2010-12-31 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60
61 #include "psymtab.h"
62 #include "value.h"
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static int full_match (const char *, const char *);
105
106 static struct value *make_array_descriptor (struct type *, struct value *);
107
108 static void ada_add_block_symbols (struct obstack *,
109 struct block *, const char *,
110 domain_enum, struct objfile *, int);
111
112 static int is_nonfunction (struct ada_symbol_info *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct ada_symbol_info *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (struct expression **, int *, int,
122 struct type *);
123
124 static void replace_operator_with_call (struct expression **, int, int, int,
125 struct symbol *, struct block *);
126
127 static int possible_user_operator_p (enum exp_opcode, struct value **);
128
129 static char *ada_op_name (enum exp_opcode);
130
131 static const char *ada_decoded_op_name (enum exp_opcode);
132
133 static int numeric_type_p (struct type *);
134
135 static int integer_type_p (struct type *);
136
137 static int scalar_type_p (struct type *);
138
139 static int discrete_type_p (struct type *);
140
141 static enum ada_renaming_category parse_old_style_renaming (struct type *,
142 const char **,
143 int *,
144 const char **);
145
146 static struct symbol *find_old_style_renaming_symbol (const char *,
147 struct block *);
148
149 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
150 int, int, int *);
151
152 static struct value *evaluate_subexp_type (struct expression *, int *);
153
154 static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
157 static int is_dynamic_field (struct type *, int);
158
159 static struct type *to_fixed_variant_branch_type (struct type *,
160 const gdb_byte *,
161 CORE_ADDR, struct value *);
162
163 static struct type *to_fixed_array_type (struct type *, struct value *, int);
164
165 static struct type *to_fixed_range_type (struct type *, struct value *);
166
167 static struct type *to_static_fixed_type (struct type *);
168 static struct type *static_unwrap_type (struct type *type);
169
170 static struct value *unwrap_value (struct value *);
171
172 static struct type *constrained_packed_array_type (struct type *, long *);
173
174 static struct type *decode_constrained_packed_array_type (struct type *);
175
176 static long decode_packed_array_bitsize (struct type *);
177
178 static struct value *decode_constrained_packed_array (struct value *);
179
180 static int ada_is_packed_array_type (struct type *);
181
182 static int ada_is_unconstrained_packed_array_type (struct type *);
183
184 static struct value *value_subscript_packed (struct value *, int,
185 struct value **);
186
187 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
188
189 static struct value *coerce_unspec_val_to_type (struct value *,
190 struct type *);
191
192 static struct value *get_var_value (char *, char *);
193
194 static int lesseq_defined_than (struct symbol *, struct symbol *);
195
196 static int equiv_types (struct type *, struct type *);
197
198 static int is_name_suffix (const char *);
199
200 static int advance_wild_match (const char **, const char *, int);
201
202 static int wild_match (const char *, const char *);
203
204 static struct value *ada_coerce_ref (struct value *);
205
206 static LONGEST pos_atr (struct value *);
207
208 static struct value *value_pos_atr (struct type *, struct value *);
209
210 static struct value *value_val_atr (struct type *, struct value *);
211
212 static struct symbol *standard_lookup (const char *, const struct block *,
213 domain_enum);
214
215 static struct value *ada_search_struct_field (char *, struct value *, int,
216 struct type *);
217
218 static struct value *ada_value_primitive_field (struct value *, int, int,
219 struct type *);
220
221 static int find_struct_field (char *, struct type *, int,
222 struct type **, int *, int *, int *, int *);
223
224 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
225 struct value *);
226
227 static int ada_resolve_function (struct ada_symbol_info *, int,
228 struct value **, int, const char *,
229 struct type *);
230
231 static int ada_is_direct_array_type (struct type *);
232
233 static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
235
236 static void check_size (const struct type *);
237
238 static struct value *ada_index_struct_field (int, struct value *, int,
239 struct type *);
240
241 static struct value *assign_aggregate (struct value *, struct value *,
242 struct expression *, int *, enum noside);
243
244 static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249 static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255 static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266 static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
268 \f
269
270
271 /* Maximum-sized dynamic type. */
272 static unsigned int varsize_limit;
273
274 /* FIXME: brobecker/2003-09-17: No longer a const because it is
275 returned by a function that does not return a const char *. */
276 static char *ada_completer_word_break_characters =
277 #ifdef VMS
278 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
279 #else
280 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
281 #endif
282
283 /* The name of the symbol to use to get the name of the main subprogram. */
284 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
285 = "__gnat_ada_main_program_name";
286
287 /* Limit on the number of warnings to raise per expression evaluation. */
288 static int warning_limit = 2;
289
290 /* Number of warning messages issued; reset to 0 by cleanups after
291 expression evaluation. */
292 static int warnings_issued = 0;
293
294 static const char *known_runtime_file_name_patterns[] = {
295 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
296 };
297
298 static const char *known_auxiliary_function_name_patterns[] = {
299 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
300 };
301
302 /* Space for allocating results of ada_lookup_symbol_list. */
303 static struct obstack symbol_list_obstack;
304
305 /* Inferior-specific data. */
306
307 /* Per-inferior data for this module. */
308
309 struct ada_inferior_data
310 {
311 /* The ada__tags__type_specific_data type, which is used when decoding
312 tagged types. With older versions of GNAT, this type was directly
313 accessible through a component ("tsd") in the object tag. But this
314 is no longer the case, so we cache it for each inferior. */
315 struct type *tsd_type;
316 };
317
318 /* Our key to this module's inferior data. */
319 static const struct inferior_data *ada_inferior_data;
320
321 /* A cleanup routine for our inferior data. */
322 static void
323 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
324 {
325 struct ada_inferior_data *data;
326
327 data = inferior_data (inf, ada_inferior_data);
328 if (data != NULL)
329 xfree (data);
330 }
331
332 /* Return our inferior data for the given inferior (INF).
333
334 This function always returns a valid pointer to an allocated
335 ada_inferior_data structure. If INF's inferior data has not
336 been previously set, this functions creates a new one with all
337 fields set to zero, sets INF's inferior to it, and then returns
338 a pointer to that newly allocated ada_inferior_data. */
339
340 static struct ada_inferior_data *
341 get_ada_inferior_data (struct inferior *inf)
342 {
343 struct ada_inferior_data *data;
344
345 data = inferior_data (inf, ada_inferior_data);
346 if (data == NULL)
347 {
348 data = XZALLOC (struct ada_inferior_data);
349 set_inferior_data (inf, ada_inferior_data, data);
350 }
351
352 return data;
353 }
354
355 /* Perform all necessary cleanups regarding our module's inferior data
356 that is required after the inferior INF just exited. */
357
358 static void
359 ada_inferior_exit (struct inferior *inf)
360 {
361 ada_inferior_data_cleanup (inf, NULL);
362 set_inferior_data (inf, ada_inferior_data, NULL);
363 }
364
365 /* Utilities */
366
367 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
368 all typedef layers have been peeled. Otherwise, return TYPE.
369
370 Normally, we really expect a typedef type to only have 1 typedef layer.
371 In other words, we really expect the target type of a typedef type to be
372 a non-typedef type. This is particularly true for Ada units, because
373 the language does not have a typedef vs not-typedef distinction.
374 In that respect, the Ada compiler has been trying to eliminate as many
375 typedef definitions in the debugging information, since they generally
376 do not bring any extra information (we still use typedef under certain
377 circumstances related mostly to the GNAT encoding).
378
379 Unfortunately, we have seen situations where the debugging information
380 generated by the compiler leads to such multiple typedef layers. For
381 instance, consider the following example with stabs:
382
383 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
384 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
385
386 This is an error in the debugging information which causes type
387 pck__float_array___XUP to be defined twice, and the second time,
388 it is defined as a typedef of a typedef.
389
390 This is on the fringe of legality as far as debugging information is
391 concerned, and certainly unexpected. But it is easy to handle these
392 situations correctly, so we can afford to be lenient in this case. */
393
394 static struct type *
395 ada_typedef_target_type (struct type *type)
396 {
397 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
398 type = TYPE_TARGET_TYPE (type);
399 return type;
400 }
401
402 /* Given DECODED_NAME a string holding a symbol name in its
403 decoded form (ie using the Ada dotted notation), returns
404 its unqualified name. */
405
406 static const char *
407 ada_unqualified_name (const char *decoded_name)
408 {
409 const char *result = strrchr (decoded_name, '.');
410
411 if (result != NULL)
412 result++; /* Skip the dot... */
413 else
414 result = decoded_name;
415
416 return result;
417 }
418
419 /* Return a string starting with '<', followed by STR, and '>'.
420 The result is good until the next call. */
421
422 static char *
423 add_angle_brackets (const char *str)
424 {
425 static char *result = NULL;
426
427 xfree (result);
428 result = xstrprintf ("<%s>", str);
429 return result;
430 }
431
432 static char *
433 ada_get_gdb_completer_word_break_characters (void)
434 {
435 return ada_completer_word_break_characters;
436 }
437
438 /* Print an array element index using the Ada syntax. */
439
440 static void
441 ada_print_array_index (struct value *index_value, struct ui_file *stream,
442 const struct value_print_options *options)
443 {
444 LA_VALUE_PRINT (index_value, stream, options);
445 fprintf_filtered (stream, " => ");
446 }
447
448 /* Assuming VECT points to an array of *SIZE objects of size
449 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
450 updating *SIZE as necessary and returning the (new) array. */
451
452 void *
453 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
454 {
455 if (*size < min_size)
456 {
457 *size *= 2;
458 if (*size < min_size)
459 *size = min_size;
460 vect = xrealloc (vect, *size * element_size);
461 }
462 return vect;
463 }
464
465 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
466 suffix of FIELD_NAME beginning "___". */
467
468 static int
469 field_name_match (const char *field_name, const char *target)
470 {
471 int len = strlen (target);
472
473 return
474 (strncmp (field_name, target, len) == 0
475 && (field_name[len] == '\0'
476 || (strncmp (field_name + len, "___", 3) == 0
477 && strcmp (field_name + strlen (field_name) - 6,
478 "___XVN") != 0)));
479 }
480
481
482 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
483 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
484 and return its index. This function also handles fields whose name
485 have ___ suffixes because the compiler sometimes alters their name
486 by adding such a suffix to represent fields with certain constraints.
487 If the field could not be found, return a negative number if
488 MAYBE_MISSING is set. Otherwise raise an error. */
489
490 int
491 ada_get_field_index (const struct type *type, const char *field_name,
492 int maybe_missing)
493 {
494 int fieldno;
495 struct type *struct_type = check_typedef ((struct type *) type);
496
497 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
498 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
499 return fieldno;
500
501 if (!maybe_missing)
502 error (_("Unable to find field %s in struct %s. Aborting"),
503 field_name, TYPE_NAME (struct_type));
504
505 return -1;
506 }
507
508 /* The length of the prefix of NAME prior to any "___" suffix. */
509
510 int
511 ada_name_prefix_len (const char *name)
512 {
513 if (name == NULL)
514 return 0;
515 else
516 {
517 const char *p = strstr (name, "___");
518
519 if (p == NULL)
520 return strlen (name);
521 else
522 return p - name;
523 }
524 }
525
526 /* Return non-zero if SUFFIX is a suffix of STR.
527 Return zero if STR is null. */
528
529 static int
530 is_suffix (const char *str, const char *suffix)
531 {
532 int len1, len2;
533
534 if (str == NULL)
535 return 0;
536 len1 = strlen (str);
537 len2 = strlen (suffix);
538 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
539 }
540
541 /* The contents of value VAL, treated as a value of type TYPE. The
542 result is an lval in memory if VAL is. */
543
544 static struct value *
545 coerce_unspec_val_to_type (struct value *val, struct type *type)
546 {
547 type = ada_check_typedef (type);
548 if (value_type (val) == type)
549 return val;
550 else
551 {
552 struct value *result;
553
554 /* Make sure that the object size is not unreasonable before
555 trying to allocate some memory for it. */
556 check_size (type);
557
558 result = allocate_value (type);
559 set_value_component_location (result, val);
560 set_value_bitsize (result, value_bitsize (val));
561 set_value_bitpos (result, value_bitpos (val));
562 set_value_address (result, value_address (val));
563 if (value_lazy (val)
564 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
565 set_value_lazy (result, 1);
566 else
567 memcpy (value_contents_raw (result), value_contents (val),
568 TYPE_LENGTH (type));
569 return result;
570 }
571 }
572
573 static const gdb_byte *
574 cond_offset_host (const gdb_byte *valaddr, long offset)
575 {
576 if (valaddr == NULL)
577 return NULL;
578 else
579 return valaddr + offset;
580 }
581
582 static CORE_ADDR
583 cond_offset_target (CORE_ADDR address, long offset)
584 {
585 if (address == 0)
586 return 0;
587 else
588 return address + offset;
589 }
590
591 /* Issue a warning (as for the definition of warning in utils.c, but
592 with exactly one argument rather than ...), unless the limit on the
593 number of warnings has passed during the evaluation of the current
594 expression. */
595
596 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
597 provided by "complaint". */
598 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
599
600 static void
601 lim_warning (const char *format, ...)
602 {
603 va_list args;
604
605 va_start (args, format);
606 warnings_issued += 1;
607 if (warnings_issued <= warning_limit)
608 vwarning (format, args);
609
610 va_end (args);
611 }
612
613 /* Issue an error if the size of an object of type T is unreasonable,
614 i.e. if it would be a bad idea to allocate a value of this type in
615 GDB. */
616
617 static void
618 check_size (const struct type *type)
619 {
620 if (TYPE_LENGTH (type) > varsize_limit)
621 error (_("object size is larger than varsize-limit"));
622 }
623
624 /* Maximum value of a SIZE-byte signed integer type. */
625 static LONGEST
626 max_of_size (int size)
627 {
628 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
629
630 return top_bit | (top_bit - 1);
631 }
632
633 /* Minimum value of a SIZE-byte signed integer type. */
634 static LONGEST
635 min_of_size (int size)
636 {
637 return -max_of_size (size) - 1;
638 }
639
640 /* Maximum value of a SIZE-byte unsigned integer type. */
641 static ULONGEST
642 umax_of_size (int size)
643 {
644 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
645
646 return top_bit | (top_bit - 1);
647 }
648
649 /* Maximum value of integral type T, as a signed quantity. */
650 static LONGEST
651 max_of_type (struct type *t)
652 {
653 if (TYPE_UNSIGNED (t))
654 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
655 else
656 return max_of_size (TYPE_LENGTH (t));
657 }
658
659 /* Minimum value of integral type T, as a signed quantity. */
660 static LONGEST
661 min_of_type (struct type *t)
662 {
663 if (TYPE_UNSIGNED (t))
664 return 0;
665 else
666 return min_of_size (TYPE_LENGTH (t));
667 }
668
669 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
670 LONGEST
671 ada_discrete_type_high_bound (struct type *type)
672 {
673 switch (TYPE_CODE (type))
674 {
675 case TYPE_CODE_RANGE:
676 return TYPE_HIGH_BOUND (type);
677 case TYPE_CODE_ENUM:
678 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
679 case TYPE_CODE_BOOL:
680 return 1;
681 case TYPE_CODE_CHAR:
682 case TYPE_CODE_INT:
683 return max_of_type (type);
684 default:
685 error (_("Unexpected type in ada_discrete_type_high_bound."));
686 }
687 }
688
689 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
690 LONGEST
691 ada_discrete_type_low_bound (struct type *type)
692 {
693 switch (TYPE_CODE (type))
694 {
695 case TYPE_CODE_RANGE:
696 return TYPE_LOW_BOUND (type);
697 case TYPE_CODE_ENUM:
698 return TYPE_FIELD_BITPOS (type, 0);
699 case TYPE_CODE_BOOL:
700 return 0;
701 case TYPE_CODE_CHAR:
702 case TYPE_CODE_INT:
703 return min_of_type (type);
704 default:
705 error (_("Unexpected type in ada_discrete_type_low_bound."));
706 }
707 }
708
709 /* The identity on non-range types. For range types, the underlying
710 non-range scalar type. */
711
712 static struct type *
713 base_type (struct type *type)
714 {
715 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
716 {
717 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
718 return type;
719 type = TYPE_TARGET_TYPE (type);
720 }
721 return type;
722 }
723 \f
724
725 /* Language Selection */
726
727 /* If the main program is in Ada, return language_ada, otherwise return LANG
728 (the main program is in Ada iif the adainit symbol is found). */
729
730 enum language
731 ada_update_initial_language (enum language lang)
732 {
733 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
734 (struct objfile *) NULL) != NULL)
735 return language_ada;
736
737 return lang;
738 }
739
740 /* If the main procedure is written in Ada, then return its name.
741 The result is good until the next call. Return NULL if the main
742 procedure doesn't appear to be in Ada. */
743
744 char *
745 ada_main_name (void)
746 {
747 struct minimal_symbol *msym;
748 static char *main_program_name = NULL;
749
750 /* For Ada, the name of the main procedure is stored in a specific
751 string constant, generated by the binder. Look for that symbol,
752 extract its address, and then read that string. If we didn't find
753 that string, then most probably the main procedure is not written
754 in Ada. */
755 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
756
757 if (msym != NULL)
758 {
759 CORE_ADDR main_program_name_addr;
760 int err_code;
761
762 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
763 if (main_program_name_addr == 0)
764 error (_("Invalid address for Ada main program name."));
765
766 xfree (main_program_name);
767 target_read_string (main_program_name_addr, &main_program_name,
768 1024, &err_code);
769
770 if (err_code != 0)
771 return NULL;
772 return main_program_name;
773 }
774
775 /* The main procedure doesn't seem to be in Ada. */
776 return NULL;
777 }
778 \f
779 /* Symbols */
780
781 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
782 of NULLs. */
783
784 const struct ada_opname_map ada_opname_table[] = {
785 {"Oadd", "\"+\"", BINOP_ADD},
786 {"Osubtract", "\"-\"", BINOP_SUB},
787 {"Omultiply", "\"*\"", BINOP_MUL},
788 {"Odivide", "\"/\"", BINOP_DIV},
789 {"Omod", "\"mod\"", BINOP_MOD},
790 {"Orem", "\"rem\"", BINOP_REM},
791 {"Oexpon", "\"**\"", BINOP_EXP},
792 {"Olt", "\"<\"", BINOP_LESS},
793 {"Ole", "\"<=\"", BINOP_LEQ},
794 {"Ogt", "\">\"", BINOP_GTR},
795 {"Oge", "\">=\"", BINOP_GEQ},
796 {"Oeq", "\"=\"", BINOP_EQUAL},
797 {"One", "\"/=\"", BINOP_NOTEQUAL},
798 {"Oand", "\"and\"", BINOP_BITWISE_AND},
799 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
800 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
801 {"Oconcat", "\"&\"", BINOP_CONCAT},
802 {"Oabs", "\"abs\"", UNOP_ABS},
803 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
804 {"Oadd", "\"+\"", UNOP_PLUS},
805 {"Osubtract", "\"-\"", UNOP_NEG},
806 {NULL, NULL}
807 };
808
809 /* The "encoded" form of DECODED, according to GNAT conventions.
810 The result is valid until the next call to ada_encode. */
811
812 char *
813 ada_encode (const char *decoded)
814 {
815 static char *encoding_buffer = NULL;
816 static size_t encoding_buffer_size = 0;
817 const char *p;
818 int k;
819
820 if (decoded == NULL)
821 return NULL;
822
823 GROW_VECT (encoding_buffer, encoding_buffer_size,
824 2 * strlen (decoded) + 10);
825
826 k = 0;
827 for (p = decoded; *p != '\0'; p += 1)
828 {
829 if (*p == '.')
830 {
831 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
832 k += 2;
833 }
834 else if (*p == '"')
835 {
836 const struct ada_opname_map *mapping;
837
838 for (mapping = ada_opname_table;
839 mapping->encoded != NULL
840 && strncmp (mapping->decoded, p,
841 strlen (mapping->decoded)) != 0; mapping += 1)
842 ;
843 if (mapping->encoded == NULL)
844 error (_("invalid Ada operator name: %s"), p);
845 strcpy (encoding_buffer + k, mapping->encoded);
846 k += strlen (mapping->encoded);
847 break;
848 }
849 else
850 {
851 encoding_buffer[k] = *p;
852 k += 1;
853 }
854 }
855
856 encoding_buffer[k] = '\0';
857 return encoding_buffer;
858 }
859
860 /* Return NAME folded to lower case, or, if surrounded by single
861 quotes, unfolded, but with the quotes stripped away. Result good
862 to next call. */
863
864 char *
865 ada_fold_name (const char *name)
866 {
867 static char *fold_buffer = NULL;
868 static size_t fold_buffer_size = 0;
869
870 int len = strlen (name);
871 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
872
873 if (name[0] == '\'')
874 {
875 strncpy (fold_buffer, name + 1, len - 2);
876 fold_buffer[len - 2] = '\000';
877 }
878 else
879 {
880 int i;
881
882 for (i = 0; i <= len; i += 1)
883 fold_buffer[i] = tolower (name[i]);
884 }
885
886 return fold_buffer;
887 }
888
889 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
890
891 static int
892 is_lower_alphanum (const char c)
893 {
894 return (isdigit (c) || (isalpha (c) && islower (c)));
895 }
896
897 /* Remove either of these suffixes:
898 . .{DIGIT}+
899 . ${DIGIT}+
900 . ___{DIGIT}+
901 . __{DIGIT}+.
902 These are suffixes introduced by the compiler for entities such as
903 nested subprogram for instance, in order to avoid name clashes.
904 They do not serve any purpose for the debugger. */
905
906 static void
907 ada_remove_trailing_digits (const char *encoded, int *len)
908 {
909 if (*len > 1 && isdigit (encoded[*len - 1]))
910 {
911 int i = *len - 2;
912
913 while (i > 0 && isdigit (encoded[i]))
914 i--;
915 if (i >= 0 && encoded[i] == '.')
916 *len = i;
917 else if (i >= 0 && encoded[i] == '$')
918 *len = i;
919 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
920 *len = i - 2;
921 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
922 *len = i - 1;
923 }
924 }
925
926 /* Remove the suffix introduced by the compiler for protected object
927 subprograms. */
928
929 static void
930 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
931 {
932 /* Remove trailing N. */
933
934 /* Protected entry subprograms are broken into two
935 separate subprograms: The first one is unprotected, and has
936 a 'N' suffix; the second is the protected version, and has
937 the 'P' suffix. The second calls the first one after handling
938 the protection. Since the P subprograms are internally generated,
939 we leave these names undecoded, giving the user a clue that this
940 entity is internal. */
941
942 if (*len > 1
943 && encoded[*len - 1] == 'N'
944 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
945 *len = *len - 1;
946 }
947
948 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
949
950 static void
951 ada_remove_Xbn_suffix (const char *encoded, int *len)
952 {
953 int i = *len - 1;
954
955 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
956 i--;
957
958 if (encoded[i] != 'X')
959 return;
960
961 if (i == 0)
962 return;
963
964 if (isalnum (encoded[i-1]))
965 *len = i;
966 }
967
968 /* If ENCODED follows the GNAT entity encoding conventions, then return
969 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
970 replaced by ENCODED.
971
972 The resulting string is valid until the next call of ada_decode.
973 If the string is unchanged by decoding, the original string pointer
974 is returned. */
975
976 const char *
977 ada_decode (const char *encoded)
978 {
979 int i, j;
980 int len0;
981 const char *p;
982 char *decoded;
983 int at_start_name;
984 static char *decoding_buffer = NULL;
985 static size_t decoding_buffer_size = 0;
986
987 /* The name of the Ada main procedure starts with "_ada_".
988 This prefix is not part of the decoded name, so skip this part
989 if we see this prefix. */
990 if (strncmp (encoded, "_ada_", 5) == 0)
991 encoded += 5;
992
993 /* If the name starts with '_', then it is not a properly encoded
994 name, so do not attempt to decode it. Similarly, if the name
995 starts with '<', the name should not be decoded. */
996 if (encoded[0] == '_' || encoded[0] == '<')
997 goto Suppress;
998
999 len0 = strlen (encoded);
1000
1001 ada_remove_trailing_digits (encoded, &len0);
1002 ada_remove_po_subprogram_suffix (encoded, &len0);
1003
1004 /* Remove the ___X.* suffix if present. Do not forget to verify that
1005 the suffix is located before the current "end" of ENCODED. We want
1006 to avoid re-matching parts of ENCODED that have previously been
1007 marked as discarded (by decrementing LEN0). */
1008 p = strstr (encoded, "___");
1009 if (p != NULL && p - encoded < len0 - 3)
1010 {
1011 if (p[3] == 'X')
1012 len0 = p - encoded;
1013 else
1014 goto Suppress;
1015 }
1016
1017 /* Remove any trailing TKB suffix. It tells us that this symbol
1018 is for the body of a task, but that information does not actually
1019 appear in the decoded name. */
1020
1021 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1022 len0 -= 3;
1023
1024 /* Remove any trailing TB suffix. The TB suffix is slightly different
1025 from the TKB suffix because it is used for non-anonymous task
1026 bodies. */
1027
1028 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1029 len0 -= 2;
1030
1031 /* Remove trailing "B" suffixes. */
1032 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1033
1034 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1035 len0 -= 1;
1036
1037 /* Make decoded big enough for possible expansion by operator name. */
1038
1039 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1040 decoded = decoding_buffer;
1041
1042 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1043
1044 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1045 {
1046 i = len0 - 2;
1047 while ((i >= 0 && isdigit (encoded[i]))
1048 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1049 i -= 1;
1050 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1051 len0 = i - 1;
1052 else if (encoded[i] == '$')
1053 len0 = i;
1054 }
1055
1056 /* The first few characters that are not alphabetic are not part
1057 of any encoding we use, so we can copy them over verbatim. */
1058
1059 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1060 decoded[j] = encoded[i];
1061
1062 at_start_name = 1;
1063 while (i < len0)
1064 {
1065 /* Is this a symbol function? */
1066 if (at_start_name && encoded[i] == 'O')
1067 {
1068 int k;
1069
1070 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1071 {
1072 int op_len = strlen (ada_opname_table[k].encoded);
1073 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1074 op_len - 1) == 0)
1075 && !isalnum (encoded[i + op_len]))
1076 {
1077 strcpy (decoded + j, ada_opname_table[k].decoded);
1078 at_start_name = 0;
1079 i += op_len;
1080 j += strlen (ada_opname_table[k].decoded);
1081 break;
1082 }
1083 }
1084 if (ada_opname_table[k].encoded != NULL)
1085 continue;
1086 }
1087 at_start_name = 0;
1088
1089 /* Replace "TK__" with "__", which will eventually be translated
1090 into "." (just below). */
1091
1092 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1093 i += 2;
1094
1095 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1096 be translated into "." (just below). These are internal names
1097 generated for anonymous blocks inside which our symbol is nested. */
1098
1099 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1100 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1101 && isdigit (encoded [i+4]))
1102 {
1103 int k = i + 5;
1104
1105 while (k < len0 && isdigit (encoded[k]))
1106 k++; /* Skip any extra digit. */
1107
1108 /* Double-check that the "__B_{DIGITS}+" sequence we found
1109 is indeed followed by "__". */
1110 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1111 i = k;
1112 }
1113
1114 /* Remove _E{DIGITS}+[sb] */
1115
1116 /* Just as for protected object subprograms, there are 2 categories
1117 of subprograms created by the compiler for each entry. The first
1118 one implements the actual entry code, and has a suffix following
1119 the convention above; the second one implements the barrier and
1120 uses the same convention as above, except that the 'E' is replaced
1121 by a 'B'.
1122
1123 Just as above, we do not decode the name of barrier functions
1124 to give the user a clue that the code he is debugging has been
1125 internally generated. */
1126
1127 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1128 && isdigit (encoded[i+2]))
1129 {
1130 int k = i + 3;
1131
1132 while (k < len0 && isdigit (encoded[k]))
1133 k++;
1134
1135 if (k < len0
1136 && (encoded[k] == 'b' || encoded[k] == 's'))
1137 {
1138 k++;
1139 /* Just as an extra precaution, make sure that if this
1140 suffix is followed by anything else, it is a '_'.
1141 Otherwise, we matched this sequence by accident. */
1142 if (k == len0
1143 || (k < len0 && encoded[k] == '_'))
1144 i = k;
1145 }
1146 }
1147
1148 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1149 the GNAT front-end in protected object subprograms. */
1150
1151 if (i < len0 + 3
1152 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1153 {
1154 /* Backtrack a bit up until we reach either the begining of
1155 the encoded name, or "__". Make sure that we only find
1156 digits or lowercase characters. */
1157 const char *ptr = encoded + i - 1;
1158
1159 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1160 ptr--;
1161 if (ptr < encoded
1162 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1163 i++;
1164 }
1165
1166 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1167 {
1168 /* This is a X[bn]* sequence not separated from the previous
1169 part of the name with a non-alpha-numeric character (in other
1170 words, immediately following an alpha-numeric character), then
1171 verify that it is placed at the end of the encoded name. If
1172 not, then the encoding is not valid and we should abort the
1173 decoding. Otherwise, just skip it, it is used in body-nested
1174 package names. */
1175 do
1176 i += 1;
1177 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1178 if (i < len0)
1179 goto Suppress;
1180 }
1181 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1182 {
1183 /* Replace '__' by '.'. */
1184 decoded[j] = '.';
1185 at_start_name = 1;
1186 i += 2;
1187 j += 1;
1188 }
1189 else
1190 {
1191 /* It's a character part of the decoded name, so just copy it
1192 over. */
1193 decoded[j] = encoded[i];
1194 i += 1;
1195 j += 1;
1196 }
1197 }
1198 decoded[j] = '\000';
1199
1200 /* Decoded names should never contain any uppercase character.
1201 Double-check this, and abort the decoding if we find one. */
1202
1203 for (i = 0; decoded[i] != '\0'; i += 1)
1204 if (isupper (decoded[i]) || decoded[i] == ' ')
1205 goto Suppress;
1206
1207 if (strcmp (decoded, encoded) == 0)
1208 return encoded;
1209 else
1210 return decoded;
1211
1212 Suppress:
1213 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1214 decoded = decoding_buffer;
1215 if (encoded[0] == '<')
1216 strcpy (decoded, encoded);
1217 else
1218 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1219 return decoded;
1220
1221 }
1222
1223 /* Table for keeping permanent unique copies of decoded names. Once
1224 allocated, names in this table are never released. While this is a
1225 storage leak, it should not be significant unless there are massive
1226 changes in the set of decoded names in successive versions of a
1227 symbol table loaded during a single session. */
1228 static struct htab *decoded_names_store;
1229
1230 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1231 in the language-specific part of GSYMBOL, if it has not been
1232 previously computed. Tries to save the decoded name in the same
1233 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1234 in any case, the decoded symbol has a lifetime at least that of
1235 GSYMBOL).
1236 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1237 const, but nevertheless modified to a semantically equivalent form
1238 when a decoded name is cached in it.
1239 */
1240
1241 char *
1242 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1243 {
1244 char **resultp =
1245 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1246
1247 if (*resultp == NULL)
1248 {
1249 const char *decoded = ada_decode (gsymbol->name);
1250
1251 if (gsymbol->obj_section != NULL)
1252 {
1253 struct objfile *objf = gsymbol->obj_section->objfile;
1254
1255 *resultp = obsavestring (decoded, strlen (decoded),
1256 &objf->objfile_obstack);
1257 }
1258 /* Sometimes, we can't find a corresponding objfile, in which
1259 case, we put the result on the heap. Since we only decode
1260 when needed, we hope this usually does not cause a
1261 significant memory leak (FIXME). */
1262 if (*resultp == NULL)
1263 {
1264 char **slot = (char **) htab_find_slot (decoded_names_store,
1265 decoded, INSERT);
1266
1267 if (*slot == NULL)
1268 *slot = xstrdup (decoded);
1269 *resultp = *slot;
1270 }
1271 }
1272
1273 return *resultp;
1274 }
1275
1276 static char *
1277 ada_la_decode (const char *encoded, int options)
1278 {
1279 return xstrdup (ada_decode (encoded));
1280 }
1281
1282 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1283 suffixes that encode debugging information or leading _ada_ on
1284 SYM_NAME (see is_name_suffix commentary for the debugging
1285 information that is ignored). If WILD, then NAME need only match a
1286 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1287 either argument is NULL. */
1288
1289 static int
1290 match_name (const char *sym_name, const char *name, int wild)
1291 {
1292 if (sym_name == NULL || name == NULL)
1293 return 0;
1294 else if (wild)
1295 return wild_match (sym_name, name) == 0;
1296 else
1297 {
1298 int len_name = strlen (name);
1299
1300 return (strncmp (sym_name, name, len_name) == 0
1301 && is_name_suffix (sym_name + len_name))
1302 || (strncmp (sym_name, "_ada_", 5) == 0
1303 && strncmp (sym_name + 5, name, len_name) == 0
1304 && is_name_suffix (sym_name + len_name + 5));
1305 }
1306 }
1307 \f
1308
1309 /* Arrays */
1310
1311 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1312 generated by the GNAT compiler to describe the index type used
1313 for each dimension of an array, check whether it follows the latest
1314 known encoding. If not, fix it up to conform to the latest encoding.
1315 Otherwise, do nothing. This function also does nothing if
1316 INDEX_DESC_TYPE is NULL.
1317
1318 The GNAT encoding used to describle the array index type evolved a bit.
1319 Initially, the information would be provided through the name of each
1320 field of the structure type only, while the type of these fields was
1321 described as unspecified and irrelevant. The debugger was then expected
1322 to perform a global type lookup using the name of that field in order
1323 to get access to the full index type description. Because these global
1324 lookups can be very expensive, the encoding was later enhanced to make
1325 the global lookup unnecessary by defining the field type as being
1326 the full index type description.
1327
1328 The purpose of this routine is to allow us to support older versions
1329 of the compiler by detecting the use of the older encoding, and by
1330 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1331 we essentially replace each field's meaningless type by the associated
1332 index subtype). */
1333
1334 void
1335 ada_fixup_array_indexes_type (struct type *index_desc_type)
1336 {
1337 int i;
1338
1339 if (index_desc_type == NULL)
1340 return;
1341 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1342
1343 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1344 to check one field only, no need to check them all). If not, return
1345 now.
1346
1347 If our INDEX_DESC_TYPE was generated using the older encoding,
1348 the field type should be a meaningless integer type whose name
1349 is not equal to the field name. */
1350 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1351 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1352 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1353 return;
1354
1355 /* Fixup each field of INDEX_DESC_TYPE. */
1356 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1357 {
1358 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1359 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1360
1361 if (raw_type)
1362 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1363 }
1364 }
1365
1366 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1367
1368 static char *bound_name[] = {
1369 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1370 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1371 };
1372
1373 /* Maximum number of array dimensions we are prepared to handle. */
1374
1375 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1376
1377
1378 /* The desc_* routines return primitive portions of array descriptors
1379 (fat pointers). */
1380
1381 /* The descriptor or array type, if any, indicated by TYPE; removes
1382 level of indirection, if needed. */
1383
1384 static struct type *
1385 desc_base_type (struct type *type)
1386 {
1387 if (type == NULL)
1388 return NULL;
1389 type = ada_check_typedef (type);
1390 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1391 type = ada_typedef_target_type (type);
1392
1393 if (type != NULL
1394 && (TYPE_CODE (type) == TYPE_CODE_PTR
1395 || TYPE_CODE (type) == TYPE_CODE_REF))
1396 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1397 else
1398 return type;
1399 }
1400
1401 /* True iff TYPE indicates a "thin" array pointer type. */
1402
1403 static int
1404 is_thin_pntr (struct type *type)
1405 {
1406 return
1407 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1408 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1409 }
1410
1411 /* The descriptor type for thin pointer type TYPE. */
1412
1413 static struct type *
1414 thin_descriptor_type (struct type *type)
1415 {
1416 struct type *base_type = desc_base_type (type);
1417
1418 if (base_type == NULL)
1419 return NULL;
1420 if (is_suffix (ada_type_name (base_type), "___XVE"))
1421 return base_type;
1422 else
1423 {
1424 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1425
1426 if (alt_type == NULL)
1427 return base_type;
1428 else
1429 return alt_type;
1430 }
1431 }
1432
1433 /* A pointer to the array data for thin-pointer value VAL. */
1434
1435 static struct value *
1436 thin_data_pntr (struct value *val)
1437 {
1438 struct type *type = value_type (val);
1439 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1440
1441 data_type = lookup_pointer_type (data_type);
1442
1443 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1444 return value_cast (data_type, value_copy (val));
1445 else
1446 return value_from_longest (data_type, value_address (val));
1447 }
1448
1449 /* True iff TYPE indicates a "thick" array pointer type. */
1450
1451 static int
1452 is_thick_pntr (struct type *type)
1453 {
1454 type = desc_base_type (type);
1455 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1456 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1457 }
1458
1459 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1460 pointer to one, the type of its bounds data; otherwise, NULL. */
1461
1462 static struct type *
1463 desc_bounds_type (struct type *type)
1464 {
1465 struct type *r;
1466
1467 type = desc_base_type (type);
1468
1469 if (type == NULL)
1470 return NULL;
1471 else if (is_thin_pntr (type))
1472 {
1473 type = thin_descriptor_type (type);
1474 if (type == NULL)
1475 return NULL;
1476 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1477 if (r != NULL)
1478 return ada_check_typedef (r);
1479 }
1480 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1481 {
1482 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1483 if (r != NULL)
1484 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1485 }
1486 return NULL;
1487 }
1488
1489 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1490 one, a pointer to its bounds data. Otherwise NULL. */
1491
1492 static struct value *
1493 desc_bounds (struct value *arr)
1494 {
1495 struct type *type = ada_check_typedef (value_type (arr));
1496
1497 if (is_thin_pntr (type))
1498 {
1499 struct type *bounds_type =
1500 desc_bounds_type (thin_descriptor_type (type));
1501 LONGEST addr;
1502
1503 if (bounds_type == NULL)
1504 error (_("Bad GNAT array descriptor"));
1505
1506 /* NOTE: The following calculation is not really kosher, but
1507 since desc_type is an XVE-encoded type (and shouldn't be),
1508 the correct calculation is a real pain. FIXME (and fix GCC). */
1509 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1510 addr = value_as_long (arr);
1511 else
1512 addr = value_address (arr);
1513
1514 return
1515 value_from_longest (lookup_pointer_type (bounds_type),
1516 addr - TYPE_LENGTH (bounds_type));
1517 }
1518
1519 else if (is_thick_pntr (type))
1520 {
1521 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1522 _("Bad GNAT array descriptor"));
1523 struct type *p_bounds_type = value_type (p_bounds);
1524
1525 if (p_bounds_type
1526 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1527 {
1528 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1529
1530 if (TYPE_STUB (target_type))
1531 p_bounds = value_cast (lookup_pointer_type
1532 (ada_check_typedef (target_type)),
1533 p_bounds);
1534 }
1535 else
1536 error (_("Bad GNAT array descriptor"));
1537
1538 return p_bounds;
1539 }
1540 else
1541 return NULL;
1542 }
1543
1544 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1545 position of the field containing the address of the bounds data. */
1546
1547 static int
1548 fat_pntr_bounds_bitpos (struct type *type)
1549 {
1550 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1551 }
1552
1553 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1554 size of the field containing the address of the bounds data. */
1555
1556 static int
1557 fat_pntr_bounds_bitsize (struct type *type)
1558 {
1559 type = desc_base_type (type);
1560
1561 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1562 return TYPE_FIELD_BITSIZE (type, 1);
1563 else
1564 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1565 }
1566
1567 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1568 pointer to one, the type of its array data (a array-with-no-bounds type);
1569 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1570 data. */
1571
1572 static struct type *
1573 desc_data_target_type (struct type *type)
1574 {
1575 type = desc_base_type (type);
1576
1577 /* NOTE: The following is bogus; see comment in desc_bounds. */
1578 if (is_thin_pntr (type))
1579 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1580 else if (is_thick_pntr (type))
1581 {
1582 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1583
1584 if (data_type
1585 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1586 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1587 }
1588
1589 return NULL;
1590 }
1591
1592 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1593 its array data. */
1594
1595 static struct value *
1596 desc_data (struct value *arr)
1597 {
1598 struct type *type = value_type (arr);
1599
1600 if (is_thin_pntr (type))
1601 return thin_data_pntr (arr);
1602 else if (is_thick_pntr (type))
1603 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1604 _("Bad GNAT array descriptor"));
1605 else
1606 return NULL;
1607 }
1608
1609
1610 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1611 position of the field containing the address of the data. */
1612
1613 static int
1614 fat_pntr_data_bitpos (struct type *type)
1615 {
1616 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1617 }
1618
1619 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1620 size of the field containing the address of the data. */
1621
1622 static int
1623 fat_pntr_data_bitsize (struct type *type)
1624 {
1625 type = desc_base_type (type);
1626
1627 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1628 return TYPE_FIELD_BITSIZE (type, 0);
1629 else
1630 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1631 }
1632
1633 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1634 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1635 bound, if WHICH is 1. The first bound is I=1. */
1636
1637 static struct value *
1638 desc_one_bound (struct value *bounds, int i, int which)
1639 {
1640 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1641 _("Bad GNAT array descriptor bounds"));
1642 }
1643
1644 /* If BOUNDS is an array-bounds structure type, return the bit position
1645 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1646 bound, if WHICH is 1. The first bound is I=1. */
1647
1648 static int
1649 desc_bound_bitpos (struct type *type, int i, int which)
1650 {
1651 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1652 }
1653
1654 /* If BOUNDS is an array-bounds structure type, return the bit field size
1655 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1656 bound, if WHICH is 1. The first bound is I=1. */
1657
1658 static int
1659 desc_bound_bitsize (struct type *type, int i, int which)
1660 {
1661 type = desc_base_type (type);
1662
1663 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1664 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1665 else
1666 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1667 }
1668
1669 /* If TYPE is the type of an array-bounds structure, the type of its
1670 Ith bound (numbering from 1). Otherwise, NULL. */
1671
1672 static struct type *
1673 desc_index_type (struct type *type, int i)
1674 {
1675 type = desc_base_type (type);
1676
1677 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1678 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1679 else
1680 return NULL;
1681 }
1682
1683 /* The number of index positions in the array-bounds type TYPE.
