Add method/format information to =record-started
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static int full_match (const char *, const char *);
105
106 static struct value *make_array_descriptor (struct type *, struct value *);
107
108 static void ada_add_block_symbols (struct obstack *,
109 const struct block *, const char *,
110 domain_enum, struct objfile *, int);
111
112 static void ada_add_all_symbols (struct obstack *, const struct block *,
113 const char *, domain_enum, int, int *);
114
115 static int is_nonfunction (struct block_symbol *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 const struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct block_symbol *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, const struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 const struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (struct type *, struct value *);
169
170 static struct type *to_static_fixed_type (struct type *);
171 static struct type *static_unwrap_type (struct type *type);
172
173 static struct value *unwrap_value (struct value *);
174
175 static struct type *constrained_packed_array_type (struct type *, long *);
176
177 static struct type *decode_constrained_packed_array_type (struct type *);
178
179 static long decode_packed_array_bitsize (struct type *);
180
181 static struct value *decode_constrained_packed_array (struct value *);
182
183 static int ada_is_packed_array_type (struct type *);
184
185 static int ada_is_unconstrained_packed_array_type (struct type *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int advance_wild_match (const char **, const char *, int);
204
205 static int wild_match (const char *, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (const char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (const char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static int ada_resolve_function (struct block_symbol *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234 static int ada_is_direct_array_type (struct type *);
235
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
238
239 static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242 static struct value *assign_aggregate (struct value *, struct value *,
243 struct expression *,
244 int *, enum noside);
245
246 static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251 static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257 static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268 static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
270
271 static struct type *ada_find_any_type (const char *name);
272 \f
273
274 /* The result of a symbol lookup to be stored in our symbol cache. */
275
276 struct cache_entry
277 {
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
281 domain_enum domain;
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290 };
291
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301 #define HASH_SIZE 1009
302
303 struct ada_symbol_cache
304 {
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310 };
311
312 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
313
314 /* Maximum-sized dynamic type. */
315 static unsigned int varsize_limit;
316
317 /* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319 static char *ada_completer_word_break_characters =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Space for allocating results of ada_lookup_symbol_list. */
346 static struct obstack symbol_list_obstack;
347
348 /* Maintenance-related settings for this module. */
349
350 static struct cmd_list_element *maint_set_ada_cmdlist;
351 static struct cmd_list_element *maint_show_ada_cmdlist;
352
353 /* Implement the "maintenance set ada" (prefix) command. */
354
355 static void
356 maint_set_ada_cmd (char *args, int from_tty)
357 {
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
360 }
361
362 /* Implement the "maintenance show ada" (prefix) command. */
363
364 static void
365 maint_show_ada_cmd (char *args, int from_tty)
366 {
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368 }
369
370 /* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372 static int ada_ignore_descriptive_types_p = 0;
373
374 /* Inferior-specific data. */
375
376 /* Per-inferior data for this module. */
377
378 struct ada_inferior_data
379 {
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
390 };
391
392 /* Our key to this module's inferior data. */
393 static const struct inferior_data *ada_inferior_data;
394
395 /* A cleanup routine for our inferior data. */
396 static void
397 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398 {
399 struct ada_inferior_data *data;
400
401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
402 if (data != NULL)
403 xfree (data);
404 }
405
406 /* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414 static struct ada_inferior_data *
415 get_ada_inferior_data (struct inferior *inf)
416 {
417 struct ada_inferior_data *data;
418
419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
420 if (data == NULL)
421 {
422 data = XCNEW (struct ada_inferior_data);
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427 }
428
429 /* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432 static void
433 ada_inferior_exit (struct inferior *inf)
434 {
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437 }
438
439
440 /* program-space-specific data. */
441
442 /* This module's per-program-space data. */
443 struct ada_pspace_data
444 {
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447 };
448
449 /* Key to our per-program-space data. */
450 static const struct program_space_data *ada_pspace_data_handle;
451
452 /* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457 static struct ada_pspace_data *
458 get_ada_pspace_data (struct program_space *pspace)
459 {
460 struct ada_pspace_data *data;
461
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471 }
472
473 /* The cleanup callback for this module's per-program-space data. */
474
475 static void
476 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477 {
478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483 }
484
485 /* Utilities */
486
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514 static struct type *
515 ada_typedef_target_type (struct type *type)
516 {
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520 }
521
522 /* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526 static const char *
527 ada_unqualified_name (const char *decoded_name)
528 {
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545 }
546
547 /* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550 static char *
551 add_angle_brackets (const char *str)
552 {
553 static char *result = NULL;
554
555 xfree (result);
556 result = xstrprintf ("<%s>", str);
557 return result;
558 }
559
560 static char *
561 ada_get_gdb_completer_word_break_characters (void)
562 {
563 return ada_completer_word_break_characters;
564 }
565
566 /* Print an array element index using the Ada syntax. */
567
568 static void
569 ada_print_array_index (struct value *index_value, struct ui_file *stream,
570 const struct value_print_options *options)
571 {
572 LA_VALUE_PRINT (index_value, stream, options);
573 fprintf_filtered (stream, " => ");
574 }
575
576 /* Assuming VECT points to an array of *SIZE objects of size
577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
578 updating *SIZE as necessary and returning the (new) array. */
579
580 void *
581 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
582 {
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
587 *size = min_size;
588 vect = xrealloc (vect, *size * element_size);
589 }
590 return vect;
591 }
592
593 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
594 suffix of FIELD_NAME beginning "___". */
595
596 static int
597 field_name_match (const char *field_name, const char *target)
598 {
599 int len = strlen (target);
600
601 return
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
604 || (startswith (field_name + len, "___")
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
607 }
608
609
610 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
617
618 int
619 ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621 {
622 int fieldno;
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
627 return fieldno;
628
629 if (!maybe_missing)
630 error (_("Unable to find field %s in struct %s. Aborting"),
631 field_name, TYPE_NAME (struct_type));
632
633 return -1;
634 }
635
636 /* The length of the prefix of NAME prior to any "___" suffix. */
637
638 int
639 ada_name_prefix_len (const char *name)
640 {
641 if (name == NULL)
642 return 0;
643 else
644 {
645 const char *p = strstr (name, "___");
646
647 if (p == NULL)
648 return strlen (name);
649 else
650 return p - name;
651 }
652 }
653
654 /* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
657 static int
658 is_suffix (const char *str, const char *suffix)
659 {
660 int len1, len2;
661
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
667 }
668
669 /* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
671
672 static struct value *
673 coerce_unspec_val_to_type (struct value *val, struct type *type)
674 {
675 type = ada_check_typedef (type);
676 if (value_type (val) == type)
677 return val;
678 else
679 {
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
684 ada_ensure_varsize_limit (type);
685
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
693 }
694 set_value_component_location (result, val);
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
697 set_value_address (result, value_address (val));
698 return result;
699 }
700 }
701
702 static const gdb_byte *
703 cond_offset_host (const gdb_byte *valaddr, long offset)
704 {
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709 }
710
711 static CORE_ADDR
712 cond_offset_target (CORE_ADDR address, long offset)
713 {
714 if (address == 0)
715 return 0;
716 else
717 return address + offset;
718 }
719
720 /* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
724
725 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
727 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
728
729 static void
730 lim_warning (const char *format, ...)
731 {
732 va_list args;
733
734 va_start (args, format);
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
737 vwarning (format, args);
738
739 va_end (args);
740 }
741
742 /* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
746 void
747 ada_ensure_varsize_limit (const struct type *type)
748 {
749 if (TYPE_LENGTH (type) > varsize_limit)
750 error (_("object size is larger than varsize-limit"));
751 }
752
753 /* Maximum value of a SIZE-byte signed integer type. */
754 static LONGEST
755 max_of_size (int size)
756 {
757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
758
759 return top_bit | (top_bit - 1);
760 }
761
762 /* Minimum value of a SIZE-byte signed integer type. */
763 static LONGEST
764 min_of_size (int size)
765 {
766 return -max_of_size (size) - 1;
767 }
768
769 /* Maximum value of a SIZE-byte unsigned integer type. */
770 static ULONGEST
771 umax_of_size (int size)
772 {
773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
774
775 return top_bit | (top_bit - 1);
776 }
777
778 /* Maximum value of integral type T, as a signed quantity. */
779 static LONGEST
780 max_of_type (struct type *t)
781 {
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786 }
787
788 /* Minimum value of integral type T, as a signed quantity. */
789 static LONGEST
790 min_of_type (struct type *t)
791 {
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
796 }
797
798 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
799 LONGEST
800 ada_discrete_type_high_bound (struct type *type)
801 {
802 type = resolve_dynamic_type (type, NULL, 0);
803 switch (TYPE_CODE (type))
804 {
805 case TYPE_CODE_RANGE:
806 return TYPE_HIGH_BOUND (type);
807 case TYPE_CODE_ENUM:
808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
812 case TYPE_CODE_INT:
813 return max_of_type (type);
814 default:
815 error (_("Unexpected type in ada_discrete_type_high_bound."));
816 }
817 }
818
819 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
820 LONGEST
821 ada_discrete_type_low_bound (struct type *type)
822 {
823 type = resolve_dynamic_type (type, NULL, 0);
824 switch (TYPE_CODE (type))
825 {
826 case TYPE_CODE_RANGE:
827 return TYPE_LOW_BOUND (type);
828 case TYPE_CODE_ENUM:
829 return TYPE_FIELD_ENUMVAL (type, 0);
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
833 case TYPE_CODE_INT:
834 return min_of_type (type);
835 default:
836 error (_("Unexpected type in ada_discrete_type_low_bound."));
837 }
838 }
839
840 /* The identity on non-range types. For range types, the underlying
841 non-range scalar type. */
842
843 static struct type *
844 get_base_type (struct type *type)
845 {
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
853 }
854
855 /* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860 struct value *
861 ada_get_decoded_value (struct value *value)
862 {
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878 }
879
880 /* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885 struct type *
886 ada_get_decoded_type (struct type *type)
887 {
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892 }
893
894 \f
895
896 /* Language Selection */
897
898 /* If the main program is in Ada, return language_ada, otherwise return LANG
899 (the main program is in Ada iif the adainit symbol is found). */
900
901 enum language
902 ada_update_initial_language (enum language lang)
903 {
904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
905 (struct objfile *) NULL).minsym != NULL)
906 return language_ada;
907
908 return lang;
909 }
910
911 /* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915 char *
916 ada_main_name (void)
917 {
918 struct bound_minimal_symbol msym;
919 static char *main_program_name = NULL;
920
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
928 if (msym.minsym != NULL)
929 {
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
934 if (main_program_name_addr == 0)
935 error (_("Invalid address for Ada main program name."));
936
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948 }
949 \f
950 /* Symbols */
951
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
954
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
978 };
979
980 /* The "encoded" form of DECODED, according to GNAT conventions.
981 The result is valid until the next call to ada_encode. */
982
983 char *
984 ada_encode (const char *decoded)
985 {
986 static char *encoding_buffer = NULL;
987 static size_t encoding_buffer_size = 0;
988 const char *p;
989 int k;
990
991 if (decoded == NULL)
992 return NULL;
993
994 GROW_VECT (encoding_buffer, encoding_buffer_size,
995 2 * strlen (decoded) + 10);
996
997 k = 0;
998 for (p = decoded; *p != '\0'; p += 1)
999 {
1000 if (*p == '.')
1001 {
1002 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1003 k += 2;
1004 }
1005 else if (*p == '"')
1006 {
1007 const struct ada_opname_map *mapping;
1008
1009 for (mapping = ada_opname_table;
1010 mapping->encoded != NULL
1011 && !startswith (p, mapping->decoded); mapping += 1)
1012 ;
1013 if (mapping->encoded == NULL)
1014 error (_("invalid Ada operator name: %s"), p);
1015 strcpy (encoding_buffer + k, mapping->encoded);
1016 k += strlen (mapping->encoded);
1017 break;
1018 }
1019 else
1020 {
1021 encoding_buffer[k] = *p;
1022 k += 1;
1023 }
1024 }
1025
1026 encoding_buffer[k] = '\0';
1027 return encoding_buffer;
1028 }
1029
1030 /* Return NAME folded to lower case, or, if surrounded by single
1031 quotes, unfolded, but with the quotes stripped away. Result good
1032 to next call. */
1033
1034 char *
1035 ada_fold_name (const char *name)
1036 {
1037 static char *fold_buffer = NULL;
1038 static size_t fold_buffer_size = 0;
1039
1040 int len = strlen (name);
1041 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1042
1043 if (name[0] == '\'')
1044 {
1045 strncpy (fold_buffer, name + 1, len - 2);
1046 fold_buffer[len - 2] = '\000';
1047 }
1048 else
1049 {
1050 int i;
1051
1052 for (i = 0; i <= len; i += 1)
1053 fold_buffer[i] = tolower (name[i]);
1054 }
1055
1056 return fold_buffer;
1057 }
1058
1059 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1060
1061 static int
1062 is_lower_alphanum (const char c)
1063 {
1064 return (isdigit (c) || (isalpha (c) && islower (c)));
1065 }
1066
1067 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1068 This function saves in LEN the length of that same symbol name but
1069 without either of these suffixes:
1070 . .{DIGIT}+
1071 . ${DIGIT}+
1072 . ___{DIGIT}+
1073 . __{DIGIT}+.
1074
1075 These are suffixes introduced by the compiler for entities such as
1076 nested subprogram for instance, in order to avoid name clashes.
1077 They do not serve any purpose for the debugger. */
1078
1079 static void
1080 ada_remove_trailing_digits (const char *encoded, int *len)
1081 {
1082 if (*len > 1 && isdigit (encoded[*len - 1]))
1083 {
1084 int i = *len - 2;
1085
1086 while (i > 0 && isdigit (encoded[i]))
1087 i--;
1088 if (i >= 0 && encoded[i] == '.')
1089 *len = i;
1090 else if (i >= 0 && encoded[i] == '$')
1091 *len = i;
1092 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1093 *len = i - 2;
1094 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1095 *len = i - 1;
1096 }
1097 }
1098
1099 /* Remove the suffix introduced by the compiler for protected object
1100 subprograms. */
1101
1102 static void
1103 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1104 {
1105 /* Remove trailing N. */
1106
1107 /* Protected entry subprograms are broken into two
1108 separate subprograms: The first one is unprotected, and has
1109 a 'N' suffix; the second is the protected version, and has
1110 the 'P' suffix. The second calls the first one after handling
1111 the protection. Since the P subprograms are internally generated,
1112 we leave these names undecoded, giving the user a clue that this
1113 entity is internal. */
1114
1115 if (*len > 1
1116 && encoded[*len - 1] == 'N'
1117 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1118 *len = *len - 1;
1119 }
1120
1121 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1122
1123 static void
1124 ada_remove_Xbn_suffix (const char *encoded, int *len)
1125 {
1126 int i = *len - 1;
1127
1128 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1129 i--;
1130
1131 if (encoded[i] != 'X')
1132 return;
1133
1134 if (i == 0)
1135 return;
1136
1137 if (isalnum (encoded[i-1]))
1138 *len = i;
1139 }
1140
1141 /* If ENCODED follows the GNAT entity encoding conventions, then return
1142 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1143 replaced by ENCODED.
1144
1145 The resulting string is valid until the next call of ada_decode.
1146 If the string is unchanged by decoding, the original string pointer
1147 is returned. */
1148
1149 const char *
1150 ada_decode (const char *encoded)
1151 {
1152 int i, j;
1153 int len0;
1154 const char *p;
1155 char *decoded;
1156 int at_start_name;
1157 static char *decoding_buffer = NULL;
1158 static size_t decoding_buffer_size = 0;
1159
1160 /* The name of the Ada main procedure starts with "_ada_".
1161 This prefix is not part of the decoded name, so skip this part
1162 if we see this prefix. */
1163 if (startswith (encoded, "_ada_"))
1164 encoded += 5;
1165
1166 /* If the name starts with '_', then it is not a properly encoded
1167 name, so do not attempt to decode it. Similarly, if the name
1168 starts with '<', the name should not be decoded. */
1169 if (encoded[0] == '_' || encoded[0] == '<')
1170 goto Suppress;
1171
1172 len0 = strlen (encoded);
1173
1174 ada_remove_trailing_digits (encoded, &len0);
1175 ada_remove_po_subprogram_suffix (encoded, &len0);
1176
1177 /* Remove the ___X.* suffix if present. Do not forget to verify that
1178 the suffix is located before the current "end" of ENCODED. We want
1179 to avoid re-matching parts of ENCODED that have previously been
1180 marked as discarded (by decrementing LEN0). */
1181 p = strstr (encoded, "___");
1182 if (p != NULL && p - encoded < len0 - 3)
1183 {
1184 if (p[3] == 'X')
1185 len0 = p - encoded;
1186 else
1187 goto Suppress;
1188 }
1189
1190 /* Remove any trailing TKB suffix. It tells us that this symbol
1191 is for the body of a task, but that information does not actually
1192 appear in the decoded name. */
1193
1194 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1195 len0 -= 3;
1196
1197 /* Remove any trailing TB suffix. The TB suffix is slightly different
1198 from the TKB suffix because it is used for non-anonymous task
1199 bodies. */
1200
1201 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1202 len0 -= 2;
1203
1204 /* Remove trailing "B" suffixes. */
1205 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1206
1207 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1208 len0 -= 1;
1209
1210 /* Make decoded big enough for possible expansion by operator name. */
1211
1212 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1213 decoded = decoding_buffer;
1214
1215 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1216
1217 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1218 {
1219 i = len0 - 2;
1220 while ((i >= 0 && isdigit (encoded[i]))
1221 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1222 i -= 1;
1223 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1224 len0 = i - 1;
1225 else if (encoded[i] == '$')
1226 len0 = i;
1227 }
1228
1229 /* The first few characters that are not alphabetic are not part
1230 of any encoding we use, so we can copy them over verbatim. */
1231
1232 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1233 decoded[j] = encoded[i];
1234
1235 at_start_name = 1;
1236 while (i < len0)
1237 {
1238 /* Is this a symbol function? */
1239 if (at_start_name && encoded[i] == 'O')
1240 {
1241 int k;
1242
1243 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1244 {
1245 int op_len = strlen (ada_opname_table[k].encoded);
1246 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1247 op_len - 1) == 0)
1248 && !isalnum (encoded[i + op_len]))
1249 {
1250 strcpy (decoded + j, ada_opname_table[k].decoded);
1251 at_start_name = 0;
1252 i += op_len;
1253 j += strlen (ada_opname_table[k].decoded);
1254 break;
1255 }
1256 }
1257 if (ada_opname_table[k].encoded != NULL)
1258 continue;
1259 }
1260 at_start_name = 0;
1261
1262 /* Replace "TK__" with "__", which will eventually be translated
1263 into "." (just below). */
1264
1265 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1266 i += 2;
1267
1268 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269 be translated into "." (just below). These are internal names
1270 generated for anonymous blocks inside which our symbol is nested. */
1271
1272 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1273 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1274 && isdigit (encoded [i+4]))
1275 {
1276 int k = i + 5;
1277
1278 while (k < len0 && isdigit (encoded[k]))
1279 k++; /* Skip any extra digit. */
1280
1281 /* Double-check that the "__B_{DIGITS}+" sequence we found
1282 is indeed followed by "__". */
1283 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1284 i = k;
1285 }
1286
1287 /* Remove _E{DIGITS}+[sb] */
1288
1289 /* Just as for protected object subprograms, there are 2 categories
1290 of subprograms created by the compiler for each entry. The first
1291 one implements the actual entry code, and has a suffix following
1292 the convention above; the second one implements the barrier and
1293 uses the same convention as above, except that the 'E' is replaced
1294 by a 'B'.
1295
1296 Just as above, we do not decode the name of barrier functions
1297 to give the user a clue that the code he is debugging has been
1298 internally generated. */
1299
1300 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1301 && isdigit (encoded[i+2]))
1302 {
1303 int k = i + 3;
1304
1305 while (k < len0 && isdigit (encoded[k]))
1306 k++;
1307
1308 if (k < len0
1309 && (encoded[k] == 'b' || encoded[k] == 's'))
1310 {
1311 k++;
1312 /* Just as an extra precaution, make sure that if this
1313 suffix is followed by anything else, it is a '_'.
1314 Otherwise, we matched this sequence by accident. */
1315 if (k == len0
1316 || (k < len0 && encoded[k] == '_'))
1317 i = k;
1318 }
1319 }
1320
1321 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1322 the GNAT front-end in protected object subprograms. */
1323
1324 if (i < len0 + 3
1325 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1326 {
1327 /* Backtrack a bit up until we reach either the begining of
1328 the encoded name, or "__". Make sure that we only find
1329 digits or lowercase characters. */
1330 const char *ptr = encoded + i - 1;
1331
1332 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1333 ptr--;
1334 if (ptr < encoded
1335 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1336 i++;
1337 }
1338
1339 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1340 {
1341 /* This is a X[bn]* sequence not separated from the previous
1342 part of the name with a non-alpha-numeric character (in other
1343 words, immediately following an alpha-numeric character), then
1344 verify that it is placed at the end of the encoded name. If
1345 not, then the encoding is not valid and we should abort the
1346 decoding. Otherwise, just skip it, it is used in body-nested
1347 package names. */
1348 do
1349 i += 1;
1350 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1351 if (i < len0)
1352 goto Suppress;
1353 }
1354 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1355 {
1356 /* Replace '__' by '.'. */
1357 decoded[j] = '.';
1358 at_start_name = 1;
1359 i += 2;
1360 j += 1;
1361 }
1362 else
1363 {
1364 /* It's a character part of the decoded name, so just copy it
1365 over. */
1366 decoded[j] = encoded[i];
1367 i += 1;
1368 j += 1;
1369 }
1370 }
1371 decoded[j] = '\000';
1372
1373 /* Decoded names should never contain any uppercase character.
1374 Double-check this, and abort the decoding if we find one. */
1375
1376 for (i = 0; decoded[i] != '\0'; i += 1)
1377 if (isupper (decoded[i]) || decoded[i] == ' ')
1378 goto Suppress;
1379
1380 if (strcmp (decoded, encoded) == 0)
1381 return encoded;
1382 else
1383 return decoded;
1384
1385 Suppress:
1386 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1387 decoded = decoding_buffer;
1388 if (encoded[0] == '<')
1389 strcpy (decoded, encoded);
1390 else
1391 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1392 return decoded;
1393
1394 }
1395
1396 /* Table for keeping permanent unique copies of decoded names. Once
1397 allocated, names in this table are never released. While this is a
1398 storage leak, it should not be significant unless there are massive
1399 changes in the set of decoded names in successive versions of a
1400 symbol table loaded during a single session. */
1401 static struct htab *decoded_names_store;
1402
1403 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404 in the language-specific part of GSYMBOL, if it has not been
1405 previously computed. Tries to save the decoded name in the same
1406 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407 in any case, the decoded symbol has a lifetime at least that of
1408 GSYMBOL).
1409 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410 const, but nevertheless modified to a semantically equivalent form
1411 when a decoded name is cached in it. */
1412
1413 const char *
1414 ada_decode_symbol (const struct general_symbol_info *arg)
1415 {
1416 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1417 const char **resultp =
1418 &gsymbol->language_specific.demangled_name;
1419
1420 if (!gsymbol->ada_mangled)
1421 {
1422 const char *decoded = ada_decode (gsymbol->name);
1423 struct obstack *obstack = gsymbol->language_specific.obstack;
1424
1425 gsymbol->ada_mangled = 1;
1426
1427 if (obstack != NULL)
1428 *resultp
1429 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1430 else
1431 {
1432 /* Sometimes, we can't find a corresponding objfile, in
1433 which case, we put the result on the heap. Since we only
1434 decode when needed, we hope this usually does not cause a
1435 significant memory leak (FIXME). */
1436
1437 char **slot = (char **) htab_find_slot (decoded_names_store,
1438 decoded, INSERT);
1439
1440 if (*slot == NULL)
1441 *slot = xstrdup (decoded);
1442 *resultp = *slot;
1443 }
1444 }
1445
1446 return *resultp;
1447 }
1448
1449 static char *
1450 ada_la_decode (const char *encoded, int options)
1451 {
1452 return xstrdup (ada_decode (encoded));
1453 }
1454
1455 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1456 suffixes that encode debugging information or leading _ada_ on
1457 SYM_NAME (see is_name_suffix commentary for the debugging
1458 information that is ignored). If WILD, then NAME need only match a
1459 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1460 either argument is NULL. */
1461
1462 static int
1463 match_name (const char *sym_name, const char *name, int wild)
1464 {
1465 if (sym_name == NULL || name == NULL)
1466 return 0;
1467 else if (wild)
1468 return wild_match (sym_name, name) == 0;
1469 else
1470 {
1471 int len_name = strlen (name);
1472
1473 return (strncmp (sym_name, name, len_name) == 0
1474 && is_name_suffix (sym_name + len_name))
1475 || (startswith (sym_name, "_ada_")
1476 && strncmp (sym_name + 5, name, len_name) == 0
1477 && is_name_suffix (sym_name + len_name + 5));
1478 }
1479 }
1480 \f
1481
1482 /* Arrays */
1483
1484 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1485 generated by the GNAT compiler to describe the index type used
1486 for each dimension of an array, check whether it follows the latest
1487 known encoding. If not, fix it up to conform to the latest encoding.
1488 Otherwise, do nothing. This function also does nothing if
1489 INDEX_DESC_TYPE is NULL.
1490
1491 The GNAT encoding used to describle the array index type evolved a bit.
1492 Initially, the information would be provided through the name of each
1493 field of the structure type only, while the type of these fields was
1494 described as unspecified and irrelevant. The debugger was then expected
1495 to perform a global type lookup using the name of that field in order
1496 to get access to the full index type description. Because these global
1497 lookups can be very expensive, the encoding was later enhanced to make
1498 the global lookup unnecessary by defining the field type as being
1499 the full index type description.
1500
1501 The purpose of this routine is to allow us to support older versions
1502 of the compiler by detecting the use of the older encoding, and by
1503 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1504 we essentially replace each field's meaningless type by the associated
1505 index subtype). */
1506
1507 void
1508 ada_fixup_array_indexes_type (struct type *index_desc_type)
1509 {
1510 int i;
1511
1512 if (index_desc_type == NULL)
1513 return;
1514 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1515
1516 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1517 to check one field only, no need to check them all). If not, return
1518 now.
1519
1520 If our INDEX_DESC_TYPE was generated using the older encoding,
1521 the field type should be a meaningless integer type whose name
1522 is not equal to the field name. */
1523 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1524 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1525 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1526 return;
1527
1528 /* Fixup each field of INDEX_DESC_TYPE. */
1529 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1530 {
1531 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1532 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1533
1534 if (raw_type)
1535 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1536 }
1537 }
1538
1539 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1540
1541 static char *bound_name[] = {
1542 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1543 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1544 };
1545
1546 /* Maximum number of array dimensions we are prepared to handle. */
1547
1548 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1549
1550
1551 /* The desc_* routines return primitive portions of array descriptors
1552 (fat pointers). */
1553
1554 /* The descriptor or array type, if any, indicated by TYPE; removes
1555 level of indirection, if needed. */
1556
1557 static struct type *
1558 desc_base_type (struct type *type)
1559 {
1560 if (type == NULL)
1561 return NULL;
1562 type = ada_check_typedef (type);
1563 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1564 type = ada_typedef_target_type (type);
1565
1566 if (type != NULL
1567 && (TYPE_CODE (type) == TYPE_CODE_PTR
1568 || TYPE_CODE (type) == TYPE_CODE_REF))
1569 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1570 else
1571 return type;
1572 }
1573
1574 /* True iff TYPE indicates a "thin" array pointer type. */
1575
1576 static int
1577 is_thin_pntr (struct type *type)
1578 {
1579 return
1580 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1581 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1582 }
1583
1584 /* The descriptor type for thin pointer type TYPE. */
1585
1586 static struct type *
1587 thin_descriptor_type (struct type *type)
1588 {
1589 struct type *base_type = desc_base_type (type);
1590
1591 if (base_type == NULL)
1592 return NULL;
1593 if (is_suffix (ada_type_name (base_type), "___XVE"))
1594 return base_type;
1595 else
1596 {
1597 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1598
1599 if (alt_type == NULL)
1600 return base_type;
1601 else
1602 return alt_type;
1603 }
1604 }
1605
1606 /* A pointer to the array data for thin-pointer value VAL. */
1607
1608 static struct value *
1609 thin_data_pntr (struct value *val)
1610 {
1611 struct type *type = ada_check_typedef (value_type (val));
1612 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1613
1614 data_type = lookup_pointer_type (data_type);
1615
1616 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1617 return value_cast (data_type, value_copy (val));
1618 else
1619 return value_from_longest (data_type, value_address (val));
1620 }
1621
1622 /* True iff TYPE indicates a "thick" array pointer type. */
1623
1624 static int
1625 is_thick_pntr (struct type *type)
1626 {
1627 type = desc_base_type (type);
1628 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1629 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1630 }
1631
1632 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1633 pointer to one, the type of its bounds data; otherwise, NULL. */
1634
1635 static struct type *
1636 desc_bounds_type (struct type *type)
1637 {
1638 struct type *r;
1639
1640 type = desc_base_type (type);
1641
1642 if (type == NULL)
1643 return NULL;
1644 else if (is_thin_pntr (type))
1645 {
1646 type = thin_descriptor_type (type);
1647 if (type == NULL)
1648 return NULL;
1649 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1650 if (r != NULL)
1651 return ada_check_typedef (r);
1652 }
1653 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1654 {
1655 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1656 if (r != NULL)
1657 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1658 }
1659 return NULL;
1660 }
1661
1662 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1663 one, a pointer to its bounds data. Otherwise NULL. */
1664
1665 static struct value *
1666 desc_bounds (struct value *arr)
1667 {
1668 struct type *type = ada_check_typedef (value_type (arr));
1669
1670 if (is_thin_pntr (type))
1671 {
1672 struct type *bounds_type =
1673 desc_bounds_type (thin_descriptor_type (type));
1674 LONGEST addr;
1675
1676 if (bounds_type == NULL)
1677 error (_("Bad GNAT array descriptor"));
1678
1679 /* NOTE: The following calculation is not really kosher, but
1680 since desc_type is an XVE-encoded type (and shouldn't be),
1681 the correct calculation is a real pain. FIXME (and fix GCC). */
1682 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1683 addr = value_as_long (arr);
1684 else
1685 addr = value_address (arr);
1686
1687 return
1688 value_from_longest (lookup_pointer_type (bounds_type),
1689 addr - TYPE_LENGTH (bounds_type));
1690 }
1691
1692 else if (is_thick_pntr (type))
1693 {
1694 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1695 _("Bad GNAT array descriptor"));
1696 struct type *p_bounds_type = value_type (p_bounds);
1697
1698 if (p_bounds_type
1699 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1700 {
1701 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1702
1703 if (TYPE_STUB (target_type))
1704 p_bounds = value_cast (lookup_pointer_type
1705 (ada_check_typedef (target_type)),
1706 p_bounds);
1707 }
1708 else
1709 error (_("Bad GNAT array descriptor"));
1710
1711 return p_bounds;
1712 }
1713 else
1714 return NULL;
1715 }
1716
1717 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1718 position of the field containing the address of the bounds data. */
1719
1720 static int
1721 fat_pntr_bounds_bitpos (struct type *type)
1722 {
1723 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1724 }
1725
1726 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1727 size of the field containing the address of the bounds data. */
1728
1729 static int
1730 fat_pntr_bounds_bitsize (struct type *type)
1731 {
1732 type = desc_base_type (type);
1733
1734 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1735 return TYPE_FIELD_BITSIZE (type, 1);
1736 else
1737 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1738 }
1739
1740 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1741 pointer to one, the type of its array data (a array-with-no-bounds type);
1742 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1743 data. */
1744
1745 static struct type *
1746 desc_data_target_type (struct type *type)
1747 {
1748 type = desc_base_type (type);
1749
1750 /* NOTE: The following is bogus; see comment in desc_bounds. */
1751 if (is_thin_pntr (type))
1752 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1753 else if (is_thick_pntr (type))
1754 {
1755 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1756
1757 if (data_type
1758 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1759 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1760 }
1761
1762 return NULL;
1763 }
1764
1765 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1766 its array data. */
1767
1768 static struct value *
1769 desc_data (struct value *arr)
1770 {
1771 struct type *type = value_type (arr);
1772
1773 if (is_thin_pntr (type))
1774 return thin_data_pntr (arr);
1775 else if (is_thick_pntr (type))
1776 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1777 _("Bad GNAT array descriptor"));
1778 else
1779 return NULL;
1780 }
1781
1782
1783 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1784 position of the field containing the address of the data. */
1785
1786 static int
1787 fat_pntr_data_bitpos (struct type *type)
1788 {
1789 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1790 }
1791
1792 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1793 size of the field containing the address of the data. */
1794
1795 static int
1796 fat_pntr_data_bitsize (struct type *type)
1797 {
1798 type = desc_base_type (type);
1799
1800 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1801 return TYPE_FIELD_BITSIZE (type, 0);
1802 else
1803 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1804 }
1805
1806 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1807 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1808 bound, if WHICH is 1. The first bound is I=1. */
1809
1810 static struct value *
1811 desc_one_bound (struct value *bounds, int i, int which)
1812 {
1813 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1814 _("Bad GNAT array descriptor bounds"));
1815 }
1816
1817 /* If BOUNDS is an array-bounds structure type, return the bit position
1818 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1819 bound, if WHICH is 1. The first bound is I=1. */
1820
1821 static int
1822 desc_bound_bitpos (struct type *type, int i, int which)
1823 {
1824 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1825 }
1826
1827 /* If BOUNDS is an array-bounds structure type, return the bit field size
1828 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1829 bound, if WHICH is 1. The first bound is I=1. */
1830
1831 static int
1832 desc_bound_bitsize (struct type *type, int i, int which)
1833 {
1834 type = desc_base_type (type);
1835
1836 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1837 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1838 else
1839 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1840 }
1841
1842 /* If TYPE is the type of an array-bounds structure, the type of its
1843 Ith bound (numbering from 1). Otherwise, NULL. */
1844
1845 static struct type *
1846 desc_index_type (struct type *type, int i)
1847 {
1848 type = desc_base_type (type);
1849
1850 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1851 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1852 else
1853 return NULL;
1854 }
1855
1856 /* The number of index positions in the array-bounds type TYPE.
1857 Return 0 if TYPE is NULL. */
1858
1859 static int
1860 desc_arity (struct type *type)
1861 {
1862 type = desc_base_type (type);
1863
1864 if (type != NULL)
1865 return TYPE_NFIELDS (type) / 2;
1866 return 0;
1867 }
1868
1869 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1870 an array descriptor type (representing an unconstrained array
1871 type). */
1872
1873 static int
1874 ada_is_direct_array_type (struct type *type)
1875 {
1876 if (type == NULL)
1877 return 0;
1878 type = ada_check_typedef (type);
1879 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1880 || ada_is_array_descriptor_type (type));
1881 }
1882
1883 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1884 * to one. */
1885
1886 static int
1887 ada_is_array_type (struct type *type)
1888 {
1889 while (type != NULL
1890 && (TYPE_CODE (type) == TYPE_CODE_PTR
1891 || TYPE_CODE (type) == TYPE_CODE_REF))
1892 type = TYPE_TARGET_TYPE (type);
1893 return ada_is_direct_array_type (type);
1894 }
1895
1896 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1897
1898 int
1899 ada_is_simple_array_type (struct type *type)
1900 {
1901 if (type == NULL)
1902 return 0;
1903 type = ada_check_typedef (type);
1904 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1905 || (TYPE_CODE (type) == TYPE_CODE_PTR
1906 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1907 == TYPE_CODE_ARRAY));
1908 }
1909
1910 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1911
1912 int
1913 ada_is_array_descriptor_type (struct type *type)
1914 {
1915 struct type *data_type = desc_data_target_type (type);
1916
1917 if (type == NULL)
1918 return 0;
1919 type = ada_check_typedef (type);
1920 return (data_type != NULL
1921 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1922 && desc_arity (desc_bounds_type (type)) > 0);
1923 }
1924
1925 /* Non-zero iff type is a partially mal-formed GNAT array
1926 descriptor. FIXME: This is to compensate for some problems with
1927 debugging output from GNAT. Re-examine periodically to see if it
1928 is still needed. */
1929
1930 int
1931 ada_is_bogus_array_descriptor (struct type *type)
1932 {
1933 return
1934 type != NULL
1935 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1936 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1937 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1938 && !ada_is_array_descriptor_type (type);
1939 }
1940
1941
1942 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1943 (fat pointer) returns the type of the array data described---specifically,
1944 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1945 in from the descriptor; otherwise, they are left unspecified. If
1946 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1947 returns NULL. The result is simply the type of ARR if ARR is not
1948 a descriptor. */
1949 struct type *
1950 ada_type_of_array (struct value *arr, int bounds)
1951 {
1952 if (ada_is_constrained_packed_array_type (value_type (arr)))
1953 return decode_constrained_packed_array_type (value_type (arr));
1954
1955 if (!ada_is_array_descriptor_type (value_type (arr)))
1956 return value_type (arr);
1957
1958 if (!bounds)
1959 {
1960 struct type *array_type =
1961 ada_check_typedef (desc_data_target_type (value_type (arr)));
1962
1963 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1964 TYPE_FIELD_BITSIZE (array_type, 0) =
1965 decode_packed_array_bitsize (value_type (arr));
1966
1967 return array_type;
1968 }
1969 else
1970 {
1971 struct type *elt_type;
1972 int arity;
1973 struct value *descriptor;
1974
1975 elt_type = ada_array_element_type (value_type (arr), -1);
1976 arity = ada_array_arity (value_type (arr));
1977
1978 if (elt_type == NULL || arity == 0)
1979 return ada_check_typedef (value_type (arr));
1980
1981 descriptor = desc_bounds (arr);
1982 if (value_as_long (descriptor) == 0)
1983 return NULL;
1984 while (arity > 0)
1985 {
1986 struct type *range_type = alloc_type_copy (value_type (arr));
1987 struct type *array_type = alloc_type_copy (value_type (arr));
1988 struct value *low = desc_one_bound (descriptor, arity, 0);
1989 struct value *high = desc_one_bound (descriptor, arity, 1);
1990
1991 arity -= 1;
1992 create_static_range_type (range_type, value_type (low),
1993 longest_to_int (value_as_long (low)),
1994 longest_to_int (value_as_long (high)));
1995 elt_type = create_array_type (array_type, elt_type, range_type);
1996
1997 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1998 {
1999 /* We need to store the element packed bitsize, as well as
2000 recompute the array size, because it was previously
2001 computed based on the unpacked element size. */
2002 LONGEST lo = value_as_long (low);
2003 LONGEST hi = value_as_long (high);
2004
2005 TYPE_FIELD_BITSIZE (elt_type, 0) =
2006 decode_packed_array_bitsize (value_type (arr));
2007 /* If the array has no element, then the size is already
2008 zero, and does not need to be recomputed. */
2009 if (lo < hi)
2010 {
2011 int array_bitsize =
2012 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2013
2014 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2015 }
2016 }
2017 }
2018
2019 return lookup_pointer_type (elt_type);
2020 }
2021 }
2022
2023 /* If ARR does not represent an array, returns ARR unchanged.
2024 Otherwise, returns either a standard GDB array with bounds set
2025 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2026 GDB array. Returns NULL if ARR is a null fat pointer. */
2027
2028 struct value *
2029 ada_coerce_to_simple_array_ptr (struct value *arr)
2030 {
2031 if (ada_is_array_descriptor_type (value_type (arr)))
2032 {
2033 struct type *arrType = ada_type_of_array (arr, 1);
2034
2035 if (arrType == NULL)
2036 return NULL;
2037 return value_cast (arrType, value_copy (desc_data (arr)));
2038 }
2039 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2040 return decode_constrained_packed_array (arr);
2041 else
2042 return arr;
2043 }
2044
2045 /* If ARR does not represent an array, returns ARR unchanged.
2046 Otherwise, returns a standard GDB array describing ARR (which may
2047 be ARR itself if it already is in the proper form). */
2048
2049 struct value *
2050 ada_coerce_to_simple_array (struct value *arr)
2051 {
2052 if (ada_is_array_descriptor_type (value_type (arr)))
2053 {
2054 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2055
2056 if (arrVal == NULL)
2057 error (_("Bounds unavailable for null array pointer."));
2058 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2059 return value_ind (arrVal);
2060 }
2061 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2062 return decode_constrained_packed_array (arr);
2063 else
2064 return arr;
2065 }
2066
2067 /* If TYPE represents a GNAT array type, return it translated to an
2068 ordinary GDB array type (possibly with BITSIZE fields indicating
2069 packing). For other types, is the identity. */
2070
2071 struct type *
2072 ada_coerce_to_simple_array_type (struct type *type)
2073 {
2074 if (ada_is_constrained_packed_array_type (type))
2075 return decode_constrained_packed_array_type (type);
2076
2077 if (ada_is_array_descriptor_type (type))
2078 return ada_check_typedef (desc_data_target_type (type));
2079
2080 return type;
2081 }
2082
2083 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2084
2085 static int
2086 ada_is_packed_array_type (struct type *type)
2087 {
2088 if (type == NULL)
2089 return 0;
2090 type = desc_base_type (type);
2091 type = ada_check_typedef (type);
2092 return
2093 ada_type_name (type) != NULL
2094 && strstr (ada_type_name (type), "___XP") != NULL;
2095 }
2096
2097 /* Non-zero iff TYPE represents a standard GNAT constrained
2098 packed-array type. */
2099
2100 int
2101 ada_is_constrained_packed_array_type (struct type *type)
2102 {
2103 return ada_is_packed_array_type (type)
2104 && !ada_is_array_descriptor_type (type);
2105 }
2106
2107 /* Non-zero iff TYPE represents an array descriptor for a
2108 unconstrained packed-array type. */
2109
2110 static int
2111 ada_is_unconstrained_packed_array_type (struct type *type)
2112 {
2113 return ada_is_packed_array_type (type)
2114 && ada_is_array_descriptor_type (type);
2115 }
2116
2117 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2118 return the size of its elements in bits. */
2119
2120 static long
2121 decode_packed_array_bitsize (struct type *type)
2122 {
2123 const char *raw_name;
2124 const char *tail;
2125 long bits;
2126
2127 /* Access to arrays implemented as fat pointers are encoded as a typedef
2128 of the fat pointer type. We need the name of the fat pointer type
2129 to do the decoding, so strip the typedef layer. */
2130 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2131 type = ada_typedef_target_type (type);
2132
2133 raw_name = ada_type_name (ada_check_typedef (type));
2134 if (!raw_name)
2135 raw_name = ada_type_name (desc_base_type (type));
2136
2137 if (!raw_name)
2138 return 0;
2139
2140 tail = strstr (raw_name, "___XP");
2141 gdb_assert (tail != NULL);
2142
2143 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2144 {
2145 lim_warning
2146 (_("could not understand bit size information on packed array"));
2147 return 0;
2148 }
2149
2150 return bits;
2151 }
2152
2153 /* Given that TYPE is a standard GDB array type with all bounds filled
2154 in, and that the element size of its ultimate scalar constituents
2155 (that is, either its elements, or, if it is an array of arrays, its
2156 elements' elements, etc.) is *ELT_BITS, return an identical type,
2157 but with the bit sizes of its elements (and those of any
2158 constituent arrays) recorded in the BITSIZE components of its
2159 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2160 in bits.
2161
2162 Note that, for arrays whose index type has an XA encoding where
2163 a bound references a record discriminant, getting that discriminant,
2164 and therefore the actual value of that bound, is not possible
2165 because none of the given parameters gives us access to the record.
2166 This function assumes that it is OK in the context where it is being
2167 used to return an array whose bounds are still dynamic and where
2168 the length is arbitrary. */
2169
2170 static struct type *
2171 constrained_packed_array_type (struct type *type, long *elt_bits)
2172 {
2173 struct type *new_elt_type;
2174 struct type *new_type;
2175 struct type *index_type_desc;
2176 struct type *index_type;
2177 LONGEST low_bound, high_bound;
2178
2179 type = ada_check_typedef (type);
2180 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2181 return type;
2182
2183 index_type_desc = ada_find_parallel_type (type, "___XA");
2184 if (index_type_desc)
2185 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2186 NULL);
2187 else
2188 index_type = TYPE_INDEX_TYPE (type);
2189
2190 new_type = alloc_type_copy (type);
2191 new_elt_type =
2192 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2193 elt_bits);
2194 create_array_type (new_type, new_elt_type, index_type);
2195 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2196 TYPE_NAME (new_type) = ada_type_name (type);
2197
2198 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2199 && is_dynamic_type (check_typedef (index_type)))
2200 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2201 low_bound = high_bound = 0;
2202 if (high_bound < low_bound)
2203 *elt_bits = TYPE_LENGTH (new_type) = 0;
2204 else
2205 {
2206 *elt_bits *= (high_bound - low_bound + 1);
2207 TYPE_LENGTH (new_type) =
2208 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2209 }
2210
2211 TYPE_FIXED_INSTANCE (new_type) = 1;
2212 return new_type;
2213 }
2214
2215 /* The array type encoded by TYPE, where
2216 ada_is_constrained_packed_array_type (TYPE). */
2217
2218 static struct type *
2219 decode_constrained_packed_array_type (struct type *type)
2220 {
2221 const char *raw_name = ada_type_name (ada_check_typedef (type));
2222 char *name;
2223 const char *tail;
2224 struct type *shadow_type;
2225 long bits;
2226
2227 if (!raw_name)
2228 raw_name = ada_type_name (desc_base_type (type));
2229
2230 if (!raw_name)
2231 return NULL;
2232
2233 name = (char *) alloca (strlen (raw_name) + 1);
2234 tail = strstr (raw_name, "___XP");
2235 type = desc_base_type (type);
2236
2237 memcpy (name, raw_name, tail - raw_name);
2238 name[tail - raw_name] = '\000';
2239
2240 shadow_type = ada_find_parallel_type_with_name (type, name);
2241
2242 if (shadow_type == NULL)
2243 {
2244 lim_warning (_("could not find bounds information on packed array"));
2245 return NULL;
2246 }
2247 shadow_type = check_typedef (shadow_type);
2248
2249 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2250 {
2251 lim_warning (_("could not understand bounds "
2252 "information on packed array"));
2253 return NULL;
2254 }
2255
2256 bits = decode_packed_array_bitsize (type);
2257 return constrained_packed_array_type (shadow_type, &bits);
2258 }
2259
2260 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2261 array, returns a simple array that denotes that array. Its type is a
2262 standard GDB array type except that the BITSIZEs of the array
2263 target types are set to the number of bits in each element, and the
2264 type length is set appropriately. */
2265
2266 static struct value *
2267 decode_constrained_packed_array (struct value *arr)
2268 {
2269 struct type *type;
2270
2271 /* If our value is a pointer, then dereference it. Likewise if
2272 the value is a reference. Make sure that this operation does not
2273 cause the target type to be fixed, as this would indirectly cause
2274 this array to be decoded. The rest of the routine assumes that
2275 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2276 and "value_ind" routines to perform the dereferencing, as opposed
2277 to using "ada_coerce_ref" or "ada_value_ind". */
2278 arr = coerce_ref (arr);
2279 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2280 arr = value_ind (arr);
2281
2282 type = decode_constrained_packed_array_type (value_type (arr));
2283 if (type == NULL)
2284 {
2285 error (_("can't unpack array"));
2286 return NULL;
2287 }
2288
2289 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2290 && ada_is_modular_type (value_type (arr)))
2291 {
2292 /* This is a (right-justified) modular type representing a packed
2293 array with no wrapper. In order to interpret the value through
2294 the (left-justified) packed array type we just built, we must
2295 first left-justify it. */
2296 int bit_size, bit_pos;
2297 ULONGEST mod;
2298
2299 mod = ada_modulus (value_type (arr)) - 1;
2300 bit_size = 0;
2301 while (mod > 0)
2302 {
2303 bit_size += 1;
2304 mod >>= 1;
2305 }
2306 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2307 arr = ada_value_primitive_packed_val (arr, NULL,
2308 bit_pos / HOST_CHAR_BIT,
2309 bit_pos % HOST_CHAR_BIT,
2310 bit_size,
2311 type);
2312 }
2313
2314 return coerce_unspec_val_to_type (arr, type);
2315 }
2316
2317
2318 /* The value of the element of packed array ARR at the ARITY indices
2319 given in IND. ARR must be a simple array. */
2320
2321 static struct value *
2322 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2323 {
2324 int i;
2325 int bits, elt_off, bit_off;
2326 long elt_total_bit_offset;
2327 struct type *elt_type;
2328 struct value *v;
2329
2330 bits = 0;
2331 elt_total_bit_offset = 0;
2332 elt_type = ada_check_typedef (value_type (arr));
2333 for (i = 0; i < arity; i += 1)
2334 {
2335 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2336 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2337 error
2338 (_("attempt to do packed indexing of "
2339 "something other than a packed array"));
2340 else
2341 {
2342 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2343 LONGEST lowerbound, upperbound;
2344 LONGEST idx;
2345
2346 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2347 {
2348 lim_warning (_("don't know bounds of array"));
2349 lowerbound = upperbound = 0;
2350 }
2351
2352 idx = pos_atr (ind[i]);
2353 if (idx < lowerbound || idx > upperbound)
2354 lim_warning (_("packed array index %ld out of bounds"),
2355 (long) idx);
2356 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2357 elt_total_bit_offset += (idx - lowerbound) * bits;
2358 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2359 }
2360 }
2361 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2362 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2363
2364 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2365 bits, elt_type);
2366 return v;
2367 }
2368
2369 /* Non-zero iff TYPE includes negative integer values. */
2370
2371 static int
2372 has_negatives (struct type *type)
2373 {
2374 switch (TYPE_CODE (type))
2375 {
2376 default:
2377 return 0;
2378 case TYPE_CODE_INT:
2379 return !TYPE_UNSIGNED (type);
2380 case TYPE_CODE_RANGE:
2381 return TYPE_LOW_BOUND (type) < 0;
2382 }
2383 }
2384
2385 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2386 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2387 the unpacked buffer.
2388
2389 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2390 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2391
2392 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2393 zero otherwise.
