Support fusion for ELFv2 stubs
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <stdio.h>
23 #include <string.h>
24 #include <ctype.h>
25 #include <stdarg.h>
26 #include "demangle.h"
27 #include "gdb_regex.h"
28 #include "frame.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "expression.h"
33 #include "parser-defs.h"
34 #include "language.h"
35 #include "varobj.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include <sys/stat.h>
47 #include "ui-out.h"
48 #include "block.h"
49 #include "infcall.h"
50 #include "dictionary.h"
51 #include "exceptions.h"
52 #include "annotate.h"
53 #include "valprint.h"
54 #include "source.h"
55 #include "observer.h"
56 #include "vec.h"
57 #include "stack.h"
58 #include "gdb_vecs.h"
59 #include "typeprint.h"
60
61 #include "psymtab.h"
62 #include "value.h"
63 #include "mi/mi-common.h"
64 #include "arch-utils.h"
65 #include "cli/cli-utils.h"
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static int full_match (const char *, const char *);
108
109 static struct value *make_array_descriptor (struct type *, struct value *);
110
111 static void ada_add_block_symbols (struct obstack *,
112 const struct block *, const char *,
113 domain_enum, struct objfile *, int);
114
115 static int is_nonfunction (struct ada_symbol_info *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 const struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct ada_symbol_info *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, const struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 const struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (struct type *, struct value *);
169
170 static struct type *to_static_fixed_type (struct type *);
171 static struct type *static_unwrap_type (struct type *type);
172
173 static struct value *unwrap_value (struct value *);
174
175 static struct type *constrained_packed_array_type (struct type *, long *);
176
177 static struct type *decode_constrained_packed_array_type (struct type *);
178
179 static long decode_packed_array_bitsize (struct type *);
180
181 static struct value *decode_constrained_packed_array (struct value *);
182
183 static int ada_is_packed_array_type (struct type *);
184
185 static int ada_is_unconstrained_packed_array_type (struct type *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int advance_wild_match (const char **, const char *, int);
204
205 static int wild_match (const char *, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (const char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static int ada_resolve_function (struct ada_symbol_info *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234 static int ada_is_direct_array_type (struct type *);
235
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
238
239 static void check_size (const struct type *);
240
241 static struct value *ada_index_struct_field (int, struct value *, int,
242 struct type *);
243
244 static struct value *assign_aggregate (struct value *, struct value *,
245 struct expression *,
246 int *, enum noside);
247
248 static void aggregate_assign_from_choices (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *,
251 int, LONGEST, LONGEST);
252
253 static void aggregate_assign_positional (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int *, int,
256 LONGEST, LONGEST);
257
258
259 static void aggregate_assign_others (struct value *, struct value *,
260 struct expression *,
261 int *, LONGEST *, int, LONGEST, LONGEST);
262
263
264 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265
266
267 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268 int *, enum noside);
269
270 static void ada_forward_operator_length (struct expression *, int, int *,
271 int *);
272
273 static struct type *ada_find_any_type (const char *name);
274 \f
275
276 /* The result of a symbol lookup to be stored in our symbol cache. */
277
278 struct cache_entry
279 {
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
283 domain_enum namespace;
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292 };
293
294 /* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303 #define HASH_SIZE 1009
304
305 struct ada_symbol_cache
306 {
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312 };
313
314 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
315
316 /* Maximum-sized dynamic type. */
317 static unsigned int varsize_limit;
318
319 /* FIXME: brobecker/2003-09-17: No longer a const because it is
320 returned by a function that does not return a const char *. */
321 static char *ada_completer_word_break_characters =
322 #ifdef VMS
323 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
324 #else
325 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
326 #endif
327
328 /* The name of the symbol to use to get the name of the main subprogram. */
329 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
330 = "__gnat_ada_main_program_name";
331
332 /* Limit on the number of warnings to raise per expression evaluation. */
333 static int warning_limit = 2;
334
335 /* Number of warning messages issued; reset to 0 by cleanups after
336 expression evaluation. */
337 static int warnings_issued = 0;
338
339 static const char *known_runtime_file_name_patterns[] = {
340 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
341 };
342
343 static const char *known_auxiliary_function_name_patterns[] = {
344 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
345 };
346
347 /* Space for allocating results of ada_lookup_symbol_list. */
348 static struct obstack symbol_list_obstack;
349
350 /* Maintenance-related settings for this module. */
351
352 static struct cmd_list_element *maint_set_ada_cmdlist;
353 static struct cmd_list_element *maint_show_ada_cmdlist;
354
355 /* Implement the "maintenance set ada" (prefix) command. */
356
357 static void
358 maint_set_ada_cmd (char *args, int from_tty)
359 {
360 help_list (maint_set_ada_cmdlist, "maintenance set ada ", -1, gdb_stdout);
361 }
362
363 /* Implement the "maintenance show ada" (prefix) command. */
364
365 static void
366 maint_show_ada_cmd (char *args, int from_tty)
367 {
368 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
369 }
370
371 /* The "maintenance ada set/show ignore-descriptive-type" value. */
372
373 static int ada_ignore_descriptive_types_p = 0;
374
375 /* Inferior-specific data. */
376
377 /* Per-inferior data for this module. */
378
379 struct ada_inferior_data
380 {
381 /* The ada__tags__type_specific_data type, which is used when decoding
382 tagged types. With older versions of GNAT, this type was directly
383 accessible through a component ("tsd") in the object tag. But this
384 is no longer the case, so we cache it for each inferior. */
385 struct type *tsd_type;
386
387 /* The exception_support_info data. This data is used to determine
388 how to implement support for Ada exception catchpoints in a given
389 inferior. */
390 const struct exception_support_info *exception_info;
391 };
392
393 /* Our key to this module's inferior data. */
394 static const struct inferior_data *ada_inferior_data;
395
396 /* A cleanup routine for our inferior data. */
397 static void
398 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
399 {
400 struct ada_inferior_data *data;
401
402 data = inferior_data (inf, ada_inferior_data);
403 if (data != NULL)
404 xfree (data);
405 }
406
407 /* Return our inferior data for the given inferior (INF).
408
409 This function always returns a valid pointer to an allocated
410 ada_inferior_data structure. If INF's inferior data has not
411 been previously set, this functions creates a new one with all
412 fields set to zero, sets INF's inferior to it, and then returns
413 a pointer to that newly allocated ada_inferior_data. */
414
415 static struct ada_inferior_data *
416 get_ada_inferior_data (struct inferior *inf)
417 {
418 struct ada_inferior_data *data;
419
420 data = inferior_data (inf, ada_inferior_data);
421 if (data == NULL)
422 {
423 data = XCNEW (struct ada_inferior_data);
424 set_inferior_data (inf, ada_inferior_data, data);
425 }
426
427 return data;
428 }
429
430 /* Perform all necessary cleanups regarding our module's inferior data
431 that is required after the inferior INF just exited. */
432
433 static void
434 ada_inferior_exit (struct inferior *inf)
435 {
436 ada_inferior_data_cleanup (inf, NULL);
437 set_inferior_data (inf, ada_inferior_data, NULL);
438 }
439
440
441 /* program-space-specific data. */
442
443 /* This module's per-program-space data. */
444 struct ada_pspace_data
445 {
446 /* The Ada symbol cache. */
447 struct ada_symbol_cache *sym_cache;
448 };
449
450 /* Key to our per-program-space data. */
451 static const struct program_space_data *ada_pspace_data_handle;
452
453 /* Return this module's data for the given program space (PSPACE).
454 If not is found, add a zero'ed one now.
455
456 This function always returns a valid object. */
457
458 static struct ada_pspace_data *
459 get_ada_pspace_data (struct program_space *pspace)
460 {
461 struct ada_pspace_data *data;
462
463 data = program_space_data (pspace, ada_pspace_data_handle);
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471 }
472
473 /* The cleanup callback for this module's per-program-space data. */
474
475 static void
476 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477 {
478 struct ada_pspace_data *pspace_data = data;
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483 }
484
485 /* Utilities */
486
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514 static struct type *
515 ada_typedef_target_type (struct type *type)
516 {
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520 }
521
522 /* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526 static const char *
527 ada_unqualified_name (const char *decoded_name)
528 {
529 const char *result = strrchr (decoded_name, '.');
530
531 if (result != NULL)
532 result++; /* Skip the dot... */
533 else
534 result = decoded_name;
535
536 return result;
537 }
538
539 /* Return a string starting with '<', followed by STR, and '>'.
540 The result is good until the next call. */
541
542 static char *
543 add_angle_brackets (const char *str)
544 {
545 static char *result = NULL;
546
547 xfree (result);
548 result = xstrprintf ("<%s>", str);
549 return result;
550 }
551
552 static char *
553 ada_get_gdb_completer_word_break_characters (void)
554 {
555 return ada_completer_word_break_characters;
556 }
557
558 /* Print an array element index using the Ada syntax. */
559
560 static void
561 ada_print_array_index (struct value *index_value, struct ui_file *stream,
562 const struct value_print_options *options)
563 {
564 LA_VALUE_PRINT (index_value, stream, options);
565 fprintf_filtered (stream, " => ");
566 }
567
568 /* Assuming VECT points to an array of *SIZE objects of size
569 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
570 updating *SIZE as necessary and returning the (new) array. */
571
572 void *
573 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
574 {
575 if (*size < min_size)
576 {
577 *size *= 2;
578 if (*size < min_size)
579 *size = min_size;
580 vect = xrealloc (vect, *size * element_size);
581 }
582 return vect;
583 }
584
585 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
586 suffix of FIELD_NAME beginning "___". */
587
588 static int
589 field_name_match (const char *field_name, const char *target)
590 {
591 int len = strlen (target);
592
593 return
594 (strncmp (field_name, target, len) == 0
595 && (field_name[len] == '\0'
596 || (strncmp (field_name + len, "___", 3) == 0
597 && strcmp (field_name + strlen (field_name) - 6,
598 "___XVN") != 0)));
599 }
600
601
602 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
603 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
604 and return its index. This function also handles fields whose name
605 have ___ suffixes because the compiler sometimes alters their name
606 by adding such a suffix to represent fields with certain constraints.
607 If the field could not be found, return a negative number if
608 MAYBE_MISSING is set. Otherwise raise an error. */
609
610 int
611 ada_get_field_index (const struct type *type, const char *field_name,
612 int maybe_missing)
613 {
614 int fieldno;
615 struct type *struct_type = check_typedef ((struct type *) type);
616
617 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
618 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
619 return fieldno;
620
621 if (!maybe_missing)
622 error (_("Unable to find field %s in struct %s. Aborting"),
623 field_name, TYPE_NAME (struct_type));
624
625 return -1;
626 }
627
628 /* The length of the prefix of NAME prior to any "___" suffix. */
629
630 int
631 ada_name_prefix_len (const char *name)
632 {
633 if (name == NULL)
634 return 0;
635 else
636 {
637 const char *p = strstr (name, "___");
638
639 if (p == NULL)
640 return strlen (name);
641 else
642 return p - name;
643 }
644 }
645
646 /* Return non-zero if SUFFIX is a suffix of STR.
647 Return zero if STR is null. */
648
649 static int
650 is_suffix (const char *str, const char *suffix)
651 {
652 int len1, len2;
653
654 if (str == NULL)
655 return 0;
656 len1 = strlen (str);
657 len2 = strlen (suffix);
658 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
659 }
660
661 /* The contents of value VAL, treated as a value of type TYPE. The
662 result is an lval in memory if VAL is. */
663
664 static struct value *
665 coerce_unspec_val_to_type (struct value *val, struct type *type)
666 {
667 type = ada_check_typedef (type);
668 if (value_type (val) == type)
669 return val;
670 else
671 {
672 struct value *result;
673
674 /* Make sure that the object size is not unreasonable before
675 trying to allocate some memory for it. */
676 check_size (type);
677
678 if (value_lazy (val)
679 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
680 result = allocate_value_lazy (type);
681 else
682 {
683 result = allocate_value (type);
684 memcpy (value_contents_raw (result), value_contents (val),
685 TYPE_LENGTH (type));
686 }
687 set_value_component_location (result, val);
688 set_value_bitsize (result, value_bitsize (val));
689 set_value_bitpos (result, value_bitpos (val));
690 set_value_address (result, value_address (val));
691 set_value_optimized_out (result, value_optimized_out_const (val));
692 return result;
693 }
694 }
695
696 static const gdb_byte *
697 cond_offset_host (const gdb_byte *valaddr, long offset)
698 {
699 if (valaddr == NULL)
700 return NULL;
701 else
702 return valaddr + offset;
703 }
704
705 static CORE_ADDR
706 cond_offset_target (CORE_ADDR address, long offset)
707 {
708 if (address == 0)
709 return 0;
710 else
711 return address + offset;
712 }
713
714 /* Issue a warning (as for the definition of warning in utils.c, but
715 with exactly one argument rather than ...), unless the limit on the
716 number of warnings has passed during the evaluation of the current
717 expression. */
718
719 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
720 provided by "complaint". */
721 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
722
723 static void
724 lim_warning (const char *format, ...)
725 {
726 va_list args;
727
728 va_start (args, format);
729 warnings_issued += 1;
730 if (warnings_issued <= warning_limit)
731 vwarning (format, args);
732
733 va_end (args);
734 }
735
736 /* Issue an error if the size of an object of type T is unreasonable,
737 i.e. if it would be a bad idea to allocate a value of this type in
738 GDB. */
739
740 static void
741 check_size (const struct type *type)
742 {
743 if (TYPE_LENGTH (type) > varsize_limit)
744 error (_("object size is larger than varsize-limit"));
745 }
746
747 /* Maximum value of a SIZE-byte signed integer type. */
748 static LONGEST
749 max_of_size (int size)
750 {
751 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
752
753 return top_bit | (top_bit - 1);
754 }
755
756 /* Minimum value of a SIZE-byte signed integer type. */
757 static LONGEST
758 min_of_size (int size)
759 {
760 return -max_of_size (size) - 1;
761 }
762
763 /* Maximum value of a SIZE-byte unsigned integer type. */
764 static ULONGEST
765 umax_of_size (int size)
766 {
767 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
768
769 return top_bit | (top_bit - 1);
770 }
771
772 /* Maximum value of integral type T, as a signed quantity. */
773 static LONGEST
774 max_of_type (struct type *t)
775 {
776 if (TYPE_UNSIGNED (t))
777 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
778 else
779 return max_of_size (TYPE_LENGTH (t));
780 }
781
782 /* Minimum value of integral type T, as a signed quantity. */
783 static LONGEST
784 min_of_type (struct type *t)
785 {
786 if (TYPE_UNSIGNED (t))
787 return 0;
788 else
789 return min_of_size (TYPE_LENGTH (t));
790 }
791
792 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
793 LONGEST
794 ada_discrete_type_high_bound (struct type *type)
795 {
796 type = resolve_dynamic_type (type, 0);
797 switch (TYPE_CODE (type))
798 {
799 case TYPE_CODE_RANGE:
800 return TYPE_HIGH_BOUND (type);
801 case TYPE_CODE_ENUM:
802 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
803 case TYPE_CODE_BOOL:
804 return 1;
805 case TYPE_CODE_CHAR:
806 case TYPE_CODE_INT:
807 return max_of_type (type);
808 default:
809 error (_("Unexpected type in ada_discrete_type_high_bound."));
810 }
811 }
812
813 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
814 LONGEST
815 ada_discrete_type_low_bound (struct type *type)
816 {
817 type = resolve_dynamic_type (type, 0);
818 switch (TYPE_CODE (type))
819 {
820 case TYPE_CODE_RANGE:
821 return TYPE_LOW_BOUND (type);
822 case TYPE_CODE_ENUM:
823 return TYPE_FIELD_ENUMVAL (type, 0);
824 case TYPE_CODE_BOOL:
825 return 0;
826 case TYPE_CODE_CHAR:
827 case TYPE_CODE_INT:
828 return min_of_type (type);
829 default:
830 error (_("Unexpected type in ada_discrete_type_low_bound."));
831 }
832 }
833
834 /* The identity on non-range types. For range types, the underlying
835 non-range scalar type. */
836
837 static struct type *
838 get_base_type (struct type *type)
839 {
840 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
841 {
842 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
843 return type;
844 type = TYPE_TARGET_TYPE (type);
845 }
846 return type;
847 }
848
849 /* Return a decoded version of the given VALUE. This means returning
850 a value whose type is obtained by applying all the GNAT-specific
851 encondings, making the resulting type a static but standard description
852 of the initial type. */
853
854 struct value *
855 ada_get_decoded_value (struct value *value)
856 {
857 struct type *type = ada_check_typedef (value_type (value));
858
859 if (ada_is_array_descriptor_type (type)
860 || (ada_is_constrained_packed_array_type (type)
861 && TYPE_CODE (type) != TYPE_CODE_PTR))
862 {
863 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
864 value = ada_coerce_to_simple_array_ptr (value);
865 else
866 value = ada_coerce_to_simple_array (value);
867 }
868 else
869 value = ada_to_fixed_value (value);
870
871 return value;
872 }
873
874 /* Same as ada_get_decoded_value, but with the given TYPE.
875 Because there is no associated actual value for this type,
876 the resulting type might be a best-effort approximation in
877 the case of dynamic types. */
878
879 struct type *
880 ada_get_decoded_type (struct type *type)
881 {
882 type = to_static_fixed_type (type);
883 if (ada_is_constrained_packed_array_type (type))
884 type = ada_coerce_to_simple_array_type (type);
885 return type;
886 }
887
888 \f
889
890 /* Language Selection */
891
892 /* If the main program is in Ada, return language_ada, otherwise return LANG
893 (the main program is in Ada iif the adainit symbol is found). */
894
895 enum language
896 ada_update_initial_language (enum language lang)
897 {
898 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
899 (struct objfile *) NULL).minsym != NULL)
900 return language_ada;
901
902 return lang;
903 }
904
905 /* If the main procedure is written in Ada, then return its name.
906 The result is good until the next call. Return NULL if the main
907 procedure doesn't appear to be in Ada. */
908
909 char *
910 ada_main_name (void)
911 {
912 struct bound_minimal_symbol msym;
913 static char *main_program_name = NULL;
914
915 /* For Ada, the name of the main procedure is stored in a specific
916 string constant, generated by the binder. Look for that symbol,
917 extract its address, and then read that string. If we didn't find
918 that string, then most probably the main procedure is not written
919 in Ada. */
920 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
921
922 if (msym.minsym != NULL)
923 {
924 CORE_ADDR main_program_name_addr;
925 int err_code;
926
927 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
928 if (main_program_name_addr == 0)
929 error (_("Invalid address for Ada main program name."));
930
931 xfree (main_program_name);
932 target_read_string (main_program_name_addr, &main_program_name,
933 1024, &err_code);
934
935 if (err_code != 0)
936 return NULL;
937 return main_program_name;
938 }
939
940 /* The main procedure doesn't seem to be in Ada. */
941 return NULL;
942 }
943 \f
944 /* Symbols */
945
946 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
947 of NULLs. */
948
949 const struct ada_opname_map ada_opname_table[] = {
950 {"Oadd", "\"+\"", BINOP_ADD},
951 {"Osubtract", "\"-\"", BINOP_SUB},
952 {"Omultiply", "\"*\"", BINOP_MUL},
953 {"Odivide", "\"/\"", BINOP_DIV},
954 {"Omod", "\"mod\"", BINOP_MOD},
955 {"Orem", "\"rem\"", BINOP_REM},
956 {"Oexpon", "\"**\"", BINOP_EXP},
957 {"Olt", "\"<\"", BINOP_LESS},
958 {"Ole", "\"<=\"", BINOP_LEQ},
959 {"Ogt", "\">\"", BINOP_GTR},
960 {"Oge", "\">=\"", BINOP_GEQ},
961 {"Oeq", "\"=\"", BINOP_EQUAL},
962 {"One", "\"/=\"", BINOP_NOTEQUAL},
963 {"Oand", "\"and\"", BINOP_BITWISE_AND},
964 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
965 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
966 {"Oconcat", "\"&\"", BINOP_CONCAT},
967 {"Oabs", "\"abs\"", UNOP_ABS},
968 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
969 {"Oadd", "\"+\"", UNOP_PLUS},
970 {"Osubtract", "\"-\"", UNOP_NEG},
971 {NULL, NULL}
972 };
973
974 /* The "encoded" form of DECODED, according to GNAT conventions.
975 The result is valid until the next call to ada_encode. */
976
977 char *
978 ada_encode (const char *decoded)
979 {
980 static char *encoding_buffer = NULL;
981 static size_t encoding_buffer_size = 0;
982 const char *p;
983 int k;
984
985 if (decoded == NULL)
986 return NULL;
987
988 GROW_VECT (encoding_buffer, encoding_buffer_size,
989 2 * strlen (decoded) + 10);
990
991 k = 0;
992 for (p = decoded; *p != '\0'; p += 1)
993 {
994 if (*p == '.')
995 {
996 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
997 k += 2;
998 }
999 else if (*p == '"')
1000 {
1001 const struct ada_opname_map *mapping;
1002
1003 for (mapping = ada_opname_table;
1004 mapping->encoded != NULL
1005 && strncmp (mapping->decoded, p,
1006 strlen (mapping->decoded)) != 0; mapping += 1)
1007 ;
1008 if (mapping->encoded == NULL)
1009 error (_("invalid Ada operator name: %s"), p);
1010 strcpy (encoding_buffer + k, mapping->encoded);
1011 k += strlen (mapping->encoded);
1012 break;
1013 }
1014 else
1015 {
1016 encoding_buffer[k] = *p;
1017 k += 1;
1018 }
1019 }
1020
1021 encoding_buffer[k] = '\0';
1022 return encoding_buffer;
1023 }
1024
1025 /* Return NAME folded to lower case, or, if surrounded by single
1026 quotes, unfolded, but with the quotes stripped away. Result good
1027 to next call. */
1028
1029 char *
1030 ada_fold_name (const char *name)
1031 {
1032 static char *fold_buffer = NULL;
1033 static size_t fold_buffer_size = 0;
1034
1035 int len = strlen (name);
1036 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1037
1038 if (name[0] == '\'')
1039 {
1040 strncpy (fold_buffer, name + 1, len - 2);
1041 fold_buffer[len - 2] = '\000';
1042 }
1043 else
1044 {
1045 int i;
1046
1047 for (i = 0; i <= len; i += 1)
1048 fold_buffer[i] = tolower (name[i]);
1049 }
1050
1051 return fold_buffer;
1052 }
1053
1054 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1055
1056 static int
1057 is_lower_alphanum (const char c)
1058 {
1059 return (isdigit (c) || (isalpha (c) && islower (c)));
1060 }
1061
1062 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1063 This function saves in LEN the length of that same symbol name but
1064 without either of these suffixes:
1065 . .{DIGIT}+
1066 . ${DIGIT}+
1067 . ___{DIGIT}+
1068 . __{DIGIT}+.
1069
1070 These are suffixes introduced by the compiler for entities such as
1071 nested subprogram for instance, in order to avoid name clashes.
1072 They do not serve any purpose for the debugger. */
1073
1074 static void
1075 ada_remove_trailing_digits (const char *encoded, int *len)
1076 {
1077 if (*len > 1 && isdigit (encoded[*len - 1]))
1078 {
1079 int i = *len - 2;
1080
1081 while (i > 0 && isdigit (encoded[i]))
1082 i--;
1083 if (i >= 0 && encoded[i] == '.')
1084 *len = i;
1085 else if (i >= 0 && encoded[i] == '$')
1086 *len = i;
1087 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1088 *len = i - 2;
1089 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1090 *len = i - 1;
1091 }
1092 }
1093
1094 /* Remove the suffix introduced by the compiler for protected object
1095 subprograms. */
1096
1097 static void
1098 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1099 {
1100 /* Remove trailing N. */
1101
1102 /* Protected entry subprograms are broken into two
1103 separate subprograms: The first one is unprotected, and has
1104 a 'N' suffix; the second is the protected version, and has
1105 the 'P' suffix. The second calls the first one after handling
1106 the protection. Since the P subprograms are internally generated,
1107 we leave these names undecoded, giving the user a clue that this
1108 entity is internal. */
1109
1110 if (*len > 1
1111 && encoded[*len - 1] == 'N'
1112 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1113 *len = *len - 1;
1114 }
1115
1116 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1117
1118 static void
1119 ada_remove_Xbn_suffix (const char *encoded, int *len)
1120 {
1121 int i = *len - 1;
1122
1123 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1124 i--;
1125
1126 if (encoded[i] != 'X')
1127 return;
1128
1129 if (i == 0)
1130 return;
1131
1132 if (isalnum (encoded[i-1]))
1133 *len = i;
1134 }
1135
1136 /* If ENCODED follows the GNAT entity encoding conventions, then return
1137 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1138 replaced by ENCODED.
1139
1140 The resulting string is valid until the next call of ada_decode.
1141 If the string is unchanged by decoding, the original string pointer
1142 is returned. */
1143
1144 const char *
1145 ada_decode (const char *encoded)
1146 {
1147 int i, j;
1148 int len0;
1149 const char *p;
1150 char *decoded;
1151 int at_start_name;
1152 static char *decoding_buffer = NULL;
1153 static size_t decoding_buffer_size = 0;
1154
1155 /* The name of the Ada main procedure starts with "_ada_".
1156 This prefix is not part of the decoded name, so skip this part
1157 if we see this prefix. */
1158 if (strncmp (encoded, "_ada_", 5) == 0)
1159 encoded += 5;
1160
1161 /* If the name starts with '_', then it is not a properly encoded
1162 name, so do not attempt to decode it. Similarly, if the name
1163 starts with '<', the name should not be decoded. */
1164 if (encoded[0] == '_' || encoded[0] == '<')
1165 goto Suppress;
1166
1167 len0 = strlen (encoded);
1168
1169 ada_remove_trailing_digits (encoded, &len0);
1170 ada_remove_po_subprogram_suffix (encoded, &len0);
1171
1172 /* Remove the ___X.* suffix if present. Do not forget to verify that
1173 the suffix is located before the current "end" of ENCODED. We want
1174 to avoid re-matching parts of ENCODED that have previously been
1175 marked as discarded (by decrementing LEN0). */
1176 p = strstr (encoded, "___");
1177 if (p != NULL && p - encoded < len0 - 3)
1178 {
1179 if (p[3] == 'X')
1180 len0 = p - encoded;
1181 else
1182 goto Suppress;
1183 }
1184
1185 /* Remove any trailing TKB suffix. It tells us that this symbol
1186 is for the body of a task, but that information does not actually
1187 appear in the decoded name. */
1188
1189 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1190 len0 -= 3;
1191
1192 /* Remove any trailing TB suffix. The TB suffix is slightly different
1193 from the TKB suffix because it is used for non-anonymous task
1194 bodies. */
1195
1196 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1197 len0 -= 2;
1198
1199 /* Remove trailing "B" suffixes. */
1200 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1201
1202 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1203 len0 -= 1;
1204
1205 /* Make decoded big enough for possible expansion by operator name. */
1206
1207 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1208 decoded = decoding_buffer;
1209
1210 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1211
1212 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1213 {
1214 i = len0 - 2;
1215 while ((i >= 0 && isdigit (encoded[i]))
1216 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1217 i -= 1;
1218 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1219 len0 = i - 1;
1220 else if (encoded[i] == '$')
1221 len0 = i;
1222 }
1223
1224 /* The first few characters that are not alphabetic are not part
1225 of any encoding we use, so we can copy them over verbatim. */
1226
1227 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1228 decoded[j] = encoded[i];
1229
1230 at_start_name = 1;
1231 while (i < len0)
1232 {
1233 /* Is this a symbol function? */
1234 if (at_start_name && encoded[i] == 'O')
1235 {
1236 int k;
1237
1238 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1239 {
1240 int op_len = strlen (ada_opname_table[k].encoded);
1241 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1242 op_len - 1) == 0)
1243 && !isalnum (encoded[i + op_len]))
1244 {
1245 strcpy (decoded + j, ada_opname_table[k].decoded);
1246 at_start_name = 0;
1247 i += op_len;
1248 j += strlen (ada_opname_table[k].decoded);
1249 break;
1250 }
1251 }
1252 if (ada_opname_table[k].encoded != NULL)
1253 continue;
1254 }
1255 at_start_name = 0;
1256
1257 /* Replace "TK__" with "__", which will eventually be translated
1258 into "." (just below). */
1259
1260 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1261 i += 2;
1262
1263 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1264 be translated into "." (just below). These are internal names
1265 generated for anonymous blocks inside which our symbol is nested. */
1266
1267 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1268 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1269 && isdigit (encoded [i+4]))
1270 {
1271 int k = i + 5;
1272
1273 while (k < len0 && isdigit (encoded[k]))
1274 k++; /* Skip any extra digit. */
1275
1276 /* Double-check that the "__B_{DIGITS}+" sequence we found
1277 is indeed followed by "__". */
1278 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1279 i = k;
1280 }
1281
1282 /* Remove _E{DIGITS}+[sb] */
1283
1284 /* Just as for protected object subprograms, there are 2 categories
1285 of subprograms created by the compiler for each entry. The first
1286 one implements the actual entry code, and has a suffix following
1287 the convention above; the second one implements the barrier and
1288 uses the same convention as above, except that the 'E' is replaced
1289 by a 'B'.
1290
1291 Just as above, we do not decode the name of barrier functions
1292 to give the user a clue that the code he is debugging has been
1293 internally generated. */
1294
1295 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1296 && isdigit (encoded[i+2]))
1297 {
1298 int k = i + 3;
1299
1300 while (k < len0 && isdigit (encoded[k]))
1301 k++;
1302
1303 if (k < len0
1304 && (encoded[k] == 'b' || encoded[k] == 's'))
1305 {
1306 k++;
1307 /* Just as an extra precaution, make sure that if this
1308 suffix is followed by anything else, it is a '_'.
1309 Otherwise, we matched this sequence by accident. */
1310 if (k == len0
1311 || (k < len0 && encoded[k] == '_'))
1312 i = k;
1313 }
1314 }
1315
1316 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1317 the GNAT front-end in protected object subprograms. */
1318
1319 if (i < len0 + 3
1320 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1321 {
1322 /* Backtrack a bit up until we reach either the begining of
1323 the encoded name, or "__". Make sure that we only find
1324 digits or lowercase characters. */
1325 const char *ptr = encoded + i - 1;
1326
1327 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1328 ptr--;
1329 if (ptr < encoded
1330 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1331 i++;
1332 }
1333
1334 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1335 {
1336 /* This is a X[bn]* sequence not separated from the previous
1337 part of the name with a non-alpha-numeric character (in other
1338 words, immediately following an alpha-numeric character), then
1339 verify that it is placed at the end of the encoded name. If
1340 not, then the encoding is not valid and we should abort the
1341 decoding. Otherwise, just skip it, it is used in body-nested
1342 package names. */
1343 do
1344 i += 1;
1345 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1346 if (i < len0)
1347 goto Suppress;
1348 }
1349 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1350 {
1351 /* Replace '__' by '.'. */
1352 decoded[j] = '.';
1353 at_start_name = 1;
1354 i += 2;
1355 j += 1;
1356 }
1357 else
1358 {
1359 /* It's a character part of the decoded name, so just copy it
1360 over. */
1361 decoded[j] = encoded[i];
1362 i += 1;
1363 j += 1;
1364 }
1365 }
1366 decoded[j] = '\000';
1367
1368 /* Decoded names should never contain any uppercase character.
1369 Double-check this, and abort the decoding if we find one. */
1370
1371 for (i = 0; decoded[i] != '\0'; i += 1)
1372 if (isupper (decoded[i]) || decoded[i] == ' ')
1373 goto Suppress;
1374
1375 if (strcmp (decoded, encoded) == 0)
1376 return encoded;
1377 else
1378 return decoded;
1379
1380 Suppress:
1381 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1382 decoded = decoding_buffer;
1383 if (encoded[0] == '<')
1384 strcpy (decoded, encoded);
1385 else
1386 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1387 return decoded;
1388
1389 }
1390
1391 /* Table for keeping permanent unique copies of decoded names. Once
1392 allocated, names in this table are never released. While this is a
1393 storage leak, it should not be significant unless there are massive
1394 changes in the set of decoded names in successive versions of a
1395 symbol table loaded during a single session. */
1396 static struct htab *decoded_names_store;
1397
1398 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1399 in the language-specific part of GSYMBOL, if it has not been
1400 previously computed. Tries to save the decoded name in the same
1401 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1402 in any case, the decoded symbol has a lifetime at least that of
1403 GSYMBOL).
1404 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1405 const, but nevertheless modified to a semantically equivalent form
1406 when a decoded name is cached in it. */
1407
1408 const char *
1409 ada_decode_symbol (const struct general_symbol_info *arg)
1410 {
1411 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1412 const char **resultp =
1413 &gsymbol->language_specific.mangled_lang.demangled_name;
1414
1415 if (!gsymbol->ada_mangled)
1416 {
1417 const char *decoded = ada_decode (gsymbol->name);
1418 struct obstack *obstack = gsymbol->language_specific.obstack;
1419
1420 gsymbol->ada_mangled = 1;
1421
1422 if (obstack != NULL)
1423 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1424 else
1425 {
1426 /* Sometimes, we can't find a corresponding objfile, in
1427 which case, we put the result on the heap. Since we only
1428 decode when needed, we hope this usually does not cause a
1429 significant memory leak (FIXME). */
1430
1431 char **slot = (char **) htab_find_slot (decoded_names_store,
1432 decoded, INSERT);
1433
1434 if (*slot == NULL)
1435 *slot = xstrdup (decoded);
1436 *resultp = *slot;
1437 }
1438 }
1439
1440 return *resultp;
1441 }
1442
1443 static char *
1444 ada_la_decode (const char *encoded, int options)
1445 {
1446 return xstrdup (ada_decode (encoded));
1447 }
1448
1449 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1450 suffixes that encode debugging information or leading _ada_ on
1451 SYM_NAME (see is_name_suffix commentary for the debugging
1452 information that is ignored). If WILD, then NAME need only match a
1453 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1454 either argument is NULL. */
1455
1456 static int
1457 match_name (const char *sym_name, const char *name, int wild)
1458 {
1459 if (sym_name == NULL || name == NULL)
1460 return 0;
1461 else if (wild)
1462 return wild_match (sym_name, name) == 0;
1463 else
1464 {
1465 int len_name = strlen (name);
1466
1467 return (strncmp (sym_name, name, len_name) == 0
1468 && is_name_suffix (sym_name + len_name))
1469 || (strncmp (sym_name, "_ada_", 5) == 0
1470 && strncmp (sym_name + 5, name, len_name) == 0
1471 && is_name_suffix (sym_name + len_name + 5));
1472 }
1473 }
1474 \f
1475
1476 /* Arrays */
1477
1478 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1479 generated by the GNAT compiler to describe the index type used
1480 for each dimension of an array, check whether it follows the latest
1481 known encoding. If not, fix it up to conform to the latest encoding.
1482 Otherwise, do nothing. This function also does nothing if
1483 INDEX_DESC_TYPE is NULL.
1484
1485 The GNAT encoding used to describle the array index type evolved a bit.
1486 Initially, the information would be provided through the name of each
1487 field of the structure type only, while the type of these fields was
1488 described as unspecified and irrelevant. The debugger was then expected
1489 to perform a global type lookup using the name of that field in order
1490 to get access to the full index type description. Because these global
1491 lookups can be very expensive, the encoding was later enhanced to make
1492 the global lookup unnecessary by defining the field type as being
1493 the full index type description.
1494
1495 The purpose of this routine is to allow us to support older versions
1496 of the compiler by detecting the use of the older encoding, and by
1497 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1498 we essentially replace each field's meaningless type by the associated
1499 index subtype). */
1500
1501 void
1502 ada_fixup_array_indexes_type (struct type *index_desc_type)
1503 {
1504 int i;
1505
1506 if (index_desc_type == NULL)
1507 return;
1508 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1509
1510 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1511 to check one field only, no need to check them all). If not, return
1512 now.
1513
1514 If our INDEX_DESC_TYPE was generated using the older encoding,
1515 the field type should be a meaningless integer type whose name
1516 is not equal to the field name. */
1517 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1518 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1519 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1520 return;
1521
1522 /* Fixup each field of INDEX_DESC_TYPE. */
1523 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1524 {
1525 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1526 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1527
1528 if (raw_type)
1529 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1530 }
1531 }
1532
1533 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1534
1535 static char *bound_name[] = {
1536 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1537 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1538 };
1539
1540 /* Maximum number of array dimensions we are prepared to handle. */
1541
1542 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1543
1544
1545 /* The desc_* routines return primitive portions of array descriptors
1546 (fat pointers). */
1547
1548 /* The descriptor or array type, if any, indicated by TYPE; removes
1549 level of indirection, if needed. */
1550
1551 static struct type *
1552 desc_base_type (struct type *type)
1553 {
1554 if (type == NULL)
1555 return NULL;
1556 type = ada_check_typedef (type);
1557 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1558 type = ada_typedef_target_type (type);
1559
1560 if (type != NULL
1561 && (TYPE_CODE (type) == TYPE_CODE_PTR
1562 || TYPE_CODE (type) == TYPE_CODE_REF))
1563 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1564 else
1565 return type;
1566 }
1567
1568 /* True iff TYPE indicates a "thin" array pointer type. */
1569
1570 static int
1571 is_thin_pntr (struct type *type)
1572 {
1573 return
1574 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1575 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1576 }
1577
1578 /* The descriptor type for thin pointer type TYPE. */
1579
1580 static struct type *
1581 thin_descriptor_type (struct type *type)
1582 {
1583 struct type *base_type = desc_base_type (type);
1584
1585 if (base_type == NULL)
1586 return NULL;
1587 if (is_suffix (ada_type_name (base_type), "___XVE"))
1588 return base_type;
1589 else
1590 {
1591 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1592
1593 if (alt_type == NULL)
1594 return base_type;
1595 else
1596 return alt_type;
1597 }
1598 }
1599
1600 /* A pointer to the array data for thin-pointer value VAL. */
1601
1602 static struct value *
1603 thin_data_pntr (struct value *val)
1604 {
1605 struct type *type = ada_check_typedef (value_type (val));
1606 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1607
1608 data_type = lookup_pointer_type (data_type);
1609
1610 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1611 return value_cast (data_type, value_copy (val));
1612 else
1613 return value_from_longest (data_type, value_address (val));
1614 }
1615
1616 /* True iff TYPE indicates a "thick" array pointer type. */
1617
1618 static int
1619 is_thick_pntr (struct type *type)
1620 {
1621 type = desc_base_type (type);
1622 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1623 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1624 }
1625
1626 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1627 pointer to one, the type of its bounds data; otherwise, NULL. */
1628
1629 static struct type *
1630 desc_bounds_type (struct type *type)
1631 {
1632 struct type *r;
1633
1634 type = desc_base_type (type);
1635
1636 if (type == NULL)
1637 return NULL;
1638 else if (is_thin_pntr (type))
1639 {
1640 type = thin_descriptor_type (type);
1641 if (type == NULL)
1642 return NULL;
1643 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1644 if (r != NULL)
1645 return ada_check_typedef (r);
1646 }
1647 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1648 {
1649 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1650 if (r != NULL)
1651 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1652 }
1653 return NULL;
1654 }
1655
1656 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1657 one, a pointer to its bounds data. Otherwise NULL. */
1658
1659 static struct value *
1660 desc_bounds (struct value *arr)
1661 {
1662 struct type *type = ada_check_typedef (value_type (arr));
1663
1664 if (is_thin_pntr (type))
1665 {
1666 struct type *bounds_type =
1667 desc_bounds_type (thin_descriptor_type (type));
1668 LONGEST addr;
1669
1670 if (bounds_type == NULL)
1671 error (_("Bad GNAT array descriptor"));
1672
1673 /* NOTE: The following calculation is not really kosher, but
1674 since desc_type is an XVE-encoded type (and shouldn't be),
1675 the correct calculation is a real pain. FIXME (and fix GCC). */
1676 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1677 addr = value_as_long (arr);
1678 else
1679 addr = value_address (arr);
1680
1681 return
1682 value_from_longest (lookup_pointer_type (bounds_type),
1683 addr - TYPE_LENGTH (bounds_type));
1684 }
1685
1686 else if (is_thick_pntr (type))
1687 {
1688 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1689 _("Bad GNAT array descriptor"));
1690 struct type *p_bounds_type = value_type (p_bounds);
1691
1692 if (p_bounds_type
1693 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1694 {
1695 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1696
1697 if (TYPE_STUB (target_type))
1698 p_bounds = value_cast (lookup_pointer_type
1699 (ada_check_typedef (target_type)),
1700 p_bounds);
1701 }
1702 else
1703 error (_("Bad GNAT array descriptor"));
1704
1705 return p_bounds;
1706 }
1707 else
1708 return NULL;
1709 }
1710
1711 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1712 position of the field containing the address of the bounds data. */
1713
1714 static int
1715 fat_pntr_bounds_bitpos (struct type *type)
1716 {
1717 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1718 }
1719
1720 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1721 size of the field containing the address of the bounds data. */
1722
1723 static int
1724 fat_pntr_bounds_bitsize (struct type *type)
1725 {
1726 type = desc_base_type (type);
1727
1728 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1729 return TYPE_FIELD_BITSIZE (type, 1);
1730 else
1731 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1732 }
1733
1734 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1735 pointer to one, the type of its array data (a array-with-no-bounds type);
1736 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1737 data. */
1738
1739 static struct type *
1740 desc_data_target_type (struct type *type)
1741 {
1742 type = desc_base_type (type);
1743
1744 /* NOTE: The following is bogus; see comment in desc_bounds. */
1745 if (is_thin_pntr (type))
1746 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1747 else if (is_thick_pntr (type))
1748 {
1749 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1750
1751 if (data_type
1752 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1753 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1754 }
1755
1756 return NULL;
1757 }
1758
1759 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1760 its array data. */
1761
1762 static struct value *
1763 desc_data (struct value *arr)
1764 {
1765 struct type *type = value_type (arr);
1766
1767 if (is_thin_pntr (type))
1768 return thin_data_pntr (arr);
1769 else if (is_thick_pntr (type))
1770 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1771 _("Bad GNAT array descriptor"));
1772 else
1773 return NULL;
1774 }
1775
1776
1777 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1778 position of the field containing the address of the data. */
1779
1780 static int
1781 fat_pntr_data_bitpos (struct type *type)
1782 {
1783 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1784 }
1785
1786 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1787 size of the field containing the address of the data. */
1788
1789 static int
1790 fat_pntr_data_bitsize (struct type *type)
1791 {
1792 type = desc_base_type (type);
1793
1794 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1795 return TYPE_FIELD_BITSIZE (type, 0);
1796 else
1797 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1798 }
1799
1800 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1801 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1802 bound, if WHICH is 1. The first bound is I=1. */
1803
1804 static struct value *
1805 desc_one_bound (struct value *bounds, int i, int which)
1806 {
1807 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1808 _("Bad GNAT array descriptor bounds"));
1809 }
1810
1811 /* If BOUNDS is an array-bounds structure type, return the bit position
1812 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1813 bound, if WHICH is 1. The first bound is I=1. */
1814
1815 static int
1816 desc_bound_bitpos (struct type *type, int i, int which)
1817 {
1818 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1819 }
1820
1821 /* If BOUNDS is an array-bounds structure type, return the bit field size
1822 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1823 bound, if WHICH is 1. The first bound is I=1. */
1824
1825 static int
1826 desc_bound_bitsize (struct type *type, int i, int which)
1827 {
1828 type = desc_base_type (type);
1829
1830 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1831 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1832 else
1833 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1834 }
1835
1836 /* If TYPE is the type of an array-bounds structure, the type of its
1837 Ith bound (numbering from 1). Otherwise, NULL. */
1838
1839 static struct type *
1840 desc_index_type (struct type *type, int i)
1841 {
1842 type = desc_base_type (type);
1843
1844 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1845 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1846 else
1847 return NULL;
1848 }
1849
1850 /* The number of index positions in the array-bounds type TYPE.
1851 Return 0 if TYPE is NULL. */
1852
1853 static int
1854 desc_arity (struct type *type)
1855 {
1856 type = desc_base_type (type);
1857
1858 if (type != NULL)
1859 return TYPE_NFIELDS (type) / 2;
1860 return 0;
1861 }
1862
1863 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1864 an array descriptor type (representing an unconstrained array
1865 type). */
1866
1867 static int
1868 ada_is_direct_array_type (struct type *type)
1869 {
1870 if (type == NULL)
1871 return 0;
1872 type = ada_check_typedef (type);
1873 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1874 || ada_is_array_descriptor_type (type));
1875 }
1876
1877 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1878 * to one. */
1879
1880 static int
1881 ada_is_array_type (struct type *type)
1882 {
1883 while (type != NULL
1884 && (TYPE_CODE (type) == TYPE_CODE_PTR
1885 || TYPE_CODE (type) == TYPE_CODE_REF))
1886 type = TYPE_TARGET_TYPE (type);
1887 return ada_is_direct_array_type (type);
1888 }
1889
1890 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1891
1892 int
1893 ada_is_simple_array_type (struct type *type)
1894 {
1895 if (type == NULL)
1896 return 0;
1897 type = ada_check_typedef (type);
1898 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1899 || (TYPE_CODE (type) == TYPE_CODE_PTR
1900 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1901 == TYPE_CODE_ARRAY));
1902 }
1903
1904 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1905
1906 int
1907 ada_is_array_descriptor_type (struct type *type)
1908 {
1909 struct type *data_type = desc_data_target_type (type);
1910
1911 if (type == NULL)
1912 return 0;
1913 type = ada_check_typedef (type);
1914 return (data_type != NULL
1915 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1916 && desc_arity (desc_bounds_type (type)) > 0);
1917 }
1918
1919 /* Non-zero iff type is a partially mal-formed GNAT array
1920 descriptor. FIXME: This is to compensate for some problems with
1921 debugging output from GNAT. Re-examine periodically to see if it
1922 is still needed. */
1923
1924 int
1925 ada_is_bogus_array_descriptor (struct type *type)
1926 {
1927 return
1928 type != NULL
1929 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1930 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1931 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1932 && !ada_is_array_descriptor_type (type);
1933 }
1934
1935
1936 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1937 (fat pointer) returns the type of the array data described---specifically,
1938 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1939 in from the descriptor; otherwise, they are left unspecified. If
1940 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1941 returns NULL. The result is simply the type of ARR if ARR is not
1942 a descriptor. */
1943 struct type *
1944 ada_type_of_array (struct value *arr, int bounds)
1945 {
1946 if (ada_is_constrained_packed_array_type (value_type (arr)))
1947 return decode_constrained_packed_array_type (value_type (arr));
1948
1949 if (!ada_is_array_descriptor_type (value_type (arr)))
1950 return value_type (arr);
1951
1952 if (!bounds)
1953 {
1954 struct type *array_type =
1955 ada_check_typedef (desc_data_target_type (value_type (arr)));
1956
1957 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1958 TYPE_FIELD_BITSIZE (array_type, 0) =
1959 decode_packed_array_bitsize (value_type (arr));
1960
1961 return array_type;
1962 }
1963 else
1964 {
1965 struct type *elt_type;
1966 int arity;
1967 struct value *descriptor;
1968
1969 elt_type = ada_array_element_type (value_type (arr), -1);
1970 arity = ada_array_arity (value_type (arr));
1971
1972 if (elt_type == NULL || arity == 0)
1973 return ada_check_typedef (value_type (arr));
1974
1975 descriptor = desc_bounds (arr);
1976 if (value_as_long (descriptor) == 0)
1977 return NULL;
1978 while (arity > 0)
1979 {
1980 struct type *range_type = alloc_type_copy (value_type (arr));
1981 struct type *array_type = alloc_type_copy (value_type (arr));
1982 struct value *low = desc_one_bound (descriptor, arity, 0);
1983 struct value *high = desc_one_bound (descriptor, arity, 1);
1984
1985 arity -= 1;
1986 create_static_range_type (range_type, value_type (low),
1987 longest_to_int (value_as_long (low)),
1988 longest_to_int (value_as_long (high)));
1989 elt_type = create_array_type (array_type, elt_type, range_type);
1990
1991 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1992 {
1993 /* We need to store the element packed bitsize, as well as
1994 recompute the array size, because it was previously
1995 computed based on the unpacked element size. */
1996 LONGEST lo = value_as_long (low);
1997 LONGEST hi = value_as_long (high);
1998
1999 TYPE_FIELD_BITSIZE (elt_type, 0) =
2000 decode_packed_array_bitsize (value_type (arr));
2001 /* If the array has no element, then the size is already
2002 zero, and does not need to be recomputed. */
2003 if (lo < hi)
2004 {
2005 int array_bitsize =
2006 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2007
2008 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2009 }
2010 }
2011 }
2012
2013 return lookup_pointer_type (elt_type);
2014 }
2015 }
2016
2017 /* If ARR does not represent an array, returns ARR unchanged.
2018 Otherwise, returns either a standard GDB array with bounds set
2019 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2020 GDB array. Returns NULL if ARR is a null fat pointer. */
2021
2022 struct value *
2023 ada_coerce_to_simple_array_ptr (struct value *arr)
2024 {
2025 if (ada_is_array_descriptor_type (value_type (arr)))
2026 {
2027 struct type *arrType = ada_type_of_array (arr, 1);
2028
2029 if (arrType == NULL)
2030 return NULL;
2031 return value_cast (arrType, value_copy (desc_data (arr)));
2032 }
2033 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2034 return decode_constrained_packed_array (arr);
2035 else
2036 return arr;
2037 }
2038
2039 /* If ARR does not represent an array, returns ARR unchanged.