1684 Return 0 if TYPE is NULL. */
1685
1686 static int
1687 desc_arity (struct type *type)
1688 {
1689 type = desc_base_type (type);
1690
1691 if (type != NULL)
1692 return TYPE_NFIELDS (type) / 2;
1693 return 0;
1694 }
1695
1696 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1697 an array descriptor type (representing an unconstrained array
1698 type). */
1699
1700 static int
1701 ada_is_direct_array_type (struct type *type)
1702 {
1703 if (type == NULL)
1704 return 0;
1705 type = ada_check_typedef (type);
1706 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1707 || ada_is_array_descriptor_type (type));
1708 }
1709
1710 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1711 * to one. */
1712
1713 static int
1714 ada_is_array_type (struct type *type)
1715 {
1716 while (type != NULL
1717 && (TYPE_CODE (type) == TYPE_CODE_PTR
1718 || TYPE_CODE (type) == TYPE_CODE_REF))
1719 type = TYPE_TARGET_TYPE (type);
1720 return ada_is_direct_array_type (type);
1721 }
1722
1723 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1724
1725 int
1726 ada_is_simple_array_type (struct type *type)
1727 {
1728 if (type == NULL)
1729 return 0;
1730 type = ada_check_typedef (type);
1731 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1732 || (TYPE_CODE (type) == TYPE_CODE_PTR
1733 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1734 }
1735
1736 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1737
1738 int
1739 ada_is_array_descriptor_type (struct type *type)
1740 {
1741 struct type *data_type = desc_data_target_type (type);
1742
1743 if (type == NULL)
1744 return 0;
1745 type = ada_check_typedef (type);
1746 return (data_type != NULL
1747 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1748 && desc_arity (desc_bounds_type (type)) > 0);
1749 }
1750
1751 /* Non-zero iff type is a partially mal-formed GNAT array
1752 descriptor. FIXME: This is to compensate for some problems with
1753 debugging output from GNAT. Re-examine periodically to see if it
1754 is still needed. */
1755
1756 int
1757 ada_is_bogus_array_descriptor (struct type *type)
1758 {
1759 return
1760 type != NULL
1761 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1762 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1763 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1764 && !ada_is_array_descriptor_type (type);
1765 }
1766
1767
1768 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1769 (fat pointer) returns the type of the array data described---specifically,
1770 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1771 in from the descriptor; otherwise, they are left unspecified. If
1772 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1773 returns NULL. The result is simply the type of ARR if ARR is not
1774 a descriptor. */
1775 struct type *
1776 ada_type_of_array (struct value *arr, int bounds)
1777 {
1778 if (ada_is_constrained_packed_array_type (value_type (arr)))
1779 return decode_constrained_packed_array_type (value_type (arr));
1780
1781 if (!ada_is_array_descriptor_type (value_type (arr)))
1782 return value_type (arr);
1783
1784 if (!bounds)
1785 {
1786 struct type *array_type =
1787 ada_check_typedef (desc_data_target_type (value_type (arr)));
1788
1789 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1790 TYPE_FIELD_BITSIZE (array_type, 0) =
1791 decode_packed_array_bitsize (value_type (arr));
1792
1793 return array_type;
1794 }
1795 else
1796 {
1797 struct type *elt_type;
1798 int arity;
1799 struct value *descriptor;
1800
1801 elt_type = ada_array_element_type (value_type (arr), -1);
1802 arity = ada_array_arity (value_type (arr));
1803
1804 if (elt_type == NULL || arity == 0)
1805 return ada_check_typedef (value_type (arr));
1806
1807 descriptor = desc_bounds (arr);
1808 if (value_as_long (descriptor) == 0)
1809 return NULL;
1810 while (arity > 0)
1811 {
1812 struct type *range_type = alloc_type_copy (value_type (arr));
1813 struct type *array_type = alloc_type_copy (value_type (arr));
1814 struct value *low = desc_one_bound (descriptor, arity, 0);
1815 struct value *high = desc_one_bound (descriptor, arity, 1);
1816
1817 arity -= 1;
1818 create_range_type (range_type, value_type (low),
1819 longest_to_int (value_as_long (low)),
1820 longest_to_int (value_as_long (high)));
1821 elt_type = create_array_type (array_type, elt_type, range_type);
1822
1823 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1824 TYPE_FIELD_BITSIZE (elt_type, 0) =
1825 decode_packed_array_bitsize (value_type (arr));
1826 }
1827
1828 return lookup_pointer_type (elt_type);
1829 }
1830 }
1831
1832 /* If ARR does not represent an array, returns ARR unchanged.
1833 Otherwise, returns either a standard GDB array with bounds set
1834 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1835 GDB array. Returns NULL if ARR is a null fat pointer. */
1836
1837 struct value *
1838 ada_coerce_to_simple_array_ptr (struct value *arr)
1839 {
1840 if (ada_is_array_descriptor_type (value_type (arr)))
1841 {
1842 struct type *arrType = ada_type_of_array (arr, 1);
1843
1844 if (arrType == NULL)
1845 return NULL;
1846 return value_cast (arrType, value_copy (desc_data (arr)));
1847 }
1848 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1849 return decode_constrained_packed_array (arr);
1850 else
1851 return arr;
1852 }
1853
1854 /* If ARR does not represent an array, returns ARR unchanged.
1855 Otherwise, returns a standard GDB array describing ARR (which may
1856 be ARR itself if it already is in the proper form). */
1857
1858 struct value *
1859 ada_coerce_to_simple_array (struct value *arr)
1860 {
1861 if (ada_is_array_descriptor_type (value_type (arr)))
1862 {
1863 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1864
1865 if (arrVal == NULL)
1866 error (_("Bounds unavailable for null array pointer."));
1867 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1868 return value_ind (arrVal);
1869 }
1870 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1871 return decode_constrained_packed_array (arr);
1872 else
1873 return arr;
1874 }
1875
1876 /* If TYPE represents a GNAT array type, return it translated to an
1877 ordinary GDB array type (possibly with BITSIZE fields indicating
1878 packing). For other types, is the identity. */
1879
1880 struct type *
1881 ada_coerce_to_simple_array_type (struct type *type)
1882 {
1883 if (ada_is_constrained_packed_array_type (type))
1884 return decode_constrained_packed_array_type (type);
1885
1886 if (ada_is_array_descriptor_type (type))
1887 return ada_check_typedef (desc_data_target_type (type));
1888
1889 return type;
1890 }
1891
1892 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1893
1894 static int
1895 ada_is_packed_array_type (struct type *type)
1896 {
1897 if (type == NULL)
1898 return 0;
1899 type = desc_base_type (type);
1900 type = ada_check_typedef (type);
1901 return
1902 ada_type_name (type) != NULL
1903 && strstr (ada_type_name (type), "___XP") != NULL;
1904 }
1905
1906 /* Non-zero iff TYPE represents a standard GNAT constrained
1907 packed-array type. */
1908
1909 int
1910 ada_is_constrained_packed_array_type (struct type *type)
1911 {
1912 return ada_is_packed_array_type (type)
1913 && !ada_is_array_descriptor_type (type);
1914 }
1915
1916 /* Non-zero iff TYPE represents an array descriptor for a
1917 unconstrained packed-array type. */
1918
1919 static int
1920 ada_is_unconstrained_packed_array_type (struct type *type)
1921 {
1922 return ada_is_packed_array_type (type)
1923 && ada_is_array_descriptor_type (type);
1924 }
1925
1926 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1927 return the size of its elements in bits. */
1928
1929 static long
1930 decode_packed_array_bitsize (struct type *type)
1931 {
1932 char *raw_name;
1933 char *tail;
1934 long bits;
1935
1936 /* Access to arrays implemented as fat pointers are encoded as a typedef
1937 of the fat pointer type. We need the name of the fat pointer type
1938 to do the decoding, so strip the typedef layer. */
1939 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1940 type = ada_typedef_target_type (type);
1941
1942 raw_name = ada_type_name (ada_check_typedef (type));
1943 if (!raw_name)
1944 raw_name = ada_type_name (desc_base_type (type));
1945
1946 if (!raw_name)
1947 return 0;
1948
1949 tail = strstr (raw_name, "___XP");
1950 gdb_assert (tail != NULL);
1951
1952 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1953 {
1954 lim_warning
1955 (_("could not understand bit size information on packed array"));
1956 return 0;
1957 }
1958
1959 return bits;
1960 }
1961
1962 /* Given that TYPE is a standard GDB array type with all bounds filled
1963 in, and that the element size of its ultimate scalar constituents
1964 (that is, either its elements, or, if it is an array of arrays, its
1965 elements' elements, etc.) is *ELT_BITS, return an identical type,
1966 but with the bit sizes of its elements (and those of any
1967 constituent arrays) recorded in the BITSIZE components of its
1968 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1969 in bits. */
1970
1971 static struct type *
1972 constrained_packed_array_type (struct type *type, long *elt_bits)
1973 {
1974 struct type *new_elt_type;
1975 struct type *new_type;
1976 LONGEST low_bound, high_bound;
1977
1978 type = ada_check_typedef (type);
1979 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1980 return type;
1981
1982 new_type = alloc_type_copy (type);
1983 new_elt_type =
1984 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1985 elt_bits);
1986 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1987 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1988 TYPE_NAME (new_type) = ada_type_name (type);
1989
1990 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1991 &low_bound, &high_bound) < 0)
1992 low_bound = high_bound = 0;
1993 if (high_bound < low_bound)
1994 *elt_bits = TYPE_LENGTH (new_type) = 0;
1995 else
1996 {
1997 *elt_bits *= (high_bound - low_bound + 1);
1998 TYPE_LENGTH (new_type) =
1999 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2000 }
2001
2002 TYPE_FIXED_INSTANCE (new_type) = 1;
2003 return new_type;
2004 }
2005
2006 /* The array type encoded by TYPE, where
2007 ada_is_constrained_packed_array_type (TYPE). */
2008
2009 static struct type *
2010 decode_constrained_packed_array_type (struct type *type)
2011 {
2012 char *raw_name = ada_type_name (ada_check_typedef (type));
2013 char *name;
2014 char *tail;
2015 struct type *shadow_type;
2016 long bits;
2017
2018 if (!raw_name)
2019 raw_name = ada_type_name (desc_base_type (type));
2020
2021 if (!raw_name)
2022 return NULL;
2023
2024 name = (char *) alloca (strlen (raw_name) + 1);
2025 tail = strstr (raw_name, "___XP");
2026 type = desc_base_type (type);
2027
2028 memcpy (name, raw_name, tail - raw_name);
2029 name[tail - raw_name] = '\000';
2030
2031 shadow_type = ada_find_parallel_type_with_name (type, name);
2032
2033 if (shadow_type == NULL)
2034 {
2035 lim_warning (_("could not find bounds information on packed array"));
2036 return NULL;
2037 }
2038 CHECK_TYPEDEF (shadow_type);
2039
2040 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2041 {
2042 lim_warning (_("could not understand bounds information on packed array"));
2043 return NULL;
2044 }
2045
2046 bits = decode_packed_array_bitsize (type);
2047 return constrained_packed_array_type (shadow_type, &bits);
2048 }
2049
2050 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2051 array, returns a simple array that denotes that array. Its type is a
2052 standard GDB array type except that the BITSIZEs of the array
2053 target types are set to the number of bits in each element, and the
2054 type length is set appropriately. */
2055
2056 static struct value *
2057 decode_constrained_packed_array (struct value *arr)
2058 {
2059 struct type *type;
2060
2061 arr = ada_coerce_ref (arr);
2062
2063 /* If our value is a pointer, then dererence it. Make sure that
2064 this operation does not cause the target type to be fixed, as
2065 this would indirectly cause this array to be decoded. The rest
2066 of the routine assumes that the array hasn't been decoded yet,
2067 so we use the basic "value_ind" routine to perform the dereferencing,
2068 as opposed to using "ada_value_ind". */
2069 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
2070 arr = value_ind (arr);
2071
2072 type = decode_constrained_packed_array_type (value_type (arr));
2073 if (type == NULL)
2074 {
2075 error (_("can't unpack array"));
2076 return NULL;
2077 }
2078
2079 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2080 && ada_is_modular_type (value_type (arr)))
2081 {
2082 /* This is a (right-justified) modular type representing a packed
2083 array with no wrapper. In order to interpret the value through
2084 the (left-justified) packed array type we just built, we must
2085 first left-justify it. */
2086 int bit_size, bit_pos;
2087 ULONGEST mod;
2088
2089 mod = ada_modulus (value_type (arr)) - 1;
2090 bit_size = 0;
2091 while (mod > 0)
2092 {
2093 bit_size += 1;
2094 mod >>= 1;
2095 }
2096 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2097 arr = ada_value_primitive_packed_val (arr, NULL,
2098 bit_pos / HOST_CHAR_BIT,
2099 bit_pos % HOST_CHAR_BIT,
2100 bit_size,
2101 type);
2102 }
2103
2104 return coerce_unspec_val_to_type (arr, type);
2105 }
2106
2107
2108 /* The value of the element of packed array ARR at the ARITY indices
2109 given in IND. ARR must be a simple array. */
2110
2111 static struct value *
2112 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2113 {
2114 int i;
2115 int bits, elt_off, bit_off;
2116 long elt_total_bit_offset;
2117 struct type *elt_type;
2118 struct value *v;
2119
2120 bits = 0;
2121 elt_total_bit_offset = 0;
2122 elt_type = ada_check_typedef (value_type (arr));
2123 for (i = 0; i < arity; i += 1)
2124 {
2125 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2126 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2127 error
2128 (_("attempt to do packed indexing of something other than a packed array"));
2129 else
2130 {
2131 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2132 LONGEST lowerbound, upperbound;
2133 LONGEST idx;
2134
2135 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2136 {
2137 lim_warning (_("don't know bounds of array"));
2138 lowerbound = upperbound = 0;
2139 }
2140
2141 idx = pos_atr (ind[i]);
2142 if (idx < lowerbound || idx > upperbound)
2143 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
2144 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2145 elt_total_bit_offset += (idx - lowerbound) * bits;
2146 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2147 }
2148 }
2149 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2150 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2151
2152 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2153 bits, elt_type);
2154 return v;
2155 }
2156
2157 /* Non-zero iff TYPE includes negative integer values. */
2158
2159 static int
2160 has_negatives (struct type *type)
2161 {
2162 switch (TYPE_CODE (type))
2163 {
2164 default:
2165 return 0;
2166 case TYPE_CODE_INT:
2167 return !TYPE_UNSIGNED (type);
2168 case TYPE_CODE_RANGE:
2169 return TYPE_LOW_BOUND (type) < 0;
2170 }
2171 }
2172
2173
2174 /* Create a new value of type TYPE from the contents of OBJ starting
2175 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2176 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2177 assigning through the result will set the field fetched from.
2178 VALADDR is ignored unless OBJ is NULL, in which case,
2179 VALADDR+OFFSET must address the start of storage containing the
2180 packed value. The value returned in this case is never an lval.
2181 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2182
2183 struct value *
2184 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2185 long offset, int bit_offset, int bit_size,
2186 struct type *type)
2187 {
2188 struct value *v;
2189 int src, /* Index into the source area */
2190 targ, /* Index into the target area */
2191 srcBitsLeft, /* Number of source bits left to move */
2192 nsrc, ntarg, /* Number of source and target bytes */
2193 unusedLS, /* Number of bits in next significant
2194 byte of source that are unused */
2195 accumSize; /* Number of meaningful bits in accum */
2196 unsigned char *bytes; /* First byte containing data to unpack */
2197 unsigned char *unpacked;
2198 unsigned long accum; /* Staging area for bits being transferred */
2199 unsigned char sign;
2200 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2201 /* Transmit bytes from least to most significant; delta is the direction
2202 the indices move. */
2203 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2204
2205 type = ada_check_typedef (type);
2206
2207 if (obj == NULL)
2208 {
2209 v = allocate_value (type);
2210 bytes = (unsigned char *) (valaddr + offset);
2211 }
2212 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2213 {
2214 v = value_at (type,
2215 value_address (obj) + offset);
2216 bytes = (unsigned char *) alloca (len);
2217 read_memory (value_address (v), bytes, len);
2218 }
2219 else
2220 {
2221 v = allocate_value (type);
2222 bytes = (unsigned char *) value_contents (obj) + offset;
2223 }
2224
2225 if (obj != NULL)
2226 {
2227 CORE_ADDR new_addr;
2228
2229 set_value_component_location (v, obj);
2230 new_addr = value_address (obj) + offset;
2231 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2232 set_value_bitsize (v, bit_size);
2233 if (value_bitpos (v) >= HOST_CHAR_BIT)
2234 {
2235 ++new_addr;
2236 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2237 }
2238 set_value_address (v, new_addr);
2239 }
2240 else
2241 set_value_bitsize (v, bit_size);
2242 unpacked = (unsigned char *) value_contents (v);
2243
2244 srcBitsLeft = bit_size;
2245 nsrc = len;
2246 ntarg = TYPE_LENGTH (type);
2247 sign = 0;
2248 if (bit_size == 0)
2249 {
2250 memset (unpacked, 0, TYPE_LENGTH (type));
2251 return v;
2252 }
2253 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2254 {
2255 src = len - 1;
2256 if (has_negatives (type)
2257 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2258 sign = ~0;
2259
2260 unusedLS =
2261 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2262 % HOST_CHAR_BIT;
2263
2264 switch (TYPE_CODE (type))
2265 {
2266 case TYPE_CODE_ARRAY:
2267 case TYPE_CODE_UNION:
2268 case TYPE_CODE_STRUCT:
2269 /* Non-scalar values must be aligned at a byte boundary... */
2270 accumSize =
2271 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2272 /* ... And are placed at the beginning (most-significant) bytes
2273 of the target. */
2274 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2275 ntarg = targ + 1;
2276 break;
2277 default:
2278 accumSize = 0;
2279 targ = TYPE_LENGTH (type) - 1;
2280 break;
2281 }
2282 }
2283 else
2284 {
2285 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2286
2287 src = targ = 0;
2288 unusedLS = bit_offset;
2289 accumSize = 0;
2290
2291 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2292 sign = ~0;
2293 }
2294
2295 accum = 0;
2296 while (nsrc > 0)
2297 {
2298 /* Mask for removing bits of the next source byte that are not
2299 part of the value. */
2300 unsigned int unusedMSMask =
2301 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2302 1;
2303 /* Sign-extend bits for this byte. */
2304 unsigned int signMask = sign & ~unusedMSMask;
2305
2306 accum |=
2307 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2308 accumSize += HOST_CHAR_BIT - unusedLS;
2309 if (accumSize >= HOST_CHAR_BIT)
2310 {
2311 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2312 accumSize -= HOST_CHAR_BIT;
2313 accum >>= HOST_CHAR_BIT;
2314 ntarg -= 1;
2315 targ += delta;
2316 }
2317 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2318 unusedLS = 0;
2319 nsrc -= 1;
2320 src += delta;
2321 }
2322 while (ntarg > 0)
2323 {
2324 accum |= sign << accumSize;
2325 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2326 accumSize -= HOST_CHAR_BIT;
2327 accum >>= HOST_CHAR_BIT;
2328 ntarg -= 1;
2329 targ += delta;
2330 }
2331
2332 return v;
2333 }
2334
2335 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2336 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2337 not overlap. */
2338 static void
2339 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2340 int src_offset, int n, int bits_big_endian_p)
2341 {
2342 unsigned int accum, mask;
2343 int accum_bits, chunk_size;
2344
2345 target += targ_offset / HOST_CHAR_BIT;
2346 targ_offset %= HOST_CHAR_BIT;
2347 source += src_offset / HOST_CHAR_BIT;
2348 src_offset %= HOST_CHAR_BIT;
2349 if (bits_big_endian_p)
2350 {
2351 accum = (unsigned char) *source;
2352 source += 1;
2353 accum_bits = HOST_CHAR_BIT - src_offset;
2354
2355 while (n > 0)
2356 {
2357 int unused_right;
2358
2359 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2360 accum_bits += HOST_CHAR_BIT;
2361 source += 1;
2362 chunk_size = HOST_CHAR_BIT - targ_offset;
2363 if (chunk_size > n)
2364 chunk_size = n;
2365 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2366 mask = ((1 << chunk_size) - 1) << unused_right;
2367 *target =
2368 (*target & ~mask)
2369 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2370 n -= chunk_size;
2371 accum_bits -= chunk_size;
2372 target += 1;
2373 targ_offset = 0;
2374 }
2375 }
2376 else
2377 {
2378 accum = (unsigned char) *source >> src_offset;
2379 source += 1;
2380 accum_bits = HOST_CHAR_BIT - src_offset;
2381
2382 while (n > 0)
2383 {
2384 accum = accum + ((unsigned char) *source << accum_bits);
2385 accum_bits += HOST_CHAR_BIT;
2386 source += 1;
2387 chunk_size = HOST_CHAR_BIT - targ_offset;
2388 if (chunk_size > n)
2389 chunk_size = n;
2390 mask = ((1 << chunk_size) - 1) << targ_offset;
2391 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2392 n -= chunk_size;
2393 accum_bits -= chunk_size;
2394 accum >>= chunk_size;
2395 target += 1;
2396 targ_offset = 0;
2397 }
2398 }
2399 }
2400
2401 /* Store the contents of FROMVAL into the location of TOVAL.
2402 Return a new value with the location of TOVAL and contents of
2403 FROMVAL. Handles assignment into packed fields that have
2404 floating-point or non-scalar types. */
2405
2406 static struct value *
2407 ada_value_assign (struct value *toval, struct value *fromval)
2408 {
2409 struct type *type = value_type (toval);
2410 int bits = value_bitsize (toval);
2411
2412 toval = ada_coerce_ref (toval);
2413 fromval = ada_coerce_ref (fromval);
2414
2415 if (ada_is_direct_array_type (value_type (toval)))
2416 toval = ada_coerce_to_simple_array (toval);
2417 if (ada_is_direct_array_type (value_type (fromval)))
2418 fromval = ada_coerce_to_simple_array (fromval);
2419
2420 if (!deprecated_value_modifiable (toval))
2421 error (_("Left operand of assignment is not a modifiable lvalue."));
2422
2423 if (VALUE_LVAL (toval) == lval_memory
2424 && bits > 0
2425 && (TYPE_CODE (type) == TYPE_CODE_FLT
2426 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2427 {
2428 int len = (value_bitpos (toval)
2429 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2430 int from_size;
2431 char *buffer = (char *) alloca (len);
2432 struct value *val;
2433 CORE_ADDR to_addr = value_address (toval);
2434
2435 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2436 fromval = value_cast (type, fromval);
2437
2438 read_memory (to_addr, buffer, len);
2439 from_size = value_bitsize (fromval);
2440 if (from_size == 0)
2441 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2442 if (gdbarch_bits_big_endian (get_type_arch (type)))
2443 move_bits (buffer, value_bitpos (toval),
2444 value_contents (fromval), from_size - bits, bits, 1);
2445 else
2446 move_bits (buffer, value_bitpos (toval),
2447 value_contents (fromval), 0, bits, 0);
2448 write_memory (to_addr, buffer, len);
2449 observer_notify_memory_changed (to_addr, len, buffer);
2450
2451 val = value_copy (toval);
2452 memcpy (value_contents_raw (val), value_contents (fromval),
2453 TYPE_LENGTH (type));
2454 deprecated_set_value_type (val, type);
2455
2456 return val;
2457 }
2458
2459 return value_assign (toval, fromval);
2460 }
2461
2462
2463 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2464 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2465 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2466 * COMPONENT, and not the inferior's memory. The current contents
2467 * of COMPONENT are ignored. */
2468 static void
2469 value_assign_to_component (struct value *container, struct value *component,
2470 struct value *val)
2471 {
2472 LONGEST offset_in_container =
2473 (LONGEST) (value_address (component) - value_address (container));
2474 int bit_offset_in_container =
2475 value_bitpos (component) - value_bitpos (container);
2476 int bits;
2477
2478 val = value_cast (value_type (component), val);
2479
2480 if (value_bitsize (component) == 0)
2481 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2482 else
2483 bits = value_bitsize (component);
2484
2485 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2486 move_bits (value_contents_writeable (container) + offset_in_container,
2487 value_bitpos (container) + bit_offset_in_container,
2488 value_contents (val),
2489 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2490 bits, 1);
2491 else
2492 move_bits (value_contents_writeable (container) + offset_in_container,
2493 value_bitpos (container) + bit_offset_in_container,
2494 value_contents (val), 0, bits, 0);
2495 }
2496
2497 /* The value of the element of array ARR at the ARITY indices given in IND.
2498 ARR may be either a simple array, GNAT array descriptor, or pointer
2499 thereto. */
2500
2501 struct value *
2502 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2503 {
2504 int k;
2505 struct value *elt;
2506 struct type *elt_type;
2507
2508 elt = ada_coerce_to_simple_array (arr);
2509
2510 elt_type = ada_check_typedef (value_type (elt));
2511 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2512 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2513 return value_subscript_packed (elt, arity, ind);
2514
2515 for (k = 0; k < arity; k += 1)
2516 {
2517 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2518 error (_("too many subscripts (%d expected)"), k);
2519 elt = value_subscript (elt, pos_atr (ind[k]));
2520 }
2521 return elt;
2522 }
2523
2524 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2525 value of the element of *ARR at the ARITY indices given in
2526 IND. Does not read the entire array into memory. */
2527
2528 static struct value *
2529 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2530 struct value **ind)
2531 {
2532 int k;
2533
2534 for (k = 0; k < arity; k += 1)
2535 {
2536 LONGEST lwb, upb;
2537
2538 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2539 error (_("too many subscripts (%d expected)"), k);
2540 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2541 value_copy (arr));
2542 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2543 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2544 type = TYPE_TARGET_TYPE (type);
2545 }
2546
2547 return value_ind (arr);
2548 }
2549
2550 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2551 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2552 elements starting at index LOW. The lower bound of this array is LOW, as
2553 per Ada rules. */
2554 static struct value *
2555 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2556 int low, int high)
2557 {
2558 CORE_ADDR base = value_as_address (array_ptr)
2559 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
2560 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2561 struct type *index_type =
2562 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2563 low, high);
2564 struct type *slice_type =
2565 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2566
2567 return value_at_lazy (slice_type, base);
2568 }
2569
2570
2571 static struct value *
2572 ada_value_slice (struct value *array, int low, int high)
2573 {
2574 struct type *type = value_type (array);
2575 struct type *index_type =
2576 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2577 struct type *slice_type =
2578 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2579
2580 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2581 }
2582
2583 /* If type is a record type in the form of a standard GNAT array
2584 descriptor, returns the number of dimensions for type. If arr is a
2585 simple array, returns the number of "array of"s that prefix its
2586 type designation. Otherwise, returns 0. */
2587
2588 int
2589 ada_array_arity (struct type *type)
2590 {
2591 int arity;
2592
2593 if (type == NULL)
2594 return 0;
2595
2596 type = desc_base_type (type);
2597
2598 arity = 0;
2599 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2600 return desc_arity (desc_bounds_type (type));
2601 else
2602 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2603 {
2604 arity += 1;
2605 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2606 }
2607
2608 return arity;
2609 }
2610
2611 /* If TYPE is a record type in the form of a standard GNAT array
2612 descriptor or a simple array type, returns the element type for
2613 TYPE after indexing by NINDICES indices, or by all indices if
2614 NINDICES is -1. Otherwise, returns NULL. */
2615
2616 struct type *
2617 ada_array_element_type (struct type *type, int nindices)
2618 {
2619 type = desc_base_type (type);
2620
2621 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2622 {
2623 int k;
2624 struct type *p_array_type;
2625
2626 p_array_type = desc_data_target_type (type);
2627
2628 k = ada_array_arity (type);
2629 if (k == 0)
2630 return NULL;
2631
2632 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2633 if (nindices >= 0 && k > nindices)
2634 k = nindices;
2635 while (k > 0 && p_array_type != NULL)
2636 {
2637 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2638 k -= 1;
2639 }
2640 return p_array_type;
2641 }
2642 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2643 {
2644 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2645 {
2646 type = TYPE_TARGET_TYPE (type);
2647 nindices -= 1;
2648 }
2649 return type;
2650 }
2651
2652 return NULL;
2653 }
2654
2655 /* The type of nth index in arrays of given type (n numbering from 1).
2656 Does not examine memory. Throws an error if N is invalid or TYPE
2657 is not an array type. NAME is the name of the Ada attribute being
2658 evaluated ('range, 'first, 'last, or 'length); it is used in building
2659 the error message. */
2660
2661 static struct type *
2662 ada_index_type (struct type *type, int n, const char *name)
2663 {
2664 struct type *result_type;
2665
2666 type = desc_base_type (type);
2667
2668 if (n < 0 || n > ada_array_arity (type))
2669 error (_("invalid dimension number to '%s"), name);
2670
2671 if (ada_is_simple_array_type (type))
2672 {
2673 int i;
2674
2675 for (i = 1; i < n; i += 1)
2676 type = TYPE_TARGET_TYPE (type);
2677 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2678 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2679 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2680 perhaps stabsread.c would make more sense. */
2681 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2682 result_type = NULL;
2683 }
2684 else
2685 {
2686 result_type = desc_index_type (desc_bounds_type (type), n);
2687 if (result_type == NULL)
2688 error (_("attempt to take bound of something that is not an array"));
2689 }
2690
2691 return result_type;
2692 }
2693
2694 /* Given that arr is an array type, returns the lower bound of the
2695 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2696 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2697 array-descriptor type. It works for other arrays with bounds supplied
2698 by run-time quantities other than discriminants. */
2699
2700 static LONGEST
2701 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2702 {
2703 struct type *type, *elt_type, *index_type_desc, *index_type;
2704 int i;
2705
2706 gdb_assert (which == 0 || which == 1);
2707
2708 if (ada_is_constrained_packed_array_type (arr_type))
2709 arr_type = decode_constrained_packed_array_type (arr_type);
2710
2711 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2712 return (LONGEST) - which;
2713
2714 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2715 type = TYPE_TARGET_TYPE (arr_type);
2716 else
2717 type = arr_type;
2718
2719 elt_type = type;
2720 for (i = n; i > 1; i--)
2721 elt_type = TYPE_TARGET_TYPE (type);
2722
2723 index_type_desc = ada_find_parallel_type (type, "___XA");
2724 ada_fixup_array_indexes_type (index_type_desc);
2725 if (index_type_desc != NULL)
2726 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2727 NULL);
2728 else
2729 index_type = TYPE_INDEX_TYPE (elt_type);
2730
2731 return
2732 (LONGEST) (which == 0
2733 ? ada_discrete_type_low_bound (index_type)
2734 : ada_discrete_type_high_bound (index_type));
2735 }
2736
2737 /* Given that arr is an array value, returns the lower bound of the
2738 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2739 WHICH is 1. This routine will also work for arrays with bounds
2740 supplied by run-time quantities other than discriminants. */
2741
2742 static LONGEST
2743 ada_array_bound (struct value *arr, int n, int which)
2744 {
2745 struct type *arr_type = value_type (arr);
2746
2747 if (ada_is_constrained_packed_array_type (arr_type))
2748 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2749 else if (ada_is_simple_array_type (arr_type))
2750 return ada_array_bound_from_type (arr_type, n, which);
2751 else
2752 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2753 }
2754
2755 /* Given that arr is an array value, returns the length of the
2756 nth index. This routine will also work for arrays with bounds
2757 supplied by run-time quantities other than discriminants.
2758 Does not work for arrays indexed by enumeration types with representation
2759 clauses at the moment. */
2760
2761 static LONGEST
2762 ada_array_length (struct value *arr, int n)
2763 {
2764 struct type *arr_type = ada_check_typedef (value_type (arr));
2765
2766 if (ada_is_constrained_packed_array_type (arr_type))
2767 return ada_array_length (decode_constrained_packed_array (arr), n);
2768
2769 if (ada_is_simple_array_type (arr_type))
2770 return (ada_array_bound_from_type (arr_type, n, 1)
2771 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2772 else
2773 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2774 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2775 }
2776
2777 /* An empty array whose type is that of ARR_TYPE (an array type),
2778 with bounds LOW to LOW-1. */
2779
2780 static struct value *
2781 empty_array (struct type *arr_type, int low)
2782 {
2783 struct type *index_type =
2784 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2785 low, low - 1);
2786 struct type *elt_type = ada_array_element_type (arr_type, 1);
2787
2788 return allocate_value (create_array_type (NULL, elt_type, index_type));
2789 }
2790 \f
2791
2792 /* Name resolution */
2793
2794 /* The "decoded" name for the user-definable Ada operator corresponding
2795 to OP. */
2796
2797 static const char *
2798 ada_decoded_op_name (enum exp_opcode op)
2799 {
2800 int i;
2801
2802 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2803 {
2804 if (ada_opname_table[i].op == op)
2805 return ada_opname_table[i].decoded;
2806 }
2807 error (_("Could not find operator name for opcode"));
2808 }
2809
2810
2811 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2812 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2813 undefined namespace) and converts operators that are
2814 user-defined into appropriate function calls. If CONTEXT_TYPE is
2815 non-null, it provides a preferred result type [at the moment, only
2816 type void has any effect---causing procedures to be preferred over
2817 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2818 return type is preferred. May change (expand) *EXP. */
2819
2820 static void
2821 resolve (struct expression **expp, int void_context_p)
2822 {
2823 struct type *context_type = NULL;
2824 int pc = 0;
2825
2826 if (void_context_p)
2827 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2828
2829 resolve_subexp (expp, &pc, 1, context_type);
2830 }
2831
2832 /* Resolve the operator of the subexpression beginning at
2833 position *POS of *EXPP. "Resolving" consists of replacing
2834 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2835 with their resolutions, replacing built-in operators with
2836 function calls to user-defined operators, where appropriate, and,
2837 when DEPROCEDURE_P is non-zero, converting function-valued variables
2838 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2839 are as in ada_resolve, above. */
2840
2841 static struct value *
2842 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2843 struct type *context_type)
2844 {
2845 int pc = *pos;
2846 int i;
2847 struct expression *exp; /* Convenience: == *expp. */
2848 enum exp_opcode op = (*expp)->elts[pc].opcode;
2849 struct value **argvec; /* Vector of operand types (alloca'ed). */
2850 int nargs; /* Number of operands. */
2851 int oplen;
2852
2853 argvec = NULL;
2854 nargs = 0;
2855 exp = *expp;
2856
2857 /* Pass one: resolve operands, saving their types and updating *pos,
2858 if needed. */
2859 switch (op)
2860 {
2861 case OP_FUNCALL:
2862 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2863 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2864 *pos += 7;
2865 else
2866 {
2867 *pos += 3;
2868 resolve_subexp (expp, pos, 0, NULL);
2869 }
2870 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2871 break;
2872
2873 case UNOP_ADDR:
2874 *pos += 1;
2875 resolve_subexp (expp, pos, 0, NULL);
2876 break;
2877
2878 case UNOP_QUAL:
2879 *pos += 3;
2880 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2881 break;
2882
2883 case OP_ATR_MODULUS:
2884 case OP_ATR_SIZE:
2885 case OP_ATR_TAG:
2886 case OP_ATR_FIRST:
2887 case OP_ATR_LAST:
2888 case OP_ATR_LENGTH:
2889 case OP_ATR_POS:
2890 case OP_ATR_VAL:
2891 case OP_ATR_MIN:
2892 case OP_ATR_MAX:
2893 case TERNOP_IN_RANGE:
2894 case BINOP_IN_BOUNDS:
2895 case UNOP_IN_RANGE:
2896 case OP_AGGREGATE:
2897 case OP_OTHERS:
2898 case OP_CHOICES:
2899 case OP_POSITIONAL:
2900 case OP_DISCRETE_RANGE:
2901 case OP_NAME:
2902 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2903 *pos += oplen;
2904 break;
2905
2906 case BINOP_ASSIGN:
2907 {
2908 struct value *arg1;
2909
2910 *pos += 1;
2911 arg1 = resolve_subexp (expp, pos, 0, NULL);
2912 if (arg1 == NULL)
2913 resolve_subexp (expp, pos, 1, NULL);
2914 else
2915 resolve_subexp (expp, pos, 1, value_type (arg1));
2916 break;
2917 }
2918
2919 case UNOP_CAST:
2920 *pos += 3;
2921 nargs = 1;
2922 break;
2923
2924 case BINOP_ADD:
2925 case BINOP_SUB:
2926 case BINOP_MUL:
2927 case BINOP_DIV:
2928 case BINOP_REM:
2929 case BINOP_MOD:
2930 case BINOP_EXP:
2931 case BINOP_CONCAT:
2932 case BINOP_LOGICAL_AND:
2933 case BINOP_LOGICAL_OR:
2934 case BINOP_BITWISE_AND:
2935 case BINOP_BITWISE_IOR:
2936 case BINOP_BITWISE_XOR:
2937
2938 case BINOP_EQUAL:
2939 case BINOP_NOTEQUAL:
2940 case BINOP_LESS:
2941 case BINOP_GTR:
2942 case BINOP_LEQ:
2943 case BINOP_GEQ:
2944
2945 case BINOP_REPEAT:
2946 case BINOP_SUBSCRIPT:
2947 case BINOP_COMMA:
2948 *pos += 1;
2949 nargs = 2;
2950 break;
2951
2952 case UNOP_NEG:
2953 case UNOP_PLUS:
2954 case UNOP_LOGICAL_NOT:
2955 case UNOP_ABS:
2956 case UNOP_IND:
2957 *pos += 1;
2958 nargs = 1;
2959 break;
2960
2961 case OP_LONG:
2962 case OP_DOUBLE:
2963 case OP_VAR_VALUE:
2964 *pos += 4;
2965 break;
2966
2967 case OP_TYPE:
2968 case OP_BOOL:
2969 case OP_LAST:
2970 case OP_INTERNALVAR:
2971 *pos += 3;
2972 break;
2973
2974 case UNOP_MEMVAL:
2975 *pos += 3;
2976 nargs = 1;
2977 break;
2978
2979 case OP_REGISTER:
2980 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2981 break;
2982
2983 case STRUCTOP_STRUCT:
2984 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2985 nargs = 1;
2986 break;
2987
2988 case TERNOP_SLICE:
2989 *pos += 1;
2990 nargs = 3;
2991 break;
2992
2993 case OP_STRING:
2994 break;
2995
2996 default:
2997 error (_("Unexpected operator during name resolution"));
2998 }
2999
3000 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3001 for (i = 0; i < nargs; i += 1)
3002 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3003 argvec[i] = NULL;
3004 exp = *expp;
3005
3006 /* Pass two: perform any resolution on principal operator. */
3007 switch (op)
3008 {
3009 default:
3010 break;
3011
3012 case OP_VAR_VALUE:
3013 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3014 {
3015 struct ada_symbol_info *candidates;
3016 int n_candidates;
3017
3018 n_candidates =
3019 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3020 (exp->elts[pc + 2].symbol),
3021 exp->elts[pc + 1].block, VAR_DOMAIN,
3022 &candidates);
3023
3024 if (n_candidates > 1)
3025 {
3026 /* Types tend to get re-introduced locally, so if there
3027 are any local symbols that are not types, first filter
3028 out all types. */
3029 int j;
3030 for (j = 0; j < n_candidates; j += 1)
3031 switch (SYMBOL_CLASS (candidates[j].sym))
3032 {
3033 case LOC_REGISTER:
3034 case LOC_ARG:
3035 case LOC_REF_ARG:
3036 case LOC_REGPARM_ADDR:
3037 case LOC_LOCAL:
3038 case LOC_COMPUTED:
3039 goto FoundNonType;
3040 default:
3041 break;
3042 }
3043 FoundNonType:
3044 if (j < n_candidates)
3045 {
3046 j = 0;
3047 while (j < n_candidates)
3048 {
3049 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3050 {
3051 candidates[j] = candidates[n_candidates - 1];
3052 n_candidates -= 1;
3053 }
3054 else
3055 j += 1;
3056 }
3057 }
3058 }
3059
3060 if (n_candidates == 0)
3061 error (_("No definition found for %s"),
3062 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3063 else if (n_candidates == 1)
3064 i = 0;
3065 else if (deprocedure_p
3066 && !is_nonfunction (candidates, n_candidates))
3067 {
3068 i = ada_resolve_function
3069 (candidates, n_candidates, NULL, 0,
3070 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3071 context_type);
3072 if (i < 0)
3073 error (_("Could not find a match for %s"),
3074 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3075 }
3076 else
3077 {
3078 printf_filtered (_("Multiple matches for %s\n"),
3079 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3080 user_select_syms (candidates, n_candidates, 1);
3081 i = 0;
3082 }
3083
3084 exp->elts[pc + 1].block = candidates[i].block;
3085 exp->elts[pc + 2].symbol = candidates[i].sym;
3086 if (innermost_block == NULL
3087 || contained_in (candidates[i].block, innermost_block))
3088 innermost_block = candidates[i].block;
3089 }
3090
3091 if (deprocedure_p
3092 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3093 == TYPE_CODE_FUNC))
3094 {
3095 replace_operator_with_call (expp, pc, 0, 0,
3096 exp->elts[pc + 2].symbol,
3097 exp->elts[pc + 1].block);
3098 exp = *expp;
3099 }
3100 break;
3101
3102 case OP_FUNCALL:
3103 {
3104 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3105 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3106 {
3107 struct ada_symbol_info *candidates;
3108 int n_candidates;
3109
3110 n_candidates =
3111 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3112 (exp->elts[pc + 5].symbol),
3113 exp->elts[pc + 4].block, VAR_DOMAIN,
3114 &candidates);
3115 if (n_candidates == 1)
3116 i = 0;
3117 else
3118 {
3119 i = ada_resolve_function
3120 (candidates, n_candidates,
3121 argvec, nargs,
3122 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3123 context_type);
3124 if (i < 0)
3125 error (_("Could not find a match for %s"),
3126 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3127 }
3128
3129 exp->elts[pc + 4].block = candidates[i].block;
3130 exp->elts[pc + 5].symbol = candidates[i].sym;
3131 if (innermost_block == NULL
3132 || contained_in (candidates[i].block, innermost_block))
3133 innermost_block = candidates[i].block;
3134 }
3135 }
3136 break;
3137 case BINOP_ADD:
3138 case BINOP_SUB:
3139 case BINOP_MUL:
3140 case BINOP_DIV:
3141 case BINOP_REM:
3142 case BINOP_MOD:
3143 case BINOP_CONCAT:
3144 case BINOP_BITWISE_AND:
3145 case BINOP_BITWISE_IOR:
3146 case BINOP_BITWISE_XOR:
3147 case BINOP_EQUAL:
3148 case BINOP_NOTEQUAL:
3149 case BINOP_LESS:
3150 case BINOP_GTR:
3151 case BINOP_LEQ:
3152 case BINOP_GEQ:
3153 case BINOP_EXP:
3154 case UNOP_NEG:
3155 case UNOP_PLUS:
3156 case UNOP_LOGICAL_NOT:
3157 case UNOP_ABS:
3158 if (possible_user_operator_p (op, argvec))
3159 {
3160 struct ada_symbol_info *candidates;
3161 int n_candidates;
3162
3163 n_candidates =
3164 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3165 (struct block *) NULL, VAR_DOMAIN,
3166 &candidates);
3167 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3168 ada_decoded_op_name (op), NULL);
3169 if (i < 0)
3170 break;
3171
3172 replace_operator_with_call (expp, pc, nargs, 1,
3173 candidates[i].sym, candidates[i].block);
3174 exp = *expp;
3175 }
3176 break;
3177
3178 case OP_TYPE:
3179 case OP_REGISTER:
3180 return NULL;
3181 }
3182
3183 *pos = pc;
3184 return evaluate_subexp_type (exp, pos);
3185 }
3186
3187 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3188 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3189 a non-pointer. */
3190 /* The term "match" here is rather loose. The match is heuristic and
3191 liberal. */
3192
3193 static int
3194 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3195 {
3196 ftype = ada_check_typedef (ftype);
3197 atype = ada_check_typedef (atype);
3198
3199 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3200 ftype = TYPE_TARGET_TYPE (ftype);
3201 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3202 atype = TYPE_TARGET_TYPE (atype);
3203
3204 switch (TYPE_CODE (ftype))
3205 {
3206 default:
3207 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3208 case TYPE_CODE_PTR:
3209 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3210 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3211 TYPE_TARGET_TYPE (atype), 0);
3212 else
3213 return (may_deref
3214 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3215 case TYPE_CODE_INT:
3216 case TYPE_CODE_ENUM:
3217 case TYPE_CODE_RANGE:
3218 switch (TYPE_CODE (atype))
3219 {
3220 case TYPE_CODE_INT:
3221 case TYPE_CODE_ENUM:
3222 case TYPE_CODE_RANGE:
3223 return 1;
3224 default:
3225 return 0;
3226 }
3227
3228 case TYPE_CODE_ARRAY:
3229 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3230 || ada_is_array_descriptor_type (atype));
3231
3232 case TYPE_CODE_STRUCT:
3233 if (ada_is_array_descriptor_type (ftype))
3234 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3235 || ada_is_array_descriptor_type (atype));
3236 else
3237 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3238 && !ada_is_array_descriptor_type (atype));
3239
3240 case TYPE_CODE_UNION:
3241 case TYPE_CODE_FLT:
3242 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3243 }
3244 }
3245
3246 /* Return non-zero if the formals of FUNC "sufficiently match" the
3247 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3248 may also be an enumeral, in which case it is treated as a 0-
3249 argument function. */
3250
3251 static int
3252 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3253 {
3254 int i;
3255 struct type *func_type = SYMBOL_TYPE (func);
3256
3257 if (SYMBOL_CLASS (func) == LOC_CONST
3258 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3259 return (n_actuals == 0);
3260 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3261 return 0;
3262
3263 if (TYPE_NFIELDS (func_type) != n_actuals)
3264 return 0;
3265
3266 for (i = 0; i < n_actuals; i += 1)
3267 {
3268 if (actuals[i] == NULL)
3269 return 0;
3270 else
3271 {
3272 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3273 i));
3274 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3275
3276 if (!ada_type_match (ftype, atype, 1))
3277 return 0;
3278 }
3279 }
3280 return 1;
3281 }
3282
3283 /* False iff function type FUNC_TYPE definitely does not produce a value
3284 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3285 FUNC_TYPE is not a valid function type with a non-null return type
3286 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3287
3288 static int
3289 return_match (struct type *func_type, struct type *context_type)
3290 {
3291 struct type *return_type;
3292
3293 if (func_type == NULL)
3294 return 1;
3295
3296 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3297 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3298 else
3299 return_type = base_type (func_type);
3300 if (return_type == NULL)
3301 return 1;
3302
3303 context_type = base_type (context_type);
3304
3305 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3306 return context_type == NULL || return_type == context_type;
3307 else if (context_type == NULL)
3308 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3309 else
3310 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3311 }
3312
3313
3314 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3315 function (if any) that matches the types of the NARGS arguments in
3316 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3317 that returns that type, then eliminate matches that don't. If
3318 CONTEXT_TYPE is void and there is at least one match that does not
3319 return void, eliminate all matches that do.
