3bc7bdd63880b620e5f72690f605e497f6a9b6b9
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67 #endif
68
69 static struct type *desc_base_type (struct type *);
70
71 static struct type *desc_bounds_type (struct type *);
72
73 static struct value *desc_bounds (struct value *);
74
75 static int fat_pntr_bounds_bitpos (struct type *);
76
77 static int fat_pntr_bounds_bitsize (struct type *);
78
79 static struct type *desc_data_target_type (struct type *);
80
81 static struct value *desc_data (struct value *);
82
83 static int fat_pntr_data_bitpos (struct type *);
84
85 static int fat_pntr_data_bitsize (struct type *);
86
87 static struct value *desc_one_bound (struct value *, int, int);
88
89 static int desc_bound_bitpos (struct type *, int, int);
90
91 static int desc_bound_bitsize (struct type *, int, int);
92
93 static struct type *desc_index_type (struct type *, int);
94
95 static int desc_arity (struct type *);
96
97 static int ada_type_match (struct type *, struct type *, int);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (struct obstack *,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (struct obstack *, const struct block *,
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
111
112 static int is_nonfunction (struct block_symbol *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct block_symbol *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (expression_up *, int *, int,
122 struct type *, int,
123 innermost_block_tracker *);
124
125 static void replace_operator_with_call (expression_up *, int, int, int,
126 struct symbol *, const struct block *);
127
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130 static const char *ada_decoded_op_name (enum exp_opcode);
131
132 static int numeric_type_p (struct type *);
133
134 static int integer_type_p (struct type *);
135
136 static int scalar_type_p (struct type *);
137
138 static int discrete_type_p (struct type *);
139
140 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
141 int, int);
142
143 static struct value *evaluate_subexp_type (struct expression *, int *);
144
145 static struct type *ada_find_parallel_type_with_name (struct type *,
146 const char *);
147
148 static int is_dynamic_field (struct type *, int);
149
150 static struct type *to_fixed_variant_branch_type (struct type *,
151 const gdb_byte *,
152 CORE_ADDR, struct value *);
153
154 static struct type *to_fixed_array_type (struct type *, struct value *, int);
155
156 static struct type *to_fixed_range_type (struct type *, struct value *);
157
158 static struct type *to_static_fixed_type (struct type *);
159 static struct type *static_unwrap_type (struct type *type);
160
161 static struct value *unwrap_value (struct value *);
162
163 static struct type *constrained_packed_array_type (struct type *, long *);
164
165 static struct type *decode_constrained_packed_array_type (struct type *);
166
167 static long decode_packed_array_bitsize (struct type *);
168
169 static struct value *decode_constrained_packed_array (struct value *);
170
171 static int ada_is_unconstrained_packed_array_type (struct type *);
172
173 static struct value *value_subscript_packed (struct value *, int,
174 struct value **);
175
176 static struct value *coerce_unspec_val_to_type (struct value *,
177 struct type *);
178
179 static int lesseq_defined_than (struct symbol *, struct symbol *);
180
181 static int equiv_types (struct type *, struct type *);
182
183 static int is_name_suffix (const char *);
184
185 static int advance_wild_match (const char **, const char *, char);
186
187 static bool wild_match (const char *name, const char *patn);
188
189 static struct value *ada_coerce_ref (struct value *);
190
191 static LONGEST pos_atr (struct value *);
192
193 static struct value *value_pos_atr (struct type *, struct value *);
194
195 static struct value *val_atr (struct type *, LONGEST);
196
197 static struct value *value_val_atr (struct type *, struct value *);
198
199 static struct symbol *standard_lookup (const char *, const struct block *,
200 domain_enum);
201
202 static struct value *ada_search_struct_field (const char *, struct value *, int,
203 struct type *);
204
205 static int find_struct_field (const char *, struct type *, int,
206 struct type **, int *, int *, int *, int *);
207
208 static int ada_resolve_function (struct block_symbol *, int,
209 struct value **, int, const char *,
210 struct type *, int);
211
212 static int ada_is_direct_array_type (struct type *);
213
214 static struct value *ada_index_struct_field (int, struct value *, int,
215 struct type *);
216
217 static struct value *assign_aggregate (struct value *, struct value *,
218 struct expression *,
219 int *, enum noside);
220
221 static void aggregate_assign_from_choices (struct value *, struct value *,
222 struct expression *,
223 int *, std::vector<LONGEST> &,
224 LONGEST, LONGEST);
225
226 static void aggregate_assign_positional (struct value *, struct value *,
227 struct expression *,
228 int *, std::vector<LONGEST> &,
229 LONGEST, LONGEST);
230
231
232 static void aggregate_assign_others (struct value *, struct value *,
233 struct expression *,
234 int *, std::vector<LONGEST> &,
235 LONGEST, LONGEST);
236
237
238 static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
239
240
241 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
242 int *, enum noside);
243
244 static void ada_forward_operator_length (struct expression *, int, int *,
245 int *);
246
247 static struct type *ada_find_any_type (const char *name);
248
249 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
250 (const lookup_name_info &lookup_name);
251
252 \f
253
254 /* The result of a symbol lookup to be stored in our symbol cache. */
255
256 struct cache_entry
257 {
258 /* The name used to perform the lookup. */
259 const char *name;
260 /* The namespace used during the lookup. */
261 domain_enum domain;
262 /* The symbol returned by the lookup, or NULL if no matching symbol
263 was found. */
264 struct symbol *sym;
265 /* The block where the symbol was found, or NULL if no matching
266 symbol was found. */
267 const struct block *block;
268 /* A pointer to the next entry with the same hash. */
269 struct cache_entry *next;
270 };
271
272 /* The Ada symbol cache, used to store the result of Ada-mode symbol
273 lookups in the course of executing the user's commands.
274
275 The cache is implemented using a simple, fixed-sized hash.
276 The size is fixed on the grounds that there are not likely to be
277 all that many symbols looked up during any given session, regardless
278 of the size of the symbol table. If we decide to go to a resizable
279 table, let's just use the stuff from libiberty instead. */
280
281 #define HASH_SIZE 1009
282
283 struct ada_symbol_cache
284 {
285 /* An obstack used to store the entries in our cache. */
286 struct obstack cache_space;
287
288 /* The root of the hash table used to implement our symbol cache. */
289 struct cache_entry *root[HASH_SIZE];
290 };
291
292 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
293
294 /* Maximum-sized dynamic type. */
295 static unsigned int varsize_limit;
296
297 static const char ada_completer_word_break_characters[] =
298 #ifdef VMS
299 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
300 #else
301 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
302 #endif
303
304 /* The name of the symbol to use to get the name of the main subprogram. */
305 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
306 = "__gnat_ada_main_program_name";
307
308 /* Limit on the number of warnings to raise per expression evaluation. */
309 static int warning_limit = 2;
310
311 /* Number of warning messages issued; reset to 0 by cleanups after
312 expression evaluation. */
313 static int warnings_issued = 0;
314
315 static const char * const known_runtime_file_name_patterns[] = {
316 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
317 };
318
319 static const char * const known_auxiliary_function_name_patterns[] = {
320 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
321 };
322
323 /* Maintenance-related settings for this module. */
324
325 static struct cmd_list_element *maint_set_ada_cmdlist;
326 static struct cmd_list_element *maint_show_ada_cmdlist;
327
328 /* The "maintenance ada set/show ignore-descriptive-type" value. */
329
330 static bool ada_ignore_descriptive_types_p = false;
331
332 /* Inferior-specific data. */
333
334 /* Per-inferior data for this module. */
335
336 struct ada_inferior_data
337 {
338 /* The ada__tags__type_specific_data type, which is used when decoding
339 tagged types. With older versions of GNAT, this type was directly
340 accessible through a component ("tsd") in the object tag. But this
341 is no longer the case, so we cache it for each inferior. */
342 struct type *tsd_type = nullptr;
343
344 /* The exception_support_info data. This data is used to determine
345 how to implement support for Ada exception catchpoints in a given
346 inferior. */
347 const struct exception_support_info *exception_info = nullptr;
348 };
349
350 /* Our key to this module's inferior data. */
351 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
352
353 /* Return our inferior data for the given inferior (INF).
354
355 This function always returns a valid pointer to an allocated
356 ada_inferior_data structure. If INF's inferior data has not
357 been previously set, this functions creates a new one with all
358 fields set to zero, sets INF's inferior to it, and then returns
359 a pointer to that newly allocated ada_inferior_data. */
360
361 static struct ada_inferior_data *
362 get_ada_inferior_data (struct inferior *inf)
363 {
364 struct ada_inferior_data *data;
365
366 data = ada_inferior_data.get (inf);
367 if (data == NULL)
368 data = ada_inferior_data.emplace (inf);
369
370 return data;
371 }
372
373 /* Perform all necessary cleanups regarding our module's inferior data
374 that is required after the inferior INF just exited. */
375
376 static void
377 ada_inferior_exit (struct inferior *inf)
378 {
379 ada_inferior_data.clear (inf);
380 }
381
382
383 /* program-space-specific data. */
384
385 /* This module's per-program-space data. */
386 struct ada_pspace_data
387 {
388 ~ada_pspace_data ()
389 {
390 if (sym_cache != NULL)
391 ada_free_symbol_cache (sym_cache);
392 }
393
394 /* The Ada symbol cache. */
395 struct ada_symbol_cache *sym_cache = nullptr;
396 };
397
398 /* Key to our per-program-space data. */
399 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
400
401 /* Return this module's data for the given program space (PSPACE).
402 If not is found, add a zero'ed one now.
403
404 This function always returns a valid object. */
405
406 static struct ada_pspace_data *
407 get_ada_pspace_data (struct program_space *pspace)
408 {
409 struct ada_pspace_data *data;
410
411 data = ada_pspace_data_handle.get (pspace);
412 if (data == NULL)
413 data = ada_pspace_data_handle.emplace (pspace);
414
415 return data;
416 }
417
418 /* Utilities */
419
420 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
421 all typedef layers have been peeled. Otherwise, return TYPE.
422
423 Normally, we really expect a typedef type to only have 1 typedef layer.
424 In other words, we really expect the target type of a typedef type to be
425 a non-typedef type. This is particularly true for Ada units, because
426 the language does not have a typedef vs not-typedef distinction.
427 In that respect, the Ada compiler has been trying to eliminate as many
428 typedef definitions in the debugging information, since they generally
429 do not bring any extra information (we still use typedef under certain
430 circumstances related mostly to the GNAT encoding).
431
432 Unfortunately, we have seen situations where the debugging information
433 generated by the compiler leads to such multiple typedef layers. For
434 instance, consider the following example with stabs:
435
436 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
437 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
438
439 This is an error in the debugging information which causes type
440 pck__float_array___XUP to be defined twice, and the second time,
441 it is defined as a typedef of a typedef.
442
443 This is on the fringe of legality as far as debugging information is
444 concerned, and certainly unexpected. But it is easy to handle these
445 situations correctly, so we can afford to be lenient in this case. */
446
447 static struct type *
448 ada_typedef_target_type (struct type *type)
449 {
450 while (type->code () == TYPE_CODE_TYPEDEF)
451 type = TYPE_TARGET_TYPE (type);
452 return type;
453 }
454
455 /* Given DECODED_NAME a string holding a symbol name in its
456 decoded form (ie using the Ada dotted notation), returns
457 its unqualified name. */
458
459 static const char *
460 ada_unqualified_name (const char *decoded_name)
461 {
462 const char *result;
463
464 /* If the decoded name starts with '<', it means that the encoded
465 name does not follow standard naming conventions, and thus that
466 it is not your typical Ada symbol name. Trying to unqualify it
467 is therefore pointless and possibly erroneous. */
468 if (decoded_name[0] == '<')
469 return decoded_name;
470
471 result = strrchr (decoded_name, '.');
472 if (result != NULL)
473 result++; /* Skip the dot... */
474 else
475 result = decoded_name;
476
477 return result;
478 }
479
480 /* Return a string starting with '<', followed by STR, and '>'. */
481
482 static std::string
483 add_angle_brackets (const char *str)
484 {
485 return string_printf ("<%s>", str);
486 }
487
488 /* Assuming V points to an array of S objects, make sure that it contains at
489 least M objects, updating V and S as necessary. */
490
491 #define GROW_VECT(v, s, m) \
492 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
493
494 /* Assuming VECT points to an array of *SIZE objects of size
495 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
496 updating *SIZE as necessary and returning the (new) array. */
497
498 static void *
499 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
500 {
501 if (*size < min_size)
502 {
503 *size *= 2;
504 if (*size < min_size)
505 *size = min_size;
506 vect = xrealloc (vect, *size * element_size);
507 }
508 return vect;
509 }
510
511 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
512 suffix of FIELD_NAME beginning "___". */
513
514 static int
515 field_name_match (const char *field_name, const char *target)
516 {
517 int len = strlen (target);
518
519 return
520 (strncmp (field_name, target, len) == 0
521 && (field_name[len] == '\0'
522 || (startswith (field_name + len, "___")
523 && strcmp (field_name + strlen (field_name) - 6,
524 "___XVN") != 0)));
525 }
526
527
528 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
529 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
530 and return its index. This function also handles fields whose name
531 have ___ suffixes because the compiler sometimes alters their name
532 by adding such a suffix to represent fields with certain constraints.
533 If the field could not be found, return a negative number if
534 MAYBE_MISSING is set. Otherwise raise an error. */
535
536 int
537 ada_get_field_index (const struct type *type, const char *field_name,
538 int maybe_missing)
539 {
540 int fieldno;
541 struct type *struct_type = check_typedef ((struct type *) type);
542
543 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
544 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
545 return fieldno;
546
547 if (!maybe_missing)
548 error (_("Unable to find field %s in struct %s. Aborting"),
549 field_name, struct_type->name ());
550
551 return -1;
552 }
553
554 /* The length of the prefix of NAME prior to any "___" suffix. */
555
556 int
557 ada_name_prefix_len (const char *name)
558 {
559 if (name == NULL)
560 return 0;
561 else
562 {
563 const char *p = strstr (name, "___");
564
565 if (p == NULL)
566 return strlen (name);
567 else
568 return p - name;
569 }
570 }
571
572 /* Return non-zero if SUFFIX is a suffix of STR.
573 Return zero if STR is null. */
574
575 static int
576 is_suffix (const char *str, const char *suffix)
577 {
578 int len1, len2;
579
580 if (str == NULL)
581 return 0;
582 len1 = strlen (str);
583 len2 = strlen (suffix);
584 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
585 }
586
587 /* The contents of value VAL, treated as a value of type TYPE. The
588 result is an lval in memory if VAL is. */
589
590 static struct value *
591 coerce_unspec_val_to_type (struct value *val, struct type *type)
592 {
593 type = ada_check_typedef (type);
594 if (value_type (val) == type)
595 return val;
596 else
597 {
598 struct value *result;
599
600 /* Make sure that the object size is not unreasonable before
601 trying to allocate some memory for it. */
602 ada_ensure_varsize_limit (type);
603
604 if (value_lazy (val)
605 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
606 result = allocate_value_lazy (type);
607 else
608 {
609 result = allocate_value (type);
610 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
611 }
612 set_value_component_location (result, val);
613 set_value_bitsize (result, value_bitsize (val));
614 set_value_bitpos (result, value_bitpos (val));
615 if (VALUE_LVAL (result) == lval_memory)
616 set_value_address (result, value_address (val));
617 return result;
618 }
619 }
620
621 static const gdb_byte *
622 cond_offset_host (const gdb_byte *valaddr, long offset)
623 {
624 if (valaddr == NULL)
625 return NULL;
626 else
627 return valaddr + offset;
628 }
629
630 static CORE_ADDR
631 cond_offset_target (CORE_ADDR address, long offset)
632 {
633 if (address == 0)
634 return 0;
635 else
636 return address + offset;
637 }
638
639 /* Issue a warning (as for the definition of warning in utils.c, but
640 with exactly one argument rather than ...), unless the limit on the
641 number of warnings has passed during the evaluation of the current
642 expression. */
643
644 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
645 provided by "complaint". */
646 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
647
648 static void
649 lim_warning (const char *format, ...)
650 {
651 va_list args;
652
653 va_start (args, format);
654 warnings_issued += 1;
655 if (warnings_issued <= warning_limit)
656 vwarning (format, args);
657
658 va_end (args);
659 }
660
661 /* Issue an error if the size of an object of type T is unreasonable,
662 i.e. if it would be a bad idea to allocate a value of this type in
663 GDB. */
664
665 void
666 ada_ensure_varsize_limit (const struct type *type)
667 {
668 if (TYPE_LENGTH (type) > varsize_limit)
669 error (_("object size is larger than varsize-limit"));
670 }
671
672 /* Maximum value of a SIZE-byte signed integer type. */
673 static LONGEST
674 max_of_size (int size)
675 {
676 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
677
678 return top_bit | (top_bit - 1);
679 }
680
681 /* Minimum value of a SIZE-byte signed integer type. */
682 static LONGEST
683 min_of_size (int size)
684 {
685 return -max_of_size (size) - 1;
686 }
687
688 /* Maximum value of a SIZE-byte unsigned integer type. */
689 static ULONGEST
690 umax_of_size (int size)
691 {
692 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
693
694 return top_bit | (top_bit - 1);
695 }
696
697 /* Maximum value of integral type T, as a signed quantity. */
698 static LONGEST
699 max_of_type (struct type *t)
700 {
701 if (t->is_unsigned ())
702 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
703 else
704 return max_of_size (TYPE_LENGTH (t));
705 }
706
707 /* Minimum value of integral type T, as a signed quantity. */
708 static LONGEST
709 min_of_type (struct type *t)
710 {
711 if (t->is_unsigned ())
712 return 0;
713 else
714 return min_of_size (TYPE_LENGTH (t));
715 }
716
717 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
718 LONGEST
719 ada_discrete_type_high_bound (struct type *type)
720 {
721 type = resolve_dynamic_type (type, {}, 0);
722 switch (type->code ())
723 {
724 case TYPE_CODE_RANGE:
725 {
726 const dynamic_prop &high = type->bounds ()->high;
727
728 if (high.kind () == PROP_CONST)
729 return high.const_val ();
730 else
731 {
732 gdb_assert (high.kind () == PROP_UNDEFINED);
733
734 /* This happens when trying to evaluate a type's dynamic bound
735 without a live target. There is nothing relevant for us to
736 return here, so return 0. */
737 return 0;
738 }
739 }
740 case TYPE_CODE_ENUM:
741 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
742 case TYPE_CODE_BOOL:
743 return 1;
744 case TYPE_CODE_CHAR:
745 case TYPE_CODE_INT:
746 return max_of_type (type);
747 default:
748 error (_("Unexpected type in ada_discrete_type_high_bound."));
749 }
750 }
751
752 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
753 LONGEST
754 ada_discrete_type_low_bound (struct type *type)
755 {
756 type = resolve_dynamic_type (type, {}, 0);
757 switch (type->code ())
758 {
759 case TYPE_CODE_RANGE:
760 {
761 const dynamic_prop &low = type->bounds ()->low;
762
763 if (low.kind () == PROP_CONST)
764 return low.const_val ();
765 else
766 {
767 gdb_assert (low.kind () == PROP_UNDEFINED);
768
769 /* This happens when trying to evaluate a type's dynamic bound
770 without a live target. There is nothing relevant for us to
771 return here, so return 0. */
772 return 0;
773 }
774 }
775 case TYPE_CODE_ENUM:
776 return TYPE_FIELD_ENUMVAL (type, 0);
777 case TYPE_CODE_BOOL:
778 return 0;
779 case TYPE_CODE_CHAR:
780 case TYPE_CODE_INT:
781 return min_of_type (type);
782 default:
783 error (_("Unexpected type in ada_discrete_type_low_bound."));
784 }
785 }
786
787 /* The identity on non-range types. For range types, the underlying
788 non-range scalar type. */
789
790 static struct type *
791 get_base_type (struct type *type)
792 {
793 while (type != NULL && type->code () == TYPE_CODE_RANGE)
794 {
795 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
796 return type;
797 type = TYPE_TARGET_TYPE (type);
798 }
799 return type;
800 }
801
802 /* Return a decoded version of the given VALUE. This means returning
803 a value whose type is obtained by applying all the GNAT-specific
804 encodings, making the resulting type a static but standard description
805 of the initial type. */
806
807 struct value *
808 ada_get_decoded_value (struct value *value)
809 {
810 struct type *type = ada_check_typedef (value_type (value));
811
812 if (ada_is_array_descriptor_type (type)
813 || (ada_is_constrained_packed_array_type (type)
814 && type->code () != TYPE_CODE_PTR))
815 {
816 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
817 value = ada_coerce_to_simple_array_ptr (value);
818 else
819 value = ada_coerce_to_simple_array (value);
820 }
821 else
822 value = ada_to_fixed_value (value);
823
824 return value;
825 }
826
827 /* Same as ada_get_decoded_value, but with the given TYPE.
828 Because there is no associated actual value for this type,
829 the resulting type might be a best-effort approximation in
830 the case of dynamic types. */
831
832 struct type *
833 ada_get_decoded_type (struct type *type)
834 {
835 type = to_static_fixed_type (type);
836 if (ada_is_constrained_packed_array_type (type))
837 type = ada_coerce_to_simple_array_type (type);
838 return type;
839 }
840
841 \f
842
843 /* Language Selection */
844
845 /* If the main program is in Ada, return language_ada, otherwise return LANG
846 (the main program is in Ada iif the adainit symbol is found). */
847
848 static enum language
849 ada_update_initial_language (enum language lang)
850 {
851 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
852 return language_ada;
853
854 return lang;
855 }
856
857 /* If the main procedure is written in Ada, then return its name.
858 The result is good until the next call. Return NULL if the main
859 procedure doesn't appear to be in Ada. */
860
861 char *
862 ada_main_name (void)
863 {
864 struct bound_minimal_symbol msym;
865 static gdb::unique_xmalloc_ptr<char> main_program_name;
866
867 /* For Ada, the name of the main procedure is stored in a specific
868 string constant, generated by the binder. Look for that symbol,
869 extract its address, and then read that string. If we didn't find
870 that string, then most probably the main procedure is not written
871 in Ada. */
872 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
873
874 if (msym.minsym != NULL)
875 {
876 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
877 if (main_program_name_addr == 0)
878 error (_("Invalid address for Ada main program name."));
879
880 main_program_name = target_read_string (main_program_name_addr, 1024);
881 return main_program_name.get ();
882 }
883
884 /* The main procedure doesn't seem to be in Ada. */
885 return NULL;
886 }
887 \f
888 /* Symbols */
889
890 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
891 of NULLs. */
892
893 const struct ada_opname_map ada_opname_table[] = {
894 {"Oadd", "\"+\"", BINOP_ADD},
895 {"Osubtract", "\"-\"", BINOP_SUB},
896 {"Omultiply", "\"*\"", BINOP_MUL},
897 {"Odivide", "\"/\"", BINOP_DIV},
898 {"Omod", "\"mod\"", BINOP_MOD},
899 {"Orem", "\"rem\"", BINOP_REM},
900 {"Oexpon", "\"**\"", BINOP_EXP},
901 {"Olt", "\"<\"", BINOP_LESS},
902 {"Ole", "\"<=\"", BINOP_LEQ},
903 {"Ogt", "\">\"", BINOP_GTR},
904 {"Oge", "\">=\"", BINOP_GEQ},
905 {"Oeq", "\"=\"", BINOP_EQUAL},
906 {"One", "\"/=\"", BINOP_NOTEQUAL},
907 {"Oand", "\"and\"", BINOP_BITWISE_AND},
908 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
909 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
910 {"Oconcat", "\"&\"", BINOP_CONCAT},
911 {"Oabs", "\"abs\"", UNOP_ABS},
912 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
913 {"Oadd", "\"+\"", UNOP_PLUS},
914 {"Osubtract", "\"-\"", UNOP_NEG},
915 {NULL, NULL}
916 };
917
918 /* The "encoded" form of DECODED, according to GNAT conventions. If
919 THROW_ERRORS, throw an error if invalid operator name is found.
920 Otherwise, return the empty string in that case. */
921
922 static std::string
923 ada_encode_1 (const char *decoded, bool throw_errors)
924 {
925 if (decoded == NULL)
926 return {};
927
928 std::string encoding_buffer;
929 for (const char *p = decoded; *p != '\0'; p += 1)
930 {
931 if (*p == '.')
932 encoding_buffer.append ("__");
933 else if (*p == '"')
934 {
935 const struct ada_opname_map *mapping;
936
937 for (mapping = ada_opname_table;
938 mapping->encoded != NULL
939 && !startswith (p, mapping->decoded); mapping += 1)
940 ;
941 if (mapping->encoded == NULL)
942 {
943 if (throw_errors)
944 error (_("invalid Ada operator name: %s"), p);
945 else
946 return {};
947 }
948 encoding_buffer.append (mapping->encoded);
949 break;
950 }
951 else
952 encoding_buffer.push_back (*p);
953 }
954
955 return encoding_buffer;
956 }
957
958 /* The "encoded" form of DECODED, according to GNAT conventions. */
959
960 std::string
961 ada_encode (const char *decoded)
962 {
963 return ada_encode_1 (decoded, true);
964 }
965
966 /* Return NAME folded to lower case, or, if surrounded by single
967 quotes, unfolded, but with the quotes stripped away. Result good
968 to next call. */
969
970 static char *
971 ada_fold_name (gdb::string_view name)
972 {
973 static char *fold_buffer = NULL;
974 static size_t fold_buffer_size = 0;
975
976 int len = name.size ();
977 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
978
979 if (name[0] == '\'')
980 {
981 strncpy (fold_buffer, name.data () + 1, len - 2);
982 fold_buffer[len - 2] = '\000';
983 }
984 else
985 {
986 int i;
987
988 for (i = 0; i < len; i += 1)
989 fold_buffer[i] = tolower (name[i]);
990 fold_buffer[i] = '\0';
991 }
992
993 return fold_buffer;
994 }
995
996 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
997
998 static int
999 is_lower_alphanum (const char c)
1000 {
1001 return (isdigit (c) || (isalpha (c) && islower (c)));
1002 }
1003
1004 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1005 This function saves in LEN the length of that same symbol name but
1006 without either of these suffixes:
1007 . .{DIGIT}+
1008 . ${DIGIT}+
1009 . ___{DIGIT}+
1010 . __{DIGIT}+.
1011
1012 These are suffixes introduced by the compiler for entities such as
1013 nested subprogram for instance, in order to avoid name clashes.
1014 They do not serve any purpose for the debugger. */
1015
1016 static void
1017 ada_remove_trailing_digits (const char *encoded, int *len)
1018 {
1019 if (*len > 1 && isdigit (encoded[*len - 1]))
1020 {
1021 int i = *len - 2;
1022
1023 while (i > 0 && isdigit (encoded[i]))
1024 i--;
1025 if (i >= 0 && encoded[i] == '.')
1026 *len = i;
1027 else if (i >= 0 && encoded[i] == '$')
1028 *len = i;
1029 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1030 *len = i - 2;
1031 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1032 *len = i - 1;
1033 }
1034 }
1035
1036 /* Remove the suffix introduced by the compiler for protected object
1037 subprograms. */
1038
1039 static void
1040 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1041 {
1042 /* Remove trailing N. */
1043
1044 /* Protected entry subprograms are broken into two
1045 separate subprograms: The first one is unprotected, and has
1046 a 'N' suffix; the second is the protected version, and has
1047 the 'P' suffix. The second calls the first one after handling
1048 the protection. Since the P subprograms are internally generated,
1049 we leave these names undecoded, giving the user a clue that this
1050 entity is internal. */
1051
1052 if (*len > 1
1053 && encoded[*len - 1] == 'N'
1054 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1055 *len = *len - 1;
1056 }
1057
1058 /* If ENCODED follows the GNAT entity encoding conventions, then return
1059 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1060 replaced by ENCODED. */
1061
1062 std::string
1063 ada_decode (const char *encoded)
1064 {
1065 int i, j;
1066 int len0;
1067 const char *p;
1068 int at_start_name;
1069 std::string decoded;
1070
1071 /* With function descriptors on PPC64, the value of a symbol named
1072 ".FN", if it exists, is the entry point of the function "FN". */
1073 if (encoded[0] == '.')
1074 encoded += 1;
1075
1076 /* The name of the Ada main procedure starts with "_ada_".
1077 This prefix is not part of the decoded name, so skip this part
1078 if we see this prefix. */
1079 if (startswith (encoded, "_ada_"))
1080 encoded += 5;
1081
1082 /* If the name starts with '_', then it is not a properly encoded
1083 name, so do not attempt to decode it. Similarly, if the name
1084 starts with '<', the name should not be decoded. */
1085 if (encoded[0] == '_' || encoded[0] == '<')
1086 goto Suppress;
1087
1088 len0 = strlen (encoded);
1089
1090 ada_remove_trailing_digits (encoded, &len0);
1091 ada_remove_po_subprogram_suffix (encoded, &len0);
1092
1093 /* Remove the ___X.* suffix if present. Do not forget to verify that
1094 the suffix is located before the current "end" of ENCODED. We want
1095 to avoid re-matching parts of ENCODED that have previously been
1096 marked as discarded (by decrementing LEN0). */
1097 p = strstr (encoded, "___");
1098 if (p != NULL && p - encoded < len0 - 3)
1099 {
1100 if (p[3] == 'X')
1101 len0 = p - encoded;
1102 else
1103 goto Suppress;
1104 }
1105
1106 /* Remove any trailing TKB suffix. It tells us that this symbol
1107 is for the body of a task, but that information does not actually
1108 appear in the decoded name. */
1109
1110 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1111 len0 -= 3;
1112
1113 /* Remove any trailing TB suffix. The TB suffix is slightly different
1114 from the TKB suffix because it is used for non-anonymous task
1115 bodies. */
1116
1117 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1118 len0 -= 2;
1119
1120 /* Remove trailing "B" suffixes. */
1121 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1122
1123 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1124 len0 -= 1;
1125
1126 /* Make decoded big enough for possible expansion by operator name. */
1127
1128 decoded.resize (2 * len0 + 1, 'X');
1129
1130 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1131
1132 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1133 {
1134 i = len0 - 2;
1135 while ((i >= 0 && isdigit (encoded[i]))
1136 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1137 i -= 1;
1138 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1139 len0 = i - 1;
1140 else if (encoded[i] == '$')
1141 len0 = i;
1142 }
1143
1144 /* The first few characters that are not alphabetic are not part
1145 of any encoding we use, so we can copy them over verbatim. */
1146
1147 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1148 decoded[j] = encoded[i];
1149
1150 at_start_name = 1;
1151 while (i < len0)
1152 {
1153 /* Is this a symbol function? */
1154 if (at_start_name && encoded[i] == 'O')
1155 {
1156 int k;
1157
1158 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1159 {
1160 int op_len = strlen (ada_opname_table[k].encoded);
1161 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1162 op_len - 1) == 0)
1163 && !isalnum (encoded[i + op_len]))
1164 {
1165 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1166 at_start_name = 0;
1167 i += op_len;
1168 j += strlen (ada_opname_table[k].decoded);
1169 break;
1170 }
1171 }
1172 if (ada_opname_table[k].encoded != NULL)
1173 continue;
1174 }
1175 at_start_name = 0;
1176
1177 /* Replace "TK__" with "__", which will eventually be translated
1178 into "." (just below). */
1179
1180 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1181 i += 2;
1182
1183 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1184 be translated into "." (just below). These are internal names
1185 generated for anonymous blocks inside which our symbol is nested. */
1186
1187 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1188 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1189 && isdigit (encoded [i+4]))
1190 {
1191 int k = i + 5;
1192
1193 while (k < len0 && isdigit (encoded[k]))
1194 k++; /* Skip any extra digit. */
1195
1196 /* Double-check that the "__B_{DIGITS}+" sequence we found
1197 is indeed followed by "__". */
1198 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1199 i = k;
1200 }
1201
1202 /* Remove _E{DIGITS}+[sb] */
1203
1204 /* Just as for protected object subprograms, there are 2 categories
1205 of subprograms created by the compiler for each entry. The first
1206 one implements the actual entry code, and has a suffix following
1207 the convention above; the second one implements the barrier and
1208 uses the same convention as above, except that the 'E' is replaced
1209 by a 'B'.
1210
1211 Just as above, we do not decode the name of barrier functions
1212 to give the user a clue that the code he is debugging has been
1213 internally generated. */
1214
1215 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1216 && isdigit (encoded[i+2]))
1217 {
1218 int k = i + 3;
1219
1220 while (k < len0 && isdigit (encoded[k]))
1221 k++;
1222
1223 if (k < len0
1224 && (encoded[k] == 'b' || encoded[k] == 's'))
1225 {
1226 k++;
1227 /* Just as an extra precaution, make sure that if this
1228 suffix is followed by anything else, it is a '_'.
1229 Otherwise, we matched this sequence by accident. */
1230 if (k == len0
1231 || (k < len0 && encoded[k] == '_'))
1232 i = k;
1233 }
1234 }
1235
1236 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1237 the GNAT front-end in protected object subprograms. */
1238
1239 if (i < len0 + 3
1240 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1241 {
1242 /* Backtrack a bit up until we reach either the begining of
1243 the encoded name, or "__". Make sure that we only find
1244 digits or lowercase characters. */
1245 const char *ptr = encoded + i - 1;
1246
1247 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1248 ptr--;
1249 if (ptr < encoded
1250 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1251 i++;
1252 }
1253
1254 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1255 {
1256 /* This is a X[bn]* sequence not separated from the previous
1257 part of the name with a non-alpha-numeric character (in other
1258 words, immediately following an alpha-numeric character), then
1259 verify that it is placed at the end of the encoded name. If
1260 not, then the encoding is not valid and we should abort the
1261 decoding. Otherwise, just skip it, it is used in body-nested
1262 package names. */
1263 do
1264 i += 1;
1265 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1266 if (i < len0)
1267 goto Suppress;
1268 }
1269 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1270 {
1271 /* Replace '__' by '.'. */
1272 decoded[j] = '.';
1273 at_start_name = 1;
1274 i += 2;
1275 j += 1;
1276 }
1277 else
1278 {
1279 /* It's a character part of the decoded name, so just copy it
1280 over. */
1281 decoded[j] = encoded[i];
1282 i += 1;
1283 j += 1;
1284 }
1285 }
1286 decoded.resize (j);
1287
1288 /* Decoded names should never contain any uppercase character.
1289 Double-check this, and abort the decoding if we find one. */
1290
1291 for (i = 0; i < decoded.length(); ++i)
1292 if (isupper (decoded[i]) || decoded[i] == ' ')
1293 goto Suppress;
1294
1295 return decoded;
1296
1297 Suppress:
1298 if (encoded[0] == '<')
1299 decoded = encoded;
1300 else
1301 decoded = '<' + std::string(encoded) + '>';
1302 return decoded;
1303
1304 }
1305
1306 /* Table for keeping permanent unique copies of decoded names. Once
1307 allocated, names in this table are never released. While this is a
1308 storage leak, it should not be significant unless there are massive
1309 changes in the set of decoded names in successive versions of a
1310 symbol table loaded during a single session. */
1311 static struct htab *decoded_names_store;
1312
1313 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1314 in the language-specific part of GSYMBOL, if it has not been
1315 previously computed. Tries to save the decoded name in the same
1316 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1317 in any case, the decoded symbol has a lifetime at least that of
1318 GSYMBOL).
1319 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1320 const, but nevertheless modified to a semantically equivalent form
1321 when a decoded name is cached in it. */
1322
1323 const char *
1324 ada_decode_symbol (const struct general_symbol_info *arg)
1325 {
1326 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1327 const char **resultp =
1328 &gsymbol->language_specific.demangled_name;
1329
1330 if (!gsymbol->ada_mangled)
1331 {
1332 std::string decoded = ada_decode (gsymbol->linkage_name ());
1333 struct obstack *obstack = gsymbol->language_specific.obstack;
1334
1335 gsymbol->ada_mangled = 1;
1336
1337 if (obstack != NULL)
1338 *resultp = obstack_strdup (obstack, decoded.c_str ());
1339 else
1340 {
1341 /* Sometimes, we can't find a corresponding objfile, in
1342 which case, we put the result on the heap. Since we only
1343 decode when needed, we hope this usually does not cause a
1344 significant memory leak (FIXME). */
1345
1346 char **slot = (char **) htab_find_slot (decoded_names_store,
1347 decoded.c_str (), INSERT);
1348
1349 if (*slot == NULL)
1350 *slot = xstrdup (decoded.c_str ());
1351 *resultp = *slot;
1352 }
1353 }
1354
1355 return *resultp;
1356 }
1357
1358 static char *
1359 ada_la_decode (const char *encoded, int options)
1360 {
1361 return xstrdup (ada_decode (encoded).c_str ());
1362 }
1363
1364 \f
1365
1366 /* Arrays */
1367
1368 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1369 generated by the GNAT compiler to describe the index type used
1370 for each dimension of an array, check whether it follows the latest
1371 known encoding. If not, fix it up to conform to the latest encoding.
1372 Otherwise, do nothing. This function also does nothing if
1373 INDEX_DESC_TYPE is NULL.
1374
1375 The GNAT encoding used to describe the array index type evolved a bit.
1376 Initially, the information would be provided through the name of each
1377 field of the structure type only, while the type of these fields was
1378 described as unspecified and irrelevant. The debugger was then expected
1379 to perform a global type lookup using the name of that field in order
1380 to get access to the full index type description. Because these global
1381 lookups can be very expensive, the encoding was later enhanced to make
1382 the global lookup unnecessary by defining the field type as being
1383 the full index type description.
1384
1385 The purpose of this routine is to allow us to support older versions
1386 of the compiler by detecting the use of the older encoding, and by
1387 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1388 we essentially replace each field's meaningless type by the associated
1389 index subtype). */
1390
1391 void
1392 ada_fixup_array_indexes_type (struct type *index_desc_type)
1393 {
1394 int i;
1395
1396 if (index_desc_type == NULL)
1397 return;
1398 gdb_assert (index_desc_type->num_fields () > 0);
1399
1400 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1401 to check one field only, no need to check them all). If not, return
1402 now.
1403
1404 If our INDEX_DESC_TYPE was generated using the older encoding,
1405 the field type should be a meaningless integer type whose name
1406 is not equal to the field name. */
1407 if (index_desc_type->field (0).type ()->name () != NULL
1408 && strcmp (index_desc_type->field (0).type ()->name (),
1409 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1410 return;
1411
1412 /* Fixup each field of INDEX_DESC_TYPE. */
1413 for (i = 0; i < index_desc_type->num_fields (); i++)
1414 {
1415 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1416 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1417
1418 if (raw_type)
1419 index_desc_type->field (i).set_type (raw_type);
1420 }
1421 }
1422
1423 /* The desc_* routines return primitive portions of array descriptors
1424 (fat pointers). */
1425
1426 /* The descriptor or array type, if any, indicated by TYPE; removes
1427 level of indirection, if needed. */
1428
1429 static struct type *
1430 desc_base_type (struct type *type)
1431 {
1432 if (type == NULL)
1433 return NULL;
1434 type = ada_check_typedef (type);
1435 if (type->code () == TYPE_CODE_TYPEDEF)
1436 type = ada_typedef_target_type (type);
1437
1438 if (type != NULL
1439 && (type->code () == TYPE_CODE_PTR
1440 || type->code () == TYPE_CODE_REF))
1441 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1442 else
1443 return type;
1444 }
1445
1446 /* True iff TYPE indicates a "thin" array pointer type. */
1447
1448 static int
1449 is_thin_pntr (struct type *type)
1450 {
1451 return
1452 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1453 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1454 }
1455
1456 /* The descriptor type for thin pointer type TYPE. */
1457
1458 static struct type *
1459 thin_descriptor_type (struct type *type)
1460 {
1461 struct type *base_type = desc_base_type (type);
1462
1463 if (base_type == NULL)
1464 return NULL;
1465 if (is_suffix (ada_type_name (base_type), "___XVE"))
1466 return base_type;
1467 else
1468 {
1469 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1470
1471 if (alt_type == NULL)
1472 return base_type;
1473 else
1474 return alt_type;
1475 }
1476 }
1477
1478 /* A pointer to the array data for thin-pointer value VAL. */
1479
1480 static struct value *
1481 thin_data_pntr (struct value *val)
1482 {
1483 struct type *type = ada_check_typedef (value_type (val));
1484 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1485
1486 data_type = lookup_pointer_type (data_type);
1487
1488 if (type->code () == TYPE_CODE_PTR)
1489 return value_cast (data_type, value_copy (val));
1490 else
1491 return value_from_longest (data_type, value_address (val));
1492 }
1493
1494 /* True iff TYPE indicates a "thick" array pointer type. */
1495
1496 static int
1497 is_thick_pntr (struct type *type)
1498 {
1499 type = desc_base_type (type);
1500 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1501 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1502 }
1503
1504 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1505 pointer to one, the type of its bounds data; otherwise, NULL. */
1506
1507 static struct type *
1508 desc_bounds_type (struct type *type)
1509 {
1510 struct type *r;
1511
1512 type = desc_base_type (type);
1513
1514 if (type == NULL)
1515 return NULL;
1516 else if (is_thin_pntr (type))
1517 {
1518 type = thin_descriptor_type (type);
1519 if (type == NULL)
1520 return NULL;
1521 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1522 if (r != NULL)
1523 return ada_check_typedef (r);
1524 }
1525 else if (type->code () == TYPE_CODE_STRUCT)
1526 {
1527 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1528 if (r != NULL)
1529 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1530 }
1531 return NULL;
1532 }
1533
1534 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1535 one, a pointer to its bounds data. Otherwise NULL. */
1536
1537 static struct value *
1538 desc_bounds (struct value *arr)
1539 {
1540 struct type *type = ada_check_typedef (value_type (arr));
1541
1542 if (is_thin_pntr (type))
1543 {
1544 struct type *bounds_type =
1545 desc_bounds_type (thin_descriptor_type (type));
1546 LONGEST addr;
1547
1548 if (bounds_type == NULL)
1549 error (_("Bad GNAT array descriptor"));
1550
1551 /* NOTE: The following calculation is not really kosher, but
1552 since desc_type is an XVE-encoded type (and shouldn't be),
1553 the correct calculation is a real pain. FIXME (and fix GCC). */
1554 if (type->code () == TYPE_CODE_PTR)
1555 addr = value_as_long (arr);
1556 else
1557 addr = value_address (arr);
1558
1559 return
1560 value_from_longest (lookup_pointer_type (bounds_type),
1561 addr - TYPE_LENGTH (bounds_type));
1562 }
1563
1564 else if (is_thick_pntr (type))
1565 {
1566 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1567 _("Bad GNAT array descriptor"));
1568 struct type *p_bounds_type = value_type (p_bounds);
1569
1570 if (p_bounds_type
1571 && p_bounds_type->code () == TYPE_CODE_PTR)
1572 {
1573 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1574
1575 if (target_type->is_stub ())
1576 p_bounds = value_cast (lookup_pointer_type
1577 (ada_check_typedef (target_type)),
1578 p_bounds);
1579 }
1580 else
1581 error (_("Bad GNAT array descriptor"));
1582
1583 return p_bounds;
1584 }
1585 else
1586 return NULL;
1587 }
1588
1589 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1590 position of the field containing the address of the bounds data. */
1591
1592 static int
1593 fat_pntr_bounds_bitpos (struct type *type)
1594 {
1595 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1596 }
1597
1598 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1599 size of the field containing the address of the bounds data. */
1600
1601 static int
1602 fat_pntr_bounds_bitsize (struct type *type)
1603 {
1604 type = desc_base_type (type);
1605
1606 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1607 return TYPE_FIELD_BITSIZE (type, 1);
1608 else
1609 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1610 }
1611
1612 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1613 pointer to one, the type of its array data (a array-with-no-bounds type);
1614 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1615 data. */
1616
1617 static struct type *
1618 desc_data_target_type (struct type *type)
1619 {
1620 type = desc_base_type (type);
1621
1622 /* NOTE: The following is bogus; see comment in desc_bounds. */
1623 if (is_thin_pntr (type))
1624 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1625 else if (is_thick_pntr (type))
1626 {
1627 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1628
1629 if (data_type
1630 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1631 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1632 }
1633
1634 return NULL;
1635 }
1636
1637 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1638 its array data. */
1639
1640 static struct value *
1641 desc_data (struct value *arr)
1642 {
1643 struct type *type = value_type (arr);
1644
1645 if (is_thin_pntr (type))
1646 return thin_data_pntr (arr);
1647 else if (is_thick_pntr (type))
1648 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1649 _("Bad GNAT array descriptor"));
1650 else
1651 return NULL;
1652 }
1653
1654
1655 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1656 position of the field containing the address of the data. */
1657
1658 static int
1659 fat_pntr_data_bitpos (struct type *type)
1660 {
1661 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1662 }
1663
1664 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1665 size of the field containing the address of the data. */
1666
1667 static int
1668 fat_pntr_data_bitsize (struct type *type)
1669 {
1670 type = desc_base_type (type);
1671
1672 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1673 return TYPE_FIELD_BITSIZE (type, 0);
1674 else
1675 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1676 }
1677
1678 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1679 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1680 bound, if WHICH is 1. The first bound is I=1. */
1681
1682 static struct value *
1683 desc_one_bound (struct value *bounds, int i, int which)
1684 {
1685 char bound_name[20];
1686 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1687 which ? 'U' : 'L', i - 1);
1688 return value_struct_elt (&bounds, NULL, bound_name, NULL,
1689 _("Bad GNAT array descriptor bounds"));
1690 }
1691
1692 /* If BOUNDS is an array-bounds structure type, return the bit position
1693 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1694 bound, if WHICH is 1. The first bound is I=1. */
1695
1696 static int
1697 desc_bound_bitpos (struct type *type, int i, int which)
1698 {
1699 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1700 }
1701
1702 /* If BOUNDS is an array-bounds structure type, return the bit field size
1703 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1704 bound, if WHICH is 1. The first bound is I=1. */
1705
1706 static int
1707 desc_bound_bitsize (struct type *type, int i, int which)
1708 {
1709 type = desc_base_type (type);
1710
1711 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1712 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1713 else
1714 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1715 }
1716
1717 /* If TYPE is the type of an array-bounds structure, the type of its
1718 Ith bound (numbering from 1). Otherwise, NULL. */
1719
1720 static struct type *
1721 desc_index_type (struct type *type, int i)
1722 {
1723 type = desc_base_type (type);
1724
1725 if (type->code () == TYPE_CODE_STRUCT)
1726 {
1727 char bound_name[20];
1728 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1729 return lookup_struct_elt_type (type, bound_name, 1);
1730 }
1731 else
1732 return NULL;
1733 }
1734
1735 /* The number of index positions in the array-bounds type TYPE.
1736 Return 0 if TYPE is NULL. */
1737
1738 static int
1739 desc_arity (struct type *type)
1740 {
1741 type = desc_base_type (type);
1742
1743 if (type != NULL)
1744 return type->num_fields () / 2;
1745 return 0;
1746 }
1747
1748 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1749 an array descriptor type (representing an unconstrained array
1750 type). */
1751
1752 static int
1753 ada_is_direct_array_type (struct type *type)
1754 {
1755 if (type == NULL)
1756 return 0;
1757 type = ada_check_typedef (type);
1758 return (type->code () == TYPE_CODE_ARRAY
1759 || ada_is_array_descriptor_type (type));
1760 }
1761
1762 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1763 * to one. */
1764
1765 static int
1766 ada_is_array_type (struct type *type)
1767 {
1768 while (type != NULL
1769 && (type->code () == TYPE_CODE_PTR
1770 || type->code () == TYPE_CODE_REF))
1771 type = TYPE_TARGET_TYPE (type);
1772 return ada_is_direct_array_type (type);
1773 }
1774
1775 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1776
1777 int
1778 ada_is_simple_array_type (struct type *type)
1779 {
1780 if (type == NULL)
1781 return 0;
1782 type = ada_check_typedef (type);
1783 return (type->code () == TYPE_CODE_ARRAY
1784 || (type->code () == TYPE_CODE_PTR
1785 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1786 == TYPE_CODE_ARRAY)));
1787 }
1788
1789 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1790
1791 int
1792 ada_is_array_descriptor_type (struct type *type)
1793 {
1794 struct type *data_type = desc_data_target_type (type);
1795
1796 if (type == NULL)
1797 return 0;
1798 type = ada_check_typedef (type);
1799 return (data_type != NULL
1800 && data_type->code () == TYPE_CODE_ARRAY
1801 && desc_arity (desc_bounds_type (type)) > 0);
1802 }
1803
1804 /* Non-zero iff type is a partially mal-formed GNAT array
1805 descriptor. FIXME: This is to compensate for some problems with
1806 debugging output from GNAT. Re-examine periodically to see if it
1807 is still needed. */
1808
1809 int
1810 ada_is_bogus_array_descriptor (struct type *type)
1811 {
1812 return
1813 type != NULL
1814 && type->code () == TYPE_CODE_STRUCT
1815 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1816 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1817 && !ada_is_array_descriptor_type (type);
1818 }
1819
1820
1821 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1822 (fat pointer) returns the type of the array data described---specifically,
1823 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1824 in from the descriptor; otherwise, they are left unspecified. If
1825 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1826 returns NULL. The result is simply the type of ARR if ARR is not
1827 a descriptor. */
1828
1829 static struct type *
1830 ada_type_of_array (struct value *arr, int bounds)
1831 {
1832 if (ada_is_constrained_packed_array_type (value_type (arr)))
1833 return decode_constrained_packed_array_type (value_type (arr));
1834
1835 if (!ada_is_array_descriptor_type (value_type (arr)))
1836 return value_type (arr);
1837
1838 if (!bounds)
1839 {
1840 struct type *array_type =
1841 ada_check_typedef (desc_data_target_type (value_type (arr)));
1842
1843 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1844 TYPE_FIELD_BITSIZE (array_type, 0) =
1845 decode_packed_array_bitsize (value_type (arr));
1846
1847 return array_type;
1848 }
1849 else
1850 {
1851 struct type *elt_type;
1852 int arity;
1853 struct value *descriptor;
1854
1855 elt_type = ada_array_element_type (value_type (arr), -1);
1856 arity = ada_array_arity (value_type (arr));
1857
1858 if (elt_type == NULL || arity == 0)
1859 return ada_check_typedef (value_type (arr));
1860
1861 descriptor = desc_bounds (arr);
1862 if (value_as_long (descriptor) == 0)
1863 return NULL;
1864 while (arity > 0)
1865 {
1866 struct type *range_type = alloc_type_copy (value_type (arr));
1867 struct type *array_type = alloc_type_copy (value_type (arr));
1868 struct value *low = desc_one_bound (descriptor, arity, 0);
1869 struct value *high = desc_one_bound (descriptor, arity, 1);
1870
1871 arity -= 1;
1872 create_static_range_type (range_type, value_type (low),
1873 longest_to_int (value_as_long (low)),
1874 longest_to_int (value_as_long (high)));
1875 elt_type = create_array_type (array_type, elt_type, range_type);
1876
1877 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1878 {
1879 /* We need to store the element packed bitsize, as well as
1880 recompute the array size, because it was previously
1881 computed based on the unpacked element size. */
1882 LONGEST lo = value_as_long (low);
1883 LONGEST hi = value_as_long (high);
1884
1885 TYPE_FIELD_BITSIZE (elt_type, 0) =
1886 decode_packed_array_bitsize (value_type (arr));
1887 /* If the array has no element, then the size is already
1888 zero, and does not need to be recomputed. */
1889 if (lo < hi)
1890 {
1891 int array_bitsize =
1892 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1893
1894 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1895 }
1896 }
1897 }
1898
1899 return lookup_pointer_type (elt_type);
1900 }
1901 }
1902
1903 /* If ARR does not represent an array, returns ARR unchanged.
1904 Otherwise, returns either a standard GDB array with bounds set
1905 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1906 GDB array. Returns NULL if ARR is a null fat pointer. */
1907
1908 struct value *
1909 ada_coerce_to_simple_array_ptr (struct value *arr)
1910 {
1911 if (ada_is_array_descriptor_type (value_type (arr)))
1912 {
1913 struct type *arrType = ada_type_of_array (arr, 1);
1914
1915 if (arrType == NULL)
1916 return NULL;
1917 return value_cast (arrType, value_copy (desc_data (arr)));
1918 }
1919 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1920 return decode_constrained_packed_array (arr);
1921 else
1922 return arr;
1923 }
1924
1925 /* If ARR does not represent an array, returns ARR unchanged.
1926 Otherwise, returns a standard GDB array describing ARR (which may
1927 be ARR itself if it already is in the proper form). */
1928
1929 struct value *
1930 ada_coerce_to_simple_array (struct value *arr)
1931 {
1932 if (ada_is_array_descriptor_type (value_type (arr)))
1933 {
1934 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1935
1936 if (arrVal == NULL)
1937 error (_("Bounds unavailable for null array pointer."));
1938 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
1939 return value_ind (arrVal);
1940 }
1941 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1942 return decode_constrained_packed_array (arr);
1943 else
1944 return arr;
1945 }
1946
1947 /* If TYPE represents a GNAT array type, return it translated to an
1948 ordinary GDB array type (possibly with BITSIZE fields indicating
1949 packing). For other types, is the identity. */
1950
1951 struct type *
1952 ada_coerce_to_simple_array_type (struct type *type)
1953 {
1954 if (ada_is_constrained_packed_array_type (type))
1955 return decode_constrained_packed_array_type (type);
1956
1957 if (ada_is_array_descriptor_type (type))
1958 return ada_check_typedef (desc_data_target_type (type));
1959
1960 return type;
1961 }
1962
1963 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1964
1965 static int
1966 ada_is_gnat_encoded_packed_array_type (struct type *type)
1967 {
1968 if (type == NULL)
1969 return 0;
1970 type = desc_base_type (type);
1971 type = ada_check_typedef (type);
1972 return
1973 ada_type_name (type) != NULL
1974 && strstr (ada_type_name (type), "___XP") != NULL;
1975 }
1976
1977 /* Non-zero iff TYPE represents a standard GNAT constrained
1978 packed-array type. */
1979
1980 int
1981 ada_is_constrained_packed_array_type (struct type *type)
1982 {
1983 return ada_is_gnat_encoded_packed_array_type (type)
1984 && !ada_is_array_descriptor_type (type);
1985 }
1986
1987 /* Non-zero iff TYPE represents an array descriptor for a
1988 unconstrained packed-array type. */
1989
1990 static int
1991 ada_is_unconstrained_packed_array_type (struct type *type)
1992 {
1993 if (!ada_is_array_descriptor_type (type))
1994 return 0;
1995
1996 if (ada_is_gnat_encoded_packed_array_type (type))
1997 return 1;
1998
1999 /* If we saw GNAT encodings, then the above code is sufficient.
