* gdbtypes.c (make_pointer_type, make_reference_type,
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 /* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64 #ifndef TRUNCATION_TOWARDS_ZERO
65 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66 #endif
67
68 static void extract_string (CORE_ADDR addr, char *buf);
69
70 static void modify_general_field (struct type *, char *, LONGEST, int, int);
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static struct value *ensure_lval (struct value *,
105 struct gdbarch *, CORE_ADDR *);
106
107 static struct value *make_array_descriptor (struct type *, struct value *,
108 struct gdbarch *, CORE_ADDR *);
109
110 static void ada_add_block_symbols (struct obstack *,
111 struct block *, const char *,
112 domain_enum, struct objfile *, int);
113
114 static int is_nonfunction (struct ada_symbol_info *, int);
115
116 static void add_defn_to_vec (struct obstack *, struct symbol *,
117 struct block *);
118
119 static int num_defns_collected (struct obstack *);
120
121 static struct ada_symbol_info *defns_collected (struct obstack *, int);
122
123 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
124 *, const char *, int,
125 domain_enum, int);
126
127 static struct value *resolve_subexp (struct expression **, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (struct expression **, int, int, int,
131 struct symbol *, struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
156 int, int, int *);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (char *, struct value *,
169 struct type *);
170
171 static struct type *to_static_fixed_type (struct type *);
172 static struct type *static_unwrap_type (struct type *type);
173
174 static struct value *unwrap_value (struct value *);
175
176 static struct type *packed_array_type (struct type *, long *);
177
178 static struct type *decode_packed_array_type (struct type *);
179
180 static struct value *decode_packed_array (struct value *);
181
182 static struct value *value_subscript_packed (struct value *, int,
183 struct value **);
184
185 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
186
187 static struct value *coerce_unspec_val_to_type (struct value *,
188 struct type *);
189
190 static struct value *get_var_value (char *, char *);
191
192 static int lesseq_defined_than (struct symbol *, struct symbol *);
193
194 static int equiv_types (struct type *, struct type *);
195
196 static int is_name_suffix (const char *);
197
198 static int wild_match (const char *, int, const char *);
199
200 static struct value *ada_coerce_ref (struct value *);
201
202 static LONGEST pos_atr (struct value *);
203
204 static struct value *value_pos_atr (struct type *, struct value *);
205
206 static struct value *value_val_atr (struct type *, struct value *);
207
208 static struct symbol *standard_lookup (const char *, const struct block *,
209 domain_enum);
210
211 static struct value *ada_search_struct_field (char *, struct value *, int,
212 struct type *);
213
214 static struct value *ada_value_primitive_field (struct value *, int, int,
215 struct type *);
216
217 static int find_struct_field (char *, struct type *, int,
218 struct type **, int *, int *, int *, int *);
219
220 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
221 struct value *);
222
223 static struct value *ada_to_fixed_value (struct value *);
224
225 static int ada_resolve_function (struct ada_symbol_info *, int,
226 struct value **, int, const char *,
227 struct type *);
228
229 static struct value *ada_coerce_to_simple_array (struct value *);
230
231 static int ada_is_direct_array_type (struct type *);
232
233 static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
235
236 static void check_size (const struct type *);
237
238 static struct value *ada_index_struct_field (int, struct value *, int,
239 struct type *);
240
241 static struct value *assign_aggregate (struct value *, struct value *,
242 struct expression *, int *, enum noside);
243
244 static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249 static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255 static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266 static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
268 \f
269
270
271 /* Maximum-sized dynamic type. */
272 static unsigned int varsize_limit;
273
274 /* FIXME: brobecker/2003-09-17: No longer a const because it is
275 returned by a function that does not return a const char *. */
276 static char *ada_completer_word_break_characters =
277 #ifdef VMS
278 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
279 #else
280 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
281 #endif
282
283 /* The name of the symbol to use to get the name of the main subprogram. */
284 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
285 = "__gnat_ada_main_program_name";
286
287 /* Limit on the number of warnings to raise per expression evaluation. */
288 static int warning_limit = 2;
289
290 /* Number of warning messages issued; reset to 0 by cleanups after
291 expression evaluation. */
292 static int warnings_issued = 0;
293
294 static const char *known_runtime_file_name_patterns[] = {
295 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
296 };
297
298 static const char *known_auxiliary_function_name_patterns[] = {
299 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
300 };
301
302 /* Space for allocating results of ada_lookup_symbol_list. */
303 static struct obstack symbol_list_obstack;
304
305 /* Utilities */
306
307 /* Given DECODED_NAME a string holding a symbol name in its
308 decoded form (ie using the Ada dotted notation), returns
309 its unqualified name. */
310
311 static const char *
312 ada_unqualified_name (const char *decoded_name)
313 {
314 const char *result = strrchr (decoded_name, '.');
315
316 if (result != NULL)
317 result++; /* Skip the dot... */
318 else
319 result = decoded_name;
320
321 return result;
322 }
323
324 /* Return a string starting with '<', followed by STR, and '>'.
325 The result is good until the next call. */
326
327 static char *
328 add_angle_brackets (const char *str)
329 {
330 static char *result = NULL;
331
332 xfree (result);
333 result = xstrprintf ("<%s>", str);
334 return result;
335 }
336
337 static char *
338 ada_get_gdb_completer_word_break_characters (void)
339 {
340 return ada_completer_word_break_characters;
341 }
342
343 /* Print an array element index using the Ada syntax. */
344
345 static void
346 ada_print_array_index (struct value *index_value, struct ui_file *stream,
347 const struct value_print_options *options)
348 {
349 LA_VALUE_PRINT (index_value, stream, options);
350 fprintf_filtered (stream, " => ");
351 }
352
353 /* Read the string located at ADDR from the inferior and store the
354 result into BUF. */
355
356 static void
357 extract_string (CORE_ADDR addr, char *buf)
358 {
359 int char_index = 0;
360
361 /* Loop, reading one byte at a time, until we reach the '\000'
362 end-of-string marker. */
363 do
364 {
365 target_read_memory (addr + char_index * sizeof (char),
366 buf + char_index * sizeof (char), sizeof (char));
367 char_index++;
368 }
369 while (buf[char_index - 1] != '\000');
370 }
371
372 /* Assuming VECT points to an array of *SIZE objects of size
373 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
374 updating *SIZE as necessary and returning the (new) array. */
375
376 void *
377 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
378 {
379 if (*size < min_size)
380 {
381 *size *= 2;
382 if (*size < min_size)
383 *size = min_size;
384 vect = xrealloc (vect, *size * element_size);
385 }
386 return vect;
387 }
388
389 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
390 suffix of FIELD_NAME beginning "___". */
391
392 static int
393 field_name_match (const char *field_name, const char *target)
394 {
395 int len = strlen (target);
396 return
397 (strncmp (field_name, target, len) == 0
398 && (field_name[len] == '\0'
399 || (strncmp (field_name + len, "___", 3) == 0
400 && strcmp (field_name + strlen (field_name) - 6,
401 "___XVN") != 0)));
402 }
403
404
405 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
406 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
407 and return its index. This function also handles fields whose name
408 have ___ suffixes because the compiler sometimes alters their name
409 by adding such a suffix to represent fields with certain constraints.
410 If the field could not be found, return a negative number if
411 MAYBE_MISSING is set. Otherwise raise an error. */
412
413 int
414 ada_get_field_index (const struct type *type, const char *field_name,
415 int maybe_missing)
416 {
417 int fieldno;
418 struct type *struct_type = check_typedef ((struct type *) type);
419
420 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
421 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
422 return fieldno;
423
424 if (!maybe_missing)
425 error (_("Unable to find field %s in struct %s. Aborting"),
426 field_name, TYPE_NAME (struct_type));
427
428 return -1;
429 }
430
431 /* The length of the prefix of NAME prior to any "___" suffix. */
432
433 int
434 ada_name_prefix_len (const char *name)
435 {
436 if (name == NULL)
437 return 0;
438 else
439 {
440 const char *p = strstr (name, "___");
441 if (p == NULL)
442 return strlen (name);
443 else
444 return p - name;
445 }
446 }
447
448 /* Return non-zero if SUFFIX is a suffix of STR.
449 Return zero if STR is null. */
450
451 static int
452 is_suffix (const char *str, const char *suffix)
453 {
454 int len1, len2;
455 if (str == NULL)
456 return 0;
457 len1 = strlen (str);
458 len2 = strlen (suffix);
459 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
460 }
461
462 /* The contents of value VAL, treated as a value of type TYPE. The
463 result is an lval in memory if VAL is. */
464
465 static struct value *
466 coerce_unspec_val_to_type (struct value *val, struct type *type)
467 {
468 type = ada_check_typedef (type);
469 if (value_type (val) == type)
470 return val;
471 else
472 {
473 struct value *result;
474
475 /* Make sure that the object size is not unreasonable before
476 trying to allocate some memory for it. */
477 check_size (type);
478
479 result = allocate_value (type);
480 set_value_component_location (result, val);
481 set_value_bitsize (result, value_bitsize (val));
482 set_value_bitpos (result, value_bitpos (val));
483 set_value_address (result, value_address (val));
484 if (value_lazy (val)
485 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
486 set_value_lazy (result, 1);
487 else
488 memcpy (value_contents_raw (result), value_contents (val),
489 TYPE_LENGTH (type));
490 return result;
491 }
492 }
493
494 static const gdb_byte *
495 cond_offset_host (const gdb_byte *valaddr, long offset)
496 {
497 if (valaddr == NULL)
498 return NULL;
499 else
500 return valaddr + offset;
501 }
502
503 static CORE_ADDR
504 cond_offset_target (CORE_ADDR address, long offset)
505 {
506 if (address == 0)
507 return 0;
508 else
509 return address + offset;
510 }
511
512 /* Issue a warning (as for the definition of warning in utils.c, but
513 with exactly one argument rather than ...), unless the limit on the
514 number of warnings has passed during the evaluation of the current
515 expression. */
516
517 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
518 provided by "complaint". */
519 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
520
521 static void
522 lim_warning (const char *format, ...)
523 {
524 va_list args;
525 va_start (args, format);
526
527 warnings_issued += 1;
528 if (warnings_issued <= warning_limit)
529 vwarning (format, args);
530
531 va_end (args);
532 }
533
534 /* Issue an error if the size of an object of type T is unreasonable,
535 i.e. if it would be a bad idea to allocate a value of this type in
536 GDB. */
537
538 static void
539 check_size (const struct type *type)
540 {
541 if (TYPE_LENGTH (type) > varsize_limit)
542 error (_("object size is larger than varsize-limit"));
543 }
544
545
546 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
547 gdbtypes.h, but some of the necessary definitions in that file
548 seem to have gone missing. */
549
550 /* Maximum value of a SIZE-byte signed integer type. */
551 static LONGEST
552 max_of_size (int size)
553 {
554 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
555 return top_bit | (top_bit - 1);
556 }
557
558 /* Minimum value of a SIZE-byte signed integer type. */
559 static LONGEST
560 min_of_size (int size)
561 {
562 return -max_of_size (size) - 1;
563 }
564
565 /* Maximum value of a SIZE-byte unsigned integer type. */
566 static ULONGEST
567 umax_of_size (int size)
568 {
569 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
570 return top_bit | (top_bit - 1);
571 }
572
573 /* Maximum value of integral type T, as a signed quantity. */
574 static LONGEST
575 max_of_type (struct type *t)
576 {
577 if (TYPE_UNSIGNED (t))
578 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
579 else
580 return max_of_size (TYPE_LENGTH (t));
581 }
582
583 /* Minimum value of integral type T, as a signed quantity. */
584 static LONGEST
585 min_of_type (struct type *t)
586 {
587 if (TYPE_UNSIGNED (t))
588 return 0;
589 else
590 return min_of_size (TYPE_LENGTH (t));
591 }
592
593 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
594 static LONGEST
595 discrete_type_high_bound (struct type *type)
596 {
597 switch (TYPE_CODE (type))
598 {
599 case TYPE_CODE_RANGE:
600 return TYPE_HIGH_BOUND (type);
601 case TYPE_CODE_ENUM:
602 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
603 case TYPE_CODE_BOOL:
604 return 1;
605 case TYPE_CODE_CHAR:
606 case TYPE_CODE_INT:
607 return max_of_type (type);
608 default:
609 error (_("Unexpected type in discrete_type_high_bound."));
610 }
611 }
612
613 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
614 static LONGEST
615 discrete_type_low_bound (struct type *type)
616 {
617 switch (TYPE_CODE (type))
618 {
619 case TYPE_CODE_RANGE:
620 return TYPE_LOW_BOUND (type);
621 case TYPE_CODE_ENUM:
622 return TYPE_FIELD_BITPOS (type, 0);
623 case TYPE_CODE_BOOL:
624 return 0;
625 case TYPE_CODE_CHAR:
626 case TYPE_CODE_INT:
627 return min_of_type (type);
628 default:
629 error (_("Unexpected type in discrete_type_low_bound."));
630 }
631 }
632
633 /* The identity on non-range types. For range types, the underlying
634 non-range scalar type. */
635
636 static struct type *
637 base_type (struct type *type)
638 {
639 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
640 {
641 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
642 return type;
643 type = TYPE_TARGET_TYPE (type);
644 }
645 return type;
646 }
647 \f
648
649 /* Language Selection */
650
651 /* If the main program is in Ada, return language_ada, otherwise return LANG
652 (the main program is in Ada iif the adainit symbol is found).
653
654 MAIN_PST is not used. */
655
656 enum language
657 ada_update_initial_language (enum language lang,
658 struct partial_symtab *main_pst)
659 {
660 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
661 (struct objfile *) NULL) != NULL)
662 return language_ada;
663
664 return lang;
665 }
666
667 /* If the main procedure is written in Ada, then return its name.
668 The result is good until the next call. Return NULL if the main
669 procedure doesn't appear to be in Ada. */
670
671 char *
672 ada_main_name (void)
673 {
674 struct minimal_symbol *msym;
675 static char *main_program_name = NULL;
676
677 /* For Ada, the name of the main procedure is stored in a specific
678 string constant, generated by the binder. Look for that symbol,
679 extract its address, and then read that string. If we didn't find
680 that string, then most probably the main procedure is not written
681 in Ada. */
682 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
683
684 if (msym != NULL)
685 {
686 CORE_ADDR main_program_name_addr;
687 int err_code;
688
689 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
690 if (main_program_name_addr == 0)
691 error (_("Invalid address for Ada main program name."));
692
693 xfree (main_program_name);
694 target_read_string (main_program_name_addr, &main_program_name,
695 1024, &err_code);
696
697 if (err_code != 0)
698 return NULL;
699 return main_program_name;
700 }
701
702 /* The main procedure doesn't seem to be in Ada. */
703 return NULL;
704 }
705 \f
706 /* Symbols */
707
708 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
709 of NULLs. */
710
711 const struct ada_opname_map ada_opname_table[] = {
712 {"Oadd", "\"+\"", BINOP_ADD},
713 {"Osubtract", "\"-\"", BINOP_SUB},
714 {"Omultiply", "\"*\"", BINOP_MUL},
715 {"Odivide", "\"/\"", BINOP_DIV},
716 {"Omod", "\"mod\"", BINOP_MOD},
717 {"Orem", "\"rem\"", BINOP_REM},
718 {"Oexpon", "\"**\"", BINOP_EXP},
719 {"Olt", "\"<\"", BINOP_LESS},
720 {"Ole", "\"<=\"", BINOP_LEQ},
721 {"Ogt", "\">\"", BINOP_GTR},
722 {"Oge", "\">=\"", BINOP_GEQ},
723 {"Oeq", "\"=\"", BINOP_EQUAL},
724 {"One", "\"/=\"", BINOP_NOTEQUAL},
725 {"Oand", "\"and\"", BINOP_BITWISE_AND},
726 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
727 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
728 {"Oconcat", "\"&\"", BINOP_CONCAT},
729 {"Oabs", "\"abs\"", UNOP_ABS},
730 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
731 {"Oadd", "\"+\"", UNOP_PLUS},
732 {"Osubtract", "\"-\"", UNOP_NEG},
733 {NULL, NULL}
734 };
735
736 /* The "encoded" form of DECODED, according to GNAT conventions.
737 The result is valid until the next call to ada_encode. */
738
739 char *
740 ada_encode (const char *decoded)
741 {
742 static char *encoding_buffer = NULL;
743 static size_t encoding_buffer_size = 0;
744 const char *p;
745 int k;
746
747 if (decoded == NULL)
748 return NULL;
749
750 GROW_VECT (encoding_buffer, encoding_buffer_size,
751 2 * strlen (decoded) + 10);
752
753 k = 0;
754 for (p = decoded; *p != '\0'; p += 1)
755 {
756 if (*p == '.')
757 {
758 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
759 k += 2;
760 }
761 else if (*p == '"')
762 {
763 const struct ada_opname_map *mapping;
764
765 for (mapping = ada_opname_table;
766 mapping->encoded != NULL
767 && strncmp (mapping->decoded, p,
768 strlen (mapping->decoded)) != 0; mapping += 1)
769 ;
770 if (mapping->encoded == NULL)
771 error (_("invalid Ada operator name: %s"), p);
772 strcpy (encoding_buffer + k, mapping->encoded);
773 k += strlen (mapping->encoded);
774 break;
775 }
776 else
777 {
778 encoding_buffer[k] = *p;
779 k += 1;
780 }
781 }
782
783 encoding_buffer[k] = '\0';
784 return encoding_buffer;
785 }
786
787 /* Return NAME folded to lower case, or, if surrounded by single
788 quotes, unfolded, but with the quotes stripped away. Result good
789 to next call. */
790
791 char *
792 ada_fold_name (const char *name)
793 {
794 static char *fold_buffer = NULL;
795 static size_t fold_buffer_size = 0;
796
797 int len = strlen (name);
798 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
799
800 if (name[0] == '\'')
801 {
802 strncpy (fold_buffer, name + 1, len - 2);
803 fold_buffer[len - 2] = '\000';
804 }
805 else
806 {
807 int i;
808 for (i = 0; i <= len; i += 1)
809 fold_buffer[i] = tolower (name[i]);
810 }
811
812 return fold_buffer;
813 }
814
815 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
816
817 static int
818 is_lower_alphanum (const char c)
819 {
820 return (isdigit (c) || (isalpha (c) && islower (c)));
821 }
822
823 /* Remove either of these suffixes:
824 . .{DIGIT}+
825 . ${DIGIT}+
826 . ___{DIGIT}+
827 . __{DIGIT}+.
828 These are suffixes introduced by the compiler for entities such as
829 nested subprogram for instance, in order to avoid name clashes.
830 They do not serve any purpose for the debugger. */
831
832 static void
833 ada_remove_trailing_digits (const char *encoded, int *len)
834 {
835 if (*len > 1 && isdigit (encoded[*len - 1]))
836 {
837 int i = *len - 2;
838 while (i > 0 && isdigit (encoded[i]))
839 i--;
840 if (i >= 0 && encoded[i] == '.')
841 *len = i;
842 else if (i >= 0 && encoded[i] == '$')
843 *len = i;
844 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
845 *len = i - 2;
846 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
847 *len = i - 1;
848 }
849 }
850
851 /* Remove the suffix introduced by the compiler for protected object
852 subprograms. */
853
854 static void
855 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
856 {
857 /* Remove trailing N. */
858
859 /* Protected entry subprograms are broken into two
860 separate subprograms: The first one is unprotected, and has
861 a 'N' suffix; the second is the protected version, and has
862 the 'P' suffix. The second calls the first one after handling
863 the protection. Since the P subprograms are internally generated,
864 we leave these names undecoded, giving the user a clue that this
865 entity is internal. */
866
867 if (*len > 1
868 && encoded[*len - 1] == 'N'
869 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
870 *len = *len - 1;
871 }
872
873 /* If ENCODED follows the GNAT entity encoding conventions, then return
874 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
875 replaced by ENCODED.
876
877 The resulting string is valid until the next call of ada_decode.
878 If the string is unchanged by decoding, the original string pointer
879 is returned. */
880
881 const char *
882 ada_decode (const char *encoded)
883 {
884 int i, j;
885 int len0;
886 const char *p;
887 char *decoded;
888 int at_start_name;
889 static char *decoding_buffer = NULL;
890 static size_t decoding_buffer_size = 0;
891
892 /* The name of the Ada main procedure starts with "_ada_".
893 This prefix is not part of the decoded name, so skip this part
894 if we see this prefix. */
895 if (strncmp (encoded, "_ada_", 5) == 0)
896 encoded += 5;
897
898 /* If the name starts with '_', then it is not a properly encoded
899 name, so do not attempt to decode it. Similarly, if the name
900 starts with '<', the name should not be decoded. */
901 if (encoded[0] == '_' || encoded[0] == '<')
902 goto Suppress;
903
904 len0 = strlen (encoded);
905
906 ada_remove_trailing_digits (encoded, &len0);
907 ada_remove_po_subprogram_suffix (encoded, &len0);
908
909 /* Remove the ___X.* suffix if present. Do not forget to verify that
910 the suffix is located before the current "end" of ENCODED. We want
911 to avoid re-matching parts of ENCODED that have previously been
912 marked as discarded (by decrementing LEN0). */
913 p = strstr (encoded, "___");
914 if (p != NULL && p - encoded < len0 - 3)
915 {
916 if (p[3] == 'X')
917 len0 = p - encoded;
918 else
919 goto Suppress;
920 }
921
922 /* Remove any trailing TKB suffix. It tells us that this symbol
923 is for the body of a task, but that information does not actually
924 appear in the decoded name. */
925
926 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
927 len0 -= 3;
928
929 /* Remove trailing "B" suffixes. */
930 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
931
932 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
933 len0 -= 1;
934
935 /* Make decoded big enough for possible expansion by operator name. */
936
937 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
938 decoded = decoding_buffer;
939
940 /* Remove trailing __{digit}+ or trailing ${digit}+. */
941
942 if (len0 > 1 && isdigit (encoded[len0 - 1]))
943 {
944 i = len0 - 2;
945 while ((i >= 0 && isdigit (encoded[i]))
946 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
947 i -= 1;
948 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
949 len0 = i - 1;
950 else if (encoded[i] == '$')
951 len0 = i;
952 }
953
954 /* The first few characters that are not alphabetic are not part
955 of any encoding we use, so we can copy them over verbatim. */
956
957 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
958 decoded[j] = encoded[i];
959
960 at_start_name = 1;
961 while (i < len0)
962 {
963 /* Is this a symbol function? */
964 if (at_start_name && encoded[i] == 'O')
965 {
966 int k;
967 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
968 {
969 int op_len = strlen (ada_opname_table[k].encoded);
970 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
971 op_len - 1) == 0)
972 && !isalnum (encoded[i + op_len]))
973 {
974 strcpy (decoded + j, ada_opname_table[k].decoded);
975 at_start_name = 0;
976 i += op_len;
977 j += strlen (ada_opname_table[k].decoded);
978 break;
979 }
980 }
981 if (ada_opname_table[k].encoded != NULL)
982 continue;
983 }
984 at_start_name = 0;
985
986 /* Replace "TK__" with "__", which will eventually be translated
987 into "." (just below). */
988
989 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
990 i += 2;
991
992 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
993 be translated into "." (just below). These are internal names
994 generated for anonymous blocks inside which our symbol is nested. */
995
996 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
997 && encoded [i+2] == 'B' && encoded [i+3] == '_'
998 && isdigit (encoded [i+4]))
999 {
1000 int k = i + 5;
1001
1002 while (k < len0 && isdigit (encoded[k]))
1003 k++; /* Skip any extra digit. */
1004
1005 /* Double-check that the "__B_{DIGITS}+" sequence we found
1006 is indeed followed by "__". */
1007 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1008 i = k;
1009 }
1010
1011 /* Remove _E{DIGITS}+[sb] */
1012
1013 /* Just as for protected object subprograms, there are 2 categories
1014 of subprograms created by the compiler for each entry. The first
1015 one implements the actual entry code, and has a suffix following
1016 the convention above; the second one implements the barrier and
1017 uses the same convention as above, except that the 'E' is replaced
1018 by a 'B'.
1019
1020 Just as above, we do not decode the name of barrier functions
1021 to give the user a clue that the code he is debugging has been
1022 internally generated. */
1023
1024 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1025 && isdigit (encoded[i+2]))
1026 {
1027 int k = i + 3;
1028
1029 while (k < len0 && isdigit (encoded[k]))
1030 k++;
1031
1032 if (k < len0
1033 && (encoded[k] == 'b' || encoded[k] == 's'))
1034 {
1035 k++;
1036 /* Just as an extra precaution, make sure that if this
1037 suffix is followed by anything else, it is a '_'.
1038 Otherwise, we matched this sequence by accident. */
1039 if (k == len0
1040 || (k < len0 && encoded[k] == '_'))
1041 i = k;
1042 }
1043 }
1044
1045 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1046 the GNAT front-end in protected object subprograms. */
1047
1048 if (i < len0 + 3
1049 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1050 {
1051 /* Backtrack a bit up until we reach either the begining of
1052 the encoded name, or "__". Make sure that we only find
1053 digits or lowercase characters. */
1054 const char *ptr = encoded + i - 1;
1055
1056 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1057 ptr--;
1058 if (ptr < encoded
1059 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1060 i++;
1061 }
1062
1063 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1064 {
1065 /* This is a X[bn]* sequence not separated from the previous
1066 part of the name with a non-alpha-numeric character (in other
1067 words, immediately following an alpha-numeric character), then
1068 verify that it is placed at the end of the encoded name. If
1069 not, then the encoding is not valid and we should abort the
1070 decoding. Otherwise, just skip it, it is used in body-nested
1071 package names. */
1072 do
1073 i += 1;
1074 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1075 if (i < len0)
1076 goto Suppress;
1077 }
1078 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1079 {
1080 /* Replace '__' by '.'. */
1081 decoded[j] = '.';
1082 at_start_name = 1;
1083 i += 2;
1084 j += 1;
1085 }
1086 else
1087 {
1088 /* It's a character part of the decoded name, so just copy it
1089 over. */
1090 decoded[j] = encoded[i];
1091 i += 1;
1092 j += 1;
1093 }
1094 }
1095 decoded[j] = '\000';
1096
1097 /* Decoded names should never contain any uppercase character.
1098 Double-check this, and abort the decoding if we find one. */
1099
1100 for (i = 0; decoded[i] != '\0'; i += 1)
1101 if (isupper (decoded[i]) || decoded[i] == ' ')
1102 goto Suppress;
1103
1104 if (strcmp (decoded, encoded) == 0)
1105 return encoded;
1106 else
1107 return decoded;
1108
1109 Suppress:
1110 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1111 decoded = decoding_buffer;
1112 if (encoded[0] == '<')
1113 strcpy (decoded, encoded);
1114 else
1115 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1116 return decoded;
1117
1118 }
1119
1120 /* Table for keeping permanent unique copies of decoded names. Once
1121 allocated, names in this table are never released. While this is a
1122 storage leak, it should not be significant unless there are massive
1123 changes in the set of decoded names in successive versions of a
1124 symbol table loaded during a single session. */
1125 static struct htab *decoded_names_store;
1126
1127 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1128 in the language-specific part of GSYMBOL, if it has not been
1129 previously computed. Tries to save the decoded name in the same
1130 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1131 in any case, the decoded symbol has a lifetime at least that of
1132 GSYMBOL).
1133 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1134 const, but nevertheless modified to a semantically equivalent form
1135 when a decoded name is cached in it.
1136 */
1137
1138 char *
1139 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1140 {
1141 char **resultp =
1142 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1143 if (*resultp == NULL)
1144 {
1145 const char *decoded = ada_decode (gsymbol->name);
1146 if (gsymbol->obj_section != NULL)
1147 {
1148 struct objfile *objf = gsymbol->obj_section->objfile;
1149 *resultp = obsavestring (decoded, strlen (decoded),
1150 &objf->objfile_obstack);
1151 }
1152 /* Sometimes, we can't find a corresponding objfile, in which
1153 case, we put the result on the heap. Since we only decode
1154 when needed, we hope this usually does not cause a
1155 significant memory leak (FIXME). */
1156 if (*resultp == NULL)
1157 {
1158 char **slot = (char **) htab_find_slot (decoded_names_store,
1159 decoded, INSERT);
1160 if (*slot == NULL)
1161 *slot = xstrdup (decoded);
1162 *resultp = *slot;
1163 }
1164 }
1165
1166 return *resultp;
1167 }
1168
1169 static char *
1170 ada_la_decode (const char *encoded, int options)
1171 {
1172 return xstrdup (ada_decode (encoded));
1173 }
1174
1175 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1176 suffixes that encode debugging information or leading _ada_ on
1177 SYM_NAME (see is_name_suffix commentary for the debugging
1178 information that is ignored). If WILD, then NAME need only match a
1179 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1180 either argument is NULL. */
1181
1182 static int
1183 ada_match_name (const char *sym_name, const char *name, int wild)
1184 {
1185 if (sym_name == NULL || name == NULL)
1186 return 0;
1187 else if (wild)
1188 return wild_match (name, strlen (name), sym_name);
1189 else
1190 {
1191 int len_name = strlen (name);
1192 return (strncmp (sym_name, name, len_name) == 0
1193 && is_name_suffix (sym_name + len_name))
1194 || (strncmp (sym_name, "_ada_", 5) == 0
1195 && strncmp (sym_name + 5, name, len_name) == 0
1196 && is_name_suffix (sym_name + len_name + 5));
1197 }
1198 }
1199 \f
1200
1201 /* Arrays */
1202
1203 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1204
1205 static char *bound_name[] = {
1206 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1207 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1208 };
1209
1210 /* Maximum number of array dimensions we are prepared to handle. */
1211
1212 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1213
1214 /* Like modify_field, but allows bitpos > wordlength. */
1215
1216 static void
1217 modify_general_field (struct type *type, char *addr,
1218 LONGEST fieldval, int bitpos, int bitsize)
1219 {
1220 modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1221 }
1222
1223
1224 /* The desc_* routines return primitive portions of array descriptors
1225 (fat pointers). */
1226
1227 /* The descriptor or array type, if any, indicated by TYPE; removes
1228 level of indirection, if needed. */
1229
1230 static struct type *
1231 desc_base_type (struct type *type)
1232 {
1233 if (type == NULL)
1234 return NULL;
1235 type = ada_check_typedef (type);
1236 if (type != NULL
1237 && (TYPE_CODE (type) == TYPE_CODE_PTR
1238 || TYPE_CODE (type) == TYPE_CODE_REF))
1239 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1240 else
1241 return type;
1242 }
1243
1244 /* True iff TYPE indicates a "thin" array pointer type. */
1245
1246 static int
1247 is_thin_pntr (struct type *type)
1248 {
1249 return
1250 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1251 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1252 }
1253
1254 /* The descriptor type for thin pointer type TYPE. */
1255
1256 static struct type *
1257 thin_descriptor_type (struct type *type)
1258 {
1259 struct type *base_type = desc_base_type (type);
1260 if (base_type == NULL)
1261 return NULL;
1262 if (is_suffix (ada_type_name (base_type), "___XVE"))
1263 return base_type;
1264 else
1265 {
1266 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1267 if (alt_type == NULL)
1268 return base_type;
1269 else
1270 return alt_type;
1271 }
1272 }
1273
1274 /* A pointer to the array data for thin-pointer value VAL. */
1275
1276 static struct value *
1277 thin_data_pntr (struct value *val)
1278 {
1279 struct type *type = value_type (val);
1280 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1281 data_type = lookup_pointer_type (data_type);
1282
1283 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1284 return value_cast (data_type, value_copy (val));
1285 else
1286 return value_from_longest (data_type, value_address (val));
1287 }
1288
1289 /* True iff TYPE indicates a "thick" array pointer type. */
1290
1291 static int
1292 is_thick_pntr (struct type *type)
1293 {
1294 type = desc_base_type (type);
1295 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1296 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1297 }
1298
1299 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1300 pointer to one, the type of its bounds data; otherwise, NULL. */
1301
1302 static struct type *
1303 desc_bounds_type (struct type *type)
1304 {
1305 struct type *r;
1306
1307 type = desc_base_type (type);
1308
1309 if (type == NULL)
1310 return NULL;
1311 else if (is_thin_pntr (type))
1312 {
1313 type = thin_descriptor_type (type);
1314 if (type == NULL)
1315 return NULL;
1316 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1317 if (r != NULL)
1318 return ada_check_typedef (r);
1319 }
1320 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1321 {
1322 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1323 if (r != NULL)
1324 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1325 }
1326 return NULL;
1327 }
1328
1329 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1330 one, a pointer to its bounds data. Otherwise NULL. */
1331
1332 static struct value *
1333 desc_bounds (struct value *arr)
1334 {
1335 struct type *type = ada_check_typedef (value_type (arr));
1336 if (is_thin_pntr (type))
1337 {
1338 struct type *bounds_type =
1339 desc_bounds_type (thin_descriptor_type (type));
1340 LONGEST addr;
1341
1342 if (bounds_type == NULL)
1343 error (_("Bad GNAT array descriptor"));
1344
1345 /* NOTE: The following calculation is not really kosher, but
1346 since desc_type is an XVE-encoded type (and shouldn't be),
1347 the correct calculation is a real pain. FIXME (and fix GCC). */
1348 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1349 addr = value_as_long (arr);
1350 else
1351 addr = value_address (arr);
1352
1353 return
1354 value_from_longest (lookup_pointer_type (bounds_type),
1355 addr - TYPE_LENGTH (bounds_type));
1356 }
1357
1358 else if (is_thick_pntr (type))
1359 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1360 _("Bad GNAT array descriptor"));
1361 else
1362 return NULL;
1363 }
1364
1365 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1366 position of the field containing the address of the bounds data. */
1367
1368 static int
1369 fat_pntr_bounds_bitpos (struct type *type)
1370 {
1371 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1372 }
1373
1374 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1375 size of the field containing the address of the bounds data. */
1376
1377 static int
1378 fat_pntr_bounds_bitsize (struct type *type)
1379 {
1380 type = desc_base_type (type);
1381
1382 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1383 return TYPE_FIELD_BITSIZE (type, 1);
1384 else
1385 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1386 }
1387
1388 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1389 pointer to one, the type of its array data (a array-with-no-bounds type);
1390 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1391 data. */
1392
1393 static struct type *
1394 desc_data_target_type (struct type *type)
1395 {
1396 type = desc_base_type (type);
1397
1398 /* NOTE: The following is bogus; see comment in desc_bounds. */
1399 if (is_thin_pntr (type))
1400 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1401 else if (is_thick_pntr (type))
1402 {
1403 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1404
1405 if (data_type
1406 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1407 return TYPE_TARGET_TYPE (data_type);
1408 }
1409
1410 return NULL;
1411 }
1412
1413 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1414 its array data. */
1415
1416 static struct value *
1417 desc_data (struct value *arr)
1418 {
1419 struct type *type = value_type (arr);
1420 if (is_thin_pntr (type))
1421 return thin_data_pntr (arr);
1422 else if (is_thick_pntr (type))
1423 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1424 _("Bad GNAT array descriptor"));
1425 else
1426 return NULL;
1427 }
1428
1429
1430 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1431 position of the field containing the address of the data. */
1432
1433 static int
1434 fat_pntr_data_bitpos (struct type *type)
1435 {
1436 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1437 }
1438
1439 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1440 size of the field containing the address of the data. */
1441
1442 static int
1443 fat_pntr_data_bitsize (struct type *type)
1444 {
1445 type = desc_base_type (type);
1446
1447 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1448 return TYPE_FIELD_BITSIZE (type, 0);
1449 else
1450 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1451 }
1452
1453 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1454 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1455 bound, if WHICH is 1. The first bound is I=1. */
1456
1457 static struct value *
1458 desc_one_bound (struct value *bounds, int i, int which)
1459 {
1460 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1461 _("Bad GNAT array descriptor bounds"));
1462 }
1463
1464 /* If BOUNDS is an array-bounds structure type, return the bit position
1465 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1466 bound, if WHICH is 1. The first bound is I=1. */
1467
1468 static int
1469 desc_bound_bitpos (struct type *type, int i, int which)
1470 {
1471 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1472 }
1473
1474 /* If BOUNDS is an array-bounds structure type, return the bit field size
1475 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1476 bound, if WHICH is 1. The first bound is I=1. */
1477
1478 static int
1479 desc_bound_bitsize (struct type *type, int i, int which)
1480 {
1481 type = desc_base_type (type);
1482
1483 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1484 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1485 else
1486 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1487 }
1488
1489 /* If TYPE is the type of an array-bounds structure, the type of its
1490 Ith bound (numbering from 1). Otherwise, NULL. */
1491
1492 static struct type *
1493 desc_index_type (struct type *type, int i)
1494 {
1495 type = desc_base_type (type);
1496
1497 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1498 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1499 else
1500 return NULL;
1501 }
1502
1503 /* The number of index positions in the array-bounds type TYPE.
1504 Return 0 if TYPE is NULL. */
1505
1506 static int
1507 desc_arity (struct type *type)
1508 {
1509 type = desc_base_type (type);
1510
1511 if (type != NULL)
1512 return TYPE_NFIELDS (type) / 2;
1513 return 0;
1514 }
1515
1516 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1517 an array descriptor type (representing an unconstrained array
1518 type). */
1519
1520 static int
1521 ada_is_direct_array_type (struct type *type)
1522 {
1523 if (type == NULL)
1524 return 0;
1525 type = ada_check_typedef (type);
1526 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1527 || ada_is_array_descriptor_type (type));
1528 }
1529
1530 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1531 * to one. */
1532
1533 static int
1534 ada_is_array_type (struct type *type)
1535 {
1536 while (type != NULL
1537 && (TYPE_CODE (type) == TYPE_CODE_PTR
1538 || TYPE_CODE (type) == TYPE_CODE_REF))
1539 type = TYPE_TARGET_TYPE (type);
1540 return ada_is_direct_array_type (type);
1541 }
1542
1543 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1544
1545 int
1546 ada_is_simple_array_type (struct type *type)
1547 {
1548 if (type == NULL)
1549 return 0;
1550 type = ada_check_typedef (type);
1551 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1552 || (TYPE_CODE (type) == TYPE_CODE_PTR
1553 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1554 }
1555
1556 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1557
1558 int
1559 ada_is_array_descriptor_type (struct type *type)
1560 {
1561 struct type *data_type = desc_data_target_type (type);
1562
1563 if (type == NULL)
1564 return 0;
1565 type = ada_check_typedef (type);
1566 return (data_type != NULL
1567 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1568 && desc_arity (desc_bounds_type (type)) > 0);
1569 }
1570
1571 /* Non-zero iff type is a partially mal-formed GNAT array
1572 descriptor. FIXME: This is to compensate for some problems with
1573 debugging output from GNAT. Re-examine periodically to see if it
1574 is still needed. */
1575
1576 int
1577 ada_is_bogus_array_descriptor (struct type *type)
1578 {
1579 return
1580 type != NULL
1581 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1582 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1583 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1584 && !ada_is_array_descriptor_type (type);
1585 }
1586
1587
1588 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1589 (fat pointer) returns the type of the array data described---specifically,
1590 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1591 in from the descriptor; otherwise, they are left unspecified. If
1592 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1593 returns NULL. The result is simply the type of ARR if ARR is not
1594 a descriptor. */
1595 struct type *
1596 ada_type_of_array (struct value *arr, int bounds)
1597 {
1598 if (ada_is_packed_array_type (value_type (arr)))
1599 return decode_packed_array_type (value_type (arr));
1600
1601 if (!ada_is_array_descriptor_type (value_type (arr)))
1602 return value_type (arr);
1603
1604 if (!bounds)
1605 return
1606 ada_check_typedef (desc_data_target_type (value_type (arr)));
1607 else
1608 {
1609 struct type *elt_type;
1610 int arity;
1611 struct value *descriptor;
1612
1613 elt_type = ada_array_element_type (value_type (arr), -1);
1614 arity = ada_array_arity (value_type (arr));
1615
1616 if (elt_type == NULL || arity == 0)
1617 return ada_check_typedef (value_type (arr));
1618
1619 descriptor = desc_bounds (arr);
1620 if (value_as_long (descriptor) == 0)
1621 return NULL;
1622 while (arity > 0)
1623 {
1624 struct type *range_type = alloc_type_copy (value_type (arr));
1625 struct type *array_type = alloc_type_copy (value_type (arr));
1626 struct value *low = desc_one_bound (descriptor, arity, 0);
1627 struct value *high = desc_one_bound (descriptor, arity, 1);
1628 arity -= 1;
1629
1630 create_range_type (range_type, value_type (low),
1631 longest_to_int (value_as_long (low)),
1632 longest_to_int (value_as_long (high)));
1633 elt_type = create_array_type (array_type, elt_type, range_type);
1634 }
1635
1636 return lookup_pointer_type (elt_type);
1637 }
1638 }
1639
1640 /* If ARR does not represent an array, returns ARR unchanged.