2394
2395 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2396
2397 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2398
2399 static void
2400 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2401 gdb_byte *unpacked, int unpacked_len,
2402 int is_big_endian, int is_signed_type,
2403 int is_scalar)
2404 {
2405 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2406 int src_idx; /* Index into the source area */
2407 int src_bytes_left; /* Number of source bytes left to process. */
2408 int srcBitsLeft; /* Number of source bits left to move */
2409 int unusedLS; /* Number of bits in next significant
2410 byte of source that are unused */
2411
2412 int unpacked_idx; /* Index into the unpacked buffer */
2413 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2414
2415 unsigned long accum; /* Staging area for bits being transferred */
2416 int accumSize; /* Number of meaningful bits in accum */
2417 unsigned char sign;
2418
2419 /* Transmit bytes from least to most significant; delta is the direction
2420 the indices move. */
2421 int delta = is_big_endian ? -1 : 1;
2422
2423 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2424 bits from SRC. .*/
2425 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2426 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2427 bit_size, unpacked_len);
2428
2429 srcBitsLeft = bit_size;
2430 src_bytes_left = src_len;
2431 unpacked_bytes_left = unpacked_len;
2432 sign = 0;
2433
2434 if (is_big_endian)
2435 {
2436 src_idx = src_len - 1;
2437 if (is_signed_type
2438 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2439 sign = ~0;
2440
2441 unusedLS =
2442 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2443 % HOST_CHAR_BIT;
2444
2445 if (is_scalar)
2446 {
2447 accumSize = 0;
2448 unpacked_idx = unpacked_len - 1;
2449 }
2450 else
2451 {
2452 /* Non-scalar values must be aligned at a byte boundary... */
2453 accumSize =
2454 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2455 /* ... And are placed at the beginning (most-significant) bytes
2456 of the target. */
2457 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2458 unpacked_bytes_left = unpacked_idx + 1;
2459 }
2460 }
2461 else
2462 {
2463 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2464
2465 src_idx = unpacked_idx = 0;
2466 unusedLS = bit_offset;
2467 accumSize = 0;
2468
2469 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2470 sign = ~0;
2471 }
2472
2473 accum = 0;
2474 while (src_bytes_left > 0)
2475 {
2476 /* Mask for removing bits of the next source byte that are not
2477 part of the value. */
2478 unsigned int unusedMSMask =
2479 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2480 1;
2481 /* Sign-extend bits for this byte. */
2482 unsigned int signMask = sign & ~unusedMSMask;
2483
2484 accum |=
2485 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2486 accumSize += HOST_CHAR_BIT - unusedLS;
2487 if (accumSize >= HOST_CHAR_BIT)
2488 {
2489 unpacked[unpacked_idx] = accum & ~(~0L << HOST_CHAR_BIT);
2490 accumSize -= HOST_CHAR_BIT;
2491 accum >>= HOST_CHAR_BIT;
2492 unpacked_bytes_left -= 1;
2493 unpacked_idx += delta;
2494 }
2495 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2496 unusedLS = 0;
2497 src_bytes_left -= 1;
2498 src_idx += delta;
2499 }
2500 while (unpacked_bytes_left > 0)
2501 {
2502 accum |= sign << accumSize;
2503 unpacked[unpacked_idx] = accum & ~(~0L << HOST_CHAR_BIT);
2504 accumSize -= HOST_CHAR_BIT;
2505 if (accumSize < 0)
2506 accumSize = 0;
2507 accum >>= HOST_CHAR_BIT;
2508 unpacked_bytes_left -= 1;
2509 unpacked_idx += delta;
2510 }
2511 }
2512
2513 /* Create a new value of type TYPE from the contents of OBJ starting
2514 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2515 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2516 assigning through the result will set the field fetched from.
2517 VALADDR is ignored unless OBJ is NULL, in which case,
2518 VALADDR+OFFSET must address the start of storage containing the
2519 packed value. The value returned in this case is never an lval.
2520 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2521
2522 struct value *
2523 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2524 long offset, int bit_offset, int bit_size,
2525 struct type *type)
2526 {
2527 struct value *v;
2528 const gdb_byte *src; /* First byte containing data to unpack */
2529 gdb_byte *unpacked;
2530 const int is_scalar = is_scalar_type (type);
2531 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2532 gdb_byte *staging = NULL;
2533 int staging_len = 0;
2534 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2535
2536 type = ada_check_typedef (type);
2537
2538 if (obj == NULL)
2539 src = valaddr + offset;
2540 else
2541 src = value_contents (obj) + offset;
2542
2543 if (is_dynamic_type (type))
2544 {
2545 /* The length of TYPE might by dynamic, so we need to resolve
2546 TYPE in order to know its actual size, which we then use
2547 to create the contents buffer of the value we return.
2548 The difficulty is that the data containing our object is
2549 packed, and therefore maybe not at a byte boundary. So, what
2550 we do, is unpack the data into a byte-aligned buffer, and then
2551 use that buffer as our object's value for resolving the type. */
2552 staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2553 staging = (gdb_byte *) malloc (staging_len);
2554 make_cleanup (xfree, staging);
2555
2556 ada_unpack_from_contents (src, bit_offset, bit_size,
2557 staging, staging_len,
2558 is_big_endian, has_negatives (type),
2559 is_scalar);
2560 type = resolve_dynamic_type (type, staging, 0);
2561 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2562 {
2563 /* This happens when the length of the object is dynamic,
2564 and is actually smaller than the space reserved for it.
2565 For instance, in an array of variant records, the bit_size
2566 we're given is the array stride, which is constant and
2567 normally equal to the maximum size of its element.
2568 But, in reality, each element only actually spans a portion
2569 of that stride. */
2570 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2571 }
2572 }
2573
2574 if (obj == NULL)
2575 {
2576 v = allocate_value (type);
2577 src = valaddr + offset;
2578 }
2579 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2580 {
2581 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2582 gdb_byte *buf;
2583
2584 v = value_at (type, value_address (obj) + offset);
2585 buf = (gdb_byte *) alloca (src_len);
2586 read_memory (value_address (v), buf, src_len);
2587 src = buf;
2588 }
2589 else
2590 {
2591 v = allocate_value (type);
2592 src = value_contents (obj) + offset;
2593 }
2594
2595 if (obj != NULL)
2596 {
2597 long new_offset = offset;
2598
2599 set_value_component_location (v, obj);
2600 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2601 set_value_bitsize (v, bit_size);
2602 if (value_bitpos (v) >= HOST_CHAR_BIT)
2603 {
2604 ++new_offset;
2605 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2606 }
2607 set_value_offset (v, new_offset);
2608
2609 /* Also set the parent value. This is needed when trying to
2610 assign a new value (in inferior memory). */
2611 set_value_parent (v, obj);
2612 }
2613 else
2614 set_value_bitsize (v, bit_size);
2615 unpacked = value_contents_writeable (v);
2616
2617 if (bit_size == 0)
2618 {
2619 memset (unpacked, 0, TYPE_LENGTH (type));
2620 do_cleanups (old_chain);
2621 return v;
2622 }
2623
2624 if (staging != NULL && staging_len == TYPE_LENGTH (type))
2625 {
2626 /* Small short-cut: If we've unpacked the data into a buffer
2627 of the same size as TYPE's length, then we can reuse that,
2628 instead of doing the unpacking again. */
2629 memcpy (unpacked, staging, staging_len);
2630 }
2631 else
2632 ada_unpack_from_contents (src, bit_offset, bit_size,
2633 unpacked, TYPE_LENGTH (type),
2634 is_big_endian, has_negatives (type), is_scalar);
2635
2636 do_cleanups (old_chain);
2637 return v;
2638 }
2639
2640 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2641 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2642 not overlap. */
2643 static void
2644 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2645 int src_offset, int n, int bits_big_endian_p)
2646 {
2647 unsigned int accum, mask;
2648 int accum_bits, chunk_size;
2649
2650 target += targ_offset / HOST_CHAR_BIT;
2651 targ_offset %= HOST_CHAR_BIT;
2652 source += src_offset / HOST_CHAR_BIT;
2653 src_offset %= HOST_CHAR_BIT;
2654 if (bits_big_endian_p)
2655 {
2656 accum = (unsigned char) *source;
2657 source += 1;
2658 accum_bits = HOST_CHAR_BIT - src_offset;
2659
2660 while (n > 0)
2661 {
2662 int unused_right;
2663
2664 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2665 accum_bits += HOST_CHAR_BIT;
2666 source += 1;
2667 chunk_size = HOST_CHAR_BIT - targ_offset;
2668 if (chunk_size > n)
2669 chunk_size = n;
2670 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2671 mask = ((1 << chunk_size) - 1) << unused_right;
2672 *target =
2673 (*target & ~mask)
2674 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2675 n -= chunk_size;
2676 accum_bits -= chunk_size;
2677 target += 1;
2678 targ_offset = 0;
2679 }
2680 }
2681 else
2682 {
2683 accum = (unsigned char) *source >> src_offset;
2684 source += 1;
2685 accum_bits = HOST_CHAR_BIT - src_offset;
2686
2687 while (n > 0)
2688 {
2689 accum = accum + ((unsigned char) *source << accum_bits);
2690 accum_bits += HOST_CHAR_BIT;
2691 source += 1;
2692 chunk_size = HOST_CHAR_BIT - targ_offset;
2693 if (chunk_size > n)
2694 chunk_size = n;
2695 mask = ((1 << chunk_size) - 1) << targ_offset;
2696 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2697 n -= chunk_size;
2698 accum_bits -= chunk_size;
2699 accum >>= chunk_size;
2700 target += 1;
2701 targ_offset = 0;
2702 }
2703 }
2704 }
2705
2706 /* Store the contents of FROMVAL into the location of TOVAL.
2707 Return a new value with the location of TOVAL and contents of
2708 FROMVAL. Handles assignment into packed fields that have
2709 floating-point or non-scalar types. */
2710
2711 static struct value *
2712 ada_value_assign (struct value *toval, struct value *fromval)
2713 {
2714 struct type *type = value_type (toval);
2715 int bits = value_bitsize (toval);
2716
2717 toval = ada_coerce_ref (toval);
2718 fromval = ada_coerce_ref (fromval);
2719
2720 if (ada_is_direct_array_type (value_type (toval)))
2721 toval = ada_coerce_to_simple_array (toval);
2722 if (ada_is_direct_array_type (value_type (fromval)))
2723 fromval = ada_coerce_to_simple_array (fromval);
2724
2725 if (!deprecated_value_modifiable (toval))
2726 error (_("Left operand of assignment is not a modifiable lvalue."));
2727
2728 if (VALUE_LVAL (toval) == lval_memory
2729 && bits > 0
2730 && (TYPE_CODE (type) == TYPE_CODE_FLT
2731 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2732 {
2733 int len = (value_bitpos (toval)
2734 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2735 int from_size;
2736 gdb_byte *buffer = (gdb_byte *) alloca (len);
2737 struct value *val;
2738 CORE_ADDR to_addr = value_address (toval);
2739
2740 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2741 fromval = value_cast (type, fromval);
2742
2743 read_memory (to_addr, buffer, len);
2744 from_size = value_bitsize (fromval);
2745 if (from_size == 0)
2746 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2747 if (gdbarch_bits_big_endian (get_type_arch (type)))
2748 move_bits (buffer, value_bitpos (toval),
2749 value_contents (fromval), from_size - bits, bits, 1);
2750 else
2751 move_bits (buffer, value_bitpos (toval),
2752 value_contents (fromval), 0, bits, 0);
2753 write_memory_with_notification (to_addr, buffer, len);
2754
2755 val = value_copy (toval);
2756 memcpy (value_contents_raw (val), value_contents (fromval),
2757 TYPE_LENGTH (type));
2758 deprecated_set_value_type (val, type);
2759
2760 return val;
2761 }
2762
2763 return value_assign (toval, fromval);
2764 }
2765
2766
2767 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2768 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2769 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2770 COMPONENT, and not the inferior's memory. The current contents
2771 of COMPONENT are ignored.
2772
2773 Although not part of the initial design, this function also works
2774 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2775 had a null address, and COMPONENT had an address which is equal to
2776 its offset inside CONTAINER. */
2777
2778 static void
2779 value_assign_to_component (struct value *container, struct value *component,
2780 struct value *val)
2781 {
2782 LONGEST offset_in_container =
2783 (LONGEST) (value_address (component) - value_address (container));
2784 int bit_offset_in_container =
2785 value_bitpos (component) - value_bitpos (container);
2786 int bits;
2787
2788 val = value_cast (value_type (component), val);
2789
2790 if (value_bitsize (component) == 0)
2791 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2792 else
2793 bits = value_bitsize (component);
2794
2795 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2796 move_bits (value_contents_writeable (container) + offset_in_container,
2797 value_bitpos (container) + bit_offset_in_container,
2798 value_contents (val),
2799 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2800 bits, 1);
2801 else
2802 move_bits (value_contents_writeable (container) + offset_in_container,
2803 value_bitpos (container) + bit_offset_in_container,
2804 value_contents (val), 0, bits, 0);
2805 }
2806
2807 /* The value of the element of array ARR at the ARITY indices given in IND.
2808 ARR may be either a simple array, GNAT array descriptor, or pointer
2809 thereto. */
2810
2811 struct value *
2812 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2813 {
2814 int k;
2815 struct value *elt;
2816 struct type *elt_type;
2817
2818 elt = ada_coerce_to_simple_array (arr);
2819
2820 elt_type = ada_check_typedef (value_type (elt));
2821 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2822 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2823 return value_subscript_packed (elt, arity, ind);
2824
2825 for (k = 0; k < arity; k += 1)
2826 {
2827 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2828 error (_("too many subscripts (%d expected)"), k);
2829 elt = value_subscript (elt, pos_atr (ind[k]));
2830 }
2831 return elt;
2832 }
2833
2834 /* Assuming ARR is a pointer to a GDB array, the value of the element
2835 of *ARR at the ARITY indices given in IND.
2836 Does not read the entire array into memory.
2837
2838 Note: Unlike what one would expect, this function is used instead of
2839 ada_value_subscript for basically all non-packed array types. The reason
2840 for this is that a side effect of doing our own pointer arithmetics instead
2841 of relying on value_subscript is that there is no implicit typedef peeling.
2842 This is important for arrays of array accesses, where it allows us to
2843 preserve the fact that the array's element is an array access, where the
2844 access part os encoded in a typedef layer. */
2845
2846 static struct value *
2847 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2848 {
2849 int k;
2850 struct value *array_ind = ada_value_ind (arr);
2851 struct type *type
2852 = check_typedef (value_enclosing_type (array_ind));
2853
2854 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2855 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2856 return value_subscript_packed (array_ind, arity, ind);
2857
2858 for (k = 0; k < arity; k += 1)
2859 {
2860 LONGEST lwb, upb;
2861 struct value *lwb_value;
2862
2863 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2864 error (_("too many subscripts (%d expected)"), k);
2865 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2866 value_copy (arr));
2867 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2868 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2869 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2870 type = TYPE_TARGET_TYPE (type);
2871 }
2872
2873 return value_ind (arr);
2874 }
2875
2876 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2877 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2878 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2879 this array is LOW, as per Ada rules. */
2880 static struct value *
2881 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2882 int low, int high)
2883 {
2884 struct type *type0 = ada_check_typedef (type);
2885 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2886 struct type *index_type
2887 = create_static_range_type (NULL, base_index_type, low, high);
2888 struct type *slice_type =
2889 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2890 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2891 LONGEST base_low_pos, low_pos;
2892 CORE_ADDR base;
2893
2894 if (!discrete_position (base_index_type, low, &low_pos)
2895 || !discrete_position (base_index_type, base_low, &base_low_pos))
2896 {
2897 warning (_("unable to get positions in slice, use bounds instead"));
2898 low_pos = low;
2899 base_low_pos = base_low;
2900 }
2901
2902 base = value_as_address (array_ptr)
2903 + ((low_pos - base_low_pos)
2904 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2905 return value_at_lazy (slice_type, base);
2906 }
2907
2908
2909 static struct value *
2910 ada_value_slice (struct value *array, int low, int high)
2911 {
2912 struct type *type = ada_check_typedef (value_type (array));
2913 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2914 struct type *index_type
2915 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2916 struct type *slice_type =
2917 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2918 LONGEST low_pos, high_pos;
2919
2920 if (!discrete_position (base_index_type, low, &low_pos)
2921 || !discrete_position (base_index_type, high, &high_pos))
2922 {
2923 warning (_("unable to get positions in slice, use bounds instead"));
2924 low_pos = low;
2925 high_pos = high;
2926 }
2927
2928 return value_cast (slice_type,
2929 value_slice (array, low, high_pos - low_pos + 1));
2930 }
2931
2932 /* If type is a record type in the form of a standard GNAT array
2933 descriptor, returns the number of dimensions for type. If arr is a
2934 simple array, returns the number of "array of"s that prefix its
2935 type designation. Otherwise, returns 0. */
2936
2937 int
2938 ada_array_arity (struct type *type)
2939 {
2940 int arity;
2941
2942 if (type == NULL)
2943 return 0;
2944
2945 type = desc_base_type (type);
2946
2947 arity = 0;
2948 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2949 return desc_arity (desc_bounds_type (type));
2950 else
2951 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2952 {
2953 arity += 1;
2954 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2955 }
2956
2957 return arity;
2958 }
2959
2960 /* If TYPE is a record type in the form of a standard GNAT array
2961 descriptor or a simple array type, returns the element type for
2962 TYPE after indexing by NINDICES indices, or by all indices if
2963 NINDICES is -1. Otherwise, returns NULL. */
2964
2965 struct type *
2966 ada_array_element_type (struct type *type, int nindices)
2967 {
2968 type = desc_base_type (type);
2969
2970 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2971 {
2972 int k;
2973 struct type *p_array_type;
2974
2975 p_array_type = desc_data_target_type (type);
2976
2977 k = ada_array_arity (type);
2978 if (k == 0)
2979 return NULL;
2980
2981 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2982 if (nindices >= 0 && k > nindices)
2983 k = nindices;
2984 while (k > 0 && p_array_type != NULL)
2985 {
2986 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2987 k -= 1;
2988 }
2989 return p_array_type;
2990 }
2991 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2992 {
2993 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2994 {
2995 type = TYPE_TARGET_TYPE (type);
2996 nindices -= 1;
2997 }
2998 return type;
2999 }
3000
3001 return NULL;
3002 }
3003
3004 /* The type of nth index in arrays of given type (n numbering from 1).
3005 Does not examine memory. Throws an error if N is invalid or TYPE
3006 is not an array type. NAME is the name of the Ada attribute being
3007 evaluated ('range, 'first, 'last, or 'length); it is used in building
3008 the error message. */
3009
3010 static struct type *
3011 ada_index_type (struct type *type, int n, const char *name)
3012 {
3013 struct type *result_type;
3014
3015 type = desc_base_type (type);
3016
3017 if (n < 0 || n > ada_array_arity (type))
3018 error (_("invalid dimension number to '%s"), name);
3019
3020 if (ada_is_simple_array_type (type))
3021 {
3022 int i;
3023
3024 for (i = 1; i < n; i += 1)
3025 type = TYPE_TARGET_TYPE (type);
3026 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3027 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3028 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3029 perhaps stabsread.c would make more sense. */
3030 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3031 result_type = NULL;
3032 }
3033 else
3034 {
3035 result_type = desc_index_type (desc_bounds_type (type), n);
3036 if (result_type == NULL)
3037 error (_("attempt to take bound of something that is not an array"));
3038 }
3039
3040 return result_type;
3041 }
3042
3043 /* Given that arr is an array type, returns the lower bound of the
3044 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3045 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3046 array-descriptor type. It works for other arrays with bounds supplied
3047 by run-time quantities other than discriminants. */
3048
3049 static LONGEST
3050 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3051 {
3052 struct type *type, *index_type_desc, *index_type;
3053 int i;
3054
3055 gdb_assert (which == 0 || which == 1);
3056
3057 if (ada_is_constrained_packed_array_type (arr_type))
3058 arr_type = decode_constrained_packed_array_type (arr_type);
3059
3060 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3061 return (LONGEST) - which;
3062
3063 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3064 type = TYPE_TARGET_TYPE (arr_type);
3065 else
3066 type = arr_type;
3067
3068 if (TYPE_FIXED_INSTANCE (type))
3069 {
3070 /* The array has already been fixed, so we do not need to
3071 check the parallel ___XA type again. That encoding has
3072 already been applied, so ignore it now. */
3073 index_type_desc = NULL;
3074 }
3075 else
3076 {
3077 index_type_desc = ada_find_parallel_type (type, "___XA");
3078 ada_fixup_array_indexes_type (index_type_desc);
3079 }
3080
3081 if (index_type_desc != NULL)
3082 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3083 NULL);
3084 else
3085 {
3086 struct type *elt_type = check_typedef (type);
3087
3088 for (i = 1; i < n; i++)
3089 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3090
3091 index_type = TYPE_INDEX_TYPE (elt_type);
3092 }
3093
3094 return
3095 (LONGEST) (which == 0
3096 ? ada_discrete_type_low_bound (index_type)
3097 : ada_discrete_type_high_bound (index_type));
3098 }
3099
3100 /* Given that arr is an array value, returns the lower bound of the
3101 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3102 WHICH is 1. This routine will also work for arrays with bounds
3103 supplied by run-time quantities other than discriminants. */
3104
3105 static LONGEST
3106 ada_array_bound (struct value *arr, int n, int which)
3107 {
3108 struct type *arr_type;
3109
3110 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3111 arr = value_ind (arr);
3112 arr_type = value_enclosing_type (arr);
3113
3114 if (ada_is_constrained_packed_array_type (arr_type))
3115 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3116 else if (ada_is_simple_array_type (arr_type))
3117 return ada_array_bound_from_type (arr_type, n, which);
3118 else
3119 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3120 }
3121
3122 /* Given that arr is an array value, returns the length of the
3123 nth index. This routine will also work for arrays with bounds
3124 supplied by run-time quantities other than discriminants.
3125 Does not work for arrays indexed by enumeration types with representation
3126 clauses at the moment. */
3127
3128 static LONGEST
3129 ada_array_length (struct value *arr, int n)
3130 {
3131 struct type *arr_type, *index_type;
3132 int low, high;
3133
3134 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3135 arr = value_ind (arr);
3136 arr_type = value_enclosing_type (arr);
3137
3138 if (ada_is_constrained_packed_array_type (arr_type))
3139 return ada_array_length (decode_constrained_packed_array (arr), n);
3140
3141 if (ada_is_simple_array_type (arr_type))
3142 {
3143 low = ada_array_bound_from_type (arr_type, n, 0);
3144 high = ada_array_bound_from_type (arr_type, n, 1);
3145 }
3146 else
3147 {
3148 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3149 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3150 }
3151
3152 arr_type = check_typedef (arr_type);
3153 index_type = TYPE_INDEX_TYPE (arr_type);
3154 if (index_type != NULL)
3155 {
3156 struct type *base_type;
3157 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3158 base_type = TYPE_TARGET_TYPE (index_type);
3159 else
3160 base_type = index_type;
3161
3162 low = pos_atr (value_from_longest (base_type, low));
3163 high = pos_atr (value_from_longest (base_type, high));
3164 }
3165 return high - low + 1;
3166 }
3167
3168 /* An empty array whose type is that of ARR_TYPE (an array type),
3169 with bounds LOW to LOW-1. */
3170
3171 static struct value *
3172 empty_array (struct type *arr_type, int low)
3173 {
3174 struct type *arr_type0 = ada_check_typedef (arr_type);
3175 struct type *index_type
3176 = create_static_range_type
3177 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3178 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3179
3180 return allocate_value (create_array_type (NULL, elt_type, index_type));
3181 }
3182 \f
3183
3184 /* Name resolution */
3185
3186 /* The "decoded" name for the user-definable Ada operator corresponding
3187 to OP. */
3188
3189 static const char *
3190 ada_decoded_op_name (enum exp_opcode op)
3191 {
3192 int i;
3193
3194 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3195 {
3196 if (ada_opname_table[i].op == op)
3197 return ada_opname_table[i].decoded;
3198 }
3199 error (_("Could not find operator name for opcode"));
3200 }
3201
3202
3203 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3204 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3205 undefined namespace) and converts operators that are
3206 user-defined into appropriate function calls. If CONTEXT_TYPE is
3207 non-null, it provides a preferred result type [at the moment, only
3208 type void has any effect---causing procedures to be preferred over
3209 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3210 return type is preferred. May change (expand) *EXP. */
3211
3212 static void
3213 resolve (struct expression **expp, int void_context_p)
3214 {
3215 struct type *context_type = NULL;
3216 int pc = 0;
3217
3218 if (void_context_p)
3219 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3220
3221 resolve_subexp (expp, &pc, 1, context_type);
3222 }
3223
3224 /* Resolve the operator of the subexpression beginning at
3225 position *POS of *EXPP. "Resolving" consists of replacing
3226 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3227 with their resolutions, replacing built-in operators with
3228 function calls to user-defined operators, where appropriate, and,
3229 when DEPROCEDURE_P is non-zero, converting function-valued variables
3230 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3231 are as in ada_resolve, above. */
3232
3233 static struct value *
3234 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3235 struct type *context_type)
3236 {
3237 int pc = *pos;
3238 int i;
3239 struct expression *exp; /* Convenience: == *expp. */
3240 enum exp_opcode op = (*expp)->elts[pc].opcode;
3241 struct value **argvec; /* Vector of operand types (alloca'ed). */
3242 int nargs; /* Number of operands. */
3243 int oplen;
3244
3245 argvec = NULL;
3246 nargs = 0;
3247 exp = *expp;
3248
3249 /* Pass one: resolve operands, saving their types and updating *pos,
3250 if needed. */
3251 switch (op)
3252 {
3253 case OP_FUNCALL:
3254 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3255 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3256 *pos += 7;
3257 else
3258 {
3259 *pos += 3;
3260 resolve_subexp (expp, pos, 0, NULL);
3261 }
3262 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3263 break;
3264
3265 case UNOP_ADDR:
3266 *pos += 1;
3267 resolve_subexp (expp, pos, 0, NULL);
3268 break;
3269
3270 case UNOP_QUAL:
3271 *pos += 3;
3272 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3273 break;
3274
3275 case OP_ATR_MODULUS:
3276 case OP_ATR_SIZE:
3277 case OP_ATR_TAG:
3278 case OP_ATR_FIRST:
3279 case OP_ATR_LAST:
3280 case OP_ATR_LENGTH:
3281 case OP_ATR_POS:
3282 case OP_ATR_VAL:
3283 case OP_ATR_MIN:
3284 case OP_ATR_MAX:
3285 case TERNOP_IN_RANGE:
3286 case BINOP_IN_BOUNDS:
3287 case UNOP_IN_RANGE:
3288 case OP_AGGREGATE:
3289 case OP_OTHERS:
3290 case OP_CHOICES:
3291 case OP_POSITIONAL:
3292 case OP_DISCRETE_RANGE:
3293 case OP_NAME:
3294 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3295 *pos += oplen;
3296 break;
3297
3298 case BINOP_ASSIGN:
3299 {
3300 struct value *arg1;
3301
3302 *pos += 1;
3303 arg1 = resolve_subexp (expp, pos, 0, NULL);
3304 if (arg1 == NULL)
3305 resolve_subexp (expp, pos, 1, NULL);
3306 else
3307 resolve_subexp (expp, pos, 1, value_type (arg1));
3308 break;
3309 }
3310
3311 case UNOP_CAST:
3312 *pos += 3;
3313 nargs = 1;
3314 break;
3315
3316 case BINOP_ADD:
3317 case BINOP_SUB:
3318 case BINOP_MUL:
3319 case BINOP_DIV:
3320 case BINOP_REM:
3321 case BINOP_MOD:
3322 case BINOP_EXP:
3323 case BINOP_CONCAT:
3324 case BINOP_LOGICAL_AND:
3325 case BINOP_LOGICAL_OR:
3326 case BINOP_BITWISE_AND:
3327 case BINOP_BITWISE_IOR:
3328 case BINOP_BITWISE_XOR:
3329
3330 case BINOP_EQUAL:
3331 case BINOP_NOTEQUAL:
3332 case BINOP_LESS:
3333 case BINOP_GTR:
3334 case BINOP_LEQ:
3335 case BINOP_GEQ:
3336
3337 case BINOP_REPEAT:
3338 case BINOP_SUBSCRIPT:
3339 case BINOP_COMMA:
3340 *pos += 1;
3341 nargs = 2;
3342 break;
3343
3344 case UNOP_NEG:
3345 case UNOP_PLUS:
3346 case UNOP_LOGICAL_NOT:
3347 case UNOP_ABS:
3348 case UNOP_IND:
3349 *pos += 1;
3350 nargs = 1;
3351 break;
3352
3353 case OP_LONG:
3354 case OP_DOUBLE:
3355 case OP_VAR_VALUE:
3356 *pos += 4;
3357 break;
3358
3359 case OP_TYPE:
3360 case OP_BOOL:
3361 case OP_LAST:
3362 case OP_INTERNALVAR:
3363 *pos += 3;
3364 break;
3365
3366 case UNOP_MEMVAL:
3367 *pos += 3;
3368 nargs = 1;
3369 break;
3370
3371 case OP_REGISTER:
3372 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3373 break;
3374
3375 case STRUCTOP_STRUCT:
3376 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3377 nargs = 1;
3378 break;
3379
3380 case TERNOP_SLICE:
3381 *pos += 1;
3382 nargs = 3;
3383 break;
3384
3385 case OP_STRING:
3386 break;
3387
3388 default:
3389 error (_("Unexpected operator during name resolution"));
3390 }
3391
3392 argvec = XALLOCAVEC (struct value *, nargs + 1);
3393 for (i = 0; i < nargs; i += 1)
3394 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3395 argvec[i] = NULL;
3396 exp = *expp;
3397
3398 /* Pass two: perform any resolution on principal operator. */
3399 switch (op)
3400 {
3401 default:
3402 break;
3403
3404 case OP_VAR_VALUE:
3405 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3406 {
3407 struct block_symbol *candidates;
3408 int n_candidates;
3409
3410 n_candidates =
3411 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3412 (exp->elts[pc + 2].symbol),
3413 exp->elts[pc + 1].block, VAR_DOMAIN,
3414 &candidates);
3415
3416 if (n_candidates > 1)
3417 {
3418 /* Types tend to get re-introduced locally, so if there
3419 are any local symbols that are not types, first filter
3420 out all types. */
3421 int j;
3422 for (j = 0; j < n_candidates; j += 1)
3423 switch (SYMBOL_CLASS (candidates[j].symbol))
3424 {
3425 case LOC_REGISTER:
3426 case LOC_ARG:
3427 case LOC_REF_ARG:
3428 case LOC_REGPARM_ADDR:
3429 case LOC_LOCAL:
3430 case LOC_COMPUTED:
3431 goto FoundNonType;
3432 default:
3433 break;
3434 }
3435 FoundNonType:
3436 if (j < n_candidates)
3437 {
3438 j = 0;
3439 while (j < n_candidates)
3440 {
3441 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3442 {
3443 candidates[j] = candidates[n_candidates - 1];
3444 n_candidates -= 1;
3445 }
3446 else
3447 j += 1;
3448 }
3449 }
3450 }
3451
3452 if (n_candidates == 0)
3453 error (_("No definition found for %s"),
3454 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3455 else if (n_candidates == 1)
3456 i = 0;
3457 else if (deprocedure_p
3458 && !is_nonfunction (candidates, n_candidates))
3459 {
3460 i = ada_resolve_function
3461 (candidates, n_candidates, NULL, 0,
3462 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3463 context_type);
3464 if (i < 0)
3465 error (_("Could not find a match for %s"),
3466 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3467 }
3468 else
3469 {
3470 printf_filtered (_("Multiple matches for %s\n"),
3471 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3472 user_select_syms (candidates, n_candidates, 1);
3473 i = 0;
3474 }
3475
3476 exp->elts[pc + 1].block = candidates[i].block;
3477 exp->elts[pc + 2].symbol = candidates[i].symbol;
3478 if (innermost_block == NULL
3479 || contained_in (candidates[i].block, innermost_block))
3480 innermost_block = candidates[i].block;
3481 }
3482
3483 if (deprocedure_p
3484 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3485 == TYPE_CODE_FUNC))
3486 {
3487 replace_operator_with_call (expp, pc, 0, 0,
3488 exp->elts[pc + 2].symbol,
3489 exp->elts[pc + 1].block);
3490 exp = *expp;
3491 }
3492 break;
3493
3494 case OP_FUNCALL:
3495 {
3496 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3497 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3498 {
3499 struct block_symbol *candidates;
3500 int n_candidates;
3501
3502 n_candidates =
3503 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3504 (exp->elts[pc + 5].symbol),
3505 exp->elts[pc + 4].block, VAR_DOMAIN,
3506 &candidates);
3507 if (n_candidates == 1)
3508 i = 0;
3509 else
3510 {
3511 i = ada_resolve_function
3512 (candidates, n_candidates,
3513 argvec, nargs,
3514 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3515 context_type);
3516 if (i < 0)
3517 error (_("Could not find a match for %s"),
3518 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3519 }
3520
3521 exp->elts[pc + 4].block = candidates[i].block;
3522 exp->elts[pc + 5].symbol = candidates[i].symbol;
3523 if (innermost_block == NULL
3524 || contained_in (candidates[i].block, innermost_block))
3525 innermost_block = candidates[i].block;
3526 }
3527 }
3528 break;
3529 case BINOP_ADD:
3530 case BINOP_SUB:
3531 case BINOP_MUL:
3532 case BINOP_DIV:
3533 case BINOP_REM:
3534 case BINOP_MOD:
3535 case BINOP_CONCAT:
3536 case BINOP_BITWISE_AND:
3537 case BINOP_BITWISE_IOR:
3538 case BINOP_BITWISE_XOR:
3539 case BINOP_EQUAL:
3540 case BINOP_NOTEQUAL:
3541 case BINOP_LESS:
3542 case BINOP_GTR:
3543 case BINOP_LEQ:
3544 case BINOP_GEQ:
3545 case BINOP_EXP:
3546 case UNOP_NEG:
3547 case UNOP_PLUS:
3548 case UNOP_LOGICAL_NOT:
3549 case UNOP_ABS:
3550 if (possible_user_operator_p (op, argvec))
3551 {
3552 struct block_symbol *candidates;
3553 int n_candidates;
3554
3555 n_candidates =
3556 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3557 (struct block *) NULL, VAR_DOMAIN,
3558 &candidates);
3559 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3560 ada_decoded_op_name (op), NULL);
3561 if (i < 0)
3562 break;
3563
3564 replace_operator_with_call (expp, pc, nargs, 1,
3565 candidates[i].symbol,
3566 candidates[i].block);
3567 exp = *expp;
3568 }
3569 break;
3570
3571 case OP_TYPE:
3572 case OP_REGISTER:
3573 return NULL;
3574 }
3575
3576 *pos = pc;
3577 return evaluate_subexp_type (exp, pos);
3578 }
3579
3580 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3581 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3582 a non-pointer. */
3583 /* The term "match" here is rather loose. The match is heuristic and
3584 liberal. */
3585
3586 static int
3587 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3588 {
3589 ftype = ada_check_typedef (ftype);
3590 atype = ada_check_typedef (atype);
3591
3592 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3593 ftype = TYPE_TARGET_TYPE (ftype);
3594 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3595 atype = TYPE_TARGET_TYPE (atype);
3596
3597 switch (TYPE_CODE (ftype))
3598 {
3599 default:
3600 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3601 case TYPE_CODE_PTR:
3602 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3603 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3604 TYPE_TARGET_TYPE (atype), 0);
3605 else
3606 return (may_deref
3607 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3608 case TYPE_CODE_INT:
3609 case TYPE_CODE_ENUM:
3610 case TYPE_CODE_RANGE:
3611 switch (TYPE_CODE (atype))
3612 {
3613 case TYPE_CODE_INT:
3614 case TYPE_CODE_ENUM:
3615 case TYPE_CODE_RANGE:
3616 return 1;
3617 default:
3618 return 0;
3619 }
3620
3621 case TYPE_CODE_ARRAY:
3622 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3623 || ada_is_array_descriptor_type (atype));
3624
3625 case TYPE_CODE_STRUCT:
3626 if (ada_is_array_descriptor_type (ftype))
3627 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3628 || ada_is_array_descriptor_type (atype));
3629 else
3630 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3631 && !ada_is_array_descriptor_type (atype));
3632
3633 case TYPE_CODE_UNION:
3634 case TYPE_CODE_FLT:
3635 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3636 }
3637 }
3638
3639 /* Return non-zero if the formals of FUNC "sufficiently match" the
3640 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3641 may also be an enumeral, in which case it is treated as a 0-
3642 argument function. */
3643
3644 static int
3645 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3646 {
3647 int i;
3648 struct type *func_type = SYMBOL_TYPE (func);
3649
3650 if (SYMBOL_CLASS (func) == LOC_CONST
3651 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3652 return (n_actuals == 0);
3653 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3654 return 0;
3655
3656 if (TYPE_NFIELDS (func_type) != n_actuals)
3657 return 0;
3658
3659 for (i = 0; i < n_actuals; i += 1)
3660 {
3661 if (actuals[i] == NULL)
3662 return 0;
3663 else
3664 {
3665 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3666 i));
3667 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3668
3669 if (!ada_type_match (ftype, atype, 1))
3670 return 0;
3671 }
3672 }
3673 return 1;
3674 }
3675
3676 /* False iff function type FUNC_TYPE definitely does not produce a value
3677 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3678 FUNC_TYPE is not a valid function type with a non-null return type
3679 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3680
3681 static int
3682 return_match (struct type *func_type, struct type *context_type)
3683 {
3684 struct type *return_type;
3685
3686 if (func_type == NULL)
3687 return 1;
3688
3689 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3690 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3691 else
3692 return_type = get_base_type (func_type);
3693 if (return_type == NULL)
3694 return 1;
3695
3696 context_type = get_base_type (context_type);
3697
3698 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3699 return context_type == NULL || return_type == context_type;
3700 else if (context_type == NULL)
3701 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3702 else
3703 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3704 }
3705
3706
3707 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3708 function (if any) that matches the types of the NARGS arguments in
3709 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3710 that returns that type, then eliminate matches that don't. If
3711 CONTEXT_TYPE is void and there is at least one match that does not
3712 return void, eliminate all matches that do.
3713
3714 Asks the user if there is more than one match remaining. Returns -1
3715 if there is no such symbol or none is selected. NAME is used
3716 solely for messages. May re-arrange and modify SYMS in
3717 the process; the index returned is for the modified vector. */
3718
3719 static int
3720 ada_resolve_function (struct block_symbol syms[],
3721 int nsyms, struct value **args, int nargs,
3722 const char *name, struct type *context_type)
3723 {
3724 int fallback;
3725 int k;
3726 int m; /* Number of hits */
3727
3728 m = 0;
3729 /* In the first pass of the loop, we only accept functions matching
3730 context_type. If none are found, we add a second pass of the loop
3731 where every function is accepted. */
3732 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3733 {
3734 for (k = 0; k < nsyms; k += 1)
3735 {
3736 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3737
3738 if (ada_args_match (syms[k].symbol, args, nargs)
3739 && (fallback || return_match (type, context_type)))
3740 {
3741 syms[m] = syms[k];
3742 m += 1;
3743 }
3744 }
3745 }
3746
3747 /* If we got multiple matches, ask the user which one to use. Don't do this
3748 interactive thing during completion, though, as the purpose of the
3749 completion is providing a list of all possible matches. Prompting the
3750 user to filter it down would be completely unexpected in this case. */
3751 if (m == 0)
3752 return -1;
3753 else if (m > 1 && !parse_completion)
3754 {
3755 printf_filtered (_("Multiple matches for %s\n"), name);
3756 user_select_syms (syms, m, 1);
3757 return 0;
3758 }
3759 return 0;
3760 }
3761
3762 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3763 in a listing of choices during disambiguation (see sort_choices, below).
3764 The idea is that overloadings of a subprogram name from the
3765 same package should sort in their source order. We settle for ordering
3766 such symbols by their trailing number (__N or $N). */
3767
3768 static int
3769 encoded_ordered_before (const char *N0, const char *N1)
3770 {
3771 if (N1 == NULL)
3772 return 0;
3773 else if (N0 == NULL)
3774 return 1;
3775 else
3776 {
3777 int k0, k1;
3778
3779 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3780 ;
3781 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3782 ;
3783 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3784 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3785 {
3786 int n0, n1;
3787
3788 n0 = k0;
3789 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3790 n0 -= 1;
3791 n1 = k1;
3792 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3793 n1 -= 1;
3794 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3795 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3796 }
3797 return (strcmp (N0, N1) < 0);
3798 }
3799 }
3800
3801 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3802 encoded names. */
3803
3804 static void
3805 sort_choices (struct block_symbol syms[], int nsyms)
3806 {
3807 int i;
3808
3809 for (i = 1; i < nsyms; i += 1)
3810 {
3811 struct block_symbol sym = syms[i];
3812 int j;
3813
3814 for (j = i - 1; j >= 0; j -= 1)
3815 {
3816 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3817 SYMBOL_LINKAGE_NAME (sym.symbol)))
3818 break;
3819 syms[j + 1] = syms[j];
3820 }
3821 syms[j + 1] = sym;
3822 }
3823 }
3824
3825 /* Whether GDB should display formals and return types for functions in the
3826 overloads selection menu. */
3827 static int print_signatures = 1;
3828
3829 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3830 all but functions, the signature is just the name of the symbol. For
3831 functions, this is the name of the function, the list of types for formals
3832 and the return type (if any). */
3833
3834 static void
3835 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3836 const struct type_print_options *flags)
3837 {
3838 struct type *type = SYMBOL_TYPE (sym);
3839
3840 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3841 if (!print_signatures
3842 || type == NULL
3843 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3844 return;
3845
3846 if (TYPE_NFIELDS (type) > 0)
3847 {
3848 int i;
3849
3850 fprintf_filtered (stream, " (");
3851 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3852 {
3853 if (i > 0)
3854 fprintf_filtered (stream, "; ");
3855 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3856 flags);
3857 }
3858 fprintf_filtered (stream, ")");
3859 }
3860 if (TYPE_TARGET_TYPE (type) != NULL
3861 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3862 {
3863 fprintf_filtered (stream, " return ");
3864 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3865 }
3866 }
3867
3868 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3869 by asking the user (if necessary), returning the number selected,
3870 and setting the first elements of SYMS items. Error if no symbols
3871 selected. */
3872
3873 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3874 to be re-integrated one of these days. */
3875
3876 int
3877 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3878 {
3879 int i;
3880 int *chosen = XALLOCAVEC (int , nsyms);
3881 int n_chosen;
3882 int first_choice = (max_results == 1) ? 1 : 2;
3883 const char *select_mode = multiple_symbols_select_mode ();
3884
3885 if (max_results < 1)
3886 error (_("Request to select 0 symbols!"));
3887 if (nsyms <= 1)
3888 return nsyms;
3889
3890 if (select_mode == multiple_symbols_cancel)
3891 error (_("\
3892 canceled because the command is ambiguous\n\
3893 See set/show multiple-symbol."));
3894
3895 /* If select_mode is "all", then return all possible symbols.
3896 Only do that if more than one symbol can be selected, of course.
3897 Otherwise, display the menu as usual. */
3898 if (select_mode == multiple_symbols_all && max_results > 1)
3899 return nsyms;
3900
3901 printf_unfiltered (_("[0] cancel\n"));
3902 if (max_results > 1)
3903 printf_unfiltered (_("[1] all\n"));
3904
3905 sort_choices (syms, nsyms);
3906
3907 for (i = 0; i < nsyms; i += 1)
3908 {
3909 if (syms[i].symbol == NULL)
3910 continue;
3911
3912 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3913 {
3914 struct symtab_and_line sal =
3915 find_function_start_sal (syms[i].symbol, 1);
3916
3917 printf_unfiltered ("[%d] ", i + first_choice);
3918 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3919 &type_print_raw_options);
3920 if (sal.symtab == NULL)
3921 printf_unfiltered (_(" at <no source file available>:%d\n"),
3922 sal.line);
3923 else
3924 printf_unfiltered (_(" at %s:%d\n"),
3925 symtab_to_filename_for_display (sal.symtab),
3926 sal.line);
3927 continue;
3928 }
3929 else
3930 {
3931 int is_enumeral =
3932 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3933 && SYMBOL_TYPE (syms[i].symbol) != NULL
3934 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3935 struct symtab *symtab = NULL;
3936
3937 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3938 symtab = symbol_symtab (syms[i].symbol);
3939
3940 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3941 {
3942 printf_unfiltered ("[%d] ", i + first_choice);
3943 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3944 &type_print_raw_options);
3945 printf_unfiltered (_(" at %s:%d\n"),
3946 symtab_to_filename_for_display (symtab),
3947 SYMBOL_LINE (syms[i].symbol));
3948 }
3949 else if (is_enumeral
3950 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3951 {
3952 printf_unfiltered (("[%d] "), i + first_choice);
3953 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3954 gdb_stdout, -1, 0, &type_print_raw_options);
3955 printf_unfiltered (_("'(%s) (enumeral)\n"),
3956 SYMBOL_PRINT_NAME (syms[i].symbol));
3957 }
3958 else
3959 {
3960 printf_unfiltered ("[%d] ", i + first_choice);
3961 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3962 &type_print_raw_options);
3963
3964 if (symtab != NULL)
3965 printf_unfiltered (is_enumeral
3966 ? _(" in %s (enumeral)\n")
3967 : _(" at %s:?\n"),
3968 symtab_to_filename_for_display (symtab));
3969 else
3970 printf_unfiltered (is_enumeral
3971 ? _(" (enumeral)\n")
3972 : _(" at ?\n"));
3973 }
3974 }
3975 }
3976
3977 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3978 "overload-choice");
3979
3980 for (i = 0; i < n_chosen; i += 1)
3981 syms[i] = syms[chosen[i]];
3982
3983 return n_chosen;
3984 }
3985
3986 /* Read and validate a set of numeric choices from the user in the
3987 range 0 .. N_CHOICES-1. Place the results in increasing
3988 order in CHOICES[0 .. N-1], and return N.
3989
3990 The user types choices as a sequence of numbers on one line
3991 separated by blanks, encoding them as follows:
3992
3993 + A choice of 0 means to cancel the selection, throwing an error.
3994 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3995 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3996
3997 The user is not allowed to choose more than MAX_RESULTS values.
3998
3999 ANNOTATION_SUFFIX, if present, is used to annotate the input
4000 prompts (for use with the -f switch). */
4001
4002 int
4003 get_selections (int *choices, int n_choices, int max_results,
4004 int is_all_choice, char *annotation_suffix)
4005 {
4006 char *args;
4007 char *prompt;
4008 int n_chosen;
4009 int first_choice = is_all_choice ? 2 : 1;
4010
4011 prompt = getenv ("PS2");
4012 if (prompt == NULL)
4013 prompt = "> ";
4014
4015 args = command_line_input (prompt, 0, annotation_suffix);
4016
4017 if (args == NULL)
4018 error_no_arg (_("one or more choice numbers"));
4019
4020 n_chosen = 0;
4021
4022 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4023 order, as given in args. Choices are validated. */
4024 while (1)
4025 {
4026 char *args2;
4027 int choice, j;
4028
4029 args = skip_spaces (args);
4030 if (*args == '\0' && n_chosen == 0)
4031 error_no_arg (_("one or more choice numbers"));
4032 else if (*args == '\0')
4033 break;
4034
4035 choice = strtol (args, &args2, 10);
4036 if (args == args2 || choice < 0
4037 || choice > n_choices + first_choice - 1)
4038 error (_("Argument must be choice number"));
4039 args = args2;
4040
4041 if (choice == 0)
4042 error (_("cancelled"));
4043
4044 if (choice < first_choice)
4045 {
4046 n_chosen = n_choices;
4047 for (j = 0; j < n_choices; j += 1)
4048 choices[j] = j;
4049 break;
4050 }
4051 choice -= first_choice;
4052
4053 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4054 {
4055 }
4056
4057 if (j < 0 || choice != choices[j])
4058 {
4059 int k;
4060
4061 for (k = n_chosen - 1; k > j; k -= 1)
4062 choices[k + 1] = choices[k];
4063 choices[j + 1] = choice;
4064 n_chosen += 1;
4065 }
4066 }
4067
4068 if (n_chosen > max_results)
4069 error (_("Select no more than %d of the above"), max_results);
4070
4071 return n_chosen;
4072 }
4073
4074 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4075 on the function identified by SYM and BLOCK, and taking NARGS
4076 arguments. Update *EXPP as needed to hold more space. */
4077
4078 static void
4079 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4080 int oplen, struct symbol *sym,
4081 const struct block *block)
4082 {
4083 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4084 symbol, -oplen for operator being replaced). */
4085 struct expression *newexp = (struct expression *)
4086 xzalloc (sizeof (struct expression)
4087 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4088 struct expression *exp = *expp;
4089
4090 newexp->nelts = exp->nelts + 7 - oplen;
4091 newexp->language_defn = exp->language_defn;
4092 newexp->gdbarch = exp->gdbarch;
4093 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4094 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4095 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4096
4097 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4098 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4099
4100 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4101 newexp->elts[pc + 4].block = block;
4102 newexp->elts[pc + 5].symbol = sym;
4103
4104 *expp = newexp;
4105 xfree (exp);
4106 }
4107
4108 /* Type-class predicates */
4109
4110 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4111 or FLOAT). */
4112
4113 static int
4114 numeric_type_p (struct type *type)
4115 {
4116 if (type == NULL)
4117 return 0;
4118 else
4119 {
4120 switch (TYPE_CODE (type))
4121 {
4122 case TYPE_CODE_INT:
4123 case TYPE_CODE_FLT:
4124 return 1;
4125 case TYPE_CODE_RANGE:
4126 return (type == TYPE_TARGET_TYPE (type)
4127 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4128 default:
4129 return 0;
4130 }
4131 }
4132 }
4133
4134 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4135
4136 static int
4137 integer_type_p (struct type *type)
4138 {
4139 if (type == NULL)
4140 return 0;
4141 else
4142 {
4143 switch (TYPE_CODE (type))
4144 {
4145 case TYPE_CODE_INT:
4146 return 1;
4147 case TYPE_CODE_RANGE:
4148 return (type == TYPE_TARGET_TYPE (type)
4149 || integer_type_p (TYPE_TARGET_TYPE (type)));
4150 default:
4151 return 0;
4152 }
4153 }
4154 }
4155
4156 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4157
4158 static int
4159 scalar_type_p (struct type *type)
4160 {
4161 if (type == NULL)
4162 return 0;
4163 else
4164 {
4165 switch (TYPE_CODE (type))
4166 {
4167 case TYPE_CODE_INT:
4168 case TYPE_CODE_RANGE:
4169 case TYPE_CODE_ENUM:
4170 case TYPE_CODE_FLT:
4171 return 1;
4172 default:
4173 return 0;
4174 }
4175 }
4176 }
4177
4178 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4179
4180 static int
4181 discrete_type_p (struct type *type)
4182 {
4183 if (type == NULL)
4184 return 0;
4185 else
4186 {
4187 switch (TYPE_CODE (type))
4188 {
4189 case TYPE_CODE_INT:
4190 case TYPE_CODE_RANGE:
4191 case TYPE_CODE_ENUM:
4192 case TYPE_CODE_BOOL:
4193 return 1;
4194 default:
4195 return 0;
4196 }
4197 }
4198 }
4199
4200 /* Returns non-zero if OP with operands in the vector ARGS could be
4201 a user-defined function. Errs on the side of pre-defined operators
4202 (i.e., result 0). */
4203
4204 static int
4205 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4206 {
4207 struct type *type0 =
4208 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4209 struct type *type1 =
4210 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4211
4212 if (type0 == NULL)
4213 return 0;
4214
4215 switch (op)
4216 {
4217 default:
4218 return 0;
4219
4220 case BINOP_ADD:
4221 case BINOP_SUB:
4222 case BINOP_MUL:
4223 case BINOP_DIV:
4224 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4225
4226 case BINOP_REM:
4227 case BINOP_MOD:
4228 case BINOP_BITWISE_AND:
4229 case BINOP_BITWISE_IOR:
4230 case BINOP_BITWISE_XOR:
4231 return (!(integer_type_p (type0) && integer_type_p (type1)));
4232
4233 case BINOP_EQUAL:
4234 case BINOP_NOTEQUAL:
4235 case BINOP_LESS:
4236 case BINOP_GTR:
4237 case BINOP_LEQ:
4238 case BINOP_GEQ:
4239 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4240
4241 case BINOP_CONCAT:
4242 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4243
4244 case BINOP_EXP:
4245 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4246
4247 case UNOP_NEG:
4248 case UNOP_PLUS:
4249 case UNOP_LOGICAL_NOT:
4250 case UNOP_ABS:
4251 return (!numeric_type_p (type0));
4252
4253 }
4254 }
4255 \f
4256 /* Renaming */
4257
4258 /* NOTES:
4259
4260 1. In the following, we assume that a renaming type's name may
4261 have an ___XD suffix. It would be nice if this went away at some
4262 point.
