
11965 struct bound_minimal_symbol msym
11966 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11967
11968 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11969 error (_("Your Ada runtime appears to be missing some debugging "
11970 "information.\nCannot insert Ada exception catchpoint "
11971 "in this configuration."));
11972
11973 return 0;
11974 }
11975
11976 /* Make sure that the symbol we found corresponds to a function. */
11977
11978 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11979 error (_("Symbol \"%s\" is not a function (class = %d)"),
11980 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11981
11982 return 1;
11983 }
11984
11985 /* Inspect the Ada runtime and determine which exception info structure
11986 should be used to provide support for exception catchpoints.
11987
11988 This function will always set the per-inferior exception_info,
11989 or raise an error. */
11990
11991 static void
11992 ada_exception_support_info_sniffer (void)
11993 {
11994 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11995
11996 /* If the exception info is already known, then no need to recompute it. */
11997 if (data->exception_info != NULL)
11998 return;
11999
12000 /* Check the latest (default) exception support info. */
12001 if (ada_has_this_exception_support (&default_exception_support_info))
12002 {
12003 data->exception_info = &default_exception_support_info;
12004 return;
12005 }
12006
12007 /* Try our fallback exception suport info. */
12008 if (ada_has_this_exception_support (&exception_support_info_fallback))
12009 {
12010 data->exception_info = &exception_support_info_fallback;
12011 return;
12012 }
12013
12014 /* Sometimes, it is normal for us to not be able to find the routine
12015 we are looking for. This happens when the program is linked with
12016 the shared version of the GNAT runtime, and the program has not been
12017 started yet. Inform the user of these two possible causes if
12018 applicable. */
12019
12020 if (ada_update_initial_language (language_unknown) != language_ada)
12021 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12022
12023 /* If the symbol does not exist, then check that the program is
12024 already started, to make sure that shared libraries have been
12025 loaded. If it is not started, this may mean that the symbol is
12026 in a shared library. */
12027
12028 if (ptid_get_pid (inferior_ptid) == 0)
12029 error (_("Unable to insert catchpoint. Try to start the program first."));
12030
12031 /* At this point, we know that we are debugging an Ada program and
12032 that the inferior has been started, but we still are not able to
12033 find the run-time symbols. That can mean that we are in
12034 configurable run time mode, or that a-except as been optimized
12035 out by the linker... In any case, at this point it is not worth
12036 supporting this feature. */
12037
12038 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12039 }
12040
12041 /* True iff FRAME is very likely to be that of a function that is
12042 part of the runtime system. This is all very heuristic, but is
12043 intended to be used as advice as to what frames are uninteresting
12044 to most users. */
12045
12046 static int
12047 is_known_support_routine (struct frame_info *frame)
12048 {
12049 struct symtab_and_line sal;
12050 char *func_name;
12051 enum language func_lang;
12052 int i;
12053 const char *fullname;
12054
12055 /* If this code does not have any debugging information (no symtab),
12056 This cannot be any user code. */
12057
12058 find_frame_sal (frame, &sal);
12059 if (sal.symtab == NULL)
12060 return 1;
12061
12062 /* If there is a symtab, but the associated source file cannot be
12063 located, then assume this is not user code: Selecting a frame
12064 for which we cannot display the code would not be very helpful
12065 for the user. This should also take care of case such as VxWorks
12066 where the kernel has some debugging info provided for a few units. */
12067
12068 fullname = symtab_to_fullname (sal.symtab);
12069 if (access (fullname, R_OK) != 0)
12070 return 1;
12071
12072 /* Check the unit filename againt the Ada runtime file naming.
12073 We also check the name of the objfile against the name of some
12074 known system libraries that sometimes come with debugging info
12075 too. */
12076
12077 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12078 {
12079 re_comp (known_runtime_file_name_patterns[i]);
12080 if (re_exec (lbasename (sal.symtab->filename)))
12081 return 1;
12082 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12083 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12084 return 1;
12085 }
12086
12087 /* Check whether the function is a GNAT-generated entity. */
12088
12089 find_frame_funname (frame, &func_name, &func_lang, NULL);
12090 if (func_name == NULL)
12091 return 1;
12092
12093 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12094 {
12095 re_comp (known_auxiliary_function_name_patterns[i]);
12096 if (re_exec (func_name))
12097 {
12098 xfree (func_name);
12099 return 1;
12100 }
12101 }
12102
12103 xfree (func_name);
12104 return 0;
12105 }
12106
12107 /* Find the first frame that contains debugging information and that is not
12108 part of the Ada run-time, starting from FI and moving upward. */
12109
12110 void
12111 ada_find_printable_frame (struct frame_info *fi)
12112 {
12113 for (; fi != NULL; fi = get_prev_frame (fi))
12114 {
12115 if (!is_known_support_routine (fi))
12116 {
12117 select_frame (fi);
12118 break;
12119 }
12120 }
12121
12122 }
12123
12124 /* Assuming that the inferior just triggered an unhandled exception
12125 catchpoint, return the address in inferior memory where the name
12126 of the exception is stored.
12127
12128 Return zero if the address could not be computed. */
12129
12130 static CORE_ADDR
12131 ada_unhandled_exception_name_addr (void)
12132 {
12133 return parse_and_eval_address ("e.full_name");
12134 }
12135
12136 /* Same as ada_unhandled_exception_name_addr, except that this function
12137 should be used when the inferior uses an older version of the runtime,
12138 where the exception name needs to be extracted from a specific frame
12139 several frames up in the callstack. */
12140
12141 static CORE_ADDR
12142 ada_unhandled_exception_name_addr_from_raise (void)
12143 {
12144 int frame_level;
12145 struct frame_info *fi;
12146 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12147 struct cleanup *old_chain;
12148
12149 /* To determine the name of this exception, we need to select
12150 the frame corresponding to RAISE_SYM_NAME. This frame is
12151 at least 3 levels up, so we simply skip the first 3 frames
12152 without checking the name of their associated function. */
12153 fi = get_current_frame ();
12154 for (frame_level = 0; frame_level < 3; frame_level += 1)
12155 if (fi != NULL)
12156 fi = get_prev_frame (fi);
12157
12158 old_chain = make_cleanup (null_cleanup, NULL);
12159 while (fi != NULL)
12160 {
12161 char *func_name;
12162 enum language func_lang;
12163
12164 find_frame_funname (fi, &func_name, &func_lang, NULL);
12165 if (func_name != NULL)
12166 {
12167 make_cleanup (xfree, func_name);
12168
12169 if (strcmp (func_name,
12170 data->exception_info->catch_exception_sym) == 0)
12171 break; /* We found the frame we were looking for... */
12172 fi = get_prev_frame (fi);
12173 }
12174 }
12175 do_cleanups (old_chain);
12176
12177 if (fi == NULL)
12178 return 0;
12179
12180 select_frame (fi);
12181 return parse_and_eval_address ("id.full_name");
12182 }
12183
12184 /* Assuming the inferior just triggered an Ada exception catchpoint
12185 (of any type), return the address in inferior memory where the name
12186 of the exception is stored, if applicable.
12187
12188 Assumes the selected frame is the current frame.
12189
12190 Return zero if the address could not be computed, or if not relevant. */
12191
12192 static CORE_ADDR
12193 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12194 struct breakpoint *b)
12195 {
12196 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12197
12198 switch (ex)
12199 {
12200 case ada_catch_exception:
12201 return (parse_and_eval_address ("e.full_name"));
12202 break;
12203
12204 case ada_catch_exception_unhandled:
12205 return data->exception_info->unhandled_exception_name_addr ();
12206 break;
12207
12208 case ada_catch_assert:
12209 return 0; /* Exception name is not relevant in this case. */
12210 break;
12211
12212 default:
12213 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12214 break;
12215 }
12216
12217 return 0; /* Should never be reached. */
12218 }
12219
12220 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12221 any error that ada_exception_name_addr_1 might cause to be thrown.
12222 When an error is intercepted, a warning with the error message is printed,
12223 and zero is returned. */
12224
12225 static CORE_ADDR
12226 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12227 struct breakpoint *b)
12228 {
12229 CORE_ADDR result = 0;
12230
12231 TRY
12232 {
12233 result = ada_exception_name_addr_1 (ex, b);
12234 }
12235
12236 CATCH (e, RETURN_MASK_ERROR)
12237 {
12238 warning (_("failed to get exception name: %s"), e.message);
12239 return 0;
12240 }
12241 END_CATCH
12242
12243 return result;
12244 }
12245
12246 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12247
12248 /* Ada catchpoints.
12249
12250 In the case of catchpoints on Ada exceptions, the catchpoint will
12251 stop the target on every exception the program throws. When a user
12252 specifies the name of a specific exception, we translate this
12253 request into a condition expression (in text form), and then parse
12254 it into an expression stored in each of the catchpoint's locations.