3320
3321 Asks the user if there is more than one match remaining. Returns -1
3322 if there is no such symbol or none is selected. NAME is used
3323 solely for messages. May re-arrange and modify SYMS in
3324 the process; the index returned is for the modified vector. */
3325
3326 static int
3327 ada_resolve_function (struct ada_symbol_info syms[],
3328 int nsyms, struct value **args, int nargs,
3329 const char *name, struct type *context_type)
3330 {
3331 int fallback;
3332 int k;
3333 int m; /* Number of hits */
3334
3335 m = 0;
3336 /* In the first pass of the loop, we only accept functions matching
3337 context_type. If none are found, we add a second pass of the loop
3338 where every function is accepted. */
3339 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3340 {
3341 for (k = 0; k < nsyms; k += 1)
3342 {
3343 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3344
3345 if (ada_args_match (syms[k].sym, args, nargs)
3346 && (fallback || return_match (type, context_type)))
3347 {
3348 syms[m] = syms[k];
3349 m += 1;
3350 }
3351 }
3352 }
3353
3354 if (m == 0)
3355 return -1;
3356 else if (m > 1)
3357 {
3358 printf_filtered (_("Multiple matches for %s\n"), name);
3359 user_select_syms (syms, m, 1);
3360 return 0;
3361 }
3362 return 0;
3363 }
3364
3365 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3366 in a listing of choices during disambiguation (see sort_choices, below).
3367 The idea is that overloadings of a subprogram name from the
3368 same package should sort in their source order. We settle for ordering
3369 such symbols by their trailing number (__N or $N). */
3370
3371 static int
3372 encoded_ordered_before (char *N0, char *N1)
3373 {
3374 if (N1 == NULL)
3375 return 0;
3376 else if (N0 == NULL)
3377 return 1;
3378 else
3379 {
3380 int k0, k1;
3381
3382 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3383 ;
3384 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3385 ;
3386 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3387 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3388 {
3389 int n0, n1;
3390
3391 n0 = k0;
3392 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3393 n0 -= 1;
3394 n1 = k1;
3395 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3396 n1 -= 1;
3397 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3398 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3399 }
3400 return (strcmp (N0, N1) < 0);
3401 }
3402 }
3403
3404 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3405 encoded names. */
3406
3407 static void
3408 sort_choices (struct ada_symbol_info syms[], int nsyms)
3409 {
3410 int i;
3411
3412 for (i = 1; i < nsyms; i += 1)
3413 {
3414 struct ada_symbol_info sym = syms[i];
3415 int j;
3416
3417 for (j = i - 1; j >= 0; j -= 1)
3418 {
3419 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3420 SYMBOL_LINKAGE_NAME (sym.sym)))
3421 break;
3422 syms[j + 1] = syms[j];
3423 }
3424 syms[j + 1] = sym;
3425 }
3426 }
3427
3428 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3429 by asking the user (if necessary), returning the number selected,
3430 and setting the first elements of SYMS items. Error if no symbols
3431 selected. */
3432
3433 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3434 to be re-integrated one of these days. */
3435
3436 int
3437 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3438 {
3439 int i;
3440 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3441 int n_chosen;
3442 int first_choice = (max_results == 1) ? 1 : 2;
3443 const char *select_mode = multiple_symbols_select_mode ();
3444
3445 if (max_results < 1)
3446 error (_("Request to select 0 symbols!"));
3447 if (nsyms <= 1)
3448 return nsyms;
3449
3450 if (select_mode == multiple_symbols_cancel)
3451 error (_("\
3452 canceled because the command is ambiguous\n\
3453 See set/show multiple-symbol."));
3454
3455 /* If select_mode is "all", then return all possible symbols.
3456 Only do that if more than one symbol can be selected, of course.
3457 Otherwise, display the menu as usual. */
3458 if (select_mode == multiple_symbols_all && max_results > 1)
3459 return nsyms;
3460
3461 printf_unfiltered (_("[0] cancel\n"));
3462 if (max_results > 1)
3463 printf_unfiltered (_("[1] all\n"));
3464
3465 sort_choices (syms, nsyms);
3466
3467 for (i = 0; i < nsyms; i += 1)
3468 {
3469 if (syms[i].sym == NULL)
3470 continue;
3471
3472 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3473 {
3474 struct symtab_and_line sal =
3475 find_function_start_sal (syms[i].sym, 1);
3476
3477 if (sal.symtab == NULL)
3478 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3479 i + first_choice,
3480 SYMBOL_PRINT_NAME (syms[i].sym),
3481 sal.line);
3482 else
3483 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3484 SYMBOL_PRINT_NAME (syms[i].sym),
3485 sal.symtab->filename, sal.line);
3486 continue;
3487 }
3488 else
3489 {
3490 int is_enumeral =
3491 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3492 && SYMBOL_TYPE (syms[i].sym) != NULL
3493 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3494 struct symtab *symtab = syms[i].sym->symtab;
3495
3496 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3497 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3498 i + first_choice,
3499 SYMBOL_PRINT_NAME (syms[i].sym),
3500 symtab->filename, SYMBOL_LINE (syms[i].sym));
3501 else if (is_enumeral
3502 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3503 {
3504 printf_unfiltered (("[%d] "), i + first_choice);
3505 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3506 gdb_stdout, -1, 0);
3507 printf_unfiltered (_("'(%s) (enumeral)\n"),
3508 SYMBOL_PRINT_NAME (syms[i].sym));
3509 }
3510 else if (symtab != NULL)
3511 printf_unfiltered (is_enumeral
3512 ? _("[%d] %s in %s (enumeral)\n")
3513 : _("[%d] %s at %s:?\n"),
3514 i + first_choice,
3515 SYMBOL_PRINT_NAME (syms[i].sym),
3516 symtab->filename);
3517 else
3518 printf_unfiltered (is_enumeral
3519 ? _("[%d] %s (enumeral)\n")
3520 : _("[%d] %s at ?\n"),
3521 i + first_choice,
3522 SYMBOL_PRINT_NAME (syms[i].sym));
3523 }
3524 }
3525
3526 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3527 "overload-choice");
3528
3529 for (i = 0; i < n_chosen; i += 1)
3530 syms[i] = syms[chosen[i]];
3531
3532 return n_chosen;
3533 }
3534
3535 /* Read and validate a set of numeric choices from the user in the
3536 range 0 .. N_CHOICES-1. Place the results in increasing
3537 order in CHOICES[0 .. N-1], and return N.
3538
3539 The user types choices as a sequence of numbers on one line
3540 separated by blanks, encoding them as follows:
3541
3542 + A choice of 0 means to cancel the selection, throwing an error.
3543 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3544 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3545
3546 The user is not allowed to choose more than MAX_RESULTS values.
3547
3548 ANNOTATION_SUFFIX, if present, is used to annotate the input
3549 prompts (for use with the -f switch). */
3550
3551 int
3552 get_selections (int *choices, int n_choices, int max_results,
3553 int is_all_choice, char *annotation_suffix)
3554 {
3555 char *args;
3556 char *prompt;
3557 int n_chosen;
3558 int first_choice = is_all_choice ? 2 : 1;
3559
3560 prompt = getenv ("PS2");
3561 if (prompt == NULL)
3562 prompt = "> ";
3563
3564 args = command_line_input (prompt, 0, annotation_suffix);
3565
3566 if (args == NULL)
3567 error_no_arg (_("one or more choice numbers"));
3568
3569 n_chosen = 0;
3570
3571 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3572 order, as given in args. Choices are validated. */
3573 while (1)
3574 {
3575 char *args2;
3576 int choice, j;
3577
3578 while (isspace (*args))
3579 args += 1;
3580 if (*args == '\0' && n_chosen == 0)
3581 error_no_arg (_("one or more choice numbers"));
3582 else if (*args == '\0')
3583 break;
3584
3585 choice = strtol (args, &args2, 10);
3586 if (args == args2 || choice < 0
3587 || choice > n_choices + first_choice - 1)
3588 error (_("Argument must be choice number"));
3589 args = args2;
3590
3591 if (choice == 0)
3592 error (_("cancelled"));
3593
3594 if (choice < first_choice)
3595 {
3596 n_chosen = n_choices;
3597 for (j = 0; j < n_choices; j += 1)
3598 choices[j] = j;
3599 break;
3600 }
3601 choice -= first_choice;
3602
3603 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3604 {
3605 }
3606
3607 if (j < 0 || choice != choices[j])
3608 {
3609 int k;
3610
3611 for (k = n_chosen - 1; k > j; k -= 1)
3612 choices[k + 1] = choices[k];
3613 choices[j + 1] = choice;
3614 n_chosen += 1;
3615 }
3616 }
3617
3618 if (n_chosen > max_results)
3619 error (_("Select no more than %d of the above"), max_results);
3620
3621 return n_chosen;
3622 }
3623
3624 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3625 on the function identified by SYM and BLOCK, and taking NARGS
3626 arguments. Update *EXPP as needed to hold more space. */
3627
3628 static void
3629 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3630 int oplen, struct symbol *sym,
3631 struct block *block)
3632 {
3633 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3634 symbol, -oplen for operator being replaced). */
3635 struct expression *newexp = (struct expression *)
3636 xmalloc (sizeof (struct expression)
3637 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3638 struct expression *exp = *expp;
3639
3640 newexp->nelts = exp->nelts + 7 - oplen;
3641 newexp->language_defn = exp->language_defn;
3642 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3643 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3644 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3645
3646 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3647 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3648
3649 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3650 newexp->elts[pc + 4].block = block;
3651 newexp->elts[pc + 5].symbol = sym;
3652
3653 *expp = newexp;
3654 xfree (exp);
3655 }
3656
3657 /* Type-class predicates */
3658
3659 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3660 or FLOAT). */
3661
3662 static int
3663 numeric_type_p (struct type *type)
3664 {
3665 if (type == NULL)
3666 return 0;
3667 else
3668 {
3669 switch (TYPE_CODE (type))
3670 {
3671 case TYPE_CODE_INT:
3672 case TYPE_CODE_FLT:
3673 return 1;
3674 case TYPE_CODE_RANGE:
3675 return (type == TYPE_TARGET_TYPE (type)
3676 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3677 default:
3678 return 0;
3679 }
3680 }
3681 }
3682
3683 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3684
3685 static int
3686 integer_type_p (struct type *type)
3687 {
3688 if (type == NULL)
3689 return 0;
3690 else
3691 {
3692 switch (TYPE_CODE (type))
3693 {
3694 case TYPE_CODE_INT:
3695 return 1;
3696 case TYPE_CODE_RANGE:
3697 return (type == TYPE_TARGET_TYPE (type)
3698 || integer_type_p (TYPE_TARGET_TYPE (type)));
3699 default:
3700 return 0;
3701 }
3702 }
3703 }
3704
3705 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3706
3707 static int
3708 scalar_type_p (struct type *type)
3709 {
3710 if (type == NULL)
3711 return 0;
3712 else
3713 {
3714 switch (TYPE_CODE (type))
3715 {
3716 case TYPE_CODE_INT:
3717 case TYPE_CODE_RANGE:
3718 case TYPE_CODE_ENUM:
3719 case TYPE_CODE_FLT:
3720 return 1;
3721 default:
3722 return 0;
3723 }
3724 }
3725 }
3726
3727 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3728
3729 static int
3730 discrete_type_p (struct type *type)
3731 {
3732 if (type == NULL)
3733 return 0;
3734 else
3735 {
3736 switch (TYPE_CODE (type))
3737 {
3738 case TYPE_CODE_INT:
3739 case TYPE_CODE_RANGE:
3740 case TYPE_CODE_ENUM:
3741 case TYPE_CODE_BOOL:
3742 return 1;
3743 default:
3744 return 0;
3745 }
3746 }
3747 }
3748
3749 /* Returns non-zero if OP with operands in the vector ARGS could be
3750 a user-defined function. Errs on the side of pre-defined operators
3751 (i.e., result 0). */
3752
3753 static int
3754 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3755 {
3756 struct type *type0 =
3757 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3758 struct type *type1 =
3759 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3760
3761 if (type0 == NULL)
3762 return 0;
3763
3764 switch (op)
3765 {
3766 default:
3767 return 0;
3768
3769 case BINOP_ADD:
3770 case BINOP_SUB:
3771 case BINOP_MUL:
3772 case BINOP_DIV:
3773 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3774
3775 case BINOP_REM:
3776 case BINOP_MOD:
3777 case BINOP_BITWISE_AND:
3778 case BINOP_BITWISE_IOR:
3779 case BINOP_BITWISE_XOR:
3780 return (!(integer_type_p (type0) && integer_type_p (type1)));
3781
3782 case BINOP_EQUAL:
3783 case BINOP_NOTEQUAL:
3784 case BINOP_LESS:
3785 case BINOP_GTR:
3786 case BINOP_LEQ:
3787 case BINOP_GEQ:
3788 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3789
3790 case BINOP_CONCAT:
3791 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3792
3793 case BINOP_EXP:
3794 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3795
3796 case UNOP_NEG:
3797 case UNOP_PLUS:
3798 case UNOP_LOGICAL_NOT:
3799 case UNOP_ABS:
3800 return (!numeric_type_p (type0));
3801
3802 }
3803 }
3804 \f
3805 /* Renaming */
3806
3807 /* NOTES:
3808
3809 1. In the following, we assume that a renaming type's name may
3810 have an ___XD suffix. It would be nice if this went away at some
3811 point.
3812 2. We handle both the (old) purely type-based representation of
3813 renamings and the (new) variable-based encoding. At some point,
3814 it is devoutly to be hoped that the former goes away
3815 (FIXME: hilfinger-2007-07-09).
3816 3. Subprogram renamings are not implemented, although the XRS
3817 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3818
3819 /* If SYM encodes a renaming,
3820
3821 <renaming> renames <renamed entity>,
3822
3823 sets *LEN to the length of the renamed entity's name,
3824 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3825 the string describing the subcomponent selected from the renamed
3826 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3827 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3828 are undefined). Otherwise, returns a value indicating the category
3829 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3830 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3831 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3832 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3833 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3834 may be NULL, in which case they are not assigned.
3835
3836 [Currently, however, GCC does not generate subprogram renamings.] */
3837
3838 enum ada_renaming_category
3839 ada_parse_renaming (struct symbol *sym,
3840 const char **renamed_entity, int *len,
3841 const char **renaming_expr)
3842 {
3843 enum ada_renaming_category kind;
3844 const char *info;
3845 const char *suffix;
3846
3847 if (sym == NULL)
3848 return ADA_NOT_RENAMING;
3849 switch (SYMBOL_CLASS (sym))
3850 {
3851 default:
3852 return ADA_NOT_RENAMING;
3853 case LOC_TYPEDEF:
3854 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3855 renamed_entity, len, renaming_expr);
3856 case LOC_LOCAL:
3857 case LOC_STATIC:
3858 case LOC_COMPUTED:
3859 case LOC_OPTIMIZED_OUT:
3860 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3861 if (info == NULL)
3862 return ADA_NOT_RENAMING;
3863 switch (info[5])
3864 {
3865 case '_':
3866 kind = ADA_OBJECT_RENAMING;
3867 info += 6;
3868 break;
3869 case 'E':
3870 kind = ADA_EXCEPTION_RENAMING;
3871 info += 7;
3872 break;
3873 case 'P':
3874 kind = ADA_PACKAGE_RENAMING;
3875 info += 7;
3876 break;
3877 case 'S':
3878 kind = ADA_SUBPROGRAM_RENAMING;
3879 info += 7;
3880 break;
3881 default:
3882 return ADA_NOT_RENAMING;
3883 }
3884 }
3885
3886 if (renamed_entity != NULL)
3887 *renamed_entity = info;
3888 suffix = strstr (info, "___XE");
3889 if (suffix == NULL || suffix == info)
3890 return ADA_NOT_RENAMING;
3891 if (len != NULL)
3892 *len = strlen (info) - strlen (suffix);
3893 suffix += 5;
3894 if (renaming_expr != NULL)
3895 *renaming_expr = suffix;
3896 return kind;
3897 }
3898
3899 /* Assuming TYPE encodes a renaming according to the old encoding in
3900 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3901 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3902 ADA_NOT_RENAMING otherwise. */
3903 static enum ada_renaming_category
3904 parse_old_style_renaming (struct type *type,
3905 const char **renamed_entity, int *len,
3906 const char **renaming_expr)
3907 {
3908 enum ada_renaming_category kind;
3909 const char *name;
3910 const char *info;
3911 const char *suffix;
3912
3913 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3914 || TYPE_NFIELDS (type) != 1)
3915 return ADA_NOT_RENAMING;
3916
3917 name = type_name_no_tag (type);
3918 if (name == NULL)
3919 return ADA_NOT_RENAMING;
3920
3921 name = strstr (name, "___XR");
3922 if (name == NULL)
3923 return ADA_NOT_RENAMING;
3924 switch (name[5])
3925 {
3926 case '\0':
3927 case '_':
3928 kind = ADA_OBJECT_RENAMING;
3929 break;
3930 case 'E':
3931 kind = ADA_EXCEPTION_RENAMING;
3932 break;
3933 case 'P':
3934 kind = ADA_PACKAGE_RENAMING;
3935 break;
3936 case 'S':
3937 kind = ADA_SUBPROGRAM_RENAMING;
3938 break;
3939 default:
3940 return ADA_NOT_RENAMING;
3941 }
3942
3943 info = TYPE_FIELD_NAME (type, 0);
3944 if (info == NULL)
3945 return ADA_NOT_RENAMING;
3946 if (renamed_entity != NULL)
3947 *renamed_entity = info;
3948 suffix = strstr (info, "___XE");
3949 if (renaming_expr != NULL)
3950 *renaming_expr = suffix + 5;
3951 if (suffix == NULL || suffix == info)
3952 return ADA_NOT_RENAMING;
3953 if (len != NULL)
3954 *len = suffix - info;
3955 return kind;
3956 }
3957
3958 \f
3959
3960 /* Evaluation: Function Calls */
3961
3962 /* Return an lvalue containing the value VAL. This is the identity on
3963 lvalues, and otherwise has the side-effect of allocating memory
3964 in the inferior where a copy of the value contents is copied. */
3965
3966 static struct value *
3967 ensure_lval (struct value *val)
3968 {
3969 if (VALUE_LVAL (val) == not_lval
3970 || VALUE_LVAL (val) == lval_internalvar)
3971 {
3972 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3973 const CORE_ADDR addr =
3974 value_as_long (value_allocate_space_in_inferior (len));
3975
3976 set_value_address (val, addr);
3977 VALUE_LVAL (val) = lval_memory;
3978 write_memory (addr, value_contents (val), len);
3979 }
3980
3981 return val;
3982 }
3983
3984 /* Return the value ACTUAL, converted to be an appropriate value for a
3985 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3986 allocating any necessary descriptors (fat pointers), or copies of
3987 values not residing in memory, updating it as needed. */
3988
3989 struct value *
3990 ada_convert_actual (struct value *actual, struct type *formal_type0)
3991 {
3992 struct type *actual_type = ada_check_typedef (value_type (actual));
3993 struct type *formal_type = ada_check_typedef (formal_type0);
3994 struct type *formal_target =
3995 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3996 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3997 struct type *actual_target =
3998 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3999 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4000
4001 if (ada_is_array_descriptor_type (formal_target)
4002 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4003 return make_array_descriptor (formal_type, actual);
4004 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4005 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4006 {
4007 struct value *result;
4008
4009 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4010 && ada_is_array_descriptor_type (actual_target))
4011 result = desc_data (actual);
4012 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4013 {
4014 if (VALUE_LVAL (actual) != lval_memory)
4015 {
4016 struct value *val;
4017
4018 actual_type = ada_check_typedef (value_type (actual));
4019 val = allocate_value (actual_type);
4020 memcpy ((char *) value_contents_raw (val),
4021 (char *) value_contents (actual),
4022 TYPE_LENGTH (actual_type));
4023 actual = ensure_lval (val);
4024 }
4025 result = value_addr (actual);
4026 }
4027 else
4028 return actual;
4029 return value_cast_pointers (formal_type, result);
4030 }
4031 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4032 return ada_value_ind (actual);
4033
4034 return actual;
4035 }
4036
4037 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4038 type TYPE. This is usually an inefficient no-op except on some targets
4039 (such as AVR) where the representation of a pointer and an address
4040 differs. */
4041
4042 static CORE_ADDR
4043 value_pointer (struct value *value, struct type *type)
4044 {
4045 struct gdbarch *gdbarch = get_type_arch (type);
4046 unsigned len = TYPE_LENGTH (type);
4047 gdb_byte *buf = alloca (len);
4048 CORE_ADDR addr;
4049
4050 addr = value_address (value);
4051 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4052 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4053 return addr;
4054 }
4055
4056
4057 /* Push a descriptor of type TYPE for array value ARR on the stack at
4058 *SP, updating *SP to reflect the new descriptor. Return either
4059 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4060 to-descriptor type rather than a descriptor type), a struct value *
4061 representing a pointer to this descriptor. */
4062
4063 static struct value *
4064 make_array_descriptor (struct type *type, struct value *arr)
4065 {
4066 struct type *bounds_type = desc_bounds_type (type);
4067 struct type *desc_type = desc_base_type (type);
4068 struct value *descriptor = allocate_value (desc_type);
4069 struct value *bounds = allocate_value (bounds_type);
4070 int i;
4071
4072 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
4073 {
4074 modify_field (value_type (bounds), value_contents_writeable (bounds),
4075 ada_array_bound (arr, i, 0),
4076 desc_bound_bitpos (bounds_type, i, 0),
4077 desc_bound_bitsize (bounds_type, i, 0));
4078 modify_field (value_type (bounds), value_contents_writeable (bounds),
4079 ada_array_bound (arr, i, 1),
4080 desc_bound_bitpos (bounds_type, i, 1),
4081 desc_bound_bitsize (bounds_type, i, 1));
4082 }
4083
4084 bounds = ensure_lval (bounds);
4085
4086 modify_field (value_type (descriptor),
4087 value_contents_writeable (descriptor),
4088 value_pointer (ensure_lval (arr),
4089 TYPE_FIELD_TYPE (desc_type, 0)),
4090 fat_pntr_data_bitpos (desc_type),
4091 fat_pntr_data_bitsize (desc_type));
4092
4093 modify_field (value_type (descriptor),
4094 value_contents_writeable (descriptor),
4095 value_pointer (bounds,
4096 TYPE_FIELD_TYPE (desc_type, 1)),
4097 fat_pntr_bounds_bitpos (desc_type),
4098 fat_pntr_bounds_bitsize (desc_type));
4099
4100 descriptor = ensure_lval (descriptor);
4101
4102 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4103 return value_addr (descriptor);
4104 else
4105 return descriptor;
4106 }
4107 \f
4108 /* Dummy definitions for an experimental caching module that is not
4109 * used in the public sources. */
4110
4111 static int
4112 lookup_cached_symbol (const char *name, domain_enum namespace,
4113 struct symbol **sym, struct block **block)
4114 {
4115 return 0;
4116 }
4117
4118 static void
4119 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4120 struct block *block)
4121 {
4122 }
4123 \f
4124 /* Symbol Lookup */
4125
4126 /* Return the result of a standard (literal, C-like) lookup of NAME in
4127 given DOMAIN, visible from lexical block BLOCK. */
4128
4129 static struct symbol *
4130 standard_lookup (const char *name, const struct block *block,
4131 domain_enum domain)
4132 {
4133 struct symbol *sym;
4134
4135 if (lookup_cached_symbol (name, domain, &sym, NULL))
4136 return sym;
4137 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4138 cache_symbol (name, domain, sym, block_found);
4139 return sym;
4140 }
4141
4142
4143 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4144 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4145 since they contend in overloading in the same way. */
4146 static int
4147 is_nonfunction (struct ada_symbol_info syms[], int n)
4148 {
4149 int i;
4150
4151 for (i = 0; i < n; i += 1)
4152 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4153 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4154 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4155 return 1;
4156
4157 return 0;
4158 }
4159
4160 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4161 struct types. Otherwise, they may not. */
4162
4163 static int
4164 equiv_types (struct type *type0, struct type *type1)
4165 {
4166 if (type0 == type1)
4167 return 1;
4168 if (type0 == NULL || type1 == NULL
4169 || TYPE_CODE (type0) != TYPE_CODE (type1))
4170 return 0;
4171 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4172 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4173 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4174 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4175 return 1;
4176
4177 return 0;
4178 }
4179
4180 /* True iff SYM0 represents the same entity as SYM1, or one that is
4181 no more defined than that of SYM1. */
4182
4183 static int
4184 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4185 {
4186 if (sym0 == sym1)
4187 return 1;
4188 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4189 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4190 return 0;
4191
4192 switch (SYMBOL_CLASS (sym0))
4193 {
4194 case LOC_UNDEF:
4195 return 1;
4196 case LOC_TYPEDEF:
4197 {
4198 struct type *type0 = SYMBOL_TYPE (sym0);
4199 struct type *type1 = SYMBOL_TYPE (sym1);
4200 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4201 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4202 int len0 = strlen (name0);
4203
4204 return
4205 TYPE_CODE (type0) == TYPE_CODE (type1)
4206 && (equiv_types (type0, type1)
4207 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4208 && strncmp (name1 + len0, "___XV", 5) == 0));
4209 }
4210 case LOC_CONST:
4211 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4212 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4213 default:
4214 return 0;
4215 }
4216 }
4217
4218 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4219 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4220
4221 static void
4222 add_defn_to_vec (struct obstack *obstackp,
4223 struct symbol *sym,
4224 struct block *block)
4225 {
4226 int i;
4227 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4228
4229 /* Do not try to complete stub types, as the debugger is probably
4230 already scanning all symbols matching a certain name at the
4231 time when this function is called. Trying to replace the stub
4232 type by its associated full type will cause us to restart a scan
4233 which may lead to an infinite recursion. Instead, the client
4234 collecting the matching symbols will end up collecting several
4235 matches, with at least one of them complete. It can then filter
4236 out the stub ones if needed. */
4237
4238 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4239 {
4240 if (lesseq_defined_than (sym, prevDefns[i].sym))
4241 return;
4242 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4243 {
4244 prevDefns[i].sym = sym;
4245 prevDefns[i].block = block;
4246 return;
4247 }
4248 }
4249
4250 {
4251 struct ada_symbol_info info;
4252
4253 info.sym = sym;
4254 info.block = block;
4255 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4256 }
4257 }
4258
4259 /* Number of ada_symbol_info structures currently collected in
4260 current vector in *OBSTACKP. */
4261
4262 static int
4263 num_defns_collected (struct obstack *obstackp)
4264 {
4265 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4266 }
4267
4268 /* Vector of ada_symbol_info structures currently collected in current
4269 vector in *OBSTACKP. If FINISH, close off the vector and return
4270 its final address. */
4271
4272 static struct ada_symbol_info *
4273 defns_collected (struct obstack *obstackp, int finish)
4274 {
4275 if (finish)
4276 return obstack_finish (obstackp);
4277 else
4278 return (struct ada_symbol_info *) obstack_base (obstackp);
4279 }
4280
4281 /* Return a minimal symbol matching NAME according to Ada decoding
4282 rules. Returns NULL if there is no such minimal symbol. Names
4283 prefixed with "standard__" are handled specially: "standard__" is
4284 first stripped off, and only static and global symbols are searched. */
4285
4286 struct minimal_symbol *
4287 ada_lookup_simple_minsym (const char *name)
4288 {
4289 struct objfile *objfile;
4290 struct minimal_symbol *msymbol;
4291 int wild_match;
4292
4293 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4294 {
4295 name += sizeof ("standard__") - 1;
4296 wild_match = 0;
4297 }
4298 else
4299 wild_match = (strstr (name, "__") == NULL);
4300
4301 ALL_MSYMBOLS (objfile, msymbol)
4302 {
4303 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4304 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4305 return msymbol;
4306 }
4307
4308 return NULL;
4309 }
4310
4311 /* For all subprograms that statically enclose the subprogram of the
4312 selected frame, add symbols matching identifier NAME in DOMAIN
4313 and their blocks to the list of data in OBSTACKP, as for
4314 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4315 wildcard prefix. */
4316
4317 static void
4318 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4319 const char *name, domain_enum namespace,
4320 int wild_match)
4321 {
4322 }
4323
4324 /* True if TYPE is definitely an artificial type supplied to a symbol
4325 for which no debugging information was given in the symbol file. */
4326
4327 static int
4328 is_nondebugging_type (struct type *type)
4329 {
4330 char *name = ada_type_name (type);
4331
4332 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4333 }
4334
4335 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4336 duplicate other symbols in the list (The only case I know of where
4337 this happens is when object files containing stabs-in-ecoff are
4338 linked with files containing ordinary ecoff debugging symbols (or no
4339 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4340 Returns the number of items in the modified list. */
4341
4342 static int
4343 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4344 {
4345 int i, j;
4346
4347 i = 0;
4348 while (i < nsyms)
4349 {
4350 int remove = 0;
4351
4352 /* If two symbols have the same name and one of them is a stub type,
4353 the get rid of the stub. */
4354
4355 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4356 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4357 {
4358 for (j = 0; j < nsyms; j++)
4359 {
4360 if (j != i
4361 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4362 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4363 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4364 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4365 remove = 1;
4366 }
4367 }
4368
4369 /* Two symbols with the same name, same class and same address
4370 should be identical. */
4371
4372 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4373 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4374 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4375 {
4376 for (j = 0; j < nsyms; j += 1)
4377 {
4378 if (i != j
4379 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4380 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4381 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4382 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4383 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4384 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4385 remove = 1;
4386 }
4387 }
4388
4389 if (remove)
4390 {
4391 for (j = i + 1; j < nsyms; j += 1)
4392 syms[j - 1] = syms[j];
4393 nsyms -= 1;
4394 }
4395
4396 i += 1;
4397 }
4398 return nsyms;
4399 }
4400
4401 /* Given a type that corresponds to a renaming entity, use the type name
4402 to extract the scope (package name or function name, fully qualified,
4403 and following the GNAT encoding convention) where this renaming has been
4404 defined. The string returned needs to be deallocated after use. */
4405
4406 static char *
4407 xget_renaming_scope (struct type *renaming_type)
4408 {
4409 /* The renaming types adhere to the following convention:
4410 <scope>__<rename>___<XR extension>.
4411 So, to extract the scope, we search for the "___XR" extension,
4412 and then backtrack until we find the first "__". */
4413
4414 const char *name = type_name_no_tag (renaming_type);
4415 char *suffix = strstr (name, "___XR");
4416 char *last;
4417 int scope_len;
4418 char *scope;
4419
4420 /* Now, backtrack a bit until we find the first "__". Start looking
4421 at suffix - 3, as the <rename> part is at least one character long. */
4422
4423 for (last = suffix - 3; last > name; last--)
4424 if (last[0] == '_' && last[1] == '_')
4425 break;
4426
4427 /* Make a copy of scope and return it. */
4428
4429 scope_len = last - name;
4430 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4431
4432 strncpy (scope, name, scope_len);
4433 scope[scope_len] = '\0';
4434
4435 return scope;
4436 }
4437
4438 /* Return nonzero if NAME corresponds to a package name. */
4439
4440 static int
4441 is_package_name (const char *name)
4442 {
4443 /* Here, We take advantage of the fact that no symbols are generated
4444 for packages, while symbols are generated for each function.
4445 So the condition for NAME represent a package becomes equivalent
4446 to NAME not existing in our list of symbols. There is only one
4447 small complication with library-level functions (see below). */
4448
4449 char *fun_name;
4450
4451 /* If it is a function that has not been defined at library level,
4452 then we should be able to look it up in the symbols. */
4453 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4454 return 0;
4455
4456 /* Library-level function names start with "_ada_". See if function
4457 "_ada_" followed by NAME can be found. */
4458
4459 /* Do a quick check that NAME does not contain "__", since library-level
4460 functions names cannot contain "__" in them. */
4461 if (strstr (name, "__") != NULL)
4462 return 0;
4463
4464 fun_name = xstrprintf ("_ada_%s", name);
4465
4466 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4467 }
4468
4469 /* Return nonzero if SYM corresponds to a renaming entity that is
4470 not visible from FUNCTION_NAME. */
4471
4472 static int
4473 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4474 {
4475 char *scope;
4476
4477 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4478 return 0;
4479
4480 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4481
4482 make_cleanup (xfree, scope);
4483
4484 /* If the rename has been defined in a package, then it is visible. */
4485 if (is_package_name (scope))
4486 return 0;
4487
4488 /* Check that the rename is in the current function scope by checking
4489 that its name starts with SCOPE. */
4490
4491 /* If the function name starts with "_ada_", it means that it is
4492 a library-level function. Strip this prefix before doing the
4493 comparison, as the encoding for the renaming does not contain
4494 this prefix. */
4495 if (strncmp (function_name, "_ada_", 5) == 0)
4496 function_name += 5;
4497
4498 return (strncmp (function_name, scope, strlen (scope)) != 0);
4499 }
4500
4501 /* Remove entries from SYMS that corresponds to a renaming entity that
4502 is not visible from the function associated with CURRENT_BLOCK or
4503 that is superfluous due to the presence of more specific renaming
4504 information. Places surviving symbols in the initial entries of
4505 SYMS and returns the number of surviving symbols.
4506
4507 Rationale:
4508 First, in cases where an object renaming is implemented as a
4509 reference variable, GNAT may produce both the actual reference
4510 variable and the renaming encoding. In this case, we discard the
4511 latter.
4512
4513 Second, GNAT emits a type following a specified encoding for each renaming
4514 entity. Unfortunately, STABS currently does not support the definition
4515 of types that are local to a given lexical block, so all renamings types
4516 are emitted at library level. As a consequence, if an application
4517 contains two renaming entities using the same name, and a user tries to
4518 print the value of one of these entities, the result of the ada symbol
4519 lookup will also contain the wrong renaming type.
4520
4521 This function partially covers for this limitation by attempting to
4522 remove from the SYMS list renaming symbols that should be visible
4523 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4524 method with the current information available. The implementation
4525 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4526
4527 - When the user tries to print a rename in a function while there
4528 is another rename entity defined in a package: Normally, the
4529 rename in the function has precedence over the rename in the
4530 package, so the latter should be removed from the list. This is
4531 currently not the case.
4532
4533 - This function will incorrectly remove valid renames if
4534 the CURRENT_BLOCK corresponds to a function which symbol name
4535 has been changed by an "Export" pragma. As a consequence,
4536 the user will be unable to print such rename entities. */
4537
4538 static int
4539 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4540 int nsyms, const struct block *current_block)
4541 {
4542 struct symbol *current_function;
4543 char *current_function_name;
4544 int i;
4545 int is_new_style_renaming;
4546
4547 /* If there is both a renaming foo___XR... encoded as a variable and
4548 a simple variable foo in the same block, discard the latter.
4549 First, zero out such symbols, then compress. */
4550 is_new_style_renaming = 0;
4551 for (i = 0; i < nsyms; i += 1)
4552 {
4553 struct symbol *sym = syms[i].sym;
4554 struct block *block = syms[i].block;
4555 const char *name;
4556 const char *suffix;
4557
4558 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4559 continue;
4560 name = SYMBOL_LINKAGE_NAME (sym);
4561 suffix = strstr (name, "___XR");
4562
4563 if (suffix != NULL)
4564 {
4565 int name_len = suffix - name;
4566 int j;
4567
4568 is_new_style_renaming = 1;
4569 for (j = 0; j < nsyms; j += 1)
4570 if (i != j && syms[j].sym != NULL
4571 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4572 name_len) == 0
4573 && block == syms[j].block)
4574 syms[j].sym = NULL;
4575 }
4576 }
4577 if (is_new_style_renaming)
4578 {
4579 int j, k;
4580
4581 for (j = k = 0; j < nsyms; j += 1)
4582 if (syms[j].sym != NULL)
4583 {
4584 syms[k] = syms[j];
4585 k += 1;
4586 }
4587 return k;
4588 }
4589
4590 /* Extract the function name associated to CURRENT_BLOCK.
4591 Abort if unable to do so. */
4592
4593 if (current_block == NULL)
4594 return nsyms;
4595
4596 current_function = block_linkage_function (current_block);
4597 if (current_function == NULL)
4598 return nsyms;
4599
4600 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4601 if (current_function_name == NULL)
4602 return nsyms;
4603
4604 /* Check each of the symbols, and remove it from the list if it is
4605 a type corresponding to a renaming that is out of the scope of
4606 the current block. */
4607
4608 i = 0;
4609 while (i < nsyms)
4610 {
4611 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4612 == ADA_OBJECT_RENAMING
4613 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4614 {
4615 int j;
4616
4617 for (j = i + 1; j < nsyms; j += 1)
4618 syms[j - 1] = syms[j];
4619 nsyms -= 1;
4620 }
4621 else
4622 i += 1;
4623 }
4624
4625 return nsyms;
4626 }
4627
4628 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4629 whose name and domain match NAME and DOMAIN respectively.
4630 If no match was found, then extend the search to "enclosing"
4631 routines (in other words, if we're inside a nested function,
4632 search the symbols defined inside the enclosing functions).
4633
4634 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4635
4636 static void
4637 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4638 struct block *block, domain_enum domain,
4639 int wild_match)
4640 {
4641 int block_depth = 0;
4642
4643 while (block != NULL)
4644 {
4645 block_depth += 1;
4646 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4647
4648 /* If we found a non-function match, assume that's the one. */
4649 if (is_nonfunction (defns_collected (obstackp, 0),
4650 num_defns_collected (obstackp)))
4651 return;
4652
4653 block = BLOCK_SUPERBLOCK (block);
4654 }
4655
4656 /* If no luck so far, try to find NAME as a local symbol in some lexically
4657 enclosing subprogram. */
4658 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4659 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4660 }
4661
4662 /* An object of this type is used as the user_data argument when
4663 calling the map_matching_symbols method. */
4664
4665 struct match_data
4666 {
4667 struct objfile *objfile;
4668 struct obstack *obstackp;
4669 struct symbol *arg_sym;
4670 int found_sym;
4671 };
4672
4673 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4674 to a list of symbols. DATA0 is a pointer to a struct match_data *
4675 containing the obstack that collects the symbol list, the file that SYM
4676 must come from, a flag indicating whether a non-argument symbol has
4677 been found in the current block, and the last argument symbol
4678 passed in SYM within the current block (if any). When SYM is null,
4679 marking the end of a block, the argument symbol is added if no
4680 other has been found. */
4681
4682 static int
4683 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4684 {
4685 struct match_data *data = (struct match_data *) data0;
4686
4687 if (sym == NULL)
4688 {
4689 if (!data->found_sym && data->arg_sym != NULL)
4690 add_defn_to_vec (data->obstackp,
4691 fixup_symbol_section (data->arg_sym, data->objfile),
4692 block);
4693 data->found_sym = 0;
4694 data->arg_sym = NULL;
4695 }
4696 else
4697 {
4698 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4699 return 0;
4700 else if (SYMBOL_IS_ARGUMENT (sym))
4701 data->arg_sym = sym;
4702 else
4703 {
4704 data->found_sym = 1;
4705 add_defn_to_vec (data->obstackp,
4706 fixup_symbol_section (sym, data->objfile),
4707 block);
4708 }
4709 }
4710 return 0;
4711 }
4712
4713 /* Compare STRING1 to STRING2, with results as for strcmp.