1641 Otherwise, returns either a standard GDB array with bounds set
1642 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1643 GDB array. Returns NULL if ARR is a null fat pointer. */
1644
1645 struct value *
1646 ada_coerce_to_simple_array_ptr (struct value *arr)
1647 {
1648 if (ada_is_array_descriptor_type (value_type (arr)))
1649 {
1650 struct type *arrType = ada_type_of_array (arr, 1);
1651 if (arrType == NULL)
1652 return NULL;
1653 return value_cast (arrType, value_copy (desc_data (arr)));
1654 }
1655 else if (ada_is_packed_array_type (value_type (arr)))
1656 return decode_packed_array (arr);
1657 else
1658 return arr;
1659 }
1660
1661 /* If ARR does not represent an array, returns ARR unchanged.
1662 Otherwise, returns a standard GDB array describing ARR (which may
1663 be ARR itself if it already is in the proper form). */
1664
1665 static struct value *
1666 ada_coerce_to_simple_array (struct value *arr)
1667 {
1668 if (ada_is_array_descriptor_type (value_type (arr)))
1669 {
1670 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1671 if (arrVal == NULL)
1672 error (_("Bounds unavailable for null array pointer."));
1673 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1674 return value_ind (arrVal);
1675 }
1676 else if (ada_is_packed_array_type (value_type (arr)))
1677 return decode_packed_array (arr);
1678 else
1679 return arr;
1680 }
1681
1682 /* If TYPE represents a GNAT array type, return it translated to an
1683 ordinary GDB array type (possibly with BITSIZE fields indicating
1684 packing). For other types, is the identity. */
1685
1686 struct type *
1687 ada_coerce_to_simple_array_type (struct type *type)
1688 {
1689 if (ada_is_packed_array_type (type))
1690 return decode_packed_array_type (type);
1691
1692 if (ada_is_array_descriptor_type (type))
1693 return ada_check_typedef (desc_data_target_type (type));
1694
1695 return type;
1696 }
1697
1698 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1699
1700 int
1701 ada_is_packed_array_type (struct type *type)
1702 {
1703 if (type == NULL)
1704 return 0;
1705 type = desc_base_type (type);
1706 type = ada_check_typedef (type);
1707 return
1708 ada_type_name (type) != NULL
1709 && strstr (ada_type_name (type), "___XP") != NULL;
1710 }
1711
1712 /* Given that TYPE is a standard GDB array type with all bounds filled
1713 in, and that the element size of its ultimate scalar constituents
1714 (that is, either its elements, or, if it is an array of arrays, its
1715 elements' elements, etc.) is *ELT_BITS, return an identical type,
1716 but with the bit sizes of its elements (and those of any
1717 constituent arrays) recorded in the BITSIZE components of its
1718 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1719 in bits. */
1720
1721 static struct type *
1722 packed_array_type (struct type *type, long *elt_bits)
1723 {
1724 struct type *new_elt_type;
1725 struct type *new_type;
1726 LONGEST low_bound, high_bound;
1727
1728 type = ada_check_typedef (type);
1729 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1730 return type;
1731
1732 new_type = alloc_type_copy (type);
1733 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1734 elt_bits);
1735 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1736 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1737 TYPE_NAME (new_type) = ada_type_name (type);
1738
1739 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1740 &low_bound, &high_bound) < 0)
1741 low_bound = high_bound = 0;
1742 if (high_bound < low_bound)
1743 *elt_bits = TYPE_LENGTH (new_type) = 0;
1744 else
1745 {
1746 *elt_bits *= (high_bound - low_bound + 1);
1747 TYPE_LENGTH (new_type) =
1748 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1749 }
1750
1751 TYPE_FIXED_INSTANCE (new_type) = 1;
1752 return new_type;
1753 }
1754
1755 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1756
1757 static struct type *
1758 decode_packed_array_type (struct type *type)
1759 {
1760 struct symbol *sym;
1761 struct block **blocks;
1762 char *raw_name = ada_type_name (ada_check_typedef (type));
1763 char *name;
1764 char *tail;
1765 struct type *shadow_type;
1766 long bits;
1767 int i, n;
1768
1769 if (!raw_name)
1770 raw_name = ada_type_name (desc_base_type (type));
1771
1772 if (!raw_name)
1773 return NULL;
1774
1775 name = (char *) alloca (strlen (raw_name) + 1);
1776 tail = strstr (raw_name, "___XP");
1777 type = desc_base_type (type);
1778
1779 memcpy (name, raw_name, tail - raw_name);
1780 name[tail - raw_name] = '\000';
1781
1782 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1783 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1784 {
1785 lim_warning (_("could not find bounds information on packed array"));
1786 return NULL;
1787 }
1788 shadow_type = SYMBOL_TYPE (sym);
1789 CHECK_TYPEDEF (shadow_type);
1790
1791 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1792 {
1793 lim_warning (_("could not understand bounds information on packed array"));
1794 return NULL;
1795 }
1796
1797 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1798 {
1799 lim_warning
1800 (_("could not understand bit size information on packed array"));
1801 return NULL;
1802 }
1803
1804 return packed_array_type (shadow_type, &bits);
1805 }
1806
1807 /* Given that ARR is a struct value *indicating a GNAT packed array,
1808 returns a simple array that denotes that array. Its type is a
1809 standard GDB array type except that the BITSIZEs of the array
1810 target types are set to the number of bits in each element, and the
1811 type length is set appropriately. */
1812
1813 static struct value *
1814 decode_packed_array (struct value *arr)
1815 {
1816 struct type *type;
1817
1818 arr = ada_coerce_ref (arr);
1819
1820 /* If our value is a pointer, then dererence it. Make sure that
1821 this operation does not cause the target type to be fixed, as
1822 this would indirectly cause this array to be decoded. The rest
1823 of the routine assumes that the array hasn't been decoded yet,
1824 so we use the basic "value_ind" routine to perform the dereferencing,
1825 as opposed to using "ada_value_ind". */
1826 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1827 arr = value_ind (arr);
1828
1829 type = decode_packed_array_type (value_type (arr));
1830 if (type == NULL)
1831 {
1832 error (_("can't unpack array"));
1833 return NULL;
1834 }
1835
1836 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
1837 && ada_is_modular_type (value_type (arr)))
1838 {
1839 /* This is a (right-justified) modular type representing a packed
1840 array with no wrapper. In order to interpret the value through
1841 the (left-justified) packed array type we just built, we must
1842 first left-justify it. */
1843 int bit_size, bit_pos;
1844 ULONGEST mod;
1845
1846 mod = ada_modulus (value_type (arr)) - 1;
1847 bit_size = 0;
1848 while (mod > 0)
1849 {
1850 bit_size += 1;
1851 mod >>= 1;
1852 }
1853 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1854 arr = ada_value_primitive_packed_val (arr, NULL,
1855 bit_pos / HOST_CHAR_BIT,
1856 bit_pos % HOST_CHAR_BIT,
1857 bit_size,
1858 type);
1859 }
1860
1861 return coerce_unspec_val_to_type (arr, type);
1862 }
1863
1864
1865 /* The value of the element of packed array ARR at the ARITY indices
1866 given in IND. ARR must be a simple array. */
1867
1868 static struct value *
1869 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1870 {
1871 int i;
1872 int bits, elt_off, bit_off;
1873 long elt_total_bit_offset;
1874 struct type *elt_type;
1875 struct value *v;
1876
1877 bits = 0;
1878 elt_total_bit_offset = 0;
1879 elt_type = ada_check_typedef (value_type (arr));
1880 for (i = 0; i < arity; i += 1)
1881 {
1882 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1883 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1884 error
1885 (_("attempt to do packed indexing of something other than a packed array"));
1886 else
1887 {
1888 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1889 LONGEST lowerbound, upperbound;
1890 LONGEST idx;
1891
1892 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1893 {
1894 lim_warning (_("don't know bounds of array"));
1895 lowerbound = upperbound = 0;
1896 }
1897
1898 idx = pos_atr (ind[i]);
1899 if (idx < lowerbound || idx > upperbound)
1900 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1901 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1902 elt_total_bit_offset += (idx - lowerbound) * bits;
1903 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1904 }
1905 }
1906 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1907 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1908
1909 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1910 bits, elt_type);
1911 return v;
1912 }
1913
1914 /* Non-zero iff TYPE includes negative integer values. */
1915
1916 static int
1917 has_negatives (struct type *type)
1918 {
1919 switch (TYPE_CODE (type))
1920 {
1921 default:
1922 return 0;
1923 case TYPE_CODE_INT:
1924 return !TYPE_UNSIGNED (type);
1925 case TYPE_CODE_RANGE:
1926 return TYPE_LOW_BOUND (type) < 0;
1927 }
1928 }
1929
1930
1931 /* Create a new value of type TYPE from the contents of OBJ starting
1932 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1933 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1934 assigning through the result will set the field fetched from.
1935 VALADDR is ignored unless OBJ is NULL, in which case,
1936 VALADDR+OFFSET must address the start of storage containing the
1937 packed value. The value returned in this case is never an lval.
1938 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1939
1940 struct value *
1941 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1942 long offset, int bit_offset, int bit_size,
1943 struct type *type)
1944 {
1945 struct value *v;
1946 int src, /* Index into the source area */
1947 targ, /* Index into the target area */
1948 srcBitsLeft, /* Number of source bits left to move */
1949 nsrc, ntarg, /* Number of source and target bytes */
1950 unusedLS, /* Number of bits in next significant
1951 byte of source that are unused */
1952 accumSize; /* Number of meaningful bits in accum */
1953 unsigned char *bytes; /* First byte containing data to unpack */
1954 unsigned char *unpacked;
1955 unsigned long accum; /* Staging area for bits being transferred */
1956 unsigned char sign;
1957 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1958 /* Transmit bytes from least to most significant; delta is the direction
1959 the indices move. */
1960 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
1961
1962 type = ada_check_typedef (type);
1963
1964 if (obj == NULL)
1965 {
1966 v = allocate_value (type);
1967 bytes = (unsigned char *) (valaddr + offset);
1968 }
1969 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
1970 {
1971 v = value_at (type,
1972 value_address (obj) + offset);
1973 bytes = (unsigned char *) alloca (len);
1974 read_memory (value_address (v), bytes, len);
1975 }
1976 else
1977 {
1978 v = allocate_value (type);
1979 bytes = (unsigned char *) value_contents (obj) + offset;
1980 }
1981
1982 if (obj != NULL)
1983 {
1984 CORE_ADDR new_addr;
1985 set_value_component_location (v, obj);
1986 new_addr = value_address (obj) + offset;
1987 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1988 set_value_bitsize (v, bit_size);
1989 if (value_bitpos (v) >= HOST_CHAR_BIT)
1990 {
1991 ++new_addr;
1992 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1993 }
1994 set_value_address (v, new_addr);
1995 }
1996 else
1997 set_value_bitsize (v, bit_size);
1998 unpacked = (unsigned char *) value_contents (v);
1999
2000 srcBitsLeft = bit_size;
2001 nsrc = len;
2002 ntarg = TYPE_LENGTH (type);
2003 sign = 0;
2004 if (bit_size == 0)
2005 {
2006 memset (unpacked, 0, TYPE_LENGTH (type));
2007 return v;
2008 }
2009 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2010 {
2011 src = len - 1;
2012 if (has_negatives (type)
2013 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2014 sign = ~0;
2015
2016 unusedLS =
2017 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2018 % HOST_CHAR_BIT;
2019
2020 switch (TYPE_CODE (type))
2021 {
2022 case TYPE_CODE_ARRAY:
2023 case TYPE_CODE_UNION:
2024 case TYPE_CODE_STRUCT:
2025 /* Non-scalar values must be aligned at a byte boundary... */
2026 accumSize =
2027 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2028 /* ... And are placed at the beginning (most-significant) bytes
2029 of the target. */
2030 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2031 ntarg = targ + 1;
2032 break;
2033 default:
2034 accumSize = 0;
2035 targ = TYPE_LENGTH (type) - 1;
2036 break;
2037 }
2038 }
2039 else
2040 {
2041 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2042
2043 src = targ = 0;
2044 unusedLS = bit_offset;
2045 accumSize = 0;
2046
2047 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2048 sign = ~0;
2049 }
2050
2051 accum = 0;
2052 while (nsrc > 0)
2053 {
2054 /* Mask for removing bits of the next source byte that are not
2055 part of the value. */
2056 unsigned int unusedMSMask =
2057 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2058 1;
2059 /* Sign-extend bits for this byte. */
2060 unsigned int signMask = sign & ~unusedMSMask;
2061 accum |=
2062 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2063 accumSize += HOST_CHAR_BIT - unusedLS;
2064 if (accumSize >= HOST_CHAR_BIT)
2065 {
2066 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2067 accumSize -= HOST_CHAR_BIT;
2068 accum >>= HOST_CHAR_BIT;
2069 ntarg -= 1;
2070 targ += delta;
2071 }
2072 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2073 unusedLS = 0;
2074 nsrc -= 1;
2075 src += delta;
2076 }
2077 while (ntarg > 0)
2078 {
2079 accum |= sign << accumSize;
2080 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2081 accumSize -= HOST_CHAR_BIT;
2082 accum >>= HOST_CHAR_BIT;
2083 ntarg -= 1;
2084 targ += delta;
2085 }
2086
2087 return v;
2088 }
2089
2090 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2091 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2092 not overlap. */
2093 static void
2094 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2095 int src_offset, int n, int bits_big_endian_p)
2096 {
2097 unsigned int accum, mask;
2098 int accum_bits, chunk_size;
2099
2100 target += targ_offset / HOST_CHAR_BIT;
2101 targ_offset %= HOST_CHAR_BIT;
2102 source += src_offset / HOST_CHAR_BIT;
2103 src_offset %= HOST_CHAR_BIT;
2104 if (bits_big_endian_p)
2105 {
2106 accum = (unsigned char) *source;
2107 source += 1;
2108 accum_bits = HOST_CHAR_BIT - src_offset;
2109
2110 while (n > 0)
2111 {
2112 int unused_right;
2113 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2114 accum_bits += HOST_CHAR_BIT;
2115 source += 1;
2116 chunk_size = HOST_CHAR_BIT - targ_offset;
2117 if (chunk_size > n)
2118 chunk_size = n;
2119 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2120 mask = ((1 << chunk_size) - 1) << unused_right;
2121 *target =
2122 (*target & ~mask)
2123 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2124 n -= chunk_size;
2125 accum_bits -= chunk_size;
2126 target += 1;
2127 targ_offset = 0;
2128 }
2129 }
2130 else
2131 {
2132 accum = (unsigned char) *source >> src_offset;
2133 source += 1;
2134 accum_bits = HOST_CHAR_BIT - src_offset;
2135
2136 while (n > 0)
2137 {
2138 accum = accum + ((unsigned char) *source << accum_bits);
2139 accum_bits += HOST_CHAR_BIT;
2140 source += 1;
2141 chunk_size = HOST_CHAR_BIT - targ_offset;
2142 if (chunk_size > n)
2143 chunk_size = n;
2144 mask = ((1 << chunk_size) - 1) << targ_offset;
2145 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2146 n -= chunk_size;
2147 accum_bits -= chunk_size;
2148 accum >>= chunk_size;
2149 target += 1;
2150 targ_offset = 0;
2151 }
2152 }
2153 }
2154
2155 /* Store the contents of FROMVAL into the location of TOVAL.
2156 Return a new value with the location of TOVAL and contents of
2157 FROMVAL. Handles assignment into packed fields that have
2158 floating-point or non-scalar types. */
2159
2160 static struct value *
2161 ada_value_assign (struct value *toval, struct value *fromval)
2162 {
2163 struct type *type = value_type (toval);
2164 int bits = value_bitsize (toval);
2165
2166 toval = ada_coerce_ref (toval);
2167 fromval = ada_coerce_ref (fromval);
2168
2169 if (ada_is_direct_array_type (value_type (toval)))
2170 toval = ada_coerce_to_simple_array (toval);
2171 if (ada_is_direct_array_type (value_type (fromval)))
2172 fromval = ada_coerce_to_simple_array (fromval);
2173
2174 if (!deprecated_value_modifiable (toval))
2175 error (_("Left operand of assignment is not a modifiable lvalue."));
2176
2177 if (VALUE_LVAL (toval) == lval_memory
2178 && bits > 0
2179 && (TYPE_CODE (type) == TYPE_CODE_FLT
2180 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2181 {
2182 int len = (value_bitpos (toval)
2183 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2184 int from_size;
2185 char *buffer = (char *) alloca (len);
2186 struct value *val;
2187 CORE_ADDR to_addr = value_address (toval);
2188
2189 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2190 fromval = value_cast (type, fromval);
2191
2192 read_memory (to_addr, buffer, len);
2193 from_size = value_bitsize (fromval);
2194 if (from_size == 0)
2195 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2196 if (gdbarch_bits_big_endian (get_type_arch (type)))
2197 move_bits (buffer, value_bitpos (toval),
2198 value_contents (fromval), from_size - bits, bits, 1);
2199 else
2200 move_bits (buffer, value_bitpos (toval),
2201 value_contents (fromval), 0, bits, 0);
2202 write_memory (to_addr, buffer, len);
2203 if (deprecated_memory_changed_hook)
2204 deprecated_memory_changed_hook (to_addr, len);
2205
2206 val = value_copy (toval);
2207 memcpy (value_contents_raw (val), value_contents (fromval),
2208 TYPE_LENGTH (type));
2209 deprecated_set_value_type (val, type);
2210
2211 return val;
2212 }
2213
2214 return value_assign (toval, fromval);
2215 }
2216
2217
2218 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2219 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2220 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2221 * COMPONENT, and not the inferior's memory. The current contents
2222 * of COMPONENT are ignored. */
2223 static void
2224 value_assign_to_component (struct value *container, struct value *component,
2225 struct value *val)
2226 {
2227 LONGEST offset_in_container =
2228 (LONGEST) (value_address (component) - value_address (container));
2229 int bit_offset_in_container =
2230 value_bitpos (component) - value_bitpos (container);
2231 int bits;
2232
2233 val = value_cast (value_type (component), val);
2234
2235 if (value_bitsize (component) == 0)
2236 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2237 else
2238 bits = value_bitsize (component);
2239
2240 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2241 move_bits (value_contents_writeable (container) + offset_in_container,
2242 value_bitpos (container) + bit_offset_in_container,
2243 value_contents (val),
2244 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2245 bits, 1);
2246 else
2247 move_bits (value_contents_writeable (container) + offset_in_container,
2248 value_bitpos (container) + bit_offset_in_container,
2249 value_contents (val), 0, bits, 0);
2250 }
2251
2252 /* The value of the element of array ARR at the ARITY indices given in IND.
2253 ARR may be either a simple array, GNAT array descriptor, or pointer
2254 thereto. */
2255
2256 struct value *
2257 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2258 {
2259 int k;
2260 struct value *elt;
2261 struct type *elt_type;
2262
2263 elt = ada_coerce_to_simple_array (arr);
2264
2265 elt_type = ada_check_typedef (value_type (elt));
2266 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2267 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2268 return value_subscript_packed (elt, arity, ind);
2269
2270 for (k = 0; k < arity; k += 1)
2271 {
2272 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2273 error (_("too many subscripts (%d expected)"), k);
2274 elt = value_subscript (elt, pos_atr (ind[k]));
2275 }
2276 return elt;
2277 }
2278
2279 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2280 value of the element of *ARR at the ARITY indices given in
2281 IND. Does not read the entire array into memory. */
2282
2283 static struct value *
2284 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2285 struct value **ind)
2286 {
2287 int k;
2288
2289 for (k = 0; k < arity; k += 1)
2290 {
2291 LONGEST lwb, upb;
2292
2293 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2294 error (_("too many subscripts (%d expected)"), k);
2295 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2296 value_copy (arr));
2297 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2298 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2299 type = TYPE_TARGET_TYPE (type);
2300 }
2301
2302 return value_ind (arr);
2303 }
2304
2305 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2306 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2307 elements starting at index LOW. The lower bound of this array is LOW, as
2308 per Ada rules. */
2309 static struct value *
2310 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2311 int low, int high)
2312 {
2313 CORE_ADDR base = value_as_address (array_ptr)
2314 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2315 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2316 struct type *index_type =
2317 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2318 low, high);
2319 struct type *slice_type =
2320 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2321 return value_at_lazy (slice_type, base);
2322 }
2323
2324
2325 static struct value *
2326 ada_value_slice (struct value *array, int low, int high)
2327 {
2328 struct type *type = value_type (array);
2329 struct type *index_type =
2330 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2331 struct type *slice_type =
2332 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2333 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2334 }
2335
2336 /* If type is a record type in the form of a standard GNAT array
2337 descriptor, returns the number of dimensions for type. If arr is a
2338 simple array, returns the number of "array of"s that prefix its
2339 type designation. Otherwise, returns 0. */
2340
2341 int
2342 ada_array_arity (struct type *type)
2343 {
2344 int arity;
2345
2346 if (type == NULL)
2347 return 0;
2348
2349 type = desc_base_type (type);
2350
2351 arity = 0;
2352 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2353 return desc_arity (desc_bounds_type (type));
2354 else
2355 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2356 {
2357 arity += 1;
2358 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2359 }
2360
2361 return arity;
2362 }
2363
2364 /* If TYPE is a record type in the form of a standard GNAT array
2365 descriptor or a simple array type, returns the element type for
2366 TYPE after indexing by NINDICES indices, or by all indices if
2367 NINDICES is -1. Otherwise, returns NULL. */
2368
2369 struct type *
2370 ada_array_element_type (struct type *type, int nindices)
2371 {
2372 type = desc_base_type (type);
2373
2374 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2375 {
2376 int k;
2377 struct type *p_array_type;
2378
2379 p_array_type = desc_data_target_type (type);
2380
2381 k = ada_array_arity (type);
2382 if (k == 0)
2383 return NULL;
2384
2385 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2386 if (nindices >= 0 && k > nindices)
2387 k = nindices;
2388 while (k > 0 && p_array_type != NULL)
2389 {
2390 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2391 k -= 1;
2392 }
2393 return p_array_type;
2394 }
2395 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2396 {
2397 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2398 {
2399 type = TYPE_TARGET_TYPE (type);
2400 nindices -= 1;
2401 }
2402 return type;
2403 }
2404
2405 return NULL;
2406 }
2407
2408 /* The type of nth index in arrays of given type (n numbering from 1).
2409 Does not examine memory. Throws an error if N is invalid or TYPE
2410 is not an array type. NAME is the name of the Ada attribute being
2411 evaluated ('range, 'first, 'last, or 'length); it is used in building
2412 the error message. */
2413
2414 static struct type *
2415 ada_index_type (struct type *type, int n, const char *name)
2416 {
2417 struct type *result_type;
2418
2419 type = desc_base_type (type);
2420
2421 if (n < 0 || n > ada_array_arity (type))
2422 error (_("invalid dimension number to '%s"), name);
2423
2424 if (ada_is_simple_array_type (type))
2425 {
2426 int i;
2427
2428 for (i = 1; i < n; i += 1)
2429 type = TYPE_TARGET_TYPE (type);
2430 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2431 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2432 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2433 perhaps stabsread.c would make more sense. */
2434 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2435 result_type = NULL;
2436 }
2437 else
2438 {
2439 result_type = desc_index_type (desc_bounds_type (type), n);
2440 if (result_type == NULL)
2441 error (_("attempt to take bound of something that is not an array"));
2442 }
2443
2444 return result_type;
2445 }
2446
2447 /* Given that arr is an array type, returns the lower bound of the
2448 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2449 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2450 array-descriptor type. It works for other arrays with bounds supplied
2451 by run-time quantities other than discriminants. */
2452
2453 static LONGEST
2454 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2455 {
2456 struct type *type, *elt_type, *index_type_desc, *index_type;
2457 LONGEST retval;
2458 int i;
2459
2460 gdb_assert (which == 0 || which == 1);
2461
2462 if (ada_is_packed_array_type (arr_type))
2463 arr_type = decode_packed_array_type (arr_type);
2464
2465 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2466 return (LONGEST) - which;
2467
2468 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2469 type = TYPE_TARGET_TYPE (arr_type);
2470 else
2471 type = arr_type;
2472
2473 elt_type = type;
2474 for (i = n; i > 1; i--)
2475 elt_type = TYPE_TARGET_TYPE (type);
2476
2477 index_type_desc = ada_find_parallel_type (type, "___XA");
2478 if (index_type_desc != NULL)
2479 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2480 NULL, TYPE_INDEX_TYPE (elt_type));
2481 else
2482 index_type = TYPE_INDEX_TYPE (elt_type);
2483
2484 switch (TYPE_CODE (index_type))
2485 {
2486 case TYPE_CODE_RANGE:
2487 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2488 : TYPE_HIGH_BOUND (index_type);
2489 break;
2490 case TYPE_CODE_ENUM:
2491 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2492 : TYPE_FIELD_BITPOS (index_type,
2493 TYPE_NFIELDS (index_type) - 1);
2494 break;
2495 default:
2496 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2497 }
2498
2499 return retval;
2500 }
2501
2502 /* Given that arr is an array value, returns the lower bound of the
2503 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2504 WHICH is 1. This routine will also work for arrays with bounds
2505 supplied by run-time quantities other than discriminants. */
2506
2507 static LONGEST
2508 ada_array_bound (struct value *arr, int n, int which)
2509 {
2510 struct type *arr_type = value_type (arr);
2511
2512 if (ada_is_packed_array_type (arr_type))
2513 return ada_array_bound (decode_packed_array (arr), n, which);
2514 else if (ada_is_simple_array_type (arr_type))
2515 return ada_array_bound_from_type (arr_type, n, which);
2516 else
2517 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2518 }
2519
2520 /* Given that arr is an array value, returns the length of the
2521 nth index. This routine will also work for arrays with bounds
2522 supplied by run-time quantities other than discriminants.
2523 Does not work for arrays indexed by enumeration types with representation
2524 clauses at the moment. */
2525
2526 static LONGEST
2527 ada_array_length (struct value *arr, int n)
2528 {
2529 struct type *arr_type = ada_check_typedef (value_type (arr));
2530
2531 if (ada_is_packed_array_type (arr_type))
2532 return ada_array_length (decode_packed_array (arr), n);
2533
2534 if (ada_is_simple_array_type (arr_type))
2535 return (ada_array_bound_from_type (arr_type, n, 1)
2536 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2537 else
2538 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2539 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2540 }
2541
2542 /* An empty array whose type is that of ARR_TYPE (an array type),
2543 with bounds LOW to LOW-1. */
2544
2545 static struct value *
2546 empty_array (struct type *arr_type, int low)
2547 {
2548 struct type *index_type =
2549 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2550 low, low - 1);
2551 struct type *elt_type = ada_array_element_type (arr_type, 1);
2552 return allocate_value (create_array_type (NULL, elt_type, index_type));
2553 }
2554 \f
2555
2556 /* Name resolution */
2557
2558 /* The "decoded" name for the user-definable Ada operator corresponding
2559 to OP. */
2560
2561 static const char *
2562 ada_decoded_op_name (enum exp_opcode op)
2563 {
2564 int i;
2565
2566 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2567 {
2568 if (ada_opname_table[i].op == op)
2569 return ada_opname_table[i].decoded;
2570 }
2571 error (_("Could not find operator name for opcode"));
2572 }
2573
2574
2575 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2576 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2577 undefined namespace) and converts operators that are
2578 user-defined into appropriate function calls. If CONTEXT_TYPE is
2579 non-null, it provides a preferred result type [at the moment, only
2580 type void has any effect---causing procedures to be preferred over
2581 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2582 return type is preferred. May change (expand) *EXP. */
2583
2584 static void
2585 resolve (struct expression **expp, int void_context_p)
2586 {
2587 struct type *context_type = NULL;
2588 int pc = 0;
2589
2590 if (void_context_p)
2591 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2592
2593 resolve_subexp (expp, &pc, 1, context_type);
2594 }
2595
2596 /* Resolve the operator of the subexpression beginning at
2597 position *POS of *EXPP. "Resolving" consists of replacing
2598 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2599 with their resolutions, replacing built-in operators with
2600 function calls to user-defined operators, where appropriate, and,
2601 when DEPROCEDURE_P is non-zero, converting function-valued variables
2602 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2603 are as in ada_resolve, above. */
2604
2605 static struct value *
2606 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2607 struct type *context_type)
2608 {
2609 int pc = *pos;
2610 int i;
2611 struct expression *exp; /* Convenience: == *expp. */
2612 enum exp_opcode op = (*expp)->elts[pc].opcode;
2613 struct value **argvec; /* Vector of operand types (alloca'ed). */
2614 int nargs; /* Number of operands. */
2615 int oplen;
2616
2617 argvec = NULL;
2618 nargs = 0;
2619 exp = *expp;
2620
2621 /* Pass one: resolve operands, saving their types and updating *pos,
2622 if needed. */
2623 switch (op)
2624 {
2625 case OP_FUNCALL:
2626 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2627 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2628 *pos += 7;
2629 else
2630 {
2631 *pos += 3;
2632 resolve_subexp (expp, pos, 0, NULL);
2633 }
2634 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2635 break;
2636
2637 case UNOP_ADDR:
2638 *pos += 1;
2639 resolve_subexp (expp, pos, 0, NULL);
2640 break;
2641
2642 case UNOP_QUAL:
2643 *pos += 3;
2644 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2645 break;
2646
2647 case OP_ATR_MODULUS:
2648 case OP_ATR_SIZE:
2649 case OP_ATR_TAG:
2650 case OP_ATR_FIRST:
2651 case OP_ATR_LAST:
2652 case OP_ATR_LENGTH:
2653 case OP_ATR_POS:
2654 case OP_ATR_VAL:
2655 case OP_ATR_MIN:
2656 case OP_ATR_MAX:
2657 case TERNOP_IN_RANGE:
2658 case BINOP_IN_BOUNDS:
2659 case UNOP_IN_RANGE:
2660 case OP_AGGREGATE:
2661 case OP_OTHERS:
2662 case OP_CHOICES:
2663 case OP_POSITIONAL:
2664 case OP_DISCRETE_RANGE:
2665 case OP_NAME:
2666 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2667 *pos += oplen;
2668 break;
2669
2670 case BINOP_ASSIGN:
2671 {
2672 struct value *arg1;
2673
2674 *pos += 1;
2675 arg1 = resolve_subexp (expp, pos, 0, NULL);
2676 if (arg1 == NULL)
2677 resolve_subexp (expp, pos, 1, NULL);
2678 else
2679 resolve_subexp (expp, pos, 1, value_type (arg1));
2680 break;
2681 }
2682
2683 case UNOP_CAST:
2684 *pos += 3;
2685 nargs = 1;
2686 break;
2687
2688 case BINOP_ADD:
2689 case BINOP_SUB:
2690 case BINOP_MUL:
2691 case BINOP_DIV:
2692 case BINOP_REM:
2693 case BINOP_MOD:
2694 case BINOP_EXP:
2695 case BINOP_CONCAT:
2696 case BINOP_LOGICAL_AND:
2697 case BINOP_LOGICAL_OR:
2698 case BINOP_BITWISE_AND:
2699 case BINOP_BITWISE_IOR:
2700 case BINOP_BITWISE_XOR:
2701
2702 case BINOP_EQUAL:
2703 case BINOP_NOTEQUAL:
2704 case BINOP_LESS:
2705 case BINOP_GTR:
2706 case BINOP_LEQ:
2707 case BINOP_GEQ:
2708
2709 case BINOP_REPEAT:
2710 case BINOP_SUBSCRIPT:
2711 case BINOP_COMMA:
2712 *pos += 1;
2713 nargs = 2;
2714 break;
2715
2716 case UNOP_NEG:
2717 case UNOP_PLUS:
2718 case UNOP_LOGICAL_NOT:
2719 case UNOP_ABS:
2720 case UNOP_IND:
2721 *pos += 1;
2722 nargs = 1;
2723 break;
2724
2725 case OP_LONG:
2726 case OP_DOUBLE:
2727 case OP_VAR_VALUE:
2728 *pos += 4;
2729 break;
2730
2731 case OP_TYPE:
2732 case OP_BOOL:
2733 case OP_LAST:
2734 case OP_INTERNALVAR:
2735 *pos += 3;
2736 break;
2737
2738 case UNOP_MEMVAL:
2739 *pos += 3;
2740 nargs = 1;
2741 break;
2742
2743 case OP_REGISTER:
2744 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2745 break;
2746
2747 case STRUCTOP_STRUCT:
2748 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2749 nargs = 1;
2750 break;
2751
2752 case TERNOP_SLICE:
2753 *pos += 1;
2754 nargs = 3;
2755 break;
2756
2757 case OP_STRING:
2758 break;
2759
2760 default:
2761 error (_("Unexpected operator during name resolution"));
2762 }
2763
2764 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2765 for (i = 0; i < nargs; i += 1)
2766 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2767 argvec[i] = NULL;
2768 exp = *expp;
2769
2770 /* Pass two: perform any resolution on principal operator. */
2771 switch (op)
2772 {
2773 default:
2774 break;
2775
2776 case OP_VAR_VALUE:
2777 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2778 {
2779 struct ada_symbol_info *candidates;
2780 int n_candidates;
2781
2782 n_candidates =
2783 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2784 (exp->elts[pc + 2].symbol),
2785 exp->elts[pc + 1].block, VAR_DOMAIN,
2786 &candidates);
2787
2788 if (n_candidates > 1)
2789 {
2790 /* Types tend to get re-introduced locally, so if there
2791 are any local symbols that are not types, first filter
2792 out all types. */
2793 int j;
2794 for (j = 0; j < n_candidates; j += 1)
2795 switch (SYMBOL_CLASS (candidates[j].sym))
2796 {
2797 case LOC_REGISTER:
2798 case LOC_ARG:
2799 case LOC_REF_ARG:
2800 case LOC_REGPARM_ADDR:
2801 case LOC_LOCAL:
2802 case LOC_COMPUTED:
2803 goto FoundNonType;
2804 default:
2805 break;
2806 }
2807 FoundNonType:
2808 if (j < n_candidates)
2809 {
2810 j = 0;
2811 while (j < n_candidates)
2812 {
2813 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2814 {
2815 candidates[j] = candidates[n_candidates - 1];
2816 n_candidates -= 1;
2817 }
2818 else
2819 j += 1;
2820 }
2821 }
2822 }
2823
2824 if (n_candidates == 0)
2825 error (_("No definition found for %s"),
2826 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2827 else if (n_candidates == 1)
2828 i = 0;
2829 else if (deprocedure_p
2830 && !is_nonfunction (candidates, n_candidates))
2831 {
2832 i = ada_resolve_function
2833 (candidates, n_candidates, NULL, 0,
2834 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2835 context_type);
2836 if (i < 0)
2837 error (_("Could not find a match for %s"),
2838 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2839 }
2840 else
2841 {
2842 printf_filtered (_("Multiple matches for %s\n"),
2843 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2844 user_select_syms (candidates, n_candidates, 1);
2845 i = 0;
2846 }
2847
2848 exp->elts[pc + 1].block = candidates[i].block;
2849 exp->elts[pc + 2].symbol = candidates[i].sym;
2850 if (innermost_block == NULL
2851 || contained_in (candidates[i].block, innermost_block))
2852 innermost_block = candidates[i].block;
2853 }
2854
2855 if (deprocedure_p
2856 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2857 == TYPE_CODE_FUNC))
2858 {
2859 replace_operator_with_call (expp, pc, 0, 0,
2860 exp->elts[pc + 2].symbol,
2861 exp->elts[pc + 1].block);
2862 exp = *expp;
2863 }
2864 break;
2865
2866 case OP_FUNCALL:
2867 {
2868 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2869 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2870 {
2871 struct ada_symbol_info *candidates;
2872 int n_candidates;
2873
2874 n_candidates =
2875 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2876 (exp->elts[pc + 5].symbol),
2877 exp->elts[pc + 4].block, VAR_DOMAIN,
2878 &candidates);
2879 if (n_candidates == 1)
2880 i = 0;
2881 else
2882 {
2883 i = ada_resolve_function
2884 (candidates, n_candidates,
2885 argvec, nargs,
2886 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2887 context_type);
2888 if (i < 0)
2889 error (_("Could not find a match for %s"),
2890 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2891 }
2892
2893 exp->elts[pc + 4].block = candidates[i].block;
2894 exp->elts[pc + 5].symbol = candidates[i].sym;
2895 if (innermost_block == NULL
2896 || contained_in (candidates[i].block, innermost_block))
2897 innermost_block = candidates[i].block;
2898 }
2899 }
2900 break;
2901 case BINOP_ADD:
2902 case BINOP_SUB:
2903 case BINOP_MUL:
2904 case BINOP_DIV:
2905 case BINOP_REM:
2906 case BINOP_MOD:
2907 case BINOP_CONCAT:
2908 case BINOP_BITWISE_AND:
2909 case BINOP_BITWISE_IOR:
2910 case BINOP_BITWISE_XOR:
2911 case BINOP_EQUAL:
2912 case BINOP_NOTEQUAL:
2913 case BINOP_LESS:
2914 case BINOP_GTR:
2915 case BINOP_LEQ:
2916 case BINOP_GEQ:
2917 case BINOP_EXP:
2918 case UNOP_NEG:
2919 case UNOP_PLUS:
2920 case UNOP_LOGICAL_NOT:
2921 case UNOP_ABS:
2922 if (possible_user_operator_p (op, argvec))
2923 {
2924 struct ada_symbol_info *candidates;
2925 int n_candidates;
2926
2927 n_candidates =
2928 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2929 (struct block *) NULL, VAR_DOMAIN,
2930 &candidates);
2931 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2932 ada_decoded_op_name (op), NULL);
2933 if (i < 0)
2934 break;
2935
2936 replace_operator_with_call (expp, pc, nargs, 1,
2937 candidates[i].sym, candidates[i].block);
2938 exp = *expp;
2939 }
2940 break;
2941
2942 case OP_TYPE:
2943 case OP_REGISTER:
2944 return NULL;
2945 }
2946
2947 *pos = pc;
2948 return evaluate_subexp_type (exp, pos);
2949 }
2950
2951 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2952 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2953 a non-pointer. A type of 'void' (which is never a valid expression type)
2954 by convention matches anything. */
2955 /* The term "match" here is rather loose. The match is heuristic and
2956 liberal. FIXME: TOO liberal, in fact. */
2957
2958 static int
2959 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2960 {
2961 ftype = ada_check_typedef (ftype);
2962 atype = ada_check_typedef (atype);
2963
2964 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2965 ftype = TYPE_TARGET_TYPE (ftype);
2966 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2967 atype = TYPE_TARGET_TYPE (atype);
2968
2969 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2970 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2971 return 1;
2972
2973 switch (TYPE_CODE (ftype))
2974 {
2975 default:
2976 return 1;
2977 case TYPE_CODE_PTR:
2978 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2979 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2980 TYPE_TARGET_TYPE (atype), 0);
2981 else
2982 return (may_deref
2983 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2984 case TYPE_CODE_INT:
2985 case TYPE_CODE_ENUM:
2986 case TYPE_CODE_RANGE:
2987 switch (TYPE_CODE (atype))
2988 {
2989 case TYPE_CODE_INT:
2990 case TYPE_CODE_ENUM:
2991 case TYPE_CODE_RANGE:
2992 return 1;
2993 default:
2994 return 0;
2995 }
2996
2997 case TYPE_CODE_ARRAY:
2998 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2999 || ada_is_array_descriptor_type (atype));
3000
3001 case TYPE_CODE_STRUCT:
3002 if (ada_is_array_descriptor_type (ftype))
3003 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3004 || ada_is_array_descriptor_type (atype));
3005 else
3006 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3007 && !ada_is_array_descriptor_type (atype));
3008
3009 case TYPE_CODE_UNION:
3010 case TYPE_CODE_FLT:
3011 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3012 }
3013 }
3014
3015 /* Return non-zero if the formals of FUNC "sufficiently match" the
3016 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3017 may also be an enumeral, in which case it is treated as a 0-
3018 argument function. */
3019
3020 static int
3021 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3022 {
3023 int i;
3024 struct type *func_type = SYMBOL_TYPE (func);
3025
3026 if (SYMBOL_CLASS (func) == LOC_CONST
3027 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3028 return (n_actuals == 0);
3029 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3030 return 0;
3031
3032 if (TYPE_NFIELDS (func_type) != n_actuals)
3033 return 0;
3034
3035 for (i = 0; i < n_actuals; i += 1)
3036 {
3037 if (actuals[i] == NULL)
3038 return 0;
3039 else
3040 {
3041 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3042 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3043
3044 if (!ada_type_match (ftype, atype, 1))
3045 return 0;
3046 }
3047 }
3048 return 1;
3049 }
3050
3051 /* False iff function type FUNC_TYPE definitely does not produce a value
3052 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3053 FUNC_TYPE is not a valid function type with a non-null return type
3054 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3055
3056 static int
3057 return_match (struct type *func_type, struct type *context_type)
3058 {
3059 struct type *return_type;
3060
3061 if (func_type == NULL)
3062 return 1;
3063
3064 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3065 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3066 else
3067 return_type = base_type (func_type);
3068 if (return_type == NULL)
3069 return 1;
3070
3071 context_type = base_type (context_type);
3072
3073 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3074 return context_type == NULL || return_type == context_type;
3075 else if (context_type == NULL)
3076 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3077 else
3078 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3079 }
3080
3081
3082 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3083 function (if any) that matches the types of the NARGS arguments in
3084 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3085 that returns that type, then eliminate matches that don't. If
3086 CONTEXT_TYPE is void and there is at least one match that does not
3087 return void, eliminate all matches that do.