4263 2. We handle both the (old) purely type-based representation of
4264 renamings and the (new) variable-based encoding. At some point,
4265 it is devoutly to be hoped that the former goes away
4266 (FIXME: hilfinger-2007-07-09).
4267 3. Subprogram renamings are not implemented, although the XRS
4268 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4269
4270 /* If SYM encodes a renaming,
4271
4272 <renaming> renames <renamed entity>,
4273
4274 sets *LEN to the length of the renamed entity's name,
4275 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4276 the string describing the subcomponent selected from the renamed
4277 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4278 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4279 are undefined). Otherwise, returns a value indicating the category
4280 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4281 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4282 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4283 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4284 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4285 may be NULL, in which case they are not assigned.
4286
4287 [Currently, however, GCC does not generate subprogram renamings.] */
4288
4289 enum ada_renaming_category
4290 ada_parse_renaming (struct symbol *sym,
4291 const char **renamed_entity, int *len,
4292 const char **renaming_expr)
4293 {
4294 enum ada_renaming_category kind;
4295 const char *info;
4296 const char *suffix;
4297
4298 if (sym == NULL)
4299 return ADA_NOT_RENAMING;
4300 switch (SYMBOL_CLASS (sym))
4301 {
4302 default:
4303 return ADA_NOT_RENAMING;
4304 case LOC_TYPEDEF:
4305 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4306 renamed_entity, len, renaming_expr);
4307 case LOC_LOCAL:
4308 case LOC_STATIC:
4309 case LOC_COMPUTED:
4310 case LOC_OPTIMIZED_OUT:
4311 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4312 if (info == NULL)
4313 return ADA_NOT_RENAMING;
4314 switch (info[5])
4315 {
4316 case '_':
4317 kind = ADA_OBJECT_RENAMING;
4318 info += 6;
4319 break;
4320 case 'E':
4321 kind = ADA_EXCEPTION_RENAMING;
4322 info += 7;
4323 break;
4324 case 'P':
4325 kind = ADA_PACKAGE_RENAMING;
4326 info += 7;
4327 break;
4328 case 'S':
4329 kind = ADA_SUBPROGRAM_RENAMING;
4330 info += 7;
4331 break;
4332 default:
4333 return ADA_NOT_RENAMING;
4334 }
4335 }
4336
4337 if (renamed_entity != NULL)
4338 *renamed_entity = info;
4339 suffix = strstr (info, "___XE");
4340 if (suffix == NULL || suffix == info)
4341 return ADA_NOT_RENAMING;
4342 if (len != NULL)
4343 *len = strlen (info) - strlen (suffix);
4344 suffix += 5;
4345 if (renaming_expr != NULL)
4346 *renaming_expr = suffix;
4347 return kind;
4348 }
4349
4350 /* Assuming TYPE encodes a renaming according to the old encoding in
4351 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4352 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4353 ADA_NOT_RENAMING otherwise. */
4354 static enum ada_renaming_category
4355 parse_old_style_renaming (struct type *type,
4356 const char **renamed_entity, int *len,
4357 const char **renaming_expr)
4358 {
4359 enum ada_renaming_category kind;
4360 const char *name;
4361 const char *info;
4362 const char *suffix;
4363
4364 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4365 || TYPE_NFIELDS (type) != 1)
4366 return ADA_NOT_RENAMING;
4367
4368 name = type_name_no_tag (type);
4369 if (name == NULL)
4370 return ADA_NOT_RENAMING;
4371
4372 name = strstr (name, "___XR");
4373 if (name == NULL)
4374 return ADA_NOT_RENAMING;
4375 switch (name[5])
4376 {
4377 case '\0':
4378 case '_':
4379 kind = ADA_OBJECT_RENAMING;
4380 break;
4381 case 'E':
4382 kind = ADA_EXCEPTION_RENAMING;
4383 break;
4384 case 'P':
4385 kind = ADA_PACKAGE_RENAMING;
4386 break;
4387 case 'S':
4388 kind = ADA_SUBPROGRAM_RENAMING;
4389 break;
4390 default:
4391 return ADA_NOT_RENAMING;
4392 }
4393
4394 info = TYPE_FIELD_NAME (type, 0);
4395 if (info == NULL)
4396 return ADA_NOT_RENAMING;
4397 if (renamed_entity != NULL)
4398 *renamed_entity = info;
4399 suffix = strstr (info, "___XE");
4400 if (renaming_expr != NULL)
4401 *renaming_expr = suffix + 5;
4402 if (suffix == NULL || suffix == info)
4403 return ADA_NOT_RENAMING;
4404 if (len != NULL)
4405 *len = suffix - info;
4406 return kind;
4407 }
4408
4409 /* Compute the value of the given RENAMING_SYM, which is expected to
4410 be a symbol encoding a renaming expression. BLOCK is the block
4411 used to evaluate the renaming. */
4412
4413 static struct value *
4414 ada_read_renaming_var_value (struct symbol *renaming_sym,
4415 const struct block *block)
4416 {
4417 const char *sym_name;
4418 struct expression *expr;
4419 struct value *value;
4420 struct cleanup *old_chain = NULL;
4421
4422 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4423 expr = parse_exp_1 (&sym_name, 0, block, 0);
4424 old_chain = make_cleanup (free_current_contents, &expr);
4425 value = evaluate_expression (expr);
4426
4427 do_cleanups (old_chain);
4428 return value;
4429 }
4430 \f
4431
4432 /* Evaluation: Function Calls */
4433
4434 /* Return an lvalue containing the value VAL. This is the identity on
4435 lvalues, and otherwise has the side-effect of allocating memory
4436 in the inferior where a copy of the value contents is copied. */
4437
4438 static struct value *
4439 ensure_lval (struct value *val)
4440 {
4441 if (VALUE_LVAL (val) == not_lval
4442 || VALUE_LVAL (val) == lval_internalvar)
4443 {
4444 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4445 const CORE_ADDR addr =
4446 value_as_long (value_allocate_space_in_inferior (len));
4447
4448 set_value_address (val, addr);
4449 VALUE_LVAL (val) = lval_memory;
4450 write_memory (addr, value_contents (val), len);
4451 }
4452
4453 return val;
4454 }
4455
4456 /* Return the value ACTUAL, converted to be an appropriate value for a
4457 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4458 allocating any necessary descriptors (fat pointers), or copies of
4459 values not residing in memory, updating it as needed. */
4460
4461 struct value *
4462 ada_convert_actual (struct value *actual, struct type *formal_type0)
4463 {
4464 struct type *actual_type = ada_check_typedef (value_type (actual));
4465 struct type *formal_type = ada_check_typedef (formal_type0);
4466 struct type *formal_target =
4467 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4468 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4469 struct type *actual_target =
4470 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4471 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4472
4473 if (ada_is_array_descriptor_type (formal_target)
4474 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4475 return make_array_descriptor (formal_type, actual);
4476 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4477 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4478 {
4479 struct value *result;
4480
4481 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4482 && ada_is_array_descriptor_type (actual_target))
4483 result = desc_data (actual);
4484 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4485 {
4486 if (VALUE_LVAL (actual) != lval_memory)
4487 {
4488 struct value *val;
4489
4490 actual_type = ada_check_typedef (value_type (actual));
4491 val = allocate_value (actual_type);
4492 memcpy ((char *) value_contents_raw (val),
4493 (char *) value_contents (actual),
4494 TYPE_LENGTH (actual_type));
4495 actual = ensure_lval (val);
4496 }
4497 result = value_addr (actual);
4498 }
4499 else
4500 return actual;
4501 return value_cast_pointers (formal_type, result, 0);
4502 }
4503 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4504 return ada_value_ind (actual);
4505 else if (ada_is_aligner_type (formal_type))
4506 {
4507 /* We need to turn this parameter into an aligner type
4508 as well. */
4509 struct value *aligner = allocate_value (formal_type);
4510 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4511
4512 value_assign_to_component (aligner, component, actual);
4513 return aligner;
4514 }
4515
4516 return actual;
4517 }
4518
4519 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4520 type TYPE. This is usually an inefficient no-op except on some targets
4521 (such as AVR) where the representation of a pointer and an address
4522 differs. */
4523
4524 static CORE_ADDR
4525 value_pointer (struct value *value, struct type *type)
4526 {
4527 struct gdbarch *gdbarch = get_type_arch (type);
4528 unsigned len = TYPE_LENGTH (type);
4529 gdb_byte *buf = (gdb_byte *) alloca (len);
4530 CORE_ADDR addr;
4531
4532 addr = value_address (value);
4533 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4534 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4535 return addr;
4536 }
4537
4538
4539 /* Push a descriptor of type TYPE for array value ARR on the stack at
4540 *SP, updating *SP to reflect the new descriptor. Return either
4541 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4542 to-descriptor type rather than a descriptor type), a struct value *
4543 representing a pointer to this descriptor. */
4544
4545 static struct value *
4546 make_array_descriptor (struct type *type, struct value *arr)
4547 {
4548 struct type *bounds_type = desc_bounds_type (type);
4549 struct type *desc_type = desc_base_type (type);
4550 struct value *descriptor = allocate_value (desc_type);
4551 struct value *bounds = allocate_value (bounds_type);
4552 int i;
4553
4554 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4555 i > 0; i -= 1)
4556 {
4557 modify_field (value_type (bounds), value_contents_writeable (bounds),
4558 ada_array_bound (arr, i, 0),
4559 desc_bound_bitpos (bounds_type, i, 0),
4560 desc_bound_bitsize (bounds_type, i, 0));
4561 modify_field (value_type (bounds), value_contents_writeable (bounds),
4562 ada_array_bound (arr, i, 1),
4563 desc_bound_bitpos (bounds_type, i, 1),
4564 desc_bound_bitsize (bounds_type, i, 1));
4565 }
4566
4567 bounds = ensure_lval (bounds);
4568
4569 modify_field (value_type (descriptor),
4570 value_contents_writeable (descriptor),
4571 value_pointer (ensure_lval (arr),
4572 TYPE_FIELD_TYPE (desc_type, 0)),
4573 fat_pntr_data_bitpos (desc_type),
4574 fat_pntr_data_bitsize (desc_type));
4575
4576 modify_field (value_type (descriptor),
4577 value_contents_writeable (descriptor),
4578 value_pointer (bounds,
4579 TYPE_FIELD_TYPE (desc_type, 1)),
4580 fat_pntr_bounds_bitpos (desc_type),
4581 fat_pntr_bounds_bitsize (desc_type));
4582
4583 descriptor = ensure_lval (descriptor);
4584
4585 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4586 return value_addr (descriptor);
4587 else
4588 return descriptor;
4589 }
4590 \f
4591 /* Symbol Cache Module */
4592
4593 /* Performance measurements made as of 2010-01-15 indicate that
4594 this cache does bring some noticeable improvements. Depending
4595 on the type of entity being printed, the cache can make it as much
4596 as an order of magnitude faster than without it.
4597
4598 The descriptive type DWARF extension has significantly reduced
4599 the need for this cache, at least when DWARF is being used. However,
4600 even in this case, some expensive name-based symbol searches are still
4601 sometimes necessary - to find an XVZ variable, mostly. */
4602
4603 /* Initialize the contents of SYM_CACHE. */
4604
4605 static void
4606 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4607 {
4608 obstack_init (&sym_cache->cache_space);
4609 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4610 }
4611
4612 /* Free the memory used by SYM_CACHE. */
4613
4614 static void
4615 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4616 {
4617 obstack_free (&sym_cache->cache_space, NULL);
4618 xfree (sym_cache);
4619 }
4620
4621 /* Return the symbol cache associated to the given program space PSPACE.
4622 If not allocated for this PSPACE yet, allocate and initialize one. */
4623
4624 static struct ada_symbol_cache *
4625 ada_get_symbol_cache (struct program_space *pspace)
4626 {
4627 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4628
4629 if (pspace_data->sym_cache == NULL)
4630 {
4631 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4632 ada_init_symbol_cache (pspace_data->sym_cache);
4633 }
4634
4635 return pspace_data->sym_cache;
4636 }
4637
4638 /* Clear all entries from the symbol cache. */
4639
4640 static void
4641 ada_clear_symbol_cache (void)
4642 {
4643 struct ada_symbol_cache *sym_cache
4644 = ada_get_symbol_cache (current_program_space);
4645
4646 obstack_free (&sym_cache->cache_space, NULL);
4647 ada_init_symbol_cache (sym_cache);
4648 }
4649
4650 /* Search our cache for an entry matching NAME and DOMAIN.
4651 Return it if found, or NULL otherwise. */
4652
4653 static struct cache_entry **
4654 find_entry (const char *name, domain_enum domain)
4655 {
4656 struct ada_symbol_cache *sym_cache
4657 = ada_get_symbol_cache (current_program_space);
4658 int h = msymbol_hash (name) % HASH_SIZE;
4659 struct cache_entry **e;
4660
4661 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4662 {
4663 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4664 return e;
4665 }
4666 return NULL;
4667 }
4668
4669 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4670 Return 1 if found, 0 otherwise.
4671
4672 If an entry was found and SYM is not NULL, set *SYM to the entry's
4673 SYM. Same principle for BLOCK if not NULL. */
4674
4675 static int
4676 lookup_cached_symbol (const char *name, domain_enum domain,
4677 struct symbol **sym, const struct block **block)
4678 {
4679 struct cache_entry **e = find_entry (name, domain);
4680
4681 if (e == NULL)
4682 return 0;
4683 if (sym != NULL)
4684 *sym = (*e)->sym;
4685 if (block != NULL)
4686 *block = (*e)->block;
4687 return 1;
4688 }
4689
4690 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4691 in domain DOMAIN, save this result in our symbol cache. */
4692
4693 static void
4694 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4695 const struct block *block)
4696 {
4697 struct ada_symbol_cache *sym_cache
4698 = ada_get_symbol_cache (current_program_space);
4699 int h;
4700 char *copy;
4701 struct cache_entry *e;
4702
4703 /* Symbols for builtin types don't have a block.
4704 For now don't cache such symbols. */
4705 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4706 return;
4707
4708 /* If the symbol is a local symbol, then do not cache it, as a search
4709 for that symbol depends on the context. To determine whether
4710 the symbol is local or not, we check the block where we found it
4711 against the global and static blocks of its associated symtab. */
4712 if (sym
4713 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4714 GLOBAL_BLOCK) != block
4715 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4716 STATIC_BLOCK) != block)
4717 return;
4718
4719 h = msymbol_hash (name) % HASH_SIZE;
4720 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4721 sizeof (*e));
4722 e->next = sym_cache->root[h];
4723 sym_cache->root[h] = e;
4724 e->name = copy
4725 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4726 strcpy (copy, name);
4727 e->sym = sym;
4728 e->domain = domain;
4729 e->block = block;
4730 }
4731 \f
4732 /* Symbol Lookup */
4733
4734 /* Return nonzero if wild matching should be used when searching for
4735 all symbols matching LOOKUP_NAME.
4736
4737 LOOKUP_NAME is expected to be a symbol name after transformation
4738 for Ada lookups (see ada_name_for_lookup). */
4739
4740 static int
4741 should_use_wild_match (const char *lookup_name)
4742 {
4743 return (strstr (lookup_name, "__") == NULL);
4744 }
4745
4746 /* Return the result of a standard (literal, C-like) lookup of NAME in
4747 given DOMAIN, visible from lexical block BLOCK. */
4748
4749 static struct symbol *
4750 standard_lookup (const char *name, const struct block *block,
4751 domain_enum domain)
4752 {
4753 /* Initialize it just to avoid a GCC false warning. */
4754 struct block_symbol sym = {NULL, NULL};
4755
4756 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4757 return sym.symbol;
4758 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4759 cache_symbol (name, domain, sym.symbol, sym.block);
4760 return sym.symbol;
4761 }
4762
4763
4764 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4765 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4766 since they contend in overloading in the same way. */
4767 static int
4768 is_nonfunction (struct block_symbol syms[], int n)
4769 {
4770 int i;
4771
4772 for (i = 0; i < n; i += 1)
4773 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4774 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4775 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4776 return 1;
4777
4778 return 0;
4779 }
4780
4781 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4782 struct types. Otherwise, they may not. */
4783
4784 static int
4785 equiv_types (struct type *type0, struct type *type1)
4786 {
4787 if (type0 == type1)
4788 return 1;
4789 if (type0 == NULL || type1 == NULL
4790 || TYPE_CODE (type0) != TYPE_CODE (type1))
4791 return 0;
4792 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4793 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4794 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4795 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4796 return 1;
4797
4798 return 0;
4799 }
4800
4801 /* True iff SYM0 represents the same entity as SYM1, or one that is
4802 no more defined than that of SYM1. */
4803
4804 static int
4805 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4806 {
4807 if (sym0 == sym1)
4808 return 1;
4809 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4810 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4811 return 0;
4812
4813 switch (SYMBOL_CLASS (sym0))
4814 {
4815 case LOC_UNDEF:
4816 return 1;
4817 case LOC_TYPEDEF:
4818 {
4819 struct type *type0 = SYMBOL_TYPE (sym0);
4820 struct type *type1 = SYMBOL_TYPE (sym1);
4821 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4822 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4823 int len0 = strlen (name0);
4824
4825 return
4826 TYPE_CODE (type0) == TYPE_CODE (type1)
4827 && (equiv_types (type0, type1)
4828 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4829 && startswith (name1 + len0, "___XV")));
4830 }
4831 case LOC_CONST:
4832 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4833 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4834 default:
4835 return 0;
4836 }
4837 }
4838
4839 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4840 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4841
4842 static void
4843 add_defn_to_vec (struct obstack *obstackp,
4844 struct symbol *sym,
4845 const struct block *block)
4846 {
4847 int i;
4848 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4849
4850 /* Do not try to complete stub types, as the debugger is probably
4851 already scanning all symbols matching a certain name at the
4852 time when this function is called. Trying to replace the stub
4853 type by its associated full type will cause us to restart a scan
4854 which may lead to an infinite recursion. Instead, the client
4855 collecting the matching symbols will end up collecting several
4856 matches, with at least one of them complete. It can then filter
4857 out the stub ones if needed. */
4858
4859 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4860 {
4861 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4862 return;
4863 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4864 {
4865 prevDefns[i].symbol = sym;
4866 prevDefns[i].block = block;
4867 return;
4868 }
4869 }
4870
4871 {
4872 struct block_symbol info;
4873
4874 info.symbol = sym;
4875 info.block = block;
4876 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4877 }
4878 }
4879
4880 /* Number of block_symbol structures currently collected in current vector in
4881 OBSTACKP. */
4882
4883 static int
4884 num_defns_collected (struct obstack *obstackp)
4885 {
4886 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4887 }
4888
4889 /* Vector of block_symbol structures currently collected in current vector in
4890 OBSTACKP. If FINISH, close off the vector and return its final address. */
4891
4892 static struct block_symbol *
4893 defns_collected (struct obstack *obstackp, int finish)
4894 {
4895 if (finish)
4896 return (struct block_symbol *) obstack_finish (obstackp);
4897 else
4898 return (struct block_symbol *) obstack_base (obstackp);
4899 }
4900
4901 /* Return a bound minimal symbol matching NAME according to Ada
4902 decoding rules. Returns an invalid symbol if there is no such
4903 minimal symbol. Names prefixed with "standard__" are handled
4904 specially: "standard__" is first stripped off, and only static and
4905 global symbols are searched. */
4906
4907 struct bound_minimal_symbol
4908 ada_lookup_simple_minsym (const char *name)
4909 {
4910 struct bound_minimal_symbol result;
4911 struct objfile *objfile;
4912 struct minimal_symbol *msymbol;
4913 const int wild_match_p = should_use_wild_match (name);
4914
4915 memset (&result, 0, sizeof (result));
4916
4917 /* Special case: If the user specifies a symbol name inside package
4918 Standard, do a non-wild matching of the symbol name without
4919 the "standard__" prefix. This was primarily introduced in order
4920 to allow the user to specifically access the standard exceptions
4921 using, for instance, Standard.Constraint_Error when Constraint_Error
4922 is ambiguous (due to the user defining its own Constraint_Error
4923 entity inside its program). */
4924 if (startswith (name, "standard__"))
4925 name += sizeof ("standard__") - 1;
4926
4927 ALL_MSYMBOLS (objfile, msymbol)
4928 {
4929 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4930 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4931 {
4932 result.minsym = msymbol;
4933 result.objfile = objfile;
4934 break;
4935 }
4936 }
4937
4938 return result;
4939 }
4940
4941 /* For all subprograms that statically enclose the subprogram of the
4942 selected frame, add symbols matching identifier NAME in DOMAIN
4943 and their blocks to the list of data in OBSTACKP, as for
4944 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4945 with a wildcard prefix. */
4946
4947 static void
4948 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4949 const char *name, domain_enum domain,
4950 int wild_match_p)
4951 {
4952 }
4953
4954 /* True if TYPE is definitely an artificial type supplied to a symbol
4955 for which no debugging information was given in the symbol file. */
4956
4957 static int
4958 is_nondebugging_type (struct type *type)
4959 {
4960 const char *name = ada_type_name (type);
4961
4962 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4963 }
4964
4965 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4966 that are deemed "identical" for practical purposes.
4967
4968 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4969 types and that their number of enumerals is identical (in other
4970 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4971
4972 static int
4973 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4974 {
4975 int i;
4976
4977 /* The heuristic we use here is fairly conservative. We consider
4978 that 2 enumerate types are identical if they have the same
4979 number of enumerals and that all enumerals have the same
4980 underlying value and name. */
4981
4982 /* All enums in the type should have an identical underlying value. */
4983 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4984 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4985 return 0;
4986
4987 /* All enumerals should also have the same name (modulo any numerical
4988 suffix). */
4989 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4990 {
4991 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4992 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4993 int len_1 = strlen (name_1);
4994 int len_2 = strlen (name_2);
4995
4996 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4997 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4998 if (len_1 != len_2
4999 || strncmp (TYPE_FIELD_NAME (type1, i),
5000 TYPE_FIELD_NAME (type2, i),
5001 len_1) != 0)
5002 return 0;
5003 }
5004
5005 return 1;
5006 }
5007
5008 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5009 that are deemed "identical" for practical purposes. Sometimes,
5010 enumerals are not strictly identical, but their types are so similar
5011 that they can be considered identical.
5012
5013 For instance, consider the following code:
5014
5015 type Color is (Black, Red, Green, Blue, White);
5016 type RGB_Color is new Color range Red .. Blue;
5017
5018 Type RGB_Color is a subrange of an implicit type which is a copy
5019 of type Color. If we call that implicit type RGB_ColorB ("B" is
5020 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5021 As a result, when an expression references any of the enumeral
5022 by name (Eg. "print green"), the expression is technically
5023 ambiguous and the user should be asked to disambiguate. But
5024 doing so would only hinder the user, since it wouldn't matter
5025 what choice he makes, the outcome would always be the same.
5026 So, for practical purposes, we consider them as the same. */
5027
5028 static int
5029 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5030 {
5031 int i;
5032
5033 /* Before performing a thorough comparison check of each type,
5034 we perform a series of inexpensive checks. We expect that these
5035 checks will quickly fail in the vast majority of cases, and thus
5036 help prevent the unnecessary use of a more expensive comparison.
5037 Said comparison also expects us to make some of these checks
5038 (see ada_identical_enum_types_p). */
5039
5040 /* Quick check: All symbols should have an enum type. */
5041 for (i = 0; i < nsyms; i++)
5042 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5043 return 0;
5044
5045 /* Quick check: They should all have the same value. */
5046 for (i = 1; i < nsyms; i++)
5047 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5048 return 0;
5049
5050 /* Quick check: They should all have the same number of enumerals. */
5051 for (i = 1; i < nsyms; i++)
5052 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5053 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5054 return 0;
5055
5056 /* All the sanity checks passed, so we might have a set of
5057 identical enumeration types. Perform a more complete
5058 comparison of the type of each symbol. */
5059 for (i = 1; i < nsyms; i++)
5060 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5061 SYMBOL_TYPE (syms[0].symbol)))
5062 return 0;
5063
5064 return 1;
5065 }
5066
5067 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5068 duplicate other symbols in the list (The only case I know of where
5069 this happens is when object files containing stabs-in-ecoff are
5070 linked with files containing ordinary ecoff debugging symbols (or no
5071 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5072 Returns the number of items in the modified list. */
5073
5074 static int
5075 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5076 {
5077 int i, j;
5078
5079 /* We should never be called with less than 2 symbols, as there
5080 cannot be any extra symbol in that case. But it's easy to
5081 handle, since we have nothing to do in that case. */
5082 if (nsyms < 2)
5083 return nsyms;
5084
5085 i = 0;
5086 while (i < nsyms)
5087 {
5088 int remove_p = 0;
5089
5090 /* If two symbols have the same name and one of them is a stub type,
5091 the get rid of the stub. */
5092
5093 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5094 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5095 {
5096 for (j = 0; j < nsyms; j++)
5097 {
5098 if (j != i
5099 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5100 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5101 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5102 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5103 remove_p = 1;
5104 }
5105 }
5106
5107 /* Two symbols with the same name, same class and same address
5108 should be identical. */
5109
5110 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5111 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5112 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5113 {
5114 for (j = 0; j < nsyms; j += 1)
5115 {
5116 if (i != j
5117 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5118 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5119 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5120 && SYMBOL_CLASS (syms[i].symbol)
5121 == SYMBOL_CLASS (syms[j].symbol)
5122 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5123 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5124 remove_p = 1;
5125 }
5126 }
5127
5128 if (remove_p)
5129 {
5130 for (j = i + 1; j < nsyms; j += 1)
5131 syms[j - 1] = syms[j];
5132 nsyms -= 1;
5133 }
5134
5135 i += 1;
5136 }
5137
5138 /* If all the remaining symbols are identical enumerals, then
5139 just keep the first one and discard the rest.
5140
5141 Unlike what we did previously, we do not discard any entry
5142 unless they are ALL identical. This is because the symbol
5143 comparison is not a strict comparison, but rather a practical
5144 comparison. If all symbols are considered identical, then
5145 we can just go ahead and use the first one and discard the rest.
5146 But if we cannot reduce the list to a single element, we have
5147 to ask the user to disambiguate anyways. And if we have to
5148 present a multiple-choice menu, it's less confusing if the list
5149 isn't missing some choices that were identical and yet distinct. */
5150 if (symbols_are_identical_enums (syms, nsyms))
5151 nsyms = 1;
5152
5153 return nsyms;
5154 }
5155
5156 /* Given a type that corresponds to a renaming entity, use the type name
5157 to extract the scope (package name or function name, fully qualified,
5158 and following the GNAT encoding convention) where this renaming has been
5159 defined. The string returned needs to be deallocated after use. */
5160
5161 static char *
5162 xget_renaming_scope (struct type *renaming_type)
5163 {
5164 /* The renaming types adhere to the following convention:
5165 <scope>__<rename>___<XR extension>.
5166 So, to extract the scope, we search for the "___XR" extension,
5167 and then backtrack until we find the first "__". */
5168
5169 const char *name = type_name_no_tag (renaming_type);
5170 const char *suffix = strstr (name, "___XR");
5171 const char *last;
5172 int scope_len;
5173 char *scope;
5174
5175 /* Now, backtrack a bit until we find the first "__". Start looking
5176 at suffix - 3, as the <rename> part is at least one character long. */
5177
5178 for (last = suffix - 3; last > name; last--)
5179 if (last[0] == '_' && last[1] == '_')
5180 break;
5181
5182 /* Make a copy of scope and return it. */
5183
5184 scope_len = last - name;
5185 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5186
5187 strncpy (scope, name, scope_len);
5188 scope[scope_len] = '\0';
5189
5190 return scope;
5191 }
5192
5193 /* Return nonzero if NAME corresponds to a package name. */
5194
5195 static int
5196 is_package_name (const char *name)
5197 {
5198 /* Here, We take advantage of the fact that no symbols are generated
5199 for packages, while symbols are generated for each function.
5200 So the condition for NAME represent a package becomes equivalent
5201 to NAME not existing in our list of symbols. There is only one
5202 small complication with library-level functions (see below). */
5203
5204 char *fun_name;
5205
5206 /* If it is a function that has not been defined at library level,
5207 then we should be able to look it up in the symbols. */
5208 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5209 return 0;
5210
5211 /* Library-level function names start with "_ada_". See if function
5212 "_ada_" followed by NAME can be found. */
5213
5214 /* Do a quick check that NAME does not contain "__", since library-level
5215 functions names cannot contain "__" in them. */
5216 if (strstr (name, "__") != NULL)
5217 return 0;
5218
5219 fun_name = xstrprintf ("_ada_%s", name);
5220
5221 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5222 }
5223
5224 /* Return nonzero if SYM corresponds to a renaming entity that is
5225 not visible from FUNCTION_NAME. */
5226
5227 static int
5228 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5229 {
5230 char *scope;
5231 struct cleanup *old_chain;
5232
5233 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5234 return 0;
5235
5236 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5237 old_chain = make_cleanup (xfree, scope);
5238
5239 /* If the rename has been defined in a package, then it is visible. */
5240 if (is_package_name (scope))
5241 {
5242 do_cleanups (old_chain);
5243 return 0;
5244 }
5245
5246 /* Check that the rename is in the current function scope by checking
5247 that its name starts with SCOPE. */
5248
5249 /* If the function name starts with "_ada_", it means that it is
5250 a library-level function. Strip this prefix before doing the
5251 comparison, as the encoding for the renaming does not contain
5252 this prefix. */
5253 if (startswith (function_name, "_ada_"))
5254 function_name += 5;
5255
5256 {
5257 int is_invisible = !startswith (function_name, scope);
5258
5259 do_cleanups (old_chain);
5260 return is_invisible;
5261 }
5262 }
5263
5264 /* Remove entries from SYMS that corresponds to a renaming entity that
5265 is not visible from the function associated with CURRENT_BLOCK or
5266 that is superfluous due to the presence of more specific renaming
5267 information. Places surviving symbols in the initial entries of
5268 SYMS and returns the number of surviving symbols.
5269
5270 Rationale:
5271 First, in cases where an object renaming is implemented as a
5272 reference variable, GNAT may produce both the actual reference
5273 variable and the renaming encoding. In this case, we discard the
5274 latter.
5275
5276 Second, GNAT emits a type following a specified encoding for each renaming
5277 entity. Unfortunately, STABS currently does not support the definition
5278 of types that are local to a given lexical block, so all renamings types
5279 are emitted at library level. As a consequence, if an application
5280 contains two renaming entities using the same name, and a user tries to
5281 print the value of one of these entities, the result of the ada symbol
5282 lookup will also contain the wrong renaming type.
5283
5284 This function partially covers for this limitation by attempting to
5285 remove from the SYMS list renaming symbols that should be visible
5286 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5287 method with the current information available. The implementation
5288 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5289
5290 - When the user tries to print a rename in a function while there
5291 is another rename entity defined in a package: Normally, the
5292 rename in the function has precedence over the rename in the
5293 package, so the latter should be removed from the list. This is
5294 currently not the case.
5295
5296 - This function will incorrectly remove valid renames if
5297 the CURRENT_BLOCK corresponds to a function which symbol name
5298 has been changed by an "Export" pragma. As a consequence,
5299 the user will be unable to print such rename entities. */
5300
5301 static int
5302 remove_irrelevant_renamings (struct block_symbol *syms,
5303 int nsyms, const struct block *current_block)
5304 {
5305 struct symbol *current_function;
5306 const char *current_function_name;
5307 int i;
5308 int is_new_style_renaming;
5309
5310 /* If there is both a renaming foo___XR... encoded as a variable and
5311 a simple variable foo in the same block, discard the latter.
5312 First, zero out such symbols, then compress. */
5313 is_new_style_renaming = 0;
5314 for (i = 0; i < nsyms; i += 1)
5315 {
5316 struct symbol *sym = syms[i].symbol;
5317 const struct block *block = syms[i].block;
5318 const char *name;
5319 const char *suffix;
5320
5321 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5322 continue;
5323 name = SYMBOL_LINKAGE_NAME (sym);
5324 suffix = strstr (name, "___XR");
5325
5326 if (suffix != NULL)
5327 {
5328 int name_len = suffix - name;
5329 int j;
5330
5331 is_new_style_renaming = 1;
5332 for (j = 0; j < nsyms; j += 1)
5333 if (i != j && syms[j].symbol != NULL
5334 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5335 name_len) == 0
5336 && block == syms[j].block)
5337 syms[j].symbol = NULL;
5338 }
5339 }
5340 if (is_new_style_renaming)
5341 {
5342 int j, k;
5343
5344 for (j = k = 0; j < nsyms; j += 1)
5345 if (syms[j].symbol != NULL)
5346 {
5347 syms[k] = syms[j];
5348 k += 1;
5349 }
5350 return k;
5351 }
5352
5353 /* Extract the function name associated to CURRENT_BLOCK.
5354 Abort if unable to do so. */
5355
5356 if (current_block == NULL)
5357 return nsyms;
5358
5359 current_function = block_linkage_function (current_block);
5360 if (current_function == NULL)
5361 return nsyms;
5362
5363 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5364 if (current_function_name == NULL)
5365 return nsyms;
5366
5367 /* Check each of the symbols, and remove it from the list if it is
5368 a type corresponding to a renaming that is out of the scope of
5369 the current block. */
5370
5371 i = 0;
5372 while (i < nsyms)
5373 {
5374 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5375 == ADA_OBJECT_RENAMING
5376 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5377 {
5378 int j;
5379
5380 for (j = i + 1; j < nsyms; j += 1)
5381 syms[j - 1] = syms[j];
5382 nsyms -= 1;
5383 }
5384 else
5385 i += 1;
5386 }
5387
5388 return nsyms;
5389 }
5390
5391 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5392 whose name and domain match NAME and DOMAIN respectively.
5393 If no match was found, then extend the search to "enclosing"
5394 routines (in other words, if we're inside a nested function,
5395 search the symbols defined inside the enclosing functions).
5396 If WILD_MATCH_P is nonzero, perform the naming matching in
5397 "wild" mode (see function "wild_match" for more info).
5398
5399 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5400
5401 static void
5402 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5403 const struct block *block, domain_enum domain,
5404 int wild_match_p)
5405 {
5406 int block_depth = 0;
5407
5408 while (block != NULL)
5409 {
5410 block_depth += 1;
5411 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5412 wild_match_p);
5413
5414 /* If we found a non-function match, assume that's the one. */
5415 if (is_nonfunction (defns_collected (obstackp, 0),
5416 num_defns_collected (obstackp)))
5417 return;
5418
5419 block = BLOCK_SUPERBLOCK (block);
5420 }
5421
5422 /* If no luck so far, try to find NAME as a local symbol in some lexically
5423 enclosing subprogram. */
5424 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5425 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5426 }
5427
5428 /* An object of this type is used as the user_data argument when
5429 calling the map_matching_symbols method. */
5430
5431 struct match_data
5432 {
5433 struct objfile *objfile;
5434 struct obstack *obstackp;
5435 struct symbol *arg_sym;
5436 int found_sym;
5437 };
5438
5439 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5440 to a list of symbols. DATA0 is a pointer to a struct match_data *
5441 containing the obstack that collects the symbol list, the file that SYM
5442 must come from, a flag indicating whether a non-argument symbol has
5443 been found in the current block, and the last argument symbol
5444 passed in SYM within the current block (if any). When SYM is null,
5445 marking the end of a block, the argument symbol is added if no
5446 other has been found. */
5447
5448 static int
5449 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5450 {
5451 struct match_data *data = (struct match_data *) data0;
5452
5453 if (sym == NULL)
5454 {
5455 if (!data->found_sym && data->arg_sym != NULL)
5456 add_defn_to_vec (data->obstackp,
5457 fixup_symbol_section (data->arg_sym, data->objfile),
5458 block);
5459 data->found_sym = 0;
5460 data->arg_sym = NULL;
5461 }
5462 else
5463 {
5464 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5465 return 0;
5466 else if (SYMBOL_IS_ARGUMENT (sym))
5467 data->arg_sym = sym;
5468 else
5469 {
5470 data->found_sym = 1;
5471 add_defn_to_vec (data->obstackp,
5472 fixup_symbol_section (sym, data->objfile),
5473 block);
5474 }
5475 }
5476 return 0;
5477 }
5478
5479 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5480 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5481 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5482 function "wild_match" for more information). Return whether we found such
5483 symbols. */
5484
5485 static int
5486 ada_add_block_renamings (struct obstack *obstackp,
5487 const struct block *block,
5488 const char *name,
5489 domain_enum domain,
5490 int wild_match_p)
5491 {
5492 struct using_direct *renaming;
5493 int defns_mark = num_defns_collected (obstackp);
5494
5495 for (renaming = block_using (block);
5496 renaming != NULL;
5497 renaming = renaming->next)
5498 {
5499 const char *r_name;
5500 int name_match;
5501
5502 /* Avoid infinite recursions: skip this renaming if we are actually
5503 already traversing it.
5504
5505 Currently, symbol lookup in Ada don't use the namespace machinery from
5506 C++/Fortran support: skip namespace imports that use them. */
5507 if (renaming->searched
5508 || (renaming->import_src != NULL
5509 && renaming->import_src[0] != '\0')
5510 || (renaming->import_dest != NULL
5511 && renaming->import_dest[0] != '\0'))
5512 continue;
5513 renaming->searched = 1;
5514
5515 /* TODO: here, we perform another name-based symbol lookup, which can
5516 pull its own multiple overloads. In theory, we should be able to do
5517 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5518 not a simple name. But in order to do this, we would need to enhance
5519 the DWARF reader to associate a symbol to this renaming, instead of a
5520 name. So, for now, we do something simpler: re-use the C++/Fortran
5521 namespace machinery. */
5522 r_name = (renaming->alias != NULL
5523 ? renaming->alias
5524 : renaming->declaration);
5525 name_match
5526 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5527 if (name_match == 0)
5528 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5529 1, NULL);
5530 renaming->searched = 0;
5531 }
5532 return num_defns_collected (obstackp) != defns_mark;
5533 }
5534
5535 /* Implements compare_names, but only applying the comparision using
5536 the given CASING. */
5537
5538 static int
5539 compare_names_with_case (const char *string1, const char *string2,
5540 enum case_sensitivity casing)
5541 {
5542 while (*string1 != '\0' && *string2 != '\0')
5543 {
5544 char c1, c2;
5545
5546 if (isspace (*string1) || isspace (*string2))
5547 return strcmp_iw_ordered (string1, string2);
5548
5549 if (casing == case_sensitive_off)
5550 {
5551 c1 = tolower (*string1);
5552 c2 = tolower (*string2);
5553 }
5554 else
5555 {
5556 c1 = *string1;
5557 c2 = *string2;
5558 }
5559 if (c1 != c2)
5560 break;
5561
5562 string1 += 1;
5563 string2 += 1;
5564 }
5565
5566 switch (*string1)
5567 {
5568 case '(':
5569 return strcmp_iw_ordered (string1, string2);
5570 case '_':
5571 if (*string2 == '\0')
5572 {
5573 if (is_name_suffix (string1))
5574 return 0;
5575 else
5576 return 1;
5577 }
5578 /* FALLTHROUGH */
5579 default:
5580 if (*string2 == '(')
5581 return strcmp_iw_ordered (string1, string2);
5582 else
5583 {
5584 if (casing == case_sensitive_off)
5585 return tolower (*string1) - tolower (*string2);
5586 else
5587 return *string1 - *string2;
5588 }
5589 }
5590 }
5591
5592 /* Compare STRING1 to STRING2, with results as for strcmp.
5593 Compatible with strcmp_iw_ordered in that...
5594
5595 strcmp_iw_ordered (STRING1, STRING2) <= 0
5596
5597 ... implies...
5598
5599 compare_names (STRING1, STRING2) <= 0
5600
5601 (they may differ as to what symbols compare equal). */
5602
5603 static int
5604 compare_names (const char *string1, const char *string2)
5605 {
5606 int result;
5607
5608 /* Similar to what strcmp_iw_ordered does, we need to perform
5609 a case-insensitive comparison first, and only resort to
5610 a second, case-sensitive, comparison if the first one was
5611 not sufficient to differentiate the two strings. */
5612
5613 result = compare_names_with_case (string1, string2, case_sensitive_off);
5614 if (result == 0)
5615 result = compare_names_with_case (string1, string2, case_sensitive_on);
5616
5617 return result;
5618 }
5619
5620 /* Add to OBSTACKP all non-local symbols whose name and domain match
5621 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5622 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5623
5624 static void
5625 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5626 domain_enum domain, int global,
5627 int is_wild_match)
5628 {
5629 struct objfile *objfile;
5630 struct compunit_symtab *cu;
5631 struct match_data data;
5632
5633 memset (&data, 0, sizeof data);
5634 data.obstackp = obstackp;
5635
5636 ALL_OBJFILES (objfile)
5637 {
5638 data.objfile = objfile;
5639
5640 if (is_wild_match)
5641 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5642 aux_add_nonlocal_symbols, &data,
5643 wild_match, NULL);
5644 else
5645 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5646 aux_add_nonlocal_symbols, &data,
5647 full_match, compare_names);
5648
5649 ALL_OBJFILE_COMPUNITS (objfile, cu)
5650 {
5651 const struct block *global_block
5652 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5653
5654 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5655 is_wild_match))
5656 data.found_sym = 1;
5657 }
5658 }
5659
5660 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5661 {
5662 ALL_OBJFILES (objfile)
5663 {
5664 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
5665 strcpy (name1, "_ada_");
5666 strcpy (name1 + sizeof ("_ada_") - 1, name);
5667 data.objfile = objfile;
5668 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5669 global,
5670 aux_add_nonlocal_symbols,
5671 &data,
5672 full_match, compare_names);
5673 }
5674 }
5675 }
5676
5677 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
5678 non-zero, enclosing scope and in global scopes, returning the number of
5679 matches. Add these to OBSTACKP.
5680
5681 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5682 symbol match within the nest of blocks whose innermost member is BLOCK,
5683 is the one match returned (no other matches in that or
5684 enclosing blocks is returned). If there are any matches in or
5685 surrounding BLOCK, then these alone are returned.
5686
5687 Names prefixed with "standard__" are handled specially: "standard__"
5688 is first stripped off, and only static and global symbols are searched.
5689
5690 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5691 to lookup global symbols. */
5692
5693 static void
5694 ada_add_all_symbols (struct obstack *obstackp,
5695 const struct block *block,
5696 const char *name,
5697 domain_enum domain,
5698 int full_search,
5699 int *made_global_lookup_p)
5700 {
5701 struct symbol *sym;
5702 const int wild_match_p = should_use_wild_match (name);
5703
5704 if (made_global_lookup_p)
5705 *made_global_lookup_p = 0;
5706
5707 /* Special case: If the user specifies a symbol name inside package
5708 Standard, do a non-wild matching of the symbol name without
5709 the "standard__" prefix. This was primarily introduced in order
5710 to allow the user to specifically access the standard exceptions
5711 using, for instance, Standard.Constraint_Error when Constraint_Error
5712 is ambiguous (due to the user defining its own Constraint_Error
5713 entity inside its program). */
5714 if (startswith (name, "standard__"))
5715 {
5716 block = NULL;
5717 name = name + sizeof ("standard__") - 1;
5718 }
5719
5720 /* Check the non-global symbols. If we have ANY match, then we're done. */
5721
5722 if (block != NULL)
5723 {
5724 if (full_search)
5725 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
5726 else
5727 {
5728 /* In the !full_search case we're are being called by
5729 ada_iterate_over_symbols, and we don't want to search
5730 superblocks. */
5731 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5732 wild_match_p);
5733 }
5734 if (num_defns_collected (obstackp) > 0 || !full_search)
5735 return;
5736 }
5737
5738 /* No non-global symbols found. Check our cache to see if we have
5739 already performed this search before. If we have, then return
5740 the same result. */
5741
5742 if (lookup_cached_symbol (name, domain, &sym, &block))
5743 {
5744 if (sym != NULL)
5745 add_defn_to_vec (obstackp, sym, block);
5746 return;
5747 }
5748
5749 if (made_global_lookup_p)
5750 *made_global_lookup_p = 1;
5751
5752 /* Search symbols from all global blocks. */
5753
5754 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
5755
5756 /* Now add symbols from all per-file blocks if we've gotten no hits
5757 (not strictly correct, but perhaps better than an error). */
5758
5759 if (num_defns_collected (obstackp) == 0)
5760 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5761 }
5762
5763 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5764 non-zero, enclosing scope and in global scopes, returning the number of
5765 matches.
5766 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5767 indicating the symbols found and the blocks and symbol tables (if
5768 any) in which they were found. This vector is transient---good only to
5769 the next call of ada_lookup_symbol_list.
5770
5771 When full_search is non-zero, any non-function/non-enumeral
5772 symbol match within the nest of blocks whose innermost member is BLOCK,
5773 is the one match returned (no other matches in that or
5774 enclosing blocks is returned). If there are any matches in or
5775 surrounding BLOCK, then these alone are returned.
5776
5777 Names prefixed with "standard__" are handled specially: "standard__"
5778 is first stripped off, and only static and global symbols are searched. */
5779
5780 static int
5781 ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5782 domain_enum domain,
5783 struct block_symbol **results,
5784 int full_search)
5785 {
5786 const int wild_match_p = should_use_wild_match (name);
5787 int syms_from_global_search;
5788 int ndefns;
5789
5790 obstack_free (&symbol_list_obstack, NULL);
5791 obstack_init (&symbol_list_obstack);
5792 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5793 full_search, &syms_from_global_search);
5794
5795 ndefns = num_defns_collected (&symbol_list_obstack);
5796 *results = defns_collected (&symbol_list_obstack, 1);
5797
5798 ndefns = remove_extra_symbols (*results, ndefns);
5799
5800 if (ndefns == 0 && full_search && syms_from_global_search)
5801 cache_symbol (name, domain, NULL, NULL);
5802
5803 if (ndefns == 1 && full_search && syms_from_global_search)
5804 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
5805
5806 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5807 return ndefns;
5808 }
5809
5810 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5811 in global scopes, returning the number of matches, and setting *RESULTS
5812 to a vector of (SYM,BLOCK) tuples.
5813 See ada_lookup_symbol_list_worker for further details. */
5814
5815 int
5816 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5817 domain_enum domain, struct block_symbol **results)
5818 {
5819 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5820 }
5821
5822 /* Implementation of the la_iterate_over_symbols method. */
5823
5824 static void
5825 ada_iterate_over_symbols (const struct block *block,
5826 const char *name, domain_enum domain,
5827 symbol_found_callback_ftype *callback,
5828 void *data)
5829 {
5830 int ndefs, i;
5831 struct block_symbol *results;
5832
5833 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5834 for (i = 0; i < ndefs; ++i)
5835 {
5836 if (! (*callback) (results[i].symbol, data))
5837 break;
5838 }
5839 }
5840
5841 /* If NAME is the name of an entity, return a string that should
5842 be used to look that entity up in Ada units. This string should
5843 be deallocated after use using xfree.