4714 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4715 implies compare_names (STRING1, STRING2) (they may differ as to
4716 what symbols compare equal). */
4717
4718 static int
4719 compare_names (const char *string1, const char *string2)
4720 {
4721 while (*string1 != '\0' && *string2 != '\0')
4722 {
4723 if (isspace (*string1) || isspace (*string2))
4724 return strcmp_iw_ordered (string1, string2);
4725 if (*string1 != *string2)
4726 break;
4727 string1 += 1;
4728 string2 += 1;
4729 }
4730 switch (*string1)
4731 {
4732 case '(':
4733 return strcmp_iw_ordered (string1, string2);
4734 case '_':
4735 if (*string2 == '\0')
4736 {
4737 if (is_name_suffix (string2))
4738 return 0;
4739 else
4740 return -1;
4741 }
4742 default:
4743 if (*string2 == '(')
4744 return strcmp_iw_ordered (string1, string2);
4745 else
4746 return *string1 - *string2;
4747 }
4748 }
4749
4750 /* Add to OBSTACKP all non-local symbols whose name and domain match
4751 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4752 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4753
4754 static void
4755 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4756 domain_enum domain, int global,
4757 int is_wild_match)
4758 {
4759 struct objfile *objfile;
4760 struct match_data data;
4761
4762 data.obstackp = obstackp;
4763 data.arg_sym = NULL;
4764
4765 ALL_OBJFILES (objfile)
4766 {
4767 data.objfile = objfile;
4768
4769 if (is_wild_match)
4770 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4771 aux_add_nonlocal_symbols, &data,
4772 wild_match, NULL);
4773 else
4774 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4775 aux_add_nonlocal_symbols, &data,
4776 full_match, compare_names);
4777 }
4778
4779 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4780 {
4781 ALL_OBJFILES (objfile)
4782 {
4783 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4784 strcpy (name1, "_ada_");
4785 strcpy (name1 + sizeof ("_ada_") - 1, name);
4786 data.objfile = objfile;
4787 objfile->sf->qf->map_matching_symbols (name1, domain, objfile, global,
4788 aux_add_nonlocal_symbols, &data,
4789 full_match, compare_names);
4790 }
4791 }
4792 }
4793
4794 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4795 scope and in global scopes, returning the number of matches. Sets
4796 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4797 indicating the symbols found and the blocks and symbol tables (if
4798 any) in which they were found. This vector are transient---good only to
4799 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4800 symbol match within the nest of blocks whose innermost member is BLOCK0,
4801 is the one match returned (no other matches in that or
4802 enclosing blocks is returned). If there are any matches in or
4803 surrounding BLOCK0, then these alone are returned. Otherwise, the
4804 search extends to global and file-scope (static) symbol tables.
4805 Names prefixed with "standard__" are handled specially: "standard__"
4806 is first stripped off, and only static and global symbols are searched. */
4807
4808 int
4809 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4810 domain_enum namespace,
4811 struct ada_symbol_info **results)
4812 {
4813 struct symbol *sym;
4814 struct block *block;
4815 const char *name;
4816 int wild_match;
4817 int cacheIfUnique;
4818 int ndefns;
4819
4820 obstack_free (&symbol_list_obstack, NULL);
4821 obstack_init (&symbol_list_obstack);
4822
4823 cacheIfUnique = 0;
4824
4825 /* Search specified block and its superiors. */
4826
4827 wild_match = (strstr (name0, "__") == NULL);
4828 name = name0;
4829 block = (struct block *) block0; /* FIXME: No cast ought to be
4830 needed, but adding const will
4831 have a cascade effect. */
4832
4833 /* Special case: If the user specifies a symbol name inside package
4834 Standard, do a non-wild matching of the symbol name without
4835 the "standard__" prefix. This was primarily introduced in order
4836 to allow the user to specifically access the standard exceptions
4837 using, for instance, Standard.Constraint_Error when Constraint_Error
4838 is ambiguous (due to the user defining its own Constraint_Error
4839 entity inside its program). */
4840 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4841 {
4842 wild_match = 0;
4843 block = NULL;
4844 name = name0 + sizeof ("standard__") - 1;
4845 }
4846
4847 /* Check the non-global symbols. If we have ANY match, then we're done. */
4848
4849 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4850 wild_match);
4851 if (num_defns_collected (&symbol_list_obstack) > 0)
4852 goto done;
4853
4854 /* No non-global symbols found. Check our cache to see if we have
4855 already performed this search before. If we have, then return
4856 the same result. */
4857
4858 cacheIfUnique = 1;
4859 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4860 {
4861 if (sym != NULL)
4862 add_defn_to_vec (&symbol_list_obstack, sym, block);
4863 goto done;
4864 }
4865
4866 /* Search symbols from all global blocks. */
4867
4868 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
4869 wild_match);
4870
4871 /* Now add symbols from all per-file blocks if we've gotten no hits
4872 (not strictly correct, but perhaps better than an error). */
4873
4874 if (num_defns_collected (&symbol_list_obstack) == 0)
4875 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
4876 wild_match);
4877
4878 done:
4879 ndefns = num_defns_collected (&symbol_list_obstack);
4880 *results = defns_collected (&symbol_list_obstack, 1);
4881
4882 ndefns = remove_extra_symbols (*results, ndefns);
4883
4884 if (ndefns == 0)
4885 cache_symbol (name0, namespace, NULL, NULL);
4886
4887 if (ndefns == 1 && cacheIfUnique)
4888 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4889
4890 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4891
4892 return ndefns;
4893 }
4894
4895 struct symbol *
4896 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4897 domain_enum namespace, struct block **block_found)
4898 {
4899 struct ada_symbol_info *candidates;
4900 int n_candidates;
4901
4902 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4903
4904 if (n_candidates == 0)
4905 return NULL;
4906
4907 if (block_found != NULL)
4908 *block_found = candidates[0].block;
4909
4910 return fixup_symbol_section (candidates[0].sym, NULL);
4911 }
4912
4913 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4914 scope and in global scopes, or NULL if none. NAME is folded and
4915 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4916 choosing the first symbol if there are multiple choices.
4917 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4918 table in which the symbol was found (in both cases, these
4919 assignments occur only if the pointers are non-null). */
4920 struct symbol *
4921 ada_lookup_symbol (const char *name, const struct block *block0,
4922 domain_enum namespace, int *is_a_field_of_this)
4923 {
4924 if (is_a_field_of_this != NULL)
4925 *is_a_field_of_this = 0;
4926
4927 return
4928 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4929 block0, namespace, NULL);
4930 }
4931
4932 static struct symbol *
4933 ada_lookup_symbol_nonlocal (const char *name,
4934 const struct block *block,
4935 const domain_enum domain)
4936 {
4937 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
4938 }
4939
4940
4941 /* True iff STR is a possible encoded suffix of a normal Ada name
4942 that is to be ignored for matching purposes. Suffixes of parallel
4943 names (e.g., XVE) are not included here. Currently, the possible suffixes
4944 are given by any of the regular expressions:
4945
4946 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4947 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4948 _E[0-9]+[bs]$ [protected object entry suffixes]
4949 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4950
4951 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4952 match is performed. This sequence is used to differentiate homonyms,
4953 is an optional part of a valid name suffix. */
4954
4955 static int
4956 is_name_suffix (const char *str)
4957 {
4958 int k;
4959 const char *matching;
4960 const int len = strlen (str);
4961
4962 /* Skip optional leading __[0-9]+. */
4963
4964 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4965 {
4966 str += 3;
4967 while (isdigit (str[0]))
4968 str += 1;
4969 }
4970
4971 /* [.$][0-9]+ */
4972
4973 if (str[0] == '.' || str[0] == '$')
4974 {
4975 matching = str + 1;
4976 while (isdigit (matching[0]))
4977 matching += 1;
4978 if (matching[0] == '\0')
4979 return 1;
4980 }
4981
4982 /* ___[0-9]+ */
4983
4984 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4985 {
4986 matching = str + 3;
4987 while (isdigit (matching[0]))
4988 matching += 1;
4989 if (matching[0] == '\0')
4990 return 1;
4991 }
4992
4993 #if 0
4994 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4995 with a N at the end. Unfortunately, the compiler uses the same
4996 convention for other internal types it creates. So treating
4997 all entity names that end with an "N" as a name suffix causes
4998 some regressions. For instance, consider the case of an enumerated
4999 type. To support the 'Image attribute, it creates an array whose
5000 name ends with N.
5001 Having a single character like this as a suffix carrying some
5002 information is a bit risky. Perhaps we should change the encoding
5003 to be something like "_N" instead. In the meantime, do not do
5004 the following check. */
5005 /* Protected Object Subprograms */
5006 if (len == 1 && str [0] == 'N')
5007 return 1;
5008 #endif
5009
5010 /* _E[0-9]+[bs]$ */
5011 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5012 {
5013 matching = str + 3;
5014 while (isdigit (matching[0]))
5015 matching += 1;
5016 if ((matching[0] == 'b' || matching[0] == 's')
5017 && matching [1] == '\0')
5018 return 1;
5019 }
5020
5021 /* ??? We should not modify STR directly, as we are doing below. This
5022 is fine in this case, but may become problematic later if we find
5023 that this alternative did not work, and want to try matching
5024 another one from the begining of STR. Since we modified it, we
5025 won't be able to find the begining of the string anymore! */
5026 if (str[0] == 'X')
5027 {
5028 str += 1;
5029 while (str[0] != '_' && str[0] != '\0')
5030 {
5031 if (str[0] != 'n' && str[0] != 'b')
5032 return 0;
5033 str += 1;
5034 }
5035 }
5036
5037 if (str[0] == '\000')
5038 return 1;
5039
5040 if (str[0] == '_')
5041 {
5042 if (str[1] != '_' || str[2] == '\000')
5043 return 0;
5044 if (str[2] == '_')
5045 {
5046 if (strcmp (str + 3, "JM") == 0)
5047 return 1;
5048 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5049 the LJM suffix in favor of the JM one. But we will
5050 still accept LJM as a valid suffix for a reasonable
5051 amount of time, just to allow ourselves to debug programs
5052 compiled using an older version of GNAT. */
5053 if (strcmp (str + 3, "LJM") == 0)
5054 return 1;
5055 if (str[3] != 'X')
5056 return 0;
5057 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5058 || str[4] == 'U' || str[4] == 'P')
5059 return 1;
5060 if (str[4] == 'R' && str[5] != 'T')
5061 return 1;
5062 return 0;
5063 }
5064 if (!isdigit (str[2]))
5065 return 0;
5066 for (k = 3; str[k] != '\0'; k += 1)
5067 if (!isdigit (str[k]) && str[k] != '_')
5068 return 0;
5069 return 1;
5070 }
5071 if (str[0] == '$' && isdigit (str[1]))
5072 {
5073 for (k = 2; str[k] != '\0'; k += 1)
5074 if (!isdigit (str[k]) && str[k] != '_')
5075 return 0;
5076 return 1;
5077 }
5078 return 0;
5079 }
5080
5081 /* Return non-zero if the string starting at NAME and ending before
5082 NAME_END contains no capital letters. */
5083
5084 static int
5085 is_valid_name_for_wild_match (const char *name0)
5086 {
5087 const char *decoded_name = ada_decode (name0);
5088 int i;
5089
5090 /* If the decoded name starts with an angle bracket, it means that
5091 NAME0 does not follow the GNAT encoding format. It should then
5092 not be allowed as a possible wild match. */
5093 if (decoded_name[0] == '<')
5094 return 0;
5095
5096 for (i=0; decoded_name[i] != '\0'; i++)
5097 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5098 return 0;
5099
5100 return 1;
5101 }
5102
5103 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5104 that could start a simple name. Assumes that *NAMEP points into
5105 the string beginning at NAME0. */
5106
5107 static int
5108 advance_wild_match (const char **namep, const char *name0, int target0)
5109 {
5110 const char *name = *namep;
5111
5112 while (1)
5113 {
5114 int t0, t1;
5115
5116 t0 = *name;
5117 if (t0 == '_')
5118 {
5119 t1 = name[1];
5120 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5121 {
5122 name += 1;
5123 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5124 break;
5125 else
5126 name += 1;
5127 }
5128 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5129 || name[2] == target0))
5130 {
5131 name += 2;
5132 break;
5133 }
5134 else
5135 return 0;
5136 }
5137 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5138 name += 1;
5139 else
5140 return 0;
5141 }
5142
5143 *namep = name;
5144 return 1;
5145 }
5146
5147 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5148 informational suffixes of NAME (i.e., for which is_name_suffix is
5149 true). Assumes that PATN is a lower-cased Ada simple name. */
5150
5151 static int
5152 wild_match (const char *name, const char *patn)
5153 {
5154 const char *p, *n;
5155 const char *name0 = name;
5156
5157 while (1)
5158 {
5159 const char *match = name;
5160
5161 if (*name == *patn)
5162 {
5163 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5164 if (*p != *name)
5165 break;
5166 if (*p == '\0' && is_name_suffix (name))
5167 return match != name0 && !is_valid_name_for_wild_match (name0);
5168
5169 if (name[-1] == '_')
5170 name -= 1;
5171 }
5172 if (!advance_wild_match (&name, name0, *patn))
5173 return 1;
5174 }
5175 }
5176
5177 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5178 informational suffix. */
5179
5180 static int
5181 full_match (const char *sym_name, const char *search_name)
5182 {
5183 return !match_name (sym_name, search_name, 0);
5184 }
5185
5186
5187 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5188 vector *defn_symbols, updating the list of symbols in OBSTACKP
5189 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5190 OBJFILE is the section containing BLOCK.
5191 SYMTAB is recorded with each symbol added. */
5192
5193 static void
5194 ada_add_block_symbols (struct obstack *obstackp,
5195 struct block *block, const char *name,
5196 domain_enum domain, struct objfile *objfile,
5197 int wild)
5198 {
5199 struct dict_iterator iter;
5200 int name_len = strlen (name);
5201 /* A matching argument symbol, if any. */
5202 struct symbol *arg_sym;
5203 /* Set true when we find a matching non-argument symbol. */
5204 int found_sym;
5205 struct symbol *sym;
5206
5207 arg_sym = NULL;
5208 found_sym = 0;
5209 if (wild)
5210 {
5211 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5212 wild_match, &iter);
5213 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5214 {
5215 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5216 SYMBOL_DOMAIN (sym), domain)
5217 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5218 {
5219 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5220 continue;
5221 else if (SYMBOL_IS_ARGUMENT (sym))
5222 arg_sym = sym;
5223 else
5224 {
5225 found_sym = 1;
5226 add_defn_to_vec (obstackp,
5227 fixup_symbol_section (sym, objfile),
5228 block);
5229 }
5230 }
5231 }
5232 }
5233 else
5234 {
5235 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5236 full_match, &iter);
5237 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5238 {
5239 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5240 SYMBOL_DOMAIN (sym), domain))
5241 {
5242 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5243 {
5244 if (SYMBOL_IS_ARGUMENT (sym))
5245 arg_sym = sym;
5246 else
5247 {
5248 found_sym = 1;
5249 add_defn_to_vec (obstackp,
5250 fixup_symbol_section (sym, objfile),
5251 block);
5252 }
5253 }
5254 }
5255 }
5256 }
5257
5258 if (!found_sym && arg_sym != NULL)
5259 {
5260 add_defn_to_vec (obstackp,
5261 fixup_symbol_section (arg_sym, objfile),
5262 block);
5263 }
5264
5265 if (!wild)
5266 {
5267 arg_sym = NULL;
5268 found_sym = 0;
5269
5270 ALL_BLOCK_SYMBOLS (block, iter, sym)
5271 {
5272 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5273 SYMBOL_DOMAIN (sym), domain))
5274 {
5275 int cmp;
5276
5277 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5278 if (cmp == 0)
5279 {
5280 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5281 if (cmp == 0)
5282 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5283 name_len);
5284 }
5285
5286 if (cmp == 0
5287 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5288 {
5289 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5290 {
5291 if (SYMBOL_IS_ARGUMENT (sym))
5292 arg_sym = sym;
5293 else
5294 {
5295 found_sym = 1;
5296 add_defn_to_vec (obstackp,
5297 fixup_symbol_section (sym, objfile),
5298 block);
5299 }
5300 }
5301 }
5302 }
5303 }
5304
5305 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5306 They aren't parameters, right? */
5307 if (!found_sym && arg_sym != NULL)
5308 {
5309 add_defn_to_vec (obstackp,
5310 fixup_symbol_section (arg_sym, objfile),
5311 block);
5312 }
5313 }
5314 }
5315 \f
5316
5317 /* Symbol Completion */
5318
5319 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5320 name in a form that's appropriate for the completion. The result
5321 does not need to be deallocated, but is only good until the next call.
5322
5323 TEXT_LEN is equal to the length of TEXT.
5324 Perform a wild match if WILD_MATCH is set.
5325 ENCODED should be set if TEXT represents the start of a symbol name
5326 in its encoded form. */
5327
5328 static const char *
5329 symbol_completion_match (const char *sym_name,
5330 const char *text, int text_len,
5331 int wild_match, int encoded)
5332 {
5333 const int verbatim_match = (text[0] == '<');
5334 int match = 0;
5335
5336 if (verbatim_match)
5337 {
5338 /* Strip the leading angle bracket. */
5339 text = text + 1;
5340 text_len--;
5341 }
5342
5343 /* First, test against the fully qualified name of the symbol. */
5344
5345 if (strncmp (sym_name, text, text_len) == 0)
5346 match = 1;
5347
5348 if (match && !encoded)
5349 {
5350 /* One needed check before declaring a positive match is to verify
5351 that iff we are doing a verbatim match, the decoded version
5352 of the symbol name starts with '<'. Otherwise, this symbol name
5353 is not a suitable completion. */
5354 const char *sym_name_copy = sym_name;
5355 int has_angle_bracket;
5356
5357 sym_name = ada_decode (sym_name);
5358 has_angle_bracket = (sym_name[0] == '<');
5359 match = (has_angle_bracket == verbatim_match);
5360 sym_name = sym_name_copy;
5361 }
5362
5363 if (match && !verbatim_match)
5364 {
5365 /* When doing non-verbatim match, another check that needs to
5366 be done is to verify that the potentially matching symbol name
5367 does not include capital letters, because the ada-mode would
5368 not be able to understand these symbol names without the
5369 angle bracket notation. */
5370 const char *tmp;
5371
5372 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5373 if (*tmp != '\0')
5374 match = 0;
5375 }
5376
5377 /* Second: Try wild matching... */
5378
5379 if (!match && wild_match)
5380 {
5381 /* Since we are doing wild matching, this means that TEXT
5382 may represent an unqualified symbol name. We therefore must
5383 also compare TEXT against the unqualified name of the symbol. */
5384 sym_name = ada_unqualified_name (ada_decode (sym_name));
5385
5386 if (strncmp (sym_name, text, text_len) == 0)
5387 match = 1;
5388 }
5389
5390 /* Finally: If we found a mach, prepare the result to return. */
5391
5392 if (!match)
5393 return NULL;
5394
5395 if (verbatim_match)
5396 sym_name = add_angle_brackets (sym_name);
5397
5398 if (!encoded)
5399 sym_name = ada_decode (sym_name);
5400
5401 return sym_name;
5402 }
5403
5404 DEF_VEC_P (char_ptr);
5405
5406 /* A companion function to ada_make_symbol_completion_list().
5407 Check if SYM_NAME represents a symbol which name would be suitable
5408 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5409 it is appended at the end of the given string vector SV.
5410
5411 ORIG_TEXT is the string original string from the user command
5412 that needs to be completed. WORD is the entire command on which
5413 completion should be performed. These two parameters are used to
5414 determine which part of the symbol name should be added to the
5415 completion vector.
5416 if WILD_MATCH is set, then wild matching is performed.
5417 ENCODED should be set if TEXT represents a symbol name in its
5418 encoded formed (in which case the completion should also be
5419 encoded). */
5420
5421 static void
5422 symbol_completion_add (VEC(char_ptr) **sv,
5423 const char *sym_name,
5424 const char *text, int text_len,
5425 const char *orig_text, const char *word,
5426 int wild_match, int encoded)
5427 {
5428 const char *match = symbol_completion_match (sym_name, text, text_len,
5429 wild_match, encoded);
5430 char *completion;
5431
5432 if (match == NULL)
5433 return;
5434
5435 /* We found a match, so add the appropriate completion to the given
5436 string vector. */
5437
5438 if (word == orig_text)
5439 {
5440 completion = xmalloc (strlen (match) + 5);
5441 strcpy (completion, match);
5442 }
5443 else if (word > orig_text)
5444 {
5445 /* Return some portion of sym_name. */
5446 completion = xmalloc (strlen (match) + 5);
5447 strcpy (completion, match + (word - orig_text));
5448 }
5449 else
5450 {
5451 /* Return some of ORIG_TEXT plus sym_name. */
5452 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5453 strncpy (completion, word, orig_text - word);
5454 completion[orig_text - word] = '\0';
5455 strcat (completion, match);
5456 }
5457
5458 VEC_safe_push (char_ptr, *sv, completion);
5459 }
5460
5461 /* An object of this type is passed as the user_data argument to the
5462 map_partial_symbol_names method. */
5463 struct add_partial_datum
5464 {
5465 VEC(char_ptr) **completions;
5466 char *text;
5467 int text_len;
5468 char *text0;
5469 char *word;
5470 int wild_match;
5471 int encoded;
5472 };
5473
5474 /* A callback for map_partial_symbol_names. */
5475 static void
5476 ada_add_partial_symbol_completions (const char *name, void *user_data)
5477 {
5478 struct add_partial_datum *data = user_data;
5479
5480 symbol_completion_add (data->completions, name,
5481 data->text, data->text_len, data->text0, data->word,
5482 data->wild_match, data->encoded);
5483 }
5484
5485 /* Return a list of possible symbol names completing TEXT0. The list
5486 is NULL terminated. WORD is the entire command on which completion
5487 is made. */
5488
5489 static char **
5490 ada_make_symbol_completion_list (char *text0, char *word)
5491 {
5492 char *text;
5493 int text_len;
5494 int wild_match;
5495 int encoded;
5496 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5497 struct symbol *sym;
5498 struct symtab *s;
5499 struct minimal_symbol *msymbol;
5500 struct objfile *objfile;
5501 struct block *b, *surrounding_static_block = 0;
5502 int i;
5503 struct dict_iterator iter;
5504
5505 if (text0[0] == '<')
5506 {
5507 text = xstrdup (text0);
5508 make_cleanup (xfree, text);
5509 text_len = strlen (text);
5510 wild_match = 0;
5511 encoded = 1;
5512 }
5513 else
5514 {
5515 text = xstrdup (ada_encode (text0));
5516 make_cleanup (xfree, text);
5517 text_len = strlen (text);
5518 for (i = 0; i < text_len; i++)
5519 text[i] = tolower (text[i]);
5520
5521 encoded = (strstr (text0, "__") != NULL);
5522 /* If the name contains a ".", then the user is entering a fully
5523 qualified entity name, and the match must not be done in wild
5524 mode. Similarly, if the user wants to complete what looks like
5525 an encoded name, the match must not be done in wild mode. */
5526 wild_match = (strchr (text0, '.') == NULL && !encoded);
5527 }
5528
5529 /* First, look at the partial symtab symbols. */
5530 {
5531 struct add_partial_datum data;
5532
5533 data.completions = &completions;
5534 data.text = text;
5535 data.text_len = text_len;
5536 data.text0 = text0;
5537 data.word = word;
5538 data.wild_match = wild_match;
5539 data.encoded = encoded;
5540 map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
5541 }
5542
5543 /* At this point scan through the misc symbol vectors and add each
5544 symbol you find to the list. Eventually we want to ignore
5545 anything that isn't a text symbol (everything else will be
5546 handled by the psymtab code above). */
5547
5548 ALL_MSYMBOLS (objfile, msymbol)
5549 {
5550 QUIT;
5551 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5552 text, text_len, text0, word, wild_match, encoded);
5553 }
5554
5555 /* Search upwards from currently selected frame (so that we can
5556 complete on local vars. */
5557
5558 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5559 {
5560 if (!BLOCK_SUPERBLOCK (b))
5561 surrounding_static_block = b; /* For elmin of dups */
5562
5563 ALL_BLOCK_SYMBOLS (b, iter, sym)
5564 {
5565 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5566 text, text_len, text0, word,
5567 wild_match, encoded);
5568 }
5569 }
5570
5571 /* Go through the symtabs and check the externs and statics for
5572 symbols which match. */
5573
5574 ALL_SYMTABS (objfile, s)
5575 {
5576 QUIT;
5577 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5578 ALL_BLOCK_SYMBOLS (b, iter, sym)
5579 {
5580 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5581 text, text_len, text0, word,
5582 wild_match, encoded);
5583 }
5584 }
5585
5586 ALL_SYMTABS (objfile, s)
5587 {
5588 QUIT;
5589 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5590 /* Don't do this block twice. */
5591 if (b == surrounding_static_block)
5592 continue;
5593 ALL_BLOCK_SYMBOLS (b, iter, sym)
5594 {
5595 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5596 text, text_len, text0, word,
5597 wild_match, encoded);
5598 }
5599 }
5600
5601 /* Append the closing NULL entry. */
5602 VEC_safe_push (char_ptr, completions, NULL);
5603
5604 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5605 return the copy. It's unfortunate that we have to make a copy
5606 of an array that we're about to destroy, but there is nothing much
5607 we can do about it. Fortunately, it's typically not a very large
5608 array. */
5609 {
5610 const size_t completions_size =
5611 VEC_length (char_ptr, completions) * sizeof (char *);
5612 char **result = malloc (completions_size);
5613
5614 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5615
5616 VEC_free (char_ptr, completions);
5617 return result;
5618 }
5619 }
5620
5621 /* Field Access */
5622
5623 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5624 for tagged types. */
5625
5626 static int
5627 ada_is_dispatch_table_ptr_type (struct type *type)
5628 {
5629 char *name;
5630
5631 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5632 return 0;
5633
5634 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5635 if (name == NULL)
5636 return 0;
5637
5638 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5639 }
5640
5641 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5642 to be invisible to users. */
5643
5644 int
5645 ada_is_ignored_field (struct type *type, int field_num)
5646 {
5647 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5648 return 1;
5649
5650 /* Check the name of that field. */
5651 {
5652 const char *name = TYPE_FIELD_NAME (type, field_num);
5653
5654 /* Anonymous field names should not be printed.
5655 brobecker/2007-02-20: I don't think this can actually happen
5656 but we don't want to print the value of annonymous fields anyway. */
5657 if (name == NULL)
5658 return 1;
5659
5660 /* A field named "_parent" is internally generated by GNAT for
5661 tagged types, and should not be printed either. */
5662 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5663 return 1;
5664 }
5665
5666 /* If this is the dispatch table of a tagged type, then ignore. */
5667 if (ada_is_tagged_type (type, 1)
5668 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5669 return 1;
5670
5671 /* Not a special field, so it should not be ignored. */
5672 return 0;
5673 }
5674
5675 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5676 pointer or reference type whose ultimate target has a tag field. */
5677
5678 int
5679 ada_is_tagged_type (struct type *type, int refok)
5680 {
5681 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5682 }
5683
5684 /* True iff TYPE represents the type of X'Tag */
5685
5686 int
5687 ada_is_tag_type (struct type *type)
5688 {
5689 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5690 return 0;
5691 else
5692 {
5693 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5694
5695 return (name != NULL
5696 && strcmp (name, "ada__tags__dispatch_table") == 0);
5697 }
5698 }
5699
5700 /* The type of the tag on VAL. */
5701
5702 struct type *
5703 ada_tag_type (struct value *val)
5704 {
5705 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5706 }
5707
5708 /* The value of the tag on VAL. */
5709
5710 struct value *
5711 ada_value_tag (struct value *val)
5712 {
5713 return ada_value_struct_elt (val, "_tag", 0);
5714 }
5715
5716 /* The value of the tag on the object of type TYPE whose contents are
5717 saved at VALADDR, if it is non-null, or is at memory address
5718 ADDRESS. */
5719
5720 static struct value *
5721 value_tag_from_contents_and_address (struct type *type,
5722 const gdb_byte *valaddr,
5723 CORE_ADDR address)
5724 {
5725 int tag_byte_offset;
5726 struct type *tag_type;
5727
5728 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5729 NULL, NULL, NULL))
5730 {
5731 const gdb_byte *valaddr1 = ((valaddr == NULL)
5732 ? NULL
5733 : valaddr + tag_byte_offset);
5734 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5735
5736 return value_from_contents_and_address (tag_type, valaddr1, address1);
5737 }
5738 return NULL;
5739 }
5740
5741 static struct type *
5742 type_from_tag (struct value *tag)
5743 {
5744 const char *type_name = ada_tag_name (tag);
5745
5746 if (type_name != NULL)
5747 return ada_find_any_type (ada_encode (type_name));
5748 return NULL;
5749 }
5750
5751 struct tag_args
5752 {
5753 struct value *tag;
5754 char *name;
5755 };
5756
5757
5758 static int ada_tag_name_1 (void *);
5759 static int ada_tag_name_2 (struct tag_args *);
5760
5761 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5762 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5763 The value stored in ARGS->name is valid until the next call to
5764 ada_tag_name_1. */
5765
5766 static int
5767 ada_tag_name_1 (void *args0)
5768 {
5769 struct tag_args *args = (struct tag_args *) args0;
5770 static char name[1024];
5771 char *p;
5772 struct value *val;
5773
5774 args->name = NULL;
5775 val = ada_value_struct_elt (args->tag, "tsd", 1);
5776 if (val == NULL)
5777 return ada_tag_name_2 (args);
5778 val = ada_value_struct_elt (val, "expanded_name", 1);
5779 if (val == NULL)
5780 return 0;
5781 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5782 for (p = name; *p != '\0'; p += 1)
5783 if (isalpha (*p))
5784 *p = tolower (*p);
5785 args->name = name;
5786 return 0;
5787 }
5788
5789 /* Return the "ada__tags__type_specific_data" type. */
5790
5791 static struct type *
5792 ada_get_tsd_type (struct inferior *inf)
5793 {
5794 struct ada_inferior_data *data = get_ada_inferior_data (inf);
5795
5796 if (data->tsd_type == 0)
5797 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
5798 return data->tsd_type;
5799 }
5800
5801 /* Utility function for ada_tag_name_1 that tries the second
5802 representation for the dispatch table (in which there is no
5803 explicit 'tsd' field in the referent of the tag pointer, and instead
5804 the tsd pointer is stored just before the dispatch table. */
5805
5806 static int
5807 ada_tag_name_2 (struct tag_args *args)
5808 {
5809 struct type *info_type;
5810 static char name[1024];
5811 char *p;
5812 struct value *val, *valp;
5813
5814 args->name = NULL;
5815 info_type = ada_get_tsd_type (current_inferior());
5816 if (info_type == NULL)
5817 return 0;
5818 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5819 valp = value_cast (info_type, args->tag);
5820 if (valp == NULL)
5821 return 0;
5822 val = value_ind (value_ptradd (valp, -1));
5823 if (val == NULL)
5824 return 0;
5825 val = ada_value_struct_elt (val, "expanded_name", 1);
5826 if (val == NULL)
5827 return 0;
5828 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5829 for (p = name; *p != '\0'; p += 1)
5830 if (isalpha (*p))
5831 *p = tolower (*p);
5832 args->name = name;
5833 return 0;
5834 }
5835
5836 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5837 a C string. */
5838
5839 const char *
5840 ada_tag_name (struct value *tag)
5841 {
5842 struct tag_args args;
5843
5844 if (!ada_is_tag_type (value_type (tag)))
5845 return NULL;
5846 args.tag = tag;
5847 args.name = NULL;
5848 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5849 return args.name;
5850 }
5851
5852 /* The parent type of TYPE, or NULL if none. */
5853
5854 struct type *
5855 ada_parent_type (struct type *type)
5856 {
5857 int i;
5858
5859 type = ada_check_typedef (type);
5860
5861 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5862 return NULL;
5863
5864 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5865 if (ada_is_parent_field (type, i))
5866 {
5867 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5868
5869 /* If the _parent field is a pointer, then dereference it. */
5870 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5871 parent_type = TYPE_TARGET_TYPE (parent_type);
5872 /* If there is a parallel XVS type, get the actual base type. */
5873 parent_type = ada_get_base_type (parent_type);
5874
5875 return ada_check_typedef (parent_type);
5876 }
5877
5878 return NULL;
5879 }
5880
5881 /* True iff field number FIELD_NUM of structure type TYPE contains the
5882 parent-type (inherited) fields of a derived type. Assumes TYPE is
5883 a structure type with at least FIELD_NUM+1 fields. */
5884
5885 int
5886 ada_is_parent_field (struct type *type, int field_num)
5887 {
5888 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5889
5890 return (name != NULL
5891 && (strncmp (name, "PARENT", 6) == 0
5892 || strncmp (name, "_parent", 7) == 0));
5893 }
5894
5895 /* True iff field number FIELD_NUM of structure type TYPE is a
5896 transparent wrapper field (which should be silently traversed when doing
5897 field selection and flattened when printing). Assumes TYPE is a
5898 structure type with at least FIELD_NUM+1 fields. Such fields are always
5899 structures. */
5900
5901 int
5902 ada_is_wrapper_field (struct type *type, int field_num)
5903 {
5904 const char *name = TYPE_FIELD_NAME (type, field_num);
5905
5906 return (name != NULL
5907 && (strncmp (name, "PARENT", 6) == 0
5908 || strcmp (name, "REP") == 0
5909 || strncmp (name, "_parent", 7) == 0
5910 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5911 }
5912
5913 /* True iff field number FIELD_NUM of structure or union type TYPE
5914 is a variant wrapper. Assumes TYPE is a structure type with at least
5915 FIELD_NUM+1 fields. */
5916
5917 int
5918 ada_is_variant_part (struct type *type, int field_num)
5919 {
5920 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5921
5922 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5923 || (is_dynamic_field (type, field_num)
5924 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5925 == TYPE_CODE_UNION)));
5926 }
5927
5928 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5929 whose discriminants are contained in the record type OUTER_TYPE,
5930 returns the type of the controlling discriminant for the variant.
5931 May return NULL if the type could not be found. */
5932
5933 struct type *
5934 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5935 {
5936 char *name = ada_variant_discrim_name (var_type);
5937
5938 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5939 }
5940
5941 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5942 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5943 represents a 'when others' clause; otherwise 0. */
5944
5945 int
5946 ada_is_others_clause (struct type *type, int field_num)
5947 {
5948 const char *name = TYPE_FIELD_NAME (type, field_num);
5949
5950 return (name != NULL && name[0] == 'O');
5951 }
5952
5953 /* Assuming that TYPE0 is the type of the variant part of a record,
5954 returns the name of the discriminant controlling the variant.
5955 The value is valid until the next call to ada_variant_discrim_name. */
5956
5957 char *
5958 ada_variant_discrim_name (struct type *type0)
5959 {
5960 static char *result = NULL;
5961 static size_t result_len = 0;
5962 struct type *type;
5963 const char *name;
5964 const char *discrim_end;
5965 const char *discrim_start;
5966
5967 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5968 type = TYPE_TARGET_TYPE (type0);
5969 else
5970 type = type0;
5971
5972 name = ada_type_name (type);
5973
5974 if (name == NULL || name[0] == '\000')
5975 return "";
5976
5977 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5978 discrim_end -= 1)
5979 {
5980 if (strncmp (discrim_end, "___XVN", 6) == 0)
5981 break;
5982 }
5983 if (discrim_end == name)
5984 return "";
5985
5986 for (discrim_start = discrim_end; discrim_start != name + 3;
5987 discrim_start -= 1)
5988 {
5989 if (discrim_start == name + 1)
5990 return "";
5991 if ((discrim_start > name + 3
5992 && strncmp (discrim_start - 3, "___", 3) == 0)
5993 || discrim_start[-1] == '.')
5994 break;
5995 }
5996
5997 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5998 strncpy (result, discrim_start, discrim_end - discrim_start);
5999 result[discrim_end - discrim_start] = '\0';
6000 return result;
6001 }
6002
6003 /* Scan STR for a subtype-encoded number, beginning at position K.
6004 Put the position of the character just past the number scanned in
6005 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6006 Return 1 if there was a valid number at the given position, and 0
6007 otherwise. A "subtype-encoded" number consists of the absolute value
6008 in decimal, followed by the letter 'm' to indicate a negative number.
6009 Assumes 0m does not occur. */
6010
6011 int
6012 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6013 {
6014 ULONGEST RU;
6015
6016 if (!isdigit (str[k]))
6017 return 0;
6018
6019 /* Do it the hard way so as not to make any assumption about
6020 the relationship of unsigned long (%lu scan format code) and
6021 LONGEST. */
6022 RU = 0;
6023 while (isdigit (str[k]))
6024 {
6025 RU = RU * 10 + (str[k] - '0');
6026 k += 1;
6027 }
6028
6029 if (str[k] == 'm')
6030 {
6031 if (R != NULL)
6032 *R = (-(LONGEST) (RU - 1)) - 1;
6033 k += 1;
6034 }
6035 else if (R != NULL)
6036 *R = (LONGEST) RU;
6037
6038 /* NOTE on the above: Technically, C does not say what the results of
6039 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6040 number representable as a LONGEST (although either would probably work
6041 in most implementations). When RU>0, the locution in the then branch
6042 above is always equivalent to the negative of RU. */
6043
6044 if (new_k != NULL)
6045 *new_k = k;
6046 return 1;
6047 }
6048
6049 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6050 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6051 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6052
6053 int
6054 ada_in_variant (LONGEST val, struct type *type, int field_num)
6055 {
6056 const char *name = TYPE_FIELD_NAME (type, field_num);
6057 int p;
6058
6059 p = 0;
6060 while (1)
6061 {
6062 switch (name[p])
6063 {
6064 case '\0':
6065 return 0;
6066 case 'S':
6067 {
6068 LONGEST W;
6069
6070 if (!ada_scan_number (name, p + 1, &W, &p))
6071 return 0;
6072 if (val == W)
6073 return 1;
6074 break;
6075 }
6076 case 'R':
6077 {
6078 LONGEST L, U;
6079
6080 if (!ada_scan_number (name, p + 1, &L, &p)
6081 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6082 return 0;
6083 if (val >= L && val <= U)
6084 return 1;
6085 break;
6086 }
6087 case 'O':
6088 return 1;
6089 default:
6090 return 0;
6091 }
6092 }
6093 }
6094
6095 /* FIXME: Lots of redundancy below. Try to consolidate. */
6096
6097 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6098 ARG_TYPE, extract and return the value of one of its (non-static)
6099 fields. FIELDNO says which field. Differs from value_primitive_field
6100 only in that it can handle packed values of arbitrary type. */
6101
6102 static struct value *
6103 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6104 struct type *arg_type)
6105 {
6106 struct type *type;
6107
6108 arg_type = ada_check_typedef (arg_type);
6109 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6110
6111 /* Handle packed fields. */
6112
6113 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6114 {
6115 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6116 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6117
6118 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6119 offset + bit_pos / 8,
6120 bit_pos % 8, bit_size, type);
6121 }
6122 else
6123 return value_primitive_field (arg1, offset, fieldno, arg_type);
6124 }
6125
6126 /* Find field with name NAME in object of type TYPE. If found,
6127 set the following for each argument that is non-null:
6128 - *FIELD_TYPE_P to the field's type;
6129 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6130 an object of that type;
6131 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6132 - *BIT_SIZE_P to its size in bits if the field is packed, and
6133 0 otherwise;
6134 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6135 fields up to but not including the desired field, or by the total
6136 number of fields if not found. A NULL value of NAME never
6137 matches; the function just counts visible fields in this case.
6138
6139 Returns 1 if found, 0 otherwise. */
6140
6141 static int
6142 find_struct_field (char *name, struct type *type, int offset,
6143 struct type **field_type_p,
6144 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6145 int *index_p)
6146 {
6147 int i;
6148
6149 type = ada_check_typedef (type);
6150
6151 if (field_type_p != NULL)
6152 *field_type_p = NULL;
6153 if (byte_offset_p != NULL)
6154 *byte_offset_p = 0;
6155 if (bit_offset_p != NULL)
6156 *bit_offset_p = 0;
6157 if (bit_size_p != NULL)
6158 *bit_size_p = 0;
6159
6160 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6161 {
6162 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6163 int fld_offset = offset + bit_pos / 8;
6164 char *t_field_name = TYPE_FIELD_NAME (type, i);
6165
6166 if (t_field_name == NULL)
6167 continue;
6168
6169 else if (name != NULL && field_name_match (t_field_name, name))
6170 {
6171 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6172
6173 if (field_type_p != NULL)
6174 *field_type_p = TYPE_FIELD_TYPE (type, i);
6175 if (byte_offset_p != NULL)
6176 *byte_offset_p = fld_offset;
6177 if (bit_offset_p != NULL)
6178 *bit_offset_p = bit_pos % 8;
6179 if (bit_size_p != NULL)
6180 *bit_size_p = bit_size;
6181 return 1;
6182 }
6183 else if (ada_is_wrapper_field (type, i))
6184 {
6185 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6186 field_type_p, byte_offset_p, bit_offset_p,
6187 bit_size_p, index_p))
6188 return 1;
6189 }
6190 else if (ada_is_variant_part (type, i))
6191 {
6192 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6193 fixed type?? */
6194 int j;
6195 struct type *field_type
6196 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6197
6198 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6199 {
6200 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6201 fld_offset
6202 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6203 field_type_p, byte_offset_p,
6204 bit_offset_p, bit_size_p, index_p))
6205 return 1;
6206 }
6207 }
6208 else if (index_p != NULL)
6209 *index_p += 1;
6210 }
6211 return 0;
6212 }
6213
6214 /* Number of user-visible fields in record type TYPE. */
6215
6216 static int
6217 num_visible_fields (struct type *type)
6218 {
6219 int n;
6220
6221 n = 0;
6222 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6223 return n;
6224 }
6225
6226 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6227 and search in it assuming it has (class) type TYPE.