3088
3089 Asks the user if there is more than one match remaining. Returns -1
3090 if there is no such symbol or none is selected. NAME is used
3091 solely for messages. May re-arrange and modify SYMS in
3092 the process; the index returned is for the modified vector. */
3093
3094 static int
3095 ada_resolve_function (struct ada_symbol_info syms[],
3096 int nsyms, struct value **args, int nargs,
3097 const char *name, struct type *context_type)
3098 {
3099 int fallback;
3100 int k;
3101 int m; /* Number of hits */
3102
3103 m = 0;
3104 /* In the first pass of the loop, we only accept functions matching
3105 context_type. If none are found, we add a second pass of the loop
3106 where every function is accepted. */
3107 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3108 {
3109 for (k = 0; k < nsyms; k += 1)
3110 {
3111 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3112
3113 if (ada_args_match (syms[k].sym, args, nargs)
3114 && (fallback || return_match (type, context_type)))
3115 {
3116 syms[m] = syms[k];
3117 m += 1;
3118 }
3119 }
3120 }
3121
3122 if (m == 0)
3123 return -1;
3124 else if (m > 1)
3125 {
3126 printf_filtered (_("Multiple matches for %s\n"), name);
3127 user_select_syms (syms, m, 1);
3128 return 0;
3129 }
3130 return 0;
3131 }
3132
3133 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3134 in a listing of choices during disambiguation (see sort_choices, below).
3135 The idea is that overloadings of a subprogram name from the
3136 same package should sort in their source order. We settle for ordering
3137 such symbols by their trailing number (__N or $N). */
3138
3139 static int
3140 encoded_ordered_before (char *N0, char *N1)
3141 {
3142 if (N1 == NULL)
3143 return 0;
3144 else if (N0 == NULL)
3145 return 1;
3146 else
3147 {
3148 int k0, k1;
3149 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3150 ;
3151 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3152 ;
3153 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3154 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3155 {
3156 int n0, n1;
3157 n0 = k0;
3158 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3159 n0 -= 1;
3160 n1 = k1;
3161 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3162 n1 -= 1;
3163 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3164 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3165 }
3166 return (strcmp (N0, N1) < 0);
3167 }
3168 }
3169
3170 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3171 encoded names. */
3172
3173 static void
3174 sort_choices (struct ada_symbol_info syms[], int nsyms)
3175 {
3176 int i;
3177 for (i = 1; i < nsyms; i += 1)
3178 {
3179 struct ada_symbol_info sym = syms[i];
3180 int j;
3181
3182 for (j = i - 1; j >= 0; j -= 1)
3183 {
3184 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3185 SYMBOL_LINKAGE_NAME (sym.sym)))
3186 break;
3187 syms[j + 1] = syms[j];
3188 }
3189 syms[j + 1] = sym;
3190 }
3191 }
3192
3193 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3194 by asking the user (if necessary), returning the number selected,
3195 and setting the first elements of SYMS items. Error if no symbols
3196 selected. */
3197
3198 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3199 to be re-integrated one of these days. */
3200
3201 int
3202 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3203 {
3204 int i;
3205 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3206 int n_chosen;
3207 int first_choice = (max_results == 1) ? 1 : 2;
3208 const char *select_mode = multiple_symbols_select_mode ();
3209
3210 if (max_results < 1)
3211 error (_("Request to select 0 symbols!"));
3212 if (nsyms <= 1)
3213 return nsyms;
3214
3215 if (select_mode == multiple_symbols_cancel)
3216 error (_("\
3217 canceled because the command is ambiguous\n\
3218 See set/show multiple-symbol."));
3219
3220 /* If select_mode is "all", then return all possible symbols.
3221 Only do that if more than one symbol can be selected, of course.
3222 Otherwise, display the menu as usual. */
3223 if (select_mode == multiple_symbols_all && max_results > 1)
3224 return nsyms;
3225
3226 printf_unfiltered (_("[0] cancel\n"));
3227 if (max_results > 1)
3228 printf_unfiltered (_("[1] all\n"));
3229
3230 sort_choices (syms, nsyms);
3231
3232 for (i = 0; i < nsyms; i += 1)
3233 {
3234 if (syms[i].sym == NULL)
3235 continue;
3236
3237 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3238 {
3239 struct symtab_and_line sal =
3240 find_function_start_sal (syms[i].sym, 1);
3241 if (sal.symtab == NULL)
3242 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3243 i + first_choice,
3244 SYMBOL_PRINT_NAME (syms[i].sym),
3245 sal.line);
3246 else
3247 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3248 SYMBOL_PRINT_NAME (syms[i].sym),
3249 sal.symtab->filename, sal.line);
3250 continue;
3251 }
3252 else
3253 {
3254 int is_enumeral =
3255 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3256 && SYMBOL_TYPE (syms[i].sym) != NULL
3257 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3258 struct symtab *symtab = syms[i].sym->symtab;
3259
3260 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3261 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3262 i + first_choice,
3263 SYMBOL_PRINT_NAME (syms[i].sym),
3264 symtab->filename, SYMBOL_LINE (syms[i].sym));
3265 else if (is_enumeral
3266 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3267 {
3268 printf_unfiltered (("[%d] "), i + first_choice);
3269 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3270 gdb_stdout, -1, 0);
3271 printf_unfiltered (_("'(%s) (enumeral)\n"),
3272 SYMBOL_PRINT_NAME (syms[i].sym));
3273 }
3274 else if (symtab != NULL)
3275 printf_unfiltered (is_enumeral
3276 ? _("[%d] %s in %s (enumeral)\n")
3277 : _("[%d] %s at %s:?\n"),
3278 i + first_choice,
3279 SYMBOL_PRINT_NAME (syms[i].sym),
3280 symtab->filename);
3281 else
3282 printf_unfiltered (is_enumeral
3283 ? _("[%d] %s (enumeral)\n")
3284 : _("[%d] %s at ?\n"),
3285 i + first_choice,
3286 SYMBOL_PRINT_NAME (syms[i].sym));
3287 }
3288 }
3289
3290 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3291 "overload-choice");
3292
3293 for (i = 0; i < n_chosen; i += 1)
3294 syms[i] = syms[chosen[i]];
3295
3296 return n_chosen;
3297 }
3298
3299 /* Read and validate a set of numeric choices from the user in the
3300 range 0 .. N_CHOICES-1. Place the results in increasing
3301 order in CHOICES[0 .. N-1], and return N.
3302
3303 The user types choices as a sequence of numbers on one line
3304 separated by blanks, encoding them as follows:
3305
3306 + A choice of 0 means to cancel the selection, throwing an error.
3307 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3308 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3309
3310 The user is not allowed to choose more than MAX_RESULTS values.
3311
3312 ANNOTATION_SUFFIX, if present, is used to annotate the input
3313 prompts (for use with the -f switch). */
3314
3315 int
3316 get_selections (int *choices, int n_choices, int max_results,
3317 int is_all_choice, char *annotation_suffix)
3318 {
3319 char *args;
3320 char *prompt;
3321 int n_chosen;
3322 int first_choice = is_all_choice ? 2 : 1;
3323
3324 prompt = getenv ("PS2");
3325 if (prompt == NULL)
3326 prompt = "> ";
3327
3328 args = command_line_input (prompt, 0, annotation_suffix);
3329
3330 if (args == NULL)
3331 error_no_arg (_("one or more choice numbers"));
3332
3333 n_chosen = 0;
3334
3335 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3336 order, as given in args. Choices are validated. */
3337 while (1)
3338 {
3339 char *args2;
3340 int choice, j;
3341
3342 while (isspace (*args))
3343 args += 1;
3344 if (*args == '\0' && n_chosen == 0)
3345 error_no_arg (_("one or more choice numbers"));
3346 else if (*args == '\0')
3347 break;
3348
3349 choice = strtol (args, &args2, 10);
3350 if (args == args2 || choice < 0
3351 || choice > n_choices + first_choice - 1)
3352 error (_("Argument must be choice number"));
3353 args = args2;
3354
3355 if (choice == 0)
3356 error (_("cancelled"));
3357
3358 if (choice < first_choice)
3359 {
3360 n_chosen = n_choices;
3361 for (j = 0; j < n_choices; j += 1)
3362 choices[j] = j;
3363 break;
3364 }
3365 choice -= first_choice;
3366
3367 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3368 {
3369 }
3370
3371 if (j < 0 || choice != choices[j])
3372 {
3373 int k;
3374 for (k = n_chosen - 1; k > j; k -= 1)
3375 choices[k + 1] = choices[k];
3376 choices[j + 1] = choice;
3377 n_chosen += 1;
3378 }
3379 }
3380
3381 if (n_chosen > max_results)
3382 error (_("Select no more than %d of the above"), max_results);
3383
3384 return n_chosen;
3385 }
3386
3387 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3388 on the function identified by SYM and BLOCK, and taking NARGS
3389 arguments. Update *EXPP as needed to hold more space. */
3390
3391 static void
3392 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3393 int oplen, struct symbol *sym,
3394 struct block *block)
3395 {
3396 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3397 symbol, -oplen for operator being replaced). */
3398 struct expression *newexp = (struct expression *)
3399 xmalloc (sizeof (struct expression)
3400 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3401 struct expression *exp = *expp;
3402
3403 newexp->nelts = exp->nelts + 7 - oplen;
3404 newexp->language_defn = exp->language_defn;
3405 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3406 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3407 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3408
3409 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3410 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3411
3412 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3413 newexp->elts[pc + 4].block = block;
3414 newexp->elts[pc + 5].symbol = sym;
3415
3416 *expp = newexp;
3417 xfree (exp);
3418 }
3419
3420 /* Type-class predicates */
3421
3422 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3423 or FLOAT). */
3424
3425 static int
3426 numeric_type_p (struct type *type)
3427 {
3428 if (type == NULL)
3429 return 0;
3430 else
3431 {
3432 switch (TYPE_CODE (type))
3433 {
3434 case TYPE_CODE_INT:
3435 case TYPE_CODE_FLT:
3436 return 1;
3437 case TYPE_CODE_RANGE:
3438 return (type == TYPE_TARGET_TYPE (type)
3439 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3440 default:
3441 return 0;
3442 }
3443 }
3444 }
3445
3446 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3447
3448 static int
3449 integer_type_p (struct type *type)
3450 {
3451 if (type == NULL)
3452 return 0;
3453 else
3454 {
3455 switch (TYPE_CODE (type))
3456 {
3457 case TYPE_CODE_INT:
3458 return 1;
3459 case TYPE_CODE_RANGE:
3460 return (type == TYPE_TARGET_TYPE (type)
3461 || integer_type_p (TYPE_TARGET_TYPE (type)));
3462 default:
3463 return 0;
3464 }
3465 }
3466 }
3467
3468 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3469
3470 static int
3471 scalar_type_p (struct type *type)
3472 {
3473 if (type == NULL)
3474 return 0;
3475 else
3476 {
3477 switch (TYPE_CODE (type))
3478 {
3479 case TYPE_CODE_INT:
3480 case TYPE_CODE_RANGE:
3481 case TYPE_CODE_ENUM:
3482 case TYPE_CODE_FLT:
3483 return 1;
3484 default:
3485 return 0;
3486 }
3487 }
3488 }
3489
3490 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3491
3492 static int
3493 discrete_type_p (struct type *type)
3494 {
3495 if (type == NULL)
3496 return 0;
3497 else
3498 {
3499 switch (TYPE_CODE (type))
3500 {
3501 case TYPE_CODE_INT:
3502 case TYPE_CODE_RANGE:
3503 case TYPE_CODE_ENUM:
3504 return 1;
3505 default:
3506 return 0;
3507 }
3508 }
3509 }
3510
3511 /* Returns non-zero if OP with operands in the vector ARGS could be
3512 a user-defined function. Errs on the side of pre-defined operators
3513 (i.e., result 0). */
3514
3515 static int
3516 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3517 {
3518 struct type *type0 =
3519 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3520 struct type *type1 =
3521 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3522
3523 if (type0 == NULL)
3524 return 0;
3525
3526 switch (op)
3527 {
3528 default:
3529 return 0;
3530
3531 case BINOP_ADD:
3532 case BINOP_SUB:
3533 case BINOP_MUL:
3534 case BINOP_DIV:
3535 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3536
3537 case BINOP_REM:
3538 case BINOP_MOD:
3539 case BINOP_BITWISE_AND:
3540 case BINOP_BITWISE_IOR:
3541 case BINOP_BITWISE_XOR:
3542 return (!(integer_type_p (type0) && integer_type_p (type1)));
3543
3544 case BINOP_EQUAL:
3545 case BINOP_NOTEQUAL:
3546 case BINOP_LESS:
3547 case BINOP_GTR:
3548 case BINOP_LEQ:
3549 case BINOP_GEQ:
3550 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3551
3552 case BINOP_CONCAT:
3553 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3554
3555 case BINOP_EXP:
3556 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3557
3558 case UNOP_NEG:
3559 case UNOP_PLUS:
3560 case UNOP_LOGICAL_NOT:
3561 case UNOP_ABS:
3562 return (!numeric_type_p (type0));
3563
3564 }
3565 }
3566 \f
3567 /* Renaming */
3568
3569 /* NOTES:
3570
3571 1. In the following, we assume that a renaming type's name may
3572 have an ___XD suffix. It would be nice if this went away at some
3573 point.
3574 2. We handle both the (old) purely type-based representation of
3575 renamings and the (new) variable-based encoding. At some point,
3576 it is devoutly to be hoped that the former goes away
3577 (FIXME: hilfinger-2007-07-09).
3578 3. Subprogram renamings are not implemented, although the XRS
3579 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3580
3581 /* If SYM encodes a renaming,
3582
3583 <renaming> renames <renamed entity>,
3584
3585 sets *LEN to the length of the renamed entity's name,
3586 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3587 the string describing the subcomponent selected from the renamed
3588 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3589 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3590 are undefined). Otherwise, returns a value indicating the category
3591 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3592 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3593 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3594 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3595 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3596 may be NULL, in which case they are not assigned.
3597
3598 [Currently, however, GCC does not generate subprogram renamings.] */
3599
3600 enum ada_renaming_category
3601 ada_parse_renaming (struct symbol *sym,
3602 const char **renamed_entity, int *len,
3603 const char **renaming_expr)
3604 {
3605 enum ada_renaming_category kind;
3606 const char *info;
3607 const char *suffix;
3608
3609 if (sym == NULL)
3610 return ADA_NOT_RENAMING;
3611 switch (SYMBOL_CLASS (sym))
3612 {
3613 default:
3614 return ADA_NOT_RENAMING;
3615 case LOC_TYPEDEF:
3616 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3617 renamed_entity, len, renaming_expr);
3618 case LOC_LOCAL:
3619 case LOC_STATIC:
3620 case LOC_COMPUTED:
3621 case LOC_OPTIMIZED_OUT:
3622 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3623 if (info == NULL)
3624 return ADA_NOT_RENAMING;
3625 switch (info[5])
3626 {
3627 case '_':
3628 kind = ADA_OBJECT_RENAMING;
3629 info += 6;
3630 break;
3631 case 'E':
3632 kind = ADA_EXCEPTION_RENAMING;
3633 info += 7;
3634 break;
3635 case 'P':
3636 kind = ADA_PACKAGE_RENAMING;
3637 info += 7;
3638 break;
3639 case 'S':
3640 kind = ADA_SUBPROGRAM_RENAMING;
3641 info += 7;
3642 break;
3643 default:
3644 return ADA_NOT_RENAMING;
3645 }
3646 }
3647
3648 if (renamed_entity != NULL)
3649 *renamed_entity = info;
3650 suffix = strstr (info, "___XE");
3651 if (suffix == NULL || suffix == info)
3652 return ADA_NOT_RENAMING;
3653 if (len != NULL)
3654 *len = strlen (info) - strlen (suffix);
3655 suffix += 5;
3656 if (renaming_expr != NULL)
3657 *renaming_expr = suffix;
3658 return kind;
3659 }
3660
3661 /* Assuming TYPE encodes a renaming according to the old encoding in
3662 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3663 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3664 ADA_NOT_RENAMING otherwise. */
3665 static enum ada_renaming_category
3666 parse_old_style_renaming (struct type *type,
3667 const char **renamed_entity, int *len,
3668 const char **renaming_expr)
3669 {
3670 enum ada_renaming_category kind;
3671 const char *name;
3672 const char *info;
3673 const char *suffix;
3674
3675 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3676 || TYPE_NFIELDS (type) != 1)
3677 return ADA_NOT_RENAMING;
3678
3679 name = type_name_no_tag (type);
3680 if (name == NULL)
3681 return ADA_NOT_RENAMING;
3682
3683 name = strstr (name, "___XR");
3684 if (name == NULL)
3685 return ADA_NOT_RENAMING;
3686 switch (name[5])
3687 {
3688 case '\0':
3689 case '_':
3690 kind = ADA_OBJECT_RENAMING;
3691 break;
3692 case 'E':
3693 kind = ADA_EXCEPTION_RENAMING;
3694 break;
3695 case 'P':
3696 kind = ADA_PACKAGE_RENAMING;
3697 break;
3698 case 'S':
3699 kind = ADA_SUBPROGRAM_RENAMING;
3700 break;
3701 default:
3702 return ADA_NOT_RENAMING;
3703 }
3704
3705 info = TYPE_FIELD_NAME (type, 0);
3706 if (info == NULL)
3707 return ADA_NOT_RENAMING;
3708 if (renamed_entity != NULL)
3709 *renamed_entity = info;
3710 suffix = strstr (info, "___XE");
3711 if (renaming_expr != NULL)
3712 *renaming_expr = suffix + 5;
3713 if (suffix == NULL || suffix == info)
3714 return ADA_NOT_RENAMING;
3715 if (len != NULL)
3716 *len = suffix - info;
3717 return kind;
3718 }
3719
3720 \f
3721
3722 /* Evaluation: Function Calls */
3723
3724 /* Return an lvalue containing the value VAL. This is the identity on
3725 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3726 on the stack, using and updating *SP as the stack pointer, and
3727 returning an lvalue whose value_address points to the copy. */
3728
3729 static struct value *
3730 ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
3731 {
3732 if (! VALUE_LVAL (val))
3733 {
3734 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3735
3736 /* The following is taken from the structure-return code in
3737 call_function_by_hand. FIXME: Therefore, some refactoring seems
3738 indicated. */
3739 if (gdbarch_inner_than (gdbarch, 1, 2))
3740 {
3741 /* Stack grows downward. Align SP and value_address (val) after
3742 reserving sufficient space. */
3743 *sp -= len;
3744 if (gdbarch_frame_align_p (gdbarch))
3745 *sp = gdbarch_frame_align (gdbarch, *sp);
3746 set_value_address (val, *sp);
3747 }
3748 else
3749 {
3750 /* Stack grows upward. Align the frame, allocate space, and
3751 then again, re-align the frame. */
3752 if (gdbarch_frame_align_p (gdbarch))
3753 *sp = gdbarch_frame_align (gdbarch, *sp);
3754 set_value_address (val, *sp);
3755 *sp += len;
3756 if (gdbarch_frame_align_p (gdbarch))
3757 *sp = gdbarch_frame_align (gdbarch, *sp);
3758 }
3759 VALUE_LVAL (val) = lval_memory;
3760
3761 write_memory (value_address (val), value_contents_raw (val), len);
3762 }
3763
3764 return val;
3765 }
3766
3767 /* Return the value ACTUAL, converted to be an appropriate value for a
3768 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3769 allocating any necessary descriptors (fat pointers), or copies of
3770 values not residing in memory, updating it as needed. */
3771
3772 struct value *
3773 ada_convert_actual (struct value *actual, struct type *formal_type0,
3774 struct gdbarch *gdbarch, CORE_ADDR *sp)
3775 {
3776 struct type *actual_type = ada_check_typedef (value_type (actual));
3777 struct type *formal_type = ada_check_typedef (formal_type0);
3778 struct type *formal_target =
3779 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3780 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3781 struct type *actual_target =
3782 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3783 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3784
3785 if (ada_is_array_descriptor_type (formal_target)
3786 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3787 return make_array_descriptor (formal_type, actual, gdbarch, sp);
3788 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3789 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3790 {
3791 struct value *result;
3792 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3793 && ada_is_array_descriptor_type (actual_target))
3794 result = desc_data (actual);
3795 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3796 {
3797 if (VALUE_LVAL (actual) != lval_memory)
3798 {
3799 struct value *val;
3800 actual_type = ada_check_typedef (value_type (actual));
3801 val = allocate_value (actual_type);
3802 memcpy ((char *) value_contents_raw (val),
3803 (char *) value_contents (actual),
3804 TYPE_LENGTH (actual_type));
3805 actual = ensure_lval (val, gdbarch, sp);
3806 }
3807 result = value_addr (actual);
3808 }
3809 else
3810 return actual;
3811 return value_cast_pointers (formal_type, result);
3812 }
3813 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3814 return ada_value_ind (actual);
3815
3816 return actual;
3817 }
3818
3819
3820 /* Push a descriptor of type TYPE for array value ARR on the stack at
3821 *SP, updating *SP to reflect the new descriptor. Return either
3822 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3823 to-descriptor type rather than a descriptor type), a struct value *
3824 representing a pointer to this descriptor. */
3825
3826 static struct value *
3827 make_array_descriptor (struct type *type, struct value *arr,
3828 struct gdbarch *gdbarch, CORE_ADDR *sp)
3829 {
3830 struct type *bounds_type = desc_bounds_type (type);
3831 struct type *desc_type = desc_base_type (type);
3832 struct value *descriptor = allocate_value (desc_type);
3833 struct value *bounds = allocate_value (bounds_type);
3834 int i;
3835
3836 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3837 {
3838 modify_general_field (value_type (bounds),
3839 value_contents_writeable (bounds),
3840 ada_array_bound (arr, i, 0),
3841 desc_bound_bitpos (bounds_type, i, 0),
3842 desc_bound_bitsize (bounds_type, i, 0));
3843 modify_general_field (value_type (bounds),
3844 value_contents_writeable (bounds),
3845 ada_array_bound (arr, i, 1),
3846 desc_bound_bitpos (bounds_type, i, 1),
3847 desc_bound_bitsize (bounds_type, i, 1));
3848 }
3849
3850 bounds = ensure_lval (bounds, gdbarch, sp);
3851
3852 modify_general_field (value_type (descriptor),
3853 value_contents_writeable (descriptor),
3854 value_address (ensure_lval (arr, gdbarch, sp)),
3855 fat_pntr_data_bitpos (desc_type),
3856 fat_pntr_data_bitsize (desc_type));
3857
3858 modify_general_field (value_type (descriptor),
3859 value_contents_writeable (descriptor),
3860 value_address (bounds),
3861 fat_pntr_bounds_bitpos (desc_type),
3862 fat_pntr_bounds_bitsize (desc_type));
3863
3864 descriptor = ensure_lval (descriptor, gdbarch, sp);
3865
3866 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3867 return value_addr (descriptor);
3868 else
3869 return descriptor;
3870 }
3871 \f
3872 /* Dummy definitions for an experimental caching module that is not
3873 * used in the public sources. */
3874
3875 static int
3876 lookup_cached_symbol (const char *name, domain_enum namespace,
3877 struct symbol **sym, struct block **block)
3878 {
3879 return 0;
3880 }
3881
3882 static void
3883 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3884 struct block *block)
3885 {
3886 }
3887 \f
3888 /* Symbol Lookup */
3889
3890 /* Return the result of a standard (literal, C-like) lookup of NAME in
3891 given DOMAIN, visible from lexical block BLOCK. */
3892
3893 static struct symbol *
3894 standard_lookup (const char *name, const struct block *block,
3895 domain_enum domain)
3896 {
3897 struct symbol *sym;
3898
3899 if (lookup_cached_symbol (name, domain, &sym, NULL))
3900 return sym;
3901 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3902 cache_symbol (name, domain, sym, block_found);
3903 return sym;
3904 }
3905
3906
3907 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3908 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3909 since they contend in overloading in the same way. */
3910 static int
3911 is_nonfunction (struct ada_symbol_info syms[], int n)
3912 {
3913 int i;
3914
3915 for (i = 0; i < n; i += 1)
3916 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3917 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3918 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3919 return 1;
3920
3921 return 0;
3922 }
3923
3924 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3925 struct types. Otherwise, they may not. */
3926
3927 static int
3928 equiv_types (struct type *type0, struct type *type1)
3929 {
3930 if (type0 == type1)
3931 return 1;
3932 if (type0 == NULL || type1 == NULL
3933 || TYPE_CODE (type0) != TYPE_CODE (type1))
3934 return 0;
3935 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3936 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3937 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3938 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3939 return 1;
3940
3941 return 0;
3942 }
3943
3944 /* True iff SYM0 represents the same entity as SYM1, or one that is
3945 no more defined than that of SYM1. */
3946
3947 static int
3948 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3949 {
3950 if (sym0 == sym1)
3951 return 1;
3952 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3953 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3954 return 0;
3955
3956 switch (SYMBOL_CLASS (sym0))
3957 {
3958 case LOC_UNDEF:
3959 return 1;
3960 case LOC_TYPEDEF:
3961 {
3962 struct type *type0 = SYMBOL_TYPE (sym0);
3963 struct type *type1 = SYMBOL_TYPE (sym1);
3964 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3965 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3966 int len0 = strlen (name0);
3967 return
3968 TYPE_CODE (type0) == TYPE_CODE (type1)
3969 && (equiv_types (type0, type1)
3970 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3971 && strncmp (name1 + len0, "___XV", 5) == 0));
3972 }
3973 case LOC_CONST:
3974 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3975 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3976 default:
3977 return 0;
3978 }
3979 }
3980
3981 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3982 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3983
3984 static void
3985 add_defn_to_vec (struct obstack *obstackp,
3986 struct symbol *sym,
3987 struct block *block)
3988 {
3989 int i;
3990 size_t tmp;
3991 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3992
3993 /* Do not try to complete stub types, as the debugger is probably
3994 already scanning all symbols matching a certain name at the
3995 time when this function is called. Trying to replace the stub
3996 type by its associated full type will cause us to restart a scan
3997 which may lead to an infinite recursion. Instead, the client
3998 collecting the matching symbols will end up collecting several
3999 matches, with at least one of them complete. It can then filter
4000 out the stub ones if needed. */
4001
4002 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4003 {
4004 if (lesseq_defined_than (sym, prevDefns[i].sym))
4005 return;
4006 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4007 {
4008 prevDefns[i].sym = sym;
4009 prevDefns[i].block = block;
4010 return;
4011 }
4012 }
4013
4014 {
4015 struct ada_symbol_info info;
4016
4017 info.sym = sym;
4018 info.block = block;
4019 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4020 }
4021 }
4022
4023 /* Number of ada_symbol_info structures currently collected in
4024 current vector in *OBSTACKP. */
4025
4026 static int
4027 num_defns_collected (struct obstack *obstackp)
4028 {
4029 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4030 }
4031
4032 /* Vector of ada_symbol_info structures currently collected in current
4033 vector in *OBSTACKP. If FINISH, close off the vector and return
4034 its final address. */
4035
4036 static struct ada_symbol_info *
4037 defns_collected (struct obstack *obstackp, int finish)
4038 {
4039 if (finish)
4040 return obstack_finish (obstackp);
4041 else
4042 return (struct ada_symbol_info *) obstack_base (obstackp);
4043 }
4044
4045 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4046 Check the global symbols if GLOBAL, the static symbols if not.
4047 Do wild-card match if WILD. */
4048
4049 static struct partial_symbol *
4050 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4051 int global, domain_enum namespace, int wild)
4052 {
4053 struct partial_symbol **start;
4054 int name_len = strlen (name);
4055 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4056 int i;
4057
4058 if (length == 0)
4059 {
4060 return (NULL);
4061 }
4062
4063 start = (global ?
4064 pst->objfile->global_psymbols.list + pst->globals_offset :
4065 pst->objfile->static_psymbols.list + pst->statics_offset);
4066
4067 if (wild)
4068 {
4069 for (i = 0; i < length; i += 1)
4070 {
4071 struct partial_symbol *psym = start[i];
4072
4073 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4074 SYMBOL_DOMAIN (psym), namespace)
4075 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4076 return psym;
4077 }
4078 return NULL;
4079 }
4080 else
4081 {
4082 if (global)
4083 {
4084 int U;
4085 i = 0;
4086 U = length - 1;
4087 while (U - i > 4)
4088 {
4089 int M = (U + i) >> 1;
4090 struct partial_symbol *psym = start[M];
4091 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4092 i = M + 1;
4093 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4094 U = M - 1;
4095 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4096 i = M + 1;
4097 else
4098 U = M;
4099 }
4100 }
4101 else
4102 i = 0;
4103
4104 while (i < length)
4105 {
4106 struct partial_symbol *psym = start[i];
4107
4108 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4109 SYMBOL_DOMAIN (psym), namespace))
4110 {
4111 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4112
4113 if (cmp < 0)
4114 {
4115 if (global)
4116 break;
4117 }
4118 else if (cmp == 0
4119 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4120 + name_len))
4121 return psym;
4122 }
4123 i += 1;
4124 }
4125
4126 if (global)
4127 {
4128 int U;
4129 i = 0;
4130 U = length - 1;
4131 while (U - i > 4)
4132 {
4133 int M = (U + i) >> 1;
4134 struct partial_symbol *psym = start[M];
4135 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4136 i = M + 1;
4137 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4138 U = M - 1;
4139 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4140 i = M + 1;
4141 else
4142 U = M;
4143 }
4144 }
4145 else
4146 i = 0;
4147
4148 while (i < length)
4149 {
4150 struct partial_symbol *psym = start[i];
4151
4152 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4153 SYMBOL_DOMAIN (psym), namespace))
4154 {
4155 int cmp;
4156
4157 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4158 if (cmp == 0)
4159 {
4160 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4161 if (cmp == 0)
4162 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4163 name_len);
4164 }
4165
4166 if (cmp < 0)
4167 {
4168 if (global)
4169 break;
4170 }
4171 else if (cmp == 0
4172 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4173 + name_len + 5))
4174 return psym;
4175 }
4176 i += 1;
4177 }
4178 }
4179 return NULL;
4180 }
4181
4182 /* Return a minimal symbol matching NAME according to Ada decoding
4183 rules. Returns NULL if there is no such minimal symbol. Names
4184 prefixed with "standard__" are handled specially: "standard__" is
4185 first stripped off, and only static and global symbols are searched. */
4186
4187 struct minimal_symbol *
4188 ada_lookup_simple_minsym (const char *name)
4189 {
4190 struct objfile *objfile;
4191 struct minimal_symbol *msymbol;
4192 int wild_match;
4193
4194 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4195 {
4196 name += sizeof ("standard__") - 1;
4197 wild_match = 0;
4198 }
4199 else
4200 wild_match = (strstr (name, "__") == NULL);
4201
4202 ALL_MSYMBOLS (objfile, msymbol)
4203 {
4204 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4205 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4206 return msymbol;
4207 }
4208
4209 return NULL;
4210 }
4211
4212 /* For all subprograms that statically enclose the subprogram of the
4213 selected frame, add symbols matching identifier NAME in DOMAIN
4214 and their blocks to the list of data in OBSTACKP, as for
4215 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4216 wildcard prefix. */
4217
4218 static void
4219 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4220 const char *name, domain_enum namespace,
4221 int wild_match)
4222 {
4223 }
4224
4225 /* True if TYPE is definitely an artificial type supplied to a symbol
4226 for which no debugging information was given in the symbol file. */
4227
4228 static int
4229 is_nondebugging_type (struct type *type)
4230 {
4231 char *name = ada_type_name (type);
4232 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4233 }
4234
4235 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4236 duplicate other symbols in the list (The only case I know of where
4237 this happens is when object files containing stabs-in-ecoff are
4238 linked with files containing ordinary ecoff debugging symbols (or no
4239 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4240 Returns the number of items in the modified list. */
4241
4242 static int
4243 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4244 {
4245 int i, j;
4246
4247 i = 0;
4248 while (i < nsyms)
4249 {
4250 int remove = 0;
4251
4252 /* If two symbols have the same name and one of them is a stub type,
4253 the get rid of the stub. */
4254
4255 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4256 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4257 {
4258 for (j = 0; j < nsyms; j++)
4259 {
4260 if (j != i
4261 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4262 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4263 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4264 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4265 remove = 1;
4266 }
4267 }
4268
4269 /* Two symbols with the same name, same class and same address
4270 should be identical. */
4271
4272 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4273 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4274 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4275 {
4276 for (j = 0; j < nsyms; j += 1)
4277 {
4278 if (i != j
4279 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4280 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4281 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4282 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4283 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4284 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4285 remove = 1;
4286 }
4287 }
4288
4289 if (remove)
4290 {
4291 for (j = i + 1; j < nsyms; j += 1)
4292 syms[j - 1] = syms[j];
4293 nsyms -= 1;
4294 }
4295
4296 i += 1;
4297 }
4298 return nsyms;
4299 }
4300
4301 /* Given a type that corresponds to a renaming entity, use the type name
4302 to extract the scope (package name or function name, fully qualified,
4303 and following the GNAT encoding convention) where this renaming has been
4304 defined. The string returned needs to be deallocated after use. */
4305
4306 static char *
4307 xget_renaming_scope (struct type *renaming_type)
4308 {
4309 /* The renaming types adhere to the following convention:
4310 <scope>__<rename>___<XR extension>.
4311 So, to extract the scope, we search for the "___XR" extension,
4312 and then backtrack until we find the first "__". */
4313
4314 const char *name = type_name_no_tag (renaming_type);
4315 char *suffix = strstr (name, "___XR");
4316 char *last;
4317 int scope_len;
4318 char *scope;
4319
4320 /* Now, backtrack a bit until we find the first "__". Start looking
4321 at suffix - 3, as the <rename> part is at least one character long. */
4322
4323 for (last = suffix - 3; last > name; last--)
4324 if (last[0] == '_' && last[1] == '_')
4325 break;
4326
4327 /* Make a copy of scope and return it. */
4328
4329 scope_len = last - name;
4330 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4331
4332 strncpy (scope, name, scope_len);
4333 scope[scope_len] = '\0';
4334
4335 return scope;
4336 }
4337
4338 /* Return nonzero if NAME corresponds to a package name. */
4339
4340 static int
4341 is_package_name (const char *name)
4342 {
4343 /* Here, We take advantage of the fact that no symbols are generated
4344 for packages, while symbols are generated for each function.
4345 So the condition for NAME represent a package becomes equivalent
4346 to NAME not existing in our list of symbols. There is only one
4347 small complication with library-level functions (see below). */
4348
4349 char *fun_name;
4350
4351 /* If it is a function that has not been defined at library level,
4352 then we should be able to look it up in the symbols. */
4353 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4354 return 0;
4355
4356 /* Library-level function names start with "_ada_". See if function
4357 "_ada_" followed by NAME can be found. */
4358
4359 /* Do a quick check that NAME does not contain "__", since library-level
4360 functions names cannot contain "__" in them. */
4361 if (strstr (name, "__") != NULL)
4362 return 0;
4363
4364 fun_name = xstrprintf ("_ada_%s", name);
4365
4366 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4367 }
4368
4369 /* Return nonzero if SYM corresponds to a renaming entity that is
4370 not visible from FUNCTION_NAME. */
4371
4372 static int
4373 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4374 {
4375 char *scope;
4376
4377 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4378 return 0;
4379
4380 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4381
4382 make_cleanup (xfree, scope);
4383
4384 /* If the rename has been defined in a package, then it is visible. */
4385 if (is_package_name (scope))
4386 return 0;
4387
4388 /* Check that the rename is in the current function scope by checking
4389 that its name starts with SCOPE. */
4390
4391 /* If the function name starts with "_ada_", it means that it is
4392 a library-level function. Strip this prefix before doing the
4393 comparison, as the encoding for the renaming does not contain
4394 this prefix. */
4395 if (strncmp (function_name, "_ada_", 5) == 0)
4396 function_name += 5;
4397
4398 return (strncmp (function_name, scope, strlen (scope)) != 0);
4399 }
4400
4401 /* Remove entries from SYMS that corresponds to a renaming entity that
4402 is not visible from the function associated with CURRENT_BLOCK or
4403 that is superfluous due to the presence of more specific renaming
4404 information. Places surviving symbols in the initial entries of
4405 SYMS and returns the number of surviving symbols.
4406
4407 Rationale:
4408 First, in cases where an object renaming is implemented as a
4409 reference variable, GNAT may produce both the actual reference
4410 variable and the renaming encoding. In this case, we discard the
4411 latter.
4412
4413 Second, GNAT emits a type following a specified encoding for each renaming
4414 entity. Unfortunately, STABS currently does not support the definition
4415 of types that are local to a given lexical block, so all renamings types
4416 are emitted at library level. As a consequence, if an application
4417 contains two renaming entities using the same name, and a user tries to
4418 print the value of one of these entities, the result of the ada symbol
4419 lookup will also contain the wrong renaming type.
4420
4421 This function partially covers for this limitation by attempting to
4422 remove from the SYMS list renaming symbols that should be visible
4423 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4424 method with the current information available. The implementation
4425 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4426
4427 - When the user tries to print a rename in a function while there
4428 is another rename entity defined in a package: Normally, the
4429 rename in the function has precedence over the rename in the
4430 package, so the latter should be removed from the list. This is
4431 currently not the case.
4432
4433 - This function will incorrectly remove valid renames if
4434 the CURRENT_BLOCK corresponds to a function which symbol name
4435 has been changed by an "Export" pragma. As a consequence,
4436 the user will be unable to print such rename entities. */
4437
4438 static int
4439 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4440 int nsyms, const struct block *current_block)
4441 {
4442 struct symbol *current_function;
4443 char *current_function_name;
4444 int i;
4445 int is_new_style_renaming;
4446
4447 /* If there is both a renaming foo___XR... encoded as a variable and
4448 a simple variable foo in the same block, discard the latter.
4449 First, zero out such symbols, then compress. */
4450 is_new_style_renaming = 0;
4451 for (i = 0; i < nsyms; i += 1)
4452 {
4453 struct symbol *sym = syms[i].sym;
4454 struct block *block = syms[i].block;
4455 const char *name;
4456 const char *suffix;
4457
4458 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4459 continue;
4460 name = SYMBOL_LINKAGE_NAME (sym);
4461 suffix = strstr (name, "___XR");
4462
4463 if (suffix != NULL)
4464 {
4465 int name_len = suffix - name;
4466 int j;
4467 is_new_style_renaming = 1;
4468 for (j = 0; j < nsyms; j += 1)
4469 if (i != j && syms[j].sym != NULL
4470 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4471 name_len) == 0
4472 && block == syms[j].block)
4473 syms[j].sym = NULL;
4474 }
4475 }
4476 if (is_new_style_renaming)
4477 {
4478 int j, k;
4479
4480 for (j = k = 0; j < nsyms; j += 1)
4481 if (syms[j].sym != NULL)
4482 {
4483 syms[k] = syms[j];
4484 k += 1;
4485 }
4486 return k;
4487 }
4488
4489 /* Extract the function name associated to CURRENT_BLOCK.