5844
5845 NAME can have any form that the "break" or "print" commands might
5846 recognize. In other words, it does not have to be the "natural"
5847 name, or the "encoded" name. */
5848
5849 char *
5850 ada_name_for_lookup (const char *name)
5851 {
5852 char *canon;
5853 int nlen = strlen (name);
5854
5855 if (name[0] == '<' && name[nlen - 1] == '>')
5856 {
5857 canon = (char *) xmalloc (nlen - 1);
5858 memcpy (canon, name + 1, nlen - 2);
5859 canon[nlen - 2] = '\0';
5860 }
5861 else
5862 canon = xstrdup (ada_encode (ada_fold_name (name)));
5863 return canon;
5864 }
5865
5866 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5867 to 1, but choosing the first symbol found if there are multiple
5868 choices.
5869
5870 The result is stored in *INFO, which must be non-NULL.
5871 If no match is found, INFO->SYM is set to NULL. */
5872
5873 void
5874 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5875 domain_enum domain,
5876 struct block_symbol *info)
5877 {
5878 struct block_symbol *candidates;
5879 int n_candidates;
5880
5881 gdb_assert (info != NULL);
5882 memset (info, 0, sizeof (struct block_symbol));
5883
5884 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5885 if (n_candidates == 0)
5886 return;
5887
5888 *info = candidates[0];
5889 info->symbol = fixup_symbol_section (info->symbol, NULL);
5890 }
5891
5892 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5893 scope and in global scopes, or NULL if none. NAME is folded and
5894 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5895 choosing the first symbol if there are multiple choices.
5896 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5897
5898 struct block_symbol
5899 ada_lookup_symbol (const char *name, const struct block *block0,
5900 domain_enum domain, int *is_a_field_of_this)
5901 {
5902 struct block_symbol info;
5903
5904 if (is_a_field_of_this != NULL)
5905 *is_a_field_of_this = 0;
5906
5907 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5908 block0, domain, &info);
5909 return info;
5910 }
5911
5912 static struct block_symbol
5913 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5914 const char *name,
5915 const struct block *block,
5916 const domain_enum domain)
5917 {
5918 struct block_symbol sym;
5919
5920 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5921 if (sym.symbol != NULL)
5922 return sym;
5923
5924 /* If we haven't found a match at this point, try the primitive
5925 types. In other languages, this search is performed before
5926 searching for global symbols in order to short-circuit that
5927 global-symbol search if it happens that the name corresponds
5928 to a primitive type. But we cannot do the same in Ada, because
5929 it is perfectly legitimate for a program to declare a type which
5930 has the same name as a standard type. If looking up a type in
5931 that situation, we have traditionally ignored the primitive type
5932 in favor of user-defined types. This is why, unlike most other
5933 languages, we search the primitive types this late and only after
5934 having searched the global symbols without success. */
5935
5936 if (domain == VAR_DOMAIN)
5937 {
5938 struct gdbarch *gdbarch;
5939
5940 if (block == NULL)
5941 gdbarch = target_gdbarch ();
5942 else
5943 gdbarch = block_gdbarch (block);
5944 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5945 if (sym.symbol != NULL)
5946 return sym;
5947 }
5948
5949 return (struct block_symbol) {NULL, NULL};
5950 }
5951
5952
5953 /* True iff STR is a possible encoded suffix of a normal Ada name
5954 that is to be ignored for matching purposes. Suffixes of parallel
5955 names (e.g., XVE) are not included here. Currently, the possible suffixes
5956 are given by any of the regular expressions:
5957
5958 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5959 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5960 TKB [subprogram suffix for task bodies]
5961 _E[0-9]+[bs]$ [protected object entry suffixes]
5962 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5963
5964 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5965 match is performed. This sequence is used to differentiate homonyms,
5966 is an optional part of a valid name suffix. */
5967
5968 static int
5969 is_name_suffix (const char *str)
5970 {
5971 int k;
5972 const char *matching;
5973 const int len = strlen (str);
5974
5975 /* Skip optional leading __[0-9]+. */
5976
5977 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5978 {
5979 str += 3;
5980 while (isdigit (str[0]))
5981 str += 1;
5982 }
5983
5984 /* [.$][0-9]+ */
5985
5986 if (str[0] == '.' || str[0] == '$')
5987 {
5988 matching = str + 1;
5989 while (isdigit (matching[0]))
5990 matching += 1;
5991 if (matching[0] == '\0')
5992 return 1;
5993 }
5994
5995 /* ___[0-9]+ */
5996
5997 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5998 {
5999 matching = str + 3;
6000 while (isdigit (matching[0]))
6001 matching += 1;
6002 if (matching[0] == '\0')
6003 return 1;
6004 }
6005
6006 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6007
6008 if (strcmp (str, "TKB") == 0)
6009 return 1;
6010
6011 #if 0
6012 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6013 with a N at the end. Unfortunately, the compiler uses the same
6014 convention for other internal types it creates. So treating
6015 all entity names that end with an "N" as a name suffix causes
6016 some regressions. For instance, consider the case of an enumerated
6017 type. To support the 'Image attribute, it creates an array whose
6018 name ends with N.
6019 Having a single character like this as a suffix carrying some
6020 information is a bit risky. Perhaps we should change the encoding
6021 to be something like "_N" instead. In the meantime, do not do
6022 the following check. */
6023 /* Protected Object Subprograms */
6024 if (len == 1 && str [0] == 'N')
6025 return 1;
6026 #endif
6027
6028 /* _E[0-9]+[bs]$ */
6029 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6030 {
6031 matching = str + 3;
6032 while (isdigit (matching[0]))
6033 matching += 1;
6034 if ((matching[0] == 'b' || matching[0] == 's')
6035 && matching [1] == '\0')
6036 return 1;
6037 }
6038
6039 /* ??? We should not modify STR directly, as we are doing below. This
6040 is fine in this case, but may become problematic later if we find
6041 that this alternative did not work, and want to try matching
6042 another one from the begining of STR. Since we modified it, we
6043 won't be able to find the begining of the string anymore! */
6044 if (str[0] == 'X')
6045 {
6046 str += 1;
6047 while (str[0] != '_' && str[0] != '\0')
6048 {
6049 if (str[0] != 'n' && str[0] != 'b')
6050 return 0;
6051 str += 1;
6052 }
6053 }
6054
6055 if (str[0] == '\000')
6056 return 1;
6057
6058 if (str[0] == '_')
6059 {
6060 if (str[1] != '_' || str[2] == '\000')
6061 return 0;
6062 if (str[2] == '_')
6063 {
6064 if (strcmp (str + 3, "JM") == 0)
6065 return 1;
6066 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6067 the LJM suffix in favor of the JM one. But we will
6068 still accept LJM as a valid suffix for a reasonable
6069 amount of time, just to allow ourselves to debug programs
6070 compiled using an older version of GNAT. */
6071 if (strcmp (str + 3, "LJM") == 0)
6072 return 1;
6073 if (str[3] != 'X')
6074 return 0;
6075 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6076 || str[4] == 'U' || str[4] == 'P')
6077 return 1;
6078 if (str[4] == 'R' && str[5] != 'T')
6079 return 1;
6080 return 0;
6081 }
6082 if (!isdigit (str[2]))
6083 return 0;
6084 for (k = 3; str[k] != '\0'; k += 1)
6085 if (!isdigit (str[k]) && str[k] != '_')
6086 return 0;
6087 return 1;
6088 }
6089 if (str[0] == '$' && isdigit (str[1]))
6090 {
6091 for (k = 2; str[k] != '\0'; k += 1)
6092 if (!isdigit (str[k]) && str[k] != '_')
6093 return 0;
6094 return 1;
6095 }
6096 return 0;
6097 }
6098
6099 /* Return non-zero if the string starting at NAME and ending before
6100 NAME_END contains no capital letters. */
6101
6102 static int
6103 is_valid_name_for_wild_match (const char *name0)
6104 {
6105 const char *decoded_name = ada_decode (name0);
6106 int i;
6107
6108 /* If the decoded name starts with an angle bracket, it means that
6109 NAME0 does not follow the GNAT encoding format. It should then
6110 not be allowed as a possible wild match. */
6111 if (decoded_name[0] == '<')
6112 return 0;
6113
6114 for (i=0; decoded_name[i] != '\0'; i++)
6115 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6116 return 0;
6117
6118 return 1;
6119 }
6120
6121 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6122 that could start a simple name. Assumes that *NAMEP points into
6123 the string beginning at NAME0. */
6124
6125 static int
6126 advance_wild_match (const char **namep, const char *name0, int target0)
6127 {
6128 const char *name = *namep;
6129
6130 while (1)
6131 {
6132 int t0, t1;
6133
6134 t0 = *name;
6135 if (t0 == '_')
6136 {
6137 t1 = name[1];
6138 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6139 {
6140 name += 1;
6141 if (name == name0 + 5 && startswith (name0, "_ada"))
6142 break;
6143 else
6144 name += 1;
6145 }
6146 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6147 || name[2] == target0))
6148 {
6149 name += 2;
6150 break;
6151 }
6152 else
6153 return 0;
6154 }
6155 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6156 name += 1;
6157 else
6158 return 0;
6159 }
6160
6161 *namep = name;
6162 return 1;
6163 }
6164
6165 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6166 informational suffixes of NAME (i.e., for which is_name_suffix is
6167 true). Assumes that PATN is a lower-cased Ada simple name. */
6168
6169 static int
6170 wild_match (const char *name, const char *patn)
6171 {
6172 const char *p;
6173 const char *name0 = name;
6174
6175 while (1)
6176 {
6177 const char *match = name;
6178
6179 if (*name == *patn)
6180 {
6181 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6182 if (*p != *name)
6183 break;
6184 if (*p == '\0' && is_name_suffix (name))
6185 return match != name0 && !is_valid_name_for_wild_match (name0);
6186
6187 if (name[-1] == '_')
6188 name -= 1;
6189 }
6190 if (!advance_wild_match (&name, name0, *patn))
6191 return 1;
6192 }
6193 }
6194
6195 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6196 informational suffix. */
6197
6198 static int
6199 full_match (const char *sym_name, const char *search_name)
6200 {
6201 return !match_name (sym_name, search_name, 0);
6202 }
6203
6204
6205 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6206 vector *defn_symbols, updating the list of symbols in OBSTACKP
6207 (if necessary). If WILD, treat as NAME with a wildcard prefix.
6208 OBJFILE is the section containing BLOCK. */
6209
6210 static void
6211 ada_add_block_symbols (struct obstack *obstackp,
6212 const struct block *block, const char *name,
6213 domain_enum domain, struct objfile *objfile,
6214 int wild)
6215 {
6216 struct block_iterator iter;
6217 int name_len = strlen (name);
6218 /* A matching argument symbol, if any. */
6219 struct symbol *arg_sym;
6220 /* Set true when we find a matching non-argument symbol. */
6221 int found_sym;
6222 struct symbol *sym;
6223
6224 arg_sym = NULL;
6225 found_sym = 0;
6226 if (wild)
6227 {
6228 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6229 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
6230 {
6231 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6232 SYMBOL_DOMAIN (sym), domain)
6233 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
6234 {
6235 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6236 continue;
6237 else if (SYMBOL_IS_ARGUMENT (sym))
6238 arg_sym = sym;
6239 else
6240 {
6241 found_sym = 1;
6242 add_defn_to_vec (obstackp,
6243 fixup_symbol_section (sym, objfile),
6244 block);
6245 }
6246 }
6247 }
6248 }
6249 else
6250 {
6251 for (sym = block_iter_match_first (block, name, full_match, &iter);
6252 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
6253 {
6254 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6255 SYMBOL_DOMAIN (sym), domain))
6256 {
6257 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6258 {
6259 if (SYMBOL_IS_ARGUMENT (sym))
6260 arg_sym = sym;
6261 else
6262 {
6263 found_sym = 1;
6264 add_defn_to_vec (obstackp,
6265 fixup_symbol_section (sym, objfile),
6266 block);
6267 }
6268 }
6269 }
6270 }
6271 }
6272
6273 /* Handle renamings. */
6274
6275 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6276 found_sym = 1;
6277
6278 if (!found_sym && arg_sym != NULL)
6279 {
6280 add_defn_to_vec (obstackp,
6281 fixup_symbol_section (arg_sym, objfile),
6282 block);
6283 }
6284
6285 if (!wild)
6286 {
6287 arg_sym = NULL;
6288 found_sym = 0;
6289
6290 ALL_BLOCK_SYMBOLS (block, iter, sym)
6291 {
6292 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6293 SYMBOL_DOMAIN (sym), domain))
6294 {
6295 int cmp;
6296
6297 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6298 if (cmp == 0)
6299 {
6300 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6301 if (cmp == 0)
6302 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6303 name_len);
6304 }
6305
6306 if (cmp == 0
6307 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6308 {
6309 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6310 {
6311 if (SYMBOL_IS_ARGUMENT (sym))
6312 arg_sym = sym;
6313 else
6314 {
6315 found_sym = 1;
6316 add_defn_to_vec (obstackp,
6317 fixup_symbol_section (sym, objfile),
6318 block);
6319 }
6320 }
6321 }
6322 }
6323 }
6324
6325 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6326 They aren't parameters, right? */
6327 if (!found_sym && arg_sym != NULL)
6328 {
6329 add_defn_to_vec (obstackp,
6330 fixup_symbol_section (arg_sym, objfile),
6331 block);
6332 }
6333 }
6334 }
6335 \f
6336
6337 /* Symbol Completion */
6338
6339 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6340 name in a form that's appropriate for the completion. The result
6341 does not need to be deallocated, but is only good until the next call.
6342
6343 TEXT_LEN is equal to the length of TEXT.
6344 Perform a wild match if WILD_MATCH_P is set.
6345 ENCODED_P should be set if TEXT represents the start of a symbol name
6346 in its encoded form. */
6347
6348 static const char *
6349 symbol_completion_match (const char *sym_name,
6350 const char *text, int text_len,
6351 int wild_match_p, int encoded_p)
6352 {
6353 const int verbatim_match = (text[0] == '<');
6354 int match = 0;
6355
6356 if (verbatim_match)
6357 {
6358 /* Strip the leading angle bracket. */
6359 text = text + 1;
6360 text_len--;
6361 }
6362
6363 /* First, test against the fully qualified name of the symbol. */
6364
6365 if (strncmp (sym_name, text, text_len) == 0)
6366 match = 1;
6367
6368 if (match && !encoded_p)
6369 {
6370 /* One needed check before declaring a positive match is to verify
6371 that iff we are doing a verbatim match, the decoded version
6372 of the symbol name starts with '<'. Otherwise, this symbol name
6373 is not a suitable completion. */
6374 const char *sym_name_copy = sym_name;
6375 int has_angle_bracket;
6376
6377 sym_name = ada_decode (sym_name);
6378 has_angle_bracket = (sym_name[0] == '<');
6379 match = (has_angle_bracket == verbatim_match);
6380 sym_name = sym_name_copy;
6381 }
6382
6383 if (match && !verbatim_match)
6384 {
6385 /* When doing non-verbatim match, another check that needs to
6386 be done is to verify that the potentially matching symbol name
6387 does not include capital letters, because the ada-mode would
6388 not be able to understand these symbol names without the
6389 angle bracket notation. */
6390 const char *tmp;
6391
6392 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6393 if (*tmp != '\0')
6394 match = 0;
6395 }
6396
6397 /* Second: Try wild matching... */
6398
6399 if (!match && wild_match_p)
6400 {
6401 /* Since we are doing wild matching, this means that TEXT
6402 may represent an unqualified symbol name. We therefore must
6403 also compare TEXT against the unqualified name of the symbol. */
6404 sym_name = ada_unqualified_name (ada_decode (sym_name));
6405
6406 if (strncmp (sym_name, text, text_len) == 0)
6407 match = 1;
6408 }
6409
6410 /* Finally: If we found a mach, prepare the result to return. */
6411
6412 if (!match)
6413 return NULL;
6414
6415 if (verbatim_match)
6416 sym_name = add_angle_brackets (sym_name);
6417
6418 if (!encoded_p)
6419 sym_name = ada_decode (sym_name);
6420
6421 return sym_name;
6422 }
6423
6424 /* A companion function to ada_make_symbol_completion_list().
6425 Check if SYM_NAME represents a symbol which name would be suitable
6426 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6427 it is appended at the end of the given string vector SV.
6428
6429 ORIG_TEXT is the string original string from the user command
6430 that needs to be completed. WORD is the entire command on which
6431 completion should be performed. These two parameters are used to
6432 determine which part of the symbol name should be added to the
6433 completion vector.
6434 if WILD_MATCH_P is set, then wild matching is performed.
6435 ENCODED_P should be set if TEXT represents a symbol name in its
6436 encoded formed (in which case the completion should also be
6437 encoded). */
6438
6439 static void
6440 symbol_completion_add (VEC(char_ptr) **sv,
6441 const char *sym_name,
6442 const char *text, int text_len,
6443 const char *orig_text, const char *word,
6444 int wild_match_p, int encoded_p)
6445 {
6446 const char *match = symbol_completion_match (sym_name, text, text_len,
6447 wild_match_p, encoded_p);
6448 char *completion;
6449
6450 if (match == NULL)
6451 return;
6452
6453 /* We found a match, so add the appropriate completion to the given
6454 string vector. */
6455
6456 if (word == orig_text)
6457 {
6458 completion = (char *) xmalloc (strlen (match) + 5);
6459 strcpy (completion, match);
6460 }
6461 else if (word > orig_text)
6462 {
6463 /* Return some portion of sym_name. */
6464 completion = (char *) xmalloc (strlen (match) + 5);
6465 strcpy (completion, match + (word - orig_text));
6466 }
6467 else
6468 {
6469 /* Return some of ORIG_TEXT plus sym_name. */
6470 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
6471 strncpy (completion, word, orig_text - word);
6472 completion[orig_text - word] = '\0';
6473 strcat (completion, match);
6474 }
6475
6476 VEC_safe_push (char_ptr, *sv, completion);
6477 }
6478
6479 /* An object of this type is passed as the user_data argument to the
6480 expand_symtabs_matching method. */
6481 struct add_partial_datum
6482 {
6483 VEC(char_ptr) **completions;
6484 const char *text;
6485 int text_len;
6486 const char *text0;
6487 const char *word;
6488 int wild_match;
6489 int encoded;
6490 };
6491
6492 /* A callback for expand_symtabs_matching. */
6493
6494 static int
6495 ada_complete_symbol_matcher (const char *name, void *user_data)
6496 {
6497 struct add_partial_datum *data = (struct add_partial_datum *) user_data;
6498
6499 return symbol_completion_match (name, data->text, data->text_len,
6500 data->wild_match, data->encoded) != NULL;
6501 }
6502
6503 /* Return a list of possible symbol names completing TEXT0. WORD is
6504 the entire command on which completion is made. */
6505
6506 static VEC (char_ptr) *
6507 ada_make_symbol_completion_list (const char *text0, const char *word,
6508 enum type_code code)
6509 {
6510 char *text;
6511 int text_len;
6512 int wild_match_p;
6513 int encoded_p;
6514 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6515 struct symbol *sym;
6516 struct compunit_symtab *s;
6517 struct minimal_symbol *msymbol;
6518 struct objfile *objfile;
6519 const struct block *b, *surrounding_static_block = 0;
6520 int i;
6521 struct block_iterator iter;
6522 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6523
6524 gdb_assert (code == TYPE_CODE_UNDEF);
6525
6526 if (text0[0] == '<')
6527 {
6528 text = xstrdup (text0);
6529 make_cleanup (xfree, text);
6530 text_len = strlen (text);
6531 wild_match_p = 0;
6532 encoded_p = 1;
6533 }
6534 else
6535 {
6536 text = xstrdup (ada_encode (text0));
6537 make_cleanup (xfree, text);
6538 text_len = strlen (text);
6539 for (i = 0; i < text_len; i++)
6540 text[i] = tolower (text[i]);
6541
6542 encoded_p = (strstr (text0, "__") != NULL);
6543 /* If the name contains a ".", then the user is entering a fully
6544 qualified entity name, and the match must not be done in wild
6545 mode. Similarly, if the user wants to complete what looks like
6546 an encoded name, the match must not be done in wild mode. */
6547 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6548 }
6549
6550 /* First, look at the partial symtab symbols. */
6551 {
6552 struct add_partial_datum data;
6553
6554 data.completions = &completions;
6555 data.text = text;
6556 data.text_len = text_len;
6557 data.text0 = text0;
6558 data.word = word;
6559 data.wild_match = wild_match_p;
6560 data.encoded = encoded_p;
6561 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6562 ALL_DOMAIN, &data);
6563 }
6564
6565 /* At this point scan through the misc symbol vectors and add each
6566 symbol you find to the list. Eventually we want to ignore
6567 anything that isn't a text symbol (everything else will be
6568 handled by the psymtab code above). */
6569
6570 ALL_MSYMBOLS (objfile, msymbol)
6571 {
6572 QUIT;
6573 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6574 text, text_len, text0, word, wild_match_p,
6575 encoded_p);
6576 }
6577
6578 /* Search upwards from currently selected frame (so that we can
6579 complete on local vars. */
6580
6581 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6582 {
6583 if (!BLOCK_SUPERBLOCK (b))
6584 surrounding_static_block = b; /* For elmin of dups */
6585
6586 ALL_BLOCK_SYMBOLS (b, iter, sym)
6587 {
6588 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6589 text, text_len, text0, word,
6590 wild_match_p, encoded_p);
6591 }
6592 }
6593
6594 /* Go through the symtabs and check the externs and statics for
6595 symbols which match. */
6596
6597 ALL_COMPUNITS (objfile, s)
6598 {
6599 QUIT;
6600 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6601 ALL_BLOCK_SYMBOLS (b, iter, sym)
6602 {
6603 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6604 text, text_len, text0, word,
6605 wild_match_p, encoded_p);
6606 }
6607 }
6608
6609 ALL_COMPUNITS (objfile, s)
6610 {
6611 QUIT;
6612 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6613 /* Don't do this block twice. */
6614 if (b == surrounding_static_block)
6615 continue;
6616 ALL_BLOCK_SYMBOLS (b, iter, sym)
6617 {
6618 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6619 text, text_len, text0, word,
6620 wild_match_p, encoded_p);
6621 }
6622 }
6623
6624 do_cleanups (old_chain);
6625 return completions;
6626 }
6627
6628 /* Field Access */
6629
6630 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6631 for tagged types. */
6632
6633 static int
6634 ada_is_dispatch_table_ptr_type (struct type *type)
6635 {
6636 const char *name;
6637
6638 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6639 return 0;
6640
6641 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6642 if (name == NULL)
6643 return 0;
6644
6645 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6646 }
6647
6648 /* Return non-zero if TYPE is an interface tag. */
6649
6650 static int
6651 ada_is_interface_tag (struct type *type)
6652 {
6653 const char *name = TYPE_NAME (type);
6654
6655 if (name == NULL)
6656 return 0;
6657
6658 return (strcmp (name, "ada__tags__interface_tag") == 0);
6659 }
6660
6661 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6662 to be invisible to users. */
6663
6664 int
6665 ada_is_ignored_field (struct type *type, int field_num)
6666 {
6667 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6668 return 1;
6669
6670 /* Check the name of that field. */
6671 {
6672 const char *name = TYPE_FIELD_NAME (type, field_num);
6673
6674 /* Anonymous field names should not be printed.
6675 brobecker/2007-02-20: I don't think this can actually happen
6676 but we don't want to print the value of annonymous fields anyway. */
6677 if (name == NULL)
6678 return 1;
6679
6680 /* Normally, fields whose name start with an underscore ("_")
6681 are fields that have been internally generated by the compiler,
6682 and thus should not be printed. The "_parent" field is special,
6683 however: This is a field internally generated by the compiler
6684 for tagged types, and it contains the components inherited from
6685 the parent type. This field should not be printed as is, but
6686 should not be ignored either. */
6687 if (name[0] == '_' && !startswith (name, "_parent"))
6688 return 1;
6689 }
6690
6691 /* If this is the dispatch table of a tagged type or an interface tag,
6692 then ignore. */
6693 if (ada_is_tagged_type (type, 1)
6694 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6695 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6696 return 1;
6697
6698 /* Not a special field, so it should not be ignored. */
6699 return 0;
6700 }
6701
6702 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6703 pointer or reference type whose ultimate target has a tag field. */
6704
6705 int
6706 ada_is_tagged_type (struct type *type, int refok)
6707 {
6708 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6709 }
6710
6711 /* True iff TYPE represents the type of X'Tag */
6712
6713 int
6714 ada_is_tag_type (struct type *type)
6715 {
6716 type = ada_check_typedef (type);
6717
6718 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6719 return 0;
6720 else
6721 {
6722 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6723
6724 return (name != NULL
6725 && strcmp (name, "ada__tags__dispatch_table") == 0);
6726 }
6727 }
6728
6729 /* The type of the tag on VAL. */
6730
6731 struct type *
6732 ada_tag_type (struct value *val)
6733 {
6734 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6735 }
6736
6737 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6738 retired at Ada 05). */
6739
6740 static int
6741 is_ada95_tag (struct value *tag)
6742 {
6743 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6744 }
6745
6746 /* The value of the tag on VAL. */
6747
6748 struct value *
6749 ada_value_tag (struct value *val)
6750 {
6751 return ada_value_struct_elt (val, "_tag", 0);
6752 }
6753
6754 /* The value of the tag on the object of type TYPE whose contents are
6755 saved at VALADDR, if it is non-null, or is at memory address
6756 ADDRESS. */
6757
6758 static struct value *
6759 value_tag_from_contents_and_address (struct type *type,
6760 const gdb_byte *valaddr,
6761 CORE_ADDR address)
6762 {
6763 int tag_byte_offset;
6764 struct type *tag_type;
6765
6766 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6767 NULL, NULL, NULL))
6768 {
6769 const gdb_byte *valaddr1 = ((valaddr == NULL)
6770 ? NULL
6771 : valaddr + tag_byte_offset);
6772 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6773
6774 return value_from_contents_and_address (tag_type, valaddr1, address1);
6775 }
6776 return NULL;
6777 }
6778
6779 static struct type *
6780 type_from_tag (struct value *tag)
6781 {
6782 const char *type_name = ada_tag_name (tag);
6783
6784 if (type_name != NULL)
6785 return ada_find_any_type (ada_encode (type_name));
6786 return NULL;
6787 }
6788
6789 /* Given a value OBJ of a tagged type, return a value of this
6790 type at the base address of the object. The base address, as
6791 defined in Ada.Tags, it is the address of the primary tag of
6792 the object, and therefore where the field values of its full
6793 view can be fetched. */
6794
6795 struct value *
6796 ada_tag_value_at_base_address (struct value *obj)
6797 {
6798 struct value *val;
6799 LONGEST offset_to_top = 0;
6800 struct type *ptr_type, *obj_type;
6801 struct value *tag;
6802 CORE_ADDR base_address;
6803
6804 obj_type = value_type (obj);
6805
6806 /* It is the responsability of the caller to deref pointers. */
6807
6808 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6809 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6810 return obj;
6811
6812 tag = ada_value_tag (obj);
6813 if (!tag)
6814 return obj;
6815
6816 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6817
6818 if (is_ada95_tag (tag))
6819 return obj;
6820
6821 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6822 ptr_type = lookup_pointer_type (ptr_type);
6823 val = value_cast (ptr_type, tag);
6824 if (!val)
6825 return obj;
6826
6827 /* It is perfectly possible that an exception be raised while
6828 trying to determine the base address, just like for the tag;
6829 see ada_tag_name for more details. We do not print the error
6830 message for the same reason. */
6831
6832 TRY
6833 {
6834 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6835 }
6836
6837 CATCH (e, RETURN_MASK_ERROR)
6838 {
6839 return obj;
6840 }
6841 END_CATCH
6842
6843 /* If offset is null, nothing to do. */
6844
6845 if (offset_to_top == 0)
6846 return obj;
6847
6848 /* -1 is a special case in Ada.Tags; however, what should be done
6849 is not quite clear from the documentation. So do nothing for
6850 now. */
6851
6852 if (offset_to_top == -1)
6853 return obj;
6854
6855 base_address = value_address (obj) - offset_to_top;
6856 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6857
6858 /* Make sure that we have a proper tag at the new address.
6859 Otherwise, offset_to_top is bogus (which can happen when
6860 the object is not initialized yet). */
6861
6862 if (!tag)
6863 return obj;
6864
6865 obj_type = type_from_tag (tag);
6866
6867 if (!obj_type)
6868 return obj;
6869
6870 return value_from_contents_and_address (obj_type, NULL, base_address);
6871 }
6872
6873 /* Return the "ada__tags__type_specific_data" type. */
6874
6875 static struct type *
6876 ada_get_tsd_type (struct inferior *inf)
6877 {
6878 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6879
6880 if (data->tsd_type == 0)
6881 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6882 return data->tsd_type;
6883 }
6884
6885 /* Return the TSD (type-specific data) associated to the given TAG.
6886 TAG is assumed to be the tag of a tagged-type entity.
6887
6888 May return NULL if we are unable to get the TSD. */
6889
6890 static struct value *
6891 ada_get_tsd_from_tag (struct value *tag)
6892 {
6893 struct value *val;
6894 struct type *type;
6895
6896 /* First option: The TSD is simply stored as a field of our TAG.
6897 Only older versions of GNAT would use this format, but we have
6898 to test it first, because there are no visible markers for
6899 the current approach except the absence of that field. */
6900
6901 val = ada_value_struct_elt (tag, "tsd", 1);
6902 if (val)
6903 return val;
6904
6905 /* Try the second representation for the dispatch table (in which
6906 there is no explicit 'tsd' field in the referent of the tag pointer,
6907 and instead the tsd pointer is stored just before the dispatch
6908 table. */
6909
6910 type = ada_get_tsd_type (current_inferior());
6911 if (type == NULL)
6912 return NULL;
6913 type = lookup_pointer_type (lookup_pointer_type (type));
6914 val = value_cast (type, tag);
6915 if (val == NULL)
6916 return NULL;
6917 return value_ind (value_ptradd (val, -1));
6918 }
6919
6920 /* Given the TSD of a tag (type-specific data), return a string
6921 containing the name of the associated type.
6922
6923 The returned value is good until the next call. May return NULL
6924 if we are unable to determine the tag name. */
6925
6926 static char *
6927 ada_tag_name_from_tsd (struct value *tsd)
6928 {
6929 static char name[1024];
6930 char *p;
6931 struct value *val;
6932
6933 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6934 if (val == NULL)
6935 return NULL;
6936 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6937 for (p = name; *p != '\0'; p += 1)
6938 if (isalpha (*p))
6939 *p = tolower (*p);
6940 return name;
6941 }
6942
6943 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6944 a C string.
6945
6946 Return NULL if the TAG is not an Ada tag, or if we were unable to
6947 determine the name of that tag. The result is good until the next
6948 call. */
6949
6950 const char *
6951 ada_tag_name (struct value *tag)
6952 {
6953 char *name = NULL;
6954
6955 if (!ada_is_tag_type (value_type (tag)))
6956 return NULL;
6957
6958 /* It is perfectly possible that an exception be raised while trying
6959 to determine the TAG's name, even under normal circumstances:
6960 The associated variable may be uninitialized or corrupted, for
6961 instance. We do not let any exception propagate past this point.
6962 instead we return NULL.
6963
6964 We also do not print the error message either (which often is very
6965 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6966 the caller print a more meaningful message if necessary. */
6967 TRY
6968 {
6969 struct value *tsd = ada_get_tsd_from_tag (tag);
6970
6971 if (tsd != NULL)
6972 name = ada_tag_name_from_tsd (tsd);
6973 }
6974 CATCH (e, RETURN_MASK_ERROR)
6975 {
6976 }
6977 END_CATCH
6978
6979 return name;
6980 }
6981
6982 /* The parent type of TYPE, or NULL if none. */
6983
6984 struct type *
6985 ada_parent_type (struct type *type)
6986 {
6987 int i;
6988
6989 type = ada_check_typedef (type);
6990
6991 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6992 return NULL;
6993
6994 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6995 if (ada_is_parent_field (type, i))
6996 {
6997 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6998
6999 /* If the _parent field is a pointer, then dereference it. */
7000 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
7001 parent_type = TYPE_TARGET_TYPE (parent_type);
7002 /* If there is a parallel XVS type, get the actual base type. */
7003 parent_type = ada_get_base_type (parent_type);
7004
7005 return ada_check_typedef (parent_type);
7006 }
7007
7008 return NULL;
7009 }
7010
7011 /* True iff field number FIELD_NUM of structure type TYPE contains the
7012 parent-type (inherited) fields of a derived type. Assumes TYPE is
7013 a structure type with at least FIELD_NUM+1 fields. */
7014
7015 int
7016 ada_is_parent_field (struct type *type, int field_num)
7017 {
7018 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
7019
7020 return (name != NULL
7021 && (startswith (name, "PARENT")
7022 || startswith (name, "_parent")));
7023 }
7024
7025 /* True iff field number FIELD_NUM of structure type TYPE is a
7026 transparent wrapper field (which should be silently traversed when doing
7027 field selection and flattened when printing). Assumes TYPE is a
7028 structure type with at least FIELD_NUM+1 fields. Such fields are always
7029 structures. */
7030
7031 int
7032 ada_is_wrapper_field (struct type *type, int field_num)
7033 {
7034 const char *name = TYPE_FIELD_NAME (type, field_num);
7035
7036 if (name != NULL && strcmp (name, "RETVAL") == 0)
7037 {
7038 /* This happens in functions with "out" or "in out" parameters
7039 which are passed by copy. For such functions, GNAT describes
7040 the function's return type as being a struct where the return
7041 value is in a field called RETVAL, and where the other "out"
7042 or "in out" parameters are fields of that struct. This is not
7043 a wrapper. */
7044 return 0;
7045 }
7046
7047 return (name != NULL
7048 && (startswith (name, "PARENT")
7049 || strcmp (name, "REP") == 0
7050 || startswith (name, "_parent")
7051 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7052 }
7053
7054 /* True iff field number FIELD_NUM of structure or union type TYPE
7055 is a variant wrapper. Assumes TYPE is a structure type with at least
7056 FIELD_NUM+1 fields. */
7057
7058 int
7059 ada_is_variant_part (struct type *type, int field_num)
7060 {
7061 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7062
7063 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7064 || (is_dynamic_field (type, field_num)
7065 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7066 == TYPE_CODE_UNION)));
7067 }
7068
7069 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7070 whose discriminants are contained in the record type OUTER_TYPE,
7071 returns the type of the controlling discriminant for the variant.
7072 May return NULL if the type could not be found. */
7073
7074 struct type *
7075 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7076 {
7077 char *name = ada_variant_discrim_name (var_type);
7078
7079 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
7080 }
7081
7082 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7083 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7084 represents a 'when others' clause; otherwise 0. */
7085
7086 int
7087 ada_is_others_clause (struct type *type, int field_num)
7088 {
7089 const char *name = TYPE_FIELD_NAME (type, field_num);
7090
7091 return (name != NULL && name[0] == 'O');
7092 }
7093
7094 /* Assuming that TYPE0 is the type of the variant part of a record,
7095 returns the name of the discriminant controlling the variant.
7096 The value is valid until the next call to ada_variant_discrim_name. */
7097
7098 char *
7099 ada_variant_discrim_name (struct type *type0)
7100 {
7101 static char *result = NULL;
7102 static size_t result_len = 0;
7103 struct type *type;
7104 const char *name;
7105 const char *discrim_end;
7106 const char *discrim_start;
7107
7108 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7109 type = TYPE_TARGET_TYPE (type0);
7110 else
7111 type = type0;
7112
7113 name = ada_type_name (type);
7114
7115 if (name == NULL || name[0] == '\000')
7116 return "";
7117
7118 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7119 discrim_end -= 1)
7120 {
7121 if (startswith (discrim_end, "___XVN"))
7122 break;
7123 }
7124 if (discrim_end == name)
7125 return "";
7126
7127 for (discrim_start = discrim_end; discrim_start != name + 3;
7128 discrim_start -= 1)
7129 {
7130 if (discrim_start == name + 1)
7131 return "";
7132 if ((discrim_start > name + 3
7133 && startswith (discrim_start - 3, "___"))
7134 || discrim_start[-1] == '.')
7135 break;
7136 }
7137
7138 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7139 strncpy (result, discrim_start, discrim_end - discrim_start);
7140 result[discrim_end - discrim_start] = '\0';
7141 return result;
7142 }
7143
7144 /* Scan STR for a subtype-encoded number, beginning at position K.
7145 Put the position of the character just past the number scanned in
7146 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7147 Return 1 if there was a valid number at the given position, and 0
7148 otherwise. A "subtype-encoded" number consists of the absolute value
7149 in decimal, followed by the letter 'm' to indicate a negative number.
7150 Assumes 0m does not occur. */
7151
7152 int
7153 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7154 {
7155 ULONGEST RU;
7156
7157 if (!isdigit (str[k]))
7158 return 0;
7159
7160 /* Do it the hard way so as not to make any assumption about
7161 the relationship of unsigned long (%lu scan format code) and
7162 LONGEST. */
7163 RU = 0;
7164 while (isdigit (str[k]))
7165 {
7166 RU = RU * 10 + (str[k] - '0');
7167 k += 1;
7168 }
7169
7170 if (str[k] == 'm')
7171 {
7172 if (R != NULL)
7173 *R = (-(LONGEST) (RU - 1)) - 1;
7174 k += 1;
7175 }
7176 else if (R != NULL)
7177 *R = (LONGEST) RU;
7178
7179 /* NOTE on the above: Technically, C does not say what the results of
7180 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7181 number representable as a LONGEST (although either would probably work
7182 in most implementations). When RU>0, the locution in the then branch
7183 above is always equivalent to the negative of RU. */
7184
7185 if (new_k != NULL)
7186 *new_k = k;
7187 return 1;
7188 }
7189
7190 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7191 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7192 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7193
7194 int
7195 ada_in_variant (LONGEST val, struct type *type, int field_num)
7196 {
7197 const char *name = TYPE_FIELD_NAME (type, field_num);
7198 int p;
7199
7200 p = 0;
7201 while (1)
7202 {
7203 switch (name[p])
7204 {
7205 case '\0':
7206 return 0;
7207 case 'S':
7208 {
7209 LONGEST W;
7210
7211 if (!ada_scan_number (name, p + 1, &W, &p))
7212 return 0;
7213 if (val == W)
7214 return 1;
7215 break;
7216 }
7217 case 'R':
7218 {
7219 LONGEST L, U;
7220
7221 if (!ada_scan_number (name, p + 1, &L, &p)
7222 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7223 return 0;
7224 if (val >= L && val <= U)
7225 return 1;
7226 break;
7227 }
7228 case 'O':
7229 return 1;
7230 default:
7231 return 0;
7232 }
7233 }
7234 }
7235
7236 /* FIXME: Lots of redundancy below. Try to consolidate. */
7237
7238 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7239 ARG_TYPE, extract and return the value of one of its (non-static)
7240 fields. FIELDNO says which field. Differs from value_primitive_field
7241 only in that it can handle packed values of arbitrary type. */
7242
7243 static struct value *
7244 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7245 struct type *arg_type)
7246 {
7247 struct type *type;
7248
7249 arg_type = ada_check_typedef (arg_type);
7250 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7251
7252 /* Handle packed fields. */
7253
7254 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7255 {
7256 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7257 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7258
7259 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7260 offset + bit_pos / 8,
7261 bit_pos % 8, bit_size, type);
7262 }
7263 else
7264 return value_primitive_field (arg1, offset, fieldno, arg_type);
7265 }
7266
7267 /* Find field with name NAME in object of type TYPE. If found,
7268 set the following for each argument that is non-null:
7269 - *FIELD_TYPE_P to the field's type;
7270 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7271 an object of that type;
7272 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7273 - *BIT_SIZE_P to its size in bits if the field is packed, and
7274 0 otherwise;
7275 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7276 fields up to but not including the desired field, or by the total
7277 number of fields if not found. A NULL value of NAME never
7278 matches; the function just counts visible fields in this case.
7279
7280 Returns 1 if found, 0 otherwise. */
7281
7282 static int
7283 find_struct_field (const char *name, struct type *type, int offset,
7284 struct type **field_type_p,
7285 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7286 int *index_p)
7287 {
7288 int i;
7289
7290 type = ada_check_typedef (type);
7291
7292 if (field_type_p != NULL)
7293 *field_type_p = NULL;
7294 if (byte_offset_p != NULL)
7295 *byte_offset_p = 0;
7296 if (bit_offset_p != NULL)
7297 *bit_offset_p = 0;
7298 if (bit_size_p != NULL)
7299 *bit_size_p = 0;
7300
7301 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7302 {
7303 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7304 int fld_offset = offset + bit_pos / 8;
7305 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7306
7307 if (t_field_name == NULL)
7308 continue;
7309
7310 else if (name != NULL && field_name_match (t_field_name, name))
7311 {
7312 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7313
7314 if (field_type_p != NULL)
7315 *field_type_p = TYPE_FIELD_TYPE (type, i);
7316 if (byte_offset_p != NULL)
7317 *byte_offset_p = fld_offset;
7318 if (bit_offset_p != NULL)
7319 *bit_offset_p = bit_pos % 8;
7320 if (bit_size_p != NULL)
7321 *bit_size_p = bit_size;
7322 return 1;
7323 }
7324 else if (ada_is_wrapper_field (type, i))
7325 {
7326 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7327 field_type_p, byte_offset_p, bit_offset_p,
7328 bit_size_p, index_p))
7329 return 1;
7330 }
7331 else if (ada_is_variant_part (type, i))
7332 {
7333 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7334 fixed type?? */
7335 int j;
7336 struct type *field_type
7337 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7338
7339 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7340 {
7341 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7342 fld_offset
7343 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7344 field_type_p, byte_offset_p,
7345 bit_offset_p, bit_size_p, index_p))
7346 return 1;
7347 }
7348 }
7349 else if (index_p != NULL)
7350 *index_p += 1;
7351 }
7352 return 0;
7353 }
7354
7355 /* Number of user-visible fields in record type TYPE. */
7356
7357 static int
7358 num_visible_fields (struct type *type)
7359 {
7360 int n;
7361
7362 n = 0;
7363 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7364 return n;
7365 }
7366
7367 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7368 and search in it assuming it has (class) type TYPE.
7369 If found, return value, else return NULL.
7370
7371 Searches recursively through wrapper fields (e.g., '_parent'). */
7372
7373 static struct value *
7374 ada_search_struct_field (const char *name, struct value *arg, int offset,
7375 struct type *type)
7376 {
7377 int i;
7378
7379 type = ada_check_typedef (type);
7380 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7381 {
7382 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7383
7384 if (t_field_name == NULL)
7385 continue;
7386
7387 else if (field_name_match (t_field_name, name))
7388 return ada_value_primitive_field (arg, offset, i, type);
7389
7390 else if (ada_is_wrapper_field (type, i))
7391 {
7392 struct value *v = /* Do not let indent join lines here. */
7393 ada_search_struct_field (name, arg,
7394 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7395 TYPE_FIELD_TYPE (type, i));
7396
7397 if (v != NULL)
7398 return v;
7399 }
7400
7401 else if (ada_is_variant_part (type, i))
7402 {
7403 /* PNH: Do we ever get here? See find_struct_field. */
7404 int j;
7405 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7406 i));
7407 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7408
7409 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7410 {
7411 struct value *v = ada_search_struct_field /* Force line
7412 break. */
7413 (name, arg,
7414 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7415 TYPE_FIELD_TYPE (field_type, j));
7416
7417 if (v != NULL)
7418 return v;
7419 }
7420 }
7421 }
7422 return NULL;
7423 }
7424
7425 static struct value *ada_index_struct_field_1 (int *, struct value *,
7426 int, struct type *);
7427
7428
7429 /* Return field #INDEX in ARG, where the index is that returned by
7430 * find_struct_field through its INDEX_P argument. Adjust the address
7431 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7432 * If found, return value, else return NULL. */
7433
7434 static struct value *
7435 ada_index_struct_field (int index, struct value *arg, int offset,
7436 struct type *type)
7437 {
7438 return ada_index_struct_field_1 (&index, arg, offset, type);
7439 }
7440
7441
7442 /* Auxiliary function for ada_index_struct_field. Like
7443 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7444 * *INDEX_P. */
7445
7446 static struct value *
7447 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7448 struct type *type)
7449 {
7450 int i;
7451 type = ada_check_typedef (type);
7452
7453 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7454 {
7455 if (TYPE_FIELD_NAME (type, i) == NULL)
7456 continue;
7457 else if (ada_is_wrapper_field (type, i))
7458 {
7459 struct value *v = /* Do not let indent join lines here. */
7460 ada_index_struct_field_1 (index_p, arg,
7461 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7462 TYPE_FIELD_TYPE (type, i));
7463
7464 if (v != NULL)
7465 return v;
7466 }
7467
7468 else if (ada_is_variant_part (type, i))
7469 {
7470 /* PNH: Do we ever get here? See ada_search_struct_field,
7471 find_struct_field. */
7472 error (_("Cannot assign this kind of variant record"));
7473 }
7474 else if (*index_p == 0)
7475 return ada_value_primitive_field (arg, offset, i, type);
7476 else
7477 *index_p -= 1;
7478 }
7479 return NULL;
7480 }
7481
7482 /* Given ARG, a value of type (pointer or reference to a)*
7483 structure/union, extract the component named NAME from the ultimate
7484 target structure/union and return it as a value with its
7485 appropriate type.
7486
7487 The routine searches for NAME among all members of the structure itself
7488 and (recursively) among all members of any wrapper members
7489 (e.g., '_parent').
7490
7491 If NO_ERR, then simply return NULL in case of error, rather than
7492 calling error. */
7493
7494 struct value *
7495 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7496 {
7497 struct type *t, *t1;
7498 struct value *v;
7499
7500 v = NULL;
7501 t1 = t = ada_check_typedef (value_type (arg));
7502 if (TYPE_CODE (t) == TYPE_CODE_REF)
7503 {
7504 t1 = TYPE_TARGET_TYPE (t);
7505 if (t1 == NULL)
7506 goto BadValue;
7507 t1 = ada_check_typedef (t1);
7508 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7509 {
7510 arg = coerce_ref (arg);
7511 t = t1;
7512 }
7513 }
7514
7515 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7516 {
7517 t1 = TYPE_TARGET_TYPE (t);
7518 if (t1 == NULL)
7519 goto BadValue;
7520 t1 = ada_check_typedef (t1);
7521 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7522 {
7523 arg = value_ind (arg);
7524 t = t1;
7525 }
7526 else
7527 break;
7528 }
7529
7530 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7531 goto BadValue;
7532
7533 if (t1 == t)
7534 v = ada_search_struct_field (name, arg, 0, t);
7535 else
7536 {
7537 int bit_offset, bit_size, byte_offset;
7538 struct type *field_type;
7539 CORE_ADDR address;
7540
7541 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7542 address = value_address (ada_value_ind (arg));
7543 else
7544 address = value_address (ada_coerce_ref (arg));
7545
7546 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7547 if (find_struct_field (name, t1, 0,
7548 &field_type, &byte_offset, &bit_offset,
7549 &bit_size, NULL))
7550 {
7551 if (bit_size != 0)
7552 {
7553 if (TYPE_CODE (t) == TYPE_CODE_REF)
7554 arg = ada_coerce_ref (arg);
7555 else
7556 arg = ada_value_ind (arg);
7557 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7558 bit_offset, bit_size,
7559 field_type);
7560 }
7561 else
7562 v = value_at_lazy (field_type, address + byte_offset);
7563 }
7564 }
7565
7566 if (v != NULL || no_err)
7567 return v;
7568 else
7569 error (_("There is no member named %s."), name);
7570
7571 BadValue:
7572 if (no_err)
7573 return NULL;
7574 else
7575 error (_("Attempt to extract a component of "
7576 "a value that is not a record."));
7577 }
7578
7579 /* Return a string representation of type TYPE. Caller must free
7580 result. */
7581
7582 static char *
7583 type_as_string (struct type *type)
7584 {
7585 struct ui_file *tmp_stream = mem_fileopen ();
7586 struct cleanup *old_chain;
7587 char *str;
7588
7589 tmp_stream = mem_fileopen ();
7590 old_chain = make_cleanup_ui_file_delete (tmp_stream);
7591
7592 type_print (type, "", tmp_stream, -1);
7593 str = ui_file_xstrdup (tmp_stream, NULL);
7594
7595 do_cleanups (old_chain);
7596 return str;
7597 }
7598
7599 /* Return a string representation of type TYPE, and install a cleanup
7600 that releases it. */
7601
7602 static char *
7603 type_as_string_and_cleanup (struct type *type)
7604 {
7605 char *str;
7606
7607 str = type_as_string (type);
7608 make_cleanup (xfree, str);
7609 return str;
7610 }
7611
7612 /* Given a type TYPE, look up the type of the component of type named NAME.
7613 If DISPP is non-null, add its byte displacement from the beginning of a
7614 structure (pointed to by a value) of type TYPE to *DISPP (does not
7615 work for packed fields).
7616
7617 Matches any field whose name has NAME as a prefix, possibly
7618 followed by "___".
7619
7620 TYPE can be either a struct or union. If REFOK, TYPE may also
7621 be a (pointer or reference)+ to a struct or union, and the
7622 ultimate target type will be searched.