2000 However, with minimal encodings, we will just have a thick
2001 pointer instead. */
2002 if (is_thick_pntr (type))
2003 {
2004 type = desc_base_type (type);
2005 /* The structure's first field is a pointer to an array, so this
2006 fetches the array type. */
2007 type = TYPE_TARGET_TYPE (type->field (0).type ());
2008 /* Now we can see if the array elements are packed. */
2009 return TYPE_FIELD_BITSIZE (type, 0) > 0;
2010 }
2011
2012 return 0;
2013 }
2014
2015 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
2016 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
2017
2018 static bool
2019 ada_is_any_packed_array_type (struct type *type)
2020 {
2021 return (ada_is_constrained_packed_array_type (type)
2022 || (type->code () == TYPE_CODE_ARRAY
2023 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
2024 }
2025
2026 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2027 return the size of its elements in bits. */
2028
2029 static long
2030 decode_packed_array_bitsize (struct type *type)
2031 {
2032 const char *raw_name;
2033 const char *tail;
2034 long bits;
2035
2036 /* Access to arrays implemented as fat pointers are encoded as a typedef
2037 of the fat pointer type. We need the name of the fat pointer type
2038 to do the decoding, so strip the typedef layer. */
2039 if (type->code () == TYPE_CODE_TYPEDEF)
2040 type = ada_typedef_target_type (type);
2041
2042 raw_name = ada_type_name (ada_check_typedef (type));
2043 if (!raw_name)
2044 raw_name = ada_type_name (desc_base_type (type));
2045
2046 if (!raw_name)
2047 return 0;
2048
2049 tail = strstr (raw_name, "___XP");
2050 if (tail == nullptr)
2051 {
2052 gdb_assert (is_thick_pntr (type));
2053 /* The structure's first field is a pointer to an array, so this
2054 fetches the array type. */
2055 type = TYPE_TARGET_TYPE (type->field (0).type ());
2056 /* Now we can see if the array elements are packed. */
2057 return TYPE_FIELD_BITSIZE (type, 0);
2058 }
2059
2060 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2061 {
2062 lim_warning
2063 (_("could not understand bit size information on packed array"));
2064 return 0;
2065 }
2066
2067 return bits;
2068 }
2069
2070 /* Given that TYPE is a standard GDB array type with all bounds filled
2071 in, and that the element size of its ultimate scalar constituents
2072 (that is, either its elements, or, if it is an array of arrays, its
2073 elements' elements, etc.) is *ELT_BITS, return an identical type,
2074 but with the bit sizes of its elements (and those of any
2075 constituent arrays) recorded in the BITSIZE components of its
2076 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2077 in bits.
2078
2079 Note that, for arrays whose index type has an XA encoding where
2080 a bound references a record discriminant, getting that discriminant,
2081 and therefore the actual value of that bound, is not possible
2082 because none of the given parameters gives us access to the record.
2083 This function assumes that it is OK in the context where it is being
2084 used to return an array whose bounds are still dynamic and where
2085 the length is arbitrary. */
2086
2087 static struct type *
2088 constrained_packed_array_type (struct type *type, long *elt_bits)
2089 {
2090 struct type *new_elt_type;
2091 struct type *new_type;
2092 struct type *index_type_desc;
2093 struct type *index_type;
2094 LONGEST low_bound, high_bound;
2095
2096 type = ada_check_typedef (type);
2097 if (type->code () != TYPE_CODE_ARRAY)
2098 return type;
2099
2100 index_type_desc = ada_find_parallel_type (type, "___XA");
2101 if (index_type_desc)
2102 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2103 NULL);
2104 else
2105 index_type = type->index_type ();
2106
2107 new_type = alloc_type_copy (type);
2108 new_elt_type =
2109 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2110 elt_bits);
2111 create_array_type (new_type, new_elt_type, index_type);
2112 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2113 new_type->set_name (ada_type_name (type));
2114
2115 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2116 && is_dynamic_type (check_typedef (index_type)))
2117 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
2118 low_bound = high_bound = 0;
2119 if (high_bound < low_bound)
2120 *elt_bits = TYPE_LENGTH (new_type) = 0;
2121 else
2122 {
2123 *elt_bits *= (high_bound - low_bound + 1);
2124 TYPE_LENGTH (new_type) =
2125 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2126 }
2127
2128 new_type->set_is_fixed_instance (true);
2129 return new_type;
2130 }
2131
2132 /* The array type encoded by TYPE, where
2133 ada_is_constrained_packed_array_type (TYPE). */
2134
2135 static struct type *
2136 decode_constrained_packed_array_type (struct type *type)
2137 {
2138 const char *raw_name = ada_type_name (ada_check_typedef (type));
2139 char *name;
2140 const char *tail;
2141 struct type *shadow_type;
2142 long bits;
2143
2144 if (!raw_name)
2145 raw_name = ada_type_name (desc_base_type (type));
2146
2147 if (!raw_name)
2148 return NULL;
2149
2150 name = (char *) alloca (strlen (raw_name) + 1);
2151 tail = strstr (raw_name, "___XP");
2152 type = desc_base_type (type);
2153
2154 memcpy (name, raw_name, tail - raw_name);
2155 name[tail - raw_name] = '\000';
2156
2157 shadow_type = ada_find_parallel_type_with_name (type, name);
2158
2159 if (shadow_type == NULL)
2160 {
2161 lim_warning (_("could not find bounds information on packed array"));
2162 return NULL;
2163 }
2164 shadow_type = check_typedef (shadow_type);
2165
2166 if (shadow_type->code () != TYPE_CODE_ARRAY)
2167 {
2168 lim_warning (_("could not understand bounds "
2169 "information on packed array"));
2170 return NULL;
2171 }
2172
2173 bits = decode_packed_array_bitsize (type);
2174 return constrained_packed_array_type (shadow_type, &bits);
2175 }
2176
2177 /* Helper function for decode_constrained_packed_array. Set the field
2178 bitsize on a series of packed arrays. Returns the number of
2179 elements in TYPE. */
2180
2181 static LONGEST
2182 recursively_update_array_bitsize (struct type *type)
2183 {
2184 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2185
2186 LONGEST low, high;
2187 if (!get_discrete_bounds (type->index_type (), &low, &high)
2188 || low > high)
2189 return 0;
2190 LONGEST our_len = high - low + 1;
2191
2192 struct type *elt_type = TYPE_TARGET_TYPE (type);
2193 if (elt_type->code () == TYPE_CODE_ARRAY)
2194 {
2195 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2196 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2197 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2198
2199 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2200 / HOST_CHAR_BIT);
2201 }
2202
2203 return our_len;
2204 }
2205
2206 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2207 array, returns a simple array that denotes that array. Its type is a
2208 standard GDB array type except that the BITSIZEs of the array
2209 target types are set to the number of bits in each element, and the
2210 type length is set appropriately. */
2211
2212 static struct value *
2213 decode_constrained_packed_array (struct value *arr)
2214 {
2215 struct type *type;
2216
2217 /* If our value is a pointer, then dereference it. Likewise if
2218 the value is a reference. Make sure that this operation does not
2219 cause the target type to be fixed, as this would indirectly cause
2220 this array to be decoded. The rest of the routine assumes that
2221 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2222 and "value_ind" routines to perform the dereferencing, as opposed
2223 to using "ada_coerce_ref" or "ada_value_ind". */
2224 arr = coerce_ref (arr);
2225 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2226 arr = value_ind (arr);
2227
2228 type = decode_constrained_packed_array_type (value_type (arr));
2229 if (type == NULL)
2230 {
2231 error (_("can't unpack array"));
2232 return NULL;
2233 }
2234
2235 /* Decoding the packed array type could not correctly set the field
2236 bitsizes for any dimension except the innermost, because the
2237 bounds may be variable and were not passed to that function. So,
2238 we further resolve the array bounds here and then update the
2239 sizes. */
2240 const gdb_byte *valaddr = value_contents_for_printing (arr);
2241 CORE_ADDR address = value_address (arr);
2242 gdb::array_view<const gdb_byte> view
2243 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2244 type = resolve_dynamic_type (type, view, address);
2245 recursively_update_array_bitsize (type);
2246
2247 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2248 && ada_is_modular_type (value_type (arr)))
2249 {
2250 /* This is a (right-justified) modular type representing a packed
2251 array with no wrapper. In order to interpret the value through
2252 the (left-justified) packed array type we just built, we must
2253 first left-justify it. */
2254 int bit_size, bit_pos;
2255 ULONGEST mod;
2256
2257 mod = ada_modulus (value_type (arr)) - 1;
2258 bit_size = 0;
2259 while (mod > 0)
2260 {
2261 bit_size += 1;
2262 mod >>= 1;
2263 }
2264 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2265 arr = ada_value_primitive_packed_val (arr, NULL,
2266 bit_pos / HOST_CHAR_BIT,
2267 bit_pos % HOST_CHAR_BIT,
2268 bit_size,
2269 type);
2270 }
2271
2272 return coerce_unspec_val_to_type (arr, type);
2273 }
2274
2275
2276 /* The value of the element of packed array ARR at the ARITY indices
2277 given in IND. ARR must be a simple array. */
2278
2279 static struct value *
2280 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2281 {
2282 int i;
2283 int bits, elt_off, bit_off;
2284 long elt_total_bit_offset;
2285 struct type *elt_type;
2286 struct value *v;
2287
2288 bits = 0;
2289 elt_total_bit_offset = 0;
2290 elt_type = ada_check_typedef (value_type (arr));
2291 for (i = 0; i < arity; i += 1)
2292 {
2293 if (elt_type->code () != TYPE_CODE_ARRAY
2294 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2295 error
2296 (_("attempt to do packed indexing of "
2297 "something other than a packed array"));
2298 else
2299 {
2300 struct type *range_type = elt_type->index_type ();
2301 LONGEST lowerbound, upperbound;
2302 LONGEST idx;
2303
2304 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
2305 {
2306 lim_warning (_("don't know bounds of array"));
2307 lowerbound = upperbound = 0;
2308 }
2309
2310 idx = pos_atr (ind[i]);
2311 if (idx < lowerbound || idx > upperbound)
2312 lim_warning (_("packed array index %ld out of bounds"),
2313 (long) idx);
2314 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2315 elt_total_bit_offset += (idx - lowerbound) * bits;
2316 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2317 }
2318 }
2319 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2320 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2321
2322 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2323 bits, elt_type);
2324 return v;
2325 }
2326
2327 /* Non-zero iff TYPE includes negative integer values. */
2328
2329 static int
2330 has_negatives (struct type *type)
2331 {
2332 switch (type->code ())
2333 {
2334 default:
2335 return 0;
2336 case TYPE_CODE_INT:
2337 return !type->is_unsigned ();
2338 case TYPE_CODE_RANGE:
2339 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2340 }
2341 }
2342
2343 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2344 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2345 the unpacked buffer.
2346
2347 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2348 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2349
2350 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2351 zero otherwise.
2352
2353 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2354
2355 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2356
2357 static void
2358 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2359 gdb_byte *unpacked, int unpacked_len,
2360 int is_big_endian, int is_signed_type,
2361 int is_scalar)
2362 {
2363 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2364 int src_idx; /* Index into the source area */
2365 int src_bytes_left; /* Number of source bytes left to process. */
2366 int srcBitsLeft; /* Number of source bits left to move */
2367 int unusedLS; /* Number of bits in next significant
2368 byte of source that are unused */
2369
2370 int unpacked_idx; /* Index into the unpacked buffer */
2371 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2372
2373 unsigned long accum; /* Staging area for bits being transferred */
2374 int accumSize; /* Number of meaningful bits in accum */
2375 unsigned char sign;
2376
2377 /* Transmit bytes from least to most significant; delta is the direction
2378 the indices move. */
2379 int delta = is_big_endian ? -1 : 1;
2380
2381 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2382 bits from SRC. .*/
2383 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2384 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2385 bit_size, unpacked_len);
2386
2387 srcBitsLeft = bit_size;
2388 src_bytes_left = src_len;
2389 unpacked_bytes_left = unpacked_len;
2390 sign = 0;
2391
2392 if (is_big_endian)
2393 {
2394 src_idx = src_len - 1;
2395 if (is_signed_type
2396 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2397 sign = ~0;
2398
2399 unusedLS =
2400 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2401 % HOST_CHAR_BIT;
2402
2403 if (is_scalar)
2404 {
2405 accumSize = 0;
2406 unpacked_idx = unpacked_len - 1;
2407 }
2408 else
2409 {
2410 /* Non-scalar values must be aligned at a byte boundary... */
2411 accumSize =
2412 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2413 /* ... And are placed at the beginning (most-significant) bytes
2414 of the target. */
2415 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2416 unpacked_bytes_left = unpacked_idx + 1;
2417 }
2418 }
2419 else
2420 {
2421 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2422
2423 src_idx = unpacked_idx = 0;
2424 unusedLS = bit_offset;
2425 accumSize = 0;
2426
2427 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2428 sign = ~0;
2429 }
2430
2431 accum = 0;
2432 while (src_bytes_left > 0)
2433 {
2434 /* Mask for removing bits of the next source byte that are not
2435 part of the value. */
2436 unsigned int unusedMSMask =
2437 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2438 1;
2439 /* Sign-extend bits for this byte. */
2440 unsigned int signMask = sign & ~unusedMSMask;
2441
2442 accum |=
2443 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2444 accumSize += HOST_CHAR_BIT - unusedLS;
2445 if (accumSize >= HOST_CHAR_BIT)
2446 {
2447 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2448 accumSize -= HOST_CHAR_BIT;
2449 accum >>= HOST_CHAR_BIT;
2450 unpacked_bytes_left -= 1;
2451 unpacked_idx += delta;
2452 }
2453 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2454 unusedLS = 0;
2455 src_bytes_left -= 1;
2456 src_idx += delta;
2457 }
2458 while (unpacked_bytes_left > 0)
2459 {
2460 accum |= sign << accumSize;
2461 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2462 accumSize -= HOST_CHAR_BIT;
2463 if (accumSize < 0)
2464 accumSize = 0;
2465 accum >>= HOST_CHAR_BIT;
2466 unpacked_bytes_left -= 1;
2467 unpacked_idx += delta;
2468 }
2469 }
2470
2471 /* Create a new value of type TYPE from the contents of OBJ starting
2472 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2473 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2474 assigning through the result will set the field fetched from.
2475 VALADDR is ignored unless OBJ is NULL, in which case,
2476 VALADDR+OFFSET must address the start of storage containing the
2477 packed value. The value returned in this case is never an lval.
2478 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2479
2480 struct value *
2481 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2482 long offset, int bit_offset, int bit_size,
2483 struct type *type)
2484 {
2485 struct value *v;
2486 const gdb_byte *src; /* First byte containing data to unpack */
2487 gdb_byte *unpacked;
2488 const int is_scalar = is_scalar_type (type);
2489 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2490 gdb::byte_vector staging;
2491
2492 type = ada_check_typedef (type);
2493
2494 if (obj == NULL)
2495 src = valaddr + offset;
2496 else
2497 src = value_contents (obj) + offset;
2498
2499 if (is_dynamic_type (type))
2500 {
2501 /* The length of TYPE might by dynamic, so we need to resolve
2502 TYPE in order to know its actual size, which we then use
2503 to create the contents buffer of the value we return.
2504 The difficulty is that the data containing our object is
2505 packed, and therefore maybe not at a byte boundary. So, what
2506 we do, is unpack the data into a byte-aligned buffer, and then
2507 use that buffer as our object's value for resolving the type. */
2508 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2509 staging.resize (staging_len);
2510
2511 ada_unpack_from_contents (src, bit_offset, bit_size,
2512 staging.data (), staging.size (),
2513 is_big_endian, has_negatives (type),
2514 is_scalar);
2515 type = resolve_dynamic_type (type, staging, 0);
2516 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2517 {
2518 /* This happens when the length of the object is dynamic,
2519 and is actually smaller than the space reserved for it.
2520 For instance, in an array of variant records, the bit_size
2521 we're given is the array stride, which is constant and
2522 normally equal to the maximum size of its element.
2523 But, in reality, each element only actually spans a portion
2524 of that stride. */
2525 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2526 }
2527 }
2528
2529 if (obj == NULL)
2530 {
2531 v = allocate_value (type);
2532 src = valaddr + offset;
2533 }
2534 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2535 {
2536 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2537 gdb_byte *buf;
2538
2539 v = value_at (type, value_address (obj) + offset);
2540 buf = (gdb_byte *) alloca (src_len);
2541 read_memory (value_address (v), buf, src_len);
2542 src = buf;
2543 }
2544 else
2545 {
2546 v = allocate_value (type);
2547 src = value_contents (obj) + offset;
2548 }
2549
2550 if (obj != NULL)
2551 {
2552 long new_offset = offset;
2553
2554 set_value_component_location (v, obj);
2555 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2556 set_value_bitsize (v, bit_size);
2557 if (value_bitpos (v) >= HOST_CHAR_BIT)
2558 {
2559 ++new_offset;
2560 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2561 }
2562 set_value_offset (v, new_offset);
2563
2564 /* Also set the parent value. This is needed when trying to
2565 assign a new value (in inferior memory). */
2566 set_value_parent (v, obj);
2567 }
2568 else
2569 set_value_bitsize (v, bit_size);
2570 unpacked = value_contents_writeable (v);
2571
2572 if (bit_size == 0)
2573 {
2574 memset (unpacked, 0, TYPE_LENGTH (type));
2575 return v;
2576 }
2577
2578 if (staging.size () == TYPE_LENGTH (type))
2579 {
2580 /* Small short-cut: If we've unpacked the data into a buffer
2581 of the same size as TYPE's length, then we can reuse that,
2582 instead of doing the unpacking again. */
2583 memcpy (unpacked, staging.data (), staging.size ());
2584 }
2585 else
2586 ada_unpack_from_contents (src, bit_offset, bit_size,
2587 unpacked, TYPE_LENGTH (type),
2588 is_big_endian, has_negatives (type), is_scalar);
2589
2590 return v;
2591 }
2592
2593 /* Store the contents of FROMVAL into the location of TOVAL.
2594 Return a new value with the location of TOVAL and contents of
2595 FROMVAL. Handles assignment into packed fields that have
2596 floating-point or non-scalar types. */
2597
2598 static struct value *
2599 ada_value_assign (struct value *toval, struct value *fromval)
2600 {
2601 struct type *type = value_type (toval);
2602 int bits = value_bitsize (toval);
2603
2604 toval = ada_coerce_ref (toval);
2605 fromval = ada_coerce_ref (fromval);
2606
2607 if (ada_is_direct_array_type (value_type (toval)))
2608 toval = ada_coerce_to_simple_array (toval);
2609 if (ada_is_direct_array_type (value_type (fromval)))
2610 fromval = ada_coerce_to_simple_array (fromval);
2611
2612 if (!deprecated_value_modifiable (toval))
2613 error (_("Left operand of assignment is not a modifiable lvalue."));
2614
2615 if (VALUE_LVAL (toval) == lval_memory
2616 && bits > 0
2617 && (type->code () == TYPE_CODE_FLT
2618 || type->code () == TYPE_CODE_STRUCT))
2619 {
2620 int len = (value_bitpos (toval)
2621 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2622 int from_size;
2623 gdb_byte *buffer = (gdb_byte *) alloca (len);
2624 struct value *val;
2625 CORE_ADDR to_addr = value_address (toval);
2626
2627 if (type->code () == TYPE_CODE_FLT)
2628 fromval = value_cast (type, fromval);
2629
2630 read_memory (to_addr, buffer, len);
2631 from_size = value_bitsize (fromval);
2632 if (from_size == 0)
2633 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2634
2635 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2636 ULONGEST from_offset = 0;
2637 if (is_big_endian && is_scalar_type (value_type (fromval)))
2638 from_offset = from_size - bits;
2639 copy_bitwise (buffer, value_bitpos (toval),
2640 value_contents (fromval), from_offset,
2641 bits, is_big_endian);
2642 write_memory_with_notification (to_addr, buffer, len);
2643
2644 val = value_copy (toval);
2645 memcpy (value_contents_raw (val), value_contents (fromval),
2646 TYPE_LENGTH (type));
2647 deprecated_set_value_type (val, type);
2648
2649 return val;
2650 }
2651
2652 return value_assign (toval, fromval);
2653 }
2654
2655
2656 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2657 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2658 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2659 COMPONENT, and not the inferior's memory. The current contents
2660 of COMPONENT are ignored.
2661
2662 Although not part of the initial design, this function also works
2663 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2664 had a null address, and COMPONENT had an address which is equal to
2665 its offset inside CONTAINER. */
2666
2667 static void
2668 value_assign_to_component (struct value *container, struct value *component,
2669 struct value *val)
2670 {
2671 LONGEST offset_in_container =
2672 (LONGEST) (value_address (component) - value_address (container));
2673 int bit_offset_in_container =
2674 value_bitpos (component) - value_bitpos (container);
2675 int bits;
2676
2677 val = value_cast (value_type (component), val);
2678
2679 if (value_bitsize (component) == 0)
2680 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2681 else
2682 bits = value_bitsize (component);
2683
2684 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2685 {
2686 int src_offset;
2687
2688 if (is_scalar_type (check_typedef (value_type (component))))
2689 src_offset
2690 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2691 else
2692 src_offset = 0;
2693 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2694 value_bitpos (container) + bit_offset_in_container,
2695 value_contents (val), src_offset, bits, 1);
2696 }
2697 else
2698 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2699 value_bitpos (container) + bit_offset_in_container,
2700 value_contents (val), 0, bits, 0);
2701 }
2702
2703 /* Determine if TYPE is an access to an unconstrained array. */
2704
2705 bool
2706 ada_is_access_to_unconstrained_array (struct type *type)
2707 {
2708 return (type->code () == TYPE_CODE_TYPEDEF
2709 && is_thick_pntr (ada_typedef_target_type (type)));
2710 }
2711
2712 /* The value of the element of array ARR at the ARITY indices given in IND.
2713 ARR may be either a simple array, GNAT array descriptor, or pointer
2714 thereto. */
2715
2716 struct value *
2717 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2718 {
2719 int k;
2720 struct value *elt;
2721 struct type *elt_type;
2722
2723 elt = ada_coerce_to_simple_array (arr);
2724
2725 elt_type = ada_check_typedef (value_type (elt));
2726 if (elt_type->code () == TYPE_CODE_ARRAY
2727 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2728 return value_subscript_packed (elt, arity, ind);
2729
2730 for (k = 0; k < arity; k += 1)
2731 {
2732 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2733
2734 if (elt_type->code () != TYPE_CODE_ARRAY)
2735 error (_("too many subscripts (%d expected)"), k);
2736
2737 elt = value_subscript (elt, pos_atr (ind[k]));
2738
2739 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2740 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2741 {
2742 /* The element is a typedef to an unconstrained array,
2743 except that the value_subscript call stripped the
2744 typedef layer. The typedef layer is GNAT's way to
2745 specify that the element is, at the source level, an
2746 access to the unconstrained array, rather than the
2747 unconstrained array. So, we need to restore that
2748 typedef layer, which we can do by forcing the element's
2749 type back to its original type. Otherwise, the returned
2750 value is going to be printed as the array, rather
2751 than as an access. Another symptom of the same issue
2752 would be that an expression trying to dereference the
2753 element would also be improperly rejected. */
2754 deprecated_set_value_type (elt, saved_elt_type);
2755 }
2756
2757 elt_type = ada_check_typedef (value_type (elt));
2758 }
2759
2760 return elt;
2761 }
2762
2763 /* Assuming ARR is a pointer to a GDB array, the value of the element
2764 of *ARR at the ARITY indices given in IND.
2765 Does not read the entire array into memory.
2766
2767 Note: Unlike what one would expect, this function is used instead of
2768 ada_value_subscript for basically all non-packed array types. The reason
2769 for this is that a side effect of doing our own pointer arithmetics instead
2770 of relying on value_subscript is that there is no implicit typedef peeling.
2771 This is important for arrays of array accesses, where it allows us to
2772 preserve the fact that the array's element is an array access, where the
2773 access part os encoded in a typedef layer. */
2774
2775 static struct value *
2776 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2777 {
2778 int k;
2779 struct value *array_ind = ada_value_ind (arr);
2780 struct type *type
2781 = check_typedef (value_enclosing_type (array_ind));
2782
2783 if (type->code () == TYPE_CODE_ARRAY
2784 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2785 return value_subscript_packed (array_ind, arity, ind);
2786
2787 for (k = 0; k < arity; k += 1)
2788 {
2789 LONGEST lwb, upb;
2790
2791 if (type->code () != TYPE_CODE_ARRAY)
2792 error (_("too many subscripts (%d expected)"), k);
2793 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2794 value_copy (arr));
2795 get_discrete_bounds (type->index_type (), &lwb, &upb);
2796 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2797 type = TYPE_TARGET_TYPE (type);
2798 }
2799
2800 return value_ind (arr);
2801 }
2802
2803 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2804 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2805 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2806 this array is LOW, as per Ada rules. */
2807 static struct value *
2808 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2809 int low, int high)
2810 {
2811 struct type *type0 = ada_check_typedef (type);
2812 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2813 struct type *index_type
2814 = create_static_range_type (NULL, base_index_type, low, high);
2815 struct type *slice_type = create_array_type_with_stride
2816 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2817 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2818 TYPE_FIELD_BITSIZE (type0, 0));
2819 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2820 gdb::optional<LONGEST> base_low_pos, low_pos;
2821 CORE_ADDR base;
2822
2823 low_pos = discrete_position (base_index_type, low);
2824 base_low_pos = discrete_position (base_index_type, base_low);
2825
2826 if (!low_pos.has_value () || !base_low_pos.has_value ())
2827 {
2828 warning (_("unable to get positions in slice, use bounds instead"));
2829 low_pos = low;
2830 base_low_pos = base_low;
2831 }
2832
2833 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2834 if (stride == 0)
2835 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2836
2837 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
2838 return value_at_lazy (slice_type, base);
2839 }
2840
2841
2842 static struct value *
2843 ada_value_slice (struct value *array, int low, int high)
2844 {
2845 struct type *type = ada_check_typedef (value_type (array));
2846 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2847 struct type *index_type
2848 = create_static_range_type (NULL, type->index_type (), low, high);
2849 struct type *slice_type = create_array_type_with_stride
2850 (NULL, TYPE_TARGET_TYPE (type), index_type,
2851 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2852 TYPE_FIELD_BITSIZE (type, 0));
2853 gdb::optional<LONGEST> low_pos, high_pos;
2854
2855
2856 low_pos = discrete_position (base_index_type, low);
2857 high_pos = discrete_position (base_index_type, high);
2858
2859 if (!low_pos.has_value () || !high_pos.has_value ())
2860 {
2861 warning (_("unable to get positions in slice, use bounds instead"));
2862 low_pos = low;
2863 high_pos = high;
2864 }
2865
2866 return value_cast (slice_type,
2867 value_slice (array, low, *high_pos - *low_pos + 1));
2868 }
2869
2870 /* If type is a record type in the form of a standard GNAT array
2871 descriptor, returns the number of dimensions for type. If arr is a
2872 simple array, returns the number of "array of"s that prefix its
2873 type designation. Otherwise, returns 0. */
2874
2875 int
2876 ada_array_arity (struct type *type)
2877 {
2878 int arity;
2879
2880 if (type == NULL)
2881 return 0;
2882
2883 type = desc_base_type (type);
2884
2885 arity = 0;
2886 if (type->code () == TYPE_CODE_STRUCT)
2887 return desc_arity (desc_bounds_type (type));
2888 else
2889 while (type->code () == TYPE_CODE_ARRAY)
2890 {
2891 arity += 1;
2892 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2893 }
2894
2895 return arity;
2896 }
2897
2898 /* If TYPE is a record type in the form of a standard GNAT array
2899 descriptor or a simple array type, returns the element type for
2900 TYPE after indexing by NINDICES indices, or by all indices if
2901 NINDICES is -1. Otherwise, returns NULL. */
2902
2903 struct type *
2904 ada_array_element_type (struct type *type, int nindices)
2905 {
2906 type = desc_base_type (type);
2907
2908 if (type->code () == TYPE_CODE_STRUCT)
2909 {
2910 int k;
2911 struct type *p_array_type;
2912
2913 p_array_type = desc_data_target_type (type);
2914
2915 k = ada_array_arity (type);
2916 if (k == 0)
2917 return NULL;
2918
2919 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2920 if (nindices >= 0 && k > nindices)
2921 k = nindices;
2922 while (k > 0 && p_array_type != NULL)
2923 {
2924 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2925 k -= 1;
2926 }
2927 return p_array_type;
2928 }
2929 else if (type->code () == TYPE_CODE_ARRAY)
2930 {
2931 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2932 {
2933 type = TYPE_TARGET_TYPE (type);
2934 nindices -= 1;
2935 }
2936 return type;
2937 }
2938
2939 return NULL;
2940 }
2941
2942 /* The type of nth index in arrays of given type (n numbering from 1).
2943 Does not examine memory. Throws an error if N is invalid or TYPE
2944 is not an array type. NAME is the name of the Ada attribute being
2945 evaluated ('range, 'first, 'last, or 'length); it is used in building
2946 the error message. */
2947
2948 static struct type *
2949 ada_index_type (struct type *type, int n, const char *name)
2950 {
2951 struct type *result_type;
2952
2953 type = desc_base_type (type);
2954
2955 if (n < 0 || n > ada_array_arity (type))
2956 error (_("invalid dimension number to '%s"), name);
2957
2958 if (ada_is_simple_array_type (type))
2959 {
2960 int i;
2961
2962 for (i = 1; i < n; i += 1)
2963 type = TYPE_TARGET_TYPE (type);
2964 result_type = TYPE_TARGET_TYPE (type->index_type ());
2965 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2966 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2967 perhaps stabsread.c would make more sense. */
2968 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2969 result_type = NULL;
2970 }
2971 else
2972 {
2973 result_type = desc_index_type (desc_bounds_type (type), n);
2974 if (result_type == NULL)
2975 error (_("attempt to take bound of something that is not an array"));
2976 }
2977
2978 return result_type;
2979 }
2980
2981 /* Given that arr is an array type, returns the lower bound of the
2982 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2983 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2984 array-descriptor type. It works for other arrays with bounds supplied
2985 by run-time quantities other than discriminants. */
2986
2987 static LONGEST
2988 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2989 {
2990 struct type *type, *index_type_desc, *index_type;
2991 int i;
2992
2993 gdb_assert (which == 0 || which == 1);
2994
2995 if (ada_is_constrained_packed_array_type (arr_type))
2996 arr_type = decode_constrained_packed_array_type (arr_type);
2997
2998 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2999 return (LONGEST) - which;
3000
3001 if (arr_type->code () == TYPE_CODE_PTR)
3002 type = TYPE_TARGET_TYPE (arr_type);
3003 else
3004 type = arr_type;
3005
3006 if (type->is_fixed_instance ())
3007 {
3008 /* The array has already been fixed, so we do not need to
3009 check the parallel ___XA type again. That encoding has
3010 already been applied, so ignore it now. */
3011 index_type_desc = NULL;
3012 }
3013 else
3014 {
3015 index_type_desc = ada_find_parallel_type (type, "___XA");
3016 ada_fixup_array_indexes_type (index_type_desc);
3017 }
3018
3019 if (index_type_desc != NULL)
3020 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
3021 NULL);
3022 else
3023 {
3024 struct type *elt_type = check_typedef (type);
3025
3026 for (i = 1; i < n; i++)
3027 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3028
3029 index_type = elt_type->index_type ();
3030 }
3031
3032 return
3033 (LONGEST) (which == 0
3034 ? ada_discrete_type_low_bound (index_type)
3035 : ada_discrete_type_high_bound (index_type));
3036 }
3037
3038 /* Given that arr is an array value, returns the lower bound of the
3039 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3040 WHICH is 1. This routine will also work for arrays with bounds
3041 supplied by run-time quantities other than discriminants. */
3042
3043 static LONGEST
3044 ada_array_bound (struct value *arr, int n, int which)
3045 {
3046 struct type *arr_type;
3047
3048 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3049 arr = value_ind (arr);
3050 arr_type = value_enclosing_type (arr);
3051
3052 if (ada_is_constrained_packed_array_type (arr_type))
3053 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3054 else if (ada_is_simple_array_type (arr_type))
3055 return ada_array_bound_from_type (arr_type, n, which);
3056 else
3057 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3058 }
3059
3060 /* Given that arr is an array value, returns the length of the
3061 nth index. This routine will also work for arrays with bounds
3062 supplied by run-time quantities other than discriminants.
3063 Does not work for arrays indexed by enumeration types with representation
3064 clauses at the moment. */
3065
3066 static LONGEST
3067 ada_array_length (struct value *arr, int n)
3068 {
3069 struct type *arr_type, *index_type;
3070 int low, high;
3071
3072 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3073 arr = value_ind (arr);
3074 arr_type = value_enclosing_type (arr);
3075
3076 if (ada_is_constrained_packed_array_type (arr_type))
3077 return ada_array_length (decode_constrained_packed_array (arr), n);
3078
3079 if (ada_is_simple_array_type (arr_type))
3080 {
3081 low = ada_array_bound_from_type (arr_type, n, 0);
3082 high = ada_array_bound_from_type (arr_type, n, 1);
3083 }
3084 else
3085 {
3086 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3087 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3088 }
3089
3090 arr_type = check_typedef (arr_type);
3091 index_type = ada_index_type (arr_type, n, "length");
3092 if (index_type != NULL)
3093 {
3094 struct type *base_type;
3095 if (index_type->code () == TYPE_CODE_RANGE)
3096 base_type = TYPE_TARGET_TYPE (index_type);
3097 else
3098 base_type = index_type;
3099
3100 low = pos_atr (value_from_longest (base_type, low));
3101 high = pos_atr (value_from_longest (base_type, high));
3102 }
3103 return high - low + 1;
3104 }
3105
3106 /* An array whose type is that of ARR_TYPE (an array type), with
3107 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3108 less than LOW, then LOW-1 is used. */
3109
3110 static struct value *
3111 empty_array (struct type *arr_type, int low, int high)
3112 {
3113 struct type *arr_type0 = ada_check_typedef (arr_type);
3114 struct type *index_type
3115 = create_static_range_type
3116 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3117 high < low ? low - 1 : high);
3118 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3119
3120 return allocate_value (create_array_type (NULL, elt_type, index_type));
3121 }
3122 \f
3123
3124 /* Name resolution */
3125
3126 /* The "decoded" name for the user-definable Ada operator corresponding
3127 to OP. */
3128
3129 static const char *
3130 ada_decoded_op_name (enum exp_opcode op)
3131 {
3132 int i;
3133
3134 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3135 {
3136 if (ada_opname_table[i].op == op)
3137 return ada_opname_table[i].decoded;
3138 }
3139 error (_("Could not find operator name for opcode"));
3140 }
3141
3142 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3143 in a listing of choices during disambiguation (see sort_choices, below).
3144 The idea is that overloadings of a subprogram name from the
3145 same package should sort in their source order. We settle for ordering
3146 such symbols by their trailing number (__N or $N). */
3147
3148 static int
3149 encoded_ordered_before (const char *N0, const char *N1)
3150 {
3151 if (N1 == NULL)
3152 return 0;
3153 else if (N0 == NULL)
3154 return 1;
3155 else
3156 {
3157 int k0, k1;
3158
3159 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3160 ;
3161 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3162 ;
3163 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3164 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3165 {
3166 int n0, n1;
3167
3168 n0 = k0;
3169 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3170 n0 -= 1;
3171 n1 = k1;
3172 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3173 n1 -= 1;
3174 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3175 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3176 }
3177 return (strcmp (N0, N1) < 0);
3178 }
3179 }
3180
3181 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3182 encoded names. */
3183
3184 static void
3185 sort_choices (struct block_symbol syms[], int nsyms)
3186 {
3187 int i;
3188
3189 for (i = 1; i < nsyms; i += 1)
3190 {
3191 struct block_symbol sym = syms[i];
3192 int j;
3193
3194 for (j = i - 1; j >= 0; j -= 1)
3195 {
3196 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3197 sym.symbol->linkage_name ()))
3198 break;
3199 syms[j + 1] = syms[j];
3200 }
3201 syms[j + 1] = sym;
3202 }
3203 }
3204
3205 /* Whether GDB should display formals and return types for functions in the
3206 overloads selection menu. */
3207 static bool print_signatures = true;
3208
3209 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3210 all but functions, the signature is just the name of the symbol. For
3211 functions, this is the name of the function, the list of types for formals
3212 and the return type (if any). */
3213
3214 static void
3215 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3216 const struct type_print_options *flags)
3217 {
3218 struct type *type = SYMBOL_TYPE (sym);
3219
3220 fprintf_filtered (stream, "%s", sym->print_name ());
3221 if (!print_signatures
3222 || type == NULL
3223 || type->code () != TYPE_CODE_FUNC)
3224 return;
3225
3226 if (type->num_fields () > 0)
3227 {
3228 int i;
3229
3230 fprintf_filtered (stream, " (");
3231 for (i = 0; i < type->num_fields (); ++i)
3232 {
3233 if (i > 0)
3234 fprintf_filtered (stream, "; ");
3235 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3236 flags);
3237 }
3238 fprintf_filtered (stream, ")");
3239 }
3240 if (TYPE_TARGET_TYPE (type) != NULL
3241 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3242 {
3243 fprintf_filtered (stream, " return ");
3244 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3245 }
3246 }
3247
3248 /* Read and validate a set of numeric choices from the user in the
3249 range 0 .. N_CHOICES-1. Place the results in increasing
3250 order in CHOICES[0 .. N-1], and return N.
3251
3252 The user types choices as a sequence of numbers on one line
3253 separated by blanks, encoding them as follows:
3254
3255 + A choice of 0 means to cancel the selection, throwing an error.
3256 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3257 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3258
3259 The user is not allowed to choose more than MAX_RESULTS values.
3260
3261 ANNOTATION_SUFFIX, if present, is used to annotate the input
3262 prompts (for use with the -f switch). */
3263
3264 static int
3265 get_selections (int *choices, int n_choices, int max_results,
3266 int is_all_choice, const char *annotation_suffix)
3267 {
3268 const char *args;
3269 const char *prompt;
3270 int n_chosen;
3271 int first_choice = is_all_choice ? 2 : 1;
3272
3273 prompt = getenv ("PS2");
3274 if (prompt == NULL)
3275 prompt = "> ";
3276
3277 args = command_line_input (prompt, annotation_suffix);
3278
3279 if (args == NULL)
3280 error_no_arg (_("one or more choice numbers"));
3281
3282 n_chosen = 0;
3283
3284 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3285 order, as given in args. Choices are validated. */
3286 while (1)
3287 {
3288 char *args2;
3289 int choice, j;
3290
3291 args = skip_spaces (args);
3292 if (*args == '\0' && n_chosen == 0)
3293 error_no_arg (_("one or more choice numbers"));
3294 else if (*args == '\0')
3295 break;
3296
3297 choice = strtol (args, &args2, 10);
3298 if (args == args2 || choice < 0
3299 || choice > n_choices + first_choice - 1)
3300 error (_("Argument must be choice number"));
3301 args = args2;
3302
3303 if (choice == 0)
3304 error (_("cancelled"));
3305
3306 if (choice < first_choice)
3307 {
3308 n_chosen = n_choices;
3309 for (j = 0; j < n_choices; j += 1)
3310 choices[j] = j;
3311 break;
3312 }
3313 choice -= first_choice;
3314
3315 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3316 {
3317 }
3318
3319 if (j < 0 || choice != choices[j])
3320 {
3321 int k;
3322
3323 for (k = n_chosen - 1; k > j; k -= 1)
3324 choices[k + 1] = choices[k];
3325 choices[j + 1] = choice;
3326 n_chosen += 1;
3327 }
3328 }
3329
3330 if (n_chosen > max_results)
3331 error (_("Select no more than %d of the above"), max_results);
3332
3333 return n_chosen;
3334 }
3335
3336 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3337 by asking the user (if necessary), returning the number selected,
3338 and setting the first elements of SYMS items. Error if no symbols
3339 selected. */
3340
3341 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3342 to be re-integrated one of these days. */
3343
3344 static int
3345 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3346 {
3347 int i;
3348 int *chosen = XALLOCAVEC (int , nsyms);
3349 int n_chosen;
3350 int first_choice = (max_results == 1) ? 1 : 2;
3351 const char *select_mode = multiple_symbols_select_mode ();
3352
3353 if (max_results < 1)
3354 error (_("Request to select 0 symbols!"));
3355 if (nsyms <= 1)
3356 return nsyms;
3357
3358 if (select_mode == multiple_symbols_cancel)
3359 error (_("\
3360 canceled because the command is ambiguous\n\
3361 See set/show multiple-symbol."));
3362
3363 /* If select_mode is "all", then return all possible symbols.
3364 Only do that if more than one symbol can be selected, of course.
3365 Otherwise, display the menu as usual. */
3366 if (select_mode == multiple_symbols_all && max_results > 1)
3367 return nsyms;
3368
3369 printf_filtered (_("[0] cancel\n"));
3370 if (max_results > 1)
3371 printf_filtered (_("[1] all\n"));
3372
3373 sort_choices (syms, nsyms);
3374
3375 for (i = 0; i < nsyms; i += 1)
3376 {
3377 if (syms[i].symbol == NULL)
3378 continue;
3379
3380 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3381 {
3382 struct symtab_and_line sal =
3383 find_function_start_sal (syms[i].symbol, 1);
3384
3385 printf_filtered ("[%d] ", i + first_choice);
3386 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3387 &type_print_raw_options);
3388 if (sal.symtab == NULL)
3389 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3390 metadata_style.style ().ptr (), nullptr, sal.line);
3391 else
3392 printf_filtered
3393 (_(" at %ps:%d\n"),
3394 styled_string (file_name_style.style (),
3395 symtab_to_filename_for_display (sal.symtab)),
3396 sal.line);
3397 continue;
3398 }
3399 else
3400 {
3401 int is_enumeral =
3402 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3403 && SYMBOL_TYPE (syms[i].symbol) != NULL
3404 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3405 struct symtab *symtab = NULL;
3406
3407 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3408 symtab = symbol_symtab (syms[i].symbol);
3409
3410 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3411 {
3412 printf_filtered ("[%d] ", i + first_choice);
3413 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3414 &type_print_raw_options);
3415 printf_filtered (_(" at %s:%d\n"),
3416 symtab_to_filename_for_display (symtab),
3417 SYMBOL_LINE (syms[i].symbol));
3418 }
3419 else if (is_enumeral
3420 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3421 {
3422 printf_filtered (("[%d] "), i + first_choice);
3423 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3424 gdb_stdout, -1, 0, &type_print_raw_options);
3425 printf_filtered (_("'(%s) (enumeral)\n"),
3426 syms[i].symbol->print_name ());
3427 }
3428 else
3429 {
3430 printf_filtered ("[%d] ", i + first_choice);
3431 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3432 &type_print_raw_options);
3433
3434 if (symtab != NULL)
3435 printf_filtered (is_enumeral
3436 ? _(" in %s (enumeral)\n")
3437 : _(" at %s:?\n"),
3438 symtab_to_filename_for_display (symtab));
3439 else
3440 printf_filtered (is_enumeral
3441 ? _(" (enumeral)\n")
3442 : _(" at ?\n"));
3443 }
3444 }
3445 }
3446
3447 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3448 "overload-choice");
3449
3450 for (i = 0; i < n_chosen; i += 1)
3451 syms[i] = syms[chosen[i]];
3452
3453 return n_chosen;
3454 }
3455
3456 /* Resolve the operator of the subexpression beginning at
3457 position *POS of *EXPP. "Resolving" consists of replacing
3458 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3459 with their resolutions, replacing built-in operators with
3460 function calls to user-defined operators, where appropriate, and,
3461 when DEPROCEDURE_P is non-zero, converting function-valued variables
3462 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3463 are as in ada_resolve, above. */
3464
3465 static struct value *
3466 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3467 struct type *context_type, int parse_completion,
3468 innermost_block_tracker *tracker)
3469 {
3470 int pc = *pos;
3471 int i;
3472 struct expression *exp; /* Convenience: == *expp. */
3473 enum exp_opcode op = (*expp)->elts[pc].opcode;
3474 struct value **argvec; /* Vector of operand types (alloca'ed). */
3475 int nargs; /* Number of operands. */
3476 int oplen;
3477
3478 argvec = NULL;
3479 nargs = 0;
3480 exp = expp->get ();
3481
3482 /* Pass one: resolve operands, saving their types and updating *pos,
3483 if needed. */
3484 switch (op)
3485 {
3486 case OP_FUNCALL:
3487 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3488 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3489 *pos += 7;
3490 else
3491 {
3492 *pos += 3;
3493 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3494 }
3495 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3496 break;
3497
3498 case UNOP_ADDR:
3499 *pos += 1;
3500 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3501 break;
3502
3503 case UNOP_QUAL:
3504 *pos += 3;
3505 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3506 parse_completion, tracker);
3507 break;
3508
3509 case OP_ATR_MODULUS:
3510 case OP_ATR_SIZE:
3511 case OP_ATR_TAG:
3512 case OP_ATR_FIRST:
3513 case OP_ATR_LAST:
3514 case OP_ATR_LENGTH:
3515 case OP_ATR_POS:
3516 case OP_ATR_VAL:
3517 case OP_ATR_MIN:
3518 case OP_ATR_MAX:
3519 case TERNOP_IN_RANGE:
3520 case BINOP_IN_BOUNDS:
3521 case UNOP_IN_RANGE:
3522 case OP_AGGREGATE:
3523 case OP_OTHERS:
3524 case OP_CHOICES:
3525 case OP_POSITIONAL:
3526 case OP_DISCRETE_RANGE:
3527 case OP_NAME:
3528 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3529 *pos += oplen;
3530 break;
3531
3532 case BINOP_ASSIGN:
3533 {
3534 struct value *arg1;
3535
3536 *pos += 1;
3537 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3538 if (arg1 == NULL)
3539 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3540 else
3541 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3542 tracker);
3543 break;
3544 }
3545
3546 case UNOP_CAST:
3547 *pos += 3;
3548 nargs = 1;
3549 break;
3550
3551 case BINOP_ADD:
3552 case BINOP_SUB:
3553 case BINOP_MUL:
3554 case BINOP_DIV:
3555 case BINOP_REM:
3556 case BINOP_MOD:
3557 case BINOP_EXP:
3558 case BINOP_CONCAT:
3559 case BINOP_LOGICAL_AND:
3560 case BINOP_LOGICAL_OR:
3561 case BINOP_BITWISE_AND:
3562 case BINOP_BITWISE_IOR:
3563 case BINOP_BITWISE_XOR:
3564
3565 case BINOP_EQUAL:
3566 case BINOP_NOTEQUAL:
3567 case BINOP_LESS:
3568 case BINOP_GTR:
3569 case BINOP_LEQ:
3570 case BINOP_GEQ:
3571
3572 case BINOP_REPEAT:
3573 case BINOP_SUBSCRIPT:
3574 case BINOP_COMMA:
3575 *pos += 1;
3576 nargs = 2;
3577 break;
3578
3579 case UNOP_NEG:
3580 case UNOP_PLUS:
3581 case UNOP_LOGICAL_NOT:
3582 case UNOP_ABS:
3583 case UNOP_IND:
3584 *pos += 1;
3585 nargs = 1;
3586 break;
3587
3588 case OP_LONG:
3589 case OP_FLOAT:
3590 case OP_VAR_VALUE:
3591 case OP_VAR_MSYM_VALUE:
3592 *pos += 4;
3593 break;
3594
3595 case OP_TYPE:
3596 case OP_BOOL:
3597 case OP_LAST:
3598 case OP_INTERNALVAR:
3599 *pos += 3;
3600 break;
3601
3602 case UNOP_MEMVAL:
3603 *pos += 3;
3604 nargs = 1;
3605 break;
3606
3607 case OP_REGISTER:
3608 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3609 break;
3610
3611 case STRUCTOP_STRUCT:
3612 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3613 nargs = 1;
3614 break;
3615
3616 case TERNOP_SLICE:
3617 *pos += 1;
3618 nargs = 3;
3619 break;
3620
3621 case OP_STRING:
3622 break;
3623
3624 default:
3625 error (_("Unexpected operator during name resolution"));
3626 }
3627
3628 argvec = XALLOCAVEC (struct value *, nargs + 1);
3629 for (i = 0; i < nargs; i += 1)
3630 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3631 tracker);
3632 argvec[i] = NULL;
3633 exp = expp->get ();
3634
3635 /* Pass two: perform any resolution on principal operator. */
3636 switch (op)
3637 {
3638 default:
3639 break;
3640
3641 case OP_VAR_VALUE:
3642 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3643 {
3644 std::vector<struct block_symbol> candidates;
3645 int n_candidates;
3646
3647 n_candidates =
3648 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
3649 exp->elts[pc + 1].block, VAR_DOMAIN,
3650 &candidates);
3651
3652 if (n_candidates > 1)
3653 {
3654 /* Types tend to get re-introduced locally, so if there
3655 are any local symbols that are not types, first filter
3656 out all types. */
3657 int j;
3658 for (j = 0; j < n_candidates; j += 1)
3659 switch (SYMBOL_CLASS (candidates[j].symbol))
3660 {
3661 case LOC_REGISTER:
3662 case LOC_ARG:
3663 case LOC_REF_ARG:
3664 case LOC_REGPARM_ADDR:
3665 case LOC_LOCAL:
3666 case LOC_COMPUTED:
3667 goto FoundNonType;
3668 default:
3669 break;
3670 }
3671 FoundNonType:
3672 if (j < n_candidates)
3673 {
3674 j = 0;
3675 while (j < n_candidates)
3676 {
3677 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3678 {
3679 candidates[j] = candidates[n_candidates - 1];
3680 n_candidates -= 1;
3681 }
3682 else
3683 j += 1;
3684 }
3685 }
3686 }
3687
3688 if (n_candidates == 0)
3689 error (_("No definition found for %s"),
3690 exp->elts[pc + 2].symbol->print_name ());
3691 else if (n_candidates == 1)
3692 i = 0;
3693 else if (deprocedure_p
3694 && !is_nonfunction (candidates.data (), n_candidates))
3695 {
3696 i = ada_resolve_function
3697 (candidates.data (), n_candidates, NULL, 0,
3698 exp->elts[pc + 2].symbol->linkage_name (),
3699 context_type, parse_completion);
3700 if (i < 0)
3701 error (_("Could not find a match for %s"),
3702 exp->elts[pc + 2].symbol->print_name ());
3703 }
3704 else
3705 {
3706 printf_filtered (_("Multiple matches for %s\n"),
3707 exp->elts[pc + 2].symbol->print_name ());
3708 user_select_syms (candidates.data (), n_candidates, 1);
3709 i = 0;
3710 }
3711
3712 exp->elts[pc + 1].block = candidates[i].block;
3713 exp->elts[pc + 2].symbol = candidates[i].symbol;
3714 tracker->update (candidates[i]);
3715 }
3716
3717 if (deprocedure_p
3718 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
3719 == TYPE_CODE_FUNC))
3720 {
3721 replace_operator_with_call (expp, pc, 0, 4,
3722 exp->elts[pc + 2].symbol,
3723 exp->elts[pc + 1].block);
3724 exp = expp->get ();
3725 }
3726 break;
3727
3728 case OP_FUNCALL:
3729 {
3730 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3731 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3732 {
3733 std::vector<struct block_symbol> candidates;
3734 int n_candidates;
3735
3736 n_candidates =
3737 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
3738 exp->elts[pc + 4].block, VAR_DOMAIN,
3739 &candidates);
3740
3741 if (n_candidates == 1)
3742 i = 0;
3743 else
3744 {
3745 i = ada_resolve_function
3746 (candidates.data (), n_candidates,
3747 argvec, nargs,
3748 exp->elts[pc + 5].symbol->linkage_name (),
3749 context_type, parse_completion);
3750 if (i < 0)
3751 error (_("Could not find a match for %s"),
3752 exp->elts[pc + 5].symbol->print_name ());
3753 }
3754
3755 exp->elts[pc + 4].block = candidates[i].block;
3756 exp->elts[pc + 5].symbol = candidates[i].symbol;
3757 tracker->update (candidates[i]);
3758 }
3759 }
3760 break;
3761 case BINOP_ADD:
3762 case BINOP_SUB:
3763 case BINOP_MUL:
3764 case BINOP_DIV:
3765 case BINOP_REM:
3766 case BINOP_MOD:
3767 case BINOP_CONCAT:
3768 case BINOP_BITWISE_AND:
3769 case BINOP_BITWISE_IOR:
3770 case BINOP_BITWISE_XOR:
3771 case BINOP_EQUAL:
3772 case BINOP_NOTEQUAL:
3773 case BINOP_LESS:
3774 case BINOP_GTR:
3775 case BINOP_LEQ:
3776 case BINOP_GEQ:
3777 case BINOP_EXP:
3778 case UNOP_NEG:
3779 case UNOP_PLUS:
3780 case UNOP_LOGICAL_NOT:
3781 case UNOP_ABS:
3782 if (possible_user_operator_p (op, argvec))
3783 {
3784 std::vector<struct block_symbol> candidates;
3785 int n_candidates;
3786
3787 n_candidates =
3788 ada_lookup_symbol_list (ada_decoded_op_name (op),
3789 NULL, VAR_DOMAIN,
3790 &candidates);
3791
3792 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3793 nargs, ada_decoded_op_name (op), NULL,
3794 parse_completion);
3795 if (i < 0)
3796 break;
3797
3798 replace_operator_with_call (expp, pc, nargs, 1,
3799 candidates[i].symbol,
3800 candidates[i].block);
3801 exp = expp->get ();
3802 }
3803 break;
3804
3805 case OP_TYPE:
3806 case OP_REGISTER:
3807 return NULL;
3808 }
3809
3810 *pos = pc;
3811 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3812 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3813 exp->elts[pc + 1].objfile,
3814 exp->elts[pc + 2].msymbol);
3815 else
3816 return evaluate_subexp_type (exp, pos);
3817 }
3818
3819 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3820 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3821 a non-pointer. */
3822 /* The term "match" here is rather loose. The match is heuristic and
3823 liberal. */
3824
3825 static int
3826 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3827 {
3828 ftype = ada_check_typedef (ftype);
3829 atype = ada_check_typedef (atype);
3830
3831 if (ftype->code () == TYPE_CODE_REF)
3832 ftype = TYPE_TARGET_TYPE (ftype);
3833 if (atype->code () == TYPE_CODE_REF)
3834 atype = TYPE_TARGET_TYPE (atype);
3835
3836 switch (ftype->code ())
3837 {
3838 default:
3839 return ftype->code () == atype->code ();
3840 case TYPE_CODE_PTR:
3841 if (atype->code () == TYPE_CODE_PTR)
3842 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3843 TYPE_TARGET_TYPE (atype), 0);
3844 else
3845 return (may_deref
3846 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3847 case TYPE_CODE_INT:
3848 case TYPE_CODE_ENUM:
3849 case TYPE_CODE_RANGE:
3850 switch (atype->code ())
3851 {
3852 case TYPE_CODE_INT:
3853 case TYPE_CODE_ENUM:
3854 case TYPE_CODE_RANGE:
3855 return 1;
3856 default:
3857 return 0;
3858 }
3859
3860 case TYPE_CODE_ARRAY:
3861 return (atype->code () == TYPE_CODE_ARRAY
3862 || ada_is_array_descriptor_type (atype));
3863
3864 case TYPE_CODE_STRUCT:
3865 if (ada_is_array_descriptor_type (ftype))
3866 return (atype->code () == TYPE_CODE_ARRAY
3867 || ada_is_array_descriptor_type (atype));
3868 else
3869 return (atype->code () == TYPE_CODE_STRUCT
3870 && !ada_is_array_descriptor_type (atype));
3871
3872 case TYPE_CODE_UNION:
3873 case TYPE_CODE_FLT:
3874 return (atype->code () == ftype->code ());
3875 }
3876 }
3877
3878 /* Return non-zero if the formals of FUNC "sufficiently match" the
3879 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3880 may also be an enumeral, in which case it is treated as a 0-
3881 argument function. */
3882
3883 static int
3884 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3885 {
3886 int i;
3887 struct type *func_type = SYMBOL_TYPE (func);
3888
3889 if (SYMBOL_CLASS (func) == LOC_CONST
3890 && func_type->code () == TYPE_CODE_ENUM)
3891 return (n_actuals == 0);
3892 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3893 return 0;
3894
3895 if (func_type->num_fields () != n_actuals)
3896 return 0;
3897
3898 for (i = 0; i < n_actuals; i += 1)
3899 {
3900 if (actuals[i] == NULL)
3901 return 0;
3902 else
3903 {
3904 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3905 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3906
3907 if (!ada_type_match (ftype, atype, 1))
3908 return 0;
3909 }
3910 }
3911 return 1;
3912 }
3913
3914 /* False iff function type FUNC_TYPE definitely does not produce a value
3915 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3916 FUNC_TYPE is not a valid function type with a non-null return type
3917 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3918
3919 static int
3920 return_match (struct type *func_type, struct type *context_type)
3921 {
3922 struct type *return_type;
3923
3924 if (func_type == NULL)
3925 return 1;
3926
3927 if (func_type->code () == TYPE_CODE_FUNC)
3928 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3929 else
3930 return_type = get_base_type (func_type);
3931 if (return_type == NULL)
3932 return 1;
3933
3934 context_type = get_base_type (context_type);
3935
3936 if (return_type->code () == TYPE_CODE_ENUM)
3937 return context_type == NULL || return_type == context_type;
3938 else if (context_type == NULL)
3939 return return_type->code () != TYPE_CODE_VOID;
3940 else
3941 return return_type->code () == context_type->code ();
3942 }
3943
3944
3945 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3946 function (if any) that matches the types of the NARGS arguments in
3947 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3948 that returns that type, then eliminate matches that don't. If
3949 CONTEXT_TYPE is void and there is at least one match that does not
3950 return void, eliminate all matches that do.