4490 Abort if unable to do so. */
4491
4492 if (current_block == NULL)
4493 return nsyms;
4494
4495 current_function = block_linkage_function (current_block);
4496 if (current_function == NULL)
4497 return nsyms;
4498
4499 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4500 if (current_function_name == NULL)
4501 return nsyms;
4502
4503 /* Check each of the symbols, and remove it from the list if it is
4504 a type corresponding to a renaming that is out of the scope of
4505 the current block. */
4506
4507 i = 0;
4508 while (i < nsyms)
4509 {
4510 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4511 == ADA_OBJECT_RENAMING
4512 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4513 {
4514 int j;
4515 for (j = i + 1; j < nsyms; j += 1)
4516 syms[j - 1] = syms[j];
4517 nsyms -= 1;
4518 }
4519 else
4520 i += 1;
4521 }
4522
4523 return nsyms;
4524 }
4525
4526 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4527 whose name and domain match NAME and DOMAIN respectively.
4528 If no match was found, then extend the search to "enclosing"
4529 routines (in other words, if we're inside a nested function,
4530 search the symbols defined inside the enclosing functions).
4531
4532 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4533
4534 static void
4535 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4536 struct block *block, domain_enum domain,
4537 int wild_match)
4538 {
4539 int block_depth = 0;
4540
4541 while (block != NULL)
4542 {
4543 block_depth += 1;
4544 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4545
4546 /* If we found a non-function match, assume that's the one. */
4547 if (is_nonfunction (defns_collected (obstackp, 0),
4548 num_defns_collected (obstackp)))
4549 return;
4550
4551 block = BLOCK_SUPERBLOCK (block);
4552 }
4553
4554 /* If no luck so far, try to find NAME as a local symbol in some lexically
4555 enclosing subprogram. */
4556 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4557 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4558 }
4559
4560 /* Add to OBSTACKP all non-local symbols whose name and domain match
4561 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4562 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4563
4564 static void
4565 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4566 domain_enum domain, int global,
4567 int wild_match)
4568 {
4569 struct objfile *objfile;
4570 struct partial_symtab *ps;
4571
4572 ALL_PSYMTABS (objfile, ps)
4573 {
4574 QUIT;
4575 if (ps->readin
4576 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4577 {
4578 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4579 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4580
4581 if (s == NULL || !s->primary)
4582 continue;
4583 ada_add_block_symbols (obstackp,
4584 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4585 name, domain, objfile, wild_match);
4586 }
4587 }
4588 }
4589
4590 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4591 scope and in global scopes, returning the number of matches. Sets
4592 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4593 indicating the symbols found and the blocks and symbol tables (if
4594 any) in which they were found. This vector are transient---good only to
4595 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4596 symbol match within the nest of blocks whose innermost member is BLOCK0,
4597 is the one match returned (no other matches in that or
4598 enclosing blocks is returned). If there are any matches in or
4599 surrounding BLOCK0, then these alone are returned. Otherwise, the
4600 search extends to global and file-scope (static) symbol tables.
4601 Names prefixed with "standard__" are handled specially: "standard__"
4602 is first stripped off, and only static and global symbols are searched. */
4603
4604 int
4605 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4606 domain_enum namespace,
4607 struct ada_symbol_info **results)
4608 {
4609 struct symbol *sym;
4610 struct block *block;
4611 const char *name;
4612 int wild_match;
4613 int cacheIfUnique;
4614 int ndefns;
4615
4616 obstack_free (&symbol_list_obstack, NULL);
4617 obstack_init (&symbol_list_obstack);
4618
4619 cacheIfUnique = 0;
4620
4621 /* Search specified block and its superiors. */
4622
4623 wild_match = (strstr (name0, "__") == NULL);
4624 name = name0;
4625 block = (struct block *) block0; /* FIXME: No cast ought to be
4626 needed, but adding const will
4627 have a cascade effect. */
4628
4629 /* Special case: If the user specifies a symbol name inside package
4630 Standard, do a non-wild matching of the symbol name without
4631 the "standard__" prefix. This was primarily introduced in order
4632 to allow the user to specifically access the standard exceptions
4633 using, for instance, Standard.Constraint_Error when Constraint_Error
4634 is ambiguous (due to the user defining its own Constraint_Error
4635 entity inside its program). */
4636 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4637 {
4638 wild_match = 0;
4639 block = NULL;
4640 name = name0 + sizeof ("standard__") - 1;
4641 }
4642
4643 /* Check the non-global symbols. If we have ANY match, then we're done. */
4644
4645 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4646 wild_match);
4647 if (num_defns_collected (&symbol_list_obstack) > 0)
4648 goto done;
4649
4650 /* No non-global symbols found. Check our cache to see if we have
4651 already performed this search before. If we have, then return
4652 the same result. */
4653
4654 cacheIfUnique = 1;
4655 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4656 {
4657 if (sym != NULL)
4658 add_defn_to_vec (&symbol_list_obstack, sym, block);
4659 goto done;
4660 }
4661
4662 /* Search symbols from all global blocks. */
4663
4664 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4665 wild_match);
4666
4667 /* Now add symbols from all per-file blocks if we've gotten no hits
4668 (not strictly correct, but perhaps better than an error). */
4669
4670 if (num_defns_collected (&symbol_list_obstack) == 0)
4671 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4672 wild_match);
4673
4674 done:
4675 ndefns = num_defns_collected (&symbol_list_obstack);
4676 *results = defns_collected (&symbol_list_obstack, 1);
4677
4678 ndefns = remove_extra_symbols (*results, ndefns);
4679
4680 if (ndefns == 0)
4681 cache_symbol (name0, namespace, NULL, NULL);
4682
4683 if (ndefns == 1 && cacheIfUnique)
4684 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4685
4686 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4687
4688 return ndefns;
4689 }
4690
4691 struct symbol *
4692 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4693 domain_enum namespace, struct block **block_found)
4694 {
4695 struct ada_symbol_info *candidates;
4696 int n_candidates;
4697
4698 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4699
4700 if (n_candidates == 0)
4701 return NULL;
4702
4703 if (block_found != NULL)
4704 *block_found = candidates[0].block;
4705
4706 return fixup_symbol_section (candidates[0].sym, NULL);
4707 }
4708
4709 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4710 scope and in global scopes, or NULL if none. NAME is folded and
4711 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4712 choosing the first symbol if there are multiple choices.
4713 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4714 table in which the symbol was found (in both cases, these
4715 assignments occur only if the pointers are non-null). */
4716 struct symbol *
4717 ada_lookup_symbol (const char *name, const struct block *block0,
4718 domain_enum namespace, int *is_a_field_of_this)
4719 {
4720 if (is_a_field_of_this != NULL)
4721 *is_a_field_of_this = 0;
4722
4723 return
4724 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4725 block0, namespace, NULL);
4726 }
4727
4728 static struct symbol *
4729 ada_lookup_symbol_nonlocal (const char *name,
4730 const char *linkage_name,
4731 const struct block *block,
4732 const domain_enum domain)
4733 {
4734 if (linkage_name == NULL)
4735 linkage_name = name;
4736 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4737 NULL);
4738 }
4739
4740
4741 /* True iff STR is a possible encoded suffix of a normal Ada name
4742 that is to be ignored for matching purposes. Suffixes of parallel
4743 names (e.g., XVE) are not included here. Currently, the possible suffixes
4744 are given by any of the regular expressions:
4745
4746 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4747 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4748 _E[0-9]+[bs]$ [protected object entry suffixes]
4749 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4750
4751 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4752 match is performed. This sequence is used to differentiate homonyms,
4753 is an optional part of a valid name suffix. */
4754
4755 static int
4756 is_name_suffix (const char *str)
4757 {
4758 int k;
4759 const char *matching;
4760 const int len = strlen (str);
4761
4762 /* Skip optional leading __[0-9]+. */
4763
4764 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4765 {
4766 str += 3;
4767 while (isdigit (str[0]))
4768 str += 1;
4769 }
4770
4771 /* [.$][0-9]+ */
4772
4773 if (str[0] == '.' || str[0] == '$')
4774 {
4775 matching = str + 1;
4776 while (isdigit (matching[0]))
4777 matching += 1;
4778 if (matching[0] == '\0')
4779 return 1;
4780 }
4781
4782 /* ___[0-9]+ */
4783
4784 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4785 {
4786 matching = str + 3;
4787 while (isdigit (matching[0]))
4788 matching += 1;
4789 if (matching[0] == '\0')
4790 return 1;
4791 }
4792
4793 #if 0
4794 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4795 with a N at the end. Unfortunately, the compiler uses the same
4796 convention for other internal types it creates. So treating
4797 all entity names that end with an "N" as a name suffix causes
4798 some regressions. For instance, consider the case of an enumerated
4799 type. To support the 'Image attribute, it creates an array whose
4800 name ends with N.
4801 Having a single character like this as a suffix carrying some
4802 information is a bit risky. Perhaps we should change the encoding
4803 to be something like "_N" instead. In the meantime, do not do
4804 the following check. */
4805 /* Protected Object Subprograms */
4806 if (len == 1 && str [0] == 'N')
4807 return 1;
4808 #endif
4809
4810 /* _E[0-9]+[bs]$ */
4811 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4812 {
4813 matching = str + 3;
4814 while (isdigit (matching[0]))
4815 matching += 1;
4816 if ((matching[0] == 'b' || matching[0] == 's')
4817 && matching [1] == '\0')
4818 return 1;
4819 }
4820
4821 /* ??? We should not modify STR directly, as we are doing below. This
4822 is fine in this case, but may become problematic later if we find
4823 that this alternative did not work, and want to try matching
4824 another one from the begining of STR. Since we modified it, we
4825 won't be able to find the begining of the string anymore! */
4826 if (str[0] == 'X')
4827 {
4828 str += 1;
4829 while (str[0] != '_' && str[0] != '\0')
4830 {
4831 if (str[0] != 'n' && str[0] != 'b')
4832 return 0;
4833 str += 1;
4834 }
4835 }
4836
4837 if (str[0] == '\000')
4838 return 1;
4839
4840 if (str[0] == '_')
4841 {
4842 if (str[1] != '_' || str[2] == '\000')
4843 return 0;
4844 if (str[2] == '_')
4845 {
4846 if (strcmp (str + 3, "JM") == 0)
4847 return 1;
4848 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4849 the LJM suffix in favor of the JM one. But we will
4850 still accept LJM as a valid suffix for a reasonable
4851 amount of time, just to allow ourselves to debug programs
4852 compiled using an older version of GNAT. */
4853 if (strcmp (str + 3, "LJM") == 0)
4854 return 1;
4855 if (str[3] != 'X')
4856 return 0;
4857 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4858 || str[4] == 'U' || str[4] == 'P')
4859 return 1;
4860 if (str[4] == 'R' && str[5] != 'T')
4861 return 1;
4862 return 0;
4863 }
4864 if (!isdigit (str[2]))
4865 return 0;
4866 for (k = 3; str[k] != '\0'; k += 1)
4867 if (!isdigit (str[k]) && str[k] != '_')
4868 return 0;
4869 return 1;
4870 }
4871 if (str[0] == '$' && isdigit (str[1]))
4872 {
4873 for (k = 2; str[k] != '\0'; k += 1)
4874 if (!isdigit (str[k]) && str[k] != '_')
4875 return 0;
4876 return 1;
4877 }
4878 return 0;
4879 }
4880
4881 /* Return non-zero if the string starting at NAME and ending before
4882 NAME_END contains no capital letters. */
4883
4884 static int
4885 is_valid_name_for_wild_match (const char *name0)
4886 {
4887 const char *decoded_name = ada_decode (name0);
4888 int i;
4889
4890 /* If the decoded name starts with an angle bracket, it means that
4891 NAME0 does not follow the GNAT encoding format. It should then
4892 not be allowed as a possible wild match. */
4893 if (decoded_name[0] == '<')
4894 return 0;
4895
4896 for (i=0; decoded_name[i] != '\0'; i++)
4897 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4898 return 0;
4899
4900 return 1;
4901 }
4902
4903 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4904 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4905 informational suffixes of NAME (i.e., for which is_name_suffix is
4906 true). */
4907
4908 static int
4909 wild_match (const char *patn0, int patn_len, const char *name0)
4910 {
4911 char* match;
4912 const char* start;
4913 start = name0;
4914 while (1)
4915 {
4916 match = strstr (start, patn0);
4917 if (match == NULL)
4918 return 0;
4919 if ((match == name0
4920 || match[-1] == '.'
4921 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4922 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4923 && is_name_suffix (match + patn_len))
4924 return (match == name0 || is_valid_name_for_wild_match (name0));
4925 start = match + 1;
4926 }
4927 }
4928
4929 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4930 vector *defn_symbols, updating the list of symbols in OBSTACKP
4931 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4932 OBJFILE is the section containing BLOCK.
4933 SYMTAB is recorded with each symbol added. */
4934
4935 static void
4936 ada_add_block_symbols (struct obstack *obstackp,
4937 struct block *block, const char *name,
4938 domain_enum domain, struct objfile *objfile,
4939 int wild)
4940 {
4941 struct dict_iterator iter;
4942 int name_len = strlen (name);
4943 /* A matching argument symbol, if any. */
4944 struct symbol *arg_sym;
4945 /* Set true when we find a matching non-argument symbol. */
4946 int found_sym;
4947 struct symbol *sym;
4948
4949 arg_sym = NULL;
4950 found_sym = 0;
4951 if (wild)
4952 {
4953 struct symbol *sym;
4954 ALL_BLOCK_SYMBOLS (block, iter, sym)
4955 {
4956 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4957 SYMBOL_DOMAIN (sym), domain)
4958 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4959 {
4960 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4961 continue;
4962 else if (SYMBOL_IS_ARGUMENT (sym))
4963 arg_sym = sym;
4964 else
4965 {
4966 found_sym = 1;
4967 add_defn_to_vec (obstackp,
4968 fixup_symbol_section (sym, objfile),
4969 block);
4970 }
4971 }
4972 }
4973 }
4974 else
4975 {
4976 ALL_BLOCK_SYMBOLS (block, iter, sym)
4977 {
4978 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4979 SYMBOL_DOMAIN (sym), domain))
4980 {
4981 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
4982 if (cmp == 0
4983 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
4984 {
4985 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4986 {
4987 if (SYMBOL_IS_ARGUMENT (sym))
4988 arg_sym = sym;
4989 else
4990 {
4991 found_sym = 1;
4992 add_defn_to_vec (obstackp,
4993 fixup_symbol_section (sym, objfile),
4994 block);
4995 }
4996 }
4997 }
4998 }
4999 }
5000 }
5001
5002 if (!found_sym && arg_sym != NULL)
5003 {
5004 add_defn_to_vec (obstackp,
5005 fixup_symbol_section (arg_sym, objfile),
5006 block);
5007 }
5008
5009 if (!wild)
5010 {
5011 arg_sym = NULL;
5012 found_sym = 0;
5013
5014 ALL_BLOCK_SYMBOLS (block, iter, sym)
5015 {
5016 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5017 SYMBOL_DOMAIN (sym), domain))
5018 {
5019 int cmp;
5020
5021 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5022 if (cmp == 0)
5023 {
5024 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5025 if (cmp == 0)
5026 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5027 name_len);
5028 }
5029
5030 if (cmp == 0
5031 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5032 {
5033 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5034 {
5035 if (SYMBOL_IS_ARGUMENT (sym))
5036 arg_sym = sym;
5037 else
5038 {
5039 found_sym = 1;
5040 add_defn_to_vec (obstackp,
5041 fixup_symbol_section (sym, objfile),
5042 block);
5043 }
5044 }
5045 }
5046 }
5047 }
5048
5049 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5050 They aren't parameters, right? */
5051 if (!found_sym && arg_sym != NULL)
5052 {
5053 add_defn_to_vec (obstackp,
5054 fixup_symbol_section (arg_sym, objfile),
5055 block);
5056 }
5057 }
5058 }
5059 \f
5060
5061 /* Symbol Completion */
5062
5063 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5064 name in a form that's appropriate for the completion. The result
5065 does not need to be deallocated, but is only good until the next call.
5066
5067 TEXT_LEN is equal to the length of TEXT.
5068 Perform a wild match if WILD_MATCH is set.
5069 ENCODED should be set if TEXT represents the start of a symbol name
5070 in its encoded form. */
5071
5072 static const char *
5073 symbol_completion_match (const char *sym_name,
5074 const char *text, int text_len,
5075 int wild_match, int encoded)
5076 {
5077 char *result;
5078 const int verbatim_match = (text[0] == '<');
5079 int match = 0;
5080
5081 if (verbatim_match)
5082 {
5083 /* Strip the leading angle bracket. */
5084 text = text + 1;
5085 text_len--;
5086 }
5087
5088 /* First, test against the fully qualified name of the symbol. */
5089
5090 if (strncmp (sym_name, text, text_len) == 0)
5091 match = 1;
5092
5093 if (match && !encoded)
5094 {
5095 /* One needed check before declaring a positive match is to verify
5096 that iff we are doing a verbatim match, the decoded version
5097 of the symbol name starts with '<'. Otherwise, this symbol name
5098 is not a suitable completion. */
5099 const char *sym_name_copy = sym_name;
5100 int has_angle_bracket;
5101
5102 sym_name = ada_decode (sym_name);
5103 has_angle_bracket = (sym_name[0] == '<');
5104 match = (has_angle_bracket == verbatim_match);
5105 sym_name = sym_name_copy;
5106 }
5107
5108 if (match && !verbatim_match)
5109 {
5110 /* When doing non-verbatim match, another check that needs to
5111 be done is to verify that the potentially matching symbol name
5112 does not include capital letters, because the ada-mode would
5113 not be able to understand these symbol names without the
5114 angle bracket notation. */
5115 const char *tmp;
5116
5117 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5118 if (*tmp != '\0')
5119 match = 0;
5120 }
5121
5122 /* Second: Try wild matching... */
5123
5124 if (!match && wild_match)
5125 {
5126 /* Since we are doing wild matching, this means that TEXT
5127 may represent an unqualified symbol name. We therefore must
5128 also compare TEXT against the unqualified name of the symbol. */
5129 sym_name = ada_unqualified_name (ada_decode (sym_name));
5130
5131 if (strncmp (sym_name, text, text_len) == 0)
5132 match = 1;
5133 }
5134
5135 /* Finally: If we found a mach, prepare the result to return. */
5136
5137 if (!match)
5138 return NULL;
5139
5140 if (verbatim_match)
5141 sym_name = add_angle_brackets (sym_name);
5142
5143 if (!encoded)
5144 sym_name = ada_decode (sym_name);
5145
5146 return sym_name;
5147 }
5148
5149 typedef char *char_ptr;
5150 DEF_VEC_P (char_ptr);
5151
5152 /* A companion function to ada_make_symbol_completion_list().
5153 Check if SYM_NAME represents a symbol which name would be suitable
5154 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5155 it is appended at the end of the given string vector SV.
5156
5157 ORIG_TEXT is the string original string from the user command
5158 that needs to be completed. WORD is the entire command on which
5159 completion should be performed. These two parameters are used to
5160 determine which part of the symbol name should be added to the
5161 completion vector.
5162 if WILD_MATCH is set, then wild matching is performed.
5163 ENCODED should be set if TEXT represents a symbol name in its
5164 encoded formed (in which case the completion should also be
5165 encoded). */
5166
5167 static void
5168 symbol_completion_add (VEC(char_ptr) **sv,
5169 const char *sym_name,
5170 const char *text, int text_len,
5171 const char *orig_text, const char *word,
5172 int wild_match, int encoded)
5173 {
5174 const char *match = symbol_completion_match (sym_name, text, text_len,
5175 wild_match, encoded);
5176 char *completion;
5177
5178 if (match == NULL)
5179 return;
5180
5181 /* We found a match, so add the appropriate completion to the given
5182 string vector. */
5183
5184 if (word == orig_text)
5185 {
5186 completion = xmalloc (strlen (match) + 5);
5187 strcpy (completion, match);
5188 }
5189 else if (word > orig_text)
5190 {
5191 /* Return some portion of sym_name. */
5192 completion = xmalloc (strlen (match) + 5);
5193 strcpy (completion, match + (word - orig_text));
5194 }
5195 else
5196 {
5197 /* Return some of ORIG_TEXT plus sym_name. */
5198 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5199 strncpy (completion, word, orig_text - word);
5200 completion[orig_text - word] = '\0';
5201 strcat (completion, match);
5202 }
5203
5204 VEC_safe_push (char_ptr, *sv, completion);
5205 }
5206
5207 /* Return a list of possible symbol names completing TEXT0. The list
5208 is NULL terminated. WORD is the entire command on which completion
5209 is made. */
5210
5211 static char **
5212 ada_make_symbol_completion_list (char *text0, char *word)
5213 {
5214 char *text;
5215 int text_len;
5216 int wild_match;
5217 int encoded;
5218 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5219 struct symbol *sym;
5220 struct symtab *s;
5221 struct partial_symtab *ps;
5222 struct minimal_symbol *msymbol;
5223 struct objfile *objfile;
5224 struct block *b, *surrounding_static_block = 0;
5225 int i;
5226 struct dict_iterator iter;
5227
5228 if (text0[0] == '<')
5229 {
5230 text = xstrdup (text0);
5231 make_cleanup (xfree, text);
5232 text_len = strlen (text);
5233 wild_match = 0;
5234 encoded = 1;
5235 }
5236 else
5237 {
5238 text = xstrdup (ada_encode (text0));
5239 make_cleanup (xfree, text);
5240 text_len = strlen (text);
5241 for (i = 0; i < text_len; i++)
5242 text[i] = tolower (text[i]);
5243
5244 encoded = (strstr (text0, "__") != NULL);
5245 /* If the name contains a ".", then the user is entering a fully
5246 qualified entity name, and the match must not be done in wild
5247 mode. Similarly, if the user wants to complete what looks like
5248 an encoded name, the match must not be done in wild mode. */
5249 wild_match = (strchr (text0, '.') == NULL && !encoded);
5250 }
5251
5252 /* First, look at the partial symtab symbols. */
5253 ALL_PSYMTABS (objfile, ps)
5254 {
5255 struct partial_symbol **psym;
5256
5257 /* If the psymtab's been read in we'll get it when we search
5258 through the blockvector. */
5259 if (ps->readin)
5260 continue;
5261
5262 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5263 psym < (objfile->global_psymbols.list + ps->globals_offset
5264 + ps->n_global_syms); psym++)
5265 {
5266 QUIT;
5267 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5268 text, text_len, text0, word,
5269 wild_match, encoded);
5270 }
5271
5272 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5273 psym < (objfile->static_psymbols.list + ps->statics_offset
5274 + ps->n_static_syms); psym++)
5275 {
5276 QUIT;
5277 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5278 text, text_len, text0, word,
5279 wild_match, encoded);
5280 }
5281 }
5282
5283 /* At this point scan through the misc symbol vectors and add each
5284 symbol you find to the list. Eventually we want to ignore
5285 anything that isn't a text symbol (everything else will be
5286 handled by the psymtab code above). */
5287
5288 ALL_MSYMBOLS (objfile, msymbol)
5289 {
5290 QUIT;
5291 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5292 text, text_len, text0, word, wild_match, encoded);
5293 }
5294
5295 /* Search upwards from currently selected frame (so that we can
5296 complete on local vars. */
5297
5298 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5299 {
5300 if (!BLOCK_SUPERBLOCK (b))
5301 surrounding_static_block = b; /* For elmin of dups */
5302
5303 ALL_BLOCK_SYMBOLS (b, iter, sym)
5304 {
5305 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5306 text, text_len, text0, word,
5307 wild_match, encoded);
5308 }
5309 }
5310
5311 /* Go through the symtabs and check the externs and statics for
5312 symbols which match. */
5313
5314 ALL_SYMTABS (objfile, s)
5315 {
5316 QUIT;
5317 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5318 ALL_BLOCK_SYMBOLS (b, iter, sym)
5319 {
5320 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5321 text, text_len, text0, word,
5322 wild_match, encoded);
5323 }
5324 }
5325
5326 ALL_SYMTABS (objfile, s)
5327 {
5328 QUIT;
5329 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5330 /* Don't do this block twice. */
5331 if (b == surrounding_static_block)
5332 continue;
5333 ALL_BLOCK_SYMBOLS (b, iter, sym)
5334 {
5335 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5336 text, text_len, text0, word,
5337 wild_match, encoded);
5338 }
5339 }
5340
5341 /* Append the closing NULL entry. */
5342 VEC_safe_push (char_ptr, completions, NULL);
5343
5344 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5345 return the copy. It's unfortunate that we have to make a copy
5346 of an array that we're about to destroy, but there is nothing much
5347 we can do about it. Fortunately, it's typically not a very large
5348 array. */
5349 {
5350 const size_t completions_size =
5351 VEC_length (char_ptr, completions) * sizeof (char *);
5352 char **result = malloc (completions_size);
5353
5354 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5355
5356 VEC_free (char_ptr, completions);
5357 return result;
5358 }
5359 }
5360
5361 /* Field Access */
5362
5363 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5364 for tagged types. */
5365
5366 static int
5367 ada_is_dispatch_table_ptr_type (struct type *type)
5368 {
5369 char *name;
5370
5371 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5372 return 0;
5373
5374 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5375 if (name == NULL)
5376 return 0;
5377
5378 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5379 }
5380
5381 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5382 to be invisible to users. */
5383
5384 int
5385 ada_is_ignored_field (struct type *type, int field_num)
5386 {
5387 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5388 return 1;
5389
5390 /* Check the name of that field. */
5391 {
5392 const char *name = TYPE_FIELD_NAME (type, field_num);
5393
5394 /* Anonymous field names should not be printed.
5395 brobecker/2007-02-20: I don't think this can actually happen
5396 but we don't want to print the value of annonymous fields anyway. */
5397 if (name == NULL)
5398 return 1;
5399
5400 /* A field named "_parent" is internally generated by GNAT for
5401 tagged types, and should not be printed either. */
5402 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5403 return 1;
5404 }
5405
5406 /* If this is the dispatch table of a tagged type, then ignore. */
5407 if (ada_is_tagged_type (type, 1)
5408 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5409 return 1;
5410
5411 /* Not a special field, so it should not be ignored. */
5412 return 0;
5413 }
5414
5415 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5416 pointer or reference type whose ultimate target has a tag field. */
5417
5418 int
5419 ada_is_tagged_type (struct type *type, int refok)
5420 {
5421 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5422 }
5423
5424 /* True iff TYPE represents the type of X'Tag */
5425
5426 int
5427 ada_is_tag_type (struct type *type)
5428 {
5429 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5430 return 0;
5431 else
5432 {
5433 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5434 return (name != NULL
5435 && strcmp (name, "ada__tags__dispatch_table") == 0);
5436 }
5437 }
5438
5439 /* The type of the tag on VAL. */
5440
5441 struct type *
5442 ada_tag_type (struct value *val)
5443 {
5444 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5445 }
5446
5447 /* The value of the tag on VAL. */
5448
5449 struct value *
5450 ada_value_tag (struct value *val)
5451 {
5452 return ada_value_struct_elt (val, "_tag", 0);
5453 }
5454
5455 /* The value of the tag on the object of type TYPE whose contents are
5456 saved at VALADDR, if it is non-null, or is at memory address
5457 ADDRESS. */
5458
5459 static struct value *
5460 value_tag_from_contents_and_address (struct type *type,
5461 const gdb_byte *valaddr,
5462 CORE_ADDR address)
5463 {
5464 int tag_byte_offset, dummy1, dummy2;
5465 struct type *tag_type;
5466 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5467 NULL, NULL, NULL))
5468 {
5469 const gdb_byte *valaddr1 = ((valaddr == NULL)
5470 ? NULL
5471 : valaddr + tag_byte_offset);
5472 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5473
5474 return value_from_contents_and_address (tag_type, valaddr1, address1);
5475 }
5476 return NULL;
5477 }
5478
5479 static struct type *
5480 type_from_tag (struct value *tag)
5481 {
5482 const char *type_name = ada_tag_name (tag);
5483 if (type_name != NULL)
5484 return ada_find_any_type (ada_encode (type_name));
5485 return NULL;
5486 }
5487
5488 struct tag_args
5489 {
5490 struct value *tag;
5491 char *name;
5492 };
5493
5494
5495 static int ada_tag_name_1 (void *);
5496 static int ada_tag_name_2 (struct tag_args *);
5497
5498 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5499 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5500 The value stored in ARGS->name is valid until the next call to
5501 ada_tag_name_1. */
5502
5503 static int
5504 ada_tag_name_1 (void *args0)
5505 {
5506 struct tag_args *args = (struct tag_args *) args0;
5507 static char name[1024];
5508 char *p;
5509 struct value *val;
5510 args->name = NULL;
5511 val = ada_value_struct_elt (args->tag, "tsd", 1);
5512 if (val == NULL)
5513 return ada_tag_name_2 (args);
5514 val = ada_value_struct_elt (val, "expanded_name", 1);
5515 if (val == NULL)
5516 return 0;
5517 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5518 for (p = name; *p != '\0'; p += 1)
5519 if (isalpha (*p))
5520 *p = tolower (*p);
5521 args->name = name;
5522 return 0;
5523 }
5524
5525 /* Utility function for ada_tag_name_1 that tries the second
5526 representation for the dispatch table (in which there is no
5527 explicit 'tsd' field in the referent of the tag pointer, and instead
5528 the tsd pointer is stored just before the dispatch table. */
5529
5530 static int
5531 ada_tag_name_2 (struct tag_args *args)
5532 {
5533 struct type *info_type;
5534 static char name[1024];
5535 char *p;
5536 struct value *val, *valp;
5537
5538 args->name = NULL;
5539 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5540 if (info_type == NULL)
5541 return 0;
5542 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5543 valp = value_cast (info_type, args->tag);
5544 if (valp == NULL)
5545 return 0;
5546 val = value_ind (value_ptradd (valp, -1));
5547 if (val == NULL)
5548 return 0;
5549 val = ada_value_struct_elt (val, "expanded_name", 1);
5550 if (val == NULL)
5551 return 0;
5552 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5553 for (p = name; *p != '\0'; p += 1)
5554 if (isalpha (*p))
5555 *p = tolower (*p);
5556 args->name = name;
5557 return 0;
5558 }
5559
5560 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5561 * a C string. */
5562
5563 const char *
5564 ada_tag_name (struct value *tag)
5565 {
5566 struct tag_args args;
5567 if (!ada_is_tag_type (value_type (tag)))
5568 return NULL;
5569 args.tag = tag;
5570 args.name = NULL;
5571 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5572 return args.name;
5573 }
5574
5575 /* The parent type of TYPE, or NULL if none. */
5576
5577 struct type *
5578 ada_parent_type (struct type *type)
5579 {
5580 int i;
5581
5582 type = ada_check_typedef (type);
5583
5584 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5585 return NULL;
5586
5587 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5588 if (ada_is_parent_field (type, i))
5589 {
5590 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5591
5592 /* If the _parent field is a pointer, then dereference it. */
5593 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5594 parent_type = TYPE_TARGET_TYPE (parent_type);
5595 /* If there is a parallel XVS type, get the actual base type. */
5596 parent_type = ada_get_base_type (parent_type);
5597
5598 return ada_check_typedef (parent_type);
5599 }
5600
5601 return NULL;
5602 }
5603
5604 /* True iff field number FIELD_NUM of structure type TYPE contains the
5605 parent-type (inherited) fields of a derived type. Assumes TYPE is
5606 a structure type with at least FIELD_NUM+1 fields. */
5607
5608 int
5609 ada_is_parent_field (struct type *type, int field_num)
5610 {
5611 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5612 return (name != NULL
5613 && (strncmp (name, "PARENT", 6) == 0
5614 || strncmp (name, "_parent", 7) == 0));
5615 }
5616
5617 /* True iff field number FIELD_NUM of structure type TYPE is a
5618 transparent wrapper field (which should be silently traversed when doing
5619 field selection and flattened when printing). Assumes TYPE is a
5620 structure type with at least FIELD_NUM+1 fields. Such fields are always
5621 structures. */
5622
5623 int
5624 ada_is_wrapper_field (struct type *type, int field_num)
5625 {
5626 const char *name = TYPE_FIELD_NAME (type, field_num);
5627 return (name != NULL
5628 && (strncmp (name, "PARENT", 6) == 0
5629 || strcmp (name, "REP") == 0
5630 || strncmp (name, "_parent", 7) == 0
5631 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5632 }
5633
5634 /* True iff field number FIELD_NUM of structure or union type TYPE
5635 is a variant wrapper. Assumes TYPE is a structure type with at least
5636 FIELD_NUM+1 fields. */
5637
5638 int
5639 ada_is_variant_part (struct type *type, int field_num)
5640 {
5641 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5642 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5643 || (is_dynamic_field (type, field_num)
5644 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5645 == TYPE_CODE_UNION)));
5646 }
5647
5648 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5649 whose discriminants are contained in the record type OUTER_TYPE,
5650 returns the type of the controlling discriminant for the variant.
5651 May return NULL if the type could not be found. */
5652
5653 struct type *
5654 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5655 {
5656 char *name = ada_variant_discrim_name (var_type);
5657 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5658 }
5659
5660 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5661 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5662 represents a 'when others' clause; otherwise 0. */
5663
5664 int
5665 ada_is_others_clause (struct type *type, int field_num)
5666 {
5667 const char *name = TYPE_FIELD_NAME (type, field_num);
5668 return (name != NULL && name[0] == 'O');
5669 }
5670
5671 /* Assuming that TYPE0 is the type of the variant part of a record,
5672 returns the name of the discriminant controlling the variant.
5673 The value is valid until the next call to ada_variant_discrim_name. */
5674
5675 char *
5676 ada_variant_discrim_name (struct type *type0)
5677 {
5678 static char *result = NULL;
5679 static size_t result_len = 0;
5680 struct type *type;
5681 const char *name;
5682 const char *discrim_end;
5683 const char *discrim_start;
5684
5685 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5686 type = TYPE_TARGET_TYPE (type0);
5687 else
5688 type = type0;
5689
5690 name = ada_type_name (type);
5691
5692 if (name == NULL || name[0] == '\000')
5693 return "";
5694
5695 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5696 discrim_end -= 1)
5697 {
5698 if (strncmp (discrim_end, "___XVN", 6) == 0)
5699 break;
5700 }
5701 if (discrim_end == name)
5702 return "";
5703
5704 for (discrim_start = discrim_end; discrim_start != name + 3;
5705 discrim_start -= 1)
5706 {
5707 if (discrim_start == name + 1)
5708 return "";
5709 if ((discrim_start > name + 3
5710 && strncmp (discrim_start - 3, "___", 3) == 0)
5711 || discrim_start[-1] == '.')
5712 break;
5713 }
5714
5715 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5716 strncpy (result, discrim_start, discrim_end - discrim_start);
5717 result[discrim_end - discrim_start] = '\0';
5718 return result;
5719 }
5720
5721 /* Scan STR for a subtype-encoded number, beginning at position K.
5722 Put the position of the character just past the number scanned in
5723 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5724 Return 1 if there was a valid number at the given position, and 0
5725 otherwise. A "subtype-encoded" number consists of the absolute value
5726 in decimal, followed by the letter 'm' to indicate a negative number.
5727 Assumes 0m does not occur. */
5728
5729 int
5730 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5731 {
5732 ULONGEST RU;
5733
5734 if (!isdigit (str[k]))
5735 return 0;
5736
5737 /* Do it the hard way so as not to make any assumption about
5738 the relationship of unsigned long (%lu scan format code) and
5739 LONGEST. */
5740 RU = 0;
5741 while (isdigit (str[k]))
5742 {
5743 RU = RU * 10 + (str[k] - '0');
5744 k += 1;
5745 }
5746
5747 if (str[k] == 'm')
5748 {
5749 if (R != NULL)
5750 *R = (-(LONGEST) (RU - 1)) - 1;
5751 k += 1;
5752 }
5753 else if (R != NULL)
5754 *R = (LONGEST) RU;
5755
5756 /* NOTE on the above: Technically, C does not say what the results of
5757 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5758 number representable as a LONGEST (although either would probably work
5759 in most implementations). When RU>0, the locution in the then branch
5760 above is always equivalent to the negative of RU. */
5761
5762 if (new_k != NULL)
5763 *new_k = k;
5764 return 1;
5765 }
5766
5767 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5768 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5769 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5770
5771 int
5772 ada_in_variant (LONGEST val, struct type *type, int field_num)
5773 {
5774 const char *name = TYPE_FIELD_NAME (type, field_num);
5775 int p;
5776
5777 p = 0;
5778 while (1)
5779 {
5780 switch (name[p])
5781 {
5782 case '\0':
5783 return 0;
5784 case 'S':
5785 {
5786 LONGEST W;
5787 if (!ada_scan_number (name, p + 1, &W, &p))
5788 return 0;
5789 if (val == W)
5790 return 1;
5791 break;
5792 }
5793 case 'R':
5794 {
5795 LONGEST L, U;
5796 if (!ada_scan_number (name, p + 1, &L, &p)
5797 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5798 return 0;
5799 if (val >= L && val <= U)
5800 return 1;
5801 break;
5802 }
5803 case 'O':
5804 return 1;
5805 default:
5806 return 0;
5807 }
5808 }
5809 }
5810
5811 /* FIXME: Lots of redundancy below. Try to consolidate. */
5812
5813 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5814 ARG_TYPE, extract and return the value of one of its (non-static)
5815 fields. FIELDNO says which field. Differs from value_primitive_field
5816 only in that it can handle packed values of arbitrary type. */
5817
5818 static struct value *
5819 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5820 struct type *arg_type)
5821 {
5822 struct type *type;
5823
5824 arg_type = ada_check_typedef (arg_type);
5825 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5826
5827 /* Handle packed fields. */
5828
5829 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5830 {
5831 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5832 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5833
5834 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5835 offset + bit_pos / 8,
5836 bit_pos % 8, bit_size, type);
5837 }
5838 else
5839 return value_primitive_field (arg1, offset, fieldno, arg_type);
5840 }
5841
5842 /* Find field with name NAME in object of type TYPE. If found,
5843 set the following for each argument that is non-null:
5844 - *FIELD_TYPE_P to the field's type;
5845 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5846 an object of that type;
5847 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5848 - *BIT_SIZE_P to its size in bits if the field is packed, and
5849 0 otherwise;
5850 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5851 fields up to but not including the desired field, or by the total
5852 number of fields if not found. A NULL value of NAME never
5853 matches; the function just counts visible fields in this case.
5854
5855 Returns 1 if found, 0 otherwise. */
5856
5857 static int
5858 find_struct_field (char *name, struct type *type, int offset,
5859 struct type **field_type_p,
5860 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5861 int *index_p)
5862 {
5863 int i;
5864
5865 type = ada_check_typedef (type);
5866
5867 if (field_type_p != NULL)
5868 *field_type_p = NULL;
5869 if (byte_offset_p != NULL)
5870 *byte_offset_p = 0;
5871 if (bit_offset_p != NULL)
5872 *bit_offset_p = 0;
5873 if (bit_size_p != NULL)
5874 *bit_size_p = 0;
5875
5876 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5877 {
5878 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5879 int fld_offset = offset + bit_pos / 8;
5880 char *t_field_name = TYPE_FIELD_NAME (type, i);
5881
5882 if (t_field_name == NULL)
5883 continue;
5884
5885 else if (name != NULL && field_name_match (t_field_name, name))
5886 {
5887 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5888 if (field_type_p != NULL)
5889 *field_type_p = TYPE_FIELD_TYPE (type, i);
5890 if (byte_offset_p != NULL)
5891 *byte_offset_p = fld_offset;
5892 if (bit_offset_p != NULL)
5893 *bit_offset_p = bit_pos % 8;
5894 if (bit_size_p != NULL)
5895 *bit_size_p = bit_size;
5896 return 1;
5897 }
5898 else if (ada_is_wrapper_field (type, i))
5899 {
5900 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5901 field_type_p, byte_offset_p, bit_offset_p,
5902 bit_size_p, index_p))
5903 return 1;
5904 }
5905 else if (ada_is_variant_part (type, i))
5906 {
5907 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5908 fixed type?? */
5909 int j;
5910 struct type *field_type
5911 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5912
5913 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5914 {
5915 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5916 fld_offset
5917 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5918 field_type_p, byte_offset_p,
5919 bit_offset_p, bit_size_p, index_p))
5920 return 1;
5921 }
5922 }
5923 else if (index_p != NULL)
5924 *index_p += 1;
5925 }
5926 return 0;
5927 }
5928
5929 /* Number of user-visible fields in record type TYPE. */
5930
5931 static int
5932 num_visible_fields (struct type *type)
5933 {
5934 int n;
5935 n = 0;
5936 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5937 return n;
5938 }
5939
5940 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5941 and search in it assuming it has (class) type TYPE.