7623
7624 Looks recursively into variant clauses and parent types.
7625
7626 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7627 TYPE is not a type of the right kind. */
7628
7629 static struct type *
7630 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7631 int noerr, int *dispp)
7632 {
7633 int i;
7634
7635 if (name == NULL)
7636 goto BadName;
7637
7638 if (refok && type != NULL)
7639 while (1)
7640 {
7641 type = ada_check_typedef (type);
7642 if (TYPE_CODE (type) != TYPE_CODE_PTR
7643 && TYPE_CODE (type) != TYPE_CODE_REF)
7644 break;
7645 type = TYPE_TARGET_TYPE (type);
7646 }
7647
7648 if (type == NULL
7649 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7650 && TYPE_CODE (type) != TYPE_CODE_UNION))
7651 {
7652 const char *type_str;
7653
7654 if (noerr)
7655 return NULL;
7656
7657 type_str = (type != NULL
7658 ? type_as_string_and_cleanup (type)
7659 : _("(null)"));
7660 error (_("Type %s is not a structure or union type"), type_str);
7661 }
7662
7663 type = to_static_fixed_type (type);
7664
7665 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7666 {
7667 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7668 struct type *t;
7669 int disp;
7670
7671 if (t_field_name == NULL)
7672 continue;
7673
7674 else if (field_name_match (t_field_name, name))
7675 {
7676 if (dispp != NULL)
7677 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7678 return TYPE_FIELD_TYPE (type, i);
7679 }
7680
7681 else if (ada_is_wrapper_field (type, i))
7682 {
7683 disp = 0;
7684 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7685 0, 1, &disp);
7686 if (t != NULL)
7687 {
7688 if (dispp != NULL)
7689 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7690 return t;
7691 }
7692 }
7693
7694 else if (ada_is_variant_part (type, i))
7695 {
7696 int j;
7697 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7698 i));
7699
7700 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7701 {
7702 /* FIXME pnh 2008/01/26: We check for a field that is
7703 NOT wrapped in a struct, since the compiler sometimes
7704 generates these for unchecked variant types. Revisit
7705 if the compiler changes this practice. */
7706 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7707 disp = 0;
7708 if (v_field_name != NULL
7709 && field_name_match (v_field_name, name))
7710 t = TYPE_FIELD_TYPE (field_type, j);
7711 else
7712 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7713 j),
7714 name, 0, 1, &disp);
7715
7716 if (t != NULL)
7717 {
7718 if (dispp != NULL)
7719 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7720 return t;
7721 }
7722 }
7723 }
7724
7725 }
7726
7727 BadName:
7728 if (!noerr)
7729 {
7730 const char *name_str = name != NULL ? name : _("<null>");
7731
7732 error (_("Type %s has no component named %s"),
7733 type_as_string_and_cleanup (type), name_str);
7734 }
7735
7736 return NULL;
7737 }
7738
7739 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7740 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7741 represents an unchecked union (that is, the variant part of a
7742 record that is named in an Unchecked_Union pragma). */
7743
7744 static int
7745 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7746 {
7747 char *discrim_name = ada_variant_discrim_name (var_type);
7748
7749 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7750 == NULL);
7751 }
7752
7753
7754 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7755 within a value of type OUTER_TYPE that is stored in GDB at
7756 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7757 numbering from 0) is applicable. Returns -1 if none are. */
7758
7759 int
7760 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7761 const gdb_byte *outer_valaddr)
7762 {
7763 int others_clause;
7764 int i;
7765 char *discrim_name = ada_variant_discrim_name (var_type);
7766 struct value *outer;
7767 struct value *discrim;
7768 LONGEST discrim_val;
7769
7770 /* Using plain value_from_contents_and_address here causes problems
7771 because we will end up trying to resolve a type that is currently
7772 being constructed. */
7773 outer = value_from_contents_and_address_unresolved (outer_type,
7774 outer_valaddr, 0);
7775 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7776 if (discrim == NULL)
7777 return -1;
7778 discrim_val = value_as_long (discrim);
7779
7780 others_clause = -1;
7781 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7782 {
7783 if (ada_is_others_clause (var_type, i))
7784 others_clause = i;
7785 else if (ada_in_variant (discrim_val, var_type, i))
7786 return i;
7787 }
7788
7789 return others_clause;
7790 }
7791 \f
7792
7793
7794 /* Dynamic-Sized Records */
7795
7796 /* Strategy: The type ostensibly attached to a value with dynamic size
7797 (i.e., a size that is not statically recorded in the debugging
7798 data) does not accurately reflect the size or layout of the value.
7799 Our strategy is to convert these values to values with accurate,
7800 conventional types that are constructed on the fly. */
7801
7802 /* There is a subtle and tricky problem here. In general, we cannot
7803 determine the size of dynamic records without its data. However,
7804 the 'struct value' data structure, which GDB uses to represent
7805 quantities in the inferior process (the target), requires the size
7806 of the type at the time of its allocation in order to reserve space
7807 for GDB's internal copy of the data. That's why the
7808 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7809 rather than struct value*s.
7810
7811 However, GDB's internal history variables ($1, $2, etc.) are
7812 struct value*s containing internal copies of the data that are not, in
7813 general, the same as the data at their corresponding addresses in
7814 the target. Fortunately, the types we give to these values are all
7815 conventional, fixed-size types (as per the strategy described
7816 above), so that we don't usually have to perform the
7817 'to_fixed_xxx_type' conversions to look at their values.
7818 Unfortunately, there is one exception: if one of the internal
7819 history variables is an array whose elements are unconstrained
7820 records, then we will need to create distinct fixed types for each
7821 element selected. */
7822
7823 /* The upshot of all of this is that many routines take a (type, host
7824 address, target address) triple as arguments to represent a value.
7825 The host address, if non-null, is supposed to contain an internal
7826 copy of the relevant data; otherwise, the program is to consult the
7827 target at the target address. */
7828
7829 /* Assuming that VAL0 represents a pointer value, the result of
7830 dereferencing it. Differs from value_ind in its treatment of
7831 dynamic-sized types. */
7832
7833 struct value *
7834 ada_value_ind (struct value *val0)
7835 {
7836 struct value *val = value_ind (val0);
7837
7838 if (ada_is_tagged_type (value_type (val), 0))
7839 val = ada_tag_value_at_base_address (val);
7840
7841 return ada_to_fixed_value (val);
7842 }
7843
7844 /* The value resulting from dereferencing any "reference to"
7845 qualifiers on VAL0. */
7846
7847 static struct value *
7848 ada_coerce_ref (struct value *val0)
7849 {
7850 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7851 {
7852 struct value *val = val0;
7853
7854 val = coerce_ref (val);
7855
7856 if (ada_is_tagged_type (value_type (val), 0))
7857 val = ada_tag_value_at_base_address (val);
7858
7859 return ada_to_fixed_value (val);
7860 }
7861 else
7862 return val0;
7863 }
7864
7865 /* Return OFF rounded upward if necessary to a multiple of
7866 ALIGNMENT (a power of 2). */
7867
7868 static unsigned int
7869 align_value (unsigned int off, unsigned int alignment)
7870 {
7871 return (off + alignment - 1) & ~(alignment - 1);
7872 }
7873
7874 /* Return the bit alignment required for field #F of template type TYPE. */
7875
7876 static unsigned int
7877 field_alignment (struct type *type, int f)
7878 {
7879 const char *name = TYPE_FIELD_NAME (type, f);
7880 int len;
7881 int align_offset;
7882
7883 /* The field name should never be null, unless the debugging information
7884 is somehow malformed. In this case, we assume the field does not
7885 require any alignment. */
7886 if (name == NULL)
7887 return 1;
7888
7889 len = strlen (name);
7890
7891 if (!isdigit (name[len - 1]))
7892 return 1;
7893
7894 if (isdigit (name[len - 2]))
7895 align_offset = len - 2;
7896 else
7897 align_offset = len - 1;
7898
7899 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7900 return TARGET_CHAR_BIT;
7901
7902 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7903 }
7904
7905 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7906
7907 static struct symbol *
7908 ada_find_any_type_symbol (const char *name)
7909 {
7910 struct symbol *sym;
7911
7912 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7913 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7914 return sym;
7915
7916 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7917 return sym;
7918 }
7919
7920 /* Find a type named NAME. Ignores ambiguity. This routine will look
7921 solely for types defined by debug info, it will not search the GDB
7922 primitive types. */
7923
7924 static struct type *
7925 ada_find_any_type (const char *name)
7926 {
7927 struct symbol *sym = ada_find_any_type_symbol (name);
7928
7929 if (sym != NULL)
7930 return SYMBOL_TYPE (sym);
7931
7932 return NULL;
7933 }
7934
7935 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7936 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7937 symbol, in which case it is returned. Otherwise, this looks for
7938 symbols whose name is that of NAME_SYM suffixed with "___XR".
7939 Return symbol if found, and NULL otherwise. */
7940
7941 struct symbol *
7942 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7943 {
7944 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7945 struct symbol *sym;
7946
7947 if (strstr (name, "___XR") != NULL)
7948 return name_sym;
7949
7950 sym = find_old_style_renaming_symbol (name, block);
7951
7952 if (sym != NULL)
7953 return sym;
7954
7955 /* Not right yet. FIXME pnh 7/20/2007. */
7956 sym = ada_find_any_type_symbol (name);
7957 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7958 return sym;
7959 else
7960 return NULL;
7961 }
7962
7963 static struct symbol *
7964 find_old_style_renaming_symbol (const char *name, const struct block *block)
7965 {
7966 const struct symbol *function_sym = block_linkage_function (block);
7967 char *rename;
7968
7969 if (function_sym != NULL)
7970 {
7971 /* If the symbol is defined inside a function, NAME is not fully
7972 qualified. This means we need to prepend the function name
7973 as well as adding the ``___XR'' suffix to build the name of
7974 the associated renaming symbol. */
7975 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7976 /* Function names sometimes contain suffixes used
7977 for instance to qualify nested subprograms. When building
7978 the XR type name, we need to make sure that this suffix is
7979 not included. So do not include any suffix in the function
7980 name length below. */
7981 int function_name_len = ada_name_prefix_len (function_name);
7982 const int rename_len = function_name_len + 2 /* "__" */
7983 + strlen (name) + 6 /* "___XR\0" */ ;
7984
7985 /* Strip the suffix if necessary. */
7986 ada_remove_trailing_digits (function_name, &function_name_len);
7987 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7988 ada_remove_Xbn_suffix (function_name, &function_name_len);
7989
7990 /* Library-level functions are a special case, as GNAT adds
7991 a ``_ada_'' prefix to the function name to avoid namespace
7992 pollution. However, the renaming symbols themselves do not
7993 have this prefix, so we need to skip this prefix if present. */
7994 if (function_name_len > 5 /* "_ada_" */
7995 && strstr (function_name, "_ada_") == function_name)
7996 {
7997 function_name += 5;
7998 function_name_len -= 5;
7999 }
8000
8001 rename = (char *) alloca (rename_len * sizeof (char));
8002 strncpy (rename, function_name, function_name_len);
8003 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8004 "__%s___XR", name);
8005 }
8006 else
8007 {
8008 const int rename_len = strlen (name) + 6;
8009
8010 rename = (char *) alloca (rename_len * sizeof (char));
8011 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8012 }
8013
8014 return ada_find_any_type_symbol (rename);
8015 }
8016
8017 /* Because of GNAT encoding conventions, several GDB symbols may match a
8018 given type name. If the type denoted by TYPE0 is to be preferred to
8019 that of TYPE1 for purposes of type printing, return non-zero;
8020 otherwise return 0. */
8021
8022 int
8023 ada_prefer_type (struct type *type0, struct type *type1)
8024 {
8025 if (type1 == NULL)
8026 return 1;
8027 else if (type0 == NULL)
8028 return 0;
8029 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8030 return 1;
8031 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8032 return 0;
8033 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8034 return 1;
8035 else if (ada_is_constrained_packed_array_type (type0))
8036 return 1;
8037 else if (ada_is_array_descriptor_type (type0)
8038 && !ada_is_array_descriptor_type (type1))
8039 return 1;
8040 else
8041 {
8042 const char *type0_name = type_name_no_tag (type0);
8043 const char *type1_name = type_name_no_tag (type1);
8044
8045 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8046 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8047 return 1;
8048 }
8049 return 0;
8050 }
8051
8052 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
8053 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8054
8055 const char *
8056 ada_type_name (struct type *type)
8057 {
8058 if (type == NULL)
8059 return NULL;
8060 else if (TYPE_NAME (type) != NULL)
8061 return TYPE_NAME (type);
8062 else
8063 return TYPE_TAG_NAME (type);
8064 }
8065
8066 /* Search the list of "descriptive" types associated to TYPE for a type
8067 whose name is NAME. */
8068
8069 static struct type *
8070 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8071 {
8072 struct type *result, *tmp;
8073
8074 if (ada_ignore_descriptive_types_p)
8075 return NULL;
8076
8077 /* If there no descriptive-type info, then there is no parallel type
8078 to be found. */
8079 if (!HAVE_GNAT_AUX_INFO (type))
8080 return NULL;
8081
8082 result = TYPE_DESCRIPTIVE_TYPE (type);
8083 while (result != NULL)
8084 {
8085 const char *result_name = ada_type_name (result);
8086
8087 if (result_name == NULL)
8088 {
8089 warning (_("unexpected null name on descriptive type"));
8090 return NULL;
8091 }
8092
8093 /* If the names match, stop. */
8094 if (strcmp (result_name, name) == 0)
8095 break;
8096
8097 /* Otherwise, look at the next item on the list, if any. */
8098 if (HAVE_GNAT_AUX_INFO (result))
8099 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8100 else
8101 tmp = NULL;
8102
8103 /* If not found either, try after having resolved the typedef. */
8104 if (tmp != NULL)
8105 result = tmp;
8106 else
8107 {
8108 result = check_typedef (result);
8109 if (HAVE_GNAT_AUX_INFO (result))
8110 result = TYPE_DESCRIPTIVE_TYPE (result);
8111 else
8112 result = NULL;
8113 }
8114 }
8115
8116 /* If we didn't find a match, see whether this is a packed array. With
8117 older compilers, the descriptive type information is either absent or
8118 irrelevant when it comes to packed arrays so the above lookup fails.
8119 Fall back to using a parallel lookup by name in this case. */
8120 if (result == NULL && ada_is_constrained_packed_array_type (type))
8121 return ada_find_any_type (name);
8122
8123 return result;
8124 }
8125
8126 /* Find a parallel type to TYPE with the specified NAME, using the
8127 descriptive type taken from the debugging information, if available,
8128 and otherwise using the (slower) name-based method. */
8129
8130 static struct type *
8131 ada_find_parallel_type_with_name (struct type *type, const char *name)
8132 {
8133 struct type *result = NULL;
8134
8135 if (HAVE_GNAT_AUX_INFO (type))
8136 result = find_parallel_type_by_descriptive_type (type, name);
8137 else
8138 result = ada_find_any_type (name);
8139
8140 return result;
8141 }
8142
8143 /* Same as above, but specify the name of the parallel type by appending
8144 SUFFIX to the name of TYPE. */
8145
8146 struct type *
8147 ada_find_parallel_type (struct type *type, const char *suffix)
8148 {
8149 char *name;
8150 const char *type_name = ada_type_name (type);
8151 int len;
8152
8153 if (type_name == NULL)
8154 return NULL;
8155
8156 len = strlen (type_name);
8157
8158 name = (char *) alloca (len + strlen (suffix) + 1);
8159
8160 strcpy (name, type_name);
8161 strcpy (name + len, suffix);
8162
8163 return ada_find_parallel_type_with_name (type, name);
8164 }
8165
8166 /* If TYPE is a variable-size record type, return the corresponding template
8167 type describing its fields. Otherwise, return NULL. */
8168
8169 static struct type *
8170 dynamic_template_type (struct type *type)
8171 {
8172 type = ada_check_typedef (type);
8173
8174 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8175 || ada_type_name (type) == NULL)
8176 return NULL;
8177 else
8178 {
8179 int len = strlen (ada_type_name (type));
8180
8181 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8182 return type;
8183 else
8184 return ada_find_parallel_type (type, "___XVE");
8185 }
8186 }
8187
8188 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8189 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8190
8191 static int
8192 is_dynamic_field (struct type *templ_type, int field_num)
8193 {
8194 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8195
8196 return name != NULL
8197 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8198 && strstr (name, "___XVL") != NULL;
8199 }
8200
8201 /* The index of the variant field of TYPE, or -1 if TYPE does not
8202 represent a variant record type. */
8203
8204 static int
8205 variant_field_index (struct type *type)
8206 {
8207 int f;
8208
8209 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8210 return -1;
8211
8212 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8213 {
8214 if (ada_is_variant_part (type, f))
8215 return f;
8216 }
8217 return -1;
8218 }
8219
8220 /* A record type with no fields. */
8221
8222 static struct type *
8223 empty_record (struct type *templ)
8224 {
8225 struct type *type = alloc_type_copy (templ);
8226
8227 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8228 TYPE_NFIELDS (type) = 0;
8229 TYPE_FIELDS (type) = NULL;
8230 INIT_CPLUS_SPECIFIC (type);
8231 TYPE_NAME (type) = "<empty>";
8232 TYPE_TAG_NAME (type) = NULL;
8233 TYPE_LENGTH (type) = 0;
8234 return type;
8235 }
8236
8237 /* An ordinary record type (with fixed-length fields) that describes
8238 the value of type TYPE at VALADDR or ADDRESS (see comments at
8239 the beginning of this section) VAL according to GNAT conventions.
8240 DVAL0 should describe the (portion of a) record that contains any
8241 necessary discriminants. It should be NULL if value_type (VAL) is
8242 an outer-level type (i.e., as opposed to a branch of a variant.) A
8243 variant field (unless unchecked) is replaced by a particular branch
8244 of the variant.
8245
8246 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8247 length are not statically known are discarded. As a consequence,
8248 VALADDR, ADDRESS and DVAL0 are ignored.
8249
8250 NOTE: Limitations: For now, we assume that dynamic fields and
8251 variants occupy whole numbers of bytes. However, they need not be
8252 byte-aligned. */
8253
8254 struct type *
8255 ada_template_to_fixed_record_type_1 (struct type *type,
8256 const gdb_byte *valaddr,
8257 CORE_ADDR address, struct value *dval0,
8258 int keep_dynamic_fields)
8259 {
8260 struct value *mark = value_mark ();
8261 struct value *dval;
8262 struct type *rtype;
8263 int nfields, bit_len;
8264 int variant_field;
8265 long off;
8266 int fld_bit_len;
8267 int f;
8268
8269 /* Compute the number of fields in this record type that are going
8270 to be processed: unless keep_dynamic_fields, this includes only
8271 fields whose position and length are static will be processed. */
8272 if (keep_dynamic_fields)
8273 nfields = TYPE_NFIELDS (type);
8274 else
8275 {
8276 nfields = 0;
8277 while (nfields < TYPE_NFIELDS (type)
8278 && !ada_is_variant_part (type, nfields)
8279 && !is_dynamic_field (type, nfields))
8280 nfields++;
8281 }
8282
8283 rtype = alloc_type_copy (type);
8284 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8285 INIT_CPLUS_SPECIFIC (rtype);
8286 TYPE_NFIELDS (rtype) = nfields;
8287 TYPE_FIELDS (rtype) = (struct field *)
8288 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8289 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8290 TYPE_NAME (rtype) = ada_type_name (type);
8291 TYPE_TAG_NAME (rtype) = NULL;
8292 TYPE_FIXED_INSTANCE (rtype) = 1;
8293
8294 off = 0;
8295 bit_len = 0;
8296 variant_field = -1;
8297
8298 for (f = 0; f < nfields; f += 1)
8299 {
8300 off = align_value (off, field_alignment (type, f))
8301 + TYPE_FIELD_BITPOS (type, f);
8302 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8303 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8304
8305 if (ada_is_variant_part (type, f))
8306 {
8307 variant_field = f;
8308 fld_bit_len = 0;
8309 }
8310 else if (is_dynamic_field (type, f))
8311 {
8312 const gdb_byte *field_valaddr = valaddr;
8313 CORE_ADDR field_address = address;
8314 struct type *field_type =
8315 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8316
8317 if (dval0 == NULL)
8318 {
8319 /* rtype's length is computed based on the run-time
8320 value of discriminants. If the discriminants are not
8321 initialized, the type size may be completely bogus and
8322 GDB may fail to allocate a value for it. So check the
8323 size first before creating the value. */
8324 ada_ensure_varsize_limit (rtype);
8325 /* Using plain value_from_contents_and_address here
8326 causes problems because we will end up trying to
8327 resolve a type that is currently being
8328 constructed. */
8329 dval = value_from_contents_and_address_unresolved (rtype,
8330 valaddr,
8331 address);
8332 rtype = value_type (dval);
8333 }
8334 else
8335 dval = dval0;
8336
8337 /* If the type referenced by this field is an aligner type, we need
8338 to unwrap that aligner type, because its size might not be set.
8339 Keeping the aligner type would cause us to compute the wrong
8340 size for this field, impacting the offset of the all the fields
8341 that follow this one. */
8342 if (ada_is_aligner_type (field_type))
8343 {
8344 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8345
8346 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8347 field_address = cond_offset_target (field_address, field_offset);
8348 field_type = ada_aligned_type (field_type);
8349 }
8350
8351 field_valaddr = cond_offset_host (field_valaddr,
8352 off / TARGET_CHAR_BIT);
8353 field_address = cond_offset_target (field_address,
8354 off / TARGET_CHAR_BIT);
8355
8356 /* Get the fixed type of the field. Note that, in this case,
8357 we do not want to get the real type out of the tag: if
8358 the current field is the parent part of a tagged record,
8359 we will get the tag of the object. Clearly wrong: the real
8360 type of the parent is not the real type of the child. We
8361 would end up in an infinite loop. */
8362 field_type = ada_get_base_type (field_type);
8363 field_type = ada_to_fixed_type (field_type, field_valaddr,
8364 field_address, dval, 0);
8365 /* If the field size is already larger than the maximum
8366 object size, then the record itself will necessarily
8367 be larger than the maximum object size. We need to make
8368 this check now, because the size might be so ridiculously
8369 large (due to an uninitialized variable in the inferior)
8370 that it would cause an overflow when adding it to the
8371 record size. */
8372 ada_ensure_varsize_limit (field_type);
8373
8374 TYPE_FIELD_TYPE (rtype, f) = field_type;
8375 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8376 /* The multiplication can potentially overflow. But because
8377 the field length has been size-checked just above, and
8378 assuming that the maximum size is a reasonable value,
8379 an overflow should not happen in practice. So rather than
8380 adding overflow recovery code to this already complex code,
8381 we just assume that it's not going to happen. */
8382 fld_bit_len =
8383 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8384 }
8385 else
8386 {
8387 /* Note: If this field's type is a typedef, it is important
8388 to preserve the typedef layer.
8389
8390 Otherwise, we might be transforming a typedef to a fat
8391 pointer (encoding a pointer to an unconstrained array),
8392 into a basic fat pointer (encoding an unconstrained
8393 array). As both types are implemented using the same
8394 structure, the typedef is the only clue which allows us
8395 to distinguish between the two options. Stripping it
8396 would prevent us from printing this field appropriately. */
8397 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8398 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8399 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8400 fld_bit_len =
8401 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8402 else
8403 {
8404 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8405
8406 /* We need to be careful of typedefs when computing
8407 the length of our field. If this is a typedef,
8408 get the length of the target type, not the length
8409 of the typedef. */
8410 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8411 field_type = ada_typedef_target_type (field_type);
8412
8413 fld_bit_len =
8414 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8415 }
8416 }
8417 if (off + fld_bit_len > bit_len)
8418 bit_len = off + fld_bit_len;
8419 off += fld_bit_len;
8420 TYPE_LENGTH (rtype) =
8421 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8422 }
8423
8424 /* We handle the variant part, if any, at the end because of certain
8425 odd cases in which it is re-ordered so as NOT to be the last field of
8426 the record. This can happen in the presence of representation
8427 clauses. */
8428 if (variant_field >= 0)
8429 {
8430 struct type *branch_type;
8431
8432 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8433
8434 if (dval0 == NULL)
8435 {
8436 /* Using plain value_from_contents_and_address here causes
8437 problems because we will end up trying to resolve a type
8438 that is currently being constructed. */
8439 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8440 address);
8441 rtype = value_type (dval);
8442 }
8443 else
8444 dval = dval0;
8445
8446 branch_type =
8447 to_fixed_variant_branch_type
8448 (TYPE_FIELD_TYPE (type, variant_field),
8449 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8450 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8451 if (branch_type == NULL)
8452 {
8453 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8454 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8455 TYPE_NFIELDS (rtype) -= 1;
8456 }
8457 else
8458 {
8459 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8460 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8461 fld_bit_len =
8462 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8463 TARGET_CHAR_BIT;
8464 if (off + fld_bit_len > bit_len)
8465 bit_len = off + fld_bit_len;
8466 TYPE_LENGTH (rtype) =
8467 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8468 }
8469 }
8470
8471 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8472 should contain the alignment of that record, which should be a strictly
8473 positive value. If null or negative, then something is wrong, most
8474 probably in the debug info. In that case, we don't round up the size
8475 of the resulting type. If this record is not part of another structure,
8476 the current RTYPE length might be good enough for our purposes. */
8477 if (TYPE_LENGTH (type) <= 0)
8478 {
8479 if (TYPE_NAME (rtype))
8480 warning (_("Invalid type size for `%s' detected: %d."),
8481 TYPE_NAME (rtype), TYPE_LENGTH (type));
8482 else
8483 warning (_("Invalid type size for <unnamed> detected: %d."),
8484 TYPE_LENGTH (type));
8485 }
8486 else
8487 {
8488 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8489 TYPE_LENGTH (type));
8490 }
8491
8492 value_free_to_mark (mark);
8493 if (TYPE_LENGTH (rtype) > varsize_limit)
8494 error (_("record type with dynamic size is larger than varsize-limit"));
8495 return rtype;
8496 }
8497
8498 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8499 of 1. */
8500
8501 static struct type *
8502 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8503 CORE_ADDR address, struct value *dval0)
8504 {
8505 return ada_template_to_fixed_record_type_1 (type, valaddr,
8506 address, dval0, 1);
8507 }
8508
8509 /* An ordinary record type in which ___XVL-convention fields and
8510 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8511 static approximations, containing all possible fields. Uses
8512 no runtime values. Useless for use in values, but that's OK,
8513 since the results are used only for type determinations. Works on both
8514 structs and unions. Representation note: to save space, we memorize
8515 the result of this function in the TYPE_TARGET_TYPE of the
8516 template type. */
8517
8518 static struct type *
8519 template_to_static_fixed_type (struct type *type0)
8520 {
8521 struct type *type;
8522 int nfields;
8523 int f;
8524
8525 /* No need no do anything if the input type is already fixed. */
8526 if (TYPE_FIXED_INSTANCE (type0))
8527 return type0;
8528
8529 /* Likewise if we already have computed the static approximation. */
8530 if (TYPE_TARGET_TYPE (type0) != NULL)
8531 return TYPE_TARGET_TYPE (type0);
8532
8533 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8534 type = type0;
8535 nfields = TYPE_NFIELDS (type0);
8536
8537 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8538 recompute all over next time. */
8539 TYPE_TARGET_TYPE (type0) = type;
8540
8541 for (f = 0; f < nfields; f += 1)
8542 {
8543 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8544 struct type *new_type;
8545
8546 if (is_dynamic_field (type0, f))
8547 {
8548 field_type = ada_check_typedef (field_type);
8549 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8550 }
8551 else
8552 new_type = static_unwrap_type (field_type);
8553
8554 if (new_type != field_type)
8555 {
8556 /* Clone TYPE0 only the first time we get a new field type. */
8557 if (type == type0)
8558 {
8559 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8560 TYPE_CODE (type) = TYPE_CODE (type0);
8561 INIT_CPLUS_SPECIFIC (type);
8562 TYPE_NFIELDS (type) = nfields;
8563 TYPE_FIELDS (type) = (struct field *)
8564 TYPE_ALLOC (type, nfields * sizeof (struct field));
8565 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8566 sizeof (struct field) * nfields);
8567 TYPE_NAME (type) = ada_type_name (type0);
8568 TYPE_TAG_NAME (type) = NULL;
8569 TYPE_FIXED_INSTANCE (type) = 1;
8570 TYPE_LENGTH (type) = 0;
8571 }
8572 TYPE_FIELD_TYPE (type, f) = new_type;
8573 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8574 }
8575 }
8576
8577 return type;
8578 }
8579
8580 /* Given an object of type TYPE whose contents are at VALADDR and
8581 whose address in memory is ADDRESS, returns a revision of TYPE,
8582 which should be a non-dynamic-sized record, in which the variant
8583 part, if any, is replaced with the appropriate branch. Looks
8584 for discriminant values in DVAL0, which can be NULL if the record
8585 contains the necessary discriminant values. */
8586
8587 static struct type *
8588 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8589 CORE_ADDR address, struct value *dval0)
8590 {
8591 struct value *mark = value_mark ();
8592 struct value *dval;
8593 struct type *rtype;
8594 struct type *branch_type;
8595 int nfields = TYPE_NFIELDS (type);
8596 int variant_field = variant_field_index (type);
8597
8598 if (variant_field == -1)
8599 return type;
8600
8601 if (dval0 == NULL)
8602 {
8603 dval = value_from_contents_and_address (type, valaddr, address);
8604 type = value_type (dval);
8605 }
8606 else
8607 dval = dval0;
8608
8609 rtype = alloc_type_copy (type);
8610 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8611 INIT_CPLUS_SPECIFIC (rtype);
8612 TYPE_NFIELDS (rtype) = nfields;
8613 TYPE_FIELDS (rtype) =
8614 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8615 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8616 sizeof (struct field) * nfields);
8617 TYPE_NAME (rtype) = ada_type_name (type);
8618 TYPE_TAG_NAME (rtype) = NULL;
8619 TYPE_FIXED_INSTANCE (rtype) = 1;
8620 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8621
8622 branch_type = to_fixed_variant_branch_type
8623 (TYPE_FIELD_TYPE (type, variant_field),
8624 cond_offset_host (valaddr,
8625 TYPE_FIELD_BITPOS (type, variant_field)
8626 / TARGET_CHAR_BIT),
8627 cond_offset_target (address,
8628 TYPE_FIELD_BITPOS (type, variant_field)
8629 / TARGET_CHAR_BIT), dval);
8630 if (branch_type == NULL)
8631 {
8632 int f;
8633
8634 for (f = variant_field + 1; f < nfields; f += 1)
8635 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8636 TYPE_NFIELDS (rtype) -= 1;
8637 }
8638 else
8639 {
8640 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8641 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8642 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8643 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8644 }
8645 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8646
8647 value_free_to_mark (mark);
8648 return rtype;
8649 }
8650
8651 /* An ordinary record type (with fixed-length fields) that describes
8652 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8653 beginning of this section]. Any necessary discriminants' values
8654 should be in DVAL, a record value; it may be NULL if the object
8655 at ADDR itself contains any necessary discriminant values.
8656 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8657 values from the record are needed. Except in the case that DVAL,
8658 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8659 unchecked) is replaced by a particular branch of the variant.
8660
8661 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8662 is questionable and may be removed. It can arise during the
8663 processing of an unconstrained-array-of-record type where all the
8664 variant branches have exactly the same size. This is because in
8665 such cases, the compiler does not bother to use the XVS convention
8666 when encoding the record. I am currently dubious of this
8667 shortcut and suspect the compiler should be altered. FIXME. */
8668
8669 static struct type *
8670 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8671 CORE_ADDR address, struct value *dval)
8672 {
8673 struct type *templ_type;
8674
8675 if (TYPE_FIXED_INSTANCE (type0))
8676 return type0;
8677
8678 templ_type = dynamic_template_type (type0);
8679
8680 if (templ_type != NULL)
8681 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8682 else if (variant_field_index (type0) >= 0)
8683 {
8684 if (dval == NULL && valaddr == NULL && address == 0)
8685 return type0;
8686 return to_record_with_fixed_variant_part (type0, valaddr, address,
8687 dval);
8688 }
8689 else
8690 {
8691 TYPE_FIXED_INSTANCE (type0) = 1;
8692 return type0;
8693 }
8694
8695 }
8696
8697 /* An ordinary record type (with fixed-length fields) that describes
8698 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8699 union type. Any necessary discriminants' values should be in DVAL,
8700 a record value. That is, this routine selects the appropriate
8701 branch of the union at ADDR according to the discriminant value
8702 indicated in the union's type name. Returns VAR_TYPE0 itself if
8703 it represents a variant subject to a pragma Unchecked_Union. */
8704
8705 static struct type *
8706 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8707 CORE_ADDR address, struct value *dval)
8708 {
8709 int which;
8710 struct type *templ_type;
8711 struct type *var_type;
8712
8713 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8714 var_type = TYPE_TARGET_TYPE (var_type0);
8715 else
8716 var_type = var_type0;
8717
8718 templ_type = ada_find_parallel_type (var_type, "___XVU");
8719
8720 if (templ_type != NULL)
8721 var_type = templ_type;
8722
8723 if (is_unchecked_variant (var_type, value_type (dval)))
8724 return var_type0;
8725 which =
8726 ada_which_variant_applies (var_type,
8727 value_type (dval), value_contents (dval));
8728
8729 if (which < 0)
8730 return empty_record (var_type);
8731 else if (is_dynamic_field (var_type, which))
8732 return to_fixed_record_type
8733 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8734 valaddr, address, dval);
8735 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8736 return
8737 to_fixed_record_type
8738 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8739 else
8740 return TYPE_FIELD_TYPE (var_type, which);
8741 }
8742
8743 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8744 ENCODING_TYPE, a type following the GNAT conventions for discrete
8745 type encodings, only carries redundant information. */
8746
8747 static int
8748 ada_is_redundant_range_encoding (struct type *range_type,
8749 struct type *encoding_type)
8750 {
8751 struct type *fixed_range_type;
8752 const char *bounds_str;
8753 int n;
8754 LONGEST lo, hi;
8755
8756 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8757
8758 if (TYPE_CODE (get_base_type (range_type))
8759 != TYPE_CODE (get_base_type (encoding_type)))
8760 {
8761 /* The compiler probably used a simple base type to describe
8762 the range type instead of the range's actual base type,
8763 expecting us to get the real base type from the encoding
8764 anyway. In this situation, the encoding cannot be ignored
8765 as redundant. */
8766 return 0;
8767 }
8768
8769 if (is_dynamic_type (range_type))
8770 return 0;
8771
8772 if (TYPE_NAME (encoding_type) == NULL)
8773 return 0;
8774
8775 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8776 if (bounds_str == NULL)
8777 return 0;
8778
8779 n = 8; /* Skip "___XDLU_". */
8780 if (!ada_scan_number (bounds_str, n, &lo, &n))
8781 return 0;
8782 if (TYPE_LOW_BOUND (range_type) != lo)
8783 return 0;
8784
8785 n += 2; /* Skip the "__" separator between the two bounds. */
8786 if (!ada_scan_number (bounds_str, n, &hi, &n))
8787 return 0;
8788 if (TYPE_HIGH_BOUND (range_type) != hi)
8789 return 0;
8790
8791 return 1;
8792 }
8793
8794 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8795 a type following the GNAT encoding for describing array type
8796 indices, only carries redundant information. */
8797
8798 static int
8799 ada_is_redundant_index_type_desc (struct type *array_type,
8800 struct type *desc_type)
8801 {
8802 struct type *this_layer = check_typedef (array_type);
8803 int i;
8804
8805 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8806 {
8807 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8808 TYPE_FIELD_TYPE (desc_type, i)))
8809 return 0;
8810 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8811 }
8812
8813 return 1;
8814 }
8815
8816 /* Assuming that TYPE0 is an array type describing the type of a value
8817 at ADDR, and that DVAL describes a record containing any
8818 discriminants used in TYPE0, returns a type for the value that
8819 contains no dynamic components (that is, no components whose sizes
8820 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8821 true, gives an error message if the resulting type's size is over
8822 varsize_limit. */
8823
8824 static struct type *
8825 to_fixed_array_type (struct type *type0, struct value *dval,
8826 int ignore_too_big)
8827 {
8828 struct type *index_type_desc;
8829 struct type *result;
8830 int constrained_packed_array_p;
8831 static const char *xa_suffix = "___XA";
8832
8833 type0 = ada_check_typedef (type0);
8834 if (TYPE_FIXED_INSTANCE (type0))
8835 return type0;
8836
8837 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8838 if (constrained_packed_array_p)
8839 type0 = decode_constrained_packed_array_type (type0);
8840
8841 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8842
8843 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8844 encoding suffixed with 'P' may still be generated. If so,
8845 it should be used to find the XA type. */
8846
8847 if (index_type_desc == NULL)
8848 {
8849 const char *type_name = ada_type_name (type0);
8850
8851 if (type_name != NULL)
8852 {
8853 const int len = strlen (type_name);
8854 char *name = (char *) alloca (len + strlen (xa_suffix));
8855
8856 if (type_name[len - 1] == 'P')
8857 {
8858 strcpy (name, type_name);
8859 strcpy (name + len - 1, xa_suffix);
8860 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8861 }
8862 }
8863 }
8864
8865 ada_fixup_array_indexes_type (index_type_desc);
8866 if (index_type_desc != NULL
8867 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8868 {
8869 /* Ignore this ___XA parallel type, as it does not bring any
8870 useful information. This allows us to avoid creating fixed
8871 versions of the array's index types, which would be identical
8872 to the original ones. This, in turn, can also help avoid
8873 the creation of fixed versions of the array itself. */
8874 index_type_desc = NULL;
8875 }
8876
8877 if (index_type_desc == NULL)
8878 {
8879 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8880
8881 /* NOTE: elt_type---the fixed version of elt_type0---should never
8882 depend on the contents of the array in properly constructed
8883 debugging data. */
8884 /* Create a fixed version of the array element type.
8885 We're not providing the address of an element here,
8886 and thus the actual object value cannot be inspected to do
8887 the conversion. This should not be a problem, since arrays of
8888 unconstrained objects are not allowed. In particular, all
8889 the elements of an array of a tagged type should all be of
8890 the same type specified in the debugging info. No need to
8891 consult the object tag. */
8892 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8893
8894 /* Make sure we always create a new array type when dealing with
8895 packed array types, since we're going to fix-up the array
8896 type length and element bitsize a little further down. */
8897 if (elt_type0 == elt_type && !constrained_packed_array_p)
8898 result = type0;
8899 else
8900 result = create_array_type (alloc_type_copy (type0),
8901 elt_type, TYPE_INDEX_TYPE (type0));
8902 }
8903 else
8904 {
8905 int i;
8906 struct type *elt_type0;
8907
8908 elt_type0 = type0;
8909 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8910 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8911
8912 /* NOTE: result---the fixed version of elt_type0---should never
8913 depend on the contents of the array in properly constructed
8914 debugging data. */
8915 /* Create a fixed version of the array element type.
8916 We're not providing the address of an element here,
8917 and thus the actual object value cannot be inspected to do
8918 the conversion. This should not be a problem, since arrays of
8919 unconstrained objects are not allowed. In particular, all
8920 the elements of an array of a tagged type should all be of
8921 the same type specified in the debugging info. No need to
8922 consult the object tag. */
8923 result =
8924 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8925
8926 elt_type0 = type0;
8927 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8928 {
8929 struct type *range_type =
8930 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8931
8932 result = create_array_type (alloc_type_copy (elt_type0),
8933 result, range_type);
8934 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8935 }
8936 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8937 error (_("array type with dynamic size is larger than varsize-limit"));
8938 }
8939
8940 /* We want to preserve the type name. This can be useful when
8941 trying to get the type name of a value that has already been
8942 printed (for instance, if the user did "print VAR; whatis $". */
8943 TYPE_NAME (result) = TYPE_NAME (type0);
8944
8945 if (constrained_packed_array_p)
8946 {
8947 /* So far, the resulting type has been created as if the original
8948 type was a regular (non-packed) array type. As a result, the
8949 bitsize of the array elements needs to be set again, and the array
8950 length needs to be recomputed based on that bitsize. */
8951 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8952 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8953
8954 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8955 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8956 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8957 TYPE_LENGTH (result)++;
8958 }
8959
8960 TYPE_FIXED_INSTANCE (result) = 1;
8961 return result;
8962 }
8963
8964
8965 /* A standard type (containing no dynamically sized components)
8966 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8967 DVAL describes a record containing any discriminants used in TYPE0,
8968 and may be NULL if there are none, or if the object of type TYPE at
8969 ADDRESS or in VALADDR contains these discriminants.
8970
8971 If CHECK_TAG is not null, in the case of tagged types, this function
8972 attempts to locate the object's tag and use it to compute the actual
8973 type. However, when ADDRESS is null, we cannot use it to determine the
8974 location of the tag, and therefore compute the tagged type's actual type.
8975 So we return the tagged type without consulting the tag. */
8976
8977 static struct type *
8978 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8979 CORE_ADDR address, struct value *dval, int check_tag)
8980 {
8981 type = ada_check_typedef (type);
8982 switch (TYPE_CODE (type))
8983 {
8984 default:
8985 return type;
8986 case TYPE_CODE_STRUCT:
8987 {
8988 struct type *static_type = to_static_fixed_type (type);
8989 struct type *fixed_record_type =
8990 to_fixed_record_type (type, valaddr, address, NULL);
8991
8992 /* If STATIC_TYPE is a tagged type and we know the object's address,
8993 then we can determine its tag, and compute the object's actual
8994 type from there. Note that we have to use the fixed record
8995 type (the parent part of the record may have dynamic fields
8996 and the way the location of _tag is expressed may depend on
8997 them). */
8998
8999 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9000 {
9001 struct value *tag =
9002 value_tag_from_contents_and_address
9003 (fixed_record_type,
9004 valaddr,
9005 address);
9006 struct type *real_type = type_from_tag (tag);
9007 struct value *obj =
9008 value_from_contents_and_address (fixed_record_type,
9009 valaddr,
9010 address);
9011 fixed_record_type = value_type (obj);
9012 if (real_type != NULL)
9013 return to_fixed_record_type
9014 (real_type, NULL,
9015 value_address (ada_tag_value_at_base_address (obj)), NULL);
9016 }
9017
9018 /* Check to see if there is a parallel ___XVZ variable.
9019 If there is, then it provides the actual size of our type. */
9020 else if (ada_type_name (fixed_record_type) != NULL)
9021 {
9022 const char *name = ada_type_name (fixed_record_type);
9023 char *xvz_name
9024 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9025 int xvz_found = 0;
9026 LONGEST size;
9027
9028 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9029 size = get_int_var_value (xvz_name, &xvz_found);
9030 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9031 {
9032 fixed_record_type = copy_type (fixed_record_type);
9033 TYPE_LENGTH (fixed_record_type) = size;
9034
9035 /* The FIXED_RECORD_TYPE may have be a stub. We have
9036 observed this when the debugging info is STABS, and
9037 apparently it is something that is hard to fix.
9038
9039 In practice, we don't need the actual type definition
9040 at all, because the presence of the XVZ variable allows us
9041 to assume that there must be a XVS type as well, which we
9042 should be able to use later, when we need the actual type
9043 definition.
9044
9045 In the meantime, pretend that the "fixed" type we are
9046 returning is NOT a stub, because this can cause trouble
9047 when using this type to create new types targeting it.
9048 Indeed, the associated creation routines often check
9049 whether the target type is a stub and will try to replace
9050 it, thus using a type with the wrong size. This, in turn,
9051 might cause the new type to have the wrong size too.
9052 Consider the case of an array, for instance, where the size
9053 of the array is computed from the number of elements in
9054 our array multiplied by the size of its element. */
9055 TYPE_STUB (fixed_record_type) = 0;
9056 }
9057 }
9058 return fixed_record_type;
9059 }
9060 case TYPE_CODE_ARRAY:
9061 return to_fixed_array_type (type, dval, 1);
9062 case TYPE_CODE_UNION:
9063 if (dval == NULL)
9064 return type;
9065 else
9066 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9067 }
9068 }
9069
9070 /* The same as ada_to_fixed_type_1, except that it preserves the type
9071 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9072
9073 The typedef layer needs be preserved in order to differentiate between
9074 arrays and array pointers when both types are implemented using the same
9075 fat pointer. In the array pointer case, the pointer is encoded as
9076 a typedef of the pointer type. For instance, considering:
9077
9078 type String_Access is access String;
9079 S1 : String_Access := null;
9080
9081 To the debugger, S1 is defined as a typedef of type String. But
9082 to the user, it is a pointer. So if the user tries to print S1,
9083 we should not dereference the array, but print the array address
9084 instead.
9085
9086 If we didn't preserve the typedef layer, we would lose the fact that
9087 the type is to be presented as a pointer (needs de-reference before
9088 being printed). And we would also use the source-level type name. */
9089
9090 struct type *
9091 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9092 CORE_ADDR address, struct value *dval, int check_tag)
9093
9094 {
9095 struct type *fixed_type =
9096 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9097
9098 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9099 then preserve the typedef layer.
9100
9101 Implementation note: We can only check the main-type portion of
9102 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9103 from TYPE now returns a type that has the same instance flags
9104 as TYPE. For instance, if TYPE is a "typedef const", and its
9105 target type is a "struct", then the typedef elimination will return
9106 a "const" version of the target type. See check_typedef for more
9107 details about how the typedef layer elimination is done.
9108
9109 brobecker/2010-11-19: It seems to me that the only case where it is
9110 useful to preserve the typedef layer is when dealing with fat pointers.
9111 Perhaps, we could add a check for that and preserve the typedef layer
9112 only in that situation. But this seems unecessary so far, probably
9113 because we call check_typedef/ada_check_typedef pretty much everywhere.
9114 */
9115 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9116 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9117 == TYPE_MAIN_TYPE (fixed_type)))
9118 return type;
9119
9120 return fixed_type;
9121 }
9122
9123 /* A standard (static-sized) type corresponding as well as possible to
9124 TYPE0, but based on no runtime data. */
9125
9126 static struct type *
9127 to_static_fixed_type (struct type *type0)
9128 {
9129 struct type *type;
9130
9131 if (type0 == NULL)
9132 return NULL;
9133
9134 if (TYPE_FIXED_INSTANCE (type0))
9135 return type0;
9136
9137 type0 = ada_check_typedef (type0);
9138
9139 switch (TYPE_CODE (type0))
9140 {
9141 default:
9142 return type0;
9143 case TYPE_CODE_STRUCT:
9144 type = dynamic_template_type (type0);
9145 if (type != NULL)
9146 return template_to_static_fixed_type (type);
9147 else
9148 return template_to_static_fixed_type (type0);
9149 case TYPE_CODE_UNION:
9150 type = ada_find_parallel_type (type0, "___XVU");
9151 if (type != NULL)
9152 return template_to_static_fixed_type (type);
9153 else
9154 return template_to_static_fixed_type (type0);
9155 }
9156 }
9157
9158 /* A static approximation of TYPE with all type wrappers removed. */
9159
9160 static struct type *
9161 static_unwrap_type (struct type *type)
9162 {
9163 if (ada_is_aligner_type (type))
9164 {
9165 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9166 if (ada_type_name (type1) == NULL)
9167 TYPE_NAME (type1) = ada_type_name (type);
9168
9169 return static_unwrap_type (type1);
9170 }
9171 else
9172 {
9173 struct type *raw_real_type = ada_get_base_type (type);
9174
9175 if (raw_real_type == type)
9176 return type;
9177 else
9178 return to_static_fixed_type (raw_real_type);
9179 }
9180 }
9181
9182 /* In some cases, incomplete and private types require
9183 cross-references that are not resolved as records (for example,
9184 type Foo;
9185 type FooP is access Foo;
9186 V: FooP;
9187 type Foo is array ...;
9188 ). In these cases, since there is no mechanism for producing
9189 cross-references to such types, we instead substitute for FooP a
9190 stub enumeration type that is nowhere resolved, and whose tag is
9191 the name of the actual type. Call these types "non-record stubs". */
9192
9193 /* A type equivalent to TYPE that is not a non-record stub, if one
9194 exists, otherwise TYPE. */
9195
9196 struct type *
9197 ada_check_typedef (struct type *type)
9198 {
9199 if (type == NULL)
9200 return NULL;
9201
9202 /* If our type is a typedef type of a fat pointer, then we're done.
9203 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9204 what allows us to distinguish between fat pointers that represent
9205 array types, and fat pointers that represent array access types
9206 (in both cases, the compiler implements them as fat pointers). */
9207 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9208 && is_thick_pntr (ada_typedef_target_type (type)))
9209 return type;
9210
9211 type = check_typedef (type);
9212 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9213 || !TYPE_STUB (type)
9214 || TYPE_TAG_NAME (type) == NULL)
9215 return type;
9216 else
9217 {
9218 const char *name = TYPE_TAG_NAME (type);
9219 struct type *type1 = ada_find_any_type (name);
9220
9221 if (type1 == NULL)
9222 return type;
9223
9224 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9225 stubs pointing to arrays, as we don't create symbols for array
9226 types, only for the typedef-to-array types). If that's the case,
9227 strip the typedef layer. */
9228 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9229 type1 = ada_check_typedef (type1);
9230
9231 return type1;
9232 }
9233 }
9234
9235 /* A value representing the data at VALADDR/ADDRESS as described by
9236 type TYPE0, but with a standard (static-sized) type that correctly
9237 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9238 type, then return VAL0 [this feature is simply to avoid redundant
9239 creation of struct values]. */
9240
9241 static struct value *
9242 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9243 struct value *val0)
9244 {
9245 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9246
9247 if (type == type0 && val0 != NULL)
9248 return val0;
9249 else
9250 return value_from_contents_and_address (type, 0, address);
9251 }
9252
9253 /* A value representing VAL, but with a standard (static-sized) type
9254 that correctly describes it. Does not necessarily create a new
9255 value. */
9256
9257 struct value *
9258 ada_to_fixed_value (struct value *val)
9259 {
9260 val = unwrap_value (val);
9261 val = ada_to_fixed_value_create (value_type (val),
9262 value_address (val),
9263 val);
9264 return val;
9265 }
9266 \f
9267
9268 /* Attributes */
9269
9270 /* Table mapping attribute numbers to names.
9271 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9272
9273 static const char *attribute_names[] = {
9274 "<?>",
9275
9276 "first",
9277 "last",
9278 "length",
9279 "image",
9280 "max",
9281 "min",
9282 "modulus",
9283 "pos",
9284 "size",
9285 "tag",
9286 "val",
9287 0
9288 };
9289
9290 const char *
9291 ada_attribute_name (enum exp_opcode n)
9292 {
9293 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9294 return attribute_names[n - OP_ATR_FIRST + 1];
9295 else
9296 return attribute_names[0];
9297 }
9298
9299 /* Evaluate the 'POS attribute applied to ARG. */
9300
9301 static LONGEST
9302 pos_atr (struct value *arg)
9303 {
9304 struct value *val = coerce_ref (arg);
9305 struct type *type = value_type (val);
9306 LONGEST result;
9307
9308 if (!discrete_type_p (type))
9309 error (_("'POS only defined on discrete types"));
9310
9311 if (!discrete_position (type, value_as_long (val), &result))
9312 error (_("enumeration value is invalid: can't find 'POS"));
9313
9314 return result;
9315 }
9316
9317 static struct value *
9318 value_pos_atr (struct type *type, struct value *arg)
9319 {
9320 return value_from_longest (type, pos_atr (arg));
9321 }
9322
9323 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9324
9325 static struct value *
9326 value_val_atr (struct type *type, struct value *arg)
9327 {
9328 if (!discrete_type_p (type))
9329 error (_("'VAL only defined on discrete types"));
9330 if (!integer_type_p (value_type (arg)))
9331 error (_("'VAL requires integral argument"));
9332
9333 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9334 {
9335 long pos = value_as_long (arg);
9336
9337 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9338 error (_("argument to 'VAL out of range"));
9339 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9340 }
9341 else
9342 return value_from_longest (type, value_as_long (arg));
9343 }
9344 \f
9345
9346 /* Evaluation */
9347
9348 /* True if TYPE appears to be an Ada character type.