6228 If found, return value, else return NULL.
6229
6230 Searches recursively through wrapper fields (e.g., '_parent'). */
6231
6232 static struct value *
6233 ada_search_struct_field (char *name, struct value *arg, int offset,
6234 struct type *type)
6235 {
6236 int i;
6237
6238 type = ada_check_typedef (type);
6239 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6240 {
6241 char *t_field_name = TYPE_FIELD_NAME (type, i);
6242
6243 if (t_field_name == NULL)
6244 continue;
6245
6246 else if (field_name_match (t_field_name, name))
6247 return ada_value_primitive_field (arg, offset, i, type);
6248
6249 else if (ada_is_wrapper_field (type, i))
6250 {
6251 struct value *v = /* Do not let indent join lines here. */
6252 ada_search_struct_field (name, arg,
6253 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6254 TYPE_FIELD_TYPE (type, i));
6255
6256 if (v != NULL)
6257 return v;
6258 }
6259
6260 else if (ada_is_variant_part (type, i))
6261 {
6262 /* PNH: Do we ever get here? See find_struct_field. */
6263 int j;
6264 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6265 i));
6266 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6267
6268 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6269 {
6270 struct value *v = ada_search_struct_field /* Force line break. */
6271 (name, arg,
6272 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6273 TYPE_FIELD_TYPE (field_type, j));
6274
6275 if (v != NULL)
6276 return v;
6277 }
6278 }
6279 }
6280 return NULL;
6281 }
6282
6283 static struct value *ada_index_struct_field_1 (int *, struct value *,
6284 int, struct type *);
6285
6286
6287 /* Return field #INDEX in ARG, where the index is that returned by
6288 * find_struct_field through its INDEX_P argument. Adjust the address
6289 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6290 * If found, return value, else return NULL. */
6291
6292 static struct value *
6293 ada_index_struct_field (int index, struct value *arg, int offset,
6294 struct type *type)
6295 {
6296 return ada_index_struct_field_1 (&index, arg, offset, type);
6297 }
6298
6299
6300 /* Auxiliary function for ada_index_struct_field. Like
6301 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6302 * *INDEX_P. */
6303
6304 static struct value *
6305 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6306 struct type *type)
6307 {
6308 int i;
6309 type = ada_check_typedef (type);
6310
6311 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6312 {
6313 if (TYPE_FIELD_NAME (type, i) == NULL)
6314 continue;
6315 else if (ada_is_wrapper_field (type, i))
6316 {
6317 struct value *v = /* Do not let indent join lines here. */
6318 ada_index_struct_field_1 (index_p, arg,
6319 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6320 TYPE_FIELD_TYPE (type, i));
6321
6322 if (v != NULL)
6323 return v;
6324 }
6325
6326 else if (ada_is_variant_part (type, i))
6327 {
6328 /* PNH: Do we ever get here? See ada_search_struct_field,
6329 find_struct_field. */
6330 error (_("Cannot assign this kind of variant record"));
6331 }
6332 else if (*index_p == 0)
6333 return ada_value_primitive_field (arg, offset, i, type);
6334 else
6335 *index_p -= 1;
6336 }
6337 return NULL;
6338 }
6339
6340 /* Given ARG, a value of type (pointer or reference to a)*
6341 structure/union, extract the component named NAME from the ultimate
6342 target structure/union and return it as a value with its
6343 appropriate type.
6344
6345 The routine searches for NAME among all members of the structure itself
6346 and (recursively) among all members of any wrapper members
6347 (e.g., '_parent').
6348
6349 If NO_ERR, then simply return NULL in case of error, rather than
6350 calling error. */
6351
6352 struct value *
6353 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6354 {
6355 struct type *t, *t1;
6356 struct value *v;
6357
6358 v = NULL;
6359 t1 = t = ada_check_typedef (value_type (arg));
6360 if (TYPE_CODE (t) == TYPE_CODE_REF)
6361 {
6362 t1 = TYPE_TARGET_TYPE (t);
6363 if (t1 == NULL)
6364 goto BadValue;
6365 t1 = ada_check_typedef (t1);
6366 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6367 {
6368 arg = coerce_ref (arg);
6369 t = t1;
6370 }
6371 }
6372
6373 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6374 {
6375 t1 = TYPE_TARGET_TYPE (t);
6376 if (t1 == NULL)
6377 goto BadValue;
6378 t1 = ada_check_typedef (t1);
6379 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6380 {
6381 arg = value_ind (arg);
6382 t = t1;
6383 }
6384 else
6385 break;
6386 }
6387
6388 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6389 goto BadValue;
6390
6391 if (t1 == t)
6392 v = ada_search_struct_field (name, arg, 0, t);
6393 else
6394 {
6395 int bit_offset, bit_size, byte_offset;
6396 struct type *field_type;
6397 CORE_ADDR address;
6398
6399 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6400 address = value_as_address (arg);
6401 else
6402 address = unpack_pointer (t, value_contents (arg));
6403
6404 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6405 if (find_struct_field (name, t1, 0,
6406 &field_type, &byte_offset, &bit_offset,
6407 &bit_size, NULL))
6408 {
6409 if (bit_size != 0)
6410 {
6411 if (TYPE_CODE (t) == TYPE_CODE_REF)
6412 arg = ada_coerce_ref (arg);
6413 else
6414 arg = ada_value_ind (arg);
6415 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6416 bit_offset, bit_size,
6417 field_type);
6418 }
6419 else
6420 v = value_at_lazy (field_type, address + byte_offset);
6421 }
6422 }
6423
6424 if (v != NULL || no_err)
6425 return v;
6426 else
6427 error (_("There is no member named %s."), name);
6428
6429 BadValue:
6430 if (no_err)
6431 return NULL;
6432 else
6433 error (_("Attempt to extract a component of a value that is not a record."));
6434 }
6435
6436 /* Given a type TYPE, look up the type of the component of type named NAME.
6437 If DISPP is non-null, add its byte displacement from the beginning of a
6438 structure (pointed to by a value) of type TYPE to *DISPP (does not
6439 work for packed fields).
6440
6441 Matches any field whose name has NAME as a prefix, possibly
6442 followed by "___".
6443
6444 TYPE can be either a struct or union. If REFOK, TYPE may also
6445 be a (pointer or reference)+ to a struct or union, and the
6446 ultimate target type will be searched.
6447
6448 Looks recursively into variant clauses and parent types.
6449
6450 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6451 TYPE is not a type of the right kind. */
6452
6453 static struct type *
6454 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6455 int noerr, int *dispp)
6456 {
6457 int i;
6458
6459 if (name == NULL)
6460 goto BadName;
6461
6462 if (refok && type != NULL)
6463 while (1)
6464 {
6465 type = ada_check_typedef (type);
6466 if (TYPE_CODE (type) != TYPE_CODE_PTR
6467 && TYPE_CODE (type) != TYPE_CODE_REF)
6468 break;
6469 type = TYPE_TARGET_TYPE (type);
6470 }
6471
6472 if (type == NULL
6473 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6474 && TYPE_CODE (type) != TYPE_CODE_UNION))
6475 {
6476 if (noerr)
6477 return NULL;
6478 else
6479 {
6480 target_terminal_ours ();
6481 gdb_flush (gdb_stdout);
6482 if (type == NULL)
6483 error (_("Type (null) is not a structure or union type"));
6484 else
6485 {
6486 /* XXX: type_sprint */
6487 fprintf_unfiltered (gdb_stderr, _("Type "));
6488 type_print (type, "", gdb_stderr, -1);
6489 error (_(" is not a structure or union type"));
6490 }
6491 }
6492 }
6493
6494 type = to_static_fixed_type (type);
6495
6496 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6497 {
6498 char *t_field_name = TYPE_FIELD_NAME (type, i);
6499 struct type *t;
6500 int disp;
6501
6502 if (t_field_name == NULL)
6503 continue;
6504
6505 else if (field_name_match (t_field_name, name))
6506 {
6507 if (dispp != NULL)
6508 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6509 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6510 }
6511
6512 else if (ada_is_wrapper_field (type, i))
6513 {
6514 disp = 0;
6515 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6516 0, 1, &disp);
6517 if (t != NULL)
6518 {
6519 if (dispp != NULL)
6520 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6521 return t;
6522 }
6523 }
6524
6525 else if (ada_is_variant_part (type, i))
6526 {
6527 int j;
6528 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6529 i));
6530
6531 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6532 {
6533 /* FIXME pnh 2008/01/26: We check for a field that is
6534 NOT wrapped in a struct, since the compiler sometimes
6535 generates these for unchecked variant types. Revisit
6536 if the compiler changes this practice. */
6537 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6538 disp = 0;
6539 if (v_field_name != NULL
6540 && field_name_match (v_field_name, name))
6541 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6542 else
6543 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6544 name, 0, 1, &disp);
6545
6546 if (t != NULL)
6547 {
6548 if (dispp != NULL)
6549 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6550 return t;
6551 }
6552 }
6553 }
6554
6555 }
6556
6557 BadName:
6558 if (!noerr)
6559 {
6560 target_terminal_ours ();
6561 gdb_flush (gdb_stdout);
6562 if (name == NULL)
6563 {
6564 /* XXX: type_sprint */
6565 fprintf_unfiltered (gdb_stderr, _("Type "));
6566 type_print (type, "", gdb_stderr, -1);
6567 error (_(" has no component named <null>"));
6568 }
6569 else
6570 {
6571 /* XXX: type_sprint */
6572 fprintf_unfiltered (gdb_stderr, _("Type "));
6573 type_print (type, "", gdb_stderr, -1);
6574 error (_(" has no component named %s"), name);
6575 }
6576 }
6577
6578 return NULL;
6579 }
6580
6581 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6582 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6583 represents an unchecked union (that is, the variant part of a
6584 record that is named in an Unchecked_Union pragma). */
6585
6586 static int
6587 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6588 {
6589 char *discrim_name = ada_variant_discrim_name (var_type);
6590
6591 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6592 == NULL);
6593 }
6594
6595
6596 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6597 within a value of type OUTER_TYPE that is stored in GDB at
6598 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6599 numbering from 0) is applicable. Returns -1 if none are. */
6600
6601 int
6602 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6603 const gdb_byte *outer_valaddr)
6604 {
6605 int others_clause;
6606 int i;
6607 char *discrim_name = ada_variant_discrim_name (var_type);
6608 struct value *outer;
6609 struct value *discrim;
6610 LONGEST discrim_val;
6611
6612 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6613 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6614 if (discrim == NULL)
6615 return -1;
6616 discrim_val = value_as_long (discrim);
6617
6618 others_clause = -1;
6619 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6620 {
6621 if (ada_is_others_clause (var_type, i))
6622 others_clause = i;
6623 else if (ada_in_variant (discrim_val, var_type, i))
6624 return i;
6625 }
6626
6627 return others_clause;
6628 }
6629 \f
6630
6631
6632 /* Dynamic-Sized Records */
6633
6634 /* Strategy: The type ostensibly attached to a value with dynamic size
6635 (i.e., a size that is not statically recorded in the debugging
6636 data) does not accurately reflect the size or layout of the value.
6637 Our strategy is to convert these values to values with accurate,
6638 conventional types that are constructed on the fly. */
6639
6640 /* There is a subtle and tricky problem here. In general, we cannot
6641 determine the size of dynamic records without its data. However,
6642 the 'struct value' data structure, which GDB uses to represent
6643 quantities in the inferior process (the target), requires the size
6644 of the type at the time of its allocation in order to reserve space
6645 for GDB's internal copy of the data. That's why the
6646 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6647 rather than struct value*s.
6648
6649 However, GDB's internal history variables ($1, $2, etc.) are
6650 struct value*s containing internal copies of the data that are not, in
6651 general, the same as the data at their corresponding addresses in
6652 the target. Fortunately, the types we give to these values are all
6653 conventional, fixed-size types (as per the strategy described
6654 above), so that we don't usually have to perform the
6655 'to_fixed_xxx_type' conversions to look at their values.
6656 Unfortunately, there is one exception: if one of the internal
6657 history variables is an array whose elements are unconstrained
6658 records, then we will need to create distinct fixed types for each
6659 element selected. */
6660
6661 /* The upshot of all of this is that many routines take a (type, host
6662 address, target address) triple as arguments to represent a value.
6663 The host address, if non-null, is supposed to contain an internal
6664 copy of the relevant data; otherwise, the program is to consult the
6665 target at the target address. */
6666
6667 /* Assuming that VAL0 represents a pointer value, the result of
6668 dereferencing it. Differs from value_ind in its treatment of
6669 dynamic-sized types. */
6670
6671 struct value *
6672 ada_value_ind (struct value *val0)
6673 {
6674 struct value *val = unwrap_value (value_ind (val0));
6675
6676 return ada_to_fixed_value (val);
6677 }
6678
6679 /* The value resulting from dereferencing any "reference to"
6680 qualifiers on VAL0. */
6681
6682 static struct value *
6683 ada_coerce_ref (struct value *val0)
6684 {
6685 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6686 {
6687 struct value *val = val0;
6688
6689 val = coerce_ref (val);
6690 val = unwrap_value (val);
6691 return ada_to_fixed_value (val);
6692 }
6693 else
6694 return val0;
6695 }
6696
6697 /* Return OFF rounded upward if necessary to a multiple of
6698 ALIGNMENT (a power of 2). */
6699
6700 static unsigned int
6701 align_value (unsigned int off, unsigned int alignment)
6702 {
6703 return (off + alignment - 1) & ~(alignment - 1);
6704 }
6705
6706 /* Return the bit alignment required for field #F of template type TYPE. */
6707
6708 static unsigned int
6709 field_alignment (struct type *type, int f)
6710 {
6711 const char *name = TYPE_FIELD_NAME (type, f);
6712 int len;
6713 int align_offset;
6714
6715 /* The field name should never be null, unless the debugging information
6716 is somehow malformed. In this case, we assume the field does not
6717 require any alignment. */
6718 if (name == NULL)
6719 return 1;
6720
6721 len = strlen (name);
6722
6723 if (!isdigit (name[len - 1]))
6724 return 1;
6725
6726 if (isdigit (name[len - 2]))
6727 align_offset = len - 2;
6728 else
6729 align_offset = len - 1;
6730
6731 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6732 return TARGET_CHAR_BIT;
6733
6734 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6735 }
6736
6737 /* Find a symbol named NAME. Ignores ambiguity. */
6738
6739 struct symbol *
6740 ada_find_any_symbol (const char *name)
6741 {
6742 struct symbol *sym;
6743
6744 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6745 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6746 return sym;
6747
6748 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6749 return sym;
6750 }
6751
6752 /* Find a type named NAME. Ignores ambiguity. This routine will look
6753 solely for types defined by debug info, it will not search the GDB
6754 primitive types. */
6755
6756 struct type *
6757 ada_find_any_type (const char *name)
6758 {
6759 struct symbol *sym = ada_find_any_symbol (name);
6760
6761 if (sym != NULL)
6762 return SYMBOL_TYPE (sym);
6763
6764 return NULL;
6765 }
6766
6767 /* Given NAME and an associated BLOCK, search all symbols for
6768 NAME suffixed with "___XR", which is the ``renaming'' symbol
6769 associated to NAME. Return this symbol if found, return
6770 NULL otherwise. */
6771
6772 struct symbol *
6773 ada_find_renaming_symbol (const char *name, struct block *block)
6774 {
6775 struct symbol *sym;
6776
6777 sym = find_old_style_renaming_symbol (name, block);
6778
6779 if (sym != NULL)
6780 return sym;
6781
6782 /* Not right yet. FIXME pnh 7/20/2007. */
6783 sym = ada_find_any_symbol (name);
6784 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6785 return sym;
6786 else
6787 return NULL;
6788 }
6789
6790 static struct symbol *
6791 find_old_style_renaming_symbol (const char *name, struct block *block)
6792 {
6793 const struct symbol *function_sym = block_linkage_function (block);
6794 char *rename;
6795
6796 if (function_sym != NULL)
6797 {
6798 /* If the symbol is defined inside a function, NAME is not fully
6799 qualified. This means we need to prepend the function name
6800 as well as adding the ``___XR'' suffix to build the name of
6801 the associated renaming symbol. */
6802 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6803 /* Function names sometimes contain suffixes used
6804 for instance to qualify nested subprograms. When building
6805 the XR type name, we need to make sure that this suffix is
6806 not included. So do not include any suffix in the function
6807 name length below. */
6808 int function_name_len = ada_name_prefix_len (function_name);
6809 const int rename_len = function_name_len + 2 /* "__" */
6810 + strlen (name) + 6 /* "___XR\0" */ ;
6811
6812 /* Strip the suffix if necessary. */
6813 ada_remove_trailing_digits (function_name, &function_name_len);
6814 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6815 ada_remove_Xbn_suffix (function_name, &function_name_len);
6816
6817 /* Library-level functions are a special case, as GNAT adds
6818 a ``_ada_'' prefix to the function name to avoid namespace
6819 pollution. However, the renaming symbols themselves do not
6820 have this prefix, so we need to skip this prefix if present. */
6821 if (function_name_len > 5 /* "_ada_" */
6822 && strstr (function_name, "_ada_") == function_name)
6823 {
6824 function_name += 5;
6825 function_name_len -= 5;
6826 }
6827
6828 rename = (char *) alloca (rename_len * sizeof (char));
6829 strncpy (rename, function_name, function_name_len);
6830 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6831 "__%s___XR", name);
6832 }
6833 else
6834 {
6835 const int rename_len = strlen (name) + 6;
6836
6837 rename = (char *) alloca (rename_len * sizeof (char));
6838 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6839 }
6840
6841 return ada_find_any_symbol (rename);
6842 }
6843
6844 /* Because of GNAT encoding conventions, several GDB symbols may match a
6845 given type name. If the type denoted by TYPE0 is to be preferred to
6846 that of TYPE1 for purposes of type printing, return non-zero;
6847 otherwise return 0. */
6848
6849 int
6850 ada_prefer_type (struct type *type0, struct type *type1)
6851 {
6852 if (type1 == NULL)
6853 return 1;
6854 else if (type0 == NULL)
6855 return 0;
6856 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6857 return 1;
6858 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6859 return 0;
6860 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6861 return 1;
6862 else if (ada_is_constrained_packed_array_type (type0))
6863 return 1;
6864 else if (ada_is_array_descriptor_type (type0)
6865 && !ada_is_array_descriptor_type (type1))
6866 return 1;
6867 else
6868 {
6869 const char *type0_name = type_name_no_tag (type0);
6870 const char *type1_name = type_name_no_tag (type1);
6871
6872 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6873 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6874 return 1;
6875 }
6876 return 0;
6877 }
6878
6879 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6880 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6881
6882 char *
6883 ada_type_name (struct type *type)
6884 {
6885 if (type == NULL)
6886 return NULL;
6887 else if (TYPE_NAME (type) != NULL)
6888 return TYPE_NAME (type);
6889 else
6890 return TYPE_TAG_NAME (type);
6891 }
6892
6893 /* Search the list of "descriptive" types associated to TYPE for a type
6894 whose name is NAME. */
6895
6896 static struct type *
6897 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6898 {
6899 struct type *result;
6900
6901 /* If there no descriptive-type info, then there is no parallel type
6902 to be found. */
6903 if (!HAVE_GNAT_AUX_INFO (type))
6904 return NULL;
6905
6906 result = TYPE_DESCRIPTIVE_TYPE (type);
6907 while (result != NULL)
6908 {
6909 char *result_name = ada_type_name (result);
6910
6911 if (result_name == NULL)
6912 {
6913 warning (_("unexpected null name on descriptive type"));
6914 return NULL;
6915 }
6916
6917 /* If the names match, stop. */
6918 if (strcmp (result_name, name) == 0)
6919 break;
6920
6921 /* Otherwise, look at the next item on the list, if any. */
6922 if (HAVE_GNAT_AUX_INFO (result))
6923 result = TYPE_DESCRIPTIVE_TYPE (result);
6924 else
6925 result = NULL;
6926 }
6927
6928 /* If we didn't find a match, see whether this is a packed array. With
6929 older compilers, the descriptive type information is either absent or
6930 irrelevant when it comes to packed arrays so the above lookup fails.
6931 Fall back to using a parallel lookup by name in this case. */
6932 if (result == NULL && ada_is_constrained_packed_array_type (type))
6933 return ada_find_any_type (name);
6934
6935 return result;
6936 }
6937
6938 /* Find a parallel type to TYPE with the specified NAME, using the
6939 descriptive type taken from the debugging information, if available,
6940 and otherwise using the (slower) name-based method. */
6941
6942 static struct type *
6943 ada_find_parallel_type_with_name (struct type *type, const char *name)
6944 {
6945 struct type *result = NULL;
6946
6947 if (HAVE_GNAT_AUX_INFO (type))
6948 result = find_parallel_type_by_descriptive_type (type, name);
6949 else
6950 result = ada_find_any_type (name);
6951
6952 return result;
6953 }
6954
6955 /* Same as above, but specify the name of the parallel type by appending
6956 SUFFIX to the name of TYPE. */
6957
6958 struct type *
6959 ada_find_parallel_type (struct type *type, const char *suffix)
6960 {
6961 char *name, *typename = ada_type_name (type);
6962 int len;
6963
6964 if (typename == NULL)
6965 return NULL;
6966
6967 len = strlen (typename);
6968
6969 name = (char *) alloca (len + strlen (suffix) + 1);
6970
6971 strcpy (name, typename);
6972 strcpy (name + len, suffix);
6973
6974 return ada_find_parallel_type_with_name (type, name);
6975 }
6976
6977 /* If TYPE is a variable-size record type, return the corresponding template
6978 type describing its fields. Otherwise, return NULL. */
6979
6980 static struct type *
6981 dynamic_template_type (struct type *type)
6982 {
6983 type = ada_check_typedef (type);
6984
6985 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6986 || ada_type_name (type) == NULL)
6987 return NULL;
6988 else
6989 {
6990 int len = strlen (ada_type_name (type));
6991
6992 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6993 return type;
6994 else
6995 return ada_find_parallel_type (type, "___XVE");
6996 }
6997 }
6998
6999 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7000 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7001
7002 static int
7003 is_dynamic_field (struct type *templ_type, int field_num)
7004 {
7005 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7006
7007 return name != NULL
7008 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7009 && strstr (name, "___XVL") != NULL;
7010 }
7011
7012 /* The index of the variant field of TYPE, or -1 if TYPE does not
7013 represent a variant record type. */
7014
7015 static int
7016 variant_field_index (struct type *type)
7017 {
7018 int f;
7019
7020 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7021 return -1;
7022
7023 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7024 {
7025 if (ada_is_variant_part (type, f))
7026 return f;
7027 }
7028 return -1;
7029 }
7030
7031 /* A record type with no fields. */
7032
7033 static struct type *
7034 empty_record (struct type *template)
7035 {
7036 struct type *type = alloc_type_copy (template);
7037
7038 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7039 TYPE_NFIELDS (type) = 0;
7040 TYPE_FIELDS (type) = NULL;
7041 INIT_CPLUS_SPECIFIC (type);
7042 TYPE_NAME (type) = "<empty>";
7043 TYPE_TAG_NAME (type) = NULL;
7044 TYPE_LENGTH (type) = 0;
7045 return type;
7046 }
7047
7048 /* An ordinary record type (with fixed-length fields) that describes
7049 the value of type TYPE at VALADDR or ADDRESS (see comments at
7050 the beginning of this section) VAL according to GNAT conventions.
7051 DVAL0 should describe the (portion of a) record that contains any
7052 necessary discriminants. It should be NULL if value_type (VAL) is
7053 an outer-level type (i.e., as opposed to a branch of a variant.) A
7054 variant field (unless unchecked) is replaced by a particular branch
7055 of the variant.
7056
7057 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7058 length are not statically known are discarded. As a consequence,
7059 VALADDR, ADDRESS and DVAL0 are ignored.
7060
7061 NOTE: Limitations: For now, we assume that dynamic fields and
7062 variants occupy whole numbers of bytes. However, they need not be
7063 byte-aligned. */
7064
7065 struct type *
7066 ada_template_to_fixed_record_type_1 (struct type *type,
7067 const gdb_byte *valaddr,
7068 CORE_ADDR address, struct value *dval0,
7069 int keep_dynamic_fields)
7070 {
7071 struct value *mark = value_mark ();
7072 struct value *dval;
7073 struct type *rtype;
7074 int nfields, bit_len;
7075 int variant_field;
7076 long off;
7077 int fld_bit_len;
7078 int f;
7079
7080 /* Compute the number of fields in this record type that are going
7081 to be processed: unless keep_dynamic_fields, this includes only
7082 fields whose position and length are static will be processed. */
7083 if (keep_dynamic_fields)
7084 nfields = TYPE_NFIELDS (type);
7085 else
7086 {
7087 nfields = 0;
7088 while (nfields < TYPE_NFIELDS (type)
7089 && !ada_is_variant_part (type, nfields)
7090 && !is_dynamic_field (type, nfields))
7091 nfields++;
7092 }
7093
7094 rtype = alloc_type_copy (type);
7095 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7096 INIT_CPLUS_SPECIFIC (rtype);
7097 TYPE_NFIELDS (rtype) = nfields;
7098 TYPE_FIELDS (rtype) = (struct field *)
7099 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7100 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7101 TYPE_NAME (rtype) = ada_type_name (type);
7102 TYPE_TAG_NAME (rtype) = NULL;
7103 TYPE_FIXED_INSTANCE (rtype) = 1;
7104
7105 off = 0;
7106 bit_len = 0;
7107 variant_field = -1;
7108
7109 for (f = 0; f < nfields; f += 1)
7110 {
7111 off = align_value (off, field_alignment (type, f))
7112 + TYPE_FIELD_BITPOS (type, f);
7113 TYPE_FIELD_BITPOS (rtype, f) = off;
7114 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7115
7116 if (ada_is_variant_part (type, f))
7117 {
7118 variant_field = f;
7119 fld_bit_len = 0;
7120 }
7121 else if (is_dynamic_field (type, f))
7122 {
7123 const gdb_byte *field_valaddr = valaddr;
7124 CORE_ADDR field_address = address;
7125 struct type *field_type =
7126 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7127
7128 if (dval0 == NULL)
7129 {
7130 /* rtype's length is computed based on the run-time
7131 value of discriminants. If the discriminants are not
7132 initialized, the type size may be completely bogus and
7133 GDB may fail to allocate a value for it. So check the
7134 size first before creating the value. */
7135 check_size (rtype);
7136 dval = value_from_contents_and_address (rtype, valaddr, address);
7137 }
7138 else
7139 dval = dval0;
7140
7141 /* If the type referenced by this field is an aligner type, we need
7142 to unwrap that aligner type, because its size might not be set.
7143 Keeping the aligner type would cause us to compute the wrong
7144 size for this field, impacting the offset of the all the fields
7145 that follow this one. */
7146 if (ada_is_aligner_type (field_type))
7147 {
7148 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7149
7150 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7151 field_address = cond_offset_target (field_address, field_offset);
7152 field_type = ada_aligned_type (field_type);
7153 }
7154
7155 field_valaddr = cond_offset_host (field_valaddr,
7156 off / TARGET_CHAR_BIT);
7157 field_address = cond_offset_target (field_address,
7158 off / TARGET_CHAR_BIT);
7159
7160 /* Get the fixed type of the field. Note that, in this case,
7161 we do not want to get the real type out of the tag: if
7162 the current field is the parent part of a tagged record,
7163 we will get the tag of the object. Clearly wrong: the real
7164 type of the parent is not the real type of the child. We
7165 would end up in an infinite loop. */
7166 field_type = ada_get_base_type (field_type);
7167 field_type = ada_to_fixed_type (field_type, field_valaddr,
7168 field_address, dval, 0);
7169 /* If the field size is already larger than the maximum
7170 object size, then the record itself will necessarily
7171 be larger than the maximum object size. We need to make
7172 this check now, because the size might be so ridiculously
7173 large (due to an uninitialized variable in the inferior)
7174 that it would cause an overflow when adding it to the
7175 record size. */
7176 check_size (field_type);
7177
7178 TYPE_FIELD_TYPE (rtype, f) = field_type;
7179 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7180 /* The multiplication can potentially overflow. But because
7181 the field length has been size-checked just above, and
7182 assuming that the maximum size is a reasonable value,
7183 an overflow should not happen in practice. So rather than
7184 adding overflow recovery code to this already complex code,
7185 we just assume that it's not going to happen. */
7186 fld_bit_len =
7187 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7188 }
7189 else
7190 {
7191 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7192
7193 /* If our field is a typedef type (most likely a typedef of
7194 a fat pointer, encoding an array access), then we need to
7195 look at its target type to determine its characteristics.
7196 In particular, we would miscompute the field size if we took
7197 the size of the typedef (zero), instead of the size of
7198 the target type. */
7199 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7200 field_type = ada_typedef_target_type (field_type);
7201
7202 TYPE_FIELD_TYPE (rtype, f) = field_type;
7203 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7204 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7205 fld_bit_len =
7206 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7207 else
7208 fld_bit_len =
7209 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7210 }
7211 if (off + fld_bit_len > bit_len)
7212 bit_len = off + fld_bit_len;
7213 off += fld_bit_len;
7214 TYPE_LENGTH (rtype) =
7215 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7216 }
7217
7218 /* We handle the variant part, if any, at the end because of certain
7219 odd cases in which it is re-ordered so as NOT to be the last field of
7220 the record. This can happen in the presence of representation
7221 clauses. */
7222 if (variant_field >= 0)
7223 {
7224 struct type *branch_type;
7225
7226 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7227
7228 if (dval0 == NULL)
7229 dval = value_from_contents_and_address (rtype, valaddr, address);
7230 else
7231 dval = dval0;
7232
7233 branch_type =
7234 to_fixed_variant_branch_type
7235 (TYPE_FIELD_TYPE (type, variant_field),
7236 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7237 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7238 if (branch_type == NULL)
7239 {
7240 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7241 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7242 TYPE_NFIELDS (rtype) -= 1;
7243 }
7244 else
7245 {
7246 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7247 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7248 fld_bit_len =
7249 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7250 TARGET_CHAR_BIT;
7251 if (off + fld_bit_len > bit_len)
7252 bit_len = off + fld_bit_len;
7253 TYPE_LENGTH (rtype) =
7254 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7255 }
7256 }
7257
7258 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7259 should contain the alignment of that record, which should be a strictly
7260 positive value. If null or negative, then something is wrong, most
7261 probably in the debug info. In that case, we don't round up the size
7262 of the resulting type. If this record is not part of another structure,
7263 the current RTYPE length might be good enough for our purposes. */
7264 if (TYPE_LENGTH (type) <= 0)
7265 {
7266 if (TYPE_NAME (rtype))
7267 warning (_("Invalid type size for `%s' detected: %d."),
7268 TYPE_NAME (rtype), TYPE_LENGTH (type));
7269 else
7270 warning (_("Invalid type size for <unnamed> detected: %d."),
7271 TYPE_LENGTH (type));
7272 }
7273 else
7274 {
7275 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7276 TYPE_LENGTH (type));
7277 }
7278
7279 value_free_to_mark (mark);
7280 if (TYPE_LENGTH (rtype) > varsize_limit)
7281 error (_("record type with dynamic size is larger than varsize-limit"));
7282 return rtype;
7283 }
7284
7285 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7286 of 1. */
7287
7288 static struct type *
7289 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7290 CORE_ADDR address, struct value *dval0)
7291 {
7292 return ada_template_to_fixed_record_type_1 (type, valaddr,
7293 address, dval0, 1);
7294 }
7295
7296 /* An ordinary record type in which ___XVL-convention fields and
7297 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7298 static approximations, containing all possible fields. Uses
7299 no runtime values. Useless for use in values, but that's OK,
7300 since the results are used only for type determinations. Works on both
7301 structs and unions. Representation note: to save space, we memorize
7302 the result of this function in the TYPE_TARGET_TYPE of the
7303 template type. */
7304
7305 static struct type *
7306 template_to_static_fixed_type (struct type *type0)
7307 {
7308 struct type *type;
7309 int nfields;
7310 int f;
7311
7312 if (TYPE_TARGET_TYPE (type0) != NULL)
7313 return TYPE_TARGET_TYPE (type0);
7314
7315 nfields = TYPE_NFIELDS (type0);
7316 type = type0;
7317
7318 for (f = 0; f < nfields; f += 1)
7319 {
7320 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7321 struct type *new_type;
7322
7323 if (is_dynamic_field (type0, f))
7324 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7325 else
7326 new_type = static_unwrap_type (field_type);
7327 if (type == type0 && new_type != field_type)
7328 {
7329 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7330 TYPE_CODE (type) = TYPE_CODE (type0);
7331 INIT_CPLUS_SPECIFIC (type);
7332 TYPE_NFIELDS (type) = nfields;
7333 TYPE_FIELDS (type) = (struct field *)
7334 TYPE_ALLOC (type, nfields * sizeof (struct field));
7335 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7336 sizeof (struct field) * nfields);
7337 TYPE_NAME (type) = ada_type_name (type0);
7338 TYPE_TAG_NAME (type) = NULL;
7339 TYPE_FIXED_INSTANCE (type) = 1;
7340 TYPE_LENGTH (type) = 0;
7341 }
7342 TYPE_FIELD_TYPE (type, f) = new_type;
7343 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7344 }
7345 return type;
7346 }
7347
7348 /* Given an object of type TYPE whose contents are at VALADDR and
7349 whose address in memory is ADDRESS, returns a revision of TYPE,
7350 which should be a non-dynamic-sized record, in which the variant
7351 part, if any, is replaced with the appropriate branch. Looks
7352 for discriminant values in DVAL0, which can be NULL if the record
7353 contains the necessary discriminant values. */
7354
7355 static struct type *
7356 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7357 CORE_ADDR address, struct value *dval0)
7358 {
7359 struct value *mark = value_mark ();
7360 struct value *dval;
7361 struct type *rtype;
7362 struct type *branch_type;
7363 int nfields = TYPE_NFIELDS (type);
7364 int variant_field = variant_field_index (type);
7365
7366 if (variant_field == -1)
7367 return type;
7368
7369 if (dval0 == NULL)
7370 dval = value_from_contents_and_address (type, valaddr, address);
7371 else
7372 dval = dval0;
7373
7374 rtype = alloc_type_copy (type);
7375 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7376 INIT_CPLUS_SPECIFIC (rtype);
7377 TYPE_NFIELDS (rtype) = nfields;
7378 TYPE_FIELDS (rtype) =
7379 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7380 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7381 sizeof (struct field) * nfields);
7382 TYPE_NAME (rtype) = ada_type_name (type);
7383 TYPE_TAG_NAME (rtype) = NULL;
7384 TYPE_FIXED_INSTANCE (rtype) = 1;
7385 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7386
7387 branch_type = to_fixed_variant_branch_type
7388 (TYPE_FIELD_TYPE (type, variant_field),
7389 cond_offset_host (valaddr,
7390 TYPE_FIELD_BITPOS (type, variant_field)
7391 / TARGET_CHAR_BIT),
7392 cond_offset_target (address,
7393 TYPE_FIELD_BITPOS (type, variant_field)
7394 / TARGET_CHAR_BIT), dval);
7395 if (branch_type == NULL)
7396 {
7397 int f;
7398
7399 for (f = variant_field + 1; f < nfields; f += 1)
7400 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7401 TYPE_NFIELDS (rtype) -= 1;
7402 }
7403 else
7404 {
7405 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7406 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7407 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7408 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7409 }
7410 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7411
7412 value_free_to_mark (mark);
7413 return rtype;
7414 }
7415
7416 /* An ordinary record type (with fixed-length fields) that describes
7417 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7418 beginning of this section]. Any necessary discriminants' values
7419 should be in DVAL, a record value; it may be NULL if the object
7420 at ADDR itself contains any necessary discriminant values.
7421 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7422 values from the record are needed. Except in the case that DVAL,
7423 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7424 unchecked) is replaced by a particular branch of the variant.
7425
7426 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7427 is questionable and may be removed. It can arise during the
7428 processing of an unconstrained-array-of-record type where all the
7429 variant branches have exactly the same size. This is because in
7430 such cases, the compiler does not bother to use the XVS convention
7431 when encoding the record. I am currently dubious of this
7432 shortcut and suspect the compiler should be altered. FIXME. */
7433
7434 static struct type *
7435 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7436 CORE_ADDR address, struct value *dval)
7437 {
7438 struct type *templ_type;
7439
7440 if (TYPE_FIXED_INSTANCE (type0))
7441 return type0;
7442
7443 templ_type = dynamic_template_type (type0);
7444
7445 if (templ_type != NULL)
7446 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7447 else if (variant_field_index (type0) >= 0)
7448 {
7449 if (dval == NULL && valaddr == NULL && address == 0)
7450 return type0;
7451 return to_record_with_fixed_variant_part (type0, valaddr, address,
7452 dval);
7453 }
7454 else
7455 {
7456 TYPE_FIXED_INSTANCE (type0) = 1;
7457 return type0;
7458 }
7459
7460 }
7461
7462 /* An ordinary record type (with fixed-length fields) that describes
7463 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7464 union type. Any necessary discriminants' values should be in DVAL,
7465 a record value. That is, this routine selects the appropriate
7466 branch of the union at ADDR according to the discriminant value
7467 indicated in the union's type name. Returns VAR_TYPE0 itself if
7468 it represents a variant subject to a pragma Unchecked_Union. */
7469
7470 static struct type *
7471 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7472 CORE_ADDR address, struct value *dval)
7473 {
7474 int which;
7475 struct type *templ_type;
7476 struct type *var_type;
7477
7478 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7479 var_type = TYPE_TARGET_TYPE (var_type0);
7480 else
7481 var_type = var_type0;
7482
7483 templ_type = ada_find_parallel_type (var_type, "___XVU");
7484
7485 if (templ_type != NULL)
7486 var_type = templ_type;
7487
7488 if (is_unchecked_variant (var_type, value_type (dval)))
7489 return var_type0;
7490 which =
7491 ada_which_variant_applies (var_type,
7492 value_type (dval), value_contents (dval));
7493
7494 if (which < 0)
7495 return empty_record (var_type);
7496 else if (is_dynamic_field (var_type, which))
7497 return to_fixed_record_type
7498 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7499 valaddr, address, dval);
7500 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7501 return
7502 to_fixed_record_type
7503 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7504 else
7505 return TYPE_FIELD_TYPE (var_type, which);
7506 }
7507
7508 /* Assuming that TYPE0 is an array type describing the type of a value
7509 at ADDR, and that DVAL describes a record containing any
7510 discriminants used in TYPE0, returns a type for the value that
7511 contains no dynamic components (that is, no components whose sizes
7512 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7513 true, gives an error message if the resulting type's size is over
7514 varsize_limit. */
7515
7516 static struct type *
7517 to_fixed_array_type (struct type *type0, struct value *dval,
7518 int ignore_too_big)
7519 {
7520 struct type *index_type_desc;
7521 struct type *result;
7522 int constrained_packed_array_p;
7523
7524 if (TYPE_FIXED_INSTANCE (type0))
7525 return type0;
7526
7527 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7528 if (constrained_packed_array_p)
7529 type0 = decode_constrained_packed_array_type (type0);
7530
7531 index_type_desc = ada_find_parallel_type (type0, "___XA");
7532 ada_fixup_array_indexes_type (index_type_desc);
7533 if (index_type_desc == NULL)
7534 {
7535 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7536
7537 /* NOTE: elt_type---the fixed version of elt_type0---should never
7538 depend on the contents of the array in properly constructed
7539 debugging data. */
7540 /* Create a fixed version of the array element type.
7541 We're not providing the address of an element here,
7542 and thus the actual object value cannot be inspected to do
7543 the conversion. This should not be a problem, since arrays of
7544 unconstrained objects are not allowed. In particular, all
7545 the elements of an array of a tagged type should all be of
7546 the same type specified in the debugging info. No need to
7547 consult the object tag. */
7548 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7549
7550 /* Make sure we always create a new array type when dealing with
7551 packed array types, since we're going to fix-up the array
7552 type length and element bitsize a little further down. */
7553 if (elt_type0 == elt_type && !constrained_packed_array_p)
7554 result = type0;
7555 else
7556 result = create_array_type (alloc_type_copy (type0),
7557 elt_type, TYPE_INDEX_TYPE (type0));
7558 }
7559 else
7560 {
7561 int i;
7562 struct type *elt_type0;
7563
7564 elt_type0 = type0;
7565 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7566 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7567
7568 /* NOTE: result---the fixed version of elt_type0---should never
7569 depend on the contents of the array in properly constructed
7570 debugging data. */
7571 /* Create a fixed version of the array element type.
7572 We're not providing the address of an element here,
7573 and thus the actual object value cannot be inspected to do
7574 the conversion. This should not be a problem, since arrays of
7575 unconstrained objects are not allowed. In particular, all
7576 the elements of an array of a tagged type should all be of
7577 the same type specified in the debugging info. No need to
7578 consult the object tag. */
7579 result =
7580 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7581
7582 elt_type0 = type0;
7583 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7584 {
7585 struct type *range_type =
7586 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7587
7588 result = create_array_type (alloc_type_copy (elt_type0),
7589 result, range_type);
7590 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7591 }
7592 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7593 error (_("array type with dynamic size is larger than varsize-limit"));
7594 }
7595
7596 if (constrained_packed_array_p)
7597 {
7598 /* So far, the resulting type has been created as if the original
7599 type was a regular (non-packed) array type. As a result, the
7600 bitsize of the array elements needs to be set again, and the array
7601 length needs to be recomputed based on that bitsize. */
7602 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7603 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7604
7605 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7606 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7607 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7608 TYPE_LENGTH (result)++;
7609 }
7610
7611 TYPE_FIXED_INSTANCE (result) = 1;
7612 return result;
7613 }
7614
7615
7616 /* A standard type (containing no dynamically sized components)
7617 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7618 DVAL describes a record containing any discriminants used in TYPE0,
7619 and may be NULL if there are none, or if the object of type TYPE at
7620 ADDRESS or in VALADDR contains these discriminants.
7621
7622 If CHECK_TAG is not null, in the case of tagged types, this function
7623 attempts to locate the object's tag and use it to compute the actual
7624 type. However, when ADDRESS is null, we cannot use it to determine the
7625 location of the tag, and therefore compute the tagged type's actual type.