2040 Otherwise, returns a standard GDB array describing ARR (which may
2041 be ARR itself if it already is in the proper form). */
2042
2043 struct value *
2044 ada_coerce_to_simple_array (struct value *arr)
2045 {
2046 if (ada_is_array_descriptor_type (value_type (arr)))
2047 {
2048 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2049
2050 if (arrVal == NULL)
2051 error (_("Bounds unavailable for null array pointer."));
2052 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
2053 return value_ind (arrVal);
2054 }
2055 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2056 return decode_constrained_packed_array (arr);
2057 else
2058 return arr;
2059 }
2060
2061 /* If TYPE represents a GNAT array type, return it translated to an
2062 ordinary GDB array type (possibly with BITSIZE fields indicating
2063 packing). For other types, is the identity. */
2064
2065 struct type *
2066 ada_coerce_to_simple_array_type (struct type *type)
2067 {
2068 if (ada_is_constrained_packed_array_type (type))
2069 return decode_constrained_packed_array_type (type);
2070
2071 if (ada_is_array_descriptor_type (type))
2072 return ada_check_typedef (desc_data_target_type (type));
2073
2074 return type;
2075 }
2076
2077 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2078
2079 static int
2080 ada_is_packed_array_type (struct type *type)
2081 {
2082 if (type == NULL)
2083 return 0;
2084 type = desc_base_type (type);
2085 type = ada_check_typedef (type);
2086 return
2087 ada_type_name (type) != NULL
2088 && strstr (ada_type_name (type), "___XP") != NULL;
2089 }
2090
2091 /* Non-zero iff TYPE represents a standard GNAT constrained
2092 packed-array type. */
2093
2094 int
2095 ada_is_constrained_packed_array_type (struct type *type)
2096 {
2097 return ada_is_packed_array_type (type)
2098 && !ada_is_array_descriptor_type (type);
2099 }
2100
2101 /* Non-zero iff TYPE represents an array descriptor for a
2102 unconstrained packed-array type. */
2103
2104 static int
2105 ada_is_unconstrained_packed_array_type (struct type *type)
2106 {
2107 return ada_is_packed_array_type (type)
2108 && ada_is_array_descriptor_type (type);
2109 }
2110
2111 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2112 return the size of its elements in bits. */
2113
2114 static long
2115 decode_packed_array_bitsize (struct type *type)
2116 {
2117 const char *raw_name;
2118 const char *tail;
2119 long bits;
2120
2121 /* Access to arrays implemented as fat pointers are encoded as a typedef
2122 of the fat pointer type. We need the name of the fat pointer type
2123 to do the decoding, so strip the typedef layer. */
2124 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2125 type = ada_typedef_target_type (type);
2126
2127 raw_name = ada_type_name (ada_check_typedef (type));
2128 if (!raw_name)
2129 raw_name = ada_type_name (desc_base_type (type));
2130
2131 if (!raw_name)
2132 return 0;
2133
2134 tail = strstr (raw_name, "___XP");
2135 gdb_assert (tail != NULL);
2136
2137 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2138 {
2139 lim_warning
2140 (_("could not understand bit size information on packed array"));
2141 return 0;
2142 }
2143
2144 return bits;
2145 }
2146
2147 /* Given that TYPE is a standard GDB array type with all bounds filled
2148 in, and that the element size of its ultimate scalar constituents
2149 (that is, either its elements, or, if it is an array of arrays, its
2150 elements' elements, etc.) is *ELT_BITS, return an identical type,
2151 but with the bit sizes of its elements (and those of any
2152 constituent arrays) recorded in the BITSIZE components of its
2153 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2154 in bits. */
2155
2156 static struct type *
2157 constrained_packed_array_type (struct type *type, long *elt_bits)
2158 {
2159 struct type *new_elt_type;
2160 struct type *new_type;
2161 struct type *index_type_desc;
2162 struct type *index_type;
2163 LONGEST low_bound, high_bound;
2164
2165 type = ada_check_typedef (type);
2166 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2167 return type;
2168
2169 index_type_desc = ada_find_parallel_type (type, "___XA");
2170 if (index_type_desc)
2171 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2172 NULL);
2173 else
2174 index_type = TYPE_INDEX_TYPE (type);
2175
2176 new_type = alloc_type_copy (type);
2177 new_elt_type =
2178 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2179 elt_bits);
2180 create_array_type (new_type, new_elt_type, index_type);
2181 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2182 TYPE_NAME (new_type) = ada_type_name (type);
2183
2184 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2185 low_bound = high_bound = 0;
2186 if (high_bound < low_bound)
2187 *elt_bits = TYPE_LENGTH (new_type) = 0;
2188 else
2189 {
2190 *elt_bits *= (high_bound - low_bound + 1);
2191 TYPE_LENGTH (new_type) =
2192 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2193 }
2194
2195 TYPE_FIXED_INSTANCE (new_type) = 1;
2196 return new_type;
2197 }
2198
2199 /* The array type encoded by TYPE, where
2200 ada_is_constrained_packed_array_type (TYPE). */
2201
2202 static struct type *
2203 decode_constrained_packed_array_type (struct type *type)
2204 {
2205 const char *raw_name = ada_type_name (ada_check_typedef (type));
2206 char *name;
2207 const char *tail;
2208 struct type *shadow_type;
2209 long bits;
2210
2211 if (!raw_name)
2212 raw_name = ada_type_name (desc_base_type (type));
2213
2214 if (!raw_name)
2215 return NULL;
2216
2217 name = (char *) alloca (strlen (raw_name) + 1);
2218 tail = strstr (raw_name, "___XP");
2219 type = desc_base_type (type);
2220
2221 memcpy (name, raw_name, tail - raw_name);
2222 name[tail - raw_name] = '\000';
2223
2224 shadow_type = ada_find_parallel_type_with_name (type, name);
2225
2226 if (shadow_type == NULL)
2227 {
2228 lim_warning (_("could not find bounds information on packed array"));
2229 return NULL;
2230 }
2231 CHECK_TYPEDEF (shadow_type);
2232
2233 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2234 {
2235 lim_warning (_("could not understand bounds "
2236 "information on packed array"));
2237 return NULL;
2238 }
2239
2240 bits = decode_packed_array_bitsize (type);
2241 return constrained_packed_array_type (shadow_type, &bits);
2242 }
2243
2244 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2245 array, returns a simple array that denotes that array. Its type is a
2246 standard GDB array type except that the BITSIZEs of the array
2247 target types are set to the number of bits in each element, and the
2248 type length is set appropriately. */
2249
2250 static struct value *
2251 decode_constrained_packed_array (struct value *arr)
2252 {
2253 struct type *type;
2254
2255 /* If our value is a pointer, then dereference it. Likewise if
2256 the value is a reference. Make sure that this operation does not
2257 cause the target type to be fixed, as this would indirectly cause
2258 this array to be decoded. The rest of the routine assumes that
2259 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2260 and "value_ind" routines to perform the dereferencing, as opposed
2261 to using "ada_coerce_ref" or "ada_value_ind". */
2262 arr = coerce_ref (arr);
2263 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2264 arr = value_ind (arr);
2265
2266 type = decode_constrained_packed_array_type (value_type (arr));
2267 if (type == NULL)
2268 {
2269 error (_("can't unpack array"));
2270 return NULL;
2271 }
2272
2273 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2274 && ada_is_modular_type (value_type (arr)))
2275 {
2276 /* This is a (right-justified) modular type representing a packed
2277 array with no wrapper. In order to interpret the value through
2278 the (left-justified) packed array type we just built, we must
2279 first left-justify it. */
2280 int bit_size, bit_pos;
2281 ULONGEST mod;
2282
2283 mod = ada_modulus (value_type (arr)) - 1;
2284 bit_size = 0;
2285 while (mod > 0)
2286 {
2287 bit_size += 1;
2288 mod >>= 1;
2289 }
2290 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2291 arr = ada_value_primitive_packed_val (arr, NULL,
2292 bit_pos / HOST_CHAR_BIT,
2293 bit_pos % HOST_CHAR_BIT,
2294 bit_size,
2295 type);
2296 }
2297
2298 return coerce_unspec_val_to_type (arr, type);
2299 }
2300
2301
2302 /* The value of the element of packed array ARR at the ARITY indices
2303 given in IND. ARR must be a simple array. */
2304
2305 static struct value *
2306 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2307 {
2308 int i;
2309 int bits, elt_off, bit_off;
2310 long elt_total_bit_offset;
2311 struct type *elt_type;
2312 struct value *v;
2313
2314 bits = 0;
2315 elt_total_bit_offset = 0;
2316 elt_type = ada_check_typedef (value_type (arr));
2317 for (i = 0; i < arity; i += 1)
2318 {
2319 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2320 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2321 error
2322 (_("attempt to do packed indexing of "
2323 "something other than a packed array"));
2324 else
2325 {
2326 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2327 LONGEST lowerbound, upperbound;
2328 LONGEST idx;
2329
2330 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2331 {
2332 lim_warning (_("don't know bounds of array"));
2333 lowerbound = upperbound = 0;
2334 }
2335
2336 idx = pos_atr (ind[i]);
2337 if (idx < lowerbound || idx > upperbound)
2338 lim_warning (_("packed array index %ld out of bounds"),
2339 (long) idx);
2340 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2341 elt_total_bit_offset += (idx - lowerbound) * bits;
2342 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2343 }
2344 }
2345 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2346 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2347
2348 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2349 bits, elt_type);
2350 return v;
2351 }
2352
2353 /* Non-zero iff TYPE includes negative integer values. */
2354
2355 static int
2356 has_negatives (struct type *type)
2357 {
2358 switch (TYPE_CODE (type))
2359 {
2360 default:
2361 return 0;
2362 case TYPE_CODE_INT:
2363 return !TYPE_UNSIGNED (type);
2364 case TYPE_CODE_RANGE:
2365 return TYPE_LOW_BOUND (type) < 0;
2366 }
2367 }
2368
2369
2370 /* Create a new value of type TYPE from the contents of OBJ starting
2371 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2372 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2373 assigning through the result will set the field fetched from.
2374 VALADDR is ignored unless OBJ is NULL, in which case,
2375 VALADDR+OFFSET must address the start of storage containing the
2376 packed value. The value returned in this case is never an lval.
2377 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2378
2379 struct value *
2380 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2381 long offset, int bit_offset, int bit_size,
2382 struct type *type)
2383 {
2384 struct value *v;
2385 int src, /* Index into the source area */
2386 targ, /* Index into the target area */
2387 srcBitsLeft, /* Number of source bits left to move */
2388 nsrc, ntarg, /* Number of source and target bytes */
2389 unusedLS, /* Number of bits in next significant
2390 byte of source that are unused */
2391 accumSize; /* Number of meaningful bits in accum */
2392 unsigned char *bytes; /* First byte containing data to unpack */
2393 unsigned char *unpacked;
2394 unsigned long accum; /* Staging area for bits being transferred */
2395 unsigned char sign;
2396 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2397 /* Transmit bytes from least to most significant; delta is the direction
2398 the indices move. */
2399 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2400
2401 type = ada_check_typedef (type);
2402
2403 if (obj == NULL)
2404 {
2405 v = allocate_value (type);
2406 bytes = (unsigned char *) (valaddr + offset);
2407 }
2408 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2409 {
2410 v = value_at (type, value_address (obj));
2411 type = value_type (v);
2412 bytes = (unsigned char *) alloca (len);
2413 read_memory (value_address (v) + offset, bytes, len);
2414 }
2415 else
2416 {
2417 v = allocate_value (type);
2418 bytes = (unsigned char *) value_contents (obj) + offset;
2419 }
2420
2421 if (obj != NULL)
2422 {
2423 long new_offset = offset;
2424
2425 set_value_component_location (v, obj);
2426 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2427 set_value_bitsize (v, bit_size);
2428 if (value_bitpos (v) >= HOST_CHAR_BIT)
2429 {
2430 ++new_offset;
2431 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2432 }
2433 set_value_offset (v, new_offset);
2434
2435 /* Also set the parent value. This is needed when trying to
2436 assign a new value (in inferior memory). */
2437 set_value_parent (v, obj);
2438 }
2439 else
2440 set_value_bitsize (v, bit_size);
2441 unpacked = (unsigned char *) value_contents (v);
2442
2443 srcBitsLeft = bit_size;
2444 nsrc = len;
2445 ntarg = TYPE_LENGTH (type);
2446 sign = 0;
2447 if (bit_size == 0)
2448 {
2449 memset (unpacked, 0, TYPE_LENGTH (type));
2450 return v;
2451 }
2452 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2453 {
2454 src = len - 1;
2455 if (has_negatives (type)
2456 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2457 sign = ~0;
2458
2459 unusedLS =
2460 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2461 % HOST_CHAR_BIT;
2462
2463 switch (TYPE_CODE (type))
2464 {
2465 case TYPE_CODE_ARRAY:
2466 case TYPE_CODE_UNION:
2467 case TYPE_CODE_STRUCT:
2468 /* Non-scalar values must be aligned at a byte boundary... */
2469 accumSize =
2470 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2471 /* ... And are placed at the beginning (most-significant) bytes
2472 of the target. */
2473 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2474 ntarg = targ + 1;
2475 break;
2476 default:
2477 accumSize = 0;
2478 targ = TYPE_LENGTH (type) - 1;
2479 break;
2480 }
2481 }
2482 else
2483 {
2484 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2485
2486 src = targ = 0;
2487 unusedLS = bit_offset;
2488 accumSize = 0;
2489
2490 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2491 sign = ~0;
2492 }
2493
2494 accum = 0;
2495 while (nsrc > 0)
2496 {
2497 /* Mask for removing bits of the next source byte that are not
2498 part of the value. */
2499 unsigned int unusedMSMask =
2500 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2501 1;
2502 /* Sign-extend bits for this byte. */
2503 unsigned int signMask = sign & ~unusedMSMask;
2504
2505 accum |=
2506 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2507 accumSize += HOST_CHAR_BIT - unusedLS;
2508 if (accumSize >= HOST_CHAR_BIT)
2509 {
2510 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2511 accumSize -= HOST_CHAR_BIT;
2512 accum >>= HOST_CHAR_BIT;
2513 ntarg -= 1;
2514 targ += delta;
2515 }
2516 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2517 unusedLS = 0;
2518 nsrc -= 1;
2519 src += delta;
2520 }
2521 while (ntarg > 0)
2522 {
2523 accum |= sign << accumSize;
2524 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2525 accumSize -= HOST_CHAR_BIT;
2526 accum >>= HOST_CHAR_BIT;
2527 ntarg -= 1;
2528 targ += delta;
2529 }
2530
2531 return v;
2532 }
2533
2534 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2535 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2536 not overlap. */
2537 static void
2538 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2539 int src_offset, int n, int bits_big_endian_p)
2540 {
2541 unsigned int accum, mask;
2542 int accum_bits, chunk_size;
2543
2544 target += targ_offset / HOST_CHAR_BIT;
2545 targ_offset %= HOST_CHAR_BIT;
2546 source += src_offset / HOST_CHAR_BIT;
2547 src_offset %= HOST_CHAR_BIT;
2548 if (bits_big_endian_p)
2549 {
2550 accum = (unsigned char) *source;
2551 source += 1;
2552 accum_bits = HOST_CHAR_BIT - src_offset;
2553
2554 while (n > 0)
2555 {
2556 int unused_right;
2557
2558 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2559 accum_bits += HOST_CHAR_BIT;
2560 source += 1;
2561 chunk_size = HOST_CHAR_BIT - targ_offset;
2562 if (chunk_size > n)
2563 chunk_size = n;
2564 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2565 mask = ((1 << chunk_size) - 1) << unused_right;
2566 *target =
2567 (*target & ~mask)
2568 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2569 n -= chunk_size;
2570 accum_bits -= chunk_size;
2571 target += 1;
2572 targ_offset = 0;
2573 }
2574 }
2575 else
2576 {
2577 accum = (unsigned char) *source >> src_offset;
2578 source += 1;
2579 accum_bits = HOST_CHAR_BIT - src_offset;
2580
2581 while (n > 0)
2582 {
2583 accum = accum + ((unsigned char) *source << accum_bits);
2584 accum_bits += HOST_CHAR_BIT;
2585 source += 1;
2586 chunk_size = HOST_CHAR_BIT - targ_offset;
2587 if (chunk_size > n)
2588 chunk_size = n;
2589 mask = ((1 << chunk_size) - 1) << targ_offset;
2590 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2591 n -= chunk_size;
2592 accum_bits -= chunk_size;
2593 accum >>= chunk_size;
2594 target += 1;
2595 targ_offset = 0;
2596 }
2597 }
2598 }
2599
2600 /* Store the contents of FROMVAL into the location of TOVAL.
2601 Return a new value with the location of TOVAL and contents of
2602 FROMVAL. Handles assignment into packed fields that have
2603 floating-point or non-scalar types. */
2604
2605 static struct value *
2606 ada_value_assign (struct value *toval, struct value *fromval)
2607 {
2608 struct type *type = value_type (toval);
2609 int bits = value_bitsize (toval);
2610
2611 toval = ada_coerce_ref (toval);
2612 fromval = ada_coerce_ref (fromval);
2613
2614 if (ada_is_direct_array_type (value_type (toval)))
2615 toval = ada_coerce_to_simple_array (toval);
2616 if (ada_is_direct_array_type (value_type (fromval)))
2617 fromval = ada_coerce_to_simple_array (fromval);
2618
2619 if (!deprecated_value_modifiable (toval))
2620 error (_("Left operand of assignment is not a modifiable lvalue."));
2621
2622 if (VALUE_LVAL (toval) == lval_memory
2623 && bits > 0
2624 && (TYPE_CODE (type) == TYPE_CODE_FLT
2625 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2626 {
2627 int len = (value_bitpos (toval)
2628 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2629 int from_size;
2630 gdb_byte *buffer = alloca (len);
2631 struct value *val;
2632 CORE_ADDR to_addr = value_address (toval);
2633
2634 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2635 fromval = value_cast (type, fromval);
2636
2637 read_memory (to_addr, buffer, len);
2638 from_size = value_bitsize (fromval);
2639 if (from_size == 0)
2640 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2641 if (gdbarch_bits_big_endian (get_type_arch (type)))
2642 move_bits (buffer, value_bitpos (toval),
2643 value_contents (fromval), from_size - bits, bits, 1);
2644 else
2645 move_bits (buffer, value_bitpos (toval),
2646 value_contents (fromval), 0, bits, 0);
2647 write_memory_with_notification (to_addr, buffer, len);
2648
2649 val = value_copy (toval);
2650 memcpy (value_contents_raw (val), value_contents (fromval),
2651 TYPE_LENGTH (type));
2652 deprecated_set_value_type (val, type);
2653
2654 return val;
2655 }
2656
2657 return value_assign (toval, fromval);
2658 }
2659
2660
2661 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2662 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2663 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2664 * COMPONENT, and not the inferior's memory. The current contents
2665 * of COMPONENT are ignored. */
2666 static void
2667 value_assign_to_component (struct value *container, struct value *component,
2668 struct value *val)
2669 {
2670 LONGEST offset_in_container =
2671 (LONGEST) (value_address (component) - value_address (container));
2672 int bit_offset_in_container =
2673 value_bitpos (component) - value_bitpos (container);
2674 int bits;
2675
2676 val = value_cast (value_type (component), val);
2677
2678 if (value_bitsize (component) == 0)
2679 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2680 else
2681 bits = value_bitsize (component);
2682
2683 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2684 move_bits (value_contents_writeable (container) + offset_in_container,
2685 value_bitpos (container) + bit_offset_in_container,
2686 value_contents (val),
2687 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2688 bits, 1);
2689 else
2690 move_bits (value_contents_writeable (container) + offset_in_container,
2691 value_bitpos (container) + bit_offset_in_container,
2692 value_contents (val), 0, bits, 0);
2693 }
2694
2695 /* The value of the element of array ARR at the ARITY indices given in IND.
2696 ARR may be either a simple array, GNAT array descriptor, or pointer
2697 thereto. */
2698
2699 struct value *
2700 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2701 {
2702 int k;
2703 struct value *elt;
2704 struct type *elt_type;
2705
2706 elt = ada_coerce_to_simple_array (arr);
2707
2708 elt_type = ada_check_typedef (value_type (elt));
2709 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2710 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2711 return value_subscript_packed (elt, arity, ind);
2712
2713 for (k = 0; k < arity; k += 1)
2714 {
2715 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2716 error (_("too many subscripts (%d expected)"), k);
2717 elt = value_subscript (elt, pos_atr (ind[k]));
2718 }
2719 return elt;
2720 }
2721
2722 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2723 value of the element of *ARR at the ARITY indices given in
2724 IND. Does not read the entire array into memory. */
2725
2726 static struct value *
2727 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2728 struct value **ind)
2729 {
2730 int k;
2731
2732 for (k = 0; k < arity; k += 1)
2733 {
2734 LONGEST lwb, upb;
2735
2736 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2737 error (_("too many subscripts (%d expected)"), k);
2738 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2739 value_copy (arr));
2740 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2741 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2742 type = TYPE_TARGET_TYPE (type);
2743 }
2744
2745 return value_ind (arr);
2746 }
2747
2748 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2749 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2750 elements starting at index LOW. The lower bound of this array is LOW, as
2751 per Ada rules. */
2752 static struct value *
2753 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2754 int low, int high)
2755 {
2756 struct type *type0 = ada_check_typedef (type);
2757 CORE_ADDR base = value_as_address (array_ptr)
2758 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2759 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2760 struct type *index_type
2761 = create_static_range_type (NULL,
2762 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2763 low, high);
2764 struct type *slice_type =
2765 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2766
2767 return value_at_lazy (slice_type, base);
2768 }
2769
2770
2771 static struct value *
2772 ada_value_slice (struct value *array, int low, int high)
2773 {
2774 struct type *type = ada_check_typedef (value_type (array));
2775 struct type *index_type
2776 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2777 struct type *slice_type =
2778 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2779
2780 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2781 }
2782
2783 /* If type is a record type in the form of a standard GNAT array
2784 descriptor, returns the number of dimensions for type. If arr is a
2785 simple array, returns the number of "array of"s that prefix its
2786 type designation. Otherwise, returns 0. */
2787
2788 int
2789 ada_array_arity (struct type *type)
2790 {
2791 int arity;
2792
2793 if (type == NULL)
2794 return 0;
2795
2796 type = desc_base_type (type);
2797
2798 arity = 0;
2799 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2800 return desc_arity (desc_bounds_type (type));
2801 else
2802 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2803 {
2804 arity += 1;
2805 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2806 }
2807
2808 return arity;
2809 }
2810
2811 /* If TYPE is a record type in the form of a standard GNAT array
2812 descriptor or a simple array type, returns the element type for
2813 TYPE after indexing by NINDICES indices, or by all indices if
2814 NINDICES is -1. Otherwise, returns NULL. */
2815
2816 struct type *
2817 ada_array_element_type (struct type *type, int nindices)
2818 {
2819 type = desc_base_type (type);
2820
2821 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2822 {
2823 int k;
2824 struct type *p_array_type;
2825
2826 p_array_type = desc_data_target_type (type);
2827
2828 k = ada_array_arity (type);
2829 if (k == 0)
2830 return NULL;
2831
2832 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2833 if (nindices >= 0 && k > nindices)
2834 k = nindices;
2835 while (k > 0 && p_array_type != NULL)
2836 {
2837 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2838 k -= 1;
2839 }
2840 return p_array_type;
2841 }
2842 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2843 {
2844 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2845 {
2846 type = TYPE_TARGET_TYPE (type);
2847 nindices -= 1;
2848 }
2849 return type;
2850 }
2851
2852 return NULL;
2853 }
2854
2855 /* The type of nth index in arrays of given type (n numbering from 1).
2856 Does not examine memory. Throws an error if N is invalid or TYPE
2857 is not an array type. NAME is the name of the Ada attribute being
2858 evaluated ('range, 'first, 'last, or 'length); it is used in building
2859 the error message. */
2860
2861 static struct type *
2862 ada_index_type (struct type *type, int n, const char *name)
2863 {
2864 struct type *result_type;
2865
2866 type = desc_base_type (type);
2867
2868 if (n < 0 || n > ada_array_arity (type))
2869 error (_("invalid dimension number to '%s"), name);
2870
2871 if (ada_is_simple_array_type (type))
2872 {
2873 int i;
2874
2875 for (i = 1; i < n; i += 1)
2876 type = TYPE_TARGET_TYPE (type);
2877 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2878 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2879 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2880 perhaps stabsread.c would make more sense. */
2881 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2882 result_type = NULL;
2883 }
2884 else
2885 {
2886 result_type = desc_index_type (desc_bounds_type (type), n);
2887 if (result_type == NULL)
2888 error (_("attempt to take bound of something that is not an array"));
2889 }
2890
2891 return result_type;
2892 }
2893
2894 /* Given that arr is an array type, returns the lower bound of the
2895 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2896 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2897 array-descriptor type. It works for other arrays with bounds supplied
2898 by run-time quantities other than discriminants. */
2899
2900 static LONGEST
2901 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2902 {
2903 struct type *type, *index_type_desc, *index_type;
2904 int i;
2905
2906 gdb_assert (which == 0 || which == 1);
2907
2908 if (ada_is_constrained_packed_array_type (arr_type))
2909 arr_type = decode_constrained_packed_array_type (arr_type);
2910
2911 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2912 return (LONGEST) - which;
2913
2914 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2915 type = TYPE_TARGET_TYPE (arr_type);
2916 else
2917 type = arr_type;
2918
2919 index_type_desc = ada_find_parallel_type (type, "___XA");
2920 ada_fixup_array_indexes_type (index_type_desc);
2921 if (index_type_desc != NULL)
2922 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2923 NULL);
2924 else
2925 {
2926 struct type *elt_type = check_typedef (type);
2927
2928 for (i = 1; i < n; i++)
2929 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2930
2931 index_type = TYPE_INDEX_TYPE (elt_type);
2932 }
2933
2934 return
2935 (LONGEST) (which == 0
2936 ? ada_discrete_type_low_bound (index_type)
2937 : ada_discrete_type_high_bound (index_type));
2938 }
2939
2940 /* Given that arr is an array value, returns the lower bound of the
2941 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2942 WHICH is 1. This routine will also work for arrays with bounds
2943 supplied by run-time quantities other than discriminants. */
2944
2945 static LONGEST
2946 ada_array_bound (struct value *arr, int n, int which)
2947 {
2948 struct type *arr_type = value_type (arr);
2949
2950 if (ada_is_constrained_packed_array_type (arr_type))
2951 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2952 else if (ada_is_simple_array_type (arr_type))
2953 return ada_array_bound_from_type (arr_type, n, which);
2954 else
2955 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2956 }
2957
2958 /* Given that arr is an array value, returns the length of the
2959 nth index. This routine will also work for arrays with bounds
2960 supplied by run-time quantities other than discriminants.
2961 Does not work for arrays indexed by enumeration types with representation
2962 clauses at the moment. */
2963
2964 static LONGEST
2965 ada_array_length (struct value *arr, int n)
2966 {
2967 struct type *arr_type = ada_check_typedef (value_type (arr));
2968
2969 if (ada_is_constrained_packed_array_type (arr_type))
2970 return ada_array_length (decode_constrained_packed_array (arr), n);
2971
2972 if (ada_is_simple_array_type (arr_type))
2973 return (ada_array_bound_from_type (arr_type, n, 1)
2974 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2975 else
2976 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2977 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2978 }
2979
2980 /* An empty array whose type is that of ARR_TYPE (an array type),
2981 with bounds LOW to LOW-1. */
2982
2983 static struct value *
2984 empty_array (struct type *arr_type, int low)
2985 {
2986 struct type *arr_type0 = ada_check_typedef (arr_type);
2987 struct type *index_type
2988 = create_static_range_type
2989 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
2990 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2991
2992 return allocate_value (create_array_type (NULL, elt_type, index_type));
2993 }
2994 \f
2995
2996 /* Name resolution */
2997
2998 /* The "decoded" name for the user-definable Ada operator corresponding
2999 to OP. */
3000
3001 static const char *
3002 ada_decoded_op_name (enum exp_opcode op)
3003 {
3004 int i;
3005
3006 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3007 {
3008 if (ada_opname_table[i].op == op)
3009 return ada_opname_table[i].decoded;
3010 }
3011 error (_("Could not find operator name for opcode"));
3012 }
3013
3014
3015 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3016 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3017 undefined namespace) and converts operators that are
3018 user-defined into appropriate function calls. If CONTEXT_TYPE is
3019 non-null, it provides a preferred result type [at the moment, only
3020 type void has any effect---causing procedures to be preferred over
3021 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3022 return type is preferred. May change (expand) *EXP. */
3023
3024 static void
3025 resolve (struct expression **expp, int void_context_p)
3026 {
3027 struct type *context_type = NULL;
3028 int pc = 0;
3029
3030 if (void_context_p)
3031 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3032
3033 resolve_subexp (expp, &pc, 1, context_type);
3034 }
3035
3036 /* Resolve the operator of the subexpression beginning at
3037 position *POS of *EXPP. "Resolving" consists of replacing
3038 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3039 with their resolutions, replacing built-in operators with
3040 function calls to user-defined operators, where appropriate, and,
3041 when DEPROCEDURE_P is non-zero, converting function-valued variables
3042 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3043 are as in ada_resolve, above. */
3044
3045 static struct value *
3046 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3047 struct type *context_type)
3048 {
3049 int pc = *pos;
3050 int i;
3051 struct expression *exp; /* Convenience: == *expp. */
3052 enum exp_opcode op = (*expp)->elts[pc].opcode;
3053 struct value **argvec; /* Vector of operand types (alloca'ed). */
3054 int nargs; /* Number of operands. */
3055 int oplen;
3056
3057 argvec = NULL;
3058 nargs = 0;
3059 exp = *expp;
3060
3061 /* Pass one: resolve operands, saving their types and updating *pos,
3062 if needed. */
3063 switch (op)
3064 {
3065 case OP_FUNCALL:
3066 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3067 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3068 *pos += 7;
3069 else
3070 {
3071 *pos += 3;
3072 resolve_subexp (expp, pos, 0, NULL);
3073 }
3074 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3075 break;
3076
3077 case UNOP_ADDR:
3078 *pos += 1;
3079 resolve_subexp (expp, pos, 0, NULL);
3080 break;
3081
3082 case UNOP_QUAL:
3083 *pos += 3;
3084 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3085 break;
3086
3087 case OP_ATR_MODULUS:
3088 case OP_ATR_SIZE:
3089 case OP_ATR_TAG:
3090 case OP_ATR_FIRST:
3091 case OP_ATR_LAST:
3092 case OP_ATR_LENGTH:
3093 case OP_ATR_POS:
3094 case OP_ATR_VAL:
3095 case OP_ATR_MIN:
3096 case OP_ATR_MAX:
3097 case TERNOP_IN_RANGE:
3098 case BINOP_IN_BOUNDS:
3099 case UNOP_IN_RANGE:
3100 case OP_AGGREGATE:
3101 case OP_OTHERS:
3102 case OP_CHOICES:
3103 case OP_POSITIONAL:
3104 case OP_DISCRETE_RANGE:
3105 case OP_NAME:
3106 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3107 *pos += oplen;
3108 break;
3109
3110 case BINOP_ASSIGN:
3111 {
3112 struct value *arg1;
3113
3114 *pos += 1;
3115 arg1 = resolve_subexp (expp, pos, 0, NULL);
3116 if (arg1 == NULL)
3117 resolve_subexp (expp, pos, 1, NULL);
3118 else
3119 resolve_subexp (expp, pos, 1, value_type (arg1));
3120 break;
3121 }
3122
3123 case UNOP_CAST:
3124 *pos += 3;
3125 nargs = 1;
3126 break;
3127
3128 case BINOP_ADD:
3129 case BINOP_SUB:
3130 case BINOP_MUL:
3131 case BINOP_DIV:
3132 case BINOP_REM:
3133 case BINOP_MOD:
3134 case BINOP_EXP:
3135 case BINOP_CONCAT:
3136 case BINOP_LOGICAL_AND:
3137 case BINOP_LOGICAL_OR:
3138 case BINOP_BITWISE_AND:
3139 case BINOP_BITWISE_IOR:
3140 case BINOP_BITWISE_XOR:
3141
3142 case BINOP_EQUAL:
3143 case BINOP_NOTEQUAL:
3144 case BINOP_LESS:
3145 case BINOP_GTR:
3146 case BINOP_LEQ:
3147 case BINOP_GEQ:
3148
3149 case BINOP_REPEAT:
3150 case BINOP_SUBSCRIPT:
3151 case BINOP_COMMA:
3152 *pos += 1;
3153 nargs = 2;
3154 break;
3155
3156 case UNOP_NEG:
3157 case UNOP_PLUS:
3158 case UNOP_LOGICAL_NOT:
3159 case UNOP_ABS:
3160 case UNOP_IND:
3161 *pos += 1;
3162 nargs = 1;
3163 break;
3164
3165 case OP_LONG:
3166 case OP_DOUBLE:
3167 case OP_VAR_VALUE:
3168 *pos += 4;
3169 break;
3170
3171 case OP_TYPE:
3172 case OP_BOOL:
3173 case OP_LAST:
3174 case OP_INTERNALVAR:
3175 *pos += 3;
3176 break;
3177
3178 case UNOP_MEMVAL:
3179 *pos += 3;
3180 nargs = 1;
3181 break;
3182
3183 case OP_REGISTER:
3184 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3185 break;
3186
3187 case STRUCTOP_STRUCT:
3188 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3189 nargs = 1;
3190 break;
3191
3192 case TERNOP_SLICE:
3193 *pos += 1;
3194 nargs = 3;
3195 break;
3196
3197 case OP_STRING:
3198 break;
3199
3200 default:
3201 error (_("Unexpected operator during name resolution"));
3202 }
3203
3204 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3205 for (i = 0; i < nargs; i += 1)
3206 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3207 argvec[i] = NULL;
3208 exp = *expp;
3209
3210 /* Pass two: perform any resolution on principal operator. */
3211 switch (op)
3212 {
3213 default:
3214 break;
3215
3216 case OP_VAR_VALUE:
3217 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3218 {
3219 struct ada_symbol_info *candidates;
3220 int n_candidates;
3221
3222 n_candidates =
3223 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3224 (exp->elts[pc + 2].symbol),
3225 exp->elts[pc + 1].block, VAR_DOMAIN,
3226 &candidates);
3227
3228 if (n_candidates > 1)
3229 {
3230 /* Types tend to get re-introduced locally, so if there
3231 are any local symbols that are not types, first filter
3232 out all types. */
3233 int j;
3234 for (j = 0; j < n_candidates; j += 1)
3235 switch (SYMBOL_CLASS (candidates[j].sym))
3236 {
3237 case LOC_REGISTER:
3238 case LOC_ARG:
3239 case LOC_REF_ARG:
3240 case LOC_REGPARM_ADDR:
3241 case LOC_LOCAL:
3242 case LOC_COMPUTED:
3243 goto FoundNonType;
3244 default:
3245 break;
3246 }
3247 FoundNonType:
3248 if (j < n_candidates)
3249 {
3250 j = 0;
3251 while (j < n_candidates)
3252 {
3253 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3254 {
3255 candidates[j] = candidates[n_candidates - 1];
3256 n_candidates -= 1;
3257 }
3258 else
3259 j += 1;
3260 }
3261 }
3262 }
3263
3264 if (n_candidates == 0)
3265 error (_("No definition found for %s"),
3266 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3267 else if (n_candidates == 1)
3268 i = 0;
3269 else if (deprocedure_p
3270 && !is_nonfunction (candidates, n_candidates))
3271 {
3272 i = ada_resolve_function
3273 (candidates, n_candidates, NULL, 0,
3274 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3275 context_type);
3276 if (i < 0)
3277 error (_("Could not find a match for %s"),
3278 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3279 }
3280 else
3281 {
3282 printf_filtered (_("Multiple matches for %s\n"),
3283 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3284 user_select_syms (candidates, n_candidates, 1);
3285 i = 0;
3286 }
3287
3288 exp->elts[pc + 1].block = candidates[i].block;
3289 exp->elts[pc + 2].symbol = candidates[i].sym;
3290 if (innermost_block == NULL
3291 || contained_in (candidates[i].block, innermost_block))
3292 innermost_block = candidates[i].block;
3293 }
3294
3295 if (deprocedure_p
3296 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3297 == TYPE_CODE_FUNC))
3298 {
3299 replace_operator_with_call (expp, pc, 0, 0,
3300 exp->elts[pc + 2].symbol,
3301 exp->elts[pc + 1].block);
3302 exp = *expp;
3303 }
3304 break;
3305
3306 case OP_FUNCALL:
3307 {
3308 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3309 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3310 {
3311 struct ada_symbol_info *candidates;
3312 int n_candidates;
3313
3314 n_candidates =
3315 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3316 (exp->elts[pc + 5].symbol),
3317 exp->elts[pc + 4].block, VAR_DOMAIN,
3318 &candidates);
3319 if (n_candidates == 1)
3320 i = 0;
3321 else
3322 {
3323 i = ada_resolve_function
3324 (candidates, n_candidates,
3325 argvec, nargs,
3326 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3327 context_type);
3328 if (i < 0)
3329 error (_("Could not find a match for %s"),
3330 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3331 }
3332
3333 exp->elts[pc + 4].block = candidates[i].block;
3334 exp->elts[pc + 5].symbol = candidates[i].sym;
3335 if (innermost_block == NULL
3336 || contained_in (candidates[i].block, innermost_block))
3337 innermost_block = candidates[i].block;
3338 }
3339 }
3340 break;
3341 case BINOP_ADD:
3342 case BINOP_SUB:
3343 case BINOP_MUL:
3344 case BINOP_DIV:
3345 case BINOP_REM:
3346 case BINOP_MOD:
3347 case BINOP_CONCAT:
3348 case BINOP_BITWISE_AND:
3349 case BINOP_BITWISE_IOR:
3350 case BINOP_BITWISE_XOR:
3351 case BINOP_EQUAL:
3352 case BINOP_NOTEQUAL:
3353 case BINOP_LESS:
3354 case BINOP_GTR:
3355 case BINOP_LEQ:
3356 case BINOP_GEQ:
3357 case BINOP_EXP:
3358 case UNOP_NEG:
3359 case UNOP_PLUS:
3360 case UNOP_LOGICAL_NOT:
3361 case UNOP_ABS:
3362 if (possible_user_operator_p (op, argvec))
3363 {
3364 struct ada_symbol_info *candidates;
3365 int n_candidates;
3366
3367 n_candidates =
3368 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3369 (struct block *) NULL, VAR_DOMAIN,
3370 &candidates);
3371 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3372 ada_decoded_op_name (op), NULL);
3373 if (i < 0)
3374 break;
3375
3376 replace_operator_with_call (expp, pc, nargs, 1,
3377 candidates[i].sym, candidates[i].block);
3378 exp = *expp;
3379 }
3380 break;
3381
3382 case OP_TYPE:
3383 case OP_REGISTER:
3384 return NULL;
3385 }
3386
3387 *pos = pc;
3388 return evaluate_subexp_type (exp, pos);
3389 }
3390
3391 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3392 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3393 a non-pointer. */
3394 /* The term "match" here is rather loose. The match is heuristic and
3395 liberal. */
3396
3397 static int
3398 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3399 {
3400 ftype = ada_check_typedef (ftype);
3401 atype = ada_check_typedef (atype);
3402
3403 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3404 ftype = TYPE_TARGET_TYPE (ftype);
3405 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3406 atype = TYPE_TARGET_TYPE (atype);
3407
3408 switch (TYPE_CODE (ftype))
3409 {
3410 default:
3411 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3412 case TYPE_CODE_PTR:
3413 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3414 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3415 TYPE_TARGET_TYPE (atype), 0);
3416 else
3417 return (may_deref
3418 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3419 case TYPE_CODE_INT:
3420 case TYPE_CODE_ENUM:
3421 case TYPE_CODE_RANGE:
3422 switch (TYPE_CODE (atype))
3423 {
3424 case TYPE_CODE_INT:
3425 case TYPE_CODE_ENUM:
3426 case TYPE_CODE_RANGE:
3427 return 1;
3428 default:
3429 return 0;
3430 }
3431
3432 case TYPE_CODE_ARRAY:
3433 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3434 || ada_is_array_descriptor_type (atype));
3435
3436 case TYPE_CODE_STRUCT:
3437 if (ada_is_array_descriptor_type (ftype))
3438 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3439 || ada_is_array_descriptor_type (atype));
3440 else
3441 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3442 && !ada_is_array_descriptor_type (atype));
3443
3444 case TYPE_CODE_UNION:
3445 case TYPE_CODE_FLT:
3446 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3447 }
3448 }
3449
3450 /* Return non-zero if the formals of FUNC "sufficiently match" the
3451 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3452 may also be an enumeral, in which case it is treated as a 0-
3453 argument function. */
3454
3455 static int
3456 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3457 {
3458 int i;
3459 struct type *func_type = SYMBOL_TYPE (func);
3460
3461 if (SYMBOL_CLASS (func) == LOC_CONST
3462 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3463 return (n_actuals == 0);
3464 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3465 return 0;
3466
3467 if (TYPE_NFIELDS (func_type) != n_actuals)
3468 return 0;
3469
3470 for (i = 0; i < n_actuals; i += 1)
3471 {
3472 if (actuals[i] == NULL)
3473 return 0;
3474 else
3475 {
3476 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3477 i));
3478 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3479
3480 if (!ada_type_match (ftype, atype, 1))
3481 return 0;
3482 }
3483 }
3484 return 1;
3485 }
3486
3487 /* False iff function type FUNC_TYPE definitely does not produce a value
3488 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3489 FUNC_TYPE is not a valid function type with a non-null return type
3490 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3491
3492 static int
3493 return_match (struct type *func_type, struct type *context_type)
3494 {
3495 struct type *return_type;
3496
3497 if (func_type == NULL)
3498 return 1;
3499
3500 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3501 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3502 else
3503 return_type = get_base_type (func_type);
3504 if (return_type == NULL)
3505 return 1;
3506
3507 context_type = get_base_type (context_type);
3508
3509 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3510 return context_type == NULL || return_type == context_type;
3511 else if (context_type == NULL)
3512 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3513 else
3514 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3515 }
3516
3517
3518 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3519 function (if any) that matches the types of the NARGS arguments in
3520 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3521 that returns that type, then eliminate matches that don't. If
3522 CONTEXT_TYPE is void and there is at least one match that does not
3523 return void, eliminate all matches that do.
3524
3525 Asks the user if there is more than one match remaining. Returns -1
3526 if there is no such symbol or none is selected. NAME is used
3527 solely for messages. May re-arrange and modify SYMS in
3528 the process; the index returned is for the modified vector. */
3529
3530 static int
3531 ada_resolve_function (struct ada_symbol_info syms[],
3532 int nsyms, struct value **args, int nargs,
3533 const char *name, struct type *context_type)
3534 {
3535 int fallback;
3536 int k;
3537 int m; /* Number of hits */
3538
3539 m = 0;
3540 /* In the first pass of the loop, we only accept functions matching
3541 context_type. If none are found, we add a second pass of the loop
3542 where every function is accepted. */
3543 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3544 {
3545 for (k = 0; k < nsyms; k += 1)
3546 {
3547 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3548
3549 if (ada_args_match (syms[k].sym, args, nargs)
3550 && (fallback || return_match (type, context_type)))
3551 {
3552 syms[m] = syms[k];
3553 m += 1;
3554 }
3555 }
3556 }
3557
3558 if (m == 0)
3559 return -1;
3560 else if (m > 1)
3561 {
3562 printf_filtered (_("Multiple matches for %s\n"), name);
3563 user_select_syms (syms, m, 1);
3564 return 0;
3565 }
3566 return 0;
3567 }
3568
3569 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3570 in a listing of choices during disambiguation (see sort_choices, below).
3571 The idea is that overloadings of a subprogram name from the
3572 same package should sort in their source order. We settle for ordering
3573 such symbols by their trailing number (__N or $N). */
3574
3575 static int
3576 encoded_ordered_before (const char *N0, const char *N1)
3577 {
3578 if (N1 == NULL)
3579 return 0;
3580 else if (N0 == NULL)
3581 return 1;
3582 else
3583 {
3584 int k0, k1;
3585
3586 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3587 ;
3588 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3589 ;
3590 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3591 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3592 {
3593 int n0, n1;
3594
3595 n0 = k0;
3596 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3597 n0 -= 1;
3598 n1 = k1;
3599 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3600 n1 -= 1;
3601 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3602 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3603 }
3604 return (strcmp (N0, N1) < 0);
3605 }
3606 }
3607
3608 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3609 encoded names. */
3610
3611 static void
3612 sort_choices (struct ada_symbol_info syms[], int nsyms)
3613 {
3614 int i;
3615
3616 for (i = 1; i < nsyms; i += 1)
3617 {
3618 struct ada_symbol_info sym = syms[i];
3619 int j;
3620
3621 for (j = i - 1; j >= 0; j -= 1)
3622 {
3623 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3624 SYMBOL_LINKAGE_NAME (sym.sym)))
3625 break;
3626 syms[j + 1] = syms[j];
3627 }
3628 syms[j + 1] = sym;
3629 }
3630 }
3631
3632 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3633 by asking the user (if necessary), returning the number selected,
3634 and setting the first elements of SYMS items. Error if no symbols
3635 selected. */
3636
3637 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3638 to be re-integrated one of these days. */
3639
3640 int
3641 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3642 {
3643 int i;
3644 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3645 int n_chosen;
3646 int first_choice = (max_results == 1) ? 1 : 2;
3647 const char *select_mode = multiple_symbols_select_mode ();
3648
3649 if (max_results < 1)
3650 error (_("Request to select 0 symbols!"));
3651 if (nsyms <= 1)
3652 return nsyms;
3653
3654 if (select_mode == multiple_symbols_cancel)
3655 error (_("\
3656 canceled because the command is ambiguous\n\
3657 See set/show multiple-symbol."));
3658
3659 /* If select_mode is "all", then return all possible symbols.
3660 Only do that if more than one symbol can be selected, of course.
3661 Otherwise, display the menu as usual. */
3662 if (select_mode == multiple_symbols_all && max_results > 1)
3663 return nsyms;
3664
3665 printf_unfiltered (_("[0] cancel\n"));
3666 if (max_results > 1)
3667 printf_unfiltered (_("[1] all\n"));
3668
3669 sort_choices (syms, nsyms);
3670
3671 for (i = 0; i < nsyms; i += 1)
3672 {
3673 if (syms[i].sym == NULL)
3674 continue;
3675
3676 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3677 {
3678 struct symtab_and_line sal =
3679 find_function_start_sal (syms[i].sym, 1);
3680
3681 if (sal.symtab == NULL)
3682 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3683 i + first_choice,
3684 SYMBOL_PRINT_NAME (syms[i].sym),
3685 sal.line);
3686 else
3687 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3688 SYMBOL_PRINT_NAME (syms[i].sym),
3689 symtab_to_filename_for_display (sal.symtab),
3690 sal.line);
3691 continue;
3692 }
3693 else
3694 {
3695 int is_enumeral =
3696 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3697 && SYMBOL_TYPE (syms[i].sym) != NULL
3698 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3699 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3700
3701 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3702 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3703 i + first_choice,
3704 SYMBOL_PRINT_NAME (syms[i].sym),
3705 symtab_to_filename_for_display (symtab),
3706 SYMBOL_LINE (syms[i].sym));
3707 else if (is_enumeral
3708 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3709 {
3710 printf_unfiltered (("[%d] "), i + first_choice);
3711 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3712 gdb_stdout, -1, 0, &type_print_raw_options);
3713 printf_unfiltered (_("'(%s) (enumeral)\n"),
3714 SYMBOL_PRINT_NAME (syms[i].sym));
3715 }
3716 else if (symtab != NULL)
3717 printf_unfiltered (is_enumeral
3718 ? _("[%d] %s in %s (enumeral)\n")
3719 : _("[%d] %s at %s:?\n"),
3720 i + first_choice,
3721 SYMBOL_PRINT_NAME (syms[i].sym),
3722 symtab_to_filename_for_display (symtab));
3723 else
3724 printf_unfiltered (is_enumeral
3725 ? _("[%d] %s (enumeral)\n")
3726 : _("[%d] %s at ?\n"),
3727 i + first_choice,
3728 SYMBOL_PRINT_NAME (syms[i].sym));
3729 }
3730 }
3731
3732 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3733 "overload-choice");
3734
3735 for (i = 0; i < n_chosen; i += 1)
3736 syms[i] = syms[chosen[i]];
3737
3738 return n_chosen;
3739 }
3740
3741 /* Read and validate a set of numeric choices from the user in the
3742 range 0 .. N_CHOICES-1. Place the results in increasing
3743 order in CHOICES[0 .. N-1], and return N.
3744
3745 The user types choices as a sequence of numbers on one line
3746 separated by blanks, encoding them as follows:
3747
3748 + A choice of 0 means to cancel the selection, throwing an error.