12255 We then use this condition to check whether the exception that was
12256 raised is the one the user is interested in. If not, then the
12257 target is resumed again. We store the name of the requested
12258 exception, in order to be able to re-set the condition expression
12259 when symbols change. */
12260
12261 /* An instance of this type is used to represent an Ada catchpoint
12262 breakpoint location. It includes a "struct bp_location" as a kind
12263 of base class; users downcast to "struct bp_location *" when
12264 needed. */
12265
12266 struct ada_catchpoint_location
12267 {
12268 /* The base class. */
12269 struct bp_location base;
12270
12271 /* The condition that checks whether the exception that was raised
12272 is the specific exception the user specified on catchpoint
12273 creation. */
12274 expression_up excep_cond_expr;
12275 };
12276
12277 /* Implement the DTOR method in the bp_location_ops structure for all
12278 Ada exception catchpoint kinds. */
12279
12280 static void
12281 ada_catchpoint_location_dtor (struct bp_location *bl)
12282 {
12283 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12284
12285 al->excep_cond_expr.reset ();
12286 }
12287
12288 /* The vtable to be used in Ada catchpoint locations. */
12289
12290 static const struct bp_location_ops ada_catchpoint_location_ops =
12291 {
12292 ada_catchpoint_location_dtor
12293 };
12294
12295 /* An instance of this type is used to represent an Ada catchpoint.
12296 It includes a "struct breakpoint" as a kind of base class; users
12297 downcast to "struct breakpoint *" when needed. */
12298
12299 struct ada_catchpoint
12300 {
12301 /* The base class. */
12302 struct breakpoint base;
12303
12304 /* The name of the specific exception the user specified. */
12305 char *excep_string;
12306 };
12307
12308 /* Parse the exception condition string in the context of each of the
12309 catchpoint's locations, and store them for later evaluation. */
12310
12311 static void
12312 create_excep_cond_exprs (struct ada_catchpoint *c)
12313 {
12314 struct cleanup *old_chain;
12315 struct bp_location *bl;
12316 char *cond_string;
12317
12318 /* Nothing to do if there's no specific exception to catch. */
12319 if (c->excep_string == NULL)
12320 return;
12321
12322 /* Same if there are no locations... */
12323 if (c->base.loc == NULL)
12324 return;
12325
12326 /* Compute the condition expression in text form, from the specific
12327 expection we want to catch. */
12328 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12329 old_chain = make_cleanup (xfree, cond_string);
12330
12331 /* Iterate over all the catchpoint's locations, and parse an
12332 expression for each. */
12333 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12334 {
12335 struct ada_catchpoint_location *ada_loc
12336 = (struct ada_catchpoint_location *) bl;
12337 expression_up exp;
12338
12339 if (!bl->shlib_disabled)
12340 {
12341 const char *s;
12342
12343 s = cond_string;
12344 TRY
12345 {
12346 exp = parse_exp_1 (&s, bl->address,
12347 block_for_pc (bl->address),
12348 0);
12349 }
12350 CATCH (e, RETURN_MASK_ERROR)
12351 {
12352 warning (_("failed to reevaluate internal exception condition "
12353 "for catchpoint %d: %s"),
12354 c->base.number, e.message);
12355 }
12356 END_CATCH
12357 }
12358
12359 ada_loc->excep_cond_expr = std::move (exp);
12360 }
12361
12362 do_cleanups (old_chain);
12363 }
12364
12365 /* Implement the DTOR method in the breakpoint_ops structure for all
12366 exception catchpoint kinds. */
12367
12368 static void
12369 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12370 {
12371 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12372
12373 xfree (c->excep_string);
12374
12375 bkpt_breakpoint_ops.dtor (b);
12376 }
12377
12378 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12379 structure for all exception catchpoint kinds. */
12380
12381 static struct bp_location *
12382 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12383 struct breakpoint *self)
12384 {
12385 struct ada_catchpoint_location *loc;
12386
12387 loc = new ada_catchpoint_location ();
12388 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12389 loc->excep_cond_expr = NULL;
12390 return &loc->base;
12391 }
12392
12393 /* Implement the RE_SET method in the breakpoint_ops structure for all
12394 exception catchpoint kinds. */
12395
12396 static void
12397 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12398 {
12399 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12400
12401 /* Call the base class's method. This updates the catchpoint's
12402 locations. */
12403 bkpt_breakpoint_ops.re_set (b);
12404
12405 /* Reparse the exception conditional expressions. One for each
12406 location. */
12407 create_excep_cond_exprs (c);
12408 }
12409
12410 /* Returns true if we should stop for this breakpoint hit. If the
12411 user specified a specific exception, we only want to cause a stop
12412 if the program thrown that exception. */
12413
12414 static int
12415 should_stop_exception (const struct bp_location *bl)
12416 {
12417 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12418 const struct ada_catchpoint_location *ada_loc
12419 = (const struct ada_catchpoint_location *) bl;
12420 int stop;
12421
12422 /* With no specific exception, should always stop. */
12423 if (c->excep_string == NULL)
12424 return 1;
12425
12426 if (ada_loc->excep_cond_expr == NULL)
12427 {
12428 /* We will have a NULL expression if back when we were creating
12429 the expressions, this location's had failed to parse. */
12430 return 1;
12431 }
12432
12433 stop = 1;
12434 TRY
12435 {
12436 struct value *mark;
12437
12438 mark = value_mark ();
12439 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12440 value_free_to_mark (mark);
12441 }
12442 CATCH (ex, RETURN_MASK_ALL)
12443 {
12444 exception_fprintf (gdb_stderr, ex,
12445 _("Error in testing exception condition:\n"));
12446 }
12447 END_CATCH
12448
12449 return stop;
12450 }
12451
12452 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12453 for all exception catchpoint kinds. */
12454
12455 static void
12456 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12457 {
12458 bs->stop = should_stop_exception (bs->bp_location_at);
12459 }
12460
12461 /* Implement the PRINT_IT method in the breakpoint_ops structure
12462 for all exception catchpoint kinds. */
12463
12464 static enum print_stop_action
12465 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12466 {
12467 struct ui_out *uiout = current_uiout;
12468 struct breakpoint *b = bs->breakpoint_at;
12469
12470 annotate_catchpoint (b->number);
12471
12472 if (uiout->is_mi_like_p ())
12473 {
12474 uiout->field_string ("reason",
12475 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12476 uiout->field_string ("disp", bpdisp_text (b->disposition));
12477 }
12478
12479 uiout->text (b->disposition == disp_del
12480 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12481 uiout->field_int ("bkptno", b->number);
12482 uiout->text (", ");
12483
12484 /* ada_exception_name_addr relies on the selected frame being the
12485 current frame. Need to do this here because this function may be
12486 called more than once when printing a stop, and below, we'll
12487 select the first frame past the Ada run-time (see
12488 ada_find_printable_frame). */
12489 select_frame (get_current_frame ());
12490
12491 switch (ex)
12492 {
12493 case ada_catch_exception:
12494 case ada_catch_exception_unhandled:
12495 {
12496 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12497 char exception_name[256];
12498
12499 if (addr != 0)
12500 {
12501 read_memory (addr, (gdb_byte *) exception_name,
12502 sizeof (exception_name) - 1);
12503 exception_name [sizeof (exception_name) - 1] = '\0';
12504 }
12505 else
12506 {
12507 /* For some reason, we were unable to read the exception
12508 name. This could happen if the Runtime was compiled
12509 without debugging info, for instance. In that case,
12510 just replace the exception name by the generic string
12511 "exception" - it will read as "an exception" in the
12512 notification we are about to print. */
12513 memcpy (exception_name, "exception", sizeof ("exception"));
12514 }
12515 /* In the case of unhandled exception breakpoints, we print
12516 the exception name as "unhandled EXCEPTION_NAME", to make
12517 it clearer to the user which kind of catchpoint just got
12518 hit. We used ui_out_text to make sure that this extra
12519 info does not pollute the exception name in the MI case. */
12520 if (ex == ada_catch_exception_unhandled)
12521 uiout->text ("unhandled ");
12522 uiout->field_string ("exception-name", exception_name);
12523 }
12524 break;
12525 case ada_catch_assert:
12526 /* In this case, the name of the exception is not really
12527 important. Just print "failed assertion" to make it clearer
12528 that his program just hit an assertion-failure catchpoint.