9349 [At the moment, this is true only for Character and Wide_Character;
9350 It is a heuristic test that could stand improvement]. */
9351
9352 int
9353 ada_is_character_type (struct type *type)
9354 {
9355 const char *name;
9356
9357 /* If the type code says it's a character, then assume it really is,
9358 and don't check any further. */
9359 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9360 return 1;
9361
9362 /* Otherwise, assume it's a character type iff it is a discrete type
9363 with a known character type name. */
9364 name = ada_type_name (type);
9365 return (name != NULL
9366 && (TYPE_CODE (type) == TYPE_CODE_INT
9367 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9368 && (strcmp (name, "character") == 0
9369 || strcmp (name, "wide_character") == 0
9370 || strcmp (name, "wide_wide_character") == 0
9371 || strcmp (name, "unsigned char") == 0));
9372 }
9373
9374 /* True if TYPE appears to be an Ada string type. */
9375
9376 int
9377 ada_is_string_type (struct type *type)
9378 {
9379 type = ada_check_typedef (type);
9380 if (type != NULL
9381 && TYPE_CODE (type) != TYPE_CODE_PTR
9382 && (ada_is_simple_array_type (type)
9383 || ada_is_array_descriptor_type (type))
9384 && ada_array_arity (type) == 1)
9385 {
9386 struct type *elttype = ada_array_element_type (type, 1);
9387
9388 return ada_is_character_type (elttype);
9389 }
9390 else
9391 return 0;
9392 }
9393
9394 /* The compiler sometimes provides a parallel XVS type for a given
9395 PAD type. Normally, it is safe to follow the PAD type directly,
9396 but older versions of the compiler have a bug that causes the offset
9397 of its "F" field to be wrong. Following that field in that case
9398 would lead to incorrect results, but this can be worked around
9399 by ignoring the PAD type and using the associated XVS type instead.
9400
9401 Set to True if the debugger should trust the contents of PAD types.
9402 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9403 static int trust_pad_over_xvs = 1;
9404
9405 /* True if TYPE is a struct type introduced by the compiler to force the
9406 alignment of a value. Such types have a single field with a
9407 distinctive name. */
9408
9409 int
9410 ada_is_aligner_type (struct type *type)
9411 {
9412 type = ada_check_typedef (type);
9413
9414 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9415 return 0;
9416
9417 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9418 && TYPE_NFIELDS (type) == 1
9419 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9420 }
9421
9422 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9423 the parallel type. */
9424
9425 struct type *
9426 ada_get_base_type (struct type *raw_type)
9427 {
9428 struct type *real_type_namer;
9429 struct type *raw_real_type;
9430
9431 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9432 return raw_type;
9433
9434 if (ada_is_aligner_type (raw_type))
9435 /* The encoding specifies that we should always use the aligner type.
9436 So, even if this aligner type has an associated XVS type, we should
9437 simply ignore it.
9438
9439 According to the compiler gurus, an XVS type parallel to an aligner
9440 type may exist because of a stabs limitation. In stabs, aligner
9441 types are empty because the field has a variable-sized type, and
9442 thus cannot actually be used as an aligner type. As a result,
9443 we need the associated parallel XVS type to decode the type.
9444 Since the policy in the compiler is to not change the internal
9445 representation based on the debugging info format, we sometimes
9446 end up having a redundant XVS type parallel to the aligner type. */
9447 return raw_type;
9448
9449 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9450 if (real_type_namer == NULL
9451 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9452 || TYPE_NFIELDS (real_type_namer) != 1)
9453 return raw_type;
9454
9455 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9456 {
9457 /* This is an older encoding form where the base type needs to be
9458 looked up by name. We prefer the newer enconding because it is
9459 more efficient. */
9460 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9461 if (raw_real_type == NULL)
9462 return raw_type;
9463 else
9464 return raw_real_type;
9465 }
9466
9467 /* The field in our XVS type is a reference to the base type. */
9468 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9469 }
9470
9471 /* The type of value designated by TYPE, with all aligners removed. */
9472
9473 struct type *
9474 ada_aligned_type (struct type *type)
9475 {
9476 if (ada_is_aligner_type (type))
9477 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9478 else
9479 return ada_get_base_type (type);
9480 }
9481
9482
9483 /* The address of the aligned value in an object at address VALADDR
9484 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9485
9486 const gdb_byte *
9487 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9488 {
9489 if (ada_is_aligner_type (type))
9490 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9491 valaddr +
9492 TYPE_FIELD_BITPOS (type,
9493 0) / TARGET_CHAR_BIT);
9494 else
9495 return valaddr;
9496 }
9497
9498
9499
9500 /* The printed representation of an enumeration literal with encoded
9501 name NAME. The value is good to the next call of ada_enum_name. */
9502 const char *
9503 ada_enum_name (const char *name)
9504 {
9505 static char *result;
9506 static size_t result_len = 0;
9507 const char *tmp;
9508
9509 /* First, unqualify the enumeration name:
9510 1. Search for the last '.' character. If we find one, then skip
9511 all the preceding characters, the unqualified name starts
9512 right after that dot.
9513 2. Otherwise, we may be debugging on a target where the compiler
9514 translates dots into "__". Search forward for double underscores,
9515 but stop searching when we hit an overloading suffix, which is
9516 of the form "__" followed by digits. */
9517
9518 tmp = strrchr (name, '.');
9519 if (tmp != NULL)
9520 name = tmp + 1;
9521 else
9522 {
9523 while ((tmp = strstr (name, "__")) != NULL)
9524 {
9525 if (isdigit (tmp[2]))
9526 break;
9527 else
9528 name = tmp + 2;
9529 }
9530 }
9531
9532 if (name[0] == 'Q')
9533 {
9534 int v;
9535
9536 if (name[1] == 'U' || name[1] == 'W')
9537 {
9538 if (sscanf (name + 2, "%x", &v) != 1)
9539 return name;
9540 }
9541 else
9542 return name;
9543
9544 GROW_VECT (result, result_len, 16);
9545 if (isascii (v) && isprint (v))
9546 xsnprintf (result, result_len, "'%c'", v);
9547 else if (name[1] == 'U')
9548 xsnprintf (result, result_len, "[\"%02x\"]", v);
9549 else
9550 xsnprintf (result, result_len, "[\"%04x\"]", v);
9551
9552 return result;
9553 }
9554 else
9555 {
9556 tmp = strstr (name, "__");
9557 if (tmp == NULL)
9558 tmp = strstr (name, "$");
9559 if (tmp != NULL)
9560 {
9561 GROW_VECT (result, result_len, tmp - name + 1);
9562 strncpy (result, name, tmp - name);
9563 result[tmp - name] = '\0';
9564 return result;
9565 }
9566
9567 return name;
9568 }
9569 }
9570
9571 /* Evaluate the subexpression of EXP starting at *POS as for
9572 evaluate_type, updating *POS to point just past the evaluated
9573 expression. */
9574
9575 static struct value *
9576 evaluate_subexp_type (struct expression *exp, int *pos)
9577 {
9578 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9579 }
9580
9581 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9582 value it wraps. */
9583
9584 static struct value *
9585 unwrap_value (struct value *val)
9586 {
9587 struct type *type = ada_check_typedef (value_type (val));
9588
9589 if (ada_is_aligner_type (type))
9590 {
9591 struct value *v = ada_value_struct_elt (val, "F", 0);
9592 struct type *val_type = ada_check_typedef (value_type (v));
9593
9594 if (ada_type_name (val_type) == NULL)
9595 TYPE_NAME (val_type) = ada_type_name (type);
9596
9597 return unwrap_value (v);
9598 }
9599 else
9600 {
9601 struct type *raw_real_type =
9602 ada_check_typedef (ada_get_base_type (type));
9603
9604 /* If there is no parallel XVS or XVE type, then the value is
9605 already unwrapped. Return it without further modification. */
9606 if ((type == raw_real_type)
9607 && ada_find_parallel_type (type, "___XVE") == NULL)
9608 return val;
9609
9610 return
9611 coerce_unspec_val_to_type
9612 (val, ada_to_fixed_type (raw_real_type, 0,
9613 value_address (val),
9614 NULL, 1));
9615 }
9616 }
9617
9618 static struct value *
9619 cast_to_fixed (struct type *type, struct value *arg)
9620 {
9621 LONGEST val;
9622
9623 if (type == value_type (arg))
9624 return arg;
9625 else if (ada_is_fixed_point_type (value_type (arg)))
9626 val = ada_float_to_fixed (type,
9627 ada_fixed_to_float (value_type (arg),
9628 value_as_long (arg)));
9629 else
9630 {
9631 DOUBLEST argd = value_as_double (arg);
9632
9633 val = ada_float_to_fixed (type, argd);
9634 }
9635
9636 return value_from_longest (type, val);
9637 }
9638
9639 static struct value *
9640 cast_from_fixed (struct type *type, struct value *arg)
9641 {
9642 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9643 value_as_long (arg));
9644
9645 return value_from_double (type, val);
9646 }
9647
9648 /* Given two array types T1 and T2, return nonzero iff both arrays
9649 contain the same number of elements. */
9650
9651 static int
9652 ada_same_array_size_p (struct type *t1, struct type *t2)
9653 {
9654 LONGEST lo1, hi1, lo2, hi2;
9655
9656 /* Get the array bounds in order to verify that the size of
9657 the two arrays match. */
9658 if (!get_array_bounds (t1, &lo1, &hi1)
9659 || !get_array_bounds (t2, &lo2, &hi2))
9660 error (_("unable to determine array bounds"));
9661
9662 /* To make things easier for size comparison, normalize a bit
9663 the case of empty arrays by making sure that the difference
9664 between upper bound and lower bound is always -1. */
9665 if (lo1 > hi1)
9666 hi1 = lo1 - 1;
9667 if (lo2 > hi2)
9668 hi2 = lo2 - 1;
9669
9670 return (hi1 - lo1 == hi2 - lo2);
9671 }
9672
9673 /* Assuming that VAL is an array of integrals, and TYPE represents
9674 an array with the same number of elements, but with wider integral
9675 elements, return an array "casted" to TYPE. In practice, this
9676 means that the returned array is built by casting each element
9677 of the original array into TYPE's (wider) element type. */
9678
9679 static struct value *
9680 ada_promote_array_of_integrals (struct type *type, struct value *val)
9681 {
9682 struct type *elt_type = TYPE_TARGET_TYPE (type);
9683 LONGEST lo, hi;
9684 struct value *res;
9685 LONGEST i;
9686
9687 /* Verify that both val and type are arrays of scalars, and
9688 that the size of val's elements is smaller than the size
9689 of type's element. */
9690 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9691 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9692 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9693 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9694 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9695 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9696
9697 if (!get_array_bounds (type, &lo, &hi))
9698 error (_("unable to determine array bounds"));
9699
9700 res = allocate_value (type);
9701
9702 /* Promote each array element. */
9703 for (i = 0; i < hi - lo + 1; i++)
9704 {
9705 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9706
9707 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9708 value_contents_all (elt), TYPE_LENGTH (elt_type));
9709 }
9710
9711 return res;
9712 }
9713
9714 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9715 return the converted value. */
9716
9717 static struct value *
9718 coerce_for_assign (struct type *type, struct value *val)
9719 {
9720 struct type *type2 = value_type (val);
9721
9722 if (type == type2)
9723 return val;
9724
9725 type2 = ada_check_typedef (type2);
9726 type = ada_check_typedef (type);
9727
9728 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9729 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9730 {
9731 val = ada_value_ind (val);
9732 type2 = value_type (val);
9733 }
9734
9735 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9736 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9737 {
9738 if (!ada_same_array_size_p (type, type2))
9739 error (_("cannot assign arrays of different length"));
9740
9741 if (is_integral_type (TYPE_TARGET_TYPE (type))
9742 && is_integral_type (TYPE_TARGET_TYPE (type2))
9743 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9744 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9745 {
9746 /* Allow implicit promotion of the array elements to
9747 a wider type. */
9748 return ada_promote_array_of_integrals (type, val);
9749 }
9750
9751 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9752 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9753 error (_("Incompatible types in assignment"));
9754 deprecated_set_value_type (val, type);
9755 }
9756 return val;
9757 }
9758
9759 static struct value *
9760 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9761 {
9762 struct value *val;
9763 struct type *type1, *type2;
9764 LONGEST v, v1, v2;
9765
9766 arg1 = coerce_ref (arg1);
9767 arg2 = coerce_ref (arg2);
9768 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9769 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9770
9771 if (TYPE_CODE (type1) != TYPE_CODE_INT
9772 || TYPE_CODE (type2) != TYPE_CODE_INT)
9773 return value_binop (arg1, arg2, op);
9774
9775 switch (op)
9776 {
9777 case BINOP_MOD:
9778 case BINOP_DIV:
9779 case BINOP_REM:
9780 break;
9781 default:
9782 return value_binop (arg1, arg2, op);
9783 }
9784
9785 v2 = value_as_long (arg2);
9786 if (v2 == 0)
9787 error (_("second operand of %s must not be zero."), op_string (op));
9788
9789 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9790 return value_binop (arg1, arg2, op);
9791
9792 v1 = value_as_long (arg1);
9793 switch (op)
9794 {
9795 case BINOP_DIV:
9796 v = v1 / v2;
9797 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9798 v += v > 0 ? -1 : 1;
9799 break;
9800 case BINOP_REM:
9801 v = v1 % v2;
9802 if (v * v1 < 0)
9803 v -= v2;
9804 break;
9805 default:
9806 /* Should not reach this point. */
9807 v = 0;
9808 }
9809
9810 val = allocate_value (type1);
9811 store_unsigned_integer (value_contents_raw (val),
9812 TYPE_LENGTH (value_type (val)),
9813 gdbarch_byte_order (get_type_arch (type1)), v);
9814 return val;
9815 }
9816
9817 static int
9818 ada_value_equal (struct value *arg1, struct value *arg2)
9819 {
9820 if (ada_is_direct_array_type (value_type (arg1))
9821 || ada_is_direct_array_type (value_type (arg2)))
9822 {
9823 /* Automatically dereference any array reference before
9824 we attempt to perform the comparison. */
9825 arg1 = ada_coerce_ref (arg1);
9826 arg2 = ada_coerce_ref (arg2);
9827
9828 arg1 = ada_coerce_to_simple_array (arg1);
9829 arg2 = ada_coerce_to_simple_array (arg2);
9830 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9831 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9832 error (_("Attempt to compare array with non-array"));
9833 /* FIXME: The following works only for types whose
9834 representations use all bits (no padding or undefined bits)
9835 and do not have user-defined equality. */
9836 return
9837 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9838 && memcmp (value_contents (arg1), value_contents (arg2),
9839 TYPE_LENGTH (value_type (arg1))) == 0;
9840 }
9841 return value_equal (arg1, arg2);
9842 }
9843
9844 /* Total number of component associations in the aggregate starting at
9845 index PC in EXP. Assumes that index PC is the start of an
9846 OP_AGGREGATE. */
9847
9848 static int
9849 num_component_specs (struct expression *exp, int pc)
9850 {
9851 int n, m, i;
9852
9853 m = exp->elts[pc + 1].longconst;
9854 pc += 3;
9855 n = 0;
9856 for (i = 0; i < m; i += 1)
9857 {
9858 switch (exp->elts[pc].opcode)
9859 {
9860 default:
9861 n += 1;
9862 break;
9863 case OP_CHOICES:
9864 n += exp->elts[pc + 1].longconst;
9865 break;
9866 }
9867 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9868 }
9869 return n;
9870 }
9871
9872 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9873 component of LHS (a simple array or a record), updating *POS past
9874 the expression, assuming that LHS is contained in CONTAINER. Does
9875 not modify the inferior's memory, nor does it modify LHS (unless
9876 LHS == CONTAINER). */
9877
9878 static void
9879 assign_component (struct value *container, struct value *lhs, LONGEST index,
9880 struct expression *exp, int *pos)
9881 {
9882 struct value *mark = value_mark ();
9883 struct value *elt;
9884
9885 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9886 {
9887 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9888 struct value *index_val = value_from_longest (index_type, index);
9889
9890 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9891 }
9892 else
9893 {
9894 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9895 elt = ada_to_fixed_value (elt);
9896 }
9897
9898 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9899 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9900 else
9901 value_assign_to_component (container, elt,
9902 ada_evaluate_subexp (NULL, exp, pos,
9903 EVAL_NORMAL));
9904
9905 value_free_to_mark (mark);
9906 }
9907
9908 /* Assuming that LHS represents an lvalue having a record or array
9909 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9910 of that aggregate's value to LHS, advancing *POS past the
9911 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9912 lvalue containing LHS (possibly LHS itself). Does not modify
9913 the inferior's memory, nor does it modify the contents of
9914 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9915
9916 static struct value *
9917 assign_aggregate (struct value *container,
9918 struct value *lhs, struct expression *exp,
9919 int *pos, enum noside noside)
9920 {
9921 struct type *lhs_type;
9922 int n = exp->elts[*pos+1].longconst;
9923 LONGEST low_index, high_index;
9924 int num_specs;
9925 LONGEST *indices;
9926 int max_indices, num_indices;
9927 int i;
9928
9929 *pos += 3;
9930 if (noside != EVAL_NORMAL)
9931 {
9932 for (i = 0; i < n; i += 1)
9933 ada_evaluate_subexp (NULL, exp, pos, noside);
9934 return container;
9935 }
9936
9937 container = ada_coerce_ref (container);
9938 if (ada_is_direct_array_type (value_type (container)))
9939 container = ada_coerce_to_simple_array (container);
9940 lhs = ada_coerce_ref (lhs);
9941 if (!deprecated_value_modifiable (lhs))
9942 error (_("Left operand of assignment is not a modifiable lvalue."));
9943
9944 lhs_type = value_type (lhs);
9945 if (ada_is_direct_array_type (lhs_type))
9946 {
9947 lhs = ada_coerce_to_simple_array (lhs);
9948 lhs_type = value_type (lhs);
9949 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9950 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9951 }
9952 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9953 {
9954 low_index = 0;
9955 high_index = num_visible_fields (lhs_type) - 1;
9956 }
9957 else
9958 error (_("Left-hand side must be array or record."));
9959
9960 num_specs = num_component_specs (exp, *pos - 3);
9961 max_indices = 4 * num_specs + 4;
9962 indices = XALLOCAVEC (LONGEST, max_indices);
9963 indices[0] = indices[1] = low_index - 1;
9964 indices[2] = indices[3] = high_index + 1;
9965 num_indices = 4;
9966
9967 for (i = 0; i < n; i += 1)
9968 {
9969 switch (exp->elts[*pos].opcode)
9970 {
9971 case OP_CHOICES:
9972 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9973 &num_indices, max_indices,
9974 low_index, high_index);
9975 break;
9976 case OP_POSITIONAL:
9977 aggregate_assign_positional (container, lhs, exp, pos, indices,
9978 &num_indices, max_indices,
9979 low_index, high_index);
9980 break;
9981 case OP_OTHERS:
9982 if (i != n-1)
9983 error (_("Misplaced 'others' clause"));
9984 aggregate_assign_others (container, lhs, exp, pos, indices,
9985 num_indices, low_index, high_index);
9986 break;
9987 default:
9988 error (_("Internal error: bad aggregate clause"));
9989 }
9990 }
9991
9992 return container;
9993 }
9994
9995 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9996 construct at *POS, updating *POS past the construct, given that
9997 the positions are relative to lower bound LOW, where HIGH is the
9998 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9999 updating *NUM_INDICES as needed. CONTAINER is as for
10000 assign_aggregate. */
10001 static void
10002 aggregate_assign_positional (struct value *container,
10003 struct value *lhs, struct expression *exp,
10004 int *pos, LONGEST *indices, int *num_indices,
10005 int max_indices, LONGEST low, LONGEST high)
10006 {
10007 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10008
10009 if (ind - 1 == high)
10010 warning (_("Extra components in aggregate ignored."));
10011 if (ind <= high)
10012 {
10013 add_component_interval (ind, ind, indices, num_indices, max_indices);
10014 *pos += 3;
10015 assign_component (container, lhs, ind, exp, pos);
10016 }
10017 else
10018 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10019 }
10020
10021 /* Assign into the components of LHS indexed by the OP_CHOICES
10022 construct at *POS, updating *POS past the construct, given that
10023 the allowable indices are LOW..HIGH. Record the indices assigned
10024 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10025 needed. CONTAINER is as for assign_aggregate. */
10026 static void
10027 aggregate_assign_from_choices (struct value *container,
10028 struct value *lhs, struct expression *exp,
10029 int *pos, LONGEST *indices, int *num_indices,
10030 int max_indices, LONGEST low, LONGEST high)
10031 {
10032 int j;
10033 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10034 int choice_pos, expr_pc;
10035 int is_array = ada_is_direct_array_type (value_type (lhs));
10036
10037 choice_pos = *pos += 3;
10038
10039 for (j = 0; j < n_choices; j += 1)
10040 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10041 expr_pc = *pos;
10042 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10043
10044 for (j = 0; j < n_choices; j += 1)
10045 {
10046 LONGEST lower, upper;
10047 enum exp_opcode op = exp->elts[choice_pos].opcode;
10048
10049 if (op == OP_DISCRETE_RANGE)
10050 {
10051 choice_pos += 1;
10052 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10053 EVAL_NORMAL));
10054 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10055 EVAL_NORMAL));
10056 }
10057 else if (is_array)
10058 {
10059 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10060 EVAL_NORMAL));
10061 upper = lower;
10062 }
10063 else
10064 {
10065 int ind;
10066 const char *name;
10067
10068 switch (op)
10069 {
10070 case OP_NAME:
10071 name = &exp->elts[choice_pos + 2].string;
10072 break;
10073 case OP_VAR_VALUE:
10074 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10075 break;
10076 default:
10077 error (_("Invalid record component association."));
10078 }
10079 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10080 ind = 0;
10081 if (! find_struct_field (name, value_type (lhs), 0,
10082 NULL, NULL, NULL, NULL, &ind))
10083 error (_("Unknown component name: %s."), name);
10084 lower = upper = ind;
10085 }
10086
10087 if (lower <= upper && (lower < low || upper > high))
10088 error (_("Index in component association out of bounds."));
10089
10090 add_component_interval (lower, upper, indices, num_indices,
10091 max_indices);
10092 while (lower <= upper)
10093 {
10094 int pos1;
10095
10096 pos1 = expr_pc;
10097 assign_component (container, lhs, lower, exp, &pos1);
10098 lower += 1;
10099 }
10100 }
10101 }
10102
10103 /* Assign the value of the expression in the OP_OTHERS construct in
10104 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10105 have not been previously assigned. The index intervals already assigned
10106 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10107 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10108 static void
10109 aggregate_assign_others (struct value *container,
10110 struct value *lhs, struct expression *exp,
10111 int *pos, LONGEST *indices, int num_indices,
10112 LONGEST low, LONGEST high)
10113 {
10114 int i;
10115 int expr_pc = *pos + 1;
10116
10117 for (i = 0; i < num_indices - 2; i += 2)
10118 {
10119 LONGEST ind;
10120
10121 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10122 {
10123 int localpos;
10124
10125 localpos = expr_pc;
10126 assign_component (container, lhs, ind, exp, &localpos);
10127 }
10128 }
10129 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10130 }
10131
10132 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10133 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10134 modifying *SIZE as needed. It is an error if *SIZE exceeds
10135 MAX_SIZE. The resulting intervals do not overlap. */
10136 static void
10137 add_component_interval (LONGEST low, LONGEST high,
10138 LONGEST* indices, int *size, int max_size)
10139 {
10140 int i, j;
10141
10142 for (i = 0; i < *size; i += 2) {
10143 if (high >= indices[i] && low <= indices[i + 1])
10144 {
10145 int kh;
10146
10147 for (kh = i + 2; kh < *size; kh += 2)
10148 if (high < indices[kh])
10149 break;
10150 if (low < indices[i])
10151 indices[i] = low;
10152 indices[i + 1] = indices[kh - 1];
10153 if (high > indices[i + 1])
10154 indices[i + 1] = high;
10155 memcpy (indices + i + 2, indices + kh, *size - kh);
10156 *size -= kh - i - 2;
10157 return;
10158 }
10159 else if (high < indices[i])
10160 break;
10161 }
10162
10163 if (*size == max_size)
10164 error (_("Internal error: miscounted aggregate components."));
10165 *size += 2;
10166 for (j = *size-1; j >= i+2; j -= 1)
10167 indices[j] = indices[j - 2];
10168 indices[i] = low;
10169 indices[i + 1] = high;
10170 }
10171
10172 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10173 is different. */
10174
10175 static struct value *
10176 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10177 {
10178 if (type == ada_check_typedef (value_type (arg2)))
10179 return arg2;
10180
10181 if (ada_is_fixed_point_type (type))
10182 return (cast_to_fixed (type, arg2));
10183
10184 if (ada_is_fixed_point_type (value_type (arg2)))
10185 return cast_from_fixed (type, arg2);
10186
10187 return value_cast (type, arg2);
10188 }
10189
10190 /* Evaluating Ada expressions, and printing their result.
10191 ------------------------------------------------------
10192
10193 1. Introduction:
10194 ----------------
10195
10196 We usually evaluate an Ada expression in order to print its value.
10197 We also evaluate an expression in order to print its type, which
10198 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10199 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10200 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10201 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10202 similar.
10203
10204 Evaluating expressions is a little more complicated for Ada entities
10205 than it is for entities in languages such as C. The main reason for
10206 this is that Ada provides types whose definition might be dynamic.
10207 One example of such types is variant records. Or another example
10208 would be an array whose bounds can only be known at run time.
10209
10210 The following description is a general guide as to what should be
10211 done (and what should NOT be done) in order to evaluate an expression
10212 involving such types, and when. This does not cover how the semantic
10213 information is encoded by GNAT as this is covered separatly. For the
10214 document used as the reference for the GNAT encoding, see exp_dbug.ads
10215 in the GNAT sources.
10216
10217 Ideally, we should embed each part of this description next to its
10218 associated code. Unfortunately, the amount of code is so vast right
10219 now that it's hard to see whether the code handling a particular
10220 situation might be duplicated or not. One day, when the code is
10221 cleaned up, this guide might become redundant with the comments
10222 inserted in the code, and we might want to remove it.
10223
10224 2. ``Fixing'' an Entity, the Simple Case:
10225 -----------------------------------------
10226
10227 When evaluating Ada expressions, the tricky issue is that they may
10228 reference entities whose type contents and size are not statically
10229 known. Consider for instance a variant record:
10230
10231 type Rec (Empty : Boolean := True) is record
10232 case Empty is
10233 when True => null;
10234 when False => Value : Integer;
10235 end case;
10236 end record;
10237 Yes : Rec := (Empty => False, Value => 1);
10238 No : Rec := (empty => True);
10239
10240 The size and contents of that record depends on the value of the
10241 descriminant (Rec.Empty). At this point, neither the debugging
10242 information nor the associated type structure in GDB are able to
10243 express such dynamic types. So what the debugger does is to create
10244 "fixed" versions of the type that applies to the specific object.
10245 We also informally refer to this opperation as "fixing" an object,
10246 which means creating its associated fixed type.
10247
10248 Example: when printing the value of variable "Yes" above, its fixed
10249 type would look like this:
10250
10251 type Rec is record
10252 Empty : Boolean;
10253 Value : Integer;
10254 end record;
10255
10256 On the other hand, if we printed the value of "No", its fixed type
10257 would become:
10258
10259 type Rec is record
10260 Empty : Boolean;
10261 end record;
10262
10263 Things become a little more complicated when trying to fix an entity
10264 with a dynamic type that directly contains another dynamic type,
10265 such as an array of variant records, for instance. There are
10266 two possible cases: Arrays, and records.
10267
10268 3. ``Fixing'' Arrays:
10269 ---------------------
10270
10271 The type structure in GDB describes an array in terms of its bounds,
10272 and the type of its elements. By design, all elements in the array
10273 have the same type and we cannot represent an array of variant elements
10274 using the current type structure in GDB. When fixing an array,
10275 we cannot fix the array element, as we would potentially need one
10276 fixed type per element of the array. As a result, the best we can do
10277 when fixing an array is to produce an array whose bounds and size
10278 are correct (allowing us to read it from memory), but without having
10279 touched its element type. Fixing each element will be done later,
10280 when (if) necessary.
10281
10282 Arrays are a little simpler to handle than records, because the same
10283 amount of memory is allocated for each element of the array, even if
10284 the amount of space actually used by each element differs from element
10285 to element. Consider for instance the following array of type Rec:
10286
10287 type Rec_Array is array (1 .. 2) of Rec;
10288
10289 The actual amount of memory occupied by each element might be different
10290 from element to element, depending on the value of their discriminant.
10291 But the amount of space reserved for each element in the array remains
10292 fixed regardless. So we simply need to compute that size using
10293 the debugging information available, from which we can then determine
10294 the array size (we multiply the number of elements of the array by
10295 the size of each element).
10296
10297 The simplest case is when we have an array of a constrained element
10298 type. For instance, consider the following type declarations:
10299
10300 type Bounded_String (Max_Size : Integer) is
10301 Length : Integer;
10302 Buffer : String (1 .. Max_Size);
10303 end record;
10304 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10305
10306 In this case, the compiler describes the array as an array of
10307 variable-size elements (identified by its XVS suffix) for which
10308 the size can be read in the parallel XVZ variable.
10309
10310 In the case of an array of an unconstrained element type, the compiler
10311 wraps the array element inside a private PAD type. This type should not
10312 be shown to the user, and must be "unwrap"'ed before printing. Note
10313 that we also use the adjective "aligner" in our code to designate
10314 these wrapper types.
10315
10316 In some cases, the size allocated for each element is statically
10317 known. In that case, the PAD type already has the correct size,
10318 and the array element should remain unfixed.
10319
10320 But there are cases when this size is not statically known.
10321 For instance, assuming that "Five" is an integer variable:
10322
10323 type Dynamic is array (1 .. Five) of Integer;
10324 type Wrapper (Has_Length : Boolean := False) is record
10325 Data : Dynamic;
10326 case Has_Length is
10327 when True => Length : Integer;
10328 when False => null;
10329 end case;
10330 end record;
10331 type Wrapper_Array is array (1 .. 2) of Wrapper;
10332
10333 Hello : Wrapper_Array := (others => (Has_Length => True,
10334 Data => (others => 17),
10335 Length => 1));
10336
10337
10338 The debugging info would describe variable Hello as being an
10339 array of a PAD type. The size of that PAD type is not statically
10340 known, but can be determined using a parallel XVZ variable.
10341 In that case, a copy of the PAD type with the correct size should
10342 be used for the fixed array.
10343
10344 3. ``Fixing'' record type objects:
10345 ----------------------------------
10346
10347 Things are slightly different from arrays in the case of dynamic
10348 record types. In this case, in order to compute the associated
10349 fixed type, we need to determine the size and offset of each of
10350 its components. This, in turn, requires us to compute the fixed
10351 type of each of these components.
10352
10353 Consider for instance the example:
10354
10355 type Bounded_String (Max_Size : Natural) is record
10356 Str : String (1 .. Max_Size);
10357 Length : Natural;
10358 end record;
10359 My_String : Bounded_String (Max_Size => 10);
10360
10361 In that case, the position of field "Length" depends on the size
10362 of field Str, which itself depends on the value of the Max_Size
10363 discriminant. In order to fix the type of variable My_String,
10364 we need to fix the type of field Str. Therefore, fixing a variant
10365 record requires us to fix each of its components.
10366
10367 However, if a component does not have a dynamic size, the component
10368 should not be fixed. In particular, fields that use a PAD type
10369 should not fixed. Here is an example where this might happen
10370 (assuming type Rec above):
10371
10372 type Container (Big : Boolean) is record
10373 First : Rec;
10374 After : Integer;
10375 case Big is
10376 when True => Another : Integer;
10377 when False => null;
10378 end case;
10379 end record;
10380 My_Container : Container := (Big => False,
10381 First => (Empty => True),
10382 After => 42);
10383
10384 In that example, the compiler creates a PAD type for component First,
10385 whose size is constant, and then positions the component After just
10386 right after it. The offset of component After is therefore constant
10387 in this case.
10388
10389 The debugger computes the position of each field based on an algorithm
10390 that uses, among other things, the actual position and size of the field
10391 preceding it. Let's now imagine that the user is trying to print
10392 the value of My_Container. If the type fixing was recursive, we would
10393 end up computing the offset of field After based on the size of the
10394 fixed version of field First. And since in our example First has
10395 only one actual field, the size of the fixed type is actually smaller
10396 than the amount of space allocated to that field, and thus we would
10397 compute the wrong offset of field After.
10398
10399 To make things more complicated, we need to watch out for dynamic
10400 components of variant records (identified by the ___XVL suffix in
10401 the component name). Even if the target type is a PAD type, the size
10402 of that type might not be statically known. So the PAD type needs
10403 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10404 we might end up with the wrong size for our component. This can be
10405 observed with the following type declarations:
10406
10407 type Octal is new Integer range 0 .. 7;
10408 type Octal_Array is array (Positive range <>) of Octal;
10409 pragma Pack (Octal_Array);
10410
10411 type Octal_Buffer (Size : Positive) is record
10412 Buffer : Octal_Array (1 .. Size);
10413 Length : Integer;
10414 end record;
10415
10416 In that case, Buffer is a PAD type whose size is unset and needs
10417 to be computed by fixing the unwrapped type.
10418
10419 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10420 ----------------------------------------------------------
10421
10422 Lastly, when should the sub-elements of an entity that remained unfixed
10423 thus far, be actually fixed?
10424
10425 The answer is: Only when referencing that element. For instance
10426 when selecting one component of a record, this specific component
10427 should be fixed at that point in time. Or when printing the value
10428 of a record, each component should be fixed before its value gets
10429 printed. Similarly for arrays, the element of the array should be
10430 fixed when printing each element of the array, or when extracting
10431 one element out of that array. On the other hand, fixing should
10432 not be performed on the elements when taking a slice of an array!
10433
10434 Note that one of the side-effects of miscomputing the offset and
10435 size of each field is that we end up also miscomputing the size
10436 of the containing type. This can have adverse results when computing
10437 the value of an entity. GDB fetches the value of an entity based
10438 on the size of its type, and thus a wrong size causes GDB to fetch
10439 the wrong amount of memory. In the case where the computed size is
10440 too small, GDB fetches too little data to print the value of our
10441 entiry. Results in this case as unpredicatble, as we usually read
10442 past the buffer containing the data =:-o. */
10443
10444 /* Implement the evaluate_exp routine in the exp_descriptor structure
10445 for the Ada language. */
10446
10447 static struct value *
10448 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10449 int *pos, enum noside noside)
10450 {
10451 enum exp_opcode op;
10452 int tem;
10453 int pc;
10454 int preeval_pos;
10455 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10456 struct type *type;
10457 int nargs, oplen;
10458 struct value **argvec;
10459
10460 pc = *pos;
10461 *pos += 1;
10462 op = exp->elts[pc].opcode;
10463
10464 switch (op)
10465 {
10466 default:
10467 *pos -= 1;
10468 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10469
10470 if (noside == EVAL_NORMAL)
10471 arg1 = unwrap_value (arg1);
10472
10473 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10474 then we need to perform the conversion manually, because
10475 evaluate_subexp_standard doesn't do it. This conversion is
10476 necessary in Ada because the different kinds of float/fixed
10477 types in Ada have different representations.
10478
10479 Similarly, we need to perform the conversion from OP_LONG
10480 ourselves. */
10481 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10482 arg1 = ada_value_cast (expect_type, arg1, noside);
10483
10484 return arg1;
10485
10486 case OP_STRING:
10487 {
10488 struct value *result;
10489
10490 *pos -= 1;
10491 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10492 /* The result type will have code OP_STRING, bashed there from
10493 OP_ARRAY. Bash it back. */
10494 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10495 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10496 return result;
10497 }
10498
10499 case UNOP_CAST:
10500 (*pos) += 2;
10501 type = exp->elts[pc + 1].type;
10502 arg1 = evaluate_subexp (type, exp, pos, noside);
10503 if (noside == EVAL_SKIP)
10504 goto nosideret;
10505 arg1 = ada_value_cast (type, arg1, noside);
10506 return arg1;
10507
10508 case UNOP_QUAL:
10509 (*pos) += 2;
10510 type = exp->elts[pc + 1].type;
10511 return ada_evaluate_subexp (type, exp, pos, noside);
10512
10513 case BINOP_ASSIGN:
10514 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10515 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10516 {
10517 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10518 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10519 return arg1;
10520 return ada_value_assign (arg1, arg1);
10521 }
10522 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10523 except if the lhs of our assignment is a convenience variable.
10524 In the case of assigning to a convenience variable, the lhs
10525 should be exactly the result of the evaluation of the rhs. */
10526 type = value_type (arg1);
10527 if (VALUE_LVAL (arg1) == lval_internalvar)
10528 type = NULL;
10529 arg2 = evaluate_subexp (type, exp, pos, noside);
10530 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10531 return arg1;
10532 if (ada_is_fixed_point_type (value_type (arg1)))
10533 arg2 = cast_to_fixed (value_type (arg1), arg2);
10534 else if (ada_is_fixed_point_type (value_type (arg2)))
10535 error
10536 (_("Fixed-point values must be assigned to fixed-point variables"));
10537 else
10538 arg2 = coerce_for_assign (value_type (arg1), arg2);
10539 return ada_value_assign (arg1, arg2);
10540
10541 case BINOP_ADD:
10542 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10543 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10544 if (noside == EVAL_SKIP)
10545 goto nosideret;
10546 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10547 return (value_from_longest
10548 (value_type (arg1),
10549 value_as_long (arg1) + value_as_long (arg2)));
10550 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10551 return (value_from_longest
10552 (value_type (arg2),
10553 value_as_long (arg1) + value_as_long (arg2)));
10554 if ((ada_is_fixed_point_type (value_type (arg1))
10555 || ada_is_fixed_point_type (value_type (arg2)))
10556 && value_type (arg1) != value_type (arg2))
10557 error (_("Operands of fixed-point addition must have the same type"));
10558 /* Do the addition, and cast the result to the type of the first
10559 argument. We cannot cast the result to a reference type, so if
10560 ARG1 is a reference type, find its underlying type. */
10561 type = value_type (arg1);
10562 while (TYPE_CODE (type) == TYPE_CODE_REF)
10563 type = TYPE_TARGET_TYPE (type);
10564 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10565 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10566
10567 case BINOP_SUB:
10568 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10569 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10570 if (noside == EVAL_SKIP)
10571 goto nosideret;
10572 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10573 return (value_from_longest
10574 (value_type (arg1),
10575 value_as_long (arg1) - value_as_long (arg2)));
10576 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10577 return (value_from_longest
10578 (value_type (arg2),
10579 value_as_long (arg1) - value_as_long (arg2)));
10580 if ((ada_is_fixed_point_type (value_type (arg1))
10581 || ada_is_fixed_point_type (value_type (arg2)))
10582 && value_type (arg1) != value_type (arg2))
10583 error (_("Operands of fixed-point subtraction "
10584 "must have the same type"));
10585 /* Do the substraction, and cast the result to the type of the first
10586 argument. We cannot cast the result to a reference type, so if
10587 ARG1 is a reference type, find its underlying type. */
10588 type = value_type (arg1);
10589 while (TYPE_CODE (type) == TYPE_CODE_REF)
10590 type = TYPE_TARGET_TYPE (type);
10591 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10592 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10593
10594 case BINOP_MUL:
10595 case BINOP_DIV:
10596 case BINOP_REM:
10597 case BINOP_MOD:
10598 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10599 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10600 if (noside == EVAL_SKIP)
10601 goto nosideret;
10602 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10603 {
10604 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10605 return value_zero (value_type (arg1), not_lval);
10606 }
10607 else
10608 {
10609 type = builtin_type (exp->gdbarch)->builtin_double;
10610 if (ada_is_fixed_point_type (value_type (arg1)))
10611 arg1 = cast_from_fixed (type, arg1);
10612 if (ada_is_fixed_point_type (value_type (arg2)))
10613 arg2 = cast_from_fixed (type, arg2);
10614 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10615 return ada_value_binop (arg1, arg2, op);
10616 }
10617
10618 case BINOP_EQUAL:
10619 case BINOP_NOTEQUAL:
10620 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10621 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10622 if (noside == EVAL_SKIP)
10623 goto nosideret;
10624 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10625 tem = 0;
10626 else
10627 {
10628 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10629 tem = ada_value_equal (arg1, arg2);
10630 }
10631 if (op == BINOP_NOTEQUAL)
10632 tem = !tem;
10633 type = language_bool_type (exp->language_defn, exp->gdbarch);
10634 return value_from_longest (type, (LONGEST) tem);
10635
10636 case UNOP_NEG:
10637 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10638 if (noside == EVAL_SKIP)
10639 goto nosideret;
10640 else if (ada_is_fixed_point_type (value_type (arg1)))
10641 return value_cast (value_type (arg1), value_neg (arg1));
10642 else
10643 {
10644 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10645 return value_neg (arg1);
10646 }
10647
10648 case BINOP_LOGICAL_AND:
10649 case BINOP_LOGICAL_OR:
10650 case UNOP_LOGICAL_NOT:
10651 {
10652 struct value *val;
10653
10654 *pos -= 1;
10655 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10656 type = language_bool_type (exp->language_defn, exp->gdbarch);
10657 return value_cast (type, val);
10658 }
10659
10660 case BINOP_BITWISE_AND:
10661 case BINOP_BITWISE_IOR:
10662 case BINOP_BITWISE_XOR:
10663 {
10664 struct value *val;
10665
10666 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10667 *pos = pc;
10668 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10669
10670 return value_cast (value_type (arg1), val);
10671 }
10672
10673 case OP_VAR_VALUE:
10674 *pos -= 1;
10675
10676 if (noside == EVAL_SKIP)
10677 {
10678 *pos += 4;
10679 goto nosideret;
10680 }
10681
10682 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10683 /* Only encountered when an unresolved symbol occurs in a
10684 context other than a function call, in which case, it is
10685 invalid. */
10686 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10687 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10688
10689 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10690 {
10691 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10692 /* Check to see if this is a tagged type. We also need to handle
10693 the case where the type is a reference to a tagged type, but
10694 we have to be careful to exclude pointers to tagged types.
10695 The latter should be shown as usual (as a pointer), whereas
10696 a reference should mostly be transparent to the user. */
10697 if (ada_is_tagged_type (type, 0)
10698 || (TYPE_CODE (type) == TYPE_CODE_REF
10699 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10700 {
10701 /* Tagged types are a little special in the fact that the real
10702 type is dynamic and can only be determined by inspecting the
10703 object's tag. This means that we need to get the object's
10704 value first (EVAL_NORMAL) and then extract the actual object
10705 type from its tag.
10706
10707 Note that we cannot skip the final step where we extract
10708 the object type from its tag, because the EVAL_NORMAL phase
10709 results in dynamic components being resolved into fixed ones.
10710 This can cause problems when trying to print the type
10711 description of tagged types whose parent has a dynamic size:
10712 We use the type name of the "_parent" component in order
10713 to print the name of the ancestor type in the type description.
10714 If that component had a dynamic size, the resolution into
10715 a fixed type would result in the loss of that type name,
10716 thus preventing us from printing the name of the ancestor
10717 type in the type description. */
10718 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10719
10720 if (TYPE_CODE (type) != TYPE_CODE_REF)
10721 {
10722 struct type *actual_type;
10723
10724 actual_type = type_from_tag (ada_value_tag (arg1));
10725 if (actual_type == NULL)
10726 /* If, for some reason, we were unable to determine
10727 the actual type from the tag, then use the static
10728 approximation that we just computed as a fallback.
10729 This can happen if the debugging information is
10730 incomplete, for instance. */
10731 actual_type = type;
10732 return value_zero (actual_type, not_lval);
10733 }
10734 else
10735 {
10736 /* In the case of a ref, ada_coerce_ref takes care
10737 of determining the actual type. But the evaluation
10738 should return a ref as it should be valid to ask
10739 for its address; so rebuild a ref after coerce. */
10740 arg1 = ada_coerce_ref (arg1);
10741 return value_ref (arg1);
10742 }
10743 }
10744
10745 /* Records and unions for which GNAT encodings have been
10746 generated need to be statically fixed as well.
10747 Otherwise, non-static fixing produces a type where
10748 all dynamic properties are removed, which prevents "ptype"
10749 from being able to completely describe the type.