3749 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3750 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3751
3752 The user is not allowed to choose more than MAX_RESULTS values.
3753
3754 ANNOTATION_SUFFIX, if present, is used to annotate the input
3755 prompts (for use with the -f switch). */
3756
3757 int
3758 get_selections (int *choices, int n_choices, int max_results,
3759 int is_all_choice, char *annotation_suffix)
3760 {
3761 char *args;
3762 char *prompt;
3763 int n_chosen;
3764 int first_choice = is_all_choice ? 2 : 1;
3765
3766 prompt = getenv ("PS2");
3767 if (prompt == NULL)
3768 prompt = "> ";
3769
3770 args = command_line_input (prompt, 0, annotation_suffix);
3771
3772 if (args == NULL)
3773 error_no_arg (_("one or more choice numbers"));
3774
3775 n_chosen = 0;
3776
3777 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3778 order, as given in args. Choices are validated. */
3779 while (1)
3780 {
3781 char *args2;
3782 int choice, j;
3783
3784 args = skip_spaces (args);
3785 if (*args == '\0' && n_chosen == 0)
3786 error_no_arg (_("one or more choice numbers"));
3787 else if (*args == '\0')
3788 break;
3789
3790 choice = strtol (args, &args2, 10);
3791 if (args == args2 || choice < 0
3792 || choice > n_choices + first_choice - 1)
3793 error (_("Argument must be choice number"));
3794 args = args2;
3795
3796 if (choice == 0)
3797 error (_("cancelled"));
3798
3799 if (choice < first_choice)
3800 {
3801 n_chosen = n_choices;
3802 for (j = 0; j < n_choices; j += 1)
3803 choices[j] = j;
3804 break;
3805 }
3806 choice -= first_choice;
3807
3808 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3809 {
3810 }
3811
3812 if (j < 0 || choice != choices[j])
3813 {
3814 int k;
3815
3816 for (k = n_chosen - 1; k > j; k -= 1)
3817 choices[k + 1] = choices[k];
3818 choices[j + 1] = choice;
3819 n_chosen += 1;
3820 }
3821 }
3822
3823 if (n_chosen > max_results)
3824 error (_("Select no more than %d of the above"), max_results);
3825
3826 return n_chosen;
3827 }
3828
3829 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3830 on the function identified by SYM and BLOCK, and taking NARGS
3831 arguments. Update *EXPP as needed to hold more space. */
3832
3833 static void
3834 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3835 int oplen, struct symbol *sym,
3836 const struct block *block)
3837 {
3838 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3839 symbol, -oplen for operator being replaced). */
3840 struct expression *newexp = (struct expression *)
3841 xzalloc (sizeof (struct expression)
3842 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3843 struct expression *exp = *expp;
3844
3845 newexp->nelts = exp->nelts + 7 - oplen;
3846 newexp->language_defn = exp->language_defn;
3847 newexp->gdbarch = exp->gdbarch;
3848 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3849 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3850 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3851
3852 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3853 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3854
3855 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3856 newexp->elts[pc + 4].block = block;
3857 newexp->elts[pc + 5].symbol = sym;
3858
3859 *expp = newexp;
3860 xfree (exp);
3861 }
3862
3863 /* Type-class predicates */
3864
3865 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3866 or FLOAT). */
3867
3868 static int
3869 numeric_type_p (struct type *type)
3870 {
3871 if (type == NULL)
3872 return 0;
3873 else
3874 {
3875 switch (TYPE_CODE (type))
3876 {
3877 case TYPE_CODE_INT:
3878 case TYPE_CODE_FLT:
3879 return 1;
3880 case TYPE_CODE_RANGE:
3881 return (type == TYPE_TARGET_TYPE (type)
3882 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3883 default:
3884 return 0;
3885 }
3886 }
3887 }
3888
3889 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3890
3891 static int
3892 integer_type_p (struct type *type)
3893 {
3894 if (type == NULL)
3895 return 0;
3896 else
3897 {
3898 switch (TYPE_CODE (type))
3899 {
3900 case TYPE_CODE_INT:
3901 return 1;
3902 case TYPE_CODE_RANGE:
3903 return (type == TYPE_TARGET_TYPE (type)
3904 || integer_type_p (TYPE_TARGET_TYPE (type)));
3905 default:
3906 return 0;
3907 }
3908 }
3909 }
3910
3911 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3912
3913 static int
3914 scalar_type_p (struct type *type)
3915 {
3916 if (type == NULL)
3917 return 0;
3918 else
3919 {
3920 switch (TYPE_CODE (type))
3921 {
3922 case TYPE_CODE_INT:
3923 case TYPE_CODE_RANGE:
3924 case TYPE_CODE_ENUM:
3925 case TYPE_CODE_FLT:
3926 return 1;
3927 default:
3928 return 0;
3929 }
3930 }
3931 }
3932
3933 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3934
3935 static int
3936 discrete_type_p (struct type *type)
3937 {
3938 if (type == NULL)
3939 return 0;
3940 else
3941 {
3942 switch (TYPE_CODE (type))
3943 {
3944 case TYPE_CODE_INT:
3945 case TYPE_CODE_RANGE:
3946 case TYPE_CODE_ENUM:
3947 case TYPE_CODE_BOOL:
3948 return 1;
3949 default:
3950 return 0;
3951 }
3952 }
3953 }
3954
3955 /* Returns non-zero if OP with operands in the vector ARGS could be
3956 a user-defined function. Errs on the side of pre-defined operators
3957 (i.e., result 0). */
3958
3959 static int
3960 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3961 {
3962 struct type *type0 =
3963 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3964 struct type *type1 =
3965 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3966
3967 if (type0 == NULL)
3968 return 0;
3969
3970 switch (op)
3971 {
3972 default:
3973 return 0;
3974
3975 case BINOP_ADD:
3976 case BINOP_SUB:
3977 case BINOP_MUL:
3978 case BINOP_DIV:
3979 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3980
3981 case BINOP_REM:
3982 case BINOP_MOD:
3983 case BINOP_BITWISE_AND:
3984 case BINOP_BITWISE_IOR:
3985 case BINOP_BITWISE_XOR:
3986 return (!(integer_type_p (type0) && integer_type_p (type1)));
3987
3988 case BINOP_EQUAL:
3989 case BINOP_NOTEQUAL:
3990 case BINOP_LESS:
3991 case BINOP_GTR:
3992 case BINOP_LEQ:
3993 case BINOP_GEQ:
3994 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3995
3996 case BINOP_CONCAT:
3997 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3998
3999 case BINOP_EXP:
4000 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4001
4002 case UNOP_NEG:
4003 case UNOP_PLUS:
4004 case UNOP_LOGICAL_NOT:
4005 case UNOP_ABS:
4006 return (!numeric_type_p (type0));
4007
4008 }
4009 }
4010 \f
4011 /* Renaming */
4012
4013 /* NOTES:
4014
4015 1. In the following, we assume that a renaming type's name may
4016 have an ___XD suffix. It would be nice if this went away at some
4017 point.
4018 2. We handle both the (old) purely type-based representation of
4019 renamings and the (new) variable-based encoding. At some point,
4020 it is devoutly to be hoped that the former goes away
4021 (FIXME: hilfinger-2007-07-09).
4022 3. Subprogram renamings are not implemented, although the XRS
4023 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4024
4025 /* If SYM encodes a renaming,
4026
4027 <renaming> renames <renamed entity>,
4028
4029 sets *LEN to the length of the renamed entity's name,
4030 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4031 the string describing the subcomponent selected from the renamed
4032 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4033 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4034 are undefined). Otherwise, returns a value indicating the category
4035 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4036 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4037 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4038 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4039 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4040 may be NULL, in which case they are not assigned.
4041
4042 [Currently, however, GCC does not generate subprogram renamings.] */
4043
4044 enum ada_renaming_category
4045 ada_parse_renaming (struct symbol *sym,
4046 const char **renamed_entity, int *len,
4047 const char **renaming_expr)
4048 {
4049 enum ada_renaming_category kind;
4050 const char *info;
4051 const char *suffix;
4052
4053 if (sym == NULL)
4054 return ADA_NOT_RENAMING;
4055 switch (SYMBOL_CLASS (sym))
4056 {
4057 default:
4058 return ADA_NOT_RENAMING;
4059 case LOC_TYPEDEF:
4060 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4061 renamed_entity, len, renaming_expr);
4062 case LOC_LOCAL:
4063 case LOC_STATIC:
4064 case LOC_COMPUTED:
4065 case LOC_OPTIMIZED_OUT:
4066 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4067 if (info == NULL)
4068 return ADA_NOT_RENAMING;
4069 switch (info[5])
4070 {
4071 case '_':
4072 kind = ADA_OBJECT_RENAMING;
4073 info += 6;
4074 break;
4075 case 'E':
4076 kind = ADA_EXCEPTION_RENAMING;
4077 info += 7;
4078 break;
4079 case 'P':
4080 kind = ADA_PACKAGE_RENAMING;
4081 info += 7;
4082 break;
4083 case 'S':
4084 kind = ADA_SUBPROGRAM_RENAMING;
4085 info += 7;
4086 break;
4087 default:
4088 return ADA_NOT_RENAMING;
4089 }
4090 }
4091
4092 if (renamed_entity != NULL)
4093 *renamed_entity = info;
4094 suffix = strstr (info, "___XE");
4095 if (suffix == NULL || suffix == info)
4096 return ADA_NOT_RENAMING;
4097 if (len != NULL)
4098 *len = strlen (info) - strlen (suffix);
4099 suffix += 5;
4100 if (renaming_expr != NULL)
4101 *renaming_expr = suffix;
4102 return kind;
4103 }
4104
4105 /* Assuming TYPE encodes a renaming according to the old encoding in
4106 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4107 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4108 ADA_NOT_RENAMING otherwise. */
4109 static enum ada_renaming_category
4110 parse_old_style_renaming (struct type *type,
4111 const char **renamed_entity, int *len,
4112 const char **renaming_expr)
4113 {
4114 enum ada_renaming_category kind;
4115 const char *name;
4116 const char *info;
4117 const char *suffix;
4118
4119 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4120 || TYPE_NFIELDS (type) != 1)
4121 return ADA_NOT_RENAMING;
4122
4123 name = type_name_no_tag (type);
4124 if (name == NULL)
4125 return ADA_NOT_RENAMING;
4126
4127 name = strstr (name, "___XR");
4128 if (name == NULL)
4129 return ADA_NOT_RENAMING;
4130 switch (name[5])
4131 {
4132 case '\0':
4133 case '_':
4134 kind = ADA_OBJECT_RENAMING;
4135 break;
4136 case 'E':
4137 kind = ADA_EXCEPTION_RENAMING;
4138 break;
4139 case 'P':
4140 kind = ADA_PACKAGE_RENAMING;
4141 break;
4142 case 'S':
4143 kind = ADA_SUBPROGRAM_RENAMING;
4144 break;
4145 default:
4146 return ADA_NOT_RENAMING;
4147 }
4148
4149 info = TYPE_FIELD_NAME (type, 0);
4150 if (info == NULL)
4151 return ADA_NOT_RENAMING;
4152 if (renamed_entity != NULL)
4153 *renamed_entity = info;
4154 suffix = strstr (info, "___XE");
4155 if (renaming_expr != NULL)
4156 *renaming_expr = suffix + 5;
4157 if (suffix == NULL || suffix == info)
4158 return ADA_NOT_RENAMING;
4159 if (len != NULL)
4160 *len = suffix - info;
4161 return kind;
4162 }
4163
4164 /* Compute the value of the given RENAMING_SYM, which is expected to
4165 be a symbol encoding a renaming expression. BLOCK is the block
4166 used to evaluate the renaming. */
4167
4168 static struct value *
4169 ada_read_renaming_var_value (struct symbol *renaming_sym,
4170 struct block *block)
4171 {
4172 const char *sym_name;
4173 struct expression *expr;
4174 struct value *value;
4175 struct cleanup *old_chain = NULL;
4176
4177 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4178 expr = parse_exp_1 (&sym_name, 0, block, 0);
4179 old_chain = make_cleanup (free_current_contents, &expr);
4180 value = evaluate_expression (expr);
4181
4182 do_cleanups (old_chain);
4183 return value;
4184 }
4185 \f
4186
4187 /* Evaluation: Function Calls */
4188
4189 /* Return an lvalue containing the value VAL. This is the identity on
4190 lvalues, and otherwise has the side-effect of allocating memory
4191 in the inferior where a copy of the value contents is copied. */
4192
4193 static struct value *
4194 ensure_lval (struct value *val)
4195 {
4196 if (VALUE_LVAL (val) == not_lval
4197 || VALUE_LVAL (val) == lval_internalvar)
4198 {
4199 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4200 const CORE_ADDR addr =
4201 value_as_long (value_allocate_space_in_inferior (len));
4202
4203 set_value_address (val, addr);
4204 VALUE_LVAL (val) = lval_memory;
4205 write_memory (addr, value_contents (val), len);
4206 }
4207
4208 return val;
4209 }
4210
4211 /* Return the value ACTUAL, converted to be an appropriate value for a
4212 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4213 allocating any necessary descriptors (fat pointers), or copies of
4214 values not residing in memory, updating it as needed. */
4215
4216 struct value *
4217 ada_convert_actual (struct value *actual, struct type *formal_type0)
4218 {
4219 struct type *actual_type = ada_check_typedef (value_type (actual));
4220 struct type *formal_type = ada_check_typedef (formal_type0);
4221 struct type *formal_target =
4222 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4223 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4224 struct type *actual_target =
4225 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4226 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4227
4228 if (ada_is_array_descriptor_type (formal_target)
4229 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4230 return make_array_descriptor (formal_type, actual);
4231 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4232 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4233 {
4234 struct value *result;
4235
4236 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4237 && ada_is_array_descriptor_type (actual_target))
4238 result = desc_data (actual);
4239 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4240 {
4241 if (VALUE_LVAL (actual) != lval_memory)
4242 {
4243 struct value *val;
4244
4245 actual_type = ada_check_typedef (value_type (actual));
4246 val = allocate_value (actual_type);
4247 memcpy ((char *) value_contents_raw (val),
4248 (char *) value_contents (actual),
4249 TYPE_LENGTH (actual_type));
4250 actual = ensure_lval (val);
4251 }
4252 result = value_addr (actual);
4253 }
4254 else
4255 return actual;
4256 return value_cast_pointers (formal_type, result, 0);
4257 }
4258 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4259 return ada_value_ind (actual);
4260
4261 return actual;
4262 }
4263
4264 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4265 type TYPE. This is usually an inefficient no-op except on some targets
4266 (such as AVR) where the representation of a pointer and an address
4267 differs. */
4268
4269 static CORE_ADDR
4270 value_pointer (struct value *value, struct type *type)
4271 {
4272 struct gdbarch *gdbarch = get_type_arch (type);
4273 unsigned len = TYPE_LENGTH (type);
4274 gdb_byte *buf = alloca (len);
4275 CORE_ADDR addr;
4276
4277 addr = value_address (value);
4278 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4279 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4280 return addr;
4281 }
4282
4283
4284 /* Push a descriptor of type TYPE for array value ARR on the stack at
4285 *SP, updating *SP to reflect the new descriptor. Return either
4286 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4287 to-descriptor type rather than a descriptor type), a struct value *
4288 representing a pointer to this descriptor. */
4289
4290 static struct value *
4291 make_array_descriptor (struct type *type, struct value *arr)
4292 {
4293 struct type *bounds_type = desc_bounds_type (type);
4294 struct type *desc_type = desc_base_type (type);
4295 struct value *descriptor = allocate_value (desc_type);
4296 struct value *bounds = allocate_value (bounds_type);
4297 int i;
4298
4299 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4300 i > 0; i -= 1)
4301 {
4302 modify_field (value_type (bounds), value_contents_writeable (bounds),
4303 ada_array_bound (arr, i, 0),
4304 desc_bound_bitpos (bounds_type, i, 0),
4305 desc_bound_bitsize (bounds_type, i, 0));
4306 modify_field (value_type (bounds), value_contents_writeable (bounds),
4307 ada_array_bound (arr, i, 1),
4308 desc_bound_bitpos (bounds_type, i, 1),
4309 desc_bound_bitsize (bounds_type, i, 1));
4310 }
4311
4312 bounds = ensure_lval (bounds);
4313
4314 modify_field (value_type (descriptor),
4315 value_contents_writeable (descriptor),
4316 value_pointer (ensure_lval (arr),
4317 TYPE_FIELD_TYPE (desc_type, 0)),
4318 fat_pntr_data_bitpos (desc_type),
4319 fat_pntr_data_bitsize (desc_type));
4320
4321 modify_field (value_type (descriptor),
4322 value_contents_writeable (descriptor),
4323 value_pointer (bounds,
4324 TYPE_FIELD_TYPE (desc_type, 1)),
4325 fat_pntr_bounds_bitpos (desc_type),
4326 fat_pntr_bounds_bitsize (desc_type));
4327
4328 descriptor = ensure_lval (descriptor);
4329
4330 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4331 return value_addr (descriptor);
4332 else
4333 return descriptor;
4334 }
4335 \f
4336 /* Symbol Cache Module */
4337
4338 /* Performance measurements made as of 2010-01-15 indicate that
4339 this cache does bring some noticeable improvements. Depending
4340 on the type of entity being printed, the cache can make it as much
4341 as an order of magnitude faster than without it.
4342
4343 The descriptive type DWARF extension has significantly reduced
4344 the need for this cache, at least when DWARF is being used. However,
4345 even in this case, some expensive name-based symbol searches are still
4346 sometimes necessary - to find an XVZ variable, mostly. */
4347
4348 /* Initialize the contents of SYM_CACHE. */
4349
4350 static void
4351 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4352 {
4353 obstack_init (&sym_cache->cache_space);
4354 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4355 }
4356
4357 /* Free the memory used by SYM_CACHE. */
4358
4359 static void
4360 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4361 {
4362 obstack_free (&sym_cache->cache_space, NULL);
4363 xfree (sym_cache);
4364 }
4365
4366 /* Return the symbol cache associated to the given program space PSPACE.
4367 If not allocated for this PSPACE yet, allocate and initialize one. */
4368
4369 static struct ada_symbol_cache *
4370 ada_get_symbol_cache (struct program_space *pspace)
4371 {
4372 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4373 struct ada_symbol_cache *sym_cache = pspace_data->sym_cache;
4374
4375 if (sym_cache == NULL)
4376 {
4377 sym_cache = XCNEW (struct ada_symbol_cache);
4378 ada_init_symbol_cache (sym_cache);
4379 }
4380
4381 return sym_cache;
4382 }
4383
4384 /* Clear all entries from the symbol cache. */
4385
4386 static void
4387 ada_clear_symbol_cache (void)
4388 {
4389 struct ada_symbol_cache *sym_cache
4390 = ada_get_symbol_cache (current_program_space);
4391
4392 obstack_free (&sym_cache->cache_space, NULL);
4393 ada_init_symbol_cache (sym_cache);
4394 }
4395
4396 /* STRUCT_DOMAIN symbols are also typedefs for the type. This function tests
4397 the equivalency of two Ada symbol domain types. */
4398
4399 static int
4400 ada_symbol_matches_domain (domain_enum symbol_domain, domain_enum domain)
4401 {
4402 if (symbol_domain == domain
4403 || ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
4404 && symbol_domain == STRUCT_DOMAIN))
4405 return 1;
4406
4407 return 0;
4408 }
4409
4410 /* Search our cache for an entry matching NAME and NAMESPACE.
4411 Return it if found, or NULL otherwise. */
4412
4413 static struct cache_entry **
4414 find_entry (const char *name, domain_enum namespace)
4415 {
4416 struct ada_symbol_cache *sym_cache
4417 = ada_get_symbol_cache (current_program_space);
4418 int h = msymbol_hash (name) % HASH_SIZE;
4419 struct cache_entry **e;
4420
4421 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4422 {
4423 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4424 return e;
4425 }
4426 return NULL;
4427 }
4428
4429 /* Search the symbol cache for an entry matching NAME and NAMESPACE.
4430 Return 1 if found, 0 otherwise.
4431
4432 If an entry was found and SYM is not NULL, set *SYM to the entry's
4433 SYM. Same principle for BLOCK if not NULL. */
4434
4435 static int
4436 lookup_cached_symbol (const char *name, domain_enum namespace,
4437 struct symbol **sym, const struct block **block)
4438 {
4439 struct cache_entry **e = find_entry (name, namespace);
4440
4441 if (e == NULL)
4442 return 0;
4443 if (sym != NULL)
4444 *sym = (*e)->sym;
4445 if (block != NULL)
4446 *block = (*e)->block;
4447 return 1;
4448 }
4449
4450 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4451 in domain NAMESPACE, save this result in our symbol cache. */
4452
4453 static void
4454 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4455 const struct block *block)
4456 {
4457 struct ada_symbol_cache *sym_cache
4458 = ada_get_symbol_cache (current_program_space);
4459 int h;
4460 char *copy;
4461 struct cache_entry *e;
4462
4463 /* If the symbol is a local symbol, then do not cache it, as a search
4464 for that symbol depends on the context. To determine whether
4465 the symbol is local or not, we check the block where we found it
4466 against the global and static blocks of its associated symtab. */
4467 if (sym
4468 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), GLOBAL_BLOCK) != block
4469 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), STATIC_BLOCK) != block)
4470 return;
4471
4472 h = msymbol_hash (name) % HASH_SIZE;
4473 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4474 sizeof (*e));
4475 e->next = sym_cache->root[h];
4476 sym_cache->root[h] = e;
4477 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4478 strcpy (copy, name);
4479 e->sym = sym;
4480 e->namespace = namespace;
4481 e->block = block;
4482 }
4483 \f
4484 /* Symbol Lookup */
4485
4486 /* Return nonzero if wild matching should be used when searching for
4487 all symbols matching LOOKUP_NAME.
4488
4489 LOOKUP_NAME is expected to be a symbol name after transformation
4490 for Ada lookups (see ada_name_for_lookup). */
4491
4492 static int
4493 should_use_wild_match (const char *lookup_name)
4494 {
4495 return (strstr (lookup_name, "__") == NULL);
4496 }
4497
4498 /* Return the result of a standard (literal, C-like) lookup of NAME in
4499 given DOMAIN, visible from lexical block BLOCK. */
4500
4501 static struct symbol *
4502 standard_lookup (const char *name, const struct block *block,
4503 domain_enum domain)
4504 {
4505 /* Initialize it just to avoid a GCC false warning. */
4506 struct symbol *sym = NULL;
4507
4508 if (lookup_cached_symbol (name, domain, &sym, NULL))
4509 return sym;
4510 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4511
4512 /* STRUCT_DOMAIN symbols also define a typedef for the type. Lookup
4513 a STRUCT_DOMAIN symbol if one is requested for VAR_DOMAIN and not
4514 found. */
4515 if (sym == NULL && domain == VAR_DOMAIN)
4516 sym = lookup_symbol_in_language (name, block, STRUCT_DOMAIN, language_c, 0);
4517
4518 cache_symbol (name, domain, sym, block_found);
4519 return sym;
4520 }
4521
4522
4523 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4524 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4525 since they contend in overloading in the same way. */
4526 static int
4527 is_nonfunction (struct ada_symbol_info syms[], int n)
4528 {
4529 int i;
4530
4531 for (i = 0; i < n; i += 1)
4532 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4533 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4534 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4535 return 1;
4536
4537 return 0;
4538 }
4539
4540 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4541 struct types. Otherwise, they may not. */
4542
4543 static int
4544 equiv_types (struct type *type0, struct type *type1)
4545 {
4546 if (type0 == type1)
4547 return 1;
4548 if (type0 == NULL || type1 == NULL
4549 || TYPE_CODE (type0) != TYPE_CODE (type1))
4550 return 0;
4551 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4552 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4553 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4554 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4555 return 1;
4556
4557 return 0;
4558 }
4559
4560 /* True iff SYM0 represents the same entity as SYM1, or one that is
4561 no more defined than that of SYM1. */
4562
4563 static int
4564 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4565 {
4566 if (sym0 == sym1)
4567 return 1;
4568 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4569 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4570 return 0;
4571
4572 switch (SYMBOL_CLASS (sym0))
4573 {
4574 case LOC_UNDEF:
4575 return 1;
4576 case LOC_TYPEDEF:
4577 {
4578 struct type *type0 = SYMBOL_TYPE (sym0);
4579 struct type *type1 = SYMBOL_TYPE (sym1);
4580 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4581 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4582 int len0 = strlen (name0);
4583
4584 return
4585 TYPE_CODE (type0) == TYPE_CODE (type1)
4586 && (equiv_types (type0, type1)
4587 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4588 && strncmp (name1 + len0, "___XV", 5) == 0));
4589 }
4590 case LOC_CONST:
4591 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4592 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4593 default:
4594 return 0;
4595 }
4596 }
4597
4598 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4599 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4600
4601 static void
4602 add_defn_to_vec (struct obstack *obstackp,
4603 struct symbol *sym,
4604 const struct block *block)
4605 {
4606 int i;
4607 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4608
4609 /* Do not try to complete stub types, as the debugger is probably
4610 already scanning all symbols matching a certain name at the
4611 time when this function is called. Trying to replace the stub
4612 type by its associated full type will cause us to restart a scan
4613 which may lead to an infinite recursion. Instead, the client
4614 collecting the matching symbols will end up collecting several
4615 matches, with at least one of them complete. It can then filter
4616 out the stub ones if needed. */
4617
4618 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4619 {
4620 if (lesseq_defined_than (sym, prevDefns[i].sym))
4621 return;
4622 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4623 {
4624 prevDefns[i].sym = sym;
4625 prevDefns[i].block = block;
4626 return;
4627 }
4628 }
4629
4630 {
4631 struct ada_symbol_info info;
4632
4633 info.sym = sym;
4634 info.block = block;
4635 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4636 }
4637 }
4638
4639 /* Number of ada_symbol_info structures currently collected in
4640 current vector in *OBSTACKP. */
4641
4642 static int
4643 num_defns_collected (struct obstack *obstackp)
4644 {
4645 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4646 }
4647
4648 /* Vector of ada_symbol_info structures currently collected in current
4649 vector in *OBSTACKP. If FINISH, close off the vector and return
4650 its final address. */
4651
4652 static struct ada_symbol_info *
4653 defns_collected (struct obstack *obstackp, int finish)
4654 {
4655 if (finish)
4656 return obstack_finish (obstackp);
4657 else
4658 return (struct ada_symbol_info *) obstack_base (obstackp);
4659 }
4660
4661 /* Return a bound minimal symbol matching NAME according to Ada
4662 decoding rules. Returns an invalid symbol if there is no such
4663 minimal symbol. Names prefixed with "standard__" are handled
4664 specially: "standard__" is first stripped off, and only static and
4665 global symbols are searched. */
4666
4667 struct bound_minimal_symbol
4668 ada_lookup_simple_minsym (const char *name)
4669 {
4670 struct bound_minimal_symbol result;
4671 struct objfile *objfile;
4672 struct minimal_symbol *msymbol;
4673 const int wild_match_p = should_use_wild_match (name);
4674
4675 memset (&result, 0, sizeof (result));
4676
4677 /* Special case: If the user specifies a symbol name inside package
4678 Standard, do a non-wild matching of the symbol name without
4679 the "standard__" prefix. This was primarily introduced in order
4680 to allow the user to specifically access the standard exceptions
4681 using, for instance, Standard.Constraint_Error when Constraint_Error
4682 is ambiguous (due to the user defining its own Constraint_Error
4683 entity inside its program). */
4684 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4685 name += sizeof ("standard__") - 1;
4686
4687 ALL_MSYMBOLS (objfile, msymbol)
4688 {
4689 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4690 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4691 {
4692 result.minsym = msymbol;
4693 result.objfile = objfile;
4694 break;
4695 }
4696 }
4697
4698 return result;
4699 }
4700
4701 /* For all subprograms that statically enclose the subprogram of the
4702 selected frame, add symbols matching identifier NAME in DOMAIN
4703 and their blocks to the list of data in OBSTACKP, as for
4704 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4705 with a wildcard prefix. */
4706
4707 static void
4708 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4709 const char *name, domain_enum namespace,
4710 int wild_match_p)
4711 {
4712 }
4713
4714 /* True if TYPE is definitely an artificial type supplied to a symbol
4715 for which no debugging information was given in the symbol file. */
4716
4717 static int
4718 is_nondebugging_type (struct type *type)
4719 {
4720 const char *name = ada_type_name (type);
4721
4722 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4723 }
4724
4725 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4726 that are deemed "identical" for practical purposes.
4727
4728 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4729 types and that their number of enumerals is identical (in other
4730 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4731
4732 static int
4733 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4734 {
4735 int i;
4736
4737 /* The heuristic we use here is fairly conservative. We consider
4738 that 2 enumerate types are identical if they have the same
4739 number of enumerals and that all enumerals have the same
4740 underlying value and name. */
4741
4742 /* All enums in the type should have an identical underlying value. */
4743 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4744 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4745 return 0;
4746
4747 /* All enumerals should also have the same name (modulo any numerical
4748 suffix). */
4749 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4750 {
4751 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4752 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4753 int len_1 = strlen (name_1);
4754 int len_2 = strlen (name_2);
4755
4756 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4757 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4758 if (len_1 != len_2
4759 || strncmp (TYPE_FIELD_NAME (type1, i),
4760 TYPE_FIELD_NAME (type2, i),
4761 len_1) != 0)
4762 return 0;
4763 }
4764
4765 return 1;
4766 }
4767
4768 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4769 that are deemed "identical" for practical purposes. Sometimes,
4770 enumerals are not strictly identical, but their types are so similar
4771 that they can be considered identical.
4772
4773 For instance, consider the following code:
4774
4775 type Color is (Black, Red, Green, Blue, White);
4776 type RGB_Color is new Color range Red .. Blue;
4777
4778 Type RGB_Color is a subrange of an implicit type which is a copy
4779 of type Color. If we call that implicit type RGB_ColorB ("B" is
4780 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4781 As a result, when an expression references any of the enumeral
4782 by name (Eg. "print green"), the expression is technically
4783 ambiguous and the user should be asked to disambiguate. But
4784 doing so would only hinder the user, since it wouldn't matter
4785 what choice he makes, the outcome would always be the same.
4786 So, for practical purposes, we consider them as the same. */
4787
4788 static int
4789 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4790 {
4791 int i;
4792
4793 /* Before performing a thorough comparison check of each type,
4794 we perform a series of inexpensive checks. We expect that these
4795 checks will quickly fail in the vast majority of cases, and thus
4796 help prevent the unnecessary use of a more expensive comparison.
4797 Said comparison also expects us to make some of these checks
4798 (see ada_identical_enum_types_p). */
4799
4800 /* Quick check: All symbols should have an enum type. */
4801 for (i = 0; i < nsyms; i++)
4802 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4803 return 0;
4804
4805 /* Quick check: They should all have the same value. */
4806 for (i = 1; i < nsyms; i++)
4807 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4808 return 0;
4809
4810 /* Quick check: They should all have the same number of enumerals. */
4811 for (i = 1; i < nsyms; i++)
4812 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4813 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4814 return 0;
4815
4816 /* All the sanity checks passed, so we might have a set of
4817 identical enumeration types. Perform a more complete
4818 comparison of the type of each symbol. */
4819 for (i = 1; i < nsyms; i++)
4820 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4821 SYMBOL_TYPE (syms[0].sym)))
4822 return 0;
4823
4824 return 1;
4825 }
4826
4827 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4828 duplicate other symbols in the list (The only case I know of where
4829 this happens is when object files containing stabs-in-ecoff are
4830 linked with files containing ordinary ecoff debugging symbols (or no
4831 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4832 Returns the number of items in the modified list. */
4833
4834 static int
4835 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4836 {
4837 int i, j;
4838
4839 /* We should never be called with less than 2 symbols, as there
4840 cannot be any extra symbol in that case. But it's easy to
4841 handle, since we have nothing to do in that case. */
4842 if (nsyms < 2)
4843 return nsyms;
4844
4845 i = 0;
4846 while (i < nsyms)
4847 {
4848 int remove_p = 0;
4849
4850 /* If two symbols have the same name and one of them is a stub type,
4851 the get rid of the stub. */
4852
4853 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4854 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4855 {
4856 for (j = 0; j < nsyms; j++)
4857 {
4858 if (j != i
4859 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4860 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4861 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4862 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4863 remove_p = 1;
4864 }
4865 }
4866
4867 /* Two symbols with the same name, same class and same address
4868 should be identical. */
4869
4870 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4871 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4872 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4873 {
4874 for (j = 0; j < nsyms; j += 1)
4875 {
4876 if (i != j
4877 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4878 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4879 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4880 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4881 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4882 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4883 remove_p = 1;
4884 }
4885 }
4886
4887 if (remove_p)
4888 {
4889 for (j = i + 1; j < nsyms; j += 1)
4890 syms[j - 1] = syms[j];
4891 nsyms -= 1;
4892 }
4893
4894 i += 1;
4895 }
4896
4897 /* If all the remaining symbols are identical enumerals, then
4898 just keep the first one and discard the rest.
4899
4900 Unlike what we did previously, we do not discard any entry
4901 unless they are ALL identical. This is because the symbol
4902 comparison is not a strict comparison, but rather a practical
4903 comparison. If all symbols are considered identical, then
4904 we can just go ahead and use the first one and discard the rest.
4905 But if we cannot reduce the list to a single element, we have
4906 to ask the user to disambiguate anyways. And if we have to
4907 present a multiple-choice menu, it's less confusing if the list
4908 isn't missing some choices that were identical and yet distinct. */
4909 if (symbols_are_identical_enums (syms, nsyms))
4910 nsyms = 1;
4911
4912 return nsyms;
4913 }
4914
4915 /* Given a type that corresponds to a renaming entity, use the type name
4916 to extract the scope (package name or function name, fully qualified,
4917 and following the GNAT encoding convention) where this renaming has been
4918 defined. The string returned needs to be deallocated after use. */
4919
4920 static char *
4921 xget_renaming_scope (struct type *renaming_type)
4922 {
4923 /* The renaming types adhere to the following convention:
4924 <scope>__<rename>___<XR extension>.
4925 So, to extract the scope, we search for the "___XR" extension,
4926 and then backtrack until we find the first "__". */
4927
4928 const char *name = type_name_no_tag (renaming_type);
4929 char *suffix = strstr (name, "___XR");
4930 char *last;
4931 int scope_len;
4932 char *scope;
4933
4934 /* Now, backtrack a bit until we find the first "__". Start looking
4935 at suffix - 3, as the <rename> part is at least one character long. */
4936
4937 for (last = suffix - 3; last > name; last--)
4938 if (last[0] == '_' && last[1] == '_')
4939 break;
4940
4941 /* Make a copy of scope and return it. */
4942
4943 scope_len = last - name;
4944 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4945
4946 strncpy (scope, name, scope_len);
4947 scope[scope_len] = '\0';
4948
4949 return scope;
4950 }
4951
4952 /* Return nonzero if NAME corresponds to a package name. */
4953
4954 static int
4955 is_package_name (const char *name)
4956 {
4957 /* Here, We take advantage of the fact that no symbols are generated
4958 for packages, while symbols are generated for each function.
4959 So the condition for NAME represent a package becomes equivalent
4960 to NAME not existing in our list of symbols. There is only one
4961 small complication with library-level functions (see below). */
4962
4963 char *fun_name;
4964
4965 /* If it is a function that has not been defined at library level,
4966 then we should be able to look it up in the symbols. */
4967 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4968 return 0;
4969
4970 /* Library-level function names start with "_ada_". See if function
4971 "_ada_" followed by NAME can be found. */
4972
4973 /* Do a quick check that NAME does not contain "__", since library-level
4974 functions names cannot contain "__" in them. */
4975 if (strstr (name, "__") != NULL)
4976 return 0;
4977
4978 fun_name = xstrprintf ("_ada_%s", name);
4979
4980 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4981 }
4982
4983 /* Return nonzero if SYM corresponds to a renaming entity that is
4984 not visible from FUNCTION_NAME. */
4985
4986 static int
4987 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4988 {
4989 char *scope;
4990 struct cleanup *old_chain;
4991
4992 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4993 return 0;
4994
4995 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4996 old_chain = make_cleanup (xfree, scope);
4997
4998 /* If the rename has been defined in a package, then it is visible. */
4999 if (is_package_name (scope))
5000 {
5001 do_cleanups (old_chain);
5002 return 0;
5003 }
5004
5005 /* Check that the rename is in the current function scope by checking
5006 that its name starts with SCOPE. */
5007
5008 /* If the function name starts with "_ada_", it means that it is
5009 a library-level function. Strip this prefix before doing the
5010 comparison, as the encoding for the renaming does not contain
5011 this prefix. */
5012 if (strncmp (function_name, "_ada_", 5) == 0)
5013 function_name += 5;
5014
5015 {
5016 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
5017
5018 do_cleanups (old_chain);
5019 return is_invisible;
5020 }
5021 }
5022
5023 /* Remove entries from SYMS that corresponds to a renaming entity that
5024 is not visible from the function associated with CURRENT_BLOCK or
5025 that is superfluous due to the presence of more specific renaming
5026 information. Places surviving symbols in the initial entries of
5027 SYMS and returns the number of surviving symbols.
5028
5029 Rationale:
5030 First, in cases where an object renaming is implemented as a
5031 reference variable, GNAT may produce both the actual reference
5032 variable and the renaming encoding. In this case, we discard the
5033 latter.
5034
5035 Second, GNAT emits a type following a specified encoding for each renaming
5036 entity. Unfortunately, STABS currently does not support the definition
5037 of types that are local to a given lexical block, so all renamings types
5038 are emitted at library level. As a consequence, if an application
5039 contains two renaming entities using the same name, and a user tries to
5040 print the value of one of these entities, the result of the ada symbol
5041 lookup will also contain the wrong renaming type.
5042
5043 This function partially covers for this limitation by attempting to
5044 remove from the SYMS list renaming symbols that should be visible
5045 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5046 method with the current information available. The implementation
5047 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5048
5049 - When the user tries to print a rename in a function while there
5050 is another rename entity defined in a package: Normally, the
5051 rename in the function has precedence over the rename in the
5052 package, so the latter should be removed from the list. This is
5053 currently not the case.
5054
5055 - This function will incorrectly remove valid renames if
5056 the CURRENT_BLOCK corresponds to a function which symbol name
5057 has been changed by an "Export" pragma. As a consequence,
5058 the user will be unable to print such rename entities. */
5059
5060 static int
5061 remove_irrelevant_renamings (struct ada_symbol_info *syms,
5062 int nsyms, const struct block *current_block)
5063 {
5064 struct symbol *current_function;
5065 const char *current_function_name;
5066 int i;
5067 int is_new_style_renaming;
5068
5069 /* If there is both a renaming foo___XR... encoded as a variable and
5070 a simple variable foo in the same block, discard the latter.
5071 First, zero out such symbols, then compress. */
5072 is_new_style_renaming = 0;
5073 for (i = 0; i < nsyms; i += 1)
5074 {
5075 struct symbol *sym = syms[i].sym;
5076 const struct block *block = syms[i].block;
5077 const char *name;
5078 const char *suffix;
5079
5080 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5081 continue;
5082 name = SYMBOL_LINKAGE_NAME (sym);
5083 suffix = strstr (name, "___XR");
5084
5085 if (suffix != NULL)
5086 {
5087 int name_len = suffix - name;
5088 int j;
5089
5090 is_new_style_renaming = 1;
5091 for (j = 0; j < nsyms; j += 1)
5092 if (i != j && syms[j].sym != NULL
5093 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5094 name_len) == 0
5095 && block == syms[j].block)
5096 syms[j].sym = NULL;
5097 }
5098 }
5099 if (is_new_style_renaming)
5100 {
5101 int j, k;
5102
5103 for (j = k = 0; j < nsyms; j += 1)
5104 if (syms[j].sym != NULL)
5105 {
5106 syms[k] = syms[j];
5107 k += 1;
5108 }
5109 return k;
5110 }
5111
5112 /* Extract the function name associated to CURRENT_BLOCK.
5113 Abort if unable to do so. */
5114
5115 if (current_block == NULL)
5116 return nsyms;
5117
5118 current_function = block_linkage_function (current_block);
5119 if (current_function == NULL)
5120 return nsyms;
5121
5122 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5123 if (current_function_name == NULL)
5124 return nsyms;
5125
5126 /* Check each of the symbols, and remove it from the list if it is
5127 a type corresponding to a renaming that is out of the scope of
5128 the current block. */
5129
5130 i = 0;
5131 while (i < nsyms)
5132 {
5133 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5134 == ADA_OBJECT_RENAMING
5135 && old_renaming_is_invisible (syms[i].sym, current_function_name))
5136 {
5137 int j;
5138
5139 for (j = i + 1; j < nsyms; j += 1)
5140 syms[j - 1] = syms[j];
5141 nsyms -= 1;
5142 }
5143 else
5144 i += 1;
5145 }
5146
5147 return nsyms;
5148 }
5149
5150 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5151 whose name and domain match NAME and DOMAIN respectively.
5152 If no match was found, then extend the search to "enclosing"
5153 routines (in other words, if we're inside a nested function,
5154 search the symbols defined inside the enclosing functions).
5155 If WILD_MATCH_P is nonzero, perform the naming matching in
5156 "wild" mode (see function "wild_match" for more info).
5157
5158 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5159
5160 static void
5161 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5162 const struct block *block, domain_enum domain,
5163 int wild_match_p)
5164 {
5165 int block_depth = 0;
5166
5167 while (block != NULL)
5168 {
5169 block_depth += 1;
5170 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5171 wild_match_p);
5172
5173 /* If we found a non-function match, assume that's the one. */
5174 if (is_nonfunction (defns_collected (obstackp, 0),
5175 num_defns_collected (obstackp)))
5176 return;
5177
5178 block = BLOCK_SUPERBLOCK (block);
5179 }
5180
5181 /* If no luck so far, try to find NAME as a local symbol in some lexically
5182 enclosing subprogram. */
5183 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5184 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5185 }
5186
5187 /* An object of this type is used as the user_data argument when
5188 calling the map_matching_symbols method. */
5189
5190 struct match_data
5191 {
5192 struct objfile *objfile;
5193 struct obstack *obstackp;
5194 struct symbol *arg_sym;
5195 int found_sym;
5196 };
5197
5198 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5199 to a list of symbols. DATA0 is a pointer to a struct match_data *
5200 containing the obstack that collects the symbol list, the file that SYM
5201 must come from, a flag indicating whether a non-argument symbol has
5202 been found in the current block, and the last argument symbol
5203 passed in SYM within the current block (if any). When SYM is null,
5204 marking the end of a block, the argument symbol is added if no
5205 other has been found. */
5206
5207 static int
5208 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5209 {
5210 struct match_data *data = (struct match_data *) data0;
5211
5212 if (sym == NULL)
5213 {
5214 if (!data->found_sym && data->arg_sym != NULL)
5215 add_defn_to_vec (data->obstackp,
5216 fixup_symbol_section (data->arg_sym, data->objfile),
5217 block);
5218 data->found_sym = 0;
5219 data->arg_sym = NULL;
5220 }
5221 else
5222 {
5223 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5224 return 0;
5225 else if (SYMBOL_IS_ARGUMENT (sym))
5226 data->arg_sym = sym;
5227 else
5228 {
5229 data->found_sym = 1;
5230 add_defn_to_vec (data->obstackp,
5231 fixup_symbol_section (sym, data->objfile),
5232 block);
5233 }
5234 }
5235 return 0;
5236 }
5237
5238 /* Implements compare_names, but only applying the comparision using
5239 the given CASING. */
5240
5241 static int
5242 compare_names_with_case (const char *string1, const char *string2,
5243 enum case_sensitivity casing)
5244 {
5245 while (*string1 != '\0' && *string2 != '\0')
5246 {
5247 char c1, c2;
5248
5249 if (isspace (*string1) || isspace (*string2))
5250 return strcmp_iw_ordered (string1, string2);
5251
5252 if (casing == case_sensitive_off)
5253 {
5254 c1 = tolower (*string1);
5255 c2 = tolower (*string2);
5256 }
5257 else
5258 {
5259 c1 = *string1;
5260 c2 = *string2;
5261 }
5262 if (c1 != c2)
5263 break;
5264
5265 string1 += 1;
5266 string2 += 1;
5267 }
5268
5269 switch (*string1)
5270 {
5271 case '(':
5272 return strcmp_iw_ordered (string1, string2);
5273 case '_':
5274 if (*string2 == '\0')
5275 {
5276 if (is_name_suffix (string1))
5277 return 0;
5278 else
5279 return 1;
5280 }
5281 /* FALLTHROUGH */
5282 default:
5283 if (*string2 == '(')
5284 return strcmp_iw_ordered (string1, string2);
5285 else
5286 {
5287 if (casing == case_sensitive_off)
5288 return tolower (*string1) - tolower (*string2);
5289 else
5290 return *string1 - *string2;
5291 }
5292 }
5293 }
5294
5295 /* Compare STRING1 to STRING2, with results as for strcmp.
5296 Compatible with strcmp_iw_ordered in that...
5297
5298 strcmp_iw_ordered (STRING1, STRING2) <= 0
5299
5300 ... implies...
5301
5302 compare_names (STRING1, STRING2) <= 0
5303
5304 (they may differ as to what symbols compare equal). */
5305
5306 static int
5307 compare_names (const char *string1, const char *string2)
5308 {
5309 int result;
5310
5311 /* Similar to what strcmp_iw_ordered does, we need to perform
5312 a case-insensitive comparison first, and only resort to
5313 a second, case-sensitive, comparison if the first one was
5314 not sufficient to differentiate the two strings. */
5315
5316 result = compare_names_with_case (string1, string2, case_sensitive_off);
5317 if (result == 0)
5318 result = compare_names_with_case (string1, string2, case_sensitive_on);
5319
5320 return result;
5321 }
5322
5323 /* Add to OBSTACKP all non-local symbols whose name and domain match
5324 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5325 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5326
5327 static void
5328 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5329 domain_enum domain, int global,
5330 int is_wild_match)
5331 {
5332 struct objfile *objfile;
5333 struct match_data data;
5334
5335 memset (&data, 0, sizeof data);
5336 data.obstackp = obstackp;
5337
5338 ALL_OBJFILES (objfile)
5339 {
5340 data.objfile = objfile;
5341
5342 if (is_wild_match)
5343 {
5344 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5345 aux_add_nonlocal_symbols,
5346 &data, wild_match, NULL);
5347 if (domain == VAR_DOMAIN)
5348 objfile->sf->qf->map_matching_symbols (objfile, name,
5349 STRUCT_DOMAIN, global,
5350 aux_add_nonlocal_symbols,
5351 &data, wild_match, NULL);
5352 }
5353 else
5354 {
5355 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5356 aux_add_nonlocal_symbols,
5357 &data, full_match,
5358 compare_names);
5359 if (domain == VAR_DOMAIN)
5360 objfile->sf->qf->map_matching_symbols (objfile, name,
5361 STRUCT_DOMAIN, global,
5362 aux_add_nonlocal_symbols,
5363 &data, full_match,
5364 compare_names);
5365 }
5366 }
5367
5368 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5369 {
5370 ALL_OBJFILES (objfile)
5371 {
5372 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5373 strcpy (name1, "_ada_");
5374 strcpy (name1 + sizeof ("_ada_") - 1, name);
5375 data.objfile = objfile;
5376 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5377 global,
5378 aux_add_nonlocal_symbols,
5379 &data,
5380 full_match, compare_names);
5381 }
5382 }
5383 }
5384
5385 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5386 non-zero, enclosing scope and in global scopes, returning the number of
5387 matches.
5388 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5389 indicating the symbols found and the blocks and symbol tables (if
5390 any) in which they were found. This vector is transient---good only to
5391 the next call of ada_lookup_symbol_list.
5392
5393 When full_search is non-zero, any non-function/non-enumeral
5394 symbol match within the nest of blocks whose innermost member is BLOCK0,
5395 is the one match returned (no other matches in that or
5396 enclosing blocks is returned). If there are any matches in or
5397 surrounding BLOCK0, then these alone are returned.