12529 We used ui_out_text because this info does not belong in
12530 the MI output. */
12531 uiout->text ("failed assertion");
12532 break;
12533 }
12534 uiout->text (" at ");
12535 ada_find_printable_frame (get_current_frame ());
12536
12537 return PRINT_SRC_AND_LOC;
12538 }
12539
12540 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12541 for all exception catchpoint kinds. */
12542
12543 static void
12544 print_one_exception (enum ada_exception_catchpoint_kind ex,
12545 struct breakpoint *b, struct bp_location **last_loc)
12546 {
12547 struct ui_out *uiout = current_uiout;
12548 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12549 struct value_print_options opts;
12550
12551 get_user_print_options (&opts);
12552 if (opts.addressprint)
12553 {
12554 annotate_field (4);
12555 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12556 }
12557
12558 annotate_field (5);
12559 *last_loc = b->loc;
12560 switch (ex)
12561 {
12562 case ada_catch_exception:
12563 if (c->excep_string != NULL)
12564 {
12565 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12566
12567 uiout->field_string ("what", msg);
12568 xfree (msg);
12569 }
12570 else
12571 uiout->field_string ("what", "all Ada exceptions");
12572
12573 break;
12574
12575 case ada_catch_exception_unhandled:
12576 uiout->field_string ("what", "unhandled Ada exceptions");
12577 break;
12578
12579 case ada_catch_assert:
12580 uiout->field_string ("what", "failed Ada assertions");
12581 break;
12582
12583 default:
12584 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12585 break;
12586 }
12587 }
12588
12589 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12590 for all exception catchpoint kinds. */
12591
12592 static void
12593 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12594 struct breakpoint *b)
12595 {
12596 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12597 struct ui_out *uiout = current_uiout;
12598
12599 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12600 : _("Catchpoint "));
12601 uiout->field_int ("bkptno", b->number);
12602 uiout->text (": ");
12603
12604 switch (ex)
12605 {
12606 case ada_catch_exception:
12607 if (c->excep_string != NULL)
12608 {
12609 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12610 struct cleanup *old_chain = make_cleanup (xfree, info);
12611
12612 uiout->text (info);
12613 do_cleanups (old_chain);
12614 }
12615 else
12616 uiout->text (_("all Ada exceptions"));
12617 break;
12618
12619 case ada_catch_exception_unhandled:
12620 uiout->text (_("unhandled Ada exceptions"));
12621 break;
12622
12623 case ada_catch_assert:
12624 uiout->text (_("failed Ada assertions"));
12625 break;
12626
12627 default:
12628 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12629 break;
12630 }
12631 }
12632
12633 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12634 for all exception catchpoint kinds. */
12635
12636 static void
12637 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12638 struct breakpoint *b, struct ui_file *fp)
12639 {
12640 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12641
12642 switch (ex)
12643 {
12644 case ada_catch_exception:
12645 fprintf_filtered (fp, "catch exception");
12646 if (c->excep_string != NULL)
12647 fprintf_filtered (fp, " %s", c->excep_string);
12648 break;
12649
12650 case ada_catch_exception_unhandled:
12651 fprintf_filtered (fp, "catch exception unhandled");
12652 break;
12653
12654 case ada_catch_assert:
12655 fprintf_filtered (fp, "catch assert");
12656 break;
12657
12658 default:
12659 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12660 }
12661 print_recreate_thread (b, fp);
12662 }
12663
12664 /* Virtual table for "catch exception" breakpoints. */
12665
12666 static void
12667 dtor_catch_exception (struct breakpoint *b)
12668 {
12669 dtor_exception (ada_catch_exception, b);
12670 }
12671
12672 static struct bp_location *
12673 allocate_location_catch_exception (struct breakpoint *self)
12674 {
12675 return allocate_location_exception (ada_catch_exception, self);
12676 }
12677
12678 static void
12679 re_set_catch_exception (struct breakpoint *b)
12680 {
12681 re_set_exception (ada_catch_exception, b);
12682 }
12683
12684 static void
12685 check_status_catch_exception (bpstat bs)
12686 {
12687 check_status_exception (ada_catch_exception, bs);
12688 }
12689
12690 static enum print_stop_action
12691 print_it_catch_exception (bpstat bs)
12692 {
12693 return print_it_exception (ada_catch_exception, bs);
12694 }
12695
12696 static void
12697 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12698 {
12699 print_one_exception (ada_catch_exception, b, last_loc);
12700 }
12701
12702 static void
12703 print_mention_catch_exception (struct breakpoint *b)
12704 {
12705 print_mention_exception (ada_catch_exception, b);
12706 }
12707
12708 static void
12709 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12710 {
12711 print_recreate_exception (ada_catch_exception, b, fp);
12712 }
12713
12714 static struct breakpoint_ops catch_exception_breakpoint_ops;
12715
12716 /* Virtual table for "catch exception unhandled" breakpoints. */
12717
12718 static void
12719 dtor_catch_exception_unhandled (struct breakpoint *b)
12720 {
12721 dtor_exception (ada_catch_exception_unhandled, b);
12722 }
12723
12724 static struct bp_location *
12725 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12726 {
12727 return allocate_location_exception (ada_catch_exception_unhandled, self);
12728 }
12729
12730 static void
12731 re_set_catch_exception_unhandled (struct breakpoint *b)
12732 {
12733 re_set_exception (ada_catch_exception_unhandled, b);
12734 }
12735
12736 static void
12737 check_status_catch_exception_unhandled (bpstat bs)
12738 {
12739 check_status_exception (ada_catch_exception_unhandled, bs);
12740 }
12741
12742 static enum print_stop_action
12743 print_it_catch_exception_unhandled (bpstat bs)
12744 {
12745 return print_it_exception (ada_catch_exception_unhandled, bs);
12746 }
12747
12748 static void
12749 print_one_catch_exception_unhandled (struct breakpoint *b,
12750 struct bp_location **last_loc)
12751 {
12752 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12753 }
12754
12755 static void
12756 print_mention_catch_exception_unhandled (struct breakpoint *b)
12757 {
12758 print_mention_exception (ada_catch_exception_unhandled, b);
12759 }
12760
12761 static void
12762 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12763 struct ui_file *fp)
12764 {
12765 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12766 }
12767
12768 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12769
12770 /* Virtual table for "catch assert" breakpoints. */
12771
12772 static void
12773 dtor_catch_assert (struct breakpoint *b)
12774 {
12775 dtor_exception (ada_catch_assert, b);
12776 }
12777
12778 static struct bp_location *
12779 allocate_location_catch_assert (struct breakpoint *self)
12780 {
12781 return allocate_location_exception (ada_catch_assert, self);
12782 }
12783
12784 static void
12785 re_set_catch_assert (struct breakpoint *b)
12786 {
12787 re_set_exception (ada_catch_assert, b);
12788 }
12789
12790 static void
12791 check_status_catch_assert (bpstat bs)
12792 {
12793 check_status_exception (ada_catch_assert, bs);
12794 }
12795
12796 static enum print_stop_action
12797 print_it_catch_assert (bpstat bs)
12798 {
12799 return print_it_exception (ada_catch_assert, bs);
12800 }
12801
12802 static void
12803 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12804 {
12805 print_one_exception (ada_catch_assert, b, last_loc);
12806 }
12807
12808 static void
12809 print_mention_catch_assert (struct breakpoint *b)
12810 {
12811 print_mention_exception (ada_catch_assert, b);
12812 }
12813
12814 static void
12815 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12816 {
12817 print_recreate_exception (ada_catch_assert, b, fp);
12818 }
12819
12820 static struct breakpoint_ops catch_assert_breakpoint_ops;
12821
12822 /* Return a newly allocated copy of the first space-separated token
12823 in ARGSP, and then adjust ARGSP to point immediately after that
12824 token.
12825
12826 Return NULL if ARGPS does not contain any more tokens. */
12827
12828 static char *
12829 ada_get_next_arg (char **argsp)
12830 {
12831 char *args = *argsp;
12832 char *end;
12833 char *result;
12834
12835 args = skip_spaces (args);
12836 if (args[0] == '\0')
12837 return NULL; /* No more arguments. */
12838
12839 /* Find the end of the current argument. */
12840
12841 end = skip_to_space (args);
12842
12843 /* Adjust ARGSP to point to the start of the next argument. */
12844
12845 *argsp = end;
12846
12847 /* Make a copy of the current argument and return it. */
12848
12849 result = (char *) xmalloc (end - args + 1);
12850 strncpy (result, args, end - args);
12851 result[end - args] = '\0';
12852
12853 return result;
12854 }
12855
12856 /* Split the arguments specified in a "catch exception" command.
12857 Set EX to the appropriate catchpoint type.
12858 Set EXCEP_STRING to the name of the specific exception if
12859 specified by the user.