5942 If found, return value, else return NULL.
5943
5944 Searches recursively through wrapper fields (e.g., '_parent'). */
5945
5946 static struct value *
5947 ada_search_struct_field (char *name, struct value *arg, int offset,
5948 struct type *type)
5949 {
5950 int i;
5951 type = ada_check_typedef (type);
5952
5953 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5954 {
5955 char *t_field_name = TYPE_FIELD_NAME (type, i);
5956
5957 if (t_field_name == NULL)
5958 continue;
5959
5960 else if (field_name_match (t_field_name, name))
5961 return ada_value_primitive_field (arg, offset, i, type);
5962
5963 else if (ada_is_wrapper_field (type, i))
5964 {
5965 struct value *v = /* Do not let indent join lines here. */
5966 ada_search_struct_field (name, arg,
5967 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5968 TYPE_FIELD_TYPE (type, i));
5969 if (v != NULL)
5970 return v;
5971 }
5972
5973 else if (ada_is_variant_part (type, i))
5974 {
5975 /* PNH: Do we ever get here? See find_struct_field. */
5976 int j;
5977 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5978 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5979
5980 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5981 {
5982 struct value *v = ada_search_struct_field /* Force line break. */
5983 (name, arg,
5984 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5985 TYPE_FIELD_TYPE (field_type, j));
5986 if (v != NULL)
5987 return v;
5988 }
5989 }
5990 }
5991 return NULL;
5992 }
5993
5994 static struct value *ada_index_struct_field_1 (int *, struct value *,
5995 int, struct type *);
5996
5997
5998 /* Return field #INDEX in ARG, where the index is that returned by
5999 * find_struct_field through its INDEX_P argument. Adjust the address
6000 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6001 * If found, return value, else return NULL. */
6002
6003 static struct value *
6004 ada_index_struct_field (int index, struct value *arg, int offset,
6005 struct type *type)
6006 {
6007 return ada_index_struct_field_1 (&index, arg, offset, type);
6008 }
6009
6010
6011 /* Auxiliary function for ada_index_struct_field. Like
6012 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6013 * *INDEX_P. */
6014
6015 static struct value *
6016 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6017 struct type *type)
6018 {
6019 int i;
6020 type = ada_check_typedef (type);
6021
6022 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6023 {
6024 if (TYPE_FIELD_NAME (type, i) == NULL)
6025 continue;
6026 else if (ada_is_wrapper_field (type, i))
6027 {
6028 struct value *v = /* Do not let indent join lines here. */
6029 ada_index_struct_field_1 (index_p, arg,
6030 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6031 TYPE_FIELD_TYPE (type, i));
6032 if (v != NULL)
6033 return v;
6034 }
6035
6036 else if (ada_is_variant_part (type, i))
6037 {
6038 /* PNH: Do we ever get here? See ada_search_struct_field,
6039 find_struct_field. */
6040 error (_("Cannot assign this kind of variant record"));
6041 }
6042 else if (*index_p == 0)
6043 return ada_value_primitive_field (arg, offset, i, type);
6044 else
6045 *index_p -= 1;
6046 }
6047 return NULL;
6048 }
6049
6050 /* Given ARG, a value of type (pointer or reference to a)*
6051 structure/union, extract the component named NAME from the ultimate
6052 target structure/union and return it as a value with its
6053 appropriate type.
6054
6055 The routine searches for NAME among all members of the structure itself
6056 and (recursively) among all members of any wrapper members
6057 (e.g., '_parent').
6058
6059 If NO_ERR, then simply return NULL in case of error, rather than
6060 calling error. */
6061
6062 struct value *
6063 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6064 {
6065 struct type *t, *t1;
6066 struct value *v;
6067
6068 v = NULL;
6069 t1 = t = ada_check_typedef (value_type (arg));
6070 if (TYPE_CODE (t) == TYPE_CODE_REF)
6071 {
6072 t1 = TYPE_TARGET_TYPE (t);
6073 if (t1 == NULL)
6074 goto BadValue;
6075 t1 = ada_check_typedef (t1);
6076 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6077 {
6078 arg = coerce_ref (arg);
6079 t = t1;
6080 }
6081 }
6082
6083 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6084 {
6085 t1 = TYPE_TARGET_TYPE (t);
6086 if (t1 == NULL)
6087 goto BadValue;
6088 t1 = ada_check_typedef (t1);
6089 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6090 {
6091 arg = value_ind (arg);
6092 t = t1;
6093 }
6094 else
6095 break;
6096 }
6097
6098 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6099 goto BadValue;
6100
6101 if (t1 == t)
6102 v = ada_search_struct_field (name, arg, 0, t);
6103 else
6104 {
6105 int bit_offset, bit_size, byte_offset;
6106 struct type *field_type;
6107 CORE_ADDR address;
6108
6109 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6110 address = value_as_address (arg);
6111 else
6112 address = unpack_pointer (t, value_contents (arg));
6113
6114 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6115 if (find_struct_field (name, t1, 0,
6116 &field_type, &byte_offset, &bit_offset,
6117 &bit_size, NULL))
6118 {
6119 if (bit_size != 0)
6120 {
6121 if (TYPE_CODE (t) == TYPE_CODE_REF)
6122 arg = ada_coerce_ref (arg);
6123 else
6124 arg = ada_value_ind (arg);
6125 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6126 bit_offset, bit_size,
6127 field_type);
6128 }
6129 else
6130 v = value_at_lazy (field_type, address + byte_offset);
6131 }
6132 }
6133
6134 if (v != NULL || no_err)
6135 return v;
6136 else
6137 error (_("There is no member named %s."), name);
6138
6139 BadValue:
6140 if (no_err)
6141 return NULL;
6142 else
6143 error (_("Attempt to extract a component of a value that is not a record."));
6144 }
6145
6146 /* Given a type TYPE, look up the type of the component of type named NAME.
6147 If DISPP is non-null, add its byte displacement from the beginning of a
6148 structure (pointed to by a value) of type TYPE to *DISPP (does not
6149 work for packed fields).
6150
6151 Matches any field whose name has NAME as a prefix, possibly
6152 followed by "___".
6153
6154 TYPE can be either a struct or union. If REFOK, TYPE may also
6155 be a (pointer or reference)+ to a struct or union, and the
6156 ultimate target type will be searched.
6157
6158 Looks recursively into variant clauses and parent types.
6159
6160 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6161 TYPE is not a type of the right kind. */
6162
6163 static struct type *
6164 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6165 int noerr, int *dispp)
6166 {
6167 int i;
6168
6169 if (name == NULL)
6170 goto BadName;
6171
6172 if (refok && type != NULL)
6173 while (1)
6174 {
6175 type = ada_check_typedef (type);
6176 if (TYPE_CODE (type) != TYPE_CODE_PTR
6177 && TYPE_CODE (type) != TYPE_CODE_REF)
6178 break;
6179 type = TYPE_TARGET_TYPE (type);
6180 }
6181
6182 if (type == NULL
6183 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6184 && TYPE_CODE (type) != TYPE_CODE_UNION))
6185 {
6186 if (noerr)
6187 return NULL;
6188 else
6189 {
6190 target_terminal_ours ();
6191 gdb_flush (gdb_stdout);
6192 if (type == NULL)
6193 error (_("Type (null) is not a structure or union type"));
6194 else
6195 {
6196 /* XXX: type_sprint */
6197 fprintf_unfiltered (gdb_stderr, _("Type "));
6198 type_print (type, "", gdb_stderr, -1);
6199 error (_(" is not a structure or union type"));
6200 }
6201 }
6202 }
6203
6204 type = to_static_fixed_type (type);
6205
6206 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6207 {
6208 char *t_field_name = TYPE_FIELD_NAME (type, i);
6209 struct type *t;
6210 int disp;
6211
6212 if (t_field_name == NULL)
6213 continue;
6214
6215 else if (field_name_match (t_field_name, name))
6216 {
6217 if (dispp != NULL)
6218 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6219 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6220 }
6221
6222 else if (ada_is_wrapper_field (type, i))
6223 {
6224 disp = 0;
6225 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6226 0, 1, &disp);
6227 if (t != NULL)
6228 {
6229 if (dispp != NULL)
6230 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6231 return t;
6232 }
6233 }
6234
6235 else if (ada_is_variant_part (type, i))
6236 {
6237 int j;
6238 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6239
6240 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6241 {
6242 /* FIXME pnh 2008/01/26: We check for a field that is
6243 NOT wrapped in a struct, since the compiler sometimes
6244 generates these for unchecked variant types. Revisit
6245 if the compiler changes this practice. */
6246 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6247 disp = 0;
6248 if (v_field_name != NULL
6249 && field_name_match (v_field_name, name))
6250 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6251 else
6252 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6253 name, 0, 1, &disp);
6254
6255 if (t != NULL)
6256 {
6257 if (dispp != NULL)
6258 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6259 return t;
6260 }
6261 }
6262 }
6263
6264 }
6265
6266 BadName:
6267 if (!noerr)
6268 {
6269 target_terminal_ours ();
6270 gdb_flush (gdb_stdout);
6271 if (name == NULL)
6272 {
6273 /* XXX: type_sprint */
6274 fprintf_unfiltered (gdb_stderr, _("Type "));
6275 type_print (type, "", gdb_stderr, -1);
6276 error (_(" has no component named <null>"));
6277 }
6278 else
6279 {
6280 /* XXX: type_sprint */
6281 fprintf_unfiltered (gdb_stderr, _("Type "));
6282 type_print (type, "", gdb_stderr, -1);
6283 error (_(" has no component named %s"), name);
6284 }
6285 }
6286
6287 return NULL;
6288 }
6289
6290 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6291 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6292 represents an unchecked union (that is, the variant part of a
6293 record that is named in an Unchecked_Union pragma). */
6294
6295 static int
6296 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6297 {
6298 char *discrim_name = ada_variant_discrim_name (var_type);
6299 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6300 == NULL);
6301 }
6302
6303
6304 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6305 within a value of type OUTER_TYPE that is stored in GDB at
6306 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6307 numbering from 0) is applicable. Returns -1 if none are. */
6308
6309 int
6310 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6311 const gdb_byte *outer_valaddr)
6312 {
6313 int others_clause;
6314 int i;
6315 char *discrim_name = ada_variant_discrim_name (var_type);
6316 struct value *outer;
6317 struct value *discrim;
6318 LONGEST discrim_val;
6319
6320 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6321 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6322 if (discrim == NULL)
6323 return -1;
6324 discrim_val = value_as_long (discrim);
6325
6326 others_clause = -1;
6327 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6328 {
6329 if (ada_is_others_clause (var_type, i))
6330 others_clause = i;
6331 else if (ada_in_variant (discrim_val, var_type, i))
6332 return i;
6333 }
6334
6335 return others_clause;
6336 }
6337 \f
6338
6339
6340 /* Dynamic-Sized Records */
6341
6342 /* Strategy: The type ostensibly attached to a value with dynamic size
6343 (i.e., a size that is not statically recorded in the debugging
6344 data) does not accurately reflect the size or layout of the value.
6345 Our strategy is to convert these values to values with accurate,
6346 conventional types that are constructed on the fly. */
6347
6348 /* There is a subtle and tricky problem here. In general, we cannot
6349 determine the size of dynamic records without its data. However,
6350 the 'struct value' data structure, which GDB uses to represent
6351 quantities in the inferior process (the target), requires the size
6352 of the type at the time of its allocation in order to reserve space
6353 for GDB's internal copy of the data. That's why the
6354 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6355 rather than struct value*s.
6356
6357 However, GDB's internal history variables ($1, $2, etc.) are
6358 struct value*s containing internal copies of the data that are not, in
6359 general, the same as the data at their corresponding addresses in
6360 the target. Fortunately, the types we give to these values are all
6361 conventional, fixed-size types (as per the strategy described
6362 above), so that we don't usually have to perform the
6363 'to_fixed_xxx_type' conversions to look at their values.
6364 Unfortunately, there is one exception: if one of the internal
6365 history variables is an array whose elements are unconstrained
6366 records, then we will need to create distinct fixed types for each
6367 element selected. */
6368
6369 /* The upshot of all of this is that many routines take a (type, host
6370 address, target address) triple as arguments to represent a value.
6371 The host address, if non-null, is supposed to contain an internal
6372 copy of the relevant data; otherwise, the program is to consult the
6373 target at the target address. */
6374
6375 /* Assuming that VAL0 represents a pointer value, the result of
6376 dereferencing it. Differs from value_ind in its treatment of
6377 dynamic-sized types. */
6378
6379 struct value *
6380 ada_value_ind (struct value *val0)
6381 {
6382 struct value *val = unwrap_value (value_ind (val0));
6383 return ada_to_fixed_value (val);
6384 }
6385
6386 /* The value resulting from dereferencing any "reference to"
6387 qualifiers on VAL0. */
6388
6389 static struct value *
6390 ada_coerce_ref (struct value *val0)
6391 {
6392 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6393 {
6394 struct value *val = val0;
6395 val = coerce_ref (val);
6396 val = unwrap_value (val);
6397 return ada_to_fixed_value (val);
6398 }
6399 else
6400 return val0;
6401 }
6402
6403 /* Return OFF rounded upward if necessary to a multiple of
6404 ALIGNMENT (a power of 2). */
6405
6406 static unsigned int
6407 align_value (unsigned int off, unsigned int alignment)
6408 {
6409 return (off + alignment - 1) & ~(alignment - 1);
6410 }
6411
6412 /* Return the bit alignment required for field #F of template type TYPE. */
6413
6414 static unsigned int
6415 field_alignment (struct type *type, int f)
6416 {
6417 const char *name = TYPE_FIELD_NAME (type, f);
6418 int len;
6419 int align_offset;
6420
6421 /* The field name should never be null, unless the debugging information
6422 is somehow malformed. In this case, we assume the field does not
6423 require any alignment. */
6424 if (name == NULL)
6425 return 1;
6426
6427 len = strlen (name);
6428
6429 if (!isdigit (name[len - 1]))
6430 return 1;
6431
6432 if (isdigit (name[len - 2]))
6433 align_offset = len - 2;
6434 else
6435 align_offset = len - 1;
6436
6437 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6438 return TARGET_CHAR_BIT;
6439
6440 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6441 }
6442
6443 /* Find a symbol named NAME. Ignores ambiguity. */
6444
6445 struct symbol *
6446 ada_find_any_symbol (const char *name)
6447 {
6448 struct symbol *sym;
6449
6450 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6451 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6452 return sym;
6453
6454 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6455 return sym;
6456 }
6457
6458 /* Find a type named NAME. Ignores ambiguity. This routine will look
6459 solely for types defined by debug info, it will not search the GDB
6460 primitive types. */
6461
6462 struct type *
6463 ada_find_any_type (const char *name)
6464 {
6465 struct symbol *sym = ada_find_any_symbol (name);
6466
6467 if (sym != NULL)
6468 return SYMBOL_TYPE (sym);
6469
6470 return NULL;
6471 }
6472
6473 /* Given NAME and an associated BLOCK, search all symbols for
6474 NAME suffixed with "___XR", which is the ``renaming'' symbol
6475 associated to NAME. Return this symbol if found, return
6476 NULL otherwise. */
6477
6478 struct symbol *
6479 ada_find_renaming_symbol (const char *name, struct block *block)
6480 {
6481 struct symbol *sym;
6482
6483 sym = find_old_style_renaming_symbol (name, block);
6484
6485 if (sym != NULL)
6486 return sym;
6487
6488 /* Not right yet. FIXME pnh 7/20/2007. */
6489 sym = ada_find_any_symbol (name);
6490 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6491 return sym;
6492 else
6493 return NULL;
6494 }
6495
6496 static struct symbol *
6497 find_old_style_renaming_symbol (const char *name, struct block *block)
6498 {
6499 const struct symbol *function_sym = block_linkage_function (block);
6500 char *rename;
6501
6502 if (function_sym != NULL)
6503 {
6504 /* If the symbol is defined inside a function, NAME is not fully
6505 qualified. This means we need to prepend the function name
6506 as well as adding the ``___XR'' suffix to build the name of
6507 the associated renaming symbol. */
6508 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6509 /* Function names sometimes contain suffixes used
6510 for instance to qualify nested subprograms. When building
6511 the XR type name, we need to make sure that this suffix is
6512 not included. So do not include any suffix in the function
6513 name length below. */
6514 const int function_name_len = ada_name_prefix_len (function_name);
6515 const int rename_len = function_name_len + 2 /* "__" */
6516 + strlen (name) + 6 /* "___XR\0" */ ;
6517
6518 /* Strip the suffix if necessary. */
6519 function_name[function_name_len] = '\0';
6520
6521 /* Library-level functions are a special case, as GNAT adds
6522 a ``_ada_'' prefix to the function name to avoid namespace
6523 pollution. However, the renaming symbols themselves do not
6524 have this prefix, so we need to skip this prefix if present. */
6525 if (function_name_len > 5 /* "_ada_" */
6526 && strstr (function_name, "_ada_") == function_name)
6527 function_name = function_name + 5;
6528
6529 rename = (char *) alloca (rename_len * sizeof (char));
6530 xsnprintf (rename, rename_len * sizeof (char), "%s__%s___XR",
6531 function_name, name);
6532 }
6533 else
6534 {
6535 const int rename_len = strlen (name) + 6;
6536 rename = (char *) alloca (rename_len * sizeof (char));
6537 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6538 }
6539
6540 return ada_find_any_symbol (rename);
6541 }
6542
6543 /* Because of GNAT encoding conventions, several GDB symbols may match a
6544 given type name. If the type denoted by TYPE0 is to be preferred to
6545 that of TYPE1 for purposes of type printing, return non-zero;
6546 otherwise return 0. */
6547
6548 int
6549 ada_prefer_type (struct type *type0, struct type *type1)
6550 {
6551 if (type1 == NULL)
6552 return 1;
6553 else if (type0 == NULL)
6554 return 0;
6555 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6556 return 1;
6557 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6558 return 0;
6559 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6560 return 1;
6561 else if (ada_is_packed_array_type (type0))
6562 return 1;
6563 else if (ada_is_array_descriptor_type (type0)
6564 && !ada_is_array_descriptor_type (type1))
6565 return 1;
6566 else
6567 {
6568 const char *type0_name = type_name_no_tag (type0);
6569 const char *type1_name = type_name_no_tag (type1);
6570
6571 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6572 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6573 return 1;
6574 }
6575 return 0;
6576 }
6577
6578 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6579 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6580
6581 char *
6582 ada_type_name (struct type *type)
6583 {
6584 if (type == NULL)
6585 return NULL;
6586 else if (TYPE_NAME (type) != NULL)
6587 return TYPE_NAME (type);
6588 else
6589 return TYPE_TAG_NAME (type);
6590 }
6591
6592 /* Find a parallel type to TYPE whose name is formed by appending
6593 SUFFIX to the name of TYPE. */
6594
6595 struct type *
6596 ada_find_parallel_type (struct type *type, const char *suffix)
6597 {
6598 static char *name;
6599 static size_t name_len = 0;
6600 int len;
6601 char *typename = ada_type_name (type);
6602
6603 if (typename == NULL)
6604 return NULL;
6605
6606 len = strlen (typename);
6607
6608 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6609
6610 strcpy (name, typename);
6611 strcpy (name + len, suffix);
6612
6613 return ada_find_any_type (name);
6614 }
6615
6616
6617 /* If TYPE is a variable-size record type, return the corresponding template
6618 type describing its fields. Otherwise, return NULL. */
6619
6620 static struct type *
6621 dynamic_template_type (struct type *type)
6622 {
6623 type = ada_check_typedef (type);
6624
6625 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6626 || ada_type_name (type) == NULL)
6627 return NULL;
6628 else
6629 {
6630 int len = strlen (ada_type_name (type));
6631 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6632 return type;
6633 else
6634 return ada_find_parallel_type (type, "___XVE");
6635 }
6636 }
6637
6638 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6639 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6640
6641 static int
6642 is_dynamic_field (struct type *templ_type, int field_num)
6643 {
6644 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6645 return name != NULL
6646 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6647 && strstr (name, "___XVL") != NULL;
6648 }
6649
6650 /* The index of the variant field of TYPE, or -1 if TYPE does not
6651 represent a variant record type. */
6652
6653 static int
6654 variant_field_index (struct type *type)
6655 {
6656 int f;
6657
6658 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6659 return -1;
6660
6661 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6662 {
6663 if (ada_is_variant_part (type, f))
6664 return f;
6665 }
6666 return -1;
6667 }
6668
6669 /* A record type with no fields. */
6670
6671 static struct type *
6672 empty_record (struct type *template)
6673 {
6674 struct type *type = alloc_type_copy (template);
6675 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6676 TYPE_NFIELDS (type) = 0;
6677 TYPE_FIELDS (type) = NULL;
6678 INIT_CPLUS_SPECIFIC (type);
6679 TYPE_NAME (type) = "<empty>";
6680 TYPE_TAG_NAME (type) = NULL;
6681 TYPE_LENGTH (type) = 0;
6682 return type;
6683 }
6684
6685 /* An ordinary record type (with fixed-length fields) that describes
6686 the value of type TYPE at VALADDR or ADDRESS (see comments at
6687 the beginning of this section) VAL according to GNAT conventions.
6688 DVAL0 should describe the (portion of a) record that contains any
6689 necessary discriminants. It should be NULL if value_type (VAL) is
6690 an outer-level type (i.e., as opposed to a branch of a variant.) A
6691 variant field (unless unchecked) is replaced by a particular branch
6692 of the variant.
6693
6694 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6695 length are not statically known are discarded. As a consequence,
6696 VALADDR, ADDRESS and DVAL0 are ignored.
6697
6698 NOTE: Limitations: For now, we assume that dynamic fields and
6699 variants occupy whole numbers of bytes. However, they need not be
6700 byte-aligned. */
6701
6702 struct type *
6703 ada_template_to_fixed_record_type_1 (struct type *type,
6704 const gdb_byte *valaddr,
6705 CORE_ADDR address, struct value *dval0,
6706 int keep_dynamic_fields)
6707 {
6708 struct value *mark = value_mark ();
6709 struct value *dval;
6710 struct type *rtype;
6711 int nfields, bit_len;
6712 int variant_field;
6713 long off;
6714 int fld_bit_len, bit_incr;
6715 int f;
6716
6717 /* Compute the number of fields in this record type that are going
6718 to be processed: unless keep_dynamic_fields, this includes only
6719 fields whose position and length are static will be processed. */
6720 if (keep_dynamic_fields)
6721 nfields = TYPE_NFIELDS (type);
6722 else
6723 {
6724 nfields = 0;
6725 while (nfields < TYPE_NFIELDS (type)
6726 && !ada_is_variant_part (type, nfields)
6727 && !is_dynamic_field (type, nfields))
6728 nfields++;
6729 }
6730
6731 rtype = alloc_type_copy (type);
6732 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6733 INIT_CPLUS_SPECIFIC (rtype);
6734 TYPE_NFIELDS (rtype) = nfields;
6735 TYPE_FIELDS (rtype) = (struct field *)
6736 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6737 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6738 TYPE_NAME (rtype) = ada_type_name (type);
6739 TYPE_TAG_NAME (rtype) = NULL;
6740 TYPE_FIXED_INSTANCE (rtype) = 1;
6741
6742 off = 0;
6743 bit_len = 0;
6744 variant_field = -1;
6745
6746 for (f = 0; f < nfields; f += 1)
6747 {
6748 off = align_value (off, field_alignment (type, f))
6749 + TYPE_FIELD_BITPOS (type, f);
6750 TYPE_FIELD_BITPOS (rtype, f) = off;
6751 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6752
6753 if (ada_is_variant_part (type, f))
6754 {
6755 variant_field = f;
6756 fld_bit_len = bit_incr = 0;
6757 }
6758 else if (is_dynamic_field (type, f))
6759 {
6760 const gdb_byte *field_valaddr = valaddr;
6761 CORE_ADDR field_address = address;
6762 struct type *field_type =
6763 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6764
6765 if (dval0 == NULL)
6766 {
6767 /* rtype's length is computed based on the run-time
6768 value of discriminants. If the discriminants are not
6769 initialized, the type size may be completely bogus and
6770 GDB may fail to allocate a value for it. So check the
6771 size first before creating the value. */
6772 check_size (rtype);
6773 dval = value_from_contents_and_address (rtype, valaddr, address);
6774 }
6775 else
6776 dval = dval0;
6777
6778 /* If the type referenced by this field is an aligner type, we need
6779 to unwrap that aligner type, because its size might not be set.
6780 Keeping the aligner type would cause us to compute the wrong
6781 size for this field, impacting the offset of the all the fields
6782 that follow this one. */
6783 if (ada_is_aligner_type (field_type))
6784 {
6785 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6786
6787 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6788 field_address = cond_offset_target (field_address, field_offset);
6789 field_type = ada_aligned_type (field_type);
6790 }
6791
6792 field_valaddr = cond_offset_host (field_valaddr,
6793 off / TARGET_CHAR_BIT);
6794 field_address = cond_offset_target (field_address,
6795 off / TARGET_CHAR_BIT);
6796
6797 /* Get the fixed type of the field. Note that, in this case,
6798 we do not want to get the real type out of the tag: if
6799 the current field is the parent part of a tagged record,
6800 we will get the tag of the object. Clearly wrong: the real
6801 type of the parent is not the real type of the child. We
6802 would end up in an infinite loop. */
6803 field_type = ada_get_base_type (field_type);
6804 field_type = ada_to_fixed_type (field_type, field_valaddr,
6805 field_address, dval, 0);
6806
6807 TYPE_FIELD_TYPE (rtype, f) = field_type;
6808 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6809 bit_incr = fld_bit_len =
6810 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6811 }
6812 else
6813 {
6814 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6815 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6816 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6817 bit_incr = fld_bit_len =
6818 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6819 else
6820 bit_incr = fld_bit_len =
6821 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6822 }
6823 if (off + fld_bit_len > bit_len)
6824 bit_len = off + fld_bit_len;
6825 off += bit_incr;
6826 TYPE_LENGTH (rtype) =
6827 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6828 }
6829
6830 /* We handle the variant part, if any, at the end because of certain
6831 odd cases in which it is re-ordered so as NOT to be the last field of
6832 the record. This can happen in the presence of representation
6833 clauses. */
6834 if (variant_field >= 0)
6835 {
6836 struct type *branch_type;
6837
6838 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6839
6840 if (dval0 == NULL)
6841 dval = value_from_contents_and_address (rtype, valaddr, address);
6842 else
6843 dval = dval0;
6844
6845 branch_type =
6846 to_fixed_variant_branch_type
6847 (TYPE_FIELD_TYPE (type, variant_field),
6848 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6849 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6850 if (branch_type == NULL)
6851 {
6852 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6853 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6854 TYPE_NFIELDS (rtype) -= 1;
6855 }
6856 else
6857 {
6858 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6859 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6860 fld_bit_len =
6861 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6862 TARGET_CHAR_BIT;
6863 if (off + fld_bit_len > bit_len)
6864 bit_len = off + fld_bit_len;
6865 TYPE_LENGTH (rtype) =
6866 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6867 }
6868 }
6869
6870 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6871 should contain the alignment of that record, which should be a strictly
6872 positive value. If null or negative, then something is wrong, most
6873 probably in the debug info. In that case, we don't round up the size
6874 of the resulting type. If this record is not part of another structure,
6875 the current RTYPE length might be good enough for our purposes. */
6876 if (TYPE_LENGTH (type) <= 0)
6877 {
6878 if (TYPE_NAME (rtype))
6879 warning (_("Invalid type size for `%s' detected: %d."),
6880 TYPE_NAME (rtype), TYPE_LENGTH (type));
6881 else
6882 warning (_("Invalid type size for <unnamed> detected: %d."),
6883 TYPE_LENGTH (type));
6884 }
6885 else
6886 {
6887 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6888 TYPE_LENGTH (type));
6889 }
6890
6891 value_free_to_mark (mark);
6892 if (TYPE_LENGTH (rtype) > varsize_limit)
6893 error (_("record type with dynamic size is larger than varsize-limit"));
6894 return rtype;
6895 }
6896
6897 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6898 of 1. */
6899
6900 static struct type *
6901 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6902 CORE_ADDR address, struct value *dval0)
6903 {
6904 return ada_template_to_fixed_record_type_1 (type, valaddr,
6905 address, dval0, 1);
6906 }
6907
6908 /* An ordinary record type in which ___XVL-convention fields and
6909 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6910 static approximations, containing all possible fields. Uses
6911 no runtime values. Useless for use in values, but that's OK,
6912 since the results are used only for type determinations. Works on both
6913 structs and unions. Representation note: to save space, we memorize
6914 the result of this function in the TYPE_TARGET_TYPE of the
6915 template type. */
6916
6917 static struct type *
6918 template_to_static_fixed_type (struct type *type0)
6919 {
6920 struct type *type;
6921 int nfields;
6922 int f;
6923
6924 if (TYPE_TARGET_TYPE (type0) != NULL)
6925 return TYPE_TARGET_TYPE (type0);
6926
6927 nfields = TYPE_NFIELDS (type0);
6928 type = type0;
6929
6930 for (f = 0; f < nfields; f += 1)
6931 {
6932 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6933 struct type *new_type;
6934
6935 if (is_dynamic_field (type0, f))
6936 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6937 else
6938 new_type = static_unwrap_type (field_type);
6939 if (type == type0 && new_type != field_type)
6940 {
6941 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
6942 TYPE_CODE (type) = TYPE_CODE (type0);
6943 INIT_CPLUS_SPECIFIC (type);
6944 TYPE_NFIELDS (type) = nfields;
6945 TYPE_FIELDS (type) = (struct field *)
6946 TYPE_ALLOC (type, nfields * sizeof (struct field));
6947 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6948 sizeof (struct field) * nfields);
6949 TYPE_NAME (type) = ada_type_name (type0);
6950 TYPE_TAG_NAME (type) = NULL;
6951 TYPE_FIXED_INSTANCE (type) = 1;
6952 TYPE_LENGTH (type) = 0;
6953 }
6954 TYPE_FIELD_TYPE (type, f) = new_type;
6955 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6956 }
6957 return type;
6958 }
6959
6960 /* Given an object of type TYPE whose contents are at VALADDR and
6961 whose address in memory is ADDRESS, returns a revision of TYPE,
6962 which should be a non-dynamic-sized record, in which the variant
6963 part, if any, is replaced with the appropriate branch. Looks
6964 for discriminant values in DVAL0, which can be NULL if the record
6965 contains the necessary discriminant values. */
6966
6967 static struct type *
6968 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6969 CORE_ADDR address, struct value *dval0)
6970 {
6971 struct value *mark = value_mark ();
6972 struct value *dval;
6973 struct type *rtype;
6974 struct type *branch_type;
6975 int nfields = TYPE_NFIELDS (type);
6976 int variant_field = variant_field_index (type);
6977
6978 if (variant_field == -1)
6979 return type;
6980
6981 if (dval0 == NULL)
6982 dval = value_from_contents_and_address (type, valaddr, address);
6983 else
6984 dval = dval0;
6985
6986 rtype = alloc_type_copy (type);
6987 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6988 INIT_CPLUS_SPECIFIC (rtype);
6989 TYPE_NFIELDS (rtype) = nfields;
6990 TYPE_FIELDS (rtype) =
6991 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6992 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6993 sizeof (struct field) * nfields);
6994 TYPE_NAME (rtype) = ada_type_name (type);
6995 TYPE_TAG_NAME (rtype) = NULL;
6996 TYPE_FIXED_INSTANCE (rtype) = 1;
6997 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6998
6999 branch_type = to_fixed_variant_branch_type
7000 (TYPE_FIELD_TYPE (type, variant_field),
7001 cond_offset_host (valaddr,
7002 TYPE_FIELD_BITPOS (type, variant_field)
7003 / TARGET_CHAR_BIT),
7004 cond_offset_target (address,
7005 TYPE_FIELD_BITPOS (type, variant_field)
7006 / TARGET_CHAR_BIT), dval);
7007 if (branch_type == NULL)
7008 {
7009 int f;
7010 for (f = variant_field + 1; f < nfields; f += 1)
7011 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7012 TYPE_NFIELDS (rtype) -= 1;
7013 }
7014 else
7015 {
7016 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7017 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7018 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7019 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7020 }
7021 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7022
7023 value_free_to_mark (mark);
7024 return rtype;
7025 }
7026
7027 /* An ordinary record type (with fixed-length fields) that describes
7028 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7029 beginning of this section]. Any necessary discriminants' values
7030 should be in DVAL, a record value; it may be NULL if the object
7031 at ADDR itself contains any necessary discriminant values.
7032 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7033 values from the record are needed. Except in the case that DVAL,
7034 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7035 unchecked) is replaced by a particular branch of the variant.
7036
7037 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7038 is questionable and may be removed. It can arise during the
7039 processing of an unconstrained-array-of-record type where all the
7040 variant branches have exactly the same size. This is because in
7041 such cases, the compiler does not bother to use the XVS convention
7042 when encoding the record. I am currently dubious of this
7043 shortcut and suspect the compiler should be altered. FIXME. */
7044
7045 static struct type *
7046 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7047 CORE_ADDR address, struct value *dval)
7048 {
7049 struct type *templ_type;
7050
7051 if (TYPE_FIXED_INSTANCE (type0))
7052 return type0;
7053
7054 templ_type = dynamic_template_type (type0);
7055
7056 if (templ_type != NULL)
7057 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7058 else if (variant_field_index (type0) >= 0)
7059 {
7060 if (dval == NULL && valaddr == NULL && address == 0)
7061 return type0;
7062 return to_record_with_fixed_variant_part (type0, valaddr, address,
7063 dval);
7064 }
7065 else
7066 {
7067 TYPE_FIXED_INSTANCE (type0) = 1;
7068 return type0;
7069 }
7070
7071 }
7072
7073 /* An ordinary record type (with fixed-length fields) that describes
7074 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7075 union type. Any necessary discriminants' values should be in DVAL,
7076 a record value. That is, this routine selects the appropriate
7077 branch of the union at ADDR according to the discriminant value
7078 indicated in the union's type name. Returns VAR_TYPE0 itself if
7079 it represents a variant subject to a pragma Unchecked_Union. */
7080
7081 static struct type *
7082 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7083 CORE_ADDR address, struct value *dval)
7084 {
7085 int which;
7086 struct type *templ_type;
7087 struct type *var_type;
7088
7089 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7090 var_type = TYPE_TARGET_TYPE (var_type0);
7091 else
7092 var_type = var_type0;
7093
7094 templ_type = ada_find_parallel_type (var_type, "___XVU");
7095
7096 if (templ_type != NULL)
7097 var_type = templ_type;
7098
7099 if (is_unchecked_variant (var_type, value_type (dval)))
7100 return var_type0;
7101 which =
7102 ada_which_variant_applies (var_type,
7103 value_type (dval), value_contents (dval));
7104
7105 if (which < 0)
7106 return empty_record (var_type);
7107 else if (is_dynamic_field (var_type, which))
7108 return to_fixed_record_type
7109 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7110 valaddr, address, dval);
7111 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7112 return
7113 to_fixed_record_type
7114 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7115 else
7116 return TYPE_FIELD_TYPE (var_type, which);
7117 }
7118
7119 /* Assuming that TYPE0 is an array type describing the type of a value
7120 at ADDR, and that DVAL describes a record containing any
7121 discriminants used in TYPE0, returns a type for the value that
7122 contains no dynamic components (that is, no components whose sizes
7123 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7124 true, gives an error message if the resulting type's size is over
7125 varsize_limit. */
7126
7127 static struct type *
7128 to_fixed_array_type (struct type *type0, struct value *dval,
7129 int ignore_too_big)
7130 {
7131 struct type *index_type_desc;
7132 struct type *result;
7133 int packed_array_p;
7134
7135 if (TYPE_FIXED_INSTANCE (type0))
7136 return type0;
7137
7138 packed_array_p = ada_is_packed_array_type (type0);
7139 if (packed_array_p)
7140 type0 = decode_packed_array_type (type0);
7141
7142 index_type_desc = ada_find_parallel_type (type0, "___XA");
7143 if (index_type_desc == NULL)
7144 {
7145 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7146 /* NOTE: elt_type---the fixed version of elt_type0---should never
7147 depend on the contents of the array in properly constructed
7148 debugging data. */
7149 /* Create a fixed version of the array element type.
7150 We're not providing the address of an element here,
7151 and thus the actual object value cannot be inspected to do
7152 the conversion. This should not be a problem, since arrays of
7153 unconstrained objects are not allowed. In particular, all
7154 the elements of an array of a tagged type should all be of
7155 the same type specified in the debugging info. No need to
7156 consult the object tag. */
7157 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7158
7159 /* Make sure we always create a new array type when dealing with
7160 packed array types, since we're going to fix-up the array
7161 type length and element bitsize a little further down. */
7162 if (elt_type0 == elt_type && !packed_array_p)
7163 result = type0;
7164 else
7165 result = create_array_type (alloc_type_copy (type0),
7166 elt_type, TYPE_INDEX_TYPE (type0));
7167 }
7168 else
7169 {
7170 int i;
7171 struct type *elt_type0;
7172
7173 elt_type0 = type0;
7174 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7175 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7176
7177 /* NOTE: result---the fixed version of elt_type0---should never
7178 depend on the contents of the array in properly constructed
7179 debugging data. */
7180 /* Create a fixed version of the array element type.
7181 We're not providing the address of an element here,
7182 and thus the actual object value cannot be inspected to do
7183 the conversion. This should not be a problem, since arrays of
7184 unconstrained objects are not allowed. In particular, all
7185 the elements of an array of a tagged type should all be of
7186 the same type specified in the debugging info. No need to
7187 consult the object tag. */
7188 result =
7189 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7190
7191 elt_type0 = type0;
7192 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7193 {
7194 struct type *range_type =
7195 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7196 dval, TYPE_INDEX_TYPE (elt_type0));
7197 result = create_array_type (alloc_type_copy (elt_type0),
7198 result, range_type);
7199 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7200 }
7201 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7202 error (_("array type with dynamic size is larger than varsize-limit"));
7203 }
7204
7205 if (packed_array_p)
7206 {
7207 /* So far, the resulting type has been created as if the original
7208 type was a regular (non-packed) array type. As a result, the
7209 bitsize of the array elements needs to be set again, and the array
7210 length needs to be recomputed based on that bitsize. */
7211 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7212 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7213
7214 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7215 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7216 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7217 TYPE_LENGTH (result)++;
7218 }
7219
7220 TYPE_FIXED_INSTANCE (result) = 1;
7221 return result;
7222 }
7223
7224
7225 /* A standard type (containing no dynamically sized components)
7226 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7227 DVAL describes a record containing any discriminants used in TYPE0,
7228 and may be NULL if there are none, or if the object of type TYPE at
7229 ADDRESS or in VALADDR contains these discriminants.
7230
7231 If CHECK_TAG is not null, in the case of tagged types, this function
7232 attempts to locate the object's tag and use it to compute the actual
7233 type. However, when ADDRESS is null, we cannot use it to determine the
7234 location of the tag, and therefore compute the tagged type's actual type.
7235 So we return the tagged type without consulting the tag. */
7236
7237 static struct type *
7238 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7239 CORE_ADDR address, struct value *dval, int check_tag)
7240 {
7241 type = ada_check_typedef (type);
7242 switch (TYPE_CODE (type))
7243 {
7244 default:
7245 return type;
7246 case TYPE_CODE_STRUCT:
7247 {
7248 struct type *static_type = to_static_fixed_type (type);
7249 struct type *fixed_record_type =
7250 to_fixed_record_type (type, valaddr, address, NULL);
7251 /* If STATIC_TYPE is a tagged type and we know the object's address,
7252 then we can determine its tag, and compute the object's actual
7253 type from there. Note that we have to use the fixed record
7254 type (the parent part of the record may have dynamic fields
7255 and the way the location of _tag is expressed may depend on
7256 them). */
7257
7258 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7259 {
7260 struct type *real_type =
7261 type_from_tag (value_tag_from_contents_and_address
7262 (fixed_record_type,
7263 valaddr,
7264 address));
7265 if (real_type != NULL)
7266 return to_fixed_record_type (real_type, valaddr, address, NULL);
7267 }
7268
7269 /* Check to see if there is a parallel ___XVZ variable.