5398
5399 Names prefixed with "standard__" are handled specially: "standard__"
5400 is first stripped off, and only static and global symbols are searched. */
5401
5402 static int
5403 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5404 domain_enum namespace,
5405 struct ada_symbol_info **results,
5406 int full_search)
5407 {
5408 struct symbol *sym;
5409 const struct block *block;
5410 const char *name;
5411 const int wild_match_p = should_use_wild_match (name0);
5412 int cacheIfUnique;
5413 int ndefns;
5414
5415 obstack_free (&symbol_list_obstack, NULL);
5416 obstack_init (&symbol_list_obstack);
5417
5418 cacheIfUnique = 0;
5419
5420 /* Search specified block and its superiors. */
5421
5422 name = name0;
5423 block = block0;
5424
5425 /* Special case: If the user specifies a symbol name inside package
5426 Standard, do a non-wild matching of the symbol name without
5427 the "standard__" prefix. This was primarily introduced in order
5428 to allow the user to specifically access the standard exceptions
5429 using, for instance, Standard.Constraint_Error when Constraint_Error
5430 is ambiguous (due to the user defining its own Constraint_Error
5431 entity inside its program). */
5432 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5433 {
5434 block = NULL;
5435 name = name0 + sizeof ("standard__") - 1;
5436 }
5437
5438 /* Check the non-global symbols. If we have ANY match, then we're done. */
5439
5440 if (block != NULL)
5441 {
5442 if (full_search)
5443 {
5444 ada_add_local_symbols (&symbol_list_obstack, name, block,
5445 namespace, wild_match_p);
5446 }
5447 else
5448 {
5449 /* In the !full_search case we're are being called by
5450 ada_iterate_over_symbols, and we don't want to search
5451 superblocks. */
5452 ada_add_block_symbols (&symbol_list_obstack, block, name,
5453 namespace, NULL, wild_match_p);
5454 }
5455 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5456 goto done;
5457 }
5458
5459 /* No non-global symbols found. Check our cache to see if we have
5460 already performed this search before. If we have, then return
5461 the same result. */
5462
5463 cacheIfUnique = 1;
5464 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5465 {
5466 if (sym != NULL)
5467 add_defn_to_vec (&symbol_list_obstack, sym, block);
5468 goto done;
5469 }
5470
5471 /* Search symbols from all global blocks. */
5472
5473 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5474 wild_match_p);
5475
5476 /* Now add symbols from all per-file blocks if we've gotten no hits
5477 (not strictly correct, but perhaps better than an error). */
5478
5479 if (num_defns_collected (&symbol_list_obstack) == 0)
5480 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5481 wild_match_p);
5482
5483 done:
5484 ndefns = num_defns_collected (&symbol_list_obstack);
5485 *results = defns_collected (&symbol_list_obstack, 1);
5486
5487 ndefns = remove_extra_symbols (*results, ndefns);
5488
5489 if (ndefns == 0 && full_search)
5490 cache_symbol (name0, namespace, NULL, NULL);
5491
5492 if (ndefns == 1 && full_search && cacheIfUnique)
5493 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5494
5495 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5496
5497 return ndefns;
5498 }
5499
5500 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5501 in global scopes, returning the number of matches, and setting *RESULTS
5502 to a vector of (SYM,BLOCK) tuples.
5503 See ada_lookup_symbol_list_worker for further details. */
5504
5505 int
5506 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5507 domain_enum domain, struct ada_symbol_info **results)
5508 {
5509 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5510 }
5511
5512 /* Implementation of the la_iterate_over_symbols method. */
5513
5514 static void
5515 ada_iterate_over_symbols (const struct block *block,
5516 const char *name, domain_enum domain,
5517 symbol_found_callback_ftype *callback,
5518 void *data)
5519 {
5520 int ndefs, i;
5521 struct ada_symbol_info *results;
5522
5523 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5524 for (i = 0; i < ndefs; ++i)
5525 {
5526 if (! (*callback) (results[i].sym, data))
5527 break;
5528 }
5529 }
5530
5531 /* If NAME is the name of an entity, return a string that should
5532 be used to look that entity up in Ada units. This string should
5533 be deallocated after use using xfree.
5534
5535 NAME can have any form that the "break" or "print" commands might
5536 recognize. In other words, it does not have to be the "natural"
5537 name, or the "encoded" name. */
5538
5539 char *
5540 ada_name_for_lookup (const char *name)
5541 {
5542 char *canon;
5543 int nlen = strlen (name);
5544
5545 if (name[0] == '<' && name[nlen - 1] == '>')
5546 {
5547 canon = xmalloc (nlen - 1);
5548 memcpy (canon, name + 1, nlen - 2);
5549 canon[nlen - 2] = '\0';
5550 }
5551 else
5552 canon = xstrdup (ada_encode (ada_fold_name (name)));
5553 return canon;
5554 }
5555
5556 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5557 to 1, but choosing the first symbol found if there are multiple
5558 choices.
5559
5560 The result is stored in *INFO, which must be non-NULL.
5561 If no match is found, INFO->SYM is set to NULL. */
5562
5563 void
5564 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5565 domain_enum namespace,
5566 struct ada_symbol_info *info)
5567 {
5568 struct ada_symbol_info *candidates;
5569 int n_candidates;
5570
5571 gdb_assert (info != NULL);
5572 memset (info, 0, sizeof (struct ada_symbol_info));
5573
5574 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5575 if (n_candidates == 0)
5576 return;
5577
5578 *info = candidates[0];
5579 info->sym = fixup_symbol_section (info->sym, NULL);
5580 }
5581
5582 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5583 scope and in global scopes, or NULL if none. NAME is folded and
5584 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5585 choosing the first symbol if there are multiple choices.
5586 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5587
5588 struct symbol *
5589 ada_lookup_symbol (const char *name, const struct block *block0,
5590 domain_enum namespace, int *is_a_field_of_this)
5591 {
5592 struct ada_symbol_info info;
5593
5594 if (is_a_field_of_this != NULL)
5595 *is_a_field_of_this = 0;
5596
5597 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5598 block0, namespace, &info);
5599 return info.sym;
5600 }
5601
5602 static struct symbol *
5603 ada_lookup_symbol_nonlocal (const char *name,
5604 const struct block *block,
5605 const domain_enum domain)
5606 {
5607 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5608 }
5609
5610
5611 /* True iff STR is a possible encoded suffix of a normal Ada name
5612 that is to be ignored for matching purposes. Suffixes of parallel
5613 names (e.g., XVE) are not included here. Currently, the possible suffixes
5614 are given by any of the regular expressions:
5615
5616 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5617 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5618 TKB [subprogram suffix for task bodies]
5619 _E[0-9]+[bs]$ [protected object entry suffixes]
5620 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5621
5622 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5623 match is performed. This sequence is used to differentiate homonyms,
5624 is an optional part of a valid name suffix. */
5625
5626 static int
5627 is_name_suffix (const char *str)
5628 {
5629 int k;
5630 const char *matching;
5631 const int len = strlen (str);
5632
5633 /* Skip optional leading __[0-9]+. */
5634
5635 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5636 {
5637 str += 3;
5638 while (isdigit (str[0]))
5639 str += 1;
5640 }
5641
5642 /* [.$][0-9]+ */
5643
5644 if (str[0] == '.' || str[0] == '$')
5645 {
5646 matching = str + 1;
5647 while (isdigit (matching[0]))
5648 matching += 1;
5649 if (matching[0] == '\0')
5650 return 1;
5651 }
5652
5653 /* ___[0-9]+ */
5654
5655 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5656 {
5657 matching = str + 3;
5658 while (isdigit (matching[0]))
5659 matching += 1;
5660 if (matching[0] == '\0')
5661 return 1;
5662 }
5663
5664 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5665
5666 if (strcmp (str, "TKB") == 0)
5667 return 1;
5668
5669 #if 0
5670 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5671 with a N at the end. Unfortunately, the compiler uses the same
5672 convention for other internal types it creates. So treating
5673 all entity names that end with an "N" as a name suffix causes
5674 some regressions. For instance, consider the case of an enumerated
5675 type. To support the 'Image attribute, it creates an array whose
5676 name ends with N.
5677 Having a single character like this as a suffix carrying some
5678 information is a bit risky. Perhaps we should change the encoding
5679 to be something like "_N" instead. In the meantime, do not do
5680 the following check. */
5681 /* Protected Object Subprograms */
5682 if (len == 1 && str [0] == 'N')
5683 return 1;
5684 #endif
5685
5686 /* _E[0-9]+[bs]$ */
5687 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5688 {
5689 matching = str + 3;
5690 while (isdigit (matching[0]))
5691 matching += 1;
5692 if ((matching[0] == 'b' || matching[0] == 's')
5693 && matching [1] == '\0')
5694 return 1;
5695 }
5696
5697 /* ??? We should not modify STR directly, as we are doing below. This
5698 is fine in this case, but may become problematic later if we find
5699 that this alternative did not work, and want to try matching
5700 another one from the begining of STR. Since we modified it, we
5701 won't be able to find the begining of the string anymore! */
5702 if (str[0] == 'X')
5703 {
5704 str += 1;
5705 while (str[0] != '_' && str[0] != '\0')
5706 {
5707 if (str[0] != 'n' && str[0] != 'b')
5708 return 0;
5709 str += 1;
5710 }
5711 }
5712
5713 if (str[0] == '\000')
5714 return 1;
5715
5716 if (str[0] == '_')
5717 {
5718 if (str[1] != '_' || str[2] == '\000')
5719 return 0;
5720 if (str[2] == '_')
5721 {
5722 if (strcmp (str + 3, "JM") == 0)
5723 return 1;
5724 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5725 the LJM suffix in favor of the JM one. But we will
5726 still accept LJM as a valid suffix for a reasonable
5727 amount of time, just to allow ourselves to debug programs
5728 compiled using an older version of GNAT. */
5729 if (strcmp (str + 3, "LJM") == 0)
5730 return 1;
5731 if (str[3] != 'X')
5732 return 0;
5733 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5734 || str[4] == 'U' || str[4] == 'P')
5735 return 1;
5736 if (str[4] == 'R' && str[5] != 'T')
5737 return 1;
5738 return 0;
5739 }
5740 if (!isdigit (str[2]))
5741 return 0;
5742 for (k = 3; str[k] != '\0'; k += 1)
5743 if (!isdigit (str[k]) && str[k] != '_')
5744 return 0;
5745 return 1;
5746 }
5747 if (str[0] == '$' && isdigit (str[1]))
5748 {
5749 for (k = 2; str[k] != '\0'; k += 1)
5750 if (!isdigit (str[k]) && str[k] != '_')
5751 return 0;
5752 return 1;
5753 }
5754 return 0;
5755 }
5756
5757 /* Return non-zero if the string starting at NAME and ending before
5758 NAME_END contains no capital letters. */
5759
5760 static int
5761 is_valid_name_for_wild_match (const char *name0)
5762 {
5763 const char *decoded_name = ada_decode (name0);
5764 int i;
5765
5766 /* If the decoded name starts with an angle bracket, it means that
5767 NAME0 does not follow the GNAT encoding format. It should then
5768 not be allowed as a possible wild match. */
5769 if (decoded_name[0] == '<')
5770 return 0;
5771
5772 for (i=0; decoded_name[i] != '\0'; i++)
5773 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5774 return 0;
5775
5776 return 1;
5777 }
5778
5779 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5780 that could start a simple name. Assumes that *NAMEP points into
5781 the string beginning at NAME0. */
5782
5783 static int
5784 advance_wild_match (const char **namep, const char *name0, int target0)
5785 {
5786 const char *name = *namep;
5787
5788 while (1)
5789 {
5790 int t0, t1;
5791
5792 t0 = *name;
5793 if (t0 == '_')
5794 {
5795 t1 = name[1];
5796 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5797 {
5798 name += 1;
5799 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5800 break;
5801 else
5802 name += 1;
5803 }
5804 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5805 || name[2] == target0))
5806 {
5807 name += 2;
5808 break;
5809 }
5810 else
5811 return 0;
5812 }
5813 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5814 name += 1;
5815 else
5816 return 0;
5817 }
5818
5819 *namep = name;
5820 return 1;
5821 }
5822
5823 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5824 informational suffixes of NAME (i.e., for which is_name_suffix is
5825 true). Assumes that PATN is a lower-cased Ada simple name. */
5826
5827 static int
5828 wild_match (const char *name, const char *patn)
5829 {
5830 const char *p;
5831 const char *name0 = name;
5832
5833 while (1)
5834 {
5835 const char *match = name;
5836
5837 if (*name == *patn)
5838 {
5839 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5840 if (*p != *name)
5841 break;
5842 if (*p == '\0' && is_name_suffix (name))
5843 return match != name0 && !is_valid_name_for_wild_match (name0);
5844
5845 if (name[-1] == '_')
5846 name -= 1;
5847 }
5848 if (!advance_wild_match (&name, name0, *patn))
5849 return 1;
5850 }
5851 }
5852
5853 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5854 informational suffix. */
5855
5856 static int
5857 full_match (const char *sym_name, const char *search_name)
5858 {
5859 return !match_name (sym_name, search_name, 0);
5860 }
5861
5862
5863 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5864 vector *defn_symbols, updating the list of symbols in OBSTACKP
5865 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5866 OBJFILE is the section containing BLOCK. */
5867
5868 static void
5869 ada_add_block_symbols (struct obstack *obstackp,
5870 const struct block *block, const char *name,
5871 domain_enum domain, struct objfile *objfile,
5872 int wild)
5873 {
5874 struct block_iterator iter;
5875 int name_len = strlen (name);
5876 /* A matching argument symbol, if any. */
5877 struct symbol *arg_sym;
5878 /* Set true when we find a matching non-argument symbol. */
5879 int found_sym;
5880 struct symbol *sym;
5881
5882 arg_sym = NULL;
5883 found_sym = 0;
5884 if (wild)
5885 {
5886 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5887 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5888 {
5889 if (ada_symbol_matches_domain (SYMBOL_DOMAIN (sym), domain)
5890 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5891 {
5892 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5893 continue;
5894 else if (SYMBOL_IS_ARGUMENT (sym))
5895 arg_sym = sym;
5896 else
5897 {
5898 found_sym = 1;
5899 add_defn_to_vec (obstackp,
5900 fixup_symbol_section (sym, objfile),
5901 block);
5902 }
5903 }
5904 }
5905 }
5906 else
5907 {
5908 for (sym = block_iter_match_first (block, name, full_match, &iter);
5909 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5910 {
5911 if (ada_symbol_matches_domain (SYMBOL_DOMAIN (sym), domain))
5912 {
5913 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5914 {
5915 if (SYMBOL_IS_ARGUMENT (sym))
5916 arg_sym = sym;
5917 else
5918 {
5919 found_sym = 1;
5920 add_defn_to_vec (obstackp,
5921 fixup_symbol_section (sym, objfile),
5922 block);
5923 }
5924 }
5925 }
5926 }
5927 }
5928
5929 if (!found_sym && arg_sym != NULL)
5930 {
5931 add_defn_to_vec (obstackp,
5932 fixup_symbol_section (arg_sym, objfile),
5933 block);
5934 }
5935
5936 if (!wild)
5937 {
5938 arg_sym = NULL;
5939 found_sym = 0;
5940
5941 ALL_BLOCK_SYMBOLS (block, iter, sym)
5942 {
5943 if (ada_symbol_matches_domain (SYMBOL_DOMAIN (sym), domain))
5944 {
5945 int cmp;
5946
5947 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5948 if (cmp == 0)
5949 {
5950 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5951 if (cmp == 0)
5952 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5953 name_len);
5954 }
5955
5956 if (cmp == 0
5957 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5958 {
5959 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5960 {
5961 if (SYMBOL_IS_ARGUMENT (sym))
5962 arg_sym = sym;
5963 else
5964 {
5965 found_sym = 1;
5966 add_defn_to_vec (obstackp,
5967 fixup_symbol_section (sym, objfile),
5968 block);
5969 }
5970 }
5971 }
5972 }
5973 }
5974
5975 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5976 They aren't parameters, right? */
5977 if (!found_sym && arg_sym != NULL)
5978 {
5979 add_defn_to_vec (obstackp,
5980 fixup_symbol_section (arg_sym, objfile),
5981 block);
5982 }
5983 }
5984 }
5985 \f
5986
5987 /* Symbol Completion */
5988
5989 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5990 name in a form that's appropriate for the completion. The result
5991 does not need to be deallocated, but is only good until the next call.
5992
5993 TEXT_LEN is equal to the length of TEXT.
5994 Perform a wild match if WILD_MATCH_P is set.
5995 ENCODED_P should be set if TEXT represents the start of a symbol name
5996 in its encoded form. */
5997
5998 static const char *
5999 symbol_completion_match (const char *sym_name,
6000 const char *text, int text_len,
6001 int wild_match_p, int encoded_p)
6002 {
6003 const int verbatim_match = (text[0] == '<');
6004 int match = 0;
6005
6006 if (verbatim_match)
6007 {
6008 /* Strip the leading angle bracket. */
6009 text = text + 1;
6010 text_len--;
6011 }
6012
6013 /* First, test against the fully qualified name of the symbol. */
6014
6015 if (strncmp (sym_name, text, text_len) == 0)
6016 match = 1;
6017
6018 if (match && !encoded_p)
6019 {
6020 /* One needed check before declaring a positive match is to verify
6021 that iff we are doing a verbatim match, the decoded version
6022 of the symbol name starts with '<'. Otherwise, this symbol name
6023 is not a suitable completion. */
6024 const char *sym_name_copy = sym_name;
6025 int has_angle_bracket;
6026
6027 sym_name = ada_decode (sym_name);
6028 has_angle_bracket = (sym_name[0] == '<');
6029 match = (has_angle_bracket == verbatim_match);
6030 sym_name = sym_name_copy;
6031 }
6032
6033 if (match && !verbatim_match)
6034 {
6035 /* When doing non-verbatim match, another check that needs to
6036 be done is to verify that the potentially matching symbol name
6037 does not include capital letters, because the ada-mode would
6038 not be able to understand these symbol names without the
6039 angle bracket notation. */
6040 const char *tmp;
6041
6042 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6043 if (*tmp != '\0')
6044 match = 0;
6045 }
6046
6047 /* Second: Try wild matching... */
6048
6049 if (!match && wild_match_p)
6050 {
6051 /* Since we are doing wild matching, this means that TEXT
6052 may represent an unqualified symbol name. We therefore must
6053 also compare TEXT against the unqualified name of the symbol. */
6054 sym_name = ada_unqualified_name (ada_decode (sym_name));
6055
6056 if (strncmp (sym_name, text, text_len) == 0)
6057 match = 1;
6058 }
6059
6060 /* Finally: If we found a mach, prepare the result to return. */
6061
6062 if (!match)
6063 return NULL;
6064
6065 if (verbatim_match)
6066 sym_name = add_angle_brackets (sym_name);
6067
6068 if (!encoded_p)
6069 sym_name = ada_decode (sym_name);
6070
6071 return sym_name;
6072 }
6073
6074 /* A companion function to ada_make_symbol_completion_list().
6075 Check if SYM_NAME represents a symbol which name would be suitable
6076 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6077 it is appended at the end of the given string vector SV.
6078
6079 ORIG_TEXT is the string original string from the user command
6080 that needs to be completed. WORD is the entire command on which
6081 completion should be performed. These two parameters are used to
6082 determine which part of the symbol name should be added to the
6083 completion vector.
6084 if WILD_MATCH_P is set, then wild matching is performed.
6085 ENCODED_P should be set if TEXT represents a symbol name in its
6086 encoded formed (in which case the completion should also be
6087 encoded). */
6088
6089 static void
6090 symbol_completion_add (VEC(char_ptr) **sv,
6091 const char *sym_name,
6092 const char *text, int text_len,
6093 const char *orig_text, const char *word,
6094 int wild_match_p, int encoded_p)
6095 {
6096 const char *match = symbol_completion_match (sym_name, text, text_len,
6097 wild_match_p, encoded_p);
6098 char *completion;
6099
6100 if (match == NULL)
6101 return;
6102
6103 /* We found a match, so add the appropriate completion to the given
6104 string vector. */
6105
6106 if (word == orig_text)
6107 {
6108 completion = xmalloc (strlen (match) + 5);
6109 strcpy (completion, match);
6110 }
6111 else if (word > orig_text)
6112 {
6113 /* Return some portion of sym_name. */
6114 completion = xmalloc (strlen (match) + 5);
6115 strcpy (completion, match + (word - orig_text));
6116 }
6117 else
6118 {
6119 /* Return some of ORIG_TEXT plus sym_name. */
6120 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6121 strncpy (completion, word, orig_text - word);
6122 completion[orig_text - word] = '\0';
6123 strcat (completion, match);
6124 }
6125
6126 VEC_safe_push (char_ptr, *sv, completion);
6127 }
6128
6129 /* An object of this type is passed as the user_data argument to the
6130 expand_symtabs_matching method. */
6131 struct add_partial_datum
6132 {
6133 VEC(char_ptr) **completions;
6134 const char *text;
6135 int text_len;
6136 const char *text0;
6137 const char *word;
6138 int wild_match;
6139 int encoded;
6140 };
6141
6142 /* A callback for expand_symtabs_matching. */
6143
6144 static int
6145 ada_complete_symbol_matcher (const char *name, void *user_data)
6146 {
6147 struct add_partial_datum *data = user_data;
6148
6149 return symbol_completion_match (name, data->text, data->text_len,
6150 data->wild_match, data->encoded) != NULL;
6151 }
6152
6153 /* Return a list of possible symbol names completing TEXT0. WORD is
6154 the entire command on which completion is made. */
6155
6156 static VEC (char_ptr) *
6157 ada_make_symbol_completion_list (const char *text0, const char *word,
6158 enum type_code code)
6159 {
6160 char *text;
6161 int text_len;
6162 int wild_match_p;
6163 int encoded_p;
6164 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6165 struct symbol *sym;
6166 struct symtab *s;
6167 struct minimal_symbol *msymbol;
6168 struct objfile *objfile;
6169 struct block *b, *surrounding_static_block = 0;
6170 int i;
6171 struct block_iterator iter;
6172 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6173
6174 gdb_assert (code == TYPE_CODE_UNDEF);
6175
6176 if (text0[0] == '<')
6177 {
6178 text = xstrdup (text0);
6179 make_cleanup (xfree, text);
6180 text_len = strlen (text);
6181 wild_match_p = 0;
6182 encoded_p = 1;
6183 }
6184 else
6185 {
6186 text = xstrdup (ada_encode (text0));
6187 make_cleanup (xfree, text);
6188 text_len = strlen (text);
6189 for (i = 0; i < text_len; i++)
6190 text[i] = tolower (text[i]);
6191
6192 encoded_p = (strstr (text0, "__") != NULL);
6193 /* If the name contains a ".", then the user is entering a fully
6194 qualified entity name, and the match must not be done in wild
6195 mode. Similarly, if the user wants to complete what looks like
6196 an encoded name, the match must not be done in wild mode. */
6197 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6198 }
6199
6200 /* First, look at the partial symtab symbols. */
6201 {
6202 struct add_partial_datum data;
6203
6204 data.completions = &completions;
6205 data.text = text;
6206 data.text_len = text_len;
6207 data.text0 = text0;
6208 data.word = word;
6209 data.wild_match = wild_match_p;
6210 data.encoded = encoded_p;
6211 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6212 &data);
6213 }
6214
6215 /* At this point scan through the misc symbol vectors and add each
6216 symbol you find to the list. Eventually we want to ignore
6217 anything that isn't a text symbol (everything else will be
6218 handled by the psymtab code above). */
6219
6220 ALL_MSYMBOLS (objfile, msymbol)
6221 {
6222 QUIT;
6223 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6224 text, text_len, text0, word, wild_match_p,
6225 encoded_p);
6226 }
6227
6228 /* Search upwards from currently selected frame (so that we can
6229 complete on local vars. */
6230
6231 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6232 {
6233 if (!BLOCK_SUPERBLOCK (b))
6234 surrounding_static_block = b; /* For elmin of dups */
6235
6236 ALL_BLOCK_SYMBOLS (b, iter, sym)
6237 {
6238 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6239 text, text_len, text0, word,
6240 wild_match_p, encoded_p);
6241 }
6242 }
6243
6244 /* Go through the symtabs and check the externs and statics for
6245 symbols which match. */
6246
6247 ALL_SYMTABS (objfile, s)
6248 {
6249 QUIT;
6250 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
6251 ALL_BLOCK_SYMBOLS (b, iter, sym)
6252 {
6253 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6254 text, text_len, text0, word,
6255 wild_match_p, encoded_p);
6256 }
6257 }
6258
6259 ALL_SYMTABS (objfile, s)
6260 {
6261 QUIT;
6262 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
6263 /* Don't do this block twice. */
6264 if (b == surrounding_static_block)
6265 continue;
6266 ALL_BLOCK_SYMBOLS (b, iter, sym)
6267 {
6268 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6269 text, text_len, text0, word,
6270 wild_match_p, encoded_p);
6271 }
6272 }
6273
6274 do_cleanups (old_chain);
6275 return completions;
6276 }
6277
6278 /* Field Access */
6279
6280 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6281 for tagged types. */
6282
6283 static int
6284 ada_is_dispatch_table_ptr_type (struct type *type)
6285 {
6286 const char *name;
6287
6288 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6289 return 0;
6290
6291 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6292 if (name == NULL)
6293 return 0;
6294
6295 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6296 }
6297
6298 /* Return non-zero if TYPE is an interface tag. */
6299
6300 static int
6301 ada_is_interface_tag (struct type *type)
6302 {
6303 const char *name = TYPE_NAME (type);
6304
6305 if (name == NULL)
6306 return 0;
6307
6308 return (strcmp (name, "ada__tags__interface_tag") == 0);
6309 }
6310
6311 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6312 to be invisible to users. */
6313
6314 int
6315 ada_is_ignored_field (struct type *type, int field_num)
6316 {
6317 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6318 return 1;
6319
6320 /* Check the name of that field. */
6321 {
6322 const char *name = TYPE_FIELD_NAME (type, field_num);
6323
6324 /* Anonymous field names should not be printed.
6325 brobecker/2007-02-20: I don't think this can actually happen
6326 but we don't want to print the value of annonymous fields anyway. */
6327 if (name == NULL)
6328 return 1;
6329
6330 /* Normally, fields whose name start with an underscore ("_")
6331 are fields that have been internally generated by the compiler,
6332 and thus should not be printed. The "_parent" field is special,
6333 however: This is a field internally generated by the compiler
6334 for tagged types, and it contains the components inherited from
6335 the parent type. This field should not be printed as is, but
6336 should not be ignored either. */
6337 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6338 return 1;
6339 }
6340
6341 /* If this is the dispatch table of a tagged type or an interface tag,
6342 then ignore. */
6343 if (ada_is_tagged_type (type, 1)
6344 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6345 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6346 return 1;
6347
6348 /* Not a special field, so it should not be ignored. */
6349 return 0;
6350 }
6351
6352 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6353 pointer or reference type whose ultimate target has a tag field. */
6354
6355 int
6356 ada_is_tagged_type (struct type *type, int refok)
6357 {
6358 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6359 }
6360
6361 /* True iff TYPE represents the type of X'Tag */
6362
6363 int
6364 ada_is_tag_type (struct type *type)
6365 {
6366 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6367 return 0;
6368 else
6369 {
6370 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6371
6372 return (name != NULL
6373 && strcmp (name, "ada__tags__dispatch_table") == 0);
6374 }
6375 }
6376
6377 /* The type of the tag on VAL. */
6378
6379 struct type *
6380 ada_tag_type (struct value *val)
6381 {
6382 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6383 }
6384
6385 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6386 retired at Ada 05). */
6387
6388 static int
6389 is_ada95_tag (struct value *tag)
6390 {
6391 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6392 }
6393
6394 /* The value of the tag on VAL. */
6395
6396 struct value *
6397 ada_value_tag (struct value *val)
6398 {
6399 return ada_value_struct_elt (val, "_tag", 0);
6400 }
6401
6402 /* The value of the tag on the object of type TYPE whose contents are
6403 saved at VALADDR, if it is non-null, or is at memory address
6404 ADDRESS. */
6405
6406 static struct value *
6407 value_tag_from_contents_and_address (struct type *type,
6408 const gdb_byte *valaddr,
6409 CORE_ADDR address)
6410 {
6411 int tag_byte_offset;
6412 struct type *tag_type;
6413
6414 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6415 NULL, NULL, NULL))
6416 {
6417 const gdb_byte *valaddr1 = ((valaddr == NULL)
6418 ? NULL
6419 : valaddr + tag_byte_offset);
6420 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6421
6422 return value_from_contents_and_address (tag_type, valaddr1, address1);
6423 }
6424 return NULL;
6425 }
6426
6427 static struct type *
6428 type_from_tag (struct value *tag)
6429 {
6430 const char *type_name = ada_tag_name (tag);
6431
6432 if (type_name != NULL)
6433 return ada_find_any_type (ada_encode (type_name));
6434 return NULL;
6435 }
6436
6437 /* Given a value OBJ of a tagged type, return a value of this
6438 type at the base address of the object. The base address, as
6439 defined in Ada.Tags, it is the address of the primary tag of
6440 the object, and therefore where the field values of its full
6441 view can be fetched. */
6442
6443 struct value *
6444 ada_tag_value_at_base_address (struct value *obj)
6445 {
6446 volatile struct gdb_exception e;
6447 struct value *val;
6448 LONGEST offset_to_top = 0;
6449 struct type *ptr_type, *obj_type;
6450 struct value *tag;
6451 CORE_ADDR base_address;
6452
6453 obj_type = value_type (obj);
6454
6455 /* It is the responsability of the caller to deref pointers. */
6456
6457 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6458 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6459 return obj;
6460
6461 tag = ada_value_tag (obj);
6462 if (!tag)
6463 return obj;
6464
6465 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6466
6467 if (is_ada95_tag (tag))
6468 return obj;
6469
6470 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6471 ptr_type = lookup_pointer_type (ptr_type);
6472 val = value_cast (ptr_type, tag);
6473 if (!val)
6474 return obj;
6475
6476 /* It is perfectly possible that an exception be raised while
6477 trying to determine the base address, just like for the tag;
6478 see ada_tag_name for more details. We do not print the error
6479 message for the same reason. */
6480
6481 TRY_CATCH (e, RETURN_MASK_ERROR)
6482 {
6483 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6484 }
6485
6486 if (e.reason < 0)
6487 return obj;
6488
6489 /* If offset is null, nothing to do. */
6490
6491 if (offset_to_top == 0)
6492 return obj;
6493
6494 /* -1 is a special case in Ada.Tags; however, what should be done
6495 is not quite clear from the documentation. So do nothing for
6496 now. */
6497
6498 if (offset_to_top == -1)
6499 return obj;
6500
6501 base_address = value_address (obj) - offset_to_top;
6502 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6503
6504 /* Make sure that we have a proper tag at the new address.
6505 Otherwise, offset_to_top is bogus (which can happen when
6506 the object is not initialized yet). */
6507
6508 if (!tag)
6509 return obj;
6510
6511 obj_type = type_from_tag (tag);
6512
6513 if (!obj_type)
6514 return obj;
6515
6516 return value_from_contents_and_address (obj_type, NULL, base_address);
6517 }
6518
6519 /* Return the "ada__tags__type_specific_data" type. */
6520
6521 static struct type *
6522 ada_get_tsd_type (struct inferior *inf)
6523 {
6524 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6525
6526 if (data->tsd_type == 0)
6527 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6528 return data->tsd_type;
6529 }
6530
6531 /* Return the TSD (type-specific data) associated to the given TAG.
6532 TAG is assumed to be the tag of a tagged-type entity.
6533
6534 May return NULL if we are unable to get the TSD. */
6535
6536 static struct value *
6537 ada_get_tsd_from_tag (struct value *tag)
6538 {
6539 struct value *val;
6540 struct type *type;
6541
6542 /* First option: The TSD is simply stored as a field of our TAG.
6543 Only older versions of GNAT would use this format, but we have
6544 to test it first, because there are no visible markers for
6545 the current approach except the absence of that field. */
6546
6547 val = ada_value_struct_elt (tag, "tsd", 1);
6548 if (val)
6549 return val;
6550
6551 /* Try the second representation for the dispatch table (in which
6552 there is no explicit 'tsd' field in the referent of the tag pointer,
6553 and instead the tsd pointer is stored just before the dispatch
6554 table. */
6555
6556 type = ada_get_tsd_type (current_inferior());
6557 if (type == NULL)
6558 return NULL;
6559 type = lookup_pointer_type (lookup_pointer_type (type));
6560 val = value_cast (type, tag);
6561 if (val == NULL)
6562 return NULL;
6563 return value_ind (value_ptradd (val, -1));
6564 }
6565
6566 /* Given the TSD of a tag (type-specific data), return a string
6567 containing the name of the associated type.
6568
6569 The returned value is good until the next call. May return NULL
6570 if we are unable to determine the tag name. */
6571
6572 static char *
6573 ada_tag_name_from_tsd (struct value *tsd)
6574 {
6575 static char name[1024];
6576 char *p;
6577 struct value *val;
6578
6579 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6580 if (val == NULL)
6581 return NULL;
6582 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6583 for (p = name; *p != '\0'; p += 1)
6584 if (isalpha (*p))
6585 *p = tolower (*p);
6586 return name;
6587 }
6588
6589 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6590 a C string.
6591
6592 Return NULL if the TAG is not an Ada tag, or if we were unable to
6593 determine the name of that tag. The result is good until the next
6594 call. */
6595
6596 const char *
6597 ada_tag_name (struct value *tag)
6598 {
6599 volatile struct gdb_exception e;
6600 char *name = NULL;
6601
6602 if (!ada_is_tag_type (value_type (tag)))
6603 return NULL;
6604
6605 /* It is perfectly possible that an exception be raised while trying
6606 to determine the TAG's name, even under normal circumstances:
6607 The associated variable may be uninitialized or corrupted, for
6608 instance. We do not let any exception propagate past this point.
6609 instead we return NULL.
6610
6611 We also do not print the error message either (which often is very
6612 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6613 the caller print a more meaningful message if necessary. */
6614 TRY_CATCH (e, RETURN_MASK_ERROR)
6615 {
6616 struct value *tsd = ada_get_tsd_from_tag (tag);
6617
6618 if (tsd != NULL)
6619 name = ada_tag_name_from_tsd (tsd);
6620 }
6621
6622 return name;
6623 }
6624
6625 /* The parent type of TYPE, or NULL if none. */
6626
6627 struct type *
6628 ada_parent_type (struct type *type)
6629 {
6630 int i;
6631
6632 type = ada_check_typedef (type);
6633
6634 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6635 return NULL;
6636
6637 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6638 if (ada_is_parent_field (type, i))
6639 {
6640 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6641
6642 /* If the _parent field is a pointer, then dereference it. */
6643 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6644 parent_type = TYPE_TARGET_TYPE (parent_type);
6645 /* If there is a parallel XVS type, get the actual base type. */
6646 parent_type = ada_get_base_type (parent_type);
6647
6648 return ada_check_typedef (parent_type);
6649 }
6650
6651 return NULL;
6652 }
6653
6654 /* True iff field number FIELD_NUM of structure type TYPE contains the
6655 parent-type (inherited) fields of a derived type. Assumes TYPE is
6656 a structure type with at least FIELD_NUM+1 fields. */
6657
6658 int
6659 ada_is_parent_field (struct type *type, int field_num)
6660 {
6661 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6662
6663 return (name != NULL
6664 && (strncmp (name, "PARENT", 6) == 0
6665 || strncmp (name, "_parent", 7) == 0));
6666 }
6667
6668 /* True iff field number FIELD_NUM of structure type TYPE is a
6669 transparent wrapper field (which should be silently traversed when doing
6670 field selection and flattened when printing). Assumes TYPE is a
6671 structure type with at least FIELD_NUM+1 fields. Such fields are always
6672 structures. */
6673
6674 int
6675 ada_is_wrapper_field (struct type *type, int field_num)
6676 {
6677 const char *name = TYPE_FIELD_NAME (type, field_num);
6678
6679 return (name != NULL
6680 && (strncmp (name, "PARENT", 6) == 0
6681 || strcmp (name, "REP") == 0
6682 || strncmp (name, "_parent", 7) == 0
6683 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6684 }
6685
6686 /* True iff field number FIELD_NUM of structure or union type TYPE
6687 is a variant wrapper. Assumes TYPE is a structure type with at least
6688 FIELD_NUM+1 fields. */
6689
6690 int
6691 ada_is_variant_part (struct type *type, int field_num)
6692 {
6693 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6694
6695 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6696 || (is_dynamic_field (type, field_num)
6697 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6698 == TYPE_CODE_UNION)));
6699 }
6700
6701 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6702 whose discriminants are contained in the record type OUTER_TYPE,
6703 returns the type of the controlling discriminant for the variant.
6704 May return NULL if the type could not be found. */
6705
6706 struct type *
6707 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6708 {
6709 char *name = ada_variant_discrim_name (var_type);
6710
6711 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6712 }
6713
6714 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6715 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6716 represents a 'when others' clause; otherwise 0. */
6717
6718 int
6719 ada_is_others_clause (struct type *type, int field_num)
6720 {
6721 const char *name = TYPE_FIELD_NAME (type, field_num);
6722
6723 return (name != NULL && name[0] == 'O');
6724 }
6725
6726 /* Assuming that TYPE0 is the type of the variant part of a record,
6727 returns the name of the discriminant controlling the variant.
6728 The value is valid until the next call to ada_variant_discrim_name. */
6729
6730 char *
6731 ada_variant_discrim_name (struct type *type0)
6732 {
6733 static char *result = NULL;
6734 static size_t result_len = 0;
6735 struct type *type;
6736 const char *name;
6737 const char *discrim_end;
6738 const char *discrim_start;
6739
6740 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6741 type = TYPE_TARGET_TYPE (type0);
6742 else
6743 type = type0;
6744
6745 name = ada_type_name (type);
6746
6747 if (name == NULL || name[0] == '\000')
6748 return "";
6749
6750 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6751 discrim_end -= 1)
6752 {
6753 if (strncmp (discrim_end, "___XVN", 6) == 0)
6754 break;
6755 }
6756 if (discrim_end == name)
6757 return "";
6758
6759 for (discrim_start = discrim_end; discrim_start != name + 3;
6760 discrim_start -= 1)
6761 {
6762 if (discrim_start == name + 1)
6763 return "";
6764 if ((discrim_start > name + 3
6765 && strncmp (discrim_start - 3, "___", 3) == 0)
6766 || discrim_start[-1] == '.')
6767 break;
6768 }
6769
6770 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6771 strncpy (result, discrim_start, discrim_end - discrim_start);
6772 result[discrim_end - discrim_start] = '\0';
6773 return result;
6774 }
6775
6776 /* Scan STR for a subtype-encoded number, beginning at position K.
6777 Put the position of the character just past the number scanned in
6778 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6779 Return 1 if there was a valid number at the given position, and 0
6780 otherwise. A "subtype-encoded" number consists of the absolute value
6781 in decimal, followed by the letter 'm' to indicate a negative number.
6782 Assumes 0m does not occur. */
6783
6784 int
6785 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6786 {
6787 ULONGEST RU;
6788
6789 if (!isdigit (str[k]))
6790 return 0;
6791
6792 /* Do it the hard way so as not to make any assumption about
6793 the relationship of unsigned long (%lu scan format code) and
6794 LONGEST. */
6795 RU = 0;
6796 while (isdigit (str[k]))
6797 {
6798 RU = RU * 10 + (str[k] - '0');
6799 k += 1;
6800 }
6801
6802 if (str[k] == 'm')
6803 {
6804 if (R != NULL)
6805 *R = (-(LONGEST) (RU - 1)) - 1;
6806 k += 1;
6807 }
6808 else if (R != NULL)
6809 *R = (LONGEST) RU;
6810
6811 /* NOTE on the above: Technically, C does not say what the results of
6812 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6813 number representable as a LONGEST (although either would probably work
6814 in most implementations). When RU>0, the locution in the then branch
6815 above is always equivalent to the negative of RU. */
6816
6817 if (new_k != NULL)
6818 *new_k = k;
6819 return 1;
6820 }
6821
6822 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6823 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6824 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6825
6826 int
6827 ada_in_variant (LONGEST val, struct type *type, int field_num)
6828 {
6829 const char *name = TYPE_FIELD_NAME (type, field_num);
6830 int p;
6831
6832 p = 0;
6833 while (1)
6834 {
6835 switch (name[p])
6836 {
6837 case '\0':
6838 return 0;
6839 case 'S':
6840 {
6841 LONGEST W;
6842
6843 if (!ada_scan_number (name, p + 1, &W, &p))
6844 return 0;
6845 if (val == W)
6846 return 1;
6847 break;
6848 }
6849 case 'R':
6850 {
6851 LONGEST L, U;
6852
6853 if (!ada_scan_number (name, p + 1, &L, &p)
6854 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6855 return 0;
6856 if (val >= L && val <= U)
6857 return 1;
6858 break;
6859 }
6860 case 'O':
6861 return 1;
6862 default:
6863 return 0;
6864 }
6865 }
6866 }
6867
6868 /* FIXME: Lots of redundancy below. Try to consolidate. */
6869
6870 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6871 ARG_TYPE, extract and return the value of one of its (non-static)
6872 fields. FIELDNO says which field. Differs from value_primitive_field
6873 only in that it can handle packed values of arbitrary type. */
6874
6875 static struct value *
6876 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6877 struct type *arg_type)
6878 {
6879 struct type *type;
6880
6881 arg_type = ada_check_typedef (arg_type);
6882 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6883
6884 /* Handle packed fields. */
6885
6886 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6887 {
6888 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6889 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6890
6891 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6892 offset + bit_pos / 8,
6893 bit_pos % 8, bit_size, type);
6894 }
6895 else
6896 return value_primitive_field (arg1, offset, fieldno, arg_type);
6897 }
6898
6899 /* Find field with name NAME in object of type TYPE. If found,
6900 set the following for each argument that is non-null:
6901 - *FIELD_TYPE_P to the field's type;
6902 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6903 an object of that type;
6904 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6905 - *BIT_SIZE_P to its size in bits if the field is packed, and
6906 0 otherwise;
6907 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6908 fields up to but not including the desired field, or by the total
6909 number of fields if not found. A NULL value of NAME never
6910 matches; the function just counts visible fields in this case.
6911
6912 Returns 1 if found, 0 otherwise. */
6913
6914 static int
6915 find_struct_field (const char *name, struct type *type, int offset,
6916 struct type **field_type_p,
6917 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6918 int *index_p)
6919 {
6920 int i;
6921
6922 type = ada_check_typedef (type);
6923
6924 if (field_type_p != NULL)
6925 *field_type_p = NULL;
6926 if (byte_offset_p != NULL)
6927 *byte_offset_p = 0;
6928 if (bit_offset_p != NULL)
6929 *bit_offset_p = 0;
6930 if (bit_size_p != NULL)
6931 *bit_size_p = 0;
6932
6933 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6934 {
6935 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6936 int fld_offset = offset + bit_pos / 8;
6937 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6938
6939 if (t_field_name == NULL)
6940 continue;
6941
6942 else if (name != NULL && field_name_match (t_field_name, name))
6943 {
6944 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6945
6946 if (field_type_p != NULL)
6947 *field_type_p = TYPE_FIELD_TYPE (type, i);
6948 if (byte_offset_p != NULL)
6949 *byte_offset_p = fld_offset;
6950 if (bit_offset_p != NULL)
6951 *bit_offset_p = bit_pos % 8;
6952 if (bit_size_p != NULL)
6953 *bit_size_p = bit_size;
6954 return 1;
6955 }
6956 else if (ada_is_wrapper_field (type, i))
6957 {
6958 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6959 field_type_p, byte_offset_p, bit_offset_p,
6960 bit_size_p, index_p))
6961 return 1;
6962 }
6963 else if (ada_is_variant_part (type, i))
6964 {
6965 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6966 fixed type?? */
6967 int j;
6968 struct type *field_type
6969 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6970
6971 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6972 {
6973 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6974 fld_offset
6975 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6976 field_type_p, byte_offset_p,
6977 bit_offset_p, bit_size_p, index_p))
6978 return 1;
6979 }
6980 }
6981 else if (index_p != NULL)
6982 *index_p += 1;
6983 }
6984 return 0;
6985 }
6986
6987 /* Number of user-visible fields in record type TYPE. */
6988
6989 static int
6990 num_visible_fields (struct type *type)
6991 {
6992 int n;
6993
6994 n = 0;
6995 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6996 return n;
6997 }
6998
6999 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7000 and search in it assuming it has (class) type TYPE.
7001 If found, return value, else return NULL.
7002
7003 Searches recursively through wrapper fields (e.g., '_parent'). */
7004
7005 static struct value *
7006 ada_search_struct_field (char *name, struct value *arg, int offset,
7007 struct type *type)
7008 {
7009 int i;
7010
7011 type = ada_check_typedef (type);
7012 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7013 {
7014 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7015
7016 if (t_field_name == NULL)
7017 continue;
7018
7019 else if (field_name_match (t_field_name, name))
7020 return ada_value_primitive_field (arg, offset, i, type);
7021
7022 else if (ada_is_wrapper_field (type, i))
7023 {
7024 struct value *v = /* Do not let indent join lines here. */
7025 ada_search_struct_field (name, arg,
7026 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7027 TYPE_FIELD_TYPE (type, i));
7028
7029 if (v != NULL)
7030 return v;
7031 }
7032
7033 else if (ada_is_variant_part (type, i))
7034 {
7035 /* PNH: Do we ever get here? See find_struct_field. */
7036 int j;
7037 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7038 i));
7039 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7040
7041 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7042 {
7043 struct value *v = ada_search_struct_field /* Force line
7044 break. */
7045 (name, arg,
7046 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7047 TYPE_FIELD_TYPE (field_type, j));
7048
7049 if (v != NULL)
7050 return v;
7051 }
7052 }
7053 }
7054 return NULL;
7055 }
7056
7057 static struct value *ada_index_struct_field_1 (int *, struct value *,
7058 int, struct type *);
7059
7060
7061 /* Return field #INDEX in ARG, where the index is that returned by
7062 * find_struct_field through its INDEX_P argument. Adjust the address
7063 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7064 * If found, return value, else return NULL. */
7065
7066 static struct value *
7067 ada_index_struct_field (int index, struct value *arg, int offset,
7068 struct type *type)
7069 {
7070 return ada_index_struct_field_1 (&index, arg, offset, type);
7071 }
7072
7073
7074 /* Auxiliary function for ada_index_struct_field. Like
7075 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7076 * *INDEX_P. */
7077
7078 static struct value *
7079 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7080 struct type *type)
7081 {
7082 int i;
7083 type = ada_check_typedef (type);
7084
7085 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7086 {
7087 if (TYPE_FIELD_NAME (type, i) == NULL)
7088 continue;
7089 else if (ada_is_wrapper_field (type, i))
7090 {
7091 struct value *v = /* Do not let indent join lines here. */
7092 ada_index_struct_field_1 (index_p, arg,
7093 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7094 TYPE_FIELD_TYPE (type, i));
7095
7096 if (v != NULL)
7097 return v;
7098 }
7099
7100 else if (ada_is_variant_part (type, i))
7101 {
7102 /* PNH: Do we ever get here? See ada_search_struct_field,
7103 find_struct_field. */
7104 error (_("Cannot assign this kind of variant record"));
7105 }
7106 else if (*index_p == 0)
7107 return ada_value_primitive_field (arg, offset, i, type);
7108 else
7109 *index_p -= 1;
7110 }
7111 return NULL;
7112 }
7113
7114 /* Given ARG, a value of type (pointer or reference to a)*
7115 structure/union, extract the component named NAME from the ultimate
7116 target structure/union and return it as a value with its
7117 appropriate type.
7118
7119 The routine searches for NAME among all members of the structure itself
7120 and (recursively) among all members of any wrapper members
7121 (e.g., '_parent').
7122
7123 If NO_ERR, then simply return NULL in case of error, rather than
7124 calling error. */
7125
7126 struct value *
7127 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7128 {
7129 struct type *t, *t1;
7130 struct value *v;
7131
7132 v = NULL;
7133 t1 = t = ada_check_typedef (value_type (arg));
7134 if (TYPE_CODE (t) == TYPE_CODE_REF)
7135 {
7136 t1 = TYPE_TARGET_TYPE (t);
7137 if (t1 == NULL)
7138 goto BadValue;
7139 t1 = ada_check_typedef (t1);
7140 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7141 {
7142 arg = coerce_ref (arg);
7143 t = t1;
7144 }
7145 }
7146
7147 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7148 {
7149 t1 = TYPE_TARGET_TYPE (t);
7150 if (t1 == NULL)
7151 goto BadValue;
7152 t1 = ada_check_typedef (t1);
7153 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7154 {
7155 arg = value_ind (arg);
7156 t = t1;
7157 }
7158 else
7159 break;
7160 }
7161
7162 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7163 goto BadValue;
7164
7165 if (t1 == t)
7166 v = ada_search_struct_field (name, arg, 0, t);
7167 else
7168 {
7169 int bit_offset, bit_size, byte_offset;
7170 struct type *field_type;
7171 CORE_ADDR address;
7172
7173 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7174 address = value_address (ada_value_ind (arg));
7175 else
7176 address = value_address (ada_coerce_ref (arg));
7177
7178 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7179 if (find_struct_field (name, t1, 0,
7180 &field_type, &byte_offset, &bit_offset,
7181 &bit_size, NULL))
7182 {
7183 if (bit_size != 0)
7184 {
7185 if (TYPE_CODE (t) == TYPE_CODE_REF)
7186 arg = ada_coerce_ref (arg);
7187 else
7188 arg = ada_value_ind (arg);
7189 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7190 bit_offset, bit_size,
7191 field_type);
7192 }
7193 else
7194 v = value_at_lazy (field_type, address + byte_offset);
7195 }
7196 }
7197
7198 if (v != NULL || no_err)
7199 return v;
7200 else
7201 error (_("There is no member named %s."), name);
7202
7203 BadValue:
7204 if (no_err)
7205 return NULL;
7206 else
7207 error (_("Attempt to extract a component of "
7208 "a value that is not a record."));
7209 }
7210
7211 /* Given a type TYPE, look up the type of the component of type named NAME.
7212 If DISPP is non-null, add its byte displacement from the beginning of a
7213 structure (pointed to by a value) of type TYPE to *DISPP (does not
7214 work for packed fields).