7626 So we return the tagged type without consulting the tag. */
7627
7628 static struct type *
7629 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7630 CORE_ADDR address, struct value *dval, int check_tag)
7631 {
7632 type = ada_check_typedef (type);
7633 switch (TYPE_CODE (type))
7634 {
7635 default:
7636 return type;
7637 case TYPE_CODE_STRUCT:
7638 {
7639 struct type *static_type = to_static_fixed_type (type);
7640 struct type *fixed_record_type =
7641 to_fixed_record_type (type, valaddr, address, NULL);
7642
7643 /* If STATIC_TYPE is a tagged type and we know the object's address,
7644 then we can determine its tag, and compute the object's actual
7645 type from there. Note that we have to use the fixed record
7646 type (the parent part of the record may have dynamic fields
7647 and the way the location of _tag is expressed may depend on
7648 them). */
7649
7650 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7651 {
7652 struct type *real_type =
7653 type_from_tag (value_tag_from_contents_and_address
7654 (fixed_record_type,
7655 valaddr,
7656 address));
7657
7658 if (real_type != NULL)
7659 return to_fixed_record_type (real_type, valaddr, address, NULL);
7660 }
7661
7662 /* Check to see if there is a parallel ___XVZ variable.
7663 If there is, then it provides the actual size of our type. */
7664 else if (ada_type_name (fixed_record_type) != NULL)
7665 {
7666 char *name = ada_type_name (fixed_record_type);
7667 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7668 int xvz_found = 0;
7669 LONGEST size;
7670
7671 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7672 size = get_int_var_value (xvz_name, &xvz_found);
7673 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7674 {
7675 fixed_record_type = copy_type (fixed_record_type);
7676 TYPE_LENGTH (fixed_record_type) = size;
7677
7678 /* The FIXED_RECORD_TYPE may have be a stub. We have
7679 observed this when the debugging info is STABS, and
7680 apparently it is something that is hard to fix.
7681
7682 In practice, we don't need the actual type definition
7683 at all, because the presence of the XVZ variable allows us
7684 to assume that there must be a XVS type as well, which we
7685 should be able to use later, when we need the actual type
7686 definition.
7687
7688 In the meantime, pretend that the "fixed" type we are
7689 returning is NOT a stub, because this can cause trouble
7690 when using this type to create new types targeting it.
7691 Indeed, the associated creation routines often check
7692 whether the target type is a stub and will try to replace
7693 it, thus using a type with the wrong size. This, in turn,
7694 might cause the new type to have the wrong size too.
7695 Consider the case of an array, for instance, where the size
7696 of the array is computed from the number of elements in
7697 our array multiplied by the size of its element. */
7698 TYPE_STUB (fixed_record_type) = 0;
7699 }
7700 }
7701 return fixed_record_type;
7702 }
7703 case TYPE_CODE_ARRAY:
7704 return to_fixed_array_type (type, dval, 1);
7705 case TYPE_CODE_UNION:
7706 if (dval == NULL)
7707 return type;
7708 else
7709 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7710 }
7711 }
7712
7713 /* The same as ada_to_fixed_type_1, except that it preserves the type
7714 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7715
7716 The typedef layer needs be preserved in order to differentiate between
7717 arrays and array pointers when both types are implemented using the same
7718 fat pointer. In the array pointer case, the pointer is encoded as
7719 a typedef of the pointer type. For instance, considering:
7720
7721 type String_Access is access String;
7722 S1 : String_Access := null;
7723
7724 To the debugger, S1 is defined as a typedef of type String. But
7725 to the user, it is a pointer. So if the user tries to print S1,
7726 we should not dereference the array, but print the array address
7727 instead.
7728
7729 If we didn't preserve the typedef layer, we would lose the fact that
7730 the type is to be presented as a pointer (needs de-reference before
7731 being printed). And we would also use the source-level type name. */
7732
7733 struct type *
7734 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7735 CORE_ADDR address, struct value *dval, int check_tag)
7736
7737 {
7738 struct type *fixed_type =
7739 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7740
7741 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7742 then preserve the typedef layer.
7743
7744 Implementation note: We can only check the main-type portion of
7745 the TYPE and FIXED_TYPE, because eliminating the typedef layer
7746 from TYPE now returns a type that has the same instance flags
7747 as TYPE. For instance, if TYPE is a "typedef const", and its
7748 target type is a "struct", then the typedef elimination will return
7749 a "const" version of the target type. See check_typedef for more
7750 details about how the typedef layer elimination is done.
7751
7752 brobecker/2010-11-19: It seems to me that the only case where it is
7753 useful to preserve the typedef layer is when dealing with fat pointers.
7754 Perhaps, we could add a check for that and preserve the typedef layer
7755 only in that situation. But this seems unecessary so far, probably
7756 because we call check_typedef/ada_check_typedef pretty much everywhere.
7757 */
7758 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7759 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
7760 == TYPE_MAIN_TYPE (fixed_type)))
7761 return type;
7762
7763 return fixed_type;
7764 }
7765
7766 /* A standard (static-sized) type corresponding as well as possible to
7767 TYPE0, but based on no runtime data. */
7768
7769 static struct type *
7770 to_static_fixed_type (struct type *type0)
7771 {
7772 struct type *type;
7773
7774 if (type0 == NULL)
7775 return NULL;
7776
7777 if (TYPE_FIXED_INSTANCE (type0))
7778 return type0;
7779
7780 type0 = ada_check_typedef (type0);
7781
7782 switch (TYPE_CODE (type0))
7783 {
7784 default:
7785 return type0;
7786 case TYPE_CODE_STRUCT:
7787 type = dynamic_template_type (type0);
7788 if (type != NULL)
7789 return template_to_static_fixed_type (type);
7790 else
7791 return template_to_static_fixed_type (type0);
7792 case TYPE_CODE_UNION:
7793 type = ada_find_parallel_type (type0, "___XVU");
7794 if (type != NULL)
7795 return template_to_static_fixed_type (type);
7796 else
7797 return template_to_static_fixed_type (type0);
7798 }
7799 }
7800
7801 /* A static approximation of TYPE with all type wrappers removed. */
7802
7803 static struct type *
7804 static_unwrap_type (struct type *type)
7805 {
7806 if (ada_is_aligner_type (type))
7807 {
7808 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7809 if (ada_type_name (type1) == NULL)
7810 TYPE_NAME (type1) = ada_type_name (type);
7811
7812 return static_unwrap_type (type1);
7813 }
7814 else
7815 {
7816 struct type *raw_real_type = ada_get_base_type (type);
7817
7818 if (raw_real_type == type)
7819 return type;
7820 else
7821 return to_static_fixed_type (raw_real_type);
7822 }
7823 }
7824
7825 /* In some cases, incomplete and private types require
7826 cross-references that are not resolved as records (for example,
7827 type Foo;
7828 type FooP is access Foo;
7829 V: FooP;
7830 type Foo is array ...;
7831 ). In these cases, since there is no mechanism for producing
7832 cross-references to such types, we instead substitute for FooP a
7833 stub enumeration type that is nowhere resolved, and whose tag is
7834 the name of the actual type. Call these types "non-record stubs". */
7835
7836 /* A type equivalent to TYPE that is not a non-record stub, if one
7837 exists, otherwise TYPE. */
7838
7839 struct type *
7840 ada_check_typedef (struct type *type)
7841 {
7842 if (type == NULL)
7843 return NULL;
7844
7845 /* If our type is a typedef type of a fat pointer, then we're done.
7846 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
7847 what allows us to distinguish between fat pointers that represent
7848 array types, and fat pointers that represent array access types
7849 (in both cases, the compiler implements them as fat pointers). */
7850 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7851 && is_thick_pntr (ada_typedef_target_type (type)))
7852 return type;
7853
7854 CHECK_TYPEDEF (type);
7855 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7856 || !TYPE_STUB (type)
7857 || TYPE_TAG_NAME (type) == NULL)
7858 return type;
7859 else
7860 {
7861 char *name = TYPE_TAG_NAME (type);
7862 struct type *type1 = ada_find_any_type (name);
7863
7864 if (type1 == NULL)
7865 return type;
7866
7867 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
7868 stubs pointing to arrays, as we don't create symbols for array
7869 types, only for the typedef-to-array types). If that's the case,
7870 strip the typedef layer. */
7871 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
7872 type1 = ada_check_typedef (type1);
7873
7874 return type1;
7875 }
7876 }
7877
7878 /* A value representing the data at VALADDR/ADDRESS as described by
7879 type TYPE0, but with a standard (static-sized) type that correctly
7880 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7881 type, then return VAL0 [this feature is simply to avoid redundant
7882 creation of struct values]. */
7883
7884 static struct value *
7885 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7886 struct value *val0)
7887 {
7888 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7889
7890 if (type == type0 && val0 != NULL)
7891 return val0;
7892 else
7893 return value_from_contents_and_address (type, 0, address);
7894 }
7895
7896 /* A value representing VAL, but with a standard (static-sized) type
7897 that correctly describes it. Does not necessarily create a new
7898 value. */
7899
7900 struct value *
7901 ada_to_fixed_value (struct value *val)
7902 {
7903 return ada_to_fixed_value_create (value_type (val),
7904 value_address (val),
7905 val);
7906 }
7907 \f
7908
7909 /* Attributes */
7910
7911 /* Table mapping attribute numbers to names.
7912 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7913
7914 static const char *attribute_names[] = {
7915 "<?>",
7916
7917 "first",
7918 "last",
7919 "length",
7920 "image",
7921 "max",
7922 "min",
7923 "modulus",
7924 "pos",
7925 "size",
7926 "tag",
7927 "val",
7928 0
7929 };
7930
7931 const char *
7932 ada_attribute_name (enum exp_opcode n)
7933 {
7934 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7935 return attribute_names[n - OP_ATR_FIRST + 1];
7936 else
7937 return attribute_names[0];
7938 }
7939
7940 /* Evaluate the 'POS attribute applied to ARG. */
7941
7942 static LONGEST
7943 pos_atr (struct value *arg)
7944 {
7945 struct value *val = coerce_ref (arg);
7946 struct type *type = value_type (val);
7947
7948 if (!discrete_type_p (type))
7949 error (_("'POS only defined on discrete types"));
7950
7951 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7952 {
7953 int i;
7954 LONGEST v = value_as_long (val);
7955
7956 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7957 {
7958 if (v == TYPE_FIELD_BITPOS (type, i))
7959 return i;
7960 }
7961 error (_("enumeration value is invalid: can't find 'POS"));
7962 }
7963 else
7964 return value_as_long (val);
7965 }
7966
7967 static struct value *
7968 value_pos_atr (struct type *type, struct value *arg)
7969 {
7970 return value_from_longest (type, pos_atr (arg));
7971 }
7972
7973 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7974
7975 static struct value *
7976 value_val_atr (struct type *type, struct value *arg)
7977 {
7978 if (!discrete_type_p (type))
7979 error (_("'VAL only defined on discrete types"));
7980 if (!integer_type_p (value_type (arg)))
7981 error (_("'VAL requires integral argument"));
7982
7983 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7984 {
7985 long pos = value_as_long (arg);
7986
7987 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7988 error (_("argument to 'VAL out of range"));
7989 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7990 }
7991 else
7992 return value_from_longest (type, value_as_long (arg));
7993 }
7994 \f
7995
7996 /* Evaluation */
7997
7998 /* True if TYPE appears to be an Ada character type.
7999 [At the moment, this is true only for Character and Wide_Character;
8000 It is a heuristic test that could stand improvement]. */
8001
8002 int
8003 ada_is_character_type (struct type *type)
8004 {
8005 const char *name;
8006
8007 /* If the type code says it's a character, then assume it really is,
8008 and don't check any further. */
8009 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8010 return 1;
8011
8012 /* Otherwise, assume it's a character type iff it is a discrete type
8013 with a known character type name. */
8014 name = ada_type_name (type);
8015 return (name != NULL
8016 && (TYPE_CODE (type) == TYPE_CODE_INT
8017 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8018 && (strcmp (name, "character") == 0
8019 || strcmp (name, "wide_character") == 0
8020 || strcmp (name, "wide_wide_character") == 0
8021 || strcmp (name, "unsigned char") == 0));
8022 }
8023
8024 /* True if TYPE appears to be an Ada string type. */
8025
8026 int
8027 ada_is_string_type (struct type *type)
8028 {
8029 type = ada_check_typedef (type);
8030 if (type != NULL
8031 && TYPE_CODE (type) != TYPE_CODE_PTR
8032 && (ada_is_simple_array_type (type)
8033 || ada_is_array_descriptor_type (type))
8034 && ada_array_arity (type) == 1)
8035 {
8036 struct type *elttype = ada_array_element_type (type, 1);
8037
8038 return ada_is_character_type (elttype);
8039 }
8040 else
8041 return 0;
8042 }
8043
8044 /* The compiler sometimes provides a parallel XVS type for a given
8045 PAD type. Normally, it is safe to follow the PAD type directly,
8046 but older versions of the compiler have a bug that causes the offset
8047 of its "F" field to be wrong. Following that field in that case
8048 would lead to incorrect results, but this can be worked around
8049 by ignoring the PAD type and using the associated XVS type instead.
8050
8051 Set to True if the debugger should trust the contents of PAD types.
8052 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8053 static int trust_pad_over_xvs = 1;
8054
8055 /* True if TYPE is a struct type introduced by the compiler to force the
8056 alignment of a value. Such types have a single field with a
8057 distinctive name. */
8058
8059 int
8060 ada_is_aligner_type (struct type *type)
8061 {
8062 type = ada_check_typedef (type);
8063
8064 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8065 return 0;
8066
8067 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8068 && TYPE_NFIELDS (type) == 1
8069 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8070 }
8071
8072 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8073 the parallel type. */
8074
8075 struct type *
8076 ada_get_base_type (struct type *raw_type)
8077 {
8078 struct type *real_type_namer;
8079 struct type *raw_real_type;
8080
8081 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8082 return raw_type;
8083
8084 if (ada_is_aligner_type (raw_type))
8085 /* The encoding specifies that we should always use the aligner type.
8086 So, even if this aligner type has an associated XVS type, we should
8087 simply ignore it.
8088
8089 According to the compiler gurus, an XVS type parallel to an aligner
8090 type may exist because of a stabs limitation. In stabs, aligner
8091 types are empty because the field has a variable-sized type, and
8092 thus cannot actually be used as an aligner type. As a result,
8093 we need the associated parallel XVS type to decode the type.
8094 Since the policy in the compiler is to not change the internal
8095 representation based on the debugging info format, we sometimes
8096 end up having a redundant XVS type parallel to the aligner type. */
8097 return raw_type;
8098
8099 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8100 if (real_type_namer == NULL
8101 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8102 || TYPE_NFIELDS (real_type_namer) != 1)
8103 return raw_type;
8104
8105 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8106 {
8107 /* This is an older encoding form where the base type needs to be
8108 looked up by name. We prefer the newer enconding because it is
8109 more efficient. */
8110 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8111 if (raw_real_type == NULL)
8112 return raw_type;
8113 else
8114 return raw_real_type;
8115 }
8116
8117 /* The field in our XVS type is a reference to the base type. */
8118 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8119 }
8120
8121 /* The type of value designated by TYPE, with all aligners removed. */
8122
8123 struct type *
8124 ada_aligned_type (struct type *type)
8125 {
8126 if (ada_is_aligner_type (type))
8127 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8128 else
8129 return ada_get_base_type (type);
8130 }
8131
8132
8133 /* The address of the aligned value in an object at address VALADDR
8134 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8135
8136 const gdb_byte *
8137 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8138 {
8139 if (ada_is_aligner_type (type))
8140 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8141 valaddr +
8142 TYPE_FIELD_BITPOS (type,
8143 0) / TARGET_CHAR_BIT);
8144 else
8145 return valaddr;
8146 }
8147
8148
8149
8150 /* The printed representation of an enumeration literal with encoded
8151 name NAME. The value is good to the next call of ada_enum_name. */
8152 const char *
8153 ada_enum_name (const char *name)
8154 {
8155 static char *result;
8156 static size_t result_len = 0;
8157 char *tmp;
8158
8159 /* First, unqualify the enumeration name:
8160 1. Search for the last '.' character. If we find one, then skip
8161 all the preceeding characters, the unqualified name starts
8162 right after that dot.
8163 2. Otherwise, we may be debugging on a target where the compiler
8164 translates dots into "__". Search forward for double underscores,
8165 but stop searching when we hit an overloading suffix, which is
8166 of the form "__" followed by digits. */
8167
8168 tmp = strrchr (name, '.');
8169 if (tmp != NULL)
8170 name = tmp + 1;
8171 else
8172 {
8173 while ((tmp = strstr (name, "__")) != NULL)
8174 {
8175 if (isdigit (tmp[2]))
8176 break;
8177 else
8178 name = tmp + 2;
8179 }
8180 }
8181
8182 if (name[0] == 'Q')
8183 {
8184 int v;
8185
8186 if (name[1] == 'U' || name[1] == 'W')
8187 {
8188 if (sscanf (name + 2, "%x", &v) != 1)
8189 return name;
8190 }
8191 else
8192 return name;
8193
8194 GROW_VECT (result, result_len, 16);
8195 if (isascii (v) && isprint (v))
8196 xsnprintf (result, result_len, "'%c'", v);
8197 else if (name[1] == 'U')
8198 xsnprintf (result, result_len, "[\"%02x\"]", v);
8199 else
8200 xsnprintf (result, result_len, "[\"%04x\"]", v);
8201
8202 return result;
8203 }
8204 else
8205 {
8206 tmp = strstr (name, "__");
8207 if (tmp == NULL)
8208 tmp = strstr (name, "$");
8209 if (tmp != NULL)
8210 {
8211 GROW_VECT (result, result_len, tmp - name + 1);
8212 strncpy (result, name, tmp - name);
8213 result[tmp - name] = '\0';
8214 return result;
8215 }
8216
8217 return name;
8218 }
8219 }
8220
8221 /* Evaluate the subexpression of EXP starting at *POS as for
8222 evaluate_type, updating *POS to point just past the evaluated
8223 expression. */
8224
8225 static struct value *
8226 evaluate_subexp_type (struct expression *exp, int *pos)
8227 {
8228 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8229 }
8230
8231 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8232 value it wraps. */
8233
8234 static struct value *
8235 unwrap_value (struct value *val)
8236 {
8237 struct type *type = ada_check_typedef (value_type (val));
8238
8239 if (ada_is_aligner_type (type))
8240 {
8241 struct value *v = ada_value_struct_elt (val, "F", 0);
8242 struct type *val_type = ada_check_typedef (value_type (v));
8243
8244 if (ada_type_name (val_type) == NULL)
8245 TYPE_NAME (val_type) = ada_type_name (type);
8246
8247 return unwrap_value (v);
8248 }
8249 else
8250 {
8251 struct type *raw_real_type =
8252 ada_check_typedef (ada_get_base_type (type));
8253
8254 /* If there is no parallel XVS or XVE type, then the value is
8255 already unwrapped. Return it without further modification. */
8256 if ((type == raw_real_type)
8257 && ada_find_parallel_type (type, "___XVE") == NULL)
8258 return val;
8259
8260 return
8261 coerce_unspec_val_to_type
8262 (val, ada_to_fixed_type (raw_real_type, 0,
8263 value_address (val),
8264 NULL, 1));
8265 }
8266 }
8267
8268 static struct value *
8269 cast_to_fixed (struct type *type, struct value *arg)
8270 {
8271 LONGEST val;
8272
8273 if (type == value_type (arg))
8274 return arg;
8275 else if (ada_is_fixed_point_type (value_type (arg)))
8276 val = ada_float_to_fixed (type,
8277 ada_fixed_to_float (value_type (arg),
8278 value_as_long (arg)));
8279 else
8280 {
8281 DOUBLEST argd = value_as_double (arg);
8282
8283 val = ada_float_to_fixed (type, argd);
8284 }
8285
8286 return value_from_longest (type, val);
8287 }
8288
8289 static struct value *
8290 cast_from_fixed (struct type *type, struct value *arg)
8291 {
8292 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8293 value_as_long (arg));
8294
8295 return value_from_double (type, val);
8296 }
8297
8298 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8299 return the converted value. */
8300
8301 static struct value *
8302 coerce_for_assign (struct type *type, struct value *val)
8303 {
8304 struct type *type2 = value_type (val);
8305
8306 if (type == type2)
8307 return val;
8308
8309 type2 = ada_check_typedef (type2);
8310 type = ada_check_typedef (type);
8311
8312 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8313 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8314 {
8315 val = ada_value_ind (val);
8316 type2 = value_type (val);
8317 }
8318
8319 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8320 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8321 {
8322 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8323 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8324 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8325 error (_("Incompatible types in assignment"));
8326 deprecated_set_value_type (val, type);
8327 }
8328 return val;
8329 }
8330
8331 static struct value *
8332 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8333 {
8334 struct value *val;
8335 struct type *type1, *type2;
8336 LONGEST v, v1, v2;
8337
8338 arg1 = coerce_ref (arg1);
8339 arg2 = coerce_ref (arg2);
8340 type1 = base_type (ada_check_typedef (value_type (arg1)));
8341 type2 = base_type (ada_check_typedef (value_type (arg2)));
8342
8343 if (TYPE_CODE (type1) != TYPE_CODE_INT
8344 || TYPE_CODE (type2) != TYPE_CODE_INT)
8345 return value_binop (arg1, arg2, op);
8346
8347 switch (op)
8348 {
8349 case BINOP_MOD:
8350 case BINOP_DIV:
8351 case BINOP_REM:
8352 break;
8353 default:
8354 return value_binop (arg1, arg2, op);
8355 }
8356
8357 v2 = value_as_long (arg2);
8358 if (v2 == 0)
8359 error (_("second operand of %s must not be zero."), op_string (op));
8360
8361 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8362 return value_binop (arg1, arg2, op);
8363
8364 v1 = value_as_long (arg1);
8365 switch (op)
8366 {
8367 case BINOP_DIV:
8368 v = v1 / v2;
8369 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8370 v += v > 0 ? -1 : 1;
8371 break;
8372 case BINOP_REM:
8373 v = v1 % v2;
8374 if (v * v1 < 0)
8375 v -= v2;
8376 break;
8377 default:
8378 /* Should not reach this point. */
8379 v = 0;
8380 }
8381
8382 val = allocate_value (type1);
8383 store_unsigned_integer (value_contents_raw (val),
8384 TYPE_LENGTH (value_type (val)),
8385 gdbarch_byte_order (get_type_arch (type1)), v);
8386 return val;
8387 }
8388
8389 static int
8390 ada_value_equal (struct value *arg1, struct value *arg2)
8391 {
8392 if (ada_is_direct_array_type (value_type (arg1))
8393 || ada_is_direct_array_type (value_type (arg2)))
8394 {
8395 /* Automatically dereference any array reference before
8396 we attempt to perform the comparison. */
8397 arg1 = ada_coerce_ref (arg1);
8398 arg2 = ada_coerce_ref (arg2);
8399
8400 arg1 = ada_coerce_to_simple_array (arg1);
8401 arg2 = ada_coerce_to_simple_array (arg2);
8402 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8403 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8404 error (_("Attempt to compare array with non-array"));
8405 /* FIXME: The following works only for types whose
8406 representations use all bits (no padding or undefined bits)
8407 and do not have user-defined equality. */
8408 return
8409 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8410 && memcmp (value_contents (arg1), value_contents (arg2),
8411 TYPE_LENGTH (value_type (arg1))) == 0;
8412 }
8413 return value_equal (arg1, arg2);
8414 }
8415
8416 /* Total number of component associations in the aggregate starting at
8417 index PC in EXP. Assumes that index PC is the start of an
8418 OP_AGGREGATE. */
8419
8420 static int
8421 num_component_specs (struct expression *exp, int pc)
8422 {
8423 int n, m, i;
8424
8425 m = exp->elts[pc + 1].longconst;
8426 pc += 3;
8427 n = 0;
8428 for (i = 0; i < m; i += 1)
8429 {
8430 switch (exp->elts[pc].opcode)
8431 {
8432 default:
8433 n += 1;
8434 break;
8435 case OP_CHOICES:
8436 n += exp->elts[pc + 1].longconst;
8437 break;
8438 }
8439 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8440 }
8441 return n;
8442 }
8443
8444 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8445 component of LHS (a simple array or a record), updating *POS past
8446 the expression, assuming that LHS is contained in CONTAINER. Does
8447 not modify the inferior's memory, nor does it modify LHS (unless
8448 LHS == CONTAINER). */
8449
8450 static void
8451 assign_component (struct value *container, struct value *lhs, LONGEST index,
8452 struct expression *exp, int *pos)
8453 {
8454 struct value *mark = value_mark ();
8455 struct value *elt;
8456
8457 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8458 {
8459 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8460 struct value *index_val = value_from_longest (index_type, index);
8461
8462 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8463 }
8464 else
8465 {
8466 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8467 elt = ada_to_fixed_value (unwrap_value (elt));
8468 }
8469
8470 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8471 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8472 else
8473 value_assign_to_component (container, elt,
8474 ada_evaluate_subexp (NULL, exp, pos,
8475 EVAL_NORMAL));
8476
8477 value_free_to_mark (mark);
8478 }
8479
8480 /* Assuming that LHS represents an lvalue having a record or array
8481 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8482 of that aggregate's value to LHS, advancing *POS past the
8483 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8484 lvalue containing LHS (possibly LHS itself). Does not modify
8485 the inferior's memory, nor does it modify the contents of
8486 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8487
8488 static struct value *
8489 assign_aggregate (struct value *container,
8490 struct value *lhs, struct expression *exp,
8491 int *pos, enum noside noside)
8492 {
8493 struct type *lhs_type;
8494 int n = exp->elts[*pos+1].longconst;
8495 LONGEST low_index, high_index;
8496 int num_specs;
8497 LONGEST *indices;
8498 int max_indices, num_indices;
8499 int is_array_aggregate;
8500 int i;
8501
8502 *pos += 3;
8503 if (noside != EVAL_NORMAL)
8504 {
8505 int i;
8506
8507 for (i = 0; i < n; i += 1)
8508 ada_evaluate_subexp (NULL, exp, pos, noside);
8509 return container;
8510 }
8511
8512 container = ada_coerce_ref (container);
8513 if (ada_is_direct_array_type (value_type (container)))
8514 container = ada_coerce_to_simple_array (container);
8515 lhs = ada_coerce_ref (lhs);
8516 if (!deprecated_value_modifiable (lhs))
8517 error (_("Left operand of assignment is not a modifiable lvalue."));
8518
8519 lhs_type = value_type (lhs);
8520 if (ada_is_direct_array_type (lhs_type))
8521 {
8522 lhs = ada_coerce_to_simple_array (lhs);
8523 lhs_type = value_type (lhs);
8524 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8525 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8526 is_array_aggregate = 1;
8527 }
8528 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8529 {
8530 low_index = 0;
8531 high_index = num_visible_fields (lhs_type) - 1;
8532 is_array_aggregate = 0;
8533 }
8534 else
8535 error (_("Left-hand side must be array or record."));
8536
8537 num_specs = num_component_specs (exp, *pos - 3);
8538 max_indices = 4 * num_specs + 4;
8539 indices = alloca (max_indices * sizeof (indices[0]));
8540 indices[0] = indices[1] = low_index - 1;
8541 indices[2] = indices[3] = high_index + 1;
8542 num_indices = 4;
8543
8544 for (i = 0; i < n; i += 1)
8545 {
8546 switch (exp->elts[*pos].opcode)
8547 {
8548 case OP_CHOICES:
8549 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8550 &num_indices, max_indices,
8551 low_index, high_index);
8552 break;
8553 case OP_POSITIONAL:
8554 aggregate_assign_positional (container, lhs, exp, pos, indices,
8555 &num_indices, max_indices,
8556 low_index, high_index);
8557 break;
8558 case OP_OTHERS:
8559 if (i != n-1)
8560 error (_("Misplaced 'others' clause"));
8561 aggregate_assign_others (container, lhs, exp, pos, indices,
8562 num_indices, low_index, high_index);
8563 break;
8564 default:
8565 error (_("Internal error: bad aggregate clause"));
8566 }
8567 }
8568
8569 return container;
8570 }
8571
8572 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8573 construct at *POS, updating *POS past the construct, given that
8574 the positions are relative to lower bound LOW, where HIGH is the
8575 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8576 updating *NUM_INDICES as needed. CONTAINER is as for
8577 assign_aggregate. */
8578 static void
8579 aggregate_assign_positional (struct value *container,
8580 struct value *lhs, struct expression *exp,
8581 int *pos, LONGEST *indices, int *num_indices,
8582 int max_indices, LONGEST low, LONGEST high)
8583 {
8584 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8585
8586 if (ind - 1 == high)
8587 warning (_("Extra components in aggregate ignored."));
8588 if (ind <= high)
8589 {
8590 add_component_interval (ind, ind, indices, num_indices, max_indices);
8591 *pos += 3;
8592 assign_component (container, lhs, ind, exp, pos);
8593 }
8594 else
8595 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8596 }
8597
8598 /* Assign into the components of LHS indexed by the OP_CHOICES
8599 construct at *POS, updating *POS past the construct, given that
8600 the allowable indices are LOW..HIGH. Record the indices assigned
8601 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8602 needed. CONTAINER is as for assign_aggregate. */
8603 static void
8604 aggregate_assign_from_choices (struct value *container,
8605 struct value *lhs, struct expression *exp,
8606 int *pos, LONGEST *indices, int *num_indices,
8607 int max_indices, LONGEST low, LONGEST high)
8608 {
8609 int j;
8610 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8611 int choice_pos, expr_pc;
8612 int is_array = ada_is_direct_array_type (value_type (lhs));
8613
8614 choice_pos = *pos += 3;
8615
8616 for (j = 0; j < n_choices; j += 1)
8617 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8618 expr_pc = *pos;
8619 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8620
8621 for (j = 0; j < n_choices; j += 1)
8622 {
8623 LONGEST lower, upper;
8624 enum exp_opcode op = exp->elts[choice_pos].opcode;
8625
8626 if (op == OP_DISCRETE_RANGE)
8627 {
8628 choice_pos += 1;
8629 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8630 EVAL_NORMAL));
8631 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8632 EVAL_NORMAL));
8633 }
8634 else if (is_array)
8635 {
8636 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8637 EVAL_NORMAL));
8638 upper = lower;
8639 }
8640 else
8641 {
8642 int ind;
8643 char *name;
8644
8645 switch (op)
8646 {
8647 case OP_NAME:
8648 name = &exp->elts[choice_pos + 2].string;
8649 break;
8650 case OP_VAR_VALUE:
8651 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8652 break;
8653 default:
8654 error (_("Invalid record component association."));
8655 }
8656 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8657 ind = 0;
8658 if (! find_struct_field (name, value_type (lhs), 0,
8659 NULL, NULL, NULL, NULL, &ind))
8660 error (_("Unknown component name: %s."), name);
8661 lower = upper = ind;
8662 }
8663
8664 if (lower <= upper && (lower < low || upper > high))
8665 error (_("Index in component association out of bounds."));
8666
8667 add_component_interval (lower, upper, indices, num_indices,
8668 max_indices);
8669 while (lower <= upper)
8670 {
8671 int pos1;
8672
8673 pos1 = expr_pc;
8674 assign_component (container, lhs, lower, exp, &pos1);
8675 lower += 1;
8676 }
8677 }
8678 }
8679
8680 /* Assign the value of the expression in the OP_OTHERS construct in
8681 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8682 have not been previously assigned. The index intervals already assigned
8683 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8684 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8685 static void
8686 aggregate_assign_others (struct value *container,
8687 struct value *lhs, struct expression *exp,
8688 int *pos, LONGEST *indices, int num_indices,
8689 LONGEST low, LONGEST high)
8690 {
8691 int i;
8692 int expr_pc = *pos+1;
8693
8694 for (i = 0; i < num_indices - 2; i += 2)
8695 {
8696 LONGEST ind;
8697
8698 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8699 {
8700 int pos;
8701
8702 pos = expr_pc;
8703 assign_component (container, lhs, ind, exp, &pos);
8704 }
8705 }
8706 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8707 }
8708
8709 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8710 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8711 modifying *SIZE as needed. It is an error if *SIZE exceeds
8712 MAX_SIZE. The resulting intervals do not overlap. */
8713 static void
8714 add_component_interval (LONGEST low, LONGEST high,
8715 LONGEST* indices, int *size, int max_size)
8716 {
8717 int i, j;
8718
8719 for (i = 0; i < *size; i += 2) {
8720 if (high >= indices[i] && low <= indices[i + 1])
8721 {
8722 int kh;
8723
8724 for (kh = i + 2; kh < *size; kh += 2)
8725 if (high < indices[kh])
8726 break;
8727 if (low < indices[i])
8728 indices[i] = low;
8729 indices[i + 1] = indices[kh - 1];
8730 if (high > indices[i + 1])
8731 indices[i + 1] = high;
8732 memcpy (indices + i + 2, indices + kh, *size - kh);
8733 *size -= kh - i - 2;
8734 return;
8735 }
8736 else if (high < indices[i])
8737 break;
8738 }
8739
8740 if (*size == max_size)
8741 error (_("Internal error: miscounted aggregate components."));
8742 *size += 2;
8743 for (j = *size-1; j >= i+2; j -= 1)
8744 indices[j] = indices[j - 2];
8745 indices[i] = low;
8746 indices[i + 1] = high;
8747 }
8748
8749 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8750 is different. */
8751
8752 static struct value *
8753 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8754 {
8755 if (type == ada_check_typedef (value_type (arg2)))
8756 return arg2;
8757
8758 if (ada_is_fixed_point_type (type))
8759 return (cast_to_fixed (type, arg2));
8760
8761 if (ada_is_fixed_point_type (value_type (arg2)))
8762 return cast_from_fixed (type, arg2);
8763
8764 return value_cast (type, arg2);
8765 }
8766
8767 /* Evaluating Ada expressions, and printing their result.
8768 ------------------------------------------------------
8769
8770 1. Introduction:
8771 ----------------
8772
8773 We usually evaluate an Ada expression in order to print its value.
8774 We also evaluate an expression in order to print its type, which
8775 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8776 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8777 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8778 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8779 similar.
8780
8781 Evaluating expressions is a little more complicated for Ada entities
8782 than it is for entities in languages such as C. The main reason for
8783 this is that Ada provides types whose definition might be dynamic.
8784 One example of such types is variant records. Or another example
8785 would be an array whose bounds can only be known at run time.
8786
8787 The following description is a general guide as to what should be
8788 done (and what should NOT be done) in order to evaluate an expression
8789 involving such types, and when. This does not cover how the semantic
8790 information is encoded by GNAT as this is covered separatly. For the
8791 document used as the reference for the GNAT encoding, see exp_dbug.ads
8792 in the GNAT sources.
8793
8794 Ideally, we should embed each part of this description next to its
8795 associated code. Unfortunately, the amount of code is so vast right
8796 now that it's hard to see whether the code handling a particular
8797 situation might be duplicated or not. One day, when the code is
8798 cleaned up, this guide might become redundant with the comments
8799 inserted in the code, and we might want to remove it.
8800
8801 2. ``Fixing'' an Entity, the Simple Case:
8802 -----------------------------------------
8803
8804 When evaluating Ada expressions, the tricky issue is that they may
8805 reference entities whose type contents and size are not statically
8806 known. Consider for instance a variant record:
8807
8808 type Rec (Empty : Boolean := True) is record
8809 case Empty is
8810 when True => null;
8811 when False => Value : Integer;
8812 end case;
8813 end record;
8814 Yes : Rec := (Empty => False, Value => 1);
8815 No : Rec := (empty => True);
8816
8817 The size and contents of that record depends on the value of the
8818 descriminant (Rec.Empty). At this point, neither the debugging
8819 information nor the associated type structure in GDB are able to
8820 express such dynamic types. So what the debugger does is to create
8821 "fixed" versions of the type that applies to the specific object.
8822 We also informally refer to this opperation as "fixing" an object,
8823 which means creating its associated fixed type.
8824
8825 Example: when printing the value of variable "Yes" above, its fixed
8826 type would look like this:
8827
8828 type Rec is record
8829 Empty : Boolean;
8830 Value : Integer;
8831 end record;
8832
8833 On the other hand, if we printed the value of "No", its fixed type
8834 would become:
8835
8836 type Rec is record
8837 Empty : Boolean;
8838 end record;
8839
8840 Things become a little more complicated when trying to fix an entity
8841 with a dynamic type that directly contains another dynamic type,
8842 such as an array of variant records, for instance. There are
8843 two possible cases: Arrays, and records.
8844
8845 3. ``Fixing'' Arrays:
8846 ---------------------
8847
8848 The type structure in GDB describes an array in terms of its bounds,
8849 and the type of its elements. By design, all elements in the array
8850 have the same type and we cannot represent an array of variant elements
8851 using the current type structure in GDB. When fixing an array,
8852 we cannot fix the array element, as we would potentially need one
8853 fixed type per element of the array. As a result, the best we can do
8854 when fixing an array is to produce an array whose bounds and size
8855 are correct (allowing us to read it from memory), but without having
8856 touched its element type. Fixing each element will be done later,
8857 when (if) necessary.
8858
8859 Arrays are a little simpler to handle than records, because the same
8860 amount of memory is allocated for each element of the array, even if
8861 the amount of space actually used by each element differs from element
8862 to element. Consider for instance the following array of type Rec:
8863
8864 type Rec_Array is array (1 .. 2) of Rec;
8865
8866 The actual amount of memory occupied by each element might be different
8867 from element to element, depending on the value of their discriminant.
8868 But the amount of space reserved for each element in the array remains
8869 fixed regardless. So we simply need to compute that size using
8870 the debugging information available, from which we can then determine
8871 the array size (we multiply the number of elements of the array by
8872 the size of each element).
8873
8874 The simplest case is when we have an array of a constrained element
8875 type. For instance, consider the following type declarations:
8876
8877 type Bounded_String (Max_Size : Integer) is
8878 Length : Integer;
8879 Buffer : String (1 .. Max_Size);
8880 end record;
8881 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8882
8883 In this case, the compiler describes the array as an array of
8884 variable-size elements (identified by its XVS suffix) for which
8885 the size can be read in the parallel XVZ variable.
8886
8887 In the case of an array of an unconstrained element type, the compiler
8888 wraps the array element inside a private PAD type. This type should not
8889 be shown to the user, and must be "unwrap"'ed before printing. Note
8890 that we also use the adjective "aligner" in our code to designate
8891 these wrapper types.
8892
8893 In some cases, the size allocated for each element is statically
8894 known. In that case, the PAD type already has the correct size,
8895 and the array element should remain unfixed.
8896
8897 But there are cases when this size is not statically known.
8898 For instance, assuming that "Five" is an integer variable:
8899
8900 type Dynamic is array (1 .. Five) of Integer;
8901 type Wrapper (Has_Length : Boolean := False) is record
8902 Data : Dynamic;
8903 case Has_Length is
8904 when True => Length : Integer;
8905 when False => null;
8906 end case;
8907 end record;
8908 type Wrapper_Array is array (1 .. 2) of Wrapper;
8909
8910 Hello : Wrapper_Array := (others => (Has_Length => True,
8911 Data => (others => 17),
8912 Length => 1));
8913
8914
8915 The debugging info would describe variable Hello as being an
8916 array of a PAD type. The size of that PAD type is not statically
8917 known, but can be determined using a parallel XVZ variable.
8918 In that case, a copy of the PAD type with the correct size should
8919 be used for the fixed array.
8920
8921 3. ``Fixing'' record type objects:
8922 ----------------------------------
8923
8924 Things are slightly different from arrays in the case of dynamic
8925 record types. In this case, in order to compute the associated
8926 fixed type, we need to determine the size and offset of each of
8927 its components. This, in turn, requires us to compute the fixed
8928 type of each of these components.
8929
8930 Consider for instance the example:
8931
8932 type Bounded_String (Max_Size : Natural) is record
8933 Str : String (1 .. Max_Size);
8934 Length : Natural;
8935 end record;
8936 My_String : Bounded_String (Max_Size => 10);
8937
8938 In that case, the position of field "Length" depends on the size
8939 of field Str, which itself depends on the value of the Max_Size
8940 discriminant. In order to fix the type of variable My_String,
8941 we need to fix the type of field Str. Therefore, fixing a variant
8942 record requires us to fix each of its components.
8943
8944 However, if a component does not have a dynamic size, the component
8945 should not be fixed. In particular, fields that use a PAD type
8946 should not fixed. Here is an example where this might happen
8947 (assuming type Rec above):
8948
8949 type Container (Big : Boolean) is record
8950 First : Rec;
8951 After : Integer;
8952 case Big is
8953 when True => Another : Integer;
8954 when False => null;
8955 end case;
8956 end record;
8957 My_Container : Container := (Big => False,
8958 First => (Empty => True),
8959 After => 42);
8960
8961 In that example, the compiler creates a PAD type for component First,
8962 whose size is constant, and then positions the component After just
8963 right after it. The offset of component After is therefore constant
8964 in this case.
8965
8966 The debugger computes the position of each field based on an algorithm
8967 that uses, among other things, the actual position and size of the field
8968 preceding it. Let's now imagine that the user is trying to print
8969 the value of My_Container. If the type fixing was recursive, we would
8970 end up computing the offset of field After based on the size of the
8971 fixed version of field First. And since in our example First has
8972 only one actual field, the size of the fixed type is actually smaller
8973 than the amount of space allocated to that field, and thus we would
8974 compute the wrong offset of field After.
8975
8976 To make things more complicated, we need to watch out for dynamic
8977 components of variant records (identified by the ___XVL suffix in
8978 the component name). Even if the target type is a PAD type, the size
8979 of that type might not be statically known. So the PAD type needs
8980 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8981 we might end up with the wrong size for our component. This can be
8982 observed with the following type declarations:
8983
8984 type Octal is new Integer range 0 .. 7;
8985 type Octal_Array is array (Positive range <>) of Octal;
8986 pragma Pack (Octal_Array);
8987
8988 type Octal_Buffer (Size : Positive) is record
8989 Buffer : Octal_Array (1 .. Size);
8990 Length : Integer;
8991 end record;
8992
8993 In that case, Buffer is a PAD type whose size is unset and needs
8994 to be computed by fixing the unwrapped type.
8995
8996 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8997 ----------------------------------------------------------
8998
8999 Lastly, when should the sub-elements of an entity that remained unfixed
9000 thus far, be actually fixed?
9001
9002 The answer is: Only when referencing that element. For instance
9003 when selecting one component of a record, this specific component
9004 should be fixed at that point in time. Or when printing the value
9005 of a record, each component should be fixed before its value gets
9006 printed. Similarly for arrays, the element of the array should be
9007 fixed when printing each element of the array, or when extracting
9008 one element out of that array. On the other hand, fixing should
9009 not be performed on the elements when taking a slice of an array!