12860 If a condition is found at the end of the arguments, the condition
12861 expression is stored in COND_STRING (memory must be deallocated
12862 after use). Otherwise COND_STRING is set to NULL. */
12863
12864 static void
12865 catch_ada_exception_command_split (char *args,
12866 enum ada_exception_catchpoint_kind *ex,
12867 char **excep_string,
12868 char **cond_string)
12869 {
12870 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12871 char *exception_name;
12872 char *cond = NULL;
12873
12874 exception_name = ada_get_next_arg (&args);
12875 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12876 {
12877 /* This is not an exception name; this is the start of a condition
12878 expression for a catchpoint on all exceptions. So, "un-get"
12879 this token, and set exception_name to NULL. */
12880 xfree (exception_name);
12881 exception_name = NULL;
12882 args -= 2;
12883 }
12884 make_cleanup (xfree, exception_name);
12885
12886 /* Check to see if we have a condition. */
12887
12888 args = skip_spaces (args);
12889 if (startswith (args, "if")
12890 && (isspace (args[2]) || args[2] == '\0'))
12891 {
12892 args += 2;
12893 args = skip_spaces (args);
12894
12895 if (args[0] == '\0')
12896 error (_("Condition missing after `if' keyword"));
12897 cond = xstrdup (args);
12898 make_cleanup (xfree, cond);
12899
12900 args += strlen (args);
12901 }
12902
12903 /* Check that we do not have any more arguments. Anything else
12904 is unexpected. */
12905
12906 if (args[0] != '\0')
12907 error (_("Junk at end of expression"));
12908
12909 discard_cleanups (old_chain);
12910
12911 if (exception_name == NULL)
12912 {
12913 /* Catch all exceptions. */
12914 *ex = ada_catch_exception;
12915 *excep_string = NULL;
12916 }
12917 else if (strcmp (exception_name, "unhandled") == 0)
12918 {
12919 /* Catch unhandled exceptions. */
12920 *ex = ada_catch_exception_unhandled;
12921 *excep_string = NULL;
12922 }
12923 else
12924 {
12925 /* Catch a specific exception. */
12926 *ex = ada_catch_exception;
12927 *excep_string = exception_name;
12928 }
12929 *cond_string = cond;
12930 }
12931
12932 /* Return the name of the symbol on which we should break in order to
12933 implement a catchpoint of the EX kind. */
12934
12935 static const char *
12936 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12937 {
12938 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12939
12940 gdb_assert (data->exception_info != NULL);
12941
12942 switch (ex)
12943 {
12944 case ada_catch_exception:
12945 return (data->exception_info->catch_exception_sym);
12946 break;
12947 case ada_catch_exception_unhandled:
12948 return (data->exception_info->catch_exception_unhandled_sym);
12949 break;
12950 case ada_catch_assert:
12951 return (data->exception_info->catch_assert_sym);
12952 break;
12953 default:
12954 internal_error (__FILE__, __LINE__,
12955 _("unexpected catchpoint kind (%d)"), ex);
12956 }
12957 }
12958
12959 /* Return the breakpoint ops "virtual table" used for catchpoints
12960 of the EX kind. */
12961
12962 static const struct breakpoint_ops *
12963 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12964 {
12965 switch (ex)
12966 {
12967 case ada_catch_exception:
12968 return (&catch_exception_breakpoint_ops);
12969 break;
12970 case ada_catch_exception_unhandled:
12971 return (&catch_exception_unhandled_breakpoint_ops);
12972 break;
12973 case ada_catch_assert:
12974 return (&catch_assert_breakpoint_ops);
12975 break;
12976 default:
12977 internal_error (__FILE__, __LINE__,
12978 _("unexpected catchpoint kind (%d)"), ex);
12979 }
12980 }
12981
12982 /* Return the condition that will be used to match the current exception
12983 being raised with the exception that the user wants to catch. This
12984 assumes that this condition is used when the inferior just triggered
12985 an exception catchpoint.
12986
12987 The string returned is a newly allocated string that needs to be
12988 deallocated later. */
12989
12990 static char *
12991 ada_exception_catchpoint_cond_string (const char *excep_string)
12992 {
12993 int i;
12994
12995 /* The standard exceptions are a special case. They are defined in
12996 runtime units that have been compiled without debugging info; if
12997 EXCEP_STRING is the not-fully-qualified name of a standard
12998 exception (e.g. "constraint_error") then, during the evaluation
12999 of the condition expression, the symbol lookup on this name would
13000 *not* return this standard exception. The catchpoint condition
13001 may then be set only on user-defined exceptions which have the
13002 same not-fully-qualified name (e.g. my_package.constraint_error).
13003
13004 To avoid this unexcepted behavior, these standard exceptions are
13005 systematically prefixed by "standard". This means that "catch
13006 exception constraint_error" is rewritten into "catch exception
13007 standard.constraint_error".
13008
13009 If an exception named contraint_error is defined in another package of
13010 the inferior program, then the only way to specify this exception as a
13011 breakpoint condition is to use its fully-qualified named:
13012 e.g. my_package.constraint_error. */
13013
13014 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13015 {
13016 if (strcmp (standard_exc [i], excep_string) == 0)
13017 {
13018 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
13019 excep_string);
13020 }
13021 }
13022 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
13023 }
13024
13025 /* Return the symtab_and_line that should be used to insert an exception
13026 catchpoint of the TYPE kind.
13027
13028 EXCEP_STRING should contain the name of a specific exception that
13029 the catchpoint should catch, or NULL otherwise.
13030
13031 ADDR_STRING returns the name of the function where the real
13032 breakpoint that implements the catchpoints is set, depending on the
13033 type of catchpoint we need to create. */
13034
13035 static struct symtab_and_line
13036 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
13037 char **addr_string, const struct breakpoint_ops **ops)
13038 {
13039 const char *sym_name;
13040 struct symbol *sym;
13041
13042 /* First, find out which exception support info to use. */
13043 ada_exception_support_info_sniffer ();
13044
13045 /* Then lookup the function on which we will break in order to catch
13046 the Ada exceptions requested by the user. */
13047 sym_name = ada_exception_sym_name (ex);
13048 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13049
13050 /* We can assume that SYM is not NULL at this stage. If the symbol
13051 did not exist, ada_exception_support_info_sniffer would have
13052 raised an exception.
13053
13054 Also, ada_exception_support_info_sniffer should have already
13055 verified that SYM is a function symbol. */
13056 gdb_assert (sym != NULL);
13057 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13058
13059 /* Set ADDR_STRING. */
13060 *addr_string = xstrdup (sym_name);
13061
13062 /* Set OPS. */
13063 *ops = ada_exception_breakpoint_ops (ex);
13064
13065 return find_function_start_sal (sym, 1);
13066 }
13067
13068 /* Create an Ada exception catchpoint.
13069
13070 EX_KIND is the kind of exception catchpoint to be created.
13071
13072 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13073 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13074 of the exception to which this catchpoint applies. When not NULL,
13075 the string must be allocated on the heap, and its deallocation
13076 is no longer the responsibility of the caller.
13077
13078 COND_STRING, if not NULL, is the catchpoint condition. This string
13079 must be allocated on the heap, and its deallocation is no longer
13080 the responsibility of the caller.
13081
13082 TEMPFLAG, if nonzero, means that the underlying breakpoint
13083 should be temporary.
13084
13085 FROM_TTY is the usual argument passed to all commands implementations. */
13086
13087 void
13088 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13089 enum ada_exception_catchpoint_kind ex_kind,
13090 char *excep_string,
13091 char *cond_string,
13092 int tempflag,
13093 int disabled,
13094 int from_tty)
13095 {
13096 struct ada_catchpoint *c;
13097 char *addr_string = NULL;
13098 const struct breakpoint_ops *ops = NULL;
13099 struct symtab_and_line sal
13100 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13101
13102 c = new ada_catchpoint ();
13103 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
13104 ops, tempflag, disabled, from_tty);
13105 c->excep_string = excep_string;
13106 create_excep_cond_exprs (c);
13107 if (cond_string != NULL)
13108 set_breakpoint_condition (&c->base, cond_string, from_tty);
13109 install_breakpoint (0, &c->base, 1);
13110 }
13111
13112 /* Implement the "catch exception" command. */
13113
13114 static void
13115 catch_ada_exception_command (char *arg, int from_tty,
13116 struct cmd_list_element *command)
13117 {
13118 struct gdbarch *gdbarch = get_current_arch ();
13119 int tempflag;
13120 enum ada_exception_catchpoint_kind ex_kind;
13121 char *excep_string = NULL;
13122 char *cond_string = NULL;
13123
13124 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13125
13126 if (!arg)
13127 arg = "";
13128 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13129 &cond_string);
13130 create_ada_exception_catchpoint (gdbarch, ex_kind,
13131 excep_string, cond_string,
13132 tempflag, 1 /* enabled */,
13133 from_tty);
13134 }
13135
13136 /* Split the arguments specified in a "catch assert" command.
13137
13138 ARGS contains the command's arguments (or the empty string if
13139 no arguments were passed).