3951
3952 Asks the user if there is more than one match remaining. Returns -1
3953 if there is no such symbol or none is selected. NAME is used
3954 solely for messages. May re-arrange and modify SYMS in
3955 the process; the index returned is for the modified vector. */
3956
3957 static int
3958 ada_resolve_function (struct block_symbol syms[],
3959 int nsyms, struct value **args, int nargs,
3960 const char *name, struct type *context_type,
3961 int parse_completion)
3962 {
3963 int fallback;
3964 int k;
3965 int m; /* Number of hits */
3966
3967 m = 0;
3968 /* In the first pass of the loop, we only accept functions matching
3969 context_type. If none are found, we add a second pass of the loop
3970 where every function is accepted. */
3971 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3972 {
3973 for (k = 0; k < nsyms; k += 1)
3974 {
3975 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3976
3977 if (ada_args_match (syms[k].symbol, args, nargs)
3978 && (fallback || return_match (type, context_type)))
3979 {
3980 syms[m] = syms[k];
3981 m += 1;
3982 }
3983 }
3984 }
3985
3986 /* If we got multiple matches, ask the user which one to use. Don't do this
3987 interactive thing during completion, though, as the purpose of the
3988 completion is providing a list of all possible matches. Prompting the
3989 user to filter it down would be completely unexpected in this case. */
3990 if (m == 0)
3991 return -1;
3992 else if (m > 1 && !parse_completion)
3993 {
3994 printf_filtered (_("Multiple matches for %s\n"), name);
3995 user_select_syms (syms, m, 1);
3996 return 0;
3997 }
3998 return 0;
3999 }
4000
4001 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4002 on the function identified by SYM and BLOCK, and taking NARGS
4003 arguments. Update *EXPP as needed to hold more space. */
4004
4005 static void
4006 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4007 int oplen, struct symbol *sym,
4008 const struct block *block)
4009 {
4010 /* We want to add 6 more elements (3 for funcall, 4 for function
4011 symbol, -OPLEN for operator being replaced) to the
4012 expression. */
4013 struct expression *exp = expp->get ();
4014 int save_nelts = exp->nelts;
4015 int extra_elts = 7 - oplen;
4016 exp->nelts += extra_elts;
4017
4018 if (extra_elts > 0)
4019 exp->resize (exp->nelts);
4020 memmove (exp->elts + pc + 7, exp->elts + pc + oplen,
4021 EXP_ELEM_TO_BYTES (save_nelts - pc - oplen));
4022 if (extra_elts < 0)
4023 exp->resize (exp->nelts);
4024
4025 exp->elts[pc].opcode = exp->elts[pc + 2].opcode = OP_FUNCALL;
4026 exp->elts[pc + 1].longconst = (LONGEST) nargs;
4027
4028 exp->elts[pc + 3].opcode = exp->elts[pc + 6].opcode = OP_VAR_VALUE;
4029 exp->elts[pc + 4].block = block;
4030 exp->elts[pc + 5].symbol = sym;
4031 }
4032
4033 /* Type-class predicates */
4034
4035 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4036 or FLOAT). */
4037
4038 static int
4039 numeric_type_p (struct type *type)
4040 {
4041 if (type == NULL)
4042 return 0;
4043 else
4044 {
4045 switch (type->code ())
4046 {
4047 case TYPE_CODE_INT:
4048 case TYPE_CODE_FLT:
4049 return 1;
4050 case TYPE_CODE_RANGE:
4051 return (type == TYPE_TARGET_TYPE (type)
4052 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4053 default:
4054 return 0;
4055 }
4056 }
4057 }
4058
4059 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4060
4061 static int
4062 integer_type_p (struct type *type)
4063 {
4064 if (type == NULL)
4065 return 0;
4066 else
4067 {
4068 switch (type->code ())
4069 {
4070 case TYPE_CODE_INT:
4071 return 1;
4072 case TYPE_CODE_RANGE:
4073 return (type == TYPE_TARGET_TYPE (type)
4074 || integer_type_p (TYPE_TARGET_TYPE (type)));
4075 default:
4076 return 0;
4077 }
4078 }
4079 }
4080
4081 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4082
4083 static int
4084 scalar_type_p (struct type *type)
4085 {
4086 if (type == NULL)
4087 return 0;
4088 else
4089 {
4090 switch (type->code ())
4091 {
4092 case TYPE_CODE_INT:
4093 case TYPE_CODE_RANGE:
4094 case TYPE_CODE_ENUM:
4095 case TYPE_CODE_FLT:
4096 return 1;
4097 default:
4098 return 0;
4099 }
4100 }
4101 }
4102
4103 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4104
4105 static int
4106 discrete_type_p (struct type *type)
4107 {
4108 if (type == NULL)
4109 return 0;
4110 else
4111 {
4112 switch (type->code ())
4113 {
4114 case TYPE_CODE_INT:
4115 case TYPE_CODE_RANGE:
4116 case TYPE_CODE_ENUM:
4117 case TYPE_CODE_BOOL:
4118 return 1;
4119 default:
4120 return 0;
4121 }
4122 }
4123 }
4124
4125 /* Returns non-zero if OP with operands in the vector ARGS could be
4126 a user-defined function. Errs on the side of pre-defined operators
4127 (i.e., result 0). */
4128
4129 static int
4130 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4131 {
4132 struct type *type0 =
4133 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4134 struct type *type1 =
4135 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4136
4137 if (type0 == NULL)
4138 return 0;
4139
4140 switch (op)
4141 {
4142 default:
4143 return 0;
4144
4145 case BINOP_ADD:
4146 case BINOP_SUB:
4147 case BINOP_MUL:
4148 case BINOP_DIV:
4149 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4150
4151 case BINOP_REM:
4152 case BINOP_MOD:
4153 case BINOP_BITWISE_AND:
4154 case BINOP_BITWISE_IOR:
4155 case BINOP_BITWISE_XOR:
4156 return (!(integer_type_p (type0) && integer_type_p (type1)));
4157
4158 case BINOP_EQUAL:
4159 case BINOP_NOTEQUAL:
4160 case BINOP_LESS:
4161 case BINOP_GTR:
4162 case BINOP_LEQ:
4163 case BINOP_GEQ:
4164 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4165
4166 case BINOP_CONCAT:
4167 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4168
4169 case BINOP_EXP:
4170 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4171
4172 case UNOP_NEG:
4173 case UNOP_PLUS:
4174 case UNOP_LOGICAL_NOT:
4175 case UNOP_ABS:
4176 return (!numeric_type_p (type0));
4177
4178 }
4179 }
4180 \f
4181 /* Renaming */
4182
4183 /* NOTES:
4184
4185 1. In the following, we assume that a renaming type's name may
4186 have an ___XD suffix. It would be nice if this went away at some
4187 point.
4188 2. We handle both the (old) purely type-based representation of
4189 renamings and the (new) variable-based encoding. At some point,
4190 it is devoutly to be hoped that the former goes away
4191 (FIXME: hilfinger-2007-07-09).
4192 3. Subprogram renamings are not implemented, although the XRS
4193 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4194
4195 /* If SYM encodes a renaming,
4196
4197 <renaming> renames <renamed entity>,
4198
4199 sets *LEN to the length of the renamed entity's name,
4200 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4201 the string describing the subcomponent selected from the renamed
4202 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4203 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4204 are undefined). Otherwise, returns a value indicating the category
4205 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4206 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4207 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4208 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4209 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4210 may be NULL, in which case they are not assigned.
4211
4212 [Currently, however, GCC does not generate subprogram renamings.] */
4213
4214 enum ada_renaming_category
4215 ada_parse_renaming (struct symbol *sym,
4216 const char **renamed_entity, int *len,
4217 const char **renaming_expr)
4218 {
4219 enum ada_renaming_category kind;
4220 const char *info;
4221 const char *suffix;
4222
4223 if (sym == NULL)
4224 return ADA_NOT_RENAMING;
4225 switch (SYMBOL_CLASS (sym))
4226 {
4227 default:
4228 return ADA_NOT_RENAMING;
4229 case LOC_LOCAL:
4230 case LOC_STATIC:
4231 case LOC_COMPUTED:
4232 case LOC_OPTIMIZED_OUT:
4233 info = strstr (sym->linkage_name (), "___XR");
4234 if (info == NULL)
4235 return ADA_NOT_RENAMING;
4236 switch (info[5])
4237 {
4238 case '_':
4239 kind = ADA_OBJECT_RENAMING;
4240 info += 6;
4241 break;
4242 case 'E':
4243 kind = ADA_EXCEPTION_RENAMING;
4244 info += 7;
4245 break;
4246 case 'P':
4247 kind = ADA_PACKAGE_RENAMING;
4248 info += 7;
4249 break;
4250 case 'S':
4251 kind = ADA_SUBPROGRAM_RENAMING;
4252 info += 7;
4253 break;
4254 default:
4255 return ADA_NOT_RENAMING;
4256 }
4257 }
4258
4259 if (renamed_entity != NULL)
4260 *renamed_entity = info;
4261 suffix = strstr (info, "___XE");
4262 if (suffix == NULL || suffix == info)
4263 return ADA_NOT_RENAMING;
4264 if (len != NULL)
4265 *len = strlen (info) - strlen (suffix);
4266 suffix += 5;
4267 if (renaming_expr != NULL)
4268 *renaming_expr = suffix;
4269 return kind;
4270 }
4271
4272 /* Compute the value of the given RENAMING_SYM, which is expected to
4273 be a symbol encoding a renaming expression. BLOCK is the block
4274 used to evaluate the renaming. */
4275
4276 static struct value *
4277 ada_read_renaming_var_value (struct symbol *renaming_sym,
4278 const struct block *block)
4279 {
4280 const char *sym_name;
4281
4282 sym_name = renaming_sym->linkage_name ();
4283 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4284 return evaluate_expression (expr.get ());
4285 }
4286 \f
4287
4288 /* Evaluation: Function Calls */
4289
4290 /* Return an lvalue containing the value VAL. This is the identity on
4291 lvalues, and otherwise has the side-effect of allocating memory
4292 in the inferior where a copy of the value contents is copied. */
4293
4294 static struct value *
4295 ensure_lval (struct value *val)
4296 {
4297 if (VALUE_LVAL (val) == not_lval
4298 || VALUE_LVAL (val) == lval_internalvar)
4299 {
4300 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4301 const CORE_ADDR addr =
4302 value_as_long (value_allocate_space_in_inferior (len));
4303
4304 VALUE_LVAL (val) = lval_memory;
4305 set_value_address (val, addr);
4306 write_memory (addr, value_contents (val), len);
4307 }
4308
4309 return val;
4310 }
4311
4312 /* Given ARG, a value of type (pointer or reference to a)*
4313 structure/union, extract the component named NAME from the ultimate
4314 target structure/union and return it as a value with its
4315 appropriate type.
4316
4317 The routine searches for NAME among all members of the structure itself
4318 and (recursively) among all members of any wrapper members
4319 (e.g., '_parent').
4320
4321 If NO_ERR, then simply return NULL in case of error, rather than
4322 calling error. */
4323
4324 static struct value *
4325 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4326 {
4327 struct type *t, *t1;
4328 struct value *v;
4329 int check_tag;
4330
4331 v = NULL;
4332 t1 = t = ada_check_typedef (value_type (arg));
4333 if (t->code () == TYPE_CODE_REF)
4334 {
4335 t1 = TYPE_TARGET_TYPE (t);
4336 if (t1 == NULL)
4337 goto BadValue;
4338 t1 = ada_check_typedef (t1);
4339 if (t1->code () == TYPE_CODE_PTR)
4340 {
4341 arg = coerce_ref (arg);
4342 t = t1;
4343 }
4344 }
4345
4346 while (t->code () == TYPE_CODE_PTR)
4347 {
4348 t1 = TYPE_TARGET_TYPE (t);
4349 if (t1 == NULL)
4350 goto BadValue;
4351 t1 = ada_check_typedef (t1);
4352 if (t1->code () == TYPE_CODE_PTR)
4353 {
4354 arg = value_ind (arg);
4355 t = t1;
4356 }
4357 else
4358 break;
4359 }
4360
4361 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4362 goto BadValue;
4363
4364 if (t1 == t)
4365 v = ada_search_struct_field (name, arg, 0, t);
4366 else
4367 {
4368 int bit_offset, bit_size, byte_offset;
4369 struct type *field_type;
4370 CORE_ADDR address;
4371
4372 if (t->code () == TYPE_CODE_PTR)
4373 address = value_address (ada_value_ind (arg));
4374 else
4375 address = value_address (ada_coerce_ref (arg));
4376
4377 /* Check to see if this is a tagged type. We also need to handle
4378 the case where the type is a reference to a tagged type, but
4379 we have to be careful to exclude pointers to tagged types.
4380 The latter should be shown as usual (as a pointer), whereas
4381 a reference should mostly be transparent to the user. */
4382
4383 if (ada_is_tagged_type (t1, 0)
4384 || (t1->code () == TYPE_CODE_REF
4385 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4386 {
4387 /* We first try to find the searched field in the current type.
4388 If not found then let's look in the fixed type. */
4389
4390 if (!find_struct_field (name, t1, 0,
4391 &field_type, &byte_offset, &bit_offset,
4392 &bit_size, NULL))
4393 check_tag = 1;
4394 else
4395 check_tag = 0;
4396 }
4397 else
4398 check_tag = 0;
4399
4400 /* Convert to fixed type in all cases, so that we have proper
4401 offsets to each field in unconstrained record types. */
4402 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4403 address, NULL, check_tag);
4404
4405 /* Resolve the dynamic type as well. */
4406 arg = value_from_contents_and_address (t1, nullptr, address);
4407 t1 = value_type (arg);
4408
4409 if (find_struct_field (name, t1, 0,
4410 &field_type, &byte_offset, &bit_offset,
4411 &bit_size, NULL))
4412 {
4413 if (bit_size != 0)
4414 {
4415 if (t->code () == TYPE_CODE_REF)
4416 arg = ada_coerce_ref (arg);
4417 else
4418 arg = ada_value_ind (arg);
4419 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4420 bit_offset, bit_size,
4421 field_type);
4422 }
4423 else
4424 v = value_at_lazy (field_type, address + byte_offset);
4425 }
4426 }
4427
4428 if (v != NULL || no_err)
4429 return v;
4430 else
4431 error (_("There is no member named %s."), name);
4432
4433 BadValue:
4434 if (no_err)
4435 return NULL;
4436 else
4437 error (_("Attempt to extract a component of "
4438 "a value that is not a record."));
4439 }
4440
4441 /* Return the value ACTUAL, converted to be an appropriate value for a
4442 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4443 allocating any necessary descriptors (fat pointers), or copies of
4444 values not residing in memory, updating it as needed. */
4445
4446 struct value *
4447 ada_convert_actual (struct value *actual, struct type *formal_type0)
4448 {
4449 struct type *actual_type = ada_check_typedef (value_type (actual));
4450 struct type *formal_type = ada_check_typedef (formal_type0);
4451 struct type *formal_target =
4452 formal_type->code () == TYPE_CODE_PTR
4453 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4454 struct type *actual_target =
4455 actual_type->code () == TYPE_CODE_PTR
4456 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4457
4458 if (ada_is_array_descriptor_type (formal_target)
4459 && actual_target->code () == TYPE_CODE_ARRAY)
4460 return make_array_descriptor (formal_type, actual);
4461 else if (formal_type->code () == TYPE_CODE_PTR
4462 || formal_type->code () == TYPE_CODE_REF)
4463 {
4464 struct value *result;
4465
4466 if (formal_target->code () == TYPE_CODE_ARRAY
4467 && ada_is_array_descriptor_type (actual_target))
4468 result = desc_data (actual);
4469 else if (formal_type->code () != TYPE_CODE_PTR)
4470 {
4471 if (VALUE_LVAL (actual) != lval_memory)
4472 {
4473 struct value *val;
4474
4475 actual_type = ada_check_typedef (value_type (actual));
4476 val = allocate_value (actual_type);
4477 memcpy ((char *) value_contents_raw (val),
4478 (char *) value_contents (actual),
4479 TYPE_LENGTH (actual_type));
4480 actual = ensure_lval (val);
4481 }
4482 result = value_addr (actual);
4483 }
4484 else
4485 return actual;
4486 return value_cast_pointers (formal_type, result, 0);
4487 }
4488 else if (actual_type->code () == TYPE_CODE_PTR)
4489 return ada_value_ind (actual);
4490 else if (ada_is_aligner_type (formal_type))
4491 {
4492 /* We need to turn this parameter into an aligner type
4493 as well. */
4494 struct value *aligner = allocate_value (formal_type);
4495 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4496
4497 value_assign_to_component (aligner, component, actual);
4498 return aligner;
4499 }
4500
4501 return actual;
4502 }
4503
4504 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4505 type TYPE. This is usually an inefficient no-op except on some targets
4506 (such as AVR) where the representation of a pointer and an address
4507 differs. */
4508
4509 static CORE_ADDR
4510 value_pointer (struct value *value, struct type *type)
4511 {
4512 struct gdbarch *gdbarch = get_type_arch (type);
4513 unsigned len = TYPE_LENGTH (type);
4514 gdb_byte *buf = (gdb_byte *) alloca (len);
4515 CORE_ADDR addr;
4516
4517 addr = value_address (value);
4518 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4519 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4520 return addr;
4521 }
4522
4523
4524 /* Push a descriptor of type TYPE for array value ARR on the stack at
4525 *SP, updating *SP to reflect the new descriptor. Return either
4526 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4527 to-descriptor type rather than a descriptor type), a struct value *
4528 representing a pointer to this descriptor. */
4529
4530 static struct value *
4531 make_array_descriptor (struct type *type, struct value *arr)
4532 {
4533 struct type *bounds_type = desc_bounds_type (type);
4534 struct type *desc_type = desc_base_type (type);
4535 struct value *descriptor = allocate_value (desc_type);
4536 struct value *bounds = allocate_value (bounds_type);
4537 int i;
4538
4539 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4540 i > 0; i -= 1)
4541 {
4542 modify_field (value_type (bounds), value_contents_writeable (bounds),
4543 ada_array_bound (arr, i, 0),
4544 desc_bound_bitpos (bounds_type, i, 0),
4545 desc_bound_bitsize (bounds_type, i, 0));
4546 modify_field (value_type (bounds), value_contents_writeable (bounds),
4547 ada_array_bound (arr, i, 1),
4548 desc_bound_bitpos (bounds_type, i, 1),
4549 desc_bound_bitsize (bounds_type, i, 1));
4550 }
4551
4552 bounds = ensure_lval (bounds);
4553
4554 modify_field (value_type (descriptor),
4555 value_contents_writeable (descriptor),
4556 value_pointer (ensure_lval (arr),
4557 desc_type->field (0).type ()),
4558 fat_pntr_data_bitpos (desc_type),
4559 fat_pntr_data_bitsize (desc_type));
4560
4561 modify_field (value_type (descriptor),
4562 value_contents_writeable (descriptor),
4563 value_pointer (bounds,
4564 desc_type->field (1).type ()),
4565 fat_pntr_bounds_bitpos (desc_type),
4566 fat_pntr_bounds_bitsize (desc_type));
4567
4568 descriptor = ensure_lval (descriptor);
4569
4570 if (type->code () == TYPE_CODE_PTR)
4571 return value_addr (descriptor);
4572 else
4573 return descriptor;
4574 }
4575 \f
4576 /* Symbol Cache Module */
4577
4578 /* Performance measurements made as of 2010-01-15 indicate that
4579 this cache does bring some noticeable improvements. Depending
4580 on the type of entity being printed, the cache can make it as much
4581 as an order of magnitude faster than without it.
4582
4583 The descriptive type DWARF extension has significantly reduced
4584 the need for this cache, at least when DWARF is being used. However,
4585 even in this case, some expensive name-based symbol searches are still
4586 sometimes necessary - to find an XVZ variable, mostly. */
4587
4588 /* Initialize the contents of SYM_CACHE. */
4589
4590 static void
4591 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4592 {
4593 obstack_init (&sym_cache->cache_space);
4594 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4595 }
4596
4597 /* Free the memory used by SYM_CACHE. */
4598
4599 static void
4600 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4601 {
4602 obstack_free (&sym_cache->cache_space, NULL);
4603 xfree (sym_cache);
4604 }
4605
4606 /* Return the symbol cache associated to the given program space PSPACE.
4607 If not allocated for this PSPACE yet, allocate and initialize one. */
4608
4609 static struct ada_symbol_cache *
4610 ada_get_symbol_cache (struct program_space *pspace)
4611 {
4612 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4613
4614 if (pspace_data->sym_cache == NULL)
4615 {
4616 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4617 ada_init_symbol_cache (pspace_data->sym_cache);
4618 }
4619
4620 return pspace_data->sym_cache;
4621 }
4622
4623 /* Clear all entries from the symbol cache. */
4624
4625 static void
4626 ada_clear_symbol_cache (void)
4627 {
4628 struct ada_symbol_cache *sym_cache
4629 = ada_get_symbol_cache (current_program_space);
4630
4631 obstack_free (&sym_cache->cache_space, NULL);
4632 ada_init_symbol_cache (sym_cache);
4633 }
4634
4635 /* Search our cache for an entry matching NAME and DOMAIN.
4636 Return it if found, or NULL otherwise. */
4637
4638 static struct cache_entry **
4639 find_entry (const char *name, domain_enum domain)
4640 {
4641 struct ada_symbol_cache *sym_cache
4642 = ada_get_symbol_cache (current_program_space);
4643 int h = msymbol_hash (name) % HASH_SIZE;
4644 struct cache_entry **e;
4645
4646 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4647 {
4648 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4649 return e;
4650 }
4651 return NULL;
4652 }
4653
4654 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4655 Return 1 if found, 0 otherwise.
4656
4657 If an entry was found and SYM is not NULL, set *SYM to the entry's
4658 SYM. Same principle for BLOCK if not NULL. */
4659
4660 static int
4661 lookup_cached_symbol (const char *name, domain_enum domain,
4662 struct symbol **sym, const struct block **block)
4663 {
4664 struct cache_entry **e = find_entry (name, domain);
4665
4666 if (e == NULL)
4667 return 0;
4668 if (sym != NULL)
4669 *sym = (*e)->sym;
4670 if (block != NULL)
4671 *block = (*e)->block;
4672 return 1;
4673 }
4674
4675 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4676 in domain DOMAIN, save this result in our symbol cache. */
4677
4678 static void
4679 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4680 const struct block *block)
4681 {
4682 struct ada_symbol_cache *sym_cache
4683 = ada_get_symbol_cache (current_program_space);
4684 int h;
4685 struct cache_entry *e;
4686
4687 /* Symbols for builtin types don't have a block.
4688 For now don't cache such symbols. */
4689 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4690 return;
4691
4692 /* If the symbol is a local symbol, then do not cache it, as a search
4693 for that symbol depends on the context. To determine whether
4694 the symbol is local or not, we check the block where we found it
4695 against the global and static blocks of its associated symtab. */
4696 if (sym
4697 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4698 GLOBAL_BLOCK) != block
4699 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4700 STATIC_BLOCK) != block)
4701 return;
4702
4703 h = msymbol_hash (name) % HASH_SIZE;
4704 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4705 e->next = sym_cache->root[h];
4706 sym_cache->root[h] = e;
4707 e->name = obstack_strdup (&sym_cache->cache_space, name);
4708 e->sym = sym;
4709 e->domain = domain;
4710 e->block = block;
4711 }
4712 \f
4713 /* Symbol Lookup */
4714
4715 /* Return the symbol name match type that should be used used when
4716 searching for all symbols matching LOOKUP_NAME.
4717
4718 LOOKUP_NAME is expected to be a symbol name after transformation
4719 for Ada lookups. */
4720
4721 static symbol_name_match_type
4722 name_match_type_from_name (const char *lookup_name)
4723 {
4724 return (strstr (lookup_name, "__") == NULL
4725 ? symbol_name_match_type::WILD
4726 : symbol_name_match_type::FULL);
4727 }
4728
4729 /* Return the result of a standard (literal, C-like) lookup of NAME in
4730 given DOMAIN, visible from lexical block BLOCK. */
4731
4732 static struct symbol *
4733 standard_lookup (const char *name, const struct block *block,
4734 domain_enum domain)
4735 {
4736 /* Initialize it just to avoid a GCC false warning. */
4737 struct block_symbol sym = {};
4738
4739 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4740 return sym.symbol;
4741 ada_lookup_encoded_symbol (name, block, domain, &sym);
4742 cache_symbol (name, domain, sym.symbol, sym.block);
4743 return sym.symbol;
4744 }
4745
4746
4747 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4748 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4749 since they contend in overloading in the same way. */
4750 static int
4751 is_nonfunction (struct block_symbol syms[], int n)
4752 {
4753 int i;
4754
4755 for (i = 0; i < n; i += 1)
4756 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
4757 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
4758 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4759 return 1;
4760
4761 return 0;
4762 }
4763
4764 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4765 struct types. Otherwise, they may not. */
4766
4767 static int
4768 equiv_types (struct type *type0, struct type *type1)
4769 {
4770 if (type0 == type1)
4771 return 1;
4772 if (type0 == NULL || type1 == NULL
4773 || type0->code () != type1->code ())
4774 return 0;
4775 if ((type0->code () == TYPE_CODE_STRUCT
4776 || type0->code () == TYPE_CODE_ENUM)
4777 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4778 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4779 return 1;
4780
4781 return 0;
4782 }
4783
4784 /* True iff SYM0 represents the same entity as SYM1, or one that is
4785 no more defined than that of SYM1. */
4786
4787 static int
4788 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4789 {
4790 if (sym0 == sym1)
4791 return 1;
4792 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4793 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4794 return 0;
4795
4796 switch (SYMBOL_CLASS (sym0))
4797 {
4798 case LOC_UNDEF:
4799 return 1;
4800 case LOC_TYPEDEF:
4801 {
4802 struct type *type0 = SYMBOL_TYPE (sym0);
4803 struct type *type1 = SYMBOL_TYPE (sym1);
4804 const char *name0 = sym0->linkage_name ();
4805 const char *name1 = sym1->linkage_name ();
4806 int len0 = strlen (name0);
4807
4808 return
4809 type0->code () == type1->code ()
4810 && (equiv_types (type0, type1)
4811 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4812 && startswith (name1 + len0, "___XV")));
4813 }
4814 case LOC_CONST:
4815 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4816 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4817
4818 case LOC_STATIC:
4819 {
4820 const char *name0 = sym0->linkage_name ();
4821 const char *name1 = sym1->linkage_name ();
4822 return (strcmp (name0, name1) == 0
4823 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4824 }
4825
4826 default:
4827 return 0;
4828 }
4829 }
4830
4831 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4832 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4833
4834 static void
4835 add_defn_to_vec (struct obstack *obstackp,
4836 struct symbol *sym,
4837 const struct block *block)
4838 {
4839 int i;
4840 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4841
4842 /* Do not try to complete stub types, as the debugger is probably
4843 already scanning all symbols matching a certain name at the
4844 time when this function is called. Trying to replace the stub
4845 type by its associated full type will cause us to restart a scan
4846 which may lead to an infinite recursion. Instead, the client
4847 collecting the matching symbols will end up collecting several
4848 matches, with at least one of them complete. It can then filter
4849 out the stub ones if needed. */
4850
4851 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4852 {
4853 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4854 return;
4855 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4856 {
4857 prevDefns[i].symbol = sym;
4858 prevDefns[i].block = block;
4859 return;
4860 }
4861 }
4862
4863 {
4864 struct block_symbol info;
4865
4866 info.symbol = sym;
4867 info.block = block;
4868 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4869 }
4870 }
4871
4872 /* Number of block_symbol structures currently collected in current vector in
4873 OBSTACKP. */
4874
4875 static int
4876 num_defns_collected (struct obstack *obstackp)
4877 {
4878 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4879 }
4880
4881 /* Vector of block_symbol structures currently collected in current vector in
4882 OBSTACKP. If FINISH, close off the vector and return its final address. */
4883
4884 static struct block_symbol *
4885 defns_collected (struct obstack *obstackp, int finish)
4886 {
4887 if (finish)
4888 return (struct block_symbol *) obstack_finish (obstackp);
4889 else
4890 return (struct block_symbol *) obstack_base (obstackp);
4891 }
4892
4893 /* Return a bound minimal symbol matching NAME according to Ada
4894 decoding rules. Returns an invalid symbol if there is no such
4895 minimal symbol. Names prefixed with "standard__" are handled
4896 specially: "standard__" is first stripped off, and only static and
4897 global symbols are searched. */
4898
4899 struct bound_minimal_symbol
4900 ada_lookup_simple_minsym (const char *name)
4901 {
4902 struct bound_minimal_symbol result;
4903
4904 memset (&result, 0, sizeof (result));
4905
4906 symbol_name_match_type match_type = name_match_type_from_name (name);
4907 lookup_name_info lookup_name (name, match_type);
4908
4909 symbol_name_matcher_ftype *match_name
4910 = ada_get_symbol_name_matcher (lookup_name);
4911
4912 for (objfile *objfile : current_program_space->objfiles ())
4913 {
4914 for (minimal_symbol *msymbol : objfile->msymbols ())
4915 {
4916 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4917 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4918 {
4919 result.minsym = msymbol;
4920 result.objfile = objfile;
4921 break;
4922 }
4923 }
4924 }
4925
4926 return result;
4927 }
4928
4929 /* For all subprograms that statically enclose the subprogram of the
4930 selected frame, add symbols matching identifier NAME in DOMAIN
4931 and their blocks to the list of data in OBSTACKP, as for
4932 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4933 with a wildcard prefix. */
4934
4935 static void
4936 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4937 const lookup_name_info &lookup_name,
4938 domain_enum domain)
4939 {
4940 }
4941
4942 /* True if TYPE is definitely an artificial type supplied to a symbol
4943 for which no debugging information was given in the symbol file. */
4944
4945 static int
4946 is_nondebugging_type (struct type *type)
4947 {
4948 const char *name = ada_type_name (type);
4949
4950 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4951 }
4952
4953 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4954 that are deemed "identical" for practical purposes.
4955
4956 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4957 types and that their number of enumerals is identical (in other
4958 words, type1->num_fields () == type2->num_fields ()). */
4959
4960 static int
4961 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4962 {
4963 int i;
4964
4965 /* The heuristic we use here is fairly conservative. We consider
4966 that 2 enumerate types are identical if they have the same
4967 number of enumerals and that all enumerals have the same
4968 underlying value and name. */
4969
4970 /* All enums in the type should have an identical underlying value. */
4971 for (i = 0; i < type1->num_fields (); i++)
4972 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4973 return 0;
4974
4975 /* All enumerals should also have the same name (modulo any numerical
4976 suffix). */
4977 for (i = 0; i < type1->num_fields (); i++)
4978 {
4979 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4980 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4981 int len_1 = strlen (name_1);
4982 int len_2 = strlen (name_2);
4983
4984 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4985 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4986 if (len_1 != len_2
4987 || strncmp (TYPE_FIELD_NAME (type1, i),
4988 TYPE_FIELD_NAME (type2, i),
4989 len_1) != 0)
4990 return 0;
4991 }
4992
4993 return 1;
4994 }
4995
4996 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4997 that are deemed "identical" for practical purposes. Sometimes,
4998 enumerals are not strictly identical, but their types are so similar
4999 that they can be considered identical.
5000
5001 For instance, consider the following code:
5002
5003 type Color is (Black, Red, Green, Blue, White);
5004 type RGB_Color is new Color range Red .. Blue;
5005
5006 Type RGB_Color is a subrange of an implicit type which is a copy
5007 of type Color. If we call that implicit type RGB_ColorB ("B" is
5008 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5009 As a result, when an expression references any of the enumeral
5010 by name (Eg. "print green"), the expression is technically
5011 ambiguous and the user should be asked to disambiguate. But
5012 doing so would only hinder the user, since it wouldn't matter
5013 what choice he makes, the outcome would always be the same.
5014 So, for practical purposes, we consider them as the same. */
5015
5016 static int
5017 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5018 {
5019 int i;
5020
5021 /* Before performing a thorough comparison check of each type,
5022 we perform a series of inexpensive checks. We expect that these
5023 checks will quickly fail in the vast majority of cases, and thus
5024 help prevent the unnecessary use of a more expensive comparison.
5025 Said comparison also expects us to make some of these checks
5026 (see ada_identical_enum_types_p). */
5027
5028 /* Quick check: All symbols should have an enum type. */
5029 for (i = 0; i < syms.size (); i++)
5030 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
5031 return 0;
5032
5033 /* Quick check: They should all have the same value. */
5034 for (i = 1; i < syms.size (); i++)
5035 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5036 return 0;
5037
5038 /* Quick check: They should all have the same number of enumerals. */
5039 for (i = 1; i < syms.size (); i++)
5040 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
5041 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
5042 return 0;
5043
5044 /* All the sanity checks passed, so we might have a set of
5045 identical enumeration types. Perform a more complete
5046 comparison of the type of each symbol. */
5047 for (i = 1; i < syms.size (); i++)
5048 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5049 SYMBOL_TYPE (syms[0].symbol)))
5050 return 0;
5051
5052 return 1;
5053 }
5054
5055 /* Remove any non-debugging symbols in SYMS that definitely
5056 duplicate other symbols in the list (The only case I know of where
5057 this happens is when object files containing stabs-in-ecoff are
5058 linked with files containing ordinary ecoff debugging symbols (or no
5059 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5060 Returns the number of items in the modified list. */
5061
5062 static int
5063 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5064 {
5065 int i, j;
5066
5067 /* We should never be called with less than 2 symbols, as there
5068 cannot be any extra symbol in that case. But it's easy to
5069 handle, since we have nothing to do in that case. */
5070 if (syms->size () < 2)
5071 return syms->size ();
5072
5073 i = 0;
5074 while (i < syms->size ())
5075 {
5076 int remove_p = 0;
5077
5078 /* If two symbols have the same name and one of them is a stub type,
5079 the get rid of the stub. */
5080
5081 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
5082 && (*syms)[i].symbol->linkage_name () != NULL)
5083 {
5084 for (j = 0; j < syms->size (); j++)
5085 {
5086 if (j != i
5087 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
5088 && (*syms)[j].symbol->linkage_name () != NULL
5089 && strcmp ((*syms)[i].symbol->linkage_name (),
5090 (*syms)[j].symbol->linkage_name ()) == 0)
5091 remove_p = 1;
5092 }
5093 }
5094
5095 /* Two symbols with the same name, same class and same address
5096 should be identical. */
5097
5098 else if ((*syms)[i].symbol->linkage_name () != NULL
5099 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5100 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5101 {
5102 for (j = 0; j < syms->size (); j += 1)
5103 {
5104 if (i != j
5105 && (*syms)[j].symbol->linkage_name () != NULL
5106 && strcmp ((*syms)[i].symbol->linkage_name (),
5107 (*syms)[j].symbol->linkage_name ()) == 0
5108 && SYMBOL_CLASS ((*syms)[i].symbol)
5109 == SYMBOL_CLASS ((*syms)[j].symbol)
5110 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5111 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5112 remove_p = 1;
5113 }
5114 }
5115
5116 if (remove_p)
5117 syms->erase (syms->begin () + i);
5118 else
5119 i += 1;
5120 }
5121
5122 /* If all the remaining symbols are identical enumerals, then
5123 just keep the first one and discard the rest.
5124
5125 Unlike what we did previously, we do not discard any entry
5126 unless they are ALL identical. This is because the symbol
5127 comparison is not a strict comparison, but rather a practical
5128 comparison. If all symbols are considered identical, then
5129 we can just go ahead and use the first one and discard the rest.
5130 But if we cannot reduce the list to a single element, we have
5131 to ask the user to disambiguate anyways. And if we have to
5132 present a multiple-choice menu, it's less confusing if the list
5133 isn't missing some choices that were identical and yet distinct. */
5134 if (symbols_are_identical_enums (*syms))
5135 syms->resize (1);
5136
5137 return syms->size ();
5138 }
5139
5140 /* Given a type that corresponds to a renaming entity, use the type name
5141 to extract the scope (package name or function name, fully qualified,
5142 and following the GNAT encoding convention) where this renaming has been
5143 defined. */
5144
5145 static std::string
5146 xget_renaming_scope (struct type *renaming_type)
5147 {
5148 /* The renaming types adhere to the following convention:
5149 <scope>__<rename>___<XR extension>.
5150 So, to extract the scope, we search for the "___XR" extension,
5151 and then backtrack until we find the first "__". */
5152
5153 const char *name = renaming_type->name ();
5154 const char *suffix = strstr (name, "___XR");
5155 const char *last;
5156
5157 /* Now, backtrack a bit until we find the first "__". Start looking
5158 at suffix - 3, as the <rename> part is at least one character long. */
5159
5160 for (last = suffix - 3; last > name; last--)
5161 if (last[0] == '_' && last[1] == '_')
5162 break;
5163
5164 /* Make a copy of scope and return it. */
5165 return std::string (name, last);
5166 }
5167
5168 /* Return nonzero if NAME corresponds to a package name. */
5169
5170 static int
5171 is_package_name (const char *name)
5172 {
5173 /* Here, We take advantage of the fact that no symbols are generated
5174 for packages, while symbols are generated for each function.
5175 So the condition for NAME represent a package becomes equivalent
5176 to NAME not existing in our list of symbols. There is only one
5177 small complication with library-level functions (see below). */
5178
5179 /* If it is a function that has not been defined at library level,
5180 then we should be able to look it up in the symbols. */
5181 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5182 return 0;
5183
5184 /* Library-level function names start with "_ada_". See if function
5185 "_ada_" followed by NAME can be found. */
5186
5187 /* Do a quick check that NAME does not contain "__", since library-level
5188 functions names cannot contain "__" in them. */
5189 if (strstr (name, "__") != NULL)
5190 return 0;
5191
5192 std::string fun_name = string_printf ("_ada_%s", name);
5193
5194 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5195 }
5196
5197 /* Return nonzero if SYM corresponds to a renaming entity that is
5198 not visible from FUNCTION_NAME. */
5199
5200 static int
5201 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5202 {
5203 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5204 return 0;
5205
5206 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5207
5208 /* If the rename has been defined in a package, then it is visible. */
5209 if (is_package_name (scope.c_str ()))
5210 return 0;
5211
5212 /* Check that the rename is in the current function scope by checking
5213 that its name starts with SCOPE. */
5214
5215 /* If the function name starts with "_ada_", it means that it is
5216 a library-level function. Strip this prefix before doing the
5217 comparison, as the encoding for the renaming does not contain
5218 this prefix. */
5219 if (startswith (function_name, "_ada_"))
5220 function_name += 5;
5221
5222 return !startswith (function_name, scope.c_str ());
5223 }
5224
5225 /* Remove entries from SYMS that corresponds to a renaming entity that
5226 is not visible from the function associated with CURRENT_BLOCK or
5227 that is superfluous due to the presence of more specific renaming
5228 information. Places surviving symbols in the initial entries of
5229 SYMS and returns the number of surviving symbols.
5230
5231 Rationale:
5232 First, in cases where an object renaming is implemented as a
5233 reference variable, GNAT may produce both the actual reference
5234 variable and the renaming encoding. In this case, we discard the
5235 latter.
5236
5237 Second, GNAT emits a type following a specified encoding for each renaming
5238 entity. Unfortunately, STABS currently does not support the definition
5239 of types that are local to a given lexical block, so all renamings types
5240 are emitted at library level. As a consequence, if an application
5241 contains two renaming entities using the same name, and a user tries to
5242 print the value of one of these entities, the result of the ada symbol
5243 lookup will also contain the wrong renaming type.
5244
5245 This function partially covers for this limitation by attempting to
5246 remove from the SYMS list renaming symbols that should be visible
5247 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5248 method with the current information available. The implementation
5249 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5250
5251 - When the user tries to print a rename in a function while there
5252 is another rename entity defined in a package: Normally, the
5253 rename in the function has precedence over the rename in the
5254 package, so the latter should be removed from the list. This is
5255 currently not the case.
5256
5257 - This function will incorrectly remove valid renames if
5258 the CURRENT_BLOCK corresponds to a function which symbol name
5259 has been changed by an "Export" pragma. As a consequence,
5260 the user will be unable to print such rename entities. */
5261
5262 static int
5263 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5264 const struct block *current_block)
5265 {
5266 struct symbol *current_function;
5267 const char *current_function_name;
5268 int i;
5269 int is_new_style_renaming;
5270
5271 /* If there is both a renaming foo___XR... encoded as a variable and
5272 a simple variable foo in the same block, discard the latter.
5273 First, zero out such symbols, then compress. */
5274 is_new_style_renaming = 0;
5275 for (i = 0; i < syms->size (); i += 1)
5276 {
5277 struct symbol *sym = (*syms)[i].symbol;
5278 const struct block *block = (*syms)[i].block;
5279 const char *name;
5280 const char *suffix;
5281
5282 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5283 continue;
5284 name = sym->linkage_name ();
5285 suffix = strstr (name, "___XR");
5286
5287 if (suffix != NULL)
5288 {
5289 int name_len = suffix - name;
5290 int j;
5291
5292 is_new_style_renaming = 1;
5293 for (j = 0; j < syms->size (); j += 1)
5294 if (i != j && (*syms)[j].symbol != NULL
5295 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5296 name_len) == 0
5297 && block == (*syms)[j].block)
5298 (*syms)[j].symbol = NULL;
5299 }
5300 }
5301 if (is_new_style_renaming)
5302 {
5303 int j, k;
5304
5305 for (j = k = 0; j < syms->size (); j += 1)
5306 if ((*syms)[j].symbol != NULL)
5307 {
5308 (*syms)[k] = (*syms)[j];
5309 k += 1;
5310 }
5311 return k;
5312 }
5313
5314 /* Extract the function name associated to CURRENT_BLOCK.
5315 Abort if unable to do so. */
5316
5317 if (current_block == NULL)
5318 return syms->size ();
5319
5320 current_function = block_linkage_function (current_block);
5321 if (current_function == NULL)
5322 return syms->size ();
5323
5324 current_function_name = current_function->linkage_name ();
5325 if (current_function_name == NULL)
5326 return syms->size ();
5327
5328 /* Check each of the symbols, and remove it from the list if it is
5329 a type corresponding to a renaming that is out of the scope of
5330 the current block. */
5331
5332 i = 0;
5333 while (i < syms->size ())
5334 {
5335 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5336 == ADA_OBJECT_RENAMING
5337 && old_renaming_is_invisible ((*syms)[i].symbol,
5338 current_function_name))
5339 syms->erase (syms->begin () + i);
5340 else
5341 i += 1;
5342 }
5343
5344 return syms->size ();
5345 }
5346
5347 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5348 whose name and domain match NAME and DOMAIN respectively.
5349 If no match was found, then extend the search to "enclosing"
5350 routines (in other words, if we're inside a nested function,
5351 search the symbols defined inside the enclosing functions).
5352 If WILD_MATCH_P is nonzero, perform the naming matching in
5353 "wild" mode (see function "wild_match" for more info).
5354
5355 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5356
5357 static void
5358 ada_add_local_symbols (struct obstack *obstackp,
5359 const lookup_name_info &lookup_name,
5360 const struct block *block, domain_enum domain)
5361 {
5362 int block_depth = 0;
5363
5364 while (block != NULL)
5365 {
5366 block_depth += 1;
5367 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5368
5369 /* If we found a non-function match, assume that's the one. */
5370 if (is_nonfunction (defns_collected (obstackp, 0),
5371 num_defns_collected (obstackp)))
5372 return;
5373
5374 block = BLOCK_SUPERBLOCK (block);
5375 }
5376
5377 /* If no luck so far, try to find NAME as a local symbol in some lexically
5378 enclosing subprogram. */
5379 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5380 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5381 }
5382
5383 /* An object of this type is used as the user_data argument when
5384 calling the map_matching_symbols method. */
5385
5386 struct match_data
5387 {
5388 struct objfile *objfile;
5389 struct obstack *obstackp;
5390 struct symbol *arg_sym;
5391 int found_sym;
5392 };
5393
5394 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5395 to a list of symbols. DATA is a pointer to a struct match_data *
5396 containing the obstack that collects the symbol list, the file that SYM
5397 must come from, a flag indicating whether a non-argument symbol has
5398 been found in the current block, and the last argument symbol
5399 passed in SYM within the current block (if any). When SYM is null,
5400 marking the end of a block, the argument symbol is added if no
5401 other has been found. */
5402
5403 static bool
5404 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5405 struct match_data *data)
5406 {
5407 const struct block *block = bsym->block;
5408 struct symbol *sym = bsym->symbol;
5409
5410 if (sym == NULL)
5411 {
5412 if (!data->found_sym && data->arg_sym != NULL)
5413 add_defn_to_vec (data->obstackp,
5414 fixup_symbol_section (data->arg_sym, data->objfile),
5415 block);
5416 data->found_sym = 0;
5417 data->arg_sym = NULL;
5418 }
5419 else
5420 {
5421 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5422 return true;
5423 else if (SYMBOL_IS_ARGUMENT (sym))
5424 data->arg_sym = sym;
5425 else
5426 {
5427 data->found_sym = 1;
5428 add_defn_to_vec (data->obstackp,
5429 fixup_symbol_section (sym, data->objfile),
5430 block);
5431 }
5432 }
5433 return true;
5434 }
5435
5436 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5437 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5438 symbols to OBSTACKP. Return whether we found such symbols. */
5439
5440 static int
5441 ada_add_block_renamings (struct obstack *obstackp,
5442 const struct block *block,
5443 const lookup_name_info &lookup_name,
5444 domain_enum domain)
5445 {
5446 struct using_direct *renaming;
5447 int defns_mark = num_defns_collected (obstackp);
5448
5449 symbol_name_matcher_ftype *name_match
5450 = ada_get_symbol_name_matcher (lookup_name);
5451
5452 for (renaming = block_using (block);
5453 renaming != NULL;
5454 renaming = renaming->next)
5455 {
5456 const char *r_name;
5457
5458 /* Avoid infinite recursions: skip this renaming if we are actually
5459 already traversing it.
5460
5461 Currently, symbol lookup in Ada don't use the namespace machinery from
5462 C++/Fortran support: skip namespace imports that use them. */
5463 if (renaming->searched
5464 || (renaming->import_src != NULL
5465 && renaming->import_src[0] != '\0')
5466 || (renaming->import_dest != NULL
5467 && renaming->import_dest[0] != '\0'))
5468 continue;
5469 renaming->searched = 1;
5470
5471 /* TODO: here, we perform another name-based symbol lookup, which can
5472 pull its own multiple overloads. In theory, we should be able to do
5473 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5474 not a simple name. But in order to do this, we would need to enhance
5475 the DWARF reader to associate a symbol to this renaming, instead of a
5476 name. So, for now, we do something simpler: re-use the C++/Fortran
5477 namespace machinery. */
5478 r_name = (renaming->alias != NULL
5479 ? renaming->alias
5480 : renaming->declaration);
5481 if (name_match (r_name, lookup_name, NULL))
5482 {
5483 lookup_name_info decl_lookup_name (renaming->declaration,
5484 lookup_name.match_type ());
5485 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5486 1, NULL);
5487 }
5488 renaming->searched = 0;
5489 }
5490 return num_defns_collected (obstackp) != defns_mark;
5491 }
5492
5493 /* Implements compare_names, but only applying the comparision using
5494 the given CASING. */
5495
5496 static int
5497 compare_names_with_case (const char *string1, const char *string2,
5498 enum case_sensitivity casing)
5499 {
5500 while (*string1 != '\0' && *string2 != '\0')
5501 {
5502 char c1, c2;
5503
5504 if (isspace (*string1) || isspace (*string2))
5505 return strcmp_iw_ordered (string1, string2);
5506
5507 if (casing == case_sensitive_off)
5508 {
5509 c1 = tolower (*string1);
5510 c2 = tolower (*string2);
5511 }
5512 else
5513 {
5514 c1 = *string1;
5515 c2 = *string2;
5516 }
5517 if (c1 != c2)
5518 break;
5519
5520 string1 += 1;
5521 string2 += 1;
5522 }
5523
5524 switch (*string1)
5525 {
5526 case '(':
5527 return strcmp_iw_ordered (string1, string2);
5528 case '_':
5529 if (*string2 == '\0')
5530 {
5531 if (is_name_suffix (string1))
5532 return 0;
5533 else
5534 return 1;
5535 }
5536 /* FALLTHROUGH */
5537 default:
5538 if (*string2 == '(')
5539 return strcmp_iw_ordered (string1, string2);
5540 else
5541 {
5542 if (casing == case_sensitive_off)
5543 return tolower (*string1) - tolower (*string2);
5544 else
5545 return *string1 - *string2;
5546 }
5547 }
5548 }
5549
5550 /* Compare STRING1 to STRING2, with results as for strcmp.
5551 Compatible with strcmp_iw_ordered in that...
5552
5553 strcmp_iw_ordered (STRING1, STRING2) <= 0
5554
5555 ... implies...