7270 If there is, then it provides the actual size of our type. */
7271 else if (ada_type_name (fixed_record_type) != NULL)
7272 {
7273 char *name = ada_type_name (fixed_record_type);
7274 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7275 int xvz_found = 0;
7276 LONGEST size;
7277
7278 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7279 size = get_int_var_value (xvz_name, &xvz_found);
7280 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7281 {
7282 fixed_record_type = copy_type (fixed_record_type);
7283 TYPE_LENGTH (fixed_record_type) = size;
7284
7285 /* The FIXED_RECORD_TYPE may have be a stub. We have
7286 observed this when the debugging info is STABS, and
7287 apparently it is something that is hard to fix.
7288
7289 In practice, we don't need the actual type definition
7290 at all, because the presence of the XVZ variable allows us
7291 to assume that there must be a XVS type as well, which we
7292 should be able to use later, when we need the actual type
7293 definition.
7294
7295 In the meantime, pretend that the "fixed" type we are
7296 returning is NOT a stub, because this can cause trouble
7297 when using this type to create new types targeting it.
7298 Indeed, the associated creation routines often check
7299 whether the target type is a stub and will try to replace
7300 it, thus using a type with the wrong size. This, in turn,
7301 might cause the new type to have the wrong size too.
7302 Consider the case of an array, for instance, where the size
7303 of the array is computed from the number of elements in
7304 our array multiplied by the size of its element. */
7305 TYPE_STUB (fixed_record_type) = 0;
7306 }
7307 }
7308 return fixed_record_type;
7309 }
7310 case TYPE_CODE_ARRAY:
7311 return to_fixed_array_type (type, dval, 1);
7312 case TYPE_CODE_UNION:
7313 if (dval == NULL)
7314 return type;
7315 else
7316 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7317 }
7318 }
7319
7320 /* The same as ada_to_fixed_type_1, except that it preserves the type
7321 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7322 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7323
7324 struct type *
7325 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7326 CORE_ADDR address, struct value *dval, int check_tag)
7327
7328 {
7329 struct type *fixed_type =
7330 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7331
7332 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7333 && TYPE_TARGET_TYPE (type) == fixed_type)
7334 return type;
7335
7336 return fixed_type;
7337 }
7338
7339 /* A standard (static-sized) type corresponding as well as possible to
7340 TYPE0, but based on no runtime data. */
7341
7342 static struct type *
7343 to_static_fixed_type (struct type *type0)
7344 {
7345 struct type *type;
7346
7347 if (type0 == NULL)
7348 return NULL;
7349
7350 if (TYPE_FIXED_INSTANCE (type0))
7351 return type0;
7352
7353 type0 = ada_check_typedef (type0);
7354
7355 switch (TYPE_CODE (type0))
7356 {
7357 default:
7358 return type0;
7359 case TYPE_CODE_STRUCT:
7360 type = dynamic_template_type (type0);
7361 if (type != NULL)
7362 return template_to_static_fixed_type (type);
7363 else
7364 return template_to_static_fixed_type (type0);
7365 case TYPE_CODE_UNION:
7366 type = ada_find_parallel_type (type0, "___XVU");
7367 if (type != NULL)
7368 return template_to_static_fixed_type (type);
7369 else
7370 return template_to_static_fixed_type (type0);
7371 }
7372 }
7373
7374 /* A static approximation of TYPE with all type wrappers removed. */
7375
7376 static struct type *
7377 static_unwrap_type (struct type *type)
7378 {
7379 if (ada_is_aligner_type (type))
7380 {
7381 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7382 if (ada_type_name (type1) == NULL)
7383 TYPE_NAME (type1) = ada_type_name (type);
7384
7385 return static_unwrap_type (type1);
7386 }
7387 else
7388 {
7389 struct type *raw_real_type = ada_get_base_type (type);
7390 if (raw_real_type == type)
7391 return type;
7392 else
7393 return to_static_fixed_type (raw_real_type);
7394 }
7395 }
7396
7397 /* In some cases, incomplete and private types require
7398 cross-references that are not resolved as records (for example,
7399 type Foo;
7400 type FooP is access Foo;
7401 V: FooP;
7402 type Foo is array ...;
7403 ). In these cases, since there is no mechanism for producing
7404 cross-references to such types, we instead substitute for FooP a
7405 stub enumeration type that is nowhere resolved, and whose tag is
7406 the name of the actual type. Call these types "non-record stubs". */
7407
7408 /* A type equivalent to TYPE that is not a non-record stub, if one
7409 exists, otherwise TYPE. */
7410
7411 struct type *
7412 ada_check_typedef (struct type *type)
7413 {
7414 if (type == NULL)
7415 return NULL;
7416
7417 CHECK_TYPEDEF (type);
7418 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7419 || !TYPE_STUB (type)
7420 || TYPE_TAG_NAME (type) == NULL)
7421 return type;
7422 else
7423 {
7424 char *name = TYPE_TAG_NAME (type);
7425 struct type *type1 = ada_find_any_type (name);
7426 return (type1 == NULL) ? type : type1;
7427 }
7428 }
7429
7430 /* A value representing the data at VALADDR/ADDRESS as described by
7431 type TYPE0, but with a standard (static-sized) type that correctly
7432 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7433 type, then return VAL0 [this feature is simply to avoid redundant
7434 creation of struct values]. */
7435
7436 static struct value *
7437 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7438 struct value *val0)
7439 {
7440 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7441 if (type == type0 && val0 != NULL)
7442 return val0;
7443 else
7444 return value_from_contents_and_address (type, 0, address);
7445 }
7446
7447 /* A value representing VAL, but with a standard (static-sized) type
7448 that correctly describes it. Does not necessarily create a new
7449 value. */
7450
7451 static struct value *
7452 ada_to_fixed_value (struct value *val)
7453 {
7454 return ada_to_fixed_value_create (value_type (val),
7455 value_address (val),
7456 val);
7457 }
7458
7459 /* A value representing VAL, but with a standard (static-sized) type
7460 chosen to approximate the real type of VAL as well as possible, but
7461 without consulting any runtime values. For Ada dynamic-sized
7462 types, therefore, the type of the result is likely to be inaccurate. */
7463
7464 static struct value *
7465 ada_to_static_fixed_value (struct value *val)
7466 {
7467 struct type *type =
7468 to_static_fixed_type (static_unwrap_type (value_type (val)));
7469 if (type == value_type (val))
7470 return val;
7471 else
7472 return coerce_unspec_val_to_type (val, type);
7473 }
7474 \f
7475
7476 /* Attributes */
7477
7478 /* Table mapping attribute numbers to names.
7479 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7480
7481 static const char *attribute_names[] = {
7482 "<?>",
7483
7484 "first",
7485 "last",
7486 "length",
7487 "image",
7488 "max",
7489 "min",
7490 "modulus",
7491 "pos",
7492 "size",
7493 "tag",
7494 "val",
7495 0
7496 };
7497
7498 const char *
7499 ada_attribute_name (enum exp_opcode n)
7500 {
7501 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7502 return attribute_names[n - OP_ATR_FIRST + 1];
7503 else
7504 return attribute_names[0];
7505 }
7506
7507 /* Evaluate the 'POS attribute applied to ARG. */
7508
7509 static LONGEST
7510 pos_atr (struct value *arg)
7511 {
7512 struct value *val = coerce_ref (arg);
7513 struct type *type = value_type (val);
7514
7515 if (!discrete_type_p (type))
7516 error (_("'POS only defined on discrete types"));
7517
7518 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7519 {
7520 int i;
7521 LONGEST v = value_as_long (val);
7522
7523 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7524 {
7525 if (v == TYPE_FIELD_BITPOS (type, i))
7526 return i;
7527 }
7528 error (_("enumeration value is invalid: can't find 'POS"));
7529 }
7530 else
7531 return value_as_long (val);
7532 }
7533
7534 static struct value *
7535 value_pos_atr (struct type *type, struct value *arg)
7536 {
7537 return value_from_longest (type, pos_atr (arg));
7538 }
7539
7540 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7541
7542 static struct value *
7543 value_val_atr (struct type *type, struct value *arg)
7544 {
7545 if (!discrete_type_p (type))
7546 error (_("'VAL only defined on discrete types"));
7547 if (!integer_type_p (value_type (arg)))
7548 error (_("'VAL requires integral argument"));
7549
7550 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7551 {
7552 long pos = value_as_long (arg);
7553 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7554 error (_("argument to 'VAL out of range"));
7555 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7556 }
7557 else
7558 return value_from_longest (type, value_as_long (arg));
7559 }
7560 \f
7561
7562 /* Evaluation */
7563
7564 /* True if TYPE appears to be an Ada character type.
7565 [At the moment, this is true only for Character and Wide_Character;
7566 It is a heuristic test that could stand improvement]. */
7567
7568 int
7569 ada_is_character_type (struct type *type)
7570 {
7571 const char *name;
7572
7573 /* If the type code says it's a character, then assume it really is,
7574 and don't check any further. */
7575 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7576 return 1;
7577
7578 /* Otherwise, assume it's a character type iff it is a discrete type
7579 with a known character type name. */
7580 name = ada_type_name (type);
7581 return (name != NULL
7582 && (TYPE_CODE (type) == TYPE_CODE_INT
7583 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7584 && (strcmp (name, "character") == 0
7585 || strcmp (name, "wide_character") == 0
7586 || strcmp (name, "wide_wide_character") == 0
7587 || strcmp (name, "unsigned char") == 0));
7588 }
7589
7590 /* True if TYPE appears to be an Ada string type. */
7591
7592 int
7593 ada_is_string_type (struct type *type)
7594 {
7595 type = ada_check_typedef (type);
7596 if (type != NULL
7597 && TYPE_CODE (type) != TYPE_CODE_PTR
7598 && (ada_is_simple_array_type (type)
7599 || ada_is_array_descriptor_type (type))
7600 && ada_array_arity (type) == 1)
7601 {
7602 struct type *elttype = ada_array_element_type (type, 1);
7603
7604 return ada_is_character_type (elttype);
7605 }
7606 else
7607 return 0;
7608 }
7609
7610
7611 /* True if TYPE is a struct type introduced by the compiler to force the
7612 alignment of a value. Such types have a single field with a
7613 distinctive name. */
7614
7615 int
7616 ada_is_aligner_type (struct type *type)
7617 {
7618 type = ada_check_typedef (type);
7619
7620 /* If we can find a parallel XVS type, then the XVS type should
7621 be used instead of this type. And hence, this is not an aligner
7622 type. */
7623 if (ada_find_parallel_type (type, "___XVS") != NULL)
7624 return 0;
7625
7626 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7627 && TYPE_NFIELDS (type) == 1
7628 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7629 }
7630
7631 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7632 the parallel type. */
7633
7634 struct type *
7635 ada_get_base_type (struct type *raw_type)
7636 {
7637 struct type *real_type_namer;
7638 struct type *raw_real_type;
7639
7640 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7641 return raw_type;
7642
7643 if (ada_is_aligner_type (raw_type))
7644 /* The encoding specifies that we should always use the aligner type.
7645 So, even if this aligner type has an associated XVS type, we should
7646 simply ignore it.
7647
7648 According to the compiler gurus, an XVS type parallel to an aligner
7649 type may exist because of a stabs limitation. In stabs, aligner
7650 types are empty because the field has a variable-sized type, and
7651 thus cannot actually be used as an aligner type. As a result,
7652 we need the associated parallel XVS type to decode the type.
7653 Since the policy in the compiler is to not change the internal
7654 representation based on the debugging info format, we sometimes
7655 end up having a redundant XVS type parallel to the aligner type. */
7656 return raw_type;
7657
7658 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7659 if (real_type_namer == NULL
7660 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7661 || TYPE_NFIELDS (real_type_namer) != 1)
7662 return raw_type;
7663
7664 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7665 if (raw_real_type == NULL)
7666 return raw_type;
7667 else
7668 return raw_real_type;
7669 }
7670
7671 /* The type of value designated by TYPE, with all aligners removed. */
7672
7673 struct type *
7674 ada_aligned_type (struct type *type)
7675 {
7676 if (ada_is_aligner_type (type))
7677 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7678 else
7679 return ada_get_base_type (type);
7680 }
7681
7682
7683 /* The address of the aligned value in an object at address VALADDR
7684 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7685
7686 const gdb_byte *
7687 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7688 {
7689 if (ada_is_aligner_type (type))
7690 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7691 valaddr +
7692 TYPE_FIELD_BITPOS (type,
7693 0) / TARGET_CHAR_BIT);
7694 else
7695 return valaddr;
7696 }
7697
7698
7699
7700 /* The printed representation of an enumeration literal with encoded
7701 name NAME. The value is good to the next call of ada_enum_name. */
7702 const char *
7703 ada_enum_name (const char *name)
7704 {
7705 static char *result;
7706 static size_t result_len = 0;
7707 char *tmp;
7708
7709 /* First, unqualify the enumeration name:
7710 1. Search for the last '.' character. If we find one, then skip
7711 all the preceeding characters, the unqualified name starts
7712 right after that dot.
7713 2. Otherwise, we may be debugging on a target where the compiler
7714 translates dots into "__". Search forward for double underscores,
7715 but stop searching when we hit an overloading suffix, which is
7716 of the form "__" followed by digits. */
7717
7718 tmp = strrchr (name, '.');
7719 if (tmp != NULL)
7720 name = tmp + 1;
7721 else
7722 {
7723 while ((tmp = strstr (name, "__")) != NULL)
7724 {
7725 if (isdigit (tmp[2]))
7726 break;
7727 else
7728 name = tmp + 2;
7729 }
7730 }
7731
7732 if (name[0] == 'Q')
7733 {
7734 int v;
7735 if (name[1] == 'U' || name[1] == 'W')
7736 {
7737 if (sscanf (name + 2, "%x", &v) != 1)
7738 return name;
7739 }
7740 else
7741 return name;
7742
7743 GROW_VECT (result, result_len, 16);
7744 if (isascii (v) && isprint (v))
7745 xsnprintf (result, result_len, "'%c'", v);
7746 else if (name[1] == 'U')
7747 xsnprintf (result, result_len, "[\"%02x\"]", v);
7748 else
7749 xsnprintf (result, result_len, "[\"%04x\"]", v);
7750
7751 return result;
7752 }
7753 else
7754 {
7755 tmp = strstr (name, "__");
7756 if (tmp == NULL)
7757 tmp = strstr (name, "$");
7758 if (tmp != NULL)
7759 {
7760 GROW_VECT (result, result_len, tmp - name + 1);
7761 strncpy (result, name, tmp - name);
7762 result[tmp - name] = '\0';
7763 return result;
7764 }
7765
7766 return name;
7767 }
7768 }
7769
7770 /* Evaluate the subexpression of EXP starting at *POS as for
7771 evaluate_type, updating *POS to point just past the evaluated
7772 expression. */
7773
7774 static struct value *
7775 evaluate_subexp_type (struct expression *exp, int *pos)
7776 {
7777 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7778 }
7779
7780 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7781 value it wraps. */
7782
7783 static struct value *
7784 unwrap_value (struct value *val)
7785 {
7786 struct type *type = ada_check_typedef (value_type (val));
7787 if (ada_is_aligner_type (type))
7788 {
7789 struct value *v = ada_value_struct_elt (val, "F", 0);
7790 struct type *val_type = ada_check_typedef (value_type (v));
7791 if (ada_type_name (val_type) == NULL)
7792 TYPE_NAME (val_type) = ada_type_name (type);
7793
7794 return unwrap_value (v);
7795 }
7796 else
7797 {
7798 struct type *raw_real_type =
7799 ada_check_typedef (ada_get_base_type (type));
7800
7801 if (type == raw_real_type)
7802 return val;
7803
7804 return
7805 coerce_unspec_val_to_type
7806 (val, ada_to_fixed_type (raw_real_type, 0,
7807 value_address (val),
7808 NULL, 1));
7809 }
7810 }
7811
7812 static struct value *
7813 cast_to_fixed (struct type *type, struct value *arg)
7814 {
7815 LONGEST val;
7816
7817 if (type == value_type (arg))
7818 return arg;
7819 else if (ada_is_fixed_point_type (value_type (arg)))
7820 val = ada_float_to_fixed (type,
7821 ada_fixed_to_float (value_type (arg),
7822 value_as_long (arg)));
7823 else
7824 {
7825 DOUBLEST argd = value_as_double (arg);
7826 val = ada_float_to_fixed (type, argd);
7827 }
7828
7829 return value_from_longest (type, val);
7830 }
7831
7832 static struct value *
7833 cast_from_fixed (struct type *type, struct value *arg)
7834 {
7835 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7836 value_as_long (arg));
7837 return value_from_double (type, val);
7838 }
7839
7840 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7841 return the converted value. */
7842
7843 static struct value *
7844 coerce_for_assign (struct type *type, struct value *val)
7845 {
7846 struct type *type2 = value_type (val);
7847 if (type == type2)
7848 return val;
7849
7850 type2 = ada_check_typedef (type2);
7851 type = ada_check_typedef (type);
7852
7853 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7854 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7855 {
7856 val = ada_value_ind (val);
7857 type2 = value_type (val);
7858 }
7859
7860 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7861 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7862 {
7863 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7864 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7865 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7866 error (_("Incompatible types in assignment"));
7867 deprecated_set_value_type (val, type);
7868 }
7869 return val;
7870 }
7871
7872 static struct value *
7873 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7874 {
7875 struct value *val;
7876 struct type *type1, *type2;
7877 LONGEST v, v1, v2;
7878
7879 arg1 = coerce_ref (arg1);
7880 arg2 = coerce_ref (arg2);
7881 type1 = base_type (ada_check_typedef (value_type (arg1)));
7882 type2 = base_type (ada_check_typedef (value_type (arg2)));
7883
7884 if (TYPE_CODE (type1) != TYPE_CODE_INT
7885 || TYPE_CODE (type2) != TYPE_CODE_INT)
7886 return value_binop (arg1, arg2, op);
7887
7888 switch (op)
7889 {
7890 case BINOP_MOD:
7891 case BINOP_DIV:
7892 case BINOP_REM:
7893 break;
7894 default:
7895 return value_binop (arg1, arg2, op);
7896 }
7897
7898 v2 = value_as_long (arg2);
7899 if (v2 == 0)
7900 error (_("second operand of %s must not be zero."), op_string (op));
7901
7902 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7903 return value_binop (arg1, arg2, op);
7904
7905 v1 = value_as_long (arg1);
7906 switch (op)
7907 {
7908 case BINOP_DIV:
7909 v = v1 / v2;
7910 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7911 v += v > 0 ? -1 : 1;
7912 break;
7913 case BINOP_REM:
7914 v = v1 % v2;
7915 if (v * v1 < 0)
7916 v -= v2;
7917 break;
7918 default:
7919 /* Should not reach this point. */
7920 v = 0;
7921 }
7922
7923 val = allocate_value (type1);
7924 store_unsigned_integer (value_contents_raw (val),
7925 TYPE_LENGTH (value_type (val)), v);
7926 return val;
7927 }
7928
7929 static int
7930 ada_value_equal (struct value *arg1, struct value *arg2)
7931 {
7932 if (ada_is_direct_array_type (value_type (arg1))
7933 || ada_is_direct_array_type (value_type (arg2)))
7934 {
7935 /* Automatically dereference any array reference before
7936 we attempt to perform the comparison. */
7937 arg1 = ada_coerce_ref (arg1);
7938 arg2 = ada_coerce_ref (arg2);
7939
7940 arg1 = ada_coerce_to_simple_array (arg1);
7941 arg2 = ada_coerce_to_simple_array (arg2);
7942 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7943 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7944 error (_("Attempt to compare array with non-array"));
7945 /* FIXME: The following works only for types whose
7946 representations use all bits (no padding or undefined bits)
7947 and do not have user-defined equality. */
7948 return
7949 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7950 && memcmp (value_contents (arg1), value_contents (arg2),
7951 TYPE_LENGTH (value_type (arg1))) == 0;
7952 }
7953 return value_equal (arg1, arg2);
7954 }
7955
7956 /* Total number of component associations in the aggregate starting at
7957 index PC in EXP. Assumes that index PC is the start of an
7958 OP_AGGREGATE. */
7959
7960 static int
7961 num_component_specs (struct expression *exp, int pc)
7962 {
7963 int n, m, i;
7964 m = exp->elts[pc + 1].longconst;
7965 pc += 3;
7966 n = 0;
7967 for (i = 0; i < m; i += 1)
7968 {
7969 switch (exp->elts[pc].opcode)
7970 {
7971 default:
7972 n += 1;
7973 break;
7974 case OP_CHOICES:
7975 n += exp->elts[pc + 1].longconst;
7976 break;
7977 }
7978 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7979 }
7980 return n;
7981 }
7982
7983 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7984 component of LHS (a simple array or a record), updating *POS past
7985 the expression, assuming that LHS is contained in CONTAINER. Does
7986 not modify the inferior's memory, nor does it modify LHS (unless
7987 LHS == CONTAINER). */
7988
7989 static void
7990 assign_component (struct value *container, struct value *lhs, LONGEST index,
7991 struct expression *exp, int *pos)
7992 {
7993 struct value *mark = value_mark ();
7994 struct value *elt;
7995 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7996 {
7997 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
7998 struct value *index_val = value_from_longest (index_type, index);
7999 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8000 }
8001 else
8002 {
8003 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8004 elt = ada_to_fixed_value (unwrap_value (elt));
8005 }
8006
8007 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8008 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8009 else
8010 value_assign_to_component (container, elt,
8011 ada_evaluate_subexp (NULL, exp, pos,
8012 EVAL_NORMAL));
8013
8014 value_free_to_mark (mark);
8015 }
8016
8017 /* Assuming that LHS represents an lvalue having a record or array
8018 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8019 of that aggregate's value to LHS, advancing *POS past the
8020 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8021 lvalue containing LHS (possibly LHS itself). Does not modify
8022 the inferior's memory, nor does it modify the contents of
8023 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8024
8025 static struct value *
8026 assign_aggregate (struct value *container,
8027 struct value *lhs, struct expression *exp,
8028 int *pos, enum noside noside)
8029 {
8030 struct type *lhs_type;
8031 int n = exp->elts[*pos+1].longconst;
8032 LONGEST low_index, high_index;
8033 int num_specs;
8034 LONGEST *indices;
8035 int max_indices, num_indices;
8036 int is_array_aggregate;
8037 int i;
8038 struct value *mark = value_mark ();
8039
8040 *pos += 3;
8041 if (noside != EVAL_NORMAL)
8042 {
8043 int i;
8044 for (i = 0; i < n; i += 1)
8045 ada_evaluate_subexp (NULL, exp, pos, noside);
8046 return container;
8047 }
8048
8049 container = ada_coerce_ref (container);
8050 if (ada_is_direct_array_type (value_type (container)))
8051 container = ada_coerce_to_simple_array (container);
8052 lhs = ada_coerce_ref (lhs);
8053 if (!deprecated_value_modifiable (lhs))
8054 error (_("Left operand of assignment is not a modifiable lvalue."));
8055
8056 lhs_type = value_type (lhs);
8057 if (ada_is_direct_array_type (lhs_type))
8058 {
8059 lhs = ada_coerce_to_simple_array (lhs);
8060 lhs_type = value_type (lhs);
8061 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8062 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8063 is_array_aggregate = 1;
8064 }
8065 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8066 {
8067 low_index = 0;
8068 high_index = num_visible_fields (lhs_type) - 1;
8069 is_array_aggregate = 0;
8070 }
8071 else
8072 error (_("Left-hand side must be array or record."));
8073
8074 num_specs = num_component_specs (exp, *pos - 3);
8075 max_indices = 4 * num_specs + 4;
8076 indices = alloca (max_indices * sizeof (indices[0]));
8077 indices[0] = indices[1] = low_index - 1;
8078 indices[2] = indices[3] = high_index + 1;
8079 num_indices = 4;
8080
8081 for (i = 0; i < n; i += 1)
8082 {
8083 switch (exp->elts[*pos].opcode)
8084 {
8085 case OP_CHOICES:
8086 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8087 &num_indices, max_indices,
8088 low_index, high_index);
8089 break;
8090 case OP_POSITIONAL:
8091 aggregate_assign_positional (container, lhs, exp, pos, indices,
8092 &num_indices, max_indices,
8093 low_index, high_index);
8094 break;
8095 case OP_OTHERS:
8096 if (i != n-1)
8097 error (_("Misplaced 'others' clause"));
8098 aggregate_assign_others (container, lhs, exp, pos, indices,
8099 num_indices, low_index, high_index);
8100 break;
8101 default:
8102 error (_("Internal error: bad aggregate clause"));
8103 }
8104 }
8105
8106 return container;
8107 }
8108
8109 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8110 construct at *POS, updating *POS past the construct, given that
8111 the positions are relative to lower bound LOW, where HIGH is the
8112 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8113 updating *NUM_INDICES as needed. CONTAINER is as for
8114 assign_aggregate. */
8115 static void
8116 aggregate_assign_positional (struct value *container,
8117 struct value *lhs, struct expression *exp,
8118 int *pos, LONGEST *indices, int *num_indices,
8119 int max_indices, LONGEST low, LONGEST high)
8120 {
8121 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8122
8123 if (ind - 1 == high)
8124 warning (_("Extra components in aggregate ignored."));
8125 if (ind <= high)
8126 {
8127 add_component_interval (ind, ind, indices, num_indices, max_indices);
8128 *pos += 3;
8129 assign_component (container, lhs, ind, exp, pos);
8130 }
8131 else
8132 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8133 }
8134
8135 /* Assign into the components of LHS indexed by the OP_CHOICES
8136 construct at *POS, updating *POS past the construct, given that
8137 the allowable indices are LOW..HIGH. Record the indices assigned
8138 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8139 needed. CONTAINER is as for assign_aggregate. */
8140 static void
8141 aggregate_assign_from_choices (struct value *container,
8142 struct value *lhs, struct expression *exp,
8143 int *pos, LONGEST *indices, int *num_indices,
8144 int max_indices, LONGEST low, LONGEST high)
8145 {
8146 int j;
8147 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8148 int choice_pos, expr_pc;
8149 int is_array = ada_is_direct_array_type (value_type (lhs));
8150
8151 choice_pos = *pos += 3;
8152
8153 for (j = 0; j < n_choices; j += 1)
8154 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8155 expr_pc = *pos;
8156 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8157
8158 for (j = 0; j < n_choices; j += 1)
8159 {
8160 LONGEST lower, upper;
8161 enum exp_opcode op = exp->elts[choice_pos].opcode;
8162 if (op == OP_DISCRETE_RANGE)
8163 {
8164 choice_pos += 1;
8165 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8166 EVAL_NORMAL));
8167 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8168 EVAL_NORMAL));
8169 }
8170 else if (is_array)
8171 {
8172 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8173 EVAL_NORMAL));
8174 upper = lower;
8175 }
8176 else
8177 {
8178 int ind;
8179 char *name;
8180 switch (op)
8181 {
8182 case OP_NAME:
8183 name = &exp->elts[choice_pos + 2].string;
8184 break;
8185 case OP_VAR_VALUE:
8186 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8187 break;
8188 default:
8189 error (_("Invalid record component association."));
8190 }
8191 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8192 ind = 0;
8193 if (! find_struct_field (name, value_type (lhs), 0,
8194 NULL, NULL, NULL, NULL, &ind))
8195 error (_("Unknown component name: %s."), name);
8196 lower = upper = ind;
8197 }
8198
8199 if (lower <= upper && (lower < low || upper > high))
8200 error (_("Index in component association out of bounds."));
8201
8202 add_component_interval (lower, upper, indices, num_indices,
8203 max_indices);
8204 while (lower <= upper)
8205 {
8206 int pos1;
8207 pos1 = expr_pc;
8208 assign_component (container, lhs, lower, exp, &pos1);
8209 lower += 1;
8210 }
8211 }
8212 }
8213
8214 /* Assign the value of the expression in the OP_OTHERS construct in
8215 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8216 have not been previously assigned. The index intervals already assigned
8217 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8218 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8219 static void
8220 aggregate_assign_others (struct value *container,
8221 struct value *lhs, struct expression *exp,
8222 int *pos, LONGEST *indices, int num_indices,
8223 LONGEST low, LONGEST high)
8224 {
8225 int i;
8226 int expr_pc = *pos+1;
8227
8228 for (i = 0; i < num_indices - 2; i += 2)
8229 {
8230 LONGEST ind;
8231 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8232 {
8233 int pos;
8234 pos = expr_pc;
8235 assign_component (container, lhs, ind, exp, &pos);
8236 }
8237 }
8238 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8239 }
8240
8241 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8242 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8243 modifying *SIZE as needed. It is an error if *SIZE exceeds
8244 MAX_SIZE. The resulting intervals do not overlap. */
8245 static void
8246 add_component_interval (LONGEST low, LONGEST high,
8247 LONGEST* indices, int *size, int max_size)
8248 {
8249 int i, j;
8250 for (i = 0; i < *size; i += 2) {
8251 if (high >= indices[i] && low <= indices[i + 1])
8252 {
8253 int kh;
8254 for (kh = i + 2; kh < *size; kh += 2)
8255 if (high < indices[kh])
8256 break;
8257 if (low < indices[i])
8258 indices[i] = low;
8259 indices[i + 1] = indices[kh - 1];
8260 if (high > indices[i + 1])
8261 indices[i + 1] = high;
8262 memcpy (indices + i + 2, indices + kh, *size - kh);
8263 *size -= kh - i - 2;
8264 return;
8265 }
8266 else if (high < indices[i])
8267 break;
8268 }
8269
8270 if (*size == max_size)
8271 error (_("Internal error: miscounted aggregate components."));
8272 *size += 2;
8273 for (j = *size-1; j >= i+2; j -= 1)
8274 indices[j] = indices[j - 2];
8275 indices[i] = low;
8276 indices[i + 1] = high;
8277 }
8278
8279 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8280 is different. */
8281
8282 static struct value *
8283 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8284 {
8285 if (type == ada_check_typedef (value_type (arg2)))
8286 return arg2;
8287
8288 if (ada_is_fixed_point_type (type))
8289 return (cast_to_fixed (type, arg2));
8290
8291 if (ada_is_fixed_point_type (value_type (arg2)))
8292 return cast_from_fixed (type, arg2);
8293
8294 return value_cast (type, arg2);
8295 }
8296
8297 /* Evaluating Ada expressions, and printing their result.
8298 ------------------------------------------------------
8299
8300 We usually evaluate an Ada expression in order to print its value.
8301 We also evaluate an expression in order to print its type, which
8302 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8303 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8304 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8305 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8306 similar.
8307
8308 Evaluating expressions is a little more complicated for Ada entities
8309 than it is for entities in languages such as C. The main reason for
8310 this is that Ada provides types whose definition might be dynamic.
8311 One example of such types is variant records. Or another example
8312 would be an array whose bounds can only be known at run time.
8313
8314 The following description is a general guide as to what should be
8315 done (and what should NOT be done) in order to evaluate an expression
8316 involving such types, and when. This does not cover how the semantic
8317 information is encoded by GNAT as this is covered separatly. For the
8318 document used as the reference for the GNAT encoding, see exp_dbug.ads
8319 in the GNAT sources.
8320
8321 Ideally, we should embed each part of this description next to its
8322 associated code. Unfortunately, the amount of code is so vast right
8323 now that it's hard to see whether the code handling a particular
8324 situation might be duplicated or not. One day, when the code is
8325 cleaned up, this guide might become redundant with the comments
8326 inserted in the code, and we might want to remove it.
8327
8328 When evaluating Ada expressions, the tricky issue is that they may
8329 reference entities whose type contents and size are not statically
8330 known. Consider for instance a variant record:
8331
8332 type Rec (Empty : Boolean := True) is record
8333 case Empty is
8334 when True => null;
8335 when False => Value : Integer;
8336 end case;
8337 end record;
8338 Yes : Rec := (Empty => False, Value => 1);
8339 No : Rec := (empty => True);
8340
8341 The size and contents of that record depends on the value of the
8342 descriminant (Rec.Empty). At this point, neither the debugging
8343 information nor the associated type structure in GDB are able to
8344 express such dynamic types. So what the debugger does is to create
8345 "fixed" versions of the type that applies to the specific object.
8346 We also informally refer to this opperation as "fixing" an object,
8347 which means creating its associated fixed type.
8348
8349 Example: when printing the value of variable "Yes" above, its fixed
8350 type would look like this:
8351
8352 type Rec is record
8353 Empty : Boolean;
8354 Value : Integer;
8355 end record;
8356
8357 On the other hand, if we printed the value of "No", its fixed type
8358 would become:
8359
8360 type Rec is record
8361 Empty : Boolean;
8362 end record;
8363
8364 Things become a little more complicated when trying to fix an entity
8365 with a dynamic type that directly contains another dynamic type,
8366 such as an array of variant records, for instance. There are
8367 two possible cases: Arrays, and records.
8368
8369 Arrays are a little simpler to handle, because the same amount of
8370 memory is allocated for each element of the array, even if the amount
8371 of space used by each element changes from element to element.
8372 Consider for instance the following array of type Rec:
8373
8374 type Rec_Array is array (1 .. 2) of Rec;
8375
8376 The type structure in GDB describes an array in terms of its
8377 bounds, and the type of its elements. By design, all elements
8378 in the array have the same type. So we cannot use a fixed type
8379 for the array elements in this case, since the fixed type depends
8380 on the actual value of each element.
8381
8382 Fortunately, what happens in practice is that each element of
8383 the array has the same size, which is the maximum size that
8384 might be needed in order to hold an object of the element type.
8385 And the compiler shows it in the debugging information by wrapping
8386 the array element inside a private PAD type. This type should not
8387 be shown to the user, and must be "unwrap"'ed before printing. Note
8388 that we also use the adjective "aligner" in our code to designate
8389 these wrapper types.
8390
8391 These wrapper types should have a constant size, which is the size
8392 of each element of the array. In the case when the size is statically
8393 known, the PAD type will already have the right size, and the array
8394 element type should remain unfixed. But there are cases when
8395 this size is not statically known. For instance, assuming that
8396 "Five" is an integer variable:
8397
8398 type Dynamic is array (1 .. Five) of Integer;
8399 type Wrapper (Has_Length : Boolean := False) is record
8400 Data : Dynamic;
8401 case Has_Length is
8402 when True => Length : Integer;
8403 when False => null;
8404 end case;
8405 end record;
8406 type Wrapper_Array is array (1 .. 2) of Wrapper;
8407
8408 Hello : Wrapper_Array := (others => (Has_Length => True,
8409 Data => (others => 17),
8410 Length => 1));
8411
8412
8413 The debugging info would describe variable Hello as being an
8414 array of a PAD type. The size of that PAD type is not statically
8415 known, but can be determined using a parallel XVZ variable.
8416 In that case, a copy of the PAD type with the correct size should
8417 be used for the fixed array.
8418
8419 However, things are slightly different in the case of dynamic
8420 record types. In this case, in order to compute the associated
8421 fixed type, we need to determine the size and offset of each of
8422 its components. This, in turn, requires us to compute the fixed
8423 type of each of these components.
8424
8425 Consider for instance the example:
8426
8427 type Bounded_String (Max_Size : Natural) is record
8428 Str : String (1 .. Max_Size);
8429 Length : Natural;
8430 end record;
8431 My_String : Bounded_String (Max_Size => 10);
8432
8433 In that case, the position of field "Length" depends on the size
8434 of field Str, which itself depends on the value of the Max_Size
8435 discriminant. In order to fix the type of variable My_String,
8436 we need to fix the type of field Str. Therefore, fixing a variant
8437 record requires us to fix each of its components.
8438
8439 However, if a component does not have a dynamic size, the component
8440 should not be fixed. In particular, fields that use a PAD type
8441 should not fixed. Here is an example where this might happen
8442 (assuming type Rec above):
8443
8444 type Container (Big : Boolean) is record
8445 First : Rec;
8446 After : Integer;
8447 case Big is
8448 when True => Another : Integer;
8449 when False => null;
8450 end case;
8451 end record;
8452 My_Container : Container := (Big => False,
8453 First => (Empty => True),
8454 After => 42);
8455
8456 In that example, the compiler creates a PAD type for component First,
8457 whose size is constant, and then positions the component After just
8458 right after it. The offset of component After is therefore constant
8459 in this case.
8460
8461 The debugger computes the position of each field based on an algorithm
8462 that uses, among other things, the actual position and size of the field
8463 preceding it. Let's now imagine that the user is trying to print the
8464 value of My_Container. If the type fixing was recursive, we would
8465 end up computing the offset of field After based on the size of the
8466 fixed version of field First. And since in our example First has
8467 only one actual field, the size of the fixed type is actually smaller
8468 than the amount of space allocated to that field, and thus we would
8469 compute the wrong offset of field After.
8470
8471 Unfortunately, we need to watch out for dynamic components of variant
8472 records (identified by the ___XVL suffix in the component name).
8473 Even if the target type is a PAD type, the size of that type might
8474 not be statically known. So the PAD type needs to be unwrapped and
8475 the resulting type needs to be fixed. Otherwise, we might end up
8476 with the wrong size for our component. This can be observed with
8477 the following type declarations:
8478
8479 type Octal is new Integer range 0 .. 7;
8480 type Octal_Array is array (Positive range <>) of Octal;
8481 pragma Pack (Octal_Array);
8482
8483 type Octal_Buffer (Size : Positive) is record
8484 Buffer : Octal_Array (1 .. Size);
8485 Length : Integer;
8486 end record;
8487
8488 In that case, Buffer is a PAD type whose size is unset and needs
8489 to be computed by fixing the unwrapped type.
8490
8491 Lastly, when should the sub-elements of a type that remained unfixed
8492 thus far, be actually fixed?
8493
8494 The answer is: Only when referencing that element. For instance
8495 when selecting one component of a record, this specific component
8496 should be fixed at that point in time. Or when printing the value
8497 of a record, each component should be fixed before its value gets
8498 printed. Similarly for arrays, the element of the array should be
8499 fixed when printing each element of the array, or when extracting
8500 one element out of that array. On the other hand, fixing should
8501 not be performed on the elements when taking a slice of an array!
8502
8503 Note that one of the side-effects of miscomputing the offset and
8504 size of each field is that we end up also miscomputing the size
8505 of the containing type. This can have adverse results when computing
8506 the value of an entity. GDB fetches the value of an entity based
8507 on the size of its type, and thus a wrong size causes GDB to fetch
8508 the wrong amount of memory. In the case where the computed size is
8509 too small, GDB fetches too little data to print the value of our
8510 entiry. Results in this case as unpredicatble, as we usually read
8511 past the buffer containing the data =:-o. */
8512
8513 /* Implement the evaluate_exp routine in the exp_descriptor structure
8514 for the Ada language. */
8515
8516 static struct value *
8517 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8518 int *pos, enum noside noside)
8519 {
8520 enum exp_opcode op;
8521 int tem, tem2, tem3;
8522 int pc;
8523 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8524 struct type *type;
8525 int nargs, oplen;
8526 struct value **argvec;
8527
8528 pc = *pos;
8529 *pos += 1;
8530 op = exp->elts[pc].opcode;
8531
8532 switch (op)
8533 {
8534 default:
8535 *pos -= 1;
8536 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8537 arg1 = unwrap_value (arg1);
8538
8539 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8540 then we need to perform the conversion manually, because
8541 evaluate_subexp_standard doesn't do it. This conversion is
8542 necessary in Ada because the different kinds of float/fixed
8543 types in Ada have different representations.