13140
13141 If ARGS contains a condition, set COND_STRING to that condition
13142 (the memory needs to be deallocated after use). */
13143
13144 static void
13145 catch_ada_assert_command_split (char *args, char **cond_string)
13146 {
13147 args = skip_spaces (args);
13148
13149 /* Check whether a condition was provided. */
13150 if (startswith (args, "if")
13151 && (isspace (args[2]) || args[2] == '\0'))
13152 {
13153 args += 2;
13154 args = skip_spaces (args);
13155 if (args[0] == '\0')
13156 error (_("condition missing after `if' keyword"));
13157 *cond_string = xstrdup (args);
13158 }
13159
13160 /* Otherwise, there should be no other argument at the end of
13161 the command. */
13162 else if (args[0] != '\0')
13163 error (_("Junk at end of arguments."));
13164 }
13165
13166 /* Implement the "catch assert" command. */
13167
13168 static void
13169 catch_assert_command (char *arg, int from_tty,
13170 struct cmd_list_element *command)
13171 {
13172 struct gdbarch *gdbarch = get_current_arch ();
13173 int tempflag;
13174 char *cond_string = NULL;
13175
13176 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13177
13178 if (!arg)
13179 arg = "";
13180 catch_ada_assert_command_split (arg, &cond_string);
13181 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13182 NULL, cond_string,
13183 tempflag, 1 /* enabled */,
13184 from_tty);
13185 }
13186
13187 /* Return non-zero if the symbol SYM is an Ada exception object. */
13188
13189 static int
13190 ada_is_exception_sym (struct symbol *sym)
13191 {
13192 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13193
13194 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13195 && SYMBOL_CLASS (sym) != LOC_BLOCK
13196 && SYMBOL_CLASS (sym) != LOC_CONST
13197 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13198 && type_name != NULL && strcmp (type_name, "exception") == 0);
13199 }
13200
13201 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13202 Ada exception object. This matches all exceptions except the ones
13203 defined by the Ada language. */
13204
13205 static int
13206 ada_is_non_standard_exception_sym (struct symbol *sym)
13207 {
13208 int i;
13209
13210 if (!ada_is_exception_sym (sym))
13211 return 0;
13212
13213 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13214 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13215 return 0; /* A standard exception. */
13216
13217 /* Numeric_Error is also a standard exception, so exclude it.
13218 See the STANDARD_EXC description for more details as to why
13219 this exception is not listed in that array. */
13220 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13221 return 0;
13222
13223 return 1;
13224 }
13225
13226 /* A helper function for qsort, comparing two struct ada_exc_info
13227 objects.
13228
13229 The comparison is determined first by exception name, and then
13230 by exception address. */
13231
13232 static int
13233 compare_ada_exception_info (const void *a, const void *b)
13234 {
13235 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13236 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13237 int result;
13238
13239 result = strcmp (exc_a->name, exc_b->name);
13240 if (result != 0)
13241 return result;
13242
13243 if (exc_a->addr < exc_b->addr)
13244 return -1;
13245 if (exc_a->addr > exc_b->addr)
13246 return 1;
13247
13248 return 0;
13249 }
13250
13251 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13252 routine, but keeping the first SKIP elements untouched.
13253
13254 All duplicates are also removed. */
13255
13256 static void
13257 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13258 int skip)
13259 {
13260 struct ada_exc_info *to_sort
13261 = VEC_address (ada_exc_info, *exceptions) + skip;
13262 int to_sort_len
13263 = VEC_length (ada_exc_info, *exceptions) - skip;
13264 int i, j;
13265
13266 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13267 compare_ada_exception_info);
13268
13269 for (i = 1, j = 1; i < to_sort_len; i++)
13270 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13271 to_sort[j++] = to_sort[i];
13272 to_sort_len = j;
13273 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13274 }
13275
13276 /* A function intended as the "name_matcher" callback in the struct
13277 quick_symbol_functions' expand_symtabs_matching method.
13278
13279 SEARCH_NAME is the symbol's search name.
13280
13281 If USER_DATA is not NULL, it is a pointer to a regext_t object
13282 used to match the symbol (by natural name). Otherwise, when USER_DATA
13283 is null, no filtering is performed, and all symbols are a positive
13284 match. */
13285
13286 static int
13287 ada_exc_search_name_matches (const char *search_name, void *user_data)
13288 {
13289 regex_t *preg = (regex_t *) user_data;
13290
13291 if (preg == NULL)
13292 return 1;
13293
13294 /* In Ada, the symbol "search name" is a linkage name, whereas
13295 the regular expression used to do the matching refers to
13296 the natural name. So match against the decoded name. */
13297 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13298 }
13299
13300 /* Add all exceptions defined by the Ada standard whose name match
13301 a regular expression.
13302
13303 If PREG is not NULL, then this regexp_t object is used to
13304 perform the symbol name matching. Otherwise, no name-based
13305 filtering is performed.
13306
13307 EXCEPTIONS is a vector of exceptions to which matching exceptions
13308 gets pushed. */
13309
13310 static void
13311 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13312 {
13313 int i;
13314
13315 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13316 {
13317 if (preg == NULL
13318 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13319 {
13320 struct bound_minimal_symbol msymbol
13321 = ada_lookup_simple_minsym (standard_exc[i]);
13322
13323 if (msymbol.minsym != NULL)
13324 {
13325 struct ada_exc_info info
13326 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13327
13328 VEC_safe_push (ada_exc_info, *exceptions, &info);
13329 }
13330 }
13331 }
13332 }
13333
13334 /* Add all Ada exceptions defined locally and accessible from the given
13335 FRAME.
13336
13337 If PREG is not NULL, then this regexp_t object is used to
13338 perform the symbol name matching. Otherwise, no name-based
13339 filtering is performed.
13340
13341 EXCEPTIONS is a vector of exceptions to which matching exceptions
13342 gets pushed. */
13343
13344 static void
13345 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13346 VEC(ada_exc_info) **exceptions)
13347 {
13348 const struct block *block = get_frame_block (frame, 0);
13349
13350 while (block != 0)
13351 {
13352 struct block_iterator iter;
13353 struct symbol *sym;
13354
13355 ALL_BLOCK_SYMBOLS (block, iter, sym)
13356 {
13357 switch (SYMBOL_CLASS (sym))
13358 {
13359 case LOC_TYPEDEF:
13360 case LOC_BLOCK:
13361 case LOC_CONST:
13362 break;
13363 default:
13364 if (ada_is_exception_sym (sym))
13365 {
13366 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13367 SYMBOL_VALUE_ADDRESS (sym)};
13368
13369 VEC_safe_push (ada_exc_info, *exceptions, &info);
13370 }
13371 }
13372 }
13373 if (BLOCK_FUNCTION (block) != NULL)
13374 break;
13375 block = BLOCK_SUPERBLOCK (block);
13376 }
13377 }
13378
13379 /* Add all exceptions defined globally whose name name match
13380 a regular expression, excluding standard exceptions.
13381
13382 The reason we exclude standard exceptions is that they need
13383 to be handled separately: Standard exceptions are defined inside
13384 a runtime unit which is normally not compiled with debugging info,
13385 and thus usually do not show up in our symbol search. However,
13386 if the unit was in fact built with debugging info, we need to
13387 exclude them because they would duplicate the entry we found
13388 during the special loop that specifically searches for those
13389 standard exceptions.
13390
13391 If PREG is not NULL, then this regexp_t object is used to
13392 perform the symbol name matching. Otherwise, no name-based
13393 filtering is performed.
13394
13395 EXCEPTIONS is a vector of exceptions to which matching exceptions
13396 gets pushed. */
13397
13398 static void
13399 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13400 {
13401 struct objfile *objfile;
13402 struct compunit_symtab *s;
13403
13404 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
13405 VARIABLES_DOMAIN, preg);
13406
13407 ALL_COMPUNITS (objfile, s)
13408 {
13409 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13410 int i;
13411
13412 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13413 {
13414 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13415 struct block_iterator iter;
13416 struct symbol *sym;
13417
13418 ALL_BLOCK_SYMBOLS (b, iter, sym)
13419 if (ada_is_non_standard_exception_sym (sym)
13420 && (preg == NULL
13421 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13422 0, NULL, 0) == 0))
13423 {
13424 struct ada_exc_info info
13425 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13426
13427 VEC_safe_push (ada_exc_info, *exceptions, &info);
13428 }
13429 }
13430 }
13431 }
13432
13433 /* Implements ada_exceptions_list with the regular expression passed
13434 as a regex_t, rather than a string.
13435
13436 If not NULL, PREG is used to filter out exceptions whose names
13437 do not match. Otherwise, all exceptions are listed. */
13438
13439 static VEC(ada_exc_info) *
13440 ada_exceptions_list_1 (regex_t *preg)
13441 {
13442 VEC(ada_exc_info) *result = NULL;
13443 struct cleanup *old_chain
13444 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13445 int prev_len;
13446
13447 /* First, list the known standard exceptions. These exceptions
13448 need to be handled separately, as they are usually defined in
13449 runtime units that have been compiled without debugging info. */
13450
13451 ada_add_standard_exceptions (preg, &result);
13452
13453 /* Next, find all exceptions whose scope is local and accessible
13454 from the currently selected frame. */
13455
13456 if (has_stack_frames ())
13457 {
13458 prev_len = VEC_length (ada_exc_info, result);
13459 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13460 &result);
13461 if (VEC_length (ada_exc_info, result) > prev_len)
13462 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13463 }
13464
13465 /* Add all exceptions whose scope is global. */
13466
13467 prev_len = VEC_length (ada_exc_info, result);
13468 ada_add_global_exceptions (preg, &result);
13469 if (VEC_length (ada_exc_info, result) > prev_len)
13470 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13471
13472 discard_cleanups (old_chain);
13473 return result;
13474 }
13475
13476 /* Return a vector of ada_exc_info.