5556
5557 compare_names (STRING1, STRING2) <= 0
5558
5559 (they may differ as to what symbols compare equal). */
5560
5561 static int
5562 compare_names (const char *string1, const char *string2)
5563 {
5564 int result;
5565
5566 /* Similar to what strcmp_iw_ordered does, we need to perform
5567 a case-insensitive comparison first, and only resort to
5568 a second, case-sensitive, comparison if the first one was
5569 not sufficient to differentiate the two strings. */
5570
5571 result = compare_names_with_case (string1, string2, case_sensitive_off);
5572 if (result == 0)
5573 result = compare_names_with_case (string1, string2, case_sensitive_on);
5574
5575 return result;
5576 }
5577
5578 /* Convenience function to get at the Ada encoded lookup name for
5579 LOOKUP_NAME, as a C string. */
5580
5581 static const char *
5582 ada_lookup_name (const lookup_name_info &lookup_name)
5583 {
5584 return lookup_name.ada ().lookup_name ().c_str ();
5585 }
5586
5587 /* Add to OBSTACKP all non-local symbols whose name and domain match
5588 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5589 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5590 symbols otherwise. */
5591
5592 static void
5593 add_nonlocal_symbols (struct obstack *obstackp,
5594 const lookup_name_info &lookup_name,
5595 domain_enum domain, int global)
5596 {
5597 struct match_data data;
5598
5599 memset (&data, 0, sizeof data);
5600 data.obstackp = obstackp;
5601
5602 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5603
5604 auto callback = [&] (struct block_symbol *bsym)
5605 {
5606 return aux_add_nonlocal_symbols (bsym, &data);
5607 };
5608
5609 for (objfile *objfile : current_program_space->objfiles ())
5610 {
5611 data.objfile = objfile;
5612
5613 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5614 domain, global, callback,
5615 (is_wild_match
5616 ? NULL : compare_names));
5617
5618 for (compunit_symtab *cu : objfile->compunits ())
5619 {
5620 const struct block *global_block
5621 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5622
5623 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5624 domain))
5625 data.found_sym = 1;
5626 }
5627 }
5628
5629 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5630 {
5631 const char *name = ada_lookup_name (lookup_name);
5632 std::string bracket_name = std::string ("<_ada_") + name + '>';
5633 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5634
5635 for (objfile *objfile : current_program_space->objfiles ())
5636 {
5637 data.objfile = objfile;
5638 objfile->sf->qf->map_matching_symbols (objfile, name1,
5639 domain, global, callback,
5640 compare_names);
5641 }
5642 }
5643 }
5644
5645 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5646 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5647 returning the number of matches. Add these to OBSTACKP.
5648
5649 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5650 symbol match within the nest of blocks whose innermost member is BLOCK,
5651 is the one match returned (no other matches in that or
5652 enclosing blocks is returned). If there are any matches in or
5653 surrounding BLOCK, then these alone are returned.
5654
5655 Names prefixed with "standard__" are handled specially:
5656 "standard__" is first stripped off (by the lookup_name
5657 constructor), and only static and global symbols are searched.
5658
5659 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5660 to lookup global symbols. */
5661
5662 static void
5663 ada_add_all_symbols (struct obstack *obstackp,
5664 const struct block *block,
5665 const lookup_name_info &lookup_name,
5666 domain_enum domain,
5667 int full_search,
5668 int *made_global_lookup_p)
5669 {
5670 struct symbol *sym;
5671
5672 if (made_global_lookup_p)
5673 *made_global_lookup_p = 0;
5674
5675 /* Special case: If the user specifies a symbol name inside package
5676 Standard, do a non-wild matching of the symbol name without
5677 the "standard__" prefix. This was primarily introduced in order
5678 to allow the user to specifically access the standard exceptions
5679 using, for instance, Standard.Constraint_Error when Constraint_Error
5680 is ambiguous (due to the user defining its own Constraint_Error
5681 entity inside its program). */
5682 if (lookup_name.ada ().standard_p ())
5683 block = NULL;
5684
5685 /* Check the non-global symbols. If we have ANY match, then we're done. */
5686
5687 if (block != NULL)
5688 {
5689 if (full_search)
5690 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5691 else
5692 {
5693 /* In the !full_search case we're are being called by
5694 iterate_over_symbols, and we don't want to search
5695 superblocks. */
5696 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5697 }
5698 if (num_defns_collected (obstackp) > 0 || !full_search)
5699 return;
5700 }
5701
5702 /* No non-global symbols found. Check our cache to see if we have
5703 already performed this search before. If we have, then return
5704 the same result. */
5705
5706 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5707 domain, &sym, &block))
5708 {
5709 if (sym != NULL)
5710 add_defn_to_vec (obstackp, sym, block);
5711 return;
5712 }
5713
5714 if (made_global_lookup_p)
5715 *made_global_lookup_p = 1;
5716
5717 /* Search symbols from all global blocks. */
5718
5719 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5720
5721 /* Now add symbols from all per-file blocks if we've gotten no hits
5722 (not strictly correct, but perhaps better than an error). */
5723
5724 if (num_defns_collected (obstackp) == 0)
5725 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5726 }
5727
5728 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5729 is non-zero, enclosing scope and in global scopes, returning the number of
5730 matches.
5731 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5732 found and the blocks and symbol tables (if any) in which they were
5733 found.
5734
5735 When full_search is non-zero, any non-function/non-enumeral
5736 symbol match within the nest of blocks whose innermost member is BLOCK,
5737 is the one match returned (no other matches in that or
5738 enclosing blocks is returned). If there are any matches in or
5739 surrounding BLOCK, then these alone are returned.
5740
5741 Names prefixed with "standard__" are handled specially: "standard__"
5742 is first stripped off, and only static and global symbols are searched. */
5743
5744 static int
5745 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5746 const struct block *block,
5747 domain_enum domain,
5748 std::vector<struct block_symbol> *results,
5749 int full_search)
5750 {
5751 int syms_from_global_search;
5752 int ndefns;
5753 auto_obstack obstack;
5754
5755 ada_add_all_symbols (&obstack, block, lookup_name,
5756 domain, full_search, &syms_from_global_search);
5757
5758 ndefns = num_defns_collected (&obstack);
5759
5760 struct block_symbol *base = defns_collected (&obstack, 1);
5761 for (int i = 0; i < ndefns; ++i)
5762 results->push_back (base[i]);
5763
5764 ndefns = remove_extra_symbols (results);
5765
5766 if (ndefns == 0 && full_search && syms_from_global_search)
5767 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5768
5769 if (ndefns == 1 && full_search && syms_from_global_search)
5770 cache_symbol (ada_lookup_name (lookup_name), domain,
5771 (*results)[0].symbol, (*results)[0].block);
5772
5773 ndefns = remove_irrelevant_renamings (results, block);
5774
5775 return ndefns;
5776 }
5777
5778 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5779 in global scopes, returning the number of matches, and filling *RESULTS
5780 with (SYM,BLOCK) tuples.
5781
5782 See ada_lookup_symbol_list_worker for further details. */
5783
5784 int
5785 ada_lookup_symbol_list (const char *name, const struct block *block,
5786 domain_enum domain,
5787 std::vector<struct block_symbol> *results)
5788 {
5789 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5790 lookup_name_info lookup_name (name, name_match_type);
5791
5792 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5793 }
5794
5795 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5796 to 1, but choosing the first symbol found if there are multiple
5797 choices.
5798
5799 The result is stored in *INFO, which must be non-NULL.
5800 If no match is found, INFO->SYM is set to NULL. */
5801
5802 void
5803 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5804 domain_enum domain,
5805 struct block_symbol *info)
5806 {
5807 /* Since we already have an encoded name, wrap it in '<>' to force a
5808 verbatim match. Otherwise, if the name happens to not look like
5809 an encoded name (because it doesn't include a "__"),
5810 ada_lookup_name_info would re-encode/fold it again, and that
5811 would e.g., incorrectly lowercase object renaming names like
5812 "R28b" -> "r28b". */
5813 std::string verbatim = add_angle_brackets (name);
5814
5815 gdb_assert (info != NULL);
5816 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5817 }
5818
5819 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5820 scope and in global scopes, or NULL if none. NAME is folded and
5821 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5822 choosing the first symbol if there are multiple choices. */
5823
5824 struct block_symbol
5825 ada_lookup_symbol (const char *name, const struct block *block0,
5826 domain_enum domain)
5827 {
5828 std::vector<struct block_symbol> candidates;
5829 int n_candidates;
5830
5831 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5832
5833 if (n_candidates == 0)
5834 return {};
5835
5836 block_symbol info = candidates[0];
5837 info.symbol = fixup_symbol_section (info.symbol, NULL);
5838 return info;
5839 }
5840
5841
5842 /* True iff STR is a possible encoded suffix of a normal Ada name
5843 that is to be ignored for matching purposes. Suffixes of parallel
5844 names (e.g., XVE) are not included here. Currently, the possible suffixes
5845 are given by any of the regular expressions:
5846
5847 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5848 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5849 TKB [subprogram suffix for task bodies]
5850 _E[0-9]+[bs]$ [protected object entry suffixes]
5851 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5852
5853 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5854 match is performed. This sequence is used to differentiate homonyms,
5855 is an optional part of a valid name suffix. */
5856
5857 static int
5858 is_name_suffix (const char *str)
5859 {
5860 int k;
5861 const char *matching;
5862 const int len = strlen (str);
5863
5864 /* Skip optional leading __[0-9]+. */
5865
5866 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5867 {
5868 str += 3;
5869 while (isdigit (str[0]))
5870 str += 1;
5871 }
5872
5873 /* [.$][0-9]+ */
5874
5875 if (str[0] == '.' || str[0] == '$')
5876 {
5877 matching = str + 1;
5878 while (isdigit (matching[0]))
5879 matching += 1;
5880 if (matching[0] == '\0')
5881 return 1;
5882 }
5883
5884 /* ___[0-9]+ */
5885
5886 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5887 {
5888 matching = str + 3;
5889 while (isdigit (matching[0]))
5890 matching += 1;
5891 if (matching[0] == '\0')
5892 return 1;
5893 }
5894
5895 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5896
5897 if (strcmp (str, "TKB") == 0)
5898 return 1;
5899
5900 #if 0
5901 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5902 with a N at the end. Unfortunately, the compiler uses the same
5903 convention for other internal types it creates. So treating
5904 all entity names that end with an "N" as a name suffix causes
5905 some regressions. For instance, consider the case of an enumerated
5906 type. To support the 'Image attribute, it creates an array whose
5907 name ends with N.
5908 Having a single character like this as a suffix carrying some
5909 information is a bit risky. Perhaps we should change the encoding
5910 to be something like "_N" instead. In the meantime, do not do
5911 the following check. */
5912 /* Protected Object Subprograms */
5913 if (len == 1 && str [0] == 'N')
5914 return 1;
5915 #endif
5916
5917 /* _E[0-9]+[bs]$ */
5918 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5919 {
5920 matching = str + 3;
5921 while (isdigit (matching[0]))
5922 matching += 1;
5923 if ((matching[0] == 'b' || matching[0] == 's')
5924 && matching [1] == '\0')
5925 return 1;
5926 }
5927
5928 /* ??? We should not modify STR directly, as we are doing below. This
5929 is fine in this case, but may become problematic later if we find
5930 that this alternative did not work, and want to try matching
5931 another one from the begining of STR. Since we modified it, we
5932 won't be able to find the begining of the string anymore! */
5933 if (str[0] == 'X')
5934 {
5935 str += 1;
5936 while (str[0] != '_' && str[0] != '\0')
5937 {
5938 if (str[0] != 'n' && str[0] != 'b')
5939 return 0;
5940 str += 1;
5941 }
5942 }
5943
5944 if (str[0] == '\000')
5945 return 1;
5946
5947 if (str[0] == '_')
5948 {
5949 if (str[1] != '_' || str[2] == '\000')
5950 return 0;
5951 if (str[2] == '_')
5952 {
5953 if (strcmp (str + 3, "JM") == 0)
5954 return 1;
5955 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5956 the LJM suffix in favor of the JM one. But we will
5957 still accept LJM as a valid suffix for a reasonable
5958 amount of time, just to allow ourselves to debug programs
5959 compiled using an older version of GNAT. */
5960 if (strcmp (str + 3, "LJM") == 0)
5961 return 1;
5962 if (str[3] != 'X')
5963 return 0;
5964 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5965 || str[4] == 'U' || str[4] == 'P')
5966 return 1;
5967 if (str[4] == 'R' && str[5] != 'T')
5968 return 1;
5969 return 0;
5970 }
5971 if (!isdigit (str[2]))
5972 return 0;
5973 for (k = 3; str[k] != '\0'; k += 1)
5974 if (!isdigit (str[k]) && str[k] != '_')
5975 return 0;
5976 return 1;
5977 }
5978 if (str[0] == '$' && isdigit (str[1]))
5979 {
5980 for (k = 2; str[k] != '\0'; k += 1)
5981 if (!isdigit (str[k]) && str[k] != '_')
5982 return 0;
5983 return 1;
5984 }
5985 return 0;
5986 }
5987
5988 /* Return non-zero if the string starting at NAME and ending before
5989 NAME_END contains no capital letters. */
5990
5991 static int
5992 is_valid_name_for_wild_match (const char *name0)
5993 {
5994 std::string decoded_name = ada_decode (name0);
5995 int i;
5996
5997 /* If the decoded name starts with an angle bracket, it means that
5998 NAME0 does not follow the GNAT encoding format. It should then
5999 not be allowed as a possible wild match. */
6000 if (decoded_name[0] == '<')
6001 return 0;
6002
6003 for (i=0; decoded_name[i] != '\0'; i++)
6004 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6005 return 0;
6006
6007 return 1;
6008 }
6009
6010 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
6011 character which could start a simple name. Assumes that *NAMEP points
6012 somewhere inside the string beginning at NAME0. */
6013
6014 static int
6015 advance_wild_match (const char **namep, const char *name0, char target0)
6016 {
6017 const char *name = *namep;
6018
6019 while (1)
6020 {
6021 char t0, t1;
6022
6023 t0 = *name;
6024 if (t0 == '_')
6025 {
6026 t1 = name[1];
6027 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6028 {
6029 name += 1;
6030 if (name == name0 + 5 && startswith (name0, "_ada"))
6031 break;
6032 else
6033 name += 1;
6034 }
6035 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6036 || name[2] == target0))
6037 {
6038 name += 2;
6039 break;
6040 }
6041 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
6042 {
6043 /* Names like "pkg__B_N__name", where N is a number, are
6044 block-local. We can handle these by simply skipping
6045 the "B_" here. */
6046 name += 4;
6047 }
6048 else
6049 return 0;
6050 }
6051 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6052 name += 1;
6053 else
6054 return 0;
6055 }
6056
6057 *namep = name;
6058 return 1;
6059 }
6060
6061 /* Return true iff NAME encodes a name of the form prefix.PATN.
6062 Ignores any informational suffixes of NAME (i.e., for which
6063 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6064 simple name. */
6065
6066 static bool
6067 wild_match (const char *name, const char *patn)
6068 {
6069 const char *p;
6070 const char *name0 = name;
6071
6072 while (1)
6073 {
6074 const char *match = name;
6075
6076 if (*name == *patn)
6077 {
6078 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6079 if (*p != *name)
6080 break;
6081 if (*p == '\0' && is_name_suffix (name))
6082 return match == name0 || is_valid_name_for_wild_match (name0);
6083
6084 if (name[-1] == '_')
6085 name -= 1;
6086 }
6087 if (!advance_wild_match (&name, name0, *patn))
6088 return false;
6089 }
6090 }
6091
6092 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6093 *defn_symbols, updating the list of symbols in OBSTACKP (if
6094 necessary). OBJFILE is the section containing BLOCK. */
6095
6096 static void
6097 ada_add_block_symbols (struct obstack *obstackp,
6098 const struct block *block,
6099 const lookup_name_info &lookup_name,
6100 domain_enum domain, struct objfile *objfile)
6101 {
6102 struct block_iterator iter;
6103 /* A matching argument symbol, if any. */
6104 struct symbol *arg_sym;
6105 /* Set true when we find a matching non-argument symbol. */
6106 int found_sym;
6107 struct symbol *sym;
6108
6109 arg_sym = NULL;
6110 found_sym = 0;
6111 for (sym = block_iter_match_first (block, lookup_name, &iter);
6112 sym != NULL;
6113 sym = block_iter_match_next (lookup_name, &iter))
6114 {
6115 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
6116 {
6117 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6118 {
6119 if (SYMBOL_IS_ARGUMENT (sym))
6120 arg_sym = sym;
6121 else
6122 {
6123 found_sym = 1;
6124 add_defn_to_vec (obstackp,
6125 fixup_symbol_section (sym, objfile),
6126 block);
6127 }
6128 }
6129 }
6130 }
6131
6132 /* Handle renamings. */
6133
6134 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6135 found_sym = 1;
6136
6137 if (!found_sym && arg_sym != NULL)
6138 {
6139 add_defn_to_vec (obstackp,
6140 fixup_symbol_section (arg_sym, objfile),
6141 block);
6142 }
6143
6144 if (!lookup_name.ada ().wild_match_p ())
6145 {
6146 arg_sym = NULL;
6147 found_sym = 0;
6148 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6149 const char *name = ada_lookup_name.c_str ();
6150 size_t name_len = ada_lookup_name.size ();
6151
6152 ALL_BLOCK_SYMBOLS (block, iter, sym)
6153 {
6154 if (symbol_matches_domain (sym->language (),
6155 SYMBOL_DOMAIN (sym), domain))
6156 {
6157 int cmp;
6158
6159 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6160 if (cmp == 0)
6161 {
6162 cmp = !startswith (sym->linkage_name (), "_ada_");
6163 if (cmp == 0)
6164 cmp = strncmp (name, sym->linkage_name () + 5,
6165 name_len);
6166 }
6167
6168 if (cmp == 0
6169 && is_name_suffix (sym->linkage_name () + name_len + 5))
6170 {
6171 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6172 {
6173 if (SYMBOL_IS_ARGUMENT (sym))
6174 arg_sym = sym;
6175 else
6176 {
6177 found_sym = 1;
6178 add_defn_to_vec (obstackp,
6179 fixup_symbol_section (sym, objfile),
6180 block);
6181 }
6182 }
6183 }
6184 }
6185 }
6186
6187 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6188 They aren't parameters, right? */
6189 if (!found_sym && arg_sym != NULL)
6190 {
6191 add_defn_to_vec (obstackp,
6192 fixup_symbol_section (arg_sym, objfile),
6193 block);
6194 }
6195 }
6196 }
6197 \f
6198
6199 /* Symbol Completion */
6200
6201 /* See symtab.h. */
6202
6203 bool
6204 ada_lookup_name_info::matches
6205 (const char *sym_name,
6206 symbol_name_match_type match_type,
6207 completion_match_result *comp_match_res) const
6208 {
6209 bool match = false;
6210 const char *text = m_encoded_name.c_str ();
6211 size_t text_len = m_encoded_name.size ();
6212
6213 /* First, test against the fully qualified name of the symbol. */
6214
6215 if (strncmp (sym_name, text, text_len) == 0)
6216 match = true;
6217
6218 std::string decoded_name = ada_decode (sym_name);
6219 if (match && !m_encoded_p)
6220 {
6221 /* One needed check before declaring a positive match is to verify
6222 that iff we are doing a verbatim match, the decoded version
6223 of the symbol name starts with '<'. Otherwise, this symbol name
6224 is not a suitable completion. */
6225
6226 bool has_angle_bracket = (decoded_name[0] == '<');
6227 match = (has_angle_bracket == m_verbatim_p);
6228 }
6229
6230 if (match && !m_verbatim_p)
6231 {
6232 /* When doing non-verbatim match, another check that needs to
6233 be done is to verify that the potentially matching symbol name
6234 does not include capital letters, because the ada-mode would
6235 not be able to understand these symbol names without the
6236 angle bracket notation. */
6237 const char *tmp;
6238
6239 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6240 if (*tmp != '\0')
6241 match = false;
6242 }
6243
6244 /* Second: Try wild matching... */
6245
6246 if (!match && m_wild_match_p)
6247 {
6248 /* Since we are doing wild matching, this means that TEXT
6249 may represent an unqualified symbol name. We therefore must
6250 also compare TEXT against the unqualified name of the symbol. */
6251 sym_name = ada_unqualified_name (decoded_name.c_str ());
6252
6253 if (strncmp (sym_name, text, text_len) == 0)
6254 match = true;
6255 }
6256
6257 /* Finally: If we found a match, prepare the result to return. */
6258
6259 if (!match)
6260 return false;
6261
6262 if (comp_match_res != NULL)
6263 {
6264 std::string &match_str = comp_match_res->match.storage ();
6265
6266 if (!m_encoded_p)
6267 match_str = ada_decode (sym_name);
6268 else
6269 {
6270 if (m_verbatim_p)
6271 match_str = add_angle_brackets (sym_name);
6272 else
6273 match_str = sym_name;
6274
6275 }
6276
6277 comp_match_res->set_match (match_str.c_str ());
6278 }
6279
6280 return true;
6281 }
6282
6283 /* Field Access */
6284
6285 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6286 for tagged types. */
6287
6288 static int
6289 ada_is_dispatch_table_ptr_type (struct type *type)
6290 {
6291 const char *name;
6292
6293 if (type->code () != TYPE_CODE_PTR)
6294 return 0;
6295
6296 name = TYPE_TARGET_TYPE (type)->name ();
6297 if (name == NULL)
6298 return 0;
6299
6300 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6301 }
6302
6303 /* Return non-zero if TYPE is an interface tag. */
6304
6305 static int
6306 ada_is_interface_tag (struct type *type)
6307 {
6308 const char *name = type->name ();
6309
6310 if (name == NULL)
6311 return 0;
6312
6313 return (strcmp (name, "ada__tags__interface_tag") == 0);
6314 }
6315
6316 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6317 to be invisible to users. */
6318
6319 int
6320 ada_is_ignored_field (struct type *type, int field_num)
6321 {
6322 if (field_num < 0 || field_num > type->num_fields ())
6323 return 1;
6324
6325 /* Check the name of that field. */
6326 {
6327 const char *name = TYPE_FIELD_NAME (type, field_num);
6328
6329 /* Anonymous field names should not be printed.
6330 brobecker/2007-02-20: I don't think this can actually happen
6331 but we don't want to print the value of anonymous fields anyway. */
6332 if (name == NULL)
6333 return 1;
6334
6335 /* Normally, fields whose name start with an underscore ("_")
6336 are fields that have been internally generated by the compiler,
6337 and thus should not be printed. The "_parent" field is special,
6338 however: This is a field internally generated by the compiler
6339 for tagged types, and it contains the components inherited from
6340 the parent type. This field should not be printed as is, but
6341 should not be ignored either. */
6342 if (name[0] == '_' && !startswith (name, "_parent"))
6343 return 1;
6344 }
6345
6346 /* If this is the dispatch table of a tagged type or an interface tag,
6347 then ignore. */
6348 if (ada_is_tagged_type (type, 1)
6349 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6350 || ada_is_interface_tag (type->field (field_num).type ())))
6351 return 1;
6352
6353 /* Not a special field, so it should not be ignored. */
6354 return 0;
6355 }
6356
6357 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6358 pointer or reference type whose ultimate target has a tag field. */
6359
6360 int
6361 ada_is_tagged_type (struct type *type, int refok)
6362 {
6363 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6364 }
6365
6366 /* True iff TYPE represents the type of X'Tag */
6367
6368 int
6369 ada_is_tag_type (struct type *type)
6370 {
6371 type = ada_check_typedef (type);
6372
6373 if (type == NULL || type->code () != TYPE_CODE_PTR)
6374 return 0;
6375 else
6376 {
6377 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6378
6379 return (name != NULL
6380 && strcmp (name, "ada__tags__dispatch_table") == 0);
6381 }
6382 }
6383
6384 /* The type of the tag on VAL. */
6385
6386 static struct type *
6387 ada_tag_type (struct value *val)
6388 {
6389 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6390 }
6391
6392 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6393 retired at Ada 05). */
6394
6395 static int
6396 is_ada95_tag (struct value *tag)
6397 {
6398 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6399 }
6400
6401 /* The value of the tag on VAL. */
6402
6403 static struct value *
6404 ada_value_tag (struct value *val)
6405 {
6406 return ada_value_struct_elt (val, "_tag", 0);
6407 }
6408
6409 /* The value of the tag on the object of type TYPE whose contents are
6410 saved at VALADDR, if it is non-null, or is at memory address
6411 ADDRESS. */
6412
6413 static struct value *
6414 value_tag_from_contents_and_address (struct type *type,
6415 const gdb_byte *valaddr,
6416 CORE_ADDR address)
6417 {
6418 int tag_byte_offset;
6419 struct type *tag_type;
6420
6421 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6422 NULL, NULL, NULL))
6423 {
6424 const gdb_byte *valaddr1 = ((valaddr == NULL)
6425 ? NULL
6426 : valaddr + tag_byte_offset);
6427 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6428
6429 return value_from_contents_and_address (tag_type, valaddr1, address1);
6430 }
6431 return NULL;
6432 }
6433
6434 static struct type *
6435 type_from_tag (struct value *tag)
6436 {
6437 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6438
6439 if (type_name != NULL)
6440 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6441 return NULL;
6442 }
6443
6444 /* Given a value OBJ of a tagged type, return a value of this
6445 type at the base address of the object. The base address, as
6446 defined in Ada.Tags, it is the address of the primary tag of
6447 the object, and therefore where the field values of its full
6448 view can be fetched. */
6449
6450 struct value *
6451 ada_tag_value_at_base_address (struct value *obj)
6452 {
6453 struct value *val;
6454 LONGEST offset_to_top = 0;
6455 struct type *ptr_type, *obj_type;
6456 struct value *tag;
6457 CORE_ADDR base_address;
6458
6459 obj_type = value_type (obj);
6460
6461 /* It is the responsability of the caller to deref pointers. */
6462
6463 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6464 return obj;
6465
6466 tag = ada_value_tag (obj);
6467 if (!tag)
6468 return obj;
6469
6470 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6471
6472 if (is_ada95_tag (tag))
6473 return obj;
6474
6475 ptr_type = language_lookup_primitive_type
6476 (language_def (language_ada), target_gdbarch(), "storage_offset");
6477 ptr_type = lookup_pointer_type (ptr_type);
6478 val = value_cast (ptr_type, tag);
6479 if (!val)
6480 return obj;
6481
6482 /* It is perfectly possible that an exception be raised while
6483 trying to determine the base address, just like for the tag;
6484 see ada_tag_name for more details. We do not print the error
6485 message for the same reason. */
6486
6487 try
6488 {
6489 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6490 }
6491
6492 catch (const gdb_exception_error &e)
6493 {
6494 return obj;
6495 }
6496
6497 /* If offset is null, nothing to do. */
6498
6499 if (offset_to_top == 0)
6500 return obj;
6501
6502 /* -1 is a special case in Ada.Tags; however, what should be done
6503 is not quite clear from the documentation. So do nothing for
6504 now. */
6505
6506 if (offset_to_top == -1)
6507 return obj;
6508
6509 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6510 from the base address. This was however incompatible with
6511 C++ dispatch table: C++ uses a *negative* value to *add*
6512 to the base address. Ada's convention has therefore been
6513 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6514 use the same convention. Here, we support both cases by
6515 checking the sign of OFFSET_TO_TOP. */
6516
6517 if (offset_to_top > 0)
6518 offset_to_top = -offset_to_top;
6519
6520 base_address = value_address (obj) + offset_to_top;
6521 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6522
6523 /* Make sure that we have a proper tag at the new address.
6524 Otherwise, offset_to_top is bogus (which can happen when
6525 the object is not initialized yet). */
6526
6527 if (!tag)
6528 return obj;
6529
6530 obj_type = type_from_tag (tag);
6531
6532 if (!obj_type)
6533 return obj;
6534
6535 return value_from_contents_and_address (obj_type, NULL, base_address);
6536 }
6537
6538 /* Return the "ada__tags__type_specific_data" type. */
6539
6540 static struct type *
6541 ada_get_tsd_type (struct inferior *inf)
6542 {
6543 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6544
6545 if (data->tsd_type == 0)
6546 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6547 return data->tsd_type;
6548 }
6549
6550 /* Return the TSD (type-specific data) associated to the given TAG.
6551 TAG is assumed to be the tag of a tagged-type entity.
6552
6553 May return NULL if we are unable to get the TSD. */
6554
6555 static struct value *
6556 ada_get_tsd_from_tag (struct value *tag)
6557 {
6558 struct value *val;
6559 struct type *type;
6560
6561 /* First option: The TSD is simply stored as a field of our TAG.
6562 Only older versions of GNAT would use this format, but we have
6563 to test it first, because there are no visible markers for
6564 the current approach except the absence of that field. */
6565
6566 val = ada_value_struct_elt (tag, "tsd", 1);
6567 if (val)
6568 return val;
6569
6570 /* Try the second representation for the dispatch table (in which
6571 there is no explicit 'tsd' field in the referent of the tag pointer,
6572 and instead the tsd pointer is stored just before the dispatch
6573 table. */
6574
6575 type = ada_get_tsd_type (current_inferior());
6576 if (type == NULL)
6577 return NULL;
6578 type = lookup_pointer_type (lookup_pointer_type (type));
6579 val = value_cast (type, tag);
6580 if (val == NULL)
6581 return NULL;
6582 return value_ind (value_ptradd (val, -1));
6583 }
6584
6585 /* Given the TSD of a tag (type-specific data), return a string
6586 containing the name of the associated type.
6587
6588 May return NULL if we are unable to determine the tag name. */
6589
6590 static gdb::unique_xmalloc_ptr<char>
6591 ada_tag_name_from_tsd (struct value *tsd)
6592 {
6593 char *p;
6594 struct value *val;
6595
6596 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6597 if (val == NULL)
6598 return NULL;
6599 gdb::unique_xmalloc_ptr<char> buffer
6600 = target_read_string (value_as_address (val), INT_MAX);
6601 if (buffer == nullptr)
6602 return nullptr;
6603
6604 for (p = buffer.get (); *p != '\0'; ++p)
6605 {
6606 if (isalpha (*p))
6607 *p = tolower (*p);
6608 }
6609
6610 return buffer;
6611 }
6612
6613 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6614 a C string.
6615
6616 Return NULL if the TAG is not an Ada tag, or if we were unable to
6617 determine the name of that tag. */
6618
6619 gdb::unique_xmalloc_ptr<char>
6620 ada_tag_name (struct value *tag)
6621 {
6622 gdb::unique_xmalloc_ptr<char> name;
6623
6624 if (!ada_is_tag_type (value_type (tag)))
6625 return NULL;
6626
6627 /* It is perfectly possible that an exception be raised while trying
6628 to determine the TAG's name, even under normal circumstances:
6629 The associated variable may be uninitialized or corrupted, for
6630 instance. We do not let any exception propagate past this point.
6631 instead we return NULL.
6632
6633 We also do not print the error message either (which often is very
6634 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6635 the caller print a more meaningful message if necessary. */
6636 try
6637 {
6638 struct value *tsd = ada_get_tsd_from_tag (tag);
6639
6640 if (tsd != NULL)
6641 name = ada_tag_name_from_tsd (tsd);
6642 }
6643 catch (const gdb_exception_error &e)
6644 {
6645 }
6646
6647 return name;
6648 }
6649
6650 /* The parent type of TYPE, or NULL if none. */
6651
6652 struct type *
6653 ada_parent_type (struct type *type)
6654 {
6655 int i;
6656
6657 type = ada_check_typedef (type);
6658
6659 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6660 return NULL;
6661
6662 for (i = 0; i < type->num_fields (); i += 1)
6663 if (ada_is_parent_field (type, i))
6664 {
6665 struct type *parent_type = type->field (i).type ();
6666
6667 /* If the _parent field is a pointer, then dereference it. */
6668 if (parent_type->code () == TYPE_CODE_PTR)
6669 parent_type = TYPE_TARGET_TYPE (parent_type);
6670 /* If there is a parallel XVS type, get the actual base type. */
6671 parent_type = ada_get_base_type (parent_type);
6672
6673 return ada_check_typedef (parent_type);
6674 }
6675
6676 return NULL;
6677 }
6678
6679 /* True iff field number FIELD_NUM of structure type TYPE contains the
6680 parent-type (inherited) fields of a derived type. Assumes TYPE is
6681 a structure type with at least FIELD_NUM+1 fields. */
6682
6683 int
6684 ada_is_parent_field (struct type *type, int field_num)
6685 {
6686 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6687
6688 return (name != NULL
6689 && (startswith (name, "PARENT")
6690 || startswith (name, "_parent")));
6691 }
6692
6693 /* True iff field number FIELD_NUM of structure type TYPE is a
6694 transparent wrapper field (which should be silently traversed when doing
6695 field selection and flattened when printing). Assumes TYPE is a
6696 structure type with at least FIELD_NUM+1 fields. Such fields are always
6697 structures. */
6698
6699 int
6700 ada_is_wrapper_field (struct type *type, int field_num)
6701 {
6702 const char *name = TYPE_FIELD_NAME (type, field_num);
6703
6704 if (name != NULL && strcmp (name, "RETVAL") == 0)
6705 {
6706 /* This happens in functions with "out" or "in out" parameters
6707 which are passed by copy. For such functions, GNAT describes
6708 the function's return type as being a struct where the return
6709 value is in a field called RETVAL, and where the other "out"
6710 or "in out" parameters are fields of that struct. This is not
6711 a wrapper. */
6712 return 0;
6713 }
6714
6715 return (name != NULL
6716 && (startswith (name, "PARENT")
6717 || strcmp (name, "REP") == 0
6718 || startswith (name, "_parent")
6719 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6720 }
6721
6722 /* True iff field number FIELD_NUM of structure or union type TYPE
6723 is a variant wrapper. Assumes TYPE is a structure type with at least
6724 FIELD_NUM+1 fields. */
6725
6726 int
6727 ada_is_variant_part (struct type *type, int field_num)
6728 {
6729 /* Only Ada types are eligible. */
6730 if (!ADA_TYPE_P (type))
6731 return 0;
6732
6733 struct type *field_type = type->field (field_num).type ();
6734
6735 return (field_type->code () == TYPE_CODE_UNION
6736 || (is_dynamic_field (type, field_num)
6737 && (TYPE_TARGET_TYPE (field_type)->code ()
6738 == TYPE_CODE_UNION)));
6739 }
6740
6741 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6742 whose discriminants are contained in the record type OUTER_TYPE,
6743 returns the type of the controlling discriminant for the variant.
6744 May return NULL if the type could not be found. */
6745
6746 struct type *
6747 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6748 {
6749 const char *name = ada_variant_discrim_name (var_type);
6750
6751 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6752 }
6753
6754 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6755 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6756 represents a 'when others' clause; otherwise 0. */
6757
6758 static int
6759 ada_is_others_clause (struct type *type, int field_num)
6760 {
6761 const char *name = TYPE_FIELD_NAME (type, field_num);
6762
6763 return (name != NULL && name[0] == 'O');
6764 }
6765
6766 /* Assuming that TYPE0 is the type of the variant part of a record,
6767 returns the name of the discriminant controlling the variant.
6768 The value is valid until the next call to ada_variant_discrim_name. */
6769
6770 const char *
6771 ada_variant_discrim_name (struct type *type0)
6772 {
6773 static char *result = NULL;
6774 static size_t result_len = 0;
6775 struct type *type;
6776 const char *name;
6777 const char *discrim_end;
6778 const char *discrim_start;
6779
6780 if (type0->code () == TYPE_CODE_PTR)
6781 type = TYPE_TARGET_TYPE (type0);
6782 else
6783 type = type0;
6784
6785 name = ada_type_name (type);
6786
6787 if (name == NULL || name[0] == '\000')
6788 return "";
6789
6790 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6791 discrim_end -= 1)
6792 {
6793 if (startswith (discrim_end, "___XVN"))
6794 break;
6795 }
6796 if (discrim_end == name)
6797 return "";
6798
6799 for (discrim_start = discrim_end; discrim_start != name + 3;
6800 discrim_start -= 1)
6801 {
6802 if (discrim_start == name + 1)
6803 return "";
6804 if ((discrim_start > name + 3
6805 && startswith (discrim_start - 3, "___"))
6806 || discrim_start[-1] == '.')
6807 break;
6808 }
6809
6810 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6811 strncpy (result, discrim_start, discrim_end - discrim_start);
6812 result[discrim_end - discrim_start] = '\0';
6813 return result;
6814 }
6815
6816 /* Scan STR for a subtype-encoded number, beginning at position K.
6817 Put the position of the character just past the number scanned in
6818 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6819 Return 1 if there was a valid number at the given position, and 0
6820 otherwise. A "subtype-encoded" number consists of the absolute value
6821 in decimal, followed by the letter 'm' to indicate a negative number.
6822 Assumes 0m does not occur. */
6823
6824 int
6825 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6826 {
6827 ULONGEST RU;
6828
6829 if (!isdigit (str[k]))
6830 return 0;
6831
6832 /* Do it the hard way so as not to make any assumption about
6833 the relationship of unsigned long (%lu scan format code) and
6834 LONGEST. */
6835 RU = 0;
6836 while (isdigit (str[k]))
6837 {
6838 RU = RU * 10 + (str[k] - '0');
6839 k += 1;
6840 }
6841
6842 if (str[k] == 'm')
6843 {
6844 if (R != NULL)
6845 *R = (-(LONGEST) (RU - 1)) - 1;
6846 k += 1;
6847 }
6848 else if (R != NULL)
6849 *R = (LONGEST) RU;
6850
6851 /* NOTE on the above: Technically, C does not say what the results of
6852 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6853 number representable as a LONGEST (although either would probably work
6854 in most implementations). When RU>0, the locution in the then branch
6855 above is always equivalent to the negative of RU. */
6856
6857 if (new_k != NULL)
6858 *new_k = k;
6859 return 1;
6860 }
6861
6862 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6863 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6864 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6865
6866 static int
6867 ada_in_variant (LONGEST val, struct type *type, int field_num)
6868 {
6869 const char *name = TYPE_FIELD_NAME (type, field_num);
6870 int p;
6871
6872 p = 0;
6873 while (1)
6874 {
6875 switch (name[p])
6876 {
6877 case '\0':
6878 return 0;
6879 case 'S':
6880 {
6881 LONGEST W;
6882
6883 if (!ada_scan_number (name, p + 1, &W, &p))
6884 return 0;
6885 if (val == W)
6886 return 1;
6887 break;
6888 }
6889 case 'R':
6890 {
6891 LONGEST L, U;
6892
6893 if (!ada_scan_number (name, p + 1, &L, &p)
6894 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6895 return 0;
6896 if (val >= L && val <= U)
6897 return 1;
6898 break;
6899 }
6900 case 'O':
6901 return 1;
6902 default:
6903 return 0;
6904 }
6905 }
6906 }
6907
6908 /* FIXME: Lots of redundancy below. Try to consolidate. */
6909
6910 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6911 ARG_TYPE, extract and return the value of one of its (non-static)
6912 fields. FIELDNO says which field. Differs from value_primitive_field
6913 only in that it can handle packed values of arbitrary type. */
6914
6915 struct value *
6916 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6917 struct type *arg_type)
6918 {
6919 struct type *type;
6920
6921 arg_type = ada_check_typedef (arg_type);
6922 type = arg_type->field (fieldno).type ();
6923
6924 /* Handle packed fields. It might be that the field is not packed
6925 relative to its containing structure, but the structure itself is
6926 packed; in this case we must take the bit-field path. */
6927 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6928 {
6929 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6930 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6931
6932 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6933 offset + bit_pos / 8,
6934 bit_pos % 8, bit_size, type);
6935 }
6936 else
6937 return value_primitive_field (arg1, offset, fieldno, arg_type);
6938 }
6939
6940 /* Find field with name NAME in object of type TYPE. If found,
6941 set the following for each argument that is non-null:
6942 - *FIELD_TYPE_P to the field's type;
6943 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6944 an object of that type;
6945 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6946 - *BIT_SIZE_P to its size in bits if the field is packed, and
6947 0 otherwise;
6948 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6949 fields up to but not including the desired field, or by the total
6950 number of fields if not found. A NULL value of NAME never
6951 matches; the function just counts visible fields in this case.
6952
6953 Notice that we need to handle when a tagged record hierarchy
6954 has some components with the same name, like in this scenario:
6955
6956 type Top_T is tagged record
6957 N : Integer := 1;
6958 U : Integer := 974;
6959 A : Integer := 48;
6960 end record;
6961
6962 type Middle_T is new Top.Top_T with record
6963 N : Character := 'a';
6964 C : Integer := 3;
6965 end record;
6966
6967 type Bottom_T is new Middle.Middle_T with record
6968 N : Float := 4.0;
6969 C : Character := '5';
6970 X : Integer := 6;
6971 A : Character := 'J';
6972 end record;
6973
6974 Let's say we now have a variable declared and initialized as follow:
6975
6976 TC : Top_A := new Bottom_T;
6977
6978 And then we use this variable to call this function
6979
6980 procedure Assign (Obj: in out Top_T; TV : Integer);
6981
6982 as follow:
6983
6984 Assign (Top_T (B), 12);
6985
6986 Now, we're in the debugger, and we're inside that procedure
6987 then and we want to print the value of obj.c:
6988
6989 Usually, the tagged record or one of the parent type owns the
6990 component to print and there's no issue but in this particular
6991 case, what does it mean to ask for Obj.C? Since the actual
6992 type for object is type Bottom_T, it could mean two things: type
6993 component C from the Middle_T view, but also component C from
6994 Bottom_T. So in that "undefined" case, when the component is
6995 not found in the non-resolved type (which includes all the
6996 components of the parent type), then resolve it and see if we
6997 get better luck once expanded.
6998
6999 In the case of homonyms in the derived tagged type, we don't
7000 guaranty anything, and pick the one that's easiest for us
7001 to program.
7002
7003 Returns 1 if found, 0 otherwise. */
7004
7005 static int
7006 find_struct_field (const char *name, struct type *type, int offset,
7007 struct type **field_type_p,
7008 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7009 int *index_p)
7010 {
7011 int i;
7012 int parent_offset = -1;
7013
7014 type = ada_check_typedef (type);
7015
7016 if (field_type_p != NULL)
7017 *field_type_p = NULL;
7018 if (byte_offset_p != NULL)
7019 *byte_offset_p = 0;
7020 if (bit_offset_p != NULL)
7021 *bit_offset_p = 0;
7022 if (bit_size_p != NULL)
7023 *bit_size_p = 0;
7024
7025 for (i = 0; i < type->num_fields (); i += 1)
7026 {
7027 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7028 int fld_offset = offset + bit_pos / 8;
7029 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7030
7031 if (t_field_name == NULL)
7032 continue;
7033
7034 else if (ada_is_parent_field (type, i))
7035 {
7036 /* This is a field pointing us to the parent type of a tagged
7037 type. As hinted in this function's documentation, we give
7038 preference to fields in the current record first, so what
7039 we do here is just record the index of this field before
7040 we skip it. If it turns out we couldn't find our field
7041 in the current record, then we'll get back to it and search
7042 inside it whether the field might exist in the parent. */
7043
7044 parent_offset = i;
7045 continue;
7046 }
7047
7048 else if (name != NULL && field_name_match (t_field_name, name))
7049 {
7050 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7051
7052 if (field_type_p != NULL)
7053 *field_type_p = type->field (i).type ();
7054 if (byte_offset_p != NULL)
7055 *byte_offset_p = fld_offset;
7056 if (bit_offset_p != NULL)
7057 *bit_offset_p = bit_pos % 8;
7058 if (bit_size_p != NULL)
7059 *bit_size_p = bit_size;
7060 return 1;
7061 }
7062 else if (ada_is_wrapper_field (type, i))
7063 {
7064 if (find_struct_field (name, type->field (i).type (), fld_offset,
7065 field_type_p, byte_offset_p, bit_offset_p,
7066 bit_size_p, index_p))
7067 return 1;
7068 }
7069 else if (ada_is_variant_part (type, i))
7070 {
7071 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7072 fixed type?? */
7073 int j;
7074 struct type *field_type
7075 = ada_check_typedef (type->field (i).type ());
7076
7077 for (j = 0; j < field_type->num_fields (); j += 1)
7078 {
7079 if (find_struct_field (name, field_type->field (j).type (),
7080 fld_offset
7081 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7082 field_type_p, byte_offset_p,
7083 bit_offset_p, bit_size_p, index_p))
7084 return 1;
7085 }
7086 }
7087 else if (index_p != NULL)
7088 *index_p += 1;
7089 }
7090
7091 /* Field not found so far. If this is a tagged type which
7092 has a parent, try finding that field in the parent now. */
7093
7094 if (parent_offset != -1)
7095 {
7096 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7097 int fld_offset = offset + bit_pos / 8;
7098
7099 if (find_struct_field (name, type->field (parent_offset).type (),
7100 fld_offset, field_type_p, byte_offset_p,
7101 bit_offset_p, bit_size_p, index_p))
7102 return 1;
7103 }
7104
7105 return 0;
7106 }
7107
7108 /* Number of user-visible fields in record type TYPE. */
7109
7110 static int
7111 num_visible_fields (struct type *type)
7112 {
7113 int n;
7114
7115 n = 0;
7116 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7117 return n;
7118 }
7119
7120 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7121 and search in it assuming it has (class) type TYPE.
7122 If found, return value, else return NULL.
7123
7124 Searches recursively through wrapper fields (e.g., '_parent').
7125
7126 In the case of homonyms in the tagged types, please refer to the
7127 long explanation in find_struct_field's function documentation. */
7128
7129 static struct value *
7130 ada_search_struct_field (const char *name, struct value *arg, int offset,
7131 struct type *type)
7132 {
7133 int i;
7134 int parent_offset = -1;
7135
7136 type = ada_check_typedef (type);
7137 for (i = 0; i < type->num_fields (); i += 1)
7138 {
7139 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7140
7141 if (t_field_name == NULL)
7142 continue;
7143
7144 else if (ada_is_parent_field (type, i))
7145 {
7146 /* This is a field pointing us to the parent type of a tagged
7147 type. As hinted in this function's documentation, we give
7148 preference to fields in the current record first, so what
7149 we do here is just record the index of this field before
7150 we skip it. If it turns out we couldn't find our field
7151 in the current record, then we'll get back to it and search
7152 inside it whether the field might exist in the parent. */
7153
7154 parent_offset = i;
7155 continue;
7156 }
7157
7158 else if (field_name_match (t_field_name, name))
7159 return ada_value_primitive_field (arg, offset, i, type);
7160
7161 else if (ada_is_wrapper_field (type, i))
7162 {
7163 struct value *v = /* Do not let indent join lines here. */
7164 ada_search_struct_field (name, arg,
7165 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7166 type->field (i).type ());
7167
7168 if (v != NULL)
7169 return v;
7170 }
7171
7172 else if (ada_is_variant_part (type, i))
7173 {
7174 /* PNH: Do we ever get here? See find_struct_field. */
7175 int j;
7176 struct type *field_type = ada_check_typedef (type->field (i).type ());
7177 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7178
7179 for (j = 0; j < field_type->num_fields (); j += 1)
7180 {
7181 struct value *v = ada_search_struct_field /* Force line
7182 break. */
7183 (name, arg,
7184 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7185 field_type->field (j).type ());
7186
7187 if (v != NULL)
7188 return v;
7189 }
7190 }
7191 }
7192
7193 /* Field not found so far. If this is a tagged type which
7194 has a parent, try finding that field in the parent now. */
7195
7196 if (parent_offset != -1)
7197 {
7198 struct value *v = ada_search_struct_field (
7199 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7200 type->field (parent_offset).type ());
7201
7202 if (v != NULL)
7203 return v;
7204 }
7205
7206 return NULL;
7207 }
7208
7209 static struct value *ada_index_struct_field_1 (int *, struct value *,
7210 int, struct type *);
7211
7212
7213 /* Return field #INDEX in ARG, where the index is that returned by
7214 * find_struct_field through its INDEX_P argument. Adjust the address
7215 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7216 * If found, return value, else return NULL. */
7217
7218 static struct value *
7219 ada_index_struct_field (int index, struct value *arg, int offset,
7220 struct type *type)
7221 {
7222 return ada_index_struct_field_1 (&index, arg, offset, type);
7223 }
7224
7225
7226 /* Auxiliary function for ada_index_struct_field. Like
7227 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7228 * *INDEX_P. */
7229
7230 static struct value *
7231 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7232 struct type *type)
7233 {
7234 int i;
7235 type = ada_check_typedef (type);
7236
7237 for (i = 0; i < type->num_fields (); i += 1)
7238 {
7239 if (TYPE_FIELD_NAME (type, i) == NULL)
7240 continue;
7241 else if (ada_is_wrapper_field (type, i))
7242 {
7243 struct value *v = /* Do not let indent join lines here. */
7244 ada_index_struct_field_1 (index_p, arg,
7245 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7246 type->field (i).type ());
7247
7248 if (v != NULL)
7249 return v;
7250 }
7251
7252 else if (ada_is_variant_part (type, i))
7253 {
7254 /* PNH: Do we ever get here? See ada_search_struct_field,
7255 find_struct_field. */
7256 error (_("Cannot assign this kind of variant record"));
7257 }
7258 else if (*index_p == 0)
7259 return ada_value_primitive_field (arg, offset, i, type);
7260 else
7261 *index_p -= 1;
7262 }
7263 return NULL;
7264 }
7265
7266 /* Return a string representation of type TYPE. */
7267
7268 static std::string
7269 type_as_string (struct type *type)
7270 {
7271 string_file tmp_stream;
7272
7273 type_print (type, "", &tmp_stream, -1);
7274
7275 return std::move (tmp_stream.string ());
7276 }
7277
7278 /* Given a type TYPE, look up the type of the component of type named NAME.
7279 If DISPP is non-null, add its byte displacement from the beginning of a
7280 structure (pointed to by a value) of type TYPE to *DISPP (does not
7281 work for packed fields).
7282
7283 Matches any field whose name has NAME as a prefix, possibly
7284 followed by "___".
7285
7286 TYPE can be either a struct or union. If REFOK, TYPE may also
7287 be a (pointer or reference)+ to a struct or union, and the
7288 ultimate target type will be searched.
7289
7290 Looks recursively into variant clauses and parent types.
7291
7292 In the case of homonyms in the tagged types, please refer to the
7293 long explanation in find_struct_field's function documentation.
7294
7295 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7296 TYPE is not a type of the right kind. */
7297
7298 static struct type *
7299 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7300 int noerr)
7301 {
7302 int i;
7303 int parent_offset = -1;
7304
7305 if (name == NULL)
7306 goto BadName;
7307
7308 if (refok && type != NULL)
7309 while (1)
7310 {
7311 type = ada_check_typedef (type);
7312 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7313 break;
7314 type = TYPE_TARGET_TYPE (type);
7315 }
7316
7317 if (type == NULL
7318 || (type->code () != TYPE_CODE_STRUCT
7319 && type->code () != TYPE_CODE_UNION))
7320 {
7321 if (noerr)
7322 return NULL;
7323
7324 error (_("Type %s is not a structure or union type"),
7325 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7326 }
7327
7328 type = to_static_fixed_type (type);
7329
7330 for (i = 0; i < type->num_fields (); i += 1)
7331 {
7332 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7333 struct type *t;
7334
7335 if (t_field_name == NULL)
7336 continue;
7337
7338 else if (ada_is_parent_field (type, i))
7339 {
7340 /* This is a field pointing us to the parent type of a tagged
7341 type. As hinted in this function's documentation, we give
7342 preference to fields in the current record first, so what
7343 we do here is just record the index of this field before
7344 we skip it. If it turns out we couldn't find our field
7345 in the current record, then we'll get back to it and search
7346 inside it whether the field might exist in the parent. */
7347
7348 parent_offset = i;
7349 continue;
7350 }
7351
7352 else if (field_name_match (t_field_name, name))
7353 return type->field (i).type ();
7354
7355 else if (ada_is_wrapper_field (type, i))
7356 {
7357 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7358 0, 1);
7359 if (t != NULL)
7360 return t;
7361 }
7362
7363 else if (ada_is_variant_part (type, i))
7364 {
7365 int j;
7366 struct type *field_type = ada_check_typedef (type->field (i).type ());
7367
7368 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7369 {
7370 /* FIXME pnh 2008/01/26: We check for a field that is
7371 NOT wrapped in a struct, since the compiler sometimes
7372 generates these for unchecked variant types. Revisit
7373 if the compiler changes this practice. */
7374 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7375
7376 if (v_field_name != NULL
7377 && field_name_match (v_field_name, name))
7378 t = field_type->field (j).type ();
7379 else
7380 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
7381 name, 0, 1);
7382
7383 if (t != NULL)
7384 return t;
7385 }
7386 }
7387
7388 }
7389
7390 /* Field not found so far. If this is a tagged type which
7391 has a parent, try finding that field in the parent now. */
7392
7393 if (parent_offset != -1)
7394 {
7395 struct type *t;
7396
7397 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7398 name, 0, 1);
7399 if (t != NULL)
7400 return t;
7401 }
7402
7403 BadName:
7404 if (!noerr)
7405 {
7406 const char *name_str = name != NULL ? name : _("<null>");
7407
7408 error (_("Type %s has no component named %s"),
7409 type_as_string (type).c_str (), name_str);
7410 }
7411
7412 return NULL;
7413 }
7414
7415 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7416 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7417 represents an unchecked union (that is, the variant part of a
7418 record that is named in an Unchecked_Union pragma). */
7419
7420 static int
7421 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7422 {
7423 const char *discrim_name = ada_variant_discrim_name (var_type);
7424
7425 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7426 }
7427
7428
7429 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7430 within OUTER, determine which variant clause (field number in VAR_TYPE,
7431 numbering from 0) is applicable. Returns -1 if none are. */
7432
7433 int
7434 ada_which_variant_applies (struct type *var_type, struct value *outer)
7435 {
7436 int others_clause;
7437 int i;
7438 const char *discrim_name = ada_variant_discrim_name (var_type);
7439 struct value *discrim;
7440 LONGEST discrim_val;
7441
7442 /* Using plain value_from_contents_and_address here causes problems
7443 because we will end up trying to resolve a type that is currently
7444 being constructed. */
7445 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7446 if (discrim == NULL)
7447 return -1;
7448 discrim_val = value_as_long (discrim);
7449
7450 others_clause = -1;
7451 for (i = 0; i < var_type->num_fields (); i += 1)
7452 {
7453 if (ada_is_others_clause (var_type, i))
7454 others_clause = i;
7455 else if (ada_in_variant (discrim_val, var_type, i))
7456 return i;
7457 }
7458
7459 return others_clause;
7460 }
7461 \f
7462
7463
7464 /* Dynamic-Sized Records */
7465
7466 /* Strategy: The type ostensibly attached to a value with dynamic size
7467 (i.e., a size that is not statically recorded in the debugging
7468 data) does not accurately reflect the size or layout of the value.