8544
8545 Similarly, we need to perform the conversion from OP_LONG
8546 ourselves. */
8547 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8548 arg1 = ada_value_cast (expect_type, arg1, noside);
8549
8550 return arg1;
8551
8552 case OP_STRING:
8553 {
8554 struct value *result;
8555 *pos -= 1;
8556 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8557 /* The result type will have code OP_STRING, bashed there from
8558 OP_ARRAY. Bash it back. */
8559 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8560 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8561 return result;
8562 }
8563
8564 case UNOP_CAST:
8565 (*pos) += 2;
8566 type = exp->elts[pc + 1].type;
8567 arg1 = evaluate_subexp (type, exp, pos, noside);
8568 if (noside == EVAL_SKIP)
8569 goto nosideret;
8570 arg1 = ada_value_cast (type, arg1, noside);
8571 return arg1;
8572
8573 case UNOP_QUAL:
8574 (*pos) += 2;
8575 type = exp->elts[pc + 1].type;
8576 return ada_evaluate_subexp (type, exp, pos, noside);
8577
8578 case BINOP_ASSIGN:
8579 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8580 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8581 {
8582 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8583 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8584 return arg1;
8585 return ada_value_assign (arg1, arg1);
8586 }
8587 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8588 except if the lhs of our assignment is a convenience variable.
8589 In the case of assigning to a convenience variable, the lhs
8590 should be exactly the result of the evaluation of the rhs. */
8591 type = value_type (arg1);
8592 if (VALUE_LVAL (arg1) == lval_internalvar)
8593 type = NULL;
8594 arg2 = evaluate_subexp (type, exp, pos, noside);
8595 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8596 return arg1;
8597 if (ada_is_fixed_point_type (value_type (arg1)))
8598 arg2 = cast_to_fixed (value_type (arg1), arg2);
8599 else if (ada_is_fixed_point_type (value_type (arg2)))
8600 error
8601 (_("Fixed-point values must be assigned to fixed-point variables"));
8602 else
8603 arg2 = coerce_for_assign (value_type (arg1), arg2);
8604 return ada_value_assign (arg1, arg2);
8605
8606 case BINOP_ADD:
8607 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8608 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8609 if (noside == EVAL_SKIP)
8610 goto nosideret;
8611 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8612 return (value_from_longest
8613 (value_type (arg1),
8614 value_as_long (arg1) + value_as_long (arg2)));
8615 if ((ada_is_fixed_point_type (value_type (arg1))
8616 || ada_is_fixed_point_type (value_type (arg2)))
8617 && value_type (arg1) != value_type (arg2))
8618 error (_("Operands of fixed-point addition must have the same type"));
8619 /* Do the addition, and cast the result to the type of the first
8620 argument. We cannot cast the result to a reference type, so if
8621 ARG1 is a reference type, find its underlying type. */
8622 type = value_type (arg1);
8623 while (TYPE_CODE (type) == TYPE_CODE_REF)
8624 type = TYPE_TARGET_TYPE (type);
8625 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8626 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8627
8628 case BINOP_SUB:
8629 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8630 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8631 if (noside == EVAL_SKIP)
8632 goto nosideret;
8633 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8634 return (value_from_longest
8635 (value_type (arg1),
8636 value_as_long (arg1) - value_as_long (arg2)));
8637 if ((ada_is_fixed_point_type (value_type (arg1))
8638 || ada_is_fixed_point_type (value_type (arg2)))
8639 && value_type (arg1) != value_type (arg2))
8640 error (_("Operands of fixed-point subtraction must have the same type"));
8641 /* Do the substraction, and cast the result to the type of the first
8642 argument. We cannot cast the result to a reference type, so if
8643 ARG1 is a reference type, find its underlying type. */
8644 type = value_type (arg1);
8645 while (TYPE_CODE (type) == TYPE_CODE_REF)
8646 type = TYPE_TARGET_TYPE (type);
8647 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8648 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8649
8650 case BINOP_MUL:
8651 case BINOP_DIV:
8652 case BINOP_REM:
8653 case BINOP_MOD:
8654 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8655 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8656 if (noside == EVAL_SKIP)
8657 goto nosideret;
8658 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8659 {
8660 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8661 return value_zero (value_type (arg1), not_lval);
8662 }
8663 else
8664 {
8665 type = builtin_type (exp->gdbarch)->builtin_double;
8666 if (ada_is_fixed_point_type (value_type (arg1)))
8667 arg1 = cast_from_fixed (type, arg1);
8668 if (ada_is_fixed_point_type (value_type (arg2)))
8669 arg2 = cast_from_fixed (type, arg2);
8670 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8671 return ada_value_binop (arg1, arg2, op);
8672 }
8673
8674 case BINOP_EQUAL:
8675 case BINOP_NOTEQUAL:
8676 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8677 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8678 if (noside == EVAL_SKIP)
8679 goto nosideret;
8680 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8681 tem = 0;
8682 else
8683 {
8684 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8685 tem = ada_value_equal (arg1, arg2);
8686 }
8687 if (op == BINOP_NOTEQUAL)
8688 tem = !tem;
8689 type = language_bool_type (exp->language_defn, exp->gdbarch);
8690 return value_from_longest (type, (LONGEST) tem);
8691
8692 case UNOP_NEG:
8693 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8694 if (noside == EVAL_SKIP)
8695 goto nosideret;
8696 else if (ada_is_fixed_point_type (value_type (arg1)))
8697 return value_cast (value_type (arg1), value_neg (arg1));
8698 else
8699 {
8700 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8701 return value_neg (arg1);
8702 }
8703
8704 case BINOP_LOGICAL_AND:
8705 case BINOP_LOGICAL_OR:
8706 case UNOP_LOGICAL_NOT:
8707 {
8708 struct value *val;
8709
8710 *pos -= 1;
8711 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8712 type = language_bool_type (exp->language_defn, exp->gdbarch);
8713 return value_cast (type, val);
8714 }
8715
8716 case BINOP_BITWISE_AND:
8717 case BINOP_BITWISE_IOR:
8718 case BINOP_BITWISE_XOR:
8719 {
8720 struct value *val;
8721
8722 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8723 *pos = pc;
8724 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8725
8726 return value_cast (value_type (arg1), val);
8727 }
8728
8729 case OP_VAR_VALUE:
8730 *pos -= 1;
8731
8732 if (noside == EVAL_SKIP)
8733 {
8734 *pos += 4;
8735 goto nosideret;
8736 }
8737 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8738 /* Only encountered when an unresolved symbol occurs in a
8739 context other than a function call, in which case, it is
8740 invalid. */
8741 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8742 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8743 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8744 {
8745 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8746 if (ada_is_tagged_type (type, 0))
8747 {
8748 /* Tagged types are a little special in the fact that the real
8749 type is dynamic and can only be determined by inspecting the
8750 object's tag. This means that we need to get the object's
8751 value first (EVAL_NORMAL) and then extract the actual object
8752 type from its tag.
8753
8754 Note that we cannot skip the final step where we extract
8755 the object type from its tag, because the EVAL_NORMAL phase
8756 results in dynamic components being resolved into fixed ones.
8757 This can cause problems when trying to print the type
8758 description of tagged types whose parent has a dynamic size:
8759 We use the type name of the "_parent" component in order
8760 to print the name of the ancestor type in the type description.
8761 If that component had a dynamic size, the resolution into
8762 a fixed type would result in the loss of that type name,
8763 thus preventing us from printing the name of the ancestor
8764 type in the type description. */
8765 struct type *actual_type;
8766
8767 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8768 actual_type = type_from_tag (ada_value_tag (arg1));
8769 if (actual_type == NULL)
8770 /* If, for some reason, we were unable to determine
8771 the actual type from the tag, then use the static
8772 approximation that we just computed as a fallback.
8773 This can happen if the debugging information is
8774 incomplete, for instance. */
8775 actual_type = type;
8776
8777 return value_zero (actual_type, not_lval);
8778 }
8779
8780 *pos += 4;
8781 return value_zero
8782 (to_static_fixed_type
8783 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8784 not_lval);
8785 }
8786 else
8787 {
8788 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8789 arg1 = unwrap_value (arg1);
8790 return ada_to_fixed_value (arg1);
8791 }
8792
8793 case OP_FUNCALL:
8794 (*pos) += 2;
8795
8796 /* Allocate arg vector, including space for the function to be
8797 called in argvec[0] and a terminating NULL. */
8798 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8799 argvec =
8800 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8801
8802 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8803 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8804 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8805 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8806 else
8807 {
8808 for (tem = 0; tem <= nargs; tem += 1)
8809 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8810 argvec[tem] = 0;
8811
8812 if (noside == EVAL_SKIP)
8813 goto nosideret;
8814 }
8815
8816 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8817 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8818 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8819 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8820 /* This is a packed array that has already been fixed, and
8821 therefore already coerced to a simple array. Nothing further
8822 to do. */
8823 ;
8824 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8825 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8826 && VALUE_LVAL (argvec[0]) == lval_memory))
8827 argvec[0] = value_addr (argvec[0]);
8828
8829 type = ada_check_typedef (value_type (argvec[0]));
8830 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8831 {
8832 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8833 {
8834 case TYPE_CODE_FUNC:
8835 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8836 break;
8837 case TYPE_CODE_ARRAY:
8838 break;
8839 case TYPE_CODE_STRUCT:
8840 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8841 argvec[0] = ada_value_ind (argvec[0]);
8842 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8843 break;
8844 default:
8845 error (_("cannot subscript or call something of type `%s'"),
8846 ada_type_name (value_type (argvec[0])));
8847 break;
8848 }
8849 }
8850
8851 switch (TYPE_CODE (type))
8852 {
8853 case TYPE_CODE_FUNC:
8854 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8855 return allocate_value (TYPE_TARGET_TYPE (type));
8856 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8857 case TYPE_CODE_STRUCT:
8858 {
8859 int arity;
8860
8861 arity = ada_array_arity (type);
8862 type = ada_array_element_type (type, nargs);
8863 if (type == NULL)
8864 error (_("cannot subscript or call a record"));
8865 if (arity != nargs)
8866 error (_("wrong number of subscripts; expecting %d"), arity);
8867 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8868 return value_zero (ada_aligned_type (type), lval_memory);
8869 return
8870 unwrap_value (ada_value_subscript
8871 (argvec[0], nargs, argvec + 1));
8872 }
8873 case TYPE_CODE_ARRAY:
8874 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8875 {
8876 type = ada_array_element_type (type, nargs);
8877 if (type == NULL)
8878 error (_("element type of array unknown"));
8879 else
8880 return value_zero (ada_aligned_type (type), lval_memory);
8881 }
8882 return
8883 unwrap_value (ada_value_subscript
8884 (ada_coerce_to_simple_array (argvec[0]),
8885 nargs, argvec + 1));
8886 case TYPE_CODE_PTR: /* Pointer to array */
8887 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8888 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8889 {
8890 type = ada_array_element_type (type, nargs);
8891 if (type == NULL)
8892 error (_("element type of array unknown"));
8893 else
8894 return value_zero (ada_aligned_type (type), lval_memory);
8895 }
8896 return
8897 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8898 nargs, argvec + 1));
8899
8900 default:
8901 error (_("Attempt to index or call something other than an "
8902 "array or function"));
8903 }
8904
8905 case TERNOP_SLICE:
8906 {
8907 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8908 struct value *low_bound_val =
8909 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8910 struct value *high_bound_val =
8911 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8912 LONGEST low_bound;
8913 LONGEST high_bound;
8914 low_bound_val = coerce_ref (low_bound_val);
8915 high_bound_val = coerce_ref (high_bound_val);
8916 low_bound = pos_atr (low_bound_val);
8917 high_bound = pos_atr (high_bound_val);
8918
8919 if (noside == EVAL_SKIP)
8920 goto nosideret;
8921
8922 /* If this is a reference to an aligner type, then remove all
8923 the aligners. */
8924 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8925 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8926 TYPE_TARGET_TYPE (value_type (array)) =
8927 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8928
8929 if (ada_is_packed_array_type (value_type (array)))
8930 error (_("cannot slice a packed array"));
8931
8932 /* If this is a reference to an array or an array lvalue,
8933 convert to a pointer. */
8934 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8935 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8936 && VALUE_LVAL (array) == lval_memory))
8937 array = value_addr (array);
8938
8939 if (noside == EVAL_AVOID_SIDE_EFFECTS
8940 && ada_is_array_descriptor_type (ada_check_typedef
8941 (value_type (array))))
8942 return empty_array (ada_type_of_array (array, 0), low_bound);
8943
8944 array = ada_coerce_to_simple_array_ptr (array);
8945
8946 /* If we have more than one level of pointer indirection,
8947 dereference the value until we get only one level. */
8948 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8949 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8950 == TYPE_CODE_PTR))
8951 array = value_ind (array);
8952
8953 /* Make sure we really do have an array type before going further,
8954 to avoid a SEGV when trying to get the index type or the target
8955 type later down the road if the debug info generated by
8956 the compiler is incorrect or incomplete. */
8957 if (!ada_is_simple_array_type (value_type (array)))
8958 error (_("cannot take slice of non-array"));
8959
8960 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8961 {
8962 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8963 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8964 low_bound);
8965 else
8966 {
8967 struct type *arr_type0 =
8968 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8969 NULL, 1);
8970 return ada_value_slice_from_ptr (array, arr_type0,
8971 longest_to_int (low_bound),
8972 longest_to_int (high_bound));
8973 }
8974 }
8975 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8976 return array;
8977 else if (high_bound < low_bound)
8978 return empty_array (value_type (array), low_bound);
8979 else
8980 return ada_value_slice (array, longest_to_int (low_bound),
8981 longest_to_int (high_bound));
8982 }
8983
8984 case UNOP_IN_RANGE:
8985 (*pos) += 2;
8986 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8987 type = check_typedef (exp->elts[pc + 1].type);
8988
8989 if (noside == EVAL_SKIP)
8990 goto nosideret;
8991
8992 switch (TYPE_CODE (type))
8993 {
8994 default:
8995 lim_warning (_("Membership test incompletely implemented; "
8996 "always returns true"));
8997 type = language_bool_type (exp->language_defn, exp->gdbarch);
8998 return value_from_longest (type, (LONGEST) 1);
8999
9000 case TYPE_CODE_RANGE:
9001 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9002 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9003 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9004 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9005 type = language_bool_type (exp->language_defn, exp->gdbarch);
9006 return
9007 value_from_longest (type,
9008 (value_less (arg1, arg3)
9009 || value_equal (arg1, arg3))
9010 && (value_less (arg2, arg1)
9011 || value_equal (arg2, arg1)));
9012 }
9013
9014 case BINOP_IN_BOUNDS:
9015 (*pos) += 2;
9016 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9017 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9018
9019 if (noside == EVAL_SKIP)
9020 goto nosideret;
9021
9022 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9023 {
9024 type = language_bool_type (exp->language_defn, exp->gdbarch);
9025 return value_zero (type, not_lval);
9026 }
9027
9028 tem = longest_to_int (exp->elts[pc + 1].longconst);
9029
9030 type = ada_index_type (value_type (arg2), tem, "range");
9031 if (!type)
9032 type = value_type (arg1);
9033
9034 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9035 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9036
9037 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9038 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9039 type = language_bool_type (exp->language_defn, exp->gdbarch);
9040 return
9041 value_from_longest (type,
9042 (value_less (arg1, arg3)
9043 || value_equal (arg1, arg3))
9044 && (value_less (arg2, arg1)
9045 || value_equal (arg2, arg1)));
9046
9047 case TERNOP_IN_RANGE:
9048 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9049 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9050 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9051
9052 if (noside == EVAL_SKIP)
9053 goto nosideret;
9054
9055 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9056 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9057 type = language_bool_type (exp->language_defn, exp->gdbarch);
9058 return
9059 value_from_longest (type,
9060 (value_less (arg1, arg3)
9061 || value_equal (arg1, arg3))
9062 && (value_less (arg2, arg1)
9063 || value_equal (arg2, arg1)));
9064
9065 case OP_ATR_FIRST:
9066 case OP_ATR_LAST:
9067 case OP_ATR_LENGTH:
9068 {
9069 struct type *type_arg;
9070 if (exp->elts[*pos].opcode == OP_TYPE)
9071 {
9072 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9073 arg1 = NULL;
9074 type_arg = check_typedef (exp->elts[pc + 2].type);
9075 }
9076 else
9077 {
9078 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9079 type_arg = NULL;
9080 }
9081
9082 if (exp->elts[*pos].opcode != OP_LONG)
9083 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9084 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9085 *pos += 4;
9086
9087 if (noside == EVAL_SKIP)
9088 goto nosideret;
9089
9090 if (type_arg == NULL)
9091 {
9092 arg1 = ada_coerce_ref (arg1);
9093
9094 if (ada_is_packed_array_type (value_type (arg1)))
9095 arg1 = ada_coerce_to_simple_array (arg1);
9096
9097 type = ada_index_type (value_type (arg1), tem,
9098 ada_attribute_name (op));
9099 if (type == NULL)
9100 type = builtin_type (exp->gdbarch)->builtin_int;
9101
9102 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9103 return allocate_value (type);
9104
9105 switch (op)
9106 {
9107 default: /* Should never happen. */
9108 error (_("unexpected attribute encountered"));
9109 case OP_ATR_FIRST:
9110 return value_from_longest
9111 (type, ada_array_bound (arg1, tem, 0));
9112 case OP_ATR_LAST:
9113 return value_from_longest
9114 (type, ada_array_bound (arg1, tem, 1));
9115 case OP_ATR_LENGTH:
9116 return value_from_longest
9117 (type, ada_array_length (arg1, tem));
9118 }
9119 }
9120 else if (discrete_type_p (type_arg))
9121 {
9122 struct type *range_type;
9123 char *name = ada_type_name (type_arg);
9124 range_type = NULL;
9125 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9126 range_type = to_fixed_range_type (name, NULL, type_arg);
9127 if (range_type == NULL)
9128 range_type = type_arg;
9129 switch (op)
9130 {
9131 default:
9132 error (_("unexpected attribute encountered"));
9133 case OP_ATR_FIRST:
9134 return value_from_longest
9135 (range_type, discrete_type_low_bound (range_type));
9136 case OP_ATR_LAST:
9137 return value_from_longest
9138 (range_type, discrete_type_high_bound (range_type));
9139 case OP_ATR_LENGTH:
9140 error (_("the 'length attribute applies only to array types"));
9141 }
9142 }
9143 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9144 error (_("unimplemented type attribute"));
9145 else
9146 {
9147 LONGEST low, high;
9148
9149 if (ada_is_packed_array_type (type_arg))
9150 type_arg = decode_packed_array_type (type_arg);
9151
9152 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9153 if (type == NULL)
9154 type = builtin_type (exp->gdbarch)->builtin_int;
9155
9156 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9157 return allocate_value (type);
9158
9159 switch (op)
9160 {
9161 default:
9162 error (_("unexpected attribute encountered"));
9163 case OP_ATR_FIRST:
9164 low = ada_array_bound_from_type (type_arg, tem, 0);
9165 return value_from_longest (type, low);
9166 case OP_ATR_LAST:
9167 high = ada_array_bound_from_type (type_arg, tem, 1);
9168 return value_from_longest (type, high);
9169 case OP_ATR_LENGTH:
9170 low = ada_array_bound_from_type (type_arg, tem, 0);
9171 high = ada_array_bound_from_type (type_arg, tem, 1);
9172 return value_from_longest (type, high - low + 1);
9173 }
9174 }
9175 }
9176
9177 case OP_ATR_TAG:
9178 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9179 if (noside == EVAL_SKIP)
9180 goto nosideret;
9181
9182 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9183 return value_zero (ada_tag_type (arg1), not_lval);
9184
9185 return ada_value_tag (arg1);
9186
9187 case OP_ATR_MIN:
9188 case OP_ATR_MAX:
9189 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9190 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9191 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9192 if (noside == EVAL_SKIP)
9193 goto nosideret;
9194 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9195 return value_zero (value_type (arg1), not_lval);
9196 else
9197 {
9198 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9199 return value_binop (arg1, arg2,
9200 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9201 }
9202
9203 case OP_ATR_MODULUS:
9204 {
9205 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9206 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9207
9208 if (noside == EVAL_SKIP)
9209 goto nosideret;
9210
9211 if (!ada_is_modular_type (type_arg))
9212 error (_("'modulus must be applied to modular type"));
9213
9214 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9215 ada_modulus (type_arg));
9216 }
9217
9218
9219 case OP_ATR_POS:
9220 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9221 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9222 if (noside == EVAL_SKIP)
9223 goto nosideret;
9224 type = builtin_type (exp->gdbarch)->builtin_int;
9225 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9226 return value_zero (type, not_lval);
9227 else
9228 return value_pos_atr (type, arg1);
9229
9230 case OP_ATR_SIZE:
9231 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9232 type = value_type (arg1);
9233
9234 /* If the argument is a reference, then dereference its type, since
9235 the user is really asking for the size of the actual object,
9236 not the size of the pointer. */
9237 if (TYPE_CODE (type) == TYPE_CODE_REF)
9238 type = TYPE_TARGET_TYPE (type);
9239
9240 if (noside == EVAL_SKIP)
9241 goto nosideret;
9242 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9243 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9244 else
9245 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9246 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9247
9248 case OP_ATR_VAL:
9249 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9250 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9251 type = exp->elts[pc + 2].type;
9252 if (noside == EVAL_SKIP)
9253 goto nosideret;
9254 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9255 return value_zero (type, not_lval);
9256 else
9257 return value_val_atr (type, arg1);
9258
9259 case BINOP_EXP:
9260 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9261 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9262 if (noside == EVAL_SKIP)
9263 goto nosideret;
9264 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9265 return value_zero (value_type (arg1), not_lval);
9266 else
9267 {
9268 /* For integer exponentiation operations,
9269 only promote the first argument. */
9270 if (is_integral_type (value_type (arg2)))
9271 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9272 else
9273 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9274
9275 return value_binop (arg1, arg2, op);
9276 }
9277
9278 case UNOP_PLUS:
9279 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9280 if (noside == EVAL_SKIP)
9281 goto nosideret;
9282 else
9283 return arg1;
9284
9285 case UNOP_ABS:
9286 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9287 if (noside == EVAL_SKIP)
9288 goto nosideret;
9289 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9290 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9291 return value_neg (arg1);
9292 else
9293 return arg1;
9294
9295 case UNOP_IND:
9296 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9297 if (noside == EVAL_SKIP)
9298 goto nosideret;
9299 type = ada_check_typedef (value_type (arg1));
9300 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9301 {
9302 if (ada_is_array_descriptor_type (type))
9303 /* GDB allows dereferencing GNAT array descriptors. */
9304 {
9305 struct type *arrType = ada_type_of_array (arg1, 0);
9306 if (arrType == NULL)
9307 error (_("Attempt to dereference null array pointer."));
9308 return value_at_lazy (arrType, 0);
9309 }
9310 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9311 || TYPE_CODE (type) == TYPE_CODE_REF
9312 /* In C you can dereference an array to get the 1st elt. */
9313 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9314 {
9315 type = to_static_fixed_type
9316 (ada_aligned_type
9317 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9318 check_size (type);
9319 return value_zero (type, lval_memory);
9320 }
9321 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9322 {
9323 /* GDB allows dereferencing an int. */
9324 if (expect_type == NULL)
9325 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9326 lval_memory);
9327 else
9328 {
9329 expect_type =
9330 to_static_fixed_type (ada_aligned_type (expect_type));
9331 return value_zero (expect_type, lval_memory);
9332 }
9333 }
9334 else
9335 error (_("Attempt to take contents of a non-pointer value."));
9336 }
9337 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9338 type = ada_check_typedef (value_type (arg1));
9339
9340 if (TYPE_CODE (type) == TYPE_CODE_INT)
9341 /* GDB allows dereferencing an int. If we were given
9342 the expect_type, then use that as the target type.
9343 Otherwise, assume that the target type is an int. */
9344 {
9345 if (expect_type != NULL)
9346 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9347 arg1));
9348 else
9349 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9350 (CORE_ADDR) value_as_address (arg1));
9351 }
9352
9353 if (ada_is_array_descriptor_type (type))
9354 /* GDB allows dereferencing GNAT array descriptors. */
9355 return ada_coerce_to_simple_array (arg1);
9356 else
9357 return ada_value_ind (arg1);
9358
9359 case STRUCTOP_STRUCT:
9360 tem = longest_to_int (exp->elts[pc + 1].longconst);
9361 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9362 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9363 if (noside == EVAL_SKIP)
9364 goto nosideret;
9365 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9366 {
9367 struct type *type1 = value_type (arg1);
9368 if (ada_is_tagged_type (type1, 1))
9369 {
9370 type = ada_lookup_struct_elt_type (type1,
9371 &exp->elts[pc + 2].string,
9372 1, 1, NULL);
9373 if (type == NULL)
9374 /* In this case, we assume that the field COULD exist
9375 in some extension of the type. Return an object of
9376 "type" void, which will match any formal
9377 (see ada_type_match). */
9378 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9379 lval_memory);
9380 }
9381 else
9382 type =
9383 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9384 0, NULL);
9385
9386 return value_zero (ada_aligned_type (type), lval_memory);
9387 }
9388 else
9389 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9390 arg1 = unwrap_value (arg1);
9391 return ada_to_fixed_value (arg1);
9392
9393 case OP_TYPE:
9394 /* The value is not supposed to be used. This is here to make it
9395 easier to accommodate expressions that contain types. */
9396 (*pos) += 2;
9397 if (noside == EVAL_SKIP)
9398 goto nosideret;
9399 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9400 return allocate_value (exp->elts[pc + 1].type);
9401 else
9402 error (_("Attempt to use a type name as an expression"));
9403
9404 case OP_AGGREGATE:
9405 case OP_CHOICES:
9406 case OP_OTHERS:
9407 case OP_DISCRETE_RANGE:
9408 case OP_POSITIONAL:
9409 case OP_NAME:
9410 if (noside == EVAL_NORMAL)
9411 switch (op)
9412 {
9413 case OP_NAME:
9414 error (_("Undefined name, ambiguous name, or renaming used in "
9415 "component association: %s."), &exp->elts[pc+2].string);
9416 case OP_AGGREGATE:
9417 error (_("Aggregates only allowed on the right of an assignment"));
9418 default:
9419 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9420 }
9421
9422 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9423 *pos += oplen - 1;
9424 for (tem = 0; tem < nargs; tem += 1)
9425 ada_evaluate_subexp (NULL, exp, pos, noside);
9426 goto nosideret;
9427 }
9428
9429 nosideret:
9430 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9431 }
9432 \f
9433
9434 /* Fixed point */
9435
9436 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9437 type name that encodes the 'small and 'delta information.
9438 Otherwise, return NULL. */
9439
9440 static const char *
9441 fixed_type_info (struct type *type)
9442 {
9443 const char *name = ada_type_name (type);
9444 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9445
9446 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9447 {
9448 const char *tail = strstr (name, "___XF_");
9449 if (tail == NULL)
9450 return NULL;
9451 else
9452 return tail + 5;
9453 }
9454 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9455 return fixed_type_info (TYPE_TARGET_TYPE (type));
9456 else
9457 return NULL;
9458 }
9459
9460 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9461
9462 int
9463 ada_is_fixed_point_type (struct type *type)
9464 {
9465 return fixed_type_info (type) != NULL;
9466 }
9467
9468 /* Return non-zero iff TYPE represents a System.Address type. */
9469
9470 int
9471 ada_is_system_address_type (struct type *type)
9472 {
9473 return (TYPE_NAME (type)
9474 && strcmp (TYPE_NAME (type), "system__address") == 0);
9475 }
9476
9477 /* Assuming that TYPE is the representation of an Ada fixed-point
9478 type, return its delta, or -1 if the type is malformed and the
9479 delta cannot be determined. */
9480
9481 DOUBLEST
9482 ada_delta (struct type *type)
9483 {
9484 const char *encoding = fixed_type_info (type);
9485 DOUBLEST num, den;
9486
9487 /* Strictly speaking, num and den are encoded as integer. However,
9488 they may not fit into a long, and they will have to be converted
9489 to DOUBLEST anyway. So scan them as DOUBLEST. */
9490 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9491 &num, &den) < 2)
9492 return -1.0;
9493 else
9494 return num / den;
9495 }
9496
9497 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9498 factor ('SMALL value) associated with the type. */
9499
9500 static DOUBLEST
9501 scaling_factor (struct type *type)
9502 {
9503 const char *encoding = fixed_type_info (type);
9504 DOUBLEST num0, den0, num1, den1;
9505 int n;
9506
9507 /* Strictly speaking, num's and den's are encoded as integer. However,
9508 they may not fit into a long, and they will have to be converted
9509 to DOUBLEST anyway. So scan them as DOUBLEST. */
9510 n = sscanf (encoding,
9511 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9512 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9513 &num0, &den0, &num1, &den1);
9514
9515 if (n < 2)
9516 return 1.0;
9517 else if (n == 4)
9518 return num1 / den1;
9519 else
9520 return num0 / den0;
9521 }
9522
9523
9524 /* Assuming that X is the representation of a value of fixed-point
9525 type TYPE, return its floating-point equivalent. */
9526
9527 DOUBLEST
9528 ada_fixed_to_float (struct type *type, LONGEST x)
9529 {
9530 return (DOUBLEST) x *scaling_factor (type);
9531 }
9532
9533 /* The representation of a fixed-point value of type TYPE
9534 corresponding to the value X. */
9535
9536 LONGEST
9537 ada_float_to_fixed (struct type *type, DOUBLEST x)
9538 {
9539 return (LONGEST) (x / scaling_factor (type) + 0.5);
9540 }
9541
9542
9543 /* VAX floating formats */
9544
9545 /* Non-zero iff TYPE represents one of the special VAX floating-point
9546 types. */
9547
9548 int
9549 ada_is_vax_floating_type (struct type *type)
9550 {
9551 int name_len =
9552 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9553 return
9554 name_len > 6
9555 && (TYPE_CODE (type) == TYPE_CODE_INT
9556 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9557 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9558 }
9559
9560 /* The type of special VAX floating-point type this is, assuming
9561 ada_is_vax_floating_point. */
9562
9563 int
9564 ada_vax_float_type_suffix (struct type *type)
9565 {
9566 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9567 }
9568
9569 /* A value representing the special debugging function that outputs
9570 VAX floating-point values of the type represented by TYPE. Assumes
9571 ada_is_vax_floating_type (TYPE). */
9572
9573 struct value *
9574 ada_vax_float_print_function (struct type *type)
9575 {
9576 switch (ada_vax_float_type_suffix (type))
9577 {
9578 case 'F':
9579 return get_var_value ("DEBUG_STRING_F", 0);
9580 case 'D':
9581 return get_var_value ("DEBUG_STRING_D", 0);
9582 case 'G':
9583 return get_var_value ("DEBUG_STRING_G", 0);
9584 default:
9585 error (_("invalid VAX floating-point type"));
9586 }
9587 }
9588 \f
9589
9590 /* Range types */
9591
9592 /* Scan STR beginning at position K for a discriminant name, and
9593 return the value of that discriminant field of DVAL in *PX. If
9594 PNEW_K is not null, put the position of the character beyond the
9595 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9596 not alter *PX and *PNEW_K if unsuccessful. */
9597
9598 static int
9599 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9600 int *pnew_k)
9601 {
9602 static char *bound_buffer = NULL;
9603 static size_t bound_buffer_len = 0;
9604 char *bound;
9605 char *pend;
9606 struct value *bound_val;
9607
9608 if (dval == NULL || str == NULL || str[k] == '\0')
9609 return 0;
9610
9611 pend = strstr (str + k, "__");
9612 if (pend == NULL)
9613 {
9614 bound = str + k;
9615 k += strlen (bound);
9616 }
9617 else
9618 {
9619 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9620 bound = bound_buffer;
9621 strncpy (bound_buffer, str + k, pend - (str + k));
9622 bound[pend - (str + k)] = '\0';
9623 k = pend - str;
9624 }
9625
9626 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9627 if (bound_val == NULL)
9628 return 0;
9629
9630 *px = value_as_long (bound_val);
9631 if (pnew_k != NULL)
9632 *pnew_k = k;
9633 return 1;
9634 }
9635
9636 /* Value of variable named NAME in the current environment. If
9637 no such variable found, then if ERR_MSG is null, returns 0, and
9638 otherwise causes an error with message ERR_MSG. */
9639
9640 static struct value *
9641 get_var_value (char *name, char *err_msg)
9642 {
9643 struct ada_symbol_info *syms;
9644 int nsyms;
9645
9646 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9647 &syms);
9648
9649 if (nsyms != 1)
9650 {
9651 if (err_msg == NULL)
9652 return 0;
9653 else
9654 error (("%s"), err_msg);
9655 }
9656
9657 return value_of_variable (syms[0].sym, syms[0].block);
9658 }
9659
9660 /* Value of integer variable named NAME in the current environment. If
9661 no such variable found, returns 0, and sets *FLAG to 0. If
9662 successful, sets *FLAG to 1. */
9663
9664 LONGEST
9665 get_int_var_value (char *name, int *flag)
9666 {
9667 struct value *var_val = get_var_value (name, 0);
9668
9669 if (var_val == 0)
9670 {
9671 if (flag != NULL)
9672 *flag = 0;
9673 return 0;
9674 }
9675 else
9676 {
9677 if (flag != NULL)
9678 *flag = 1;
9679 return value_as_long (var_val);
9680 }
9681 }
9682
9683
9684 /* Return a range type whose base type is that of the range type named
9685 NAME in the current environment, and whose bounds are calculated
9686 from NAME according to the GNAT range encoding conventions.
9687 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9688 corresponding range type from debug information; fall back to using it
9689 if symbol lookup fails. If a new type must be created, allocate it
9690 like ORIG_TYPE was. The bounds information, in general, is encoded
9691 in NAME, the base type given in the named range type. */
9692
9693 static struct type *
9694 to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
9695 {
9696 struct type *raw_type = ada_find_any_type (name);
9697 struct type *base_type;
9698 char *subtype_info;
9699
9700 /* Fall back to the original type if symbol lookup failed. */
9701 if (raw_type == NULL)
9702 raw_type = orig_type;
9703
9704 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9705 base_type = TYPE_TARGET_TYPE (raw_type);
9706 else
9707 base_type = raw_type;
9708
9709 subtype_info = strstr (name, "___XD");
9710 if (subtype_info == NULL)
9711 {
9712 LONGEST L = discrete_type_low_bound (raw_type);
9713 LONGEST U = discrete_type_high_bound (raw_type);
9714 if (L < INT_MIN || U > INT_MAX)
9715 return raw_type;
9716 else
9717 return create_range_type (alloc_type_copy (orig_type), raw_type,
9718 discrete_type_low_bound (raw_type),
9719 discrete_type_high_bound (raw_type));
9720 }
9721 else
9722 {
9723 static char *name_buf = NULL;
9724 static size_t name_len = 0;
9725 int prefix_len = subtype_info - name;
9726 LONGEST L, U;
9727 struct type *type;
9728 char *bounds_str;
9729 int n;
9730
9731 GROW_VECT (name_buf, name_len, prefix_len + 5);
9732 strncpy (name_buf, name, prefix_len);
9733 name_buf[prefix_len] = '\0';
9734
9735 subtype_info += 5;
9736 bounds_str = strchr (subtype_info, '_');
9737 n = 1;
9738
9739 if (*subtype_info == 'L')
9740 {
9741 if (!ada_scan_number (bounds_str, n, &L, &n)
9742 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9743 return raw_type;
9744 if (bounds_str[n] == '_')
9745 n += 2;
9746 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9747 n += 1;
9748 subtype_info += 1;
9749 }
9750 else
9751 {
9752 int ok;
9753 strcpy (name_buf + prefix_len, "___L");
9754 L = get_int_var_value (name_buf, &ok);
9755 if (!ok)
9756 {
9757 lim_warning (_("Unknown lower bound, using 1."));
9758 L = 1;
9759 }
9760 }
9761
9762 if (*subtype_info == 'U')
9763 {
9764 if (!ada_scan_number (bounds_str, n, &U, &n)
9765 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9766 return raw_type;
9767 }
9768 else
9769 {
9770 int ok;
9771 strcpy (name_buf + prefix_len, "___U");
9772 U = get_int_var_value (name_buf, &ok);
9773 if (!ok)
9774 {
9775 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9776 U = L;
9777 }
9778 }
9779
9780 type = create_range_type (alloc_type_copy (orig_type), base_type, L, U);
9781 TYPE_NAME (type) = name;
9782 return type;
9783 }
9784 }
9785
9786 /* True iff NAME is the name of a range type. */
9787
9788 int
9789 ada_is_range_type_name (const char *name)
9790 {
9791 return (name != NULL && strstr (name, "___XD"));
9792 }
9793 \f
9794
9795 /* Modular types */
9796
9797 /* True iff TYPE is an Ada modular type. */
9798
9799 int
9800 ada_is_modular_type (struct type *type)
9801 {
9802 struct type *subranged_type = base_type (type);
9803
9804 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9805 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9806 && TYPE_UNSIGNED (subranged_type));
9807 }
9808
9809 /* Try to determine the lower and upper bounds of the given modular type
9810 using the type name only. Return non-zero and set L and U as the lower
9811 and upper bounds (respectively) if successful. */
9812
9813 int
9814 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9815 {
9816 char *name = ada_type_name (type);
9817 char *suffix;
9818 int k;
9819 LONGEST U;
9820
9821 if (name == NULL)
9822 return 0;
9823
9824 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9825 we are looking for static bounds, which means an __XDLU suffix.
9826 Moreover, we know that the lower bound of modular types is always
9827 zero, so the actual suffix should start with "__XDLU_0__", and
9828 then be followed by the upper bound value. */
9829 suffix = strstr (name, "__XDLU_0__");
9830 if (suffix == NULL)
9831 return 0;
9832 k = 10;
9833 if (!ada_scan_number (suffix, k, &U, NULL))
9834 return 0;
9835
9836 *modulus = (ULONGEST) U + 1;
9837 return 1;
9838 }
9839
9840 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9841
9842 ULONGEST
9843 ada_modulus (struct type *type)
9844 {
9845 ULONGEST modulus;
9846
9847 /* Normally, the modulus of a modular type is equal to the value of
9848 its upper bound + 1. However, the upper bound is currently stored
9849 as an int, which is not always big enough to hold the actual bound
9850 value. To workaround this, try to take advantage of the encoding
9851 that GNAT uses with with discrete types. To avoid some unnecessary
9852 parsing, we do this only when the size of TYPE is greater than
9853 the size of the field holding the bound. */
9854 if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type))
9855 && ada_modulus_from_name (type, &modulus))
9856 return modulus;
9857
9858 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
9859 }
9860 \f
9861
9862 /* Ada exception catchpoint support:
9863 ---------------------------------
9864
9865 We support 3 kinds of exception catchpoints:
9866 . catchpoints on Ada exceptions
9867 . catchpoints on unhandled Ada exceptions
9868 . catchpoints on failed assertions
9869
9870 Exceptions raised during failed assertions, or unhandled exceptions
9871 could perfectly be caught with the general catchpoint on Ada exceptions.
9872 However, we can easily differentiate these two special cases, and having
9873 the option to distinguish these two cases from the rest can be useful
9874 to zero-in on certain situations.
9875
9876 Exception catchpoints are a specialized form of breakpoint,
9877 since they rely on inserting breakpoints inside known routines
9878 of the GNAT runtime. The implementation therefore uses a standard
9879 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9880 of breakpoint_ops.
9881
9882 Support in the runtime for exception catchpoints have been changed
9883 a few times already, and these changes affect the implementation
9884 of these catchpoints. In order to be able to support several
9885 variants of the runtime, we use a sniffer that will determine
9886 the runtime variant used by the program being debugged.
9887
9888 At this time, we do not support the use of conditions on Ada exception
9889 catchpoints. The COND and COND_STRING fields are therefore set
9890 to NULL (most of the time, see below).
9891
9892 Conditions where EXP_STRING, COND, and COND_STRING are used:
9893
9894 When a user specifies the name of a specific exception in the case
9895 of catchpoints on Ada exceptions, we store the name of that exception
9896 in the EXP_STRING. We then translate this request into an actual
9897 condition stored in COND_STRING, and then parse it into an expression
9898 stored in COND. */
9899
9900 /* The different types of catchpoints that we introduced for catching
9901 Ada exceptions. */
9902
9903 enum exception_catchpoint_kind
9904 {
9905 ex_catch_exception,
9906 ex_catch_exception_unhandled,
9907 ex_catch_assert
9908 };
9909
9910 /* Ada's standard exceptions. */
9911
9912 static char *standard_exc[] = {
9913 "constraint_error",
9914 "program_error",
9915 "storage_error",
9916 "tasking_error"
9917 };
9918
9919 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9920
9921 /* A structure that describes how to support exception catchpoints
9922 for a given executable. */
9923
9924 struct exception_support_info
9925 {
9926 /* The name of the symbol to break on in order to insert
9927 a catchpoint on exceptions. */
9928 const char *catch_exception_sym;
9929
9930 /* The name of the symbol to break on in order to insert
9931 a catchpoint on unhandled exceptions. */
9932 const char *catch_exception_unhandled_sym;
9933
9934 /* The name of the symbol to break on in order to insert
9935 a catchpoint on failed assertions. */
9936 const char *catch_assert_sym;
9937
9938 /* Assuming that the inferior just triggered an unhandled exception
9939 catchpoint, this function is responsible for returning the address
9940 in inferior memory where the name of that exception is stored.