13477
13478 If REGEXP is NULL, all exceptions are included in the result.
13479 Otherwise, it should contain a valid regular expression,
13480 and only the exceptions whose names match that regular expression
13481 are included in the result.
13482
13483 The exceptions are sorted in the following order:
13484 - Standard exceptions (defined by the Ada language), in
13485 alphabetical order;
13486 - Exceptions only visible from the current frame, in
13487 alphabetical order;
13488 - Exceptions whose scope is global, in alphabetical order. */
13489
13490 VEC(ada_exc_info) *
13491 ada_exceptions_list (const char *regexp)
13492 {
13493 VEC(ada_exc_info) *result = NULL;
13494 struct cleanup *old_chain = NULL;
13495 regex_t reg;
13496
13497 if (regexp != NULL)
13498 old_chain = compile_rx_or_error (&reg, regexp,
13499 _("invalid regular expression"));
13500
13501 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13502
13503 if (old_chain != NULL)
13504 do_cleanups (old_chain);
13505 return result;
13506 }
13507
13508 /* Implement the "info exceptions" command. */
13509
13510 static void
13511 info_exceptions_command (char *regexp, int from_tty)
13512 {
13513 VEC(ada_exc_info) *exceptions;
13514 struct cleanup *cleanup;
13515 struct gdbarch *gdbarch = get_current_arch ();
13516 int ix;
13517 struct ada_exc_info *info;
13518
13519 exceptions = ada_exceptions_list (regexp);
13520 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13521
13522 if (regexp != NULL)
13523 printf_filtered
13524 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13525 else
13526 printf_filtered (_("All defined Ada exceptions:\n"));
13527
13528 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13529 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13530
13531 do_cleanups (cleanup);
13532 }
13533
13534 /* Operators */
13535 /* Information about operators given special treatment in functions
13536 below. */
13537 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13538
13539 #define ADA_OPERATORS \
13540 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13541 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13542 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13543 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13544 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13545 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13546 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13547 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13548 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13549 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13550 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13551 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13552 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13553 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13554 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13555 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13556 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13557 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13558 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13559
13560 static void
13561 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13562 int *argsp)
13563 {
13564 switch (exp->elts[pc - 1].opcode)
13565 {
13566 default:
13567 operator_length_standard (exp, pc, oplenp, argsp);
13568 break;
13569
13570 #define OP_DEFN(op, len, args, binop) \
13571 case op: *oplenp = len; *argsp = args; break;
13572 ADA_OPERATORS;
13573 #undef OP_DEFN
13574
13575 case OP_AGGREGATE:
13576 *oplenp = 3;
13577 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13578 break;
13579
13580 case OP_CHOICES:
13581 *oplenp = 3;
13582 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13583 break;
13584 }
13585 }
13586
13587 /* Implementation of the exp_descriptor method operator_check. */
13588
13589 static int
13590 ada_operator_check (struct expression *exp, int pos,
13591 int (*objfile_func) (struct objfile *objfile, void *data),
13592 void *data)
13593 {
13594 const union exp_element *const elts = exp->elts;
13595 struct type *type = NULL;
13596
13597 switch (elts[pos].opcode)
13598 {
13599 case UNOP_IN_RANGE:
13600 case UNOP_QUAL:
13601 type = elts[pos + 1].type;
13602 break;
13603
13604 default:
13605 return operator_check_standard (exp, pos, objfile_func, data);
13606 }
13607
13608 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13609
13610 if (type && TYPE_OBJFILE (type)
13611 && (*objfile_func) (TYPE_OBJFILE (type), data))
13612 return 1;
13613
13614 return 0;
13615 }
13616
13617 static char *
13618 ada_op_name (enum exp_opcode opcode)
13619 {
13620 switch (opcode)
13621 {
13622 default:
13623 return op_name_standard (opcode);
13624
13625 #define OP_DEFN(op, len, args, binop) case op: return #op;
13626 ADA_OPERATORS;
13627 #undef OP_DEFN
13628
13629 case OP_AGGREGATE:
13630 return "OP_AGGREGATE";
13631 case OP_CHOICES:
13632 return "OP_CHOICES";
13633 case OP_NAME:
13634 return "OP_NAME";
13635 }
13636 }
13637
13638 /* As for operator_length, but assumes PC is pointing at the first
13639 element of the operator, and gives meaningful results only for the
13640 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13641
13642 static void
13643 ada_forward_operator_length (struct expression *exp, int pc,
13644 int *oplenp, int *argsp)
13645 {
13646 switch (exp->elts[pc].opcode)
13647 {
13648 default:
13649 *oplenp = *argsp = 0;
13650 break;
13651
13652 #define OP_DEFN(op, len, args, binop) \
13653 case op: *oplenp = len; *argsp = args; break;
13654 ADA_OPERATORS;
13655 #undef OP_DEFN
13656
13657 case OP_AGGREGATE:
13658 *oplenp = 3;
13659 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13660 break;
13661
13662 case OP_CHOICES:
13663 *oplenp = 3;
13664 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13665 break;
13666
13667 case OP_STRING:
13668 case OP_NAME:
13669 {
13670 int len = longest_to_int (exp->elts[pc + 1].longconst);
13671
13672 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13673 *argsp = 0;
13674 break;
13675 }
13676 }
13677 }
13678
13679 static int
13680 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13681 {
13682 enum exp_opcode op = exp->elts[elt].opcode;
13683 int oplen, nargs;
13684 int pc = elt;
13685 int i;
13686
13687 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13688
13689 switch (op)
13690 {
13691 /* Ada attributes ('Foo). */
13692 case OP_ATR_FIRST:
13693 case OP_ATR_LAST:
13694 case OP_ATR_LENGTH:
13695 case OP_ATR_IMAGE:
13696 case OP_ATR_MAX:
13697 case OP_ATR_MIN:
13698 case OP_ATR_MODULUS:
13699 case OP_ATR_POS:
13700 case OP_ATR_SIZE:
13701 case OP_ATR_TAG:
13702 case OP_ATR_VAL:
13703 break;
13704
13705 case UNOP_IN_RANGE:
13706 case UNOP_QUAL:
13707 /* XXX: gdb_sprint_host_address, type_sprint */
13708 fprintf_filtered (stream, _("Type @"));
13709 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13710 fprintf_filtered (stream, " (");
13711 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13712 fprintf_filtered (stream, ")");
13713 break;
13714 case BINOP_IN_BOUNDS:
13715 fprintf_filtered (stream, " (%d)",
13716 longest_to_int (exp->elts[pc + 2].longconst));
13717 break;
13718 case TERNOP_IN_RANGE:
13719 break;
13720
13721 case OP_AGGREGATE:
13722 case OP_OTHERS:
13723 case OP_DISCRETE_RANGE:
13724 case OP_POSITIONAL:
13725 case OP_CHOICES:
13726 break;
13727
13728 case OP_NAME:
13729 case OP_STRING:
13730 {
13731 char *name = &exp->elts[elt + 2].string;
13732 int len = longest_to_int (exp->elts[elt + 1].longconst);
13733
13734 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13735 break;
13736 }
13737
13738 default:
13739 return dump_subexp_body_standard (exp, stream, elt);
13740 }
13741
13742 elt += oplen;
13743 for (i = 0; i < nargs; i += 1)
13744 elt = dump_subexp (exp, stream, elt);
13745
13746 return elt;
13747 }
13748
13749 /* The Ada extension of print_subexp (q.v.). */
13750
13751 static void
13752 ada_print_subexp (struct expression *exp, int *pos,
13753 struct ui_file *stream, enum precedence prec)
13754 {
13755 int oplen, nargs, i;
13756 int pc = *pos;
13757 enum exp_opcode op = exp->elts[pc].opcode;
13758
13759 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13760
13761 *pos += oplen;
13762 switch (op)
13763 {
13764 default:
13765 *pos -= oplen;
13766 print_subexp_standard (exp, pos, stream, prec);
13767 return;
13768
13769 case OP_VAR_VALUE:
13770 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13771 return;
13772
13773 case BINOP_IN_BOUNDS:
13774 /* XXX: sprint_subexp */
13775 print_subexp (exp, pos, stream, PREC_SUFFIX);
13776 fputs_filtered (" in ", stream);
13777 print_subexp (exp, pos, stream, PREC_SUFFIX);
13778 fputs_filtered ("'range", stream);
13779 if (exp->elts[pc + 1].longconst > 1)
13780 fprintf_filtered (stream, "(%ld)",
13781 (long) exp->elts[pc + 1].longconst);
13782 return;
13783
13784 case TERNOP_IN_RANGE:
13785 if (prec >= PREC_EQUAL)
13786 fputs_filtered ("(", stream);