7469 Our strategy is to convert these values to values with accurate,
7470 conventional types that are constructed on the fly. */
7471
7472 /* There is a subtle and tricky problem here. In general, we cannot
7473 determine the size of dynamic records without its data. However,
7474 the 'struct value' data structure, which GDB uses to represent
7475 quantities in the inferior process (the target), requires the size
7476 of the type at the time of its allocation in order to reserve space
7477 for GDB's internal copy of the data. That's why the
7478 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7479 rather than struct value*s.
7480
7481 However, GDB's internal history variables ($1, $2, etc.) are
7482 struct value*s containing internal copies of the data that are not, in
7483 general, the same as the data at their corresponding addresses in
7484 the target. Fortunately, the types we give to these values are all
7485 conventional, fixed-size types (as per the strategy described
7486 above), so that we don't usually have to perform the
7487 'to_fixed_xxx_type' conversions to look at their values.
7488 Unfortunately, there is one exception: if one of the internal
7489 history variables is an array whose elements are unconstrained
7490 records, then we will need to create distinct fixed types for each
7491 element selected. */
7492
7493 /* The upshot of all of this is that many routines take a (type, host
7494 address, target address) triple as arguments to represent a value.
7495 The host address, if non-null, is supposed to contain an internal
7496 copy of the relevant data; otherwise, the program is to consult the
7497 target at the target address. */
7498
7499 /* Assuming that VAL0 represents a pointer value, the result of
7500 dereferencing it. Differs from value_ind in its treatment of
7501 dynamic-sized types. */
7502
7503 struct value *
7504 ada_value_ind (struct value *val0)
7505 {
7506 struct value *val = value_ind (val0);
7507
7508 if (ada_is_tagged_type (value_type (val), 0))
7509 val = ada_tag_value_at_base_address (val);
7510
7511 return ada_to_fixed_value (val);
7512 }
7513
7514 /* The value resulting from dereferencing any "reference to"
7515 qualifiers on VAL0. */
7516
7517 static struct value *
7518 ada_coerce_ref (struct value *val0)
7519 {
7520 if (value_type (val0)->code () == TYPE_CODE_REF)
7521 {
7522 struct value *val = val0;
7523
7524 val = coerce_ref (val);
7525
7526 if (ada_is_tagged_type (value_type (val), 0))
7527 val = ada_tag_value_at_base_address (val);
7528
7529 return ada_to_fixed_value (val);
7530 }
7531 else
7532 return val0;
7533 }
7534
7535 /* Return the bit alignment required for field #F of template type TYPE. */
7536
7537 static unsigned int
7538 field_alignment (struct type *type, int f)
7539 {
7540 const char *name = TYPE_FIELD_NAME (type, f);
7541 int len;
7542 int align_offset;
7543
7544 /* The field name should never be null, unless the debugging information
7545 is somehow malformed. In this case, we assume the field does not
7546 require any alignment. */
7547 if (name == NULL)
7548 return 1;
7549
7550 len = strlen (name);
7551
7552 if (!isdigit (name[len - 1]))
7553 return 1;
7554
7555 if (isdigit (name[len - 2]))
7556 align_offset = len - 2;
7557 else
7558 align_offset = len - 1;
7559
7560 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7561 return TARGET_CHAR_BIT;
7562
7563 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7564 }
7565
7566 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7567
7568 static struct symbol *
7569 ada_find_any_type_symbol (const char *name)
7570 {
7571 struct symbol *sym;
7572
7573 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7574 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7575 return sym;
7576
7577 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7578 return sym;
7579 }
7580
7581 /* Find a type named NAME. Ignores ambiguity. This routine will look
7582 solely for types defined by debug info, it will not search the GDB
7583 primitive types. */
7584
7585 static struct type *
7586 ada_find_any_type (const char *name)
7587 {
7588 struct symbol *sym = ada_find_any_type_symbol (name);
7589
7590 if (sym != NULL)
7591 return SYMBOL_TYPE (sym);
7592
7593 return NULL;
7594 }
7595
7596 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7597 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7598 symbol, in which case it is returned. Otherwise, this looks for
7599 symbols whose name is that of NAME_SYM suffixed with "___XR".
7600 Return symbol if found, and NULL otherwise. */
7601
7602 static bool
7603 ada_is_renaming_symbol (struct symbol *name_sym)
7604 {
7605 const char *name = name_sym->linkage_name ();
7606 return strstr (name, "___XR") != NULL;
7607 }
7608
7609 /* Because of GNAT encoding conventions, several GDB symbols may match a
7610 given type name. If the type denoted by TYPE0 is to be preferred to
7611 that of TYPE1 for purposes of type printing, return non-zero;
7612 otherwise return 0. */
7613
7614 int
7615 ada_prefer_type (struct type *type0, struct type *type1)
7616 {
7617 if (type1 == NULL)
7618 return 1;
7619 else if (type0 == NULL)
7620 return 0;
7621 else if (type1->code () == TYPE_CODE_VOID)
7622 return 1;
7623 else if (type0->code () == TYPE_CODE_VOID)
7624 return 0;
7625 else if (type1->name () == NULL && type0->name () != NULL)
7626 return 1;
7627 else if (ada_is_constrained_packed_array_type (type0))
7628 return 1;
7629 else if (ada_is_array_descriptor_type (type0)
7630 && !ada_is_array_descriptor_type (type1))
7631 return 1;
7632 else
7633 {
7634 const char *type0_name = type0->name ();
7635 const char *type1_name = type1->name ();
7636
7637 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7638 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7639 return 1;
7640 }
7641 return 0;
7642 }
7643
7644 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7645 null. */
7646
7647 const char *
7648 ada_type_name (struct type *type)
7649 {
7650 if (type == NULL)
7651 return NULL;
7652 return type->name ();
7653 }
7654
7655 /* Search the list of "descriptive" types associated to TYPE for a type
7656 whose name is NAME. */
7657
7658 static struct type *
7659 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7660 {
7661 struct type *result, *tmp;
7662
7663 if (ada_ignore_descriptive_types_p)
7664 return NULL;
7665
7666 /* If there no descriptive-type info, then there is no parallel type
7667 to be found. */
7668 if (!HAVE_GNAT_AUX_INFO (type))
7669 return NULL;
7670
7671 result = TYPE_DESCRIPTIVE_TYPE (type);
7672 while (result != NULL)
7673 {
7674 const char *result_name = ada_type_name (result);
7675
7676 if (result_name == NULL)
7677 {
7678 warning (_("unexpected null name on descriptive type"));
7679 return NULL;
7680 }
7681
7682 /* If the names match, stop. */
7683 if (strcmp (result_name, name) == 0)
7684 break;
7685
7686 /* Otherwise, look at the next item on the list, if any. */
7687 if (HAVE_GNAT_AUX_INFO (result))
7688 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7689 else
7690 tmp = NULL;
7691
7692 /* If not found either, try after having resolved the typedef. */
7693 if (tmp != NULL)
7694 result = tmp;
7695 else
7696 {
7697 result = check_typedef (result);
7698 if (HAVE_GNAT_AUX_INFO (result))
7699 result = TYPE_DESCRIPTIVE_TYPE (result);
7700 else
7701 result = NULL;
7702 }
7703 }
7704
7705 /* If we didn't find a match, see whether this is a packed array. With
7706 older compilers, the descriptive type information is either absent or
7707 irrelevant when it comes to packed arrays so the above lookup fails.
7708 Fall back to using a parallel lookup by name in this case. */
7709 if (result == NULL && ada_is_constrained_packed_array_type (type))
7710 return ada_find_any_type (name);
7711
7712 return result;
7713 }
7714
7715 /* Find a parallel type to TYPE with the specified NAME, using the
7716 descriptive type taken from the debugging information, if available,
7717 and otherwise using the (slower) name-based method. */
7718
7719 static struct type *
7720 ada_find_parallel_type_with_name (struct type *type, const char *name)
7721 {
7722 struct type *result = NULL;
7723
7724 if (HAVE_GNAT_AUX_INFO (type))
7725 result = find_parallel_type_by_descriptive_type (type, name);
7726 else
7727 result = ada_find_any_type (name);
7728
7729 return result;
7730 }
7731
7732 /* Same as above, but specify the name of the parallel type by appending
7733 SUFFIX to the name of TYPE. */
7734
7735 struct type *
7736 ada_find_parallel_type (struct type *type, const char *suffix)
7737 {
7738 char *name;
7739 const char *type_name = ada_type_name (type);
7740 int len;
7741
7742 if (type_name == NULL)
7743 return NULL;
7744
7745 len = strlen (type_name);
7746
7747 name = (char *) alloca (len + strlen (suffix) + 1);
7748
7749 strcpy (name, type_name);
7750 strcpy (name + len, suffix);
7751
7752 return ada_find_parallel_type_with_name (type, name);
7753 }
7754
7755 /* If TYPE is a variable-size record type, return the corresponding template
7756 type describing its fields. Otherwise, return NULL. */
7757
7758 static struct type *
7759 dynamic_template_type (struct type *type)
7760 {
7761 type = ada_check_typedef (type);
7762
7763 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7764 || ada_type_name (type) == NULL)
7765 return NULL;
7766 else
7767 {
7768 int len = strlen (ada_type_name (type));
7769
7770 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7771 return type;
7772 else
7773 return ada_find_parallel_type (type, "___XVE");
7774 }
7775 }
7776
7777 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7778 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7779
7780 static int
7781 is_dynamic_field (struct type *templ_type, int field_num)
7782 {
7783 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7784
7785 return name != NULL
7786 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7787 && strstr (name, "___XVL") != NULL;
7788 }
7789
7790 /* The index of the variant field of TYPE, or -1 if TYPE does not
7791 represent a variant record type. */
7792
7793 static int
7794 variant_field_index (struct type *type)
7795 {
7796 int f;
7797
7798 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7799 return -1;
7800
7801 for (f = 0; f < type->num_fields (); f += 1)
7802 {
7803 if (ada_is_variant_part (type, f))
7804 return f;
7805 }
7806 return -1;
7807 }
7808
7809 /* A record type with no fields. */
7810
7811 static struct type *
7812 empty_record (struct type *templ)
7813 {
7814 struct type *type = alloc_type_copy (templ);
7815
7816 type->set_code (TYPE_CODE_STRUCT);
7817 INIT_NONE_SPECIFIC (type);
7818 type->set_name ("<empty>");
7819 TYPE_LENGTH (type) = 0;
7820 return type;
7821 }
7822
7823 /* An ordinary record type (with fixed-length fields) that describes
7824 the value of type TYPE at VALADDR or ADDRESS (see comments at
7825 the beginning of this section) VAL according to GNAT conventions.
7826 DVAL0 should describe the (portion of a) record that contains any
7827 necessary discriminants. It should be NULL if value_type (VAL) is
7828 an outer-level type (i.e., as opposed to a branch of a variant.) A
7829 variant field (unless unchecked) is replaced by a particular branch
7830 of the variant.
7831
7832 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7833 length are not statically known are discarded. As a consequence,
7834 VALADDR, ADDRESS and DVAL0 are ignored.
7835
7836 NOTE: Limitations: For now, we assume that dynamic fields and
7837 variants occupy whole numbers of bytes. However, they need not be
7838 byte-aligned. */
7839
7840 struct type *
7841 ada_template_to_fixed_record_type_1 (struct type *type,
7842 const gdb_byte *valaddr,
7843 CORE_ADDR address, struct value *dval0,
7844 int keep_dynamic_fields)
7845 {
7846 struct value *mark = value_mark ();
7847 struct value *dval;
7848 struct type *rtype;
7849 int nfields, bit_len;
7850 int variant_field;
7851 long off;
7852 int fld_bit_len;
7853 int f;
7854
7855 /* Compute the number of fields in this record type that are going
7856 to be processed: unless keep_dynamic_fields, this includes only
7857 fields whose position and length are static will be processed. */
7858 if (keep_dynamic_fields)
7859 nfields = type->num_fields ();
7860 else
7861 {
7862 nfields = 0;
7863 while (nfields < type->num_fields ()
7864 && !ada_is_variant_part (type, nfields)
7865 && !is_dynamic_field (type, nfields))
7866 nfields++;
7867 }
7868
7869 rtype = alloc_type_copy (type);
7870 rtype->set_code (TYPE_CODE_STRUCT);
7871 INIT_NONE_SPECIFIC (rtype);
7872 rtype->set_num_fields (nfields);
7873 rtype->set_fields
7874 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7875 rtype->set_name (ada_type_name (type));
7876 rtype->set_is_fixed_instance (true);
7877
7878 off = 0;
7879 bit_len = 0;
7880 variant_field = -1;
7881
7882 for (f = 0; f < nfields; f += 1)
7883 {
7884 off = align_up (off, field_alignment (type, f))
7885 + TYPE_FIELD_BITPOS (type, f);
7886 SET_FIELD_BITPOS (rtype->field (f), off);
7887 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7888
7889 if (ada_is_variant_part (type, f))
7890 {
7891 variant_field = f;
7892 fld_bit_len = 0;
7893 }
7894 else if (is_dynamic_field (type, f))
7895 {
7896 const gdb_byte *field_valaddr = valaddr;
7897 CORE_ADDR field_address = address;
7898 struct type *field_type =
7899 TYPE_TARGET_TYPE (type->field (f).type ());
7900
7901 if (dval0 == NULL)
7902 {
7903 /* rtype's length is computed based on the run-time
7904 value of discriminants. If the discriminants are not
7905 initialized, the type size may be completely bogus and
7906 GDB may fail to allocate a value for it. So check the
7907 size first before creating the value. */
7908 ada_ensure_varsize_limit (rtype);
7909 /* Using plain value_from_contents_and_address here
7910 causes problems because we will end up trying to
7911 resolve a type that is currently being
7912 constructed. */
7913 dval = value_from_contents_and_address_unresolved (rtype,
7914 valaddr,
7915 address);
7916 rtype = value_type (dval);
7917 }
7918 else
7919 dval = dval0;
7920
7921 /* If the type referenced by this field is an aligner type, we need
7922 to unwrap that aligner type, because its size might not be set.
7923 Keeping the aligner type would cause us to compute the wrong
7924 size for this field, impacting the offset of the all the fields
7925 that follow this one. */
7926 if (ada_is_aligner_type (field_type))
7927 {
7928 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7929
7930 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7931 field_address = cond_offset_target (field_address, field_offset);
7932 field_type = ada_aligned_type (field_type);
7933 }
7934
7935 field_valaddr = cond_offset_host (field_valaddr,
7936 off / TARGET_CHAR_BIT);
7937 field_address = cond_offset_target (field_address,
7938 off / TARGET_CHAR_BIT);
7939
7940 /* Get the fixed type of the field. Note that, in this case,
7941 we do not want to get the real type out of the tag: if
7942 the current field is the parent part of a tagged record,
7943 we will get the tag of the object. Clearly wrong: the real
7944 type of the parent is not the real type of the child. We
7945 would end up in an infinite loop. */
7946 field_type = ada_get_base_type (field_type);
7947 field_type = ada_to_fixed_type (field_type, field_valaddr,
7948 field_address, dval, 0);
7949 /* If the field size is already larger than the maximum
7950 object size, then the record itself will necessarily
7951 be larger than the maximum object size. We need to make
7952 this check now, because the size might be so ridiculously
7953 large (due to an uninitialized variable in the inferior)
7954 that it would cause an overflow when adding it to the
7955 record size. */
7956 ada_ensure_varsize_limit (field_type);
7957
7958 rtype->field (f).set_type (field_type);
7959 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7960 /* The multiplication can potentially overflow. But because
7961 the field length has been size-checked just above, and
7962 assuming that the maximum size is a reasonable value,
7963 an overflow should not happen in practice. So rather than
7964 adding overflow recovery code to this already complex code,
7965 we just assume that it's not going to happen. */
7966 fld_bit_len =
7967 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7968 }
7969 else
7970 {
7971 /* Note: If this field's type is a typedef, it is important
7972 to preserve the typedef layer.
7973
7974 Otherwise, we might be transforming a typedef to a fat
7975 pointer (encoding a pointer to an unconstrained array),
7976 into a basic fat pointer (encoding an unconstrained
7977 array). As both types are implemented using the same
7978 structure, the typedef is the only clue which allows us
7979 to distinguish between the two options. Stripping it
7980 would prevent us from printing this field appropriately. */
7981 rtype->field (f).set_type (type->field (f).type ());
7982 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7983 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7984 fld_bit_len =
7985 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7986 else
7987 {
7988 struct type *field_type = type->field (f).type ();
7989
7990 /* We need to be careful of typedefs when computing
7991 the length of our field. If this is a typedef,
7992 get the length of the target type, not the length
7993 of the typedef. */
7994 if (field_type->code () == TYPE_CODE_TYPEDEF)
7995 field_type = ada_typedef_target_type (field_type);
7996
7997 fld_bit_len =
7998 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7999 }
8000 }
8001 if (off + fld_bit_len > bit_len)
8002 bit_len = off + fld_bit_len;
8003 off += fld_bit_len;
8004 TYPE_LENGTH (rtype) =
8005 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8006 }
8007
8008 /* We handle the variant part, if any, at the end because of certain
8009 odd cases in which it is re-ordered so as NOT to be the last field of
8010 the record. This can happen in the presence of representation
8011 clauses. */
8012 if (variant_field >= 0)
8013 {
8014 struct type *branch_type;
8015
8016 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8017
8018 if (dval0 == NULL)
8019 {
8020 /* Using plain value_from_contents_and_address here causes
8021 problems because we will end up trying to resolve a type
8022 that is currently being constructed. */
8023 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8024 address);
8025 rtype = value_type (dval);
8026 }
8027 else
8028 dval = dval0;
8029
8030 branch_type =
8031 to_fixed_variant_branch_type
8032 (type->field (variant_field).type (),
8033 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8034 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8035 if (branch_type == NULL)
8036 {
8037 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
8038 rtype->field (f - 1) = rtype->field (f);
8039 rtype->set_num_fields (rtype->num_fields () - 1);
8040 }
8041 else
8042 {
8043 rtype->field (variant_field).set_type (branch_type);
8044 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8045 fld_bit_len =
8046 TYPE_LENGTH (rtype->field (variant_field).type ()) *
8047 TARGET_CHAR_BIT;
8048 if (off + fld_bit_len > bit_len)
8049 bit_len = off + fld_bit_len;
8050 TYPE_LENGTH (rtype) =
8051 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8052 }
8053 }
8054
8055 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8056 should contain the alignment of that record, which should be a strictly
8057 positive value. If null or negative, then something is wrong, most
8058 probably in the debug info. In that case, we don't round up the size
8059 of the resulting type. If this record is not part of another structure,
8060 the current RTYPE length might be good enough for our purposes. */
8061 if (TYPE_LENGTH (type) <= 0)
8062 {
8063 if (rtype->name ())
8064 warning (_("Invalid type size for `%s' detected: %s."),
8065 rtype->name (), pulongest (TYPE_LENGTH (type)));
8066 else
8067 warning (_("Invalid type size for <unnamed> detected: %s."),
8068 pulongest (TYPE_LENGTH (type)));
8069 }
8070 else
8071 {
8072 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8073 TYPE_LENGTH (type));
8074 }
8075
8076 value_free_to_mark (mark);
8077 if (TYPE_LENGTH (rtype) > varsize_limit)
8078 error (_("record type with dynamic size is larger than varsize-limit"));
8079 return rtype;
8080 }
8081
8082 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8083 of 1. */
8084
8085 static struct type *
8086 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8087 CORE_ADDR address, struct value *dval0)
8088 {
8089 return ada_template_to_fixed_record_type_1 (type, valaddr,
8090 address, dval0, 1);
8091 }
8092
8093 /* An ordinary record type in which ___XVL-convention fields and
8094 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8095 static approximations, containing all possible fields. Uses
8096 no runtime values. Useless for use in values, but that's OK,
8097 since the results are used only for type determinations. Works on both
8098 structs and unions. Representation note: to save space, we memorize
8099 the result of this function in the TYPE_TARGET_TYPE of the
8100 template type. */
8101
8102 static struct type *
8103 template_to_static_fixed_type (struct type *type0)
8104 {
8105 struct type *type;
8106 int nfields;
8107 int f;
8108
8109 /* No need no do anything if the input type is already fixed. */
8110 if (type0->is_fixed_instance ())
8111 return type0;
8112
8113 /* Likewise if we already have computed the static approximation. */
8114 if (TYPE_TARGET_TYPE (type0) != NULL)
8115 return TYPE_TARGET_TYPE (type0);
8116
8117 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8118 type = type0;
8119 nfields = type0->num_fields ();
8120
8121 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8122 recompute all over next time. */
8123 TYPE_TARGET_TYPE (type0) = type;
8124
8125 for (f = 0; f < nfields; f += 1)
8126 {
8127 struct type *field_type = type0->field (f).type ();
8128 struct type *new_type;
8129
8130 if (is_dynamic_field (type0, f))
8131 {
8132 field_type = ada_check_typedef (field_type);
8133 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8134 }
8135 else
8136 new_type = static_unwrap_type (field_type);
8137
8138 if (new_type != field_type)
8139 {
8140 /* Clone TYPE0 only the first time we get a new field type. */
8141 if (type == type0)
8142 {
8143 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8144 type->set_code (type0->code ());
8145 INIT_NONE_SPECIFIC (type);
8146 type->set_num_fields (nfields);
8147
8148 field *fields =
8149 ((struct field *)
8150 TYPE_ALLOC (type, nfields * sizeof (struct field)));
8151 memcpy (fields, type0->fields (),
8152 sizeof (struct field) * nfields);
8153 type->set_fields (fields);
8154
8155 type->set_name (ada_type_name (type0));
8156 type->set_is_fixed_instance (true);
8157 TYPE_LENGTH (type) = 0;
8158 }
8159 type->field (f).set_type (new_type);
8160 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8161 }
8162 }
8163
8164 return type;
8165 }
8166
8167 /* Given an object of type TYPE whose contents are at VALADDR and
8168 whose address in memory is ADDRESS, returns a revision of TYPE,
8169 which should be a non-dynamic-sized record, in which the variant
8170 part, if any, is replaced with the appropriate branch. Looks
8171 for discriminant values in DVAL0, which can be NULL if the record
8172 contains the necessary discriminant values. */
8173
8174 static struct type *
8175 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8176 CORE_ADDR address, struct value *dval0)
8177 {
8178 struct value *mark = value_mark ();
8179 struct value *dval;
8180 struct type *rtype;
8181 struct type *branch_type;
8182 int nfields = type->num_fields ();
8183 int variant_field = variant_field_index (type);
8184
8185 if (variant_field == -1)
8186 return type;
8187
8188 if (dval0 == NULL)
8189 {
8190 dval = value_from_contents_and_address (type, valaddr, address);
8191 type = value_type (dval);
8192 }
8193 else
8194 dval = dval0;
8195
8196 rtype = alloc_type_copy (type);
8197 rtype->set_code (TYPE_CODE_STRUCT);
8198 INIT_NONE_SPECIFIC (rtype);
8199 rtype->set_num_fields (nfields);
8200
8201 field *fields =
8202 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8203 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
8204 rtype->set_fields (fields);
8205
8206 rtype->set_name (ada_type_name (type));
8207 rtype->set_is_fixed_instance (true);
8208 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8209
8210 branch_type = to_fixed_variant_branch_type
8211 (type->field (variant_field).type (),
8212 cond_offset_host (valaddr,
8213 TYPE_FIELD_BITPOS (type, variant_field)
8214 / TARGET_CHAR_BIT),
8215 cond_offset_target (address,
8216 TYPE_FIELD_BITPOS (type, variant_field)
8217 / TARGET_CHAR_BIT), dval);
8218 if (branch_type == NULL)
8219 {
8220 int f;
8221
8222 for (f = variant_field + 1; f < nfields; f += 1)
8223 rtype->field (f - 1) = rtype->field (f);
8224 rtype->set_num_fields (rtype->num_fields () - 1);
8225 }
8226 else
8227 {
8228 rtype->field (variant_field).set_type (branch_type);
8229 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8230 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8231 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8232 }
8233 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
8234
8235 value_free_to_mark (mark);
8236 return rtype;
8237 }
8238
8239 /* An ordinary record type (with fixed-length fields) that describes
8240 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8241 beginning of this section]. Any necessary discriminants' values
8242 should be in DVAL, a record value; it may be NULL if the object
8243 at ADDR itself contains any necessary discriminant values.
8244 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8245 values from the record are needed. Except in the case that DVAL,
8246 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8247 unchecked) is replaced by a particular branch of the variant.
8248
8249 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8250 is questionable and may be removed. It can arise during the
8251 processing of an unconstrained-array-of-record type where all the
8252 variant branches have exactly the same size. This is because in
8253 such cases, the compiler does not bother to use the XVS convention
8254 when encoding the record. I am currently dubious of this
8255 shortcut and suspect the compiler should be altered. FIXME. */
8256
8257 static struct type *
8258 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8259 CORE_ADDR address, struct value *dval)
8260 {
8261 struct type *templ_type;
8262
8263 if (type0->is_fixed_instance ())
8264 return type0;
8265
8266 templ_type = dynamic_template_type (type0);
8267
8268 if (templ_type != NULL)
8269 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8270 else if (variant_field_index (type0) >= 0)
8271 {
8272 if (dval == NULL && valaddr == NULL && address == 0)
8273 return type0;
8274 return to_record_with_fixed_variant_part (type0, valaddr, address,
8275 dval);
8276 }
8277 else
8278 {
8279 type0->set_is_fixed_instance (true);
8280 return type0;
8281 }
8282
8283 }
8284
8285 /* An ordinary record type (with fixed-length fields) that describes
8286 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8287 union type. Any necessary discriminants' values should be in DVAL,
8288 a record value. That is, this routine selects the appropriate
8289 branch of the union at ADDR according to the discriminant value
8290 indicated in the union's type name. Returns VAR_TYPE0 itself if
8291 it represents a variant subject to a pragma Unchecked_Union. */
8292
8293 static struct type *
8294 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8295 CORE_ADDR address, struct value *dval)
8296 {
8297 int which;
8298 struct type *templ_type;
8299 struct type *var_type;
8300
8301 if (var_type0->code () == TYPE_CODE_PTR)
8302 var_type = TYPE_TARGET_TYPE (var_type0);
8303 else
8304 var_type = var_type0;
8305
8306 templ_type = ada_find_parallel_type (var_type, "___XVU");
8307
8308 if (templ_type != NULL)
8309 var_type = templ_type;
8310
8311 if (is_unchecked_variant (var_type, value_type (dval)))
8312 return var_type0;
8313 which = ada_which_variant_applies (var_type, dval);
8314
8315 if (which < 0)
8316 return empty_record (var_type);
8317 else if (is_dynamic_field (var_type, which))
8318 return to_fixed_record_type
8319 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
8320 valaddr, address, dval);
8321 else if (variant_field_index (var_type->field (which).type ()) >= 0)
8322 return
8323 to_fixed_record_type
8324 (var_type->field (which).type (), valaddr, address, dval);
8325 else
8326 return var_type->field (which).type ();
8327 }
8328
8329 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8330 ENCODING_TYPE, a type following the GNAT conventions for discrete
8331 type encodings, only carries redundant information. */
8332
8333 static int
8334 ada_is_redundant_range_encoding (struct type *range_type,
8335 struct type *encoding_type)
8336 {
8337 const char *bounds_str;
8338 int n;
8339 LONGEST lo, hi;
8340
8341 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8342
8343 if (get_base_type (range_type)->code ()
8344 != get_base_type (encoding_type)->code ())
8345 {
8346 /* The compiler probably used a simple base type to describe
8347 the range type instead of the range's actual base type,
8348 expecting us to get the real base type from the encoding
8349 anyway. In this situation, the encoding cannot be ignored
8350 as redundant. */
8351 return 0;
8352 }
8353
8354 if (is_dynamic_type (range_type))
8355 return 0;
8356
8357 if (encoding_type->name () == NULL)
8358 return 0;
8359
8360 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8361 if (bounds_str == NULL)
8362 return 0;
8363
8364 n = 8; /* Skip "___XDLU_". */
8365 if (!ada_scan_number (bounds_str, n, &lo, &n))
8366 return 0;
8367 if (range_type->bounds ()->low.const_val () != lo)
8368 return 0;
8369
8370 n += 2; /* Skip the "__" separator between the two bounds. */
8371 if (!ada_scan_number (bounds_str, n, &hi, &n))
8372 return 0;
8373 if (range_type->bounds ()->high.const_val () != hi)
8374 return 0;
8375
8376 return 1;
8377 }
8378
8379 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8380 a type following the GNAT encoding for describing array type
8381 indices, only carries redundant information. */
8382
8383 static int
8384 ada_is_redundant_index_type_desc (struct type *array_type,
8385 struct type *desc_type)
8386 {
8387 struct type *this_layer = check_typedef (array_type);
8388 int i;
8389
8390 for (i = 0; i < desc_type->num_fields (); i++)
8391 {
8392 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
8393 desc_type->field (i).type ()))
8394 return 0;
8395 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8396 }
8397
8398 return 1;
8399 }
8400
8401 /* Assuming that TYPE0 is an array type describing the type of a value
8402 at ADDR, and that DVAL describes a record containing any
8403 discriminants used in TYPE0, returns a type for the value that
8404 contains no dynamic components (that is, no components whose sizes
8405 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8406 true, gives an error message if the resulting type's size is over
8407 varsize_limit. */
8408
8409 static struct type *
8410 to_fixed_array_type (struct type *type0, struct value *dval,
8411 int ignore_too_big)
8412 {
8413 struct type *index_type_desc;
8414 struct type *result;
8415 int constrained_packed_array_p;
8416 static const char *xa_suffix = "___XA";
8417
8418 type0 = ada_check_typedef (type0);
8419 if (type0->is_fixed_instance ())
8420 return type0;
8421
8422 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8423 if (constrained_packed_array_p)
8424 {
8425 type0 = decode_constrained_packed_array_type (type0);
8426 if (type0 == nullptr)
8427 error (_("could not decode constrained packed array type"));
8428 }
8429
8430 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8431
8432 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8433 encoding suffixed with 'P' may still be generated. If so,
8434 it should be used to find the XA type. */
8435
8436 if (index_type_desc == NULL)
8437 {
8438 const char *type_name = ada_type_name (type0);
8439
8440 if (type_name != NULL)
8441 {
8442 const int len = strlen (type_name);
8443 char *name = (char *) alloca (len + strlen (xa_suffix));
8444
8445 if (type_name[len - 1] == 'P')
8446 {
8447 strcpy (name, type_name);
8448 strcpy (name + len - 1, xa_suffix);
8449 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8450 }
8451 }
8452 }
8453
8454 ada_fixup_array_indexes_type (index_type_desc);
8455 if (index_type_desc != NULL
8456 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8457 {
8458 /* Ignore this ___XA parallel type, as it does not bring any
8459 useful information. This allows us to avoid creating fixed
8460 versions of the array's index types, which would be identical
8461 to the original ones. This, in turn, can also help avoid
8462 the creation of fixed versions of the array itself. */
8463 index_type_desc = NULL;
8464 }
8465
8466 if (index_type_desc == NULL)
8467 {
8468 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8469
8470 /* NOTE: elt_type---the fixed version of elt_type0---should never
8471 depend on the contents of the array in properly constructed
8472 debugging data. */
8473 /* Create a fixed version of the array element type.
8474 We're not providing the address of an element here,
8475 and thus the actual object value cannot be inspected to do
8476 the conversion. This should not be a problem, since arrays of
8477 unconstrained objects are not allowed. In particular, all
8478 the elements of an array of a tagged type should all be of
8479 the same type specified in the debugging info. No need to
8480 consult the object tag. */
8481 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8482
8483 /* Make sure we always create a new array type when dealing with
8484 packed array types, since we're going to fix-up the array
8485 type length and element bitsize a little further down. */
8486 if (elt_type0 == elt_type && !constrained_packed_array_p)
8487 result = type0;
8488 else
8489 result = create_array_type (alloc_type_copy (type0),
8490 elt_type, type0->index_type ());
8491 }
8492 else
8493 {
8494 int i;
8495 struct type *elt_type0;
8496
8497 elt_type0 = type0;
8498 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8499 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8500
8501 /* NOTE: result---the fixed version of elt_type0---should never
8502 depend on the contents of the array in properly constructed
8503 debugging data. */
8504 /* Create a fixed version of the array element type.
8505 We're not providing the address of an element here,
8506 and thus the actual object value cannot be inspected to do
8507 the conversion. This should not be a problem, since arrays of
8508 unconstrained objects are not allowed. In particular, all
8509 the elements of an array of a tagged type should all be of
8510 the same type specified in the debugging info. No need to
8511 consult the object tag. */
8512 result =
8513 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8514
8515 elt_type0 = type0;
8516 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8517 {
8518 struct type *range_type =
8519 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8520
8521 result = create_array_type (alloc_type_copy (elt_type0),
8522 result, range_type);
8523 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8524 }
8525 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8526 error (_("array type with dynamic size is larger than varsize-limit"));
8527 }
8528
8529 /* We want to preserve the type name. This can be useful when
8530 trying to get the type name of a value that has already been
8531 printed (for instance, if the user did "print VAR; whatis $". */
8532 result->set_name (type0->name ());
8533
8534 if (constrained_packed_array_p)
8535 {
8536 /* So far, the resulting type has been created as if the original
8537 type was a regular (non-packed) array type. As a result, the
8538 bitsize of the array elements needs to be set again, and the array
8539 length needs to be recomputed based on that bitsize. */
8540 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8541 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8542
8543 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8544 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8545 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8546 TYPE_LENGTH (result)++;
8547 }
8548
8549 result->set_is_fixed_instance (true);
8550 return result;
8551 }
8552
8553
8554 /* A standard type (containing no dynamically sized components)
8555 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8556 DVAL describes a record containing any discriminants used in TYPE0,
8557 and may be NULL if there are none, or if the object of type TYPE at
8558 ADDRESS or in VALADDR contains these discriminants.
8559
8560 If CHECK_TAG is not null, in the case of tagged types, this function
8561 attempts to locate the object's tag and use it to compute the actual
8562 type. However, when ADDRESS is null, we cannot use it to determine the
8563 location of the tag, and therefore compute the tagged type's actual type.
8564 So we return the tagged type without consulting the tag. */
8565
8566 static struct type *
8567 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8568 CORE_ADDR address, struct value *dval, int check_tag)
8569 {
8570 type = ada_check_typedef (type);
8571
8572 /* Only un-fixed types need to be handled here. */
8573 if (!HAVE_GNAT_AUX_INFO (type))
8574 return type;
8575
8576 switch (type->code ())
8577 {
8578 default:
8579 return type;
8580 case TYPE_CODE_STRUCT:
8581 {
8582 struct type *static_type = to_static_fixed_type (type);
8583 struct type *fixed_record_type =
8584 to_fixed_record_type (type, valaddr, address, NULL);
8585
8586 /* If STATIC_TYPE is a tagged type and we know the object's address,
8587 then we can determine its tag, and compute the object's actual
8588 type from there. Note that we have to use the fixed record
8589 type (the parent part of the record may have dynamic fields
8590 and the way the location of _tag is expressed may depend on
8591 them). */
8592
8593 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8594 {
8595 struct value *tag =
8596 value_tag_from_contents_and_address
8597 (fixed_record_type,
8598 valaddr,
8599 address);
8600 struct type *real_type = type_from_tag (tag);
8601 struct value *obj =
8602 value_from_contents_and_address (fixed_record_type,
8603 valaddr,
8604 address);
8605 fixed_record_type = value_type (obj);
8606 if (real_type != NULL)
8607 return to_fixed_record_type
8608 (real_type, NULL,
8609 value_address (ada_tag_value_at_base_address (obj)), NULL);
8610 }
8611
8612 /* Check to see if there is a parallel ___XVZ variable.
8613 If there is, then it provides the actual size of our type. */
8614 else if (ada_type_name (fixed_record_type) != NULL)
8615 {
8616 const char *name = ada_type_name (fixed_record_type);
8617 char *xvz_name
8618 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8619 bool xvz_found = false;
8620 LONGEST size;
8621
8622 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8623 try
8624 {
8625 xvz_found = get_int_var_value (xvz_name, size);
8626 }
8627 catch (const gdb_exception_error &except)
8628 {
8629 /* We found the variable, but somehow failed to read
8630 its value. Rethrow the same error, but with a little
8631 bit more information, to help the user understand
8632 what went wrong (Eg: the variable might have been
8633 optimized out). */
8634 throw_error (except.error,
8635 _("unable to read value of %s (%s)"),
8636 xvz_name, except.what ());
8637 }
8638
8639 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8640 {
8641 fixed_record_type = copy_type (fixed_record_type);
8642 TYPE_LENGTH (fixed_record_type) = size;
8643
8644 /* The FIXED_RECORD_TYPE may have be a stub. We have
8645 observed this when the debugging info is STABS, and
8646 apparently it is something that is hard to fix.
8647
8648 In practice, we don't need the actual type definition
8649 at all, because the presence of the XVZ variable allows us
8650 to assume that there must be a XVS type as well, which we
8651 should be able to use later, when we need the actual type
8652 definition.
8653
8654 In the meantime, pretend that the "fixed" type we are
8655 returning is NOT a stub, because this can cause trouble
8656 when using this type to create new types targeting it.
8657 Indeed, the associated creation routines often check
8658 whether the target type is a stub and will try to replace
8659 it, thus using a type with the wrong size. This, in turn,
8660 might cause the new type to have the wrong size too.
8661 Consider the case of an array, for instance, where the size
8662 of the array is computed from the number of elements in
8663 our array multiplied by the size of its element. */
8664 fixed_record_type->set_is_stub (false);
8665 }
8666 }
8667 return fixed_record_type;
8668 }
8669 case TYPE_CODE_ARRAY:
8670 return to_fixed_array_type (type, dval, 1);
8671 case TYPE_CODE_UNION:
8672 if (dval == NULL)
8673 return type;
8674 else
8675 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8676 }
8677 }
8678
8679 /* The same as ada_to_fixed_type_1, except that it preserves the type
8680 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8681
8682 The typedef layer needs be preserved in order to differentiate between
8683 arrays and array pointers when both types are implemented using the same
8684 fat pointer. In the array pointer case, the pointer is encoded as
8685 a typedef of the pointer type. For instance, considering:
8686
8687 type String_Access is access String;
8688 S1 : String_Access := null;
8689
8690 To the debugger, S1 is defined as a typedef of type String. But
8691 to the user, it is a pointer. So if the user tries to print S1,
8692 we should not dereference the array, but print the array address
8693 instead.
8694
8695 If we didn't preserve the typedef layer, we would lose the fact that
8696 the type is to be presented as a pointer (needs de-reference before
8697 being printed). And we would also use the source-level type name. */
8698
8699 struct type *
8700 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8701 CORE_ADDR address, struct value *dval, int check_tag)
8702
8703 {
8704 struct type *fixed_type =
8705 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8706
8707 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8708 then preserve the typedef layer.
8709
8710 Implementation note: We can only check the main-type portion of
8711 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8712 from TYPE now returns a type that has the same instance flags
8713 as TYPE. For instance, if TYPE is a "typedef const", and its
8714 target type is a "struct", then the typedef elimination will return
8715 a "const" version of the target type. See check_typedef for more
8716 details about how the typedef layer elimination is done.
8717
8718 brobecker/2010-11-19: It seems to me that the only case where it is
8719 useful to preserve the typedef layer is when dealing with fat pointers.
8720 Perhaps, we could add a check for that and preserve the typedef layer
8721 only in that situation. But this seems unnecessary so far, probably
8722 because we call check_typedef/ada_check_typedef pretty much everywhere.
8723 */
8724 if (type->code () == TYPE_CODE_TYPEDEF
8725 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8726 == TYPE_MAIN_TYPE (fixed_type)))
8727 return type;
8728
8729 return fixed_type;
8730 }
8731
8732 /* A standard (static-sized) type corresponding as well as possible to
8733 TYPE0, but based on no runtime data. */
8734
8735 static struct type *
8736 to_static_fixed_type (struct type *type0)
8737 {
8738 struct type *type;
8739
8740 if (type0 == NULL)
8741 return NULL;
8742
8743 if (type0->is_fixed_instance ())
8744 return type0;
8745
8746 type0 = ada_check_typedef (type0);
8747
8748 switch (type0->code ())
8749 {
8750 default:
8751 return type0;
8752 case TYPE_CODE_STRUCT:
8753 type = dynamic_template_type (type0);
8754 if (type != NULL)
8755 return template_to_static_fixed_type (type);
8756 else
8757 return template_to_static_fixed_type (type0);
8758 case TYPE_CODE_UNION:
8759 type = ada_find_parallel_type (type0, "___XVU");
8760 if (type != NULL)
8761 return template_to_static_fixed_type (type);
8762 else
8763 return template_to_static_fixed_type (type0);
8764 }
8765 }
8766
8767 /* A static approximation of TYPE with all type wrappers removed. */
8768
8769 static struct type *
8770 static_unwrap_type (struct type *type)
8771 {
8772 if (ada_is_aligner_type (type))
8773 {
8774 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8775 if (ada_type_name (type1) == NULL)
8776 type1->set_name (ada_type_name (type));
8777
8778 return static_unwrap_type (type1);
8779 }
8780 else
8781 {
8782 struct type *raw_real_type = ada_get_base_type (type);
8783
8784 if (raw_real_type == type)
8785 return type;
8786 else
8787 return to_static_fixed_type (raw_real_type);
8788 }
8789 }
8790
8791 /* In some cases, incomplete and private types require
8792 cross-references that are not resolved as records (for example,
8793 type Foo;
8794 type FooP is access Foo;
8795 V: FooP;
8796 type Foo is array ...;
8797 ). In these cases, since there is no mechanism for producing
8798 cross-references to such types, we instead substitute for FooP a
8799 stub enumeration type that is nowhere resolved, and whose tag is
8800 the name of the actual type. Call these types "non-record stubs". */
8801
8802 /* A type equivalent to TYPE that is not a non-record stub, if one
8803 exists, otherwise TYPE. */
8804
8805 struct type *
8806 ada_check_typedef (struct type *type)
8807 {
8808 if (type == NULL)
8809 return NULL;
8810
8811 /* If our type is an access to an unconstrained array, which is encoded
8812 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8813 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8814 what allows us to distinguish between fat pointers that represent
8815 array types, and fat pointers that represent array access types
8816 (in both cases, the compiler implements them as fat pointers). */
8817 if (ada_is_access_to_unconstrained_array (type))
8818 return type;
8819
8820 type = check_typedef (type);
8821 if (type == NULL || type->code () != TYPE_CODE_ENUM
8822 || !type->is_stub ()
8823 || type->name () == NULL)
8824 return type;
8825 else
8826 {
8827 const char *name = type->name ();
8828 struct type *type1 = ada_find_any_type (name);
8829
8830 if (type1 == NULL)
8831 return type;
8832
8833 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8834 stubs pointing to arrays, as we don't create symbols for array
8835 types, only for the typedef-to-array types). If that's the case,
8836 strip the typedef layer. */
8837 if (type1->code () == TYPE_CODE_TYPEDEF)
8838 type1 = ada_check_typedef (type1);
8839
8840 return type1;
8841 }
8842 }
8843
8844 /* A value representing the data at VALADDR/ADDRESS as described by
8845 type TYPE0, but with a standard (static-sized) type that correctly
8846 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8847 type, then return VAL0 [this feature is simply to avoid redundant
8848 creation of struct values]. */
8849
8850 static struct value *
8851 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8852 struct value *val0)
8853 {
8854 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8855
8856 if (type == type0 && val0 != NULL)
8857 return val0;
8858
8859 if (VALUE_LVAL (val0) != lval_memory)
8860 {
8861 /* Our value does not live in memory; it could be a convenience
8862 variable, for instance. Create a not_lval value using val0's
8863 contents. */
8864 return value_from_contents (type, value_contents (val0));
8865 }
8866
8867 return value_from_contents_and_address (type, 0, address);
8868 }
8869
8870 /* A value representing VAL, but with a standard (static-sized) type
8871 that correctly describes it. Does not necessarily create a new
8872 value. */
8873
8874 struct value *
8875 ada_to_fixed_value (struct value *val)
8876 {
8877 val = unwrap_value (val);
8878 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8879 return val;
8880 }
8881 \f
8882
8883 /* Attributes */
8884
8885 /* Table mapping attribute numbers to names.
8886 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8887
8888 static const char * const attribute_names[] = {
8889 "<?>",
8890
8891 "first",
8892 "last",
8893 "length",
8894 "image",
8895 "max",
8896 "min",
8897 "modulus",
8898 "pos",
8899 "size",
8900 "tag",
8901 "val",
8902 0
8903 };
8904
8905 static const char *
8906 ada_attribute_name (enum exp_opcode n)
8907 {
8908 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8909 return attribute_names[n - OP_ATR_FIRST + 1];
8910 else
8911 return attribute_names[0];
8912 }
8913
8914 /* Evaluate the 'POS attribute applied to ARG. */
8915
8916 static LONGEST
8917 pos_atr (struct value *arg)
8918 {
8919 struct value *val = coerce_ref (arg);
8920 struct type *type = value_type (val);
8921
8922 if (!discrete_type_p (type))
8923 error (_("'POS only defined on discrete types"));
8924
8925 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8926 if (!result.has_value ())
8927 error (_("enumeration value is invalid: can't find 'POS"));
8928
8929 return *result;
8930 }
8931
8932 static struct value *
8933 value_pos_atr (struct type *type, struct value *arg)
8934 {
8935 return value_from_longest (type, pos_atr (arg));
8936 }
8937
8938 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8939
8940 static struct value *
8941 val_atr (struct type *type, LONGEST val)
8942 {
8943 gdb_assert (discrete_type_p (type));
8944 if (type->code () == TYPE_CODE_RANGE)
8945 type = TYPE_TARGET_TYPE (type);
8946 if (type->code () == TYPE_CODE_ENUM)
8947 {
8948 if (val < 0 || val >= type->num_fields ())
8949 error (_("argument to 'VAL out of range"));
8950 val = TYPE_FIELD_ENUMVAL (type, val);
8951 }
8952 return value_from_longest (type, val);
8953 }
8954
8955 static struct value *
8956 value_val_atr (struct type *type, struct value *arg)
8957 {
8958 if (!discrete_type_p (type))
8959 error (_("'VAL only defined on discrete types"));
8960 if (!integer_type_p (value_type (arg)))
8961 error (_("'VAL requires integral argument"));
8962
8963 return val_atr (type, value_as_long (arg));
8964 }
8965 \f
8966
8967 /* Evaluation */
8968
8969 /* True if TYPE appears to be an Ada character type.
8970 [At the moment, this is true only for Character and Wide_Character;
8971 It is a heuristic test that could stand improvement]. */
8972
8973 bool
8974 ada_is_character_type (struct type *type)
8975 {
8976 const char *name;
8977
8978 /* If the type code says it's a character, then assume it really is,
8979 and don't check any further. */
8980 if (type->code () == TYPE_CODE_CHAR)
8981 return true;
8982
8983 /* Otherwise, assume it's a character type iff it is a discrete type
8984 with a known character type name. */
8985 name = ada_type_name (type);
8986 return (name != NULL
8987 && (type->code () == TYPE_CODE_INT
8988 || type->code () == TYPE_CODE_RANGE)
8989 && (strcmp (name, "character") == 0
8990 || strcmp (name, "wide_character") == 0
8991 || strcmp (name, "wide_wide_character") == 0
8992 || strcmp (name, "unsigned char") == 0));
8993 }
8994
8995 /* True if TYPE appears to be an Ada string type. */
8996
8997 bool
8998 ada_is_string_type (struct type *type)
8999 {
9000 type = ada_check_typedef (type);
9001 if (type != NULL
9002 && type->code () != TYPE_CODE_PTR
9003 && (ada_is_simple_array_type (type)
9004 || ada_is_array_descriptor_type (type))
9005 && ada_array_arity (type) == 1)
9006 {
9007 struct type *elttype = ada_array_element_type (type, 1);
9008
9009 return ada_is_character_type (elttype);
9010 }
9011 else
9012 return false;
9013 }
9014
9015 /* The compiler sometimes provides a parallel XVS type for a given
9016 PAD type. Normally, it is safe to follow the PAD type directly,
9017 but older versions of the compiler have a bug that causes the offset
9018 of its "F" field to be wrong. Following that field in that case
9019 would lead to incorrect results, but this can be worked around
9020 by ignoring the PAD type and using the associated XVS type instead.
9021
9022 Set to True if the debugger should trust the contents of PAD types.
9023 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9024 static bool trust_pad_over_xvs = true;
9025
9026 /* True if TYPE is a struct type introduced by the compiler to force the
9027 alignment of a value. Such types have a single field with a
9028 distinctive name. */
9029
9030 int
9031 ada_is_aligner_type (struct type *type)
9032 {
9033 type = ada_check_typedef (type);
9034
9035 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9036 return 0;
9037
9038 return (type->code () == TYPE_CODE_STRUCT
9039 && type->num_fields () == 1
9040 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9041 }
9042
9043 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9044 the parallel type. */
9045
9046 struct type *
9047 ada_get_base_type (struct type *raw_type)
9048 {
9049 struct type *real_type_namer;
9050 struct type *raw_real_type;
9051
9052 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
9053 return raw_type;
9054
9055 if (ada_is_aligner_type (raw_type))
9056 /* The encoding specifies that we should always use the aligner type.
9057 So, even if this aligner type has an associated XVS type, we should
9058 simply ignore it.
9059
9060 According to the compiler gurus, an XVS type parallel to an aligner
9061 type may exist because of a stabs limitation. In stabs, aligner
9062 types are empty because the field has a variable-sized type, and
9063 thus cannot actually be used as an aligner type. As a result,
9064 we need the associated parallel XVS type to decode the type.
9065 Since the policy in the compiler is to not change the internal
9066 representation based on the debugging info format, we sometimes
9067 end up having a redundant XVS type parallel to the aligner type. */
9068 return raw_type;
9069
9070 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9071 if (real_type_namer == NULL
9072 || real_type_namer->code () != TYPE_CODE_STRUCT
9073 || real_type_namer->num_fields () != 1)
9074 return raw_type;
9075
9076 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
9077 {
9078 /* This is an older encoding form where the base type needs to be
9079 looked up by name. We prefer the newer encoding because it is
9080 more efficient. */
9081 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9082 if (raw_real_type == NULL)
9083 return raw_type;
9084 else
9085 return raw_real_type;
9086 }
9087
9088 /* The field in our XVS type is a reference to the base type. */
9089 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
9090 }
9091
9092 /* The type of value designated by TYPE, with all aligners removed. */
9093
9094 struct type *
9095 ada_aligned_type (struct type *type)
9096 {
9097 if (ada_is_aligner_type (type))
9098 return ada_aligned_type (type->field (0).type ());
9099 else
9100 return ada_get_base_type (type);
9101 }
9102
9103
9104 /* The address of the aligned value in an object at address VALADDR
9105 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9106
9107 const gdb_byte *
9108 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9109 {
9110 if (ada_is_aligner_type (type))
9111 return ada_aligned_value_addr (type->field (0).type (),
9112 valaddr +
9113 TYPE_FIELD_BITPOS (type,
9114 0) / TARGET_CHAR_BIT);
9115 else
9116 return valaddr;
9117 }
9118
9119
9120
9121 /* The printed representation of an enumeration literal with encoded
9122 name NAME. The value is good to the next call of ada_enum_name. */
9123 const char *
9124 ada_enum_name (const char *name)
9125 {
9126 static char *result;
9127 static size_t result_len = 0;
9128 const char *tmp;
9129
9130 /* First, unqualify the enumeration name:
9131 1. Search for the last '.' character. If we find one, then skip
9132 all the preceding characters, the unqualified name starts
9133 right after that dot.