9941 Return zero if the address could not be computed. */
9942 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9943 };
9944
9945 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9946 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9947
9948 /* The following exception support info structure describes how to
9949 implement exception catchpoints with the latest version of the
9950 Ada runtime (as of 2007-03-06). */
9951
9952 static const struct exception_support_info default_exception_support_info =
9953 {
9954 "__gnat_debug_raise_exception", /* catch_exception_sym */
9955 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9956 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9957 ada_unhandled_exception_name_addr
9958 };
9959
9960 /* The following exception support info structure describes how to
9961 implement exception catchpoints with a slightly older version
9962 of the Ada runtime. */
9963
9964 static const struct exception_support_info exception_support_info_fallback =
9965 {
9966 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9967 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9968 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9969 ada_unhandled_exception_name_addr_from_raise
9970 };
9971
9972 /* For each executable, we sniff which exception info structure to use
9973 and cache it in the following global variable. */
9974
9975 static const struct exception_support_info *exception_info = NULL;
9976
9977 /* Inspect the Ada runtime and determine which exception info structure
9978 should be used to provide support for exception catchpoints.
9979
9980 This function will always set exception_info, or raise an error. */
9981
9982 static void
9983 ada_exception_support_info_sniffer (void)
9984 {
9985 struct symbol *sym;
9986
9987 /* If the exception info is already known, then no need to recompute it. */
9988 if (exception_info != NULL)
9989 return;
9990
9991 /* Check the latest (default) exception support info. */
9992 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9993 NULL, VAR_DOMAIN);
9994 if (sym != NULL)
9995 {
9996 exception_info = &default_exception_support_info;
9997 return;
9998 }
9999
10000 /* Try our fallback exception suport info. */
10001 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10002 NULL, VAR_DOMAIN);
10003 if (sym != NULL)
10004 {
10005 exception_info = &exception_support_info_fallback;
10006 return;
10007 }
10008
10009 /* Sometimes, it is normal for us to not be able to find the routine
10010 we are looking for. This happens when the program is linked with
10011 the shared version of the GNAT runtime, and the program has not been
10012 started yet. Inform the user of these two possible causes if
10013 applicable. */
10014
10015 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
10016 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10017
10018 /* If the symbol does not exist, then check that the program is
10019 already started, to make sure that shared libraries have been
10020 loaded. If it is not started, this may mean that the symbol is
10021 in a shared library. */
10022
10023 if (ptid_get_pid (inferior_ptid) == 0)
10024 error (_("Unable to insert catchpoint. Try to start the program first."));
10025
10026 /* At this point, we know that we are debugging an Ada program and
10027 that the inferior has been started, but we still are not able to
10028 find the run-time symbols. That can mean that we are in
10029 configurable run time mode, or that a-except as been optimized
10030 out by the linker... In any case, at this point it is not worth
10031 supporting this feature. */
10032
10033 error (_("Cannot insert catchpoints in this configuration."));
10034 }
10035
10036 /* An observer of "executable_changed" events.
10037 Its role is to clear certain cached values that need to be recomputed
10038 each time a new executable is loaded by GDB. */
10039
10040 static void
10041 ada_executable_changed_observer (void)
10042 {
10043 /* If the executable changed, then it is possible that the Ada runtime
10044 is different. So we need to invalidate the exception support info
10045 cache. */
10046 exception_info = NULL;
10047 }
10048
10049 /* Return the name of the function at PC, NULL if could not find it.
10050 This function only checks the debugging information, not the symbol
10051 table. */
10052
10053 static char *
10054 function_name_from_pc (CORE_ADDR pc)
10055 {
10056 char *func_name;
10057
10058 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
10059 return NULL;
10060
10061 return func_name;
10062 }
10063
10064 /* True iff FRAME is very likely to be that of a function that is
10065 part of the runtime system. This is all very heuristic, but is
10066 intended to be used as advice as to what frames are uninteresting
10067 to most users. */
10068
10069 static int
10070 is_known_support_routine (struct frame_info *frame)
10071 {
10072 struct symtab_and_line sal;
10073 char *func_name;
10074 int i;
10075
10076 /* If this code does not have any debugging information (no symtab),
10077 This cannot be any user code. */
10078
10079 find_frame_sal (frame, &sal);
10080 if (sal.symtab == NULL)
10081 return 1;
10082
10083 /* If there is a symtab, but the associated source file cannot be
10084 located, then assume this is not user code: Selecting a frame
10085 for which we cannot display the code would not be very helpful
10086 for the user. This should also take care of case such as VxWorks
10087 where the kernel has some debugging info provided for a few units. */
10088
10089 if (symtab_to_fullname (sal.symtab) == NULL)
10090 return 1;
10091
10092 /* Check the unit filename againt the Ada runtime file naming.
10093 We also check the name of the objfile against the name of some
10094 known system libraries that sometimes come with debugging info
10095 too. */
10096
10097 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10098 {
10099 re_comp (known_runtime_file_name_patterns[i]);
10100 if (re_exec (sal.symtab->filename))
10101 return 1;
10102 if (sal.symtab->objfile != NULL
10103 && re_exec (sal.symtab->objfile->name))
10104 return 1;
10105 }
10106
10107 /* Check whether the function is a GNAT-generated entity. */
10108
10109 func_name = function_name_from_pc (get_frame_address_in_block (frame));
10110 if (func_name == NULL)
10111 return 1;
10112
10113 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10114 {
10115 re_comp (known_auxiliary_function_name_patterns[i]);
10116 if (re_exec (func_name))
10117 return 1;
10118 }
10119
10120 return 0;
10121 }
10122
10123 /* Find the first frame that contains debugging information and that is not
10124 part of the Ada run-time, starting from FI and moving upward. */
10125
10126 void
10127 ada_find_printable_frame (struct frame_info *fi)
10128 {
10129 for (; fi != NULL; fi = get_prev_frame (fi))
10130 {
10131 if (!is_known_support_routine (fi))
10132 {
10133 select_frame (fi);
10134 break;
10135 }
10136 }
10137
10138 }
10139
10140 /* Assuming that the inferior just triggered an unhandled exception
10141 catchpoint, return the address in inferior memory where the name
10142 of the exception is stored.
10143
10144 Return zero if the address could not be computed. */
10145
10146 static CORE_ADDR
10147 ada_unhandled_exception_name_addr (void)
10148 {
10149 return parse_and_eval_address ("e.full_name");
10150 }
10151
10152 /* Same as ada_unhandled_exception_name_addr, except that this function
10153 should be used when the inferior uses an older version of the runtime,
10154 where the exception name needs to be extracted from a specific frame
10155 several frames up in the callstack. */
10156
10157 static CORE_ADDR
10158 ada_unhandled_exception_name_addr_from_raise (void)
10159 {
10160 int frame_level;
10161 struct frame_info *fi;
10162
10163 /* To determine the name of this exception, we need to select
10164 the frame corresponding to RAISE_SYM_NAME. This frame is
10165 at least 3 levels up, so we simply skip the first 3 frames
10166 without checking the name of their associated function. */
10167 fi = get_current_frame ();
10168 for (frame_level = 0; frame_level < 3; frame_level += 1)
10169 if (fi != NULL)
10170 fi = get_prev_frame (fi);
10171
10172 while (fi != NULL)
10173 {
10174 const char *func_name =
10175 function_name_from_pc (get_frame_address_in_block (fi));
10176 if (func_name != NULL
10177 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10178 break; /* We found the frame we were looking for... */
10179 fi = get_prev_frame (fi);
10180 }
10181
10182 if (fi == NULL)
10183 return 0;
10184
10185 select_frame (fi);
10186 return parse_and_eval_address ("id.full_name");
10187 }
10188
10189 /* Assuming the inferior just triggered an Ada exception catchpoint
10190 (of any type), return the address in inferior memory where the name
10191 of the exception is stored, if applicable.
10192
10193 Return zero if the address could not be computed, or if not relevant. */
10194
10195 static CORE_ADDR
10196 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10197 struct breakpoint *b)
10198 {
10199 switch (ex)
10200 {
10201 case ex_catch_exception:
10202 return (parse_and_eval_address ("e.full_name"));
10203 break;
10204
10205 case ex_catch_exception_unhandled:
10206 return exception_info->unhandled_exception_name_addr ();
10207 break;
10208
10209 case ex_catch_assert:
10210 return 0; /* Exception name is not relevant in this case. */
10211 break;
10212
10213 default:
10214 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10215 break;
10216 }
10217
10218 return 0; /* Should never be reached. */
10219 }
10220
10221 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10222 any error that ada_exception_name_addr_1 might cause to be thrown.
10223 When an error is intercepted, a warning with the error message is printed,
10224 and zero is returned. */
10225
10226 static CORE_ADDR
10227 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10228 struct breakpoint *b)
10229 {
10230 struct gdb_exception e;
10231 CORE_ADDR result = 0;
10232
10233 TRY_CATCH (e, RETURN_MASK_ERROR)
10234 {
10235 result = ada_exception_name_addr_1 (ex, b);
10236 }
10237
10238 if (e.reason < 0)
10239 {
10240 warning (_("failed to get exception name: %s"), e.message);
10241 return 0;
10242 }
10243
10244 return result;
10245 }
10246
10247 /* Implement the PRINT_IT method in the breakpoint_ops structure
10248 for all exception catchpoint kinds. */
10249
10250 static enum print_stop_action
10251 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10252 {
10253 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10254 char exception_name[256];
10255
10256 if (addr != 0)
10257 {
10258 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10259 exception_name [sizeof (exception_name) - 1] = '\0';
10260 }
10261
10262 ada_find_printable_frame (get_current_frame ());
10263
10264 annotate_catchpoint (b->number);
10265 switch (ex)
10266 {
10267 case ex_catch_exception:
10268 if (addr != 0)
10269 printf_filtered (_("\nCatchpoint %d, %s at "),
10270 b->number, exception_name);
10271 else
10272 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10273 break;
10274 case ex_catch_exception_unhandled:
10275 if (addr != 0)
10276 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10277 b->number, exception_name);
10278 else
10279 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10280 b->number);
10281 break;
10282 case ex_catch_assert:
10283 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10284 b->number);
10285 break;
10286 }
10287
10288 return PRINT_SRC_AND_LOC;
10289 }
10290
10291 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10292 for all exception catchpoint kinds. */
10293
10294 static void
10295 print_one_exception (enum exception_catchpoint_kind ex,
10296 struct breakpoint *b, CORE_ADDR *last_addr)
10297 {
10298 struct value_print_options opts;
10299
10300 get_user_print_options (&opts);
10301 if (opts.addressprint)
10302 {
10303 annotate_field (4);
10304 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10305 }
10306
10307 annotate_field (5);
10308 *last_addr = b->loc->address;
10309 switch (ex)
10310 {
10311 case ex_catch_exception:
10312 if (b->exp_string != NULL)
10313 {
10314 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10315
10316 ui_out_field_string (uiout, "what", msg);
10317 xfree (msg);
10318 }
10319 else
10320 ui_out_field_string (uiout, "what", "all Ada exceptions");
10321
10322 break;
10323
10324 case ex_catch_exception_unhandled:
10325 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10326 break;
10327
10328 case ex_catch_assert:
10329 ui_out_field_string (uiout, "what", "failed Ada assertions");
10330 break;
10331
10332 default:
10333 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10334 break;
10335 }
10336 }
10337
10338 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10339 for all exception catchpoint kinds. */
10340
10341 static void
10342 print_mention_exception (enum exception_catchpoint_kind ex,
10343 struct breakpoint *b)
10344 {
10345 switch (ex)
10346 {
10347 case ex_catch_exception:
10348 if (b->exp_string != NULL)
10349 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10350 b->number, b->exp_string);
10351 else
10352 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10353
10354 break;
10355
10356 case ex_catch_exception_unhandled:
10357 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10358 b->number);
10359 break;
10360
10361 case ex_catch_assert:
10362 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10363 break;
10364
10365 default:
10366 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10367 break;
10368 }
10369 }
10370
10371 /* Virtual table for "catch exception" breakpoints. */
10372
10373 static enum print_stop_action
10374 print_it_catch_exception (struct breakpoint *b)
10375 {
10376 return print_it_exception (ex_catch_exception, b);
10377 }
10378
10379 static void
10380 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10381 {
10382 print_one_exception (ex_catch_exception, b, last_addr);
10383 }
10384
10385 static void
10386 print_mention_catch_exception (struct breakpoint *b)
10387 {
10388 print_mention_exception (ex_catch_exception, b);
10389 }
10390
10391 static struct breakpoint_ops catch_exception_breakpoint_ops =
10392 {
10393 NULL, /* insert */
10394 NULL, /* remove */
10395 NULL, /* breakpoint_hit */
10396 print_it_catch_exception,
10397 print_one_catch_exception,
10398 print_mention_catch_exception
10399 };
10400
10401 /* Virtual table for "catch exception unhandled" breakpoints. */
10402
10403 static enum print_stop_action
10404 print_it_catch_exception_unhandled (struct breakpoint *b)
10405 {
10406 return print_it_exception (ex_catch_exception_unhandled, b);
10407 }
10408
10409 static void
10410 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10411 {
10412 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10413 }
10414
10415 static void
10416 print_mention_catch_exception_unhandled (struct breakpoint *b)
10417 {
10418 print_mention_exception (ex_catch_exception_unhandled, b);
10419 }
10420
10421 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10422 NULL, /* insert */
10423 NULL, /* remove */
10424 NULL, /* breakpoint_hit */
10425 print_it_catch_exception_unhandled,
10426 print_one_catch_exception_unhandled,
10427 print_mention_catch_exception_unhandled
10428 };
10429
10430 /* Virtual table for "catch assert" breakpoints. */
10431
10432 static enum print_stop_action
10433 print_it_catch_assert (struct breakpoint *b)
10434 {
10435 return print_it_exception (ex_catch_assert, b);
10436 }
10437
10438 static void
10439 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10440 {
10441 print_one_exception (ex_catch_assert, b, last_addr);
10442 }
10443
10444 static void
10445 print_mention_catch_assert (struct breakpoint *b)
10446 {
10447 print_mention_exception (ex_catch_assert, b);
10448 }
10449
10450 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10451 NULL, /* insert */
10452 NULL, /* remove */
10453 NULL, /* breakpoint_hit */
10454 print_it_catch_assert,
10455 print_one_catch_assert,
10456 print_mention_catch_assert
10457 };
10458
10459 /* Return non-zero if B is an Ada exception catchpoint. */
10460
10461 int
10462 ada_exception_catchpoint_p (struct breakpoint *b)
10463 {
10464 return (b->ops == &catch_exception_breakpoint_ops
10465 || b->ops == &catch_exception_unhandled_breakpoint_ops
10466 || b->ops == &catch_assert_breakpoint_ops);
10467 }
10468
10469 /* Return a newly allocated copy of the first space-separated token
10470 in ARGSP, and then adjust ARGSP to point immediately after that
10471 token.
10472
10473 Return NULL if ARGPS does not contain any more tokens. */
10474
10475 static char *
10476 ada_get_next_arg (char **argsp)
10477 {
10478 char *args = *argsp;
10479 char *end;
10480 char *result;
10481
10482 /* Skip any leading white space. */
10483
10484 while (isspace (*args))
10485 args++;
10486
10487 if (args[0] == '\0')
10488 return NULL; /* No more arguments. */
10489
10490 /* Find the end of the current argument. */
10491
10492 end = args;
10493 while (*end != '\0' && !isspace (*end))
10494 end++;
10495
10496 /* Adjust ARGSP to point to the start of the next argument. */
10497
10498 *argsp = end;
10499
10500 /* Make a copy of the current argument and return it. */
10501
10502 result = xmalloc (end - args + 1);
10503 strncpy (result, args, end - args);
10504 result[end - args] = '\0';
10505
10506 return result;
10507 }
10508
10509 /* Split the arguments specified in a "catch exception" command.
10510 Set EX to the appropriate catchpoint type.
10511 Set EXP_STRING to the name of the specific exception if
10512 specified by the user. */
10513
10514 static void
10515 catch_ada_exception_command_split (char *args,
10516 enum exception_catchpoint_kind *ex,
10517 char **exp_string)
10518 {
10519 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10520 char *exception_name;
10521
10522 exception_name = ada_get_next_arg (&args);
10523 make_cleanup (xfree, exception_name);
10524
10525 /* Check that we do not have any more arguments. Anything else
10526 is unexpected. */
10527
10528 while (isspace (*args))
10529 args++;
10530
10531 if (args[0] != '\0')
10532 error (_("Junk at end of expression"));
10533
10534 discard_cleanups (old_chain);
10535
10536 if (exception_name == NULL)
10537 {
10538 /* Catch all exceptions. */
10539 *ex = ex_catch_exception;
10540 *exp_string = NULL;
10541 }
10542 else if (strcmp (exception_name, "unhandled") == 0)
10543 {
10544 /* Catch unhandled exceptions. */
10545 *ex = ex_catch_exception_unhandled;
10546 *exp_string = NULL;
10547 }
10548 else
10549 {
10550 /* Catch a specific exception. */
10551 *ex = ex_catch_exception;
10552 *exp_string = exception_name;
10553 }
10554 }
10555
10556 /* Return the name of the symbol on which we should break in order to
10557 implement a catchpoint of the EX kind. */
10558
10559 static const char *
10560 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10561 {
10562 gdb_assert (exception_info != NULL);
10563
10564 switch (ex)
10565 {
10566 case ex_catch_exception:
10567 return (exception_info->catch_exception_sym);
10568 break;
10569 case ex_catch_exception_unhandled:
10570 return (exception_info->catch_exception_unhandled_sym);
10571 break;
10572 case ex_catch_assert:
10573 return (exception_info->catch_assert_sym);
10574 break;
10575 default:
10576 internal_error (__FILE__, __LINE__,
10577 _("unexpected catchpoint kind (%d)"), ex);
10578 }
10579 }
10580
10581 /* Return the breakpoint ops "virtual table" used for catchpoints
10582 of the EX kind. */
10583
10584 static struct breakpoint_ops *
10585 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10586 {
10587 switch (ex)
10588 {
10589 case ex_catch_exception:
10590 return (&catch_exception_breakpoint_ops);
10591 break;
10592 case ex_catch_exception_unhandled:
10593 return (&catch_exception_unhandled_breakpoint_ops);
10594 break;
10595 case ex_catch_assert:
10596 return (&catch_assert_breakpoint_ops);
10597 break;
10598 default:
10599 internal_error (__FILE__, __LINE__,
10600 _("unexpected catchpoint kind (%d)"), ex);
10601 }
10602 }
10603
10604 /* Return the condition that will be used to match the current exception
10605 being raised with the exception that the user wants to catch. This
10606 assumes that this condition is used when the inferior just triggered
10607 an exception catchpoint.
10608
10609 The string returned is a newly allocated string that needs to be
10610 deallocated later. */
10611
10612 static char *
10613 ada_exception_catchpoint_cond_string (const char *exp_string)
10614 {
10615 int i;
10616
10617 /* The standard exceptions are a special case. They are defined in
10618 runtime units that have been compiled without debugging info; if
10619 EXP_STRING is the not-fully-qualified name of a standard
10620 exception (e.g. "constraint_error") then, during the evaluation
10621 of the condition expression, the symbol lookup on this name would
10622 *not* return this standard exception. The catchpoint condition
10623 may then be set only on user-defined exceptions which have the
10624 same not-fully-qualified name (e.g. my_package.constraint_error).
10625
10626 To avoid this unexcepted behavior, these standard exceptions are
10627 systematically prefixed by "standard". This means that "catch
10628 exception constraint_error" is rewritten into "catch exception
10629 standard.constraint_error".
10630
10631 If an exception named contraint_error is defined in another package of
10632 the inferior program, then the only way to specify this exception as a
10633 breakpoint condition is to use its fully-qualified named:
10634 e.g. my_package.constraint_error. */
10635
10636 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10637 {
10638 if (strcmp (standard_exc [i], exp_string) == 0)
10639 {
10640 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10641 exp_string);
10642 }
10643 }
10644 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10645 }
10646
10647 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10648
10649 static struct expression *
10650 ada_parse_catchpoint_condition (char *cond_string,
10651 struct symtab_and_line sal)
10652 {
10653 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10654 }
10655
10656 /* Return the symtab_and_line that should be used to insert an exception
10657 catchpoint of the TYPE kind.
10658
10659 EX_STRING should contain the name of a specific exception
10660 that the catchpoint should catch, or NULL otherwise.
10661
10662 The idea behind all the remaining parameters is that their names match
10663 the name of certain fields in the breakpoint structure that are used to
10664 handle exception catchpoints. This function returns the value to which
10665 these fields should be set, depending on the type of catchpoint we need
10666 to create.
10667
10668 If COND and COND_STRING are both non-NULL, any value they might
10669 hold will be free'ed, and then replaced by newly allocated ones.
10670 These parameters are left untouched otherwise. */
10671
10672 static struct symtab_and_line
10673 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10674 char **addr_string, char **cond_string,
10675 struct expression **cond, struct breakpoint_ops **ops)
10676 {
10677 const char *sym_name;
10678 struct symbol *sym;
10679 struct symtab_and_line sal;
10680
10681 /* First, find out which exception support info to use. */
10682 ada_exception_support_info_sniffer ();
10683
10684 /* Then lookup the function on which we will break in order to catch
10685 the Ada exceptions requested by the user. */
10686
10687 sym_name = ada_exception_sym_name (ex);
10688 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10689
10690 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10691 that should be compiled with debugging information. As a result, we
10692 expect to find that symbol in the symtabs. If we don't find it, then
10693 the target most likely does not support Ada exceptions, or we cannot
10694 insert exception breakpoints yet, because the GNAT runtime hasn't been
10695 loaded yet. */
10696
10697 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10698 in such a way that no debugging information is produced for the symbol
10699 we are looking for. In this case, we could search the minimal symbols
10700 as a fall-back mechanism. This would still be operating in degraded
10701 mode, however, as we would still be missing the debugging information
10702 that is needed in order to extract the name of the exception being
10703 raised (this name is printed in the catchpoint message, and is also
10704 used when trying to catch a specific exception). We do not handle
10705 this case for now. */
10706
10707 if (sym == NULL)
10708 error (_("Unable to break on '%s' in this configuration."), sym_name);
10709
10710 /* Make sure that the symbol we found corresponds to a function. */
10711 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10712 error (_("Symbol \"%s\" is not a function (class = %d)"),
10713 sym_name, SYMBOL_CLASS (sym));
10714
10715 sal = find_function_start_sal (sym, 1);
10716
10717 /* Set ADDR_STRING. */
10718
10719 *addr_string = xstrdup (sym_name);
10720
10721 /* Set the COND and COND_STRING (if not NULL). */
10722
10723 if (cond_string != NULL && cond != NULL)
10724 {
10725 if (*cond_string != NULL)
10726 {
10727 xfree (*cond_string);
10728 *cond_string = NULL;
10729 }
10730 if (*cond != NULL)
10731 {
10732 xfree (*cond);
10733 *cond = NULL;
10734 }
10735 if (exp_string != NULL)
10736 {
10737 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10738 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10739 }
10740 }
10741
10742 /* Set OPS. */
10743 *ops = ada_exception_breakpoint_ops (ex);
10744
10745 return sal;
10746 }
10747
10748 /* Parse the arguments (ARGS) of the "catch exception" command.
10749
10750 Set TYPE to the appropriate exception catchpoint type.
10751 If the user asked the catchpoint to catch only a specific
10752 exception, then save the exception name in ADDR_STRING.
10753
10754 See ada_exception_sal for a description of all the remaining
10755 function arguments of this function. */
10756
10757 struct symtab_and_line
10758 ada_decode_exception_location (char *args, char **addr_string,
10759 char **exp_string, char **cond_string,
10760 struct expression **cond,
10761 struct breakpoint_ops **ops)
10762 {
10763 enum exception_catchpoint_kind ex;
10764
10765 catch_ada_exception_command_split (args, &ex, exp_string);
10766 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10767 cond, ops);
10768 }
10769
10770 struct symtab_and_line
10771 ada_decode_assert_location (char *args, char **addr_string,
10772 struct breakpoint_ops **ops)
10773 {
10774 /* Check that no argument where provided at the end of the command. */
10775
10776 if (args != NULL)
10777 {
10778 while (isspace (*args))
10779 args++;
10780 if (*args != '\0')
10781 error (_("Junk at end of arguments."));
10782 }
10783
10784 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10785 ops);
10786 }
10787
10788 /* Operators */
10789 /* Information about operators given special treatment in functions
10790 below. */
10791 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10792
10793 #define ADA_OPERATORS \
10794 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10795 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10796 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10797 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10798 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10799 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10800 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10801 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10802 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10803 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10804 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10805 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10806 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10807 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10808 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10809 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10810 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10811 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10812 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10813
10814 static void
10815 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10816 {
10817 switch (exp->elts[pc - 1].opcode)
10818 {
10819 default:
10820 operator_length_standard (exp, pc, oplenp, argsp);
10821 break;
10822
10823 #define OP_DEFN(op, len, args, binop) \
10824 case op: *oplenp = len; *argsp = args; break;
10825 ADA_OPERATORS;
10826 #undef OP_DEFN
10827
10828 case OP_AGGREGATE:
10829 *oplenp = 3;
10830 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10831 break;
10832
10833 case OP_CHOICES:
10834 *oplenp = 3;
10835 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10836 break;
10837 }
10838 }
10839
10840 static char *
10841 ada_op_name (enum exp_opcode opcode)
10842 {
10843 switch (opcode)
10844 {
10845 default:
10846 return op_name_standard (opcode);
10847
10848 #define OP_DEFN(op, len, args, binop) case op: return #op;
10849 ADA_OPERATORS;
10850 #undef OP_DEFN
10851
10852 case OP_AGGREGATE:
10853 return "OP_AGGREGATE";
10854 case OP_CHOICES:
10855 return "OP_CHOICES";
10856 case OP_NAME:
10857 return "OP_NAME";
10858 }
10859 }
10860
10861 /* As for operator_length, but assumes PC is pointing at the first
10862 element of the operator, and gives meaningful results only for the
10863 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10864
10865 static void
10866 ada_forward_operator_length (struct expression *exp, int pc,
10867 int *oplenp, int *argsp)
10868 {
10869 switch (exp->elts[pc].opcode)
10870 {
10871 default:
10872 *oplenp = *argsp = 0;
10873 break;
10874
10875 #define OP_DEFN(op, len, args, binop) \
10876 case op: *oplenp = len; *argsp = args; break;
10877 ADA_OPERATORS;
10878 #undef OP_DEFN
10879
10880 case OP_AGGREGATE:
10881 *oplenp = 3;
10882 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10883 break;
10884
10885 case OP_CHOICES:
10886 *oplenp = 3;
10887 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10888 break;
10889
10890 case OP_STRING:
10891 case OP_NAME:
10892 {
10893 int len = longest_to_int (exp->elts[pc + 1].longconst);
10894 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10895 *argsp = 0;
10896 break;
10897 }
10898 }
10899 }
10900
10901 static int
10902 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10903 {
10904 enum exp_opcode op = exp->elts[elt].opcode;
10905 int oplen, nargs;
10906 int pc = elt;
10907 int i;
10908
10909 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10910
10911 switch (op)
10912 {
10913 /* Ada attributes ('Foo). */
10914 case OP_ATR_FIRST:
10915 case OP_ATR_LAST:
10916 case OP_ATR_LENGTH:
10917 case OP_ATR_IMAGE:
10918 case OP_ATR_MAX:
10919 case OP_ATR_MIN:
10920 case OP_ATR_MODULUS:
10921 case OP_ATR_POS:
10922 case OP_ATR_SIZE:
10923 case OP_ATR_TAG:
10924 case OP_ATR_VAL:
10925 break;
10926
10927 case UNOP_IN_RANGE:
10928 case UNOP_QUAL:
10929 /* XXX: gdb_sprint_host_address, type_sprint */
10930 fprintf_filtered (stream, _("Type @"));
10931 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10932 fprintf_filtered (stream, " (");
10933 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10934 fprintf_filtered (stream, ")");
10935 break;
10936 case BINOP_IN_BOUNDS:
10937 fprintf_filtered (stream, " (%d)",
10938 longest_to_int (exp->elts[pc + 2].longconst));
10939 break;
10940 case TERNOP_IN_RANGE:
10941 break;
10942
10943 case OP_AGGREGATE:
10944 case OP_OTHERS:
10945 case OP_DISCRETE_RANGE:
10946 case OP_POSITIONAL:
10947 case OP_CHOICES:
10948 break;
10949
10950 case OP_NAME:
10951 case OP_STRING:
10952 {
10953 char *name = &exp->elts[elt + 2].string;
10954 int len = longest_to_int (exp->elts[elt + 1].longconst);
10955 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10956 break;
10957 }
10958
10959 default:
10960 return dump_subexp_body_standard (exp, stream, elt);
10961 }
10962
10963 elt += oplen;
10964 for (i = 0; i < nargs; i += 1)
10965 elt = dump_subexp (exp, stream, elt);
10966
10967 return elt;
10968 }
10969
10970 /* The Ada extension of print_subexp (q.v.). */
10971
10972 static void
10973 ada_print_subexp (struct expression *exp, int *pos,
10974 struct ui_file *stream, enum precedence prec)
10975 {
10976 int oplen, nargs, i;
10977 int pc = *pos;
10978 enum exp_opcode op = exp->elts[pc].opcode;
10979
10980 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10981
10982 *pos += oplen;
10983 switch (op)
10984 {
10985 default:
10986 *pos -= oplen;
10987 print_subexp_standard (exp, pos, stream, prec);
10988 return;
10989
10990 case OP_VAR_VALUE:
10991 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10992 return;
10993
10994 case BINOP_IN_BOUNDS:
10995 /* XXX: sprint_subexp */
10996 print_subexp (exp, pos, stream, PREC_SUFFIX);
10997 fputs_filtered (" in ", stream);
10998 print_subexp (exp, pos, stream, PREC_SUFFIX);
10999 fputs_filtered ("'range", stream);
11000 if (exp->elts[pc + 1].longconst > 1)
11001 fprintf_filtered (stream, "(%ld)",
11002 (long) exp->elts[pc + 1].longconst);
11003 return;
11004
11005 case TERNOP_IN_RANGE:
11006 if (prec >= PREC_EQUAL)
11007 fputs_filtered ("(", stream);
11008 /* XXX: sprint_subexp */
11009 print_subexp (exp, pos, stream, PREC_SUFFIX);
11010 fputs_filtered (" in ", stream);
11011 print_subexp (exp, pos, stream, PREC_EQUAL);
11012 fputs_filtered (" .. ", stream);
11013 print_subexp (exp, pos, stream, PREC_EQUAL);
11014 if (prec >= PREC_EQUAL)
11015 fputs_filtered (")", stream);
11016 return;
11017
11018 case OP_ATR_FIRST:
11019 case OP_ATR_LAST:
11020 case OP_ATR_LENGTH:
11021 case OP_ATR_IMAGE:
11022 case OP_ATR_MAX:
11023 case OP_ATR_MIN:
11024 case OP_ATR_MODULUS:
11025 case OP_ATR_POS:
11026 case OP_ATR_SIZE:
11027 case OP_ATR_TAG:
11028 case OP_ATR_VAL:
11029 if (exp->elts[*pos].opcode == OP_TYPE)
11030 {
11031 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11032 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11033 *pos += 3;
11034 }
11035 else
11036 print_subexp (exp, pos, stream, PREC_SUFFIX);
11037 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11038 if (nargs > 1)
11039 {
11040 int tem;
11041 for (tem = 1; tem < nargs; tem += 1)
11042 {
11043 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11044 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11045 }
11046 fputs_filtered (")", stream);
11047 }
11048 return;
11049
11050 case UNOP_QUAL:
11051 type_print (exp->elts[pc + 1].type, "", stream, 0);
11052 fputs_filtered ("'(", stream);
11053 print_subexp (exp, pos, stream, PREC_PREFIX);
11054 fputs_filtered (")", stream);
11055 return;
11056
11057 case UNOP_IN_RANGE:
11058 /* XXX: sprint_subexp */
11059 print_subexp (exp, pos, stream, PREC_SUFFIX);
11060 fputs_filtered (" in ", stream);
11061 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11062 return;
11063
11064 case OP_DISCRETE_RANGE:
11065 print_subexp (exp, pos, stream, PREC_SUFFIX);
11066 fputs_filtered ("..", stream);
11067 print_subexp (exp, pos, stream, PREC_SUFFIX);
11068 return;
11069
11070 case OP_OTHERS:
11071 fputs_filtered ("others => ", stream);
11072 print_subexp (exp, pos, stream, PREC_SUFFIX);
11073 return;
11074
11075 case OP_CHOICES:
11076 for (i = 0; i < nargs-1; i += 1)
11077 {
11078 if (i > 0)
11079 fputs_filtered ("|", stream);
11080 print_subexp (exp, pos, stream, PREC_SUFFIX);
11081 }
11082 fputs_filtered (" => ", stream);
11083 print_subexp (exp, pos, stream, PREC_SUFFIX);
11084 return;
11085
11086 case OP_POSITIONAL:
11087 print_subexp (exp, pos, stream, PREC_SUFFIX);
11088 return;
11089
11090 case OP_AGGREGATE:
11091 fputs_filtered ("(", stream);
11092 for (i = 0; i < nargs; i += 1)
11093 {
11094 if (i > 0)
11095 fputs_filtered (", ", stream);
11096 print_subexp (exp, pos, stream, PREC_SUFFIX);
11097 }
11098 fputs_filtered (")", stream);
11099 return;
11100 }
11101 }
11102
11103 /* Table mapping opcodes into strings for printing operators
11104 and precedences of the operators. */
11105
11106 static const struct op_print ada_op_print_tab[] = {
11107 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11108 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11109 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11110 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11111 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11112 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11113 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11114 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11115 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11116 {">=", BINOP_GEQ, PREC_ORDER, 0},
11117 {">", BINOP_GTR, PREC_ORDER, 0},
11118 {"<", BINOP_LESS, PREC_ORDER, 0},
11119 {">>", BINOP_RSH, PREC_SHIFT, 0},
11120 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11121 {"+", BINOP_ADD, PREC_ADD, 0},
11122 {"-", BINOP_SUB, PREC_ADD, 0},
11123 {"&", BINOP_CONCAT, PREC_ADD, 0},
11124 {"*", BINOP_MUL, PREC_MUL, 0},
11125 {"/", BINOP_DIV, PREC_MUL, 0},
11126 {"rem", BINOP_REM, PREC_MUL, 0},
11127 {"mod", BINOP_MOD, PREC_MUL, 0},
11128 {"**", BINOP_EXP, PREC_REPEAT, 0},
11129 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11130 {"-", UNOP_NEG, PREC_PREFIX, 0},
11131 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11132 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11133 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11134 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11135 {".all", UNOP_IND, PREC_SUFFIX, 1},
11136 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11137 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11138 {NULL, 0, 0, 0}
11139 };
11140 \f
11141 enum ada_primitive_types {
11142 ada_primitive_type_int,
11143 ada_primitive_type_long,
11144 ada_primitive_type_short,
11145 ada_primitive_type_char,
11146 ada_primitive_type_float,
11147 ada_primitive_type_double,
11148 ada_primitive_type_void,
11149 ada_primitive_type_long_long,
11150 ada_primitive_type_long_double,
11151 ada_primitive_type_natural,
11152 ada_primitive_type_positive,
11153 ada_primitive_type_system_address,
11154 nr_ada_primitive_types
11155 };
11156
11157 static void
11158 ada_language_arch_info (struct gdbarch *gdbarch,
11159 struct language_arch_info *lai)
11160 {
11161 const struct builtin_type *builtin = builtin_type (gdbarch);
11162 lai->primitive_type_vector
11163 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11164 struct type *);
11165
11166 lai->primitive_type_vector [ada_primitive_type_int]
11167 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11168 0, "integer");
11169 lai->primitive_type_vector [ada_primitive_type_long]
11170 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11171 0, "long_integer");
11172 lai->primitive_type_vector [ada_primitive_type_short]
11173 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11174 0, "short_integer");
11175 lai->string_char_type
11176 = lai->primitive_type_vector [ada_primitive_type_char]
11177 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11178 lai->primitive_type_vector [ada_primitive_type_float]
11179 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11180 "float", NULL);
11181 lai->primitive_type_vector [ada_primitive_type_double]
11182 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11183 "long_float", NULL);
11184 lai->primitive_type_vector [ada_primitive_type_long_long]
11185 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11186 0, "long_long_integer");
11187 lai->primitive_type_vector [ada_primitive_type_long_double]
11188 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11189 "long_long_float", NULL);
11190 lai->primitive_type_vector [ada_primitive_type_natural]
11191 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11192 0, "natural");
11193 lai->primitive_type_vector [ada_primitive_type_positive]
11194 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11195 0, "positive");
11196 lai->primitive_type_vector [ada_primitive_type_void]
11197 = builtin->builtin_void;
11198
11199 lai->primitive_type_vector [ada_primitive_type_system_address]
11200 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11201 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11202 = "system__address";
11203
11204 lai->bool_type_symbol = NULL;
11205 lai->bool_type_default = builtin->builtin_bool;
11206 }
11207 \f
11208 /* Language vector */
11209
11210 /* Not really used, but needed in the ada_language_defn. */
11211
11212 static void
11213 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11214 {
11215 ada_emit_char (c, type, stream, quoter, 1);
11216 }
11217
11218 static int
11219 parse (void)
11220 {
11221 warnings_issued = 0;
11222 return ada_parse ();
11223 }
11224
11225 static const struct exp_descriptor ada_exp_descriptor = {
11226 ada_print_subexp,
11227 ada_operator_length,
11228 ada_op_name,
11229 ada_dump_subexp_body,
11230 ada_evaluate_subexp
11231 };
11232
11233 const struct language_defn ada_language_defn = {
11234 "ada", /* Language name */
11235 language_ada,
11236 range_check_off,
11237 type_check_off,
11238 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11239 that's not quite what this means. */
11240 array_row_major,
11241 macro_expansion_no,
11242 &ada_exp_descriptor,
11243 parse,
11244 ada_error,
11245 resolve,
11246 ada_printchar, /* Print a character constant */
11247 ada_printstr, /* Function to print string constant */
11248 emit_char, /* Function to print single char (not used) */
11249 ada_print_type, /* Print a type using appropriate syntax */
11250 default_print_typedef, /* Print a typedef using appropriate syntax */
11251 ada_val_print, /* Print a value using appropriate syntax */
11252 ada_value_print, /* Print a top-level value */
11253 NULL, /* Language specific skip_trampoline */
11254 NULL, /* name_of_this */
11255 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11256 basic_lookup_transparent_type, /* lookup_transparent_type */
11257 ada_la_decode, /* Language specific symbol demangler */
11258 NULL, /* Language specific class_name_from_physname */
11259 ada_op_print_tab, /* expression operators for printing */
11260 0, /* c-style arrays */
11261 1, /* String lower bound */
11262 ada_get_gdb_completer_word_break_characters,
11263 ada_make_symbol_completion_list,
11264 ada_language_arch_info,
11265 ada_print_array_index,
11266 default_pass_by_reference,
11267 c_get_string,
11268 LANG_MAGIC
11269 };
11270
11271 /* Provide a prototype to silence -Wmissing-prototypes. */
11272 extern initialize_file_ftype _initialize_ada_language;
11273
11274 void
11275 _initialize_ada_language (void)
11276 {
11277 add_language (&ada_language_defn);
11278
11279 varsize_limit = 65536;
11280
11281 obstack_init (&symbol_list_obstack);
11282
11283 decoded_names_store = htab_create_alloc
11284 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11285 NULL, xcalloc, xfree);
11286
11287 observer_attach_executable_changed (ada_executable_changed_observer);
11288 }
This page took 0.262254 seconds and 4 git commands to generate.