7215
7216 Matches any field whose name has NAME as a prefix, possibly
7217 followed by "___".
7218
7219 TYPE can be either a struct or union. If REFOK, TYPE may also
7220 be a (pointer or reference)+ to a struct or union, and the
7221 ultimate target type will be searched.
7222
7223 Looks recursively into variant clauses and parent types.
7224
7225 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7226 TYPE is not a type of the right kind. */
7227
7228 static struct type *
7229 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7230 int noerr, int *dispp)
7231 {
7232 int i;
7233
7234 if (name == NULL)
7235 goto BadName;
7236
7237 if (refok && type != NULL)
7238 while (1)
7239 {
7240 type = ada_check_typedef (type);
7241 if (TYPE_CODE (type) != TYPE_CODE_PTR
7242 && TYPE_CODE (type) != TYPE_CODE_REF)
7243 break;
7244 type = TYPE_TARGET_TYPE (type);
7245 }
7246
7247 if (type == NULL
7248 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7249 && TYPE_CODE (type) != TYPE_CODE_UNION))
7250 {
7251 if (noerr)
7252 return NULL;
7253 else
7254 {
7255 target_terminal_ours ();
7256 gdb_flush (gdb_stdout);
7257 if (type == NULL)
7258 error (_("Type (null) is not a structure or union type"));
7259 else
7260 {
7261 /* XXX: type_sprint */
7262 fprintf_unfiltered (gdb_stderr, _("Type "));
7263 type_print (type, "", gdb_stderr, -1);
7264 error (_(" is not a structure or union type"));
7265 }
7266 }
7267 }
7268
7269 type = to_static_fixed_type (type);
7270
7271 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7272 {
7273 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7274 struct type *t;
7275 int disp;
7276
7277 if (t_field_name == NULL)
7278 continue;
7279
7280 else if (field_name_match (t_field_name, name))
7281 {
7282 if (dispp != NULL)
7283 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7284 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7285 }
7286
7287 else if (ada_is_wrapper_field (type, i))
7288 {
7289 disp = 0;
7290 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7291 0, 1, &disp);
7292 if (t != NULL)
7293 {
7294 if (dispp != NULL)
7295 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7296 return t;
7297 }
7298 }
7299
7300 else if (ada_is_variant_part (type, i))
7301 {
7302 int j;
7303 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7304 i));
7305
7306 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7307 {
7308 /* FIXME pnh 2008/01/26: We check for a field that is
7309 NOT wrapped in a struct, since the compiler sometimes
7310 generates these for unchecked variant types. Revisit
7311 if the compiler changes this practice. */
7312 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7313 disp = 0;
7314 if (v_field_name != NULL
7315 && field_name_match (v_field_name, name))
7316 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7317 else
7318 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7319 j),
7320 name, 0, 1, &disp);
7321
7322 if (t != NULL)
7323 {
7324 if (dispp != NULL)
7325 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7326 return t;
7327 }
7328 }
7329 }
7330
7331 }
7332
7333 BadName:
7334 if (!noerr)
7335 {
7336 target_terminal_ours ();
7337 gdb_flush (gdb_stdout);
7338 if (name == NULL)
7339 {
7340 /* XXX: type_sprint */
7341 fprintf_unfiltered (gdb_stderr, _("Type "));
7342 type_print (type, "", gdb_stderr, -1);
7343 error (_(" has no component named <null>"));
7344 }
7345 else
7346 {
7347 /* XXX: type_sprint */
7348 fprintf_unfiltered (gdb_stderr, _("Type "));
7349 type_print (type, "", gdb_stderr, -1);
7350 error (_(" has no component named %s"), name);
7351 }
7352 }
7353
7354 return NULL;
7355 }
7356
7357 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7358 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7359 represents an unchecked union (that is, the variant part of a
7360 record that is named in an Unchecked_Union pragma). */
7361
7362 static int
7363 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7364 {
7365 char *discrim_name = ada_variant_discrim_name (var_type);
7366
7367 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7368 == NULL);
7369 }
7370
7371
7372 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7373 within a value of type OUTER_TYPE that is stored in GDB at
7374 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7375 numbering from 0) is applicable. Returns -1 if none are. */
7376
7377 int
7378 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7379 const gdb_byte *outer_valaddr)
7380 {
7381 int others_clause;
7382 int i;
7383 char *discrim_name = ada_variant_discrim_name (var_type);
7384 struct value *outer;
7385 struct value *discrim;
7386 LONGEST discrim_val;
7387
7388 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7389 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7390 if (discrim == NULL)
7391 return -1;
7392 discrim_val = value_as_long (discrim);
7393
7394 others_clause = -1;
7395 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7396 {
7397 if (ada_is_others_clause (var_type, i))
7398 others_clause = i;
7399 else if (ada_in_variant (discrim_val, var_type, i))
7400 return i;
7401 }
7402
7403 return others_clause;
7404 }
7405 \f
7406
7407
7408 /* Dynamic-Sized Records */
7409
7410 /* Strategy: The type ostensibly attached to a value with dynamic size
7411 (i.e., a size that is not statically recorded in the debugging
7412 data) does not accurately reflect the size or layout of the value.
7413 Our strategy is to convert these values to values with accurate,
7414 conventional types that are constructed on the fly. */
7415
7416 /* There is a subtle and tricky problem here. In general, we cannot
7417 determine the size of dynamic records without its data. However,
7418 the 'struct value' data structure, which GDB uses to represent
7419 quantities in the inferior process (the target), requires the size
7420 of the type at the time of its allocation in order to reserve space
7421 for GDB's internal copy of the data. That's why the
7422 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7423 rather than struct value*s.
7424
7425 However, GDB's internal history variables ($1, $2, etc.) are
7426 struct value*s containing internal copies of the data that are not, in
7427 general, the same as the data at their corresponding addresses in
7428 the target. Fortunately, the types we give to these values are all
7429 conventional, fixed-size types (as per the strategy described
7430 above), so that we don't usually have to perform the
7431 'to_fixed_xxx_type' conversions to look at their values.
7432 Unfortunately, there is one exception: if one of the internal
7433 history variables is an array whose elements are unconstrained
7434 records, then we will need to create distinct fixed types for each
7435 element selected. */
7436
7437 /* The upshot of all of this is that many routines take a (type, host
7438 address, target address) triple as arguments to represent a value.
7439 The host address, if non-null, is supposed to contain an internal
7440 copy of the relevant data; otherwise, the program is to consult the
7441 target at the target address. */
7442
7443 /* Assuming that VAL0 represents a pointer value, the result of
7444 dereferencing it. Differs from value_ind in its treatment of
7445 dynamic-sized types. */
7446
7447 struct value *
7448 ada_value_ind (struct value *val0)
7449 {
7450 struct value *val = value_ind (val0);
7451
7452 if (ada_is_tagged_type (value_type (val), 0))
7453 val = ada_tag_value_at_base_address (val);
7454
7455 return ada_to_fixed_value (val);
7456 }
7457
7458 /* The value resulting from dereferencing any "reference to"
7459 qualifiers on VAL0. */
7460
7461 static struct value *
7462 ada_coerce_ref (struct value *val0)
7463 {
7464 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7465 {
7466 struct value *val = val0;
7467
7468 val = coerce_ref (val);
7469
7470 if (ada_is_tagged_type (value_type (val), 0))
7471 val = ada_tag_value_at_base_address (val);
7472
7473 return ada_to_fixed_value (val);
7474 }
7475 else
7476 return val0;
7477 }
7478
7479 /* Return OFF rounded upward if necessary to a multiple of
7480 ALIGNMENT (a power of 2). */
7481
7482 static unsigned int
7483 align_value (unsigned int off, unsigned int alignment)
7484 {
7485 return (off + alignment - 1) & ~(alignment - 1);
7486 }
7487
7488 /* Return the bit alignment required for field #F of template type TYPE. */
7489
7490 static unsigned int
7491 field_alignment (struct type *type, int f)
7492 {
7493 const char *name = TYPE_FIELD_NAME (type, f);
7494 int len;
7495 int align_offset;
7496
7497 /* The field name should never be null, unless the debugging information
7498 is somehow malformed. In this case, we assume the field does not
7499 require any alignment. */
7500 if (name == NULL)
7501 return 1;
7502
7503 len = strlen (name);
7504
7505 if (!isdigit (name[len - 1]))
7506 return 1;
7507
7508 if (isdigit (name[len - 2]))
7509 align_offset = len - 2;
7510 else
7511 align_offset = len - 1;
7512
7513 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7514 return TARGET_CHAR_BIT;
7515
7516 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7517 }
7518
7519 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7520
7521 static struct symbol *
7522 ada_find_any_type_symbol (const char *name)
7523 {
7524 struct symbol *sym;
7525
7526 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7527 if (sym != NULL
7528 && (SYMBOL_DOMAIN (sym) != VAR_DOMAIN
7529 || SYMBOL_CLASS (sym) == LOC_TYPEDEF))
7530 return sym;
7531
7532 return NULL;
7533 }
7534
7535 /* Find a type named NAME. Ignores ambiguity. This routine will look
7536 solely for types defined by debug info, it will not search the GDB
7537 primitive types. */
7538
7539 static struct type *
7540 ada_find_any_type (const char *name)
7541 {
7542 struct symbol *sym = ada_find_any_type_symbol (name);
7543
7544 if (sym != NULL)
7545 return SYMBOL_TYPE (sym);
7546
7547 return NULL;
7548 }
7549
7550 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7551 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7552 symbol, in which case it is returned. Otherwise, this looks for
7553 symbols whose name is that of NAME_SYM suffixed with "___XR".
7554 Return symbol if found, and NULL otherwise. */
7555
7556 struct symbol *
7557 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7558 {
7559 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7560 struct symbol *sym;
7561
7562 if (strstr (name, "___XR") != NULL)
7563 return name_sym;
7564
7565 sym = find_old_style_renaming_symbol (name, block);
7566
7567 if (sym != NULL)
7568 return sym;
7569
7570 /* Not right yet. FIXME pnh 7/20/2007. */
7571 sym = ada_find_any_type_symbol (name);
7572 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7573 return sym;
7574 else
7575 return NULL;
7576 }
7577
7578 static struct symbol *
7579 find_old_style_renaming_symbol (const char *name, const struct block *block)
7580 {
7581 const struct symbol *function_sym = block_linkage_function (block);
7582 char *rename;
7583
7584 if (function_sym != NULL)
7585 {
7586 /* If the symbol is defined inside a function, NAME is not fully
7587 qualified. This means we need to prepend the function name
7588 as well as adding the ``___XR'' suffix to build the name of
7589 the associated renaming symbol. */
7590 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7591 /* Function names sometimes contain suffixes used
7592 for instance to qualify nested subprograms. When building
7593 the XR type name, we need to make sure that this suffix is
7594 not included. So do not include any suffix in the function
7595 name length below. */
7596 int function_name_len = ada_name_prefix_len (function_name);
7597 const int rename_len = function_name_len + 2 /* "__" */
7598 + strlen (name) + 6 /* "___XR\0" */ ;
7599
7600 /* Strip the suffix if necessary. */
7601 ada_remove_trailing_digits (function_name, &function_name_len);
7602 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7603 ada_remove_Xbn_suffix (function_name, &function_name_len);
7604
7605 /* Library-level functions are a special case, as GNAT adds
7606 a ``_ada_'' prefix to the function name to avoid namespace
7607 pollution. However, the renaming symbols themselves do not
7608 have this prefix, so we need to skip this prefix if present. */
7609 if (function_name_len > 5 /* "_ada_" */
7610 && strstr (function_name, "_ada_") == function_name)
7611 {
7612 function_name += 5;
7613 function_name_len -= 5;
7614 }
7615
7616 rename = (char *) alloca (rename_len * sizeof (char));
7617 strncpy (rename, function_name, function_name_len);
7618 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7619 "__%s___XR", name);
7620 }
7621 else
7622 {
7623 const int rename_len = strlen (name) + 6;
7624
7625 rename = (char *) alloca (rename_len * sizeof (char));
7626 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7627 }
7628
7629 return ada_find_any_type_symbol (rename);
7630 }
7631
7632 /* Because of GNAT encoding conventions, several GDB symbols may match a
7633 given type name. If the type denoted by TYPE0 is to be preferred to
7634 that of TYPE1 for purposes of type printing, return non-zero;
7635 otherwise return 0. */
7636
7637 int
7638 ada_prefer_type (struct type *type0, struct type *type1)
7639 {
7640 if (type1 == NULL)
7641 return 1;
7642 else if (type0 == NULL)
7643 return 0;
7644 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7645 return 1;
7646 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7647 return 0;
7648 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7649 return 1;
7650 else if (ada_is_constrained_packed_array_type (type0))
7651 return 1;
7652 else if (ada_is_array_descriptor_type (type0)
7653 && !ada_is_array_descriptor_type (type1))
7654 return 1;
7655 else
7656 {
7657 const char *type0_name = type_name_no_tag (type0);
7658 const char *type1_name = type_name_no_tag (type1);
7659
7660 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7661 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7662 return 1;
7663 }
7664 return 0;
7665 }
7666
7667 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7668 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7669
7670 const char *
7671 ada_type_name (struct type *type)
7672 {
7673 if (type == NULL)
7674 return NULL;
7675 else if (TYPE_NAME (type) != NULL)
7676 return TYPE_NAME (type);
7677 else
7678 return TYPE_TAG_NAME (type);
7679 }
7680
7681 /* Search the list of "descriptive" types associated to TYPE for a type
7682 whose name is NAME. */
7683
7684 static struct type *
7685 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7686 {
7687 struct type *result;
7688
7689 if (ada_ignore_descriptive_types_p)
7690 return NULL;
7691
7692 /* If there no descriptive-type info, then there is no parallel type
7693 to be found. */
7694 if (!HAVE_GNAT_AUX_INFO (type))
7695 return NULL;
7696
7697 result = TYPE_DESCRIPTIVE_TYPE (type);
7698 while (result != NULL)
7699 {
7700 const char *result_name = ada_type_name (result);
7701
7702 if (result_name == NULL)
7703 {
7704 warning (_("unexpected null name on descriptive type"));
7705 return NULL;
7706 }
7707
7708 /* If the names match, stop. */
7709 if (strcmp (result_name, name) == 0)
7710 break;
7711
7712 /* Otherwise, look at the next item on the list, if any. */
7713 if (HAVE_GNAT_AUX_INFO (result))
7714 result = TYPE_DESCRIPTIVE_TYPE (result);
7715 else
7716 result = NULL;
7717 }
7718
7719 /* If we didn't find a match, see whether this is a packed array. With
7720 older compilers, the descriptive type information is either absent or
7721 irrelevant when it comes to packed arrays so the above lookup fails.
7722 Fall back to using a parallel lookup by name in this case. */
7723 if (result == NULL && ada_is_constrained_packed_array_type (type))
7724 return ada_find_any_type (name);
7725
7726 return result;
7727 }
7728
7729 /* Find a parallel type to TYPE with the specified NAME, using the
7730 descriptive type taken from the debugging information, if available,
7731 and otherwise using the (slower) name-based method. */
7732
7733 static struct type *
7734 ada_find_parallel_type_with_name (struct type *type, const char *name)
7735 {
7736 struct type *result = NULL;
7737
7738 if (HAVE_GNAT_AUX_INFO (type))
7739 result = find_parallel_type_by_descriptive_type (type, name);
7740 else
7741 result = ada_find_any_type (name);
7742
7743 return result;
7744 }
7745
7746 /* Same as above, but specify the name of the parallel type by appending
7747 SUFFIX to the name of TYPE. */
7748
7749 struct type *
7750 ada_find_parallel_type (struct type *type, const char *suffix)
7751 {
7752 char *name;
7753 const char *typename = ada_type_name (type);
7754 int len;
7755
7756 if (typename == NULL)
7757 return NULL;
7758
7759 len = strlen (typename);
7760
7761 name = (char *) alloca (len + strlen (suffix) + 1);
7762
7763 strcpy (name, typename);
7764 strcpy (name + len, suffix);
7765
7766 return ada_find_parallel_type_with_name (type, name);
7767 }
7768
7769 /* If TYPE is a variable-size record type, return the corresponding template
7770 type describing its fields. Otherwise, return NULL. */
7771
7772 static struct type *
7773 dynamic_template_type (struct type *type)
7774 {
7775 type = ada_check_typedef (type);
7776
7777 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7778 || ada_type_name (type) == NULL)
7779 return NULL;
7780 else
7781 {
7782 int len = strlen (ada_type_name (type));
7783
7784 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7785 return type;
7786 else
7787 return ada_find_parallel_type (type, "___XVE");
7788 }
7789 }
7790
7791 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7792 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7793
7794 static int
7795 is_dynamic_field (struct type *templ_type, int field_num)
7796 {
7797 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7798
7799 return name != NULL
7800 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7801 && strstr (name, "___XVL") != NULL;
7802 }
7803
7804 /* The index of the variant field of TYPE, or -1 if TYPE does not
7805 represent a variant record type. */
7806
7807 static int
7808 variant_field_index (struct type *type)
7809 {
7810 int f;
7811
7812 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7813 return -1;
7814
7815 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7816 {
7817 if (ada_is_variant_part (type, f))
7818 return f;
7819 }
7820 return -1;
7821 }
7822
7823 /* A record type with no fields. */
7824
7825 static struct type *
7826 empty_record (struct type *template)
7827 {
7828 struct type *type = alloc_type_copy (template);
7829
7830 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7831 TYPE_NFIELDS (type) = 0;
7832 TYPE_FIELDS (type) = NULL;
7833 INIT_CPLUS_SPECIFIC (type);
7834 TYPE_NAME (type) = "<empty>";
7835 TYPE_TAG_NAME (type) = NULL;
7836 TYPE_LENGTH (type) = 0;
7837 return type;
7838 }
7839
7840 /* An ordinary record type (with fixed-length fields) that describes
7841 the value of type TYPE at VALADDR or ADDRESS (see comments at
7842 the beginning of this section) VAL according to GNAT conventions.
7843 DVAL0 should describe the (portion of a) record that contains any
7844 necessary discriminants. It should be NULL if value_type (VAL) is
7845 an outer-level type (i.e., as opposed to a branch of a variant.) A
7846 variant field (unless unchecked) is replaced by a particular branch
7847 of the variant.
7848
7849 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7850 length are not statically known are discarded. As a consequence,
7851 VALADDR, ADDRESS and DVAL0 are ignored.
7852
7853 NOTE: Limitations: For now, we assume that dynamic fields and
7854 variants occupy whole numbers of bytes. However, they need not be
7855 byte-aligned. */
7856
7857 struct type *
7858 ada_template_to_fixed_record_type_1 (struct type *type,
7859 const gdb_byte *valaddr,
7860 CORE_ADDR address, struct value *dval0,
7861 int keep_dynamic_fields)
7862 {
7863 struct value *mark = value_mark ();
7864 struct value *dval;
7865 struct type *rtype;
7866 int nfields, bit_len;
7867 int variant_field;
7868 long off;
7869 int fld_bit_len;
7870 int f;
7871
7872 /* Compute the number of fields in this record type that are going
7873 to be processed: unless keep_dynamic_fields, this includes only
7874 fields whose position and length are static will be processed. */
7875 if (keep_dynamic_fields)
7876 nfields = TYPE_NFIELDS (type);
7877 else
7878 {
7879 nfields = 0;
7880 while (nfields < TYPE_NFIELDS (type)
7881 && !ada_is_variant_part (type, nfields)
7882 && !is_dynamic_field (type, nfields))
7883 nfields++;
7884 }
7885
7886 rtype = alloc_type_copy (type);
7887 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7888 INIT_CPLUS_SPECIFIC (rtype);
7889 TYPE_NFIELDS (rtype) = nfields;
7890 TYPE_FIELDS (rtype) = (struct field *)
7891 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7892 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7893 TYPE_NAME (rtype) = ada_type_name (type);
7894 TYPE_TAG_NAME (rtype) = NULL;
7895 TYPE_FIXED_INSTANCE (rtype) = 1;
7896
7897 off = 0;
7898 bit_len = 0;
7899 variant_field = -1;
7900
7901 for (f = 0; f < nfields; f += 1)
7902 {
7903 off = align_value (off, field_alignment (type, f))
7904 + TYPE_FIELD_BITPOS (type, f);
7905 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7906 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7907
7908 if (ada_is_variant_part (type, f))
7909 {
7910 variant_field = f;
7911 fld_bit_len = 0;
7912 }
7913 else if (is_dynamic_field (type, f))
7914 {
7915 const gdb_byte *field_valaddr = valaddr;
7916 CORE_ADDR field_address = address;
7917 struct type *field_type =
7918 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7919
7920 if (dval0 == NULL)
7921 {
7922 /* rtype's length is computed based on the run-time
7923 value of discriminants. If the discriminants are not
7924 initialized, the type size may be completely bogus and
7925 GDB may fail to allocate a value for it. So check the
7926 size first before creating the value. */
7927 check_size (rtype);
7928 dval = value_from_contents_and_address (rtype, valaddr, address);
7929 rtype = value_type (dval);
7930 }
7931 else
7932 dval = dval0;
7933
7934 /* If the type referenced by this field is an aligner type, we need
7935 to unwrap that aligner type, because its size might not be set.
7936 Keeping the aligner type would cause us to compute the wrong
7937 size for this field, impacting the offset of the all the fields
7938 that follow this one. */
7939 if (ada_is_aligner_type (field_type))
7940 {
7941 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7942
7943 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7944 field_address = cond_offset_target (field_address, field_offset);
7945 field_type = ada_aligned_type (field_type);
7946 }
7947
7948 field_valaddr = cond_offset_host (field_valaddr,
7949 off / TARGET_CHAR_BIT);
7950 field_address = cond_offset_target (field_address,
7951 off / TARGET_CHAR_BIT);
7952
7953 /* Get the fixed type of the field. Note that, in this case,
7954 we do not want to get the real type out of the tag: if
7955 the current field is the parent part of a tagged record,
7956 we will get the tag of the object. Clearly wrong: the real
7957 type of the parent is not the real type of the child. We
7958 would end up in an infinite loop. */
7959 field_type = ada_get_base_type (field_type);
7960 field_type = ada_to_fixed_type (field_type, field_valaddr,
7961 field_address, dval, 0);
7962 /* If the field size is already larger than the maximum
7963 object size, then the record itself will necessarily
7964 be larger than the maximum object size. We need to make
7965 this check now, because the size might be so ridiculously
7966 large (due to an uninitialized variable in the inferior)
7967 that it would cause an overflow when adding it to the
7968 record size. */
7969 check_size (field_type);
7970
7971 TYPE_FIELD_TYPE (rtype, f) = field_type;
7972 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7973 /* The multiplication can potentially overflow. But because
7974 the field length has been size-checked just above, and
7975 assuming that the maximum size is a reasonable value,
7976 an overflow should not happen in practice. So rather than
7977 adding overflow recovery code to this already complex code,
7978 we just assume that it's not going to happen. */
7979 fld_bit_len =
7980 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7981 }
7982 else
7983 {
7984 /* Note: If this field's type is a typedef, it is important
7985 to preserve the typedef layer.
7986
7987 Otherwise, we might be transforming a typedef to a fat
7988 pointer (encoding a pointer to an unconstrained array),
7989 into a basic fat pointer (encoding an unconstrained
7990 array). As both types are implemented using the same
7991 structure, the typedef is the only clue which allows us
7992 to distinguish between the two options. Stripping it
7993 would prevent us from printing this field appropriately. */
7994 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7995 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7996 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7997 fld_bit_len =
7998 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7999 else
8000 {
8001 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8002
8003 /* We need to be careful of typedefs when computing
8004 the length of our field. If this is a typedef,
8005 get the length of the target type, not the length
8006 of the typedef. */
8007 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8008 field_type = ada_typedef_target_type (field_type);
8009
8010 fld_bit_len =
8011 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8012 }
8013 }
8014 if (off + fld_bit_len > bit_len)
8015 bit_len = off + fld_bit_len;
8016 off += fld_bit_len;
8017 TYPE_LENGTH (rtype) =
8018 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8019 }
8020
8021 /* We handle the variant part, if any, at the end because of certain
8022 odd cases in which it is re-ordered so as NOT to be the last field of
8023 the record. This can happen in the presence of representation
8024 clauses. */
8025 if (variant_field >= 0)
8026 {
8027 struct type *branch_type;
8028
8029 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8030
8031 if (dval0 == NULL)
8032 {
8033 dval = value_from_contents_and_address (rtype, valaddr, address);
8034 rtype = value_type (dval);
8035 }
8036 else
8037 dval = dval0;
8038
8039 branch_type =
8040 to_fixed_variant_branch_type
8041 (TYPE_FIELD_TYPE (type, variant_field),
8042 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8043 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8044 if (branch_type == NULL)
8045 {
8046 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8047 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8048 TYPE_NFIELDS (rtype) -= 1;
8049 }
8050 else
8051 {
8052 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8053 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8054 fld_bit_len =
8055 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8056 TARGET_CHAR_BIT;
8057 if (off + fld_bit_len > bit_len)
8058 bit_len = off + fld_bit_len;
8059 TYPE_LENGTH (rtype) =
8060 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8061 }
8062 }
8063
8064 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8065 should contain the alignment of that record, which should be a strictly
8066 positive value. If null or negative, then something is wrong, most
8067 probably in the debug info. In that case, we don't round up the size
8068 of the resulting type. If this record is not part of another structure,
8069 the current RTYPE length might be good enough for our purposes. */
8070 if (TYPE_LENGTH (type) <= 0)
8071 {
8072 if (TYPE_NAME (rtype))
8073 warning (_("Invalid type size for `%s' detected: %d."),
8074 TYPE_NAME (rtype), TYPE_LENGTH (type));
8075 else
8076 warning (_("Invalid type size for <unnamed> detected: %d."),
8077 TYPE_LENGTH (type));
8078 }
8079 else
8080 {
8081 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8082 TYPE_LENGTH (type));
8083 }
8084
8085 value_free_to_mark (mark);
8086 if (TYPE_LENGTH (rtype) > varsize_limit)
8087 error (_("record type with dynamic size is larger than varsize-limit"));
8088 return rtype;
8089 }
8090
8091 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8092 of 1. */
8093
8094 static struct type *
8095 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8096 CORE_ADDR address, struct value *dval0)
8097 {
8098 return ada_template_to_fixed_record_type_1 (type, valaddr,
8099 address, dval0, 1);
8100 }
8101
8102 /* An ordinary record type in which ___XVL-convention fields and
8103 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8104 static approximations, containing all possible fields. Uses
8105 no runtime values. Useless for use in values, but that's OK,
8106 since the results are used only for type determinations. Works on both
8107 structs and unions. Representation note: to save space, we memorize
8108 the result of this function in the TYPE_TARGET_TYPE of the
8109 template type. */
8110
8111 static struct type *
8112 template_to_static_fixed_type (struct type *type0)
8113 {
8114 struct type *type;
8115 int nfields;
8116 int f;
8117
8118 if (TYPE_TARGET_TYPE (type0) != NULL)
8119 return TYPE_TARGET_TYPE (type0);
8120
8121 nfields = TYPE_NFIELDS (type0);
8122 type = type0;
8123
8124 for (f = 0; f < nfields; f += 1)
8125 {
8126 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
8127 struct type *new_type;
8128
8129 if (is_dynamic_field (type0, f))
8130 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8131 else
8132 new_type = static_unwrap_type (field_type);
8133 if (type == type0 && new_type != field_type)
8134 {
8135 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8136 TYPE_CODE (type) = TYPE_CODE (type0);
8137 INIT_CPLUS_SPECIFIC (type);
8138 TYPE_NFIELDS (type) = nfields;
8139 TYPE_FIELDS (type) = (struct field *)
8140 TYPE_ALLOC (type, nfields * sizeof (struct field));
8141 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8142 sizeof (struct field) * nfields);
8143 TYPE_NAME (type) = ada_type_name (type0);
8144 TYPE_TAG_NAME (type) = NULL;
8145 TYPE_FIXED_INSTANCE (type) = 1;
8146 TYPE_LENGTH (type) = 0;
8147 }
8148 TYPE_FIELD_TYPE (type, f) = new_type;
8149 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8150 }
8151 return type;
8152 }
8153
8154 /* Given an object of type TYPE whose contents are at VALADDR and
8155 whose address in memory is ADDRESS, returns a revision of TYPE,
8156 which should be a non-dynamic-sized record, in which the variant
8157 part, if any, is replaced with the appropriate branch. Looks
8158 for discriminant values in DVAL0, which can be NULL if the record
8159 contains the necessary discriminant values. */
8160
8161 static struct type *
8162 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8163 CORE_ADDR address, struct value *dval0)
8164 {
8165 struct value *mark = value_mark ();
8166 struct value *dval;
8167 struct type *rtype;
8168 struct type *branch_type;
8169 int nfields = TYPE_NFIELDS (type);
8170 int variant_field = variant_field_index (type);
8171
8172 if (variant_field == -1)
8173 return type;
8174
8175 if (dval0 == NULL)
8176 {
8177 dval = value_from_contents_and_address (type, valaddr, address);
8178 type = value_type (dval);
8179 }
8180 else
8181 dval = dval0;
8182
8183 rtype = alloc_type_copy (type);
8184 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8185 INIT_CPLUS_SPECIFIC (rtype);
8186 TYPE_NFIELDS (rtype) = nfields;
8187 TYPE_FIELDS (rtype) =
8188 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8189 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8190 sizeof (struct field) * nfields);
8191 TYPE_NAME (rtype) = ada_type_name (type);
8192 TYPE_TAG_NAME (rtype) = NULL;
8193 TYPE_FIXED_INSTANCE (rtype) = 1;
8194 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8195
8196 branch_type = to_fixed_variant_branch_type
8197 (TYPE_FIELD_TYPE (type, variant_field),
8198 cond_offset_host (valaddr,
8199 TYPE_FIELD_BITPOS (type, variant_field)
8200 / TARGET_CHAR_BIT),
8201 cond_offset_target (address,
8202 TYPE_FIELD_BITPOS (type, variant_field)
8203 / TARGET_CHAR_BIT), dval);
8204 if (branch_type == NULL)
8205 {
8206 int f;
8207
8208 for (f = variant_field + 1; f < nfields; f += 1)
8209 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8210 TYPE_NFIELDS (rtype) -= 1;
8211 }
8212 else
8213 {
8214 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8215 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8216 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8217 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8218 }
8219 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8220
8221 value_free_to_mark (mark);
8222 return rtype;
8223 }
8224
8225 /* An ordinary record type (with fixed-length fields) that describes
8226 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8227 beginning of this section]. Any necessary discriminants' values
8228 should be in DVAL, a record value; it may be NULL if the object
8229 at ADDR itself contains any necessary discriminant values.
8230 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8231 values from the record are needed. Except in the case that DVAL,
8232 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8233 unchecked) is replaced by a particular branch of the variant.
8234
8235 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8236 is questionable and may be removed. It can arise during the
8237 processing of an unconstrained-array-of-record type where all the
8238 variant branches have exactly the same size. This is because in
8239 such cases, the compiler does not bother to use the XVS convention
8240 when encoding the record. I am currently dubious of this
8241 shortcut and suspect the compiler should be altered. FIXME. */
8242
8243 static struct type *
8244 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8245 CORE_ADDR address, struct value *dval)
8246 {
8247 struct type *templ_type;
8248
8249 if (TYPE_FIXED_INSTANCE (type0))
8250 return type0;
8251
8252 templ_type = dynamic_template_type (type0);
8253
8254 if (templ_type != NULL)
8255 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8256 else if (variant_field_index (type0) >= 0)
8257 {
8258 if (dval == NULL && valaddr == NULL && address == 0)
8259 return type0;
8260 return to_record_with_fixed_variant_part (type0, valaddr, address,
8261 dval);
8262 }
8263 else
8264 {
8265 TYPE_FIXED_INSTANCE (type0) = 1;
8266 return type0;
8267 }
8268
8269 }
8270
8271 /* An ordinary record type (with fixed-length fields) that describes
8272 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8273 union type. Any necessary discriminants' values should be in DVAL,
8274 a record value. That is, this routine selects the appropriate
8275 branch of the union at ADDR according to the discriminant value
8276 indicated in the union's type name. Returns VAR_TYPE0 itself if
8277 it represents a variant subject to a pragma Unchecked_Union. */
8278
8279 static struct type *
8280 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8281 CORE_ADDR address, struct value *dval)
8282 {
8283 int which;
8284 struct type *templ_type;
8285 struct type *var_type;
8286
8287 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8288 var_type = TYPE_TARGET_TYPE (var_type0);
8289 else
8290 var_type = var_type0;
8291
8292 templ_type = ada_find_parallel_type (var_type, "___XVU");
8293
8294 if (templ_type != NULL)
8295 var_type = templ_type;
8296
8297 if (is_unchecked_variant (var_type, value_type (dval)))
8298 return var_type0;
8299 which =
8300 ada_which_variant_applies (var_type,
8301 value_type (dval), value_contents (dval));
8302
8303 if (which < 0)
8304 return empty_record (var_type);
8305 else if (is_dynamic_field (var_type, which))
8306 return to_fixed_record_type
8307 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8308 valaddr, address, dval);
8309 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8310 return
8311 to_fixed_record_type
8312 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8313 else
8314 return TYPE_FIELD_TYPE (var_type, which);
8315 }
8316
8317 /* Assuming that TYPE0 is an array type describing the type of a value
8318 at ADDR, and that DVAL describes a record containing any
8319 discriminants used in TYPE0, returns a type for the value that
8320 contains no dynamic components (that is, no components whose sizes
8321 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8322 true, gives an error message if the resulting type's size is over
8323 varsize_limit. */
8324
8325 static struct type *
8326 to_fixed_array_type (struct type *type0, struct value *dval,
8327 int ignore_too_big)
8328 {
8329 struct type *index_type_desc;
8330 struct type *result;
8331 int constrained_packed_array_p;
8332
8333 type0 = ada_check_typedef (type0);
8334 if (TYPE_FIXED_INSTANCE (type0))
8335 return type0;
8336
8337 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8338 if (constrained_packed_array_p)
8339 type0 = decode_constrained_packed_array_type (type0);
8340
8341 index_type_desc = ada_find_parallel_type (type0, "___XA");
8342 ada_fixup_array_indexes_type (index_type_desc);
8343 if (index_type_desc == NULL)
8344 {
8345 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8346
8347 /* NOTE: elt_type---the fixed version of elt_type0---should never
8348 depend on the contents of the array in properly constructed
8349 debugging data. */
8350 /* Create a fixed version of the array element type.
8351 We're not providing the address of an element here,
8352 and thus the actual object value cannot be inspected to do
8353 the conversion. This should not be a problem, since arrays of
8354 unconstrained objects are not allowed. In particular, all
8355 the elements of an array of a tagged type should all be of
8356 the same type specified in the debugging info. No need to
8357 consult the object tag. */
8358 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8359
8360 /* Make sure we always create a new array type when dealing with
8361 packed array types, since we're going to fix-up the array
8362 type length and element bitsize a little further down. */
8363 if (elt_type0 == elt_type && !constrained_packed_array_p)
8364 result = type0;
8365 else
8366 result = create_array_type (alloc_type_copy (type0),
8367 elt_type, TYPE_INDEX_TYPE (type0));
8368 }
8369 else
8370 {
8371 int i;
8372 struct type *elt_type0;
8373
8374 elt_type0 = type0;
8375 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8376 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8377
8378 /* NOTE: result---the fixed version of elt_type0---should never
8379 depend on the contents of the array in properly constructed
8380 debugging data. */
8381 /* Create a fixed version of the array element type.
8382 We're not providing the address of an element here,
8383 and thus the actual object value cannot be inspected to do
8384 the conversion. This should not be a problem, since arrays of
8385 unconstrained objects are not allowed. In particular, all
8386 the elements of an array of a tagged type should all be of
8387 the same type specified in the debugging info. No need to
8388 consult the object tag. */
8389 result =
8390 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8391
8392 elt_type0 = type0;
8393 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8394 {
8395 struct type *range_type =
8396 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8397
8398 result = create_array_type (alloc_type_copy (elt_type0),
8399 result, range_type);
8400 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8401 }
8402 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8403 error (_("array type with dynamic size is larger than varsize-limit"));
8404 }
8405
8406 /* We want to preserve the type name. This can be useful when
8407 trying to get the type name of a value that has already been
8408 printed (for instance, if the user did "print VAR; whatis $". */
8409 TYPE_NAME (result) = TYPE_NAME (type0);
8410
8411 if (constrained_packed_array_p)
8412 {
8413 /* So far, the resulting type has been created as if the original
8414 type was a regular (non-packed) array type. As a result, the
8415 bitsize of the array elements needs to be set again, and the array
8416 length needs to be recomputed based on that bitsize. */
8417 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8418 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8419
8420 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8421 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8422 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8423 TYPE_LENGTH (result)++;
8424 }
8425
8426 TYPE_FIXED_INSTANCE (result) = 1;
8427 return result;
8428 }
8429
8430
8431 /* A standard type (containing no dynamically sized components)
8432 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8433 DVAL describes a record containing any discriminants used in TYPE0,
8434 and may be NULL if there are none, or if the object of type TYPE at
8435 ADDRESS or in VALADDR contains these discriminants.
8436
8437 If CHECK_TAG is not null, in the case of tagged types, this function
8438 attempts to locate the object's tag and use it to compute the actual
8439 type. However, when ADDRESS is null, we cannot use it to determine the
8440 location of the tag, and therefore compute the tagged type's actual type.
8441 So we return the tagged type without consulting the tag. */
8442
8443 static struct type *
8444 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8445 CORE_ADDR address, struct value *dval, int check_tag)
8446 {
8447 type = ada_check_typedef (type);
8448 switch (TYPE_CODE (type))
8449 {
8450 default:
8451 return type;
8452 case TYPE_CODE_STRUCT:
8453 {
8454 struct type *static_type = to_static_fixed_type (type);
8455 struct type *fixed_record_type =
8456 to_fixed_record_type (type, valaddr, address, NULL);
8457
8458 /* If STATIC_TYPE is a tagged type and we know the object's address,
8459 then we can determine its tag, and compute the object's actual
8460 type from there. Note that we have to use the fixed record
8461 type (the parent part of the record may have dynamic fields
8462 and the way the location of _tag is expressed may depend on
8463 them). */
8464
8465 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8466 {
8467 struct value *tag =
8468 value_tag_from_contents_and_address
8469 (fixed_record_type,
8470 valaddr,
8471 address);
8472 struct type *real_type = type_from_tag (tag);
8473 struct value *obj =
8474 value_from_contents_and_address (fixed_record_type,
8475 valaddr,
8476 address);
8477 fixed_record_type = value_type (obj);
8478 if (real_type != NULL)
8479 return to_fixed_record_type
8480 (real_type, NULL,
8481 value_address (ada_tag_value_at_base_address (obj)), NULL);
8482 }
8483
8484 /* Check to see if there is a parallel ___XVZ variable.
8485 If there is, then it provides the actual size of our type. */
8486 else if (ada_type_name (fixed_record_type) != NULL)
8487 {
8488 const char *name = ada_type_name (fixed_record_type);
8489 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8490 int xvz_found = 0;
8491 LONGEST size;
8492
8493 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8494 size = get_int_var_value (xvz_name, &xvz_found);
8495 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8496 {
8497 fixed_record_type = copy_type (fixed_record_type);
8498 TYPE_LENGTH (fixed_record_type) = size;
8499
8500 /* The FIXED_RECORD_TYPE may have be a stub. We have
8501 observed this when the debugging info is STABS, and
8502 apparently it is something that is hard to fix.
8503
8504 In practice, we don't need the actual type definition
8505 at all, because the presence of the XVZ variable allows us
8506 to assume that there must be a XVS type as well, which we
8507 should be able to use later, when we need the actual type
8508 definition.
8509
8510 In the meantime, pretend that the "fixed" type we are
8511 returning is NOT a stub, because this can cause trouble
8512 when using this type to create new types targeting it.
8513 Indeed, the associated creation routines often check
8514 whether the target type is a stub and will try to replace
8515 it, thus using a type with the wrong size. This, in turn,
8516 might cause the new type to have the wrong size too.
8517 Consider the case of an array, for instance, where the size
8518 of the array is computed from the number of elements in
8519 our array multiplied by the size of its element. */
8520 TYPE_STUB (fixed_record_type) = 0;
8521 }
8522 }
8523 return fixed_record_type;
8524 }
8525 case TYPE_CODE_ARRAY:
8526 return to_fixed_array_type (type, dval, 1);
8527 case TYPE_CODE_UNION:
8528 if (dval == NULL)
8529 return type;
8530 else
8531 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8532 }
8533 }
8534
8535 /* The same as ada_to_fixed_type_1, except that it preserves the type
8536 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8537
8538 The typedef layer needs be preserved in order to differentiate between
8539 arrays and array pointers when both types are implemented using the same
8540 fat pointer. In the array pointer case, the pointer is encoded as
8541 a typedef of the pointer type. For instance, considering:
8542
8543 type String_Access is access String;
8544 S1 : String_Access := null;
8545
8546 To the debugger, S1 is defined as a typedef of type String. But
8547 to the user, it is a pointer. So if the user tries to print S1,
8548 we should not dereference the array, but print the array address
8549 instead.
8550
8551 If we didn't preserve the typedef layer, we would lose the fact that
8552 the type is to be presented as a pointer (needs de-reference before
8553 being printed). And we would also use the source-level type name. */
8554
8555 struct type *
8556 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8557 CORE_ADDR address, struct value *dval, int check_tag)
8558
8559 {
8560 struct type *fixed_type =
8561 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8562
8563 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8564 then preserve the typedef layer.
8565
8566 Implementation note: We can only check the main-type portion of
8567 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8568 from TYPE now returns a type that has the same instance flags
8569 as TYPE. For instance, if TYPE is a "typedef const", and its
8570 target type is a "struct", then the typedef elimination will return
8571 a "const" version of the target type. See check_typedef for more
8572 details about how the typedef layer elimination is done.
8573
8574 brobecker/2010-11-19: It seems to me that the only case where it is
8575 useful to preserve the typedef layer is when dealing with fat pointers.
8576 Perhaps, we could add a check for that and preserve the typedef layer
8577 only in that situation. But this seems unecessary so far, probably
8578 because we call check_typedef/ada_check_typedef pretty much everywhere.
8579 */
8580 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8581 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8582 == TYPE_MAIN_TYPE (fixed_type)))
8583 return type;
8584
8585 return fixed_type;
8586 }
8587
8588 /* A standard (static-sized) type corresponding as well as possible to
8589 TYPE0, but based on no runtime data. */
8590
8591 static struct type *
8592 to_static_fixed_type (struct type *type0)
8593 {
8594 struct type *type;
8595
8596 if (type0 == NULL)
8597 return NULL;
8598
8599 if (TYPE_FIXED_INSTANCE (type0))
8600 return type0;
8601
8602 type0 = ada_check_typedef (type0);
8603
8604 switch (TYPE_CODE (type0))
8605 {
8606 default:
8607 return type0;
8608 case TYPE_CODE_STRUCT:
8609 type = dynamic_template_type (type0);
8610 if (type != NULL)
8611 return template_to_static_fixed_type (type);
8612 else
8613 return template_to_static_fixed_type (type0);
8614 case TYPE_CODE_UNION:
8615 type = ada_find_parallel_type (type0, "___XVU");
8616 if (type != NULL)
8617 return template_to_static_fixed_type (type);
8618 else
8619 return template_to_static_fixed_type (type0);
8620 }
8621 }
8622
8623 /* A static approximation of TYPE with all type wrappers removed. */
8624
8625 static struct type *
8626 static_unwrap_type (struct type *type)
8627 {
8628 if (ada_is_aligner_type (type))
8629 {
8630 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8631 if (ada_type_name (type1) == NULL)
8632 TYPE_NAME (type1) = ada_type_name (type);
8633
8634 return static_unwrap_type (type1);
8635 }
8636 else
8637 {
8638 struct type *raw_real_type = ada_get_base_type (type);
8639
8640 if (raw_real_type == type)
8641 return type;
8642 else
8643 return to_static_fixed_type (raw_real_type);
8644 }
8645 }
8646
8647 /* In some cases, incomplete and private types require
8648 cross-references that are not resolved as records (for example,
8649 type Foo;
8650 type FooP is access Foo;
8651 V: FooP;
8652 type Foo is array ...;
8653 ). In these cases, since there is no mechanism for producing
8654 cross-references to such types, we instead substitute for FooP a
8655 stub enumeration type that is nowhere resolved, and whose tag is
8656 the name of the actual type. Call these types "non-record stubs". */
8657
8658 /* A type equivalent to TYPE that is not a non-record stub, if one
8659 exists, otherwise TYPE. */
8660
8661 struct type *
8662 ada_check_typedef (struct type *type)
8663 {
8664 if (type == NULL)
8665 return NULL;
8666
8667 /* If our type is a typedef type of a fat pointer, then we're done.
8668 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8669 what allows us to distinguish between fat pointers that represent
8670 array types, and fat pointers that represent array access types
8671 (in both cases, the compiler implements them as fat pointers). */
8672 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8673 && is_thick_pntr (ada_typedef_target_type (type)))
8674 return type;
8675
8676 CHECK_TYPEDEF (type);
8677 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8678 || !TYPE_STUB (type)
8679 || TYPE_TAG_NAME (type) == NULL)
8680 return type;
8681 else
8682 {
8683 const char *name = TYPE_TAG_NAME (type);
8684 struct type *type1 = ada_find_any_type (name);
8685
8686 if (type1 == NULL)
8687 return type;
8688
8689 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8690 stubs pointing to arrays, as we don't create symbols for array
8691 types, only for the typedef-to-array types). If that's the case,
8692 strip the typedef layer. */
8693 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8694 type1 = ada_check_typedef (type1);
8695
8696 return type1;
8697 }
8698 }
8699
8700 /* A value representing the data at VALADDR/ADDRESS as described by
8701 type TYPE0, but with a standard (static-sized) type that correctly
8702 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8703 type, then return VAL0 [this feature is simply to avoid redundant
8704 creation of struct values]. */
8705
8706 static struct value *
8707 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8708 struct value *val0)
8709 {
8710 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8711
8712 if (type == type0 && val0 != NULL)
8713 return val0;
8714 else
8715 return value_from_contents_and_address (type, 0, address);
8716 }
8717
8718 /* A value representing VAL, but with a standard (static-sized) type
8719 that correctly describes it. Does not necessarily create a new
8720 value. */
8721
8722 struct value *
8723 ada_to_fixed_value (struct value *val)
8724 {
8725 val = unwrap_value (val);
8726 val = ada_to_fixed_value_create (value_type (val),
8727 value_address (val),
8728 val);
8729 return val;
8730 }
8731 \f
8732
8733 /* Attributes */
8734
8735 /* Table mapping attribute numbers to names.
8736 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8737
8738 static const char *attribute_names[] = {
8739 "<?>",
8740
8741 "first",
8742 "last",
8743 "length",
8744 "image",
8745 "max",
8746 "min",
8747 "modulus",
8748 "pos",
8749 "size",
8750 "tag",
8751 "val",
8752 0
8753 };
8754
8755 const char *
8756 ada_attribute_name (enum exp_opcode n)
8757 {
8758 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8759 return attribute_names[n - OP_ATR_FIRST + 1];
8760 else
8761 return attribute_names[0];
8762 }
8763
8764 /* Evaluate the 'POS attribute applied to ARG. */
8765
8766 static LONGEST
8767 pos_atr (struct value *arg)
8768 {
8769 struct value *val = coerce_ref (arg);
8770 struct type *type = value_type (val);
8771
8772 if (!discrete_type_p (type))
8773 error (_("'POS only defined on discrete types"));
8774
8775 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8776 {
8777 int i;
8778 LONGEST v = value_as_long (val);
8779
8780 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8781 {
8782 if (v == TYPE_FIELD_ENUMVAL (type, i))
8783 return i;
8784 }
8785 error (_("enumeration value is invalid: can't find 'POS"));
8786 }
8787 else
8788 return value_as_long (val);
8789 }
8790
8791 static struct value *
8792 value_pos_atr (struct type *type, struct value *arg)
8793 {
8794 return value_from_longest (type, pos_atr (arg));
8795 }
8796
8797 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8798
8799 static struct value *
8800 value_val_atr (struct type *type, struct value *arg)
8801 {
8802 if (!discrete_type_p (type))
8803 error (_("'VAL only defined on discrete types"));
8804 if (!integer_type_p (value_type (arg)))
8805 error (_("'VAL requires integral argument"));
8806
8807 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8808 {
8809 long pos = value_as_long (arg);
8810
8811 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8812 error (_("argument to 'VAL out of range"));
8813 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8814 }
8815 else
8816 return value_from_longest (type, value_as_long (arg));
8817 }
8818 \f
8819
8820 /* Evaluation */
8821
8822 /* True if TYPE appears to be an Ada character type.