9010
9011 Note that one of the side-effects of miscomputing the offset and
9012 size of each field is that we end up also miscomputing the size
9013 of the containing type. This can have adverse results when computing
9014 the value of an entity. GDB fetches the value of an entity based
9015 on the size of its type, and thus a wrong size causes GDB to fetch
9016 the wrong amount of memory. In the case where the computed size is
9017 too small, GDB fetches too little data to print the value of our
9018 entiry. Results in this case as unpredicatble, as we usually read
9019 past the buffer containing the data =:-o. */
9020
9021 /* Implement the evaluate_exp routine in the exp_descriptor structure
9022 for the Ada language. */
9023
9024 static struct value *
9025 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9026 int *pos, enum noside noside)
9027 {
9028 enum exp_opcode op;
9029 int tem;
9030 int pc;
9031 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9032 struct type *type;
9033 int nargs, oplen;
9034 struct value **argvec;
9035
9036 pc = *pos;
9037 *pos += 1;
9038 op = exp->elts[pc].opcode;
9039
9040 switch (op)
9041 {
9042 default:
9043 *pos -= 1;
9044 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9045 arg1 = unwrap_value (arg1);
9046
9047 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9048 then we need to perform the conversion manually, because
9049 evaluate_subexp_standard doesn't do it. This conversion is
9050 necessary in Ada because the different kinds of float/fixed
9051 types in Ada have different representations.
9052
9053 Similarly, we need to perform the conversion from OP_LONG
9054 ourselves. */
9055 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9056 arg1 = ada_value_cast (expect_type, arg1, noside);
9057
9058 return arg1;
9059
9060 case OP_STRING:
9061 {
9062 struct value *result;
9063
9064 *pos -= 1;
9065 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9066 /* The result type will have code OP_STRING, bashed there from
9067 OP_ARRAY. Bash it back. */
9068 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9069 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9070 return result;
9071 }
9072
9073 case UNOP_CAST:
9074 (*pos) += 2;
9075 type = exp->elts[pc + 1].type;
9076 arg1 = evaluate_subexp (type, exp, pos, noside);
9077 if (noside == EVAL_SKIP)
9078 goto nosideret;
9079 arg1 = ada_value_cast (type, arg1, noside);
9080 return arg1;
9081
9082 case UNOP_QUAL:
9083 (*pos) += 2;
9084 type = exp->elts[pc + 1].type;
9085 return ada_evaluate_subexp (type, exp, pos, noside);
9086
9087 case BINOP_ASSIGN:
9088 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9089 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9090 {
9091 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9092 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9093 return arg1;
9094 return ada_value_assign (arg1, arg1);
9095 }
9096 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9097 except if the lhs of our assignment is a convenience variable.
9098 In the case of assigning to a convenience variable, the lhs
9099 should be exactly the result of the evaluation of the rhs. */
9100 type = value_type (arg1);
9101 if (VALUE_LVAL (arg1) == lval_internalvar)
9102 type = NULL;
9103 arg2 = evaluate_subexp (type, exp, pos, noside);
9104 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9105 return arg1;
9106 if (ada_is_fixed_point_type (value_type (arg1)))
9107 arg2 = cast_to_fixed (value_type (arg1), arg2);
9108 else if (ada_is_fixed_point_type (value_type (arg2)))
9109 error
9110 (_("Fixed-point values must be assigned to fixed-point variables"));
9111 else
9112 arg2 = coerce_for_assign (value_type (arg1), arg2);
9113 return ada_value_assign (arg1, arg2);
9114
9115 case BINOP_ADD:
9116 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9117 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9118 if (noside == EVAL_SKIP)
9119 goto nosideret;
9120 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9121 return (value_from_longest
9122 (value_type (arg1),
9123 value_as_long (arg1) + value_as_long (arg2)));
9124 if ((ada_is_fixed_point_type (value_type (arg1))
9125 || ada_is_fixed_point_type (value_type (arg2)))
9126 && value_type (arg1) != value_type (arg2))
9127 error (_("Operands of fixed-point addition must have the same type"));
9128 /* Do the addition, and cast the result to the type of the first
9129 argument. We cannot cast the result to a reference type, so if
9130 ARG1 is a reference type, find its underlying type. */
9131 type = value_type (arg1);
9132 while (TYPE_CODE (type) == TYPE_CODE_REF)
9133 type = TYPE_TARGET_TYPE (type);
9134 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9135 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9136
9137 case BINOP_SUB:
9138 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9139 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9140 if (noside == EVAL_SKIP)
9141 goto nosideret;
9142 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9143 return (value_from_longest
9144 (value_type (arg1),
9145 value_as_long (arg1) - value_as_long (arg2)));
9146 if ((ada_is_fixed_point_type (value_type (arg1))
9147 || ada_is_fixed_point_type (value_type (arg2)))
9148 && value_type (arg1) != value_type (arg2))
9149 error (_("Operands of fixed-point subtraction must have the same type"));
9150 /* Do the substraction, and cast the result to the type of the first
9151 argument. We cannot cast the result to a reference type, so if
9152 ARG1 is a reference type, find its underlying type. */
9153 type = value_type (arg1);
9154 while (TYPE_CODE (type) == TYPE_CODE_REF)
9155 type = TYPE_TARGET_TYPE (type);
9156 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9157 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9158
9159 case BINOP_MUL:
9160 case BINOP_DIV:
9161 case BINOP_REM:
9162 case BINOP_MOD:
9163 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9164 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9165 if (noside == EVAL_SKIP)
9166 goto nosideret;
9167 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9168 {
9169 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9170 return value_zero (value_type (arg1), not_lval);
9171 }
9172 else
9173 {
9174 type = builtin_type (exp->gdbarch)->builtin_double;
9175 if (ada_is_fixed_point_type (value_type (arg1)))
9176 arg1 = cast_from_fixed (type, arg1);
9177 if (ada_is_fixed_point_type (value_type (arg2)))
9178 arg2 = cast_from_fixed (type, arg2);
9179 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9180 return ada_value_binop (arg1, arg2, op);
9181 }
9182
9183 case BINOP_EQUAL:
9184 case BINOP_NOTEQUAL:
9185 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9186 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9187 if (noside == EVAL_SKIP)
9188 goto nosideret;
9189 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9190 tem = 0;
9191 else
9192 {
9193 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9194 tem = ada_value_equal (arg1, arg2);
9195 }
9196 if (op == BINOP_NOTEQUAL)
9197 tem = !tem;
9198 type = language_bool_type (exp->language_defn, exp->gdbarch);
9199 return value_from_longest (type, (LONGEST) tem);
9200
9201 case UNOP_NEG:
9202 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9203 if (noside == EVAL_SKIP)
9204 goto nosideret;
9205 else if (ada_is_fixed_point_type (value_type (arg1)))
9206 return value_cast (value_type (arg1), value_neg (arg1));
9207 else
9208 {
9209 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9210 return value_neg (arg1);
9211 }
9212
9213 case BINOP_LOGICAL_AND:
9214 case BINOP_LOGICAL_OR:
9215 case UNOP_LOGICAL_NOT:
9216 {
9217 struct value *val;
9218
9219 *pos -= 1;
9220 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9221 type = language_bool_type (exp->language_defn, exp->gdbarch);
9222 return value_cast (type, val);
9223 }
9224
9225 case BINOP_BITWISE_AND:
9226 case BINOP_BITWISE_IOR:
9227 case BINOP_BITWISE_XOR:
9228 {
9229 struct value *val;
9230
9231 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9232 *pos = pc;
9233 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9234
9235 return value_cast (value_type (arg1), val);
9236 }
9237
9238 case OP_VAR_VALUE:
9239 *pos -= 1;
9240
9241 if (noside == EVAL_SKIP)
9242 {
9243 *pos += 4;
9244 goto nosideret;
9245 }
9246 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9247 /* Only encountered when an unresolved symbol occurs in a
9248 context other than a function call, in which case, it is
9249 invalid. */
9250 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9251 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9252 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9253 {
9254 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9255 /* Check to see if this is a tagged type. We also need to handle
9256 the case where the type is a reference to a tagged type, but
9257 we have to be careful to exclude pointers to tagged types.
9258 The latter should be shown as usual (as a pointer), whereas
9259 a reference should mostly be transparent to the user. */
9260 if (ada_is_tagged_type (type, 0)
9261 || (TYPE_CODE(type) == TYPE_CODE_REF
9262 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9263 {
9264 /* Tagged types are a little special in the fact that the real
9265 type is dynamic and can only be determined by inspecting the
9266 object's tag. This means that we need to get the object's
9267 value first (EVAL_NORMAL) and then extract the actual object
9268 type from its tag.
9269
9270 Note that we cannot skip the final step where we extract
9271 the object type from its tag, because the EVAL_NORMAL phase
9272 results in dynamic components being resolved into fixed ones.
9273 This can cause problems when trying to print the type
9274 description of tagged types whose parent has a dynamic size:
9275 We use the type name of the "_parent" component in order
9276 to print the name of the ancestor type in the type description.
9277 If that component had a dynamic size, the resolution into
9278 a fixed type would result in the loss of that type name,
9279 thus preventing us from printing the name of the ancestor
9280 type in the type description. */
9281 struct type *actual_type;
9282
9283 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9284 actual_type = type_from_tag (ada_value_tag (arg1));
9285 if (actual_type == NULL)
9286 /* If, for some reason, we were unable to determine
9287 the actual type from the tag, then use the static
9288 approximation that we just computed as a fallback.
9289 This can happen if the debugging information is
9290 incomplete, for instance. */
9291 actual_type = type;
9292
9293 return value_zero (actual_type, not_lval);
9294 }
9295
9296 *pos += 4;
9297 return value_zero
9298 (to_static_fixed_type
9299 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9300 not_lval);
9301 }
9302 else
9303 {
9304 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9305 arg1 = unwrap_value (arg1);
9306 return ada_to_fixed_value (arg1);
9307 }
9308
9309 case OP_FUNCALL:
9310 (*pos) += 2;
9311
9312 /* Allocate arg vector, including space for the function to be
9313 called in argvec[0] and a terminating NULL. */
9314 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9315 argvec =
9316 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9317
9318 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9319 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9320 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9321 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9322 else
9323 {
9324 for (tem = 0; tem <= nargs; tem += 1)
9325 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9326 argvec[tem] = 0;
9327
9328 if (noside == EVAL_SKIP)
9329 goto nosideret;
9330 }
9331
9332 if (ada_is_constrained_packed_array_type
9333 (desc_base_type (value_type (argvec[0]))))
9334 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9335 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9336 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9337 /* This is a packed array that has already been fixed, and
9338 therefore already coerced to a simple array. Nothing further
9339 to do. */
9340 ;
9341 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9342 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9343 && VALUE_LVAL (argvec[0]) == lval_memory))
9344 argvec[0] = value_addr (argvec[0]);
9345
9346 type = ada_check_typedef (value_type (argvec[0]));
9347
9348 /* Ada allows us to implicitly dereference arrays when subscripting
9349 them. So, if this is an typedef (encoding use for array access
9350 types encoded as fat pointers), strip it now. */
9351 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9352 type = ada_typedef_target_type (type);
9353
9354 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9355 {
9356 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9357 {
9358 case TYPE_CODE_FUNC:
9359 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9360 break;
9361 case TYPE_CODE_ARRAY:
9362 break;
9363 case TYPE_CODE_STRUCT:
9364 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9365 argvec[0] = ada_value_ind (argvec[0]);
9366 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9367 break;
9368 default:
9369 error (_("cannot subscript or call something of type `%s'"),
9370 ada_type_name (value_type (argvec[0])));
9371 break;
9372 }
9373 }
9374
9375 switch (TYPE_CODE (type))
9376 {
9377 case TYPE_CODE_FUNC:
9378 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9379 return allocate_value (TYPE_TARGET_TYPE (type));
9380 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9381 case TYPE_CODE_STRUCT:
9382 {
9383 int arity;
9384
9385 arity = ada_array_arity (type);
9386 type = ada_array_element_type (type, nargs);
9387 if (type == NULL)
9388 error (_("cannot subscript or call a record"));
9389 if (arity != nargs)
9390 error (_("wrong number of subscripts; expecting %d"), arity);
9391 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9392 return value_zero (ada_aligned_type (type), lval_memory);
9393 return
9394 unwrap_value (ada_value_subscript
9395 (argvec[0], nargs, argvec + 1));
9396 }
9397 case TYPE_CODE_ARRAY:
9398 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9399 {
9400 type = ada_array_element_type (type, nargs);
9401 if (type == NULL)
9402 error (_("element type of array unknown"));
9403 else
9404 return value_zero (ada_aligned_type (type), lval_memory);
9405 }
9406 return
9407 unwrap_value (ada_value_subscript
9408 (ada_coerce_to_simple_array (argvec[0]),
9409 nargs, argvec + 1));
9410 case TYPE_CODE_PTR: /* Pointer to array */
9411 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9412 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9413 {
9414 type = ada_array_element_type (type, nargs);
9415 if (type == NULL)
9416 error (_("element type of array unknown"));
9417 else
9418 return value_zero (ada_aligned_type (type), lval_memory);
9419 }
9420 return
9421 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9422 nargs, argvec + 1));
9423
9424 default:
9425 error (_("Attempt to index or call something other than an "
9426 "array or function"));
9427 }
9428
9429 case TERNOP_SLICE:
9430 {
9431 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9432 struct value *low_bound_val =
9433 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9434 struct value *high_bound_val =
9435 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9436 LONGEST low_bound;
9437 LONGEST high_bound;
9438
9439 low_bound_val = coerce_ref (low_bound_val);
9440 high_bound_val = coerce_ref (high_bound_val);
9441 low_bound = pos_atr (low_bound_val);
9442 high_bound = pos_atr (high_bound_val);
9443
9444 if (noside == EVAL_SKIP)
9445 goto nosideret;
9446
9447 /* If this is a reference to an aligner type, then remove all
9448 the aligners. */
9449 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9450 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9451 TYPE_TARGET_TYPE (value_type (array)) =
9452 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9453
9454 if (ada_is_constrained_packed_array_type (value_type (array)))
9455 error (_("cannot slice a packed array"));
9456
9457 /* If this is a reference to an array or an array lvalue,
9458 convert to a pointer. */
9459 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9460 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9461 && VALUE_LVAL (array) == lval_memory))
9462 array = value_addr (array);
9463
9464 if (noside == EVAL_AVOID_SIDE_EFFECTS
9465 && ada_is_array_descriptor_type (ada_check_typedef
9466 (value_type (array))))
9467 return empty_array (ada_type_of_array (array, 0), low_bound);
9468
9469 array = ada_coerce_to_simple_array_ptr (array);
9470
9471 /* If we have more than one level of pointer indirection,
9472 dereference the value until we get only one level. */
9473 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9474 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9475 == TYPE_CODE_PTR))
9476 array = value_ind (array);
9477
9478 /* Make sure we really do have an array type before going further,
9479 to avoid a SEGV when trying to get the index type or the target
9480 type later down the road if the debug info generated by
9481 the compiler is incorrect or incomplete. */
9482 if (!ada_is_simple_array_type (value_type (array)))
9483 error (_("cannot take slice of non-array"));
9484
9485 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9486 {
9487 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9488 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9489 low_bound);
9490 else
9491 {
9492 struct type *arr_type0 =
9493 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9494 NULL, 1);
9495
9496 return ada_value_slice_from_ptr (array, arr_type0,
9497 longest_to_int (low_bound),
9498 longest_to_int (high_bound));
9499 }
9500 }
9501 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9502 return array;
9503 else if (high_bound < low_bound)
9504 return empty_array (value_type (array), low_bound);
9505 else
9506 return ada_value_slice (array, longest_to_int (low_bound),
9507 longest_to_int (high_bound));
9508 }
9509
9510 case UNOP_IN_RANGE:
9511 (*pos) += 2;
9512 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9513 type = check_typedef (exp->elts[pc + 1].type);
9514
9515 if (noside == EVAL_SKIP)
9516 goto nosideret;
9517
9518 switch (TYPE_CODE (type))
9519 {
9520 default:
9521 lim_warning (_("Membership test incompletely implemented; "
9522 "always returns true"));
9523 type = language_bool_type (exp->language_defn, exp->gdbarch);
9524 return value_from_longest (type, (LONGEST) 1);
9525
9526 case TYPE_CODE_RANGE:
9527 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9528 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9529 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9530 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9531 type = language_bool_type (exp->language_defn, exp->gdbarch);
9532 return
9533 value_from_longest (type,
9534 (value_less (arg1, arg3)
9535 || value_equal (arg1, arg3))
9536 && (value_less (arg2, arg1)
9537 || value_equal (arg2, arg1)));
9538 }
9539
9540 case BINOP_IN_BOUNDS:
9541 (*pos) += 2;
9542 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9543 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9544
9545 if (noside == EVAL_SKIP)
9546 goto nosideret;
9547
9548 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9549 {
9550 type = language_bool_type (exp->language_defn, exp->gdbarch);
9551 return value_zero (type, not_lval);
9552 }
9553
9554 tem = longest_to_int (exp->elts[pc + 1].longconst);
9555
9556 type = ada_index_type (value_type (arg2), tem, "range");
9557 if (!type)
9558 type = value_type (arg1);
9559
9560 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9561 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9562
9563 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9564 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9565 type = language_bool_type (exp->language_defn, exp->gdbarch);
9566 return
9567 value_from_longest (type,
9568 (value_less (arg1, arg3)
9569 || value_equal (arg1, arg3))
9570 && (value_less (arg2, arg1)
9571 || value_equal (arg2, arg1)));
9572
9573 case TERNOP_IN_RANGE:
9574 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9575 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9576 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9577
9578 if (noside == EVAL_SKIP)
9579 goto nosideret;
9580
9581 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9582 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9583 type = language_bool_type (exp->language_defn, exp->gdbarch);
9584 return
9585 value_from_longest (type,
9586 (value_less (arg1, arg3)
9587 || value_equal (arg1, arg3))
9588 && (value_less (arg2, arg1)
9589 || value_equal (arg2, arg1)));
9590
9591 case OP_ATR_FIRST:
9592 case OP_ATR_LAST:
9593 case OP_ATR_LENGTH:
9594 {
9595 struct type *type_arg;
9596
9597 if (exp->elts[*pos].opcode == OP_TYPE)
9598 {
9599 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9600 arg1 = NULL;
9601 type_arg = check_typedef (exp->elts[pc + 2].type);
9602 }
9603 else
9604 {
9605 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9606 type_arg = NULL;
9607 }
9608
9609 if (exp->elts[*pos].opcode != OP_LONG)
9610 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9611 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9612 *pos += 4;
9613
9614 if (noside == EVAL_SKIP)
9615 goto nosideret;
9616
9617 if (type_arg == NULL)
9618 {
9619 arg1 = ada_coerce_ref (arg1);
9620
9621 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9622 arg1 = ada_coerce_to_simple_array (arg1);
9623
9624 type = ada_index_type (value_type (arg1), tem,
9625 ada_attribute_name (op));
9626 if (type == NULL)
9627 type = builtin_type (exp->gdbarch)->builtin_int;
9628
9629 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9630 return allocate_value (type);
9631
9632 switch (op)
9633 {
9634 default: /* Should never happen. */
9635 error (_("unexpected attribute encountered"));
9636 case OP_ATR_FIRST:
9637 return value_from_longest
9638 (type, ada_array_bound (arg1, tem, 0));
9639 case OP_ATR_LAST:
9640 return value_from_longest
9641 (type, ada_array_bound (arg1, tem, 1));
9642 case OP_ATR_LENGTH:
9643 return value_from_longest
9644 (type, ada_array_length (arg1, tem));
9645 }
9646 }
9647 else if (discrete_type_p (type_arg))
9648 {
9649 struct type *range_type;
9650 char *name = ada_type_name (type_arg);
9651
9652 range_type = NULL;
9653 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9654 range_type = to_fixed_range_type (type_arg, NULL);
9655 if (range_type == NULL)
9656 range_type = type_arg;
9657 switch (op)
9658 {
9659 default:
9660 error (_("unexpected attribute encountered"));
9661 case OP_ATR_FIRST:
9662 return value_from_longest
9663 (range_type, ada_discrete_type_low_bound (range_type));
9664 case OP_ATR_LAST:
9665 return value_from_longest
9666 (range_type, ada_discrete_type_high_bound (range_type));
9667 case OP_ATR_LENGTH:
9668 error (_("the 'length attribute applies only to array types"));
9669 }
9670 }
9671 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9672 error (_("unimplemented type attribute"));
9673 else
9674 {
9675 LONGEST low, high;
9676
9677 if (ada_is_constrained_packed_array_type (type_arg))
9678 type_arg = decode_constrained_packed_array_type (type_arg);
9679
9680 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9681 if (type == NULL)
9682 type = builtin_type (exp->gdbarch)->builtin_int;
9683
9684 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9685 return allocate_value (type);
9686
9687 switch (op)
9688 {
9689 default:
9690 error (_("unexpected attribute encountered"));
9691 case OP_ATR_FIRST:
9692 low = ada_array_bound_from_type (type_arg, tem, 0);
9693 return value_from_longest (type, low);
9694 case OP_ATR_LAST:
9695 high = ada_array_bound_from_type (type_arg, tem, 1);
9696 return value_from_longest (type, high);
9697 case OP_ATR_LENGTH:
9698 low = ada_array_bound_from_type (type_arg, tem, 0);
9699 high = ada_array_bound_from_type (type_arg, tem, 1);
9700 return value_from_longest (type, high - low + 1);
9701 }
9702 }
9703 }
9704
9705 case OP_ATR_TAG:
9706 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9707 if (noside == EVAL_SKIP)
9708 goto nosideret;
9709
9710 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9711 return value_zero (ada_tag_type (arg1), not_lval);
9712
9713 return ada_value_tag (arg1);
9714
9715 case OP_ATR_MIN:
9716 case OP_ATR_MAX:
9717 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9718 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9719 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9720 if (noside == EVAL_SKIP)
9721 goto nosideret;
9722 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9723 return value_zero (value_type (arg1), not_lval);
9724 else
9725 {
9726 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9727 return value_binop (arg1, arg2,
9728 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9729 }
9730
9731 case OP_ATR_MODULUS:
9732 {
9733 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9734
9735 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9736 if (noside == EVAL_SKIP)
9737 goto nosideret;
9738
9739 if (!ada_is_modular_type (type_arg))
9740 error (_("'modulus must be applied to modular type"));
9741
9742 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9743 ada_modulus (type_arg));
9744 }
9745
9746
9747 case OP_ATR_POS:
9748 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9749 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9750 if (noside == EVAL_SKIP)
9751 goto nosideret;
9752 type = builtin_type (exp->gdbarch)->builtin_int;
9753 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9754 return value_zero (type, not_lval);
9755 else
9756 return value_pos_atr (type, arg1);
9757
9758 case OP_ATR_SIZE:
9759 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9760 type = value_type (arg1);
9761
9762 /* If the argument is a reference, then dereference its type, since
9763 the user is really asking for the size of the actual object,
9764 not the size of the pointer. */
9765 if (TYPE_CODE (type) == TYPE_CODE_REF)
9766 type = TYPE_TARGET_TYPE (type);
9767
9768 if (noside == EVAL_SKIP)
9769 goto nosideret;
9770 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9771 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9772 else
9773 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9774 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9775
9776 case OP_ATR_VAL:
9777 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9778 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9779 type = exp->elts[pc + 2].type;
9780 if (noside == EVAL_SKIP)
9781 goto nosideret;
9782 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9783 return value_zero (type, not_lval);
9784 else
9785 return value_val_atr (type, arg1);
9786
9787 case BINOP_EXP:
9788 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9789 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9790 if (noside == EVAL_SKIP)
9791 goto nosideret;
9792 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9793 return value_zero (value_type (arg1), not_lval);
9794 else
9795 {
9796 /* For integer exponentiation operations,
9797 only promote the first argument. */
9798 if (is_integral_type (value_type (arg2)))
9799 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9800 else
9801 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9802
9803 return value_binop (arg1, arg2, op);
9804 }
9805
9806 case UNOP_PLUS:
9807 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9808 if (noside == EVAL_SKIP)
9809 goto nosideret;
9810 else
9811 return arg1;
9812
9813 case UNOP_ABS:
9814 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9815 if (noside == EVAL_SKIP)
9816 goto nosideret;
9817 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9818 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9819 return value_neg (arg1);
9820 else
9821 return arg1;
9822
9823 case UNOP_IND:
9824 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9825 if (noside == EVAL_SKIP)
9826 goto nosideret;
9827 type = ada_check_typedef (value_type (arg1));
9828 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9829 {
9830 if (ada_is_array_descriptor_type (type))
9831 /* GDB allows dereferencing GNAT array descriptors. */
9832 {
9833 struct type *arrType = ada_type_of_array (arg1, 0);
9834
9835 if (arrType == NULL)
9836 error (_("Attempt to dereference null array pointer."));
9837 return value_at_lazy (arrType, 0);
9838 }
9839 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9840 || TYPE_CODE (type) == TYPE_CODE_REF
9841 /* In C you can dereference an array to get the 1st elt. */
9842 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9843 {
9844 type = to_static_fixed_type
9845 (ada_aligned_type
9846 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9847 check_size (type);
9848 return value_zero (type, lval_memory);
9849 }
9850 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9851 {
9852 /* GDB allows dereferencing an int. */
9853 if (expect_type == NULL)
9854 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9855 lval_memory);
9856 else
9857 {
9858 expect_type =
9859 to_static_fixed_type (ada_aligned_type (expect_type));
9860 return value_zero (expect_type, lval_memory);
9861 }
9862 }
9863 else
9864 error (_("Attempt to take contents of a non-pointer value."));
9865 }
9866 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9867 type = ada_check_typedef (value_type (arg1));
9868
9869 if (TYPE_CODE (type) == TYPE_CODE_INT)
9870 /* GDB allows dereferencing an int. If we were given
9871 the expect_type, then use that as the target type.
9872 Otherwise, assume that the target type is an int. */
9873 {
9874 if (expect_type != NULL)
9875 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9876 arg1));
9877 else
9878 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9879 (CORE_ADDR) value_as_address (arg1));
9880 }
9881
9882 if (ada_is_array_descriptor_type (type))
9883 /* GDB allows dereferencing GNAT array descriptors. */
9884 return ada_coerce_to_simple_array (arg1);
9885 else
9886 return ada_value_ind (arg1);
9887
9888 case STRUCTOP_STRUCT:
9889 tem = longest_to_int (exp->elts[pc + 1].longconst);
9890 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9891 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9892 if (noside == EVAL_SKIP)
9893 goto nosideret;
9894 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9895 {
9896 struct type *type1 = value_type (arg1);
9897
9898 if (ada_is_tagged_type (type1, 1))
9899 {
9900 type = ada_lookup_struct_elt_type (type1,
9901 &exp->elts[pc + 2].string,
9902 1, 1, NULL);
9903 if (type == NULL)
9904 /* In this case, we assume that the field COULD exist
9905 in some extension of the type. Return an object of
9906 "type" void, which will match any formal
9907 (see ada_type_match). */
9908 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9909 lval_memory);
9910 }
9911 else
9912 type =
9913 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9914 0, NULL);
9915
9916 return value_zero (ada_aligned_type (type), lval_memory);
9917 }
9918 else
9919 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9920 arg1 = unwrap_value (arg1);
9921 return ada_to_fixed_value (arg1);
9922
9923 case OP_TYPE:
9924 /* The value is not supposed to be used. This is here to make it
9925 easier to accommodate expressions that contain types. */
9926 (*pos) += 2;
9927 if (noside == EVAL_SKIP)
9928 goto nosideret;
9929 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9930 return allocate_value (exp->elts[pc + 1].type);
9931 else
9932 error (_("Attempt to use a type name as an expression"));
9933
9934 case OP_AGGREGATE:
9935 case OP_CHOICES:
9936 case OP_OTHERS:
9937 case OP_DISCRETE_RANGE:
9938 case OP_POSITIONAL:
9939 case OP_NAME:
9940 if (noside == EVAL_NORMAL)
9941 switch (op)
9942 {
9943 case OP_NAME:
9944 error (_("Undefined name, ambiguous name, or renaming used in "
9945 "component association: %s."), &exp->elts[pc+2].string);
9946 case OP_AGGREGATE:
9947 error (_("Aggregates only allowed on the right of an assignment"));
9948 default:
9949 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9950 }
9951
9952 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9953 *pos += oplen - 1;
9954 for (tem = 0; tem < nargs; tem += 1)
9955 ada_evaluate_subexp (NULL, exp, pos, noside);
9956 goto nosideret;
9957 }
9958
9959 nosideret:
9960 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9961 }
9962 \f
9963
9964 /* Fixed point */
9965
9966 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9967 type name that encodes the 'small and 'delta information.
9968 Otherwise, return NULL. */
9969
9970 static const char *
9971 fixed_type_info (struct type *type)
9972 {
9973 const char *name = ada_type_name (type);
9974 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9975
9976 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9977 {
9978 const char *tail = strstr (name, "___XF_");
9979
9980 if (tail == NULL)
9981 return NULL;
9982 else
9983 return tail + 5;
9984 }
9985 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9986 return fixed_type_info (TYPE_TARGET_TYPE (type));
9987 else
9988 return NULL;
9989 }
9990
9991 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9992
9993 int
9994 ada_is_fixed_point_type (struct type *type)
9995 {
9996 return fixed_type_info (type) != NULL;
9997 }
9998
9999 /* Return non-zero iff TYPE represents a System.Address type. */
10000
10001 int
10002 ada_is_system_address_type (struct type *type)
10003 {
10004 return (TYPE_NAME (type)
10005 && strcmp (TYPE_NAME (type), "system__address") == 0);
10006 }
10007
10008 /* Assuming that TYPE is the representation of an Ada fixed-point
10009 type, return its delta, or -1 if the type is malformed and the
10010 delta cannot be determined. */
10011
10012 DOUBLEST
10013 ada_delta (struct type *type)
10014 {
10015 const char *encoding = fixed_type_info (type);
10016 DOUBLEST num, den;
10017
10018 /* Strictly speaking, num and den are encoded as integer. However,
10019 they may not fit into a long, and they will have to be converted
10020 to DOUBLEST anyway. So scan them as DOUBLEST. */
10021 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10022 &num, &den) < 2)
10023 return -1.0;
10024 else
10025 return num / den;
10026 }
10027
10028 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10029 factor ('SMALL value) associated with the type. */
10030
10031 static DOUBLEST
10032 scaling_factor (struct type *type)
10033 {
10034 const char *encoding = fixed_type_info (type);
10035 DOUBLEST num0, den0, num1, den1;
10036 int n;
10037
10038 /* Strictly speaking, num's and den's are encoded as integer. However,
10039 they may not fit into a long, and they will have to be converted
10040 to DOUBLEST anyway. So scan them as DOUBLEST. */
10041 n = sscanf (encoding,
10042 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10043 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10044 &num0, &den0, &num1, &den1);
10045
10046 if (n < 2)
10047 return 1.0;
10048 else if (n == 4)
10049 return num1 / den1;
10050 else
10051 return num0 / den0;
10052 }
10053
10054
10055 /* Assuming that X is the representation of a value of fixed-point
10056 type TYPE, return its floating-point equivalent. */
10057
10058 DOUBLEST
10059 ada_fixed_to_float (struct type *type, LONGEST x)
10060 {
10061 return (DOUBLEST) x *scaling_factor (type);
10062 }
10063
10064 /* The representation of a fixed-point value of type TYPE
10065 corresponding to the value X. */
10066
10067 LONGEST
10068 ada_float_to_fixed (struct type *type, DOUBLEST x)
10069 {
10070 return (LONGEST) (x / scaling_factor (type) + 0.5);
10071 }
10072
10073 \f
10074
10075 /* Range types */
10076
10077 /* Scan STR beginning at position K for a discriminant name, and
10078 return the value of that discriminant field of DVAL in *PX. If
10079 PNEW_K is not null, put the position of the character beyond the
10080 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10081 not alter *PX and *PNEW_K if unsuccessful. */
10082
10083 static int
10084 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10085 int *pnew_k)
10086 {
10087 static char *bound_buffer = NULL;
10088 static size_t bound_buffer_len = 0;
10089 char *bound;
10090 char *pend;
10091 struct value *bound_val;
10092
10093 if (dval == NULL || str == NULL || str[k] == '\0')
10094 return 0;
10095
10096 pend = strstr (str + k, "__");
10097 if (pend == NULL)
10098 {
10099 bound = str + k;
10100 k += strlen (bound);
10101 }
10102 else
10103 {
10104 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10105 bound = bound_buffer;
10106 strncpy (bound_buffer, str + k, pend - (str + k));
10107 bound[pend - (str + k)] = '\0';
10108 k = pend - str;
10109 }
10110
10111 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10112 if (bound_val == NULL)
10113 return 0;
10114
10115 *px = value_as_long (bound_val);
10116 if (pnew_k != NULL)
10117 *pnew_k = k;
10118 return 1;
10119 }
10120
10121 /* Value of variable named NAME in the current environment. If
10122 no such variable found, then if ERR_MSG is null, returns 0, and
10123 otherwise causes an error with message ERR_MSG. */
10124
10125 static struct value *
10126 get_var_value (char *name, char *err_msg)
10127 {
10128 struct ada_symbol_info *syms;
10129 int nsyms;
10130
10131 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10132 &syms);
10133
10134 if (nsyms != 1)
10135 {
10136 if (err_msg == NULL)
10137 return 0;
10138 else
10139 error (("%s"), err_msg);
10140 }
10141
10142 return value_of_variable (syms[0].sym, syms[0].block);
10143 }
10144
10145 /* Value of integer variable named NAME in the current environment. If
10146 no such variable found, returns 0, and sets *FLAG to 0. If
10147 successful, sets *FLAG to 1. */
10148
10149 LONGEST
10150 get_int_var_value (char *name, int *flag)
10151 {
10152 struct value *var_val = get_var_value (name, 0);
10153
10154 if (var_val == 0)
10155 {
10156 if (flag != NULL)
10157 *flag = 0;
10158 return 0;
10159 }
10160 else
10161 {
10162 if (flag != NULL)
10163 *flag = 1;
10164 return value_as_long (var_val);
10165 }
10166 }
10167
10168
10169 /* Return a range type whose base type is that of the range type named
10170 NAME in the current environment, and whose bounds are calculated
10171 from NAME according to the GNAT range encoding conventions.
10172 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10173 corresponding range type from debug information; fall back to using it
10174 if symbol lookup fails. If a new type must be created, allocate it
10175 like ORIG_TYPE was. The bounds information, in general, is encoded
10176 in NAME, the base type given in the named range type. */
10177
10178 static struct type *
10179 to_fixed_range_type (struct type *raw_type, struct value *dval)
10180 {
10181 char *name;
10182 struct type *base_type;
10183 char *subtype_info;
10184
10185 gdb_assert (raw_type != NULL);
10186 gdb_assert (TYPE_NAME (raw_type) != NULL);
10187
10188 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10189 base_type = TYPE_TARGET_TYPE (raw_type);
10190 else
10191 base_type = raw_type;
10192
10193 name = TYPE_NAME (raw_type);
10194 subtype_info = strstr (name, "___XD");
10195 if (subtype_info == NULL)
10196 {
10197 LONGEST L = ada_discrete_type_low_bound (raw_type);
10198 LONGEST U = ada_discrete_type_high_bound (raw_type);
10199
10200 if (L < INT_MIN || U > INT_MAX)
10201 return raw_type;
10202 else
10203 return create_range_type (alloc_type_copy (raw_type), raw_type,
10204 ada_discrete_type_low_bound (raw_type),
10205 ada_discrete_type_high_bound (raw_type));
10206 }
10207 else
10208 {
10209 static char *name_buf = NULL;
10210 static size_t name_len = 0;
10211 int prefix_len = subtype_info - name;
10212 LONGEST L, U;
10213 struct type *type;
10214 char *bounds_str;
10215 int n;
10216
10217 GROW_VECT (name_buf, name_len, prefix_len + 5);
10218 strncpy (name_buf, name, prefix_len);
10219 name_buf[prefix_len] = '\0';
10220
10221 subtype_info += 5;
10222 bounds_str = strchr (subtype_info, '_');
10223 n = 1;
10224
10225 if (*subtype_info == 'L')
10226 {
10227 if (!ada_scan_number (bounds_str, n, &L, &n)
10228 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10229 return raw_type;
10230 if (bounds_str[n] == '_')
10231 n += 2;
10232 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10233 n += 1;
10234 subtype_info += 1;
10235 }
10236 else
10237 {
10238 int ok;
10239
10240 strcpy (name_buf + prefix_len, "___L");
10241 L = get_int_var_value (name_buf, &ok);
10242 if (!ok)
10243 {
10244 lim_warning (_("Unknown lower bound, using 1."));
10245 L = 1;
10246 }
10247 }
10248
10249 if (*subtype_info == 'U')
10250 {
10251 if (!ada_scan_number (bounds_str, n, &U, &n)
10252 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10253 return raw_type;
10254 }
10255 else
10256 {
10257 int ok;
10258
10259 strcpy (name_buf + prefix_len, "___U");
10260 U = get_int_var_value (name_buf, &ok);
10261 if (!ok)
10262 {
10263 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10264 U = L;
10265 }
10266 }
10267
10268 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10269 TYPE_NAME (type) = name;
10270 return type;
10271 }
10272 }
10273
10274 /* True iff NAME is the name of a range type. */
10275
10276 int
10277 ada_is_range_type_name (const char *name)
10278 {
10279 return (name != NULL && strstr (name, "___XD"));
10280 }
10281 \f
10282
10283 /* Modular types */
10284
10285 /* True iff TYPE is an Ada modular type. */
10286
10287 int
10288 ada_is_modular_type (struct type *type)
10289 {
10290 struct type *subranged_type = base_type (type);
10291
10292 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10293 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10294 && TYPE_UNSIGNED (subranged_type));
10295 }
10296
10297 /* Try to determine the lower and upper bounds of the given modular type
10298 using the type name only. Return non-zero and set L and U as the lower
10299 and upper bounds (respectively) if successful. */
10300
10301 int
10302 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10303 {
10304 char *name = ada_type_name (type);
10305 char *suffix;
10306 int k;
10307 LONGEST U;
10308
10309 if (name == NULL)
10310 return 0;
10311
10312 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10313 we are looking for static bounds, which means an __XDLU suffix.
10314 Moreover, we know that the lower bound of modular types is always
10315 zero, so the actual suffix should start with "__XDLU_0__", and
10316 then be followed by the upper bound value. */
10317 suffix = strstr (name, "__XDLU_0__");
10318 if (suffix == NULL)
10319 return 0;
10320 k = 10;
10321 if (!ada_scan_number (suffix, k, &U, NULL))
10322 return 0;
10323
10324 *modulus = (ULONGEST) U + 1;
10325 return 1;
10326 }
10327
10328 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10329
10330 ULONGEST
10331 ada_modulus (struct type *type)
10332 {
10333 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10334 }
10335 \f
10336
10337 /* Ada exception catchpoint support:
10338 ---------------------------------
10339
10340 We support 3 kinds of exception catchpoints:
10341 . catchpoints on Ada exceptions
10342 . catchpoints on unhandled Ada exceptions
10343 . catchpoints on failed assertions
10344
10345 Exceptions raised during failed assertions, or unhandled exceptions
10346 could perfectly be caught with the general catchpoint on Ada exceptions.
10347 However, we can easily differentiate these two special cases, and having
10348 the option to distinguish these two cases from the rest can be useful
10349 to zero-in on certain situations.
10350
10351 Exception catchpoints are a specialized form of breakpoint,
10352 since they rely on inserting breakpoints inside known routines
10353 of the GNAT runtime. The implementation therefore uses a standard
10354 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10355 of breakpoint_ops.
10356
10357 Support in the runtime for exception catchpoints have been changed
10358 a few times already, and these changes affect the implementation
10359 of these catchpoints. In order to be able to support several
10360 variants of the runtime, we use a sniffer that will determine
10361 the runtime variant used by the program being debugged.
10362
10363 At this time, we do not support the use of conditions on Ada exception
10364 catchpoints. The COND and COND_STRING fields are therefore set
10365 to NULL (most of the time, see below).
10366
10367 Conditions where EXP_STRING, COND, and COND_STRING are used:
10368
10369 When a user specifies the name of a specific exception in the case
10370 of catchpoints on Ada exceptions, we store the name of that exception
10371 in the EXP_STRING. We then translate this request into an actual
10372 condition stored in COND_STRING, and then parse it into an expression
10373 stored in COND. */
10374
10375 /* The different types of catchpoints that we introduced for catching
10376 Ada exceptions. */
10377
10378 enum exception_catchpoint_kind
10379 {
10380 ex_catch_exception,
10381 ex_catch_exception_unhandled,
10382 ex_catch_assert
10383 };
10384
10385 /* Ada's standard exceptions. */
10386
10387 static char *standard_exc[] = {
10388 "constraint_error",
10389 "program_error",
10390 "storage_error",
10391 "tasking_error"
10392 };
10393
10394 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10395
10396 /* A structure that describes how to support exception catchpoints
10397 for a given executable. */
10398
10399 struct exception_support_info
10400 {
10401 /* The name of the symbol to break on in order to insert
10402 a catchpoint on exceptions. */
10403 const char *catch_exception_sym;
10404
10405 /* The name of the symbol to break on in order to insert
10406 a catchpoint on unhandled exceptions. */
10407 const char *catch_exception_unhandled_sym;
10408
10409 /* The name of the symbol to break on in order to insert
10410 a catchpoint on failed assertions. */
10411 const char *catch_assert_sym;
10412
10413 /* Assuming that the inferior just triggered an unhandled exception
10414 catchpoint, this function is responsible for returning the address
10415 in inferior memory where the name of that exception is stored.
10416 Return zero if the address could not be computed. */
10417 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10418 };
10419
10420 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10421 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10422
10423 /* The following exception support info structure describes how to
10424 implement exception catchpoints with the latest version of the
10425 Ada runtime (as of 2007-03-06). */
10426
10427 static const struct exception_support_info default_exception_support_info =
10428 {
10429 "__gnat_debug_raise_exception", /* catch_exception_sym */
10430 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10431 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10432 ada_unhandled_exception_name_addr
10433 };
10434
10435 /* The following exception support info structure describes how to
10436 implement exception catchpoints with a slightly older version
10437 of the Ada runtime. */
10438
10439 static const struct exception_support_info exception_support_info_fallback =
10440 {
10441 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10442 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10443 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10444 ada_unhandled_exception_name_addr_from_raise
10445 };
10446
10447 /* For each executable, we sniff which exception info structure to use
10448 and cache it in the following global variable. */
10449
10450 static const struct exception_support_info *exception_info = NULL;
10451
10452 /* Inspect the Ada runtime and determine which exception info structure
10453 should be used to provide support for exception catchpoints.