9134 2. Otherwise, we may be debugging on a target where the compiler
9135 translates dots into "__". Search forward for double underscores,
9136 but stop searching when we hit an overloading suffix, which is
9137 of the form "__" followed by digits. */
9138
9139 tmp = strrchr (name, '.');
9140 if (tmp != NULL)
9141 name = tmp + 1;
9142 else
9143 {
9144 while ((tmp = strstr (name, "__")) != NULL)
9145 {
9146 if (isdigit (tmp[2]))
9147 break;
9148 else
9149 name = tmp + 2;
9150 }
9151 }
9152
9153 if (name[0] == 'Q')
9154 {
9155 int v;
9156
9157 if (name[1] == 'U' || name[1] == 'W')
9158 {
9159 if (sscanf (name + 2, "%x", &v) != 1)
9160 return name;
9161 }
9162 else if (((name[1] >= '0' && name[1] <= '9')
9163 || (name[1] >= 'a' && name[1] <= 'z'))
9164 && name[2] == '\0')
9165 {
9166 GROW_VECT (result, result_len, 4);
9167 xsnprintf (result, result_len, "'%c'", name[1]);
9168 return result;
9169 }
9170 else
9171 return name;
9172
9173 GROW_VECT (result, result_len, 16);
9174 if (isascii (v) && isprint (v))
9175 xsnprintf (result, result_len, "'%c'", v);
9176 else if (name[1] == 'U')
9177 xsnprintf (result, result_len, "[\"%02x\"]", v);
9178 else
9179 xsnprintf (result, result_len, "[\"%04x\"]", v);
9180
9181 return result;
9182 }
9183 else
9184 {
9185 tmp = strstr (name, "__");
9186 if (tmp == NULL)
9187 tmp = strstr (name, "$");
9188 if (tmp != NULL)
9189 {
9190 GROW_VECT (result, result_len, tmp - name + 1);
9191 strncpy (result, name, tmp - name);
9192 result[tmp - name] = '\0';
9193 return result;
9194 }
9195
9196 return name;
9197 }
9198 }
9199
9200 /* Evaluate the subexpression of EXP starting at *POS as for
9201 evaluate_type, updating *POS to point just past the evaluated
9202 expression. */
9203
9204 static struct value *
9205 evaluate_subexp_type (struct expression *exp, int *pos)
9206 {
9207 return evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9208 }
9209
9210 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9211 value it wraps. */
9212
9213 static struct value *
9214 unwrap_value (struct value *val)
9215 {
9216 struct type *type = ada_check_typedef (value_type (val));
9217
9218 if (ada_is_aligner_type (type))
9219 {
9220 struct value *v = ada_value_struct_elt (val, "F", 0);
9221 struct type *val_type = ada_check_typedef (value_type (v));
9222
9223 if (ada_type_name (val_type) == NULL)
9224 val_type->set_name (ada_type_name (type));
9225
9226 return unwrap_value (v);
9227 }
9228 else
9229 {
9230 struct type *raw_real_type =
9231 ada_check_typedef (ada_get_base_type (type));
9232
9233 /* If there is no parallel XVS or XVE type, then the value is
9234 already unwrapped. Return it without further modification. */
9235 if ((type == raw_real_type)
9236 && ada_find_parallel_type (type, "___XVE") == NULL)
9237 return val;
9238
9239 return
9240 coerce_unspec_val_to_type
9241 (val, ada_to_fixed_type (raw_real_type, 0,
9242 value_address (val),
9243 NULL, 1));
9244 }
9245 }
9246
9247 static struct value *
9248 cast_from_gnat_encoded_fixed_point_type (struct type *type, struct value *arg)
9249 {
9250 struct value *scale
9251 = gnat_encoded_fixed_point_scaling_factor (value_type (arg));
9252 arg = value_cast (value_type (scale), arg);
9253
9254 arg = value_binop (arg, scale, BINOP_MUL);
9255 return value_cast (type, arg);
9256 }
9257
9258 static struct value *
9259 cast_to_gnat_encoded_fixed_point_type (struct type *type, struct value *arg)
9260 {
9261 if (type == value_type (arg))
9262 return arg;
9263
9264 struct value *scale = gnat_encoded_fixed_point_scaling_factor (type);
9265 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
9266 arg = cast_from_gnat_encoded_fixed_point_type (value_type (scale), arg);
9267 else
9268 arg = value_cast (value_type (scale), arg);
9269
9270 arg = value_binop (arg, scale, BINOP_DIV);
9271 return value_cast (type, arg);
9272 }
9273
9274 /* Given two array types T1 and T2, return nonzero iff both arrays
9275 contain the same number of elements. */
9276
9277 static int
9278 ada_same_array_size_p (struct type *t1, struct type *t2)
9279 {
9280 LONGEST lo1, hi1, lo2, hi2;
9281
9282 /* Get the array bounds in order to verify that the size of
9283 the two arrays match. */
9284 if (!get_array_bounds (t1, &lo1, &hi1)
9285 || !get_array_bounds (t2, &lo2, &hi2))
9286 error (_("unable to determine array bounds"));
9287
9288 /* To make things easier for size comparison, normalize a bit
9289 the case of empty arrays by making sure that the difference
9290 between upper bound and lower bound is always -1. */
9291 if (lo1 > hi1)
9292 hi1 = lo1 - 1;
9293 if (lo2 > hi2)
9294 hi2 = lo2 - 1;
9295
9296 return (hi1 - lo1 == hi2 - lo2);
9297 }
9298
9299 /* Assuming that VAL is an array of integrals, and TYPE represents
9300 an array with the same number of elements, but with wider integral
9301 elements, return an array "casted" to TYPE. In practice, this
9302 means that the returned array is built by casting each element
9303 of the original array into TYPE's (wider) element type. */
9304
9305 static struct value *
9306 ada_promote_array_of_integrals (struct type *type, struct value *val)
9307 {
9308 struct type *elt_type = TYPE_TARGET_TYPE (type);
9309 LONGEST lo, hi;
9310 struct value *res;
9311 LONGEST i;
9312
9313 /* Verify that both val and type are arrays of scalars, and
9314 that the size of val's elements is smaller than the size
9315 of type's element. */
9316 gdb_assert (type->code () == TYPE_CODE_ARRAY);
9317 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9318 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
9319 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9320 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9321 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9322
9323 if (!get_array_bounds (type, &lo, &hi))
9324 error (_("unable to determine array bounds"));
9325
9326 res = allocate_value (type);
9327
9328 /* Promote each array element. */
9329 for (i = 0; i < hi - lo + 1; i++)
9330 {
9331 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9332
9333 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9334 value_contents_all (elt), TYPE_LENGTH (elt_type));
9335 }
9336
9337 return res;
9338 }
9339
9340 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9341 return the converted value. */
9342
9343 static struct value *
9344 coerce_for_assign (struct type *type, struct value *val)
9345 {
9346 struct type *type2 = value_type (val);
9347
9348 if (type == type2)
9349 return val;
9350
9351 type2 = ada_check_typedef (type2);
9352 type = ada_check_typedef (type);
9353
9354 if (type2->code () == TYPE_CODE_PTR
9355 && type->code () == TYPE_CODE_ARRAY)
9356 {
9357 val = ada_value_ind (val);
9358 type2 = value_type (val);
9359 }
9360
9361 if (type2->code () == TYPE_CODE_ARRAY
9362 && type->code () == TYPE_CODE_ARRAY)
9363 {
9364 if (!ada_same_array_size_p (type, type2))
9365 error (_("cannot assign arrays of different length"));
9366
9367 if (is_integral_type (TYPE_TARGET_TYPE (type))
9368 && is_integral_type (TYPE_TARGET_TYPE (type2))
9369 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9370 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9371 {
9372 /* Allow implicit promotion of the array elements to
9373 a wider type. */
9374 return ada_promote_array_of_integrals (type, val);
9375 }
9376
9377 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9378 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9379 error (_("Incompatible types in assignment"));
9380 deprecated_set_value_type (val, type);
9381 }
9382 return val;
9383 }
9384
9385 static struct value *
9386 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9387 {
9388 struct value *val;
9389 struct type *type1, *type2;
9390 LONGEST v, v1, v2;
9391
9392 arg1 = coerce_ref (arg1);
9393 arg2 = coerce_ref (arg2);
9394 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9395 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9396
9397 if (type1->code () != TYPE_CODE_INT
9398 || type2->code () != TYPE_CODE_INT)
9399 return value_binop (arg1, arg2, op);
9400
9401 switch (op)
9402 {
9403 case BINOP_MOD:
9404 case BINOP_DIV:
9405 case BINOP_REM:
9406 break;
9407 default:
9408 return value_binop (arg1, arg2, op);
9409 }
9410
9411 v2 = value_as_long (arg2);
9412 if (v2 == 0)
9413 error (_("second operand of %s must not be zero."), op_string (op));
9414
9415 if (type1->is_unsigned () || op == BINOP_MOD)
9416 return value_binop (arg1, arg2, op);
9417
9418 v1 = value_as_long (arg1);
9419 switch (op)
9420 {
9421 case BINOP_DIV:
9422 v = v1 / v2;
9423 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9424 v += v > 0 ? -1 : 1;
9425 break;
9426 case BINOP_REM:
9427 v = v1 % v2;
9428 if (v * v1 < 0)
9429 v -= v2;
9430 break;
9431 default:
9432 /* Should not reach this point. */
9433 v = 0;
9434 }
9435
9436 val = allocate_value (type1);
9437 store_unsigned_integer (value_contents_raw (val),
9438 TYPE_LENGTH (value_type (val)),
9439 type_byte_order (type1), v);
9440 return val;
9441 }
9442
9443 static int
9444 ada_value_equal (struct value *arg1, struct value *arg2)
9445 {
9446 if (ada_is_direct_array_type (value_type (arg1))
9447 || ada_is_direct_array_type (value_type (arg2)))
9448 {
9449 struct type *arg1_type, *arg2_type;
9450
9451 /* Automatically dereference any array reference before
9452 we attempt to perform the comparison. */
9453 arg1 = ada_coerce_ref (arg1);
9454 arg2 = ada_coerce_ref (arg2);
9455
9456 arg1 = ada_coerce_to_simple_array (arg1);
9457 arg2 = ada_coerce_to_simple_array (arg2);
9458
9459 arg1_type = ada_check_typedef (value_type (arg1));
9460 arg2_type = ada_check_typedef (value_type (arg2));
9461
9462 if (arg1_type->code () != TYPE_CODE_ARRAY
9463 || arg2_type->code () != TYPE_CODE_ARRAY)
9464 error (_("Attempt to compare array with non-array"));
9465 /* FIXME: The following works only for types whose
9466 representations use all bits (no padding or undefined bits)
9467 and do not have user-defined equality. */
9468 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9469 && memcmp (value_contents (arg1), value_contents (arg2),
9470 TYPE_LENGTH (arg1_type)) == 0);
9471 }
9472 return value_equal (arg1, arg2);
9473 }
9474
9475 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9476 component of LHS (a simple array or a record), updating *POS past
9477 the expression, assuming that LHS is contained in CONTAINER. Does
9478 not modify the inferior's memory, nor does it modify LHS (unless
9479 LHS == CONTAINER). */
9480
9481 static void
9482 assign_component (struct value *container, struct value *lhs, LONGEST index,
9483 struct expression *exp, int *pos)
9484 {
9485 struct value *mark = value_mark ();
9486 struct value *elt;
9487 struct type *lhs_type = check_typedef (value_type (lhs));
9488
9489 if (lhs_type->code () == TYPE_CODE_ARRAY)
9490 {
9491 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9492 struct value *index_val = value_from_longest (index_type, index);
9493
9494 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9495 }
9496 else
9497 {
9498 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9499 elt = ada_to_fixed_value (elt);
9500 }
9501
9502 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9503 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9504 else
9505 value_assign_to_component (container, elt,
9506 ada_evaluate_subexp (NULL, exp, pos,
9507 EVAL_NORMAL));
9508
9509 value_free_to_mark (mark);
9510 }
9511
9512 /* Assuming that LHS represents an lvalue having a record or array
9513 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9514 of that aggregate's value to LHS, advancing *POS past the
9515 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9516 lvalue containing LHS (possibly LHS itself). Does not modify
9517 the inferior's memory, nor does it modify the contents of
9518 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9519
9520 static struct value *
9521 assign_aggregate (struct value *container,
9522 struct value *lhs, struct expression *exp,
9523 int *pos, enum noside noside)
9524 {
9525 struct type *lhs_type;
9526 int n = exp->elts[*pos+1].longconst;
9527 LONGEST low_index, high_index;
9528 int i;
9529
9530 *pos += 3;
9531 if (noside != EVAL_NORMAL)
9532 {
9533 for (i = 0; i < n; i += 1)
9534 ada_evaluate_subexp (NULL, exp, pos, noside);
9535 return container;
9536 }
9537
9538 container = ada_coerce_ref (container);
9539 if (ada_is_direct_array_type (value_type (container)))
9540 container = ada_coerce_to_simple_array (container);
9541 lhs = ada_coerce_ref (lhs);
9542 if (!deprecated_value_modifiable (lhs))
9543 error (_("Left operand of assignment is not a modifiable lvalue."));
9544
9545 lhs_type = check_typedef (value_type (lhs));
9546 if (ada_is_direct_array_type (lhs_type))
9547 {
9548 lhs = ada_coerce_to_simple_array (lhs);
9549 lhs_type = check_typedef (value_type (lhs));
9550 low_index = lhs_type->bounds ()->low.const_val ();
9551 high_index = lhs_type->bounds ()->high.const_val ();
9552 }
9553 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9554 {
9555 low_index = 0;
9556 high_index = num_visible_fields (lhs_type) - 1;
9557 }
9558 else
9559 error (_("Left-hand side must be array or record."));
9560
9561 std::vector<LONGEST> indices (4);
9562 indices[0] = indices[1] = low_index - 1;
9563 indices[2] = indices[3] = high_index + 1;
9564
9565 for (i = 0; i < n; i += 1)
9566 {
9567 switch (exp->elts[*pos].opcode)
9568 {
9569 case OP_CHOICES:
9570 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9571 low_index, high_index);
9572 break;
9573 case OP_POSITIONAL:
9574 aggregate_assign_positional (container, lhs, exp, pos, indices,
9575 low_index, high_index);
9576 break;
9577 case OP_OTHERS:
9578 if (i != n-1)
9579 error (_("Misplaced 'others' clause"));
9580 aggregate_assign_others (container, lhs, exp, pos, indices,
9581 low_index, high_index);
9582 break;
9583 default:
9584 error (_("Internal error: bad aggregate clause"));
9585 }
9586 }
9587
9588 return container;
9589 }
9590
9591 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9592 construct at *POS, updating *POS past the construct, given that
9593 the positions are relative to lower bound LOW, where HIGH is the
9594 upper bound. Record the position in INDICES. CONTAINER is as for
9595 assign_aggregate. */
9596 static void
9597 aggregate_assign_positional (struct value *container,
9598 struct value *lhs, struct expression *exp,
9599 int *pos, std::vector<LONGEST> &indices,
9600 LONGEST low, LONGEST high)
9601 {
9602 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9603
9604 if (ind - 1 == high)
9605 warning (_("Extra components in aggregate ignored."));
9606 if (ind <= high)
9607 {
9608 add_component_interval (ind, ind, indices);
9609 *pos += 3;
9610 assign_component (container, lhs, ind, exp, pos);
9611 }
9612 else
9613 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9614 }
9615
9616 /* Assign into the components of LHS indexed by the OP_CHOICES
9617 construct at *POS, updating *POS past the construct, given that
9618 the allowable indices are LOW..HIGH. Record the indices assigned
9619 to in INDICES. CONTAINER is as for assign_aggregate. */
9620 static void
9621 aggregate_assign_from_choices (struct value *container,
9622 struct value *lhs, struct expression *exp,
9623 int *pos, std::vector<LONGEST> &indices,
9624 LONGEST low, LONGEST high)
9625 {
9626 int j;
9627 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9628 int choice_pos, expr_pc;
9629 int is_array = ada_is_direct_array_type (value_type (lhs));
9630
9631 choice_pos = *pos += 3;
9632
9633 for (j = 0; j < n_choices; j += 1)
9634 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9635 expr_pc = *pos;
9636 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9637
9638 for (j = 0; j < n_choices; j += 1)
9639 {
9640 LONGEST lower, upper;
9641 enum exp_opcode op = exp->elts[choice_pos].opcode;
9642
9643 if (op == OP_DISCRETE_RANGE)
9644 {
9645 choice_pos += 1;
9646 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9647 EVAL_NORMAL));
9648 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9649 EVAL_NORMAL));
9650 }
9651 else if (is_array)
9652 {
9653 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9654 EVAL_NORMAL));
9655 upper = lower;
9656 }
9657 else
9658 {
9659 int ind;
9660 const char *name;
9661
9662 switch (op)
9663 {
9664 case OP_NAME:
9665 name = &exp->elts[choice_pos + 2].string;
9666 break;
9667 case OP_VAR_VALUE:
9668 name = exp->elts[choice_pos + 2].symbol->natural_name ();
9669 break;
9670 default:
9671 error (_("Invalid record component association."));
9672 }
9673 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9674 ind = 0;
9675 if (! find_struct_field (name, value_type (lhs), 0,
9676 NULL, NULL, NULL, NULL, &ind))
9677 error (_("Unknown component name: %s."), name);
9678 lower = upper = ind;
9679 }
9680
9681 if (lower <= upper && (lower < low || upper > high))
9682 error (_("Index in component association out of bounds."));
9683
9684 add_component_interval (lower, upper, indices);
9685 while (lower <= upper)
9686 {
9687 int pos1;
9688
9689 pos1 = expr_pc;
9690 assign_component (container, lhs, lower, exp, &pos1);
9691 lower += 1;
9692 }
9693 }
9694 }
9695
9696 /* Assign the value of the expression in the OP_OTHERS construct in
9697 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9698 have not been previously assigned. The index intervals already assigned
9699 are in INDICES. Updates *POS to after the OP_OTHERS clause.
9700 CONTAINER is as for assign_aggregate. */
9701 static void
9702 aggregate_assign_others (struct value *container,
9703 struct value *lhs, struct expression *exp,
9704 int *pos, std::vector<LONGEST> &indices,
9705 LONGEST low, LONGEST high)
9706 {
9707 int i;
9708 int expr_pc = *pos + 1;
9709
9710 int num_indices = indices.size ();
9711 for (i = 0; i < num_indices - 2; i += 2)
9712 {
9713 LONGEST ind;
9714
9715 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9716 {
9717 int localpos;
9718
9719 localpos = expr_pc;
9720 assign_component (container, lhs, ind, exp, &localpos);
9721 }
9722 }
9723 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9724 }
9725
9726 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9727 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9728 overlap. */
9729 static void
9730 add_component_interval (LONGEST low, LONGEST high,
9731 std::vector<LONGEST> &indices)
9732 {
9733 int i, j;
9734
9735 int size = indices.size ();
9736 for (i = 0; i < size; i += 2) {
9737 if (high >= indices[i] && low <= indices[i + 1])
9738 {
9739 int kh;
9740
9741 for (kh = i + 2; kh < size; kh += 2)
9742 if (high < indices[kh])
9743 break;
9744 if (low < indices[i])
9745 indices[i] = low;
9746 indices[i + 1] = indices[kh - 1];
9747 if (high > indices[i + 1])
9748 indices[i + 1] = high;
9749 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9750 indices.resize (kh - i - 2);
9751 return;
9752 }
9753 else if (high < indices[i])
9754 break;
9755 }
9756
9757 indices.resize (indices.size () + 2);
9758 for (j = size - 1; j >= i + 2; j -= 1)
9759 indices[j] = indices[j - 2];
9760 indices[i] = low;
9761 indices[i + 1] = high;
9762 }
9763
9764 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9765 is different. */
9766
9767 static struct value *
9768 ada_value_cast (struct type *type, struct value *arg2)
9769 {
9770 if (type == ada_check_typedef (value_type (arg2)))
9771 return arg2;
9772
9773 if (ada_is_gnat_encoded_fixed_point_type (type))
9774 return cast_to_gnat_encoded_fixed_point_type (type, arg2);
9775
9776 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
9777 return cast_from_gnat_encoded_fixed_point_type (type, arg2);
9778
9779 return value_cast (type, arg2);
9780 }
9781
9782 /* Evaluating Ada expressions, and printing their result.
9783 ------------------------------------------------------
9784
9785 1. Introduction:
9786 ----------------
9787
9788 We usually evaluate an Ada expression in order to print its value.
9789 We also evaluate an expression in order to print its type, which
9790 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9791 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9792 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9793 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9794 similar.
9795
9796 Evaluating expressions is a little more complicated for Ada entities
9797 than it is for entities in languages such as C. The main reason for
9798 this is that Ada provides types whose definition might be dynamic.
9799 One example of such types is variant records. Or another example
9800 would be an array whose bounds can only be known at run time.
9801
9802 The following description is a general guide as to what should be
9803 done (and what should NOT be done) in order to evaluate an expression
9804 involving such types, and when. This does not cover how the semantic
9805 information is encoded by GNAT as this is covered separatly. For the
9806 document used as the reference for the GNAT encoding, see exp_dbug.ads
9807 in the GNAT sources.
9808
9809 Ideally, we should embed each part of this description next to its
9810 associated code. Unfortunately, the amount of code is so vast right
9811 now that it's hard to see whether the code handling a particular
9812 situation might be duplicated or not. One day, when the code is
9813 cleaned up, this guide might become redundant with the comments
9814 inserted in the code, and we might want to remove it.
9815
9816 2. ``Fixing'' an Entity, the Simple Case:
9817 -----------------------------------------
9818
9819 When evaluating Ada expressions, the tricky issue is that they may
9820 reference entities whose type contents and size are not statically
9821 known. Consider for instance a variant record:
9822
9823 type Rec (Empty : Boolean := True) is record
9824 case Empty is
9825 when True => null;
9826 when False => Value : Integer;
9827 end case;
9828 end record;
9829 Yes : Rec := (Empty => False, Value => 1);
9830 No : Rec := (empty => True);
9831
9832 The size and contents of that record depends on the value of the
9833 descriminant (Rec.Empty). At this point, neither the debugging
9834 information nor the associated type structure in GDB are able to
9835 express such dynamic types. So what the debugger does is to create
9836 "fixed" versions of the type that applies to the specific object.
9837 We also informally refer to this operation as "fixing" an object,
9838 which means creating its associated fixed type.
9839
9840 Example: when printing the value of variable "Yes" above, its fixed
9841 type would look like this:
9842
9843 type Rec is record
9844 Empty : Boolean;
9845 Value : Integer;
9846 end record;
9847
9848 On the other hand, if we printed the value of "No", its fixed type
9849 would become:
9850
9851 type Rec is record
9852 Empty : Boolean;
9853 end record;
9854
9855 Things become a little more complicated when trying to fix an entity
9856 with a dynamic type that directly contains another dynamic type,
9857 such as an array of variant records, for instance. There are
9858 two possible cases: Arrays, and records.
9859
9860 3. ``Fixing'' Arrays:
9861 ---------------------
9862
9863 The type structure in GDB describes an array in terms of its bounds,
9864 and the type of its elements. By design, all elements in the array
9865 have the same type and we cannot represent an array of variant elements
9866 using the current type structure in GDB. When fixing an array,
9867 we cannot fix the array element, as we would potentially need one
9868 fixed type per element of the array. As a result, the best we can do
9869 when fixing an array is to produce an array whose bounds and size
9870 are correct (allowing us to read it from memory), but without having
9871 touched its element type. Fixing each element will be done later,
9872 when (if) necessary.
9873
9874 Arrays are a little simpler to handle than records, because the same
9875 amount of memory is allocated for each element of the array, even if
9876 the amount of space actually used by each element differs from element
9877 to element. Consider for instance the following array of type Rec:
9878
9879 type Rec_Array is array (1 .. 2) of Rec;
9880
9881 The actual amount of memory occupied by each element might be different
9882 from element to element, depending on the value of their discriminant.
9883 But the amount of space reserved for each element in the array remains
9884 fixed regardless. So we simply need to compute that size using
9885 the debugging information available, from which we can then determine
9886 the array size (we multiply the number of elements of the array by
9887 the size of each element).
9888
9889 The simplest case is when we have an array of a constrained element
9890 type. For instance, consider the following type declarations:
9891
9892 type Bounded_String (Max_Size : Integer) is
9893 Length : Integer;
9894 Buffer : String (1 .. Max_Size);
9895 end record;
9896 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9897
9898 In this case, the compiler describes the array as an array of
9899 variable-size elements (identified by its XVS suffix) for which
9900 the size can be read in the parallel XVZ variable.
9901
9902 In the case of an array of an unconstrained element type, the compiler
9903 wraps the array element inside a private PAD type. This type should not
9904 be shown to the user, and must be "unwrap"'ed before printing. Note
9905 that we also use the adjective "aligner" in our code to designate
9906 these wrapper types.
9907
9908 In some cases, the size allocated for each element is statically
9909 known. In that case, the PAD type already has the correct size,
9910 and the array element should remain unfixed.
9911
9912 But there are cases when this size is not statically known.
9913 For instance, assuming that "Five" is an integer variable:
9914
9915 type Dynamic is array (1 .. Five) of Integer;
9916 type Wrapper (Has_Length : Boolean := False) is record
9917 Data : Dynamic;
9918 case Has_Length is
9919 when True => Length : Integer;
9920 when False => null;
9921 end case;
9922 end record;
9923 type Wrapper_Array is array (1 .. 2) of Wrapper;
9924
9925 Hello : Wrapper_Array := (others => (Has_Length => True,
9926 Data => (others => 17),
9927 Length => 1));
9928
9929
9930 The debugging info would describe variable Hello as being an
9931 array of a PAD type. The size of that PAD type is not statically
9932 known, but can be determined using a parallel XVZ variable.
9933 In that case, a copy of the PAD type with the correct size should
9934 be used for the fixed array.
9935
9936 3. ``Fixing'' record type objects:
9937 ----------------------------------
9938
9939 Things are slightly different from arrays in the case of dynamic
9940 record types. In this case, in order to compute the associated
9941 fixed type, we need to determine the size and offset of each of
9942 its components. This, in turn, requires us to compute the fixed
9943 type of each of these components.
9944
9945 Consider for instance the example:
9946
9947 type Bounded_String (Max_Size : Natural) is record
9948 Str : String (1 .. Max_Size);
9949 Length : Natural;
9950 end record;
9951 My_String : Bounded_String (Max_Size => 10);
9952
9953 In that case, the position of field "Length" depends on the size
9954 of field Str, which itself depends on the value of the Max_Size
9955 discriminant. In order to fix the type of variable My_String,
9956 we need to fix the type of field Str. Therefore, fixing a variant
9957 record requires us to fix each of its components.
9958
9959 However, if a component does not have a dynamic size, the component
9960 should not be fixed. In particular, fields that use a PAD type
9961 should not fixed. Here is an example where this might happen
9962 (assuming type Rec above):
9963
9964 type Container (Big : Boolean) is record
9965 First : Rec;
9966 After : Integer;
9967 case Big is
9968 when True => Another : Integer;
9969 when False => null;
9970 end case;
9971 end record;
9972 My_Container : Container := (Big => False,
9973 First => (Empty => True),
9974 After => 42);
9975
9976 In that example, the compiler creates a PAD type for component First,
9977 whose size is constant, and then positions the component After just
9978 right after it. The offset of component After is therefore constant
9979 in this case.
9980
9981 The debugger computes the position of each field based on an algorithm
9982 that uses, among other things, the actual position and size of the field
9983 preceding it. Let's now imagine that the user is trying to print
9984 the value of My_Container. If the type fixing was recursive, we would
9985 end up computing the offset of field After based on the size of the
9986 fixed version of field First. And since in our example First has
9987 only one actual field, the size of the fixed type is actually smaller
9988 than the amount of space allocated to that field, and thus we would
9989 compute the wrong offset of field After.
9990
9991 To make things more complicated, we need to watch out for dynamic
9992 components of variant records (identified by the ___XVL suffix in
9993 the component name). Even if the target type is a PAD type, the size
9994 of that type might not be statically known. So the PAD type needs
9995 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9996 we might end up with the wrong size for our component. This can be
9997 observed with the following type declarations:
9998
9999 type Octal is new Integer range 0 .. 7;
10000 type Octal_Array is array (Positive range <>) of Octal;
10001 pragma Pack (Octal_Array);
10002
10003 type Octal_Buffer (Size : Positive) is record
10004 Buffer : Octal_Array (1 .. Size);
10005 Length : Integer;
10006 end record;
10007
10008 In that case, Buffer is a PAD type whose size is unset and needs
10009 to be computed by fixing the unwrapped type.
10010
10011 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10012 ----------------------------------------------------------
10013
10014 Lastly, when should the sub-elements of an entity that remained unfixed
10015 thus far, be actually fixed?
10016
10017 The answer is: Only when referencing that element. For instance
10018 when selecting one component of a record, this specific component
10019 should be fixed at that point in time. Or when printing the value
10020 of a record, each component should be fixed before its value gets
10021 printed. Similarly for arrays, the element of the array should be
10022 fixed when printing each element of the array, or when extracting
10023 one element out of that array. On the other hand, fixing should
10024 not be performed on the elements when taking a slice of an array!
10025
10026 Note that one of the side effects of miscomputing the offset and
10027 size of each field is that we end up also miscomputing the size
10028 of the containing type. This can have adverse results when computing
10029 the value of an entity. GDB fetches the value of an entity based
10030 on the size of its type, and thus a wrong size causes GDB to fetch
10031 the wrong amount of memory. In the case where the computed size is
10032 too small, GDB fetches too little data to print the value of our
10033 entity. Results in this case are unpredictable, as we usually read
10034 past the buffer containing the data =:-o. */
10035
10036 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10037 for that subexpression cast to TO_TYPE. Advance *POS over the
10038 subexpression. */
10039
10040 static value *
10041 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10042 enum noside noside, struct type *to_type)
10043 {
10044 int pc = *pos;
10045
10046 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10047 || exp->elts[pc].opcode == OP_VAR_VALUE)
10048 {
10049 (*pos) += 4;
10050
10051 value *val;
10052 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10053 {
10054 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10055 return value_zero (to_type, not_lval);
10056
10057 val = evaluate_var_msym_value (noside,
10058 exp->elts[pc + 1].objfile,
10059 exp->elts[pc + 2].msymbol);
10060 }
10061 else
10062 val = evaluate_var_value (noside,
10063 exp->elts[pc + 1].block,
10064 exp->elts[pc + 2].symbol);
10065
10066 if (noside == EVAL_SKIP)
10067 return eval_skip_value (exp);
10068
10069 val = ada_value_cast (to_type, val);
10070
10071 /* Follow the Ada language semantics that do not allow taking
10072 an address of the result of a cast (view conversion in Ada). */
10073 if (VALUE_LVAL (val) == lval_memory)
10074 {
10075 if (value_lazy (val))
10076 value_fetch_lazy (val);
10077 VALUE_LVAL (val) = not_lval;
10078 }
10079 return val;
10080 }
10081
10082 value *val = evaluate_subexp (to_type, exp, pos, noside);
10083 if (noside == EVAL_SKIP)
10084 return eval_skip_value (exp);
10085 return ada_value_cast (to_type, val);
10086 }
10087
10088 /* Implement the evaluate_exp routine in the exp_descriptor structure
10089 for the Ada language. */
10090
10091 static struct value *
10092 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10093 int *pos, enum noside noside)
10094 {
10095 enum exp_opcode op;
10096 int tem;
10097 int pc;
10098 int preeval_pos;
10099 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10100 struct type *type;
10101 int nargs, oplen;
10102 struct value **argvec;
10103
10104 pc = *pos;
10105 *pos += 1;
10106 op = exp->elts[pc].opcode;
10107
10108 switch (op)
10109 {
10110 default:
10111 *pos -= 1;
10112 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10113
10114 if (noside == EVAL_NORMAL)
10115 arg1 = unwrap_value (arg1);
10116
10117 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10118 then we need to perform the conversion manually, because
10119 evaluate_subexp_standard doesn't do it. This conversion is
10120 necessary in Ada because the different kinds of float/fixed
10121 types in Ada have different representations.
10122
10123 Similarly, we need to perform the conversion from OP_LONG
10124 ourselves. */
10125 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10126 arg1 = ada_value_cast (expect_type, arg1);
10127
10128 return arg1;
10129
10130 case OP_STRING:
10131 {
10132 struct value *result;
10133
10134 *pos -= 1;
10135 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10136 /* The result type will have code OP_STRING, bashed there from
10137 OP_ARRAY. Bash it back. */
10138 if (value_type (result)->code () == TYPE_CODE_STRING)
10139 value_type (result)->set_code (TYPE_CODE_ARRAY);
10140 return result;
10141 }
10142
10143 case UNOP_CAST:
10144 (*pos) += 2;
10145 type = exp->elts[pc + 1].type;
10146 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10147
10148 case UNOP_QUAL:
10149 (*pos) += 2;
10150 type = exp->elts[pc + 1].type;
10151 return ada_evaluate_subexp (type, exp, pos, noside);
10152
10153 case BINOP_ASSIGN:
10154 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10155 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10156 {
10157 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10158 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10159 return arg1;
10160 return ada_value_assign (arg1, arg1);
10161 }
10162 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10163 except if the lhs of our assignment is a convenience variable.
10164 In the case of assigning to a convenience variable, the lhs
10165 should be exactly the result of the evaluation of the rhs. */
10166 type = value_type (arg1);
10167 if (VALUE_LVAL (arg1) == lval_internalvar)
10168 type = NULL;
10169 arg2 = evaluate_subexp (type, exp, pos, noside);
10170 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10171 return arg1;
10172 if (VALUE_LVAL (arg1) == lval_internalvar)
10173 {
10174 /* Nothing. */
10175 }
10176 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10177 arg2 = cast_to_gnat_encoded_fixed_point_type (value_type (arg1), arg2);
10178 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10179 error
10180 (_("Fixed-point values must be assigned to fixed-point variables"));
10181 else
10182 arg2 = coerce_for_assign (value_type (arg1), arg2);
10183 return ada_value_assign (arg1, arg2);
10184
10185 case BINOP_ADD:
10186 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10187 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10188 if (noside == EVAL_SKIP)
10189 goto nosideret;
10190 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10191 return (value_from_longest
10192 (value_type (arg1),
10193 value_as_long (arg1) + value_as_long (arg2)));
10194 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10195 return (value_from_longest
10196 (value_type (arg2),
10197 value_as_long (arg1) + value_as_long (arg2)));
10198 /* Preserve the original type for use by the range case below.
10199 We cannot cast the result to a reference type, so if ARG1 is
10200 a reference type, find its underlying type. */
10201 type = value_type (arg1);
10202 while (type->code () == TYPE_CODE_REF)
10203 type = TYPE_TARGET_TYPE (type);
10204 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10205 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10206 {
10207 if (value_type (arg1) != value_type (arg2))
10208 error (_("Operands of fixed-point addition must have the same type"));
10209 }
10210 else
10211 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10212 arg1 = value_binop (arg1, arg2, BINOP_ADD);
10213 /* We need to special-case the result of adding to a range.
10214 This is done for the benefit of "ptype". gdb's Ada support
10215 historically used the LHS to set the result type here, so
10216 preserve this behavior. */
10217 if (type->code () == TYPE_CODE_RANGE)
10218 arg1 = value_cast (type, arg1);
10219 return arg1;
10220
10221 case BINOP_SUB:
10222 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10223 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10224 if (noside == EVAL_SKIP)
10225 goto nosideret;
10226 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10227 return (value_from_longest
10228 (value_type (arg1),
10229 value_as_long (arg1) - value_as_long (arg2)));
10230 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10231 return (value_from_longest
10232 (value_type (arg2),
10233 value_as_long (arg1) - value_as_long (arg2)));
10234 /* Preserve the original type for use by the range case below.
10235 We cannot cast the result to a reference type, so if ARG1 is
10236 a reference type, find its underlying type. */
10237 type = value_type (arg1);
10238 while (type->code () == TYPE_CODE_REF)
10239 type = TYPE_TARGET_TYPE (type);
10240 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10241 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10242 {
10243 if (value_type (arg1) != value_type (arg2))
10244 error (_("Operands of fixed-point subtraction "
10245 "must have the same type"));
10246 }
10247 else
10248 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10249 arg1 = value_binop (arg1, arg2, BINOP_SUB);
10250 /* We need to special-case the result of adding to a range.
10251 This is done for the benefit of "ptype". gdb's Ada support
10252 historically used the LHS to set the result type here, so
10253 preserve this behavior. */
10254 if (type->code () == TYPE_CODE_RANGE)
10255 arg1 = value_cast (type, arg1);
10256 return arg1;
10257
10258 case BINOP_MUL:
10259 case BINOP_DIV:
10260 case BINOP_REM:
10261 case BINOP_MOD:
10262 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10263 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10264 if (noside == EVAL_SKIP)
10265 goto nosideret;
10266 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10267 {
10268 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10269 return value_zero (value_type (arg1), not_lval);
10270 }
10271 else
10272 {
10273 type = builtin_type (exp->gdbarch)->builtin_double;
10274 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10275 arg1 = cast_from_gnat_encoded_fixed_point_type (type, arg1);
10276 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10277 arg2 = cast_from_gnat_encoded_fixed_point_type (type, arg2);
10278 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10279 return ada_value_binop (arg1, arg2, op);
10280 }
10281
10282 case BINOP_EQUAL:
10283 case BINOP_NOTEQUAL:
10284 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10285 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10286 if (noside == EVAL_SKIP)
10287 goto nosideret;
10288 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10289 tem = 0;
10290 else
10291 {
10292 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10293 tem = ada_value_equal (arg1, arg2);
10294 }
10295 if (op == BINOP_NOTEQUAL)
10296 tem = !tem;
10297 type = language_bool_type (exp->language_defn, exp->gdbarch);
10298 return value_from_longest (type, (LONGEST) tem);
10299
10300 case UNOP_NEG:
10301 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10302 if (noside == EVAL_SKIP)
10303 goto nosideret;
10304 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10305 return value_cast (value_type (arg1), value_neg (arg1));
10306 else
10307 {
10308 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10309 return value_neg (arg1);
10310 }
10311
10312 case BINOP_LOGICAL_AND:
10313 case BINOP_LOGICAL_OR:
10314 case UNOP_LOGICAL_NOT:
10315 {
10316 struct value *val;
10317
10318 *pos -= 1;
10319 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10320 type = language_bool_type (exp->language_defn, exp->gdbarch);
10321 return value_cast (type, val);
10322 }
10323
10324 case BINOP_BITWISE_AND:
10325 case BINOP_BITWISE_IOR:
10326 case BINOP_BITWISE_XOR:
10327 {
10328 struct value *val;
10329
10330 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10331 *pos = pc;
10332 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10333
10334 return value_cast (value_type (arg1), val);
10335 }
10336
10337 case OP_VAR_VALUE:
10338 *pos -= 1;
10339
10340 if (noside == EVAL_SKIP)
10341 {
10342 *pos += 4;
10343 goto nosideret;
10344 }
10345
10346 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10347 /* Only encountered when an unresolved symbol occurs in a
10348 context other than a function call, in which case, it is
10349 invalid. */
10350 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10351 exp->elts[pc + 2].symbol->print_name ());
10352
10353 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10354 {
10355 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10356 /* Check to see if this is a tagged type. We also need to handle
10357 the case where the type is a reference to a tagged type, but
10358 we have to be careful to exclude pointers to tagged types.
10359 The latter should be shown as usual (as a pointer), whereas
10360 a reference should mostly be transparent to the user. */
10361 if (ada_is_tagged_type (type, 0)
10362 || (type->code () == TYPE_CODE_REF
10363 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10364 {
10365 /* Tagged types are a little special in the fact that the real
10366 type is dynamic and can only be determined by inspecting the
10367 object's tag. This means that we need to get the object's
10368 value first (EVAL_NORMAL) and then extract the actual object
10369 type from its tag.
10370
10371 Note that we cannot skip the final step where we extract
10372 the object type from its tag, because the EVAL_NORMAL phase
10373 results in dynamic components being resolved into fixed ones.
10374 This can cause problems when trying to print the type
10375 description of tagged types whose parent has a dynamic size:
10376 We use the type name of the "_parent" component in order
10377 to print the name of the ancestor type in the type description.
10378 If that component had a dynamic size, the resolution into
10379 a fixed type would result in the loss of that type name,
10380 thus preventing us from printing the name of the ancestor
10381 type in the type description. */
10382 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
10383
10384 if (type->code () != TYPE_CODE_REF)
10385 {
10386 struct type *actual_type;
10387
10388 actual_type = type_from_tag (ada_value_tag (arg1));
10389 if (actual_type == NULL)
10390 /* If, for some reason, we were unable to determine
10391 the actual type from the tag, then use the static
10392 approximation that we just computed as a fallback.
10393 This can happen if the debugging information is
10394 incomplete, for instance. */
10395 actual_type = type;
10396 return value_zero (actual_type, not_lval);
10397 }
10398 else
10399 {
10400 /* In the case of a ref, ada_coerce_ref takes care
10401 of determining the actual type. But the evaluation
10402 should return a ref as it should be valid to ask
10403 for its address; so rebuild a ref after coerce. */
10404 arg1 = ada_coerce_ref (arg1);
10405 return value_ref (arg1, TYPE_CODE_REF);
10406 }
10407 }
10408
10409 /* Records and unions for which GNAT encodings have been
10410 generated need to be statically fixed as well.
10411 Otherwise, non-static fixing produces a type where
10412 all dynamic properties are removed, which prevents "ptype"
10413 from being able to completely describe the type.
10414 For instance, a case statement in a variant record would be
10415 replaced by the relevant components based on the actual
10416 value of the discriminants. */
10417 if ((type->code () == TYPE_CODE_STRUCT
10418 && dynamic_template_type (type) != NULL)
10419 || (type->code () == TYPE_CODE_UNION
10420 && ada_find_parallel_type (type, "___XVU") != NULL))
10421 {
10422 *pos += 4;
10423 return value_zero (to_static_fixed_type (type), not_lval);
10424 }
10425 }
10426
10427 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10428 return ada_to_fixed_value (arg1);
10429
10430 case OP_FUNCALL:
10431 (*pos) += 2;
10432
10433 /* Allocate arg vector, including space for the function to be
10434 called in argvec[0] and a terminating NULL. */
10435 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10436 argvec = XALLOCAVEC (struct value *, nargs + 2);
10437
10438 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10439 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10440 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10441 exp->elts[pc + 5].symbol->print_name ());
10442 else
10443 {
10444 for (tem = 0; tem <= nargs; tem += 1)
10445 argvec[tem] = evaluate_subexp (nullptr, exp, pos, noside);
10446 argvec[tem] = 0;
10447
10448 if (noside == EVAL_SKIP)
10449 goto nosideret;
10450 }
10451
10452 if (ada_is_constrained_packed_array_type
10453 (desc_base_type (value_type (argvec[0]))))
10454 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10455 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10456 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10457 /* This is a packed array that has already been fixed, and
10458 therefore already coerced to a simple array. Nothing further
10459 to do. */
10460 ;
10461 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
10462 {
10463 /* Make sure we dereference references so that all the code below
10464 feels like it's really handling the referenced value. Wrapping
10465 types (for alignment) may be there, so make sure we strip them as
10466 well. */
10467 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10468 }
10469 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10470 && VALUE_LVAL (argvec[0]) == lval_memory)
10471 argvec[0] = value_addr (argvec[0]);
10472
10473 type = ada_check_typedef (value_type (argvec[0]));
10474
10475 /* Ada allows us to implicitly dereference arrays when subscripting
10476 them. So, if this is an array typedef (encoding use for array
10477 access types encoded as fat pointers), strip it now. */
10478 if (type->code () == TYPE_CODE_TYPEDEF)
10479 type = ada_typedef_target_type (type);
10480
10481 if (type->code () == TYPE_CODE_PTR)
10482 {
10483 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10484 {
10485 case TYPE_CODE_FUNC:
10486 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10487 break;
10488 case TYPE_CODE_ARRAY:
10489 break;
10490 case TYPE_CODE_STRUCT:
10491 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10492 argvec[0] = ada_value_ind (argvec[0]);
10493 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10494 break;
10495 default:
10496 error (_("cannot subscript or call something of type `%s'"),
10497 ada_type_name (value_type (argvec[0])));
10498 break;
10499 }
10500 }
10501
10502 switch (type->code ())
10503 {
10504 case TYPE_CODE_FUNC:
10505 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10506 {
10507 if (TYPE_TARGET_TYPE (type) == NULL)
10508 error_call_unknown_return_type (NULL);
10509 return allocate_value (TYPE_TARGET_TYPE (type));
10510 }
10511 return call_function_by_hand (argvec[0], NULL,
10512 gdb::make_array_view (argvec + 1,
10513 nargs));
10514 case TYPE_CODE_INTERNAL_FUNCTION:
10515 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10516 /* We don't know anything about what the internal
10517 function might return, but we have to return
10518 something. */
10519 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10520 not_lval);
10521 else
10522 return call_internal_function (exp->gdbarch, exp->language_defn,
10523 argvec[0], nargs, argvec + 1);
10524
10525 case TYPE_CODE_STRUCT:
10526 {
10527 int arity;
10528
10529 arity = ada_array_arity (type);
10530 type = ada_array_element_type (type, nargs);
10531 if (type == NULL)
10532 error (_("cannot subscript or call a record"));
10533 if (arity != nargs)
10534 error (_("wrong number of subscripts; expecting %d"), arity);
10535 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10536 return value_zero (ada_aligned_type (type), lval_memory);
10537 return
10538 unwrap_value (ada_value_subscript
10539 (argvec[0], nargs, argvec + 1));
10540 }
10541 case TYPE_CODE_ARRAY:
10542 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10543 {
10544 type = ada_array_element_type (type, nargs);
10545 if (type == NULL)
10546 error (_("element type of array unknown"));
10547 else
10548 return value_zero (ada_aligned_type (type), lval_memory);
10549 }
10550 return
10551 unwrap_value (ada_value_subscript
10552 (ada_coerce_to_simple_array (argvec[0]),
10553 nargs, argvec + 1));
10554 case TYPE_CODE_PTR: /* Pointer to array */
10555 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10556 {
10557 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10558 type = ada_array_element_type (type, nargs);
10559 if (type == NULL)
10560 error (_("element type of array unknown"));
10561 else
10562 return value_zero (ada_aligned_type (type), lval_memory);
10563 }
10564 return
10565 unwrap_value (ada_value_ptr_subscript (argvec[0],
10566 nargs, argvec + 1));
10567
10568 default:
10569 error (_("Attempt to index or call something other than an "
10570 "array or function"));
10571 }
10572
10573 case TERNOP_SLICE:
10574 {
10575 struct value *array = evaluate_subexp (nullptr, exp, pos, noside);
10576 struct value *low_bound_val
10577 = evaluate_subexp (nullptr, exp, pos, noside);
10578 struct value *high_bound_val
10579 = evaluate_subexp (nullptr, exp, pos, noside);
10580 LONGEST low_bound;
10581 LONGEST high_bound;
10582
10583 low_bound_val = coerce_ref (low_bound_val);
10584 high_bound_val = coerce_ref (high_bound_val);
10585 low_bound = value_as_long (low_bound_val);
10586 high_bound = value_as_long (high_bound_val);
10587
10588 if (noside == EVAL_SKIP)
10589 goto nosideret;
10590
10591 /* If this is a reference to an aligner type, then remove all
10592 the aligners. */
10593 if (value_type (array)->code () == TYPE_CODE_REF
10594 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10595 TYPE_TARGET_TYPE (value_type (array)) =
10596 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10597
10598 if (ada_is_any_packed_array_type (value_type (array)))
10599 error (_("cannot slice a packed array"));
10600
10601 /* If this is a reference to an array or an array lvalue,
10602 convert to a pointer. */
10603 if (value_type (array)->code () == TYPE_CODE_REF
10604 || (value_type (array)->code () == TYPE_CODE_ARRAY
10605 && VALUE_LVAL (array) == lval_memory))
10606 array = value_addr (array);
10607
10608 if (noside == EVAL_AVOID_SIDE_EFFECTS
10609 && ada_is_array_descriptor_type (ada_check_typedef
10610 (value_type (array))))
10611 return empty_array (ada_type_of_array (array, 0), low_bound,
10612 high_bound);
10613
10614 array = ada_coerce_to_simple_array_ptr (array);
10615
10616 /* If we have more than one level of pointer indirection,
10617 dereference the value until we get only one level. */
10618 while (value_type (array)->code () == TYPE_CODE_PTR
10619 && (TYPE_TARGET_TYPE (value_type (array))->code ()
10620 == TYPE_CODE_PTR))
10621 array = value_ind (array);
10622
10623 /* Make sure we really do have an array type before going further,
10624 to avoid a SEGV when trying to get the index type or the target
10625 type later down the road if the debug info generated by
10626 the compiler is incorrect or incomplete. */
10627 if (!ada_is_simple_array_type (value_type (array)))
10628 error (_("cannot take slice of non-array"));
10629
10630 if (ada_check_typedef (value_type (array))->code ()
10631 == TYPE_CODE_PTR)
10632 {
10633 struct type *type0 = ada_check_typedef (value_type (array));
10634
10635 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10636 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10637 else
10638 {
10639 struct type *arr_type0 =
10640 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10641
10642 return ada_value_slice_from_ptr (array, arr_type0,
10643 longest_to_int (low_bound),
10644 longest_to_int (high_bound));
10645 }
10646 }
10647 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10648 return array;
10649 else if (high_bound < low_bound)
10650 return empty_array (value_type (array), low_bound, high_bound);
10651 else
10652 return ada_value_slice (array, longest_to_int (low_bound),
10653 longest_to_int (high_bound));
10654 }
10655
10656 case UNOP_IN_RANGE:
10657 (*pos) += 2;
10658 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10659 type = check_typedef (exp->elts[pc + 1].type);
10660
10661 if (noside == EVAL_SKIP)
10662 goto nosideret;
10663
10664 switch (type->code ())
10665 {
10666 default:
10667 lim_warning (_("Membership test incompletely implemented; "
10668 "always returns true"));
10669 type = language_bool_type (exp->language_defn, exp->gdbarch);
10670 return value_from_longest (type, (LONGEST) 1);
10671
10672 case TYPE_CODE_RANGE:
10673 arg2 = value_from_longest (type,
10674 type->bounds ()->low.const_val ());
10675 arg3 = value_from_longest (type,
10676 type->bounds ()->high.const_val ());
10677 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10678 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10679 type = language_bool_type (exp->language_defn, exp->gdbarch);
10680 return
10681 value_from_longest (type,
10682 (value_less (arg1, arg3)
10683 || value_equal (arg1, arg3))
10684 && (value_less (arg2, arg1)
10685 || value_equal (arg2, arg1)));
10686 }
10687
10688 case BINOP_IN_BOUNDS:
10689 (*pos) += 2;
10690 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10691 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10692
10693 if (noside == EVAL_SKIP)
10694 goto nosideret;
10695
10696 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10697 {
10698 type = language_bool_type (exp->language_defn, exp->gdbarch);
10699 return value_zero (type, not_lval);
10700 }
10701
10702 tem = longest_to_int (exp->elts[pc + 1].longconst);
10703
10704 type = ada_index_type (value_type (arg2), tem, "range");
10705 if (!type)
10706 type = value_type (arg1);
10707
10708 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10709 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10710
10711 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10712 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10713 type = language_bool_type (exp->language_defn, exp->gdbarch);
10714 return
10715 value_from_longest (type,
10716 (value_less (arg1, arg3)
10717 || value_equal (arg1, arg3))
10718 && (value_less (arg2, arg1)
10719 || value_equal (arg2, arg1)));
10720
10721 case TERNOP_IN_RANGE:
10722 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10723 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10724 arg3 = evaluate_subexp (nullptr, exp, pos, noside);
10725
10726 if (noside == EVAL_SKIP)
10727 goto nosideret;
10728
10729 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10730 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10731 type = language_bool_type (exp->language_defn, exp->gdbarch);
10732 return
10733 value_from_longest (type,
10734 (value_less (arg1, arg3)
10735 || value_equal (arg1, arg3))
10736 && (value_less (arg2, arg1)
10737 || value_equal (arg2, arg1)));
10738
10739 case OP_ATR_FIRST:
10740 case OP_ATR_LAST:
10741 case OP_ATR_LENGTH:
10742 {
10743 struct type *type_arg;
10744
10745 if (exp->elts[*pos].opcode == OP_TYPE)
10746 {
10747 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10748 arg1 = NULL;
10749 type_arg = check_typedef (exp->elts[pc + 2].type);
10750 }
10751 else
10752 {
10753 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10754 type_arg = NULL;
10755 }
10756
10757 if (exp->elts[*pos].opcode != OP_LONG)
10758 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10759 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10760 *pos += 4;
10761
10762 if (noside == EVAL_SKIP)
10763 goto nosideret;
10764 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10765 {
10766 if (type_arg == NULL)
10767 type_arg = value_type (arg1);
10768
10769 if (ada_is_constrained_packed_array_type (type_arg))
10770 type_arg = decode_constrained_packed_array_type (type_arg);
10771
10772 if (!discrete_type_p (type_arg))
10773 {
10774 switch (op)
10775 {
10776 default: /* Should never happen. */
10777 error (_("unexpected attribute encountered"));
10778 case OP_ATR_FIRST:
10779 case OP_ATR_LAST:
10780 type_arg = ada_index_type (type_arg, tem,
10781 ada_attribute_name (op));
10782 break;
10783 case OP_ATR_LENGTH:
10784 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10785 break;
10786 }
10787 }
10788
10789 return value_zero (type_arg, not_lval);
10790 }
10791 else if (type_arg == NULL)
10792 {
10793 arg1 = ada_coerce_ref (arg1);
10794
10795 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10796 arg1 = ada_coerce_to_simple_array (arg1);
10797
10798 if (op == OP_ATR_LENGTH)
10799 type = builtin_type (exp->gdbarch)->builtin_int;
10800 else
10801 {
10802 type = ada_index_type (value_type (arg1), tem,
10803 ada_attribute_name (op));
10804 if (type == NULL)
10805 type = builtin_type (exp->gdbarch)->builtin_int;
10806 }
10807
10808 switch (op)
10809 {
10810 default: /* Should never happen. */
10811 error (_("unexpected attribute encountered"));
10812 case OP_ATR_FIRST:
10813 return value_from_longest
10814 (type, ada_array_bound (arg1, tem, 0));
10815 case OP_ATR_LAST:
10816 return value_from_longest
10817 (type, ada_array_bound (arg1, tem, 1));
10818 case OP_ATR_LENGTH:
10819 return value_from_longest
10820 (type, ada_array_length (arg1, tem));
10821 }
10822 }
10823 else if (discrete_type_p (type_arg))
10824 {
10825 struct type *range_type;
10826 const char *name = ada_type_name (type_arg);
10827
10828 range_type = NULL;
10829 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10830 range_type = to_fixed_range_type (type_arg, NULL);
10831 if (range_type == NULL)
10832 range_type = type_arg;
10833 switch (op)
10834 {
10835 default:
10836 error (_("unexpected attribute encountered"));
10837 case OP_ATR_FIRST:
10838 return value_from_longest
10839 (range_type, ada_discrete_type_low_bound (range_type));
10840 case OP_ATR_LAST:
10841 return value_from_longest
10842 (range_type, ada_discrete_type_high_bound (range_type));
10843 case OP_ATR_LENGTH:
10844 error (_("the 'length attribute applies only to array types"));
10845 }
10846 }
10847 else if (type_arg->code () == TYPE_CODE_FLT)
10848 error (_("unimplemented type attribute"));
10849 else
10850 {
10851 LONGEST low, high;
10852
10853 if (ada_is_constrained_packed_array_type (type_arg))
10854 type_arg = decode_constrained_packed_array_type (type_arg);
10855
10856 if (op == OP_ATR_LENGTH)
10857 type = builtin_type (exp->gdbarch)->builtin_int;
10858 else
10859 {
10860 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10861 if (type == NULL)
10862 type = builtin_type (exp->gdbarch)->builtin_int;
10863 }
10864
10865 switch (op)
10866 {
10867 default:
10868 error (_("unexpected attribute encountered"));
10869 case OP_ATR_FIRST:
10870 low = ada_array_bound_from_type (type_arg, tem, 0);
10871 return value_from_longest (type, low);
10872 case OP_ATR_LAST:
10873 high = ada_array_bound_from_type (type_arg, tem, 1);
10874 return value_from_longest (type, high);
10875 case OP_ATR_LENGTH:
10876 low = ada_array_bound_from_type (type_arg, tem, 0);
10877 high = ada_array_bound_from_type (type_arg, tem, 1);
10878 return value_from_longest (type, high - low + 1);
10879 }
10880 }
10881 }
10882
10883 case OP_ATR_TAG:
10884 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10885 if (noside == EVAL_SKIP)
10886 goto nosideret;
10887
10888 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10889 return value_zero (ada_tag_type (arg1), not_lval);
10890
10891 return ada_value_tag (arg1);
10892
10893 case OP_ATR_MIN:
10894 case OP_ATR_MAX:
10895 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10896 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10897 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10898 if (noside == EVAL_SKIP)
10899 goto nosideret;
10900 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10901 return value_zero (value_type (arg1), not_lval);
10902 else
10903 {
10904 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10905 return value_binop (arg1, arg2,
10906 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10907 }
10908
10909 case OP_ATR_MODULUS:
10910 {
10911 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10912
10913 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10914 if (noside == EVAL_SKIP)
10915 goto nosideret;
10916
10917 if (!ada_is_modular_type (type_arg))
10918 error (_("'modulus must be applied to modular type"));
10919
10920 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10921 ada_modulus (type_arg));
10922 }
10923
10924
10925 case OP_ATR_POS:
10926 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10927 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10928 if (noside == EVAL_SKIP)
10929 goto nosideret;
10930 type = builtin_type (exp->gdbarch)->builtin_int;
10931 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10932 return value_zero (type, not_lval);
10933 else
10934 return value_pos_atr (type, arg1);
10935
10936 case OP_ATR_SIZE:
10937 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10938 type = value_type (arg1);
10939
10940 /* If the argument is a reference, then dereference its type, since
10941 the user is really asking for the size of the actual object,
10942 not the size of the pointer. */
10943 if (type->code () == TYPE_CODE_REF)
10944 type = TYPE_TARGET_TYPE (type);
10945
10946 if (noside == EVAL_SKIP)
10947 goto nosideret;
10948 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10949 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10950 else
10951 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10952 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10953
10954 case OP_ATR_VAL:
10955 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10956 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10957 type = exp->elts[pc + 2].type;
10958 if (noside == EVAL_SKIP)
10959 goto nosideret;
10960 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10961 return value_zero (type, not_lval);
10962 else
10963 return value_val_atr (type, arg1);
10964
10965 case BINOP_EXP:
10966 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10967 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10968 if (noside == EVAL_SKIP)
10969 goto nosideret;
10970 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10971 return value_zero (value_type (arg1), not_lval);
10972 else
10973 {
10974 /* For integer exponentiation operations,
10975 only promote the first argument. */
10976 if (is_integral_type (value_type (arg2)))
10977 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10978 else
10979 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10980
10981 return value_binop (arg1, arg2, op);
10982 }
10983
10984 case UNOP_PLUS:
10985 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10986 if (noside == EVAL_SKIP)
10987 goto nosideret;
10988 else
10989 return arg1;
10990
10991 case UNOP_ABS:
10992 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10993 if (noside == EVAL_SKIP)
10994 goto nosideret;
10995 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10996 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10997 return value_neg (arg1);
10998 else
10999 return arg1;
11000
11001 case UNOP_IND:
11002 preeval_pos = *pos;
11003 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
11004 if (noside == EVAL_SKIP)
11005 goto nosideret;
11006 type = ada_check_typedef (value_type (arg1));
11007 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11008 {
11009 if (ada_is_array_descriptor_type (type))
11010 /* GDB allows dereferencing GNAT array descriptors. */
11011 {
11012 struct type *arrType = ada_type_of_array (arg1, 0);
11013
11014 if (arrType == NULL)
11015 error (_("Attempt to dereference null array pointer."));
11016 return value_at_lazy (arrType, 0);
11017 }
11018 else if (type->code () == TYPE_CODE_PTR
11019 || type->code () == TYPE_CODE_REF
11020 /* In C you can dereference an array to get the 1st elt. */
11021 || type->code () == TYPE_CODE_ARRAY)
11022 {
11023 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11024 only be determined by inspecting the object's tag.