8823 [At the moment, this is true only for Character and Wide_Character;
8824 It is a heuristic test that could stand improvement]. */
8825
8826 int
8827 ada_is_character_type (struct type *type)
8828 {
8829 const char *name;
8830
8831 /* If the type code says it's a character, then assume it really is,
8832 and don't check any further. */
8833 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8834 return 1;
8835
8836 /* Otherwise, assume it's a character type iff it is a discrete type
8837 with a known character type name. */
8838 name = ada_type_name (type);
8839 return (name != NULL
8840 && (TYPE_CODE (type) == TYPE_CODE_INT
8841 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8842 && (strcmp (name, "character") == 0
8843 || strcmp (name, "wide_character") == 0
8844 || strcmp (name, "wide_wide_character") == 0
8845 || strcmp (name, "unsigned char") == 0));
8846 }
8847
8848 /* True if TYPE appears to be an Ada string type. */
8849
8850 int
8851 ada_is_string_type (struct type *type)
8852 {
8853 type = ada_check_typedef (type);
8854 if (type != NULL
8855 && TYPE_CODE (type) != TYPE_CODE_PTR
8856 && (ada_is_simple_array_type (type)
8857 || ada_is_array_descriptor_type (type))
8858 && ada_array_arity (type) == 1)
8859 {
8860 struct type *elttype = ada_array_element_type (type, 1);
8861
8862 return ada_is_character_type (elttype);
8863 }
8864 else
8865 return 0;
8866 }
8867
8868 /* The compiler sometimes provides a parallel XVS type for a given
8869 PAD type. Normally, it is safe to follow the PAD type directly,
8870 but older versions of the compiler have a bug that causes the offset
8871 of its "F" field to be wrong. Following that field in that case
8872 would lead to incorrect results, but this can be worked around
8873 by ignoring the PAD type and using the associated XVS type instead.
8874
8875 Set to True if the debugger should trust the contents of PAD types.
8876 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8877 static int trust_pad_over_xvs = 1;
8878
8879 /* True if TYPE is a struct type introduced by the compiler to force the
8880 alignment of a value. Such types have a single field with a
8881 distinctive name. */
8882
8883 int
8884 ada_is_aligner_type (struct type *type)
8885 {
8886 type = ada_check_typedef (type);
8887
8888 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8889 return 0;
8890
8891 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8892 && TYPE_NFIELDS (type) == 1
8893 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8894 }
8895
8896 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8897 the parallel type. */
8898
8899 struct type *
8900 ada_get_base_type (struct type *raw_type)
8901 {
8902 struct type *real_type_namer;
8903 struct type *raw_real_type;
8904
8905 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8906 return raw_type;
8907
8908 if (ada_is_aligner_type (raw_type))
8909 /* The encoding specifies that we should always use the aligner type.
8910 So, even if this aligner type has an associated XVS type, we should
8911 simply ignore it.
8912
8913 According to the compiler gurus, an XVS type parallel to an aligner
8914 type may exist because of a stabs limitation. In stabs, aligner
8915 types are empty because the field has a variable-sized type, and
8916 thus cannot actually be used as an aligner type. As a result,
8917 we need the associated parallel XVS type to decode the type.
8918 Since the policy in the compiler is to not change the internal
8919 representation based on the debugging info format, we sometimes
8920 end up having a redundant XVS type parallel to the aligner type. */
8921 return raw_type;
8922
8923 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8924 if (real_type_namer == NULL
8925 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8926 || TYPE_NFIELDS (real_type_namer) != 1)
8927 return raw_type;
8928
8929 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8930 {
8931 /* This is an older encoding form where the base type needs to be
8932 looked up by name. We prefer the newer enconding because it is
8933 more efficient. */
8934 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8935 if (raw_real_type == NULL)
8936 return raw_type;
8937 else
8938 return raw_real_type;
8939 }
8940
8941 /* The field in our XVS type is a reference to the base type. */
8942 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8943 }
8944
8945 /* The type of value designated by TYPE, with all aligners removed. */
8946
8947 struct type *
8948 ada_aligned_type (struct type *type)
8949 {
8950 if (ada_is_aligner_type (type))
8951 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8952 else
8953 return ada_get_base_type (type);
8954 }
8955
8956
8957 /* The address of the aligned value in an object at address VALADDR
8958 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8959
8960 const gdb_byte *
8961 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8962 {
8963 if (ada_is_aligner_type (type))
8964 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8965 valaddr +
8966 TYPE_FIELD_BITPOS (type,
8967 0) / TARGET_CHAR_BIT);
8968 else
8969 return valaddr;
8970 }
8971
8972
8973
8974 /* The printed representation of an enumeration literal with encoded
8975 name NAME. The value is good to the next call of ada_enum_name. */
8976 const char *
8977 ada_enum_name (const char *name)
8978 {
8979 static char *result;
8980 static size_t result_len = 0;
8981 char *tmp;
8982
8983 /* First, unqualify the enumeration name:
8984 1. Search for the last '.' character. If we find one, then skip
8985 all the preceding characters, the unqualified name starts
8986 right after that dot.
8987 2. Otherwise, we may be debugging on a target where the compiler
8988 translates dots into "__". Search forward for double underscores,
8989 but stop searching when we hit an overloading suffix, which is
8990 of the form "__" followed by digits. */
8991
8992 tmp = strrchr (name, '.');
8993 if (tmp != NULL)
8994 name = tmp + 1;
8995 else
8996 {
8997 while ((tmp = strstr (name, "__")) != NULL)
8998 {
8999 if (isdigit (tmp[2]))
9000 break;
9001 else
9002 name = tmp + 2;
9003 }
9004 }
9005
9006 if (name[0] == 'Q')
9007 {
9008 int v;
9009
9010 if (name[1] == 'U' || name[1] == 'W')
9011 {
9012 if (sscanf (name + 2, "%x", &v) != 1)
9013 return name;
9014 }
9015 else
9016 return name;
9017
9018 GROW_VECT (result, result_len, 16);
9019 if (isascii (v) && isprint (v))
9020 xsnprintf (result, result_len, "'%c'", v);
9021 else if (name[1] == 'U')
9022 xsnprintf (result, result_len, "[\"%02x\"]", v);
9023 else
9024 xsnprintf (result, result_len, "[\"%04x\"]", v);
9025
9026 return result;
9027 }
9028 else
9029 {
9030 tmp = strstr (name, "__");
9031 if (tmp == NULL)
9032 tmp = strstr (name, "$");
9033 if (tmp != NULL)
9034 {
9035 GROW_VECT (result, result_len, tmp - name + 1);
9036 strncpy (result, name, tmp - name);
9037 result[tmp - name] = '\0';
9038 return result;
9039 }
9040
9041 return name;
9042 }
9043 }
9044
9045 /* Evaluate the subexpression of EXP starting at *POS as for
9046 evaluate_type, updating *POS to point just past the evaluated
9047 expression. */
9048
9049 static struct value *
9050 evaluate_subexp_type (struct expression *exp, int *pos)
9051 {
9052 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9053 }
9054
9055 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9056 value it wraps. */
9057
9058 static struct value *
9059 unwrap_value (struct value *val)
9060 {
9061 struct type *type = ada_check_typedef (value_type (val));
9062
9063 if (ada_is_aligner_type (type))
9064 {
9065 struct value *v = ada_value_struct_elt (val, "F", 0);
9066 struct type *val_type = ada_check_typedef (value_type (v));
9067
9068 if (ada_type_name (val_type) == NULL)
9069 TYPE_NAME (val_type) = ada_type_name (type);
9070
9071 return unwrap_value (v);
9072 }
9073 else
9074 {
9075 struct type *raw_real_type =
9076 ada_check_typedef (ada_get_base_type (type));
9077
9078 /* If there is no parallel XVS or XVE type, then the value is
9079 already unwrapped. Return it without further modification. */
9080 if ((type == raw_real_type)
9081 && ada_find_parallel_type (type, "___XVE") == NULL)
9082 return val;
9083
9084 return
9085 coerce_unspec_val_to_type
9086 (val, ada_to_fixed_type (raw_real_type, 0,
9087 value_address (val),
9088 NULL, 1));
9089 }
9090 }
9091
9092 static struct value *
9093 cast_to_fixed (struct type *type, struct value *arg)
9094 {
9095 LONGEST val;
9096
9097 if (type == value_type (arg))
9098 return arg;
9099 else if (ada_is_fixed_point_type (value_type (arg)))
9100 val = ada_float_to_fixed (type,
9101 ada_fixed_to_float (value_type (arg),
9102 value_as_long (arg)));
9103 else
9104 {
9105 DOUBLEST argd = value_as_double (arg);
9106
9107 val = ada_float_to_fixed (type, argd);
9108 }
9109
9110 return value_from_longest (type, val);
9111 }
9112
9113 static struct value *
9114 cast_from_fixed (struct type *type, struct value *arg)
9115 {
9116 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9117 value_as_long (arg));
9118
9119 return value_from_double (type, val);
9120 }
9121
9122 /* Given two array types T1 and T2, return nonzero iff both arrays
9123 contain the same number of elements. */
9124
9125 static int
9126 ada_same_array_size_p (struct type *t1, struct type *t2)
9127 {
9128 LONGEST lo1, hi1, lo2, hi2;
9129
9130 /* Get the array bounds in order to verify that the size of
9131 the two arrays match. */
9132 if (!get_array_bounds (t1, &lo1, &hi1)
9133 || !get_array_bounds (t2, &lo2, &hi2))
9134 error (_("unable to determine array bounds"));
9135
9136 /* To make things easier for size comparison, normalize a bit
9137 the case of empty arrays by making sure that the difference
9138 between upper bound and lower bound is always -1. */
9139 if (lo1 > hi1)
9140 hi1 = lo1 - 1;
9141 if (lo2 > hi2)
9142 hi2 = lo2 - 1;
9143
9144 return (hi1 - lo1 == hi2 - lo2);
9145 }
9146
9147 /* Assuming that VAL is an array of integrals, and TYPE represents
9148 an array with the same number of elements, but with wider integral
9149 elements, return an array "casted" to TYPE. In practice, this
9150 means that the returned array is built by casting each element
9151 of the original array into TYPE's (wider) element type. */
9152
9153 static struct value *
9154 ada_promote_array_of_integrals (struct type *type, struct value *val)
9155 {
9156 struct type *elt_type = TYPE_TARGET_TYPE (type);
9157 LONGEST lo, hi;
9158 struct value *res;
9159 LONGEST i;
9160
9161 /* Verify that both val and type are arrays of scalars, and
9162 that the size of val's elements is smaller than the size
9163 of type's element. */
9164 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9165 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9166 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9167 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9168 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9169 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9170
9171 if (!get_array_bounds (type, &lo, &hi))
9172 error (_("unable to determine array bounds"));
9173
9174 res = allocate_value (type);
9175
9176 /* Promote each array element. */
9177 for (i = 0; i < hi - lo + 1; i++)
9178 {
9179 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9180
9181 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9182 value_contents_all (elt), TYPE_LENGTH (elt_type));
9183 }
9184
9185 return res;
9186 }
9187
9188 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9189 return the converted value. */
9190
9191 static struct value *
9192 coerce_for_assign (struct type *type, struct value *val)
9193 {
9194 struct type *type2 = value_type (val);
9195
9196 if (type == type2)
9197 return val;
9198
9199 type2 = ada_check_typedef (type2);
9200 type = ada_check_typedef (type);
9201
9202 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9203 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9204 {
9205 val = ada_value_ind (val);
9206 type2 = value_type (val);
9207 }
9208
9209 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9210 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9211 {
9212 if (!ada_same_array_size_p (type, type2))
9213 error (_("cannot assign arrays of different length"));
9214
9215 if (is_integral_type (TYPE_TARGET_TYPE (type))
9216 && is_integral_type (TYPE_TARGET_TYPE (type2))
9217 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9218 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9219 {
9220 /* Allow implicit promotion of the array elements to
9221 a wider type. */
9222 return ada_promote_array_of_integrals (type, val);
9223 }
9224
9225 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9226 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9227 error (_("Incompatible types in assignment"));
9228 deprecated_set_value_type (val, type);
9229 }
9230 return val;
9231 }
9232
9233 static struct value *
9234 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9235 {
9236 struct value *val;
9237 struct type *type1, *type2;
9238 LONGEST v, v1, v2;
9239
9240 arg1 = coerce_ref (arg1);
9241 arg2 = coerce_ref (arg2);
9242 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9243 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9244
9245 if (TYPE_CODE (type1) != TYPE_CODE_INT
9246 || TYPE_CODE (type2) != TYPE_CODE_INT)
9247 return value_binop (arg1, arg2, op);
9248
9249 switch (op)
9250 {
9251 case BINOP_MOD:
9252 case BINOP_DIV:
9253 case BINOP_REM:
9254 break;
9255 default:
9256 return value_binop (arg1, arg2, op);
9257 }
9258
9259 v2 = value_as_long (arg2);
9260 if (v2 == 0)
9261 error (_("second operand of %s must not be zero."), op_string (op));
9262
9263 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9264 return value_binop (arg1, arg2, op);
9265
9266 v1 = value_as_long (arg1);
9267 switch (op)
9268 {
9269 case BINOP_DIV:
9270 v = v1 / v2;
9271 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9272 v += v > 0 ? -1 : 1;
9273 break;
9274 case BINOP_REM:
9275 v = v1 % v2;
9276 if (v * v1 < 0)
9277 v -= v2;
9278 break;
9279 default:
9280 /* Should not reach this point. */
9281 v = 0;
9282 }
9283
9284 val = allocate_value (type1);
9285 store_unsigned_integer (value_contents_raw (val),
9286 TYPE_LENGTH (value_type (val)),
9287 gdbarch_byte_order (get_type_arch (type1)), v);
9288 return val;
9289 }
9290
9291 static int
9292 ada_value_equal (struct value *arg1, struct value *arg2)
9293 {
9294 if (ada_is_direct_array_type (value_type (arg1))
9295 || ada_is_direct_array_type (value_type (arg2)))
9296 {
9297 /* Automatically dereference any array reference before
9298 we attempt to perform the comparison. */
9299 arg1 = ada_coerce_ref (arg1);
9300 arg2 = ada_coerce_ref (arg2);
9301
9302 arg1 = ada_coerce_to_simple_array (arg1);
9303 arg2 = ada_coerce_to_simple_array (arg2);
9304 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9305 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9306 error (_("Attempt to compare array with non-array"));
9307 /* FIXME: The following works only for types whose
9308 representations use all bits (no padding or undefined bits)
9309 and do not have user-defined equality. */
9310 return
9311 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9312 && memcmp (value_contents (arg1), value_contents (arg2),
9313 TYPE_LENGTH (value_type (arg1))) == 0;
9314 }
9315 return value_equal (arg1, arg2);
9316 }
9317
9318 /* Total number of component associations in the aggregate starting at
9319 index PC in EXP. Assumes that index PC is the start of an
9320 OP_AGGREGATE. */
9321
9322 static int
9323 num_component_specs (struct expression *exp, int pc)
9324 {
9325 int n, m, i;
9326
9327 m = exp->elts[pc + 1].longconst;
9328 pc += 3;
9329 n = 0;
9330 for (i = 0; i < m; i += 1)
9331 {
9332 switch (exp->elts[pc].opcode)
9333 {
9334 default:
9335 n += 1;
9336 break;
9337 case OP_CHOICES:
9338 n += exp->elts[pc + 1].longconst;
9339 break;
9340 }
9341 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9342 }
9343 return n;
9344 }
9345
9346 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9347 component of LHS (a simple array or a record), updating *POS past
9348 the expression, assuming that LHS is contained in CONTAINER. Does
9349 not modify the inferior's memory, nor does it modify LHS (unless
9350 LHS == CONTAINER). */
9351
9352 static void
9353 assign_component (struct value *container, struct value *lhs, LONGEST index,
9354 struct expression *exp, int *pos)
9355 {
9356 struct value *mark = value_mark ();
9357 struct value *elt;
9358
9359 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9360 {
9361 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9362 struct value *index_val = value_from_longest (index_type, index);
9363
9364 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9365 }
9366 else
9367 {
9368 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9369 elt = ada_to_fixed_value (elt);
9370 }
9371
9372 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9373 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9374 else
9375 value_assign_to_component (container, elt,
9376 ada_evaluate_subexp (NULL, exp, pos,
9377 EVAL_NORMAL));
9378
9379 value_free_to_mark (mark);
9380 }
9381
9382 /* Assuming that LHS represents an lvalue having a record or array
9383 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9384 of that aggregate's value to LHS, advancing *POS past the
9385 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9386 lvalue containing LHS (possibly LHS itself). Does not modify
9387 the inferior's memory, nor does it modify the contents of
9388 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9389
9390 static struct value *
9391 assign_aggregate (struct value *container,
9392 struct value *lhs, struct expression *exp,
9393 int *pos, enum noside noside)
9394 {
9395 struct type *lhs_type;
9396 int n = exp->elts[*pos+1].longconst;
9397 LONGEST low_index, high_index;
9398 int num_specs;
9399 LONGEST *indices;
9400 int max_indices, num_indices;
9401 int i;
9402
9403 *pos += 3;
9404 if (noside != EVAL_NORMAL)
9405 {
9406 for (i = 0; i < n; i += 1)
9407 ada_evaluate_subexp (NULL, exp, pos, noside);
9408 return container;
9409 }
9410
9411 container = ada_coerce_ref (container);
9412 if (ada_is_direct_array_type (value_type (container)))
9413 container = ada_coerce_to_simple_array (container);
9414 lhs = ada_coerce_ref (lhs);
9415 if (!deprecated_value_modifiable (lhs))
9416 error (_("Left operand of assignment is not a modifiable lvalue."));
9417
9418 lhs_type = value_type (lhs);
9419 if (ada_is_direct_array_type (lhs_type))
9420 {
9421 lhs = ada_coerce_to_simple_array (lhs);
9422 lhs_type = value_type (lhs);
9423 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9424 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9425 }
9426 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9427 {
9428 low_index = 0;
9429 high_index = num_visible_fields (lhs_type) - 1;
9430 }
9431 else
9432 error (_("Left-hand side must be array or record."));
9433
9434 num_specs = num_component_specs (exp, *pos - 3);
9435 max_indices = 4 * num_specs + 4;
9436 indices = alloca (max_indices * sizeof (indices[0]));
9437 indices[0] = indices[1] = low_index - 1;
9438 indices[2] = indices[3] = high_index + 1;
9439 num_indices = 4;
9440
9441 for (i = 0; i < n; i += 1)
9442 {
9443 switch (exp->elts[*pos].opcode)
9444 {
9445 case OP_CHOICES:
9446 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9447 &num_indices, max_indices,
9448 low_index, high_index);
9449 break;
9450 case OP_POSITIONAL:
9451 aggregate_assign_positional (container, lhs, exp, pos, indices,
9452 &num_indices, max_indices,
9453 low_index, high_index);
9454 break;
9455 case OP_OTHERS:
9456 if (i != n-1)
9457 error (_("Misplaced 'others' clause"));
9458 aggregate_assign_others (container, lhs, exp, pos, indices,
9459 num_indices, low_index, high_index);
9460 break;
9461 default:
9462 error (_("Internal error: bad aggregate clause"));
9463 }
9464 }
9465
9466 return container;
9467 }
9468
9469 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9470 construct at *POS, updating *POS past the construct, given that
9471 the positions are relative to lower bound LOW, where HIGH is the
9472 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9473 updating *NUM_INDICES as needed. CONTAINER is as for
9474 assign_aggregate. */
9475 static void
9476 aggregate_assign_positional (struct value *container,
9477 struct value *lhs, struct expression *exp,
9478 int *pos, LONGEST *indices, int *num_indices,
9479 int max_indices, LONGEST low, LONGEST high)
9480 {
9481 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9482
9483 if (ind - 1 == high)
9484 warning (_("Extra components in aggregate ignored."));
9485 if (ind <= high)
9486 {
9487 add_component_interval (ind, ind, indices, num_indices, max_indices);
9488 *pos += 3;
9489 assign_component (container, lhs, ind, exp, pos);
9490 }
9491 else
9492 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9493 }
9494
9495 /* Assign into the components of LHS indexed by the OP_CHOICES
9496 construct at *POS, updating *POS past the construct, given that
9497 the allowable indices are LOW..HIGH. Record the indices assigned
9498 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9499 needed. CONTAINER is as for assign_aggregate. */
9500 static void
9501 aggregate_assign_from_choices (struct value *container,
9502 struct value *lhs, struct expression *exp,
9503 int *pos, LONGEST *indices, int *num_indices,
9504 int max_indices, LONGEST low, LONGEST high)
9505 {
9506 int j;
9507 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9508 int choice_pos, expr_pc;
9509 int is_array = ada_is_direct_array_type (value_type (lhs));
9510
9511 choice_pos = *pos += 3;
9512
9513 for (j = 0; j < n_choices; j += 1)
9514 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9515 expr_pc = *pos;
9516 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9517
9518 for (j = 0; j < n_choices; j += 1)
9519 {
9520 LONGEST lower, upper;
9521 enum exp_opcode op = exp->elts[choice_pos].opcode;
9522
9523 if (op == OP_DISCRETE_RANGE)
9524 {
9525 choice_pos += 1;
9526 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9527 EVAL_NORMAL));
9528 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9529 EVAL_NORMAL));
9530 }
9531 else if (is_array)
9532 {
9533 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9534 EVAL_NORMAL));
9535 upper = lower;
9536 }
9537 else
9538 {
9539 int ind;
9540 const char *name;
9541
9542 switch (op)
9543 {
9544 case OP_NAME:
9545 name = &exp->elts[choice_pos + 2].string;
9546 break;
9547 case OP_VAR_VALUE:
9548 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9549 break;
9550 default:
9551 error (_("Invalid record component association."));
9552 }
9553 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9554 ind = 0;
9555 if (! find_struct_field (name, value_type (lhs), 0,
9556 NULL, NULL, NULL, NULL, &ind))
9557 error (_("Unknown component name: %s."), name);
9558 lower = upper = ind;
9559 }
9560
9561 if (lower <= upper && (lower < low || upper > high))
9562 error (_("Index in component association out of bounds."));
9563
9564 add_component_interval (lower, upper, indices, num_indices,
9565 max_indices);
9566 while (lower <= upper)
9567 {
9568 int pos1;
9569
9570 pos1 = expr_pc;
9571 assign_component (container, lhs, lower, exp, &pos1);
9572 lower += 1;
9573 }
9574 }
9575 }
9576
9577 /* Assign the value of the expression in the OP_OTHERS construct in
9578 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9579 have not been previously assigned. The index intervals already assigned
9580 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9581 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9582 static void
9583 aggregate_assign_others (struct value *container,
9584 struct value *lhs, struct expression *exp,
9585 int *pos, LONGEST *indices, int num_indices,
9586 LONGEST low, LONGEST high)
9587 {
9588 int i;
9589 int expr_pc = *pos + 1;
9590
9591 for (i = 0; i < num_indices - 2; i += 2)
9592 {
9593 LONGEST ind;
9594
9595 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9596 {
9597 int localpos;
9598
9599 localpos = expr_pc;
9600 assign_component (container, lhs, ind, exp, &localpos);
9601 }
9602 }
9603 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9604 }
9605
9606 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9607 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9608 modifying *SIZE as needed. It is an error if *SIZE exceeds
9609 MAX_SIZE. The resulting intervals do not overlap. */
9610 static void
9611 add_component_interval (LONGEST low, LONGEST high,
9612 LONGEST* indices, int *size, int max_size)
9613 {
9614 int i, j;
9615
9616 for (i = 0; i < *size; i += 2) {
9617 if (high >= indices[i] && low <= indices[i + 1])
9618 {
9619 int kh;
9620
9621 for (kh = i + 2; kh < *size; kh += 2)
9622 if (high < indices[kh])
9623 break;
9624 if (low < indices[i])
9625 indices[i] = low;
9626 indices[i + 1] = indices[kh - 1];
9627 if (high > indices[i + 1])
9628 indices[i + 1] = high;
9629 memcpy (indices + i + 2, indices + kh, *size - kh);
9630 *size -= kh - i - 2;
9631 return;
9632 }
9633 else if (high < indices[i])
9634 break;
9635 }
9636
9637 if (*size == max_size)
9638 error (_("Internal error: miscounted aggregate components."));
9639 *size += 2;
9640 for (j = *size-1; j >= i+2; j -= 1)
9641 indices[j] = indices[j - 2];
9642 indices[i] = low;
9643 indices[i + 1] = high;
9644 }
9645
9646 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9647 is different. */
9648
9649 static struct value *
9650 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9651 {
9652 if (type == ada_check_typedef (value_type (arg2)))
9653 return arg2;
9654
9655 if (ada_is_fixed_point_type (type))
9656 return (cast_to_fixed (type, arg2));
9657
9658 if (ada_is_fixed_point_type (value_type (arg2)))
9659 return cast_from_fixed (type, arg2);
9660
9661 return value_cast (type, arg2);
9662 }
9663
9664 /* Evaluating Ada expressions, and printing their result.
9665 ------------------------------------------------------
9666
9667 1. Introduction:
9668 ----------------
9669
9670 We usually evaluate an Ada expression in order to print its value.
9671 We also evaluate an expression in order to print its type, which
9672 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9673 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9674 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9675 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9676 similar.
9677
9678 Evaluating expressions is a little more complicated for Ada entities
9679 than it is for entities in languages such as C. The main reason for
9680 this is that Ada provides types whose definition might be dynamic.
9681 One example of such types is variant records. Or another example
9682 would be an array whose bounds can only be known at run time.
9683
9684 The following description is a general guide as to what should be
9685 done (and what should NOT be done) in order to evaluate an expression
9686 involving such types, and when. This does not cover how the semantic
9687 information is encoded by GNAT as this is covered separatly. For the
9688 document used as the reference for the GNAT encoding, see exp_dbug.ads
9689 in the GNAT sources.
9690
9691 Ideally, we should embed each part of this description next to its
9692 associated code. Unfortunately, the amount of code is so vast right
9693 now that it's hard to see whether the code handling a particular
9694 situation might be duplicated or not. One day, when the code is
9695 cleaned up, this guide might become redundant with the comments
9696 inserted in the code, and we might want to remove it.
9697
9698 2. ``Fixing'' an Entity, the Simple Case:
9699 -----------------------------------------
9700
9701 When evaluating Ada expressions, the tricky issue is that they may
9702 reference entities whose type contents and size are not statically
9703 known. Consider for instance a variant record:
9704
9705 type Rec (Empty : Boolean := True) is record
9706 case Empty is
9707 when True => null;
9708 when False => Value : Integer;
9709 end case;
9710 end record;
9711 Yes : Rec := (Empty => False, Value => 1);
9712 No : Rec := (empty => True);
9713
9714 The size and contents of that record depends on the value of the
9715 descriminant (Rec.Empty). At this point, neither the debugging
9716 information nor the associated type structure in GDB are able to
9717 express such dynamic types. So what the debugger does is to create
9718 "fixed" versions of the type that applies to the specific object.
9719 We also informally refer to this opperation as "fixing" an object,
9720 which means creating its associated fixed type.
9721
9722 Example: when printing the value of variable "Yes" above, its fixed
9723 type would look like this:
9724
9725 type Rec is record
9726 Empty : Boolean;
9727 Value : Integer;
9728 end record;
9729
9730 On the other hand, if we printed the value of "No", its fixed type
9731 would become:
9732
9733 type Rec is record
9734 Empty : Boolean;
9735 end record;
9736
9737 Things become a little more complicated when trying to fix an entity
9738 with a dynamic type that directly contains another dynamic type,
9739 such as an array of variant records, for instance. There are
9740 two possible cases: Arrays, and records.
9741
9742 3. ``Fixing'' Arrays:
9743 ---------------------
9744
9745 The type structure in GDB describes an array in terms of its bounds,
9746 and the type of its elements. By design, all elements in the array
9747 have the same type and we cannot represent an array of variant elements
9748 using the current type structure in GDB. When fixing an array,
9749 we cannot fix the array element, as we would potentially need one
9750 fixed type per element of the array. As a result, the best we can do
9751 when fixing an array is to produce an array whose bounds and size
9752 are correct (allowing us to read it from memory), but without having
9753 touched its element type. Fixing each element will be done later,
9754 when (if) necessary.
9755
9756 Arrays are a little simpler to handle than records, because the same
9757 amount of memory is allocated for each element of the array, even if
9758 the amount of space actually used by each element differs from element
9759 to element. Consider for instance the following array of type Rec:
9760
9761 type Rec_Array is array (1 .. 2) of Rec;
9762
9763 The actual amount of memory occupied by each element might be different
9764 from element to element, depending on the value of their discriminant.
9765 But the amount of space reserved for each element in the array remains
9766 fixed regardless. So we simply need to compute that size using
9767 the debugging information available, from which we can then determine
9768 the array size (we multiply the number of elements of the array by
9769 the size of each element).
9770
9771 The simplest case is when we have an array of a constrained element
9772 type. For instance, consider the following type declarations:
9773
9774 type Bounded_String (Max_Size : Integer) is
9775 Length : Integer;
9776 Buffer : String (1 .. Max_Size);
9777 end record;
9778 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9779
9780 In this case, the compiler describes the array as an array of
9781 variable-size elements (identified by its XVS suffix) for which
9782 the size can be read in the parallel XVZ variable.
9783
9784 In the case of an array of an unconstrained element type, the compiler
9785 wraps the array element inside a private PAD type. This type should not
9786 be shown to the user, and must be "unwrap"'ed before printing. Note
9787 that we also use the adjective "aligner" in our code to designate
9788 these wrapper types.
9789
9790 In some cases, the size allocated for each element is statically
9791 known. In that case, the PAD type already has the correct size,
9792 and the array element should remain unfixed.
9793
9794 But there are cases when this size is not statically known.
9795 For instance, assuming that "Five" is an integer variable:
9796
9797 type Dynamic is array (1 .. Five) of Integer;
9798 type Wrapper (Has_Length : Boolean := False) is record
9799 Data : Dynamic;
9800 case Has_Length is
9801 when True => Length : Integer;
9802 when False => null;
9803 end case;
9804 end record;
9805 type Wrapper_Array is array (1 .. 2) of Wrapper;
9806
9807 Hello : Wrapper_Array := (others => (Has_Length => True,
9808 Data => (others => 17),
9809 Length => 1));
9810
9811
9812 The debugging info would describe variable Hello as being an
9813 array of a PAD type. The size of that PAD type is not statically
9814 known, but can be determined using a parallel XVZ variable.
9815 In that case, a copy of the PAD type with the correct size should
9816 be used for the fixed array.
9817
9818 3. ``Fixing'' record type objects:
9819 ----------------------------------
9820
9821 Things are slightly different from arrays in the case of dynamic
9822 record types. In this case, in order to compute the associated
9823 fixed type, we need to determine the size and offset of each of
9824 its components. This, in turn, requires us to compute the fixed
9825 type of each of these components.
9826
9827 Consider for instance the example:
9828
9829 type Bounded_String (Max_Size : Natural) is record
9830 Str : String (1 .. Max_Size);
9831 Length : Natural;
9832 end record;
9833 My_String : Bounded_String (Max_Size => 10);
9834
9835 In that case, the position of field "Length" depends on the size
9836 of field Str, which itself depends on the value of the Max_Size
9837 discriminant. In order to fix the type of variable My_String,
9838 we need to fix the type of field Str. Therefore, fixing a variant
9839 record requires us to fix each of its components.
9840
9841 However, if a component does not have a dynamic size, the component
9842 should not be fixed. In particular, fields that use a PAD type
9843 should not fixed. Here is an example where this might happen
9844 (assuming type Rec above):
9845
9846 type Container (Big : Boolean) is record
9847 First : Rec;
9848 After : Integer;
9849 case Big is
9850 when True => Another : Integer;
9851 when False => null;
9852 end case;
9853 end record;
9854 My_Container : Container := (Big => False,
9855 First => (Empty => True),
9856 After => 42);
9857
9858 In that example, the compiler creates a PAD type for component First,
9859 whose size is constant, and then positions the component After just
9860 right after it. The offset of component After is therefore constant
9861 in this case.
9862
9863 The debugger computes the position of each field based on an algorithm
9864 that uses, among other things, the actual position and size of the field
9865 preceding it. Let's now imagine that the user is trying to print
9866 the value of My_Container. If the type fixing was recursive, we would
9867 end up computing the offset of field After based on the size of the
9868 fixed version of field First. And since in our example First has
9869 only one actual field, the size of the fixed type is actually smaller
9870 than the amount of space allocated to that field, and thus we would
9871 compute the wrong offset of field After.
9872
9873 To make things more complicated, we need to watch out for dynamic
9874 components of variant records (identified by the ___XVL suffix in
9875 the component name). Even if the target type is a PAD type, the size
9876 of that type might not be statically known. So the PAD type needs
9877 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9878 we might end up with the wrong size for our component. This can be
9879 observed with the following type declarations:
9880
9881 type Octal is new Integer range 0 .. 7;
9882 type Octal_Array is array (Positive range <>) of Octal;
9883 pragma Pack (Octal_Array);
9884
9885 type Octal_Buffer (Size : Positive) is record
9886 Buffer : Octal_Array (1 .. Size);
9887 Length : Integer;
9888 end record;
9889
9890 In that case, Buffer is a PAD type whose size is unset and needs
9891 to be computed by fixing the unwrapped type.
9892
9893 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9894 ----------------------------------------------------------
9895
9896 Lastly, when should the sub-elements of an entity that remained unfixed
9897 thus far, be actually fixed?
9898
9899 The answer is: Only when referencing that element. For instance
9900 when selecting one component of a record, this specific component
9901 should be fixed at that point in time. Or when printing the value
9902 of a record, each component should be fixed before its value gets
9903 printed. Similarly for arrays, the element of the array should be
9904 fixed when printing each element of the array, or when extracting
9905 one element out of that array. On the other hand, fixing should
9906 not be performed on the elements when taking a slice of an array!
9907
9908 Note that one of the side-effects of miscomputing the offset and
9909 size of each field is that we end up also miscomputing the size
9910 of the containing type. This can have adverse results when computing
9911 the value of an entity. GDB fetches the value of an entity based
9912 on the size of its type, and thus a wrong size causes GDB to fetch
9913 the wrong amount of memory. In the case where the computed size is
9914 too small, GDB fetches too little data to print the value of our
9915 entiry. Results in this case as unpredicatble, as we usually read
9916 past the buffer containing the data =:-o. */
9917
9918 /* Implement the evaluate_exp routine in the exp_descriptor structure
9919 for the Ada language. */
9920
9921 static struct value *
9922 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9923 int *pos, enum noside noside)
9924 {
9925 enum exp_opcode op;
9926 int tem;
9927 int pc;
9928 int preeval_pos;
9929 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9930 struct type *type;
9931 int nargs, oplen;
9932 struct value **argvec;
9933
9934 pc = *pos;
9935 *pos += 1;
9936 op = exp->elts[pc].opcode;
9937
9938 switch (op)
9939 {
9940 default:
9941 *pos -= 1;
9942 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9943
9944 if (noside == EVAL_NORMAL)
9945 arg1 = unwrap_value (arg1);
9946
9947 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9948 then we need to perform the conversion manually, because
9949 evaluate_subexp_standard doesn't do it. This conversion is
9950 necessary in Ada because the different kinds of float/fixed
9951 types in Ada have different representations.
9952
9953 Similarly, we need to perform the conversion from OP_LONG
9954 ourselves. */
9955 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9956 arg1 = ada_value_cast (expect_type, arg1, noside);
9957
9958 return arg1;
9959
9960 case OP_STRING:
9961 {
9962 struct value *result;
9963
9964 *pos -= 1;
9965 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9966 /* The result type will have code OP_STRING, bashed there from
9967 OP_ARRAY. Bash it back. */
9968 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9969 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9970 return result;
9971 }
9972
9973 case UNOP_CAST:
9974 (*pos) += 2;
9975 type = exp->elts[pc + 1].type;
9976 arg1 = evaluate_subexp (type, exp, pos, noside);
9977 if (noside == EVAL_SKIP)
9978 goto nosideret;
9979 arg1 = ada_value_cast (type, arg1, noside);
9980 return arg1;
9981
9982 case UNOP_QUAL:
9983 (*pos) += 2;
9984 type = exp->elts[pc + 1].type;
9985 return ada_evaluate_subexp (type, exp, pos, noside);
9986
9987 case BINOP_ASSIGN:
9988 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9989 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9990 {
9991 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9992 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9993 return arg1;
9994 return ada_value_assign (arg1, arg1);
9995 }
9996 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9997 except if the lhs of our assignment is a convenience variable.
9998 In the case of assigning to a convenience variable, the lhs
9999 should be exactly the result of the evaluation of the rhs. */
10000 type = value_type (arg1);
10001 if (VALUE_LVAL (arg1) == lval_internalvar)
10002 type = NULL;
10003 arg2 = evaluate_subexp (type, exp, pos, noside);
10004 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10005 return arg1;
10006 if (ada_is_fixed_point_type (value_type (arg1)))
10007 arg2 = cast_to_fixed (value_type (arg1), arg2);
10008 else if (ada_is_fixed_point_type (value_type (arg2)))
10009 error
10010 (_("Fixed-point values must be assigned to fixed-point variables"));
10011 else
10012 arg2 = coerce_for_assign (value_type (arg1), arg2);
10013 return ada_value_assign (arg1, arg2);
10014
10015 case BINOP_ADD:
10016 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10017 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10018 if (noside == EVAL_SKIP)
10019 goto nosideret;
10020 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10021 return (value_from_longest
10022 (value_type (arg1),
10023 value_as_long (arg1) + value_as_long (arg2)));
10024 if ((ada_is_fixed_point_type (value_type (arg1))
10025 || ada_is_fixed_point_type (value_type (arg2)))
10026 && value_type (arg1) != value_type (arg2))
10027 error (_("Operands of fixed-point addition must have the same type"));
10028 /* Do the addition, and cast the result to the type of the first
10029 argument. We cannot cast the result to a reference type, so if
10030 ARG1 is a reference type, find its underlying type. */
10031 type = value_type (arg1);
10032 while (TYPE_CODE (type) == TYPE_CODE_REF)
10033 type = TYPE_TARGET_TYPE (type);
10034 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10035 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10036
10037 case BINOP_SUB:
10038 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10039 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10040 if (noside == EVAL_SKIP)
10041 goto nosideret;
10042 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10043 return (value_from_longest
10044 (value_type (arg1),
10045 value_as_long (arg1) - value_as_long (arg2)));
10046 if ((ada_is_fixed_point_type (value_type (arg1))
10047 || ada_is_fixed_point_type (value_type (arg2)))
10048 && value_type (arg1) != value_type (arg2))
10049 error (_("Operands of fixed-point subtraction "
10050 "must have the same type"));
10051 /* Do the substraction, and cast the result to the type of the first
10052 argument. We cannot cast the result to a reference type, so if
10053 ARG1 is a reference type, find its underlying type. */
10054 type = value_type (arg1);
10055 while (TYPE_CODE (type) == TYPE_CODE_REF)
10056 type = TYPE_TARGET_TYPE (type);
10057 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10058 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10059
10060 case BINOP_MUL:
10061 case BINOP_DIV:
10062 case BINOP_REM:
10063 case BINOP_MOD:
10064 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10065 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10066 if (noside == EVAL_SKIP)
10067 goto nosideret;
10068 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10069 {
10070 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10071 return value_zero (value_type (arg1), not_lval);
10072 }
10073 else
10074 {
10075 type = builtin_type (exp->gdbarch)->builtin_double;
10076 if (ada_is_fixed_point_type (value_type (arg1)))
10077 arg1 = cast_from_fixed (type, arg1);
10078 if (ada_is_fixed_point_type (value_type (arg2)))
10079 arg2 = cast_from_fixed (type, arg2);
10080 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10081 return ada_value_binop (arg1, arg2, op);
10082 }
10083
10084 case BINOP_EQUAL:
10085 case BINOP_NOTEQUAL:
10086 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10087 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10088 if (noside == EVAL_SKIP)
10089 goto nosideret;
10090 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10091 tem = 0;
10092 else
10093 {
10094 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10095 tem = ada_value_equal (arg1, arg2);
10096 }
10097 if (op == BINOP_NOTEQUAL)
10098 tem = !tem;
10099 type = language_bool_type (exp->language_defn, exp->gdbarch);
10100 return value_from_longest (type, (LONGEST) tem);
10101
10102 case UNOP_NEG:
10103 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10104 if (noside == EVAL_SKIP)
10105 goto nosideret;
10106 else if (ada_is_fixed_point_type (value_type (arg1)))
10107 return value_cast (value_type (arg1), value_neg (arg1));
10108 else
10109 {
10110 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10111 return value_neg (arg1);
10112 }
10113
10114 case BINOP_LOGICAL_AND:
10115 case BINOP_LOGICAL_OR:
10116 case UNOP_LOGICAL_NOT:
10117 {
10118 struct value *val;
10119
10120 *pos -= 1;
10121 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10122 type = language_bool_type (exp->language_defn, exp->gdbarch);
10123 return value_cast (type, val);
10124 }
10125
10126 case BINOP_BITWISE_AND:
10127 case BINOP_BITWISE_IOR:
10128 case BINOP_BITWISE_XOR:
10129 {
10130 struct value *val;
10131
10132 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10133 *pos = pc;
10134 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10135
10136 return value_cast (value_type (arg1), val);
10137 }
10138
10139 case OP_VAR_VALUE:
10140 *pos -= 1;
10141
10142 if (noside == EVAL_SKIP)
10143 {
10144 *pos += 4;
10145 goto nosideret;
10146 }
10147 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10148 /* Only encountered when an unresolved symbol occurs in a
10149 context other than a function call, in which case, it is
10150 invalid. */
10151 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10152 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10153 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10154 {
10155 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10156 /* Check to see if this is a tagged type. We also need to handle
10157 the case where the type is a reference to a tagged type, but
10158 we have to be careful to exclude pointers to tagged types.
10159 The latter should be shown as usual (as a pointer), whereas
10160 a reference should mostly be transparent to the user. */
10161 if (ada_is_tagged_type (type, 0)
10162 || (TYPE_CODE (type) == TYPE_CODE_REF
10163 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10164 {
10165 /* Tagged types are a little special in the fact that the real
10166 type is dynamic and can only be determined by inspecting the
10167 object's tag. This means that we need to get the object's
10168 value first (EVAL_NORMAL) and then extract the actual object
10169 type from its tag.
10170
10171 Note that we cannot skip the final step where we extract
10172 the object type from its tag, because the EVAL_NORMAL phase
10173 results in dynamic components being resolved into fixed ones.
10174 This can cause problems when trying to print the type
10175 description of tagged types whose parent has a dynamic size:
10176 We use the type name of the "_parent" component in order
10177 to print the name of the ancestor type in the type description.
10178 If that component had a dynamic size, the resolution into
10179 a fixed type would result in the loss of that type name,
10180 thus preventing us from printing the name of the ancestor
10181 type in the type description. */
10182 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10183
10184 if (TYPE_CODE (type) != TYPE_CODE_REF)
10185 {
10186 struct type *actual_type;
10187
10188 actual_type = type_from_tag (ada_value_tag (arg1));
10189 if (actual_type == NULL)
10190 /* If, for some reason, we were unable to determine
10191 the actual type from the tag, then use the static
10192 approximation that we just computed as a fallback.