10454
10455 This function will always set exception_info, or raise an error. */
10456
10457 static void
10458 ada_exception_support_info_sniffer (void)
10459 {
10460 struct symbol *sym;
10461
10462 /* If the exception info is already known, then no need to recompute it. */
10463 if (exception_info != NULL)
10464 return;
10465
10466 /* Check the latest (default) exception support info. */
10467 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10468 NULL, VAR_DOMAIN);
10469 if (sym != NULL)
10470 {
10471 exception_info = &default_exception_support_info;
10472 return;
10473 }
10474
10475 /* Try our fallback exception suport info. */
10476 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10477 NULL, VAR_DOMAIN);
10478 if (sym != NULL)
10479 {
10480 exception_info = &exception_support_info_fallback;
10481 return;
10482 }
10483
10484 /* Sometimes, it is normal for us to not be able to find the routine
10485 we are looking for. This happens when the program is linked with
10486 the shared version of the GNAT runtime, and the program has not been
10487 started yet. Inform the user of these two possible causes if
10488 applicable. */
10489
10490 if (ada_update_initial_language (language_unknown) != language_ada)
10491 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10492
10493 /* If the symbol does not exist, then check that the program is
10494 already started, to make sure that shared libraries have been
10495 loaded. If it is not started, this may mean that the symbol is
10496 in a shared library. */
10497
10498 if (ptid_get_pid (inferior_ptid) == 0)
10499 error (_("Unable to insert catchpoint. Try to start the program first."));
10500
10501 /* At this point, we know that we are debugging an Ada program and
10502 that the inferior has been started, but we still are not able to
10503 find the run-time symbols. That can mean that we are in
10504 configurable run time mode, or that a-except as been optimized
10505 out by the linker... In any case, at this point it is not worth
10506 supporting this feature. */
10507
10508 error (_("Cannot insert catchpoints in this configuration."));
10509 }
10510
10511 /* An observer of "executable_changed" events.
10512 Its role is to clear certain cached values that need to be recomputed
10513 each time a new executable is loaded by GDB. */
10514
10515 static void
10516 ada_executable_changed_observer (void)
10517 {
10518 /* If the executable changed, then it is possible that the Ada runtime
10519 is different. So we need to invalidate the exception support info
10520 cache. */
10521 exception_info = NULL;
10522 }
10523
10524 /* True iff FRAME is very likely to be that of a function that is
10525 part of the runtime system. This is all very heuristic, but is
10526 intended to be used as advice as to what frames are uninteresting
10527 to most users. */
10528
10529 static int
10530 is_known_support_routine (struct frame_info *frame)
10531 {
10532 struct symtab_and_line sal;
10533 char *func_name;
10534 enum language func_lang;
10535 int i;
10536
10537 /* If this code does not have any debugging information (no symtab),
10538 This cannot be any user code. */
10539
10540 find_frame_sal (frame, &sal);
10541 if (sal.symtab == NULL)
10542 return 1;
10543
10544 /* If there is a symtab, but the associated source file cannot be
10545 located, then assume this is not user code: Selecting a frame
10546 for which we cannot display the code would not be very helpful
10547 for the user. This should also take care of case such as VxWorks
10548 where the kernel has some debugging info provided for a few units. */
10549
10550 if (symtab_to_fullname (sal.symtab) == NULL)
10551 return 1;
10552
10553 /* Check the unit filename againt the Ada runtime file naming.
10554 We also check the name of the objfile against the name of some
10555 known system libraries that sometimes come with debugging info
10556 too. */
10557
10558 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10559 {
10560 re_comp (known_runtime_file_name_patterns[i]);
10561 if (re_exec (sal.symtab->filename))
10562 return 1;
10563 if (sal.symtab->objfile != NULL
10564 && re_exec (sal.symtab->objfile->name))
10565 return 1;
10566 }
10567
10568 /* Check whether the function is a GNAT-generated entity. */
10569
10570 find_frame_funname (frame, &func_name, &func_lang, NULL);
10571 if (func_name == NULL)
10572 return 1;
10573
10574 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10575 {
10576 re_comp (known_auxiliary_function_name_patterns[i]);
10577 if (re_exec (func_name))
10578 return 1;
10579 }
10580
10581 return 0;
10582 }
10583
10584 /* Find the first frame that contains debugging information and that is not
10585 part of the Ada run-time, starting from FI and moving upward. */
10586
10587 void
10588 ada_find_printable_frame (struct frame_info *fi)
10589 {
10590 for (; fi != NULL; fi = get_prev_frame (fi))
10591 {
10592 if (!is_known_support_routine (fi))
10593 {
10594 select_frame (fi);
10595 break;
10596 }
10597 }
10598
10599 }
10600
10601 /* Assuming that the inferior just triggered an unhandled exception
10602 catchpoint, return the address in inferior memory where the name
10603 of the exception is stored.
10604
10605 Return zero if the address could not be computed. */
10606
10607 static CORE_ADDR
10608 ada_unhandled_exception_name_addr (void)
10609 {
10610 return parse_and_eval_address ("e.full_name");
10611 }
10612
10613 /* Same as ada_unhandled_exception_name_addr, except that this function
10614 should be used when the inferior uses an older version of the runtime,
10615 where the exception name needs to be extracted from a specific frame
10616 several frames up in the callstack. */
10617
10618 static CORE_ADDR
10619 ada_unhandled_exception_name_addr_from_raise (void)
10620 {
10621 int frame_level;
10622 struct frame_info *fi;
10623
10624 /* To determine the name of this exception, we need to select
10625 the frame corresponding to RAISE_SYM_NAME. This frame is
10626 at least 3 levels up, so we simply skip the first 3 frames
10627 without checking the name of their associated function. */
10628 fi = get_current_frame ();
10629 for (frame_level = 0; frame_level < 3; frame_level += 1)
10630 if (fi != NULL)
10631 fi = get_prev_frame (fi);
10632
10633 while (fi != NULL)
10634 {
10635 char *func_name;
10636 enum language func_lang;
10637
10638 find_frame_funname (fi, &func_name, &func_lang, NULL);
10639 if (func_name != NULL
10640 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10641 break; /* We found the frame we were looking for... */
10642 fi = get_prev_frame (fi);
10643 }
10644
10645 if (fi == NULL)
10646 return 0;
10647
10648 select_frame (fi);
10649 return parse_and_eval_address ("id.full_name");
10650 }
10651
10652 /* Assuming the inferior just triggered an Ada exception catchpoint
10653 (of any type), return the address in inferior memory where the name
10654 of the exception is stored, if applicable.
10655
10656 Return zero if the address could not be computed, or if not relevant. */
10657
10658 static CORE_ADDR
10659 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10660 struct breakpoint *b)
10661 {
10662 switch (ex)
10663 {
10664 case ex_catch_exception:
10665 return (parse_and_eval_address ("e.full_name"));
10666 break;
10667
10668 case ex_catch_exception_unhandled:
10669 return exception_info->unhandled_exception_name_addr ();
10670 break;
10671
10672 case ex_catch_assert:
10673 return 0; /* Exception name is not relevant in this case. */
10674 break;
10675
10676 default:
10677 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10678 break;
10679 }
10680
10681 return 0; /* Should never be reached. */
10682 }
10683
10684 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10685 any error that ada_exception_name_addr_1 might cause to be thrown.
10686 When an error is intercepted, a warning with the error message is printed,
10687 and zero is returned. */
10688
10689 static CORE_ADDR
10690 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10691 struct breakpoint *b)
10692 {
10693 struct gdb_exception e;
10694 CORE_ADDR result = 0;
10695
10696 TRY_CATCH (e, RETURN_MASK_ERROR)
10697 {
10698 result = ada_exception_name_addr_1 (ex, b);
10699 }
10700
10701 if (e.reason < 0)
10702 {
10703 warning (_("failed to get exception name: %s"), e.message);
10704 return 0;
10705 }
10706
10707 return result;
10708 }
10709
10710 /* Implement the PRINT_IT method in the breakpoint_ops structure
10711 for all exception catchpoint kinds. */
10712
10713 static enum print_stop_action
10714 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10715 {
10716 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10717 char exception_name[256];
10718
10719 if (addr != 0)
10720 {
10721 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10722 exception_name [sizeof (exception_name) - 1] = '\0';
10723 }
10724
10725 ada_find_printable_frame (get_current_frame ());
10726
10727 annotate_catchpoint (b->number);
10728 switch (ex)
10729 {
10730 case ex_catch_exception:
10731 if (addr != 0)
10732 printf_filtered (_("\nCatchpoint %d, %s at "),
10733 b->number, exception_name);
10734 else
10735 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10736 break;
10737 case ex_catch_exception_unhandled:
10738 if (addr != 0)
10739 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10740 b->number, exception_name);
10741 else
10742 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10743 b->number);
10744 break;
10745 case ex_catch_assert:
10746 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10747 b->number);
10748 break;
10749 }
10750
10751 return PRINT_SRC_AND_LOC;
10752 }
10753
10754 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10755 for all exception catchpoint kinds. */
10756
10757 static void
10758 print_one_exception (enum exception_catchpoint_kind ex,
10759 struct breakpoint *b, struct bp_location **last_loc)
10760 {
10761 struct value_print_options opts;
10762
10763 get_user_print_options (&opts);
10764 if (opts.addressprint)
10765 {
10766 annotate_field (4);
10767 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10768 }
10769
10770 annotate_field (5);
10771 *last_loc = b->loc;
10772 switch (ex)
10773 {
10774 case ex_catch_exception:
10775 if (b->exp_string != NULL)
10776 {
10777 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10778
10779 ui_out_field_string (uiout, "what", msg);
10780 xfree (msg);
10781 }
10782 else
10783 ui_out_field_string (uiout, "what", "all Ada exceptions");
10784
10785 break;
10786
10787 case ex_catch_exception_unhandled:
10788 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10789 break;
10790
10791 case ex_catch_assert:
10792 ui_out_field_string (uiout, "what", "failed Ada assertions");
10793 break;
10794
10795 default:
10796 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10797 break;
10798 }
10799 }
10800
10801 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10802 for all exception catchpoint kinds. */
10803
10804 static void
10805 print_mention_exception (enum exception_catchpoint_kind ex,
10806 struct breakpoint *b)
10807 {
10808 switch (ex)
10809 {
10810 case ex_catch_exception:
10811 if (b->exp_string != NULL)
10812 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10813 b->number, b->exp_string);
10814 else
10815 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10816
10817 break;
10818
10819 case ex_catch_exception_unhandled:
10820 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10821 b->number);
10822 break;
10823
10824 case ex_catch_assert:
10825 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10826 break;
10827
10828 default:
10829 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10830 break;
10831 }
10832 }
10833
10834 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10835 for all exception catchpoint kinds. */
10836
10837 static void
10838 print_recreate_exception (enum exception_catchpoint_kind ex,
10839 struct breakpoint *b, struct ui_file *fp)
10840 {
10841 switch (ex)
10842 {
10843 case ex_catch_exception:
10844 fprintf_filtered (fp, "catch exception");
10845 if (b->exp_string != NULL)
10846 fprintf_filtered (fp, " %s", b->exp_string);
10847 break;
10848
10849 case ex_catch_exception_unhandled:
10850 fprintf_filtered (fp, "catch exception unhandled");
10851 break;
10852
10853 case ex_catch_assert:
10854 fprintf_filtered (fp, "catch assert");
10855 break;
10856
10857 default:
10858 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10859 }
10860 }
10861
10862 /* Virtual table for "catch exception" breakpoints. */
10863
10864 static enum print_stop_action
10865 print_it_catch_exception (struct breakpoint *b)
10866 {
10867 return print_it_exception (ex_catch_exception, b);
10868 }
10869
10870 static void
10871 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10872 {
10873 print_one_exception (ex_catch_exception, b, last_loc);
10874 }
10875
10876 static void
10877 print_mention_catch_exception (struct breakpoint *b)
10878 {
10879 print_mention_exception (ex_catch_exception, b);
10880 }
10881
10882 static void
10883 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10884 {
10885 print_recreate_exception (ex_catch_exception, b, fp);
10886 }
10887
10888 static struct breakpoint_ops catch_exception_breakpoint_ops =
10889 {
10890 NULL, /* insert */
10891 NULL, /* remove */
10892 NULL, /* breakpoint_hit */
10893 print_it_catch_exception,
10894 print_one_catch_exception,
10895 print_mention_catch_exception,
10896 print_recreate_catch_exception
10897 };
10898
10899 /* Virtual table for "catch exception unhandled" breakpoints. */
10900
10901 static enum print_stop_action
10902 print_it_catch_exception_unhandled (struct breakpoint *b)
10903 {
10904 return print_it_exception (ex_catch_exception_unhandled, b);
10905 }
10906
10907 static void
10908 print_one_catch_exception_unhandled (struct breakpoint *b,
10909 struct bp_location **last_loc)
10910 {
10911 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10912 }
10913
10914 static void
10915 print_mention_catch_exception_unhandled (struct breakpoint *b)
10916 {
10917 print_mention_exception (ex_catch_exception_unhandled, b);
10918 }
10919
10920 static void
10921 print_recreate_catch_exception_unhandled (struct breakpoint *b,
10922 struct ui_file *fp)
10923 {
10924 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10925 }
10926
10927 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10928 NULL, /* insert */
10929 NULL, /* remove */
10930 NULL, /* breakpoint_hit */
10931 print_it_catch_exception_unhandled,
10932 print_one_catch_exception_unhandled,
10933 print_mention_catch_exception_unhandled,
10934 print_recreate_catch_exception_unhandled
10935 };
10936
10937 /* Virtual table for "catch assert" breakpoints. */
10938
10939 static enum print_stop_action
10940 print_it_catch_assert (struct breakpoint *b)
10941 {
10942 return print_it_exception (ex_catch_assert, b);
10943 }
10944
10945 static void
10946 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
10947 {
10948 print_one_exception (ex_catch_assert, b, last_loc);
10949 }
10950
10951 static void
10952 print_mention_catch_assert (struct breakpoint *b)
10953 {
10954 print_mention_exception (ex_catch_assert, b);
10955 }
10956
10957 static void
10958 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
10959 {
10960 print_recreate_exception (ex_catch_assert, b, fp);
10961 }
10962
10963 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10964 NULL, /* insert */
10965 NULL, /* remove */
10966 NULL, /* breakpoint_hit */
10967 print_it_catch_assert,
10968 print_one_catch_assert,
10969 print_mention_catch_assert,
10970 print_recreate_catch_assert
10971 };
10972
10973 /* Return non-zero if B is an Ada exception catchpoint. */
10974
10975 int
10976 ada_exception_catchpoint_p (struct breakpoint *b)
10977 {
10978 return (b->ops == &catch_exception_breakpoint_ops
10979 || b->ops == &catch_exception_unhandled_breakpoint_ops
10980 || b->ops == &catch_assert_breakpoint_ops);
10981 }
10982
10983 /* Return a newly allocated copy of the first space-separated token
10984 in ARGSP, and then adjust ARGSP to point immediately after that
10985 token.
10986
10987 Return NULL if ARGPS does not contain any more tokens. */
10988
10989 static char *
10990 ada_get_next_arg (char **argsp)
10991 {
10992 char *args = *argsp;
10993 char *end;
10994 char *result;
10995
10996 /* Skip any leading white space. */
10997
10998 while (isspace (*args))
10999 args++;
11000
11001 if (args[0] == '\0')
11002 return NULL; /* No more arguments. */
11003
11004 /* Find the end of the current argument. */
11005
11006 end = args;
11007 while (*end != '\0' && !isspace (*end))
11008 end++;
11009
11010 /* Adjust ARGSP to point to the start of the next argument. */
11011
11012 *argsp = end;
11013
11014 /* Make a copy of the current argument and return it. */
11015
11016 result = xmalloc (end - args + 1);
11017 strncpy (result, args, end - args);
11018 result[end - args] = '\0';
11019
11020 return result;
11021 }
11022
11023 /* Split the arguments specified in a "catch exception" command.
11024 Set EX to the appropriate catchpoint type.
11025 Set EXP_STRING to the name of the specific exception if
11026 specified by the user. */
11027
11028 static void
11029 catch_ada_exception_command_split (char *args,
11030 enum exception_catchpoint_kind *ex,
11031 char **exp_string)
11032 {
11033 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11034 char *exception_name;
11035
11036 exception_name = ada_get_next_arg (&args);
11037 make_cleanup (xfree, exception_name);
11038
11039 /* Check that we do not have any more arguments. Anything else
11040 is unexpected. */
11041
11042 while (isspace (*args))
11043 args++;
11044
11045 if (args[0] != '\0')
11046 error (_("Junk at end of expression"));
11047
11048 discard_cleanups (old_chain);
11049
11050 if (exception_name == NULL)
11051 {
11052 /* Catch all exceptions. */
11053 *ex = ex_catch_exception;
11054 *exp_string = NULL;
11055 }
11056 else if (strcmp (exception_name, "unhandled") == 0)
11057 {
11058 /* Catch unhandled exceptions. */
11059 *ex = ex_catch_exception_unhandled;
11060 *exp_string = NULL;
11061 }
11062 else
11063 {
11064 /* Catch a specific exception. */
11065 *ex = ex_catch_exception;
11066 *exp_string = exception_name;
11067 }
11068 }
11069
11070 /* Return the name of the symbol on which we should break in order to
11071 implement a catchpoint of the EX kind. */
11072
11073 static const char *
11074 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11075 {
11076 gdb_assert (exception_info != NULL);
11077
11078 switch (ex)
11079 {
11080 case ex_catch_exception:
11081 return (exception_info->catch_exception_sym);
11082 break;
11083 case ex_catch_exception_unhandled:
11084 return (exception_info->catch_exception_unhandled_sym);
11085 break;
11086 case ex_catch_assert:
11087 return (exception_info->catch_assert_sym);
11088 break;
11089 default:
11090 internal_error (__FILE__, __LINE__,
11091 _("unexpected catchpoint kind (%d)"), ex);
11092 }
11093 }
11094
11095 /* Return the breakpoint ops "virtual table" used for catchpoints
11096 of the EX kind. */
11097
11098 static struct breakpoint_ops *
11099 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11100 {
11101 switch (ex)
11102 {
11103 case ex_catch_exception:
11104 return (&catch_exception_breakpoint_ops);
11105 break;
11106 case ex_catch_exception_unhandled:
11107 return (&catch_exception_unhandled_breakpoint_ops);
11108 break;
11109 case ex_catch_assert:
11110 return (&catch_assert_breakpoint_ops);
11111 break;
11112 default:
11113 internal_error (__FILE__, __LINE__,
11114 _("unexpected catchpoint kind (%d)"), ex);
11115 }
11116 }
11117
11118 /* Return the condition that will be used to match the current exception
11119 being raised with the exception that the user wants to catch. This
11120 assumes that this condition is used when the inferior just triggered
11121 an exception catchpoint.
11122
11123 The string returned is a newly allocated string that needs to be
11124 deallocated later. */
11125
11126 static char *
11127 ada_exception_catchpoint_cond_string (const char *exp_string)
11128 {
11129 int i;
11130
11131 /* The standard exceptions are a special case. They are defined in
11132 runtime units that have been compiled without debugging info; if
11133 EXP_STRING is the not-fully-qualified name of a standard
11134 exception (e.g. "constraint_error") then, during the evaluation
11135 of the condition expression, the symbol lookup on this name would
11136 *not* return this standard exception. The catchpoint condition
11137 may then be set only on user-defined exceptions which have the
11138 same not-fully-qualified name (e.g. my_package.constraint_error).
11139
11140 To avoid this unexcepted behavior, these standard exceptions are
11141 systematically prefixed by "standard". This means that "catch
11142 exception constraint_error" is rewritten into "catch exception
11143 standard.constraint_error".
11144
11145 If an exception named contraint_error is defined in another package of
11146 the inferior program, then the only way to specify this exception as a
11147 breakpoint condition is to use its fully-qualified named:
11148 e.g. my_package.constraint_error. */
11149
11150 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11151 {
11152 if (strcmp (standard_exc [i], exp_string) == 0)
11153 {
11154 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11155 exp_string);
11156 }
11157 }
11158 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
11159 }
11160
11161 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
11162
11163 static struct expression *
11164 ada_parse_catchpoint_condition (char *cond_string,
11165 struct symtab_and_line sal)
11166 {
11167 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
11168 }
11169
11170 /* Return the symtab_and_line that should be used to insert an exception
11171 catchpoint of the TYPE kind.
11172
11173 EX_STRING should contain the name of a specific exception
11174 that the catchpoint should catch, or NULL otherwise.
11175
11176 The idea behind all the remaining parameters is that their names match
11177 the name of certain fields in the breakpoint structure that are used to
11178 handle exception catchpoints. This function returns the value to which
11179 these fields should be set, depending on the type of catchpoint we need
11180 to create.
11181
11182 If COND and COND_STRING are both non-NULL, any value they might
11183 hold will be free'ed, and then replaced by newly allocated ones.
11184 These parameters are left untouched otherwise. */
11185
11186 static struct symtab_and_line
11187 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
11188 char **addr_string, char **cond_string,
11189 struct expression **cond, struct breakpoint_ops **ops)
11190 {
11191 const char *sym_name;
11192 struct symbol *sym;
11193 struct symtab_and_line sal;
11194
11195 /* First, find out which exception support info to use. */
11196 ada_exception_support_info_sniffer ();
11197
11198 /* Then lookup the function on which we will break in order to catch
11199 the Ada exceptions requested by the user. */
11200
11201 sym_name = ada_exception_sym_name (ex);
11202 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11203
11204 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11205 that should be compiled with debugging information. As a result, we
11206 expect to find that symbol in the symtabs. If we don't find it, then
11207 the target most likely does not support Ada exceptions, or we cannot
11208 insert exception breakpoints yet, because the GNAT runtime hasn't been
11209 loaded yet. */
11210
11211 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
11212 in such a way that no debugging information is produced for the symbol
11213 we are looking for. In this case, we could search the minimal symbols
11214 as a fall-back mechanism. This would still be operating in degraded
11215 mode, however, as we would still be missing the debugging information
11216 that is needed in order to extract the name of the exception being
11217 raised (this name is printed in the catchpoint message, and is also
11218 used when trying to catch a specific exception). We do not handle
11219 this case for now. */
11220
11221 if (sym == NULL)
11222 error (_("Unable to break on '%s' in this configuration."), sym_name);
11223
11224 /* Make sure that the symbol we found corresponds to a function. */
11225 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11226 error (_("Symbol \"%s\" is not a function (class = %d)"),
11227 sym_name, SYMBOL_CLASS (sym));
11228
11229 sal = find_function_start_sal (sym, 1);
11230
11231 /* Set ADDR_STRING. */
11232
11233 *addr_string = xstrdup (sym_name);
11234
11235 /* Set the COND and COND_STRING (if not NULL). */
11236
11237 if (cond_string != NULL && cond != NULL)
11238 {
11239 if (*cond_string != NULL)
11240 {
11241 xfree (*cond_string);
11242 *cond_string = NULL;
11243 }
11244 if (*cond != NULL)
11245 {
11246 xfree (*cond);
11247 *cond = NULL;
11248 }
11249 if (exp_string != NULL)
11250 {
11251 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
11252 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
11253 }
11254 }
11255
11256 /* Set OPS. */
11257 *ops = ada_exception_breakpoint_ops (ex);
11258
11259 return sal;
11260 }
11261
11262 /* Parse the arguments (ARGS) of the "catch exception" command.
11263
11264 Set TYPE to the appropriate exception catchpoint type.
11265 If the user asked the catchpoint to catch only a specific
11266 exception, then save the exception name in ADDR_STRING.
11267
11268 See ada_exception_sal for a description of all the remaining
11269 function arguments of this function. */
11270
11271 struct symtab_and_line
11272 ada_decode_exception_location (char *args, char **addr_string,
11273 char **exp_string, char **cond_string,
11274 struct expression **cond,
11275 struct breakpoint_ops **ops)
11276 {
11277 enum exception_catchpoint_kind ex;
11278
11279 catch_ada_exception_command_split (args, &ex, exp_string);
11280 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
11281 cond, ops);
11282 }
11283
11284 struct symtab_and_line
11285 ada_decode_assert_location (char *args, char **addr_string,
11286 struct breakpoint_ops **ops)
11287 {
11288 /* Check that no argument where provided at the end of the command. */
11289
11290 if (args != NULL)
11291 {
11292 while (isspace (*args))
11293 args++;
11294 if (*args != '\0')
11295 error (_("Junk at end of arguments."));
11296 }
11297
11298 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
11299 ops);
11300 }
11301
11302 /* Operators */
11303 /* Information about operators given special treatment in functions
11304 below. */
11305 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11306
11307 #define ADA_OPERATORS \
11308 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11309 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11310 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11311 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11312 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11313 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11314 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11315 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11316 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11317 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11318 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11319 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11320 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11321 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11322 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11323 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11324 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11325 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11326 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11327
11328 static void
11329 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11330 int *argsp)
11331 {
11332 switch (exp->elts[pc - 1].opcode)
11333 {
11334 default:
11335 operator_length_standard (exp, pc, oplenp, argsp);
11336 break;
11337
11338 #define OP_DEFN(op, len, args, binop) \
11339 case op: *oplenp = len; *argsp = args; break;
11340 ADA_OPERATORS;
11341 #undef OP_DEFN
11342
11343 case OP_AGGREGATE:
11344 *oplenp = 3;
11345 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11346 break;
11347
11348 case OP_CHOICES:
11349 *oplenp = 3;
11350 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11351 break;
11352 }
11353 }
11354
11355 /* Implementation of the exp_descriptor method operator_check. */
11356
11357 static int
11358 ada_operator_check (struct expression *exp, int pos,
11359 int (*objfile_func) (struct objfile *objfile, void *data),
11360 void *data)
11361 {
11362 const union exp_element *const elts = exp->elts;
11363 struct type *type = NULL;
11364
11365 switch (elts[pos].opcode)
11366 {
11367 case UNOP_IN_RANGE:
11368 case UNOP_QUAL:
11369 type = elts[pos + 1].type;
11370 break;
11371
11372 default:
11373 return operator_check_standard (exp, pos, objfile_func, data);
11374 }
11375
11376 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11377
11378 if (type && TYPE_OBJFILE (type)
11379 && (*objfile_func) (TYPE_OBJFILE (type), data))
11380 return 1;
11381
11382 return 0;
11383 }
11384
11385 static char *
11386 ada_op_name (enum exp_opcode opcode)
11387 {
11388 switch (opcode)
11389 {
11390 default:
11391 return op_name_standard (opcode);
11392
11393 #define OP_DEFN(op, len, args, binop) case op: return #op;
11394 ADA_OPERATORS;
11395 #undef OP_DEFN
11396
11397 case OP_AGGREGATE:
11398 return "OP_AGGREGATE";
11399 case OP_CHOICES:
11400 return "OP_CHOICES";
11401 case OP_NAME:
11402 return "OP_NAME";
11403 }
11404 }
11405
11406 /* As for operator_length, but assumes PC is pointing at the first
11407 element of the operator, and gives meaningful results only for the
11408 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
11409
11410 static void
11411 ada_forward_operator_length (struct expression *exp, int pc,
11412 int *oplenp, int *argsp)
11413 {
11414 switch (exp->elts[pc].opcode)
11415 {
11416 default:
11417 *oplenp = *argsp = 0;
11418 break;
11419
11420 #define OP_DEFN(op, len, args, binop) \
11421 case op: *oplenp = len; *argsp = args; break;
11422 ADA_OPERATORS;
11423 #undef OP_DEFN
11424
11425 case OP_AGGREGATE:
11426 *oplenp = 3;
11427 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11428 break;
11429
11430 case OP_CHOICES:
11431 *oplenp = 3;
11432 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11433 break;
11434
11435 case OP_STRING:
11436 case OP_NAME:
11437 {
11438 int len = longest_to_int (exp->elts[pc + 1].longconst);
11439
11440 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11441 *argsp = 0;
11442 break;
11443 }
11444 }
11445 }
11446
11447 static int
11448 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11449 {
11450 enum exp_opcode op = exp->elts[elt].opcode;
11451 int oplen, nargs;
11452 int pc = elt;
11453 int i;
11454
11455 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11456
11457 switch (op)
11458 {
11459 /* Ada attributes ('Foo). */
11460 case OP_ATR_FIRST:
11461 case OP_ATR_LAST:
11462 case OP_ATR_LENGTH:
11463 case OP_ATR_IMAGE:
11464 case OP_ATR_MAX:
11465 case OP_ATR_MIN:
11466 case OP_ATR_MODULUS:
11467 case OP_ATR_POS:
11468 case OP_ATR_SIZE:
11469 case OP_ATR_TAG:
11470 case OP_ATR_VAL:
11471 break;
11472
11473 case UNOP_IN_RANGE:
11474 case UNOP_QUAL:
11475 /* XXX: gdb_sprint_host_address, type_sprint */
11476 fprintf_filtered (stream, _("Type @"));
11477 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11478 fprintf_filtered (stream, " (");
11479 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11480 fprintf_filtered (stream, ")");
11481 break;
11482 case BINOP_IN_BOUNDS:
11483 fprintf_filtered (stream, " (%d)",
11484 longest_to_int (exp->elts[pc + 2].longconst));
11485 break;
11486 case TERNOP_IN_RANGE:
11487 break;
11488
11489 case OP_AGGREGATE:
11490 case OP_OTHERS:
11491 case OP_DISCRETE_RANGE:
11492 case OP_POSITIONAL:
11493 case OP_CHOICES:
11494 break;
11495
11496 case OP_NAME:
11497 case OP_STRING:
11498 {
11499 char *name = &exp->elts[elt + 2].string;
11500 int len = longest_to_int (exp->elts[elt + 1].longconst);
11501
11502 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11503 break;
11504 }
11505
11506 default:
11507 return dump_subexp_body_standard (exp, stream, elt);
11508 }
11509
11510 elt += oplen;
11511 for (i = 0; i < nargs; i += 1)
11512 elt = dump_subexp (exp, stream, elt);
11513
11514 return elt;
11515 }
11516
11517 /* The Ada extension of print_subexp (q.v.). */
11518
11519 static void
11520 ada_print_subexp (struct expression *exp, int *pos,
11521 struct ui_file *stream, enum precedence prec)
11522 {
11523 int oplen, nargs, i;
11524 int pc = *pos;
11525 enum exp_opcode op = exp->elts[pc].opcode;
11526
11527 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11528
11529 *pos += oplen;
11530 switch (op)
11531 {
11532 default:
11533 *pos -= oplen;
11534 print_subexp_standard (exp, pos, stream, prec);
11535 return;
11536
11537 case OP_VAR_VALUE:
11538 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11539 return;
11540
11541 case BINOP_IN_BOUNDS:
11542 /* XXX: sprint_subexp */
11543 print_subexp (exp, pos, stream, PREC_SUFFIX);
11544 fputs_filtered (" in ", stream);
11545 print_subexp (exp, pos, stream, PREC_SUFFIX);
11546 fputs_filtered ("'range", stream);
11547 if (exp->elts[pc + 1].longconst > 1)
11548 fprintf_filtered (stream, "(%ld)",
11549 (long) exp->elts[pc + 1].longconst);
11550 return;
11551
11552 case TERNOP_IN_RANGE:
11553 if (prec >= PREC_EQUAL)
11554 fputs_filtered ("(", stream);
11555 /* XXX: sprint_subexp */
11556 print_subexp (exp, pos, stream, PREC_SUFFIX);
11557 fputs_filtered (" in ", stream);
11558 print_subexp (exp, pos, stream, PREC_EQUAL);
11559 fputs_filtered (" .. ", stream);
11560 print_subexp (exp, pos, stream, PREC_EQUAL);
11561 if (prec >= PREC_EQUAL)
11562 fputs_filtered (")", stream);
11563 return;
11564
11565 case OP_ATR_FIRST:
11566 case OP_ATR_LAST:
11567 case OP_ATR_LENGTH:
11568 case OP_ATR_IMAGE:
11569 case OP_ATR_MAX:
11570 case OP_ATR_MIN:
11571 case OP_ATR_MODULUS:
11572 case OP_ATR_POS:
11573 case OP_ATR_SIZE:
11574 case OP_ATR_TAG:
11575 case OP_ATR_VAL:
11576 if (exp->elts[*pos].opcode == OP_TYPE)
11577 {
11578 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11579 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11580 *pos += 3;
11581 }
11582 else
11583 print_subexp (exp, pos, stream, PREC_SUFFIX);
11584 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11585 if (nargs > 1)
11586 {
11587 int tem;
11588
11589 for (tem = 1; tem < nargs; tem += 1)
11590 {
11591 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11592 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11593 }
11594 fputs_filtered (")", stream);
11595 }
11596 return;
11597
11598 case UNOP_QUAL:
11599 type_print (exp->elts[pc + 1].type, "", stream, 0);
11600 fputs_filtered ("'(", stream);
11601 print_subexp (exp, pos, stream, PREC_PREFIX);
11602 fputs_filtered (")", stream);
11603 return;
11604
11605 case UNOP_IN_RANGE:
11606 /* XXX: sprint_subexp */
11607 print_subexp (exp, pos, stream, PREC_SUFFIX);
11608 fputs_filtered (" in ", stream);
11609 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11610 return;
11611
11612 case OP_DISCRETE_RANGE:
11613 print_subexp (exp, pos, stream, PREC_SUFFIX);
11614 fputs_filtered ("..", stream);
11615 print_subexp (exp, pos, stream, PREC_SUFFIX);
11616 return;
11617
11618 case OP_OTHERS:
11619 fputs_filtered ("others => ", stream);
11620 print_subexp (exp, pos, stream, PREC_SUFFIX);
11621 return;
11622
11623 case OP_CHOICES:
11624 for (i = 0; i < nargs-1; i += 1)
11625 {
11626 if (i > 0)
11627 fputs_filtered ("|", stream);
11628 print_subexp (exp, pos, stream, PREC_SUFFIX);
11629 }
11630 fputs_filtered (" => ", stream);
11631 print_subexp (exp, pos, stream, PREC_SUFFIX);
11632 return;
11633
11634 case OP_POSITIONAL:
11635 print_subexp (exp, pos, stream, PREC_SUFFIX);
11636 return;
11637
11638 case OP_AGGREGATE:
11639 fputs_filtered ("(", stream);
11640 for (i = 0; i < nargs; i += 1)
11641 {
11642 if (i > 0)
11643 fputs_filtered (", ", stream);
11644 print_subexp (exp, pos, stream, PREC_SUFFIX);
11645 }
11646 fputs_filtered (")", stream);
11647 return;
11648 }
11649 }
11650
11651 /* Table mapping opcodes into strings for printing operators
11652 and precedences of the operators. */
11653
11654 static const struct op_print ada_op_print_tab[] = {
11655 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11656 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11657 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11658 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11659 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11660 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11661 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11662 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11663 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11664 {">=", BINOP_GEQ, PREC_ORDER, 0},
11665 {">", BINOP_GTR, PREC_ORDER, 0},
11666 {"<", BINOP_LESS, PREC_ORDER, 0},
11667 {">>", BINOP_RSH, PREC_SHIFT, 0},
11668 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11669 {"+", BINOP_ADD, PREC_ADD, 0},
11670 {"-", BINOP_SUB, PREC_ADD, 0},
11671 {"&", BINOP_CONCAT, PREC_ADD, 0},
11672 {"*", BINOP_MUL, PREC_MUL, 0},
11673 {"/", BINOP_DIV, PREC_MUL, 0},
11674 {"rem", BINOP_REM, PREC_MUL, 0},
11675 {"mod", BINOP_MOD, PREC_MUL, 0},
11676 {"**", BINOP_EXP, PREC_REPEAT, 0},
11677 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11678 {"-", UNOP_NEG, PREC_PREFIX, 0},
11679 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11680 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11681 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11682 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11683 {".all", UNOP_IND, PREC_SUFFIX, 1},
11684 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11685 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11686 {NULL, 0, 0, 0}
11687 };
11688 \f
11689 enum ada_primitive_types {
11690 ada_primitive_type_int,
11691 ada_primitive_type_long,
11692 ada_primitive_type_short,
11693 ada_primitive_type_char,
11694 ada_primitive_type_float,
11695 ada_primitive_type_double,
11696 ada_primitive_type_void,
11697 ada_primitive_type_long_long,
11698 ada_primitive_type_long_double,
11699 ada_primitive_type_natural,
11700 ada_primitive_type_positive,
11701 ada_primitive_type_system_address,
11702 nr_ada_primitive_types
11703 };
11704
11705 static void
11706 ada_language_arch_info (struct gdbarch *gdbarch,
11707 struct language_arch_info *lai)
11708 {
11709 const struct builtin_type *builtin = builtin_type (gdbarch);
11710
11711 lai->primitive_type_vector
11712 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11713 struct type *);
11714
11715 lai->primitive_type_vector [ada_primitive_type_int]
11716 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11717 0, "integer");
11718 lai->primitive_type_vector [ada_primitive_type_long]
11719 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11720 0, "long_integer");
11721 lai->primitive_type_vector [ada_primitive_type_short]
11722 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11723 0, "short_integer");
11724 lai->string_char_type
11725 = lai->primitive_type_vector [ada_primitive_type_char]
11726 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11727 lai->primitive_type_vector [ada_primitive_type_float]
11728 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11729 "float", NULL);
11730 lai->primitive_type_vector [ada_primitive_type_double]
11731 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11732 "long_float", NULL);
11733 lai->primitive_type_vector [ada_primitive_type_long_long]
11734 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11735 0, "long_long_integer");
11736 lai->primitive_type_vector [ada_primitive_type_long_double]
11737 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11738 "long_long_float", NULL);
11739 lai->primitive_type_vector [ada_primitive_type_natural]
11740 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11741 0, "natural");
11742 lai->primitive_type_vector [ada_primitive_type_positive]
11743 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11744 0, "positive");
11745 lai->primitive_type_vector [ada_primitive_type_void]
11746 = builtin->builtin_void;
11747
11748 lai->primitive_type_vector [ada_primitive_type_system_address]
11749 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11750 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11751 = "system__address";
11752
11753 lai->bool_type_symbol = NULL;
11754 lai->bool_type_default = builtin->builtin_bool;
11755 }
11756 \f
11757 /* Language vector */
11758
11759 /* Not really used, but needed in the ada_language_defn. */
11760
11761 static void
11762 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11763 {
11764 ada_emit_char (c, type, stream, quoter, 1);
11765 }
11766
11767 static int
11768 parse (void)
11769 {
11770 warnings_issued = 0;
11771 return ada_parse ();
11772 }
11773
11774 static const struct exp_descriptor ada_exp_descriptor = {
11775 ada_print_subexp,
11776 ada_operator_length,
11777 ada_operator_check,
11778 ada_op_name,
11779 ada_dump_subexp_body,
11780 ada_evaluate_subexp
11781 };
11782
11783 const struct language_defn ada_language_defn = {
11784 "ada", /* Language name */
11785 language_ada,
11786 range_check_off,
11787 type_check_off,
11788 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11789 that's not quite what this means. */
11790 array_row_major,
11791 macro_expansion_no,
11792 &ada_exp_descriptor,
11793 parse,
11794 ada_error,
11795 resolve,
11796 ada_printchar, /* Print a character constant */
11797 ada_printstr, /* Function to print string constant */
11798 emit_char, /* Function to print single char (not used) */
11799 ada_print_type, /* Print a type using appropriate syntax */
11800 ada_print_typedef, /* Print a typedef using appropriate syntax */
11801 ada_val_print, /* Print a value using appropriate syntax */
11802 ada_value_print, /* Print a top-level value */
11803 NULL, /* Language specific skip_trampoline */
11804 NULL, /* name_of_this */
11805 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11806 basic_lookup_transparent_type, /* lookup_transparent_type */
11807 ada_la_decode, /* Language specific symbol demangler */
11808 NULL, /* Language specific class_name_from_physname */
11809 ada_op_print_tab, /* expression operators for printing */
11810 0, /* c-style arrays */
11811 1, /* String lower bound */
11812 ada_get_gdb_completer_word_break_characters,
11813 ada_make_symbol_completion_list,
11814 ada_language_arch_info,
11815 ada_print_array_index,
11816 default_pass_by_reference,
11817 c_get_string,
11818 LANG_MAGIC
11819 };
11820
11821 /* Provide a prototype to silence -Wmissing-prototypes. */
11822 extern initialize_file_ftype _initialize_ada_language;
11823
11824 /* Command-list for the "set/show ada" prefix command. */
11825 static struct cmd_list_element *set_ada_list;
11826 static struct cmd_list_element *show_ada_list;
11827
11828 /* Implement the "set ada" prefix command. */
11829
11830 static void
11831 set_ada_command (char *arg, int from_tty)
11832 {
11833 printf_unfiltered (_(\
11834 "\"set ada\" must be followed by the name of a setting.\n"));
11835 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11836 }
11837
11838 /* Implement the "show ada" prefix command. */
11839
11840 static void
11841 show_ada_command (char *args, int from_tty)
11842 {
11843 cmd_show_list (show_ada_list, from_tty, "");
11844 }
11845
11846 void
11847 _initialize_ada_language (void)
11848 {
11849 add_language (&ada_language_defn);
11850
11851 add_prefix_cmd ("ada", no_class, set_ada_command,
11852 _("Prefix command for changing Ada-specfic settings"),
11853 &set_ada_list, "set ada ", 0, &setlist);
11854
11855 add_prefix_cmd ("ada", no_class, show_ada_command,
11856 _("Generic command for showing Ada-specific settings."),
11857 &show_ada_list, "show ada ", 0, &showlist);
11858
11859 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11860 &trust_pad_over_xvs, _("\
11861 Enable or disable an optimization trusting PAD types over XVS types"), _("\
11862 Show whether an optimization trusting PAD types over XVS types is activated"),
11863 _("\
11864 This is related to the encoding used by the GNAT compiler. The debugger\n\
11865 should normally trust the contents of PAD types, but certain older versions\n\
11866 of GNAT have a bug that sometimes causes the information in the PAD type\n\
11867 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11868 work around this bug. It is always safe to turn this option \"off\", but\n\
11869 this incurs a slight performance penalty, so it is recommended to NOT change\n\
11870 this option to \"off\" unless necessary."),
11871 NULL, NULL, &set_ada_list, &show_ada_list);
11872
11873 varsize_limit = 65536;
11874
11875 obstack_init (&symbol_list_obstack);
11876
11877 decoded_names_store = htab_create_alloc
11878 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11879 NULL, xcalloc, xfree);
11880
11881 observer_attach_executable_changed (ada_executable_changed_observer);
11882
11883 /* Setup per-inferior data. */
11884 observer_attach_inferior_exit (ada_inferior_exit);
11885 ada_inferior_data
11886 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
11887 }
This page took 0.279169 seconds and 4 git commands to generate.