13787 /* XXX: sprint_subexp */
13788 print_subexp (exp, pos, stream, PREC_SUFFIX);
13789 fputs_filtered (" in ", stream);
13790 print_subexp (exp, pos, stream, PREC_EQUAL);
13791 fputs_filtered (" .. ", stream);
13792 print_subexp (exp, pos, stream, PREC_EQUAL);
13793 if (prec >= PREC_EQUAL)
13794 fputs_filtered (")", stream);
13795 return;
13796
13797 case OP_ATR_FIRST:
13798 case OP_ATR_LAST:
13799 case OP_ATR_LENGTH:
13800 case OP_ATR_IMAGE:
13801 case OP_ATR_MAX:
13802 case OP_ATR_MIN:
13803 case OP_ATR_MODULUS:
13804 case OP_ATR_POS:
13805 case OP_ATR_SIZE:
13806 case OP_ATR_TAG:
13807 case OP_ATR_VAL:
13808 if (exp->elts[*pos].opcode == OP_TYPE)
13809 {
13810 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13811 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13812 &type_print_raw_options);
13813 *pos += 3;
13814 }
13815 else
13816 print_subexp (exp, pos, stream, PREC_SUFFIX);
13817 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13818 if (nargs > 1)
13819 {
13820 int tem;
13821
13822 for (tem = 1; tem < nargs; tem += 1)
13823 {
13824 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13825 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13826 }
13827 fputs_filtered (")", stream);
13828 }
13829 return;
13830
13831 case UNOP_QUAL:
13832 type_print (exp->elts[pc + 1].type, "", stream, 0);
13833 fputs_filtered ("'(", stream);
13834 print_subexp (exp, pos, stream, PREC_PREFIX);
13835 fputs_filtered (")", stream);
13836 return;
13837
13838 case UNOP_IN_RANGE:
13839 /* XXX: sprint_subexp */
13840 print_subexp (exp, pos, stream, PREC_SUFFIX);
13841 fputs_filtered (" in ", stream);
13842 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13843 &type_print_raw_options);
13844 return;
13845
13846 case OP_DISCRETE_RANGE:
13847 print_subexp (exp, pos, stream, PREC_SUFFIX);
13848 fputs_filtered ("..", stream);
13849 print_subexp (exp, pos, stream, PREC_SUFFIX);
13850 return;
13851
13852 case OP_OTHERS:
13853 fputs_filtered ("others => ", stream);
13854 print_subexp (exp, pos, stream, PREC_SUFFIX);
13855 return;
13856
13857 case OP_CHOICES:
13858 for (i = 0; i < nargs-1; i += 1)
13859 {
13860 if (i > 0)
13861 fputs_filtered ("|", stream);
13862 print_subexp (exp, pos, stream, PREC_SUFFIX);
13863 }
13864 fputs_filtered (" => ", stream);
13865 print_subexp (exp, pos, stream, PREC_SUFFIX);
13866 return;
13867
13868 case OP_POSITIONAL:
13869 print_subexp (exp, pos, stream, PREC_SUFFIX);
13870 return;
13871
13872 case OP_AGGREGATE:
13873 fputs_filtered ("(", stream);
13874 for (i = 0; i < nargs; i += 1)
13875 {
13876 if (i > 0)
13877 fputs_filtered (", ", stream);
13878 print_subexp (exp, pos, stream, PREC_SUFFIX);
13879 }
13880 fputs_filtered (")", stream);
13881 return;
13882 }
13883 }
13884
13885 /* Table mapping opcodes into strings for printing operators
13886 and precedences of the operators. */
13887
13888 static const struct op_print ada_op_print_tab[] = {
13889 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13890 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13891 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13892 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13893 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13894 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13895 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13896 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13897 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13898 {">=", BINOP_GEQ, PREC_ORDER, 0},
13899 {">", BINOP_GTR, PREC_ORDER, 0},
13900 {"<", BINOP_LESS, PREC_ORDER, 0},
13901 {">>", BINOP_RSH, PREC_SHIFT, 0},
13902 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13903 {"+", BINOP_ADD, PREC_ADD, 0},
13904 {"-", BINOP_SUB, PREC_ADD, 0},
13905 {"&", BINOP_CONCAT, PREC_ADD, 0},
13906 {"*", BINOP_MUL, PREC_MUL, 0},
13907 {"/", BINOP_DIV, PREC_MUL, 0},
13908 {"rem", BINOP_REM, PREC_MUL, 0},
13909 {"mod", BINOP_MOD, PREC_MUL, 0},
13910 {"**", BINOP_EXP, PREC_REPEAT, 0},
13911 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13912 {"-", UNOP_NEG, PREC_PREFIX, 0},
13913 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13914 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13915 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13916 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13917 {".all", UNOP_IND, PREC_SUFFIX, 1},
13918 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13919 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13920 {NULL, OP_NULL, PREC_SUFFIX, 0}
13921 };
13922 \f
13923 enum ada_primitive_types {
13924 ada_primitive_type_int,
13925 ada_primitive_type_long,
13926 ada_primitive_type_short,
13927 ada_primitive_type_char,
13928 ada_primitive_type_float,
13929 ada_primitive_type_double,
13930 ada_primitive_type_void,
13931 ada_primitive_type_long_long,
13932 ada_primitive_type_long_double,
13933 ada_primitive_type_natural,
13934 ada_primitive_type_positive,
13935 ada_primitive_type_system_address,
13936 nr_ada_primitive_types
13937 };
13938
13939 static void
13940 ada_language_arch_info (struct gdbarch *gdbarch,
13941 struct language_arch_info *lai)
13942 {
13943 const struct builtin_type *builtin = builtin_type (gdbarch);
13944
13945 lai->primitive_type_vector
13946 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13947 struct type *);
13948
13949 lai->primitive_type_vector [ada_primitive_type_int]
13950 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13951 0, "integer");
13952 lai->primitive_type_vector [ada_primitive_type_long]
13953 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13954 0, "long_integer");
13955 lai->primitive_type_vector [ada_primitive_type_short]
13956 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13957 0, "short_integer");
13958 lai->string_char_type
13959 = lai->primitive_type_vector [ada_primitive_type_char]
13960 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13961 lai->primitive_type_vector [ada_primitive_type_float]
13962 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13963 "float", gdbarch_float_format (gdbarch));
13964 lai->primitive_type_vector [ada_primitive_type_double]
13965 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13966 "long_float", gdbarch_double_format (gdbarch));
13967 lai->primitive_type_vector [ada_primitive_type_long_long]
13968 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13969 0, "long_long_integer");
13970 lai->primitive_type_vector [ada_primitive_type_long_double]
13971 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13972 "long_long_float", gdbarch_long_double_format (gdbarch));
13973 lai->primitive_type_vector [ada_primitive_type_natural]
13974 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13975 0, "natural");
13976 lai->primitive_type_vector [ada_primitive_type_positive]
13977 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13978 0, "positive");
13979 lai->primitive_type_vector [ada_primitive_type_void]
13980 = builtin->builtin_void;
13981
13982 lai->primitive_type_vector [ada_primitive_type_system_address]
13983 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13984 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13985 = "system__address";
13986
13987 lai->bool_type_symbol = NULL;
13988 lai->bool_type_default = builtin->builtin_bool;
13989 }
13990 \f
13991 /* Language vector */
13992
13993 /* Not really used, but needed in the ada_language_defn. */
13994
13995 static void
13996 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13997 {
13998 ada_emit_char (c, type, stream, quoter, 1);
13999 }
14000
14001 static int
14002 parse (struct parser_state *ps)
14003 {
14004 warnings_issued = 0;
14005 return ada_parse (ps);
14006 }
14007
14008 static const struct exp_descriptor ada_exp_descriptor = {
14009 ada_print_subexp,
14010 ada_operator_length,
14011 ada_operator_check,
14012 ada_op_name,
14013 ada_dump_subexp_body,
14014 ada_evaluate_subexp
14015 };
14016
14017 /* Implement the "la_get_symbol_name_cmp" language_defn method
14018 for Ada. */
14019
14020 static symbol_name_cmp_ftype
14021 ada_get_symbol_name_cmp (const char *lookup_name)
14022 {
14023 if (should_use_wild_match (lookup_name))
14024 return wild_match;
14025 else
14026 return compare_names;
14027 }
14028
14029 /* Implement the "la_read_var_value" language_defn method for Ada. */
14030
14031 static struct value *
14032 ada_read_var_value (struct symbol *var, const struct block *var_block,
14033 struct frame_info *frame)
14034 {
14035 const struct block *frame_block = NULL;
14036 struct symbol *renaming_sym = NULL;
14037
14038 /* The only case where default_read_var_value is not sufficient
14039 is when VAR is a renaming... */
14040 if (frame)
14041 frame_block = get_frame_block (frame, NULL);
14042 if (frame_block)
14043 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14044 if (renaming_sym != NULL)
14045 return ada_read_renaming_var_value (renaming_sym, frame_block);
14046
14047 /* This is a typical case where we expect the default_read_var_value