10193 This can happen if the debugging information is
10194 incomplete, for instance. */
10195 actual_type = type;
10196 return value_zero (actual_type, not_lval);
10197 }
10198 else
10199 {
10200 /* In the case of a ref, ada_coerce_ref takes care
10201 of determining the actual type. But the evaluation
10202 should return a ref as it should be valid to ask
10203 for its address; so rebuild a ref after coerce. */
10204 arg1 = ada_coerce_ref (arg1);
10205 return value_ref (arg1);
10206 }
10207 }
10208
10209 *pos += 4;
10210 return value_zero (to_static_fixed_type (type), not_lval);
10211 }
10212 else
10213 {
10214 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10215 return ada_to_fixed_value (arg1);
10216 }
10217
10218 case OP_FUNCALL:
10219 (*pos) += 2;
10220
10221 /* Allocate arg vector, including space for the function to be
10222 called in argvec[0] and a terminating NULL. */
10223 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10224 argvec =
10225 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10226
10227 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10228 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10229 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10230 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10231 else
10232 {
10233 for (tem = 0; tem <= nargs; tem += 1)
10234 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10235 argvec[tem] = 0;
10236
10237 if (noside == EVAL_SKIP)
10238 goto nosideret;
10239 }
10240
10241 if (ada_is_constrained_packed_array_type
10242 (desc_base_type (value_type (argvec[0]))))
10243 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10244 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10245 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10246 /* This is a packed array that has already been fixed, and
10247 therefore already coerced to a simple array. Nothing further
10248 to do. */
10249 ;
10250 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10251 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10252 && VALUE_LVAL (argvec[0]) == lval_memory))
10253 argvec[0] = value_addr (argvec[0]);
10254
10255 type = ada_check_typedef (value_type (argvec[0]));
10256
10257 /* Ada allows us to implicitly dereference arrays when subscripting
10258 them. So, if this is an array typedef (encoding use for array
10259 access types encoded as fat pointers), strip it now. */
10260 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10261 type = ada_typedef_target_type (type);
10262
10263 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10264 {
10265 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10266 {
10267 case TYPE_CODE_FUNC:
10268 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10269 break;
10270 case TYPE_CODE_ARRAY:
10271 break;
10272 case TYPE_CODE_STRUCT:
10273 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10274 argvec[0] = ada_value_ind (argvec[0]);
10275 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10276 break;
10277 default:
10278 error (_("cannot subscript or call something of type `%s'"),
10279 ada_type_name (value_type (argvec[0])));
10280 break;
10281 }
10282 }
10283
10284 switch (TYPE_CODE (type))
10285 {
10286 case TYPE_CODE_FUNC:
10287 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10288 {
10289 struct type *rtype = TYPE_TARGET_TYPE (type);
10290
10291 if (TYPE_GNU_IFUNC (type))
10292 return allocate_value (TYPE_TARGET_TYPE (rtype));
10293 return allocate_value (rtype);
10294 }
10295 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10296 case TYPE_CODE_INTERNAL_FUNCTION:
10297 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10298 /* We don't know anything about what the internal
10299 function might return, but we have to return
10300 something. */
10301 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10302 not_lval);
10303 else
10304 return call_internal_function (exp->gdbarch, exp->language_defn,
10305 argvec[0], nargs, argvec + 1);
10306
10307 case TYPE_CODE_STRUCT:
10308 {
10309 int arity;
10310
10311 arity = ada_array_arity (type);
10312 type = ada_array_element_type (type, nargs);
10313 if (type == NULL)
10314 error (_("cannot subscript or call a record"));
10315 if (arity != nargs)
10316 error (_("wrong number of subscripts; expecting %d"), arity);
10317 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10318 return value_zero (ada_aligned_type (type), lval_memory);
10319 return
10320 unwrap_value (ada_value_subscript
10321 (argvec[0], nargs, argvec + 1));
10322 }
10323 case TYPE_CODE_ARRAY:
10324 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10325 {
10326 type = ada_array_element_type (type, nargs);
10327 if (type == NULL)
10328 error (_("element type of array unknown"));
10329 else
10330 return value_zero (ada_aligned_type (type), lval_memory);
10331 }
10332 return
10333 unwrap_value (ada_value_subscript
10334 (ada_coerce_to_simple_array (argvec[0]),
10335 nargs, argvec + 1));
10336 case TYPE_CODE_PTR: /* Pointer to array */
10337 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10338 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10339 {
10340 type = ada_array_element_type (type, nargs);
10341 if (type == NULL)
10342 error (_("element type of array unknown"));
10343 else
10344 return value_zero (ada_aligned_type (type), lval_memory);
10345 }
10346 return
10347 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10348 nargs, argvec + 1));
10349
10350 default:
10351 error (_("Attempt to index or call something other than an "
10352 "array or function"));
10353 }
10354
10355 case TERNOP_SLICE:
10356 {
10357 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10358 struct value *low_bound_val =
10359 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10360 struct value *high_bound_val =
10361 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10362 LONGEST low_bound;
10363 LONGEST high_bound;
10364
10365 low_bound_val = coerce_ref (low_bound_val);
10366 high_bound_val = coerce_ref (high_bound_val);
10367 low_bound = pos_atr (low_bound_val);
10368 high_bound = pos_atr (high_bound_val);
10369
10370 if (noside == EVAL_SKIP)
10371 goto nosideret;
10372
10373 /* If this is a reference to an aligner type, then remove all
10374 the aligners. */
10375 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10376 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10377 TYPE_TARGET_TYPE (value_type (array)) =
10378 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10379
10380 if (ada_is_constrained_packed_array_type (value_type (array)))
10381 error (_("cannot slice a packed array"));
10382
10383 /* If this is a reference to an array or an array lvalue,
10384 convert to a pointer. */
10385 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10386 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10387 && VALUE_LVAL (array) == lval_memory))
10388 array = value_addr (array);
10389
10390 if (noside == EVAL_AVOID_SIDE_EFFECTS
10391 && ada_is_array_descriptor_type (ada_check_typedef
10392 (value_type (array))))
10393 return empty_array (ada_type_of_array (array, 0), low_bound);
10394
10395 array = ada_coerce_to_simple_array_ptr (array);
10396
10397 /* If we have more than one level of pointer indirection,
10398 dereference the value until we get only one level. */
10399 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10400 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10401 == TYPE_CODE_PTR))
10402 array = value_ind (array);
10403
10404 /* Make sure we really do have an array type before going further,
10405 to avoid a SEGV when trying to get the index type or the target
10406 type later down the road if the debug info generated by
10407 the compiler is incorrect or incomplete. */
10408 if (!ada_is_simple_array_type (value_type (array)))
10409 error (_("cannot take slice of non-array"));
10410
10411 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10412 == TYPE_CODE_PTR)
10413 {
10414 struct type *type0 = ada_check_typedef (value_type (array));
10415
10416 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10417 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10418 else
10419 {
10420 struct type *arr_type0 =
10421 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10422
10423 return ada_value_slice_from_ptr (array, arr_type0,
10424 longest_to_int (low_bound),
10425 longest_to_int (high_bound));
10426 }
10427 }
10428 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10429 return array;
10430 else if (high_bound < low_bound)
10431 return empty_array (value_type (array), low_bound);
10432 else
10433 return ada_value_slice (array, longest_to_int (low_bound),
10434 longest_to_int (high_bound));
10435 }
10436
10437 case UNOP_IN_RANGE:
10438 (*pos) += 2;
10439 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10440 type = check_typedef (exp->elts[pc + 1].type);
10441
10442 if (noside == EVAL_SKIP)
10443 goto nosideret;
10444
10445 switch (TYPE_CODE (type))
10446 {
10447 default:
10448 lim_warning (_("Membership test incompletely implemented; "
10449 "always returns true"));
10450 type = language_bool_type (exp->language_defn, exp->gdbarch);
10451 return value_from_longest (type, (LONGEST) 1);
10452
10453 case TYPE_CODE_RANGE:
10454 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10455 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10456 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10457 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10458 type = language_bool_type (exp->language_defn, exp->gdbarch);
10459 return
10460 value_from_longest (type,
10461 (value_less (arg1, arg3)
10462 || value_equal (arg1, arg3))
10463 && (value_less (arg2, arg1)
10464 || value_equal (arg2, arg1)));
10465 }
10466
10467 case BINOP_IN_BOUNDS:
10468 (*pos) += 2;
10469 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10470 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10471
10472 if (noside == EVAL_SKIP)
10473 goto nosideret;
10474
10475 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10476 {
10477 type = language_bool_type (exp->language_defn, exp->gdbarch);
10478 return value_zero (type, not_lval);
10479 }
10480
10481 tem = longest_to_int (exp->elts[pc + 1].longconst);
10482
10483 type = ada_index_type (value_type (arg2), tem, "range");
10484 if (!type)
10485 type = value_type (arg1);
10486
10487 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10488 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10489
10490 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10491 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10492 type = language_bool_type (exp->language_defn, exp->gdbarch);
10493 return
10494 value_from_longest (type,
10495 (value_less (arg1, arg3)
10496 || value_equal (arg1, arg3))
10497 && (value_less (arg2, arg1)
10498 || value_equal (arg2, arg1)));
10499
10500 case TERNOP_IN_RANGE:
10501 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10502 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10503 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10504
10505 if (noside == EVAL_SKIP)
10506 goto nosideret;
10507
10508 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10509 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10510 type = language_bool_type (exp->language_defn, exp->gdbarch);
10511 return
10512 value_from_longest (type,
10513 (value_less (arg1, arg3)
10514 || value_equal (arg1, arg3))
10515 && (value_less (arg2, arg1)
10516 || value_equal (arg2, arg1)));
10517
10518 case OP_ATR_FIRST:
10519 case OP_ATR_LAST:
10520 case OP_ATR_LENGTH:
10521 {
10522 struct type *type_arg;
10523
10524 if (exp->elts[*pos].opcode == OP_TYPE)
10525 {
10526 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10527 arg1 = NULL;
10528 type_arg = check_typedef (exp->elts[pc + 2].type);
10529 }
10530 else
10531 {
10532 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10533 type_arg = NULL;
10534 }
10535
10536 if (exp->elts[*pos].opcode != OP_LONG)
10537 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10538 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10539 *pos += 4;
10540
10541 if (noside == EVAL_SKIP)
10542 goto nosideret;
10543
10544 if (type_arg == NULL)
10545 {
10546 arg1 = ada_coerce_ref (arg1);
10547
10548 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10549 arg1 = ada_coerce_to_simple_array (arg1);
10550
10551 if (op == OP_ATR_LENGTH)
10552 type = builtin_type (exp->gdbarch)->builtin_int;
10553 else
10554 {
10555 type = ada_index_type (value_type (arg1), tem,
10556 ada_attribute_name (op));
10557 if (type == NULL)
10558 type = builtin_type (exp->gdbarch)->builtin_int;
10559 }
10560
10561 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10562 return allocate_value (type);
10563
10564 switch (op)
10565 {
10566 default: /* Should never happen. */
10567 error (_("unexpected attribute encountered"));
10568 case OP_ATR_FIRST:
10569 return value_from_longest
10570 (type, ada_array_bound (arg1, tem, 0));
10571 case OP_ATR_LAST:
10572 return value_from_longest
10573 (type, ada_array_bound (arg1, tem, 1));
10574 case OP_ATR_LENGTH:
10575 return value_from_longest
10576 (type, ada_array_length (arg1, tem));
10577 }
10578 }
10579 else if (discrete_type_p (type_arg))
10580 {
10581 struct type *range_type;
10582 const char *name = ada_type_name (type_arg);
10583
10584 range_type = NULL;
10585 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10586 range_type = to_fixed_range_type (type_arg, NULL);
10587 if (range_type == NULL)
10588 range_type = type_arg;
10589 switch (op)
10590 {
10591 default:
10592 error (_("unexpected attribute encountered"));
10593 case OP_ATR_FIRST:
10594 return value_from_longest
10595 (range_type, ada_discrete_type_low_bound (range_type));
10596 case OP_ATR_LAST:
10597 return value_from_longest
10598 (range_type, ada_discrete_type_high_bound (range_type));
10599 case OP_ATR_LENGTH:
10600 error (_("the 'length attribute applies only to array types"));
10601 }
10602 }
10603 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10604 error (_("unimplemented type attribute"));
10605 else
10606 {
10607 LONGEST low, high;
10608
10609 if (ada_is_constrained_packed_array_type (type_arg))
10610 type_arg = decode_constrained_packed_array_type (type_arg);
10611
10612 if (op == OP_ATR_LENGTH)
10613 type = builtin_type (exp->gdbarch)->builtin_int;
10614 else
10615 {
10616 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10617 if (type == NULL)
10618 type = builtin_type (exp->gdbarch)->builtin_int;
10619 }
10620
10621 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10622 return allocate_value (type);
10623
10624 switch (op)
10625 {
10626 default:
10627 error (_("unexpected attribute encountered"));
10628 case OP_ATR_FIRST:
10629 low = ada_array_bound_from_type (type_arg, tem, 0);
10630 return value_from_longest (type, low);
10631 case OP_ATR_LAST:
10632 high = ada_array_bound_from_type (type_arg, tem, 1);
10633 return value_from_longest (type, high);
10634 case OP_ATR_LENGTH:
10635 low = ada_array_bound_from_type (type_arg, tem, 0);
10636 high = ada_array_bound_from_type (type_arg, tem, 1);
10637 return value_from_longest (type, high - low + 1);
10638 }
10639 }
10640 }
10641
10642 case OP_ATR_TAG:
10643 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10644 if (noside == EVAL_SKIP)
10645 goto nosideret;
10646
10647 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10648 return value_zero (ada_tag_type (arg1), not_lval);
10649
10650 return ada_value_tag (arg1);
10651
10652 case OP_ATR_MIN:
10653 case OP_ATR_MAX:
10654 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10655 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10656 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10657 if (noside == EVAL_SKIP)
10658 goto nosideret;
10659 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10660 return value_zero (value_type (arg1), not_lval);
10661 else
10662 {
10663 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10664 return value_binop (arg1, arg2,
10665 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10666 }
10667
10668 case OP_ATR_MODULUS:
10669 {
10670 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10671
10672 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10673 if (noside == EVAL_SKIP)
10674 goto nosideret;
10675
10676 if (!ada_is_modular_type (type_arg))
10677 error (_("'modulus must be applied to modular type"));
10678
10679 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10680 ada_modulus (type_arg));
10681 }
10682
10683
10684 case OP_ATR_POS:
10685 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10686 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10687 if (noside == EVAL_SKIP)
10688 goto nosideret;
10689 type = builtin_type (exp->gdbarch)->builtin_int;
10690 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10691 return value_zero (type, not_lval);
10692 else
10693 return value_pos_atr (type, arg1);
10694
10695 case OP_ATR_SIZE:
10696 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10697 type = value_type (arg1);
10698
10699 /* If the argument is a reference, then dereference its type, since
10700 the user is really asking for the size of the actual object,
10701 not the size of the pointer. */
10702 if (TYPE_CODE (type) == TYPE_CODE_REF)
10703 type = TYPE_TARGET_TYPE (type);
10704
10705 if (noside == EVAL_SKIP)
10706 goto nosideret;
10707 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10708 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10709 else
10710 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10711 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10712
10713 case OP_ATR_VAL:
10714 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10715 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10716 type = exp->elts[pc + 2].type;
10717 if (noside == EVAL_SKIP)
10718 goto nosideret;
10719 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10720 return value_zero (type, not_lval);
10721 else
10722 return value_val_atr (type, arg1);
10723
10724 case BINOP_EXP:
10725 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10726 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10727 if (noside == EVAL_SKIP)
10728 goto nosideret;
10729 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10730 return value_zero (value_type (arg1), not_lval);
10731 else
10732 {
10733 /* For integer exponentiation operations,
10734 only promote the first argument. */
10735 if (is_integral_type (value_type (arg2)))
10736 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10737 else
10738 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10739
10740 return value_binop (arg1, arg2, op);
10741 }
10742
10743 case UNOP_PLUS:
10744 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10745 if (noside == EVAL_SKIP)
10746 goto nosideret;
10747 else
10748 return arg1;
10749
10750 case UNOP_ABS:
10751 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10752 if (noside == EVAL_SKIP)
10753 goto nosideret;
10754 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10755 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10756 return value_neg (arg1);
10757 else
10758 return arg1;
10759
10760 case UNOP_IND:
10761 preeval_pos = *pos;
10762 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10763 if (noside == EVAL_SKIP)
10764 goto nosideret;
10765 type = ada_check_typedef (value_type (arg1));
10766 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10767 {
10768 if (ada_is_array_descriptor_type (type))
10769 /* GDB allows dereferencing GNAT array descriptors. */
10770 {
10771 struct type *arrType = ada_type_of_array (arg1, 0);
10772
10773 if (arrType == NULL)
10774 error (_("Attempt to dereference null array pointer."));
10775 return value_at_lazy (arrType, 0);
10776 }
10777 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10778 || TYPE_CODE (type) == TYPE_CODE_REF
10779 /* In C you can dereference an array to get the 1st elt. */
10780 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10781 {
10782 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10783 only be determined by inspecting the object's tag.
10784 This means that we need to evaluate completely the
10785 expression in order to get its type. */
10786
10787 if ((TYPE_CODE (type) == TYPE_CODE_REF
10788 || TYPE_CODE (type) == TYPE_CODE_PTR)
10789 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10790 {
10791 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10792 EVAL_NORMAL);
10793 type = value_type (ada_value_ind (arg1));
10794 }
10795 else
10796 {
10797 type = to_static_fixed_type
10798 (ada_aligned_type
10799 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10800 }
10801 check_size (type);
10802 return value_zero (type, lval_memory);
10803 }
10804 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10805 {
10806 /* GDB allows dereferencing an int. */
10807 if (expect_type == NULL)
10808 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10809 lval_memory);
10810 else
10811 {
10812 expect_type =
10813 to_static_fixed_type (ada_aligned_type (expect_type));
10814 return value_zero (expect_type, lval_memory);
10815 }
10816 }
10817 else
10818 error (_("Attempt to take contents of a non-pointer value."));
10819 }
10820 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10821 type = ada_check_typedef (value_type (arg1));
10822
10823 if (TYPE_CODE (type) == TYPE_CODE_INT)
10824 /* GDB allows dereferencing an int. If we were given
10825 the expect_type, then use that as the target type.
10826 Otherwise, assume that the target type is an int. */
10827 {
10828 if (expect_type != NULL)
10829 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10830 arg1));
10831 else
10832 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10833 (CORE_ADDR) value_as_address (arg1));
10834 }
10835
10836 if (ada_is_array_descriptor_type (type))
10837 /* GDB allows dereferencing GNAT array descriptors. */
10838 return ada_coerce_to_simple_array (arg1);
10839 else
10840 return ada_value_ind (arg1);
10841
10842 case STRUCTOP_STRUCT:
10843 tem = longest_to_int (exp->elts[pc + 1].longconst);
10844 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10845 preeval_pos = *pos;
10846 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10847 if (noside == EVAL_SKIP)
10848 goto nosideret;
10849 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10850 {
10851 struct type *type1 = value_type (arg1);
10852
10853 if (ada_is_tagged_type (type1, 1))
10854 {
10855 type = ada_lookup_struct_elt_type (type1,
10856 &exp->elts[pc + 2].string,
10857 1, 1, NULL);
10858
10859 /* If the field is not found, check if it exists in the
10860 extension of this object's type. This means that we
10861 need to evaluate completely the expression. */
10862
10863 if (type == NULL)
10864 {
10865 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10866 EVAL_NORMAL);
10867 arg1 = ada_value_struct_elt (arg1,
10868 &exp->elts[pc + 2].string,
10869 0);
10870 arg1 = unwrap_value (arg1);
10871 type = value_type (ada_to_fixed_value (arg1));
10872 }
10873 }
10874 else
10875 type =
10876 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10877 0, NULL);
10878
10879 return value_zero (ada_aligned_type (type), lval_memory);
10880 }
10881 else
10882 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10883 arg1 = unwrap_value (arg1);
10884 return ada_to_fixed_value (arg1);
10885
10886 case OP_TYPE:
10887 /* The value is not supposed to be used. This is here to make it
10888 easier to accommodate expressions that contain types. */
10889 (*pos) += 2;
10890 if (noside == EVAL_SKIP)
10891 goto nosideret;
10892 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10893 return allocate_value (exp->elts[pc + 1].type);
10894 else
10895 error (_("Attempt to use a type name as an expression"));
10896
10897 case OP_AGGREGATE:
10898 case OP_CHOICES:
10899 case OP_OTHERS:
10900 case OP_DISCRETE_RANGE:
10901 case OP_POSITIONAL:
10902 case OP_NAME:
10903 if (noside == EVAL_NORMAL)
10904 switch (op)
10905 {
10906 case OP_NAME:
10907 error (_("Undefined name, ambiguous name, or renaming used in "
10908 "component association: %s."), &exp->elts[pc+2].string);
10909 case OP_AGGREGATE:
10910 error (_("Aggregates only allowed on the right of an assignment"));
10911 default:
10912 internal_error (__FILE__, __LINE__,
10913 _("aggregate apparently mangled"));
10914 }
10915
10916 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10917 *pos += oplen - 1;
10918 for (tem = 0; tem < nargs; tem += 1)
10919 ada_evaluate_subexp (NULL, exp, pos, noside);
10920 goto nosideret;
10921 }
10922
10923 nosideret:
10924 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10925 }
10926 \f
10927
10928 /* Fixed point */
10929
10930 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10931 type name that encodes the 'small and 'delta information.
10932 Otherwise, return NULL. */
10933
10934 static const char *
10935 fixed_type_info (struct type *type)
10936 {
10937 const char *name = ada_type_name (type);
10938 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10939
10940 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10941 {
10942 const char *tail = strstr (name, "___XF_");
10943
10944 if (tail == NULL)
10945 return NULL;
10946 else
10947 return tail + 5;
10948 }
10949 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10950 return fixed_type_info (TYPE_TARGET_TYPE (type));
10951 else
10952 return NULL;
10953 }
10954
10955 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10956
10957 int
10958 ada_is_fixed_point_type (struct type *type)
10959 {
10960 return fixed_type_info (type) != NULL;
10961 }
10962
10963 /* Return non-zero iff TYPE represents a System.Address type. */
10964
10965 int
10966 ada_is_system_address_type (struct type *type)
10967 {
10968 return (TYPE_NAME (type)
10969 && strcmp (TYPE_NAME (type), "system__address") == 0);
10970 }
10971
10972 /* Assuming that TYPE is the representation of an Ada fixed-point
10973 type, return its delta, or -1 if the type is malformed and the
10974 delta cannot be determined. */
10975
10976 DOUBLEST
10977 ada_delta (struct type *type)
10978 {
10979 const char *encoding = fixed_type_info (type);
10980 DOUBLEST num, den;
10981
10982 /* Strictly speaking, num and den are encoded as integer. However,
10983 they may not fit into a long, and they will have to be converted
10984 to DOUBLEST anyway. So scan them as DOUBLEST. */
10985 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10986 &num, &den) < 2)
10987 return -1.0;
10988 else
10989 return num / den;
10990 }
10991
10992 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10993 factor ('SMALL value) associated with the type. */
10994
10995 static DOUBLEST
10996 scaling_factor (struct type *type)
10997 {
10998 const char *encoding = fixed_type_info (type);
10999 DOUBLEST num0, den0, num1, den1;
11000 int n;
11001
11002 /* Strictly speaking, num's and den's are encoded as integer. However,
11003 they may not fit into a long, and they will have to be converted
11004 to DOUBLEST anyway. So scan them as DOUBLEST. */
11005 n = sscanf (encoding,
11006 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11007 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11008 &num0, &den0, &num1, &den1);
11009
11010 if (n < 2)
11011 return 1.0;
11012 else if (n == 4)
11013 return num1 / den1;
11014 else
11015 return num0 / den0;
11016 }
11017
11018
11019 /* Assuming that X is the representation of a value of fixed-point
11020 type TYPE, return its floating-point equivalent. */
11021
11022 DOUBLEST
11023 ada_fixed_to_float (struct type *type, LONGEST x)
11024 {
11025 return (DOUBLEST) x *scaling_factor (type);
11026 }
11027
11028 /* The representation of a fixed-point value of type TYPE
11029 corresponding to the value X. */
11030
11031 LONGEST
11032 ada_float_to_fixed (struct type *type, DOUBLEST x)
11033 {
11034 return (LONGEST) (x / scaling_factor (type) + 0.5);
11035 }
11036
11037 \f
11038
11039 /* Range types */
11040
11041 /* Scan STR beginning at position K for a discriminant name, and
11042 return the value of that discriminant field of DVAL in *PX. If
11043 PNEW_K is not null, put the position of the character beyond the
11044 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11045 not alter *PX and *PNEW_K if unsuccessful. */
11046
11047 static int
11048 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
11049 int *pnew_k)
11050 {
11051 static char *bound_buffer = NULL;
11052 static size_t bound_buffer_len = 0;
11053 char *bound;
11054 char *pend;
11055 struct value *bound_val;
11056
11057 if (dval == NULL || str == NULL || str[k] == '\0')
11058 return 0;
11059
11060 pend = strstr (str + k, "__");
11061 if (pend == NULL)
11062 {
11063 bound = str + k;
11064 k += strlen (bound);
11065 }
11066 else
11067 {
11068 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
11069 bound = bound_buffer;
11070 strncpy (bound_buffer, str + k, pend - (str + k));
11071 bound[pend - (str + k)] = '\0';
11072 k = pend - str;
11073 }
11074
11075 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11076 if (bound_val == NULL)
11077 return 0;
11078
11079 *px = value_as_long (bound_val);
11080 if (pnew_k != NULL)
11081 *pnew_k = k;
11082 return 1;
11083 }
11084
11085 /* Value of variable named NAME in the current environment. If
11086 no such variable found, then if ERR_MSG is null, returns 0, and
11087 otherwise causes an error with message ERR_MSG. */
11088
11089 static struct value *
11090 get_var_value (char *name, char *err_msg)
11091 {
11092 struct ada_symbol_info *syms;
11093 int nsyms;
11094
11095 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11096 &syms);
11097
11098 if (nsyms != 1)
11099 {
11100 if (err_msg == NULL)
11101 return 0;
11102 else
11103 error (("%s"), err_msg);
11104 }
11105
11106 return value_of_variable (syms[0].sym, syms[0].block);
11107 }
11108
11109 /* Value of integer variable named NAME in the current environment. If
11110 no such variable found, returns 0, and sets *FLAG to 0. If
11111 successful, sets *FLAG to 1. */
11112
11113 LONGEST
11114 get_int_var_value (char *name, int *flag)
11115 {
11116 struct value *var_val = get_var_value (name, 0);
11117
11118 if (var_val == 0)
11119 {
11120 if (flag != NULL)
11121 *flag = 0;
11122 return 0;
11123 }
11124 else
11125 {
11126 if (flag != NULL)
11127 *flag = 1;
11128 return value_as_long (var_val);
11129 }
11130 }
11131
11132
11133 /* Return a range type whose base type is that of the range type named
11134 NAME in the current environment, and whose bounds are calculated
11135 from NAME according to the GNAT range encoding conventions.
11136 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11137 corresponding range type from debug information; fall back to using it
11138 if symbol lookup fails. If a new type must be created, allocate it
11139 like ORIG_TYPE was. The bounds information, in general, is encoded
11140 in NAME, the base type given in the named range type. */
11141
11142 static struct type *
11143 to_fixed_range_type (struct type *raw_type, struct value *dval)
11144 {
11145 const char *name;
11146 struct type *base_type;
11147 char *subtype_info;
11148
11149 gdb_assert (raw_type != NULL);
11150 gdb_assert (TYPE_NAME (raw_type) != NULL);
11151
11152 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11153 base_type = TYPE_TARGET_TYPE (raw_type);
11154 else
11155 base_type = raw_type;
11156
11157 name = TYPE_NAME (raw_type);
11158 subtype_info = strstr (name, "___XD");
11159 if (subtype_info == NULL)
11160 {
11161 LONGEST L = ada_discrete_type_low_bound (raw_type);
11162 LONGEST U = ada_discrete_type_high_bound (raw_type);
11163
11164 if (L < INT_MIN || U > INT_MAX)
11165 return raw_type;
11166 else
11167 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11168 L, U);
11169 }
11170 else
11171 {
11172 static char *name_buf = NULL;
11173 static size_t name_len = 0;
11174 int prefix_len = subtype_info - name;
11175 LONGEST L, U;
11176 struct type *type;
11177 char *bounds_str;
11178 int n;
11179
11180 GROW_VECT (name_buf, name_len, prefix_len + 5);
11181 strncpy (name_buf, name, prefix_len);
11182 name_buf[prefix_len] = '\0';
11183
11184 subtype_info += 5;
11185 bounds_str = strchr (subtype_info, '_');
11186 n = 1;
11187
11188 if (*subtype_info == 'L')
11189 {
11190 if (!ada_scan_number (bounds_str, n, &L, &n)
11191 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11192 return raw_type;
11193 if (bounds_str[n] == '_')
11194 n += 2;
11195 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11196 n += 1;
11197 subtype_info += 1;
11198 }
11199 else
11200 {
11201 int ok;
11202
11203 strcpy (name_buf + prefix_len, "___L");
11204 L = get_int_var_value (name_buf, &ok);
11205 if (!ok)
11206 {
11207 lim_warning (_("Unknown lower bound, using 1."));
11208 L = 1;
11209 }
11210 }
11211
11212 if (*subtype_info == 'U')
11213 {
11214 if (!ada_scan_number (bounds_str, n, &U, &n)
11215 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11216 return raw_type;
11217 }
11218 else
11219 {
11220 int ok;
11221
11222 strcpy (name_buf + prefix_len, "___U");
11223 U = get_int_var_value (name_buf, &ok);
11224 if (!ok)
11225 {
11226 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11227 U = L;
11228 }
11229 }
11230
11231 type = create_static_range_type (alloc_type_copy (raw_type),
11232 base_type, L, U);
11233 TYPE_NAME (type) = name;
11234 return type;
11235 }
11236 }
11237
11238 /* True iff NAME is the name of a range type. */
11239
11240 int
11241 ada_is_range_type_name (const char *name)
11242 {
11243 return (name != NULL && strstr (name, "___XD"));
11244 }
11245 \f
11246
11247 /* Modular types */
11248
11249 /* True iff TYPE is an Ada modular type. */
11250
11251 int
11252 ada_is_modular_type (struct type *type)
11253 {
11254 struct type *subranged_type = get_base_type (type);
11255
11256 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11257 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11258 && TYPE_UNSIGNED (subranged_type));
11259 }
11260
11261 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11262
11263 ULONGEST
11264 ada_modulus (struct type *type)
11265 {
11266 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11267 }
11268 \f
11269
11270 /* Ada exception catchpoint support:
11271 ---------------------------------
11272
11273 We support 3 kinds of exception catchpoints:
11274 . catchpoints on Ada exceptions
11275 . catchpoints on unhandled Ada exceptions
11276 . catchpoints on failed assertions
11277
11278 Exceptions raised during failed assertions, or unhandled exceptions
11279 could perfectly be caught with the general catchpoint on Ada exceptions.
11280 However, we can easily differentiate these two special cases, and having
11281 the option to distinguish these two cases from the rest can be useful
11282 to zero-in on certain situations.
11283
11284 Exception catchpoints are a specialized form of breakpoint,
11285 since they rely on inserting breakpoints inside known routines
11286 of the GNAT runtime. The implementation therefore uses a standard
11287 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11288 of breakpoint_ops.
11289
11290 Support in the runtime for exception catchpoints have been changed
11291 a few times already, and these changes affect the implementation
11292 of these catchpoints. In order to be able to support several
11293 variants of the runtime, we use a sniffer that will determine
11294 the runtime variant used by the program being debugged. */
11295
11296 /* Ada's standard exceptions.
11297
11298 The Ada 83 standard also defined Numeric_Error. But there so many
11299 situations where it was unclear from the Ada 83 Reference Manual
11300 (RM) whether Constraint_Error or Numeric_Error should be raised,
11301 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11302 Interpretation saying that anytime the RM says that Numeric_Error
11303 should be raised, the implementation may raise Constraint_Error.
11304 Ada 95 went one step further and pretty much removed Numeric_Error
11305 from the list of standard exceptions (it made it a renaming of
11306 Constraint_Error, to help preserve compatibility when compiling
11307 an Ada83 compiler). As such, we do not include Numeric_Error from
11308 this list of standard exceptions. */
11309
11310 static char *standard_exc[] = {
11311 "constraint_error",
11312 "program_error",
11313 "storage_error",
11314 "tasking_error"
11315 };
11316
11317 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11318
11319 /* A structure that describes how to support exception catchpoints
11320 for a given executable. */
11321
11322 struct exception_support_info
11323 {
11324 /* The name of the symbol to break on in order to insert
11325 a catchpoint on exceptions. */
11326 const char *catch_exception_sym;
11327
11328 /* The name of the symbol to break on in order to insert
11329 a catchpoint on unhandled exceptions. */
11330 const char *catch_exception_unhandled_sym;
11331
11332 /* The name of the symbol to break on in order to insert
11333 a catchpoint on failed assertions. */
11334 const char *catch_assert_sym;
11335
11336 /* Assuming that the inferior just triggered an unhandled exception
11337 catchpoint, this function is responsible for returning the address
11338 in inferior memory where the name of that exception is stored.
11339 Return zero if the address could not be computed. */
11340 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11341 };
11342
11343 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11344 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11345
11346 /* The following exception support info structure describes how to
11347 implement exception catchpoints with the latest version of the
11348 Ada runtime (as of 2007-03-06). */
11349
11350 static const struct exception_support_info default_exception_support_info =
11351 {
11352 "__gnat_debug_raise_exception", /* catch_exception_sym */
11353 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11354 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11355 ada_unhandled_exception_name_addr
11356 };
11357
11358 /* The following exception support info structure describes how to
11359 implement exception catchpoints with a slightly older version
11360 of the Ada runtime. */
11361
11362 static const struct exception_support_info exception_support_info_fallback =
11363 {
11364 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11365 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11366 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11367 ada_unhandled_exception_name_addr_from_raise
11368 };
11369
11370 /* Return nonzero if we can detect the exception support routines
11371 described in EINFO.
11372
11373 This function errors out if an abnormal situation is detected
11374 (for instance, if we find the exception support routines, but
11375 that support is found to be incomplete). */
11376
11377 static int
11378 ada_has_this_exception_support (const struct exception_support_info *einfo)
11379 {
11380 struct symbol *sym;
11381
11382 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11383 that should be compiled with debugging information. As a result, we
11384 expect to find that symbol in the symtabs. */
11385
11386 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11387 if (sym == NULL)
11388 {
11389 /* Perhaps we did not find our symbol because the Ada runtime was
11390 compiled without debugging info, or simply stripped of it.
11391 It happens on some GNU/Linux distributions for instance, where
11392 users have to install a separate debug package in order to get
11393 the runtime's debugging info. In that situation, let the user
11394 know why we cannot insert an Ada exception catchpoint.
11395
11396 Note: Just for the purpose of inserting our Ada exception
11397 catchpoint, we could rely purely on the associated minimal symbol.
11398 But we would be operating in degraded mode anyway, since we are
11399 still lacking the debugging info needed later on to extract
11400 the name of the exception being raised (this name is printed in
11401 the catchpoint message, and is also used when trying to catch
11402 a specific exception). We do not handle this case for now. */
11403 struct bound_minimal_symbol msym
11404 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11405
11406 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11407 error (_("Your Ada runtime appears to be missing some debugging "
11408 "information.\nCannot insert Ada exception catchpoint "
11409 "in this configuration."));
11410
11411 return 0;
11412 }
11413
11414 /* Make sure that the symbol we found corresponds to a function. */
11415
11416 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11417 error (_("Symbol \"%s\" is not a function (class = %d)"),
11418 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11419
11420 return 1;
11421 }
11422
11423 /* Inspect the Ada runtime and determine which exception info structure
11424 should be used to provide support for exception catchpoints.
11425
11426 This function will always set the per-inferior exception_info,
11427 or raise an error. */
11428
11429 static void
11430 ada_exception_support_info_sniffer (void)
11431 {
11432 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11433
11434 /* If the exception info is already known, then no need to recompute it. */
11435 if (data->exception_info != NULL)
11436 return;
11437
11438 /* Check the latest (default) exception support info. */
11439 if (ada_has_this_exception_support (&default_exception_support_info))
11440 {
11441 data->exception_info = &default_exception_support_info;
11442 return;
11443 }
11444
11445 /* Try our fallback exception suport info. */
11446 if (ada_has_this_exception_support (&exception_support_info_fallback))
11447 {
11448 data->exception_info = &exception_support_info_fallback;
11449 return;
11450 }
11451
11452 /* Sometimes, it is normal for us to not be able to find the routine
11453 we are looking for. This happens when the program is linked with
11454 the shared version of the GNAT runtime, and the program has not been
11455 started yet. Inform the user of these two possible causes if
11456 applicable. */
11457
11458 if (ada_update_initial_language (language_unknown) != language_ada)
11459 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11460
11461 /* If the symbol does not exist, then check that the program is
11462 already started, to make sure that shared libraries have been
11463 loaded. If it is not started, this may mean that the symbol is
11464 in a shared library. */
11465
11466 if (ptid_get_pid (inferior_ptid) == 0)
11467 error (_("Unable to insert catchpoint. Try to start the program first."));
11468
11469 /* At this point, we know that we are debugging an Ada program and
11470 that the inferior has been started, but we still are not able to
11471 find the run-time symbols. That can mean that we are in
11472 configurable run time mode, or that a-except as been optimized
11473 out by the linker... In any case, at this point it is not worth
11474 supporting this feature. */
11475
11476 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11477 }
11478
11479 /* True iff FRAME is very likely to be that of a function that is
11480 part of the runtime system. This is all very heuristic, but is
11481 intended to be used as advice as to what frames are uninteresting
11482 to most users. */
11483
11484 static int
11485 is_known_support_routine (struct frame_info *frame)
11486 {
11487 struct symtab_and_line sal;
11488 char *func_name;
11489 enum language func_lang;
11490 int i;
11491 const char *fullname;
11492
11493 /* If this code does not have any debugging information (no symtab),
11494 This cannot be any user code. */
11495
11496 find_frame_sal (frame, &sal);
11497 if (sal.symtab == NULL)
11498 return 1;
11499
11500 /* If there is a symtab, but the associated source file cannot be
11501 located, then assume this is not user code: Selecting a frame
11502 for which we cannot display the code would not be very helpful
11503 for the user. This should also take care of case such as VxWorks
11504 where the kernel has some debugging info provided for a few units. */
11505
11506 fullname = symtab_to_fullname (sal.symtab);
11507 if (access (fullname, R_OK) != 0)
11508 return 1;
11509
11510 /* Check the unit filename againt the Ada runtime file naming.
11511 We also check the name of the objfile against the name of some
11512 known system libraries that sometimes come with debugging info
11513 too. */
11514
11515 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11516 {
11517 re_comp (known_runtime_file_name_patterns[i]);
11518 if (re_exec (lbasename (sal.symtab->filename)))
11519 return 1;
11520 if (sal.symtab->objfile != NULL
11521 && re_exec (objfile_name (sal.symtab->objfile)))
11522 return 1;
11523 }
11524
11525 /* Check whether the function is a GNAT-generated entity. */
11526
11527 find_frame_funname (frame, &func_name, &func_lang, NULL);
11528 if (func_name == NULL)
11529 return 1;
11530
11531 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11532 {
11533 re_comp (known_auxiliary_function_name_patterns[i]);
11534 if (re_exec (func_name))
11535 {
11536 xfree (func_name);
11537 return 1;
11538 }
11539 }
11540
11541 xfree (func_name);
11542 return 0;
11543 }
11544
11545 /* Find the first frame that contains debugging information and that is not
11546 part of the Ada run-time, starting from FI and moving upward. */
11547
11548 void
11549 ada_find_printable_frame (struct frame_info *fi)
11550 {
11551 for (; fi != NULL; fi = get_prev_frame (fi))
11552 {
11553 if (!is_known_support_routine (fi))
11554 {
11555 select_frame (fi);
11556 break;
11557 }
11558 }
11559
11560 }
11561
11562 /* Assuming that the inferior just triggered an unhandled exception
11563 catchpoint, return the address in inferior memory where the name
11564 of the exception is stored.
11565
11566 Return zero if the address could not be computed. */
11567
11568 static CORE_ADDR
11569 ada_unhandled_exception_name_addr (void)
11570 {
11571 return parse_and_eval_address ("e.full_name");
11572 }
11573
11574 /* Same as ada_unhandled_exception_name_addr, except that this function
11575 should be used when the inferior uses an older version of the runtime,
11576 where the exception name needs to be extracted from a specific frame
11577 several frames up in the callstack. */
11578
11579 static CORE_ADDR
11580 ada_unhandled_exception_name_addr_from_raise (void)
11581 {
11582 int frame_level;
11583 struct frame_info *fi;
11584 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11585 struct cleanup *old_chain;
11586
11587 /* To determine the name of this exception, we need to select
11588 the frame corresponding to RAISE_SYM_NAME. This frame is
11589 at least 3 levels up, so we simply skip the first 3 frames
11590 without checking the name of their associated function. */
11591 fi = get_current_frame ();
11592 for (frame_level = 0; frame_level < 3; frame_level += 1)
11593 if (fi != NULL)
11594 fi = get_prev_frame (fi);
11595
11596 old_chain = make_cleanup (null_cleanup, NULL);
11597 while (fi != NULL)
11598 {
11599 char *func_name;
11600 enum language func_lang;
11601
11602 find_frame_funname (fi, &func_name, &func_lang, NULL);
11603 if (func_name != NULL)
11604 {
11605 make_cleanup (xfree, func_name);
11606
11607 if (strcmp (func_name,
11608 data->exception_info->catch_exception_sym) == 0)
11609 break; /* We found the frame we were looking for... */
11610 fi = get_prev_frame (fi);
11611 }
11612 }
11613 do_cleanups (old_chain);
11614
11615 if (fi == NULL)
11616 return 0;
11617
11618 select_frame (fi);
11619 return parse_and_eval_address ("id.full_name");
11620 }
11621
11622 /* Assuming the inferior just triggered an Ada exception catchpoint
11623 (of any type), return the address in inferior memory where the name
11624 of the exception is stored, if applicable.
11625
11626 Return zero if the address could not be computed, or if not relevant. */
11627
11628 static CORE_ADDR
11629 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11630 struct breakpoint *b)
11631 {
11632 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11633
11634 switch (ex)
11635 {
11636 case ada_catch_exception:
11637 return (parse_and_eval_address ("e.full_name"));
11638 break;
11639
11640 case ada_catch_exception_unhandled:
11641 return data->exception_info->unhandled_exception_name_addr ();
11642 break;
11643
11644 case ada_catch_assert:
11645 return 0; /* Exception name is not relevant in this case. */
11646 break;
11647
11648 default:
11649 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11650 break;
11651 }
11652
11653 return 0; /* Should never be reached. */
11654 }
11655
11656 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11657 any error that ada_exception_name_addr_1 might cause to be thrown.
11658 When an error is intercepted, a warning with the error message is printed,
11659 and zero is returned. */
11660
11661 static CORE_ADDR
11662 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11663 struct breakpoint *b)
11664 {
11665 volatile struct gdb_exception e;
11666 CORE_ADDR result = 0;
11667
11668 TRY_CATCH (e, RETURN_MASK_ERROR)
11669 {
11670 result = ada_exception_name_addr_1 (ex, b);
11671 }
11672
11673 if (e.reason < 0)
11674 {
11675 warning (_("failed to get exception name: %s"), e.message);
11676 return 0;
11677 }
11678
11679 return result;
11680 }
11681
11682 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11683
11684 /* Ada catchpoints.
11685
11686 In the case of catchpoints on Ada exceptions, the catchpoint will
11687 stop the target on every exception the program throws. When a user
11688 specifies the name of a specific exception, we translate this
11689 request into a condition expression (in text form), and then parse
11690 it into an expression stored in each of the catchpoint's locations.
11691 We then use this condition to check whether the exception that was
11692 raised is the one the user is interested in. If not, then the
11693 target is resumed again. We store the name of the requested
11694 exception, in order to be able to re-set the condition expression
11695 when symbols change. */
11696
11697 /* An instance of this type is used to represent an Ada catchpoint
11698 breakpoint location. It includes a "struct bp_location" as a kind
11699 of base class; users downcast to "struct bp_location *" when
11700 needed. */
11701
11702 struct ada_catchpoint_location
11703 {
11704 /* The base class. */
11705 struct bp_location base;
11706
11707 /* The condition that checks whether the exception that was raised
11708 is the specific exception the user specified on catchpoint
11709 creation. */
11710 struct expression *excep_cond_expr;
11711 };
11712
11713 /* Implement the DTOR method in the bp_location_ops structure for all
11714 Ada exception catchpoint kinds. */
11715
11716 static void
11717 ada_catchpoint_location_dtor (struct bp_location *bl)
11718 {
11719 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11720
11721 xfree (al->excep_cond_expr);
11722 }
11723
11724 /* The vtable to be used in Ada catchpoint locations. */
11725
11726 static const struct bp_location_ops ada_catchpoint_location_ops =
11727 {
11728 ada_catchpoint_location_dtor
11729 };
11730
11731 /* An instance of this type is used to represent an Ada catchpoint.
11732 It includes a "struct breakpoint" as a kind of base class; users
11733 downcast to "struct breakpoint *" when needed. */
11734
11735 struct ada_catchpoint
11736 {
11737 /* The base class. */
11738 struct breakpoint base;
11739
11740 /* The name of the specific exception the user specified. */
11741 char *excep_string;
11742 };
11743
11744 /* Parse the exception condition string in the context of each of the
11745 catchpoint's locations, and store them for later evaluation. */
11746
11747 static void
11748 create_excep_cond_exprs (struct ada_catchpoint *c)
11749 {
11750 struct cleanup *old_chain;
11751 struct bp_location *bl;
11752 char *cond_string;
11753
11754 /* Nothing to do if there's no specific exception to catch. */
11755 if (c->excep_string == NULL)
11756 return;
11757
11758 /* Same if there are no locations... */
11759 if (c->base.loc == NULL)
11760 return;
11761
11762 /* Compute the condition expression in text form, from the specific
11763 expection we want to catch. */
11764 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11765 old_chain = make_cleanup (xfree, cond_string);
11766
11767 /* Iterate over all the catchpoint's locations, and parse an
11768 expression for each. */
11769 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11770 {
11771 struct ada_catchpoint_location *ada_loc
11772 = (struct ada_catchpoint_location *) bl;
11773 struct expression *exp = NULL;
11774
11775 if (!bl->shlib_disabled)
11776 {
11777 volatile struct gdb_exception e;
11778 const char *s;
11779
11780 s = cond_string;
11781 TRY_CATCH (e, RETURN_MASK_ERROR)
11782 {
11783 exp = parse_exp_1 (&s, bl->address,
11784 block_for_pc (bl->address), 0);
11785 }
11786 if (e.reason < 0)
11787 {
11788 warning (_("failed to reevaluate internal exception condition "
11789 "for catchpoint %d: %s"),
11790 c->base.number, e.message);
11791 /* There is a bug in GCC on sparc-solaris when building with
11792 optimization which causes EXP to change unexpectedly
11793 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11794 The problem should be fixed starting with GCC 4.9.
11795 In the meantime, work around it by forcing EXP back
11796 to NULL. */
11797 exp = NULL;
11798 }
11799 }
11800
11801 ada_loc->excep_cond_expr = exp;
11802 }
11803
11804 do_cleanups (old_chain);
11805 }
11806
11807 /* Implement the DTOR method in the breakpoint_ops structure for all
11808 exception catchpoint kinds. */
11809
11810 static void
11811 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11812 {
11813 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11814
11815 xfree (c->excep_string);
11816
11817 bkpt_breakpoint_ops.dtor (b);
11818 }
11819
11820 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11821 structure for all exception catchpoint kinds. */
11822
11823 static struct bp_location *
11824 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
11825 struct breakpoint *self)
11826 {
11827 struct ada_catchpoint_location *loc;
11828
11829 loc = XNEW (struct ada_catchpoint_location);
11830 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11831 loc->excep_cond_expr = NULL;
11832 return &loc->base;
11833 }
11834
11835 /* Implement the RE_SET method in the breakpoint_ops structure for all
11836 exception catchpoint kinds. */
11837
11838 static void
11839 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11840 {
11841 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11842
11843 /* Call the base class's method. This updates the catchpoint's
11844 locations. */
11845 bkpt_breakpoint_ops.re_set (b);
11846
11847 /* Reparse the exception conditional expressions. One for each
11848 location. */
11849 create_excep_cond_exprs (c);
11850 }
11851
11852 /* Returns true if we should stop for this breakpoint hit. If the
11853 user specified a specific exception, we only want to cause a stop
11854 if the program thrown that exception. */
11855
11856 static int
11857 should_stop_exception (const struct bp_location *bl)
11858 {
11859 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11860 const struct ada_catchpoint_location *ada_loc
11861 = (const struct ada_catchpoint_location *) bl;
11862 volatile struct gdb_exception ex;
11863 int stop;
11864
11865 /* With no specific exception, should always stop. */
11866 if (c->excep_string == NULL)
11867 return 1;
11868
11869 if (ada_loc->excep_cond_expr == NULL)
11870 {
11871 /* We will have a NULL expression if back when we were creating
11872 the expressions, this location's had failed to parse. */
11873 return 1;
11874 }
11875
11876 stop = 1;
11877 TRY_CATCH (ex, RETURN_MASK_ALL)
11878 {
11879 struct value *mark;
11880
11881 mark = value_mark ();
11882 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11883 value_free_to_mark (mark);
11884 }
11885 if (ex.reason < 0)
11886 exception_fprintf (gdb_stderr, ex,
11887 _("Error in testing exception condition:\n"));
11888 return stop;
11889 }
11890
11891 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11892 for all exception catchpoint kinds. */
11893
11894 static void
11895 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11896 {
11897 bs->stop = should_stop_exception (bs->bp_location_at);
11898 }
11899
11900 /* Implement the PRINT_IT method in the breakpoint_ops structure
11901 for all exception catchpoint kinds. */
11902
11903 static enum print_stop_action
11904 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11905 {
11906 struct ui_out *uiout = current_uiout;
11907 struct breakpoint *b = bs->breakpoint_at;
11908
11909 annotate_catchpoint (b->number);
11910
11911 if (ui_out_is_mi_like_p (uiout))
11912 {
11913 ui_out_field_string (uiout, "reason",
11914 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11915 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11916 }
11917
11918 ui_out_text (uiout,
11919 b->disposition == disp_del ? "\nTemporary catchpoint "
11920 : "\nCatchpoint ");
11921 ui_out_field_int (uiout, "bkptno", b->number);
11922 ui_out_text (uiout, ", ");
11923
11924 switch (ex)
11925 {
11926 case ada_catch_exception:
11927 case ada_catch_exception_unhandled:
11928 {
11929 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11930 char exception_name[256];
11931
11932 if (addr != 0)
11933 {
11934 read_memory (addr, (gdb_byte *) exception_name,
11935 sizeof (exception_name) - 1);
11936 exception_name [sizeof (exception_name) - 1] = '\0';
11937 }
11938 else
11939 {
11940 /* For some reason, we were unable to read the exception
11941 name. This could happen if the Runtime was compiled
11942 without debugging info, for instance. In that case,
11943 just replace the exception name by the generic string
11944 "exception" - it will read as "an exception" in the
11945 notification we are about to print. */
11946 memcpy (exception_name, "exception", sizeof ("exception"));
11947 }
11948 /* In the case of unhandled exception breakpoints, we print
11949 the exception name as "unhandled EXCEPTION_NAME", to make
11950 it clearer to the user which kind of catchpoint just got
11951 hit. We used ui_out_text to make sure that this extra
11952 info does not pollute the exception name in the MI case. */
11953 if (ex == ada_catch_exception_unhandled)
11954 ui_out_text (uiout, "unhandled ");
11955 ui_out_field_string (uiout, "exception-name", exception_name);
11956 }
11957 break;
11958 case ada_catch_assert:
11959 /* In this case, the name of the exception is not really
11960 important. Just print "failed assertion" to make it clearer
11961 that his program just hit an assertion-failure catchpoint.