11025 This means that we need to evaluate completely the
11026 expression in order to get its type. */
11027
11028 if ((type->code () == TYPE_CODE_REF
11029 || type->code () == TYPE_CODE_PTR)
11030 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11031 {
11032 arg1
11033 = evaluate_subexp (nullptr, exp, &preeval_pos, EVAL_NORMAL);
11034 type = value_type (ada_value_ind (arg1));
11035 }
11036 else
11037 {
11038 type = to_static_fixed_type
11039 (ada_aligned_type
11040 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11041 }
11042 ada_ensure_varsize_limit (type);
11043 return value_zero (type, lval_memory);
11044 }
11045 else if (type->code () == TYPE_CODE_INT)
11046 {
11047 /* GDB allows dereferencing an int. */
11048 if (expect_type == NULL)
11049 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11050 lval_memory);
11051 else
11052 {
11053 expect_type =
11054 to_static_fixed_type (ada_aligned_type (expect_type));
11055 return value_zero (expect_type, lval_memory);
11056 }
11057 }
11058 else
11059 error (_("Attempt to take contents of a non-pointer value."));
11060 }
11061 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11062 type = ada_check_typedef (value_type (arg1));
11063
11064 if (type->code () == TYPE_CODE_INT)
11065 /* GDB allows dereferencing an int. If we were given
11066 the expect_type, then use that as the target type.
11067 Otherwise, assume that the target type is an int. */
11068 {
11069 if (expect_type != NULL)
11070 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11071 arg1));
11072 else
11073 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11074 (CORE_ADDR) value_as_address (arg1));
11075 }
11076
11077 if (ada_is_array_descriptor_type (type))
11078 /* GDB allows dereferencing GNAT array descriptors. */
11079 return ada_coerce_to_simple_array (arg1);
11080 else
11081 return ada_value_ind (arg1);
11082
11083 case STRUCTOP_STRUCT:
11084 tem = longest_to_int (exp->elts[pc + 1].longconst);
11085 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11086 preeval_pos = *pos;
11087 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
11088 if (noside == EVAL_SKIP)
11089 goto nosideret;
11090 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11091 {
11092 struct type *type1 = value_type (arg1);
11093
11094 if (ada_is_tagged_type (type1, 1))
11095 {
11096 type = ada_lookup_struct_elt_type (type1,
11097 &exp->elts[pc + 2].string,
11098 1, 1);
11099
11100 /* If the field is not found, check if it exists in the
11101 extension of this object's type. This means that we
11102 need to evaluate completely the expression. */
11103
11104 if (type == NULL)
11105 {
11106 arg1
11107 = evaluate_subexp (nullptr, exp, &preeval_pos, EVAL_NORMAL);
11108 arg1 = ada_value_struct_elt (arg1,
11109 &exp->elts[pc + 2].string,
11110 0);
11111 arg1 = unwrap_value (arg1);
11112 type = value_type (ada_to_fixed_value (arg1));
11113 }
11114 }
11115 else
11116 type =
11117 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11118 0);
11119
11120 return value_zero (ada_aligned_type (type), lval_memory);
11121 }
11122 else
11123 {
11124 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11125 arg1 = unwrap_value (arg1);
11126 return ada_to_fixed_value (arg1);
11127 }
11128
11129 case OP_TYPE:
11130 /* The value is not supposed to be used. This is here to make it
11131 easier to accommodate expressions that contain types. */
11132 (*pos) += 2;
11133 if (noside == EVAL_SKIP)
11134 goto nosideret;
11135 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11136 return allocate_value (exp->elts[pc + 1].type);
11137 else
11138 error (_("Attempt to use a type name as an expression"));
11139
11140 case OP_AGGREGATE:
11141 case OP_CHOICES:
11142 case OP_OTHERS:
11143 case OP_DISCRETE_RANGE:
11144 case OP_POSITIONAL:
11145 case OP_NAME:
11146 if (noside == EVAL_NORMAL)
11147 switch (op)
11148 {
11149 case OP_NAME:
11150 error (_("Undefined name, ambiguous name, or renaming used in "
11151 "component association: %s."), &exp->elts[pc+2].string);
11152 case OP_AGGREGATE:
11153 error (_("Aggregates only allowed on the right of an assignment"));
11154 default:
11155 internal_error (__FILE__, __LINE__,
11156 _("aggregate apparently mangled"));
11157 }
11158
11159 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11160 *pos += oplen - 1;
11161 for (tem = 0; tem < nargs; tem += 1)
11162 ada_evaluate_subexp (NULL, exp, pos, noside);
11163 goto nosideret;
11164 }
11165
11166 nosideret:
11167 return eval_skip_value (exp);
11168 }
11169 \f
11170
11171 /* Fixed point */
11172
11173 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11174 type name that encodes the 'small and 'delta information.
11175 Otherwise, return NULL. */
11176
11177 static const char *
11178 gnat_encoded_fixed_point_type_info (struct type *type)
11179 {
11180 const char *name = ada_type_name (type);
11181 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
11182
11183 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11184 {
11185 const char *tail = strstr (name, "___XF_");
11186
11187 if (tail == NULL)
11188 return NULL;
11189 else
11190 return tail + 5;
11191 }
11192 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11193 return gnat_encoded_fixed_point_type_info (TYPE_TARGET_TYPE (type));
11194 else
11195 return NULL;
11196 }
11197
11198 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11199
11200 int
11201 ada_is_gnat_encoded_fixed_point_type (struct type *type)
11202 {
11203 return gnat_encoded_fixed_point_type_info (type) != NULL;
11204 }
11205
11206 /* Return non-zero iff TYPE represents a System.Address type. */
11207
11208 int
11209 ada_is_system_address_type (struct type *type)
11210 {
11211 return (type->name () && strcmp (type->name (), "system__address") == 0);
11212 }
11213
11214 /* Assuming that TYPE is the representation of an Ada fixed-point
11215 type, return the target floating-point type to be used to represent
11216 of this type during internal computation. */
11217
11218 static struct type *
11219 ada_scaling_type (struct type *type)
11220 {
11221 return builtin_type (get_type_arch (type))->builtin_long_double;
11222 }
11223
11224 /* Assuming that TYPE is the representation of an Ada fixed-point
11225 type, return its delta, or NULL if the type is malformed and the
11226 delta cannot be determined. */
11227
11228 struct value *
11229 gnat_encoded_fixed_point_delta (struct type *type)
11230 {
11231 const char *encoding = gnat_encoded_fixed_point_type_info (type);
11232 struct type *scale_type = ada_scaling_type (type);
11233
11234 long long num, den;
11235
11236 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11237 return nullptr;
11238 else
11239 return value_binop (value_from_longest (scale_type, num),
11240 value_from_longest (scale_type, den), BINOP_DIV);
11241 }
11242
11243 /* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11244 the scaling factor ('SMALL value) associated with the type. */
11245
11246 struct value *
11247 gnat_encoded_fixed_point_scaling_factor (struct type *type)
11248 {
11249 const char *encoding = gnat_encoded_fixed_point_type_info (type);
11250 struct type *scale_type = ada_scaling_type (type);
11251
11252 long long num0, den0, num1, den1;
11253 int n;
11254
11255 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11256 &num0, &den0, &num1, &den1);
11257
11258 if (n < 2)
11259 return value_from_longest (scale_type, 1);
11260 else if (n == 4)
11261 return value_binop (value_from_longest (scale_type, num1),
11262 value_from_longest (scale_type, den1), BINOP_DIV);
11263 else
11264 return value_binop (value_from_longest (scale_type, num0),
11265 value_from_longest (scale_type, den0), BINOP_DIV);
11266 }
11267
11268 \f
11269
11270 /* Range types */
11271
11272 /* Scan STR beginning at position K for a discriminant name, and
11273 return the value of that discriminant field of DVAL in *PX. If
11274 PNEW_K is not null, put the position of the character beyond the
11275 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11276 not alter *PX and *PNEW_K if unsuccessful. */
11277
11278 static int
11279 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11280 int *pnew_k)
11281 {
11282 static char *bound_buffer = NULL;
11283 static size_t bound_buffer_len = 0;
11284 const char *pstart, *pend, *bound;
11285 struct value *bound_val;
11286
11287 if (dval == NULL || str == NULL || str[k] == '\0')
11288 return 0;
11289
11290 pstart = str + k;
11291 pend = strstr (pstart, "__");
11292 if (pend == NULL)
11293 {
11294 bound = pstart;
11295 k += strlen (bound);
11296 }
11297 else
11298 {
11299 int len = pend - pstart;
11300
11301 /* Strip __ and beyond. */
11302 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11303 strncpy (bound_buffer, pstart, len);
11304 bound_buffer[len] = '\0';
11305
11306 bound = bound_buffer;
11307 k = pend - str;
11308 }
11309
11310 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11311 if (bound_val == NULL)
11312 return 0;
11313
11314 *px = value_as_long (bound_val);
11315 if (pnew_k != NULL)
11316 *pnew_k = k;
11317 return 1;
11318 }
11319
11320 /* Value of variable named NAME. Only exact matches are considered.
11321 If no such variable found, then if ERR_MSG is null, returns 0, and
11322 otherwise causes an error with message ERR_MSG. */
11323
11324 static struct value *
11325 get_var_value (const char *name, const char *err_msg)
11326 {
11327 std::string quoted_name = add_angle_brackets (name);
11328
11329 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
11330
11331 std::vector<struct block_symbol> syms;
11332 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11333 get_selected_block (0),
11334 VAR_DOMAIN, &syms, 1);
11335
11336 if (nsyms != 1)
11337 {
11338 if (err_msg == NULL)
11339 return 0;
11340 else
11341 error (("%s"), err_msg);
11342 }
11343
11344 return value_of_variable (syms[0].symbol, syms[0].block);
11345 }
11346
11347 /* Value of integer variable named NAME in the current environment.
11348 If no such variable is found, returns false. Otherwise, sets VALUE
11349 to the variable's value and returns true. */
11350
11351 bool
11352 get_int_var_value (const char *name, LONGEST &value)
11353 {
11354 struct value *var_val = get_var_value (name, 0);
11355
11356 if (var_val == 0)
11357 return false;
11358
11359 value = value_as_long (var_val);
11360 return true;
11361 }
11362
11363
11364 /* Return a range type whose base type is that of the range type named
11365 NAME in the current environment, and whose bounds are calculated
11366 from NAME according to the GNAT range encoding conventions.
11367 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11368 corresponding range type from debug information; fall back to using it
11369 if symbol lookup fails. If a new type must be created, allocate it
11370 like ORIG_TYPE was. The bounds information, in general, is encoded
11371 in NAME, the base type given in the named range type. */
11372
11373 static struct type *
11374 to_fixed_range_type (struct type *raw_type, struct value *dval)
11375 {
11376 const char *name;
11377 struct type *base_type;
11378 const char *subtype_info;
11379
11380 gdb_assert (raw_type != NULL);
11381 gdb_assert (raw_type->name () != NULL);
11382
11383 if (raw_type->code () == TYPE_CODE_RANGE)
11384 base_type = TYPE_TARGET_TYPE (raw_type);
11385 else
11386 base_type = raw_type;
11387
11388 name = raw_type->name ();
11389 subtype_info = strstr (name, "___XD");
11390 if (subtype_info == NULL)
11391 {
11392 LONGEST L = ada_discrete_type_low_bound (raw_type);
11393 LONGEST U = ada_discrete_type_high_bound (raw_type);
11394
11395 if (L < INT_MIN || U > INT_MAX)
11396 return raw_type;
11397 else
11398 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11399 L, U);
11400 }
11401 else
11402 {
11403 static char *name_buf = NULL;
11404 static size_t name_len = 0;
11405 int prefix_len = subtype_info - name;
11406 LONGEST L, U;
11407 struct type *type;
11408 const char *bounds_str;
11409 int n;
11410
11411 GROW_VECT (name_buf, name_len, prefix_len + 5);
11412 strncpy (name_buf, name, prefix_len);
11413 name_buf[prefix_len] = '\0';
11414
11415 subtype_info += 5;
11416 bounds_str = strchr (subtype_info, '_');
11417 n = 1;
11418
11419 if (*subtype_info == 'L')
11420 {
11421 if (!ada_scan_number (bounds_str, n, &L, &n)
11422 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11423 return raw_type;
11424 if (bounds_str[n] == '_')
11425 n += 2;
11426 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11427 n += 1;
11428 subtype_info += 1;
11429 }
11430 else
11431 {
11432 strcpy (name_buf + prefix_len, "___L");
11433 if (!get_int_var_value (name_buf, L))
11434 {
11435 lim_warning (_("Unknown lower bound, using 1."));
11436 L = 1;
11437 }
11438 }
11439
11440 if (*subtype_info == 'U')
11441 {
11442 if (!ada_scan_number (bounds_str, n, &U, &n)
11443 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11444 return raw_type;
11445 }
11446 else
11447 {
11448 strcpy (name_buf + prefix_len, "___U");
11449 if (!get_int_var_value (name_buf, U))
11450 {
11451 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11452 U = L;
11453 }
11454 }
11455
11456 type = create_static_range_type (alloc_type_copy (raw_type),
11457 base_type, L, U);
11458 /* create_static_range_type alters the resulting type's length
11459 to match the size of the base_type, which is not what we want.
11460 Set it back to the original range type's length. */
11461 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11462 type->set_name (name);
11463 return type;
11464 }
11465 }
11466
11467 /* True iff NAME is the name of a range type. */
11468
11469 int
11470 ada_is_range_type_name (const char *name)
11471 {
11472 return (name != NULL && strstr (name, "___XD"));
11473 }
11474 \f
11475
11476 /* Modular types */
11477
11478 /* True iff TYPE is an Ada modular type. */
11479
11480 int
11481 ada_is_modular_type (struct type *type)
11482 {
11483 struct type *subranged_type = get_base_type (type);
11484
11485 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11486 && subranged_type->code () == TYPE_CODE_INT
11487 && subranged_type->is_unsigned ());
11488 }
11489
11490 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11491
11492 ULONGEST
11493 ada_modulus (struct type *type)
11494 {
11495 const dynamic_prop &high = type->bounds ()->high;
11496
11497 if (high.kind () == PROP_CONST)
11498 return (ULONGEST) high.const_val () + 1;
11499
11500 /* If TYPE is unresolved, the high bound might be a location list. Return
11501 0, for lack of a better value to return. */
11502 return 0;
11503 }
11504 \f
11505
11506 /* Ada exception catchpoint support:
11507 ---------------------------------
11508
11509 We support 3 kinds of exception catchpoints:
11510 . catchpoints on Ada exceptions
11511 . catchpoints on unhandled Ada exceptions
11512 . catchpoints on failed assertions
11513
11514 Exceptions raised during failed assertions, or unhandled exceptions
11515 could perfectly be caught with the general catchpoint on Ada exceptions.
11516 However, we can easily differentiate these two special cases, and having
11517 the option to distinguish these two cases from the rest can be useful
11518 to zero-in on certain situations.
11519
11520 Exception catchpoints are a specialized form of breakpoint,
11521 since they rely on inserting breakpoints inside known routines
11522 of the GNAT runtime. The implementation therefore uses a standard
11523 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11524 of breakpoint_ops.
11525
11526 Support in the runtime for exception catchpoints have been changed
11527 a few times already, and these changes affect the implementation
11528 of these catchpoints. In order to be able to support several
11529 variants of the runtime, we use a sniffer that will determine
11530 the runtime variant used by the program being debugged. */
11531
11532 /* Ada's standard exceptions.
11533
11534 The Ada 83 standard also defined Numeric_Error. But there so many
11535 situations where it was unclear from the Ada 83 Reference Manual
11536 (RM) whether Constraint_Error or Numeric_Error should be raised,
11537 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11538 Interpretation saying that anytime the RM says that Numeric_Error
11539 should be raised, the implementation may raise Constraint_Error.
11540 Ada 95 went one step further and pretty much removed Numeric_Error
11541 from the list of standard exceptions (it made it a renaming of
11542 Constraint_Error, to help preserve compatibility when compiling
11543 an Ada83 compiler). As such, we do not include Numeric_Error from
11544 this list of standard exceptions. */
11545
11546 static const char * const standard_exc[] = {
11547 "constraint_error",
11548 "program_error",
11549 "storage_error",
11550 "tasking_error"
11551 };
11552
11553 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11554
11555 /* A structure that describes how to support exception catchpoints
11556 for a given executable. */
11557
11558 struct exception_support_info
11559 {
11560 /* The name of the symbol to break on in order to insert
11561 a catchpoint on exceptions. */
11562 const char *catch_exception_sym;
11563
11564 /* The name of the symbol to break on in order to insert
11565 a catchpoint on unhandled exceptions. */
11566 const char *catch_exception_unhandled_sym;
11567
11568 /* The name of the symbol to break on in order to insert
11569 a catchpoint on failed assertions. */
11570 const char *catch_assert_sym;
11571
11572 /* The name of the symbol to break on in order to insert
11573 a catchpoint on exception handling. */
11574 const char *catch_handlers_sym;
11575
11576 /* Assuming that the inferior just triggered an unhandled exception
11577 catchpoint, this function is responsible for returning the address
11578 in inferior memory where the name of that exception is stored.
11579 Return zero if the address could not be computed. */
11580 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11581 };
11582
11583 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11584 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11585
11586 /* The following exception support info structure describes how to
11587 implement exception catchpoints with the latest version of the
11588 Ada runtime (as of 2019-08-??). */
11589
11590 static const struct exception_support_info default_exception_support_info =
11591 {
11592 "__gnat_debug_raise_exception", /* catch_exception_sym */
11593 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11594 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11595 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11596 ada_unhandled_exception_name_addr
11597 };
11598
11599 /* The following exception support info structure describes how to
11600 implement exception catchpoints with an earlier version of the
11601 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11602
11603 static const struct exception_support_info exception_support_info_v0 =
11604 {
11605 "__gnat_debug_raise_exception", /* catch_exception_sym */
11606 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11607 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11608 "__gnat_begin_handler", /* catch_handlers_sym */
11609 ada_unhandled_exception_name_addr
11610 };
11611
11612 /* The following exception support info structure describes how to
11613 implement exception catchpoints with a slightly older version
11614 of the Ada runtime. */
11615
11616 static const struct exception_support_info exception_support_info_fallback =
11617 {
11618 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11619 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11620 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11621 "__gnat_begin_handler", /* catch_handlers_sym */
11622 ada_unhandled_exception_name_addr_from_raise
11623 };
11624
11625 /* Return nonzero if we can detect the exception support routines
11626 described in EINFO.
11627
11628 This function errors out if an abnormal situation is detected
11629 (for instance, if we find the exception support routines, but
11630 that support is found to be incomplete). */
11631
11632 static int
11633 ada_has_this_exception_support (const struct exception_support_info *einfo)
11634 {
11635 struct symbol *sym;
11636
11637 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11638 that should be compiled with debugging information. As a result, we
11639 expect to find that symbol in the symtabs. */
11640
11641 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11642 if (sym == NULL)
11643 {
11644 /* Perhaps we did not find our symbol because the Ada runtime was
11645 compiled without debugging info, or simply stripped of it.
11646 It happens on some GNU/Linux distributions for instance, where
11647 users have to install a separate debug package in order to get
11648 the runtime's debugging info. In that situation, let the user
11649 know why we cannot insert an Ada exception catchpoint.
11650
11651 Note: Just for the purpose of inserting our Ada exception
11652 catchpoint, we could rely purely on the associated minimal symbol.
11653 But we would be operating in degraded mode anyway, since we are
11654 still lacking the debugging info needed later on to extract
11655 the name of the exception being raised (this name is printed in
11656 the catchpoint message, and is also used when trying to catch
11657 a specific exception). We do not handle this case for now. */
11658 struct bound_minimal_symbol msym
11659 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11660
11661 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11662 error (_("Your Ada runtime appears to be missing some debugging "
11663 "information.\nCannot insert Ada exception catchpoint "
11664 "in this configuration."));
11665
11666 return 0;
11667 }
11668
11669 /* Make sure that the symbol we found corresponds to a function. */
11670
11671 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11672 {
11673 error (_("Symbol \"%s\" is not a function (class = %d)"),
11674 sym->linkage_name (), SYMBOL_CLASS (sym));
11675 return 0;
11676 }
11677
11678 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11679 if (sym == NULL)
11680 {
11681 struct bound_minimal_symbol msym
11682 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11683
11684 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11685 error (_("Your Ada runtime appears to be missing some debugging "
11686 "information.\nCannot insert Ada exception catchpoint "
11687 "in this configuration."));
11688
11689 return 0;
11690 }
11691
11692 /* Make sure that the symbol we found corresponds to a function. */
11693
11694 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11695 {
11696 error (_("Symbol \"%s\" is not a function (class = %d)"),
11697 sym->linkage_name (), SYMBOL_CLASS (sym));
11698 return 0;
11699 }
11700
11701 return 1;
11702 }
11703
11704 /* Inspect the Ada runtime and determine which exception info structure
11705 should be used to provide support for exception catchpoints.
11706
11707 This function will always set the per-inferior exception_info,
11708 or raise an error. */
11709
11710 static void
11711 ada_exception_support_info_sniffer (void)
11712 {
11713 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11714
11715 /* If the exception info is already known, then no need to recompute it. */
11716 if (data->exception_info != NULL)
11717 return;
11718
11719 /* Check the latest (default) exception support info. */
11720 if (ada_has_this_exception_support (&default_exception_support_info))
11721 {
11722 data->exception_info = &default_exception_support_info;
11723 return;
11724 }
11725
11726 /* Try the v0 exception suport info. */
11727 if (ada_has_this_exception_support (&exception_support_info_v0))
11728 {
11729 data->exception_info = &exception_support_info_v0;
11730 return;
11731 }
11732
11733 /* Try our fallback exception suport info. */
11734 if (ada_has_this_exception_support (&exception_support_info_fallback))
11735 {
11736 data->exception_info = &exception_support_info_fallback;
11737 return;
11738 }
11739
11740 /* Sometimes, it is normal for us to not be able to find the routine
11741 we are looking for. This happens when the program is linked with
11742 the shared version of the GNAT runtime, and the program has not been
11743 started yet. Inform the user of these two possible causes if
11744 applicable. */
11745
11746 if (ada_update_initial_language (language_unknown) != language_ada)
11747 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11748
11749 /* If the symbol does not exist, then check that the program is
11750 already started, to make sure that shared libraries have been
11751 loaded. If it is not started, this may mean that the symbol is
11752 in a shared library. */
11753
11754 if (inferior_ptid.pid () == 0)
11755 error (_("Unable to insert catchpoint. Try to start the program first."));
11756
11757 /* At this point, we know that we are debugging an Ada program and
11758 that the inferior has been started, but we still are not able to
11759 find the run-time symbols. That can mean that we are in
11760 configurable run time mode, or that a-except as been optimized
11761 out by the linker... In any case, at this point it is not worth
11762 supporting this feature. */
11763
11764 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11765 }
11766
11767 /* True iff FRAME is very likely to be that of a function that is
11768 part of the runtime system. This is all very heuristic, but is
11769 intended to be used as advice as to what frames are uninteresting
11770 to most users. */
11771
11772 static int
11773 is_known_support_routine (struct frame_info *frame)
11774 {
11775 enum language func_lang;
11776 int i;
11777 const char *fullname;
11778
11779 /* If this code does not have any debugging information (no symtab),
11780 This cannot be any user code. */
11781
11782 symtab_and_line sal = find_frame_sal (frame);
11783 if (sal.symtab == NULL)
11784 return 1;
11785
11786 /* If there is a symtab, but the associated source file cannot be
11787 located, then assume this is not user code: Selecting a frame
11788 for which we cannot display the code would not be very helpful
11789 for the user. This should also take care of case such as VxWorks
11790 where the kernel has some debugging info provided for a few units. */
11791
11792 fullname = symtab_to_fullname (sal.symtab);
11793 if (access (fullname, R_OK) != 0)
11794 return 1;
11795
11796 /* Check the unit filename against the Ada runtime file naming.
11797 We also check the name of the objfile against the name of some
11798 known system libraries that sometimes come with debugging info
11799 too. */
11800
11801 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11802 {
11803 re_comp (known_runtime_file_name_patterns[i]);
11804 if (re_exec (lbasename (sal.symtab->filename)))
11805 return 1;
11806 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11807 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11808 return 1;
11809 }
11810
11811 /* Check whether the function is a GNAT-generated entity. */
11812
11813 gdb::unique_xmalloc_ptr<char> func_name
11814 = find_frame_funname (frame, &func_lang, NULL);
11815 if (func_name == NULL)
11816 return 1;
11817
11818 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11819 {
11820 re_comp (known_auxiliary_function_name_patterns[i]);
11821 if (re_exec (func_name.get ()))
11822 return 1;
11823 }
11824
11825 return 0;
11826 }
11827
11828 /* Find the first frame that contains debugging information and that is not
11829 part of the Ada run-time, starting from FI and moving upward. */
11830
11831 void
11832 ada_find_printable_frame (struct frame_info *fi)
11833 {
11834 for (; fi != NULL; fi = get_prev_frame (fi))
11835 {
11836 if (!is_known_support_routine (fi))
11837 {
11838 select_frame (fi);
11839 break;
11840 }
11841 }
11842
11843 }
11844
11845 /* Assuming that the inferior just triggered an unhandled exception
11846 catchpoint, return the address in inferior memory where the name
11847 of the exception is stored.
11848
11849 Return zero if the address could not be computed. */
11850
11851 static CORE_ADDR
11852 ada_unhandled_exception_name_addr (void)
11853 {
11854 return parse_and_eval_address ("e.full_name");
11855 }
11856
11857 /* Same as ada_unhandled_exception_name_addr, except that this function
11858 should be used when the inferior uses an older version of the runtime,
11859 where the exception name needs to be extracted from a specific frame
11860 several frames up in the callstack. */
11861
11862 static CORE_ADDR
11863 ada_unhandled_exception_name_addr_from_raise (void)
11864 {
11865 int frame_level;
11866 struct frame_info *fi;
11867 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11868
11869 /* To determine the name of this exception, we need to select
11870 the frame corresponding to RAISE_SYM_NAME. This frame is
11871 at least 3 levels up, so we simply skip the first 3 frames
11872 without checking the name of their associated function. */
11873 fi = get_current_frame ();
11874 for (frame_level = 0; frame_level < 3; frame_level += 1)
11875 if (fi != NULL)
11876 fi = get_prev_frame (fi);
11877
11878 while (fi != NULL)
11879 {
11880 enum language func_lang;
11881
11882 gdb::unique_xmalloc_ptr<char> func_name
11883 = find_frame_funname (fi, &func_lang, NULL);
11884 if (func_name != NULL)
11885 {
11886 if (strcmp (func_name.get (),
11887 data->exception_info->catch_exception_sym) == 0)
11888 break; /* We found the frame we were looking for... */
11889 }
11890 fi = get_prev_frame (fi);
11891 }
11892
11893 if (fi == NULL)
11894 return 0;
11895
11896 select_frame (fi);
11897 return parse_and_eval_address ("id.full_name");
11898 }
11899
11900 /* Assuming the inferior just triggered an Ada exception catchpoint
11901 (of any type), return the address in inferior memory where the name
11902 of the exception is stored, if applicable.
11903
11904 Assumes the selected frame is the current frame.
11905
11906 Return zero if the address could not be computed, or if not relevant. */
11907
11908 static CORE_ADDR
11909 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11910 struct breakpoint *b)
11911 {
11912 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11913
11914 switch (ex)
11915 {
11916 case ada_catch_exception:
11917 return (parse_and_eval_address ("e.full_name"));
11918 break;
11919
11920 case ada_catch_exception_unhandled:
11921 return data->exception_info->unhandled_exception_name_addr ();
11922 break;
11923
11924 case ada_catch_handlers:
11925 return 0; /* The runtimes does not provide access to the exception
11926 name. */
11927 break;
11928
11929 case ada_catch_assert:
11930 return 0; /* Exception name is not relevant in this case. */
11931 break;
11932
11933 default:
11934 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11935 break;
11936 }
11937
11938 return 0; /* Should never be reached. */
11939 }
11940
11941 /* Assuming the inferior is stopped at an exception catchpoint,
11942 return the message which was associated to the exception, if
11943 available. Return NULL if the message could not be retrieved.
11944
11945 Note: The exception message can be associated to an exception
11946 either through the use of the Raise_Exception function, or
11947 more simply (Ada 2005 and later), via:
11948
11949 raise Exception_Name with "exception message";
11950
11951 */
11952
11953 static gdb::unique_xmalloc_ptr<char>
11954 ada_exception_message_1 (void)
11955 {
11956 struct value *e_msg_val;
11957 int e_msg_len;
11958
11959 /* For runtimes that support this feature, the exception message
11960 is passed as an unbounded string argument called "message". */
11961 e_msg_val = parse_and_eval ("message");
11962 if (e_msg_val == NULL)
11963 return NULL; /* Exception message not supported. */
11964
11965 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11966 gdb_assert (e_msg_val != NULL);
11967 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11968
11969 /* If the message string is empty, then treat it as if there was
11970 no exception message. */
11971 if (e_msg_len <= 0)
11972 return NULL;
11973
11974 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11975 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11976 e_msg_len);
11977 e_msg.get ()[e_msg_len] = '\0';
11978
11979 return e_msg;
11980 }
11981
11982 /* Same as ada_exception_message_1, except that all exceptions are
11983 contained here (returning NULL instead). */
11984
11985 static gdb::unique_xmalloc_ptr<char>
11986 ada_exception_message (void)
11987 {
11988 gdb::unique_xmalloc_ptr<char> e_msg;
11989
11990 try
11991 {
11992 e_msg = ada_exception_message_1 ();
11993 }
11994 catch (const gdb_exception_error &e)
11995 {
11996 e_msg.reset (nullptr);
11997 }
11998
11999 return e_msg;
12000 }
12001
12002 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12003 any error that ada_exception_name_addr_1 might cause to be thrown.
12004 When an error is intercepted, a warning with the error message is printed,
12005 and zero is returned. */
12006
12007 static CORE_ADDR
12008 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12009 struct breakpoint *b)
12010 {
12011 CORE_ADDR result = 0;
12012
12013 try
12014 {
12015 result = ada_exception_name_addr_1 (ex, b);
12016 }
12017
12018 catch (const gdb_exception_error &e)
12019 {
12020 warning (_("failed to get exception name: %s"), e.what ());
12021 return 0;
12022 }
12023
12024 return result;
12025 }
12026
12027 static std::string ada_exception_catchpoint_cond_string
12028 (const char *excep_string,
12029 enum ada_exception_catchpoint_kind ex);
12030
12031 /* Ada catchpoints.
12032
12033 In the case of catchpoints on Ada exceptions, the catchpoint will
12034 stop the target on every exception the program throws. When a user
12035 specifies the name of a specific exception, we translate this
12036 request into a condition expression (in text form), and then parse
12037 it into an expression stored in each of the catchpoint's locations.
12038 We then use this condition to check whether the exception that was
12039 raised is the one the user is interested in. If not, then the
12040 target is resumed again. We store the name of the requested
12041 exception, in order to be able to re-set the condition expression
12042 when symbols change. */
12043
12044 /* An instance of this type is used to represent an Ada catchpoint
12045 breakpoint location. */
12046
12047 class ada_catchpoint_location : public bp_location
12048 {
12049 public:
12050 ada_catchpoint_location (breakpoint *owner)
12051 : bp_location (owner, bp_loc_software_breakpoint)
12052 {}
12053
12054 /* The condition that checks whether the exception that was raised
12055 is the specific exception the user specified on catchpoint
12056 creation. */
12057 expression_up excep_cond_expr;
12058 };
12059
12060 /* An instance of this type is used to represent an Ada catchpoint. */
12061
12062 struct ada_catchpoint : public breakpoint
12063 {
12064 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12065 : m_kind (kind)
12066 {
12067 }
12068
12069 /* The name of the specific exception the user specified. */
12070 std::string excep_string;
12071
12072 /* What kind of catchpoint this is. */
12073 enum ada_exception_catchpoint_kind m_kind;
12074 };
12075
12076 /* Parse the exception condition string in the context of each of the
12077 catchpoint's locations, and store them for later evaluation. */
12078
12079 static void
12080 create_excep_cond_exprs (struct ada_catchpoint *c,
12081 enum ada_exception_catchpoint_kind ex)
12082 {
12083 struct bp_location *bl;
12084
12085 /* Nothing to do if there's no specific exception to catch. */
12086 if (c->excep_string.empty ())
12087 return;
12088
12089 /* Same if there are no locations... */
12090 if (c->loc == NULL)
12091 return;
12092
12093 /* Compute the condition expression in text form, from the specific
12094 expection we want to catch. */
12095 std::string cond_string
12096 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12097
12098 /* Iterate over all the catchpoint's locations, and parse an
12099 expression for each. */
12100 for (bl = c->loc; bl != NULL; bl = bl->next)
12101 {
12102 struct ada_catchpoint_location *ada_loc
12103 = (struct ada_catchpoint_location *) bl;
12104 expression_up exp;
12105
12106 if (!bl->shlib_disabled)
12107 {
12108 const char *s;
12109
12110 s = cond_string.c_str ();
12111 try
12112 {
12113 exp = parse_exp_1 (&s, bl->address,
12114 block_for_pc (bl->address),
12115 0);
12116 }
12117 catch (const gdb_exception_error &e)
12118 {
12119 warning (_("failed to reevaluate internal exception condition "
12120 "for catchpoint %d: %s"),
12121 c->number, e.what ());
12122 }
12123 }
12124
12125 ada_loc->excep_cond_expr = std::move (exp);
12126 }
12127 }
12128
12129 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12130 structure for all exception catchpoint kinds. */
12131
12132 static struct bp_location *
12133 allocate_location_exception (struct breakpoint *self)
12134 {
12135 return new ada_catchpoint_location (self);
12136 }
12137
12138 /* Implement the RE_SET method in the breakpoint_ops structure for all
12139 exception catchpoint kinds. */
12140
12141 static void
12142 re_set_exception (struct breakpoint *b)
12143 {
12144 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12145
12146 /* Call the base class's method. This updates the catchpoint's
12147 locations. */
12148 bkpt_breakpoint_ops.re_set (b);
12149
12150 /* Reparse the exception conditional expressions. One for each
12151 location. */
12152 create_excep_cond_exprs (c, c->m_kind);
12153 }
12154
12155 /* Returns true if we should stop for this breakpoint hit. If the
12156 user specified a specific exception, we only want to cause a stop
12157 if the program thrown that exception. */
12158
12159 static int
12160 should_stop_exception (const struct bp_location *bl)
12161 {
12162 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12163 const struct ada_catchpoint_location *ada_loc
12164 = (const struct ada_catchpoint_location *) bl;
12165 int stop;
12166
12167 struct internalvar *var = lookup_internalvar ("_ada_exception");
12168 if (c->m_kind == ada_catch_assert)
12169 clear_internalvar (var);
12170 else
12171 {
12172 try
12173 {
12174 const char *expr;
12175
12176 if (c->m_kind == ada_catch_handlers)
12177 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12178 ".all.occurrence.id");
12179 else
12180 expr = "e";
12181
12182 struct value *exc = parse_and_eval (expr);
12183 set_internalvar (var, exc);
12184 }
12185 catch (const gdb_exception_error &ex)
12186 {
12187 clear_internalvar (var);
12188 }
12189 }
12190
12191 /* With no specific exception, should always stop. */
12192 if (c->excep_string.empty ())
12193 return 1;
12194
12195 if (ada_loc->excep_cond_expr == NULL)
12196 {
12197 /* We will have a NULL expression if back when we were creating
12198 the expressions, this location's had failed to parse. */
12199 return 1;
12200 }
12201
12202 stop = 1;
12203 try
12204 {
12205 struct value *mark;
12206
12207 mark = value_mark ();
12208 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12209 value_free_to_mark (mark);
12210 }
12211 catch (const gdb_exception &ex)
12212 {
12213 exception_fprintf (gdb_stderr, ex,
12214 _("Error in testing exception condition:\n"));
12215 }
12216
12217 return stop;
12218 }
12219
12220 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12221 for all exception catchpoint kinds. */
12222
12223 static void
12224 check_status_exception (bpstat bs)
12225 {
12226 bs->stop = should_stop_exception (bs->bp_location_at.get ());
12227 }
12228
12229 /* Implement the PRINT_IT method in the breakpoint_ops structure
12230 for all exception catchpoint kinds. */
12231
12232 static enum print_stop_action
12233 print_it_exception (bpstat bs)
12234 {
12235 struct ui_out *uiout = current_uiout;
12236 struct breakpoint *b = bs->breakpoint_at;
12237
12238 annotate_catchpoint (b->number);
12239
12240 if (uiout->is_mi_like_p ())
12241 {
12242 uiout->field_string ("reason",
12243 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12244 uiout->field_string ("disp", bpdisp_text (b->disposition));
12245 }
12246
12247 uiout->text (b->disposition == disp_del
12248 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12249 uiout->field_signed ("bkptno", b->number);
12250 uiout->text (", ");
12251
12252 /* ada_exception_name_addr relies on the selected frame being the
12253 current frame. Need to do this here because this function may be
12254 called more than once when printing a stop, and below, we'll
12255 select the first frame past the Ada run-time (see
12256 ada_find_printable_frame). */
12257 select_frame (get_current_frame ());
12258
12259 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12260 switch (c->m_kind)
12261 {
12262 case ada_catch_exception:
12263 case ada_catch_exception_unhandled:
12264 case ada_catch_handlers:
12265 {
12266 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12267 char exception_name[256];
12268
12269 if (addr != 0)
12270 {
12271 read_memory (addr, (gdb_byte *) exception_name,
12272 sizeof (exception_name) - 1);
12273 exception_name [sizeof (exception_name) - 1] = '\0';
12274 }
12275 else
12276 {
12277 /* For some reason, we were unable to read the exception
12278 name. This could happen if the Runtime was compiled
12279 without debugging info, for instance. In that case,
12280 just replace the exception name by the generic string
12281 "exception" - it will read as "an exception" in the
12282 notification we are about to print. */
12283 memcpy (exception_name, "exception", sizeof ("exception"));
12284 }
12285 /* In the case of unhandled exception breakpoints, we print
12286 the exception name as "unhandled EXCEPTION_NAME", to make
12287 it clearer to the user which kind of catchpoint just got
12288 hit. We used ui_out_text to make sure that this extra
12289 info does not pollute the exception name in the MI case. */
12290 if (c->m_kind == ada_catch_exception_unhandled)
12291 uiout->text ("unhandled ");
12292 uiout->field_string ("exception-name", exception_name);
12293 }
12294 break;
12295 case ada_catch_assert:
12296 /* In this case, the name of the exception is not really
12297 important. Just print "failed assertion" to make it clearer
12298 that his program just hit an assertion-failure catchpoint.
12299 We used ui_out_text because this info does not belong in
12300 the MI output. */
12301 uiout->text ("failed assertion");
12302 break;
12303 }
12304
12305 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12306 if (exception_message != NULL)
12307 {
12308 uiout->text (" (");
12309 uiout->field_string ("exception-message", exception_message.get ());
12310 uiout->text (")");
12311 }
12312
12313 uiout->text (" at ");
12314 ada_find_printable_frame (get_current_frame ());
12315
12316 return PRINT_SRC_AND_LOC;
12317 }
12318
12319 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12320 for all exception catchpoint kinds. */
12321
12322 static void
12323 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12324 {
12325 struct ui_out *uiout = current_uiout;
12326 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12327 struct value_print_options opts;
12328
12329 get_user_print_options (&opts);
12330
12331 if (opts.addressprint)
12332 uiout->field_skip ("addr");
12333
12334 annotate_field (5);
12335 switch (c->m_kind)
12336 {
12337 case ada_catch_exception:
12338 if (!c->excep_string.empty ())
12339 {
12340 std::string msg = string_printf (_("`%s' Ada exception"),
12341 c->excep_string.c_str ());
12342
12343 uiout->field_string ("what", msg);
12344 }
12345 else
12346 uiout->field_string ("what", "all Ada exceptions");
12347
12348 break;
12349
12350 case ada_catch_exception_unhandled:
12351 uiout->field_string ("what", "unhandled Ada exceptions");
12352 break;
12353
12354 case ada_catch_handlers:
12355 if (!c->excep_string.empty ())
12356 {
12357 uiout->field_fmt ("what",
12358 _("`%s' Ada exception handlers"),
12359 c->excep_string.c_str ());
12360 }
12361 else
12362 uiout->field_string ("what", "all Ada exceptions handlers");
12363 break;
12364
12365 case ada_catch_assert:
12366 uiout->field_string ("what", "failed Ada assertions");
12367 break;
12368
12369 default:
12370 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12371 break;
12372 }
12373 }
12374
12375 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12376 for all exception catchpoint kinds. */
12377
12378 static void
12379 print_mention_exception (struct breakpoint *b)
12380 {
12381 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12382 struct ui_out *uiout = current_uiout;
12383
12384 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12385 : _("Catchpoint "));
12386 uiout->field_signed ("bkptno", b->number);
12387 uiout->text (": ");
12388
12389 switch (c->m_kind)
12390 {
12391 case ada_catch_exception:
12392 if (!c->excep_string.empty ())
12393 {
12394 std::string info = string_printf (_("`%s' Ada exception"),
12395 c->excep_string.c_str ());
12396 uiout->text (info.c_str ());
12397 }
12398 else
12399 uiout->text (_("all Ada exceptions"));
12400 break;
12401
12402 case ada_catch_exception_unhandled:
12403 uiout->text (_("unhandled Ada exceptions"));
12404 break;
12405
12406 case ada_catch_handlers:
12407 if (!c->excep_string.empty ())
12408 {
12409 std::string info
12410 = string_printf (_("`%s' Ada exception handlers"),
12411 c->excep_string.c_str ());
12412 uiout->text (info.c_str ());
12413 }
12414 else
12415 uiout->text (_("all Ada exceptions handlers"));
12416 break;
12417
12418 case ada_catch_assert:
12419 uiout->text (_("failed Ada assertions"));
12420 break;
12421
12422 default:
12423 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12424 break;
12425 }
12426 }
12427
12428 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12429 for all exception catchpoint kinds. */
12430
12431 static void
12432 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12433 {
12434 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12435
12436 switch (c->m_kind)
12437 {
12438 case ada_catch_exception:
12439 fprintf_filtered (fp, "catch exception");
12440 if (!c->excep_string.empty ())
12441 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12442 break;
12443
12444 case ada_catch_exception_unhandled:
12445 fprintf_filtered (fp, "catch exception unhandled");
12446 break;
12447
12448 case ada_catch_handlers:
12449 fprintf_filtered (fp, "catch handlers");
12450 break;
12451
12452 case ada_catch_assert:
12453 fprintf_filtered (fp, "catch assert");
12454 break;
12455
12456 default:
12457 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12458 }
12459 print_recreate_thread (b, fp);
12460 }
12461
12462 /* Virtual tables for various breakpoint types. */
12463 static struct breakpoint_ops catch_exception_breakpoint_ops;
12464 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12465 static struct breakpoint_ops catch_assert_breakpoint_ops;
12466 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12467
12468 /* See ada-lang.h. */
12469
12470 bool
12471 is_ada_exception_catchpoint (breakpoint *bp)
12472 {
12473 return (bp->ops == &catch_exception_breakpoint_ops
12474 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12475 || bp->ops == &catch_assert_breakpoint_ops
12476 || bp->ops == &catch_handlers_breakpoint_ops);
12477 }
12478
12479 /* Split the arguments specified in a "catch exception" command.
12480 Set EX to the appropriate catchpoint type.
12481 Set EXCEP_STRING to the name of the specific exception if
12482 specified by the user.
12483 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12484 "catch handlers" command. False otherwise.
12485 If a condition is found at the end of the arguments, the condition
12486 expression is stored in COND_STRING (memory must be deallocated
12487 after use). Otherwise COND_STRING is set to NULL. */
12488
12489 static void
12490 catch_ada_exception_command_split (const char *args,
12491 bool is_catch_handlers_cmd,
12492 enum ada_exception_catchpoint_kind *ex,
12493 std::string *excep_string,
12494 std::string *cond_string)
12495 {
12496 std::string exception_name;
12497
12498 exception_name = extract_arg (&args);
12499 if (exception_name == "if")
12500 {
12501 /* This is not an exception name; this is the start of a condition
12502 expression for a catchpoint on all exceptions. So, "un-get"
12503 this token, and set exception_name to NULL. */
12504 exception_name.clear ();
12505 args -= 2;
12506 }
12507
12508 /* Check to see if we have a condition. */
12509
12510 args = skip_spaces (args);
12511 if (startswith (args, "if")
12512 && (isspace (args[2]) || args[2] == '\0'))
12513 {
12514 args += 2;
12515 args = skip_spaces (args);
12516
12517 if (args[0] == '\0')
12518 error (_("Condition missing after `if' keyword"));
12519 *cond_string = args;
12520
12521 args += strlen (args);
12522 }
12523
12524 /* Check that we do not have any more arguments. Anything else
12525 is unexpected. */
12526
12527 if (args[0] != '\0')
12528 error (_("Junk at end of expression"));
12529
12530 if (is_catch_handlers_cmd)
12531 {
12532 /* Catch handling of exceptions. */
12533 *ex = ada_catch_handlers;
12534 *excep_string = exception_name;
12535 }
12536 else if (exception_name.empty ())
12537 {
12538 /* Catch all exceptions. */
12539 *ex = ada_catch_exception;
12540 excep_string->clear ();
12541 }
12542 else if (exception_name == "unhandled")
12543 {
12544 /* Catch unhandled exceptions. */
12545 *ex = ada_catch_exception_unhandled;
12546 excep_string->clear ();
12547 }
12548 else
12549 {
12550 /* Catch a specific exception. */
12551 *ex = ada_catch_exception;
12552 *excep_string = exception_name;
12553 }
12554 }
12555
12556 /* Return the name of the symbol on which we should break in order to
12557 implement a catchpoint of the EX kind. */
12558
12559 static const char *
12560 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12561 {
12562 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12563
12564 gdb_assert (data->exception_info != NULL);
12565
12566 switch (ex)
12567 {
12568 case ada_catch_exception:
12569 return (data->exception_info->catch_exception_sym);
12570 break;
12571 case ada_catch_exception_unhandled:
12572 return (data->exception_info->catch_exception_unhandled_sym);
12573 break;
12574 case ada_catch_assert:
12575 return (data->exception_info->catch_assert_sym);
12576 break;
12577 case ada_catch_handlers:
12578 return (data->exception_info->catch_handlers_sym);
12579 break;
12580 default:
12581 internal_error (__FILE__, __LINE__,
12582 _("unexpected catchpoint kind (%d)"), ex);
12583 }
12584 }
12585
12586 /* Return the breakpoint ops "virtual table" used for catchpoints
12587 of the EX kind. */
12588
12589 static const struct breakpoint_ops *
12590 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12591 {
12592 switch (ex)
12593 {
12594 case ada_catch_exception:
12595 return (&catch_exception_breakpoint_ops);
12596 break;
12597 case ada_catch_exception_unhandled:
12598 return (&catch_exception_unhandled_breakpoint_ops);
12599 break;
12600 case ada_catch_assert:
12601 return (&catch_assert_breakpoint_ops);
12602 break;
12603 case ada_catch_handlers:
12604 return (&catch_handlers_breakpoint_ops);
12605 break;
12606 default:
12607 internal_error (__FILE__, __LINE__,
12608 _("unexpected catchpoint kind (%d)"), ex);
12609 }
12610 }
12611
12612 /* Return the condition that will be used to match the current exception
12613 being raised with the exception that the user wants to catch. This
12614 assumes that this condition is used when the inferior just triggered
12615 an exception catchpoint.
12616 EX: the type of catchpoints used for catching Ada exceptions. */
12617
12618 static std::string
12619 ada_exception_catchpoint_cond_string (const char *excep_string,
12620 enum ada_exception_catchpoint_kind ex)
12621 {
12622 int i;
12623 bool is_standard_exc = false;
12624 std::string result;
12625
12626 if (ex == ada_catch_handlers)
12627 {
12628 /* For exception handlers catchpoints, the condition string does
12629 not use the same parameter as for the other exceptions. */
12630 result = ("long_integer (GNAT_GCC_exception_Access"
12631 "(gcc_exception).all.occurrence.id)");
12632 }
12633 else
12634 result = "long_integer (e)";
12635
12636 /* The standard exceptions are a special case. They are defined in
12637 runtime units that have been compiled without debugging info; if
12638 EXCEP_STRING is the not-fully-qualified name of a standard
12639 exception (e.g. "constraint_error") then, during the evaluation
12640 of the condition expression, the symbol lookup on this name would
12641 *not* return this standard exception. The catchpoint condition
12642 may then be set only on user-defined exceptions which have the
12643 same not-fully-qualified name (e.g. my_package.constraint_error).
12644
12645 To avoid this unexcepted behavior, these standard exceptions are
12646 systematically prefixed by "standard". This means that "catch
12647 exception constraint_error" is rewritten into "catch exception
12648 standard.constraint_error".