10750 For instance, a case statement in a variant record would be
10751 replaced by the relevant components based on the actual
10752 value of the discriminants. */
10753 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10754 && dynamic_template_type (type) != NULL)
10755 || (TYPE_CODE (type) == TYPE_CODE_UNION
10756 && ada_find_parallel_type (type, "___XVU") != NULL))
10757 {
10758 *pos += 4;
10759 return value_zero (to_static_fixed_type (type), not_lval);
10760 }
10761 }
10762
10763 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10764 return ada_to_fixed_value (arg1);
10765
10766 case OP_FUNCALL:
10767 (*pos) += 2;
10768
10769 /* Allocate arg vector, including space for the function to be
10770 called in argvec[0] and a terminating NULL. */
10771 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10772 argvec = XALLOCAVEC (struct value *, nargs + 2);
10773
10774 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10775 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10776 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10777 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10778 else
10779 {
10780 for (tem = 0; tem <= nargs; tem += 1)
10781 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10782 argvec[tem] = 0;
10783
10784 if (noside == EVAL_SKIP)
10785 goto nosideret;
10786 }
10787
10788 if (ada_is_constrained_packed_array_type
10789 (desc_base_type (value_type (argvec[0]))))
10790 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10791 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10792 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10793 /* This is a packed array that has already been fixed, and
10794 therefore already coerced to a simple array. Nothing further
10795 to do. */
10796 ;
10797 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10798 {
10799 /* Make sure we dereference references so that all the code below
10800 feels like it's really handling the referenced value. Wrapping
10801 types (for alignment) may be there, so make sure we strip them as
10802 well. */
10803 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10804 }
10805 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10806 && VALUE_LVAL (argvec[0]) == lval_memory)
10807 argvec[0] = value_addr (argvec[0]);
10808
10809 type = ada_check_typedef (value_type (argvec[0]));
10810
10811 /* Ada allows us to implicitly dereference arrays when subscripting
10812 them. So, if this is an array typedef (encoding use for array
10813 access types encoded as fat pointers), strip it now. */
10814 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10815 type = ada_typedef_target_type (type);
10816
10817 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10818 {
10819 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10820 {
10821 case TYPE_CODE_FUNC:
10822 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10823 break;
10824 case TYPE_CODE_ARRAY:
10825 break;
10826 case TYPE_CODE_STRUCT:
10827 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10828 argvec[0] = ada_value_ind (argvec[0]);
10829 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10830 break;
10831 default:
10832 error (_("cannot subscript or call something of type `%s'"),
10833 ada_type_name (value_type (argvec[0])));
10834 break;
10835 }
10836 }
10837
10838 switch (TYPE_CODE (type))
10839 {
10840 case TYPE_CODE_FUNC:
10841 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10842 {
10843 struct type *rtype = TYPE_TARGET_TYPE (type);
10844
10845 if (TYPE_GNU_IFUNC (type))
10846 return allocate_value (TYPE_TARGET_TYPE (rtype));
10847 return allocate_value (rtype);
10848 }
10849 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10850 case TYPE_CODE_INTERNAL_FUNCTION:
10851 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10852 /* We don't know anything about what the internal
10853 function might return, but we have to return
10854 something. */
10855 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10856 not_lval);
10857 else
10858 return call_internal_function (exp->gdbarch, exp->language_defn,
10859 argvec[0], nargs, argvec + 1);
10860
10861 case TYPE_CODE_STRUCT:
10862 {
10863 int arity;
10864
10865 arity = ada_array_arity (type);
10866 type = ada_array_element_type (type, nargs);
10867 if (type == NULL)
10868 error (_("cannot subscript or call a record"));
10869 if (arity != nargs)
10870 error (_("wrong number of subscripts; expecting %d"), arity);
10871 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10872 return value_zero (ada_aligned_type (type), lval_memory);
10873 return
10874 unwrap_value (ada_value_subscript
10875 (argvec[0], nargs, argvec + 1));
10876 }
10877 case TYPE_CODE_ARRAY:
10878 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10879 {
10880 type = ada_array_element_type (type, nargs);
10881 if (type == NULL)
10882 error (_("element type of array unknown"));
10883 else
10884 return value_zero (ada_aligned_type (type), lval_memory);
10885 }
10886 return
10887 unwrap_value (ada_value_subscript
10888 (ada_coerce_to_simple_array (argvec[0]),
10889 nargs, argvec + 1));
10890 case TYPE_CODE_PTR: /* Pointer to array */
10891 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10892 {
10893 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10894 type = ada_array_element_type (type, nargs);
10895 if (type == NULL)
10896 error (_("element type of array unknown"));
10897 else
10898 return value_zero (ada_aligned_type (type), lval_memory);
10899 }
10900 return
10901 unwrap_value (ada_value_ptr_subscript (argvec[0],
10902 nargs, argvec + 1));
10903
10904 default:
10905 error (_("Attempt to index or call something other than an "
10906 "array or function"));
10907 }
10908
10909 case TERNOP_SLICE:
10910 {
10911 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10912 struct value *low_bound_val =
10913 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10914 struct value *high_bound_val =
10915 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10916 LONGEST low_bound;
10917 LONGEST high_bound;
10918
10919 low_bound_val = coerce_ref (low_bound_val);
10920 high_bound_val = coerce_ref (high_bound_val);
10921 low_bound = value_as_long (low_bound_val);
10922 high_bound = value_as_long (high_bound_val);
10923
10924 if (noside == EVAL_SKIP)
10925 goto nosideret;
10926
10927 /* If this is a reference to an aligner type, then remove all
10928 the aligners. */
10929 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10930 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10931 TYPE_TARGET_TYPE (value_type (array)) =
10932 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10933
10934 if (ada_is_constrained_packed_array_type (value_type (array)))
10935 error (_("cannot slice a packed array"));
10936
10937 /* If this is a reference to an array or an array lvalue,
10938 convert to a pointer. */
10939 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10940 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10941 && VALUE_LVAL (array) == lval_memory))
10942 array = value_addr (array);
10943
10944 if (noside == EVAL_AVOID_SIDE_EFFECTS
10945 && ada_is_array_descriptor_type (ada_check_typedef
10946 (value_type (array))))
10947 return empty_array (ada_type_of_array (array, 0), low_bound);
10948
10949 array = ada_coerce_to_simple_array_ptr (array);
10950
10951 /* If we have more than one level of pointer indirection,
10952 dereference the value until we get only one level. */
10953 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10954 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10955 == TYPE_CODE_PTR))
10956 array = value_ind (array);
10957
10958 /* Make sure we really do have an array type before going further,
10959 to avoid a SEGV when trying to get the index type or the target
10960 type later down the road if the debug info generated by
10961 the compiler is incorrect or incomplete. */
10962 if (!ada_is_simple_array_type (value_type (array)))
10963 error (_("cannot take slice of non-array"));
10964
10965 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10966 == TYPE_CODE_PTR)
10967 {
10968 struct type *type0 = ada_check_typedef (value_type (array));
10969
10970 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10971 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10972 else
10973 {
10974 struct type *arr_type0 =
10975 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10976
10977 return ada_value_slice_from_ptr (array, arr_type0,
10978 longest_to_int (low_bound),
10979 longest_to_int (high_bound));
10980 }
10981 }
10982 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10983 return array;
10984 else if (high_bound < low_bound)
10985 return empty_array (value_type (array), low_bound);
10986 else
10987 return ada_value_slice (array, longest_to_int (low_bound),
10988 longest_to_int (high_bound));
10989 }
10990
10991 case UNOP_IN_RANGE:
10992 (*pos) += 2;
10993 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10994 type = check_typedef (exp->elts[pc + 1].type);
10995
10996 if (noside == EVAL_SKIP)
10997 goto nosideret;
10998
10999 switch (TYPE_CODE (type))
11000 {
11001 default:
11002 lim_warning (_("Membership test incompletely implemented; "
11003 "always returns true"));
11004 type = language_bool_type (exp->language_defn, exp->gdbarch);
11005 return value_from_longest (type, (LONGEST) 1);
11006
11007 case TYPE_CODE_RANGE:
11008 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11009 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11010 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11011 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11012 type = language_bool_type (exp->language_defn, exp->gdbarch);
11013 return
11014 value_from_longest (type,
11015 (value_less (arg1, arg3)
11016 || value_equal (arg1, arg3))
11017 && (value_less (arg2, arg1)
11018 || value_equal (arg2, arg1)));
11019 }
11020
11021 case BINOP_IN_BOUNDS:
11022 (*pos) += 2;
11023 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11024 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11025
11026 if (noside == EVAL_SKIP)
11027 goto nosideret;
11028
11029 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11030 {
11031 type = language_bool_type (exp->language_defn, exp->gdbarch);
11032 return value_zero (type, not_lval);
11033 }
11034
11035 tem = longest_to_int (exp->elts[pc + 1].longconst);
11036
11037 type = ada_index_type (value_type (arg2), tem, "range");
11038 if (!type)
11039 type = value_type (arg1);
11040
11041 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11042 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11043
11044 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11045 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11046 type = language_bool_type (exp->language_defn, exp->gdbarch);
11047 return
11048 value_from_longest (type,
11049 (value_less (arg1, arg3)
11050 || value_equal (arg1, arg3))
11051 && (value_less (arg2, arg1)
11052 || value_equal (arg2, arg1)));
11053
11054 case TERNOP_IN_RANGE:
11055 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11056 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11057 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11058
11059 if (noside == EVAL_SKIP)
11060 goto nosideret;
11061
11062 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11063 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11064 type = language_bool_type (exp->language_defn, exp->gdbarch);
11065 return
11066 value_from_longest (type,
11067 (value_less (arg1, arg3)
11068 || value_equal (arg1, arg3))
11069 && (value_less (arg2, arg1)
11070 || value_equal (arg2, arg1)));
11071
11072 case OP_ATR_FIRST:
11073 case OP_ATR_LAST:
11074 case OP_ATR_LENGTH:
11075 {
11076 struct type *type_arg;
11077
11078 if (exp->elts[*pos].opcode == OP_TYPE)
11079 {
11080 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11081 arg1 = NULL;
11082 type_arg = check_typedef (exp->elts[pc + 2].type);
11083 }
11084 else
11085 {
11086 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11087 type_arg = NULL;
11088 }
11089
11090 if (exp->elts[*pos].opcode != OP_LONG)
11091 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11092 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11093 *pos += 4;
11094
11095 if (noside == EVAL_SKIP)
11096 goto nosideret;
11097
11098 if (type_arg == NULL)
11099 {
11100 arg1 = ada_coerce_ref (arg1);
11101
11102 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11103 arg1 = ada_coerce_to_simple_array (arg1);
11104
11105 if (op == OP_ATR_LENGTH)
11106 type = builtin_type (exp->gdbarch)->builtin_int;
11107 else
11108 {
11109 type = ada_index_type (value_type (arg1), tem,
11110 ada_attribute_name (op));
11111 if (type == NULL)
11112 type = builtin_type (exp->gdbarch)->builtin_int;
11113 }
11114
11115 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11116 return allocate_value (type);
11117
11118 switch (op)
11119 {
11120 default: /* Should never happen. */
11121 error (_("unexpected attribute encountered"));
11122 case OP_ATR_FIRST:
11123 return value_from_longest
11124 (type, ada_array_bound (arg1, tem, 0));
11125 case OP_ATR_LAST:
11126 return value_from_longest
11127 (type, ada_array_bound (arg1, tem, 1));
11128 case OP_ATR_LENGTH:
11129 return value_from_longest
11130 (type, ada_array_length (arg1, tem));
11131 }
11132 }
11133 else if (discrete_type_p (type_arg))
11134 {
11135 struct type *range_type;
11136 const char *name = ada_type_name (type_arg);
11137
11138 range_type = NULL;
11139 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11140 range_type = to_fixed_range_type (type_arg, NULL);
11141 if (range_type == NULL)
11142 range_type = type_arg;
11143 switch (op)
11144 {
11145 default:
11146 error (_("unexpected attribute encountered"));
11147 case OP_ATR_FIRST:
11148 return value_from_longest
11149 (range_type, ada_discrete_type_low_bound (range_type));
11150 case OP_ATR_LAST:
11151 return value_from_longest
11152 (range_type, ada_discrete_type_high_bound (range_type));
11153 case OP_ATR_LENGTH:
11154 error (_("the 'length attribute applies only to array types"));
11155 }
11156 }
11157 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11158 error (_("unimplemented type attribute"));
11159 else
11160 {
11161 LONGEST low, high;
11162
11163 if (ada_is_constrained_packed_array_type (type_arg))
11164 type_arg = decode_constrained_packed_array_type (type_arg);
11165
11166 if (op == OP_ATR_LENGTH)
11167 type = builtin_type (exp->gdbarch)->builtin_int;
11168 else
11169 {
11170 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11171 if (type == NULL)
11172 type = builtin_type (exp->gdbarch)->builtin_int;
11173 }
11174
11175 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11176 return allocate_value (type);
11177
11178 switch (op)
11179 {
11180 default:
11181 error (_("unexpected attribute encountered"));
11182 case OP_ATR_FIRST:
11183 low = ada_array_bound_from_type (type_arg, tem, 0);
11184 return value_from_longest (type, low);
11185 case OP_ATR_LAST:
11186 high = ada_array_bound_from_type (type_arg, tem, 1);
11187 return value_from_longest (type, high);
11188 case OP_ATR_LENGTH:
11189 low = ada_array_bound_from_type (type_arg, tem, 0);
11190 high = ada_array_bound_from_type (type_arg, tem, 1);
11191 return value_from_longest (type, high - low + 1);
11192 }
11193 }
11194 }
11195
11196 case OP_ATR_TAG:
11197 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11198 if (noside == EVAL_SKIP)
11199 goto nosideret;
11200
11201 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11202 return value_zero (ada_tag_type (arg1), not_lval);
11203
11204 return ada_value_tag (arg1);
11205
11206 case OP_ATR_MIN:
11207 case OP_ATR_MAX:
11208 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11209 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11210 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11211 if (noside == EVAL_SKIP)
11212 goto nosideret;
11213 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11214 return value_zero (value_type (arg1), not_lval);
11215 else
11216 {
11217 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11218 return value_binop (arg1, arg2,
11219 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11220 }
11221
11222 case OP_ATR_MODULUS:
11223 {
11224 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11225
11226 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11227 if (noside == EVAL_SKIP)
11228 goto nosideret;
11229
11230 if (!ada_is_modular_type (type_arg))
11231 error (_("'modulus must be applied to modular type"));
11232
11233 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11234 ada_modulus (type_arg));
11235 }
11236
11237
11238 case OP_ATR_POS:
11239 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11240 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11241 if (noside == EVAL_SKIP)
11242 goto nosideret;
11243 type = builtin_type (exp->gdbarch)->builtin_int;
11244 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11245 return value_zero (type, not_lval);
11246 else
11247 return value_pos_atr (type, arg1);
11248
11249 case OP_ATR_SIZE:
11250 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11251 type = value_type (arg1);
11252
11253 /* If the argument is a reference, then dereference its type, since
11254 the user is really asking for the size of the actual object,
11255 not the size of the pointer. */
11256 if (TYPE_CODE (type) == TYPE_CODE_REF)
11257 type = TYPE_TARGET_TYPE (type);
11258
11259 if (noside == EVAL_SKIP)
11260 goto nosideret;
11261 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11262 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11263 else
11264 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11265 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11266
11267 case OP_ATR_VAL:
11268 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11269 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11270 type = exp->elts[pc + 2].type;
11271 if (noside == EVAL_SKIP)
11272 goto nosideret;
11273 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11274 return value_zero (type, not_lval);
11275 else
11276 return value_val_atr (type, arg1);
11277
11278 case BINOP_EXP:
11279 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11280 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11281 if (noside == EVAL_SKIP)
11282 goto nosideret;
11283 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11284 return value_zero (value_type (arg1), not_lval);
11285 else
11286 {
11287 /* For integer exponentiation operations,
11288 only promote the first argument. */
11289 if (is_integral_type (value_type (arg2)))
11290 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11291 else
11292 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11293
11294 return value_binop (arg1, arg2, op);
11295 }
11296
11297 case UNOP_PLUS:
11298 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11299 if (noside == EVAL_SKIP)
11300 goto nosideret;
11301 else
11302 return arg1;
11303
11304 case UNOP_ABS:
11305 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11306 if (noside == EVAL_SKIP)
11307 goto nosideret;
11308 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11309 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11310 return value_neg (arg1);
11311 else
11312 return arg1;
11313
11314 case UNOP_IND:
11315 preeval_pos = *pos;
11316 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11317 if (noside == EVAL_SKIP)
11318 goto nosideret;
11319 type = ada_check_typedef (value_type (arg1));
11320 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11321 {
11322 if (ada_is_array_descriptor_type (type))
11323 /* GDB allows dereferencing GNAT array descriptors. */
11324 {
11325 struct type *arrType = ada_type_of_array (arg1, 0);
11326
11327 if (arrType == NULL)
11328 error (_("Attempt to dereference null array pointer."));
11329 return value_at_lazy (arrType, 0);
11330 }
11331 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11332 || TYPE_CODE (type) == TYPE_CODE_REF
11333 /* In C you can dereference an array to get the 1st elt. */
11334 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11335 {
11336 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11337 only be determined by inspecting the object's tag.
11338 This means that we need to evaluate completely the
11339 expression in order to get its type. */
11340
11341 if ((TYPE_CODE (type) == TYPE_CODE_REF
11342 || TYPE_CODE (type) == TYPE_CODE_PTR)
11343 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11344 {
11345 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11346 EVAL_NORMAL);
11347 type = value_type (ada_value_ind (arg1));
11348 }
11349 else
11350 {
11351 type = to_static_fixed_type
11352 (ada_aligned_type
11353 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11354 }
11355 ada_ensure_varsize_limit (type);
11356 return value_zero (type, lval_memory);
11357 }
11358 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11359 {
11360 /* GDB allows dereferencing an int. */
11361 if (expect_type == NULL)
11362 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11363 lval_memory);
11364 else
11365 {
11366 expect_type =
11367 to_static_fixed_type (ada_aligned_type (expect_type));
11368 return value_zero (expect_type, lval_memory);
11369 }
11370 }
11371 else
11372 error (_("Attempt to take contents of a non-pointer value."));
11373 }
11374 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11375 type = ada_check_typedef (value_type (arg1));
11376
11377 if (TYPE_CODE (type) == TYPE_CODE_INT)
11378 /* GDB allows dereferencing an int. If we were given
11379 the expect_type, then use that as the target type.
11380 Otherwise, assume that the target type is an int. */
11381 {
11382 if (expect_type != NULL)
11383 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11384 arg1));
11385 else
11386 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11387 (CORE_ADDR) value_as_address (arg1));
11388 }
11389
11390 if (ada_is_array_descriptor_type (type))
11391 /* GDB allows dereferencing GNAT array descriptors. */
11392 return ada_coerce_to_simple_array (arg1);
11393 else
11394 return ada_value_ind (arg1);
11395
11396 case STRUCTOP_STRUCT:
11397 tem = longest_to_int (exp->elts[pc + 1].longconst);
11398 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11399 preeval_pos = *pos;
11400 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11401 if (noside == EVAL_SKIP)
11402 goto nosideret;
11403 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11404 {
11405 struct type *type1 = value_type (arg1);
11406
11407 if (ada_is_tagged_type (type1, 1))
11408 {
11409 type = ada_lookup_struct_elt_type (type1,
11410 &exp->elts[pc + 2].string,
11411 1, 1, NULL);
11412
11413 /* If the field is not found, check if it exists in the
11414 extension of this object's type. This means that we
11415 need to evaluate completely the expression. */
11416
11417 if (type == NULL)
11418 {
11419 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11420 EVAL_NORMAL);
11421 arg1 = ada_value_struct_elt (arg1,
11422 &exp->elts[pc + 2].string,
11423 0);
11424 arg1 = unwrap_value (arg1);
11425 type = value_type (ada_to_fixed_value (arg1));
11426 }
11427 }
11428 else
11429 type =
11430 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11431 0, NULL);
11432
11433 return value_zero (ada_aligned_type (type), lval_memory);
11434 }
11435 else
11436 {
11437 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11438 arg1 = unwrap_value (arg1);
11439 return ada_to_fixed_value (arg1);
11440 }
11441
11442 case OP_TYPE:
11443 /* The value is not supposed to be used. This is here to make it
11444 easier to accommodate expressions that contain types. */
11445 (*pos) += 2;
11446 if (noside == EVAL_SKIP)
11447 goto nosideret;
11448 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11449 return allocate_value (exp->elts[pc + 1].type);
11450 else
11451 error (_("Attempt to use a type name as an expression"));
11452
11453 case OP_AGGREGATE:
11454 case OP_CHOICES:
11455 case OP_OTHERS:
11456 case OP_DISCRETE_RANGE:
11457 case OP_POSITIONAL:
11458 case OP_NAME:
11459 if (noside == EVAL_NORMAL)
11460 switch (op)
11461 {
11462 case OP_NAME:
11463 error (_("Undefined name, ambiguous name, or renaming used in "
11464 "component association: %s."), &exp->elts[pc+2].string);
11465 case OP_AGGREGATE:
11466 error (_("Aggregates only allowed on the right of an assignment"));
11467 default:
11468 internal_error (__FILE__, __LINE__,
11469 _("aggregate apparently mangled"));
11470 }
11471
11472 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11473 *pos += oplen - 1;
11474 for (tem = 0; tem < nargs; tem += 1)
11475 ada_evaluate_subexp (NULL, exp, pos, noside);
11476 goto nosideret;
11477 }
11478
11479 nosideret:
11480 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11481 }
11482 \f
11483
11484 /* Fixed point */
11485
11486 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11487 type name that encodes the 'small and 'delta information.
11488 Otherwise, return NULL. */
11489
11490 static const char *
11491 fixed_type_info (struct type *type)
11492 {
11493 const char *name = ada_type_name (type);
11494 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11495
11496 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11497 {
11498 const char *tail = strstr (name, "___XF_");
11499
11500 if (tail == NULL)
11501 return NULL;
11502 else
11503 return tail + 5;
11504 }
11505 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11506 return fixed_type_info (TYPE_TARGET_TYPE (type));
11507 else
11508 return NULL;
11509 }
11510
11511 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11512
11513 int
11514 ada_is_fixed_point_type (struct type *type)
11515 {
11516 return fixed_type_info (type) != NULL;
11517 }
11518
11519 /* Return non-zero iff TYPE represents a System.Address type. */
11520
11521 int
11522 ada_is_system_address_type (struct type *type)
11523 {
11524 return (TYPE_NAME (type)
11525 && strcmp (TYPE_NAME (type), "system__address") == 0);
11526 }
11527
11528 /* Assuming that TYPE is the representation of an Ada fixed-point
11529 type, return its delta, or -1 if the type is malformed and the
11530 delta cannot be determined. */
11531
11532 DOUBLEST
11533 ada_delta (struct type *type)
11534 {
11535 const char *encoding = fixed_type_info (type);
11536 DOUBLEST num, den;
11537
11538 /* Strictly speaking, num and den are encoded as integer. However,
11539 they may not fit into a long, and they will have to be converted
11540 to DOUBLEST anyway. So scan them as DOUBLEST. */
11541 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11542 &num, &den) < 2)
11543 return -1.0;
11544 else
11545 return num / den;
11546 }
11547
11548 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11549 factor ('SMALL value) associated with the type. */
11550
11551 static DOUBLEST
11552 scaling_factor (struct type *type)
11553 {
11554 const char *encoding = fixed_type_info (type);
11555 DOUBLEST num0, den0, num1, den1;
11556 int n;
11557
11558 /* Strictly speaking, num's and den's are encoded as integer. However,
11559 they may not fit into a long, and they will have to be converted
11560 to DOUBLEST anyway. So scan them as DOUBLEST. */
11561 n = sscanf (encoding,
11562 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11563 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11564 &num0, &den0, &num1, &den1);
11565
11566 if (n < 2)
11567 return 1.0;
11568 else if (n == 4)
11569 return num1 / den1;
11570 else
11571 return num0 / den0;
11572 }
11573
11574
11575 /* Assuming that X is the representation of a value of fixed-point
11576 type TYPE, return its floating-point equivalent. */
11577
11578 DOUBLEST
11579 ada_fixed_to_float (struct type *type, LONGEST x)
11580 {
11581 return (DOUBLEST) x *scaling_factor (type);
11582 }
11583
11584 /* The representation of a fixed-point value of type TYPE
11585 corresponding to the value X. */
11586
11587 LONGEST
11588 ada_float_to_fixed (struct type *type, DOUBLEST x)
11589 {
11590 return (LONGEST) (x / scaling_factor (type) + 0.5);
11591 }
11592
11593 \f
11594
11595 /* Range types */
11596
11597 /* Scan STR beginning at position K for a discriminant name, and
11598 return the value of that discriminant field of DVAL in *PX. If
11599 PNEW_K is not null, put the position of the character beyond the
11600 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11601 not alter *PX and *PNEW_K if unsuccessful. */
11602
11603 static int
11604 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11605 int *pnew_k)
11606 {
11607 static char *bound_buffer = NULL;
11608 static size_t bound_buffer_len = 0;
11609 const char *pstart, *pend, *bound;
11610 struct value *bound_val;
11611
11612 if (dval == NULL || str == NULL || str[k] == '\0')
11613 return 0;
11614
11615 pstart = str + k;
11616 pend = strstr (pstart, "__");
11617 if (pend == NULL)
11618 {
11619 bound = pstart;
11620 k += strlen (bound);
11621 }
11622 else
11623 {
11624 int len = pend - pstart;
11625
11626 /* Strip __ and beyond. */
11627 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11628 strncpy (bound_buffer, pstart, len);
11629 bound_buffer[len] = '\0';
11630
11631 bound = bound_buffer;
11632 k = pend - str;
11633 }
11634
11635 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11636 if (bound_val == NULL)
11637 return 0;
11638
11639 *px = value_as_long (bound_val);
11640 if (pnew_k != NULL)
11641 *pnew_k = k;
11642 return 1;
11643 }
11644
11645 /* Value of variable named NAME in the current environment. If
11646 no such variable found, then if ERR_MSG is null, returns 0, and
11647 otherwise causes an error with message ERR_MSG. */
11648
11649 static struct value *
11650 get_var_value (char *name, char *err_msg)
11651 {
11652 struct block_symbol *syms;
11653 int nsyms;
11654
11655 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11656 &syms);
11657
11658 if (nsyms != 1)
11659 {
11660 if (err_msg == NULL)
11661 return 0;
11662 else
11663 error (("%s"), err_msg);
11664 }
11665
11666 return value_of_variable (syms[0].symbol, syms[0].block);
11667 }
11668
11669 /* Value of integer variable named NAME in the current environment. If
11670 no such variable found, returns 0, and sets *FLAG to 0. If
11671 successful, sets *FLAG to 1. */
11672
11673 LONGEST
11674 get_int_var_value (char *name, int *flag)
11675 {
11676 struct value *var_val = get_var_value (name, 0);
11677
11678 if (var_val == 0)
11679 {
11680 if (flag != NULL)
11681 *flag = 0;
11682 return 0;
11683 }
11684 else
11685 {
11686 if (flag != NULL)
11687 *flag = 1;
11688 return value_as_long (var_val);
11689 }
11690 }
11691
11692
11693 /* Return a range type whose base type is that of the range type named
11694 NAME in the current environment, and whose bounds are calculated
11695 from NAME according to the GNAT range encoding conventions.
11696 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11697 corresponding range type from debug information; fall back to using it
11698 if symbol lookup fails. If a new type must be created, allocate it
11699 like ORIG_TYPE was. The bounds information, in general, is encoded
11700 in NAME, the base type given in the named range type. */
11701
11702 static struct type *
11703 to_fixed_range_type (struct type *raw_type, struct value *dval)
11704 {
11705 const char *name;
11706 struct type *base_type;
11707 const char *subtype_info;
11708
11709 gdb_assert (raw_type != NULL);
11710 gdb_assert (TYPE_NAME (raw_type) != NULL);
11711
11712 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11713 base_type = TYPE_TARGET_TYPE (raw_type);
11714 else
11715 base_type = raw_type;
11716
11717 name = TYPE_NAME (raw_type);
11718 subtype_info = strstr (name, "___XD");
11719 if (subtype_info == NULL)
11720 {
11721 LONGEST L = ada_discrete_type_low_bound (raw_type);
11722 LONGEST U = ada_discrete_type_high_bound (raw_type);
11723
11724 if (L < INT_MIN || U > INT_MAX)
11725 return raw_type;
11726 else
11727 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11728 L, U);
11729 }
11730 else
11731 {
11732 static char *name_buf = NULL;
11733 static size_t name_len = 0;
11734 int prefix_len = subtype_info - name;
11735 LONGEST L, U;
11736 struct type *type;
11737 const char *bounds_str;
11738 int n;
11739
11740 GROW_VECT (name_buf, name_len, prefix_len + 5);
11741 strncpy (name_buf, name, prefix_len);
11742 name_buf[prefix_len] = '\0';
11743
11744 subtype_info += 5;
11745 bounds_str = strchr (subtype_info, '_');
11746 n = 1;
11747
11748 if (*subtype_info == 'L')
11749 {
11750 if (!ada_scan_number (bounds_str, n, &L, &n)
11751 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11752 return raw_type;
11753 if (bounds_str[n] == '_')
11754 n += 2;
11755 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11756 n += 1;
11757 subtype_info += 1;
11758 }
11759 else
11760 {
11761 int ok;
11762
11763 strcpy (name_buf + prefix_len, "___L");
11764 L = get_int_var_value (name_buf, &ok);
11765 if (!ok)
11766 {
11767 lim_warning (_("Unknown lower bound, using 1."));
11768 L = 1;
11769 }
11770 }
11771
11772 if (*subtype_info == 'U')
11773 {
11774 if (!ada_scan_number (bounds_str, n, &U, &n)
11775 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11776 return raw_type;
11777 }
11778 else
11779 {
11780 int ok;
11781
11782 strcpy (name_buf + prefix_len, "___U");
11783 U = get_int_var_value (name_buf, &ok);
11784 if (!ok)
11785 {
11786 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11787 U = L;
11788 }
11789 }
11790
11791 type = create_static_range_type (alloc_type_copy (raw_type),
11792 base_type, L, U);
11793 TYPE_NAME (type) = name;
11794 return type;
11795 }
11796 }
11797
11798 /* True iff NAME is the name of a range type. */
11799
11800 int
11801 ada_is_range_type_name (const char *name)
11802 {
11803 return (name != NULL && strstr (name, "___XD"));
11804 }
11805 \f
11806
11807 /* Modular types */
11808
11809 /* True iff TYPE is an Ada modular type. */
11810
11811 int
11812 ada_is_modular_type (struct type *type)
11813 {
11814 struct type *subranged_type = get_base_type (type);
11815
11816 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11817 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11818 && TYPE_UNSIGNED (subranged_type));
11819 }
11820
11821 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11822
11823 ULONGEST
11824 ada_modulus (struct type *type)
11825 {
11826 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11827 }
11828 \f
11829
11830 /* Ada exception catchpoint support:
11831 ---------------------------------
11832
11833 We support 3 kinds of exception catchpoints:
11834 . catchpoints on Ada exceptions
11835 . catchpoints on unhandled Ada exceptions
11836 . catchpoints on failed assertions
11837
11838 Exceptions raised during failed assertions, or unhandled exceptions
11839 could perfectly be caught with the general catchpoint on Ada exceptions.
11840 However, we can easily differentiate these two special cases, and having
11841 the option to distinguish these two cases from the rest can be useful
11842 to zero-in on certain situations.
11843
11844 Exception catchpoints are a specialized form of breakpoint,
11845 since they rely on inserting breakpoints inside known routines
11846 of the GNAT runtime. The implementation therefore uses a standard
11847 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11848 of breakpoint_ops.
11849
11850 Support in the runtime for exception catchpoints have been changed
11851 a few times already, and these changes affect the implementation
11852 of these catchpoints. In order to be able to support several
11853 variants of the runtime, we use a sniffer that will determine
11854 the runtime variant used by the program being debugged. */
11855
11856 /* Ada's standard exceptions.
11857
11858 The Ada 83 standard also defined Numeric_Error. But there so many
11859 situations where it was unclear from the Ada 83 Reference Manual
11860 (RM) whether Constraint_Error or Numeric_Error should be raised,
11861 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11862 Interpretation saying that anytime the RM says that Numeric_Error
11863 should be raised, the implementation may raise Constraint_Error.
11864 Ada 95 went one step further and pretty much removed Numeric_Error
11865 from the list of standard exceptions (it made it a renaming of
11866 Constraint_Error, to help preserve compatibility when compiling
11867 an Ada83 compiler). As such, we do not include Numeric_Error from
11868 this list of standard exceptions. */
11869
11870 static char *standard_exc[] = {
11871 "constraint_error",
11872 "program_error",
11873 "storage_error",
11874 "tasking_error"
11875 };
11876
11877 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11878
11879 /* A structure that describes how to support exception catchpoints
11880 for a given executable. */
11881
11882 struct exception_support_info
11883 {
11884 /* The name of the symbol to break on in order to insert
11885 a catchpoint on exceptions. */
11886 const char *catch_exception_sym;
11887
11888 /* The name of the symbol to break on in order to insert
11889 a catchpoint on unhandled exceptions. */
11890 const char *catch_exception_unhandled_sym;
11891
11892 /* The name of the symbol to break on in order to insert
11893 a catchpoint on failed assertions. */
11894 const char *catch_assert_sym;
11895
11896 /* Assuming that the inferior just triggered an unhandled exception
11897 catchpoint, this function is responsible for returning the address
11898 in inferior memory where the name of that exception is stored.
11899 Return zero if the address could not be computed. */
11900 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11901 };
11902
11903 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11904 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11905
11906 /* The following exception support info structure describes how to
11907 implement exception catchpoints with the latest version of the
11908 Ada runtime (as of 2007-03-06). */
11909
11910 static const struct exception_support_info default_exception_support_info =
11911 {
11912 "__gnat_debug_raise_exception", /* catch_exception_sym */
11913 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11914 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11915 ada_unhandled_exception_name_addr
11916 };
11917
11918 /* The following exception support info structure describes how to
11919 implement exception catchpoints with a slightly older version
11920 of the Ada runtime. */
11921
11922 static const struct exception_support_info exception_support_info_fallback =
11923 {
11924 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11925 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11926 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11927 ada_unhandled_exception_name_addr_from_raise
11928 };
11929
11930 /* Return nonzero if we can detect the exception support routines
11931 described in EINFO.
11932
11933 This function errors out if an abnormal situation is detected
11934 (for instance, if we find the exception support routines, but
11935 that support is found to be incomplete). */
11936
11937 static int
11938 ada_has_this_exception_support (const struct exception_support_info *einfo)
11939 {
11940 struct symbol *sym;
11941
11942 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11943 that should be compiled with debugging information. As a result, we
11944 expect to find that symbol in the symtabs. */
11945
11946 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11947 if (sym == NULL)
11948 {
11949 /* Perhaps we did not find our symbol because the Ada runtime was
11950 compiled without debugging info, or simply stripped of it.
11951 It happens on some GNU/Linux distributions for instance, where
11952 users have to install a separate debug package in order to get
11953 the runtime's debugging info. In that situation, let the user
11954 know why we cannot insert an Ada exception catchpoint.
11955
11956 Note: Just for the purpose of inserting our Ada exception
11957 catchpoint, we could rely purely on the associated minimal symbol.
11958 But we would be operating in degraded mode anyway, since we are
11959 still lacking the debugging info needed later on to extract
11960 the name of the exception being raised (this name is printed in
11961 the catchpoint message, and is also used when trying to catch
11962 a specific exception). We do not handle this case for now. */
11963 struct bound_minimal_symbol msym
11964 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11965
11966 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11967 error (_("Your Ada runtime appears to be missing some debugging "
11968 "information.\nCannot insert Ada exception catchpoint "
11969 "in this configuration."));
11970
11971 return 0;
11972 }
11973
11974 /* Make sure that the symbol we found corresponds to a function. */
11975
11976 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11977 error (_("Symbol \"%s\" is not a function (class = %d)"),
11978 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11979
11980 return 1;
11981 }
11982
11983 /* Inspect the Ada runtime and determine which exception info structure
11984 should be used to provide support for exception catchpoints.
11985
11986 This function will always set the per-inferior exception_info,
11987 or raise an error. */
11988
11989 static void
11990 ada_exception_support_info_sniffer (void)
11991 {
11992 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11993
11994 /* If the exception info is already known, then no need to recompute it. */
11995 if (data->exception_info != NULL)
11996 return;
11997
11998 /* Check the latest (default) exception support info. */
11999 if (ada_has_this_exception_support (&default_exception_support_info))
12000 {
12001 data->exception_info = &default_exception_support_info;
12002 return;
12003 }
12004
12005 /* Try our fallback exception suport info. */
12006 if (ada_has_this_exception_support (&exception_support_info_fallback))
12007 {
12008 data->exception_info = &exception_support_info_fallback;
12009 return;
12010 }
12011
12012 /* Sometimes, it is normal for us to not be able to find the routine
12013 we are looking for. This happens when the program is linked with
12014 the shared version of the GNAT runtime, and the program has not been
12015 started yet. Inform the user of these two possible causes if
12016 applicable. */
12017
12018 if (ada_update_initial_language (language_unknown) != language_ada)
12019 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12020
12021 /* If the symbol does not exist, then check that the program is
12022 already started, to make sure that shared libraries have been
12023 loaded. If it is not started, this may mean that the symbol is
12024 in a shared library. */
12025
12026 if (ptid_get_pid (inferior_ptid) == 0)
12027 error (_("Unable to insert catchpoint. Try to start the program first."));
12028
12029 /* At this point, we know that we are debugging an Ada program and
12030 that the inferior has been started, but we still are not able to
12031 find the run-time symbols. That can mean that we are in
12032 configurable run time mode, or that a-except as been optimized
12033 out by the linker... In any case, at this point it is not worth
12034 supporting this feature. */
12035
12036 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12037 }
12038
12039 /* True iff FRAME is very likely to be that of a function that is
12040 part of the runtime system. This is all very heuristic, but is
12041 intended to be used as advice as to what frames are uninteresting
12042 to most users. */
12043
12044 static int
12045 is_known_support_routine (struct frame_info *frame)
12046 {
12047 struct symtab_and_line sal;
12048 char *func_name;
12049 enum language func_lang;
12050 int i;
12051 const char *fullname;
12052
12053 /* If this code does not have any debugging information (no symtab),
12054 This cannot be any user code. */
12055
12056 find_frame_sal (frame, &sal);
12057 if (sal.symtab == NULL)
12058 return 1;
12059
12060 /* If there is a symtab, but the associated source file cannot be
12061 located, then assume this is not user code: Selecting a frame
12062 for which we cannot display the code would not be very helpful
12063 for the user. This should also take care of case such as VxWorks
12064 where the kernel has some debugging info provided for a few units. */
12065
12066 fullname = symtab_to_fullname (sal.symtab);
12067 if (access (fullname, R_OK) != 0)
12068 return 1;
12069
12070 /* Check the unit filename againt the Ada runtime file naming.
12071 We also check the name of the objfile against the name of some
12072 known system libraries that sometimes come with debugging info
12073 too. */
12074
12075 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12076 {
12077 re_comp (known_runtime_file_name_patterns[i]);
12078 if (re_exec (lbasename (sal.symtab->filename)))
12079 return 1;
12080 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12081 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12082 return 1;
12083 }
12084
12085 /* Check whether the function is a GNAT-generated entity. */
12086
12087 find_frame_funname (frame, &func_name, &func_lang, NULL);
12088 if (func_name == NULL)
12089 return 1;
12090
12091 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12092 {
12093 re_comp (known_auxiliary_function_name_patterns[i]);
12094 if (re_exec (func_name))
12095 {
12096 xfree (func_name);
12097 return 1;
12098 }
12099 }
12100
12101 xfree (func_name);
12102 return 0;
12103 }
12104
12105 /* Find the first frame that contains debugging information and that is not
12106 part of the Ada run-time, starting from FI and moving upward. */
12107
12108 void
12109 ada_find_printable_frame (struct frame_info *fi)
12110 {
12111 for (; fi != NULL; fi = get_prev_frame (fi))
12112 {
12113 if (!is_known_support_routine (fi))
12114 {
12115 select_frame (fi);
12116 break;
12117 }
12118 }
12119
12120 }
12121
12122 /* Assuming that the inferior just triggered an unhandled exception
12123 catchpoint, return the address in inferior memory where the name
12124 of the exception is stored.
12125
12126 Return zero if the address could not be computed. */
12127
12128 static CORE_ADDR
12129 ada_unhandled_exception_name_addr (void)
12130 {
12131 return parse_and_eval_address ("e.full_name");
12132 }
12133
12134 /* Same as ada_unhandled_exception_name_addr, except that this function
12135 should be used when the inferior uses an older version of the runtime,
12136 where the exception name needs to be extracted from a specific frame
12137 several frames up in the callstack. */
12138
12139 static CORE_ADDR
12140 ada_unhandled_exception_name_addr_from_raise (void)
12141 {
12142 int frame_level;
12143 struct frame_info *fi;
12144 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12145 struct cleanup *old_chain;
12146
12147 /* To determine the name of this exception, we need to select
12148 the frame corresponding to RAISE_SYM_NAME. This frame is
12149 at least 3 levels up, so we simply skip the first 3 frames
12150 without checking the name of their associated function. */
12151 fi = get_current_frame ();
12152 for (frame_level = 0; frame_level < 3; frame_level += 1)
12153 if (fi != NULL)
12154 fi = get_prev_frame (fi);
12155
12156 old_chain = make_cleanup (null_cleanup, NULL);
12157 while (fi != NULL)
12158 {
12159 char *func_name;
12160 enum language func_lang;
12161
12162 find_frame_funname (fi, &func_name, &func_lang, NULL);
12163 if (func_name != NULL)
12164 {
12165 make_cleanup (xfree, func_name);
12166
12167 if (strcmp (func_name,
12168 data->exception_info->catch_exception_sym) == 0)
12169 break; /* We found the frame we were looking for... */
12170 fi = get_prev_frame (fi);
12171 }
12172 }
12173 do_cleanups (old_chain);
12174
12175 if (fi == NULL)
12176 return 0;
12177
12178 select_frame (fi);
12179 return parse_and_eval_address ("id.full_name");
12180 }
12181
12182 /* Assuming the inferior just triggered an Ada exception catchpoint
12183 (of any type), return the address in inferior memory where the name
12184 of the exception is stored, if applicable.
12185
12186 Return zero if the address could not be computed, or if not relevant. */
12187
12188 static CORE_ADDR
12189 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12190 struct breakpoint *b)
12191 {
12192 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12193
12194 switch (ex)
12195 {
12196 case ada_catch_exception:
12197 return (parse_and_eval_address ("e.full_name"));
12198 break;
12199
12200 case ada_catch_exception_unhandled:
12201 return data->exception_info->unhandled_exception_name_addr ();
12202 break;
12203
12204 case ada_catch_assert:
12205 return 0; /* Exception name is not relevant in this case. */
12206 break;
12207
12208 default:
12209 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12210 break;
12211 }
12212
12213 return 0; /* Should never be reached. */
12214 }
12215
12216 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12217 any error that ada_exception_name_addr_1 might cause to be thrown.
12218 When an error is intercepted, a warning with the error message is printed,
12219 and zero is returned. */
12220
12221 static CORE_ADDR
12222 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12223 struct breakpoint *b)
12224 {
12225 CORE_ADDR result = 0;
12226
12227 TRY
12228 {
12229 result = ada_exception_name_addr_1 (ex, b);
12230 }
12231
12232 CATCH (e, RETURN_MASK_ERROR)
12233 {
12234 warning (_("failed to get exception name: %s"), e.message);
12235 return 0;
12236 }
12237 END_CATCH
12238
12239 return result;
12240 }
12241
12242 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12243
12244 /* Ada catchpoints.
12245
12246 In the case of catchpoints on Ada exceptions, the catchpoint will
12247 stop the target on every exception the program throws. When a user
12248 specifies the name of a specific exception, we translate this
12249 request into a condition expression (in text form), and then parse
12250 it into an expression stored in each of the catchpoint's locations.
12251 We then use this condition to check whether the exception that was
12252 raised is the one the user is interested in. If not, then the
12253 target is resumed again. We store the name of the requested
12254 exception, in order to be able to re-set the condition expression
12255 when symbols change. */
12256
12257 /* An instance of this type is used to represent an Ada catchpoint
12258 breakpoint location. It includes a "struct bp_location" as a kind
12259 of base class; users downcast to "struct bp_location *" when
12260 needed. */
12261
12262 struct ada_catchpoint_location
12263 {
12264 /* The base class. */
12265 struct bp_location base;
12266
12267 /* The condition that checks whether the exception that was raised
12268 is the specific exception the user specified on catchpoint
12269 creation. */
12270 struct expression *excep_cond_expr;
12271 };
12272
12273 /* Implement the DTOR method in the bp_location_ops structure for all
12274 Ada exception catchpoint kinds. */
12275
12276 static void
12277 ada_catchpoint_location_dtor (struct bp_location *bl)
12278 {
12279 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12280
12281 xfree (al->excep_cond_expr);
12282 }
12283
12284 /* The vtable to be used in Ada catchpoint locations. */
12285
12286 static const struct bp_location_ops ada_catchpoint_location_ops =
12287 {
12288 ada_catchpoint_location_dtor
12289 };
12290
12291 /* An instance of this type is used to represent an Ada catchpoint.
12292 It includes a "struct breakpoint" as a kind of base class; users
12293 downcast to "struct breakpoint *" when needed. */
12294
12295 struct ada_catchpoint
12296 {
12297 /* The base class. */
12298 struct breakpoint base;
12299
12300 /* The name of the specific exception the user specified. */
12301 char *excep_string;
12302 };
12303
12304 /* Parse the exception condition string in the context of each of the
12305 catchpoint's locations, and store them for later evaluation. */
12306
12307 static void
12308 create_excep_cond_exprs (struct ada_catchpoint *c)
12309 {
12310 struct cleanup *old_chain;
12311 struct bp_location *bl;
12312 char *cond_string;
12313
12314 /* Nothing to do if there's no specific exception to catch. */
12315 if (c->excep_string == NULL)
12316 return;
12317
12318 /* Same if there are no locations... */
12319 if (c->base.loc == NULL)
12320 return;
12321
12322 /* Compute the condition expression in text form, from the specific
12323 expection we want to catch. */
12324 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12325 old_chain = make_cleanup (xfree, cond_string);
12326
12327 /* Iterate over all the catchpoint's locations, and parse an
12328 expression for each. */
12329 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12330 {
12331 struct ada_catchpoint_location *ada_loc
12332 = (struct ada_catchpoint_location *) bl;
12333 struct expression *exp = NULL;
12334
12335 if (!bl->shlib_disabled)
12336 {
12337 const char *s;
12338
12339 s = cond_string;
12340 TRY
12341 {
12342 exp = parse_exp_1 (&s, bl->address,
12343 block_for_pc (bl->address), 0);
12344 }
12345 CATCH (e, RETURN_MASK_ERROR)
12346 {
12347 warning (_("failed to reevaluate internal exception condition "
12348 "for catchpoint %d: %s"),
12349 c->base.number, e.message);
12350 /* There is a bug in GCC on sparc-solaris when building with
12351 optimization which causes EXP to change unexpectedly
12352 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
12353 The problem should be fixed starting with GCC 4.9.
12354 In the meantime, work around it by forcing EXP back
12355 to NULL. */
12356 exp = NULL;
12357 }
12358 END_CATCH
12359 }
12360
12361 ada_loc->excep_cond_expr = exp;
12362 }
12363
12364 do_cleanups (old_chain);
12365 }
12366
12367 /* Implement the DTOR method in the breakpoint_ops structure for all
12368 exception catchpoint kinds. */
12369
12370 static void
12371 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12372 {
12373 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12374
12375 xfree (c->excep_string);
12376
12377 bkpt_breakpoint_ops.dtor (b);
12378 }
12379
12380 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12381 structure for all exception catchpoint kinds. */
12382
12383 static struct bp_location *
12384 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12385 struct breakpoint *self)
12386 {
12387 struct ada_catchpoint_location *loc;
12388
12389 loc = XNEW (struct ada_catchpoint_location);
12390 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12391 loc->excep_cond_expr = NULL;
12392 return &loc->base;
12393 }
12394
12395 /* Implement the RE_SET method in the breakpoint_ops structure for all
12396 exception catchpoint kinds. */
12397
12398 static void
12399 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12400 {
12401 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12402
12403 /* Call the base class's method. This updates the catchpoint's
12404 locations. */
12405 bkpt_breakpoint_ops.re_set (b);
12406
12407 /* Reparse the exception conditional expressions. One for each
12408 location. */
12409 create_excep_cond_exprs (c);
12410 }
12411
12412 /* Returns true if we should stop for this breakpoint hit. If the
12413 user specified a specific exception, we only want to cause a stop
12414 if the program thrown that exception. */
12415
12416 static int
12417 should_stop_exception (const struct bp_location *bl)
12418 {
12419 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12420 const struct ada_catchpoint_location *ada_loc
12421 = (const struct ada_catchpoint_location *) bl;
12422 int stop;
12423
12424 /* With no specific exception, should always stop. */
12425 if (c->excep_string == NULL)
12426 return 1;
12427
12428 if (ada_loc->excep_cond_expr == NULL)
12429 {
12430 /* We will have a NULL expression if back when we were creating
12431 the expressions, this location's had failed to parse. */
12432 return 1;
12433 }
12434
12435 stop = 1;
12436 TRY
12437 {
12438 struct value *mark;
12439
12440 mark = value_mark ();
12441 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12442 value_free_to_mark (mark);
12443 }
12444 CATCH (ex, RETURN_MASK_ALL)
12445 {
12446 exception_fprintf (gdb_stderr, ex,
12447 _("Error in testing exception condition:\n"));
12448 }
12449 END_CATCH
12450
12451 return stop;
12452 }
12453
12454 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12455 for all exception catchpoint kinds. */
12456
12457 static void
12458 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12459 {
12460 bs->stop = should_stop_exception (bs->bp_location_at);
12461 }
12462
12463 /* Implement the PRINT_IT method in the breakpoint_ops structure
12464 for all exception catchpoint kinds. */
12465
12466 static enum print_stop_action
12467 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12468 {
12469 struct ui_out *uiout = current_uiout;
12470 struct breakpoint *b = bs->breakpoint_at;
12471
12472 annotate_catchpoint (b->number);
12473
12474 if (ui_out_is_mi_like_p (uiout))
12475 {
12476 ui_out_field_string (uiout, "reason",
12477 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12478 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12479 }
12480
12481 ui_out_text (uiout,
12482 b->disposition == disp_del ? "\nTemporary catchpoint "
12483 : "\nCatchpoint ");
12484 ui_out_field_int (uiout, "bkptno", b->number);
12485 ui_out_text (uiout, ", ");
12486
12487 switch (ex)
12488 {
12489 case ada_catch_exception:
12490 case ada_catch_exception_unhandled:
12491 {
12492 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12493 char exception_name[256];
12494
12495 if (addr != 0)
12496 {
12497 read_memory (addr, (gdb_byte *) exception_name,
12498 sizeof (exception_name) - 1);
12499 exception_name [sizeof (exception_name) - 1] = '\0';
12500 }
12501 else
12502 {
12503 /* For some reason, we were unable to read the exception
12504 name. This could happen if the Runtime was compiled
12505 without debugging info, for instance. In that case,
12506 just replace the exception name by the generic string
12507 "exception" - it will read as "an exception" in the
12508 notification we are about to print. */
12509 memcpy (exception_name, "exception", sizeof ("exception"));
12510 }
12511 /* In the case of unhandled exception breakpoints, we print
12512 the exception name as "unhandled EXCEPTION_NAME", to make
12513 it clearer to the user which kind of catchpoint just got
12514 hit. We used ui_out_text to make sure that this extra
12515 info does not pollute the exception name in the MI case. */
12516 if (ex == ada_catch_exception_unhandled)
12517 ui_out_text (uiout, "unhandled ");
12518 ui_out_field_string (uiout, "exception-name", exception_name);
12519 }
12520 break;
12521 case ada_catch_assert:
12522 /* In this case, the name of the exception is not really
12523 important. Just print "failed assertion" to make it clearer
12524 that his program just hit an assertion-failure catchpoint.