11962 We used ui_out_text because this info does not belong in
11963 the MI output. */
11964 ui_out_text (uiout, "failed assertion");
11965 break;
11966 }
11967 ui_out_text (uiout, " at ");
11968 ada_find_printable_frame (get_current_frame ());
11969
11970 return PRINT_SRC_AND_LOC;
11971 }
11972
11973 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11974 for all exception catchpoint kinds. */
11975
11976 static void
11977 print_one_exception (enum ada_exception_catchpoint_kind ex,
11978 struct breakpoint *b, struct bp_location **last_loc)
11979 {
11980 struct ui_out *uiout = current_uiout;
11981 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11982 struct value_print_options opts;
11983
11984 get_user_print_options (&opts);
11985 if (opts.addressprint)
11986 {
11987 annotate_field (4);
11988 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11989 }
11990
11991 annotate_field (5);
11992 *last_loc = b->loc;
11993 switch (ex)
11994 {
11995 case ada_catch_exception:
11996 if (c->excep_string != NULL)
11997 {
11998 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11999
12000 ui_out_field_string (uiout, "what", msg);
12001 xfree (msg);
12002 }
12003 else
12004 ui_out_field_string (uiout, "what", "all Ada exceptions");
12005
12006 break;
12007
12008 case ada_catch_exception_unhandled:
12009 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12010 break;
12011
12012 case ada_catch_assert:
12013 ui_out_field_string (uiout, "what", "failed Ada assertions");
12014 break;
12015
12016 default:
12017 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12018 break;
12019 }
12020 }
12021
12022 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12023 for all exception catchpoint kinds. */
12024
12025 static void
12026 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12027 struct breakpoint *b)
12028 {
12029 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12030 struct ui_out *uiout = current_uiout;
12031
12032 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12033 : _("Catchpoint "));
12034 ui_out_field_int (uiout, "bkptno", b->number);
12035 ui_out_text (uiout, ": ");
12036
12037 switch (ex)
12038 {
12039 case ada_catch_exception:
12040 if (c->excep_string != NULL)
12041 {
12042 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12043 struct cleanup *old_chain = make_cleanup (xfree, info);
12044
12045 ui_out_text (uiout, info);
12046 do_cleanups (old_chain);
12047 }
12048 else
12049 ui_out_text (uiout, _("all Ada exceptions"));
12050 break;
12051
12052 case ada_catch_exception_unhandled:
12053 ui_out_text (uiout, _("unhandled Ada exceptions"));
12054 break;
12055
12056 case ada_catch_assert:
12057 ui_out_text (uiout, _("failed Ada assertions"));
12058 break;
12059
12060 default:
12061 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12062 break;
12063 }
12064 }
12065
12066 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12067 for all exception catchpoint kinds. */
12068
12069 static void
12070 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12071 struct breakpoint *b, struct ui_file *fp)
12072 {
12073 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12074
12075 switch (ex)
12076 {
12077 case ada_catch_exception:
12078 fprintf_filtered (fp, "catch exception");
12079 if (c->excep_string != NULL)
12080 fprintf_filtered (fp, " %s", c->excep_string);
12081 break;
12082
12083 case ada_catch_exception_unhandled:
12084 fprintf_filtered (fp, "catch exception unhandled");
12085 break;
12086
12087 case ada_catch_assert:
12088 fprintf_filtered (fp, "catch assert");
12089 break;
12090
12091 default:
12092 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12093 }
12094 print_recreate_thread (b, fp);
12095 }
12096
12097 /* Virtual table for "catch exception" breakpoints. */
12098
12099 static void
12100 dtor_catch_exception (struct breakpoint *b)
12101 {
12102 dtor_exception (ada_catch_exception, b);
12103 }
12104
12105 static struct bp_location *
12106 allocate_location_catch_exception (struct breakpoint *self)
12107 {
12108 return allocate_location_exception (ada_catch_exception, self);
12109 }
12110
12111 static void
12112 re_set_catch_exception (struct breakpoint *b)
12113 {
12114 re_set_exception (ada_catch_exception, b);
12115 }
12116
12117 static void
12118 check_status_catch_exception (bpstat bs)
12119 {
12120 check_status_exception (ada_catch_exception, bs);
12121 }
12122
12123 static enum print_stop_action
12124 print_it_catch_exception (bpstat bs)
12125 {
12126 return print_it_exception (ada_catch_exception, bs);
12127 }
12128
12129 static void
12130 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12131 {
12132 print_one_exception (ada_catch_exception, b, last_loc);
12133 }
12134
12135 static void
12136 print_mention_catch_exception (struct breakpoint *b)
12137 {
12138 print_mention_exception (ada_catch_exception, b);
12139 }
12140
12141 static void
12142 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12143 {
12144 print_recreate_exception (ada_catch_exception, b, fp);
12145 }
12146
12147 static struct breakpoint_ops catch_exception_breakpoint_ops;
12148
12149 /* Virtual table for "catch exception unhandled" breakpoints. */
12150
12151 static void
12152 dtor_catch_exception_unhandled (struct breakpoint *b)
12153 {
12154 dtor_exception (ada_catch_exception_unhandled, b);
12155 }
12156
12157 static struct bp_location *
12158 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12159 {
12160 return allocate_location_exception (ada_catch_exception_unhandled, self);
12161 }
12162
12163 static void
12164 re_set_catch_exception_unhandled (struct breakpoint *b)
12165 {
12166 re_set_exception (ada_catch_exception_unhandled, b);
12167 }
12168
12169 static void
12170 check_status_catch_exception_unhandled (bpstat bs)
12171 {
12172 check_status_exception (ada_catch_exception_unhandled, bs);
12173 }
12174
12175 static enum print_stop_action
12176 print_it_catch_exception_unhandled (bpstat bs)
12177 {
12178 return print_it_exception (ada_catch_exception_unhandled, bs);
12179 }
12180
12181 static void
12182 print_one_catch_exception_unhandled (struct breakpoint *b,
12183 struct bp_location **last_loc)
12184 {
12185 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12186 }
12187
12188 static void
12189 print_mention_catch_exception_unhandled (struct breakpoint *b)
12190 {
12191 print_mention_exception (ada_catch_exception_unhandled, b);
12192 }
12193
12194 static void
12195 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12196 struct ui_file *fp)
12197 {
12198 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12199 }
12200
12201 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12202
12203 /* Virtual table for "catch assert" breakpoints. */
12204
12205 static void
12206 dtor_catch_assert (struct breakpoint *b)
12207 {
12208 dtor_exception (ada_catch_assert, b);
12209 }
12210
12211 static struct bp_location *
12212 allocate_location_catch_assert (struct breakpoint *self)
12213 {
12214 return allocate_location_exception (ada_catch_assert, self);
12215 }
12216
12217 static void
12218 re_set_catch_assert (struct breakpoint *b)
12219 {
12220 re_set_exception (ada_catch_assert, b);
12221 }
12222
12223 static void
12224 check_status_catch_assert (bpstat bs)
12225 {
12226 check_status_exception (ada_catch_assert, bs);
12227 }
12228
12229 static enum print_stop_action
12230 print_it_catch_assert (bpstat bs)
12231 {
12232 return print_it_exception (ada_catch_assert, bs);
12233 }
12234
12235 static void
12236 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12237 {
12238 print_one_exception (ada_catch_assert, b, last_loc);
12239 }
12240
12241 static void
12242 print_mention_catch_assert (struct breakpoint *b)
12243 {
12244 print_mention_exception (ada_catch_assert, b);
12245 }
12246
12247 static void
12248 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12249 {
12250 print_recreate_exception (ada_catch_assert, b, fp);
12251 }
12252
12253 static struct breakpoint_ops catch_assert_breakpoint_ops;
12254
12255 /* Return a newly allocated copy of the first space-separated token
12256 in ARGSP, and then adjust ARGSP to point immediately after that
12257 token.
12258
12259 Return NULL if ARGPS does not contain any more tokens. */
12260
12261 static char *
12262 ada_get_next_arg (char **argsp)
12263 {
12264 char *args = *argsp;
12265 char *end;
12266 char *result;
12267
12268 args = skip_spaces (args);
12269 if (args[0] == '\0')
12270 return NULL; /* No more arguments. */
12271
12272 /* Find the end of the current argument. */
12273
12274 end = skip_to_space (args);
12275
12276 /* Adjust ARGSP to point to the start of the next argument. */
12277
12278 *argsp = end;
12279
12280 /* Make a copy of the current argument and return it. */
12281
12282 result = xmalloc (end - args + 1);
12283 strncpy (result, args, end - args);
12284 result[end - args] = '\0';
12285
12286 return result;
12287 }
12288
12289 /* Split the arguments specified in a "catch exception" command.
12290 Set EX to the appropriate catchpoint type.
12291 Set EXCEP_STRING to the name of the specific exception if
12292 specified by the user.
12293 If a condition is found at the end of the arguments, the condition
12294 expression is stored in COND_STRING (memory must be deallocated
12295 after use). Otherwise COND_STRING is set to NULL. */
12296
12297 static void
12298 catch_ada_exception_command_split (char *args,
12299 enum ada_exception_catchpoint_kind *ex,
12300 char **excep_string,
12301 char **cond_string)
12302 {
12303 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12304 char *exception_name;
12305 char *cond = NULL;
12306
12307 exception_name = ada_get_next_arg (&args);
12308 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12309 {
12310 /* This is not an exception name; this is the start of a condition
12311 expression for a catchpoint on all exceptions. So, "un-get"
12312 this token, and set exception_name to NULL. */
12313 xfree (exception_name);
12314 exception_name = NULL;
12315 args -= 2;
12316 }
12317 make_cleanup (xfree, exception_name);
12318
12319 /* Check to see if we have a condition. */
12320
12321 args = skip_spaces (args);
12322 if (strncmp (args, "if", 2) == 0
12323 && (isspace (args[2]) || args[2] == '\0'))
12324 {
12325 args += 2;
12326 args = skip_spaces (args);
12327
12328 if (args[0] == '\0')
12329 error (_("Condition missing after `if' keyword"));
12330 cond = xstrdup (args);
12331 make_cleanup (xfree, cond);
12332
12333 args += strlen (args);
12334 }
12335
12336 /* Check that we do not have any more arguments. Anything else
12337 is unexpected. */
12338
12339 if (args[0] != '\0')
12340 error (_("Junk at end of expression"));
12341
12342 discard_cleanups (old_chain);
12343
12344 if (exception_name == NULL)
12345 {
12346 /* Catch all exceptions. */
12347 *ex = ada_catch_exception;
12348 *excep_string = NULL;
12349 }
12350 else if (strcmp (exception_name, "unhandled") == 0)
12351 {
12352 /* Catch unhandled exceptions. */
12353 *ex = ada_catch_exception_unhandled;
12354 *excep_string = NULL;
12355 }
12356 else
12357 {
12358 /* Catch a specific exception. */
12359 *ex = ada_catch_exception;
12360 *excep_string = exception_name;
12361 }
12362 *cond_string = cond;
12363 }
12364
12365 /* Return the name of the symbol on which we should break in order to
12366 implement a catchpoint of the EX kind. */
12367
12368 static const char *
12369 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12370 {
12371 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12372
12373 gdb_assert (data->exception_info != NULL);
12374
12375 switch (ex)
12376 {
12377 case ada_catch_exception:
12378 return (data->exception_info->catch_exception_sym);
12379 break;
12380 case ada_catch_exception_unhandled:
12381 return (data->exception_info->catch_exception_unhandled_sym);
12382 break;
12383 case ada_catch_assert:
12384 return (data->exception_info->catch_assert_sym);
12385 break;
12386 default:
12387 internal_error (__FILE__, __LINE__,
12388 _("unexpected catchpoint kind (%d)"), ex);
12389 }
12390 }
12391
12392 /* Return the breakpoint ops "virtual table" used for catchpoints
12393 of the EX kind. */
12394
12395 static const struct breakpoint_ops *
12396 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12397 {
12398 switch (ex)
12399 {
12400 case ada_catch_exception:
12401 return (&catch_exception_breakpoint_ops);
12402 break;
12403 case ada_catch_exception_unhandled:
12404 return (&catch_exception_unhandled_breakpoint_ops);
12405 break;
12406 case ada_catch_assert:
12407 return (&catch_assert_breakpoint_ops);
12408 break;
12409 default:
12410 internal_error (__FILE__, __LINE__,
12411 _("unexpected catchpoint kind (%d)"), ex);
12412 }
12413 }
12414
12415 /* Return the condition that will be used to match the current exception
12416 being raised with the exception that the user wants to catch. This
12417 assumes that this condition is used when the inferior just triggered
12418 an exception catchpoint.
12419
12420 The string returned is a newly allocated string that needs to be
12421 deallocated later. */
12422
12423 static char *
12424 ada_exception_catchpoint_cond_string (const char *excep_string)
12425 {
12426 int i;
12427
12428 /* The standard exceptions are a special case. They are defined in
12429 runtime units that have been compiled without debugging info; if
12430 EXCEP_STRING is the not-fully-qualified name of a standard
12431 exception (e.g. "constraint_error") then, during the evaluation
12432 of the condition expression, the symbol lookup on this name would
12433 *not* return this standard exception. The catchpoint condition
12434 may then be set only on user-defined exceptions which have the
12435 same not-fully-qualified name (e.g. my_package.constraint_error).
12436
12437 To avoid this unexcepted behavior, these standard exceptions are
12438 systematically prefixed by "standard". This means that "catch
12439 exception constraint_error" is rewritten into "catch exception
12440 standard.constraint_error".
12441
12442 If an exception named contraint_error is defined in another package of
12443 the inferior program, then the only way to specify this exception as a
12444 breakpoint condition is to use its fully-qualified named:
12445 e.g. my_package.constraint_error. */
12446
12447 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12448 {
12449 if (strcmp (standard_exc [i], excep_string) == 0)
12450 {
12451 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12452 excep_string);
12453 }
12454 }
12455 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12456 }
12457
12458 /* Return the symtab_and_line that should be used to insert an exception
12459 catchpoint of the TYPE kind.
12460
12461 EXCEP_STRING should contain the name of a specific exception that
12462 the catchpoint should catch, or NULL otherwise.
12463
12464 ADDR_STRING returns the name of the function where the real
12465 breakpoint that implements the catchpoints is set, depending on the
12466 type of catchpoint we need to create. */
12467
12468 static struct symtab_and_line
12469 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12470 char **addr_string, const struct breakpoint_ops **ops)
12471 {
12472 const char *sym_name;
12473 struct symbol *sym;
12474
12475 /* First, find out which exception support info to use. */
12476 ada_exception_support_info_sniffer ();
12477
12478 /* Then lookup the function on which we will break in order to catch
12479 the Ada exceptions requested by the user. */
12480 sym_name = ada_exception_sym_name (ex);
12481 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12482
12483 /* We can assume that SYM is not NULL at this stage. If the symbol
12484 did not exist, ada_exception_support_info_sniffer would have
12485 raised an exception.
12486
12487 Also, ada_exception_support_info_sniffer should have already
12488 verified that SYM is a function symbol. */
12489 gdb_assert (sym != NULL);
12490 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12491
12492 /* Set ADDR_STRING. */
12493 *addr_string = xstrdup (sym_name);
12494
12495 /* Set OPS. */
12496 *ops = ada_exception_breakpoint_ops (ex);
12497
12498 return find_function_start_sal (sym, 1);
12499 }
12500
12501 /* Create an Ada exception catchpoint.
12502
12503 EX_KIND is the kind of exception catchpoint to be created.
12504
12505 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12506 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12507 of the exception to which this catchpoint applies. When not NULL,
12508 the string must be allocated on the heap, and its deallocation
12509 is no longer the responsibility of the caller.
12510
12511 COND_STRING, if not NULL, is the catchpoint condition. This string
12512 must be allocated on the heap, and its deallocation is no longer
12513 the responsibility of the caller.
12514
12515 TEMPFLAG, if nonzero, means that the underlying breakpoint
12516 should be temporary.
12517
12518 FROM_TTY is the usual argument passed to all commands implementations. */
12519
12520 void
12521 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12522 enum ada_exception_catchpoint_kind ex_kind,
12523 char *excep_string,
12524 char *cond_string,
12525 int tempflag,
12526 int disabled,
12527 int from_tty)
12528 {
12529 struct ada_catchpoint *c;
12530 char *addr_string = NULL;
12531 const struct breakpoint_ops *ops = NULL;
12532 struct symtab_and_line sal
12533 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12534
12535 c = XNEW (struct ada_catchpoint);
12536 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12537 ops, tempflag, disabled, from_tty);
12538 c->excep_string = excep_string;
12539 create_excep_cond_exprs (c);
12540 if (cond_string != NULL)
12541 set_breakpoint_condition (&c->base, cond_string, from_tty);
12542 install_breakpoint (0, &c->base, 1);
12543 }
12544
12545 /* Implement the "catch exception" command. */
12546
12547 static void
12548 catch_ada_exception_command (char *arg, int from_tty,
12549 struct cmd_list_element *command)
12550 {
12551 struct gdbarch *gdbarch = get_current_arch ();
12552 int tempflag;
12553 enum ada_exception_catchpoint_kind ex_kind;
12554 char *excep_string = NULL;
12555 char *cond_string = NULL;
12556
12557 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12558
12559 if (!arg)
12560 arg = "";
12561 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12562 &cond_string);
12563 create_ada_exception_catchpoint (gdbarch, ex_kind,
12564 excep_string, cond_string,
12565 tempflag, 1 /* enabled */,
12566 from_tty);
12567 }
12568
12569 /* Split the arguments specified in a "catch assert" command.
12570
12571 ARGS contains the command's arguments (or the empty string if
12572 no arguments were passed).
12573
12574 If ARGS contains a condition, set COND_STRING to that condition
12575 (the memory needs to be deallocated after use). */
12576
12577 static void
12578 catch_ada_assert_command_split (char *args, char **cond_string)
12579 {
12580 args = skip_spaces (args);
12581
12582 /* Check whether a condition was provided. */
12583 if (strncmp (args, "if", 2) == 0
12584 && (isspace (args[2]) || args[2] == '\0'))
12585 {
12586 args += 2;
12587 args = skip_spaces (args);
12588 if (args[0] == '\0')
12589 error (_("condition missing after `if' keyword"));
12590 *cond_string = xstrdup (args);
12591 }
12592
12593 /* Otherwise, there should be no other argument at the end of
12594 the command. */
12595 else if (args[0] != '\0')
12596 error (_("Junk at end of arguments."));
12597 }
12598
12599 /* Implement the "catch assert" command. */
12600
12601 static void
12602 catch_assert_command (char *arg, int from_tty,
12603 struct cmd_list_element *command)
12604 {
12605 struct gdbarch *gdbarch = get_current_arch ();
12606 int tempflag;
12607 char *cond_string = NULL;
12608
12609 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12610
12611 if (!arg)
12612 arg = "";
12613 catch_ada_assert_command_split (arg, &cond_string);
12614 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12615 NULL, cond_string,
12616 tempflag, 1 /* enabled */,
12617 from_tty);
12618 }
12619
12620 /* Return non-zero if the symbol SYM is an Ada exception object. */
12621
12622 static int
12623 ada_is_exception_sym (struct symbol *sym)
12624 {
12625 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12626
12627 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12628 && SYMBOL_CLASS (sym) != LOC_BLOCK
12629 && SYMBOL_CLASS (sym) != LOC_CONST
12630 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12631 && type_name != NULL && strcmp (type_name, "exception") == 0);
12632 }
12633
12634 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12635 Ada exception object. This matches all exceptions except the ones
12636 defined by the Ada language. */
12637
12638 static int
12639 ada_is_non_standard_exception_sym (struct symbol *sym)
12640 {
12641 int i;
12642
12643 if (!ada_is_exception_sym (sym))
12644 return 0;
12645
12646 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12647 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12648 return 0; /* A standard exception. */
12649
12650 /* Numeric_Error is also a standard exception, so exclude it.
12651 See the STANDARD_EXC description for more details as to why
12652 this exception is not listed in that array. */
12653 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12654 return 0;
12655
12656 return 1;
12657 }
12658
12659 /* A helper function for qsort, comparing two struct ada_exc_info
12660 objects.
12661
12662 The comparison is determined first by exception name, and then
12663 by exception address. */
12664
12665 static int
12666 compare_ada_exception_info (const void *a, const void *b)
12667 {
12668 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12669 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12670 int result;
12671
12672 result = strcmp (exc_a->name, exc_b->name);
12673 if (result != 0)
12674 return result;
12675
12676 if (exc_a->addr < exc_b->addr)
12677 return -1;
12678 if (exc_a->addr > exc_b->addr)
12679 return 1;
12680
12681 return 0;
12682 }
12683
12684 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12685 routine, but keeping the first SKIP elements untouched.
12686
12687 All duplicates are also removed. */
12688
12689 static void
12690 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12691 int skip)
12692 {
12693 struct ada_exc_info *to_sort
12694 = VEC_address (ada_exc_info, *exceptions) + skip;
12695 int to_sort_len
12696 = VEC_length (ada_exc_info, *exceptions) - skip;
12697 int i, j;
12698
12699 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12700 compare_ada_exception_info);
12701
12702 for (i = 1, j = 1; i < to_sort_len; i++)
12703 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12704 to_sort[j++] = to_sort[i];
12705 to_sort_len = j;
12706 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12707 }
12708
12709 /* A function intended as the "name_matcher" callback in the struct
12710 quick_symbol_functions' expand_symtabs_matching method.
12711
12712 SEARCH_NAME is the symbol's search name.
12713
12714 If USER_DATA is not NULL, it is a pointer to a regext_t object
12715 used to match the symbol (by natural name). Otherwise, when USER_DATA
12716 is null, no filtering is performed, and all symbols are a positive
12717 match. */
12718
12719 static int
12720 ada_exc_search_name_matches (const char *search_name, void *user_data)
12721 {
12722 regex_t *preg = user_data;
12723
12724 if (preg == NULL)
12725 return 1;
12726
12727 /* In Ada, the symbol "search name" is a linkage name, whereas
12728 the regular expression used to do the matching refers to
12729 the natural name. So match against the decoded name. */
12730 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12731 }
12732
12733 /* Add all exceptions defined by the Ada standard whose name match
12734 a regular expression.
12735
12736 If PREG is not NULL, then this regexp_t object is used to
12737 perform the symbol name matching. Otherwise, no name-based
12738 filtering is performed.
12739
12740 EXCEPTIONS is a vector of exceptions to which matching exceptions
12741 gets pushed. */
12742
12743 static void
12744 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12745 {
12746 int i;
12747
12748 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12749 {
12750 if (preg == NULL
12751 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12752 {
12753 struct bound_minimal_symbol msymbol
12754 = ada_lookup_simple_minsym (standard_exc[i]);
12755
12756 if (msymbol.minsym != NULL)
12757 {
12758 struct ada_exc_info info
12759 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12760
12761 VEC_safe_push (ada_exc_info, *exceptions, &info);
12762 }
12763 }
12764 }
12765 }
12766
12767 /* Add all Ada exceptions defined locally and accessible from the given
12768 FRAME.
12769
12770 If PREG is not NULL, then this regexp_t object is used to
12771 perform the symbol name matching. Otherwise, no name-based
12772 filtering is performed.
12773
12774 EXCEPTIONS is a vector of exceptions to which matching exceptions
12775 gets pushed. */
12776
12777 static void
12778 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12779 VEC(ada_exc_info) **exceptions)
12780 {
12781 struct block *block = get_frame_block (frame, 0);
12782
12783 while (block != 0)
12784 {
12785 struct block_iterator iter;
12786 struct symbol *sym;
12787
12788 ALL_BLOCK_SYMBOLS (block, iter, sym)
12789 {
12790 switch (SYMBOL_CLASS (sym))
12791 {
12792 case LOC_TYPEDEF:
12793 case LOC_BLOCK:
12794 case LOC_CONST:
12795 break;
12796 default:
12797 if (ada_is_exception_sym (sym))
12798 {
12799 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12800 SYMBOL_VALUE_ADDRESS (sym)};
12801
12802 VEC_safe_push (ada_exc_info, *exceptions, &info);
12803 }
12804 }
12805 }
12806 if (BLOCK_FUNCTION (block) != NULL)
12807 break;
12808 block = BLOCK_SUPERBLOCK (block);
12809 }
12810 }
12811
12812 /* Add all exceptions defined globally whose name name match
12813 a regular expression, excluding standard exceptions.
12814
12815 The reason we exclude standard exceptions is that they need
12816 to be handled separately: Standard exceptions are defined inside
12817 a runtime unit which is normally not compiled with debugging info,
12818 and thus usually do not show up in our symbol search. However,
12819 if the unit was in fact built with debugging info, we need to
12820 exclude them because they would duplicate the entry we found
12821 during the special loop that specifically searches for those
12822 standard exceptions.
12823
12824 If PREG is not NULL, then this regexp_t object is used to
12825 perform the symbol name matching. Otherwise, no name-based
12826 filtering is performed.
12827
12828 EXCEPTIONS is a vector of exceptions to which matching exceptions
12829 gets pushed. */
12830
12831 static void
12832 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12833 {
12834 struct objfile *objfile;
12835 struct symtab *s;
12836
12837 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12838 VARIABLES_DOMAIN, preg);
12839
12840 ALL_PRIMARY_SYMTABS (objfile, s)
12841 {
12842 struct blockvector *bv = BLOCKVECTOR (s);
12843 int i;
12844
12845 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12846 {
12847 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12848 struct block_iterator iter;
12849 struct symbol *sym;
12850
12851 ALL_BLOCK_SYMBOLS (b, iter, sym)
12852 if (ada_is_non_standard_exception_sym (sym)
12853 && (preg == NULL
12854 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12855 0, NULL, 0) == 0))
12856 {
12857 struct ada_exc_info info
12858 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12859
12860 VEC_safe_push (ada_exc_info, *exceptions, &info);
12861 }
12862 }
12863 }
12864 }
12865
12866 /* Implements ada_exceptions_list with the regular expression passed
12867 as a regex_t, rather than a string.
12868
12869 If not NULL, PREG is used to filter out exceptions whose names
12870 do not match. Otherwise, all exceptions are listed. */
12871
12872 static VEC(ada_exc_info) *
12873 ada_exceptions_list_1 (regex_t *preg)
12874 {
12875 VEC(ada_exc_info) *result = NULL;
12876 struct cleanup *old_chain
12877 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12878 int prev_len;
12879
12880 /* First, list the known standard exceptions. These exceptions
12881 need to be handled separately, as they are usually defined in
12882 runtime units that have been compiled without debugging info. */
12883
12884 ada_add_standard_exceptions (preg, &result);
12885
12886 /* Next, find all exceptions whose scope is local and accessible
12887 from the currently selected frame. */
12888
12889 if (has_stack_frames ())
12890 {
12891 prev_len = VEC_length (ada_exc_info, result);
12892 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12893 &result);
12894 if (VEC_length (ada_exc_info, result) > prev_len)
12895 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12896 }
12897
12898 /* Add all exceptions whose scope is global. */
12899
12900 prev_len = VEC_length (ada_exc_info, result);
12901 ada_add_global_exceptions (preg, &result);
12902 if (VEC_length (ada_exc_info, result) > prev_len)
12903 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12904
12905 discard_cleanups (old_chain);
12906 return result;
12907 }
12908
12909 /* Return a vector of ada_exc_info.
12910
12911 If REGEXP is NULL, all exceptions are included in the result.
12912 Otherwise, it should contain a valid regular expression,
12913 and only the exceptions whose names match that regular expression
12914 are included in the result.
12915
12916 The exceptions are sorted in the following order:
12917 - Standard exceptions (defined by the Ada language), in
12918 alphabetical order;
12919 - Exceptions only visible from the current frame, in
12920 alphabetical order;
12921 - Exceptions whose scope is global, in alphabetical order. */
12922
12923 VEC(ada_exc_info) *
12924 ada_exceptions_list (const char *regexp)
12925 {
12926 VEC(ada_exc_info) *result = NULL;
12927 struct cleanup *old_chain = NULL;
12928 regex_t reg;
12929
12930 if (regexp != NULL)
12931 old_chain = compile_rx_or_error (&reg, regexp,
12932 _("invalid regular expression"));
12933
12934 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
12935
12936 if (old_chain != NULL)
12937 do_cleanups (old_chain);
12938 return result;
12939 }
12940
12941 /* Implement the "info exceptions" command. */
12942
12943 static void
12944 info_exceptions_command (char *regexp, int from_tty)
12945 {
12946 VEC(ada_exc_info) *exceptions;
12947 struct cleanup *cleanup;
12948 struct gdbarch *gdbarch = get_current_arch ();
12949 int ix;
12950 struct ada_exc_info *info;
12951
12952 exceptions = ada_exceptions_list (regexp);
12953 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12954
12955 if (regexp != NULL)
12956 printf_filtered
12957 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12958 else
12959 printf_filtered (_("All defined Ada exceptions:\n"));
12960
12961 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12962 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12963
12964 do_cleanups (cleanup);
12965 }
12966
12967 /* Operators */
12968 /* Information about operators given special treatment in functions
12969 below. */
12970 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12971
12972 #define ADA_OPERATORS \
12973 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12974 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12975 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12976 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12977 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12978 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12979 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12980 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12981 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12982 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12983 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12984 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12985 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12986 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12987 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12988 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12989 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12990 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12991 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12992
12993 static void
12994 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12995 int *argsp)
12996 {
12997 switch (exp->elts[pc - 1].opcode)
12998 {
12999 default:
13000 operator_length_standard (exp, pc, oplenp, argsp);
13001 break;
13002
13003 #define OP_DEFN(op, len, args, binop) \
13004 case op: *oplenp = len; *argsp = args; break;
13005 ADA_OPERATORS;
13006 #undef OP_DEFN
13007
13008 case OP_AGGREGATE:
13009 *oplenp = 3;
13010 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13011 break;
13012
13013 case OP_CHOICES:
13014 *oplenp = 3;
13015 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13016 break;
13017 }
13018 }
13019
13020 /* Implementation of the exp_descriptor method operator_check. */
13021
13022 static int
13023 ada_operator_check (struct expression *exp, int pos,
13024 int (*objfile_func) (struct objfile *objfile, void *data),
13025 void *data)
13026 {
13027 const union exp_element *const elts = exp->elts;
13028 struct type *type = NULL;
13029
13030 switch (elts[pos].opcode)
13031 {
13032 case UNOP_IN_RANGE:
13033 case UNOP_QUAL:
13034 type = elts[pos + 1].type;
13035 break;
13036
13037 default:
13038 return operator_check_standard (exp, pos, objfile_func, data);
13039 }
13040
13041 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13042
13043 if (type && TYPE_OBJFILE (type)
13044 && (*objfile_func) (TYPE_OBJFILE (type), data))
13045 return 1;
13046
13047 return 0;
13048 }
13049
13050 static char *
13051 ada_op_name (enum exp_opcode opcode)
13052 {
13053 switch (opcode)
13054 {
13055 default:
13056 return op_name_standard (opcode);
13057
13058 #define OP_DEFN(op, len, args, binop) case op: return #op;
13059 ADA_OPERATORS;
13060 #undef OP_DEFN
13061
13062 case OP_AGGREGATE:
13063 return "OP_AGGREGATE";
13064 case OP_CHOICES:
13065 return "OP_CHOICES";
13066 case OP_NAME:
13067 return "OP_NAME";
13068 }
13069 }
13070
13071 /* As for operator_length, but assumes PC is pointing at the first
13072 element of the operator, and gives meaningful results only for the
13073 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13074
13075 static void
13076 ada_forward_operator_length (struct expression *exp, int pc,
13077 int *oplenp, int *argsp)
13078 {
13079 switch (exp->elts[pc].opcode)
13080 {
13081 default:
13082 *oplenp = *argsp = 0;
13083 break;
13084
13085 #define OP_DEFN(op, len, args, binop) \
13086 case op: *oplenp = len; *argsp = args; break;
13087 ADA_OPERATORS;
13088 #undef OP_DEFN
13089
13090 case OP_AGGREGATE:
13091 *oplenp = 3;
13092 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13093 break;
13094
13095 case OP_CHOICES:
13096 *oplenp = 3;
13097 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13098 break;
13099
13100 case OP_STRING:
13101 case OP_NAME:
13102 {
13103 int len = longest_to_int (exp->elts[pc + 1].longconst);
13104
13105 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13106 *argsp = 0;
13107 break;
13108 }
13109 }
13110 }
13111
13112 static int
13113 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13114 {
13115 enum exp_opcode op = exp->elts[elt].opcode;
13116 int oplen, nargs;
13117 int pc = elt;
13118 int i;
13119
13120 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13121
13122 switch (op)
13123 {
13124 /* Ada attributes ('Foo). */
13125 case OP_ATR_FIRST:
13126 case OP_ATR_LAST:
13127 case OP_ATR_LENGTH:
13128 case OP_ATR_IMAGE:
13129 case OP_ATR_MAX:
13130 case OP_ATR_MIN:
13131 case OP_ATR_MODULUS:
13132 case OP_ATR_POS:
13133 case OP_ATR_SIZE:
13134 case OP_ATR_TAG:
13135 case OP_ATR_VAL:
13136 break;
13137
13138 case UNOP_IN_RANGE:
13139 case UNOP_QUAL:
13140 /* XXX: gdb_sprint_host_address, type_sprint */
13141 fprintf_filtered (stream, _("Type @"));
13142 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13143 fprintf_filtered (stream, " (");
13144 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13145 fprintf_filtered (stream, ")");
13146 break;
13147 case BINOP_IN_BOUNDS:
13148 fprintf_filtered (stream, " (%d)",
13149 longest_to_int (exp->elts[pc + 2].longconst));
13150 break;
13151 case TERNOP_IN_RANGE:
13152 break;
13153
13154 case OP_AGGREGATE:
13155 case OP_OTHERS:
13156 case OP_DISCRETE_RANGE:
13157 case OP_POSITIONAL:
13158 case OP_CHOICES:
13159 break;
13160
13161 case OP_NAME:
13162 case OP_STRING:
13163 {
13164 char *name = &exp->elts[elt + 2].string;
13165 int len = longest_to_int (exp->elts[elt + 1].longconst);
13166
13167 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13168 break;
13169 }
13170
13171 default:
13172 return dump_subexp_body_standard (exp, stream, elt);
13173 }
13174
13175 elt += oplen;
13176 for (i = 0; i < nargs; i += 1)
13177 elt = dump_subexp (exp, stream, elt);
13178
13179 return elt;
13180 }
13181
13182 /* The Ada extension of print_subexp (q.v.). */
13183
13184 static void
13185 ada_print_subexp (struct expression *exp, int *pos,
13186 struct ui_file *stream, enum precedence prec)
13187 {
13188 int oplen, nargs, i;
13189 int pc = *pos;
13190 enum exp_opcode op = exp->elts[pc].opcode;
13191
13192 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13193
13194 *pos += oplen;
13195 switch (op)
13196 {
13197 default:
13198 *pos -= oplen;
13199 print_subexp_standard (exp, pos, stream, prec);
13200 return;
13201
13202 case OP_VAR_VALUE:
13203 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13204 return;
13205
13206 case BINOP_IN_BOUNDS:
13207 /* XXX: sprint_subexp */
13208 print_subexp (exp, pos, stream, PREC_SUFFIX);
13209 fputs_filtered (" in ", stream);
13210 print_subexp (exp, pos, stream, PREC_SUFFIX);
13211 fputs_filtered ("'range", stream);
13212 if (exp->elts[pc + 1].longconst > 1)
13213 fprintf_filtered (stream, "(%ld)",
13214 (long) exp->elts[pc + 1].longconst);
13215 return;
13216
13217 case TERNOP_IN_RANGE:
13218 if (prec >= PREC_EQUAL)
13219 fputs_filtered ("(", stream);
13220 /* XXX: sprint_subexp */
13221 print_subexp (exp, pos, stream, PREC_SUFFIX);
13222 fputs_filtered (" in ", stream);
13223 print_subexp (exp, pos, stream, PREC_EQUAL);
13224 fputs_filtered (" .. ", stream);
13225 print_subexp (exp, pos, stream, PREC_EQUAL);
13226 if (prec >= PREC_EQUAL)
13227 fputs_filtered (")", stream);
13228 return;
13229
13230 case OP_ATR_FIRST:
13231 case OP_ATR_LAST:
13232 case OP_ATR_LENGTH:
13233 case OP_ATR_IMAGE:
13234 case OP_ATR_MAX:
13235 case OP_ATR_MIN:
13236 case OP_ATR_MODULUS:
13237 case OP_ATR_POS:
13238 case OP_ATR_SIZE:
13239 case OP_ATR_TAG:
13240 case OP_ATR_VAL:
13241 if (exp->elts[*pos].opcode == OP_TYPE)
13242 {
13243 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13244 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13245 &type_print_raw_options);
13246 *pos += 3;
13247 }
13248 else
13249 print_subexp (exp, pos, stream, PREC_SUFFIX);
13250 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13251 if (nargs > 1)
13252 {
13253 int tem;
13254
13255 for (tem = 1; tem < nargs; tem += 1)
13256 {
13257 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13258 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13259 }
13260 fputs_filtered (")", stream);
13261 }
13262 return;
13263
13264 case UNOP_QUAL:
13265 type_print (exp->elts[pc + 1].type, "", stream, 0);
13266 fputs_filtered ("'(", stream);
13267 print_subexp (exp, pos, stream, PREC_PREFIX);
13268 fputs_filtered (")", stream);
13269 return;
13270
13271 case UNOP_IN_RANGE:
13272 /* XXX: sprint_subexp */
13273 print_subexp (exp, pos, stream, PREC_SUFFIX);
13274 fputs_filtered (" in ", stream);
13275 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13276 &type_print_raw_options);
13277 return;
13278
13279 case OP_DISCRETE_RANGE:
13280 print_subexp (exp, pos, stream, PREC_SUFFIX);
13281 fputs_filtered ("..", stream);
13282 print_subexp (exp, pos, stream, PREC_SUFFIX);
13283 return;
13284
13285 case OP_OTHERS:
13286 fputs_filtered ("others => ", stream);
13287 print_subexp (exp, pos, stream, PREC_SUFFIX);
13288 return;
13289
13290 case OP_CHOICES:
13291 for (i = 0; i < nargs-1; i += 1)
13292 {
13293 if (i > 0)
13294 fputs_filtered ("|", stream);
13295 print_subexp (exp, pos, stream, PREC_SUFFIX);
13296 }
13297 fputs_filtered (" => ", stream);
13298 print_subexp (exp, pos, stream, PREC_SUFFIX);
13299 return;
13300
13301 case OP_POSITIONAL:
13302 print_subexp (exp, pos, stream, PREC_SUFFIX);
13303 return;
13304
13305 case OP_AGGREGATE:
13306 fputs_filtered ("(", stream);
13307 for (i = 0; i < nargs; i += 1)
13308 {
13309 if (i > 0)
13310 fputs_filtered (", ", stream);
13311 print_subexp (exp, pos, stream, PREC_SUFFIX);
13312 }
13313 fputs_filtered (")", stream);
13314 return;
13315 }
13316 }
13317
13318 /* Table mapping opcodes into strings for printing operators
13319 and precedences of the operators. */
13320
13321 static const struct op_print ada_op_print_tab[] = {
13322 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13323 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13324 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13325 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13326 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13327 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13328 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13329 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13330 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13331 {">=", BINOP_GEQ, PREC_ORDER, 0},
13332 {">", BINOP_GTR, PREC_ORDER, 0},
13333 {"<", BINOP_LESS, PREC_ORDER, 0},
13334 {">>", BINOP_RSH, PREC_SHIFT, 0},
13335 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13336 {"+", BINOP_ADD, PREC_ADD, 0},
13337 {"-", BINOP_SUB, PREC_ADD, 0},
13338 {"&", BINOP_CONCAT, PREC_ADD, 0},
13339 {"*", BINOP_MUL, PREC_MUL, 0},
13340 {"/", BINOP_DIV, PREC_MUL, 0},
13341 {"rem", BINOP_REM, PREC_MUL, 0},
13342 {"mod", BINOP_MOD, PREC_MUL, 0},
13343 {"**", BINOP_EXP, PREC_REPEAT, 0},
13344 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13345 {"-", UNOP_NEG, PREC_PREFIX, 0},
13346 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13347 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13348 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13349 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13350 {".all", UNOP_IND, PREC_SUFFIX, 1},
13351 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13352 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13353 {NULL, 0, 0, 0}
13354 };
13355 \f
13356 enum ada_primitive_types {
13357 ada_primitive_type_int,
13358 ada_primitive_type_long,
13359 ada_primitive_type_short,
13360 ada_primitive_type_char,
13361 ada_primitive_type_float,
13362 ada_primitive_type_double,
13363 ada_primitive_type_void,
13364 ada_primitive_type_long_long,
13365 ada_primitive_type_long_double,
13366 ada_primitive_type_natural,
13367 ada_primitive_type_positive,
13368 ada_primitive_type_system_address,
13369 nr_ada_primitive_types
13370 };
13371
13372 static void
13373 ada_language_arch_info (struct gdbarch *gdbarch,
13374 struct language_arch_info *lai)
13375 {
13376 const struct builtin_type *builtin = builtin_type (gdbarch);
13377
13378 lai->primitive_type_vector
13379 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13380 struct type *);
13381
13382 lai->primitive_type_vector [ada_primitive_type_int]
13383 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13384 0, "integer");
13385 lai->primitive_type_vector [ada_primitive_type_long]
13386 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13387 0, "long_integer");
13388 lai->primitive_type_vector [ada_primitive_type_short]
13389 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13390 0, "short_integer");
13391 lai->string_char_type
13392 = lai->primitive_type_vector [ada_primitive_type_char]
13393 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13394 lai->primitive_type_vector [ada_primitive_type_float]
13395 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13396 "float", NULL);
13397 lai->primitive_type_vector [ada_primitive_type_double]
13398 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13399 "long_float", NULL);
13400 lai->primitive_type_vector [ada_primitive_type_long_long]
13401 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13402 0, "long_long_integer");
13403 lai->primitive_type_vector [ada_primitive_type_long_double]
13404 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13405 "long_long_float", NULL);
13406 lai->primitive_type_vector [ada_primitive_type_natural]
13407 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13408 0, "natural");
13409 lai->primitive_type_vector [ada_primitive_type_positive]
13410 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13411 0, "positive");
13412 lai->primitive_type_vector [ada_primitive_type_void]
13413 = builtin->builtin_void;
13414
13415 lai->primitive_type_vector [ada_primitive_type_system_address]
13416 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13417 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13418 = "system__address";
13419
13420 lai->bool_type_symbol = NULL;
13421 lai->bool_type_default = builtin->builtin_bool;
13422 }
13423 \f
13424 /* Language vector */
13425
13426 /* Not really used, but needed in the ada_language_defn. */
13427
13428 static void
13429 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13430 {
13431 ada_emit_char (c, type, stream, quoter, 1);
13432 }
13433
13434 static int
13435 parse (struct parser_state *ps)
13436 {
13437 warnings_issued = 0;
13438 return ada_parse (ps);
13439 }
13440
13441 static const struct exp_descriptor ada_exp_descriptor = {
13442 ada_print_subexp,
13443 ada_operator_length,
13444 ada_operator_check,
13445 ada_op_name,
13446 ada_dump_subexp_body,
13447 ada_evaluate_subexp
13448 };
13449
13450 /* Implement the "la_get_symbol_name_cmp" language_defn method
13451 for Ada. */
13452
13453 static symbol_name_cmp_ftype
13454 ada_get_symbol_name_cmp (const char *lookup_name)
13455 {
13456 if (should_use_wild_match (lookup_name))
13457 return wild_match;
13458 else
13459 return compare_names;
13460 }
13461
13462 /* Implement the "la_read_var_value" language_defn method for Ada. */
13463
13464 static struct value *
13465 ada_read_var_value (struct symbol *var, struct frame_info *frame)
13466 {
13467 struct block *frame_block = NULL;
13468 struct symbol *renaming_sym = NULL;
13469
13470 /* The only case where default_read_var_value is not sufficient
13471 is when VAR is a renaming... */
13472 if (frame)
13473 frame_block = get_frame_block (frame, NULL);
13474 if (frame_block)
13475 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13476 if (renaming_sym != NULL)
13477 return ada_read_renaming_var_value (renaming_sym, frame_block);
13478
13479 /* This is a typical case where we expect the default_read_var_value
13480 function to work. */
13481 return default_read_var_value (var, frame);
13482 }
13483
13484 const struct language_defn ada_language_defn = {
13485 "ada", /* Language name */
13486 "Ada",
13487 language_ada,
13488 range_check_off,
13489 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13490 that's not quite what this means. */
13491 array_row_major,
13492 macro_expansion_no,
13493 &ada_exp_descriptor,
13494 parse,
13495 ada_error,
13496 resolve,
13497 ada_printchar, /* Print a character constant */
13498 ada_printstr, /* Function to print string constant */
13499 emit_char, /* Function to print single char (not used) */
13500 ada_print_type, /* Print a type using appropriate syntax */
13501 ada_print_typedef, /* Print a typedef using appropriate syntax */
13502 ada_val_print, /* Print a value using appropriate syntax */
13503 ada_value_print, /* Print a top-level value */
13504 ada_read_var_value, /* la_read_var_value */
13505 NULL, /* Language specific skip_trampoline */
13506 NULL, /* name_of_this */
13507 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13508 basic_lookup_transparent_type, /* lookup_transparent_type */
13509 ada_la_decode, /* Language specific symbol demangler */
13510 NULL, /* Language specific
13511 class_name_from_physname */
13512 ada_op_print_tab, /* expression operators for printing */
13513 0, /* c-style arrays */
13514 1, /* String lower bound */
13515 ada_get_gdb_completer_word_break_characters,
13516 ada_make_symbol_completion_list,
13517 ada_language_arch_info,
13518 ada_print_array_index,
13519 default_pass_by_reference,
13520 c_get_string,
13521 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13522 ada_iterate_over_symbols,
13523 &ada_varobj_ops,
13524 LANG_MAGIC
13525 };
13526
13527 /* Provide a prototype to silence -Wmissing-prototypes. */
13528 extern initialize_file_ftype _initialize_ada_language;
13529
13530 /* Command-list for the "set/show ada" prefix command. */
13531 static struct cmd_list_element *set_ada_list;
13532 static struct cmd_list_element *show_ada_list;
13533
13534 /* Implement the "set ada" prefix command. */
13535
13536 static void
13537 set_ada_command (char *arg, int from_tty)
13538 {
13539 printf_unfiltered (_(\
13540 "\"set ada\" must be followed by the name of a setting.\n"));
13541 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
13542 }
13543
13544 /* Implement the "show ada" prefix command. */
13545
13546 static void
13547 show_ada_command (char *args, int from_tty)
13548 {
13549 cmd_show_list (show_ada_list, from_tty, "");
13550 }
13551
13552 static void
13553 initialize_ada_catchpoint_ops (void)
13554 {
13555 struct breakpoint_ops *ops;
13556
13557 initialize_breakpoint_ops ();
13558
13559 ops = &catch_exception_breakpoint_ops;
13560 *ops = bkpt_breakpoint_ops;
13561 ops->dtor = dtor_catch_exception;
13562 ops->allocate_location = allocate_location_catch_exception;
13563 ops->re_set = re_set_catch_exception;
13564 ops->check_status = check_status_catch_exception;
13565 ops->print_it = print_it_catch_exception;
13566 ops->print_one = print_one_catch_exception;
13567 ops->print_mention = print_mention_catch_exception;
13568 ops->print_recreate = print_recreate_catch_exception;
13569
13570 ops = &catch_exception_unhandled_breakpoint_ops;
13571 *ops = bkpt_breakpoint_ops;
13572 ops->dtor = dtor_catch_exception_unhandled;
13573 ops->allocate_location = allocate_location_catch_exception_unhandled;
13574 ops->re_set = re_set_catch_exception_unhandled;
13575 ops->check_status = check_status_catch_exception_unhandled;
13576 ops->print_it = print_it_catch_exception_unhandled;
13577 ops->print_one = print_one_catch_exception_unhandled;
13578 ops->print_mention = print_mention_catch_exception_unhandled;
13579 ops->print_recreate = print_recreate_catch_exception_unhandled;
13580
13581 ops = &catch_assert_breakpoint_ops;
13582 *ops = bkpt_breakpoint_ops;
13583 ops->dtor = dtor_catch_assert;
13584 ops->allocate_location = allocate_location_catch_assert;
13585 ops->re_set = re_set_catch_assert;
13586 ops->check_status = check_status_catch_assert;
13587 ops->print_it = print_it_catch_assert;
13588 ops->print_one = print_one_catch_assert;
13589 ops->print_mention = print_mention_catch_assert;
13590 ops->print_recreate = print_recreate_catch_assert;
13591 }
13592
13593 /* This module's 'new_objfile' observer. */
13594
13595 static void
13596 ada_new_objfile_observer (struct objfile *objfile)
13597 {
13598 ada_clear_symbol_cache ();
13599 }
13600
13601 /* This module's 'free_objfile' observer. */
13602
13603 static void
13604 ada_free_objfile_observer (struct objfile *objfile)
13605 {
13606 ada_clear_symbol_cache ();
13607 }
13608
13609 void
13610 _initialize_ada_language (void)
13611 {
13612 add_language (&ada_language_defn);
13613
13614 initialize_ada_catchpoint_ops ();
13615
13616 add_prefix_cmd ("ada", no_class, set_ada_command,
13617 _("Prefix command for changing Ada-specfic settings"),
13618 &set_ada_list, "set ada ", 0, &setlist);
13619
13620 add_prefix_cmd ("ada", no_class, show_ada_command,
13621 _("Generic command for showing Ada-specific settings."),
13622 &show_ada_list, "show ada ", 0, &showlist);
13623
13624 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13625 &trust_pad_over_xvs, _("\
13626 Enable or disable an optimization trusting PAD types over XVS types"), _("\
13627 Show whether an optimization trusting PAD types over XVS types is activated"),
13628 _("\
13629 This is related to the encoding used by the GNAT compiler. The debugger\n\
13630 should normally trust the contents of PAD types, but certain older versions\n\
13631 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13632 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13633 work around this bug. It is always safe to turn this option \"off\", but\n\
13634 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13635 this option to \"off\" unless necessary."),
13636 NULL, NULL, &set_ada_list, &show_ada_list);
13637
13638 add_catch_command ("exception", _("\
13639 Catch Ada exceptions, when raised.\n\
13640 With an argument, catch only exceptions with the given name."),
13641 catch_ada_exception_command,
13642 NULL,
13643 CATCH_PERMANENT,
13644 CATCH_TEMPORARY);
13645 add_catch_command ("assert", _("\
13646 Catch failed Ada assertions, when raised.\n\
13647 With an argument, catch only exceptions with the given name."),
13648 catch_assert_command,
13649 NULL,
13650 CATCH_PERMANENT,
13651 CATCH_TEMPORARY);
13652
13653 varsize_limit = 65536;
13654
13655 add_info ("exceptions", info_exceptions_command,
13656 _("\
13657 List all Ada exception names.\n\
13658 If a regular expression is passed as an argument, only those matching\n\
13659 the regular expression are listed."));
13660
13661 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13662 _("Set Ada maintenance-related variables."),
13663 &maint_set_ada_cmdlist, "maintenance set ada ",
13664 0/*allow-unknown*/, &maintenance_set_cmdlist);
13665
13666 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13667 _("Show Ada maintenance-related variables"),
13668 &maint_show_ada_cmdlist, "maintenance show ada ",
13669 0/*allow-unknown*/, &maintenance_show_cmdlist);
13670
13671 add_setshow_boolean_cmd
13672 ("ignore-descriptive-types", class_maintenance,
13673 &ada_ignore_descriptive_types_p,
13674 _("Set whether descriptive types generated by GNAT should be ignored."),
13675 _("Show whether descriptive types generated by GNAT should be ignored."),
13676 _("\
13677 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13678 DWARF attribute."),
13679 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13680
13681 obstack_init (&symbol_list_obstack);
13682
13683 decoded_names_store = htab_create_alloc
13684 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13685 NULL, xcalloc, xfree);
13686
13687 /* The ada-lang observers. */
13688 observer_attach_new_objfile (ada_new_objfile_observer);
13689 observer_attach_free_objfile (ada_free_objfile_observer);
13690 observer_attach_inferior_exit (ada_inferior_exit);
13691
13692 /* Setup various context-specific data. */
13693 ada_inferior_data
13694 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
13695 ada_pspace_data_handle
13696 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
13697 }
This page took 0.317584 seconds and 4 git commands to generate.