12649
12650 If an exception named constraint_error is defined in another package of
12651 the inferior program, then the only way to specify this exception as a
12652 breakpoint condition is to use its fully-qualified named:
12653 e.g. my_package.constraint_error. */
12654
12655 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12656 {
12657 if (strcmp (standard_exc [i], excep_string) == 0)
12658 {
12659 is_standard_exc = true;
12660 break;
12661 }
12662 }
12663
12664 result += " = ";
12665
12666 if (is_standard_exc)
12667 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12668 else
12669 string_appendf (result, "long_integer (&%s)", excep_string);
12670
12671 return result;
12672 }
12673
12674 /* Return the symtab_and_line that should be used to insert an exception
12675 catchpoint of the TYPE kind.
12676
12677 ADDR_STRING returns the name of the function where the real
12678 breakpoint that implements the catchpoints is set, depending on the
12679 type of catchpoint we need to create. */
12680
12681 static struct symtab_and_line
12682 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12683 std::string *addr_string, const struct breakpoint_ops **ops)
12684 {
12685 const char *sym_name;
12686 struct symbol *sym;
12687
12688 /* First, find out which exception support info to use. */
12689 ada_exception_support_info_sniffer ();
12690
12691 /* Then lookup the function on which we will break in order to catch
12692 the Ada exceptions requested by the user. */
12693 sym_name = ada_exception_sym_name (ex);
12694 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12695
12696 if (sym == NULL)
12697 error (_("Catchpoint symbol not found: %s"), sym_name);
12698
12699 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12700 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12701
12702 /* Set ADDR_STRING. */
12703 *addr_string = sym_name;
12704
12705 /* Set OPS. */
12706 *ops = ada_exception_breakpoint_ops (ex);
12707
12708 return find_function_start_sal (sym, 1);
12709 }
12710
12711 /* Create an Ada exception catchpoint.
12712
12713 EX_KIND is the kind of exception catchpoint to be created.
12714
12715 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12716 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12717 of the exception to which this catchpoint applies.
12718
12719 COND_STRING, if not empty, is the catchpoint condition.
12720
12721 TEMPFLAG, if nonzero, means that the underlying breakpoint
12722 should be temporary.
12723
12724 FROM_TTY is the usual argument passed to all commands implementations. */
12725
12726 void
12727 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12728 enum ada_exception_catchpoint_kind ex_kind,
12729 const std::string &excep_string,
12730 const std::string &cond_string,
12731 int tempflag,
12732 int disabled,
12733 int from_tty)
12734 {
12735 std::string addr_string;
12736 const struct breakpoint_ops *ops = NULL;
12737 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12738
12739 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12740 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12741 ops, tempflag, disabled, from_tty);
12742 c->excep_string = excep_string;
12743 create_excep_cond_exprs (c.get (), ex_kind);
12744 if (!cond_string.empty ())
12745 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12746 install_breakpoint (0, std::move (c), 1);
12747 }
12748
12749 /* Implement the "catch exception" command. */
12750
12751 static void
12752 catch_ada_exception_command (const char *arg_entry, int from_tty,
12753 struct cmd_list_element *command)
12754 {
12755 const char *arg = arg_entry;
12756 struct gdbarch *gdbarch = get_current_arch ();
12757 int tempflag;
12758 enum ada_exception_catchpoint_kind ex_kind;
12759 std::string excep_string;
12760 std::string cond_string;
12761
12762 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12763
12764 if (!arg)
12765 arg = "";
12766 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12767 &cond_string);
12768 create_ada_exception_catchpoint (gdbarch, ex_kind,
12769 excep_string, cond_string,
12770 tempflag, 1 /* enabled */,
12771 from_tty);
12772 }
12773
12774 /* Implement the "catch handlers" command. */
12775
12776 static void
12777 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12778 struct cmd_list_element *command)
12779 {
12780 const char *arg = arg_entry;
12781 struct gdbarch *gdbarch = get_current_arch ();
12782 int tempflag;
12783 enum ada_exception_catchpoint_kind ex_kind;
12784 std::string excep_string;
12785 std::string cond_string;
12786
12787 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12788
12789 if (!arg)
12790 arg = "";
12791 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12792 &cond_string);
12793 create_ada_exception_catchpoint (gdbarch, ex_kind,
12794 excep_string, cond_string,
12795 tempflag, 1 /* enabled */,
12796 from_tty);
12797 }
12798
12799 /* Completion function for the Ada "catch" commands. */
12800
12801 static void
12802 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12803 const char *text, const char *word)
12804 {
12805 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12806
12807 for (const ada_exc_info &info : exceptions)
12808 {
12809 if (startswith (info.name, word))
12810 tracker.add_completion (make_unique_xstrdup (info.name));
12811 }
12812 }
12813
12814 /* Split the arguments specified in a "catch assert" command.
12815
12816 ARGS contains the command's arguments (or the empty string if
12817 no arguments were passed).
12818
12819 If ARGS contains a condition, set COND_STRING to that condition
12820 (the memory needs to be deallocated after use). */
12821
12822 static void
12823 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12824 {
12825 args = skip_spaces (args);
12826
12827 /* Check whether a condition was provided. */
12828 if (startswith (args, "if")
12829 && (isspace (args[2]) || args[2] == '\0'))
12830 {
12831 args += 2;
12832 args = skip_spaces (args);
12833 if (args[0] == '\0')
12834 error (_("condition missing after `if' keyword"));
12835 cond_string.assign (args);
12836 }
12837
12838 /* Otherwise, there should be no other argument at the end of
12839 the command. */
12840 else if (args[0] != '\0')
12841 error (_("Junk at end of arguments."));
12842 }
12843
12844 /* Implement the "catch assert" command. */
12845
12846 static void
12847 catch_assert_command (const char *arg_entry, int from_tty,
12848 struct cmd_list_element *command)
12849 {
12850 const char *arg = arg_entry;
12851 struct gdbarch *gdbarch = get_current_arch ();
12852 int tempflag;
12853 std::string cond_string;
12854
12855 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12856
12857 if (!arg)
12858 arg = "";
12859 catch_ada_assert_command_split (arg, cond_string);
12860 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12861 "", cond_string,
12862 tempflag, 1 /* enabled */,
12863 from_tty);
12864 }
12865
12866 /* Return non-zero if the symbol SYM is an Ada exception object. */
12867
12868 static int
12869 ada_is_exception_sym (struct symbol *sym)
12870 {
12871 const char *type_name = SYMBOL_TYPE (sym)->name ();
12872
12873 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12874 && SYMBOL_CLASS (sym) != LOC_BLOCK
12875 && SYMBOL_CLASS (sym) != LOC_CONST
12876 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12877 && type_name != NULL && strcmp (type_name, "exception") == 0);
12878 }
12879
12880 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12881 Ada exception object. This matches all exceptions except the ones
12882 defined by the Ada language. */
12883
12884 static int
12885 ada_is_non_standard_exception_sym (struct symbol *sym)
12886 {
12887 int i;
12888
12889 if (!ada_is_exception_sym (sym))
12890 return 0;
12891
12892 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12893 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
12894 return 0; /* A standard exception. */
12895
12896 /* Numeric_Error is also a standard exception, so exclude it.
12897 See the STANDARD_EXC description for more details as to why
12898 this exception is not listed in that array. */
12899 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12900 return 0;
12901
12902 return 1;
12903 }
12904
12905 /* A helper function for std::sort, comparing two struct ada_exc_info
12906 objects.
12907
12908 The comparison is determined first by exception name, and then
12909 by exception address. */
12910
12911 bool
12912 ada_exc_info::operator< (const ada_exc_info &other) const
12913 {
12914 int result;
12915
12916 result = strcmp (name, other.name);
12917 if (result < 0)
12918 return true;
12919 if (result == 0 && addr < other.addr)
12920 return true;
12921 return false;
12922 }
12923
12924 bool
12925 ada_exc_info::operator== (const ada_exc_info &other) const
12926 {
12927 return addr == other.addr && strcmp (name, other.name) == 0;
12928 }
12929
12930 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12931 routine, but keeping the first SKIP elements untouched.
12932
12933 All duplicates are also removed. */
12934
12935 static void
12936 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12937 int skip)
12938 {
12939 std::sort (exceptions->begin () + skip, exceptions->end ());
12940 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12941 exceptions->end ());
12942 }
12943
12944 /* Add all exceptions defined by the Ada standard whose name match
12945 a regular expression.
12946
12947 If PREG is not NULL, then this regexp_t object is used to
12948 perform the symbol name matching. Otherwise, no name-based
12949 filtering is performed.
12950
12951 EXCEPTIONS is a vector of exceptions to which matching exceptions
12952 gets pushed. */
12953
12954 static void
12955 ada_add_standard_exceptions (compiled_regex *preg,
12956 std::vector<ada_exc_info> *exceptions)
12957 {
12958 int i;
12959
12960 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12961 {
12962 if (preg == NULL
12963 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
12964 {
12965 struct bound_minimal_symbol msymbol
12966 = ada_lookup_simple_minsym (standard_exc[i]);
12967
12968 if (msymbol.minsym != NULL)
12969 {
12970 struct ada_exc_info info
12971 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12972
12973 exceptions->push_back (info);
12974 }
12975 }
12976 }
12977 }
12978
12979 /* Add all Ada exceptions defined locally and accessible from the given
12980 FRAME.
12981
12982 If PREG is not NULL, then this regexp_t object is used to
12983 perform the symbol name matching. Otherwise, no name-based
12984 filtering is performed.
12985
12986 EXCEPTIONS is a vector of exceptions to which matching exceptions
12987 gets pushed. */
12988
12989 static void
12990 ada_add_exceptions_from_frame (compiled_regex *preg,
12991 struct frame_info *frame,
12992 std::vector<ada_exc_info> *exceptions)
12993 {
12994 const struct block *block = get_frame_block (frame, 0);
12995
12996 while (block != 0)
12997 {
12998 struct block_iterator iter;
12999 struct symbol *sym;
13000
13001 ALL_BLOCK_SYMBOLS (block, iter, sym)
13002 {
13003 switch (SYMBOL_CLASS (sym))
13004 {
13005 case LOC_TYPEDEF:
13006 case LOC_BLOCK:
13007 case LOC_CONST:
13008 break;
13009 default:
13010 if (ada_is_exception_sym (sym))
13011 {
13012 struct ada_exc_info info = {sym->print_name (),
13013 SYMBOL_VALUE_ADDRESS (sym)};
13014
13015 exceptions->push_back (info);
13016 }
13017 }
13018 }
13019 if (BLOCK_FUNCTION (block) != NULL)
13020 break;
13021 block = BLOCK_SUPERBLOCK (block);
13022 }
13023 }
13024
13025 /* Return true if NAME matches PREG or if PREG is NULL. */
13026
13027 static bool
13028 name_matches_regex (const char *name, compiled_regex *preg)
13029 {
13030 return (preg == NULL
13031 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13032 }
13033
13034 /* Add all exceptions defined globally whose name name match
13035 a regular expression, excluding standard exceptions.
13036
13037 The reason we exclude standard exceptions is that they need
13038 to be handled separately: Standard exceptions are defined inside
13039 a runtime unit which is normally not compiled with debugging info,
13040 and thus usually do not show up in our symbol search. However,
13041 if the unit was in fact built with debugging info, we need to
13042 exclude them because they would duplicate the entry we found
13043 during the special loop that specifically searches for those
13044 standard exceptions.
13045
13046 If PREG is not NULL, then this regexp_t object is used to
13047 perform the symbol name matching. Otherwise, no name-based
13048 filtering is performed.
13049
13050 EXCEPTIONS is a vector of exceptions to which matching exceptions
13051 gets pushed. */
13052
13053 static void
13054 ada_add_global_exceptions (compiled_regex *preg,
13055 std::vector<ada_exc_info> *exceptions)
13056 {
13057 /* In Ada, the symbol "search name" is a linkage name, whereas the
13058 regular expression used to do the matching refers to the natural
13059 name. So match against the decoded name. */
13060 expand_symtabs_matching (NULL,
13061 lookup_name_info::match_any (),
13062 [&] (const char *search_name)
13063 {
13064 std::string decoded = ada_decode (search_name);
13065 return name_matches_regex (decoded.c_str (), preg);
13066 },
13067 NULL,
13068 VARIABLES_DOMAIN);
13069
13070 for (objfile *objfile : current_program_space->objfiles ())
13071 {
13072 for (compunit_symtab *s : objfile->compunits ())
13073 {
13074 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13075 int i;
13076
13077 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13078 {
13079 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13080 struct block_iterator iter;
13081 struct symbol *sym;
13082
13083 ALL_BLOCK_SYMBOLS (b, iter, sym)
13084 if (ada_is_non_standard_exception_sym (sym)
13085 && name_matches_regex (sym->natural_name (), preg))
13086 {
13087 struct ada_exc_info info
13088 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
13089
13090 exceptions->push_back (info);
13091 }
13092 }
13093 }
13094 }
13095 }
13096
13097 /* Implements ada_exceptions_list with the regular expression passed
13098 as a regex_t, rather than a string.
13099
13100 If not NULL, PREG is used to filter out exceptions whose names
13101 do not match. Otherwise, all exceptions are listed. */
13102
13103 static std::vector<ada_exc_info>
13104 ada_exceptions_list_1 (compiled_regex *preg)
13105 {
13106 std::vector<ada_exc_info> result;
13107 int prev_len;
13108
13109 /* First, list the known standard exceptions. These exceptions
13110 need to be handled separately, as they are usually defined in
13111 runtime units that have been compiled without debugging info. */
13112
13113 ada_add_standard_exceptions (preg, &result);
13114
13115 /* Next, find all exceptions whose scope is local and accessible
13116 from the currently selected frame. */
13117
13118 if (has_stack_frames ())
13119 {
13120 prev_len = result.size ();
13121 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13122 &result);
13123 if (result.size () > prev_len)
13124 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13125 }
13126
13127 /* Add all exceptions whose scope is global. */
13128
13129 prev_len = result.size ();
13130 ada_add_global_exceptions (preg, &result);
13131 if (result.size () > prev_len)
13132 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13133
13134 return result;
13135 }
13136
13137 /* Return a vector of ada_exc_info.
13138
13139 If REGEXP is NULL, all exceptions are included in the result.
13140 Otherwise, it should contain a valid regular expression,
13141 and only the exceptions whose names match that regular expression
13142 are included in the result.
13143
13144 The exceptions are sorted in the following order:
13145 - Standard exceptions (defined by the Ada language), in
13146 alphabetical order;
13147 - Exceptions only visible from the current frame, in
13148 alphabetical order;
13149 - Exceptions whose scope is global, in alphabetical order. */
13150
13151 std::vector<ada_exc_info>
13152 ada_exceptions_list (const char *regexp)
13153 {
13154 if (regexp == NULL)
13155 return ada_exceptions_list_1 (NULL);
13156
13157 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13158 return ada_exceptions_list_1 (&reg);
13159 }
13160
13161 /* Implement the "info exceptions" command. */
13162
13163 static void
13164 info_exceptions_command (const char *regexp, int from_tty)
13165 {
13166 struct gdbarch *gdbarch = get_current_arch ();
13167
13168 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13169
13170 if (regexp != NULL)
13171 printf_filtered
13172 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13173 else
13174 printf_filtered (_("All defined Ada exceptions:\n"));
13175
13176 for (const ada_exc_info &info : exceptions)
13177 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13178 }
13179
13180 /* Operators */
13181 /* Information about operators given special treatment in functions
13182 below. */
13183 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13184
13185 #define ADA_OPERATORS \
13186 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13187 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13188 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13189 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13190 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13191 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13192 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13193 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13194 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13195 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13196 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13197 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13198 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13199 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13200 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13201 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13202 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13203 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13204 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13205
13206 static void
13207 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13208 int *argsp)
13209 {
13210 switch (exp->elts[pc - 1].opcode)
13211 {
13212 default:
13213 operator_length_standard (exp, pc, oplenp, argsp);
13214 break;
13215
13216 #define OP_DEFN(op, len, args, binop) \
13217 case op: *oplenp = len; *argsp = args; break;
13218 ADA_OPERATORS;
13219 #undef OP_DEFN
13220
13221 case OP_AGGREGATE:
13222 *oplenp = 3;
13223 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13224 break;
13225
13226 case OP_CHOICES:
13227 *oplenp = 3;
13228 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13229 break;
13230 }
13231 }
13232
13233 /* Implementation of the exp_descriptor method operator_check. */
13234
13235 static int
13236 ada_operator_check (struct expression *exp, int pos,
13237 int (*objfile_func) (struct objfile *objfile, void *data),
13238 void *data)
13239 {
13240 const union exp_element *const elts = exp->elts;
13241 struct type *type = NULL;
13242
13243 switch (elts[pos].opcode)
13244 {
13245 case UNOP_IN_RANGE:
13246 case UNOP_QUAL:
13247 type = elts[pos + 1].type;
13248 break;
13249
13250 default:
13251 return operator_check_standard (exp, pos, objfile_func, data);
13252 }
13253
13254 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13255
13256 if (type && TYPE_OBJFILE (type)
13257 && (*objfile_func) (TYPE_OBJFILE (type), data))
13258 return 1;
13259
13260 return 0;
13261 }
13262
13263 /* As for operator_length, but assumes PC is pointing at the first
13264 element of the operator, and gives meaningful results only for the
13265 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13266
13267 static void
13268 ada_forward_operator_length (struct expression *exp, int pc,
13269 int *oplenp, int *argsp)
13270 {
13271 switch (exp->elts[pc].opcode)
13272 {
13273 default:
13274 *oplenp = *argsp = 0;
13275 break;
13276
13277 #define OP_DEFN(op, len, args, binop) \
13278 case op: *oplenp = len; *argsp = args; break;
13279 ADA_OPERATORS;
13280 #undef OP_DEFN
13281
13282 case OP_AGGREGATE:
13283 *oplenp = 3;
13284 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13285 break;
13286
13287 case OP_CHOICES:
13288 *oplenp = 3;
13289 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13290 break;
13291
13292 case OP_STRING:
13293 case OP_NAME:
13294 {
13295 int len = longest_to_int (exp->elts[pc + 1].longconst);
13296
13297 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13298 *argsp = 0;
13299 break;
13300 }
13301 }
13302 }
13303
13304 static int
13305 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13306 {
13307 enum exp_opcode op = exp->elts[elt].opcode;
13308 int oplen, nargs;
13309 int pc = elt;
13310 int i;
13311
13312 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13313
13314 switch (op)
13315 {
13316 /* Ada attributes ('Foo). */
13317 case OP_ATR_FIRST:
13318 case OP_ATR_LAST:
13319 case OP_ATR_LENGTH:
13320 case OP_ATR_IMAGE:
13321 case OP_ATR_MAX:
13322 case OP_ATR_MIN:
13323 case OP_ATR_MODULUS:
13324 case OP_ATR_POS:
13325 case OP_ATR_SIZE:
13326 case OP_ATR_TAG:
13327 case OP_ATR_VAL:
13328 break;
13329
13330 case UNOP_IN_RANGE:
13331 case UNOP_QUAL:
13332 /* XXX: gdb_sprint_host_address, type_sprint */
13333 fprintf_filtered (stream, _("Type @"));
13334 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13335 fprintf_filtered (stream, " (");
13336 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13337 fprintf_filtered (stream, ")");
13338 break;
13339 case BINOP_IN_BOUNDS:
13340 fprintf_filtered (stream, " (%d)",
13341 longest_to_int (exp->elts[pc + 2].longconst));
13342 break;
13343 case TERNOP_IN_RANGE:
13344 break;
13345
13346 case OP_AGGREGATE:
13347 case OP_OTHERS:
13348 case OP_DISCRETE_RANGE:
13349 case OP_POSITIONAL:
13350 case OP_CHOICES:
13351 break;
13352
13353 case OP_NAME:
13354 case OP_STRING:
13355 {
13356 char *name = &exp->elts[elt + 2].string;
13357 int len = longest_to_int (exp->elts[elt + 1].longconst);
13358
13359 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13360 break;
13361 }
13362
13363 default:
13364 return dump_subexp_body_standard (exp, stream, elt);
13365 }
13366
13367 elt += oplen;
13368 for (i = 0; i < nargs; i += 1)
13369 elt = dump_subexp (exp, stream, elt);
13370
13371 return elt;
13372 }
13373
13374 /* The Ada extension of print_subexp (q.v.). */
13375
13376 static void
13377 ada_print_subexp (struct expression *exp, int *pos,
13378 struct ui_file *stream, enum precedence prec)
13379 {
13380 int oplen, nargs, i;
13381 int pc = *pos;
13382 enum exp_opcode op = exp->elts[pc].opcode;
13383
13384 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13385
13386 *pos += oplen;
13387 switch (op)
13388 {
13389 default:
13390 *pos -= oplen;
13391 print_subexp_standard (exp, pos, stream, prec);
13392 return;
13393
13394 case OP_VAR_VALUE:
13395 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
13396 return;
13397
13398 case BINOP_IN_BOUNDS:
13399 /* XXX: sprint_subexp */
13400 print_subexp (exp, pos, stream, PREC_SUFFIX);
13401 fputs_filtered (" in ", stream);
13402 print_subexp (exp, pos, stream, PREC_SUFFIX);
13403 fputs_filtered ("'range", stream);
13404 if (exp->elts[pc + 1].longconst > 1)
13405 fprintf_filtered (stream, "(%ld)",
13406 (long) exp->elts[pc + 1].longconst);
13407 return;
13408
13409 case TERNOP_IN_RANGE:
13410 if (prec >= PREC_EQUAL)
13411 fputs_filtered ("(", stream);
13412 /* XXX: sprint_subexp */
13413 print_subexp (exp, pos, stream, PREC_SUFFIX);
13414 fputs_filtered (" in ", stream);
13415 print_subexp (exp, pos, stream, PREC_EQUAL);
13416 fputs_filtered (" .. ", stream);
13417 print_subexp (exp, pos, stream, PREC_EQUAL);
13418 if (prec >= PREC_EQUAL)
13419 fputs_filtered (")", stream);
13420 return;
13421
13422 case OP_ATR_FIRST:
13423 case OP_ATR_LAST:
13424 case OP_ATR_LENGTH:
13425 case OP_ATR_IMAGE:
13426 case OP_ATR_MAX:
13427 case OP_ATR_MIN:
13428 case OP_ATR_MODULUS:
13429 case OP_ATR_POS:
13430 case OP_ATR_SIZE:
13431 case OP_ATR_TAG:
13432 case OP_ATR_VAL:
13433 if (exp->elts[*pos].opcode == OP_TYPE)
13434 {
13435 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
13436 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13437 &type_print_raw_options);
13438 *pos += 3;
13439 }
13440 else
13441 print_subexp (exp, pos, stream, PREC_SUFFIX);
13442 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13443 if (nargs > 1)
13444 {
13445 int tem;
13446
13447 for (tem = 1; tem < nargs; tem += 1)
13448 {
13449 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13450 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13451 }
13452 fputs_filtered (")", stream);
13453 }
13454 return;
13455
13456 case UNOP_QUAL:
13457 type_print (exp->elts[pc + 1].type, "", stream, 0);
13458 fputs_filtered ("'(", stream);
13459 print_subexp (exp, pos, stream, PREC_PREFIX);
13460 fputs_filtered (")", stream);
13461 return;
13462
13463 case UNOP_IN_RANGE:
13464 /* XXX: sprint_subexp */
13465 print_subexp (exp, pos, stream, PREC_SUFFIX);
13466 fputs_filtered (" in ", stream);
13467 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13468 &type_print_raw_options);
13469 return;
13470
13471 case OP_DISCRETE_RANGE:
13472 print_subexp (exp, pos, stream, PREC_SUFFIX);
13473 fputs_filtered ("..", stream);
13474 print_subexp (exp, pos, stream, PREC_SUFFIX);
13475 return;
13476
13477 case OP_OTHERS:
13478 fputs_filtered ("others => ", stream);
13479 print_subexp (exp, pos, stream, PREC_SUFFIX);
13480 return;
13481
13482 case OP_CHOICES:
13483 for (i = 0; i < nargs-1; i += 1)
13484 {
13485 if (i > 0)
13486 fputs_filtered ("|", stream);
13487 print_subexp (exp, pos, stream, PREC_SUFFIX);
13488 }
13489 fputs_filtered (" => ", stream);
13490 print_subexp (exp, pos, stream, PREC_SUFFIX);
13491 return;
13492
13493 case OP_POSITIONAL:
13494 print_subexp (exp, pos, stream, PREC_SUFFIX);
13495 return;
13496
13497 case OP_AGGREGATE:
13498 fputs_filtered ("(", stream);
13499 for (i = 0; i < nargs; i += 1)
13500 {
13501 if (i > 0)
13502 fputs_filtered (", ", stream);
13503 print_subexp (exp, pos, stream, PREC_SUFFIX);
13504 }
13505 fputs_filtered (")", stream);
13506 return;
13507 }
13508 }
13509
13510 /* Table mapping opcodes into strings for printing operators
13511 and precedences of the operators. */
13512
13513 static const struct op_print ada_op_print_tab[] = {
13514 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13515 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13516 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13517 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13518 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13519 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13520 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13521 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13522 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13523 {">=", BINOP_GEQ, PREC_ORDER, 0},
13524 {">", BINOP_GTR, PREC_ORDER, 0},
13525 {"<", BINOP_LESS, PREC_ORDER, 0},
13526 {">>", BINOP_RSH, PREC_SHIFT, 0},
13527 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13528 {"+", BINOP_ADD, PREC_ADD, 0},
13529 {"-", BINOP_SUB, PREC_ADD, 0},
13530 {"&", BINOP_CONCAT, PREC_ADD, 0},
13531 {"*", BINOP_MUL, PREC_MUL, 0},
13532 {"/", BINOP_DIV, PREC_MUL, 0},
13533 {"rem", BINOP_REM, PREC_MUL, 0},
13534 {"mod", BINOP_MOD, PREC_MUL, 0},
13535 {"**", BINOP_EXP, PREC_REPEAT, 0},
13536 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13537 {"-", UNOP_NEG, PREC_PREFIX, 0},
13538 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13539 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13540 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13541 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13542 {".all", UNOP_IND, PREC_SUFFIX, 1},
13543 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13544 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13545 {NULL, OP_NULL, PREC_SUFFIX, 0}
13546 };
13547 \f
13548 /* Language vector */
13549
13550 static const struct exp_descriptor ada_exp_descriptor = {
13551 ada_print_subexp,
13552 ada_operator_length,
13553 ada_operator_check,
13554 ada_dump_subexp_body,
13555 ada_evaluate_subexp
13556 };
13557
13558 /* symbol_name_matcher_ftype adapter for wild_match. */
13559
13560 static bool
13561 do_wild_match (const char *symbol_search_name,
13562 const lookup_name_info &lookup_name,
13563 completion_match_result *comp_match_res)
13564 {
13565 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13566 }
13567
13568 /* symbol_name_matcher_ftype adapter for full_match. */
13569
13570 static bool
13571 do_full_match (const char *symbol_search_name,
13572 const lookup_name_info &lookup_name,
13573 completion_match_result *comp_match_res)
13574 {
13575 if (startswith (symbol_search_name, "_ada_"))
13576 symbol_search_name += 5;
13577
13578 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
13579 int uscore_count = 0;
13580 while (*lname != '\0')
13581 {
13582 if (*symbol_search_name != *lname)
13583 {
13584 if (*symbol_search_name == 'B' && uscore_count == 2
13585 && symbol_search_name[1] == '_')
13586 {
13587 symbol_search_name += 2;
13588 while (isdigit (*symbol_search_name))
13589 ++symbol_search_name;
13590 if (symbol_search_name[0] == '_'
13591 && symbol_search_name[1] == '_')
13592 {
13593 symbol_search_name += 2;
13594 continue;
13595 }
13596 }
13597 return false;
13598 }
13599
13600 if (*symbol_search_name == '_')
13601 ++uscore_count;
13602 else
13603 uscore_count = 0;
13604
13605 ++symbol_search_name;
13606 ++lname;
13607 }
13608
13609 return is_name_suffix (symbol_search_name);
13610 }
13611
13612 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13613
13614 static bool
13615 do_exact_match (const char *symbol_search_name,
13616 const lookup_name_info &lookup_name,
13617 completion_match_result *comp_match_res)
13618 {
13619 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13620 }
13621
13622 /* Build the Ada lookup name for LOOKUP_NAME. */
13623
13624 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13625 {
13626 gdb::string_view user_name = lookup_name.name ();
13627
13628 if (user_name[0] == '<')
13629 {
13630 if (user_name.back () == '>')
13631 m_encoded_name
13632 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
13633 else
13634 m_encoded_name
13635 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
13636 m_encoded_p = true;
13637 m_verbatim_p = true;
13638 m_wild_match_p = false;
13639 m_standard_p = false;
13640 }
13641 else
13642 {
13643 m_verbatim_p = false;
13644
13645 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
13646
13647 if (!m_encoded_p)
13648 {
13649 const char *folded = ada_fold_name (user_name);
13650 m_encoded_name = ada_encode_1 (folded, false);
13651 if (m_encoded_name.empty ())
13652 m_encoded_name = gdb::to_string (user_name);
13653 }
13654 else
13655 m_encoded_name = gdb::to_string (user_name);
13656
13657 /* Handle the 'package Standard' special case. See description
13658 of m_standard_p. */
13659 if (startswith (m_encoded_name.c_str (), "standard__"))
13660 {
13661 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13662 m_standard_p = true;
13663 }
13664 else
13665 m_standard_p = false;
13666
13667 /* If the name contains a ".", then the user is entering a fully
13668 qualified entity name, and the match must not be done in wild
13669 mode. Similarly, if the user wants to complete what looks
13670 like an encoded name, the match must not be done in wild
13671 mode. Also, in the standard__ special case always do
13672 non-wild matching. */
13673 m_wild_match_p
13674 = (lookup_name.match_type () != symbol_name_match_type::FULL
13675 && !m_encoded_p
13676 && !m_standard_p
13677 && user_name.find ('.') == std::string::npos);
13678 }
13679 }
13680
13681 /* symbol_name_matcher_ftype method for Ada. This only handles
13682 completion mode. */
13683
13684 static bool
13685 ada_symbol_name_matches (const char *symbol_search_name,
13686 const lookup_name_info &lookup_name,
13687 completion_match_result *comp_match_res)
13688 {
13689 return lookup_name.ada ().matches (symbol_search_name,
13690 lookup_name.match_type (),
13691 comp_match_res);
13692 }
13693
13694 /* A name matcher that matches the symbol name exactly, with
13695 strcmp. */
13696
13697 static bool
13698 literal_symbol_name_matcher (const char *symbol_search_name,
13699 const lookup_name_info &lookup_name,
13700 completion_match_result *comp_match_res)
13701 {
13702 gdb::string_view name_view = lookup_name.name ();
13703
13704 if (lookup_name.completion_mode ()
13705 ? (strncmp (symbol_search_name, name_view.data (),
13706 name_view.size ()) == 0)
13707 : symbol_search_name == name_view)
13708 {
13709 if (comp_match_res != NULL)
13710 comp_match_res->set_match (symbol_search_name);
13711 return true;
13712 }
13713 else
13714 return false;
13715 }
13716
13717 /* Implement the "get_symbol_name_matcher" language_defn method for
13718 Ada. */
13719
13720 static symbol_name_matcher_ftype *
13721 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13722 {
13723 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13724 return literal_symbol_name_matcher;
13725
13726 if (lookup_name.completion_mode ())
13727 return ada_symbol_name_matches;
13728 else
13729 {
13730 if (lookup_name.ada ().wild_match_p ())
13731 return do_wild_match;
13732 else if (lookup_name.ada ().verbatim_p ())
13733 return do_exact_match;
13734 else
13735 return do_full_match;
13736 }
13737 }
13738
13739 /* Class representing the Ada language. */
13740
13741 class ada_language : public language_defn
13742 {
13743 public:
13744 ada_language ()
13745 : language_defn (language_ada)
13746 { /* Nothing. */ }
13747
13748 /* See language.h. */
13749
13750 const char *name () const override
13751 { return "ada"; }
13752
13753 /* See language.h. */
13754
13755 const char *natural_name () const override
13756 { return "Ada"; }
13757
13758 /* See language.h. */
13759
13760 const std::vector<const char *> &filename_extensions () const override
13761 {
13762 static const std::vector<const char *> extensions
13763 = { ".adb", ".ads", ".a", ".ada", ".dg" };
13764 return extensions;
13765 }
13766
13767 /* Print an array element index using the Ada syntax. */
13768
13769 void print_array_index (struct type *index_type,
13770 LONGEST index,
13771 struct ui_file *stream,
13772 const value_print_options *options) const override
13773 {
13774 struct value *index_value = val_atr (index_type, index);
13775
13776 value_print (index_value, stream, options);
13777 fprintf_filtered (stream, " => ");
13778 }
13779
13780 /* Implement the "read_var_value" language_defn method for Ada. */
13781
13782 struct value *read_var_value (struct symbol *var,
13783 const struct block *var_block,
13784 struct frame_info *frame) const override
13785 {
13786 /* The only case where default_read_var_value is not sufficient
13787 is when VAR is a renaming... */
13788 if (frame != nullptr)
13789 {
13790 const struct block *frame_block = get_frame_block (frame, NULL);
13791 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13792 return ada_read_renaming_var_value (var, frame_block);
13793 }
13794
13795 /* This is a typical case where we expect the default_read_var_value
13796 function to work. */
13797 return language_defn::read_var_value (var, var_block, frame);
13798 }
13799
13800 /* See language.h. */
13801 void language_arch_info (struct gdbarch *gdbarch,
13802 struct language_arch_info *lai) const override
13803 {
13804 const struct builtin_type *builtin = builtin_type (gdbarch);
13805
13806 /* Helper function to allow shorter lines below. */
13807 auto add = [&] (struct type *t)
13808 {
13809 lai->add_primitive_type (t);
13810 };
13811
13812 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13813 0, "integer"));
13814 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13815 0, "long_integer"));
13816 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13817 0, "short_integer"));
13818 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
13819 0, "character");
13820 lai->set_string_char_type (char_type);
13821 add (char_type);
13822 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13823 "float", gdbarch_float_format (gdbarch)));
13824 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13825 "long_float", gdbarch_double_format (gdbarch)));
13826 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13827 0, "long_long_integer"));
13828 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13829 "long_long_float",
13830 gdbarch_long_double_format (gdbarch)));
13831 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13832 0, "natural"));
13833 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13834 0, "positive"));
13835 add (builtin->builtin_void);
13836
13837 struct type *system_addr_ptr
13838 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13839 "void"));
13840 system_addr_ptr->set_name ("system__address");
13841 add (system_addr_ptr);
13842
13843 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13844 type. This is a signed integral type whose size is the same as
13845 the size of addresses. */
13846 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
13847 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13848 "storage_offset"));
13849
13850 lai->set_bool_type (builtin->builtin_bool);
13851 }
13852
13853 /* See language.h. */
13854
13855 bool iterate_over_symbols
13856 (const struct block *block, const lookup_name_info &name,
13857 domain_enum domain,
13858 gdb::function_view<symbol_found_callback_ftype> callback) const override
13859 {
13860 std::vector<struct block_symbol> results;
13861
13862 ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
13863 for (block_symbol &sym : results)
13864 {
13865 if (!callback (&sym))
13866 return false;
13867 }
13868
13869 return true;
13870 }
13871
13872 /* See language.h. */
13873 bool sniff_from_mangled_name (const char *mangled,
13874 char **out) const override
13875 {
13876 std::string demangled = ada_decode (mangled);
13877
13878 *out = NULL;
13879
13880 if (demangled != mangled && demangled[0] != '<')
13881 {
13882 /* Set the gsymbol language to Ada, but still return 0.
13883 Two reasons for that:
13884
13885 1. For Ada, we prefer computing the symbol's decoded name
13886 on the fly rather than pre-compute it, in order to save
13887 memory (Ada projects are typically very large).
13888
13889 2. There are some areas in the definition of the GNAT
13890 encoding where, with a bit of bad luck, we might be able
13891 to decode a non-Ada symbol, generating an incorrect
13892 demangled name (Eg: names ending with "TB" for instance
13893 are identified as task bodies and so stripped from
13894 the decoded name returned).
13895
13896 Returning true, here, but not setting *DEMANGLED, helps us get
13897 a little bit of the best of both worlds. Because we're last,
13898 we should not affect any of the other languages that were
13899 able to demangle the symbol before us; we get to correctly
13900 tag Ada symbols as such; and even if we incorrectly tagged a
13901 non-Ada symbol, which should be rare, any routing through the
13902 Ada language should be transparent (Ada tries to behave much
13903 like C/C++ with non-Ada symbols). */
13904 return true;
13905 }
13906
13907 return false;
13908 }
13909
13910 /* See language.h. */
13911
13912 char *demangle_symbol (const char *mangled, int options) const override
13913 {
13914 return ada_la_decode (mangled, options);
13915 }
13916
13917 /* See language.h. */
13918
13919 void print_type (struct type *type, const char *varstring,
13920 struct ui_file *stream, int show, int level,
13921 const struct type_print_options *flags) const override
13922 {
13923 ada_print_type (type, varstring, stream, show, level, flags);
13924 }
13925
13926 /* See language.h. */
13927
13928 const char *word_break_characters (void) const override
13929 {
13930 return ada_completer_word_break_characters;
13931 }
13932
13933 /* See language.h. */
13934
13935 void collect_symbol_completion_matches (completion_tracker &tracker,
13936 complete_symbol_mode mode,
13937 symbol_name_match_type name_match_type,
13938 const char *text, const char *word,
13939 enum type_code code) const override
13940 {
13941 struct symbol *sym;
13942 const struct block *b, *surrounding_static_block = 0;
13943 struct block_iterator iter;
13944
13945 gdb_assert (code == TYPE_CODE_UNDEF);
13946
13947 lookup_name_info lookup_name (text, name_match_type, true);
13948
13949 /* First, look at the partial symtab symbols. */
13950 expand_symtabs_matching (NULL,
13951 lookup_name,
13952 NULL,
13953 NULL,
13954 ALL_DOMAIN);
13955
13956 /* At this point scan through the misc symbol vectors and add each
13957 symbol you find to the list. Eventually we want to ignore
13958 anything that isn't a text symbol (everything else will be
13959 handled by the psymtab code above). */
13960
13961 for (objfile *objfile : current_program_space->objfiles ())
13962 {
13963 for (minimal_symbol *msymbol : objfile->msymbols ())
13964 {
13965 QUIT;
13966
13967 if (completion_skip_symbol (mode, msymbol))
13968 continue;
13969
13970 language symbol_language = msymbol->language ();
13971
13972 /* Ada minimal symbols won't have their language set to Ada. If
13973 we let completion_list_add_name compare using the
13974 default/C-like matcher, then when completing e.g., symbols in a
13975 package named "pck", we'd match internal Ada symbols like
13976 "pckS", which are invalid in an Ada expression, unless you wrap
13977 them in '<' '>' to request a verbatim match.
13978
13979 Unfortunately, some Ada encoded names successfully demangle as
13980 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13981 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13982 with the wrong language set. Paper over that issue here. */
13983 if (symbol_language == language_auto
13984 || symbol_language == language_cplus)
13985 symbol_language = language_ada;
13986
13987 completion_list_add_name (tracker,
13988 symbol_language,
13989 msymbol->linkage_name (),
13990 lookup_name, text, word);
13991 }
13992 }
13993
13994 /* Search upwards from currently selected frame (so that we can
13995 complete on local vars. */
13996
13997 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13998 {
13999 if (!BLOCK_SUPERBLOCK (b))
14000 surrounding_static_block = b; /* For elmin of dups */
14001
14002 ALL_BLOCK_SYMBOLS (b, iter, sym)
14003 {
14004 if (completion_skip_symbol (mode, sym))
14005 continue;
14006
14007 completion_list_add_name (tracker,
14008 sym->language (),
14009 sym->linkage_name (),
14010 lookup_name, text, word);
14011 }
14012 }
14013
14014 /* Go through the symtabs and check the externs and statics for
14015 symbols which match. */
14016
14017 for (objfile *objfile : current_program_space->objfiles ())
14018 {
14019 for (compunit_symtab *s : objfile->compunits ())
14020 {
14021 QUIT;
14022 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
14023 ALL_BLOCK_SYMBOLS (b, iter, sym)
14024 {
14025 if (completion_skip_symbol (mode, sym))
14026 continue;
14027
14028 completion_list_add_name (tracker,
14029 sym->language (),
14030 sym->linkage_name (),
14031 lookup_name, text, word);
14032 }
14033 }
14034 }
14035
14036 for (objfile *objfile : current_program_space->objfiles ())
14037 {
14038 for (compunit_symtab *s : objfile->compunits ())
14039 {
14040 QUIT;
14041 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
14042 /* Don't do this block twice. */
14043 if (b == surrounding_static_block)
14044 continue;
14045 ALL_BLOCK_SYMBOLS (b, iter, sym)
14046 {
14047 if (completion_skip_symbol (mode, sym))
14048 continue;
14049
14050 completion_list_add_name (tracker,
14051 sym->language (),
14052 sym->linkage_name (),
14053 lookup_name, text, word);
14054 }
14055 }
14056 }
14057 }
14058
14059 /* See language.h. */
14060
14061 gdb::unique_xmalloc_ptr<char> watch_location_expression
14062 (struct type *type, CORE_ADDR addr) const override
14063 {
14064 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
14065 std::string name = type_to_string (type);
14066 return gdb::unique_xmalloc_ptr<char>
14067 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
14068 }
14069
14070 /* See language.h. */
14071
14072 void value_print (struct value *val, struct ui_file *stream,
14073 const struct value_print_options *options) const override
14074 {
14075 return ada_value_print (val, stream, options);
14076 }
14077
14078 /* See language.h. */
14079
14080 void value_print_inner
14081 (struct value *val, struct ui_file *stream, int recurse,
14082 const struct value_print_options *options) const override
14083 {
14084 return ada_value_print_inner (val, stream, recurse, options);
14085 }
14086
14087 /* See language.h. */
14088
14089 struct block_symbol lookup_symbol_nonlocal
14090 (const char *name, const struct block *block,
14091 const domain_enum domain) const override
14092 {
14093 struct block_symbol sym;
14094
14095 sym = ada_lookup_symbol (name, block_static_block (block), domain);
14096 if (sym.symbol != NULL)
14097 return sym;
14098
14099 /* If we haven't found a match at this point, try the primitive
14100 types. In other languages, this search is performed before
14101 searching for global symbols in order to short-circuit that
14102 global-symbol search if it happens that the name corresponds
14103 to a primitive type. But we cannot do the same in Ada, because
14104 it is perfectly legitimate for a program to declare a type which
14105 has the same name as a standard type. If looking up a type in
14106 that situation, we have traditionally ignored the primitive type
14107 in favor of user-defined types. This is why, unlike most other
14108 languages, we search the primitive types this late and only after
14109 having searched the global symbols without success. */
14110
14111 if (domain == VAR_DOMAIN)
14112 {
14113 struct gdbarch *gdbarch;
14114
14115 if (block == NULL)
14116 gdbarch = target_gdbarch ();
14117 else
14118 gdbarch = block_gdbarch (block);
14119 sym.symbol
14120 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
14121 if (sym.symbol != NULL)
14122 return sym;
14123 }
14124
14125 return {};
14126 }
14127
14128 /* See language.h. */
14129
14130 int parser (struct parser_state *ps) const override
14131 {
14132 warnings_issued = 0;
14133 return ada_parse (ps);
14134 }
14135
14136 /* See language.h.
14137
14138 Same as evaluate_type (*EXP), but resolves ambiguous symbol references
14139 (marked by OP_VAR_VALUE nodes in which the symbol has an undefined
14140 namespace) and converts operators that are user-defined into
14141 appropriate function calls. If CONTEXT_TYPE is non-null, it provides
14142 a preferred result type [at the moment, only type void has any
14143 effect---causing procedures to be preferred over functions in calls].
14144 A null CONTEXT_TYPE indicates that a non-void return type is
14145 preferred. May change (expand) *EXP. */
14146
14147 void post_parser (expression_up *expp, struct parser_state *ps)
14148 const override
14149 {
14150 struct type *context_type = NULL;
14151 int pc = 0;
14152
14153 if (ps->void_context_p)
14154 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
14155
14156 resolve_subexp (expp, &pc, 1, context_type, ps->parse_completion,
14157 ps->block_tracker);
14158 }
14159
14160 /* See language.h. */
14161
14162 void emitchar (int ch, struct type *chtype,
14163 struct ui_file *stream, int quoter) const override
14164 {
14165 ada_emit_char (ch, chtype, stream, quoter, 1);
14166 }
14167
14168 /* See language.h. */
14169
14170 void printchar (int ch, struct type *chtype,
14171 struct ui_file *stream) const override
14172 {
14173 ada_printchar (ch, chtype, stream);
14174 }
14175
14176 /* See language.h. */
14177
14178 void printstr (struct ui_file *stream, struct type *elttype,
14179 const gdb_byte *string, unsigned int length,
14180 const char *encoding, int force_ellipses,
14181 const struct value_print_options *options) const override
14182 {
14183 ada_printstr (stream, elttype, string, length, encoding,
14184 force_ellipses, options);
14185 }
14186
14187 /* See language.h. */
14188
14189 void print_typedef (struct type *type, struct symbol *new_symbol,
14190 struct ui_file *stream) const override
14191 {
14192 ada_print_typedef (type, new_symbol, stream);
14193 }
14194
14195 /* See language.h. */
14196
14197 bool is_string_type_p (struct type *type) const override
14198 {
14199 return ada_is_string_type (type);
14200 }
14201
14202 /* See language.h. */
14203
14204 const char *struct_too_deep_ellipsis () const override
14205 { return "(...)"; }
14206
14207 /* See language.h. */
14208
14209 bool c_style_arrays_p () const override
14210 { return false; }
14211
14212 /* See language.h. */
14213
14214 bool store_sym_names_in_linkage_form_p () const override
14215 { return true; }
14216
14217 /* See language.h. */
14218
14219 const struct lang_varobj_ops *varobj_ops () const override
14220 { return &ada_varobj_ops; }
14221
14222 /* See language.h. */
14223
14224 const struct exp_descriptor *expression_ops () const override
14225 { return &ada_exp_descriptor; }
14226
14227 /* See language.h. */
14228
14229 const struct op_print *opcode_print_table () const override
14230 { return ada_op_print_tab; }
14231
14232 protected:
14233 /* See language.h. */
14234
14235 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
14236 (const lookup_name_info &lookup_name) const override
14237 {
14238 return ada_get_symbol_name_matcher (lookup_name);
14239 }
14240 };
14241
14242 /* Single instance of the Ada language class. */
14243
14244 static ada_language ada_language_defn;
14245
14246 /* Command-list for the "set/show ada" prefix command. */
14247 static struct cmd_list_element *set_ada_list;
14248 static struct cmd_list_element *show_ada_list;
14249
14250 static void
14251 initialize_ada_catchpoint_ops (void)
14252 {
14253 struct breakpoint_ops *ops;
14254
14255 initialize_breakpoint_ops ();
14256
14257 ops = &catch_exception_breakpoint_ops;
14258 *ops = bkpt_breakpoint_ops;
14259 ops->allocate_location = allocate_location_exception;
14260 ops->re_set = re_set_exception;
14261 ops->check_status = check_status_exception;
14262 ops->print_it = print_it_exception;
14263 ops->print_one = print_one_exception;
14264 ops->print_mention = print_mention_exception;
14265 ops->print_recreate = print_recreate_exception;
14266
14267 ops = &catch_exception_unhandled_breakpoint_ops;
14268 *ops = bkpt_breakpoint_ops;
14269 ops->allocate_location = allocate_location_exception;
14270 ops->re_set = re_set_exception;
14271 ops->check_status = check_status_exception;
14272 ops->print_it = print_it_exception;
14273 ops->print_one = print_one_exception;
14274 ops->print_mention = print_mention_exception;
14275 ops->print_recreate = print_recreate_exception;
14276
14277 ops = &catch_assert_breakpoint_ops;
14278 *ops = bkpt_breakpoint_ops;
14279 ops->allocate_location = allocate_location_exception;
14280 ops->re_set = re_set_exception;
14281 ops->check_status = check_status_exception;
14282 ops->print_it = print_it_exception;
14283 ops->print_one = print_one_exception;
14284 ops->print_mention = print_mention_exception;
14285 ops->print_recreate = print_recreate_exception;
14286
14287 ops = &catch_handlers_breakpoint_ops;
14288 *ops = bkpt_breakpoint_ops;
14289 ops->allocate_location = allocate_location_exception;
14290 ops->re_set = re_set_exception;
14291 ops->check_status = check_status_exception;
14292 ops->print_it = print_it_exception;
14293 ops->print_one = print_one_exception;
14294 ops->print_mention = print_mention_exception;
14295 ops->print_recreate = print_recreate_exception;
14296 }
14297
14298 /* This module's 'new_objfile' observer. */
14299
14300 static void
14301 ada_new_objfile_observer (struct objfile *objfile)
14302 {
14303 ada_clear_symbol_cache ();
14304 }
14305
14306 /* This module's 'free_objfile' observer. */
14307
14308 static void
14309 ada_free_objfile_observer (struct objfile *objfile)
14310 {
14311 ada_clear_symbol_cache ();
14312 }
14313
14314 void _initialize_ada_language ();
14315 void
14316 _initialize_ada_language ()
14317 {
14318 initialize_ada_catchpoint_ops ();
14319
14320 add_basic_prefix_cmd ("ada", no_class,
14321 _("Prefix command for changing Ada-specific settings."),
14322 &set_ada_list, "set ada ", 0, &setlist);
14323
14324 add_show_prefix_cmd ("ada", no_class,
14325 _("Generic command for showing Ada-specific settings."),
14326 &show_ada_list, "show ada ", 0, &showlist);
14327
14328 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14329 &trust_pad_over_xvs, _("\
14330 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14331 Show whether an optimization trusting PAD types over XVS types is activated."),
14332 _("\
14333 This is related to the encoding used by the GNAT compiler. The debugger\n\
14334 should normally trust the contents of PAD types, but certain older versions\n\
14335 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14336 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14337 work around this bug. It is always safe to turn this option \"off\", but\n\
14338 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14339 this option to \"off\" unless necessary."),
14340 NULL, NULL, &set_ada_list, &show_ada_list);
14341
14342 add_setshow_boolean_cmd ("print-signatures", class_vars,
14343 &print_signatures, _("\
14344 Enable or disable the output of formal and return types for functions in the \
14345 overloads selection menu."), _("\
14346 Show whether the output of formal and return types for functions in the \
14347 overloads selection menu is activated."),
14348 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14349
14350 add_catch_command ("exception", _("\
14351 Catch Ada exceptions, when raised.\n\
14352 Usage: catch exception [ARG] [if CONDITION]\n\
14353 Without any argument, stop when any Ada exception is raised.\n\
14354 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14355 being raised does not have a handler (and will therefore lead to the task's\n\
14356 termination).\n\
14357 Otherwise, the catchpoint only stops when the name of the exception being\n\
14358 raised is the same as ARG.\n\
14359 CONDITION is a boolean expression that is evaluated to see whether the\n\
14360 exception should cause a stop."),
14361 catch_ada_exception_command,
14362 catch_ada_completer,
14363 CATCH_PERMANENT,
14364 CATCH_TEMPORARY);
14365
14366 add_catch_command ("handlers", _("\
14367 Catch Ada exceptions, when handled.\n\
14368 Usage: catch handlers [ARG] [if CONDITION]\n\
14369 Without any argument, stop when any Ada exception is handled.\n\
14370 With an argument, catch only exceptions with the given name.\n\
14371 CONDITION is a boolean expression that is evaluated to see whether the\n\
14372 exception should cause a stop."),
14373 catch_ada_handlers_command,
14374 catch_ada_completer,
14375 CATCH_PERMANENT,
14376 CATCH_TEMPORARY);
14377 add_catch_command ("assert", _("\
14378 Catch failed Ada assertions, when raised.\n\
14379 Usage: catch assert [if CONDITION]\n\
14380 CONDITION is a boolean expression that is evaluated to see whether the\n\
14381 exception should cause a stop."),
14382 catch_assert_command,
14383 NULL,
14384 CATCH_PERMANENT,
14385 CATCH_TEMPORARY);
14386
14387 varsize_limit = 65536;
14388 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14389 &varsize_limit, _("\
14390 Set the maximum number of bytes allowed in a variable-size object."), _("\
14391 Show the maximum number of bytes allowed in a variable-size object."), _("\
14392 Attempts to access an object whose size is not a compile-time constant\n\
14393 and exceeds this limit will cause an error."),
14394 NULL, NULL, &setlist, &showlist);
14395
14396 add_info ("exceptions", info_exceptions_command,
14397 _("\
14398 List all Ada exception names.\n\
14399 Usage: info exceptions [REGEXP]\n\
14400 If a regular expression is passed as an argument, only those matching\n\
14401 the regular expression are listed."));
14402
14403 add_basic_prefix_cmd ("ada", class_maintenance,
14404 _("Set Ada maintenance-related variables."),
14405 &maint_set_ada_cmdlist, "maintenance set ada ",
14406 0/*allow-unknown*/, &maintenance_set_cmdlist);
14407
14408 add_show_prefix_cmd ("ada", class_maintenance,
14409 _("Show Ada maintenance-related variables."),
14410 &maint_show_ada_cmdlist, "maintenance show ada ",
14411 0/*allow-unknown*/, &maintenance_show_cmdlist);
14412
14413 add_setshow_boolean_cmd
14414 ("ignore-descriptive-types", class_maintenance,
14415 &ada_ignore_descriptive_types_p,
14416 _("Set whether descriptive types generated by GNAT should be ignored."),
14417 _("Show whether descriptive types generated by GNAT should be ignored."),
14418 _("\
14419 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14420 DWARF attribute."),
14421 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14422
14423 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14424 NULL, xcalloc, xfree);
14425
14426 /* The ada-lang observers. */
14427 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14428 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14429 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14430 }
This page took 0.445187 seconds and 4 git commands to generate.