12525 We used ui_out_text because this info does not belong in
12526 the MI output. */
12527 ui_out_text (uiout, "failed assertion");
12528 break;
12529 }
12530 ui_out_text (uiout, " at ");
12531 ada_find_printable_frame (get_current_frame ());
12532
12533 return PRINT_SRC_AND_LOC;
12534 }
12535
12536 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12537 for all exception catchpoint kinds. */
12538
12539 static void
12540 print_one_exception (enum ada_exception_catchpoint_kind ex,
12541 struct breakpoint *b, struct bp_location **last_loc)
12542 {
12543 struct ui_out *uiout = current_uiout;
12544 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12545 struct value_print_options opts;
12546
12547 get_user_print_options (&opts);
12548 if (opts.addressprint)
12549 {
12550 annotate_field (4);
12551 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
12552 }
12553
12554 annotate_field (5);
12555 *last_loc = b->loc;
12556 switch (ex)
12557 {
12558 case ada_catch_exception:
12559 if (c->excep_string != NULL)
12560 {
12561 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12562
12563 ui_out_field_string (uiout, "what", msg);
12564 xfree (msg);
12565 }
12566 else
12567 ui_out_field_string (uiout, "what", "all Ada exceptions");
12568
12569 break;
12570
12571 case ada_catch_exception_unhandled:
12572 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12573 break;
12574
12575 case ada_catch_assert:
12576 ui_out_field_string (uiout, "what", "failed Ada assertions");
12577 break;
12578
12579 default:
12580 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12581 break;
12582 }
12583 }
12584
12585 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12586 for all exception catchpoint kinds. */
12587
12588 static void
12589 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12590 struct breakpoint *b)
12591 {
12592 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12593 struct ui_out *uiout = current_uiout;
12594
12595 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12596 : _("Catchpoint "));
12597 ui_out_field_int (uiout, "bkptno", b->number);
12598 ui_out_text (uiout, ": ");
12599
12600 switch (ex)
12601 {
12602 case ada_catch_exception:
12603 if (c->excep_string != NULL)
12604 {
12605 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12606 struct cleanup *old_chain = make_cleanup (xfree, info);
12607
12608 ui_out_text (uiout, info);
12609 do_cleanups (old_chain);
12610 }
12611 else
12612 ui_out_text (uiout, _("all Ada exceptions"));
12613 break;
12614
12615 case ada_catch_exception_unhandled:
12616 ui_out_text (uiout, _("unhandled Ada exceptions"));
12617 break;
12618
12619 case ada_catch_assert:
12620 ui_out_text (uiout, _("failed Ada assertions"));
12621 break;
12622
12623 default:
12624 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12625 break;
12626 }
12627 }
12628
12629 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12630 for all exception catchpoint kinds. */
12631
12632 static void
12633 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12634 struct breakpoint *b, struct ui_file *fp)
12635 {
12636 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12637
12638 switch (ex)
12639 {
12640 case ada_catch_exception:
12641 fprintf_filtered (fp, "catch exception");
12642 if (c->excep_string != NULL)
12643 fprintf_filtered (fp, " %s", c->excep_string);
12644 break;
12645
12646 case ada_catch_exception_unhandled:
12647 fprintf_filtered (fp, "catch exception unhandled");
12648 break;
12649
12650 case ada_catch_assert:
12651 fprintf_filtered (fp, "catch assert");
12652 break;
12653
12654 default:
12655 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12656 }
12657 print_recreate_thread (b, fp);
12658 }
12659
12660 /* Virtual table for "catch exception" breakpoints. */
12661
12662 static void
12663 dtor_catch_exception (struct breakpoint *b)
12664 {
12665 dtor_exception (ada_catch_exception, b);
12666 }
12667
12668 static struct bp_location *
12669 allocate_location_catch_exception (struct breakpoint *self)
12670 {
12671 return allocate_location_exception (ada_catch_exception, self);
12672 }
12673
12674 static void
12675 re_set_catch_exception (struct breakpoint *b)
12676 {
12677 re_set_exception (ada_catch_exception, b);
12678 }
12679
12680 static void
12681 check_status_catch_exception (bpstat bs)
12682 {
12683 check_status_exception (ada_catch_exception, bs);
12684 }
12685
12686 static enum print_stop_action
12687 print_it_catch_exception (bpstat bs)
12688 {
12689 return print_it_exception (ada_catch_exception, bs);
12690 }
12691
12692 static void
12693 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12694 {
12695 print_one_exception (ada_catch_exception, b, last_loc);
12696 }
12697
12698 static void
12699 print_mention_catch_exception (struct breakpoint *b)
12700 {
12701 print_mention_exception (ada_catch_exception, b);
12702 }
12703
12704 static void
12705 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12706 {
12707 print_recreate_exception (ada_catch_exception, b, fp);
12708 }
12709
12710 static struct breakpoint_ops catch_exception_breakpoint_ops;
12711
12712 /* Virtual table for "catch exception unhandled" breakpoints. */
12713
12714 static void
12715 dtor_catch_exception_unhandled (struct breakpoint *b)
12716 {
12717 dtor_exception (ada_catch_exception_unhandled, b);
12718 }
12719
12720 static struct bp_location *
12721 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12722 {
12723 return allocate_location_exception (ada_catch_exception_unhandled, self);
12724 }
12725
12726 static void
12727 re_set_catch_exception_unhandled (struct breakpoint *b)
12728 {
12729 re_set_exception (ada_catch_exception_unhandled, b);
12730 }
12731
12732 static void
12733 check_status_catch_exception_unhandled (bpstat bs)
12734 {
12735 check_status_exception (ada_catch_exception_unhandled, bs);
12736 }
12737
12738 static enum print_stop_action
12739 print_it_catch_exception_unhandled (bpstat bs)
12740 {
12741 return print_it_exception (ada_catch_exception_unhandled, bs);
12742 }
12743
12744 static void
12745 print_one_catch_exception_unhandled (struct breakpoint *b,
12746 struct bp_location **last_loc)
12747 {
12748 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12749 }
12750
12751 static void
12752 print_mention_catch_exception_unhandled (struct breakpoint *b)
12753 {
12754 print_mention_exception (ada_catch_exception_unhandled, b);
12755 }
12756
12757 static void
12758 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12759 struct ui_file *fp)
12760 {
12761 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12762 }
12763
12764 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12765
12766 /* Virtual table for "catch assert" breakpoints. */
12767
12768 static void
12769 dtor_catch_assert (struct breakpoint *b)
12770 {
12771 dtor_exception (ada_catch_assert, b);
12772 }
12773
12774 static struct bp_location *
12775 allocate_location_catch_assert (struct breakpoint *self)
12776 {
12777 return allocate_location_exception (ada_catch_assert, self);
12778 }
12779
12780 static void
12781 re_set_catch_assert (struct breakpoint *b)
12782 {
12783 re_set_exception (ada_catch_assert, b);
12784 }
12785
12786 static void
12787 check_status_catch_assert (bpstat bs)
12788 {
12789 check_status_exception (ada_catch_assert, bs);
12790 }
12791
12792 static enum print_stop_action
12793 print_it_catch_assert (bpstat bs)
12794 {
12795 return print_it_exception (ada_catch_assert, bs);
12796 }
12797
12798 static void
12799 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12800 {
12801 print_one_exception (ada_catch_assert, b, last_loc);
12802 }
12803
12804 static void
12805 print_mention_catch_assert (struct breakpoint *b)
12806 {
12807 print_mention_exception (ada_catch_assert, b);
12808 }
12809
12810 static void
12811 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12812 {
12813 print_recreate_exception (ada_catch_assert, b, fp);
12814 }
12815
12816 static struct breakpoint_ops catch_assert_breakpoint_ops;
12817
12818 /* Return a newly allocated copy of the first space-separated token
12819 in ARGSP, and then adjust ARGSP to point immediately after that
12820 token.
12821
12822 Return NULL if ARGPS does not contain any more tokens. */
12823
12824 static char *
12825 ada_get_next_arg (char **argsp)
12826 {
12827 char *args = *argsp;
12828 char *end;
12829 char *result;
12830
12831 args = skip_spaces (args);
12832 if (args[0] == '\0')
12833 return NULL; /* No more arguments. */
12834
12835 /* Find the end of the current argument. */
12836
12837 end = skip_to_space (args);
12838
12839 /* Adjust ARGSP to point to the start of the next argument. */
12840
12841 *argsp = end;
12842
12843 /* Make a copy of the current argument and return it. */
12844
12845 result = (char *) xmalloc (end - args + 1);
12846 strncpy (result, args, end - args);
12847 result[end - args] = '\0';
12848
12849 return result;
12850 }
12851
12852 /* Split the arguments specified in a "catch exception" command.
12853 Set EX to the appropriate catchpoint type.
12854 Set EXCEP_STRING to the name of the specific exception if
12855 specified by the user.
12856 If a condition is found at the end of the arguments, the condition
12857 expression is stored in COND_STRING (memory must be deallocated
12858 after use). Otherwise COND_STRING is set to NULL. */
12859
12860 static void
12861 catch_ada_exception_command_split (char *args,
12862 enum ada_exception_catchpoint_kind *ex,
12863 char **excep_string,
12864 char **cond_string)
12865 {
12866 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12867 char *exception_name;
12868 char *cond = NULL;
12869
12870 exception_name = ada_get_next_arg (&args);
12871 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12872 {
12873 /* This is not an exception name; this is the start of a condition
12874 expression for a catchpoint on all exceptions. So, "un-get"
12875 this token, and set exception_name to NULL. */
12876 xfree (exception_name);
12877 exception_name = NULL;
12878 args -= 2;
12879 }
12880 make_cleanup (xfree, exception_name);
12881
12882 /* Check to see if we have a condition. */
12883
12884 args = skip_spaces (args);
12885 if (startswith (args, "if")
12886 && (isspace (args[2]) || args[2] == '\0'))
12887 {
12888 args += 2;
12889 args = skip_spaces (args);
12890
12891 if (args[0] == '\0')
12892 error (_("Condition missing after `if' keyword"));
12893 cond = xstrdup (args);
12894 make_cleanup (xfree, cond);
12895
12896 args += strlen (args);
12897 }
12898
12899 /* Check that we do not have any more arguments. Anything else
12900 is unexpected. */
12901
12902 if (args[0] != '\0')
12903 error (_("Junk at end of expression"));
12904
12905 discard_cleanups (old_chain);
12906
12907 if (exception_name == NULL)
12908 {
12909 /* Catch all exceptions. */
12910 *ex = ada_catch_exception;
12911 *excep_string = NULL;
12912 }
12913 else if (strcmp (exception_name, "unhandled") == 0)
12914 {
12915 /* Catch unhandled exceptions. */
12916 *ex = ada_catch_exception_unhandled;
12917 *excep_string = NULL;
12918 }
12919 else
12920 {
12921 /* Catch a specific exception. */
12922 *ex = ada_catch_exception;
12923 *excep_string = exception_name;
12924 }
12925 *cond_string = cond;
12926 }
12927
12928 /* Return the name of the symbol on which we should break in order to
12929 implement a catchpoint of the EX kind. */
12930
12931 static const char *
12932 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12933 {
12934 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12935
12936 gdb_assert (data->exception_info != NULL);
12937
12938 switch (ex)
12939 {
12940 case ada_catch_exception:
12941 return (data->exception_info->catch_exception_sym);
12942 break;
12943 case ada_catch_exception_unhandled:
12944 return (data->exception_info->catch_exception_unhandled_sym);
12945 break;
12946 case ada_catch_assert:
12947 return (data->exception_info->catch_assert_sym);
12948 break;
12949 default:
12950 internal_error (__FILE__, __LINE__,
12951 _("unexpected catchpoint kind (%d)"), ex);
12952 }
12953 }
12954
12955 /* Return the breakpoint ops "virtual table" used for catchpoints
12956 of the EX kind. */
12957
12958 static const struct breakpoint_ops *
12959 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12960 {
12961 switch (ex)
12962 {
12963 case ada_catch_exception:
12964 return (&catch_exception_breakpoint_ops);
12965 break;
12966 case ada_catch_exception_unhandled:
12967 return (&catch_exception_unhandled_breakpoint_ops);
12968 break;
12969 case ada_catch_assert:
12970 return (&catch_assert_breakpoint_ops);
12971 break;
12972 default:
12973 internal_error (__FILE__, __LINE__,
12974 _("unexpected catchpoint kind (%d)"), ex);
12975 }
12976 }
12977
12978 /* Return the condition that will be used to match the current exception
12979 being raised with the exception that the user wants to catch. This
12980 assumes that this condition is used when the inferior just triggered
12981 an exception catchpoint.
12982
12983 The string returned is a newly allocated string that needs to be
12984 deallocated later. */
12985
12986 static char *
12987 ada_exception_catchpoint_cond_string (const char *excep_string)
12988 {
12989 int i;
12990
12991 /* The standard exceptions are a special case. They are defined in
12992 runtime units that have been compiled without debugging info; if
12993 EXCEP_STRING is the not-fully-qualified name of a standard
12994 exception (e.g. "constraint_error") then, during the evaluation
12995 of the condition expression, the symbol lookup on this name would
12996 *not* return this standard exception. The catchpoint condition
12997 may then be set only on user-defined exceptions which have the
12998 same not-fully-qualified name (e.g. my_package.constraint_error).
12999
13000 To avoid this unexcepted behavior, these standard exceptions are
13001 systematically prefixed by "standard". This means that "catch
13002 exception constraint_error" is rewritten into "catch exception
13003 standard.constraint_error".
13004
13005 If an exception named contraint_error is defined in another package of
13006 the inferior program, then the only way to specify this exception as a
13007 breakpoint condition is to use its fully-qualified named:
13008 e.g. my_package.constraint_error. */
13009
13010 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13011 {
13012 if (strcmp (standard_exc [i], excep_string) == 0)
13013 {
13014 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
13015 excep_string);
13016 }
13017 }
13018 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
13019 }
13020
13021 /* Return the symtab_and_line that should be used to insert an exception
13022 catchpoint of the TYPE kind.
13023
13024 EXCEP_STRING should contain the name of a specific exception that
13025 the catchpoint should catch, or NULL otherwise.
13026
13027 ADDR_STRING returns the name of the function where the real
13028 breakpoint that implements the catchpoints is set, depending on the
13029 type of catchpoint we need to create. */
13030
13031 static struct symtab_and_line
13032 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
13033 char **addr_string, const struct breakpoint_ops **ops)
13034 {
13035 const char *sym_name;
13036 struct symbol *sym;
13037
13038 /* First, find out which exception support info to use. */
13039 ada_exception_support_info_sniffer ();
13040
13041 /* Then lookup the function on which we will break in order to catch
13042 the Ada exceptions requested by the user. */
13043 sym_name = ada_exception_sym_name (ex);
13044 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13045
13046 /* We can assume that SYM is not NULL at this stage. If the symbol
13047 did not exist, ada_exception_support_info_sniffer would have
13048 raised an exception.
13049
13050 Also, ada_exception_support_info_sniffer should have already
13051 verified that SYM is a function symbol. */
13052 gdb_assert (sym != NULL);
13053 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13054
13055 /* Set ADDR_STRING. */
13056 *addr_string = xstrdup (sym_name);
13057
13058 /* Set OPS. */
13059 *ops = ada_exception_breakpoint_ops (ex);
13060
13061 return find_function_start_sal (sym, 1);
13062 }
13063
13064 /* Create an Ada exception catchpoint.
13065
13066 EX_KIND is the kind of exception catchpoint to be created.
13067
13068 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13069 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13070 of the exception to which this catchpoint applies. When not NULL,
13071 the string must be allocated on the heap, and its deallocation
13072 is no longer the responsibility of the caller.
13073
13074 COND_STRING, if not NULL, is the catchpoint condition. This string
13075 must be allocated on the heap, and its deallocation is no longer
13076 the responsibility of the caller.
13077
13078 TEMPFLAG, if nonzero, means that the underlying breakpoint
13079 should be temporary.
13080
13081 FROM_TTY is the usual argument passed to all commands implementations. */
13082
13083 void
13084 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13085 enum ada_exception_catchpoint_kind ex_kind,
13086 char *excep_string,
13087 char *cond_string,
13088 int tempflag,
13089 int disabled,
13090 int from_tty)
13091 {
13092 struct ada_catchpoint *c;
13093 char *addr_string = NULL;
13094 const struct breakpoint_ops *ops = NULL;
13095 struct symtab_and_line sal
13096 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13097
13098 c = XNEW (struct ada_catchpoint);
13099 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
13100 ops, tempflag, disabled, from_tty);
13101 c->excep_string = excep_string;
13102 create_excep_cond_exprs (c);
13103 if (cond_string != NULL)
13104 set_breakpoint_condition (&c->base, cond_string, from_tty);
13105 install_breakpoint (0, &c->base, 1);
13106 }
13107
13108 /* Implement the "catch exception" command. */
13109
13110 static void
13111 catch_ada_exception_command (char *arg, int from_tty,
13112 struct cmd_list_element *command)
13113 {
13114 struct gdbarch *gdbarch = get_current_arch ();
13115 int tempflag;
13116 enum ada_exception_catchpoint_kind ex_kind;
13117 char *excep_string = NULL;
13118 char *cond_string = NULL;
13119
13120 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13121
13122 if (!arg)
13123 arg = "";
13124 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13125 &cond_string);
13126 create_ada_exception_catchpoint (gdbarch, ex_kind,
13127 excep_string, cond_string,
13128 tempflag, 1 /* enabled */,
13129 from_tty);
13130 }
13131
13132 /* Split the arguments specified in a "catch assert" command.
13133
13134 ARGS contains the command's arguments (or the empty string if
13135 no arguments were passed).
13136
13137 If ARGS contains a condition, set COND_STRING to that condition
13138 (the memory needs to be deallocated after use). */
13139
13140 static void
13141 catch_ada_assert_command_split (char *args, char **cond_string)
13142 {
13143 args = skip_spaces (args);
13144
13145 /* Check whether a condition was provided. */
13146 if (startswith (args, "if")
13147 && (isspace (args[2]) || args[2] == '\0'))
13148 {
13149 args += 2;
13150 args = skip_spaces (args);
13151 if (args[0] == '\0')
13152 error (_("condition missing after `if' keyword"));
13153 *cond_string = xstrdup (args);
13154 }
13155
13156 /* Otherwise, there should be no other argument at the end of
13157 the command. */
13158 else if (args[0] != '\0')
13159 error (_("Junk at end of arguments."));
13160 }
13161
13162 /* Implement the "catch assert" command. */
13163
13164 static void
13165 catch_assert_command (char *arg, int from_tty,
13166 struct cmd_list_element *command)
13167 {
13168 struct gdbarch *gdbarch = get_current_arch ();
13169 int tempflag;
13170 char *cond_string = NULL;
13171
13172 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13173
13174 if (!arg)
13175 arg = "";
13176 catch_ada_assert_command_split (arg, &cond_string);
13177 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13178 NULL, cond_string,
13179 tempflag, 1 /* enabled */,
13180 from_tty);
13181 }
13182
13183 /* Return non-zero if the symbol SYM is an Ada exception object. */
13184
13185 static int
13186 ada_is_exception_sym (struct symbol *sym)
13187 {
13188 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13189
13190 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13191 && SYMBOL_CLASS (sym) != LOC_BLOCK
13192 && SYMBOL_CLASS (sym) != LOC_CONST
13193 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13194 && type_name != NULL && strcmp (type_name, "exception") == 0);
13195 }
13196
13197 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13198 Ada exception object. This matches all exceptions except the ones
13199 defined by the Ada language. */
13200
13201 static int
13202 ada_is_non_standard_exception_sym (struct symbol *sym)
13203 {
13204 int i;
13205
13206 if (!ada_is_exception_sym (sym))
13207 return 0;
13208
13209 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13210 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13211 return 0; /* A standard exception. */
13212
13213 /* Numeric_Error is also a standard exception, so exclude it.
13214 See the STANDARD_EXC description for more details as to why
13215 this exception is not listed in that array. */
13216 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13217 return 0;
13218
13219 return 1;
13220 }
13221
13222 /* A helper function for qsort, comparing two struct ada_exc_info
13223 objects.
13224
13225 The comparison is determined first by exception name, and then
13226 by exception address. */
13227
13228 static int
13229 compare_ada_exception_info (const void *a, const void *b)
13230 {
13231 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13232 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13233 int result;
13234
13235 result = strcmp (exc_a->name, exc_b->name);
13236 if (result != 0)
13237 return result;
13238
13239 if (exc_a->addr < exc_b->addr)
13240 return -1;
13241 if (exc_a->addr > exc_b->addr)
13242 return 1;
13243
13244 return 0;
13245 }
13246
13247 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13248 routine, but keeping the first SKIP elements untouched.
13249
13250 All duplicates are also removed. */
13251
13252 static void
13253 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13254 int skip)
13255 {
13256 struct ada_exc_info *to_sort
13257 = VEC_address (ada_exc_info, *exceptions) + skip;
13258 int to_sort_len
13259 = VEC_length (ada_exc_info, *exceptions) - skip;
13260 int i, j;
13261
13262 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13263 compare_ada_exception_info);
13264
13265 for (i = 1, j = 1; i < to_sort_len; i++)
13266 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13267 to_sort[j++] = to_sort[i];
13268 to_sort_len = j;
13269 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13270 }
13271
13272 /* A function intended as the "name_matcher" callback in the struct
13273 quick_symbol_functions' expand_symtabs_matching method.
13274
13275 SEARCH_NAME is the symbol's search name.
13276
13277 If USER_DATA is not NULL, it is a pointer to a regext_t object
13278 used to match the symbol (by natural name). Otherwise, when USER_DATA
13279 is null, no filtering is performed, and all symbols are a positive
13280 match. */
13281
13282 static int
13283 ada_exc_search_name_matches (const char *search_name, void *user_data)
13284 {
13285 regex_t *preg = (regex_t *) user_data;
13286
13287 if (preg == NULL)
13288 return 1;
13289
13290 /* In Ada, the symbol "search name" is a linkage name, whereas
13291 the regular expression used to do the matching refers to
13292 the natural name. So match against the decoded name. */
13293 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13294 }
13295
13296 /* Add all exceptions defined by the Ada standard whose name match
13297 a regular expression.
13298
13299 If PREG is not NULL, then this regexp_t object is used to
13300 perform the symbol name matching. Otherwise, no name-based
13301 filtering is performed.
13302
13303 EXCEPTIONS is a vector of exceptions to which matching exceptions
13304 gets pushed. */
13305
13306 static void
13307 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13308 {
13309 int i;
13310
13311 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13312 {
13313 if (preg == NULL
13314 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13315 {
13316 struct bound_minimal_symbol msymbol
13317 = ada_lookup_simple_minsym (standard_exc[i]);
13318
13319 if (msymbol.minsym != NULL)
13320 {
13321 struct ada_exc_info info
13322 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13323
13324 VEC_safe_push (ada_exc_info, *exceptions, &info);
13325 }
13326 }
13327 }
13328 }
13329
13330 /* Add all Ada exceptions defined locally and accessible from the given
13331 FRAME.
13332
13333 If PREG is not NULL, then this regexp_t object is used to
13334 perform the symbol name matching. Otherwise, no name-based
13335 filtering is performed.
13336
13337 EXCEPTIONS is a vector of exceptions to which matching exceptions
13338 gets pushed. */
13339
13340 static void
13341 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13342 VEC(ada_exc_info) **exceptions)
13343 {
13344 const struct block *block = get_frame_block (frame, 0);
13345
13346 while (block != 0)
13347 {
13348 struct block_iterator iter;
13349 struct symbol *sym;
13350
13351 ALL_BLOCK_SYMBOLS (block, iter, sym)
13352 {
13353 switch (SYMBOL_CLASS (sym))
13354 {
13355 case LOC_TYPEDEF:
13356 case LOC_BLOCK:
13357 case LOC_CONST:
13358 break;
13359 default:
13360 if (ada_is_exception_sym (sym))
13361 {
13362 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13363 SYMBOL_VALUE_ADDRESS (sym)};
13364
13365 VEC_safe_push (ada_exc_info, *exceptions, &info);
13366 }
13367 }
13368 }
13369 if (BLOCK_FUNCTION (block) != NULL)
13370 break;
13371 block = BLOCK_SUPERBLOCK (block);
13372 }
13373 }
13374
13375 /* Add all exceptions defined globally whose name name match
13376 a regular expression, excluding standard exceptions.
13377
13378 The reason we exclude standard exceptions is that they need
13379 to be handled separately: Standard exceptions are defined inside
13380 a runtime unit which is normally not compiled with debugging info,
13381 and thus usually do not show up in our symbol search. However,
13382 if the unit was in fact built with debugging info, we need to
13383 exclude them because they would duplicate the entry we found
13384 during the special loop that specifically searches for those
13385 standard exceptions.
13386
13387 If PREG is not NULL, then this regexp_t object is used to
13388 perform the symbol name matching. Otherwise, no name-based
13389 filtering is performed.
13390
13391 EXCEPTIONS is a vector of exceptions to which matching exceptions
13392 gets pushed. */
13393
13394 static void
13395 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13396 {
13397 struct objfile *objfile;
13398 struct compunit_symtab *s;
13399
13400 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
13401 VARIABLES_DOMAIN, preg);
13402
13403 ALL_COMPUNITS (objfile, s)
13404 {
13405 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13406 int i;
13407
13408 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13409 {
13410 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13411 struct block_iterator iter;
13412 struct symbol *sym;
13413
13414 ALL_BLOCK_SYMBOLS (b, iter, sym)
13415 if (ada_is_non_standard_exception_sym (sym)
13416 && (preg == NULL
13417 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13418 0, NULL, 0) == 0))
13419 {
13420 struct ada_exc_info info
13421 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13422
13423 VEC_safe_push (ada_exc_info, *exceptions, &info);
13424 }
13425 }
13426 }
13427 }
13428
13429 /* Implements ada_exceptions_list with the regular expression passed
13430 as a regex_t, rather than a string.
13431
13432 If not NULL, PREG is used to filter out exceptions whose names
13433 do not match. Otherwise, all exceptions are listed. */
13434
13435 static VEC(ada_exc_info) *
13436 ada_exceptions_list_1 (regex_t *preg)
13437 {
13438 VEC(ada_exc_info) *result = NULL;
13439 struct cleanup *old_chain
13440 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13441 int prev_len;
13442
13443 /* First, list the known standard exceptions. These exceptions
13444 need to be handled separately, as they are usually defined in
13445 runtime units that have been compiled without debugging info. */
13446
13447 ada_add_standard_exceptions (preg, &result);
13448
13449 /* Next, find all exceptions whose scope is local and accessible
13450 from the currently selected frame. */
13451
13452 if (has_stack_frames ())
13453 {
13454 prev_len = VEC_length (ada_exc_info, result);
13455 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13456 &result);
13457 if (VEC_length (ada_exc_info, result) > prev_len)
13458 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13459 }
13460
13461 /* Add all exceptions whose scope is global. */
13462
13463 prev_len = VEC_length (ada_exc_info, result);
13464 ada_add_global_exceptions (preg, &result);
13465 if (VEC_length (ada_exc_info, result) > prev_len)
13466 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13467
13468 discard_cleanups (old_chain);
13469 return result;
13470 }
13471
13472 /* Return a vector of ada_exc_info.
13473
13474 If REGEXP is NULL, all exceptions are included in the result.
13475 Otherwise, it should contain a valid regular expression,
13476 and only the exceptions whose names match that regular expression
13477 are included in the result.
13478
13479 The exceptions are sorted in the following order:
13480 - Standard exceptions (defined by the Ada language), in
13481 alphabetical order;
13482 - Exceptions only visible from the current frame, in
13483 alphabetical order;
13484 - Exceptions whose scope is global, in alphabetical order. */
13485
13486 VEC(ada_exc_info) *
13487 ada_exceptions_list (const char *regexp)
13488 {
13489 VEC(ada_exc_info) *result = NULL;
13490 struct cleanup *old_chain = NULL;
13491 regex_t reg;
13492
13493 if (regexp != NULL)
13494 old_chain = compile_rx_or_error (&reg, regexp,
13495 _("invalid regular expression"));
13496
13497 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13498
13499 if (old_chain != NULL)
13500 do_cleanups (old_chain);
13501 return result;
13502 }
13503
13504 /* Implement the "info exceptions" command. */
13505
13506 static void
13507 info_exceptions_command (char *regexp, int from_tty)
13508 {
13509 VEC(ada_exc_info) *exceptions;
13510 struct cleanup *cleanup;
13511 struct gdbarch *gdbarch = get_current_arch ();
13512 int ix;
13513 struct ada_exc_info *info;
13514
13515 exceptions = ada_exceptions_list (regexp);
13516 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13517
13518 if (regexp != NULL)
13519 printf_filtered
13520 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13521 else
13522 printf_filtered (_("All defined Ada exceptions:\n"));
13523
13524 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13525 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13526
13527 do_cleanups (cleanup);
13528 }
13529
13530 /* Operators */
13531 /* Information about operators given special treatment in functions
13532 below. */
13533 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13534
13535 #define ADA_OPERATORS \
13536 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13537 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13538 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13539 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13540 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13541 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13542 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13543 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13544 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13545 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13546 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13547 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13548 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13549 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13550 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13551 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13552 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13553 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13554 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13555
13556 static void
13557 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13558 int *argsp)
13559 {
13560 switch (exp->elts[pc - 1].opcode)
13561 {
13562 default:
13563 operator_length_standard (exp, pc, oplenp, argsp);
13564 break;
13565
13566 #define OP_DEFN(op, len, args, binop) \
13567 case op: *oplenp = len; *argsp = args; break;
13568 ADA_OPERATORS;
13569 #undef OP_DEFN
13570
13571 case OP_AGGREGATE:
13572 *oplenp = 3;
13573 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13574 break;
13575
13576 case OP_CHOICES:
13577 *oplenp = 3;
13578 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13579 break;
13580 }
13581 }
13582
13583 /* Implementation of the exp_descriptor method operator_check. */
13584
13585 static int
13586 ada_operator_check (struct expression *exp, int pos,
13587 int (*objfile_func) (struct objfile *objfile, void *data),
13588 void *data)
13589 {
13590 const union exp_element *const elts = exp->elts;
13591 struct type *type = NULL;
13592
13593 switch (elts[pos].opcode)
13594 {
13595 case UNOP_IN_RANGE:
13596 case UNOP_QUAL:
13597 type = elts[pos + 1].type;
13598 break;
13599
13600 default:
13601 return operator_check_standard (exp, pos, objfile_func, data);
13602 }
13603
13604 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13605
13606 if (type && TYPE_OBJFILE (type)
13607 && (*objfile_func) (TYPE_OBJFILE (type), data))
13608 return 1;
13609
13610 return 0;
13611 }
13612
13613 static char *
13614 ada_op_name (enum exp_opcode opcode)
13615 {
13616 switch (opcode)
13617 {
13618 default:
13619 return op_name_standard (opcode);
13620
13621 #define OP_DEFN(op, len, args, binop) case op: return #op;
13622 ADA_OPERATORS;
13623 #undef OP_DEFN
13624
13625 case OP_AGGREGATE:
13626 return "OP_AGGREGATE";
13627 case OP_CHOICES:
13628 return "OP_CHOICES";
13629 case OP_NAME:
13630 return "OP_NAME";
13631 }
13632 }
13633
13634 /* As for operator_length, but assumes PC is pointing at the first
13635 element of the operator, and gives meaningful results only for the
13636 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13637
13638 static void
13639 ada_forward_operator_length (struct expression *exp, int pc,
13640 int *oplenp, int *argsp)
13641 {
13642 switch (exp->elts[pc].opcode)
13643 {
13644 default:
13645 *oplenp = *argsp = 0;
13646 break;
13647
13648 #define OP_DEFN(op, len, args, binop) \
13649 case op: *oplenp = len; *argsp = args; break;
13650 ADA_OPERATORS;
13651 #undef OP_DEFN
13652
13653 case OP_AGGREGATE:
13654 *oplenp = 3;
13655 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13656 break;
13657
13658 case OP_CHOICES:
13659 *oplenp = 3;
13660 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13661 break;
13662
13663 case OP_STRING:
13664 case OP_NAME:
13665 {
13666 int len = longest_to_int (exp->elts[pc + 1].longconst);
13667
13668 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13669 *argsp = 0;
13670 break;
13671 }
13672 }
13673 }
13674
13675 static int
13676 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13677 {
13678 enum exp_opcode op = exp->elts[elt].opcode;
13679 int oplen, nargs;
13680 int pc = elt;
13681 int i;
13682
13683 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13684
13685 switch (op)
13686 {
13687 /* Ada attributes ('Foo). */
13688 case OP_ATR_FIRST:
13689 case OP_ATR_LAST:
13690 case OP_ATR_LENGTH:
13691 case OP_ATR_IMAGE:
13692 case OP_ATR_MAX:
13693 case OP_ATR_MIN:
13694 case OP_ATR_MODULUS:
13695 case OP_ATR_POS:
13696 case OP_ATR_SIZE:
13697 case OP_ATR_TAG:
13698 case OP_ATR_VAL:
13699 break;
13700
13701 case UNOP_IN_RANGE:
13702 case UNOP_QUAL:
13703 /* XXX: gdb_sprint_host_address, type_sprint */
13704 fprintf_filtered (stream, _("Type @"));
13705 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13706 fprintf_filtered (stream, " (");
13707 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13708 fprintf_filtered (stream, ")");
13709 break;
13710 case BINOP_IN_BOUNDS:
13711 fprintf_filtered (stream, " (%d)",
13712 longest_to_int (exp->elts[pc + 2].longconst));
13713 break;
13714 case TERNOP_IN_RANGE:
13715 break;
13716
13717 case OP_AGGREGATE:
13718 case OP_OTHERS:
13719 case OP_DISCRETE_RANGE:
13720 case OP_POSITIONAL:
13721 case OP_CHOICES:
13722 break;
13723
13724 case OP_NAME:
13725 case OP_STRING:
13726 {
13727 char *name = &exp->elts[elt + 2].string;
13728 int len = longest_to_int (exp->elts[elt + 1].longconst);
13729
13730 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13731 break;
13732 }
13733
13734 default:
13735 return dump_subexp_body_standard (exp, stream, elt);
13736 }
13737
13738 elt += oplen;
13739 for (i = 0; i < nargs; i += 1)
13740 elt = dump_subexp (exp, stream, elt);
13741
13742 return elt;
13743 }
13744
13745 /* The Ada extension of print_subexp (q.v.). */
13746
13747 static void
13748 ada_print_subexp (struct expression *exp, int *pos,
13749 struct ui_file *stream, enum precedence prec)
13750 {
13751 int oplen, nargs, i;
13752 int pc = *pos;
13753 enum exp_opcode op = exp->elts[pc].opcode;
13754
13755 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13756
13757 *pos += oplen;
13758 switch (op)
13759 {
13760 default:
13761 *pos -= oplen;
13762 print_subexp_standard (exp, pos, stream, prec);
13763 return;
13764
13765 case OP_VAR_VALUE:
13766 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13767 return;
13768
13769 case BINOP_IN_BOUNDS:
13770 /* XXX: sprint_subexp */
13771 print_subexp (exp, pos, stream, PREC_SUFFIX);
13772 fputs_filtered (" in ", stream);
13773 print_subexp (exp, pos, stream, PREC_SUFFIX);
13774 fputs_filtered ("'range", stream);
13775 if (exp->elts[pc + 1].longconst > 1)
13776 fprintf_filtered (stream, "(%ld)",
13777 (long) exp->elts[pc + 1].longconst);
13778 return;
13779
13780 case TERNOP_IN_RANGE:
13781 if (prec >= PREC_EQUAL)
13782 fputs_filtered ("(", stream);
13783 /* XXX: sprint_subexp */
13784 print_subexp (exp, pos, stream, PREC_SUFFIX);
13785 fputs_filtered (" in ", stream);
13786 print_subexp (exp, pos, stream, PREC_EQUAL);
13787 fputs_filtered (" .. ", stream);
13788 print_subexp (exp, pos, stream, PREC_EQUAL);
13789 if (prec >= PREC_EQUAL)
13790 fputs_filtered (")", stream);
13791 return;
13792
13793 case OP_ATR_FIRST:
13794 case OP_ATR_LAST:
13795 case OP_ATR_LENGTH:
13796 case OP_ATR_IMAGE:
13797 case OP_ATR_MAX:
13798 case OP_ATR_MIN:
13799 case OP_ATR_MODULUS:
13800 case OP_ATR_POS:
13801 case OP_ATR_SIZE:
13802 case OP_ATR_TAG:
13803 case OP_ATR_VAL:
13804 if (exp->elts[*pos].opcode == OP_TYPE)
13805 {
13806 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13807 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13808 &type_print_raw_options);
13809 *pos += 3;
13810 }
13811 else
13812 print_subexp (exp, pos, stream, PREC_SUFFIX);
13813 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13814 if (nargs > 1)
13815 {
13816 int tem;
13817
13818 for (tem = 1; tem < nargs; tem += 1)
13819 {
13820 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13821 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13822 }
13823 fputs_filtered (")", stream);
13824 }
13825 return;
13826
13827 case UNOP_QUAL:
13828 type_print (exp->elts[pc + 1].type, "", stream, 0);
13829 fputs_filtered ("'(", stream);
13830 print_subexp (exp, pos, stream, PREC_PREFIX);
13831 fputs_filtered (")", stream);
13832 return;
13833
13834 case UNOP_IN_RANGE:
13835 /* XXX: sprint_subexp */
13836 print_subexp (exp, pos, stream, PREC_SUFFIX);
13837 fputs_filtered (" in ", stream);
13838 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13839 &type_print_raw_options);
13840 return;
13841
13842 case OP_DISCRETE_RANGE:
13843 print_subexp (exp, pos, stream, PREC_SUFFIX);
13844 fputs_filtered ("..", stream);
13845 print_subexp (exp, pos, stream, PREC_SUFFIX);
13846 return;
13847
13848 case OP_OTHERS:
13849 fputs_filtered ("others => ", stream);
13850 print_subexp (exp, pos, stream, PREC_SUFFIX);
13851 return;
13852
13853 case OP_CHOICES:
13854 for (i = 0; i < nargs-1; i += 1)
13855 {
13856 if (i > 0)
13857 fputs_filtered ("|", stream);
13858 print_subexp (exp, pos, stream, PREC_SUFFIX);
13859 }
13860 fputs_filtered (" => ", stream);
13861 print_subexp (exp, pos, stream, PREC_SUFFIX);
13862 return;
13863
13864 case OP_POSITIONAL:
13865 print_subexp (exp, pos, stream, PREC_SUFFIX);
13866 return;
13867
13868 case OP_AGGREGATE:
13869 fputs_filtered ("(", stream);
13870 for (i = 0; i < nargs; i += 1)
13871 {
13872 if (i > 0)
13873 fputs_filtered (", ", stream);
13874 print_subexp (exp, pos, stream, PREC_SUFFIX);
13875 }
13876 fputs_filtered (")", stream);
13877 return;
13878 }
13879 }
13880
13881 /* Table mapping opcodes into strings for printing operators
13882 and precedences of the operators. */
13883
13884 static const struct op_print ada_op_print_tab[] = {
13885 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13886 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13887 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13888 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13889 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13890 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13891 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13892 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13893 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13894 {">=", BINOP_GEQ, PREC_ORDER, 0},
13895 {">", BINOP_GTR, PREC_ORDER, 0},
13896 {"<", BINOP_LESS, PREC_ORDER, 0},
13897 {">>", BINOP_RSH, PREC_SHIFT, 0},
13898 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13899 {"+", BINOP_ADD, PREC_ADD, 0},
13900 {"-", BINOP_SUB, PREC_ADD, 0},
13901 {"&", BINOP_CONCAT, PREC_ADD, 0},
13902 {"*", BINOP_MUL, PREC_MUL, 0},
13903 {"/", BINOP_DIV, PREC_MUL, 0},
13904 {"rem", BINOP_REM, PREC_MUL, 0},
13905 {"mod", BINOP_MOD, PREC_MUL, 0},
13906 {"**", BINOP_EXP, PREC_REPEAT, 0},
13907 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13908 {"-", UNOP_NEG, PREC_PREFIX, 0},
13909 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13910 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13911 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13912 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13913 {".all", UNOP_IND, PREC_SUFFIX, 1},
13914 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13915 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13916 {NULL, OP_NULL, PREC_SUFFIX, 0}
13917 };
13918 \f
13919 enum ada_primitive_types {
13920 ada_primitive_type_int,
13921 ada_primitive_type_long,
13922 ada_primitive_type_short,
13923 ada_primitive_type_char,
13924 ada_primitive_type_float,
13925 ada_primitive_type_double,
13926 ada_primitive_type_void,
13927 ada_primitive_type_long_long,
13928 ada_primitive_type_long_double,
13929 ada_primitive_type_natural,
13930 ada_primitive_type_positive,
13931 ada_primitive_type_system_address,
13932 nr_ada_primitive_types
13933 };
13934
13935 static void
13936 ada_language_arch_info (struct gdbarch *gdbarch,
13937 struct language_arch_info *lai)
13938 {
13939 const struct builtin_type *builtin = builtin_type (gdbarch);
13940
13941 lai->primitive_type_vector
13942 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13943 struct type *);
13944
13945 lai->primitive_type_vector [ada_primitive_type_int]
13946 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13947 0, "integer");
13948 lai->primitive_type_vector [ada_primitive_type_long]
13949 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13950 0, "long_integer");
13951 lai->primitive_type_vector [ada_primitive_type_short]
13952 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13953 0, "short_integer");
13954 lai->string_char_type
13955 = lai->primitive_type_vector [ada_primitive_type_char]
13956 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13957 lai->primitive_type_vector [ada_primitive_type_float]
13958 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13959 "float", NULL);
13960 lai->primitive_type_vector [ada_primitive_type_double]
13961 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13962 "long_float", NULL);
13963 lai->primitive_type_vector [ada_primitive_type_long_long]
13964 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13965 0, "long_long_integer");
13966 lai->primitive_type_vector [ada_primitive_type_long_double]
13967 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13968 "long_long_float", NULL);
13969 lai->primitive_type_vector [ada_primitive_type_natural]
13970 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13971 0, "natural");
13972 lai->primitive_type_vector [ada_primitive_type_positive]
13973 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13974 0, "positive");
13975 lai->primitive_type_vector [ada_primitive_type_void]
13976 = builtin->builtin_void;
13977
13978 lai->primitive_type_vector [ada_primitive_type_system_address]
13979 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13980 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13981 = "system__address";
13982
13983 lai->bool_type_symbol = NULL;
13984 lai->bool_type_default = builtin->builtin_bool;
13985 }
13986 \f
13987 /* Language vector */
13988
13989 /* Not really used, but needed in the ada_language_defn. */
13990
13991 static void
13992 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13993 {
13994 ada_emit_char (c, type, stream, quoter, 1);
13995 }
13996
13997 static int
13998 parse (struct parser_state *ps)
13999 {
14000 warnings_issued = 0;
14001 return ada_parse (ps);
14002 }
14003
14004 static const struct exp_descriptor ada_exp_descriptor = {
14005 ada_print_subexp,
14006 ada_operator_length,
14007 ada_operator_check,
14008 ada_op_name,
14009 ada_dump_subexp_body,
14010 ada_evaluate_subexp
14011 };
14012
14013 /* Implement the "la_get_symbol_name_cmp" language_defn method
14014 for Ada. */
14015
14016 static symbol_name_cmp_ftype
14017 ada_get_symbol_name_cmp (const char *lookup_name)
14018 {
14019 if (should_use_wild_match (lookup_name))
14020 return wild_match;
14021 else
14022 return compare_names;
14023 }
14024
14025 /* Implement the "la_read_var_value" language_defn method for Ada. */
14026
14027 static struct value *
14028 ada_read_var_value (struct symbol *var, const struct block *var_block,
14029 struct frame_info *frame)
14030 {
14031 const struct block *frame_block = NULL;
14032 struct symbol *renaming_sym = NULL;
14033
14034 /* The only case where default_read_var_value is not sufficient
14035 is when VAR is a renaming... */
14036 if (frame)
14037 frame_block = get_frame_block (frame, NULL);
14038 if (frame_block)
14039 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14040 if (renaming_sym != NULL)
14041 return ada_read_renaming_var_value (renaming_sym, frame_block);
14042
14043 /* This is a typical case where we expect the default_read_var_value
14044 function to work. */
14045 return default_read_var_value (var, var_block, frame);
14046 }
14047
14048 const struct language_defn ada_language_defn = {
14049 "ada", /* Language name */
14050 "Ada",
14051 language_ada,
14052 range_check_off,
14053 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14054 that's not quite what this means. */
14055 array_row_major,
14056 macro_expansion_no,
14057 &ada_exp_descriptor,
14058 parse,
14059 ada_yyerror,
14060 resolve,
14061 ada_printchar, /* Print a character constant */
14062 ada_printstr, /* Function to print string constant */
14063 emit_char, /* Function to print single char (not used) */
14064 ada_print_type, /* Print a type using appropriate syntax */
14065 ada_print_typedef, /* Print a typedef using appropriate syntax */
14066 ada_val_print, /* Print a value using appropriate syntax */
14067 ada_value_print, /* Print a top-level value */
14068 ada_read_var_value, /* la_read_var_value */
14069 NULL, /* Language specific skip_trampoline */
14070 NULL, /* name_of_this */
14071 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14072 basic_lookup_transparent_type, /* lookup_transparent_type */
14073 ada_la_decode, /* Language specific symbol demangler */
14074 NULL, /* Language specific
14075 class_name_from_physname */
14076 ada_op_print_tab, /* expression operators for printing */
14077 0, /* c-style arrays */
14078 1, /* String lower bound */
14079 ada_get_gdb_completer_word_break_characters,
14080 ada_make_symbol_completion_list,
14081 ada_language_arch_info,
14082 ada_print_array_index,
14083 default_pass_by_reference,
14084 c_get_string,
14085 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
14086 ada_iterate_over_symbols,
14087 &ada_varobj_ops,
14088 NULL,
14089 NULL,
14090 LANG_MAGIC
14091 };
14092
14093 /* Provide a prototype to silence -Wmissing-prototypes. */
14094 extern initialize_file_ftype _initialize_ada_language;
14095
14096 /* Command-list for the "set/show ada" prefix command. */
14097 static struct cmd_list_element *set_ada_list;
14098 static struct cmd_list_element *show_ada_list;
14099
14100 /* Implement the "set ada" prefix command. */
14101
14102 static void
14103 set_ada_command (char *arg, int from_tty)
14104 {
14105 printf_unfiltered (_(\
14106 "\"set ada\" must be followed by the name of a setting.\n"));
14107 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14108 }
14109
14110 /* Implement the "show ada" prefix command. */
14111
14112 static void
14113 show_ada_command (char *args, int from_tty)
14114 {
14115 cmd_show_list (show_ada_list, from_tty, "");
14116 }
14117
14118 static void
14119 initialize_ada_catchpoint_ops (void)
14120 {
14121 struct breakpoint_ops *ops;
14122
14123 initialize_breakpoint_ops ();
14124
14125 ops = &catch_exception_breakpoint_ops;
14126 *ops = bkpt_breakpoint_ops;
14127 ops->dtor = dtor_catch_exception;
14128 ops->allocate_location = allocate_location_catch_exception;
14129 ops->re_set = re_set_catch_exception;
14130 ops->check_status = check_status_catch_exception;
14131 ops->print_it = print_it_catch_exception;
14132 ops->print_one = print_one_catch_exception;
14133 ops->print_mention = print_mention_catch_exception;
14134 ops->print_recreate = print_recreate_catch_exception;
14135
14136 ops = &catch_exception_unhandled_breakpoint_ops;
14137 *ops = bkpt_breakpoint_ops;
14138 ops->dtor = dtor_catch_exception_unhandled;
14139 ops->allocate_location = allocate_location_catch_exception_unhandled;
14140 ops->re_set = re_set_catch_exception_unhandled;
14141 ops->check_status = check_status_catch_exception_unhandled;
14142 ops->print_it = print_it_catch_exception_unhandled;
14143 ops->print_one = print_one_catch_exception_unhandled;
14144 ops->print_mention = print_mention_catch_exception_unhandled;
14145 ops->print_recreate = print_recreate_catch_exception_unhandled;
14146
14147 ops = &catch_assert_breakpoint_ops;
14148 *ops = bkpt_breakpoint_ops;
14149 ops->dtor = dtor_catch_assert;
14150 ops->allocate_location = allocate_location_catch_assert;
14151 ops->re_set = re_set_catch_assert;
14152 ops->check_status = check_status_catch_assert;
14153 ops->print_it = print_it_catch_assert;
14154 ops->print_one = print_one_catch_assert;
14155 ops->print_mention = print_mention_catch_assert;
14156 ops->print_recreate = print_recreate_catch_assert;
14157 }
14158
14159 /* This module's 'new_objfile' observer. */
14160
14161 static void
14162 ada_new_objfile_observer (struct objfile *objfile)
14163 {
14164 ada_clear_symbol_cache ();
14165 }
14166
14167 /* This module's 'free_objfile' observer. */
14168
14169 static void
14170 ada_free_objfile_observer (struct objfile *objfile)
14171 {
14172 ada_clear_symbol_cache ();
14173 }
14174
14175 void
14176 _initialize_ada_language (void)
14177 {
14178 add_language (&ada_language_defn);
14179
14180 initialize_ada_catchpoint_ops ();
14181
14182 add_prefix_cmd ("ada", no_class, set_ada_command,
14183 _("Prefix command for changing Ada-specfic settings"),
14184 &set_ada_list, "set ada ", 0, &setlist);
14185
14186 add_prefix_cmd ("ada", no_class, show_ada_command,
14187 _("Generic command for showing Ada-specific settings."),
14188 &show_ada_list, "show ada ", 0, &showlist);
14189
14190 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14191 &trust_pad_over_xvs, _("\
14192 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14193 Show whether an optimization trusting PAD types over XVS types is activated"),
14194 _("\
14195 This is related to the encoding used by the GNAT compiler. The debugger\n\
14196 should normally trust the contents of PAD types, but certain older versions\n\
14197 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14198 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14199 work around this bug. It is always safe to turn this option \"off\", but\n\
14200 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14201 this option to \"off\" unless necessary."),
14202 NULL, NULL, &set_ada_list, &show_ada_list);
14203
14204 add_setshow_boolean_cmd ("print-signatures", class_vars,
14205 &print_signatures, _("\
14206 Enable or disable the output of formal and return types for functions in the \
14207 overloads selection menu"), _("\
14208 Show whether the output of formal and return types for functions in the \
14209 overloads selection menu is activated"),
14210 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14211
14212 add_catch_command ("exception", _("\
14213 Catch Ada exceptions, when raised.\n\
14214 With an argument, catch only exceptions with the given name."),
14215 catch_ada_exception_command,
14216 NULL,
14217 CATCH_PERMANENT,
14218 CATCH_TEMPORARY);
14219 add_catch_command ("assert", _("\
14220 Catch failed Ada assertions, when raised.\n\
14221 With an argument, catch only exceptions with the given name."),
14222 catch_assert_command,
14223 NULL,
14224 CATCH_PERMANENT,
14225 CATCH_TEMPORARY);
14226
14227 varsize_limit = 65536;
14228
14229 add_info ("exceptions", info_exceptions_command,
14230 _("\
14231 List all Ada exception names.\n\
14232 If a regular expression is passed as an argument, only those matching\n\
14233 the regular expression are listed."));
14234
14235 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14236 _("Set Ada maintenance-related variables."),
14237 &maint_set_ada_cmdlist, "maintenance set ada ",
14238 0/*allow-unknown*/, &maintenance_set_cmdlist);
14239
14240 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14241 _("Show Ada maintenance-related variables"),
14242 &maint_show_ada_cmdlist, "maintenance show ada ",
14243 0/*allow-unknown*/, &maintenance_show_cmdlist);
14244
14245 add_setshow_boolean_cmd
14246 ("ignore-descriptive-types", class_maintenance,
14247 &ada_ignore_descriptive_types_p,
14248 _("Set whether descriptive types generated by GNAT should be ignored."),
14249 _("Show whether descriptive types generated by GNAT should be ignored."),
14250 _("\
14251 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14252 DWARF attribute."),
14253 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14254
14255 obstack_init (&symbol_list_obstack);
14256
14257 decoded_names_store = htab_create_alloc
14258 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14259 NULL, xcalloc, xfree);
14260
14261 /* The ada-lang observers. */
14262 observer_attach_new_objfile (ada_new_objfile_observer);
14263 observer_attach_free_objfile (ada_free_objfile_observer);
14264 observer_attach_inferior_exit (ada_inferior_exit);
14265
14266 /* Setup various context-specific data. */
14267 ada_inferior_data
14268 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14269 ada_pspace_data_handle
14270 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14271 }
This page took 0.320872 seconds and 4 git commands to generate.