14048 function to work. */
14049 return default_read_var_value (var, var_block, frame);
14050 }
14051
14052 static const char *ada_extensions[] =
14053 {
14054 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14055 };
14056
14057 const struct language_defn ada_language_defn = {
14058 "ada", /* Language name */
14059 "Ada",
14060 language_ada,
14061 range_check_off,
14062 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14063 that's not quite what this means. */
14064 array_row_major,
14065 macro_expansion_no,
14066 ada_extensions,
14067 &ada_exp_descriptor,
14068 parse,
14069 ada_yyerror,
14070 resolve,
14071 ada_printchar, /* Print a character constant */
14072 ada_printstr, /* Function to print string constant */
14073 emit_char, /* Function to print single char (not used) */
14074 ada_print_type, /* Print a type using appropriate syntax */
14075 ada_print_typedef, /* Print a typedef using appropriate syntax */
14076 ada_val_print, /* Print a value using appropriate syntax */
14077 ada_value_print, /* Print a top-level value */
14078 ada_read_var_value, /* la_read_var_value */
14079 NULL, /* Language specific skip_trampoline */
14080 NULL, /* name_of_this */
14081 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14082 basic_lookup_transparent_type, /* lookup_transparent_type */
14083 ada_la_decode, /* Language specific symbol demangler */
14084 ada_sniff_from_mangled_name,
14085 NULL, /* Language specific
14086 class_name_from_physname */
14087 ada_op_print_tab, /* expression operators for printing */
14088 0, /* c-style arrays */
14089 1, /* String lower bound */
14090 ada_get_gdb_completer_word_break_characters,
14091 ada_make_symbol_completion_list,
14092 ada_language_arch_info,
14093 ada_print_array_index,
14094 default_pass_by_reference,
14095 c_get_string,
14096 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
14097 ada_iterate_over_symbols,
14098 &ada_varobj_ops,
14099 NULL,
14100 NULL,
14101 LANG_MAGIC
14102 };
14103
14104 /* Provide a prototype to silence -Wmissing-prototypes. */
14105 extern initialize_file_ftype _initialize_ada_language;
14106
14107 /* Command-list for the "set/show ada" prefix command. */
14108 static struct cmd_list_element *set_ada_list;
14109 static struct cmd_list_element *show_ada_list;
14110
14111 /* Implement the "set ada" prefix command. */
14112
14113 static void
14114 set_ada_command (char *arg, int from_tty)
14115 {
14116 printf_unfiltered (_(\
14117 "\"set ada\" must be followed by the name of a setting.\n"));
14118 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14119 }
14120
14121 /* Implement the "show ada" prefix command. */
14122
14123 static void
14124 show_ada_command (char *args, int from_tty)
14125 {
14126 cmd_show_list (show_ada_list, from_tty, "");
14127 }
14128
14129 static void
14130 initialize_ada_catchpoint_ops (void)
14131 {
14132 struct breakpoint_ops *ops;
14133
14134 initialize_breakpoint_ops ();
14135
14136 ops = &catch_exception_breakpoint_ops;
14137 *ops = bkpt_breakpoint_ops;
14138 ops->dtor = dtor_catch_exception;
14139 ops->allocate_location = allocate_location_catch_exception;
14140 ops->re_set = re_set_catch_exception;
14141 ops->check_status = check_status_catch_exception;
14142 ops->print_it = print_it_catch_exception;
14143 ops->print_one = print_one_catch_exception;
14144 ops->print_mention = print_mention_catch_exception;
14145 ops->print_recreate = print_recreate_catch_exception;
14146
14147 ops = &catch_exception_unhandled_breakpoint_ops;
14148 *ops = bkpt_breakpoint_ops;
14149 ops->dtor = dtor_catch_exception_unhandled;
14150 ops->allocate_location = allocate_location_catch_exception_unhandled;
14151 ops->re_set = re_set_catch_exception_unhandled;
14152 ops->check_status = check_status_catch_exception_unhandled;
14153 ops->print_it = print_it_catch_exception_unhandled;
14154 ops->print_one = print_one_catch_exception_unhandled;
14155 ops->print_mention = print_mention_catch_exception_unhandled;
14156 ops->print_recreate = print_recreate_catch_exception_unhandled;
14157
14158 ops = &catch_assert_breakpoint_ops;
14159 *ops = bkpt_breakpoint_ops;
14160 ops->dtor = dtor_catch_assert;
14161 ops->allocate_location = allocate_location_catch_assert;
14162 ops->re_set = re_set_catch_assert;
14163 ops->check_status = check_status_catch_assert;
14164 ops->print_it = print_it_catch_assert;
14165 ops->print_one = print_one_catch_assert;
14166 ops->print_mention = print_mention_catch_assert;
14167 ops->print_recreate = print_recreate_catch_assert;
14168 }
14169
14170 /* This module's 'new_objfile' observer. */
14171
14172 static void
14173 ada_new_objfile_observer (struct objfile *objfile)
14174 {
14175 ada_clear_symbol_cache ();
14176 }
14177
14178 /* This module's 'free_objfile' observer. */
14179
14180 static void
14181 ada_free_objfile_observer (struct objfile *objfile)
14182 {
14183 ada_clear_symbol_cache ();
14184 }
14185
14186 void
14187 _initialize_ada_language (void)
14188 {
14189 add_language (&ada_language_defn);
14190
14191 initialize_ada_catchpoint_ops ();
14192
14193 add_prefix_cmd ("ada", no_class, set_ada_command,
14194 _("Prefix command for changing Ada-specfic settings"),
14195 &set_ada_list, "set ada ", 0, &setlist);
14196
14197 add_prefix_cmd ("ada", no_class, show_ada_command,
14198 _("Generic command for showing Ada-specific settings."),
14199 &show_ada_list, "show ada ", 0, &showlist);
14200
14201 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14202 &trust_pad_over_xvs, _("\
14203 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14204 Show whether an optimization trusting PAD types over XVS types is activated"),
14205 _("\
14206 This is related to the encoding used by the GNAT compiler. The debugger\n\
14207 should normally trust the contents of PAD types, but certain older versions\n\
14208 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14209 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14210 work around this bug. It is always safe to turn this option \"off\", but\n\
14211 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14212 this option to \"off\" unless necessary."),
14213 NULL, NULL, &set_ada_list, &show_ada_list);
14214
14215 add_setshow_boolean_cmd ("print-signatures", class_vars,
14216 &print_signatures, _("\
14217 Enable or disable the output of formal and return types for functions in the \
14218 overloads selection menu"), _("\
14219 Show whether the output of formal and return types for functions in the \
14220 overloads selection menu is activated"),
14221 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14222
14223 add_catch_command ("exception", _("\
14224 Catch Ada exceptions, when raised.\n\
14225 With an argument, catch only exceptions with the given name."),
14226 catch_ada_exception_command,
14227 NULL,
14228 CATCH_PERMANENT,
14229 CATCH_TEMPORARY);
14230 add_catch_command ("assert", _("\
14231 Catch failed Ada assertions, when raised.\n\
14232 With an argument, catch only exceptions with the given name."),
14233 catch_assert_command,
14234 NULL,
14235 CATCH_PERMANENT,
14236 CATCH_TEMPORARY);
14237
14238 varsize_limit = 65536;
14239
14240 add_info ("exceptions", info_exceptions_command,
14241 _("\
14242 List all Ada exception names.\n\
14243 If a regular expression is passed as an argument, only those matching\n\
14244 the regular expression are listed."));
14245
14246 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14247 _("Set Ada maintenance-related variables."),
14248 &maint_set_ada_cmdlist, "maintenance set ada ",
14249 0/*allow-unknown*/, &maintenance_set_cmdlist);
14250
14251 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14252 _("Show Ada maintenance-related variables"),
14253 &maint_show_ada_cmdlist, "maintenance show ada ",
14254 0/*allow-unknown*/, &maintenance_show_cmdlist);
14255
14256 add_setshow_boolean_cmd
14257 ("ignore-descriptive-types", class_maintenance,
14258 &ada_ignore_descriptive_types_p,
14259 _("Set whether descriptive types generated by GNAT should be ignored."),
14260 _("Show whether descriptive types generated by GNAT should be ignored."),
14261 _("\
14262 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14263 DWARF attribute."),
14264 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14265
14266 obstack_init (&symbol_list_obstack);
14267
14268 decoded_names_store = htab_create_alloc
14269 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14270 NULL, xcalloc, xfree);
14271
14272 /* The ada-lang observers. */
14273 observer_attach_new_objfile (ada_new_objfile_observer);
14274 observer_attach_free_objfile (ada_free_objfile_observer);
14275 observer_attach_inferior_exit (ada_inferior_exit);
14276
14277 /* Setup various context-specific data. */
14278 ada_inferior_data
14279 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14280 ada_pspace_data_handle
14281 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14282 }
This page took 0.343862 seconds and 4 git commands to generate.